
Lecture Notes in Computer Science 3964
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

M. Ümit Uyar
Ali Y. Duale
Mariusz A. Fecko (Eds.)

Testing
of Communicating
Systems

18th IFIP TC6/WG6.1 International Conference, TestCom 2006
New York, NY, USA, May 16-18, 2006
Proceedings

1 3

Volume Editors

M. Ümit Uyar
The City College of The City University of New York
Electrical Engineering Department
140th Street at Convent Avenue, New York, NY 10031, USA
E-mail: umit@ccny.cuny.edu

Ali Y. Duale
IBM, Systems Assurance Kernel (SAK)
Poughkeepsie, NY 12601, USA
E-mail: duale@us.ibm.com

Mariusz A. Fecko
Telcordia Technologies, Inc.
Applied Research
One Telcordia Dr RRC-1E326, Piscataway, NJ 08854, USA
E-mail: mfecko@research.telcordia.com

Library of Congress Control Number: 2006925107

CR Subject Classification (1998): D.2.5, D.2, C.2

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-34184-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34184-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11754008 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 18th IFIP International Conference
on Testing Communicating Systems (TestCom 2006). It was the 18th event in a
series of international workshops and conferences which started in 1989 as the
International Workshop for Protocol Test Systems (IWPTS); it then became the
International Workshop on Testing Communicating Systems (IWTCS) in 1997.
The conference has been called TestCom since 2000.

TestCom 2006 was organized under the auspices of IFIP TC 6 WG 6.1 by the
City University of New York (CUNY), in cooperation with IBM and Telcordia
Technologies, Inc. The conference was held in New York City, USA, May 16–18.

The proceedings contain 23 papers that were selected from 48 submissions
in a carefully designed and transparent paper selection process. TestCom 2006
consisted of 8 sessions, whose scope covered:

– Testing theory and foundations
– Testing non-deterministic and probabilistic systems
– Testing the Internet and industrial systems
– TTCN-3
– Compositional and distributed testing
– FSM-based testing and diagnosis
– Testing timed systems
– Testing for security

We would like to thank the numerous people who contributed to the success of
TestCom 2006. The reviewing process involved all TPC members and a number
of additional reviewers (delegates of the TPC members) who are all listed in
this book. We would like to thank the local organizers for their excellent work to
make the conference run smoothly: Conference Manager Edward Baurin (CCNY)
for his dedicated and hard work, Joseph Driscoll (GC of CUNY) for efficiently
handling the local arrangements at the Graduate Center, Connie Shao (CCNY)
for flawlessly processing the registration funds, and the CUNY graduate students
Samrat Batth, İbrahim Hökelek, Jianping Zou, and Constantinos Djouvas for
handling the technical matters.

We would like to thank our families for their patience, especially during our
evening conference calls.

May 2006 M. Ümit Uyar
Ali Y. Duale

Mariusz A. Fecko

Organization

TestCom 2006 was organized by the City College and the Graduate Center of the
City University of New York (CUNY), in cooperation with IBM and Telcordia
Technologies, Inc.

Program Co-chairs

M. Ümit Uyar (City University of New York, USA)
Ali Y. Duale (IBM, USA)
Mariusz A. Fecko (Telcordia Technologies, Inc., USA)

Technical Program Committee

A. Bertolino (ISTI-CNR, Italy)
G.v. Bochmann (University of Ottawa, Canada)
T. Brown (City University of New York, USA)
R. Castanet (LABRI, France)
R. Dssouli (Concordia University, Canada)
P. Frankl (Brooklyn Polytechnic, USA)
J. Grabowski (University of Goettingen, Germany)
N. Griffeth (City University of New York, USA)
R. Hierons (Brunel University, UK)
T. Higashino (Osaka University, Japan)
D. Hogrefe (University of Goettingen, Germany)
G. Holzmann (Jet Propulsion Lab, USA)
C. Jard (IRISA Rennes, France)
T. Jéron (IRISA Rennes, France)
F. Khendek (Concordia University, Canada)
M. Kim (ICU, Korea)
H. König (BTU Cottbus, Germany)
D. Lee (Ohio State University, USA)
G. Maggiore (TIM, Italy)
L. Ness (Telcordia, USA)
M. Núñez (UC de Madrid, Spain)
I. Schieferdecker (Fraunhofer Fokus, Germany)
K. Suzuki (University of Electro-Communications, Japan)
J. Tretmans (Radboud University, The Netherlands)
A. Ulrich (Siemens, Germany)
H. Ural (University of Ottawa, Canada)
M. Veanes (Microsoft, USA)
H. Yenigun (Sabanci University, Turkey)
N. Yevtushenko (Tomsk State University, Russia)

VIII Organization

Conference Staff

Conference Manager Edward Baurin (CCNY, USA)
Local Arrangements Joseph Driscoll (GC of CUNY, USA)
Registration Connie Shao (CCNY, USA)

Steering Committee

Chairman J. Derrick (University of Sheffield, UK)
Members A.R. Cavalli (INT, France)

R. Groz (LSR-IMAG, France)
A. Petrenko (CRIM, Canada)

Additional Referees

I. Berrada
A. Cavalli
D. Chen
C. Chi
M. Ebner
L. Frantzen
A. Gotlieb
W. Grieskamp
Y. Gurevich

J.R. Horgan
J. Huo
G.-V. Jourdan
F.-C. Kuo
K. Li
C.M. Lott
M.G. Merayo
F. Patrick
I. Rodriguez

A. Rollet
K. Rowan
F. Rubio
C. Viho
C. Werner
A. Williams
A. Petrenko

Sponsoring Institutions

International Federation for Information Processing (IFIP), Laxenburg, Austria
The Graduate Center and the City College of CUNY, New York, USA
IBM Corporation, Armonk, NY, USA
Telcordia Technologies, Inc., Piscataway, NJ, USA

Table of Contents

Session I: Testing Theory and Foundations

Symbolic Execution Techniques for Test Purpose Definition
Christophe Gaston, Pascale Le Gall, Nicolas Rapin, Assia Touil 1

Controllable Combinatorial Coverage in Grammar-Based Testing
Ralf Lämmel, Wolfram Schulte . 19

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses
Ismael Rodŕıguez, Mercedes G. Merayo, Manuel Núñez 39

Session II: Testing Non-deterministic and
Probabilistic Systems

Bounded Sequence Testing from Non-deterministic Finite State
Machines

Florentin Ipate . 55

LaTe, a Non-fully Deterministic Testing Language
Emmanuel Donin de Rosière, Claude Jard, Benôıt Parreaux 71

Customized Testing for Probabilistic Systems
Luis F. Llana-Dı́az, Manuel Núñez, Ismael Rodŕıguez 87

Session III: Testing Internet and Industrial Systems

Generating Test Cases for Web Services Using Extended Finite State
Machine

ChangSup Keum, Sungwon Kang, In-Young Ko, Jongmoon Baik,
Young-Il Choi . 103

Towards the Testing of Composed Web Services in 3rd Generation
Networks

Abdelghani Benharref, Rachida Dssouli, Roch Glitho,
Mohamed Adel Serhani . 118

Application of Two Test Generation Tools to an Industrial Case Study
Ana Cavalli, Stéphane Maag, Wissam Mallouli, Mikael Marche,
Yves-Marie Quemener . 134

X Table of Contents

Session IV: TTCN-3

Performance Analysis of Concurrent PCOs in TTCN-3
Máté J. Csorba, Sándor Palugyai, Sarolta Dibuz, Gyula Csopaki 149

Use of TTCN-3 for Software Module Testing
Andreas Johan Nyberg . 161

Distributed Load Tests with TTCN-3
George Din, Sorin Tolea, Ina Schieferdecker . 177

Session V: Compositional and Distributed Testing

Analyzing the Impact of Protocol Changes on Tests
Mahadevan Subramaniam, Zoltán Pap . 197

Detecting Observability Problems in Distributed Testing
Jessica Chen, Hasan Ural . 213

Compositional Testing of Communication Systems
Reinhard Gotzhein, Ferhat Khendek . 227

Session VI: FSM-Based Testing and Diagnosis

FSM Test Translation Through Context
Khaled El-Fakih, Alexandre Petrenko, Nina Yevtushenko 245

Using Distinguishing and UIO Sequences Together in a Checking
Sequence

M. Cihan Yalcin, Husnu Yenigun . 259

Reducing the Lengths of Checking Sequences by Overlapping
Hasan Ural, Fan Zhang . 274

Session VII: Timed Systems

Test Case Minimization for Real-Time Systems Using Timed Bound
Traces

Ismäıl Berrada, Richard Castanet, Patrick Félix, Aziz Salah 289

Symbolic and on the Fly Testing with Real-Time Observers
Rachid Bouaziz, Ousmane Koné . 306

Table of Contents XI

Using TIMEDTTCN-3 in Interoperability Testing for Real-Time
Communication Systems

Zhiliang Wang, Jianping Wu, Xia Yin, Xingang Shi,
Beihang Tian . 324

Session VIII: Testing for Security

Test Generation for Network Security Rules
Vianney Darmaillacq, Jean-Claude Fernandez, Roland Groz,
Laurent Mounier, Jean-Luc Richier . 341

Message Confidentiality Testing of Security Protocols – Passive
Monitoring and Active Checking

Guoqiang Shu, David Lee . 357

Author Index . 373

Symbolic Execution Techniques
for Test Purpose Definition

Christophe Gaston1, Pascale Le Gall2, Nicolas Rapin1, and Assia Touil2,�

1 CEA/LIST Saclay,
F-91191 Gif sur Yvette, France

{christophe.gaston, nicolas.rapin}@cea.fr
2 Université d’Évry, IBISC - FRE CNRS 2873,

523 pl. des Terrasses F-91000 Évry, France
{legall, atouil}@lami.univ-evry.fr

Abstract. We propose an approach to test whether a system conforms
to its specification given in terms of an Input/Output Symbolic Transi-
tion System (IOSTS). IOSTSs use data types to enrich transitions with
data-based messages and guards depending on state variables. We use
symbolic execution techniques both to extract IOSTS behaviours to be
tested in the role of test purposes and to ground an algorithm of test
case generation. Thus, contrarily to some already existing approaches,
our test purposes are directly expressed as symbolic execution paths of
the specification. They are finite symbolic subtrees of its symbolic exe-
cution. Finally, we give coverage criteria and demonstrate our approach
on a running example.

Keywords: Conformance testing, Input/Output Symbolic Transition
Systems, Test Purposes, Symbolic Execution, Coverage Criteria.

1 Introduction

Symbolic Transition Systems (STS) are composed of a data part and of a state-
transition graph part. They specify behaviours of reactive systems with some
benefits compared to the use of classical labelled transition systems. Models are
often smaller and it is even possible to finitely denote systems having an infinite
number of states. In this paper, following the works of [5, 11, 3], we are inter-
ested in studying conformance testing in the context of Input/Output Symbolic
Transition Systems (IOSTS).

Approaches based on symbolic transformations make possible to exploit a
particular analysis technique, the so-called symbolic execution [2, 6], to define a
test selection strategy. This technique has been first defined to compute program
executions according to some constraints expressed on input values. The main
idea is to use symbols instead of concrete data as input values and to derive
a symbolic execution tree in order to describe all possible computations in a
symbolic way. In our contribution, test purposes are defined as some particular
� This work was partially supported by the RNRT French project STACS.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 1–18, 2006.
c© IFIP International Federation for Information Processing 2006

2 C. Gaston et al.

subtrees of this symbolic execution tree. They may be chosen by the user but we
also propose criteria to automatically compute tests purposes. This is a response
to industrial needs where engineers are not always able to define which behav-
iours they want to test. We introduce two criteria. The first one is called all
symbolic behaviours of length n criterion. The second one is called the restriction
by inclusion criterion: the extracted subtree satisfies a coverage criterion which
is based on a procedure of redundancy detection. According to these test pur-
poses, test cases are generated. Our algorithm for test case generation is given
by a set of inference rules. Each rule is dedicated to handle an observation from
the system under test (SUT) or a stimulation sent by the test case to the SUT.
This testing process leads to a verdict being either PASS, FAIL, INCONC or
WeakPASS. PASS means that the SUT succeeded in passing a test. FAIL means
that a non-conformance has been detected. INCONC means that conformance
is observed but the test purpose is not achieved while WeakPASS means that
we are not sure to have achieved the test purpose. This last case is essentially
due to the fact that the specifications may be non-deterministic.

Our work on symbolic conformance testing is close to the ones of [3, 5]. Our
contribution on generation of test cases is inspired by the one of [3]. But as
the data part in [3] was only given according to a pure and abstract theoretical
description, the implementation counterpart and examples are clearly missing.
Associating a verdict to a test case execution requires to perform reachability
analysis. Indeed, one must be able to compute as soon as possible whether or
not a conformance may still be observed. In [5] over-approximation mechanisms
based on abstract interpretation are used to perform reachability analysis. In our
approach, we do not use such abstract interpretation techniques which have the
drawbacks of both being difficult to use and of sometimes giving only approx-
imated verdicts. We prefer to use symbolic execution based mechanisms which
have been already successfully advocated in [10] to validate IOSTS models by
exhibiting pertinent scenarios or deadlock situations.

The paper is structured as follow. In Section 2 we present the IOSTS formal-
ism. Symbolic execution and restriction by inclusion are defined in Section 3. In
Section 4, we present on-the-fly rules for generating test cases. In Section 5, we
discuss the usage of coverage criterion for test purposes definition.

2 Input Output Symbolic Transition Systems

Input/Output Symbolic Transition Systems (IOSTS) extend Input Output La-
belled Transition Systems (IOLTS) [10] by including data types. IOSTS are
used to specify dynamic aspects. This is done by describing modifications of
values associated to some variables, called attribute variables, in order to de-
note system state modifications. These modifications may be due to internal
operations denoted by attribute variable substitutions or to interactions with
the environment under the form of exchanges through communication chan-
nels of input/output messages. Those modifications may be conditioned by
guards.

Symbolic Execution Techniques for Test Purpose Definition 3

2.1 Data Types

Data types are specified with a typed equational specification framework.

Syntax. A data type signature is a couple Ω = (S, Op) where S is a set of
type names, Op is a set of operation names, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). Let V =

⋃

s∈S

Vs be a set of typed variable

names. The set of Ω-terms with variables in V is denoted TΩ(V) =
⋃

s∈S

TΩ(V)s

and is inductively defined as usual over Op and V . TΩ(∅) is simply denoted TΩ .
A Ω-substitution is a function σ : V → TΩ(V) preserving types. In the fol-

lowing, one notes TΩ(V)V the set of all the Ω-substitutions of the variables V .
Any substitution σ may be canonically extended to terms.

The set SenΩ(V) of all typed equational Ω-formulae contains the truth values
true, false and all formulae built using the equality predicates t = t′ for t, t′ ∈
TΩ(V)s, and the usual connectives ¬, ∨, ∧, ⇒.

Semantics. A Ω-model is a family M = {Ms}s∈S with, for each f : s1 · · · sn →
s ∈ Op, a function fM : Ms1 × · · · × Msn → Ms. We define Ω-interpretations
as applications ν from V to M preserving types, extended to terms in TΩ(V).
A model M satisfies a formula ϕ, denoted by M |= ϕ, if and only if, for all
interpretations ν, M |=ν ϕ, where M |=ν t = t′ is defined by ν(t) = ν(t′), and
where the truth values and the connectives are handled as usual. MV is the set
of all Ω-interpretations of V in M . Given a model M and a formula ϕ, ϕ is said
satisfiable in M , if there exists an interpretation ν such that M |=ν ϕ.

In the sequel, we suppose that data types of our IOSTS correspond to the
generic signature Ω = (S, Op) and are interpreted in a fixed model M . In the
following, elements of M are called concrete data and denoted by terms of TΩ.

2.2 Input/Output Symbolic Transition Systems

Definition 1 (IOSTS-signature). An IOSTS-signature Σ is a triple
(Ω, A, C) where Ω is a data type signature, A =

⋃

s∈S

As is a set of variable names

called attribute variables and C is a set of communication channel names.

An IOSTS communicates with its environment through communication actions:

Definition 2 (Actions). The set of communication actions, denoted Act(Σ) =
Input(Σ) ∪ Output(Σ), is defined as follows, with c ∈ C, y ∈ A and t ∈ TΩ(A):

Input(Σ) = c?y | c? and Output(Σ) = c!t | c!

Elements of Input(Σ) are stimulations of the system from the environment: c?x
(resp. c?) means that the system waits on the channel c for a value that will be
assigned to the attribute variable x (resp. for a signal, for example, a pressed

4 C. Gaston et al.

button). Output(Σ) are responses of the system to the environment: c!t (resp. c!)
is the emission of the value t (resp. of a message without any sensible argument)
through the channel c.

Definition 3 (IOSTS). An IOSTS over Σ is a triple G = (Q, q0, T rans)
where Q is a set of state names, q0 ∈ Q is the initial state and Trans ⊆
Q × ActΣ(A) × SenΩ(A) × TΩ(A)A × Q. A transition (q, act, φ, ρ, q′) of Trans
is composed of a source state q, an action act, a guard ϕ, a substitution of vari-
ables ρ and a target state q′. For each state q ∈ Q, there is a finite number of
transitions of source state q.

Observations for a communicating system are made of output actions. However,
a system cannot always emit an output message from a given state q. It is then
said to be quiescent [13]. In particular, quiescence from q depends on the current
values of the attribute variables and on the guards of all transitions outgoing
from q. As in [13], we can complete an IOSTS to explicit quiescent situations. For
that, we add a special output communication action δ!, expressing the absence of
output, whose guard is complementary to all other guards of output transitions
from q. This enrichment by quiescence is given by:

Definition 4 (Enrichment by quiescence). Let G = (Q, q0, T rans) be an
IOSTS over Σ = (Ω, A, C). The enrichment of G by quiescence is the IOSTS
over Σδ = (Ω, A, C ∪{δ}), defined by Gδ = (Q∪{qδ}, q0, T rans∪Transδ) where
(q, act, ϕ, ρ, q′) ∈ Transδ iff:

– act = δ!, ρ is the identity substitution and q′ = qδ.
– Let us note tr1, · · · , trn all transitions of the form tri = (q, acti, ϕi, ρi, qi)

with acti ∈ Output(Σ). Then ϕ is ∧i≤n¬ϕi if n > 0 and is true otherwise1.

Example 1. Let us consider an ATM system built over the communicating au-
tomaton depicted in Figure 1. This IOSTS specifies a system of cash withdrawal,
with the initial state q0. The user asks for some amount (amount?x). The ATM
system checks if there is enough money in the account user (represented by the
variable m) and if this is the first or the second time that the user withdraws
money after a deposit. Then the user receives the asked amount by the channel
cash. If the user account is less than 1000 then the withdrawal operation is not
free and costs 1. Else, if there is not enough money in the account, the user
receives an error message by the channel screen. The user can also deposit some
money (t) in his bank account by the channel deposit. This is added to the bank
account (m := m + t). Moreover, the user can ask for the amount of its account
by the channel check, and receives the answer by the channel sum. There is only
one transition labelled by δ! starting from the state q0. Indeed, the state q1 and
q2 are such that whatever the values of the attribute variables are, it is always
possible to emit at least a message.

1 If ∧i≤n¬ϕi is not a satisfiable formula, the (q, act,∧i≤n¬ϕi, ρ, q′) transition may
clearly be omitted.

Symbolic Execution Techniques for Test Purpose Definition 5

q1

screen!”no money”

deposit?t

q0
sum!m

q2

cash!x
m := m − x − 1

amount?x
cp := cp + 1

cp ≤ 2 ∧ x ≤ m ∧ m < 1000

cp > 2 ∨ x > mm := m + t
cp := 0

x ≤ m ∧ m >= 1000
cp ≤ 2∧

cash!x
m := m − x

qδ
δ!

check?

Fig. 1. Example of ATM system with withdrawal according to some conditions

2.3 Semantics

Definition 5 (Runs of a transition). Let tr = (q, act, ϕ, ρ, q′) ∈ Trans. Let
us note Act(M) = (C × {?, !} × M) ∪ (C × {?, !}). The set Run(tr) ⊆ MA ×
Act(M) × MA of execution runs of tr is such that (νi, actM , νf) ∈ Run(tr) iff:

– if act is of the form c!t (resp. c!) then M |=νi ϕ, νf = νi ◦ ρ and actM =
(c, !, νi(t)) (resp. actM = (c, !)),

– if act is of the form c?y then M |=νi ϕ, there exists νa such that νa(z) = νi(z)
for all z �= y, νf = νa ◦ ρ and actM = (c, ?, νa(y)).

– if act is of the form c? then M |=νi ϕ, νf = νi ◦ ρ and actM = (c, ?).

We denote source(tr) (resp. target(tr)) the source (resp. target) state q (resp.
q′) and act(tr) stands for act. For a run r = (νi, actM , νf), we denote source(r),
act(r) and target(r) respectively νi, actM and νf .

Definition 6 (Finite Paths of an IOSTS). The set of finite paths in G,
denoted FP (G) contains all finite sequence tr1 . . . trn of transitions in Trans
such that source(tr1) = q0 and for all i < n, target(tri) = source(tri+1).

The runs of a finite path tr1 . . . trn in FP (G) are sequences r1 . . . rn such that
for all i ≤ n, ri is a run of tri and for all i < n, target(ri) = source(ri+1).

The set of concrete traces of a finite path p = tr1 . . . trn, denoted Trace(p) is
the set of finite action sequences act(r1) . . . act(rn) for any run r1 · · · rn of p.

In the following, and as usual, for any p ∈ FP (G), length(p) denotes the number
of occurrences of the transitions in the definition of p. We also note Extout(p)
the set of finite paths of G extending p by a transition introducing an output
action. Formally, Extout(p) = {p′ ∈ FP (G) | p′ = p.tr ∧ act(tr) ∈ Output(Σ)}.

Definition 7. The semantics of an IOSTS G is Trace(G) =
⋃

p∈FP (G)

Trace(p).

6 C. Gaston et al.

3 Symbolic Execution

3.1 Definition

In our context, we call a symbolic behaviour of an IOSTS any finite path p of
this IOSTS for which Trace(p) �= ∅. In order to characterize the set of traces
of a symbolic behaviour we propose to use a symbolic execution mechanism.
Symbolic execution has been first defined for programs [6, 2, 9]. This technique
can naturally be adapted to the framework of IOSTS. The main idea is to replace
concrete input values and initialization values of attribute variables by symbolic
ones with fresh variables and to compute the constraints on these variables: those
constraints are called path conditions. In the sequel we assume that those fresh
variables are chosen in a set F =

⋃

s∈S

Fs disjoint from the set of attribute variables

A. We now give the intermediate definition of symbolic extended state which is a
structure allowing to store information about a symbolic behaviour: the IOSTS
current state (target state of the last transition of the symbolic behaviour), the
path condition and the symbolic values associated to attribute variables.

Definition 8 (Symbolic extended state). A symbolic extended state over
F for an IOSTS G = (Q, q0, T rans) is a triple η = (q, π, σ) where q ∈ Q,
π ∈ SenΩ(F) is called a path condition and σ ∈ TΩ(F)A. η = (q, π, σ) is said
to be satisfiable if π is satisfiable2. One notes S (resp. Ssat) the set of all the
(resp. satisfiable) symbolic extended states over F .

We now define the symbolic execution of an IOSTS. Intuitively, the symbolic
execution of an IOSTS can be seen as a tree whose edges are symbolic extended
states and vertexes are labelled by symbolic communication actions. The root is a
symbolic extended state made of the IOSTS initial state, the path condition true
(there is no constraint to begin the execution) and of an arbitrary initialization σ0
of variables of A in F . Vertexes are computed by choosing a source symbolic state
η already computed and by symbolically executing a transition of the IOSTS
whose source is the state introduced in η. The symbolic communication action
is computed from the transition communication action and from the symbolic
values associated to attribute variables in η. A target symbolic extended state is
then computed. It stores the target state of the transition, a new path condition
derived from the path condition of η and from the transition guard, and finally
the new symbolic values associated to attribute variables.

Definition 9 (Symbolic execution of an IOSTS). Let G = (Q, q0, T rans)
be an IOSTS over Σ = (Ω, A, C). Let us note ΣF = (Ω, F, C). A full symbolic
execution of G over F is a triple (S, init, R) with init = (q0, true, σ0) where σ0
is an injective substitution in FA and R ⊆ S × Act(ΣF) × S such that for any
two transitions in R respectively of the form (ηi, c?x, ηf) and (η′i, d?y, η′f), the
variables x and y are distinct and ∀a ∈ A, σ0(a) �= x. For any η ∈ S of the form
2 Let us recall that here, π is satisfiable if and only if there exists ν ∈ MF such that

M |=ν π since variables of π are by construction in F .

Symbolic Execution Techniques for Test Purpose Definition 7

(q, π, σ), for all tr ∈ Trans of the form (q, act, ϕ, ρ, q′), there exists an unique
symbolic transition st = (η, sa, η′) in R such that

– if act = c!t (resp. c!), then sa = c!σ(t) (resp. c!) and η′ = (q′, π∧σ(ϕ), σ◦ρ),
– if act = c?x with x in A then sa = c?z with z in F , and η′ = (q′, π∧σ(ϕ), σ◦

(x �→ z) ◦ ρ),
– if act = c? then sa = c?, and η′ = (q′, π ∧ σ(ϕ), σ ◦ ρ).

The symbolic execution of G over F is the triple SE(G) = (Ssat, init, Rsat)
where Rsat is the restriction of R to Ssat × Act(ΣF) × Ssat.

The trace semantics for a symbolic execution tree is defined in a natural way.
If one solves the path condition of a given path (i.e. the path condition of its
last state) one can then evaluate all symbolic actions labelling this path and
extract the corresponding trace. Since SE(G) is obtained from the symbolic
execution tree of G by removing only un-solvable paths, one can easily prove that
Trace(G) = Trace(SE(G)). Finally, since an IOSTS and its symbolic execution
share the same trace semantics, it is equivalent to study an IOSTS or its symbolic
execution in the context of conformance testing.

sum!m0cash!x1

deposit?t1

screen!
”no money”

δ!

amount?x1

cash!x1

init : (q0, true, σ0)

check?

σ0 = x → x0, m → m0, t → t0, cp → cp0

σ1 = x → x1, m → m0, t → t0, cp → cp0 + 1

σ2 = x → x0, m → m0 + t1, t → t1, cp → cp1

π0 = cp0 ≤ 2 ∧ x1 ≤ m0 ∧ m0 ≤ 1000

π1 = cp0 ≤ 2 ∧ x1 ≤ m0 ∧ m0 < 1000

π2 = cp0 > 2 ∨ x1 > m0

σ3 = x → x1, m → m0 − x1, t → t0, cp → cp0 + 1

σ4 = x → x1, m → m0 − x1 − 1, t → t0, cp → cp0 + 1

η1 : (q1, true, σ1) η2 : (q2, true, σ0) ηδ : (qδ, true, σ0)

η4 : (q0, π0, σ3) η6 : (q0, π2, σ1)η5 : (q0, π1, σ4)

η3 : (q0, true, σ2)

η7 : (q0, true, σ0)

Fig. 2. Symbolic execution tree

Example 2. Figure 2 illustrates the beginning of the symbolic execution of the
ATM system presented in Figure 1.

3.2 Inclusion Criterion

A reactive system is supposed to continuously interact with its environment.
Thus, behaviours viewed as sequences of interactions are very often arbitrary
long. It explains that IOSTS specifications of reactive systems often contain

8 C. Gaston et al.

internal loops. This implies that the symbolic execution of the corresponding
IOSTS has infinite paths. However, in practice, one can consider an arbitrary
long behaviour as a sequence of ”basic” behaviours. For example, the ATM
system basically offers few basic behaviours. It may: (1) provide the user with
money, (2) receive deposit from the user or (3) give the current level of the
user account. Any ”complex” behaviour of the ATM system can be seen as a
sequence of such basic behaviours. Now if one considers the symbolic execution
of the ATM system, one would observe a lot (or even an infinite number) of
occurrences of those basic behaviours. In other words, information on symbolic
behaviours provided by the symbolic execution may be highly redundant in terms
of basic behaviours. We propose to cut the symbolic execution of an IOSTS in
order to lower this redundancy. Definition 9 of symbolic execution shows that
behaviours are indeed determined by states, that is why our procedure to cut the
tree is grounded on a relation upon states. From a symbolic state η = (q, π, σ)
one can extract constraints on the set A of attribute variables : the set of all
possible interpretations νA : A → M corresponding to η are restrictions3 to A of
all interpretations ν : A ∪ F → M such that4 M |=ν

∧
x∈A(x = σ(x)) ∧ π. If the

set of possible interpretations of A for η1 is included in the one of η2 one says
that η1 ⊆ η2.

Definition 10 (States inclusion). Let η = (q, π, σ) and η′ = (q, π′, σ′) be
two symbolic extended states with resp. Fη and Fη′ as subsets of variables in F
occurring resp. in π and π′. η ⊆ η′ iff, if for any ν : A ∪ Fη → M such that
M |=ν (∧x∈A(x = σ(x)) ∧ π) then there exists ν′ : A ∪ Fη′ → M such that
ν|A = ν′

|A and M |=ν′ (∧x∈A(x = σ′(x)) ∧ π′).

Let us consider η1 and η2 verifying η1 ⊆ η2. Any transition that can be sym-
bolically executed from η1 can also be symbolically executed from η2. Moreover
if one executes a transition t from η1 and from η2, this results in two target
symbolic extended states η′

1 and η′
2 such that η′

1 ⊆ η′
2. Recursively applying this

reasoning step allows one to deduce that any symbolic behaviour that can be
deduced from η1 can also be deduced from η2. Then we propose to consider a
reduced symbolic execution by removing the subtree of root η1.

Definition 11 (Restriction by inclusion). Let SE(G) = (Ssat, init, Rsat)
be a symbolic execution of G. A restriction of SE(G) satisfying the inclusion
criterion is a triple SE(G)⊆ = (Ssat

⊆, init, Rsat
⊆) where:

– Ssat
⊆ ⊆ Ssat, init ∈ Ssat

⊆, and Rsat
⊆ ⊆ Rsat.

– For any η ∈ Ssat
⊆ if there is no (η, sa, η′) ∈ Rsat

⊆ then either there is no
(η, sa, η′) ∈ Rsat or there exists η′′ ∈ Ssat

⊆ such that η ⊆ η′′.
– For any η ∈ Ssat

⊆, if there exists (η, sa, η′) ∈ Rsat
⊆ then for all (η, sa′, η′′) ∈

Rsat, (η, sa′, η′′) ∈ Rsat
⊆.

3 As usual, the restriction of an application f : X → Y to a subset Z of X will be
denoted by f|Z .

4 When reading x = σ(x) for x ∈ A in the formula, the reader should be aware that
σ(x) denotes in fact an expression in terms of variables of F .

Symbolic Execution Techniques for Test Purpose Definition 9

Definition 11 does not require that the restriction gets a finite number of sym-
bolic extended states: it may happen that symbolic extended states cannot be
compared through ⊆. However, in practice, reactive systems generally have the
property that they regularly come back to already encountered states, as for
example the initial state. For such systems, the restriction by inclusion of their
symbolic execution generally gives a finite tree.

Example 3. Figure 2 corresponds in fact to a restriction by inclusion of the
symbolic execution of the ATM system. Indeed, η4 ⊆ init since η4 contains the
same state q0 as init and the constraints in η4, i.e. π0 = cp0 ≤ 2∧x1 ≤ m0∧m0 ≥
1000, are stronger that those in init (true). The symbolic extended states η3,
η5, η6 and η7 are handled in the same way.

4 Conformance Testing for IOSTS

4.1 Our Approach

Conformance testing supposes that a formal conformance relation is given be-
tween the specification G and the system under test SUT . We propose to adapt
the ioco relation used for example in [12]. As usual for conformance testing,
we consider that the SUT is only observable by its input/output sequences. In
particular, data handled in these sequences are concrete values which may be
denoted by ground terms of TΩ. By hypothesis, the SUT may be modelled as a
labelled transition system for which transitions are simple emissions (output) or
receptions (input) carrying concrete values. Moreover, as usual, the SUT is sup-
posed to accept all inputs in all states. The set of traces which can be observed
for the SUT , denoted by Trace(SUT), is a subset5 of (Act(M)∪{(δ, !)})∗. Intu-
itively a SUT is conform to its specification with respect to ioco if the reactions
of the SUT are the same than those specified when it is stimulated by inputs
deduced from the specification.

Definition 12. SUT conforms to G if and only if for any tra ∈ Trace(Gδ) ∩
Trace(SUT), if there exists act ∈ Act(M) ∪ {(δ, !)} of the form (c, !, t) or (c, !)
such that tra.act ∈ Trace(SUTδ), then tra.act ∈ Trace(Gδ).

Test purposes are used to select some behaviours to be tested. In our case, test
purposes consist of some finite paths of the symbolic execution of the specifica-
tion. For each of those paths, the last symbolic extended state is the target state
of an output action and is labelled by the keyword accept. All states belonging
to a chosen path (except the last one labelled by accept) are labelled by skip.
So, a skip label simply means that it is still possible to reach an accept state by
emitting or receiving additional messages . So, a test purpose is a finite subtree
of the symbolic execution whose leaves are labelled by accept and intermediate
nodes are labelled by skip. All other states, external to the test purpose, are
5 The absence of outputs from SUT can be observed through the emission δ!, and in

this case, this cannot be directly followed by another emission.

10 C. Gaston et al.

labelled by �: they are not meaningful with respect to the selected paths of the
test purpose.

Definition 13. Let G be an IOSTS with SE(Gδ) = (Ssat, init, Rsat) its as-
sociated symbolic execution. A symbolic test purpose for G is an application
TP : Ssat → {skip, accept,�} such that:

– there exists η verifying TP (η) = accept,
– for any η, η′ verifying TP (η) = TP (η′) = accept, there is no finite path

st1 · · · stn such that for some i ≤ n, source(sti) = η and target(stn) = η′,
– for any η′ verifying TP (η′) = accept, there exists (η, sa, η′) in SE(Gδ) such

that sa is of the form c!t or c!.
– TP (η) = skip iff there exists a finite path st1 · · · stn such that for some i ≤ n,

source(sti) = η and TP (target(stn)) = accept. Otherwise TP (η) = �.

Unlike [5], our test purposes directly characterize by construction a subset of the
specified behaviours since they are extracted from the symbolic execution of the
specification. In the following sections, the considered test purposes will refer to
an arbitrary test purpose generically denoted by TP .

4.2 Preliminary Definitions and Informal Description

A test execution consists in executing on the SUT a transition system, called
a test case and devoted to produce testing verdicts as PASS or FAIL. The
test case and the SUT share the same set of channels and are synchronized by
coupling emissions and receptions on a given communication channel. We focus
on the sequence of data exchanged between the test case and the SUT . These
data are in fact elements of M (the model of the data part) and will be denoted
by ground terms of TΩ. We use the following notations: obs(c!t) with t in TΩ

to characterize that the SUT emits through the channel c the concrete value
denoted t and stim(c?t) to represent stimulations of the SUT , occurring when
the data t is sent by the test case to the SUT . We also use the following generic
notation [ev1, ev2, . . . , evn|V erdict] for a sequence of synchronized transitions
between a test case and the SUT leading to the verdict V erdict, each action evi

being issued either from an observation obs(evi) or a stimulation stim(evi).
Testing a SUT with respect to a given symbolic test purpose amounts to look

for stimulating and observing the SUT in such a way that when conformity
is not violated, the sequence of stimulations and observations corresponds to a
trace (belonging to semantics) of at least one path of the test purpose.

To reach this goal, the testing process achieves two tasks. The first one consists
in computing, each time it is required, a stimulation compatible with reaching an
accept state. The second one consists in computing all the symbolic states which
may have been reached taking into account the whole sequence of observations/
stimulations already encountered.

We firstly define contexts composed of a symbolic state and of a formula
expressing constraints induced by the sequence of previously encountered in-
puts/outputs.

Symbolic Execution Techniques for Test Purpose Definition 11

Definition 14 (Context). A context is a couple (s, f) where s ∈ Ssat and f is
a formula whose variables are in F .

As previously pointed out, there may be more than one single context compati-
ble with a sequence of observations/stimulations. This is taken into account by
using a set of contexts, generically noted SC (for Set of Contexts), represent-
ing the set of all potential appropriate contexts for a given sequence of stimula-
tions/observations. We introduce some auxiliary functions useful to reason about
sets of contexts, in particular in order to be able to compute the sequence of sets
of contexts resulting from the successive application of elementary actions.

Definition 15 (Function Next(ev, SC)). Let SC be a finite set of contexts
and ev ∈ Act(ΣF). If ev is of the form c�t (resp. c�) with � ∈ {?, !} then
(s′, f ′) ∈ Next(ev, SC) with s′ = (q′, π′, σ′) iff:

– there exists (s, f) ∈ SC such that (s, c�u, s′) ∈ R (resp. (s, c�, s′) ∈ R)
– f ′ is f ∧ (t = u) (resp. f) and f ′ ∧ π′ is satisfiable.

Thus, Next(ev, SC) computes the set of all contexts following directly the con-
text SC with the event ev. When stimulating the SUT , it matters to check
whether the computation of a stimulation is compatible with the goal of finally
reaching an accept state. For that, for any context ct, the targetCond(ct) pred-
icate allows us to confront constraints inherited from the first observations or
stimulations to the target states, those labelled by accept by the test purpose.

Definition 16 (targetCond(ct)). Let ct = (s, f) be a context such that TP (s) =
skip and6 E = {s′ ∈ Ssat | ∃m ∈ (Act(ΣF))∗, s

m−→ s′ and TP (s′) = accept},
then targetCond(ct) is the formula :

∨

(q,π,σ)∈E

π.

Given a set of contexts SC, we distinguish among all contexts in Next(ev, SC)
those which are pertinent with respect to the considered test purpose:

Definition 17 (Functions NextSkip(ev, SC) and NextPass(ev, SC)). Let
SC be a finite set of contexts and ev ∈ Act(ΣF). If ev is of the form c�t (resp.
c�) with � ∈ {?, !} then (s′, f ′) ∈ NextSkip(ev, SC) iff:

– there exists (s, f) ∈ SC such that (s, c�u, s′) ∈ R (resp. (s, c�, s′) ∈ R)
with TP (s′) = skip

– f ′ is f ∧ (t = u) (resp. f) and f ′ ∧ targetCond(s′) is satisfiable.

NextPass(ev, SC) is defined in the same way with the difference that TP (s′) is
required to be accept instead of skip.

Let us remark that for a given symbolic state s′ = (q′, π′, σ′), the predicate
targetCond(s′) is necessarily stronger7 than π′ since by definition of symbolic

6 For a labelled graph G and a word m = a1. · · · . an, the notation s0
m−→ sn stands

for any path s0
a1−→ s1 · · · sn−1

an−−→ sn where each si
ai−→ si+1 is a transition of G.

7 π′ is said to be stronger than π iff for any interpretation ν, if M |=ν π′, then M |=ν π.

12 C. Gaston et al.

execution, the set of constraints is increasing at each new transition. Thus, we get
NextSkip(ev, SC) ⊆ Next(ev, SC) and NextPass(ev, SC) ⊆ Next(ev, SC) for
all contexts SC and events ev. Emptiness of NextSkip(ev, SC) means that no
more accept is now reachable while non emptiness of NextPass(ev, SC) means
that at least an accept has been reached.

obs(c!t) d!l

(1) Pass

(η3, ϕ3)

(η1, ϕ1)
skip

accept

(η0, ϕ0)

(η2, ϕ2)

obs(d!l)c!t

(2) Inconc

(η3, ϕ3)

accept

skip
(η1, ϕ1)(η0, ϕ0)

(η2, ϕ2)

obs(c!t)

(3) WeakPass

skip

accept

(η0, ϕ0)

(η2, ϕ2)

(η1, ϕ1)

(η3, ϕ3)

obs(c!t) d!lc!t

(4) Fail

obs(e!x)

skip

accept

(η2, ϕ2)

(η0, ϕ0) (η1, ϕ1)

(η3, ϕ3)

Fig. 3. Algorithm’s explanations

Let us illustrate our algorithm with Figure 3 and describe an execution step
based on an emission ev from the SUT and starting from SC={(η0, ϕ0), (η1, ϕ1)}.
If Next(ev, SC) is empty, that is the case for ev = e!x, this means that the emis-
sion is not specified and so we conclude FAIL (see Figure 3 (4)). If an accept
is reached (NextPass(ev, SC) non empty) we conclude PASS when no other
context is reached, see for example Figure 3 (1) with NextPass(c!t, SC) =
{(η2, ϕ2)}, or WeakPASS when others contexts are also reached, see for ex-
ample Figure 3 (3) with Next(c!t, SC) = {(η2, ϕ2), (η3, ϕ3)}. In this last case,
we cannot distinguish whether the inner state of the SUT is represented by
the reached accept state (η2, ϕ2) or by the state (η3, ϕ3) outside of the test
purpose. At last, if NextSkip(ev, SC) is empty while Next(ev, SC) is not, see
Figure 3 (2) for ev = d!l, this means that the emission was specified but was
not aimed by the test purpose. Then, we conclude by an inconclusive verdict
INCONC.

4.3 Inference Rules

Let us recall that our goal is to compute sequences [ev1, . . . , evn|V erdict] rep-
resenting synchronized transitions between a test case and the SUT leading to
the verdict V erdict, each action evi being derived either from an observation
obs(evi) or a stimulation stim(evi), and V erdict belonging to this set of key-
words : {PASS, WeakPASS, INCONC, FAIL}. For that, we will take into
account the knowledge of the associated contexts. Each step of the construc-
tion of such a sequence will be described by means of inference rules. Those
rules are structured as follows8 SC

Result cond(ev) where SC is a set of contexts,
Result is either a set of contexts or a verdict, cond(ev) is a set of conditions
including the observation obs(ev) or the stimulation stim(ev). One should read

8 The initialisation rule will not respect this generic structure since it will simply
consist in introducing the starting context.

Symbolic Execution Techniques for Test Purpose Definition 13

a rule as follows: Given the current set of contexts SC, if cond(ev) is verified
then the algorithm may achieve a step of execution, with ev as elementary ac-
tion. As long as Result is a set of contexts, a new rule may be applied to pursue
the computation of the sequence. And of course, reaching a verdict stops the
algorithm.

Rule 0: Initialisation rule

{(init, true)}

Rule 1: The emission is compatible with the purpose but no accept is reached.

SC

Next(ev, SC)
obs(ev), NextSkip (ev, SC) �= ∅, NextPass(ev,SC) = ∅

Rule 2: The emission is not expected with regards to the specification.

SC

FAIL
obs(ev), Next(ev, SC) = ∅

Rule 3: The emission is specified but not compatible with the test purpose.

SC

INCONC
obs(ev),Next(ev, SC) �= ∅, NextSkip(ev, SC) = ∅, NextPass(ev,SC)=∅

Rule 4: All next contexts are accept ones.

SC

PASS
obs(ev),Next(ev, SC) = NextPass(ev,SC), Next(ev, SC) �= ∅

Rule 5: Some of the next contexts are labelled by accept, but not all of them.

SC

WeakPASS
obs(ev),NextPass(ev,SC) �= ∅, NextPass(ev,SC) � Next(ev, SC)

Rule 6: Stimulation of the SUT

SC

Next(ev, SC)
stim(ev),NextSkip (ev, SC) �= ∅

Rules from 1 to 5 concern observations while only Rule 6 concerns stimula-
tions. Rule 5 calls for some comments: a verdict WeakPASS means both that
the test purpose is reached and that the sequence of observations/stimulations
may correspond to another behaviour of the symbolic execution. This verdict
is thus a kind of warning. One should pursue the test execution sequence
to distinguish which states really correspond to the performed execution
sequence.

We can consider a transition system, denoted TS(TP), from a test purpose
TP and the set of inference rules. The states are the sets of contexts appearing in
the rules and four special states labelled by the verdicts. Two states are related
by a transition labelled by an emission ev = c!t or ev = c! (resp. a receipt
ev = c?t or ev = c?) if they can be relied by the application of the unique

14 C. Gaston et al.

rule conditioned by stim(ev) (resp. of one of the rules conditioned by obs(ev)).
Such a transition system is a simple labelled one. If such a transition system
is synchronized with the system under test in such a way that emissions and
receptions are synchronized by sharing the same communication channel and
the same data, then any licit sequence of synchronized transitions is necessarily
finite and leads to one of the four verdicts. In fact, this transition system may
be viewed as a test case in the sense of [4], except that our transition system
may be non-deterministic. Indeed, for a given set of contexts, several rules may
be applied. In particular, depending of the form of the specification, one can
choose to send to the system a message, to wait for an emission or to observe
quiescence. Even worse, for a given rule, several choices are often possible for
the data carried by the associated observation or stimulation.

We note st(TP, SUT) the set of [ev1, . . . , evn|V erdict] such that ev1 . . . evn is
a sequence of synchronized transitions between TS(TP) and SUT leading to the
final state labelled by V erdict in TS(TP). Finally, we introduce the notation:
vdt(TP, SUT) = {V erdict | ∃ev1, . . . evn, [ev1, . . . , evn|V erdict]∈st(TP, SUT)}

Using these notations, we can now state the correctness and the completeness
of our algorithm:

Theorem 1. For any IOSTS G and any SUT :

Correctness: If SUT conforms to G, for any symbolic test purpose TP ,
FAIL /∈ vdt(TP, SUT).

Completeness: If SUT does not conform to G, there exists a symbolic test
purpose TP such that FAIL ∈ vdt(TP, SUT).

The completeness property holds up to all the non-deterministic choices induced
by our set of rules and captured in the set vdt(TP, SUT).

5 Criterion-Based Test Purposes

Most of the times, the set of all finite symbolic behaviours associated to a speci-
fication is lucky enough to be infinite. In such a case, one generally uses coverage
criteria to define test purposes.

The first idea is to simply cut the (infinite) symbolic execution of a specifica-
tion according to a parameter n indicating the length of the paths to be tested.
The corresponding test purpose will contain all the paths of length n derived
from the symbolic execution, provided that they are terminated by an output
action.

Definition 18 (“all paths of length n”). Let G be an IOSTS on the sig-
nature Σ and let us consider SE(Gδ) = (Ssat, init, Rsat) its associated symbolic
execution. Let n ≥ 0. The test purpose ”all paths of length n” for G is the
test purpose TGn : Ssat → {skip, accept,�} such that the only symbolic states
labelled by accept by TGn are given by the following property. For any path
p = t1 · · · tn of SE(Gδ) starting from init and verifying length(p) = n:

Symbolic Execution Techniques for Test Purpose Definition 15

– either act(tn) ∈ Output(Σδ) and TGn(target(tn)) = accept,
– or for any9 p.t ∈ Extout(p), label(target(t)) = accept.

The criterion “all paths of length n” allows one to characterize a countable family
of test purposes, approaching more and more the whole symbolic execution of
the specification. Then, the tester can make an trade-off between the size of the
test purpose (in relation with the parameter n) and the testing cost. Moreover,
such a test purpose may be decomposed in as many test purposes as accept
states: indeed, for each accept state, we can build a dedicated test purpose with
this state as unique accept state. Such a decomposition allows the tester to
systematically try to reach each accept state, thus, to reach each path of length
n (up to the fact that they are not necessarily terminated by an output action).

The criterion “all paths of length n” allows us to build test purposes. However,
the pertinent length n to be chosen is up to the tester. In order to help the tester
to chose this parameter n, we propose to use the restriction by inclusion defined
in Definition 11. This characterizes a subpart of a symbolic execution with no
redundant behaviours. The inclusion criterion gives some clear indications about
the size of basic behaviours of the specification. Intuitively, one can choose for
the value of the parameter n the length pmax of the longest path of a restriction
by inclusion of a symbolic execution. More generally, one can compose basic
behaviours by juxtaposing them. It suffices to take for the parameter n, pmax,
2 × pmax, . . . or k × pmax if we want to consider all the combinations of k basic
behaviours.

Definition 19 (“k-inclusion” criterion). Let G be an IOSTS and
SE(Gδ)⊆ = (Ssat

⊆, init, R⊆) be a restriction of SE(Gδ) satisfying the inclusion
criterion. Let us note pmax ∈ FP (SE(Gδ)⊆) such that for all p∈ FP (SE(Gδ)⊆),
length(pmax) ≥ length(p). Let k > 0. The test purpose ”k-inclusion criterion”
associated to SE(Gδ)⊆ is the test purpose ”all paths of length k× length(pmax)”
for G.

Example 4. Figure 4 illustrates the construction of test purposes. The leaves of
the symbolic tree constructed in Figure 2, i.e. the restriction by inclusion of the
ATM system, are represented by a circle ©. This tree is completed from the
symbolic state η3 with symbolic states (that are represented by a triangle �) to
have the same length for all paths of the tree (the dotted line marks the length 2).
For each leaf above the dotted line which does not result from an output, some
additional outputs are considered to ensure that paths to be tested are observed
by outputs. This last step introduces the states η11, η12, η13, η14, η15. Finally,
the states that are in a square � are those labelled with accept. It corresponds
to the 1-inclusion criterion (for lack of space, we cannot unfold the symbolic
tree until the 2-inclusion criterion but it would be the same construction). Now,
we can apply the rules of our algorithm over the paths of the symbolic tree of
Figure 4. We explain the computation of the final verdict by making explicit the

9 Let us recall that by extension, symbolic executions of IOSTS inherit from notions
associated to IOSTS: here, we have translated the notion Extout defined for IOSTS.

16 C. Gaston et al.

δ!

check?
cash!x1

cash!x1

screen!
”no money”

sum!m0

amount?x2

cash!x2 δ!

init

screen! sum!m1”no money”

amount?x1

cash!x2

check?

deposit?t2

δ!

deposit?t1

η1 η2 η3 ηδ

η4 η5 η6 η7 η8 η9 η10 η′
δ

η12η11 η13 η15η14

Fig. 4. Construction of test purposes

intermediate applications of rules over the current set of contexts (SC) using the
following notation : SC

action−−−−→
rule

SC′ where action denotes the current element of

the considered trace (either of the form c!t, c!, c?t or c?), rule indicates which
rule is applied to get the next set of context SC′.

Let us consider the trace [deposit?250 amount?50 cash!50 | WeakPASS].

SC0 = {(init, true)} deposit?250−−−−−−−→
rule6

SC1 = {(η3, t1 = 250)} amount?50−−−−−−−→
rule6

SC2

SC2 = {(η8, (t1 = 250 ∧ x2 = 50))} cash!50−−−−−→
rule5

WeakPASS

The WeakPASS verdict is due to the 2 equalities:

• Next(cash!50, SC2) = {(η11, (t1 = 250∧x2 = 50)), (η12, (t1 = 250∧x2 = 50))}
• NextPass(cash!50, SC2) = {(η11, (t1 = 250 ∧ x2 = 50)}.

One cannot decide whether the test purpose has been achieved (the real state
corresponds to η11) or missed (the real state corresponds to η12).

5.1 Implementation Issues

The work presented here is implemented as an extension of the AGATHA tool
set [7, 10] which uses symbolic execution techniques to debug and validate spec-
ifications. The AGATHA tool allows to unfold IOSTS specifications in the form
of trees provided with path conditions for all paths of trees. Trees are computed
according to coverage criteria including those grounding test purpose definitions
discussed in Section 5. Those test purposes are thus obtained for free. All rules
defined in Section 4.3 are implemented. However applying those rules does not
necessarily lead to a deterministic process. Implementing deterministic strategies
for rules appliance is still an open issue. Presburger arithmetics [8] constitutes
the data part of IOSTS treated by AGATHA. The algorithm requires some

Symbolic Execution Techniques for Test Purpose Definition 17

decision procedures (for inclusion criterion) and constraint solving (to compute
stimulations). This is done thanks to the Omega Library [1].

6 Conclusion

We have proposed an approach to test reactive systems specified as Input/
Output Symbolic Transition Systems (IOSTS). Symbolic execution allows us
to re-express the specification in the form of a tree whose set of paths denotes
the set of all behaviours of the specification. We propose to define test purposes
by selecting a finite set of behaviours (i.e. paths) in the symbolic execution tree.
We define an algorithm to test SUT with regard to a test purpose. This algo-
rithm is given by a set of rules, both to compute stimulations of SUT which
are adequate to achieve the test purpose and to assign a verdict to a test execu-
tion. There may be four verdicts: PASS, FAIL, INCONC and WeakPASS.
WeakPASS is a verdict which expresses that conformance is observed but we
are not able to ensure that the test purpose is really achieved. Indeed, it may
happen that an input/output sequence observed during a test execution can be
related to several behaviours, not all being accepting paths of the test purpose.

Test purposes may be defined manually but we also propose to use some cov-
erage criteria to automatically extract them. The first one is the all symbolic
behaviours of length n criterion which requires to cover all paths of length n in
the symbolic execution. The other one, so-called restriction by inclusion crite-
rion, extracts a subset of all paths of the symbolic execution tree by avoiding
redundancies. Concerning coverage criteria, we are currently investigating other
kinds of criteria. Our aim is to help the tester in defining test purposes. Indeed
on the one hand test purposes are difficult to define manually as soon as the
specification has a realistic size, but on the other hand the intervention of a
human is often necessary to characterize ”clever” test purposes (i.e. allowing to
discover subtle non conformance).

References

1. Omega 1.2. The Omega Project: Algorithms and Frameworks for Analyzing and
Transforming Scientific Programs. 1994.

2. L.-A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on software engineering, 2(3):215–222, September 1976.

3. L. Frantzen, J. Tretmans, and T. A.C. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, FATES 2004, number 3395
in LNCS, pages 1–15. Springer-Verlag, 2005.

4. C. Jard and T. Jéron. TGV: theory, principles and algorithms, a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Software Tools for Technology Transfer (STTT), 6, October 2004.

5. B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based
on approximate analysis. In 11th Int. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 3440, Edinburgh, April
2005.

18 C. Gaston et al.

6. J.-C. King. A new approach to program testing. Proceedings of the international
conference on Reliable software, Los Angeles, California, 21-23:228–233, April 1975.

7. D. Lugato, N. Rapin, and J.-P. Gallois. Verification and tests generation for SDL
industrial specifications with the AGATHA toolset. In P. Petterson and S. Yovine,
editors, Proceedings of the Workshop on Real-Time Tools affiliated to CONCUR01,
Department of Information Technology UPPSALA UNIVERSITY Box 337, SE-751
05 Sweden, August 2001. ISSN 1404-3203.

8. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetic.
Comptes rendus du premier Congres des Math. des Pays Slaves, pages 92–101,395,
1929.

9. C.-V. Ramamoorthy, S.-F. Ho, and W.-T. Chen. On the automated generation
of program test data. IEEE Transactions on software engineering, 2(4):293–300,
September 1976.

10. N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioural unfolding of
formal specifications based on communicating automata. In Proceedings of first
Workshop on Automated technology for verification and analysis, Taiwan, 2003.

11. V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation. In
IFM ’00: Proceedings of the Second International Conference on Integrated Formal
Methods, pages 338–357, London, UK, 2000. Springer-Verlag.

12. J. Tretmans. Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation. Computer Networks and ISDN Systems,
29:49–79, 1996.

13. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

Controllable Combinatorial Coverage
in Grammar-Based Testing

Ralf Lämmel1 and Wolfram Schulte2

1 Microsoft Corp., Webdata/XML, Redmond, USA
2 Microsoft Research, FSE Lab, Redmond, USA

Abstract. Given a grammar (or other sorts of meta-data), one can
trivially derive combinatorially exhaustive test-data sets up to a spec-
ified depth. Without further efforts, such test-data sets would be huge
at the least and explosive most of the time. Fortunately, scenarios of
grammar-based testing tend to admit non-explosive approximations of
naive combinatorial coverage.

In this paper, we describe the notion of controllable combinatorial
coverage and a corresponding algorithm for test-data generation. The
approach is based on a suite of control mechanisms to be used for the
characterization of test-data sets as well-defined and understandable ap-
proximations of full combinatorial coverage.

The approach has been implemented in the C#-based test-data gen-
erator Geno, which has been successfully used in projects that required
differential testing, stress testing and conformance testing of grammar-
driven functionality.

1 Introduction

This paper is about grammar-based testing of software. We use the term ‘gram-
mar’ as a placeholder for context-free grammars, algebraic signatures, XML
schemas, or other sorts of meta-data. The system under test may be a virtual
machine, a language implementation, a serialization framework for objects, or a
Web Service protocol with its schema-defined requests and responses. It is gener-
ally agreed that manual testing of grammar-driven functionality is quite limited.
Grammar-based test-data generation allows one to explore the productions of the
grammar and grammatical patterns more systematically. The test-oracle prob-
lem has to be addressed in one of two ways: either multiple implementations are
subjected to differential testing (e.g., [20]), or the intended meaning of each test
case is computed by an extra model (e.g., [23]).

Prior art in grammar-based testing uses stochastic test-data generation (e.g.,
[19, 20, 23]). The canonical approach is to annotate a grammar with probabilistic
weights on the productions and other hints. A test-data set is then generated
using probabilistic production selection and potentially further heuristics. Sto-
chastic approaches have been successfully applied to practical problems. We
note that this approach requires that coverage claims are based on stochas-
tic arguments. In our experience, the actual understanding of coverage may be

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 19–38, 2006.
c© IFIP International Federation for Information Processing 2006

20 R. Lämmel and W. Schulte

challenging due to intricacies of weights and other forms of control that ‘feature-
interact’ with the basic stochastic model.

The work reported in this paper adopts an alternative approach to test-data
generation. The point of departure is full combinatorial coverage of the grammar
at hand, up to a given depth. Without further efforts, such test-data sets would
be huge at the least and explosive most of the time. Hence, approximations of
combinatorial coverage are needed. To this end, our approach provides control
mechanisms which can be used in modeling the test problem. For instance, one
may explicitly limit the recursive applications for a given sort (‘nonterminal’)1,
and thereby scale down the ‘productivity’ of that sort. The control mechanisms
are designed in such a way that the approximations of combinatorial coverage are
intelligible. In particular, the effect of each use of a mechanism can be perceived
as a local restriction on the operation for term construction.

The approach has been implemented in the C#-based test-data generator
Geno.2 The input language of Geno is a hybrid between EBNF and algebraic
signatures, where constructors and sorts can be annotated with control parame-
ters. Geno has been successfully used in development projects over the last 2+
years at Microsoft. These projects required differential testing, stress testing and
conformance testing of grammar-driven functionality.

The paper is structured as follows. The overall approach is motivated and
illustrated in Sec. 2. The basics of combinatorial test-data generation are laid
out in Sec. 3 – Sec. 5. The control mechanisms are defined in Sec. 6. A grammar-
based testing project is discussed in Sec. 7. Related work is reviewed in Sec. 8.
The paper is concluded in Sec. 9.

2 Controllable Combinatorial Coverage in a Nutshell

The following illustrations will use a trivial expression language as the running
example, and it is assumed that we want to generate test-data for testing a
code generator or an interpreter. We further assume that we have access to a
test-oracle; so we only care about test-data generation at this point. Using the
grammar notation of Geno, the expression language is defined as follows:

Exp = BinExp (Exp , BOp, Exp) // Binary expressions
| UnaExp (UOp , Exp) // Unary expressions
| LitExp (Int) ; // Literals as expressions

BOp = "+" ; // A binary operator
UOp = "-" ; // A unary operator
Int = "1" ; // An integer literal

1 We use grammar- vs. signature-biased terminology interchangeably. That is, we may
say nonterminal vs. sort, production vs. constructor, and word vs. term.

2 Geno reads as “Generate objects” hinting at the architectural property that test
data is materialized as objects that can be serialized in different ways by extra
functionality.

Controllable Combinatorial Coverage in Grammar-Based Testing 21

Depth Ga Gb Gc Gd

1 0 0 0 1
2 1 3 6 29
3 2 42 156 9.367
4 10 8.148 105.144 883.148.861
5 170 268.509.192 – –
6 33.490 – – –
7 – – – –

Fig. 1. Number of terms with the given depth for different grammars
(‘–’ means outside the long integer range 2.147.483.647); Ga is the initial grammar
from the beginning of this section; Gb comprises 3 integer literals (0, 1, 2), 2 unary
operators (‘+’, ‘−’), and 4 binary operators (‘+’, ‘−’, ‘∗’, ‘/’); Gc further adds variables
as expression form along with three variable names (x, y, z); Gd further adds typical
expression forms of object-oriented languages such as C#

We can execute this grammar with Geno to generate all terms over the grammar
in the order of increasing depth. The following C# code applies Geno program-
matically to the above grammar (stored in a file "Expression.geno") complete
with a depth limit for the terms (cf. 4). The foreach loop iterates over the
generated test-data set such that the terms are simply printed.

using Microsoft.AsmL.Tools.Geno;

public class ExpressionGenerator {
public static void Main (string[] args) {
foreach(Term t in new Geno(Geno.Read("Expression.geno"), 4))
Console.WriteLine(t);

}
}

Let us review the combinatorial complexity of the grammar. We note that:

– there is no term of sort Exp with depth 1 (we start counting depth at 1);
– there is 1 term of sort Exp with depth 2: LitExp(“1”);
– ... 2 terms ... with depth 3:

• UnaExp(“-”,LitExp(“1”)),
• BinExp(LitExp(“1”),”+”,LitExp(“1”));

– ... 10 terms ... with depth 4;
– hence, there are 13 terms of sort Exp up to depth 4;
– the number of terms explodes for depth 6 — 7.

In Fig. 1, the number of terms with increasing depth is shown. We also show
the varying numbers for slightly extended grammars. We note that all these
numbers are about expression terms alone, neglecting the context in which such
expressions may occur in a non-trivial language. Now suppose that we consider a

22 R. Lämmel and W. Schulte

grammar which has nonterminals for programs, declarations and statements —
in addition to expressions that are used in statement contexts. With full com-
binatorial exploration, we cannot expect to reach expression contexts and to
explore them for some non-trivial depth.

Combinatorial coverage can be approximated in a number of ways. One option
is to give up on combinatorial completeness for the argument domains when
constructing terms. In particular, one could choose to exhaust the argument
domains independently of each other. Such an approximation is justified when
the grammar-driven functionality under test indeed processes the corresponding
arguments independently, or when the test scenario is not concerned with the
dependencies between the arguments.

In reference to pairwise testing [18] (or two-way testing), we use the term one-
way testing for testing argument domains independently of each other. Combi-
natorially exhaustive testing of arguments domains is then called all-way testing.
In the running example, we want to require one-way testing for the the construc-
tor of binary expressions. Here we assume that the system under test is a simple
code generator that performs independent traversal on the operands of BinExp.

A Geno grammar can be directly annotated with control parameters:

Exp = [Oneway] BinExp (Exp , BOp, Exp)
| UnaExp (UOp , Exp)
| LitExp (Int) ;

Alternatively, one may also collect control parameters in a separate test specifi-
cation that refers to an existing grammar. The above example is then encoded
as follows:

[Oneway] Exp/BinExp ;

Let us consider another opportunity for approximation. We may also restrict
the normal or recursive depth of terms on a specific argument position of a
specific constructor. By the latter we mean the number of nested applications
of recursive constructors. Such an approximation is justified when the grammar-
driven functionality under test performs only straightforward induction on the
argument position in question, or when the specific test scenario is not concerned
with that position. In the running example, we want to limit the recursive depth
of expressions used in the construction of unary expressions:

[MaxRecDepth = 1] Exp/UnaExp/2 ;

Here “2” refers to the 2nd parameter position of UnaExp. The helpful effect of the
Oneway and MaxRecDepth approximations is calculated in Fig. 2. We showcase
yet another form of control, for which purpose we need to slightly extend the
grammar for expressions. That is, we add a nonterminal, Args, for sequences of
arguments, just as in a method call.

Args = (Exp*) ;

Controllable Combinatorial Coverage in Grammar-Based Testing 23

Grammar Depth = 1 Depth = 2 Depth = 3 Depth = 4 Depth = 5 Depth = 6
Full 0 1 2 10 170 33490

Oneway 0 1 2 5 15 45
MaxRecDepth 0 1 1 3 21 651

Fig. 2. Impact of control mechanisms on size of test-data sets; 1st row: uncon-
strained combinatorial coverage (same as Ga in Fig. 1); 2nd row: one-way testing for
binary expressions — the resulting numbers reflect that we have eliminated the only
source of explosion for this trivial grammar; 3rd row: the recursive depth for operands
of unary operators is limited to 1 — explosion is slightly postponed

Now suppose that we face a test scenario such that we need to consider argument
sequences of different length, say of length 0, 1 and 2. We may want to further
constrain the sequences in an attempt to obtain a smaller data set or simply
because we want to honor certain invariants of the grammar-driven functionality
under test. Suppose that the order of arguments is irrelevant, and that duplicate
arguments are to be avoided. The following annotations express these different
approximation intents:

[MinLength = 0, MaxLength = 2, NoDuplicates, Unordered] Args ;

To enforce a finite data-set, we may impose a depth constraint on expressions:

[MaxDepth = 5] Exp ;

To summarize, we have illustrated several control mechanisms for combinatorial
coverage. These mechanisms require that the test engineer associates approxi-
mation intents with sorts, constructors or constructor arguments. The control
parameters can be injected into the actual grammar productions, and they can
also be given separately.

3 Definition of Combinatorial Coverage

For clarity, we will briefly define combinatorial coverage. (We will use folklore
term-algebraic terminology for some formal bits that follow.) Given is a signature
Σ and a distinguished root sort, root (the latter in the sense of a start symbol
of a context-free grammar). As common, we use TΣ(σ) to denote the set of all
ground terms of sort σ. A test-data set for Σ is a subset of TΣ(root). (We may
also consider test-data sets for sorts other than root , but a complete test datum
is of sort root .)

We say that T ⊆ TΣ(σ) achieves combinatorial coverage up to depth d for
σ if:

T ⊇ {t | t ∈ TΣ(σ), depth(t) ≤ d}
Depth of terms is defined as follows; each term is of depth 1 at the least:

depth(c) = 1

depth(c(t1, . . . , tn)) = max({depth(t1), . . . , depth(tn)}) + 1

24 R. Lämmel and W. Schulte

UOp

Stm

Block

Var Int BOpType

Dec

Exp Type

UOpInt BOp

"1" "−" "+"

NoDecDecs Nest

Exp

"x" LitExp UnaExp BinExpVarExp

Var

Int

VDec Assign Seq Skip

Block

BlockDec Stm

Fig. 3. Sort and constructor graphs for an imperative programming lan-
guage; there are sorts for program blocks, declarations, statements, expressions, etc.
with all the usual constructors; the sort graph is clearly an abstraction of the construc-
tor graph.

It is clear that terms over a signature can be enumerated in increasing depth —
the basic algorithm, given below, does just that, in a certain way. More notation:
We use T d

Σ(σ) to denote the set of all terms of sort σ at a given depth d, and we
use T ≤d

Σ (σ) to denote the set of all terms of sort σ up to a given depth d — the
latter being the union over all T i

Σ(σ) for i = 1, . . . , d. By definition, T ≤d
Σ (σ) is

the smallest set that achieves combinatorial coverage up to depth d for sort σ.

4 Grammar Properties Related to Combinatorial
Coverage

We will discuss several grammar properties in this section. They are meant to
be useful for two purposes: (i) for the implementation of test-data generation;
(ii) as a feedback mechanism for the test engineer who needs to understand
the combinatorial complexity of a grammar in the process of modeling the test
scenario.

Example. The grammar of expressions in Sec. 2 did not admit any expression
terms of depth 1 since all constructors of sort Exp have one or more arguments;
the minimum depth for expression terms is 2. We call this the threshold of a sort.
Clearly, one should not attempt to specify a depth limit below the threshold.

All the properties of this section are conveniently described in terms of sort
and constructor graphs, which can be derived from any grammar; cf. Fig. 3
for an illustration. The nodes in the sort graph are the sorts, while an edge
from σ to σ′ means that σ′ occurs as argument sort of some constructor of
sort σ. The constructor graph provides a more detailed view with two kinds of

Controllable Combinatorial Coverage in Grammar-Based Testing 25

nodes, namely constructors and sorts. There are edges from each sort to all of its
constructors. There is one edge for each argument of a constructor — from the
constructor node to the node of the argument’s sort. Our implementation, Geno,
compiles the input grammar into an internal representation containing the sort
and constructor graph. It uses this graph to direct the generation of objects.

Reachability of sorts from other sorts is extractable from the sort graph. Sort
σ′ is reachable from σ, denoted by ρΣ(σ, σ′), if there is a path from σ to σ′.
In similarity to terminated context-free grammars, we require that all sorts are
reachable from root , except perhaps root itself. Based on reachability, we can
define recursiveness of sorts. A sort σ is recursive, denoted by μ(σ), if ρΣ(σ, σ).
(For a mutually recursive sort, there is a path through other sorts, thereby
uncovering a recursive clique. For a directly recursive sort, there is a self-edge.)
A stricter form of reachability is dominance. Sort σ dominates σ′, denoted as
δΣ(σ, σ′), if all paths from root to σ′ go through σ. (root trivially dominates
every sort.) If σ′ is reachable from σ, then there is a distance between the sorts,
denoted as εΣ(σ, σ′), which is defined as the shortest path from σ to σ′.

Example. Suppose that the test engineer aims at combinatorial coverage of a
specific sort σ up to a given depth dσ. This implies that the root depth must
be at least dσ + εΣ(root , σ). In case of explosion, the test engineer may review
all dominators of σ and limit the recursive depth for them so that the sort of
interest, σ, is reached more cheaply.

Using the constructor graph, we can extract the threshold of a sort σ, denoted
as θΣ(σ); it is the smallest i such that T i

Σ(σ) �= ∅. A more specific threshold can
be inquired for each constructor c as denoted by θΣ(c). The constructor graph
also facilitates shortest term completions both top-down and bottom-up.

5 The Basic Algorithm for Test-Data Generation

There are two overall options for test-data generation: top-down vs. bottom-up.
The top-down approach would lend itself to a recursive formulation as follows.
Given a depth and a sort, the recursive function for test-data generation con-
structs all terms of the given sort by applying all possible constructors to all
possible combinations of subterms of smaller depths; the latter are obtained
through recursive calls.

In Fig. 4, we define an algorithm that adopts the bottom-up approach instead.
This formulation is only slightly more complex than a top-down recursive for-
mulation, while it offers one benefit. That is, an implementation (using reference
semantics for terms) can immediately use sharing for the constructed terms; each
term construction will be effectively a constant-time operation then (given that
the arities of constructors are bounded). It is true that the top-down approach
could employ some sort of memoization so that sharing is achieved, too. The
bottom-up approach also happens to provide useful feedback to the test engi-
neer. That is, the various sorts are inhabited in increasing depth; so “one can
observe explosion”, right when it happens.

26 R. Lämmel and W. Schulte

Arguments
– Signature Σ with root sort, root
– Depth d ≥ 1 for combinatorial coverage

Result Test-data set T that covers Σ up to depth d

Variables
– at i

σ — terms of sort σ at depth i (i.e., T i
Σ(σ))

– kids — an array of sets of terms for building new terms
– len — current length of the kids array

Notation
– Σσ — the set of constructors from Σ that are of sort σ
– args(c) — the sequence of argument sorts for the constructor c
– kids [1], kids[2], . . . — array subscripting
– combine(c, kids, len) — build terms with constructor c and subterms from

kids

Algorithm

for i = 1, . . . , d do begin // Term construction in increasing depth
for each σ in Σ do begin // Iterate over all sorts

at i
σ := ∅;

if d − εΣ(root , σ) ≥ i then begin // Skip depth depending on distance from
root

if i ≥ θΣ(σ) then begin // Skip depth if threshold has not been reached yet
for each c in Σσ do begin // Iterate over all constructors of sort

len := 0;
for each a in args(c) do begin // Iterate over all arguments of c

len := len + 1;
kids[len] := at1

a ∪ · · · ∪ at i−1
a ; // Determine argument terms

end;
ati

σ := ati
σ ∪ combine(c, kids, len); // Build and store terms

end;
end;

end;
end;

end;

T := at1
root ∪ · · · ∪ atd

root ; // Compose result

Fig. 4. Basic algorithm for bottom-up test-data generation

We denote the combinatorial construction of terms by combine(c, kids , len);
cf. Fig. 4. Initially, this operation calculates the Cartesian product over the term
sets for the argument sorts of a constructor (i.e., over kids) — modulo a slight
detail. That is, a legal combination must involve at least one term of depth i−1
(as opposed to 1, . . . , i−2); otherwise we were not constructing a term of depth
i. Controlled combinatorial coverage caters for options other than the Cartesian
product. Hence, combine(c, kids , len) is subject to redefinition by dependence
control; cf. Sec. 6.4.

Controllable Combinatorial Coverage in Grammar-Based Testing 27

6 Control Mechanisms for Combinatorial Coverage

We will now define the mechanisms for controlling combinatorial coverage. The
basic algorithm, as presented above, will only need simple and local amendments
for each mechanism. The following mechanisms will be described:

– Depth control — limit depth of terms; not just for the root sort.
– Recursion control — limit nested applications of recursive constructors.
– Balance control — limit depth variation for argument terms.
– Dependence control — limit combinatorial exhaustion of argument domains.
– Construction control — constrain and enrich term construction.

Several of these mechanisms were illustrated in Sec. 2 complete with additional
mechanisms for lists (cf. MinLength, MaxLength, Unordered, NoDuplicates).
The latter mechanisms will not be formalized here because they are just list-
specific instantiations of depth control and dependence control.

6.1 Depth Control

With d as the limit for the depth of terms of the root sort, the depth limits
for all the other sorts are implied. For any given σ, the implied depth limit is
d − εΣ(root , σ), and the actual depth may actually vary per occurrence of the
sort. This fact suggests a parameterization of the basic algorithm such that a
depth limit, dσ, can be supplied explicitly for each sort σ. The algorithm evolves
as follows:

Before refinement
if d − εΣ(root , σ) ≥ i then begin // Skip depth depending on distance from

root

After refinement
if dσ ≥ i then begin // Skip depth depending on sort-specific limit

All but the depth limit for the root sort are considered optional. (Per notation, d
becomes droot .) One should notice that per-sort limits can only lower the actual
depth limit beyond the limit that is already implied by the root limit. More
generally, the depth limit for any sort is also constrained by its dominators.
Hence, we assume that the explicit depth limits respect the following sanity
check:

∀σ, σ′ ∈ Σ. δΣ(σ, σ′) ⇒ dσ′ ≤ dσ − εΣ(σ, σ′)

Any control mechanism that works per sort, works per argument position of
constructors, too. We can view the control-parameter value for a sort as the
default for the control parameters for all argument positions of the same sort.
Let us generalize control depth in this manner. Hence, we parameterize the
algorithm by depth limits, dc,j , where c is a constructor and j = 1, . . . , arity(c).
The algorithm evolves as follows:

28 R. Lämmel and W. Schulte

Before refinement
kids[len] := at1

a ∪ · · · ∪ at i−1
a ; // Determine argument terms

After refinement

kids[len] := at1a ∪ · · · ∪ at
min(i−1,dc,len)
a ; // Determine argument terms

We note that some argument position of a given sort may exercise a given depth,
whereas others do not. This is the reason that the above refinement needs to be
precise about indexing sets of terms.

6.2 Recursion Control

Depth control allows us to assign low priority to sorts in a way that full com-
binatorial coverage is consistently relaxed for subtrees of these sorts. Recursion
control allows us to assign low property to intermediary sorts only until combi-
natorial exploration hits sorts of interests. To this end, the recursive depth of
terms of intermediary sorts can be limited. (For simplicity, we ignore the issues
of recursive cliques in the following definition.) The recursive depth of a term t
for a given sort σ is denoted as rdepthΣ,σ(t) and defined as follows:

rdepthΣ,σ(c) = if c ∈ Σσ then 1 else 0
rdepthΣ,σ(c(t1, . . . , tn)) = if c ∈ Σσ then 1 + ts else ts

where ts = max ({rdepthΣ,σ(t1), . . . , rdepthΣ,σ(tn)})

Recursion control is enabled by further parameterization of the algorithm. The
limits for recursive depth amount to parameters rc,j , where c is a constructor
and j = 1, . . . , arity(c). An unspecified limit is seen as ∞. The algorithm evolves
as follows:

Before refinement

kids[len] := at1a ∪ · · · ∪ at
min(i−1,dc,len)
a ; // Determine argument terms

After refinement

kids [len] :=
�

t ∈ at1
a ∪ · · · ∪ atmin(i−1,dc,len)

a

�� rdepthΣ,a(t) ≤ rc,len

�
;

The actual term traversals for the calculation of (recursive) depth can be avoided
in an efficient implementation by readily maintaining recursive depth and normal
depth as term properties along with term construction.

6.3 Balance Control

Depth and recursion control cannot be used in cases where terms of ever-
increasing depth are needed (without causing explosion). This scenario is enabled
by balance control, which allows us to limit the variation on the depth of argu-
ment terms. Normally, when we build terms of depth i, we consider argument
terms of depth 1, . . . , i − 1. An extreme limitation would be to only consider

Controllable Combinatorial Coverage in Grammar-Based Testing 29

terms of depth i−1. In this case, the constructed terms were balanced — hence,
the name: balance control. In this case, it is also easy to see that the number
of terms would only grow by a constant factor. Balance control covers the full
spectrum of options — with i − 1 being one extreme and 1, . . . , i − 1 the other.
We further parameterize the algorithm by limits, bc,j > 1, where c is a con-
structor and j = 1, . . . , arity(c). Again, this parameter is trivially put to work
in the algorithm by adapting the step for argument terms (details omitted). An
unspecified limit is seen as ∞.

6.4 Dependence Control

We will now explore options for controlling combinations of arguments for form-
ing new terms; recall the discussion of all-way vs. one-way coverage in Sec. 2.
The main idea is to specify whether arguments should be varied dependently or
independently.

One-Way Coverage. The completely independent exhaustion of argument do-
mains is facilitated by a dedicated coverage criterion, which requires that each
argument term appears at least once in a datum for the constructor in question;
we say that T ⊆ TΣ(σ) achieves one-way coverage of c : σ1 × · · · × σn → σ ∈ Σ
relative to T1 ⊆ TΣ(σ1), . . . , Tn ⊆ TΣ(σn) if:

∀i = 1, . . . , n. ∀ t ∈ Ti. ∃c(t1, . . . , tn) ∈ T. ti = t

We recall that one-way coverage is justified if dependencies between argument
positions are not present in the system under test, or they are negligible in the
specific scenario. If necessary, we can even further relax one-way coverage such
that exhaustion of candidate sets is not required for specific argument positions.

Multi-way Coverage. In between all-way and one-way coverage, there is multi-
way coverage reminiscent of multi-way testing (see, e.g., [9]). Classic multi-way
testing is intended for testing functionality that involves several arguments. For
example, two-way testing (or pair-wise testing) assumes that only pair-wise com-
binations of arguments are to be explored as opposed to all combinations. The
justification for limiting combinations in this manner is that functionality tends
to branch on the basis of binary conditions that refer to two arguments. In
grammar-based testing, we can adopt this justification by relating to the func-
tionality that handles a given constructor by pattern matching or otherwise.
For example, some functionality on terms of the form f(t1, t2, t3) might perform
parallel traversal on t1 and t2 without depending on t3. Then, it is mandatory
to exhaust combinations for t1 and t2, while it is acceptable to exhaust t3 in-
dependently. Hence, we face two-way coverage for t1, t2 and one-way coverage
for t3.

We further parameterize the algorithm by oc for each constructor c. The para-
meters affect the workings of combine(c, kids , len). In turns out that there is a
fundamental way of specifying combinations. Suppose, c is of arity n. A valid

30 R. Lämmel and W. Schulte

specification oc must be a subset of P({1, . . . , n}). (Here, P(·) is the power-set
constructor.) Each element in oc enumerates indexes of arguments for which
combinations need to be considered. For instance, the aforementioned example
of f(t1, t2, t3) with two-way coverage for t1 and t2 vs. one-way coverage for t3
would be specified as {{1, 2}, {3}}. Here are representative specifications for the
general case with n arguments, complete with their intended meanings:

1. {{1, . . . , n}}: all-way coverage.
2. {{1}, . . . , {n}}: one-way coverage with exhaustion of all components.
3. ∅: no exhaustion of any argument required.
4. {{1, 2}, . . . , {1, n}, {2, 3}, . . . , {2, n}, . . . , {n − 1, n}}: two-way coverage.

This scheme makes sure that all forms of multi-way coverage can be specified.
Also, by leaving out certain components in oc, they will be ignored for the
combinatorial exploration. The default for an unspecified parameter oc is the
full Cartesian product. We require minimality of the specifications oc such that
∀x, y ∈ oc. x �⊂ y. (We can remove x because y provides a stronger require-
ment for combination.) Options (1.)–(3.) are readily implemented. Computing
minimum sets for pair-wise coverage (i.e., option (4.)), or more generally —
multi-way coverage — is expensive, but one can employ efficient strategies for
near-to-minimum test sets (see, e.g., [26]).

6.5 Construction Control

A general control mechanism is obtained by allowing the test engineer to cus-
tomize term construction through conditions and computations. This mechanism
provides expressiveness that is reminiscent of attribute grammars [15]. Thereby,
we are able to semantically constrain test-data generation and to complete test
data into test cases such that additional data is computed by a test oracle and
attached to the constructed terms.

We require that conditions and computations are evaluated during bottom-
up data generation as opposed to an extra phase. Hence, ‘invalid’ terms are
eliminated early on — before they engage in new combinations and thereby
cause explosion. The early evaluation of computations allows conditions to take
advantage of the extra attributes. As an aside, we mention that some of the
previously described control mechanisms can be encoded through construction
control. For instance, we could use computations to actually compute depths as
attributes to be attached to terms, while term construction would be guarded by
a condition that enforced the depth limit for all sorts and constructor arguments.
A native implementation of depth control is simply more efficient.

We associate conditions and computations to constructors. Given a condition
(say, a predicate) pc for a constructor c, both of arity n, term construction
c(x1, . . . , xn) is guarded by pc(x1, . . . , xn). Given a computation (say, a function)
fc for a constructor c : σ1 × · · · × σn → σ0 is of the following type:

fc : (σ1 × Aσ1) × · · · × (σn × Aσn) → Aσ0

Controllable Combinatorial Coverage in Grammar-Based Testing 31

Here, Aσ is a domain that describes the attribute type for terms of sort σ. The
function observes argument terms and attributes, and computes an attribute
value for the newly constructed term. This means that we assume purely syn-
thesized attribute grammars because immediate completion of computations and
conditions is thereby enabled. Hence, no expensive closures are constructed, and
both conditions and computation may effectively narrow down the combinator-
ial search space. For brevity, we do not illustrate attributes, but here are some
typical examples:

– Expression types in the sense of static typing.
– The evaluation results with regard to some dynamic semantics.
– Complexity measures that are taken into account for combination.

There is one more refinement that increases generality without causing overhead.
That is, we may want to customize term construction such that the proposed
candidate is replaced by a different term, or by several terms, or it is rejected
altogether. This provides us with the following generalized type of a conditional
computation which returns a set of attributed terms:

fc : (σ1 × Aσ1) × · · · × (σn × Aσn) → P(σ0 × Aσ0)

Geno — our implementation of controllable combinatorial coverage — also pro-
vides another form of computations: one may code extra passes over the gener-
ated object structures to be part of the serialization process of the in-memory
test data to actual test data. Both kinds of computations (attribute grammar-
like and serialization-time) are expressed as functions in a .NET language.

7 Testing an Object Serialization Framework

The described grammar-based testing approach has been applied in the mean
time to a number of problems, in particular, to differential testing, stress testing
and conformance testing of language implementations and virtual processors (vir-
tual machines). Geno has been used to generate test-data from problem-specific
grammars for Tosca [25], XPath [28], XML Schema [29], the Microsoft Windows
Card runtime environment [11], the Web Service Policy Framework [22], and oth-
ers. Measurements for some applications of Geno are shown in Fig. 5.

We will now discuss one grammar-based testing project in more detail. The
project is concerned with testing a framework for object serialization, i.e., a
framework that supports conversion of in-memory object instances into a form
that can be readily transported over the network or stored persistently so that
these instances can be de-serialized at some different location in a distributed
system, or at some later point in time. The specific technology under test is
‘data contracts’ as part of Microsoft’s WCF. This framework allows one to map
classes (CLR types) to XML schemas and to serialize object instances as XML.
Data contracts also support some sort of loose coupling.

The overall testing problem is to validate the proper declaration of data con-
tracts by CLR types, the proper mapping of CLR types (with valid data con-
tracts) to XML schemas, the proper serialization and de-serialization of object

32 R. Lämmel and W. Schulte

Status Grammar Depth Time Terms Memory
Uncontrolled WindowsCard 5.. 0.05 7.657 1.489.572

WS Policy 5 1.57 313.041 41.121.608
Tosca 4 0.08 27.909 2.737.204
XPath 2 0.09 22.986 2.218.004

Controlled Tosca 8 0.14 42.210 5.669.616
Data Contract 6 22.33 2.576.177 365.881.216

Fig. 5. Measuring some applications of Geno. Runtime is in seconds, generation
time on a Compaq OPTIPLEX GX280, Pentium 4, 3.2 Ghz, 2 Gigabyte of memory.
Memory consumption is in bytes. Column ‘Terms’ lists the number of different terms
for the root sort. The ‘uncontrolled’ measurements combinatorially exhaust the gram-
mar, except that the length of lists must be in the range 0,1,2. The maximum depth
before proper explosion (‘out of memory’) is shown. In the WindowsCard case, the
test set is actual finite; so we write “5..” to mean that test-data generation has con-
verged for depth 5. The depth for Tosca is insufficient to explore expression forms in all
possible contexts. The depth for XPath indicates that control is indispensable for gen-
erating non-trivial selector expressions. The ‘controlled’ measurements take advantage
of problem-specific grammar annotations. In the case of Tosca, the corresponding test-
data set achieves branch-coverage of a reference implementation. In the case of Data
Contract, all essential variation points of the serialization framework are exercised for
up to three classes with up to three fields each, complete with the necessary attributes
and interface implementations.

instances including round-tripping scenarios. (There are also numerous require-
ments regarding the expected behavior in case of invalid schemas or CLR types.)
Essentially, Geno is used in this project to generate classes like the following:

[DataContract]
public class Car : IUnknownSerializationData {

[DataMember]
public string Model;

[DataMember]
public string Maker;

[DataMember(Name="HP", VersionAdded=2, IsOptional=true)]
public int Horsepower;

public virtual UnknownSerializationData UnknownData {
get { ... } set { ... } // omitted

}
}

In these classes, specific custom attributes are used to inform the serialization
framework. The DataContract attribute expresses that the class can be se-
rialized. Likewise, fields and properties are tagged for serialization using the

Controllable Combinatorial Coverage in Grammar-Based Testing 33

DataMember attribute. There is a default mapping from CLR names to XML
names, but the name mapping can be customized; see the attribute Name="HP".
There are several other attributes and features related to versioning and loose
coupling; cf. the implementation of IUnknownSerializationData which sup-
ports round-tripping of XML data that is not understood by a given CLR type.

The project delivered 7 Geno grammars for different validation aspects and
different feature sets. The baseline grammar, from which all other grammars
are derived by slight extensions, factoring and annotation has 21 nontermi-
nals and 34 productions (“alternatives”). Eventually, these grammars generated
about 200.000 well justified test cases. As shown in Fig. 5, Geno scales well
for grammars of this size. We have also tried to use state-of-the-art test-data
generation techniques such as Korat [5], AsmL-Test tool [10] or Unit Meis-
ter [27]. However these techniques were not able to cope with the complexity
of the serialization problem. (We continue this discussion in the related work
section.) The combinatorial search space is due to class hierarchies with multi-
ple classes, classes with multiple fields, various options for custom attributes,
different primitive types, potentially relevant interface implementations, etc.
The Geno-generated test cases uncovered around 25% of all filed bugs for the
technology.

8 Related Work

Coverage Criteria for Grammars. Controlled combinatorial coverage is a cov-
erage criterion for grammars, which generalizes on other such criteria. Purdom
devised a by-now folklore algorithm to generate a small set of short words from
a context-free grammar where each production of the grammar is used in the
derivation of at least one word [21], giving rise to rule coverage as a cover-
age criterion. The first author (Lämmel) generalized rule coverage such that
all the different occurrences of a nonterminal are distinguished [16] — denoted
as context-dependent rule coverage (and context-dependent branch coverage for
EBNF-like expressiveness). Harm and Lämmel defined a simple, formal frame-
work based on regular path expressions on derivation trees that can express
various grammar-based coverage criteria including rule coverage and context-
dependent rule coverage [17]. The same authors also designed a coverage notion
for attribute-grammar-like specifications, two-dimensional approximation cover-
age, using recursive depth in the definition of coverage [12]. Controlled combi-
natorial coverage properly generalizes the aforementioned coverage criteria by
integrating depth of derivation, recursive depth of derivation, the dichotomy
one-way, two-way, multi-way, all-way as well as the point-wise specification of
these controls per sort, per constructor or even per constructor argument.

Grammar-Based Testing. Maurer designed a general grammar-based test-data
generator: DGL [19]. The grammar notation is presumably the most advanced
in the literature. Productions are associated with weights, but there also fea-
tures for actions, systematic enumeration, ordered selection of alternatives, and

34 R. Lämmel and W. Schulte

others. McKeeman described differential testing for compilers and potentially
other grammar-driven functionality [20], while test-data generation is accom-
plished by a ‘stochastic grammar’. (Differential testing presumes the availability
of multiple implementations whose behavior on a test datum can be compared
such that a discrepancy reveals a problem with at least one of the implementa-
tions.) Slutz used a similar stochastic approach for differential testing of SQL
implementations and databases, even though the grammar knowledge is con-
cealed in the actual generator component [24]. Sirer and Bershad tested Java
Virtual machines [23] using ‘production grammars’ that involve weights as well
as guards and actions in order to control the generation process. The weights
are actually separated from the grammar so that the grammar may be used in
different configurations. This project did not use differential testing but more of
a model-based approach. That is, an executable specification of the meaning of
the generated JVM byte-code sequences served as an oracle for testing JVM im-
plementations. Claessen and Hughes have delivered a somewhat grammar-based
testing approach for Haskell [8], where programmers are encouraged to annotate
their functions with properties which are then checked by randomized test data.
The approach comprises techniques for the provision of test-data generators for
Haskell types including algebraic data types (‘signatures’). Again, constructors
are associated with probabilistic weights.

Testing Hypotheses. The seminal work on testing hypotheses by Gaudel et
al. [4, 2] enables rigorous reasoning about the completeness of test-data sets.
Our control mechanisms are well in line with this work. Most importantly, depth
control corresponds to a form of a regularity hypothesis, which concerns the com-
plexity of data sets. That is, suppose we have a model m and an implementa-
tion i, both given as functions of the same type over the same signature, be it
m, i : TΣ(root) → r, where the result type r admits intensional equality. We say
that i correctly implements m under the regularity hypothesis for sort root and
depth d if we assume that the following implication holds:

(∀t ∈ T 1
Σ(root) ∪ · · · T d

Σ(root). m(t) = i(t)) =⇒ (∀t ∈ TΣ(root). m(t) = i(t))

Hence, any use of a control mechanism for depth or recursive depth for either
sorts or constructors or constructors arguments can be viewed as an expression
of a regularity hypothesis. However, our approach does not presume that the
complexity measure for regularity is a property of the grammar of even the
sort; thereby we are able to express very fine-grained regularity hypotheses, as
necessary for practical problems. Dependence control does not map to regularity
hypotheses; instead it maps to independence hypotheses as common in classic
multi-way testing. So our approach integrates common kinds of hypotheses for
use in automated grammar-based testing.

Symbolic and Monitored Execution. Our approach does not leverage any sort
of existing model or reference implementation for test-data generation. By con-
trast, approaches based on symbolic execution or execution monitoring support

Controllable Combinatorial Coverage in Grammar-Based Testing 35

the derivation of test data from models or implementations. For instance, the
Korat framework for Java [5] is capable of generating systematically all non-
isomorphic test cases for the arguments of the method under test — given a
bound on the size of the input. To this end, Korat uses an advanced backtrack-
ing algorithm that monitors the execution of predicates for class invariants, and
makes various efforts to prune large portions of the search space. This technique
is also embodied in the AsmL-Test tool [10]. Even more advanced approaches
use symbolic execution and constraint solving for the purpose of test-data gen-
eration [14, 27]. Approaches for execution monitoring and symbolic execution
can be very efficient when small intricate data structures need to be generated.
An archetypal example of a system under test is a library for AVL trees. These
approaches commit to a ‘small scope hypothesis’ [1, 13], assuming that a high
portion of bugs can be found by testing the program for all test inputs within a
small scope. (In an OO language, a small scope corresponds to a small number
of conglomerating objects.) Hence, these techniques do not scale for the ‘large
or huge scopes’ needed for testing grammar-driven functionality, as discussed in
Sec. 7.

9 Concluding Remarks

Summary and Results. Testing language implementations, virtual machines,
and other grammar-driven functionality is a complexity challenge. For instance,
highly optimized implementations of XPath (the selector language for XML)
execute different branches of code depending on selector patterns, the degree of
recursion, the use of the reverse axis and the state of the cache. In this con-
text, it is important to automate testing and to enable the exploration of test
data along non-trivial complexity metrics such as deep grammar patterns and
locally exhaustive combinations. We have described an approach to test-data
generation for grammar-based testing of grammar-driven functionality. This ap-
proach has been implemented in a tool, Geno, and validated in software de-
velopment projects. The distinguished characteristics of the approach is that
test data is generated in a combinatorially exhaustive manner modulo approx-
imations defined by the test engineer. It is indispensable that approximations
can be expressed: test engineers can generate test cases that focus on partic-
ular problematic areas in language implementations like capacity tests, or the
interplay between loading, security permissions and accessibility. We contend
that the approach is very powerful, and we have found that test-data genera-
tion is unprecedentedly efficient because of the possibility of a backtracking-free
bottom-up algorithm that cheaply allows for maximum sharing and semantic
constraint checking. Of course, test-data generation is only one ingredient of
a reasonable test strategy (others are: grammar development, test oracle, test-
run automation), but doing test-data generation systematically and efficiently is
beneficial.

Whether or Not to Randomize. Randomized test data generation is well estab-
lished [3, 7] in testing, in general, and in grammar-based testing, in particular.

36 R. Lämmel and W. Schulte

The underlying assumption is that the resulting test sets — if large enough —
will include all ‘interesting cases’. In grammar-based testing, randomized test
data generation is indeed prevalent, but we fail to see that this approach would
be as clear as ours when it comes to reasoning about testing hypotheses [4, 2],
which are crucial in determining appropriateness of test sets. We contend that the
weights, which are typically associated with grammar productions, end up fulfill-
ing two blurred roles: (i) they specify the relative frequency of an alternative and
(ii) they control termination of recursive deepening. Instead, controlled combi-
natorial coverage appeals to hypotheses for regularity and subtree independence
by providing designated control mechanisms. Users of Geno have expressed that
they would like to leverage weights as an additional control mechanism, very
much in the sense of (i), and we plan to provide this mechanism in the next
version. In fact, it is a trivial extension as opposed to the dual marriage: adding
systematic test-data generation to a randomized setup is complicated [19, p.54]
implementation-wise, and its meaning is not clear either. In our case, weights
essentially define filters on subtree combinations.

Future Work. Geno and other tools for grammar-based testing are batch-
oriented: the test engineer devises a grammar and test-data generation is ini-
tiated in the hope that it terminates (normally). The actual generation may
provide little feedback to the test engineer; refinement of generator grammars
requires skills and is tedious. We envisage that the expression of testing hypothe-
ses could be done more interactively. To help in this process, a generator should
provide feedback such that it reports (say, visualizes) thresholds, distances and
explosive cliques in the grammar. (Some ideas have been explored in an exper-
imental extension of Geno [30].) A testing framework could also help in taking
apart initial test scenarios and then managing the identified smaller scenarios.

Another important area for improvement is the handling of problem-specific
identifiers in test-data generation. (Think of variable names in an imperative
language.) In fact, this issue very much challenges the generation of statically
correct test data. There exist pragmatic techniques in the literature on com-
piler testing and grammar-based testing; see, e.g., [6, 19, 12]. Geno users are
currently advised to handle identifiers during test-data serialization in ad-hoc
manner. That is, a generator grammar only uses placeholders. Actual identifier
generation and the establishment of use-def relationships must be coded in extra
strategies that are part of the serialization process. We contend that the over-
all topic of general, declarative and efficient identifier handling deserves further
research. For some time in the past, we were hoping that symbolic execution of
attribute grammars, as in [12], potentially involving constraint solving, would
be a solution to that problem, but its scalability is not acceptable as far as we
know of.

Acknowledgments. We are grateful for contributions by Vadim Zaytsev and
Joe Zhou. We also acknowledge discussions with Ed Brinksma at an earlier
stage of this research. The TestCom 2006 referees have made several helpful
proposals.

Controllable Combinatorial Coverage in Grammar-Based Testing 37

References

1. A. Andoni, D. Daniliuc, S. Khurshid, , and D. Marinov. Evaluating the
“Small Scope Hypothesis”. Unpublished; Available at http://sdg.lcs.mit.edu/
publications.html, Sept. 2002.

2. G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal specifi-
cations: a theory and a tool. Software Engineering Journal, 6(6):387–405, 1991.

3. D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test
cases. IBM Systems Journal, 22(3):229–245, 1983.

4. L. Bouge, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test sets generation from
algebraic specifications using logic programming. Journal of Systems and Software,
6(4):343–360, 1986.

5. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java
predicates. In Proc. International Symposium on Software testing and analysis,
pages 123–133. ACM Press, 2002.

6. C. Burgess. The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability, 4(2):81–99, June 1994.

7. C. J. Burgess and M. Saidi. The automatic generation of test cases for optimizing
Fortran compilers. Information and Software Technology, 38(2):111–119, Feb. 1996.

8. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pages 268–279, New York, NY,
USA, 2000. ACM Press.

9. D. Cohen, S. Dalal, M. Fredman, and G. Patton. The AETG system: An ap-
proach to testing based on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–443, July 1997.

10. Foundations of Software Engineering, Microsoft Research. AsmL — Abstract State
Machine Language, 2005. http://research.microsoft.com/fse/AsmL/.

11. Y. Gurevich and C. Wallace. Specification and Verification of the Windows Card
Runtime Environment Using Abstract State Machines. Technical report, Microsoft
Research, Feb. 1999. MSR-TR-99-07.

12. J. Harm and R. Lämmel. Two-dimensional Approximation Coverage. Informatica,
24(3):355–369, 2000.

13. D. Jackson and C. A. Damon. Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector. IEEE Transactions on Software Engi-
neering, 22(7):484–495, 1996.

14. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, July 1976.

15. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127–145, 1968. Corrections in 5:95-96, 1971.

16. R. Lämmel. Grammar Testing. In H. Hussmann, editor, Proc. of Fundamental
Approaches to Software Engineering (FASE) 2001, volume 2029 of LNCS, pages
201–216. Springer-Verlag, 2001.

17. R. Lämmel and J. Harm. Test case characterisation by regular path expressions.
In E. Brinksma and J. Tretmans, editors, Proc. Formal Approaches to Testing of
Software (FATES’01), Notes Series NS-01-4, pages 109–124. BRICS, Aug. 2001.

18. Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for pairwise
testing. In HASE, pages 254–261. IEEE Computer Society, 1998.

19. P. Maurer. Generating test data with enhanced context-free grammars. IEEE
Software, 7(4):50–56, 1990.

38 R. Lämmel and W. Schulte

20. W. McKeeman. Differential testing for software. Digital Technical Journal of
Digital Equipment Corporation, 10(1):100–107, 1998.

21. P. Purdom. A sentence generator for testing parsers. BIT, 12(3):366–375, 1972.
22. J. Schlimmer et al. Web Services Policy Framework, Sept. 2004. Avail-

able at http://www-128.ibm.com/developerworks/library/specification/ws-
polfram/.

23. E. G. Sirer and B. N. Bershad. Using production grammars in software testing. In
USENIX, editor, Proceedings of the 2nd Conference on Domain-Specific Languages
(DSL ’99), October 3–5, 1999, Austin, Texas, USA, pages 1–13, Berkeley, CA,
USA, 1999. USENIX.

24. D. Slutz. Massive Stochastic Testing for SQL. Technical Report MSR-TR-98-21,
Microsoft Research, Redmond, 1998. A shorter form of the paper appeared in the
Proc. of the 24th VLDB Conference, New York, USA, 1998.

25. S. Stepney. High Integrity Compilation: A Case Study. Prentice Hall, 1993.
26. K. Tai and Y. Lei. A Test Generation Strategy for Pairwise Testing. IEEE Trans-

actions on Software Engineering, 28(1):109–111, 2002.
27. N. Tillmann, W. Schulte, and W. Grieskamp. Parameterized Unit Tests. Technical

report, Microsoft Research, 2005. MSR-TR-2005-64; also appeared in FSE/ESEC
2005.

28. W3C. XML Path Language (XPath) Version 1.0, Nov. 1999. http://www.w3.org/
TR/xpath.

29. W3C. XML Schema, 2000–2003. http://www.w3.org/XML/Schema.
30. V. V. Zaytsev. Combinatorial test set generation: Concepts, implementation, case

study. Master’s thesis, Universiteit Twente, Enschede, The Netherlands, June 2004.

A Logic for Assessing Sets of Heterogeneous
Testing Hypotheses�

Ismael Rodríguez, Mercedes G. Merayo, and Manuel Núñez

Dept. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, 28040 Madrid, Spain

isrodrig@sip.ucm.es, mgmerayo@fdi.ucm.es, mn@sip.ucm.es

Abstract. To ensure the conformance of an implementation under test
(IUT) with respect to a specification requires, in general, the application
of an infinite number of tests. In order to use finite test suites, most
testing methodologies add some feasible hypotheses about the behavior
of the IUT. Since these methodologies are designed for considering a
fix set of hypotheses, they usually do not have the capability of dealing
with other scenarios where the set of assumed hypotheses varies. We
propose a logic to infer whether a set of observations (i.e., results of test
applications) allows to claim that the IUT conforms to the specification
if a specific set of hypotheses (taken from a repertory) is assumed.

1 Introduction

The time a tester can spend testing an IUT with respect to a specification
is finite, whereas IUTs define, in general, arbitrarily long behaviors. Hence, it
takes infinite time to assess the validity of all these behaviors with respect to
a specification. In order to overcome this problem, testers add some reasonable
assumptions about the implementation regarding the knowledge about its con-
struction. For example, the tester can suppose that the implementation can be
represented by means of a deterministic finite state machine, that it has at most
n states, etc. A lot of testing methodologies have been proposed which, for a
specific set of initial hypotheses, guarantee that a test suite extracted from the
specification is correct and complete to check the conformance of the IUT with
respect to the specification (e.g. [2, 8, 15, 12]).

However, a framework of hypotheses established in advance is very strict and
limits the applicability of a specific testing methodology. For example, in a con-
crete environment, the tester could assume that the behavior in four specific
states of the implementation is deterministic and that two of them represent
equivalent states of the implementation. The tester could also make more com-
plex assumptions such as “non-deterministic states of the IUT cannot show out-
puts that the machine did not show once the state has been tested 100 times.” In
� Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,

the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 39–54, 2006.
c© IFIP International Federation for Information Processing 2006

40 I. Rodríguez, M.G. Merayo, and M. Núñez

a different scenario the tester could not believe this but think that “ if she ob-
serves two sequences of length 200 and all their inputs and outputs coincide then
they actually traverse the same IUT states.” If the tester assumes the validity
of a set of hypotheses to test a given IUT, then a specific test suite would be
appropriate, while by using other hypotheses, the test suite could not be so.

It would be desirable to provide the tester with a tool to let her analyze the
impact of considering a given set of hypotheses in the testing process, as well as
the consequences of adding/eliminating hypotheses from the set. The goal of this
methodology would be to ascertain if a given finite set of observations extracted
by a test suite is complete in the case that the considered hypotheses hold, that
is, we assess whether obtaining these observations from the IUT implies that
the IUT conforms to the specification if the hypotheses hold. In this paper we
propose a logic called HOT L (Hypotheses and Observations Testing Logic). Its
aim is to assess whether a given set of observations implies the correctness of
the IUT under the assumption of a given set of hypotheses. In order to allow the
tester to compose sets of hypotheses, the logic provides a repertory of hypotheses,
including some of the ones appearing in known testing methodologies.

Our logic allows to perform at least three different tasks. First, a tester can
use it to customize the testing process to her specific environment. By using the
logic, she can infer not only the consequences of adding a new test, but also the
consequences of adding a new hypothesis. In this way, the tester has control over
a wide range of testing variables. In particular, the construction of test suites to
extract observations and the definition of hypotheses can influence each other.
This provides a dynamic testing scenario where, depending on the specification
and the tester’s knowledge of the IUT, different sets of tests and hypotheses
can be considered. Second, such logic allows the tester to evaluate the quality
of a test suite to discover errors in an implementation: If the observations that
could be extracted by the test suite require (for their completeness) a set of
hypotheses that is harder to be accepted than those required by another suite,
then the latter suite should be preferred. This is because this suite could allow
the tester to reach diagnostics in a less restrictive environment. Finally, our logic
provides a conceptual bridge between different testing approaches. In particular,
we may use it to represent the (fix) sets of hypotheses considered by different
approaches. Then, by considering the observations each test suite could obtain,
a test suite that is complete in an approach could be turned into a complete
suite in another. Similarly, we can analyze how the size of test suites is affected
by hypotheses. Moreover, we can use the logic to create intermediate approaches
where sets of hypotheses are appropriately mixed.

Let us concentrate on how our logic is applied to perform the first of the
previous tasks, that is, serving as core of a (dynamic) testing methodology. The
methodology is applied in two phases. The first phase consists in the classical
application of tests to the IUT. By using any of the available methods in the
literature, a test suite will be derived from the specification. If the application
of this test suite finds an unexpected result then the testing process stops: The
IUT is not conforming. However, if such a wrong behavior is not detected then

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 41

the tester cannot be sure that the IUT is correct. In this case, the second phase
begins, that is, the tester applies the logic described in this paper to infer whether
passing these tests implies that the IUT is correct if a given set of hypotheses is
assumed. If it does then the IUT is assumed to be correct; otherwise, the tester
may be interested in either applying more tests or in assuming more hypotheses
(in the latter case, on the cost of feasibility) and then applying the logic again
until the correctness of the IUT is effectively granted. In order to appropriately
apply the logic, the behavior of the IUT observed during the application of tests
must be properly represented. For each application of a test to the IUT, we
construct an observation, that is, a sequence of inputs and outputs denoting
the test and the response produced by the IUT, respectively. Both observations
and the assumed hypotheses will be represented by appropriate predicates of the
logic. Then, the deduction rules of the logic will allow to infer whether we can
claim that the IUT conforms to the specification (actually, the logic will check
whether all the implementations that could produce these observations and fulfill
the requirements of the hypotheses conform to the specification).

We distinguish two kinds of hypotheses in the predefined repertory: Hypothe-
ses concerning specific parts (states) of the IUT and hypotheses concerning the
whole IUT. In order to unambiguously denote the states regarded by the former,
they will be attached to the corresponding observations that reached these states.
For example, if the IUT was showing the sequence of outputs o1, o2, . . . , on as
answer to the sequence of inputs i1, i2, . . . , in provided by the tester, the tester
may think that the state reached after performing i1/o1 is deterministic or that
the state reached after performing the sequence i1/o1, i2/o2 is the same as the
one reached after performing the whole sequence i1/o1, i2/o2, . . . , in/on. Let us
remark that these are hypotheses that the tester is assuming. Thus, she might be
wrong and reach a wrong conclusion. However, this is similar to the case when
the tester assumes that the implementation is deterministic or that it has at
most n states and, in reality, this is not the case. In addition to using hypothe-
ses associated to observations, the tester can also consider global hypotheses
that concern the whole IUT. These are assumptions such as the ones that we
mentioned before: Assuming that the IUT is deterministic, that is has at most n
states, that is has a unique initial state, etc. In order to denote the assumption
of this kind of hypotheses, specific logic predicates will be used.

Regarding related work, there are several papers where testing hypotheses
are used to perform the testing process. For example, we may consider that the
implementation is deterministic (e.g. [13]), that we are testing the coupling of
several components by assuming that all of them are correct or that at most
one of them is incorrect (e.g. [9]), etc. Our methodology provides a generaliza-
tion of these frameworks because it allows to decide the specific hypotheses we
will consider. In this line, we can compare the suitability of different test suites
or test criteria in terms of the hypotheses that are considered (e.g. [10]); some
formal relations to compare them have been defined [6]. Since our logic provides
a mechanism to effectively compare sets of hypotheses, it may help to compute
relations defined in these terms. Even though we work with rules and properties,

42 I. Rodríguez, M.G. Merayo, and M. Núñez

our work is not related to model checking [4] since we do not check the validity of
properties: We assume that they hold and we infer results about the conformity
of the IUT by using this assumption. In the same way, this work is not related to
some recent work on passive testing where the validity of a set of properties (ex-
pressed by means of invariants) is checked by passively observing the execution
of the system (e.g. [7, 3, 1]).

The rest of the paper is organized as follows. In Section 2 we present some basic
concepts related to the formalisms that we will use. In Section 3 we introduce
the predicates of HOT L, while in Section 4 we present the deduction rules.
Finally, in Section 5 we present our conclusions and some directions for further
research. Due to the lack of space, some auxiliary definitions and rules have not
been included in this paper. All of them can be found in [14].

2 Formal Model

In this section we introduce some basic concepts that will be used along the
paper to formally present our methodology. Specifically, we introduce the notion
of finite state machine and a conformance relation.

Definition 1. A finite state machine, in short FSM, is a tuple of five elements
M = (S, inputs, outputs, I, T) where S is the set of states, inputs is the set
of input actions, outputs is the set of output actions, I ⊆ S is the set of initial
states, and T is the set of transitions. A transition is a tuple (s, i, o, s′) ∈ T
where s, s′ ∈ S are the initial and final states, respectively, i ∈ inputs is the
input that activates the transition, and o ∈ outputs is the output produced in

response. A transition (s, i, o, s′) ∈ T is also denoted by s
i/o−−−−→ s′.

We say that (i1/o1, . . . , in/on) is a trace of M if there exists s1 ∈ I and

s2, . . . , sn+1 ∈ S such that s1
i1/o1−−−−−→ s2, s2

i2/o2−−−−−→ s3, . . . , sn
in/on−−−−−→ sn+1

are transitions of T . The set of all traces of M is denoted by traces(M).
Let us consider s, s′ ∈ S. We say that s′ is reachable from s, denoted by

isReachable(M, s, s′), if either there exist u, i, o such that s
i/o−−−−→ u ∈ T and

isReachable(M, u, s′) holds, or s = s′. The set reachableStates(M, s) con-
tains all s′ ∈ S such that isReachable(M, s, s′).

Let s ∈ S and i ∈ inputs. outs(M, s, i) denotes the set of outputs that can

be produced in s in response to i, that is, the set {o | ∃ s′ : s
i/o−−−−→ s′ ∈ T }.

We say that s ∈ S is deterministic, denoted by isDet(M, s), if there do not

exist s
i/o′

−−−−→ s′, s
i/o′′

−−−−→ s′′ ∈ T such that o′ �= o′′ or s′ �= s′′. ��

In the previous definition, let us note that machines are allowed to be non-
deterministic. In order to fix the kind of formalisms our logic will deal with, the
following hypothesis will be imposed: Both implementations and specifications
can be represented by appropriate FSMs. As a consequence, we have that when
an input is offered to an IUT it always produces an observable response (that is,
quiescent states not producing any output are not considered). Next we present

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 43

the basic conformance relation that will be considered in our framework. This
relation is similar to ioco [15] but in the framework of FSMs. This relation has
been used in [11] as a preliminary step to define timed conformance relations.
Intuitively, an IUT is conforming if it does not invent behaviors for those traces
that can be executed by the specification. We will assume that the IUT is input-

enabled, that is, for all state s and input i there exist o, s′ such that s
i/o−−−−→ s′

belongs to the set of transitions of the IUT. During the rest of the paper, and
when no confusion arises, we will assume that the FSM representing a generic
specification is given by spec = (Sspec, inputsspec, outputsspec, Ispec, Tspec).

Definition 2. Let S and I be two FSMs. We say that I conforms to S, denoted
by I conf S, if for all ρ1 = (i1/o1, . . . , in−1/on−1, in/on) ∈ traces(S), with
n ≥ 1, we have ρ2 = (i1/o1, . . . , in−1/on−1, in/o′n) ∈ traces(I) implies ρ2 ∈
traces(S). ��

Example 1. A simple example, adapted from [5], will be used along the paper to
illustrate our framework. A medical ray beaming system is controlled by using
three buttons: A button for charging the machine (a single button press increases
the voltage by 10 mV), another one for the beam activation, and the last one for
resetting the machine at any time. The system will only charge the machine twice
(increasing the voltage up to 20 mV) and it only lets to beam twice. Any further
attempt to either increase the charge of the machine or to activate the beaming
will be rejected because there is a danger of seriously injuring the patient. The
FSM specifying this behavior is depicted in Figure 1 (left) and it is defined as
spec_ray = (Sspec_ray, inputsspec_ray, outputsspec_ray, Ispec_ray, Tspec_ray).
We have Sspec_ray = {r, c1, c2, b1, b2}, where r denotes the ready state, c1/c2
denote the states where the beamer has been charged one/two times, and b1/b2

r

c1 b1 b2

c2

bc/mc

bc/mc

br/mr

bb/mb

bb/mbbb/mb

bb/mb

br/mr

br/mr

br/mr bb/re

bc/re

⊥

⊥ s16 s17

s0 s10 s18 s57 ⊥

⊥ s59

bb/error

bb/re

br/error

bc/mc

bc/mc

bb/mb

bc/re bb/mb

bc/error

bc/re

br/error

bb/mb

br/mr

br/mr

br/mr

br/mr

bb/error

bc/error

bb/error

bc/error

br/error bb/error

Fig. 1. Finite State Machines spec_ray (left) and worstspec_ray (right)

44 I. Rodríguez, M.G. Merayo, and M. Núñez

denote the states where the first/second beaming is performed. inputsspec_ray =
{br, bc, bb}, where br/bc/bb respectively denote that the reset/charging/beaming
button has been pressed. outputsspec_ray ={mr, mc, mb, re}, where mr/mc/mb

respectively denote that the machine is ready/charging/beaming while re de-
notes that the command has been rejected. Finally, Ispec_ray = {r}, that is, the
initial state is ready. ��

3 Predicates of the Logic

In this section we present the predicates that will be part of HOT L. These
predicates allow to represent our knowledge and assumptions about the IUT. In
particular, they will allow us to represent the observations that we have obtained
from the IUT during the preliminary classical testing phase. Observations de-
note that, in response to a given sequence of inputs, the IUT produced a given
sequence of outputs. Let us remark that if one of the sequences shows a behav-
ior that is forbidden by the specification, then the IUT does not conform to the
specification and no further analysis is required, that is, there is no need to apply
our logic. As we said before, our notion of observation will be able to include
some assumptions about the IUT as well as the observed behavior.

3.1 Manipulating Observations

During the rest of the paper, Obs denotes the set of all the observations collected
during the preliminary interaction with the IUT, while Hyp denotes the set of
hypotheses the tester has assumed. In this latter set, we will not consider the
hypotheses that are implicitly introduced by means of observations.

Observations follow the form ob = (a1, i1/o1, a2, . . . , an, in/on, an+1) ∈ Obs,
where ob is a unique identification name. It denotes that when the sequence
of inputs i1, . . . , in was proposed from the initial configuration of the imple-
mentation, the sequence o1, . . . , on was obtained as response. In addition, for
all 1 ≤ j ≤ n+1, aj represents a set of special attributes concerning the state
of the implementation that we reached after performing i1/o1, . . . , ij−1/oj−1 in
this observation. Attributes denote our assumptions about this state. For all
1 ≤ j ≤ n the attributes in the set aj are of the form imp(s) or det, where
imp(s) denotes that the state reached after i1/o1, . . . , ij−1/oj−1 is associated to
a state identifier s and det denotes that the implementation state reached after
i1/o1, . . . , ij−1/oj−1 in this observation is deterministic. State identifiers are used
to match equal states: If two states are associated with the same state identifier
then they represent the same state of the implementation.1 Besides, attributes
belonging to an+1 can also be of the form spec(s), with s ∈ Sspec, denoting
that the state reached after i1/o1, . . . , in/on is such that the subgraph that can
be reached from it is isomorphic to the subgraph that can be reached from the
state s of the specification. We assume that attributes of the form spec(s) can
1 Let us remark that, since we consider the IUT to be a black-box, a tester cannot al-

ways be sure of the state where the IUT is placed. However, she may still hypothesize
that the reached states after performing two subsequences are in fact the same.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 45

appear only at the end of the observation, meaning that the behavior of the
implementation from that point on is known and there is no need to check its
correctness.

Example 2. For our case study we will consider that the set of observations
Obs={obi|1 ≤ i ≤ 11} was obtained. As illustration, we show the following ones
(the full set is given in [14]).

ob1 = ({det}, bc/mc, {imp(q1)}, bb/mb, {imp(q2)}, bb/mb, ∅)
ob6 = (∅, bc/mc, {imp(q1)}, bb/mb, {imp(q2)}, bb/mb, {imp(q3)}, br/mr, ∅, bc/mc,

{imp(q1)}, bb/mb, {imp(q2)})
ob10 = (∅, bc/mc, {imp(q1)}, bb/mb, {imp(q2), det}, bb/mb, {imp(q2)}, bb/re, ∅)

For example, ob10 denotes that we initially do not make assumptions about
the state the IUT selected as initial for this observation (its set of attributes
is ∅). After pressing the charging button, the beaming system is charged and the
state reached is identified by a specific state identifier (denoted by q1). Next, by
pressing the beaming button, the beaming is performed and we reach a certain
state, in principle different to previous ones, which is assumed to be deterministic
and is denoted by the identifier q2. After pressing again the beaming button, the
beaming action is performed and we assume that we reach again the same state
as before (note that it is denoted by the same identifier q2). We press once
again the beaming button but this time the action is rejected, and we make no
assumptions about the state reached afterwards. ��

3.2 Model Predicates

Observations will allow to create model predicates. A model predicate denotes
our knowledge about the implementation. Models will be constructed according
to the observations and hypotheses we consider. In particular, they induce a
graph consistent with the observations and hypotheses considered so far. As more
information is retrieved, models will be refined and particularized. We denote
model predicates by model (m), where m = (S, T , I, A, E , D, O). The meaning
of the different components of the tuple are the following. S (states) is the set
of states that appear in the graph of the model. Despite the fact that this graph
attempts to represent (a part of) the behavior of the implementation, any name
belonging to S is fresh and by no means is related to the corresponding state
of the implementation. Let us note that after more information is considered, it
could turn out that some states belonging to S coincide. Next, T (transitions)
is the set of transitions appearing in the graph of the model. I (initial states)
is the set of states that are initial in the model. A (accounting) is the set of
accounting registers. A register is a tuple (s, i, outs, n) denoting that in the state
s ∈ S the input i has been offered n times and we have obtained the outputs
belonging to the set outs. This information allows to handle some hypotheses
about nondeterminism. If, due to the hypotheses that we consider, we infer
that the number of times we observed an input is enough to believe that the
implementation cannot react to that input in a way that has not happened
before (that is, either with an output that was not produced before or leading

46 I. Rodríguez, M.G. Merayo, and M. Núñez

to a state that was not taken before), then the value n is set to �. In this case,
we say that the behavior of the state s for the input i is closed. Next, E (equality
relations) is the set of equalities relating states in S. Equalities have the form
s is s′. For example if s1 is s ∈ E and s2 is s ∈ E then we infer that s1 = s2 and
that one of the names could be eliminated afterwards. D (deterministic states) is
the set of states that are deterministic (according to the hypotheses considered
so far). Finally, O (used observations) is the set of observations we have used
so far for the construction of this model. The aim of recording them is to avoid
considering the same observation several times, which could ruin the information
codified, for instance, in A.

In HOT L, conclusions about the conformance of a model (that is, of the
possible IUTs it represents) with respect to a specification will be established only
after the full set of observations Obs has been considered. Besides, we will require
that no other rule concerning hypotheses in Hyp can be applied. In Section 4 we
introduce some of the hypotheses a tester might consider in this set. These
hypotheses include usual ones such as to assume an upper bound on the number
of states of the IUT, the uniqueness of the initial state, the determinism of the
IUT, etcetera.

3.3 Other Predicates

We will also consider other predicates related to the correctness of models. The
correct(m) predicate denotes that m is a correct model, that is, it denotes a
behavior that has to be conforming to the specification. The allModelsCorrect
predicate represents a set of correct models. This predicate is the goal of the logic:
If it holds then all the IUTs that could produce the observations in Obs and meet
all the requirements in Hyp conform to the specification. The consistent(m)
predicate means that the model m does not include any inconsistency. Note that
the requirements imposed by Obs and Hyp could lead to inconsistent models. For
example, let us consider a model where a state s is assumed to be deterministic,
s is equal to another state s′, and s′ produces either o1 or o2 when i is offered,
with o1 �= o2. There is no FSM that meets the requirements of this model. Since
a user of the logic can create a set of observations and hypotheses leading to
that model, inconsistent models may indeed appear. As we will see, the rules of
the logic will eliminate inconsistent models by deducing an empty set of models
from them. In addition, we will be provided with rules that allow to guarantee
the consistency of a model.

In general, several models can be constructed from a set of observations and
hypotheses. Hence, our logic will deal with sets of models. If M is a set of models
then the predicate models (M) denotes that, according to the observations and
hypotheses considered, M contains all the models that are valid candidates to
properly describe the implementation. Besides, modelsSubset(M′) denotes that
for some set M we have models (M) and M′ ⊆ M.

The formal semantics of predicates, which is defined in terms of the set of FSMs
that fulfill each predicate, is introduced in [14]. These concepts are considered
there to prove the soundness and completeness of the logic.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 47

4 Deduction Rules of the Logic HOT L
The rules will be presented in the form premises

conclusion . If B can be deduced from
A then we write A B. If we want to be more specific, we write A r B to
denote that B is deduced from A by applying the rule r. The ultimate goal is to
deduce the conformance of a set of observations Obs and hypotheses Hyp, that
is, whether all the FSMs that meet these conditions conform to the specification.
Since inconsistent models may appear, conformance will be granted only if there
exists at least one consistent model that meets these conditions. Some formal
definitions and rules could not be included in this version of the paper and can
be found in [14]. In these cases, brief informal explanations will be provided.

HOT L will consider observations and hypotheses in two phases. First, obser-
vations, as well as the hypotheses they can implicitly express, will be collected.
Once all of them have been considered (i.e., we have a model predicate with
O = Obs) a second phase, to add the rest of hypotheses, will start.

First, we present a rule to construct a model from an observation. Given
a predicate denoting that an observation was collected, the rule deduces some
details about the behavior of the implementation. These details are codified by
means of a model that shows this behavior. Basically, new states and transitions
will be created in the model so that it can produce the observation. Even though
some model states could actually coincide, we will not consider it yet. Thus,
we take fresh states to name all of them. Besides, the hypotheses denoted by
the attributes of the observation will affect the information associated to the
corresponding model states. In particular, if the tester assumes that the last
state of the observation is isomorphic to a state of the specification (i.e., spec(s),
for some s ∈ Sspec) then the sets of states, transitions, accounting registers, and
deterministic states will be extended with some extra elements taken from the
specification and denoted by S′, T ′, A′, and D′, respectively. The new states and
transitions S′ and T ′, respectively, will copy the structure existing among the
states that can be reached from s in the specification. The new accounting, A′,
will denote that the knowledge concerning the new states is closed for all inputs,
that is, the only transitions departing from these states are those we copy from
the specification and no other transitions will be added in the future. Finally,
those model states that are images of deterministic specification states will be
included in the set D′ of deterministic states of the model.

(obser)
ob = (a1, i1/o1, a2, . . . , an, in/on, an+1) ∈ Obs ∧ s1, . . . , sn+1 are fresh states

model

�
��������

{s1, . . . , sn+1} ∪ S ′,

{s1
i1/o1−−−−−→ s2, . . . , sn

in/on−−−−−→ sn+1} ∪ T ′, {s1},
{(sj , ij , {oj}, 1) | 1 ≤ j ≤ n} ∪ A′,

{sj is s′
j |1 ≤ j ≤ n + 1 ∧ imp(s′

j) ∈ aj},
{sj | 1 ≤ j ≤ n + 1 ∧ det ∈ aj} ∪ D′, {ob}

�
��������

The formal definition of S′, T ′, A′, and D′ follows. If there does not exist
s′ such that spec(s′) ∈ an+1 then (S ′, T ′, A′, D′) = (∅, ∅, ∅, ∅). Otherwise, that

48 I. Rodríguez, M.G. Merayo, and M. Núñez

is, if spec(s) ∈ an+1 for some s ∈ Sspec, let us consider the following set of
states: U = {uj | uj is a fresh state ∧ 1 ≤ j < |reachableStates(spec, s)|}
and a bijective function f : reachableStates(spec, s) −→ U ∪ {sn+1} such that
f(s) = sn+1. Then, (S′, T ′, A′, D′) is equal to

�
���

U, {f(s′)
i/o−−−−→ f(s′′) | s′ i/o−−−−→ s′′ ∈ Tspec ∧ isReachable(spec, s, s′)},

{(u, i, outs(spec, s, i),)|u ∈ U ∪ {sn+1} ∧ i ∈ inputsspec},
{f(s′)|isReachable(spec, s, s′) ∧ isDet(spec, s′)}

�
���

Example 3. If we apply the obser deduction rule to the observation ob6 given in
Example 2 then we obtain a model m6 = (S6, T6, I6, A6, E6, D6, O6), where

S6 = {s26, s27, s28, s29, s30, s31, s32} and I6 = {s26}

T6 =

�
s26

bc/mc−−−−−→ s27, s27
bb/mb−−−−−→ s28, s28

bb/mb−−−−−→ s29, s29
br/mr−−−−−→ s30,

s30
bc/mc−−−−−→ s31, s31

bb/mb−−−−−→ s32

�

A6 =
	

(s26, bc, {mc}, 1), (s27, bb, {mb}, 1), (s28, bb, {mb}, 1), (s29, br, {mr}, 1),
(s30, bc, {mc}, 1), (s21, bb, {mb}, 1)

E6 = {s27 is q1, s28 is q2, s29 is q3, s31 is q1, s32 is q2},D6 = ∅, and O6 = {ob6}

Similarly, for all 1 ≤ i ≤ 11 we can obtain a model mi by applying the
deduction rule obser to obi. ��

We will be able to join different models created from different observations into
a single model. The components of the new model will be the union of the
components of each model.

(fusion)

model (S1, T1, I1,A1, E1,D1,O1) ∧
model (S2, T2, I2,A2, E2,D2,O2) ∧ O1 ∩O2 = ∅

model
�
S1 ∪ S2, T1 ∪ T2, I1 ∪ I2,A1 ∪A2, E1 ∪ E2,D1 ∪ D2,O1 ∪O2

�
The condition O1 ∩ O2 = ∅ appearing in the previous rule avoids to include

the same observation in a model more than once, which would be inefficient.
Besides, since models in the second phase must fulfill O = Obs, we avoid to use
the previous rule in the second phase.

By iteratively applying these two first rules, we will finally obtain a model
where O includes all the observations belonging to the set Obs.

Example 4. The deduction rule fusion allows to join all the models obtained after
applying the deduction rule obser to the set of observations given in Example 2.
After it, we have a new model mT defined as follows:

mT = model
�11

j=1 Sj ,
�11

j=1 Tj ,
�11

j=1 Ij ,
�11

j=1 Aj ,
�11

j=1 Ej ,
�11

j=1 Dj , Obs
�

��

At this point, the inclusion of those hypotheses that are covered by observations
will begin. During this new phase, in general, we will need several models to
represent all the FSMs that are compatible with a set of observations and hy-
potheses. The next simple rule allows to represent a single model by means of

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 49

a set containing a single element. Since the forthcoming rules will concern only
the second phase, in all cases we will have O = Obs.

(set)
model (S ,T , I,A, E ,D, Obs)

models ({(S ,T , I,A, E ,D, Obs)})

In order to reflect how a rule that applies to a single model affects the set in-
cluding this model, we provide the following rule. Let ϕ denote a logical predicate
(in particular, true) and m = model (S, T , I, A, E , D, Obs). Then,

(propagation)
models (M∪ {m}) ∧ ϕ ∧ ((model (m) ∧ ϕ) � modelsSubset (M′))

models (M∪M′)

By using the previous rule, we will be able to use other rules that apply
to a single model and then propagate its change to the set where the model is
included as expected: As the previous rule states, this model changes while other
models belonging to the set remain unchanged. Most of the forthcoming rules
will apply to single models. After each of them is used, the rule propagation will
be applied to propagate its effect to the corresponding set of models.

Our logic will allow to discover that a state of the model coincides with an-
other one. In this case, we will eliminate one of the states and will allocate all of
its constraints to the other one. This will modify all the components that define
the model. This functionality is provided by the modelElim function. Specifically,
modelElim(m, s1, s2) denotes the elimination of the state s2 and the transference
of all its responsibilities to state s1 in the model m. This function returns a set
of models. If the transference of responsibilities creates an inconsistency in the
rest of the model, an empty set of models is returned. Sometimes we will use a
generalized version of this function to perform the elimination of several states
instead of a single state: modelElim(m, s, {s1, . . . , sn}) represents the substitu-
tion of s1 by s, followed by the substitution of s2 by s, and so on up to sn. The
formal definitions of both forms of the modelElim function are given in [14].

Next we present some rules that use this function. In the first one, we join
two states if the set of equalities allows to deduce that both coincide.

(equality)
model (S ,T , I,A, E ,D, Obs) ∧ s1, s2 ∈ S ∧ {s1 is s, s2 is s} ⊆ E

modelsSubset (modelElim((S ,T , I,A, E ,D, Obs), s1, s2))

Another situation where two states can be fused appears when a deterministic
state shows two transitions labelled by the same input. Since the state is deter-
ministic, they must also be labelled by the same output. The determinism of the
state implies that both destinations are actually the same state. Hence, these
two reached states can be fused. Note that if both outputs are different then the
model is inconsistent, because the determinism of the state is not preserved. In
this case, an empty set of models is produced.

(determ)

model (S ,T , I,A, E ,D, Obs) ∧
s, s1, s2 ∈ S ∧ s ∈ D ∧ {s i/o1−−−−→ s1, s

i/o2−−−−→ s2} ⊆ T
modelsSubset (M′) [if o1 = o2 then M′ =modelElim(m, s1, s2) else M′ =∅]

50 I. Rodríguez, M.G. Merayo, and M. Núñez

Next we present the first rule dealing with an hypothesis that is not implicitly
given by an observation. This hypothesis allows to assume that the initial state
of the implementation is unique.

(singleInit)
model (S , T , I,A, E ,D, Obs) ∧ I = {s1, . . . , sn} ∧ singleInitial ∈ Hyp

modelsSubset
�
modelElim((S ,T , I,A, E ,D, Obs), s1, {s2, . . . , sn})

�
If the tester adds the hypothesis that all the states are deterministic, then the

complete set of states S coincides with the set of deterministic states D.

(allDet)
model (S ,T , I,A, E ,D, Obs) ∧ allDet ∈ Hyp

modelsSubset ({(S , T , I,A, E ,S , Obs)})

The logic HOT L allows to consider other hypotheses about the IUT. For
example, the predicate allTranHappenWith(n) assumes that for all state s and
input i such that the IUT behavior has been observed at least n times, all the
outgoing transitions from s having as input i, have been observed at least once.
This means that the IUT state s cannot react to i with an output that has not
produced so far or moving to a state it has not moved before. If the hypoth-
esis is assumed then some accounting registers of the model will be set to the
value �, denoting that our knowledge about this state and input is closed. De-
pending on the compatibility of the hypothesis with the current model, several
models can be produced by this rule. If no model is returned then we infer that
the resulting model is inconsistent with the current model requirements. The
upperBoundOfStates(n) hypothesis allows to assume that the IUT uses at most
n states. The reduction of states, based on the identification of several states
with the same state identifiers, will be performed by means of new equalities
s is s′ ∈ E . The longSequencesSamePath(n) hypothesis assumes that if two
sequences of n transitions produce the same inputs and outputs, then they ac-
tually go through the same states. The set E , containing the assumed equalities
between states, will be also used in this case. The formal definition of the rules
that allow to consider the allTranHappenWith(n), upperBoundOfStates(n),
and longSequencesSamePath(n) hypotheses can be found in [14].

We have seen some rules that may lead to inconsistent models. In some of
these cases, an empty set of models is produced, that is, the inconsistent model
is eliminated. Before granting conformance, we need to be sure that at least one
model belonging to the set is consistent. Next we provide a rule that labels a
model as consistent. Let us note that the inconsistences created by a rule can be
detected by the forthcoming applications of rules. For instance, the determ rule
can detect that a previous rule matched a deterministic state with another state
in such a way that both react to the input i with a different output. Actually, all
inconsistencies can be detected by applying suitable rules. Thus, a model is free of
inconsistencies if for any other rule either it is not applicable to the model or the
application does not modify the model (i.e., it deduces the same model). Next we
introduce this concept. In the following definition, R denotes the set of all rules in
HOT L that follow the form required to apply the propagation rule. In particular,
it consists of all previous rules from equality up to the forthcoming correct rule.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 51

Definition 3. We denote the set of all rules in HOT L that follow the form
(model (m) ∧ ϕ) modelsSubset(M′) by R.

Let r = (model (m′) ∧ ϕ) modelsSubset(M′) ∈ R and m be a model.
The unable predicate for m and r, denoted by unable(m, r), is defined by the
expression unable(m, r) = ¬ϕ ∨ ((model (m) ∧ ϕ) r modelsSubset({m})).
We extend this predicate to deal with sets of rules as follows: unable(m, Q) =∧

{unable(m, r)|r ∈ Q}. ��

The next rule detects that a model is consistent. It requires that no other rule
that manages hypotheses can modify the model. These rules consist of all the
rules in R we have seen so far.

(consistent)

m = (S ,T , I,A, E ,D, Obs) ∧ model (m) ∧
unable(m,R\{consistent, correct})

modelsSubset ({consistent(S ,T , I,A, E ,D, Obs)})

Since a model is a (probably incomplete) representation of the IUT, in order
to check whether a model conforms to the specification, two aspects must be
taken into account. First, only the conformance of consistent models will be
considered. Second, given a consistent model, we will check its conformance
with respect to the specification by considering the worst instance of the model,
that is, if this instance conforms to the specification then any other instance
extracted from the model does so. This worst instance is constructed as follows:
For each state s and input i such that the behavior of s for i is not closed and
either s is not deterministic or no transition with input i exists in the model, a
new malicious transition is created. The new transition is labelled with a special
output error, that does not belong to outputsspec. This transition leads to a new
state ⊥ having no outgoing transitions. Since the specification cannot produce
the output error, this worst instance will conform to the specification only if the
unspecified parts of the model are not relevant for the correctness of the IUT it
represents.

Definition 4. Let m = (S, T , I, A, E , D, Obs) be a model. We define the worst
instance of the model m with respect to the considered specification spec, de-
noted by worstCase(m), as the FSM

�
����

S ∪ {⊥}, inputsspec, outputsspec ∪ {error},

T ∪

���
�� s

i/error−−−−−−−→ ⊥

�������
s ∈ S ∧ i ∈ inputsspec ∧
∃ outs : (s, i, outs,) ∈ A ∧
(s ∈ D ∨ ∃ s′, o : s

i/o−−−−→ s′)

���
�� , I

�
����

��

Thus, the rule for indicating the correctness of a model is

(correct)
m = (S ,T , I,A, E ,D, Obs) ∧ consistent(m) ∧ worstCase(m) conf spec

modelsSubset ({correct(m)})

Now we can consider the conformance of a set of models. A set conforms
to the specification if all the elements do so and the set contains at least one

52 I. Rodríguez, M.G. Merayo, and M. Núñez

element. Note that an empty set of models denotes that all the models were
inconsistent. Hence, granting the conformance of an empty set would imply
accepting models that do not represent any implementation. In fact, although
false implies anything, accepting inconsistent models is useless for a tester.

(allCorrect)
models (M) ∧ M = ∅ ∧ M = {correct(m1), . . . , correct(mn)}

allModelsCorrect

Example 5. We consider the model mR obtained after applying the determ,
equality, long (see [14]), and singleInit deduction rules. The long rule is ap-
plied to introduce the hypothesis longSequencesSamePath(1). The singleInit
and long rules are applied once, while determ and equality are applied as long
as we can. Let us recall that, after each of these rules is used, the propagation
rule must be applied as well. When the determ and equality rules cannot be
applied anymore, our model cannot be further manipulated to produce new in-
consistencies. Then, we can use the consistent and propagation rules to deduce
models ({consistent(mR)}).

We build an FSM by applying the function worstCase to mR and we verify
its conformance with respect to the specification. The obtained FSM, denoted by
worstspec_ray, is graphically depicted in Figure 1 (right). For the sake of clarity,
we have included four states ⊥, even though they correspond to only one state.

We have worstspec_ray conf spec_ray and, by successively applying the
correct and propagation rules, we obtain models ({correct(mR)}) and deduce,
by means of the allCorrect deduction rule, allModelsCorrect. A more detailed
description of the application of rules to this example can be found in [14]. ��

Now that we have presented the set of deduction rules, we introduce a correctness
criterion. In the next definition, in order to uniquely denote observations, fresh
names are assigned to them. Besides, let us note that all hypothesis predicates
follow the form h ∈ Hyp for some h belonging to Hyp.

Definition 5. Let spec be an FSM, Obs be a set of observations, and Hyp be
a set of hypotheses. Let A = {ob = o | ob is a fresh name ∧ o ∈ Obs} and
B = {h1 ∈ Hyp, . . . , hn ∈ Hyp}, where Hyp = {h1, . . . , hn}. If the deduction rules
allow to infer allModelsCorrect from the set of predicates C = A∪B, then we
say that C logically conforms to spec and we denote it by C logicConfspec. ��

In order to prove the validity of our method, we have to relate the deductions
that we make by using our logic with the notion of conformance introduced in
Definition 2. The semantics of a logic predicate is described in terms of the set
of FSMs that fulfill the requirements given by the predicate; given a predicate
p, we denote this set by ν(p). As illustration, the semantics of some predicates
is formally defined in [14] by means of the function ν. Let us consider that P
is the conjunction of all the considered observation and hypothesis predicates.
Then, the set ν(P) denotes all the FSMs that can produce these observations and
fulfill these hypotheses, that is, it denotes all the FSMs that, according to our
knowledge, can define the IUT. So, if our logic deduces that all of these FSMs

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 53

conform to the specification (i.e., allModelsCorrect is obtained), then the IUT
actually conforms to the specification.

Theorem 1. Let spec be an FSM and C be a set of predicates including at least
one observation predicate. Then, C logicConf spec iff for all FSM f ∈ ν(

∧
p∈C)

we have f conf spec and ν(
∧

p∈C) �= ∅. ��

Corollary 1. Let IUT and spec be FSMs and C be a set of predicates including
at least one observation predicate. If IUT ∈ ν(

∧
p∈C) then C logicConf spec

implies IUT conf spec. If there exists f ∈ ν(
∧

p∈C) such that f conf spec does
not hold then C logicConf spec does not hold.

5 Conclusions and Future Work

In this paper we have presented a logic to infer whether a collection of obser-
vations obtained by testing an IUT together with a set of hypotheses allow to
deduce that the IUT conforms to the specification. A repertory of heterogeneous
hypotheses providing a tester with expressivity to denote a wide range of testing
scenarios has been presented. By considering those observations and hypotheses
that better fit into her necessities, the tester can obtain diagnosis results about
the conformance of an IUT in a flexible range of situations. Besides, our logic
allows her to iteratively add observations (i.e., the results of the application of
tests) and/or hypotheses until the complete set of predicates guarantees the con-
formance. In this sense, our logic can be used to dynamically guide the steps of
a testing methodology.

As future work, we will study some ways to improve our logic. We plan to
include an incorrectness rule, that is, a rule that detects whether a model is
necessarily incorrect. If an incorrect model is detected then the calculus can be
early terminated, which improves the efficiency. Moreover, the rule could be used
to detect which observations/hypotheses made the model incorrect. Besides, we
want to develop a more complex application example in the context of Internet
protocols. We would also like to introduce a feasibility score for each of the logic
rules. For example, for a given framework, we can consider that assuming that
all the states are deterministic is harder than assuming that the implementation
has less that 50 states. In this case, a lower feasibility score will be assigned
to the first hypothesis. By accounting the feasibility of all the hypotheses that
we have to add before ensuring conformance, we will obtain a measure of the
suitability of the considered observations and, indirectly, of the tests that we
used to obtain them. Hence, our logic can help a tester to choose her tests so
that more trustable diagnosis results are obtained. We also consider to extend
the repertory of hypotheses. Finally, we want to extend the logic so that it can
deal with extended finite state machines. In this case, different formalisms to
work with models and different sets of hypotheses will be considered.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments. Though they proposed very interesting ideas to improve our

54 I. Rodríguez, M.G. Merayo, and M. Núñez

paper (some are commented above), we could not apply all of them due to the
lack of space. Certainly, these ideas will be considered in the future.

References

1. E. Bayse, A. Cavalli, M. Núñez, and F. Zaïdi. A passive testing approach based
on invariants: Application to the WAP. Computer Networks, 48(2):247–266, 2005.

2. B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7–33, 1991.

3. A. Cavalli, C. Gervy, and S. Prokopenko. New approaches for passive testing using
an extended finite state machine specification. Journal of Information and Software
Technology, 45:837–852, 2003.

4. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. G. Eleftherakis and P. Kefalas. Towards model checking of finite state machines

extended with memory through refinement. In Advances in Signal Processing and
Computer Technologies, pages 321–326. World Scientific and Engineering Society
Press, 2001.

6. R. Hierons. Comparing test sets and criteria in the presence of test hypotheses
and fault domains. ACM Transactions on Software Engineering and Methodology,
11(4):427–448, 2002.

7. D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. A formal approach for
passive testing of protocol data portions. In 10th IEEE Int. Conf. on Network
Protocols, ICNP’02, pages 122–131. IEEE Computer Society Press, 2002.

8. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

9. L.P. Lima and A. Cavalli. A pragmatic approach to generating tests sequences
for embedded systems. In 10th Workshop on Testing of Communicating Systems,
pages 288–307. Chapman & Hall, 1997.

10. S.C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions
on Software Engineering, 14:868–874, 1988.

11. M. Núñez and I. Rodríguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1–16. Springer, 2002.

12. A. Petrenko. Fault model-driven test derivation from finite state models: Annotated
bibliography. In 4th Summer School, MOVEP 2000, LNCS 2067, pages 196–205.
Springer, 2001.

13. A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing deterministic imple-
mentations from their nondeterministic specifications. In 9th Workshop on Testing
of Communicating Systems, pages 125–140. Chapman & Hall, 1996.

14. I. Rodríguez, M.G. Merayo, and M. Núñez. A logic for assessing
sets of heterogeneous testing hypotheses: Extended version. Available at:
http://dalila.sip.ucm.es/˜manolo/papers/logic-extended.pdf, 2006.

15. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware – Concepts and Tools, 17(3):103–120, 1996.

Bounded Sequence Testing from
Non-deterministic Finite State Machines

Florentin Ipate

Department of Computer Science and Mathematics,
University of Pitesti, Romania

fipate@ifsoft.ro

Abstract. The widespread use of finite state machines (FSMs) in mod-
eling of communication protocols has lead to much interest in testing
from (deterministic and non-deterministic) FSMs. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state
counting. Generally, the existing methods of testing from FSMs check
that the implementation under test behaves as specified for all input se-
quences. On the other hand, in many applications, only input sequences
of limited length are used. In such cases, the test suite needs only to
establish that the IUT produces the specified results in response to in-
put sequences whose length does not exceed an upper bound l. A recent
paper devises methods for bounded sequence testing from deterministic
FSM specifications. This paper considers the, more general, situation
where the specification may be a non-deterministic FSM and extends
state counting to the case of bounded sequences. The extension is not
trivial and has practical value since the test suite produced may contain
only a small fraction of all sequences of length less than or equal to the
upper bound.

1 Introduction

Finite state machines (FSMs) are widely used in modeling of communication
protocols. As testing is a vital part of system development, this has lead to
much interest in testing from FSMs [13], [9]. Given a FSM specification, for
which we have its transition diagram, and an implementation, which is a “black
box” for which we can only observe its input/output behavior, we want to test
whether the implementation under test (IUT) conforms to the specification. This
is called conformance testing or fault detection and a set of sequences that solves
this problem is called a test suite.

Many test selection methods have been developed for the case where the
specification is a deterministic FSM. The best known methods are: Transition
Tour [13], Unique Input Output (UIO) [13], Distinguishing Sequence [13], the
W method [2], [13] and its variant, the “partial W” (Wp) method [3]. The W
and Wp methods will find all the faults in the IUT provided that the number of
states of the IUT remain below a known upper bound.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 55–70, 2006.
c© IFIP International Federation for Information Processing 2006

56 F. Ipate

When the specification is deterministic, equivalence is the natural notion of
correctness. On the other hand, when the specification is non-deterministic,
equivalence may often be too restrictive. Usually, a non-deterministic FSM spec-
ification provides a set of alternative output sequences that are valid responses
to some input sequence and the IUT may choose from these (when the IUT is de-
terministic only one choice is allowed, otherwise multiple choices can be made).
Consequently, the IUT is correct if and only if every input/output sequence that
is possible in the IUT is also present in the specification; we say that the IUT
is a reduction of the specification. Obviously, equivalence is a particular case
of reduction, where all specified choices are implemented. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state counting
[11], [12], [14].

Generally, the existing methods of testing from FSMs check that the IUT
behaves as specified for all input sequences. On the other hand, in many ap-
plications, only input sequences of limited length are used. In such cases, the
test suite needs only to establish that the IUT produces the specified results
in response to input sequences whose length does not exceed an upper bound
l. A recent paper extends the W and Wp methods to the case of bounded
sequences [8].

This paper considers the, more general, situation where the specification may
be a non-deterministic FSMs and extends the state counting based test selection
method to the case of bounded sequences. The extension is not straightforward
since it is not sufficient to extract the prefixes of length at most l from the test
suite produced in the unbounded case. Furthermore, the test suite produced may
contain only a small fraction of all sequences of length less than or equal to the
upper bound.

The paper is structured as follows. Section 2 introduces FSM related con-
cepts and results that are used later in the paper, while section 3 reviews the
use of state counting in testing from non-deterministic FSMs. Section 4 presents
the testing method for bounded sequences, while the following two sections pro-
vide its theoretical basis: the l-bounded product FSM is defined in section 5,
while in section 6, state counting is used to validate the test suite given earlier.
Conclusions are drawn in section 7.

2 Finite State Machines

This section introduces the finite state machine and related concepts and results
that will be used later in the paper.

First, the notation used is introduced. For a finite set A, we use A∗ to denote
the set of finite sequences with members in A; ε denotes the empty sequence. For
a, b ∈ A∗, ab denotes the concatenation of sequences a and b. an is defined by
a0 = ε and an = an−1a for n ≥ 1. For U, V ⊆ A∗, UV = {ab | a ∈ U, b ∈ V }; Un

is defined by U0 = {ε} and Un = Un−1U for n ≥ 1. Also, U [n] =
⋃

0≤k≤n Uk.
For a sequence a ∈ A∗, ‖a‖ denotes the length (number of elements) of a; in

Bounded Sequence Testing from Non-deterministic Finite State Machines 57

particular ‖ε‖ = 0. For a sequence a ∈ A∗, b ∈ A∗ is said to be a prefix of a if
there exists a sequence c ∈ A∗ such that a = bc. The set of all prefixes of a is
denoted by pref(a). For U ⊆ A∗, pref(U) denotes the set of all prefixes of the
elements in U. For a finite set A, |A| denotes the number of elements of A.

A finite state machine (FSM) M is a tuple (Σ, Γ, Q, h, q0), where Σ is the
finite input alphabet, Γ is the finite output alphabet, Q is the finite set of states,
h : Q × Σ −→ 2Q×Γ is the transition function and q0 ∈ Q is the initial state. A
FSM is usually described by a state-transition diagram. Given q, q′ ∈ Q, σ ∈ Σ
and γ ∈ Γ, the application of input σ when M is in state q may result in M
moving to state q′ and outputting γ if and only if (q′, γ) ∈ h(q, σ).

M is said to be completely specified if for all q ∈ Q and σ ∈ Σ, |(h(q, σ)| ≥ 1.
If M is not completely specified, it may be transformed to form a completely
specified FSM by assuming that the “refused” inputs produce a designated error
output, which is not in the output alphabet of M ; this behavior can be repre-
sented as self-looping transitions or transitions to an extra (error) state. M is
said to be deterministic if for all q ∈ Q and σ ∈ Σ, |(h(q, σ)| ≤ 1.

The function h may be extended to take input sequences and produce output
sequences, i.e. h : Q × Σ∗ −→ 2Q×Γ ∗

. The projections h1 : Q × Σ∗ −→ 2Q and
h2 : Q × Σ∗ −→ 2Γ ∗

of h give the states reached (h1) and the output sequences
produced (h2) from a state, given an input.

A FSM M is said to be initially connected if every state q is reachable from
the initial state of M, i.e. there exists s ∈ Σ∗ such that q ∈ h1(q0, s). If M is
not initially connected it may be transformed into an initially connected FSM
by removing the unreachable states.

Given a state q, the associated language of q, LM (q), contains the in-
put/output sequences allowed by M from q. More formally, LM (q) = {(s, g) |
s ∈ Σ∗, g ∈ h2(q, s)}. The input/output sequences allowed by M from q0 make
up the associated language of M, denoted by L(M).

States q of M and q′ of M ′ are said to be equivalent if LM (q) = LM ′(q′).
FSMs M and M ′ are said to be equivalent if their initial states are equivalent,
i.e. L(M) = L(M ′). The equivalence relation can be restricted to a set of input
sequences Y ⊆ Σ∗; this is called Y -equivalence.

M is said to be observable if for every state q, input σ and output γ, M has
at most one transition leaving q with input σ and output γ, i.e. |{q′ | (q′, γ) ∈
h(q, σ)}| ≤ 1. In such a FSM, given q ∈ Q, s ∈ Σ∗ and g ∈ Γ ∗, hg(q, s) is used
to denote the state (if exists) where input sequence s takes M from state q while
outputting sequence g. Every FSM is equivalent to an observable FSM [10]. It
will thus be assumed that any FSM considered is observable.

Suppose M and M ′ are two completely specified FSMs. Given states q of M
and q′ of M ′, q is said to be a reduction of q′, written q ≤ q′, if LM (q) ⊆ LM ′(q′).
Obviously, q and q′ are equivalent if and only if q ≤ q′ and q′ ≤ q. On the class
of deterministic FSMs, the two relations coincide. The FSM M is said to be a
reduction of the FSM M ′, written M ≤ M ′, if q0 ≤ q′0. Given a set of input
sequences Y ⊆ Σ∗, weaker reduction relations, denoted by ≤Y , can be obtained
by restricting the above definitions to Y.

58 F. Ipate

3 Testing from Non-deterministic FSMs

This section briefly reviews the use of state counting in testing from (possibly)
non-deterministic FSMs [5]. One important case is where the IUT is known to
be deterministic [12]. However, the general case where the IUT may also be non-
deterministic, is considered. All FSMs referred to are assumed to be initially
connected, completely specified and observable.

3.1 Prerequisites

When testing from a formal specification, it is usual to assume that the IUT
behaves like some unknown element from a fault domain. In the case of a FSM
specification M = (Σ, Γ, Q, h, q0), the fault domain consists of all initially con-
nected, completely specified and observable FSMs M ′ = (Σ, Γ, Q′, h′, q′0) with
the same input and output alphabets as M and at most m′ states, where m′ is
a predetermined integer greater than or equal to the number m of states of M .
Furthermore, it will be assumed that the IUT has a reliable reset. A FSM has a
reset operation if there is some input r that takes every state to the initial state.
A reliable reset is a reset that is known to have been implemented correctly and
might be implemented through the system being switched off and then on again.
The reset will not be included in the input alphabet.

A test suite is a finite set of input sequences that, for every M ′ in the fault
model that is not a reduction of M, shows that M ′ is erroneous. More for-
mally, Y ⊆ Σ∗ is a test suite if and only if for every M ′ in the fault model,
M ′ ≤ M if and only if M ′ ≤Y M. Naturally, when the specification M is deter-
ministic, testing for M ′ ≤ M reduces to testing for the equivalence of the two
FSMs

When testing a non-deterministic implementation, it is normal to make a fair-
ness assumption, called the complete testing assumption [10], that there is some
known N such that if an input sequence is applied N times then every possi-
ble response is observed at least once. Naturally, this assumption automatically
holds when the implementation is deterministic. This paper will assume that the
complete testing assumption can be made.

When testing from a FSM M , sequences that reach and distinguish the states
of M are normally selected. These issues are now discussed.

3.2 Reaching States

Input sequence s ∈ Σ∗ is said to deterministically-reach (d-reach) state q if
h1(q0, s) = {q}. That is, q is the only state reached by s. q is said to be d-
reachable [12]. The initial state is always d-reachable since it is d-reached by the
empty sequence ε. Naturally, all reachable states of a deterministic FSM are also
d-reachable.

A set S ⊆ Σ∗ of input sequences is called a state cover of M if ε ∈ S and S
is a minimal set such that every d-reachable state of M is d-reached by some
sequence from S.

Bounded Sequence Testing from Non-deterministic Finite State Machines 59

a/0

a/1 a/1

a/0

a/0

a/0

b/1 b/1

b/0 b/0

01

2 3

Fig. 1. The state-transition diagram of M

Consider, for example, M as represented in Fig. 1. States 0, 1 and 2 are d-
reached by ε, a and aa, respectively. On the other hand, state 3 is not d-reachable.
Thus S = {ε, a, aa} is a state cover of M.

3.3 Distinguishing States

In order for an input sequence s to distinguish two states q and q′ of M, it is
sufficient that the corresponding sets of output sequences do not intersect, i.e.
h2(q, s)∩h′

2(q
′, s) = ∅. Two states for which there exists an input sequence with

this property are said to be separable.
In the case of a non-deterministic FSM, however, it may be possible that there

is no single input sequence that distinguishes between two states, rather these
can be distinguished by a set of sequences. This idea leads to the, more general,
concept of r-distinguishable states, formally defined in an inductive manner as
follows [12]. States q and q′ are said to be r(1)-distinguishable if there exists
σ ∈ Σ such that h2(q, σ) ∩ h2(q′, σ) = ∅. States q and q′ are said to be r(k)-
distinguishable, k > 1, if either q and q′ are r(j)-distinguishable for some j,
1 ≤ j < k, or there is some input σ ∈ Σ such that for all γ ∈ h2(q, σ)∩h2(q′, σ),
the states hγ(q, σ) and hγ(q′, σ) are r(j)-distinguishable for some j, 1 ≤ j < k.
States q and q′ are said to be r-distinguishable if there exists some k ≥ 1 such
that q and q′ are r(k)-distinguishable. Clearly, any two separable states are r-
distinguishable, but not vice versa. Naturally, the two notions coincide when the
FSM is deterministic.

The definition of r-distinguishable (r(k)-distinguishable) states naturally leads
to the concept of r-distinguishing set (r(k)-distinguishing set) of two states q and
q′; this can also be defined inductively [12]. A set of input sequences that contains
an r-distinguishing (r(k)-distinguishing) set of q and q′ is said to r-distinguish
(r(k)-distinguish) q and q′.

A set W ⊆ Σ∗ of input sequences is a called a characterization set of M if it
r-distinguishes each pair of r-distinguishable states of M .

60 F. Ipate

Consider again M in Fig. 1. The pairs of states (0, 2), (0, 3), (1, 2), (1, 3)
and (0, 1) are separable; the first four are r-distinguished by {b}, the last is r-
distinguished by {ab}. On the other hand, states 2 and 3 are not separable, but
they are r-distinguished by {ab, aab}. Thus W = {b, ab, aab} is a characterization
set of M.

3.4 Test Suite Generation

This section describes the generation of a test suite from a FSM using state
counting. The method is from [5] and is essentially based on the results given in
[12] for the case in which the IUT is known to be deterministic.

Suppose a state cover S and a characterization set W have been constructed.
QS is used to denote the set of all d-reachable states of M . Let Q1, . . . , Qj denote
the maximal sets of pairwise r-distinguishable states of M. Let also Qi

S = Qi∩QS ,
1 ≤ i ≤ j.

Recall that the scope of testing is to check language inclusion between the
(unknown) implementation and the specification. Thus, the task is to find a
state q′ in the implementation such that the input/output exhibited from q′ is
not allowed from the corresponding state q of the specification. A test suite will
be then constructed using a breadth-first search through input/output sequences
from each d-reachable state of M, in which the termination criterion is based on
the observation that if a pair of states (q, q′) ∈ Q×Q′, from which a failure may
be exhibited, is reachable then it is reachable by some minimal input/output
sequence. Such a minimal sequence will not have visited the same pair of states
twice and, furthermore cannot contain pairs of states that have already been
reached by the sequences in S. More specifically, the following two ideas are
used:

– If an input/output sequence (s, g) visits states of some Qi, a tester can use
W after each prefix of (s, g) to distinguish between the corresponding states
visited along (s, g) in the implementation. If states from Qi are visited ni

times along a minimal sequence (s, g) in the specification, then ni distinct
states will be visited in the implementation. Thus, ni cannot exceed m′, the
upper bound on the number of states of the implementation, by more than 1.

– There could be some d-reachable states among those in Qi and the corre-
sponding states in the implementation will also be reached by sequences from
S; this leaves |Qi

S | less pairs of states to explore.

By combining these two ideas, the breadth-first search can be ended once it has
been established that states from some Qi have been visited m′−|Qi

S |+1 times.
More formally, given a state q ∈ QS , the set Tr(q), called a traversal set in

[11], is constructed in the following way:

– A set TrIO(q) is defined to consist of all input/output sequences (s, g) for
which there exists i, 1 ≤ i ≤ j, such that (s, g) visits states from Qi exactly
m′ −|Qi

S|+1 times when followed from q (the initial state of the path is not
included in the counting) and this condition does not hold for any proper
prefix of (s, g).

Bounded Sequence Testing from Non-deterministic Finite State Machines 61

– Tr(q) is the set of input sequences such that there is some corresponding
input/output sequence in TrIO(q), i.e. Tr(q) = {s ∈ Σ∗ | ∃g ∈ Γ ∗ · (s, g) ∈
TrIO(q)}.

Then the test suite produced is [5]:

Y =
⋃

s∈S

{s}pref(Tr(qs))W

where for s ∈ S, qs denotes the state reached by s.
When all the states of M are d-reachable and pairwise r-distinguishable, the

test suite reduces to the set SΣ[m′ − m + 1]W. This is equivalent to the test
suite produced by the W -method when testing from a deterministic FSM. Where
the specification does not satisfy these conditions, a larger test suite is required.
Clearly, every sequence in Tr(q) has length at most m′ + 1. Based on the above
definition, an algorithm for constructing Tr(q) is provided in [5].

Consider the specification M as represented in Fig. 1 and the upper bound on
the number of states of the implementation m′ = 4. There is a single maximal
set of pairwise r-distinguishable states, Q1 = {0, 1, 2, 3}. Since QS = {0, 1, 2},
Q1

S = {0, 1, 2}. Thus the termination criterion for TrIO(q) gives m′−|Q1
S |+1 =

4 − 3 + 1 = 2. Hence Y = SΣ[2]W.

4 Bounded Sequence Testing from Non-deterministic
FSMs

This section shows how the above test generation method can be extended to the
case of bounded sequences. In this case, the test suite will contain only sequences
of length less than or equal to an upper bound l ≥ 1 and will have to establish if
the IUT behaves as specified for all sequences in Σ[l]. More formally, Y ⊆ Σ[l]
is a test suite if and only if for every M ′ in the fault model, M ′ ≤Σ[l] M if and
only if M ′ ≤Y M.

The extension is not straightforward, as it is not sufficient to extract the
prefixes of length at most l from the test suite produced in the unbounded case.
Consider, for example, Mn, n ≥ 2, as represented in Fig. 2 (a), m′ = n + 2
and l = n + 1. All states of Mn are d-reachable and pairwise r-distinguishable,
S = {ε, a, . . . , an, b} is a state cover of Mn and W = {anb} is a characterization
set of Mn. Thus Y = SΣ[1]W = {ε, a, . . . , an, b}{ε, a, b}{anb} and pref(Y) ∩
Σ[n + 1] = pref(an+1) ∪ pref({aiban−i | 0 ≤ i ≤ n}) ∪ pref(bban−1). Consider
M ′

n as represented in Fig. 2 (b). Let D = {axbybz | x, y, z ∈ Σ∗, ‖x‖ + ‖y‖ +
‖z‖ ≤ n − 2} ⊆ Σ[n + 1]. It can be observed that M ′

n ≤Σ[n+1]\D Mn, but
M ′

n ≤{s} Mn does not hold for any sequence s ∈ D. Since pref(Y) ∩ D = ∅,
M ′

n ≤pref(Y)∩Σ[n+1] Mn.
In what follows, it will be shown that state counting can be used to generate

tests for bounded sequences, provided that the sets S and W will contain se-
quences of minimum length that reach or distinguish states of M ; these sets will
be called a proper state cover and a strong l-characterization set, respectively.

62 F. Ipate

a/0

a/0,1; b/1

b/0
b/0

… a/1

(a)

b/0

a/1
0 1

a/1
n

n+1

a/0

b/0 b/0 b/0

a/1; b/1

… a/1

(b)

a/1
0 1

a/1
n

n+1

(c)

a/0

a/0,1; b/1

b/0
0 1

(d)

a/0

a/2; b/1

b/0
0 1

Fig. 2. The state-transition diagrams of Mn (a) and M ′
n (b), M0 (c) and M ′

0 (d)

A few preliminary concepts are defined first. Without loss of generality, all
FSMs considered are assumed to be initially connected, completely specified and
observable and, furthermore, it will be assumed that every state can be reached
by some sequence of length less than or equal to l.

For each state q ∈ Q, we define levelM(q) as the length of the shortest path(s)
from q0 to q, i.e. levelM(q) = min{‖s‖ | s ∈ Σ∗, q ∈ h1(q0, s)}. For M as
represented in Fig. 1, levelM(i) = i, 0 ≤ i ≤ 3.

States p and q of M are said to be l-dissimilar if p and q are r(k)-
distinguishable for some k ≤ l − max{levelM(p), levelM (q)}. The notion of l-
dissimilar (l-similar) states is originally introduced in [1] and is used in [1] and
[7] for constructing a minimal deterministic automaton and a minimal determin-
istic stream X-machine for a finite language. For M as represented in Fig. 1 and
l = 4, states 2 and 3 are not l-dissimilar since they are not r(1)-distinguishable.
On the other hand, every two other states of M are l-dissimilar.

Definition 1. A set S ⊆ Σ∗ of input sequences is called a proper state cover
of M if S is a minimal set such that every state q of M that is d-reachable by
some sequence of length levelM(q) is d-reached by some sequence sq from S and
‖sq‖ = levelM(q).

For M as represented in Fig. 1, S = {ε, a, aa} is a proper state cover of M.

Bounded Sequence Testing from Non-deterministic Finite State Machines 63

The definition of a strong l-characterization set and the construction of the
test suite are first given for a particular class of FSM specifications (quasi-
deterministic FSMs) and then extended to the general type of FSM.

4.1 Quasi-deterministic FSMs

A quasi-deterministic FSM is a FSM in which for every k > 0, every pair of
states that are not Σ[k]-equivalent are r(k)-distinguishable. In particular, this
condition is satisfied by any deterministic FSM.

Definition 2. Suppose M is a quasi-deterministic FSM. A set W ⊆ Σ∗ of input
sequences is a called a strong l-characterization set of M, l ≥ 1, if for every states
p and q of M and every k, 0 < k ≤ l − max{levelM(p), levelM (q)}, for which p
and q are r(k)-distinguishable, W r(k)-distinguishes p and q.

Obviously, it is sufficient to check that W r(k)-distinguishes p and q for the
minimum integer k ≤ l − max{levelM (p), levelM(q)} for which p and q are
r(k)-distinguishable. That is, the shortest possible sequences are included in W.
Naturally, W will r-distinguish any two l-dissimilar states of M.

Consider again Mn as represented in Fig. 2 (a), n ≥ 2. For every pair
(i, j), 0 ≤ i < j ≤ n, i and j are Σ[n − j]-equivalent and r(n − j + 1)-
distinguishable. Furthermore, n + 1 is r(1)-distinguishable from any other state.
Thus Mn is quasi-deterministic, but not deterministic. W = {a, . . . , an, b} is
a strong l-characterization set of Mn. On the other hand, M in Fig. 1 is not
quasi-deterministic since states 2 and 3 are neither Σ[2]-equivalent nor r(2)-
distinguishable.

4.2 Test Suite Generation

Suppose that the specification M is a quasi-deterministic FSM, S is a proper
state cover of M and W is a strong l-characterization set of M. QS is used to
denote the set of all states of M reached by sequences in S.

Let Q1, . . . , Qj denote the maximal sets of pairwise l-dissimilar states of M
and let Qi

S = Qi ∩ QS , 1 ≤ i ≤ j. Under these conditions, the set Tr(qs) is
defined analogously to section 3.4.

Then the test suite for bounded sequences is:

Z = (
⋃

s∈S

{s}pref(Tr(qs))Wε) ∩ Σ[l] \ {ε}

where Wε = W ∪ {ε}.
When QS = Q and all states of M are pairwise l-dissimilar, the test suite

reduces to the set SΣ[m′ − m + 1]Wε ∩ Σ[l] \ {ε}. This is equivalent to the test
suite produced in [8] for deterministic FSMs.

Consider again Mn, n ≥ 2, as represented in Fig. 2 (a), m′ = n + 2, l = n + 1
and the IUT M ′

n as represented in Fig. 2 (b). S = {ε, a, . . . , an, b} is a proper
state cover of Mn and W = {a, . . . , an, b} is a strong l-characterization set of Mn.

64 F. Ipate

There is a single maximal set of pairwise l-dissimilar states, Q1 = {0, . . . , n+1}.
Since QS = {0, . . . , n+1}, Q1

S = {0, . . . , n+1}. Thus Z = SΣ[1]Wε∩Σ[n+1]\{ε}
= {ε, a, . . . , an, b}{ε, a, b}{ε, a, . . . , an, b}∩Σ[n+1] \ {ε} = {ai | 1 ≤ i ≤ n+1}∪
{aibaj | 0 ≤ i ≤ n, 0 ≤ j ≤ n − i} ∪ {aibb | 0 ≤ i ≤ n − 1} ∪ {bbai | 1 ≤ i ≤
n − 1} ∪ {bab, bbb}. As abb ∈ Z, M ′

n ≤Z Mn does not hold.
Note that Wε, rather than only W, is needed in the definition of Z. Consider

the specification M0 as represented in Fig. 2 (c), l = 2, m′ = 2 and the faulty
implementation M ′

0 as represented in Fig. 2 (d). The only sequence that detects
the fault in the IUT is ba. S = {ε, b} is a proper state cover of M0 and W = {b}
is a strong l-characterization set of M0. Thus Z = SΣ[1]Wε ∩ Σ[2] \ {ε} =
{a, b, ab, ba, bb}. As ba ∈ Z, M ′

0 ≤Z M0 does not hold. On the other hand, if W
was used instead of Wε in the definition of the test suite, then ba would not be
contained in Z, so no fault would be detected.

4.3 General Type of FSMs

We now consider the general type of FSM specifications. First, note that the
test suite given above may not be valid when the specification is not quasi-
deterministic. Consider, for example, M1 as represented in Fig. 3 (a), m′ = 3
and l = 4. M1 is not quasi-deterministic since states 0 and 1 are neither r(1)-
distinguishable nor Σ-equivalent. All states of M1 are d-reachable and pairwise l-
dissimilar. Then, according to the above definitions, S = {ε, a, aa}, W = {a, aa}
and Z = SΣ[1]Wε ∩ Σ[4] \ {ε}. Consider M ′

1 as defined in Fig. 3 (b). It
can be observed that M ′

1 ≤Σ[4]\Σ2{bb} M1, but M ′
1 ≤{s} M1 does not hold

for any sequence s ∈ Σ2{bb}. Since Z ∩ Σ2{bb} = ∅, Z will detect no fault
in M ′

1.
Intuitively, this happens because, when M is not quasi-deterministic, there

may be states p′ and q′ in the implementation M ′ that are r-distinguished by
shorter sequences than those that r-distinguish the corresponding states p and q
of the specification M. In our example, states 0 and 1 of M ′

1 are r-distinguished
by {b}, whereas states 0 and 1 of M1 are not r(1)-distinguishable and a longer
sequence, aa, is used to r-distinguish between them. Consequently, the incorrect
transition h′(2, b) = (0, 1) cannot be detected by the above Z, since b was not
included in W. On the other hand, the sequence aabaa ∈ SΣ[1]W, which results
from the inclusion in W of the distinguishing sequence aa, has length 5 and,
consequently, will not be contained in the test suite.

Now, observe that a sequence s can r-distinguish states p′ and q′ of the im-
plementation only if the corresponding states p and q of the specification are
not {s}-equivalent, i.e. there exists g ∈ Γ ∗ such that (s, g) ∈ (LM (p) \ LM (q)) ∪
(LM (q)\LM (p)). Thus, the problem can be addressed by extending W to include
any sequence s for which there exist states of M that are neither {s}-equivalent,
nor r(‖s‖)-distinguishable. Then the definition of a strong l-characterization set
can be extended to the general type of FSM as follows:

Definition 3. A set W ⊆ Σ∗ of input sequences is a called a strong l-
characterization set of M, l ≥ 1, if the following two conditions hold:

Bounded Sequence Testing from Non-deterministic Finite State Machines 65

– For every states p and q of M and every k, 0 < k ≤ l −
max{levelM(p), levelM (q)}, for which p and q are r(k)-distinguishable, W
r(k)-distinguishes p and q.

– s ∈ W for every s ∈ Σ∗ for which there exist states p and q of M with
‖s‖ ≤ l − max{levelM(p), levelM(q)} such that p and q are neither {s}-
equivalent nor r(‖s‖)-distinguishable.

With this revised definition of W , the construction of the suite remains the same
as for quasi-deterministic FSM specifications. The following two sections of the
paper provide the formal proofs to validate this construction.

For M1 in the above example, states 0 and 1 are neither {b}-equivalent, nor
r(1)-distinguishable. Thus W = {a, b, aa}. Then aabb ∈ Z = SΣ[1]Wε∩Σ[4]\{ε},
so M ′ ≤Z M does not hold.

Consider again M as represented in Fig. 1, m′ = 4 and l = 4. S = {ε, a, aa}
is a proper state cover of M and QS = {0, 1, 2}. The pairs of states (0, 2), (0, 3),
(1, 2) and (1, 3) are r-distinguished by {b}; 0 and 1 are r-distinguished by {ab}
and are Σ-equivalent. Since states 2 and 3 are Σ-equivalent, no other sequence
needs to be included in W. Thus W = {b, ab} is a strong l-characterization set of
M. The maximal sets of pairwise l-dissimilar states of M are Q1 = {0, 1, 2} and
Q2 = {0, 1, 3}. Thus Q1

S = {0, 1, 2} and Q2
S = {0, 1} and the two termination

criteria for TrIO(q) give m′ − |Q1
S| + 1 = 4 − 3 + 1 = 2 and m′ − |Q2

S | + 1 =
4 − 2 + 1 = 3, respectively. The tree generated in the construction of TrIO(1)
is represented in Fig. 4. A node is a leaf if the path from the root to it has
visited (after the root) n1 = 2 states from Q1 or n2 = 3 states from Q2. On
the other hand, only paths of length at most l − levelM (1) = 4 − 1 = 3 need
to be constructed; in Fig. 4, the remaining branches are drawn with dashed
line.

b/1

a/1; b/1,2
a/0 (a)

a/1; b/0,1
0 1 2

b/1

a/1; b/2
a/0 (b)

a/1; b/0
0 1 2

Fig. 3. The state-transition diagrams of M1 (a) and M ′
1 (b)

5 The l-Bounded Product FSM

In order to compare the languages associated with two observable FSMs M
and M ′, one can build a cross-product of their states, such that states (q, q′)
of the cross-product FSM correspond to pairs of states q, q′ in the two FSMs.

66 F. Ipate

a/0

b/0 a/1
a/0

b/0a/1a/0

b/0 a/1
a/0

b/1a/0

b/1

n1 = 1
n2 = 1

n1 = 2
n2 = 1

n1 = 2
n2 = 0

n1 = 2
n2 = 1

n1 = 2
n2 = 2

n1 = 1
n2 = 0 n1 = 1

n2 = 1

n1 = 0
n2 = 0 1

2 1

2 1 2 0 3

n1 = 2
n2 = 2

n1 = 2
n2 = 2

n1 = 1
n2 = 2

3 1 0

n1 = 2
n2 = 3

n1 = 2
n2 = 3

n1 = 1
n2 = 3

3 1 0

Fig. 4. The tree associated with TrIO(2)

A transition on input σ and output γ between states (q, q′) and (p, p′) exists
in the cross-product FSM if and only if the transitions (p, γ) ∈ h(q, σ) and
(p′, γ) ∈ h′(q′, σ) exist in M and M ′, respectively. The result of such a construc-
tion corresponds to the intersection of the languages L(M) and L(M ′). When
checking that M ′ is a reduction of M, a transition in M ′ that is not allowed by
M will lead in the cross-product FSM to a Fail state. When only the results
produced by the two FSMs in response to input sequences of length at most
l are compared, an integer i, 1 ≤ i ≤ l, can be added to the state space and
incremented by each transition. No transition needs to be defined for i = l. The
resulting construction will be called an l-bounded product FSM of M and M ′.

Definition 4. Given l ≥ 1, the l-bounded product FSM formed from
M = (Σ, Γ, Q, h, q0) and M ′ = (Σ, Γ, Q′, h′, q′0) is the FSM Pl(M, M ′) =
(Σ, Γ, QP , H, (q0, q

′
0, 0)) in which QP = Q × Q′ × {0, . . . , l} ∪ {Fail} with

Fail /∈ Q × Q′ × {0, . . . , l} and H is defined by the following rules for all
(q, q′), (p, p′) ∈ Q × Q′, i ∈ {0, . . . , l − 1}, σ ∈ Σ and γ ∈ Γ :

– if (p, γ) ∈ h(q, σ) and (p′, γ) ∈ h′(q′, σ) then ((p, p′, i+1), γ) ∈ H((q, q′, i), σ).
– if (p′, γ) ∈ h′(q′, σ) and γ /∈ h2(q, σ) then (Fail, γ) ∈ H((q, q′, i), σ)

and is undefined elsewhere.

As M and M ′ are observable, Pl(M, M ′) is also observable (when M and M ′

are both deterministic, Pl(M, M ′) is also deterministic [8]). On the other hand,

Bounded Sequence Testing from Non-deterministic Finite State Machines 67

Pl(M, M ′) is not completely specified even though M and M ′ are completely
specified. More importantly, checking M ′ ≤Σ[l] M corresponds to establishing if
the Fail state of Pl(M, M ′) is reachable.

Lemma 1. The Fail state of Pl(M, M ′) is not reachable if and only if
M ′ ≤Σ[l] M.

Proof: From Definition 4, it follows that, for every s ∈ Σ∗ and g ∈ Γ ∗,
Hg((q0, q

′
0, 0), s) = Fail if and only if s = s1σ with s1 ∈ Σ[l − 1] and σ ∈ Σ and

g = g1γ with g1 ∈ Γ [l − 1] and γ ∈ Γ such that g1 ∈ h2(q0, s1) ∩ h′
2(q

′
0, s1) and

g1γ ∈ h′
2(q′0, s1σ) \ h2(q0, s1σ).

6 State Counting for Bounded Sequences

State counting can now be used to prove that, whenever the Fail state is reach-
able, it will be reached by some sequence in the test suite. As in the unbounded
case, it will be shown that the test suite contains all “minimal” input sequences
that could reach Fail. Among the shortest sequences, the minimal sequences
are those for which also the “distance” (defined in what follows) to the set S is
the shortest. The basic idea is similar to that used in bounded sequence test-
ing from deterministic FSM specifications [8]; however, when considering non-
deterministic FSMs, we have to take into account that non-equivalent states may
not necessarily be r-distinguishable (see Lemma 3).

Given x ∈ Σ∗ and A ⊆ Σ∗ with ε ∈ A, the length of the shortest sequences(s)
t ∈ Σ∗ for which there exists a sequence s ∈ A such that st = x is denoted by
d(x, A), i.e. d(x, A) = min({‖t‖ | t ∈ Σ∗, ∃s ∈ A · st = x}. Since ε ∈ A, the set
{t ∈ Σ∗ | ∃s ∈ A · st = x} is not empty, so d(x, A) is well defined.

Lemma 2. Let p, q ∈ Q, p′, q′ ∈ Q′, U ⊆ Σ∗ and k > 0. If p′ ≤U∩Σ[k] p,
q′ ≤U∩Σ[k] q and U r(k)-distinguishes p and q then U r(k)-distinguishes p′ and q′.

Proof: Follows by induction on k.

Lemma 3. Let s ∈ S and t ∈ Tr(qs) such that ‖st‖ ≤ l and s is the longest
prefix of st that is in S. If M ′ ≤(S∪{s}pref(t)Wε)∩Σ[l] M then there exist y1 ∈
{s}pref(t)\{s}, y2 ∈ S∪pref(y1)\{y1} and w1, w2 ∈ Γ ∗ such that the following
two conditions hold:

– ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S)
– Hw1((q0, q

′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2((q0, q
′
0, 0), y2) = (q2, q

′, ‖y2‖) for
some states q1, q2 ∈ Q and q′ ∈ Q′ such that LM (q1)∩LM ′(q′)∩ (Σ ×Γ)[l −
‖y1‖] = LM(q2) ∩ LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖].

Proof: Let i, 1 ≤ i ≤ j. Suppose s1 and s2 are two distinct elements of S such
that qs1 , qs2 ∈ Qi and let q′s1

∈ h1(q0, s1) and q′s2
∈ h1(q0, s2). Since qs1 and qs2

are l-dissimilar there exists k, 0 < k ≤ l − max{levelM(qs1), levelM(qs2)}, such
that qs1 and qs2 are r(k)-distinguishable. As W is a strong l-characterization set

68 F. Ipate

of M, W r(k)-distinguishes qs1 and qs2 . Since M ′ ≤SW∩Σ[l] M, q′s1
≤W∩Σ[k] qs1

and q′s2
≤W∩Σ[k] qs2 . Thus, by Lemma 2, q′s1

and q′s2
are r(k)-distinguishable.

Consequently, the sequences in S will reach at least |Qi
S| distinct states of M ′.

On the other hand, since t ∈ Tr(qs), there is some g ∈ Γ ∗ and i, 1 ≤ i ≤ j,
such that (t, g) visits states from Qi exactly m′ − card(Qi

S) + 1 times when
followed from qs. Since S has already reached at least |Qi

S | states, there will
be a state q′ of M ′ that either has been visited twice by (t, g) or has been
reached by some sequence in S. Thus, there exist y1 ∈ {s}pref(t)\ {s}, y2 ∈ S ∪
{s}pref(y1) \ {y1} and w1, w2 ∈ Γ ∗ such that hw1(q0, y1) = q1, hw2(q0, y2) = q2,
h′

w1
(q′0, y1) = q′ and h′

w2
(q′0, y2) = q′. for some states q1, q2 ∈ Qi and q′ ∈ Q′.

Then Hw1((q0, q
′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2((q0, q
′
0, 0), y2) = (q2, q

′, ‖y2‖).
Let μ = max{‖y1‖, ‖y2‖}. We prove by contradiction that q1 and q2 are not

r(l − μ)-distinguishable. Assume q1 and q2 are r(l − μ)-distinguishable, μ < l.
Since W is a strong l-characterization set of M, W r(l − μ)-distinguishes q1
and q2. On the other hand, since M ′ ≤{y1,y2}W∩Σ[l] M, q′ ≤W∩Σ[l−μ] q1 and
q′ ≤W∩Σ[l−μ] q2. Thus, by Lemma 2, W would r(l−μ)-distinguish q′ from itself.
This is obviously a contradiction.

We now show that ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S). If y2 ∈
pref(y1) \ {y1} then ‖y2‖ < ‖y1‖. Otherwise y2 ∈ S \ {s}, so ‖y2‖ = levelM (q2).
Then there are two cases:

– q1 = q2. Then levelM(q2) ≤ ‖y1‖ so ‖y2‖ ≤ ‖y1‖. Since y1 /∈ S and y2 ∈ S,
d(y2, S) < d(y1, S).

– q1 �= q2. We prove by contradiction that ‖y2‖ < ‖y1‖. Assume ‖y1‖ ≤ ‖y2‖.
Then levelM (q1) ≤ ‖y1‖ ≤ ‖y2‖ = levelM(q2). Hence levelM (q1) ≤
levelM(q2) = ‖y2‖. As q1, q2 ∈ Qi, q1 and q2 are r(l − ‖y2‖)-distinguishable.
On the other hand, we have shown that q1 and q2 are not r(l − μ)-
distinguishable. Since μ = ‖y2‖, this is a contradiction.

Thus ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S). Since ‖y2‖ ≤ ‖y1‖,
μ = ‖y1‖, so q1 and q2 are not r(l − ‖y1‖)-distinguishable.

Finally, we prove by contradiction that LM (q1)∩LM ′(q′)∩(Σ×Γ)[l−‖y1‖] =
LM (q2) ∩ LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖]. Assume otherwise and let (s0, g0) ∈
LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖] ∩ ((LM (q2) \ LM (q1)) ∪ (LM (q1) \ LM (q2))). Since
W is a strong l-characterization set of M and q1 and q2 are not r(l − ‖y1‖)-
distinguishable, s0 ∈ W. As M ′ ≤{y1,y2}W∩Σ[l] M and ‖y2s0‖ ≤ ‖y1s0‖ ≤ l, it
follows that M ′ ≤{y1s0,y2s0} M. Thus, since (s0, g0) ∈ LM ′(q′), (s0, g0) ∈ LM (q1)
and (s0, g0) ∈ LM(q2). This provides a contradiction, as required.

Lemma 4. Let (q1, q
′, j1), (q2, q

′, j2) ∈ Q × Q′ × {0, . . . , l}, 0 ≤ j2 ≤ j1 ≤ l − 1,
and (x, w) ∈ (Σ×Γ)[l−j1]. Suppose LM(q1)∩LM ′ (q′)∩(Σ×Γ)[l−j1] = LM (q2)∩
LM ′(q′) ∩ (Σ × Γ)[l − j1]. If Hw((q1, q

′, j1), x) = Fail then Hw((q2, q
′, j2), x) =

Fail.

Proof: If Hw((q1, q
′, j1), x) = Fail then x = sσ with s ∈ Σ[l − j1 − 1], σ ∈ Σ

and w = gγ with g ∈ Γ [l − j1 − 1], γ ∈ Γ such that g ∈ h2(q1, s) ∩ h′
2(q′, s) and

gγ ∈ h′
2(q

′, sσ)\h2(q1, sσ). Since LM (q1)∩LM ′(q′)∩ (Σ ×Γ)[l − j1] = LM (q2)∩

Bounded Sequence Testing from Non-deterministic Finite State Machines 69

LM ′(q′)∩ (Σ ×Γ)[l− j1], g ∈ h2(q2, s)∩h′
2(q

′, s) and gγ ∈ h′
2(q

′, sσ)\h2(q2, sσ).
As j2 ≤ j1, it follows that Hw((q2, q

′, j2), x) = Fail.

Lemma 5. If M ′ ≤Z M then the Fail state of Pl(M, M ′) is not reachable.

Proof: We provide a proof by contradiction. Assume Fail is reachable and let
X be the set of all sequences of minimum length that reach Fail. Let μ =
min{d(x, S) | x ∈ X} and Xμ = {x ∈ X | d(x, S) = μ}.

We prove by contradiction that Xμ ∩ (
⋃

s∈S{s}pref(Tr(qs))) �= ∅. As-
sume Xμ ∩ (

⋃
s∈S{s}pref(Tr(qs))) = ∅ and let x ∈ Xμ. Then x /∈⋃

s∈S{s}pref(Tr(qs)). Since ε ∈ S, x ∈ SΣ∗. Let s ∈ S be the longest pre-
fix of x that is in S. Then x = stu, for some t ∈ Tr(qs) and u ∈ Σ∗ \ {ε}
with ‖stu‖ ≤ l and there exist g, v ∈ Γ ∗ such that g ∈ h2(q0, st) ∩ h′

2(q
′
0, st) and

gv ∈ h′
2(q′0, stu)\h2(q0, stu). Since M ′ ≤Z M and (S∪{s}pref(t)Wε)∩Σ[l] ⊆ Z,

by Lemma 3, there exist y1 ∈ {s}pref(t) \ {s}, y2 ∈ S ∪ pref(y1) \ {y1} and
w1, w2 ∈ Γ ∗ such that the following two conditions hold:

– ‖y2‖ < ‖y1‖ or ‖y2‖ ≤ ‖y1‖ and d(y2, S) < d(y1, S)
– Hw1((q0, q

′
0, 0), y1) = (q1, q

′, ‖y1‖) and Hw2((q0, q
′
0, 0), y2) = (q2, q

′, ‖y2‖) for
some states q1, q2 ∈ Q and q′ ∈ Q′ such that LM (q1)∩LM ′(q′)∩ (Σ ×Γ)[l −
‖y1‖] = LM(q2) ∩ LM ′(q′) ∩ (Σ × Γ)[l − ‖y1‖].

Let z ∈ Σ∗ such that st = y1z and wz ∈ Γ ∗ such that g = w1wz. As
Hgv((q0, q

′
0, 0), x) = Fail, Hwzv((q1, q

′, ‖y1‖), zu) = Fail. Then, by Lemma
4, Hwzv((q2, q

′, ‖y2‖), zu) = Fail. Thus Hw2wzv((q0, q
′
0, 0), y2zu) = Fail. If

‖y2‖ < ‖y1‖ then y2zu is a sequence shorter than x that reaches Fail. Thus
x /∈ X, which is a contradiction. Otherwise, ‖y2‖ = ‖y1‖ and d(y2, S) < d(y1, S).
Since no sequence in {y1}pref(zu) is contained in S, d(y2zu, S) < d(y1zu, S).
Consequently ‖y2zu‖ = ‖x‖ and d(y2zu, S) < d(x, S). Thus x /∈ Xμ, which
provides a contradiction, as required. Hence Xμ ∩ (

⋃
s∈S{s}pref(Tr(qs))) �= ∅.

On the other hand, since M ′ ≤Z M, no sequence in Z will reach Fail. Thus
Xμ ∩ Z = ∅. As

⋃
s∈S{s}pref(Tr(qs)) ⊆ Z, this provides a contradiction, as

required. Hence Fail is not reachable.

Theorem 1. M ′ ≤Σ[l] M if and only if M ′ ≤Z M .

Proof: “⇒”: Obvious, since Z ⊆ Σ[l]. “⇐”: Follows from Lemmas 5 and 1.

7 Conclusions

This paper extends the state counting based method of deriving tests from a non-
deterministic FSM to the case of bounded sequences. The method for bounded
sequences has practical value, as many applications of finite state machines ac-
tually use only input sequences of limited length. In such applications, the test
suite produced may contain only a small fraction of all sequences of length less
than or equal to the upper bound. The test suite for Mn in our example (Fig. 2
(a)), m′ = n + 2 and l = n + 1 will contain only (n2 + 9n + 6)/2 sequences out
of a total of 2n+2 − 2 sequences.

70 F. Ipate

Improvements in the size of the test suite may be obtained by using only
subsets of W to identify the states reached by the sequences in Tr(qs), in a
way similar to the Wp method for unbounded [3] and bounded [8] sequences.
This will be the subject of a future paper. Possible future work also involves the
generalization of these bounded sequence testing methods to classes of extended
finite state machines, such as stream X-machines [6].

References

1. Campeanu, C., Santean, N., Yu, S. Minimal cover automata for finite languages.
Theoretical Computer Science, 267, 3-16 (1999)

2. Chow, T. S. Testing software design modeled by finite state machines, IEEE Trans-
actions on Software Engineering, 4(3), 178-187 (1978)

3. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M. and Ghedamsi A. Test
Selection Based on Finite State Models. IEEE Transactions on Software Engineer-
ing, 17(6), 591-603 (1991)

4. Hierons, R. M. Adaptive testing of a deterministic implementation against a non-
deterministic finite state machine. The Computer Journal, 41(5), 349-355 (1998)

5. Hierons, R. M. Testing from a Non-Deterministic Finite State Machine Using Adap-
tive State Counting. IEEE Transactions on Computers 53(10), 1330-1342 (2004)

6. Holcombe, M., Ipate, F. Correct Systems: Building a Business Process Solution.
Springer Verlag, Berlin (1998)

7. Ipate, F. On the Minimality of Finite Automata and Stream X-machines for Finite
Languages, The Computer Journal, 48(2), 157-167 (2005)

8. Ipate, F. Bounded Sequence Test Selection from Finite State Machines, submitted.
9. Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State

Machines - A Survey. Proceedings of the IEEE, 84(8), 1090-1123 (1996)
10. Luo, G. L., Bochmann, G. v. and Petrenko, A. Test selection based on commu-

nicating nondeterministic finite-state machines using a generalized Wp-method.
IEEE Transactions on Software Engineering, 20(2), 149-161 (1994)

11. Petrenko, A., Yevtushenko, N., Lebedev, A. and Das, A. Nondeterministic state
machines in protocol conformance testing. In Proc. of Protocol Test Systems, VI
(C-19), Pau, France, 28-30 September, Elsevier Science, 363-378 (1994)

12. Petrenko, A., Yevtushenko, N., Bochmann G.v. Testing deterministic implemen-
tations from nondeterministic FSM specifications. In Proc. of 9th International
Workshop on Testing of Communicating Systems (IWTCS’96), Darmstadt, Ger-
many, 9-11 September 1996, Chapman and Hall, 125-140 (1996)

13. Sidhu, D. and Leung, T. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering, 15(4), 413-426, 1989.

14. Yevtushenko, N. V., Lebedev, A. V. and Petrenko, A. F. On checking experiments
with nondeterministic automata. Automatic Control and Computer Sciences, 6,
81-85 (1991)

LaTe, a Non-fully Deterministic Testing
Language

Emmanuel Donin de Rosière1, Claude Jard2, and Benôıt Parreaux1

1 France Télécom R&D,
2 Avenue Pierre Marzin 22307 Lannion, France
emmanuel.doninderosiere@francetelecom.com,

benoit.parreaux@francetelecom.com
2 ENS Cachan,

Campus de Kerlann, 35 170 Bruz, France
claude.jard@bretagne.ens-cachan.fr

Abstract. This paper presents a case study which is the test of a voice-
based service. To develop this application, we propose new functionalities
for testing languages and a new language called LaTe that implements
them.

With LaTe, one testing scenario can describe several different execu-
tions and the interpreter tries to find the execution that best fits with
the real behavior of the System Under Testing (SUT).

We propose an operational semantics of these non-deterministic op-
erators. Experimental results of the test of the voice-based service are
also included.

1 Introduction

The world of testing languages remains complex and dense: there are often more
than one language by application domain, e.g. hardware testing [1, 2], protocol
testing [3], component testing [4, 5]. . . Several systems take programming lan-
guages in order to use them for testing purpose [6, 7]. One objective of this
paper is to experiment with a paradigm that is non-deterministic testing. De-
spite a more complex interpretation, we will prove that this can increase the
quality of black box testing languages (also called functional testing languages)
on complex SUT.

This paper focuses on black box testing, i.e. the fact of testing a system where
inputs and outputs of functions are known, but internal code structure is irrele-
vant. It is a form of testing which cannot target specific software components or
portions of the code. So, in the rest of this article, we will use the same definitions
than TTCN [8] which is the reference in this domain. This language, in its ver-
sion 3, tries to be as generalist as possible and the most independent of the SUT.

SUT are more and more complex (and sometimes non-deterministic), so we
need a testing language that has to be as powerful and expressive as a program-
ming language. This is exemplified by the evolution of TTCN. Another instance

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 71–86, 2006.
c© IFIP International Federation for Information Processing 2006

72 E. Donin de Rosière, C. Jard, and B. Parreaux

is Tela (an UML 1.4 based testing language) [9], which gives lots of control struc-
tures like loops, branches, guards, interleaving and so on. However, Tela is more
a test description language than a test execution language.

New operators which are resource-greedy can be proposed if they have good
qualities because the time of test execution is not something important in our
context. For decreasing the cost of learning a new testing language, they must
be as easy and generalist as possible in order to test several different SUT with
the same testing language (e.g. web services, java SUT etc).

This paper is organized as follows. In the next section, we present LaTe, a
testing language which implements non deterministic operators. We also give
the semantics of these operators. Then, we give some information about the
case study: testing a voice-based service and the actual difficulties. Section 4 is
dedicated to the test architecture of the experiments and to the examples of test
cases in order to show the pros and cons of the constructions proposed here.
Finally, we discuss the results and conclude.

2 Presentation of LaTe

One of the aims of this study is to show that non-deterministic operators can
be very useful in testing languages. In order to evaluate these new operators,
we have created a new language, but they could be added in a more complete
language like TTCN. In this section, the main characteristics of LaTe will be
presented. Then a description of the non-deterministic operators will be given.
Finally, we will see the power of these operators and LaTe through a small
example of unanimity vote.

2.1 Main Requirements

In Late, we try to select some important features:

Genericity: The language should be able to test different SUT. It is unfortunate
to have to learn a different testing language for each system you want to test.
So, it is better if an unique language can test every SUT (may be through
an adaptation layer). As in TTCN, the use of SUT adapters can be useful.
Nevertheless, unlike TTCN, it is interesting to write only one SUT adapter
to test different SUT of the same type, e.g. one SUT adapter for testing
all the SUT written in JAVA, one SUT adapter for Web services. Actually,
three SUT adaptor factories have been written: the Java one, the C one and
the socket one and. They contain respectively 250, 400 and 100 lines of code.
It was very easy to write them because of the use of reflection in Java and
the Java Native Interface that allows use C functions in Java code.

Using stubs: It is sometimes useful to develop stubs in order to test some SUT.
But, in most languages, the user needs to write a specific stub for each
test case. In addition, the interactions between the SUT and the tester and
those between the stub and the SUT are often described separately. Thus,
it is necessary to add synchronization points in the scenario in order to

LaTe, a Non-fully Deterministic Testing Language 73

express precedence between an action of the tester and one of the stub. With
LaTe, like for SUT adapters, you need to write only one stub constructor to
create stubs for a specific type of SUT and all the interactions between
stubs and the SUT are directly written in the global scenario. For example,
the following code specifies the creation of a Java stub that implements the
interface MyInterface.

mystub:=createStub("Java","MyInterface");
//You create a stub
callSut(mysut,"register",mystub);
//You send it to the previously created sut
stubcall:=getCalled(mystub);
//You verify that the stub is called by the sut

This example shows that you can easily describe the general behavior of the
system. In a system where you must separate the behavior of the stub and
the tester component, the tester has to send a message to the stub in order
to inform it that the call to the SUT have been made and it will receive a
call from it. With our scenario, it is more compact and we can easily show
the event succession.

Powerful API: SUT become more and more complex and non deterministic. A
large collection of APIs is then needed to check that the value returned by
the SUT is in accordance with the specification. The easiest way to have a
large collection of API is to allow testers to use API from a programming
language. In our language, we can easily use the Java APIs.

Dynamic language: Just like above, some SUT can create dynamically PCO
(Point of Control and Observation) so we need to discover them during the
execution of the scenario and dynamically connect to these PCO.

Something like a scripting language: Sometimes, the tester needs to test in
real-time the SUT. For example, when the tester debugs a test scenario, he
may need to have a console to execute his own commands. So an interpreted
language will therefore be more useful than a compiled one. Moreover, it will
be easier to have a dynamically typed language in order to write quickly the
scenario and avoid the check and cast of values each line.

2.2 Non-deterministic Operators

As mentioned above, SUT become more complex, and this complexity leads
to more non determinism. However the non determinism in a SUT is some-
thing quite difficult for a test writer because he has to infer the possible state
of the SUT. So he has to add lots of if ... then ... elsif ... and if it
cannot distinguish two cases, he may have to indicate an inconclusive verdict.
Unfortunately, some SUT are intrinsically non deterministic: there are not fully
observable, so we cannot know their internal state just from their outputs. To
succeed in testing non deterministic SUT, we have hadded two non determin-
istic operators in the language. These operators are the non deterministic in-
terleaving and the non deterministic choice. They are presented in details in

74 E. Donin de Rosière, C. Jard, and B. Parreaux

this section. Note that a similar paradigm has already been used in the procol
testing domain in [10].

In a nutshell, the solution of the non deterministic SUT problem is to have
different executions at the same time for the same scenario. When a divergence
point is found in an execution, several executions are created in order to cover
all the possibilities. When a contradiction is detected in an execution, then this
execution is stopped and destroyed. The test passes when there is at least one
execution that arrives at the end of the scenario, otherwise, it fails.

The first non-deterministic operator we define is noted ||. It represents a
choice in a scenario. For instance, a:=3||a:=5 means that we have two exe-
cutions: one where a equals 3 and another where a equals 5. All statements
afterwards will be executed twice, once for each execution.

It can be done because the statements in one execution are independent of
the ones of another execution. However, communications between the tester and
the SUT do modify the state of the SUT, so precautions must be taken before
executing these instructions.

In LaTe, when an execution wants to send a message, it always requests it to
a component that can view all the current executions.

The other non-deterministic operator is noted &&. It represents a non deter-
ministic interleaving. It executes all of the possible interleavings of two given
branches. For example, {A;B}&&{C;D} is equivalent to:

{A;B;C;D}||{A;C;B;D}||{A;C;D;B}||{C;D;A;B}||{C;A;B;D}||{C;A;D;B}.

This operator helps to easily describe two independent behaviors. For ex-
ample, when stubs are used in a scenario, it allows to specify that the behav-
ior of one is independent of the other. Nevertheless, the longer the branches
are, the more different executions are evaluated. Thus, in order to decrease
this number, we decide that only communication with the SUT statements will
cause the evaluation of new execution. For instance, with the following sce-
nario: { ?a; assert(a==5) } && { ?b;assert(b==6) }, only two executions
will be evaluated: ?a;assert(a==5);?b;assert(b==6) and ?b;assert(b==6);
?a;assert(a==5) instead of the 6 possible interleavings. We can do this be-
cause we suppose the instructions that do not communicate with the SUT can
be executed in any order without changing anything. This can be true only if
a statement of a particular branch cannot influence other branches. In order to
prevent this, we implement a locking variable system: if a variable is modified
in a particular branch, it cannot be read or written in other branches. With all
these restrictions, we can verify the initial hypothesis.

As we said before, we need a component that can view all the executions in
order to decide which messages can be sent and when. This component will be
called top level in this article. Each time an execution wants to send a message,
it sends a request to the top level. If all the executions want to send the same
message, the top level emits it and wakes up all the executions. If all the execu-
tions want to emit different messages then the top level may choose randomly

LaTe, a Non-fully Deterministic Testing Language 75

an execution, sends the corresponding message and destroys the other messages
or may stop the evaluation of the scenario and returns an error depending of the
configuration of the LaTe interpreter.

2.3 Operational Semantics

In the following equations, P(S) denotes the set of all subsets of S, • the con-
catenation operator and �� the shuffle product.

Let �� be the following semantic operator:

�� :P × (Σr × R
+)∞ × R

+ × P(Σe × R
+) →

P(P × (Σr × R
+)∞ × R

+ × P(Σe × R
+) × P(Σe × R

+))
(1)

P corresponds to the set of all programs formed by waiting, sending and
receiving statements and interleaving, alternative and sequence operators. It
also contains the null program (P0).

Σr is the set of messages that can be sent by the SUT and Σe is the set of all
messages sent by the tester.

This operator expresses the set of all possible futures from a program P , a
trace σi containing the received messages and their arriving times, the current
time, and a list of sendable messages. Each future is made up by the remaining
program to execute (which can be null), the current time, the list of sendable
messages and the set of messages to send. If the remaining program is null, then
all the statements were executed else the execution is waiting for the authoriza-
tion to send a message to the SUT.

The null program can be executed but does not modify the context:

�P0, σ
i, t, a� = {(P0, σ

i, t, a, φ)} (2)

Let ?e<w be the statement meaning that the next message received must be e
and that it must arrive before w seconds. If it is true (σi(0) = eτ and t+w > τ),
then e is deleted from the trace and the clock is moved forward by τ .

�?e<w, σi, t, a� =

{
{(P0, σ

i+1, t + τ, a, φ)} if σi(0) = eτ ∧ t + w > τ

φ otherwise
(3)

Let !E be the statement that means E must be sent to the SUT. First, if E
belongs to the set of sendable messages, it is sent. If not, the execution is stopped,
and E (associated with the current time) is added to the list of messages we want
to send. We also verify that any more incoming message does not arrive.

�!e, σi, t, a� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{(P0, σ
i, t′, a \ {e}, φ)} if ∃t′, t′′ ∈ R

+, ∃f ∈ Σ|
et′ ∈ a ∧ σi(0) = f t′′ ∧ t′′ ≥ t′

φ if ∀t′ ∈ R
+, ∃t′′ ∈ R

+, ∃f ∈ Σ|
et′ ∈ a ∧ σi(0) = f t′′ ∧ t′′ < t′

{(!e, σi, t, a, {et})} otherwise

(4)

76 E. Donin de Rosière, C. Jard, and B. Parreaux

In order to execute P ; Q, P is executed first with the current environment.
Then, for each possible future where all the statements were executed, Q is exe-
cuted with the new environment. For each future where a sending authorization
is awaiting, the remaining program is rebuilt.

�P ; Q, σi, t, a� =
⋃

{�Q, σj , t′, a′�|(P0, σ
j , t′, a′, φ) ∈ �P, σi, t, a�}

∪
⋃

{(P ′; Q, σj, t′, a′, d)|(P ′, σj , t′, a′, d) ∈ �P, σi, t, a� ∧ P ′ 	= P0}
(5)

The possible futures of P ||Q are the union of possible futures of P with those
of Q:

�P ||Q, σi, t, a� = �P, σi, t, a� ∪ �Q, σi, t, a� (6)

The interleaving operator (&&) is the most complex operator in these
semantics.

In order to execute P&&Q, P and Q are executed separately. To do this, two
disjoint sets ap and aq are extracted from a. Each set corresponds to the part
of a used by each process. σi \ σj is also divided into two parts thanks to two
projections hp and hq. If the two processes are fully executed, the execution is
well finished and the new current time is the maximum of the two final times.
If at least one of them is waiting for a sending authorization, the state of the
program is rebuilt at the moment of the send of the message. Therefore, waiting
times (S(t′− t) and S(t′′− t)) have to be added in order to take the passing time
into account.

�P&&Q, σi, t, a� = {(P0, σ
j , max(t′, t′′), a \ (ap ∪ aq), φ), ∃j ≥ i,

∃hp, hq ∈ Projection, ∃t′, t′′ ∈ R
+, ∃ap, aq ∈ P(Σe × R

+)

|σi \ σj ∈ hp(σi \ σj) �� hq(σi \ σj)

∧ (P0, σ
j , t, φ, φ) ∈ �P, hp(σi \ σj) • σj , t′, ap�

∧ (P0, σ
j , t, φ, φ) ∈ �Q, hq(σi \ σj) • σj , t′′, ap�

∧ ap ∩ aq = φ ∧ ap ⊂ a ∧ aq ⊂ a}
∪ {((S(t′ − t); P ′)&&(S(t′′ − t); Q′), σj , t, φ, dp ∪ dq) \∃j≥ i,

∃hp, hq ∈ Projection, ∃t′, t′′ ∈ R
+, ∃ap, aq ∈ P(Σe × R

+)

|σi \ σj ∈ hp(σi \ σj) �� hq(σi \ σj)

∧ (P ′, σj , t′, φ, dp) ∈ �P, hp(σi \ σj) • σj , t, ap�

∧ (Q′, σj , t′′, φ, dq) ∈ �Q, hq(σi \ σj) • σj , t, aq�

∧ ap ∩ aq = φ ∧ ap ∪ aq = a ∧ dp ∪ dq 	= φ}
(7)

We have just seen that some executions may enter in a waiting state. In fact,
an emission is something that cannot be cancelled. As a result, we have to check
that all executions want to send the same message. Indeed, in order to choose
what and when an emission can be made, we must have a total view of all the

LaTe, a Non-fully Deterministic Testing Language 77

executions. It is why the use of a top level is unavoidable. It is the only element
that can see the global state of the tester. This component gets back the emission
requests, computes them in order to find if the executions are determinable. After
that, it gives the authorization to send messages.

Let TL be semantics of the top level :

TL : P(P × (Σr × R
+)∞ × R

+ × P(Σe × R
+) × P(Σe × R

+)) → Bool

TL is defined as follow:

TL(Pg)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if ∃σi ∈ (Σr × R
+)∞, ∃t ∈ R

+|(P0, σ
i, t, φ, φ) ∈ Pg

TL(
⋃

{�P, σ, t, d�|∃a ∈ P(Σe × R
+), (P, σ, t, φ, a) ∈ Pg}) if ∃d

∈ P(Σe × R
+) , d = {emax(ti)|∀di, ∃ti eti ∈ di} ∧ d 	= φ ∧ Pg 	= φ

false otherwise
(8)

If one possible future finishes its execution, the trace conforms to the testing
scenario. Otherwise, all the executions are waiting at least one sending autho-
rization. If the intersection of all of these requests is not empty, we authorize
their emission. In any other cases, we cannot find a consensus. Thus, the test is
declared false. Denote that the same emission for different executions must be
done in the same time (because there can be only one real emission). We emit
therefore this message at the maximum time given by all executions.

With these semantics, we do not assure that the emission will immediately
take place when the request is made. We use a best effort policy. Nevertheless,
these semantics can be easily modified in order to emit the message immediately,
but it risks compelling too much the executions of the scenario.

Finally, we just have to compute TL(�P, σ0, 0, φ�) to find if a trace σ satisfies
a program P .

2.4 An Example: Unanimity Vote

We point out some of the advantages of these operators through a small example:
a system of unanimity vote. Here, the SUT is a java class that can be called to
register to the electoral list an object implementing a particular interface. When
a question is asked to the SUT, it transmits the question to some electors. These
calls can be executed concurrently and if one of the electors replies false, the
returned value of the SUT will be false and all the electors may not be asked
to vote (it is a unanimity vote).

This example is quite difficult to test using classical systems because:

– it has to use stubs for electors and has to control each stub;
– some of the interactions are concurrent. We have to verify if the test scenario

agrees with all the possibilities of interleaving the SUT interactions;
– it contains lots of non-determinism: if one of the electors replies false, the

SUT may continue to call all of the electors but it also can stop and directly
replies to the tester. The test scenario must describe all of these cases.

78 E. Donin de Rosière, C. Jard, and B. Parreaux

With LaTe, it is quite simple to write a testing case for this SUT. For example,
for 2 electors, the scenario may be the following:

1 mysut:=createStub("Java","SUT");
2 elector1:=createStub("Java","ElectorInterface");
3 callSut(mysut,"register",elector1);
4 //We create a stub and register it to the SUT
5 elector2:=createStub("Java","ElectorInterface");
6 callSut(mysut,"register",elector2);
7 //We create a stub and register it to the SUT
8
9 sutcall:=callSUT(mysut,"ask","Is 42 prime ?");

10 {
11 @<10*sec{stubcall1:=getCalled(elector1)};
12 replySUT(stubcall1,false);
13 //The SUT asks the question to the elector 1 and we reply false
14 }
15 &&
16 {
17 {
18 @<10*sec{stubcall2:=getCalled(elector2)};
19 replySUT(stubcall2,true);
20 //The SUT may ask the question to the elector 2 and we reply true
21 }
22 ||
23 {
24 }
25 //But it is optional
26 };
27 assert(getReply(callSut)==false);
28 //The answer is "false"

Listing 1.1. LaTe scenario for the unanimity vote

As mentioned above, LaTe evaluates all the possible interleavings of the sce-
nario. In other words, whatever the order of stub calls by the SUT and whatever
the number of called stubs, LaTe is capable of verifying that the execution fits
the specification described in the scenario. Time specification can also be easily
added by using the @ operator.

Nevertheless, LaTe may have difficulties to evaluate particular scenarios. For
instance, the pseudo code { ?a;!A } && { ?b;!B } is problematic if the SUT
sends the two messages a and b, without waiting for the replies A or B, because
this behavior is extremely non deterministic. All the executions are presented in
Figure 1.

In this example, if the SUT sends a and waits for A before sending b, there
is also a problem. All the branches beginning by ?b are not executable because

LaTe, a Non-fully Deterministic Testing Language 79

•

?a

?b

!A

?b

?b

!A

!B

!B

!A

!B

Fig. 1. All the possible interleavings

the first message received by the tester is a and the assertion ?b, which signifies
that the next message receive by the tester is b, will be broken. Thus, in the next
step, two executions are possible: ?b and !A. The second execution (with ?b) is
in a waiting state, because the SUT does not send an additional message and
the first execution cannot emit A, because there is an execution that does not
want to send something. We are in a livelock. In order to resolve this conflict, the
scenario must contain information about timeouts in all the receive instructions,
e.g. if the ?b lasts more than 5 seconds, this execution will be destroyed, and
there will be only one possible execution (the first one). The evaluation of the
scenario will continue.

In other case, if the SUT sends the two messages a and then b without waiting
for the replies A or B, there will be another problem. Three executions will be then
possible. They are displayed with dash in Figure 1. Two of these executions want
to send A and the last intends to emit B. This is because of the exact symmetry
of the test scenario (there is no difference between the two stubs). In this case,
we decide that LaTe may choose randomly an execution and continues it. Then,
LaTe prints a warning message in order to warn the tester that the scenario con-
tains conflicts. LaTe may also stop the execution according to its configuration.

Through this example, we can see some of the advantages of the non-deter-
minism operators of LaTe: they permit to easily describe the parallelism and
the non-determinism of the SUT. Although this example is an extreme case
of non-determinism associated with concurrency, we can test quite easily this
behavior. Nevertheless, the tester has to think of all possible executions. In the
next sections, a more complex example will be studied in details, the voice-based
service that we will just study: the vocal-based telephone directory.

3 Description of the Case Study: Testing a Voice-Based
Service

We decided to validate our approach on the test execution of voice-based services
and particularly a vocal-activated telephone directory. In this service, the user
gives a name and the service seeks this name and then proposes to put the

80 E. Donin de Rosière, C. Jard, and B. Parreaux

user in relation with the found number. In the case of homonyms, the service
proposes several solutions and requests the user to choose the solution which is
appropriate to him.

The new voice-based services use intensively speech synthesis and recognition.
These functionalities simplify the access to the voice-based services but compli-
cate their validation. Indeed, they produce lots of non-determinism if we try to
automatically test it. For example, the volume and the speed of the voice during
two different conversations can change. If we need to recognize automatically
the sentences pronounced by the voice-based services using a speech recognition
tool, we should make the verdict even more random.

Furthermore, the use of speech recognition for the tester also increases the non-
determinism of all the system. Many factors can affect the result of the speech
recognition such as the quality of the transmitted messages and the quality of the
line and so on. It is possible for a same message to be correctly recognized the first
time but not the following times. Thus, the presence of speech recognition and
synthesis causes a significant number of inconclusive verdicts during automatic
tests.

One current solution for this problem is to replace all speech signals emitted
and expedted by the platform by DTMF (Dual Tone Multi Frequency) signals.
These signals are the sounds produced when you dial a number with your phone.
This solution is not completely satisfactory because it requires the modification
of the voice-based service. The verdict of the tests can also be deteriorated by
these modifications. The other solution is to carry out the tests, taking the risk
of obtaining a significant number of inconclusives verdicts. No other solution
are possible with common testing languages. The language that we propose in
this article enables us to bring a new solution to this problem by using non-
deterministic operators in the test scenario. So this vocal-based phone directory,
although very simple, is enough to clarify the interests of our language.

4 Methodology of the Experiment

In this section, we will see in details how the vocal-based telephone directory
was tested using LaTe. First, we will see the test architecture of this experiment,
then we study the communication protocol between the tester and the calling
platform. Finally, some test scenarios will be presented.

4.1 Test Architecture

In section 3, we discussed in details how works the vocal-based telephone direc-
tory testing here. Thus, we develop a special test architecture in order to allow
the tester to connect to the voiceXML service. This architecture is represented
in Figure 2.

The tester represents the machine where LaTe and the scenarios are executed.
It communicates through a socket with the call API. This computer is linked to a
call card which can makes calls and conversation on an analogic line. Therefore,
this computer can call the voice-based service. As we just said, there is a dialog

LaTe, a Non-fully Deterministic Testing Language 81

Tester

Socket

Call API

Analogic line
VoiceXML Service

Fig. 2. Test Architecture

between the tester and the call API through a socket. A special protocol has
been defined to allow the tester to test the service and obtain information about
the conversation. This protocol uses all of these messages:

BECMDCall num ENDCMD: this message asks the call API to call the number
num.

BECMDDTMF num ENDCMD: it asks the call API to simulate the pushing of a par-
ticular touch (defined by num) in the telephone keyboard. This is done by
emiting a special sound called DTMF during the conversation.

BECMDWaitDTMF num ENDCMD: this message asks the API to wait a particular
DTMF sent by the directory.

BECMDTalk file ENDCMD: it asks to play a particular file during the conversa-
tion. This file must be in a PCM format at a good frequency.

BECMDRecordAll file ENDCMD: it asks the API to record all of the conversation
in the file file. This conversation will be saved in a PCM format.

BECMDHangUp ENDCMD: sent when the tester wants to hang up.
BECMDEnd ENDCMD: sent when the tester wants to stop the communication be-

tween it and the calling computer.

For each of this message, the call API sends a corresponding done message
when the operation executed without any problem or a not started when a
problem occurs. Moreover, the call API can emit particular messages:

BEGINFDetect Speech ENDINF: it is sent when the call API discovers that there
is someone who speak during the conversation.

BEGINFEnd Speech ENDINF: it is sent when the call API discovers that the
speech finishes.

BEGINFHangUp ENDINF: sent when the call API discovers that the line has been
hanged up.

At first, we tried to allow the API to use vocal synthesis in order to send every
possible message. However, we discovered that the speech recognition system of
the voiceXML service has lots of difficulties to recognize generated voice. These
problems increase the number of cases we have to manage in our scenarios, so we
finally preferred to record the sentenceswewill play during the tests for this reason.

82 E. Donin de Rosière, C. Jard, and B. Parreaux

We also imagine using a speech recognition system for our call API. Indeed,
if we can know what was pronounced by the service, we can deduct in which
state is the SUT. Nevertheless, as for the previous remark, speech recognition
has difficulties to recognized generated voices. So lots of recognized sentences
were wrong because we were comparing character to character these sentences
with the sentences of the specification. We may modify the speech recognition
system in order to give for each sentence pronounced by the voiceXML service,
the sentence of the specification that may have been pronounced.

With respect to our aim, we develop a socket SUT adaptor factory. Thus, in
LaTe, you just have to specify the host and the port of the server and LaTe
automatically creates the stub adaptor and connects itself to the server. The
code of this factory is quite simple but we will not show it here because we
are not specially interested by this information in this paper. Just with these
information, we allow LaTe to easily test the vocal-based directory. So in the
next section, we will see in details some scenarios and further the advantages of
the non-deterministic operators on this particular test case.

4.2 Some Test Cases

For all of the following test cases, we defined several LaTe functions to simplify
the writing of scenarios. These functions are:

connection(host,port): this function initializes the communication between
the tester and the call API.

call(sut,num): for a giving SUT, it send a message for calling the phone
number num.

sendCommand(sut,command): it sends the corresponding command to the SUT.
listenSpeech(sut,t1,t2): it verifies that a sentence is prononced before the

time t1 and during at most the time t2. Otherwise, the execution is de-
stroyed.

getMessageIn(sut,message,t): it waits at most the time t for a particular
message. If any message arrives or the first message was not message, the
execution is destroyed.

getMessage(sut1,message): it makes the same thing than the previous func-
tion, but without any timeout.

It is very easy to write thess fonctions. For example, the code of the function
listenSpeech is the following:

1 function listenSpeech(sut1,t1,t2)
2 {
3 @<t1{ assert(getMessage(sut)=="BEGINFDetect SpeechENDINF") };
4 @<t2{ assert(getMessage(sut)=="BEGINFEnd SpeechENDINF") };
5 };

Listing 1.2. User-defined function

LaTe, a Non-fully Deterministic Testing Language 83

For the first test case, our aim is to connect to the call API, call the directory,
pronounce a name and verify that people picks up.

1 sut:=connection("l-at7290",4442);
2 call(sut,"123");
3 sendCommand(sut,"RecordAll communication.pcm");
4 listenSpeech(sut,30*sec,30*sec);
5 sendCommand(sut,"Talk testername");
6 { listenSpeech(sut,50*sec,30*sec); }
7 &&
8 { getCommandeTimer(sut,"Send talk done",20*sec); };
9 wait(5000);

10 sendCommand(sut,"Talk yes");
11 { listenSpeech(sut,50*sec,30*sec); }
12 &&
13 { getMessageIn(sut,"Send talk done",15*sec); };
14 sendCommand(sut,"HangUp");
15 {
16 { getMessage(sut,"HangUp detected"); }
17 &&
18 { listenSpeech(sut,50*sec,30*sec); }
19 }
20 ||
21 { getMessage(sut,"HangUp detected"); };
22 { getMessageIn(sut,"RecordAll done",15*sec); }
23 &&
24 { getMessageIn(sut,"HangUp done",15*sec); };

Listing 1.3. LaTe scenario for a simple test

The fact that we use an analogic line to connect to the service adds randomness
in the receipt order of messages. For example, we do not know in advance if the
message Send talk done will be received before the beginning of the speech. So
we have to set that all of Send talk done messages can be interleaved with the
listenSpeech function. A lot of executions will be evaluated, but only one will fit
the real events.

Moreover, when the tester executes manually the test, he can observe that
sometimes the call API detects two different speeches and other times, only one.
Thus, in the scenario (lines 15 to 21) we specify that these two cases can occur
by using the || operator. We have either an HangUp detected message, or a
HangUp detected message interleaved with a speech detection. At the end of the
scenario, we also specify that a HangUp done is interleaved with a RecordAll
done message.

84 E. Donin de Rosière, C. Jard, and B. Parreaux

5 Experimental Results and Discussion

5.1 Results and Pros

The use of LaTe in this case allowed the tester to semi automatically test the
voiceXML service. It was not fully automatic because the test needs an operator
which verifies that his phone rings and picks up for some test cases. But compared
to the manual testing, this solution reduces the interactions between the tester
and the SUT.

If we compare this solution to one based on TTCN, we can observe that TTCN
contains an interleave statement that specifies that different branches must be
executed concurrently. TTCN allows user to write its own functions (internally
or externally), nevertheless, they can be used in an interleave branche. In this
particular case, LaTe is more powerfull than TTCN, because we don’t have to
inline the getMessage and listenSpeech functions. Moreover, TTCN does not
allow to specify in a test scenario that something is optional. The only statement
that can be used for that is the alternative one, but the user have to give a
guard for each branches of the alternative statement which is very difficult in
our example.

Another advantage of this testing architecture is that we have to our disposal
all the traces of the conversations between the tester and the voiceXML service.
So when we discover an error, we can easily locate it thanks to these traces.

5.2 Discussion

As we said previously, this method for testing the vocal-based phone directory
is not perfect: the tester does not know exactly what is pronounced during
the conversation and he has to pre-record all of the sentences before using it.
Thus, one possible evolution of this technique is to use speech recognition. We
saw in section 4.1 that a normal system may not work for our example. The
recognition is not something perfect and may make mistakes. So some verdicts
may be fail with any difference between the specification and the SUT. One
possible solution is to modify the speech recognition system so that it gives a set
of possible sentences that may have been pronounced. With this modification,
the speech recognition system will someway be non deterministic: several possible
verdicts will be returned. Associated with our non-deterministic operators, it can
easily find after few steps which sentence was pronounced thanks to the following
sentences. Thus, with only few modifications of the scenarios, this system will
explore more deeply the real behavior of the SUT and will be more capable of
detecting mistakes.

Another possible improvement of this system is to generate directly the LaTe
scenarios from the specification. One of our perspective is to modify TGV [11]
for this aim. TGV allows the generation of an abstract test case from a specifica-
tion and a test purpose. The generation is done “on-the-fly” on the synchronous
product of the specification with the test purpose. It is based on Tarjan’s al-
gorithm. During the depth-first search (DFS), TGV performs abstraction and

LaTe, a Non-fully Deterministic Testing Language 85

determinization of this product. The DFS stops when an accepting state of test
purpose is reached. During the backtracking, TGV synthesizes the transitions of
the test case.

Currently, TGV generates test cases in both BCG [12] and Aut [13] formats,
so if it can be modified to directly generate test scenarios in LaTe format, we
will be able to reduce the work of writing these scenarios.

6 Conclusion

Some SUT are so complex and non-deterministic that usual testing systems and
languages have difficulties to evaluate the state of the SUT. Thus, we have de-
fined two particular operators for testing languages, the non-deterministic choice
and the non-deterministic interleaving. These operators allow the tester to main-
tain several different executions at the same time. Each execution is independent
of the others and is destroyed when a contradiction is found. Nevertheless, com-
munications between these executions and the SUT must be managed because
of the communication cannot be undone and modify the environment of all
executions.

In order to show that these non-deterministic constructions may be useful, we
have implemented them in a new language, LaTe and we have applied them on a
particular case study: testing a vocal-based telephone directory. They were par-
ticularly useful on this case because the SUT contains lots of non-deterministic
behavior like interleaved events, optional messages etc. Thus, these constructions
allowed to increase the automation of this task and also allowed the scenarios to
test deeper behavior than usual test scenarios. Finally, we have proposed several
enhancements for this particular case study, like adding a speech recognition
system in order to increase the power of the system and test deeper voice-based
services.

References

1. Thomas, D.E., Moorby, P.R.: The Verilog Hardware Description Language. 3rd
edn. Kluwer Academic Publishers (1996)

2. Offerman, A., Goor, A.: An experimental user level implementation of tcp. Tech-
nical Report 1-68340-44(1997)07, Delft University of Technology (1997)

3. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and rural chinese
postman tours. IEEE Transactions on Communications 39 (1991) 1604–1615

4. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology 3 (1994)
101–130

5. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing: The
JML and JUnit Way. In: ecoop. (2002)

6. Beck, K., Gamma, E.: Junit test infected: Programmers love writing tests. Tech-
nical report, Java Report (1998)

7. Massol, V., Husted, T.: JUnit In Action. Manning (2003)

86 E. Donin de Rosière, C. Jard, and B. Parreaux

8. ITU-T Z.140: The Tree and Tabular Combined Notation Version 3 (TTCN-3):
Core Language. (2001)

9. Pickin, S., Jard, C., Le Traon, Y., Jézéquel, J., Le Guennec, A.: System test
synthesis from uml models of distributed software. In: FORTE’2002, IFIP Int.
Conf. on Formal description techniques, Houston, Texas (2002)

10. Ghriga, M., Frankl, P.G.: Adaptive testing of non-deterministic communication
protocols. In: Protocol Test Systems. (1993) 347–362

11. J. C. Fernandez, C. Jard, T. Jéron, G. Viho: Using on-the-fly verification tech-
niques for the generation of test suites. In Rajeev Alur, Thomas A. Henzinger,
eds.: Proceedings of the Eighth International Conference on Computer Aided Ver-
ification CAV. Volume 1102., New Brunswick, NJ, USA, Springer–Verlag (1996)
348–359

12. Tock, L.P.: The bcg postscript format. Technical report, INRIA Rhône-Alpes
(1995)

13. Fernandez, J.C.: Aldebaran user’s manual. Technical report, Laboratoire de Génie
Informatique - Institut IMAG (1989)

Customized Testing for Probabilistic Systems�

Luis F. Llana-Díaz, Manuel Núñez, and Ismael Rodríguez

Dept. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, 28040 Madrid, Spain

{llana, mn, isrodrig}@sip.ucm.es

Abstract. In order to test the correctness of an IUT (implementation
under test) with respect to a specification, testing its whole behavior is
desirable but unfeasible. In some situations, testing the behavior of the
IUT assuming that it is stimulated by a given usage model is more ap-
propriate. Though considering this approach to test functional behaviors
consists simply in testing a subset of the IUT, to study the probabilistic
behavior of systems by using this customized testing approach leads to
some new possibilities. If usage models specify the probabilistic behavior
of stimuli and specifications define the probabilistic behavior of reactions
to these stimuli, then, by composing them, the probabilistic behavior of
any behavior is completely specified. So, after a finite set of behaviors of
the IUT is checked, we can compute an upper bound of the probability
that a user following the usage model finds an error in the IUT. This
can be done by considering the worst case scenario, that is, that any
unchecked behavior is wrong.

1 Introduction

Even though testing the whole behavior of a system is desirable, this implies,
in general, applying an infinite number of tests. So, formal testing methodolo-
gies usually focus on critical parts or aspects of the system. In particular, it is
specially important to check that systems provide some minimal functionalities,
even if other less relevant functionalities fail. That is, we check that some critical
usage modes are correct and remain available as expected. More generally, we can
group and abstract a set of usage modes in terms of a (probably abstract) user
that produces them, that is, in terms of a user model that represents a subset
of manners to use the system. Once we are provided with a suitable user model,
this model can be used to particularize the goals of the testing procedure. In
other words, we can test the correctness of an implementation under test (IUT)
with respect to a specification under the assumption that the system is stimu-
lated according to the user model. Let us note that if our testing methodology
focuses on checking the functional behavior of the IUT (i.e., what it does and
what it does not), then testing the IUT with respect to a user model may be
� Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,

the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 87–102, 2006.
c© IFIP International Federation for Information Processing 2006

88 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

easy. In particular, it is enough that, among all the stimulation sequences that
can be proposed to the system (i.e., among all stimulation sequences considered
in the specification), we consider only those that can be produced by the user
model as well. That is, testing the IUT with respect to a specification and a
user model actually consists in testing the IUT with respect to a subset of the
specification.

However, the application of this user customized approach to test other types
of properties is less trivial and more interesting. This is the case if we consider
the probabilistic behavior of entities. Let us suppose that the specification pro-
vides the desirable probabilistic behavior of the IUT and that, in addition, the
user model explicitly defines the probabilistic propensity of each action stimulat-
ing the IUT. In this case, we have an environment where the ideal probabilistic
behavior of the system, consisting of the IUT and the user model, is completely
specified. That is, in any interaction between a user and a correct IUT, the prob-
abilistic weight of each choice can be quantified. This extra information allows
the testing methodology to go further than other methodologies by providing a
relevant diagnosis result: After a finite set of tests is applied, we can compute, for
a given feasibility degree, an upper bound of the probability that a user behaving
according to the considered user model finds a wrong behavior in the IUT. This
measure will be computed by considering that all the IUT traces that have not
been produced yet behave incorrectly. Let us note that, after applying a finite set
of tests, the number of traces that have not been studied yet is, in general, infi-
nite. However, the cumulated probability of these traces (that is, the probability
that any of them is produced) is, like any probability, finite, and we can compute
it. Actually, this probability is the complementary of the probability that any
already analyzed trace is performed. Let us remark that the (ideal) probability
of each of these traces is given by the probability defined in the specification for
that trace. Unfortunately, we cannot know with certainty whether the traces of
the IUT that have been already analyzed actually follow the probabilities defined
in the specification. However, by testing each nondeterministic choice of the IUT
a high number of times and by applying a suitable contrast hypothesis, we can
determine, for a given feasibility or credibility degree, whether the probabilistic
behavior of the IUT corresponds to the one of the specification. For instance, if
the specification indicates that, at a given point, the probabilities of performing
a and b are the same, then, if the implementation has performed a 507 times
and b 493 times then that credibility will be high. However, the credibility will
be lower if they were recorded 614 and 386 times, respectively. Since our knowl-
edge of the probabilistic behavior of the IUT will depend on a feasibility degree,
the upper bound of the probability that a user finds an error in an IUT will be
defined in probabilistic terms as well, that is, for a given feasibility degree.

Let us note that to provide an upper bound of the probability of error is not
only useful for a (probabilistic) diagnostic of the IUT correctness. In fact, it may
guide the testing process itself. The task of selecting, among an infinite set of
tests, a finite set of tests to be applied during the (finite) time assigned to testing
is not simple. Thus, we will be interested in tests with high discrimination power.

Customized Testing for Probabilistic Systems 89

In other words, we should choose tests such that, when successfully passed,
induce a high certainty about the correctness of the IUT. Actually, the upper
bound of error probability implicitly provides a guide for selecting tests. We
will prefer those sets of tests such that, when correctly passed by the IUT,
provide a lower upper bound of error, that is, provide a higher certainty of the
IUT correctness. That is, we will prefer those sets providing upper bounds with
higher feasibility degrees.

In this paper we develop these ideas and we construct a testing methodol-
ogy for testing probabilistic systems that interact with user models. We define
two implementation relations. The first one directly compares the probabilities
of the traces in the IUT and in the specification. The second one indirectly
compares these probabilities by applying a contrast hypothesis to a sample col-
lected by interacting with the IUT. Besides, we show how the measure that we
commented before is computed from an IUT sample. In terms of related work,
there is significant work on testing preorders and equivalences for probabilistic
processes [2, 10, 12, 3, 1, 13, 7, 5]. Most of these proposals follow the de Nicola and
Hennessy’s style [6, 4], that is, two processes are equivalent if the application of
any test belonging to a given set returns the same result. Instead, we are in-
terested in checking whether an implementation conforms to a specification. In
particular, our relations are more similar to the ones introduced in [14, 8]. Re-
garding probabilistic user models, it is worth to point out that these previous
works do not explicitly consider this notion. User models have been used in spe-
cific software testing scenarios (e.g., to test C++ templates [11]). Other work
deals with user models in the testing context [16, 15], but they do not consider
formal conformance testing techniques.

The rest of the paper is structured as follows. In the next section we present
some basic notions to denote specifications, IUTs, and user models. In Section 3
we show how these notions are related and we define tests. In Section 4 we
present our (probabilistic) conformance relations. Then, in Section 5 we give the
upper bound of the probability that a user finds an error in an IUT. Finally, in
Section 6 we present our conclusions.

2 Basic Notions

In this section we present some basic notions used in the paper. First, we in-
troduce some statistics notions. An event is any reaction we can detect from a
system or environment; a random variable is a function associating each event
with its probability.

Definition 1. Let A be a set of events and ξ : A → [0, 1] be a function such
that

∑
α∈A ξ(α) = 1. We say that ξ is a random variable for the set of events A.

If we observe that the event α ∈ A is produced by a random source whose
probabilistic behavior is given by ξ then we say that α has been generated by ξ.
We extend this notion to sequences of events as expected: If we observe that
the sequence of events H = 〈α1, . . . , αn〉 is consecutively produced by a random

90 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

source whose probabilistic behavior is given by ξ then we say that H has been
generated by ξ or that H is a sample of ξ.

Given the random variable ξ and a sequence of events H , we denote the
confidence that H is generated by ξ by γ(ξ, H). ��

This definition introduces a simple version of discrete random variable where all
the events are independent. The actual definition of a random variable is more
complex but it is pointless to use its generality in our setting. In the previous
definition, the application of a suitable hypothesis contrast is abstracted by the
function γ. We have that γ(ξ, H) takes a value in [0, 1]. Intuitively, a sample
will be rejected if the probability of observing that sample from a given random
variable is low. At the end of this section we present a working definition of the
function γ. It is worth to point out that the results of this paper do not depend
on the formulation of γ, being possible to abstract the actual definition.

Next we present the formalism we will use to define specifications and imple-
mentations. A probabilistic finite state machine is a finite state machine where
each transition is equipped with a probability denoting its probabilistic propen-

sity. Thus, a transition s
i/o−−−−→ p s′ denotes that, when the machine is in state

s and the input i is received, then, with probability p, it moves to the state s′

and produces the output o. We will assume that the environment stimulates the
machine with a single input at any time. Given an input, the machine prob-
abilistically chooses the transition it takes from its current state. Hence, the
probability of a transition allows to compare its propensity with the one of any
other transition departing from the same state and receiving the same input.
That is, given s and i, the addition of all values p such that there exist o, s′ with

s
i/o−−−−→p s′ must be equal to 1. In contrast, there is no requirement binding the

probabilities departing from the same state and receiving different inputs be-
cause each one describes (part of) a different probabilistic choice of the machine.

Definition 2. A Probabilistic Finite State Machine, in short PFSM, is a tuple
M = (S, I, O, δ, s0) where

– S is the set of states and s0 ∈ S is the initial state.
– I and O, with I ∩ O = ∅, denote the sets of input and output actions,

respectively.
– δ ⊆ S × I × O × (0, 1] × S is the set of transitions. We will write s

i/o−−−−→p s′

to denote (s, i, o, p, s′) ∈ δ.

Transitions and states fulfill the following additional conditions:

– For all s ∈ S and i ∈ I, the probabilities associated with outgoing transitions

add up to 1, that is,
∑

{p | ∃ o ∈ O, s′ ∈ S : s
i/o−−−−→p s′} = 1.

– PFSMs are free of non-observable non-determinism, that is, if whenever we

have the transitions s
i/o−−−−→p1 s1 and s

i/o−−−−→p2 s2 then p1 = p2 and s1 = s2.
– In addition, we will assume that implementations are input-enabled, that is,

for all state s and input i there exist o, p, s′ such that s
i/o−−−−→p s′. ��

Customized Testing for Probabilistic Systems 91

Although PFSMs will be used to define specifications, a different formalism will be
used to define user models. Specifically, we will use probabilistic labeled transition
systems. A user model represents the external environment of a system. User
models actively produce inputs that stimulate the system, while passively receive
outputs produced by the system as a response. The states of a user model are split
into two categories: Input states and output states. In input states, all outgoing
transitions denote a different input action. Since inputs are probabilistically
chosen by user models, any input transition is endowed with a probability. In
particular, s i−−→ p s′ denotes that, with probability p, in the input state s, the
input i is produced and the state is moved to s′. Given an input state s, the
addition of all probabilities p such that there exists i, s′ with s i−−→ p s′ must
be lower than or equal to 1. If it is lower then we consider that the remainder
up to 1 implicitly denotes the probability that the interaction with the system
finishes at the current state. Regarding output states, all transitions departing
from an output state are labeled by a different output action. However, output
transitions do not have any probability value (let us remind that outputs are
chosen by the system). Input and output states will strictly alternate, that is,
for any input state s, with s i−−→ p s′, s′ is an output state, and for any output
state s, with s o−−→ s′, s′ is an input state.

Definition 3. A probabilistic labeled transition system, in short PLTS, is a tuple
U = (SI , SO, I, O, δ, s0) where

– SI and SO, with SI ∩ SO = ∅, are the sets of input and output states,
respectively. s0 ∈ SI is the initial state.

– I and O, with I∩O = ∅, are the sets of input and output actions, respectively.
– δ ⊆ (SI × I × (0, 1] × SO) ∪ (SO × O × SI) is the transition relation. We will

write s i−−→ p s′ to denote (s, i, p, s′) ∈ SI × I × (0, 1] × SO and s o−−→ s′ to
denote (s, o, s′) ∈ SO × O × SI .

Transitions and states fulfill the following additional conditions:

– For all input states s ∈ SI and input actions i ∈ I there exists at most one
outgoing transition from s: |{s i−−→p s′ | ∃ p ∈ (0, 1], s′ ∈ SO}| ≤ 1.

– For all output states s ∈ SO and output actions o ∈ O there exists exactly
one outgoing transition labeled with o: |{s o−−→ s′ | ∃ s′ ∈ SI}| = 1.

– For all input state s ∈ SI the addition of the probabilities associated with
the outgoing transitions is lower than or equal to 1, that is, cont(s) =
∑

{p| ∃ s′ ∈ SO : s i−−→ p s′} ≤ 1. So, the probability of stopping at that
state s is stop(s) = 1 − cont(s). ��

By iteratively executing transitions, both PFSMs and PLTSs can produce se-
quences of inputs and outputs. The probabilities of these sequences are given
by the probabilities of the transitions. Next we introduce some trace notions. A
probability trace is a sequence of probabilities, a trace is a sequence of inputs and
outputs, and a probabilistic trace is a tuple containing both.

92 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

Definition 4. A probability trace π is a finite sequence of probabilities, that
is, a possibly empty sequence 〈p1, p2, . . . , pn〉 ∈ (0, 1]∗. The symbol ε denotes
the empty probability trace. Let π = 〈p1, p2, . . . , pn〉 be a probability trace. We
define its sef-product, denoted by

∏
π, as

∏
1≤i≤n pi. Since

∏
a∈∅

= 1, we have∏
ε = 1. Let π = 〈p1, p2, . . . , pn〉 and π′ = 〈p′1, p′2, . . . , pm〉 be probability traces.

Then, π · π′ denotes their concatenation that is, 〈p1, p2, . . . , pn, p′1, p
′
2, . . . , pm〉,

while π ∗ π′ denotes its pairwise product, that is, 〈p1 ∗ p′1, p2 ∗ p′2, . . . , pr ∗ p′r〉,
where r = min(n, m).

A trace ρ is a finite sequence of input/output actions (i1/o1, i2/o2, . . . , in/on).
The symbol ε denotes the empty trace. Let ρ and ρ′ be traces. Then, ρ · ρ′

denotes their concatenation. A probabilistic trace is a pair (ρ, π) where ρ is a
trace (i1/o1, i2/o2, . . . , in/on) and π = 〈p1, p2, . . . , pn〉 is a probability trace. If ρ
and π are both empty then we have the empty probabilistic trace, written as (ε, ε).
Let (ρ, π) and (ρ′, π′) be probabilistic traces. Then, (ρ, π) · (ρ′, π′) denotes their
concatenation, that is, (ρ · ρ′, π · π′). ��

Next we define how to extract traces from PFSMs and PLTSs. First, we consider
the reflexive and transitive closure of the transition relation, and we call it gen-
eralized transition. Then, probabilistic traces are constructed from generalized
transitions by considering their sequences of actions and probabilities.

Definition 5. Let M be a PFSM. We inductively define the generalized transi-
tions of M as follows:

– If s ∈ S then s
ε==⇒ ε s is a generalized transition of M .

– If s ∈ S, s
ρ

==⇒ π s′, and s′
i/o−−−−→ p s1 then s

ρ·i/o
===⇒ π·〈p〉 s1 is a generalized

transition of M .

We say that (ρ, π) is a probabilistic trace of M if there exists s ∈ S such that
s0

ρ
==⇒ π s. In addition, we say that ρ is a trace of M . The sets pTr(M) and

tr(M) denote the sets of probabilistic traces and traces of M , respectively. ��

The previous notions can be defined for PLTSs. In order to obtain sequences
of paired inputs and outputs, traces begin and end at input states; generalized
transitions are constructed by taking pairs of consecutive PLTS transitions.

Definition 6. Let M be a PLTS. We inductively define the generalized transi-
tions of U as follows:

– If s ∈ SI then s
ε==⇒ ε s is a generalized transition of U .

– If s ∈ SI , s
ρ

==⇒ π s′, and s′ i−−→ p s′′ o−−→ s1 then s
ρ·i/o

===⇒ π·〈p〉 s1 is a
generalized transition of U .

We say that (ρ, π) is a probabilistic trace of U if there exists s ∈ SI such that
s0

ρ
==⇒π s. In addition, we say that ρ is a trace of U . We define the probability

of U to stop after ρ, denoted by stopU (ρ), as stop(s). The sets pTr(U) and
tr(U) denote the set of probabilistic traces and traces of U , respectively. ��

Customized Testing for Probabilistic Systems 93

2.1 Definition of a Hypothesis Contrast: Pearson’s χ2

In this paper we consider Pearson’s χ2 contrast but other contrasts could be
used. The mechanism is the following. Once we have collected a sample of size
n we perform the following steps:

– We split the sample into k classes covering all the possible range of values. We
denote by Oi the observed frequency in class i (i.e., the number of elements
belonging to the class i).

– We calculate, according to the proposed random variable, the probability pi

of each class i. We denote by Ei the expected frequency of class i, that is,
Ei = npi.

– We calculate the discrepancy between observed and expected frequencies
as X2 =

∑n
i=1

(Oi−Ei)2

Ei
. When the model is correct, this discrepancy is

approximately distributed as a χ2 random variable.
– The number of freedom degrees of χ2 is k − 1. In general, this number is

equal to k − r − 1, where r is the number of parameters of the model which
have been estimated by maximal likelihood over the sample to estimate the
values of pi. In our framework we have r = 0 because the model completely
specifies the values of pi before the samples are observed.

– We will accept that the sample follows the proposed random variable if the
probability to obtain a discrepancy greater than or equal to the detected
discrepancy is high enough, that is, if X2 < χ2

α(k−1) for some α high enough.
Actually, as such margin to accept the sample decreases as α increases, we
can obtain a measure of the validity of the sample as max{α|X2 ≤ χ2

α(k−1)}.

According to the previous steps, next we present an operative definition of
the function γ that was introduced in Definition 1. We will consider two sets
of events A and A′, with A ⊆ A′. The set A gives the domain of the random
variable ξ, while the events denoted by H belong to A′. If the sample includes
any event a that is not considered by the random variable (i.e., a �∈ A) then the
sample cannot be generated by the random variable and the minimal feasibility,
that is 0, is returned. Otherwise, we return the maximal feasibility α such that
the hypothesis contrast is passed.

Definition 7. Let A and A′ be sets of events, with A ⊆ A′, and H be a sample
of elements belonging to A′. Let ξ : A → (0, 1] be a random variable. We define
the confidence of ξ on H , denoted by γ(ξ, H), as follows:

γ(ξ, H) =
{

0 if H ∩ Ā �= ∅

max{α | X2
ξ ≤ χ2

α(k − 1)} otherwise

where X2
ξ denotes the discrepancy level of the sample H on ξ, calculated as

explained above by considering that the sampling space is A. ��

3 Tests and Composition of Machines

In this section we define our tests as well as the interaction between the notions
introduced in the previous section (PFSMs and PLTSs). As we said before, we will

94 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

use PLTSs to define the behavior of the external environment of a system, that
is, a user model. Moreover, PLTSs are also appropriate to define the tests we will
apply to an IUT. Tests are PLTSs fulfilling some additional conditions. Basically,
a test defines a finite sequence of inputs that can be interrupted depending on
the outputs produced by the IUT as response: If one of the expected outputs
is received then the next input is applied, otherwise the interaction with the
IUT finishes. Since tests consider a single sequence of inputs, each intermediate
input state of the sequence contains a single outgoing transition labeled by the
next input and probability 1. Output states offer transitions with different out-
puts. Only one of the input states reached by these transitions offers a (single)
transition; the interaction finishes in the rest of them.

Definition 8. A test T = (SI , SO, I, O, δ, s0) is a PLTS such that for all s ∈ SI

there is at most one transition s i−−→ p s′ (so, in this transition p = 1), and for
all s ∈ SO there is at most one transition s o−−→ s′ with a continuation, that is,
|{s′′ | ∃ i ∈ I, o ∈ O, s′′′ ∈ SO, p ∈ (0, 1] : s o−−→ s′′ i−−→p s′′′}| ≤ 1. ��

Let us note that, contrarily to other frameworks, tests are not provided with di-
agnostic capabilities on their own. In other words, tests do not have fail/success
states. Since our framework is probabilistic, the requirements defined by spec-
ifications are given in probabilistic terms. Moreover, the absence of transitions
labeled by specific outputs in specification states is considered in probabilistic
terms as well: If there exists a state s, an input i, and an output o such that

there do not exist p, s′ with s
i/o−−−−→p s′ then we consider that the probability of

producing o in the state s after receiving the input i is 0. As we will see in the
next section, deciding whether the IUT conforms to the specification will also be
done in probabilistic terms. In particular, we will consider whether it is feasible
that the IUT behaves as if it were defined as the specification indicates. We will
check this fact by means of a suitable hypothesis contrast.

Our testing methodology consists in testing the behavior of a system under
the assumption that it is stimulated by a given user model. Thus, the sequences
we use to stimulate it, that is, the tests, will be extracted from the behavior of the
user model. Next we show how a test is constructed from a probabilistic trace of
a user model. The input and output states of the test are identified with natural
numbers. All the input states (but the first and last ones) are also endowed with
an output action. In order to distinguish between input and output states we
decorate them with • and �, respectively.

Definition 9. Let ρ = (i1/o1, i2/o2, . . . , ir/or) be a trace, I be a set of input
actions such that {i1, . . . ir} ⊆ I, and O be a set of output actions such that
{o1, . . . , or} ⊆ O. We define the associated test to ρ, denoted by assoc(ρ), as
the test (SIT , SOT , I, O, δT , 0•), where

– SIT = {0•, r•} ∪ {(j, o)•|o ∈ O, 1 ≤ j < r} and SOT = {j�|1 ≤ j ≤ r}.

– For all 1 ≤ j < r, o ∈ O: (j, oj)•
ij+1−−−−→ 1 (j + 1)� , j� o−−→ (j, o)• ∈ δT . We

also have 0• i1−−→1 0� , r� or−−→ r• ∈ δT .

Customized Testing for Probabilistic Systems 95

U

i1,
1
2 i2,

1
4 i3,

1
4

S

i1/o1, 1

i2/o2,
1
2 i2/o1,

1
2

Fig. 1. Normalization if composition of PFSMs and PLTSs

Let U be a PLTS. The set of associated tests to U , denoted by assoc(U), is
the set of tests associated to its traces, that is {assoc(ρ) | ρ ∈ tr(U)}. ��

Next we define the composition of a PFSM (denoting either a specification or
an IUT) with a PLTS (denoting either a user model or a test) in terms of its
behavior, that is, in terms of traces and probabilistic traces. The set of traces is
easily computed as the intersection of the traces produced by both components.
In order to define the set of probabilistic traces, the ones provided by both
components are considered. For a given input/output pair i/o, the probability
of producing i will be taken from the corresponding transition of the PLTS, while
the probability of producing o as a response to i will be given by a transition
of the PFSM. Let us note that the states of a specification do not necessarily
define outgoing transitions for all available inputs, that is, specifications are
not necessarily input-enabled. So, a PFSM representing a specification could not
provide a response for an input produced by a PLTS. Since the specification does
not define any behavior in this case, we will assume that the PFSM is allowed
to produce any behavior from this point on. The composition of a PLTS and a
PFSM will be constructed to check whether the traces defined by the specification
are correctly produced by the implementation (under the assumption that these
machines are stimulated by the user model). Hence, undefined behaviors will
not be considered relevant and will not provide any trace to the composition of
the PLTS and the PFSM. In order to appropriately represent the probabilities of
the relevant traces, their probabilities will be normalized if undefined behaviors
appear. We illustrate this process in the following example.

Example 1. Let us suppose that a user model can produce the inputs i1, i2, and
i3 with probabilities 1

2 , 1
4 and 1

4 , respectively (see Figure 1, left). At the same
time, the corresponding specification provides outgoing transitions with inputs
i1 and i2, but not with i3 (see Figure 1, right). Since the specification does
not define any reaction to i3, the probabilities of taking inputs i1 or i2 in the
composition of the specification and the user model are normalized to denote
that i3 is not considered. So, the probability of i1 becomes 1/2

3/4 = 2
3 while the

probability of i2 is 1/4
3/4 = 1

3 . ��

Definition 10. Let M = (SM , I, O, δM , s0M) be a PFSM and let us consider a
PLTS U = (SIU , SOU , I, O, δU , s0U) such that s0M

ρ
==⇒π1 s1 and s0U

ρ
==⇒π2 s2.

We define:

96 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

– The sum of the probabilities of continuing together after ρ as

contM‖U(ρ) =
∑

{

p

∣
∣
∣
∣
∣

∃i ∈ I, o ∈ O, s′2 ∈ SOU , s′1 ∈ SM , r ∈ (0, 1] :

s2
i−−→p s′2 ∧ s1

i/o−−−−→r s′1

}

– The normalization factor of M ‖ U after ρ as the sum of the previous prob-
ability plus the probability of U to stop after ρ, that is normM‖U(ρ) =
contM‖U(ρ) + stopU (ρ). ��

Definition 11. Let M = (SM , I, O, δM , s0M) be a PFSM and let us consider a
PLTS U = (SIU , SOU , I, O, δU , s0U). The set of traces generated by the compo-
sition of M and U , denoted by tr(M ‖ U), is defined as tr(M) ∩ tr(U). The
set of probabilistic traces generated by the composition of M and U , denoted by
pTr(M ‖ U), is defined as the smallest set such that

– (ε, ε) ∈ pTr(M ‖ U).

– If we have that (ρ, π) ∈ pTr(M ‖ U), s0M
ρ

==⇒ π1 s′1
i/o−−−−→ p1 s1, and

s0U
ρ

==⇒ π2 s′2
i−−→ p2 s′′2

o−−→ s2, then (ρ · i/o, π · 〈p〉) ∈ pTr(M ‖ U), where
p is the product of p1 and p2 normalized with respect to the normalization
factor of M ‖ U after ρ, that is, p = p1·p2

normM‖P(ρ) . ��

Let us remark that the probabilistic behavior of the traces belonging to the
composition of PFSMs and PLTSs is completely specified: The probabilities of
inputs are provided by the PLTS while the probabilities of outputs are given by
the PFSM. So, a random variable denoting the probability of each trace produced
by the composition can be constructed. Moreover, the composition of the spec-
ification and the user model provides a source to randomly generate tests. In
fact, tests are constructed by following a specific sequence of inputs and outputs
of the user model. Hence, the random selection of tests can be represented by
a random variable associating tests with the probability that the probabilistic
trace guiding the test is taken in the composition of the specification and the
user model.

Definition 12. Let M = (SM , I, O, δM , s0M) be a PFSM and let us consider a
PLTS U = (SIU , SOU , I, O, δU , s0U). We define the traces random variable of the
composition of M and U as the function ξM‖U : tr(M ‖ U) −→ (0, 1] such that
for all (ρ, π) ∈ pTr(M ‖ U) we have ξM‖U (ρ) =

∏
π ∗ (1 − stopU (ρ)).

Let T = {T | ρ ∈ tr(M ‖ U) ∧ T = assoc(ρ)}. We define the tests random
variable of the composition of M and U as the function ζM‖U : T −→ (0, 1]
such that for all test T ∈ T we have ζM‖U (T) = p iff (ρ, π) ∈ pTr(U), (ρ, π′) ∈
pTr(M), T = assoc(ρ), and p =

∏
π ∗

∏
π′ ∗ (1 − stopU (ρ)). ��

Let us note that the sum of the probabilities of all traces may be strictly less
than 1. This is because random variables have to take into account some events
that are not directly considered in the traces: The choice of a user to stop in a
state. Next we identify some properties of our framework.

Customized Testing for Probabilistic Systems 97

Proposition 1. Let S be a PFSM, U be a PLTS, (ρ, π) ∈ pTr(U), and T =
assoc(ρ). The following properties hold:

– tr(T) ⊆ tr(U) and tr(S ‖ T) ⊆ tr(S ‖ U).
– if (ρ, π′) ∈ pTr(S ‖ T) then (ρ, π · π′) ∈ pTr(S ‖ U).
– tr(U) =

⋃
{tr(T) | T ∈ assoc(U)}.

– tr(S ‖ U) =
⋃

{tr(S ‖ T) | T ∈ assoc(U)}. ��

4 Probabilistic Relations

In this section we introduce our probabilistic conformance relations. Following
our user customized approach, they relate an IUT and a user model with a
specification and the same user model. These three elements will be related
if the probabilistic behavior shown by the IUT when stimulated by the user
model appropriately follows the corresponding behavior of the specification. In
particular, we will compare the probabilistic traces of the composition of the IUT
and the user with those corresponding to the composition of the specification
and the user. Let us remind that IUTs are input-enabled but specifications might
not be so. So, the IUT could define probabilistic traces including sequences of
inputs that are not defined in the specification. Since there are no specification
requirements for them, these behaviors will be ignored by the relation. In order
to do it, an appropriate subset of the traces of the composition of the IUT and
the user must be taken. In the following relation, we require that the probabilities
of the corresponding traces are exactly the same in both compositions. Later we
will see another relation where, due to practical reasons, this requirement will
be relaxed.

Definition 13. Let S, I be PFSMs, U be a PLTS, and s0S , s0I , and s0U be their
initial states, respectively. We define the set of probabilistic traces generated by
the implementation I and the user model U modulo the specification S, denoted
by pTr(I ‖ U)S , as the smallest set such that:

– (ε, ε) ∈ pTr(I ‖ U)S .
– If (ρ, π) ∈ pTr(I ‖ U)S and we have the following sequences of transitions:

• s0U
ρ

==⇒π2 s′1
i−−→p2 s′′1

o−−→ s1, and

• s0I
ρ

==⇒π1 s′2
i/o−−−−→p1 s2,

• s0S
ρ

==⇒π3 s′3
i/o−−−−→p3 s3,

then (ρ · i/o, π · 〈p〉) ∈ pTr(I ‖ U)S , where p is the product of p1 and p2
normalized with respect to the normalization factor of S ‖ U after ρ, that is
p = p1·p2

normS‖U (ρ) .

Let S, I be PFSMs and U be a PLTS. We say that I conforms to S with respect
to U , denoted by I confU S, if pTr(I ‖ U)S = pTr(S ‖ U). ��

Although the previous relation properly defines our probabilistic requirements,
it cannot be used in practice because we cannot read the probability attached

98 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

to a transition in a black-box IUT. So, a more applicable version of the rela-
tion is required. Let us note that even though a single observation does not
provide valuable information about the probability of an IUT trace, an approx-
imation to this value can be calculated by interacting a high number of times
with the IUT and analyzing its reactions. In particular, we can compare the
empirical behavior of the IUT with the ideal behavior defined by the specifica-
tion and check whether it is feasible that the IUT would have behaved like this
if, internally, it were defined conforming to the specification. Depending on the
empirical observations, this feasibility may be different. The feasibility degree
of a set of samples with respect to its ideal probabilistic behavior (defined by
a random variable) will be provided by a suitable contrast hypothesis. We will
rewrite the previous relation in these terms. The new relation will be parame-
terized by two values: The samples collected by means of interactions with the
IUT and a feasibility threshold. Then, by using an indirect approach, the new
relation will impose the same probabilistic constraints as the relation defined
before.

We must establish the way samples are collected. First, we generate the tests
associated to the user model U and then we let these tests to interact with
the IUT. Then, we must check if the obtained sample conforms to the ran-
dom variable corresponding to the user and the specification, that is, ξS‖U , as
introduced in Definition 12. This last point will be done via the hypothesis con-
trast. We will require that the feasibility of the hypothesis contrast reaches a re-
quired threshold. Before we present the new relation, we introduce the notion of
sampling.

Definition 14. Let M be a PFSM and U be a PLTS. We say that a sequence
〈ρ1, ρ2, . . . , ρn〉 is a trace sample of M ‖ U if it is generated by ξM‖U . We say
that a sequence 〈T1, T2, . . . Tn〉 is a test sample of M ‖ U if it is generated by
ζM‖U . Let 〈T1, T2, . . . Tn〉 be a test sample of M ‖ U . We say that a sequence
〈ρ1, ρ2, . . . , ρn〉 is a trace-test sample of M ‖ U if for all 1 ≤ i ≤ n we have that
ρi is the result of a probabilistic execution of M ‖ Ti. ��

Next we introduce the new conformance relation defined in probabilistic terms.
As before, we will ignore any implementation behavior involving sequences of
inputs not considered by the specification. This will be done by removing them
from the trace-test sample we use to compare the IUT and the specification. In
the next definition, HS represents the sequence of traces resulting after removing
those traces from the original trace-test sample H .

Definition 15. Let S be a PFSM and H = 〈ρ1, ρ2, . . . , ρn〉 be a sequence of
traces. HS denotes the sub-sequence 〈ρr1, ρr2, . . . , ρrn〉 of H that contains all
the probabilistic traces whose input sequences can be produced by S, that is,
ρ = (i1/o1, . . . im/om) ∈ HS iff ρ ∈ H and there exist o′1, . . . o

′
n ∈ O such that

(i1/o′1, . . . im/o′m) ∈ tr(S).
Let S and I be PFSMs, U be a PLTS, H = 〈ρ1, ρ2, . . . , ρn〉 be a trace-test

sample of I ‖ U , and 0 ≤ α ≤ 1. We write S conf(H,α) I if γ(ξS‖U , HS) ≥ α. ��

Customized Testing for Probabilistic Systems 99

5 Upper Bound of Probability of Failure for a User

In this section we provide an alternative measure of the correctness of an IUT.
Similarly to the conformance relation given in Definition 15, it will be calcu-
lated by using a sample collected from the interaction with the IUT. This mea-
sure is an upper bound of the probability that the user obtains from the IUT
a trace whose probabilistic behavior is wrong with respect to the specification.
That is, it provides an upper bound of the probability of finding an error in
the IUT. Since this measure will be computed from a specific sample, it will
also be parameterized by a feasibility degree α. We assess the measure as we
sketched in the introduction: From a given interaction sample with the IUT,
we consider the feasibility degree α that this sample was generated according
to the probabilistic behavior defined by the specification. Next we consider the
probability of producing a behavior that is not included in the sample. Since
we can assume that the probabilities of the traces in the sample are correct
with feasibility α, we can use these probabilities to compute the probability of
producing any other trace by adding the probabilities of all traces in the sam-
ple and by considering the complementary probability. Then, we consider the
worst case of these traces, that is, we suppose that the probabilistic behavior
of all of them is wrong. Hence, we obtain an upper bound of the probability
that the user interacts with the IUT and observes a trace whose propensity is
not that given by the specification (with feasibility α). First, we define the pre-
fixes of a probabilistic trace that will allow to structure samples in a suitable
form.

Definition 16. Let (ρ, π) = ((i1/o1, . . . , in/on), 〈p1, . . . , pn〉) be a probabilistic
trace. We say that a probabilistic trace (ρ′, π′) is a prefix of (ρ, π) if either (ρ′, π′) =
(ε, ε) or (ρ′, π′) = ((i1/o1, . . . , ij/oj), 〈p1, . . . , pj〉), for some 1 ≤ j ≤ n. We denote
by prefix(ρ, π) the set of all prefixes of the probabilistic trace (ρ, π). ��

Let us consider a finite set of probabilistic traces such that all their prefixes are
also included in the set. In fact, if these traces are a sample produced by the
IUT then we can represent our knowledge about the IUT by means of a suitable
machine producing these traces. Since we assume that the IUT does not have
non-observable non-determinism, if two observed samples share a common prefix
then we can consider that the common parts of both traces traverse the same
path of states in the IUT. This fact can be reflected in the machine we construct
by making both traces to share the same states until they diverge. Besides, let
us note that we cannot detect whether a loop of states is taken in the IUT during
our interaction with it, since we consider that the IUT is a black box. So, the
machine representing our knowledge about the IUT, extracted from a sample,
will be a tree: All traces in the sample depart from the initial state and traces
share paths while they traverse common prefixes.

Definition 17. Let tr be a prefix-closed set of probabilistic traces. We say that
tr is a probabilistic tree if the following conditions hold:

100 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

– The nodes of the tree are labeled by probabilistic traces belonging to tr.
– The arcs between nodes are labeled by pairs (i/o, p), where i is an input, o is

an output, and p is a probability. There exists an arc between two nodes (ρ, π)

and (ρ′, π′), denoted by (ρ, π)
i/o−−−−→p (ρ′, π′), if (ρ′, π′) = (ρ · (i/o), π · 〈p〉).

– For each node (ρ, π), the probabilities of all the outgoing arcs is less than or

equal to 1, that is, L =
∑

{p | ∃ i, o, p : (ρ, π)
i/o−−−−→p (ρ · (i/o), π · 〈p〉)} ≤ 1.

Hence, the probability of stopping in (ρ, π) is given by stopπ(ρ) = 1 − L.
– The probability of reaching a node (ρ, π) is equal to

∏
π. ��

After a sample of traces H is extracted from the IUT, the conf(H,α) relation
given in Definition 15 allows to check whether the feasibility that H is produced
by the specification is at least α. If this is the case then we can construct a set
of probabilistic traces from H by attaching each trace in H with the probability
given in the specification for that trace. The feasibility that the probabilities we
attach are actually correct is equal to α. Then, the probabilistic tree representing
this set shows, with feasibility α, the behavior of the IUT regarding the traces
belonging to H . In order to compute the upper bound of the error probability,
we will consider that any trace leaving this tree behaves incorrectly. We will
identify these traces by considering a higher tree denoting all the traces that can
be produced, not only those we observed in the sample. Then, the probability of
producing any unobserved trace will be computed by considering the probability
of performing a trace that leaves the lower tree. This probability is computed
by adding the probabilities of all the traces reaching the border of the lower tree
and performing an additional transition to leave it.

Definition 18. Let tr1 and tr2 be probabilistic trees such that tr1 ⊆ tr2 and
tr1 is finite. The probability of reaching tr2 from tr1, denoted by rch(tr1, tr2), is
defined as

∑
{(1−stopπ(ρ))∗

∏
π |(ρ, π) maximal probabilistic trace in tr1}. ��

The higher tree tr2 will be given by the set of probabilistic traces that are
produced by the composition of the specification and the user model. This tree is
used to compute the probability of leaving the lower tree. In particular, only the
probabilities of transitions departing from leaves of the lower tree are considered.
The following result shows how higher trees can be constructed.

Proposition 2. Let S be a PFSM and U be a PLTS. We have that the set of
probabilistic traces pTr(S ‖ U) is a probabilistic tree. Moreover, there exists an
arc labeled by (i/o, p) between two nodes (ρ, π) and (ρ · (i/o), π · 〈p〉) iff we have

the sequences s0S
ρ

==⇒π1 s1
i/o−−−−→p1 s′1 and s0U

ρ
==⇒π2 s2

i−−→ p2 s′2, where p is
the normalized product of p1 and p2 after ρ, that is, p = p1·p2

normS‖U (ρ) . ��

Next we show how the lower tree is created. A tree containing the traces of a
given sample is constructed by considering both the sample and the composition
of the specification and the user model. Let us note that, despite the sample
being produced by the interaction with the implementation, the probabilities of
traces will be taken from the specification. Let us also note that we will be able

Customized Testing for Probabilistic Systems 101

to do this if the sample passes the hypothesis contrast that compares it with the
behavior of the specification. This hypothesis contrast is implicitly applied by
the relation conf(H,α).

Definition 19. Let S, I be PFSMs such that S conf(H,α) I, U be a PLTS and
H = 〈ρ1, ρ2, . . . , ρr〉 be a trace-test sample of I ‖ U . The probabilistic tree of H ,
denoted by pTree(H), is defined as

⋃
ρ∈H, (ρ,π)∈pTr(S‖U) prefix(ρ, π). ��

Due to the way probabilistic trees are constructed from implementations, spec-
ifications, and user models, the following result holds.

Proposition 3. Let S and I be PFSMs, U be a PLTS, and H = 〈ρ1, ρ2, . . . , ρn〉
be a trace-test sample of I ‖ U such that S conf(H,α) I. We have that pTree(H)
is finite and pTree(H) ⊆ pTr(S ‖ U). ��

Now we are provided with all the needed machinery to define the upper bound
of the probability that a user interacting with the IUT observes a probabilistic
behavior that does not conform to the specification.

Definition 20. Let S and I be PFSMs, U be a PLTS, and H = 〈ρ1, ρ2, . . . , ρn〉 be
a trace-test sample of I ‖U such that S conf(H,α) I. The upper bound of the prob-
ability that the user U observes a wrong probabilistic behavior in I with feasibility
α, denoted by wrong(U, I, α), is given by rch(pTree(H), pTr(S ‖ U)). ��

6 Conclusions and Future Work

In this paper we have presented a probabilistic testing methodology that allows
to consider user models. On the one hand, by applying user models, we can
focus on testing a specific critical behavior. On the other hand, since we explicitly
consider the propensity of each non-deterministic choice of systems, we can study
systems not only on the basis of what they do but also on how often they
do it. Since actual probabilities cannot be extracted from a black-box system,
the probabilistic behavior of implementations and specifications is compared
by means of suitable hypothesis contrasts. In addition, the combination of user
models and the probabilistic approach allows to compute a relevant measure that
cannot be computed in other frameworks: For a given feasibility degree, we can
provide an upper bound of the probability of finding an error in the IUT. After a
finite test suite is applied to an IUT, this measure allows to assess how confident
we are the IUT is correct. Moreover, it implicitly provides a method to evaluate
the quality of a test suite to evaluate an IUT with respect to a specification: If
a given test suite is passed and it provides a lower upper bound (or an upper
bound with a higher feasibility) than another suite that is also passed, then the
former suite is preferred.

As future work, we plan to extend our framework to deal with symbolic proba-
bilities that allow to denote ranges of probabilities instead of fix probabilities [5].
Besides, we will also introduce stochastic temporal delays to denote the time con-
sumed by actions, that is, temporal delays defined in probabilistic terms [9].

102 L.F. Llana-Díaz, M. Núñez, and I. Rodríguez

Acknowledgements. We would like to thank the anonymous referees of this
paper for their suggestions and valuable comments.

References

1. D. Cazorla, F. Cuartero, V. Valero, F. Pelayo, and J. Pardo. Algebraic theory
of probabilistic and non-deterministic processes. Journal of Logic and Algebraic
Programming, 55(1–2):57–103, 2003.

2. I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In CONCUR’90, LNCS 458, pages 126–140. Springer, 1990.

3. R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for proba-
bilistic processes. Information and Computation, 154(2):93–148, 1999.

4. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
5. N. López, M. Núñez, and I. Rodríguez. Specification, testing and implementation

relations for symbolic-probabilistic systems. Theoretical Computer Science, 353(1–
3):228–248, 2006.

6. R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

7. M. Núñez. Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming, 56(1–2):117–177, 2003.

8. M. Núñez and I. Rodríguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1–16. Springer, 2002.

9. M. Núñez and I. Rodríguez. Towards testing stochastic timed systems. In FORTE
2003, LNCS 2767, pages 335–350. Springer, 2003.

10. M. Núñez and D. de Frutos. Testing semantics for probabilistic LOTOS. In Formal
Description Techniques VIII, pages 365–380. Chapman & Hall, 1995.

11. K. Sayre. Usage model-based automated testing of C++ templates. In Interna-
tional Conference on Software Engineering. Proceedings of the first international
workshop on Advances in model-based testing, pages 1–5. ACM Press, 2005.

12. R. Segala. Testing probabilistic automata. In CONCUR’96, LNCS 1119, pages
299–314. Springer, 1996.

13. M. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic automata.
In ICALP 2003, LNCS 2719, pages 464–477. Springer, 2003.

14. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware – Concepts and Tools, 17(3):103–120, 1996.

15. G.H. Walton, J.H. Poore, and C.J. Trammell. Statistical testing of software based
on a usage model. Software - Practice & Experience, 25(1):97–108, 1995.

16. J.A. Whittaker and J.H. Poore. Markov analysis of software specifications. ACM
Transactions on Software Engineering and Methodology, 2(1):93–106, 1993.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 103 – 117, 2006.
© IFIP International Federation for Information Processing 2006

Generating Test Cases for Web Services Using Extended
Finite State Machine

ChangSup Keum1, Sungwon Kang2, In-Young Ko2,
Jongmoon Baik2, and Young-Il Choi1

1 BcN Research Division,
Electronics and Telecommunications Research Institute

{cskeum, yichoi}@etri.re.kr
2 School of Engineering,

Information and Communications University
{kangsw, iko, jbaik}@icu.ac.kr

Abstract. Web services utilize a standard communication infrastructure such as
XML and SOAP to communicate through the Internet. Even though Web ser-
vices are becoming more and more widespread as an emerging technology, it is
hard to test Web services because they are distributed applications with numer-
ous aspects of runtime behavior that are different from typical applications. This
paper presents a new approach to testing Web services based on EFSM (Ex-
tended Finite State Machine). WSDL (Web Services Description Language) file
alone does not provide dynamic behavior information. This problem can be
overcome by augmenting it with a behavior specification of the service. Rather
than domain partitioning or perturbation techniques, we choose EFSM because
Web services have control flow as well as data flow like communication proto-
cols. By appending this formal model of EFSM to standard WSDL, we can
generate a set of test cases which has a better test coverage than other methods.
Moreover, a procedure for deriving an EFSM model from WSDL specification is
provided to help a service provider augment the EFSM model describing dy-
namic behaviors of the Web service. To show the efficacy of our approach, we
applied our approach to Parlay-X Web services. In this way, we can test Web
services with greater confidence in potential fault detection.

1 Introduction

A Web service is any service available on the Internet that uses a standardized XML
messaging system and is not tied to a operating system or programming language. In
other words, Web service is a collection of components that are wrapped with SOAP
(Simple Object Access Protocol) interfaces so they can exchange XML-based (Extensi-
ble Markup Language) messages [1]. Using Web Services, companies can integrate ex-
isting business applications into new and innovative business applications, publish them
as services, discover and subscribe to other services, and exchange information [2].

Some testing techniques that are used to test software components are being
extended to Web services. A few papers have presented testing techniques for Web
services, but the dynamic discovery and invocation capabilities of Web services bring
up many testing issues. Existing Web service testing methods try to take advantage of

104 C. Keum et al.

syntactic aspects of Web service rather than semantic, dynamic, and behavioral in-
formation because standard WSDL is not capable of containing such information.
Therefore, they focused on testing of single operations rather than testing sequences of
operations. Furthermore, they heavily rely on the test engineers’ experience.

 In this paper, we propose a new approach to test Web services. This idea stems from
similarities between communication protocol testing and stateful Web services testing.
Web services can be either stateless or stateful. Stateful Web services have several
operations which affect the service’s state that are used by other operations. Operations
in stateless Web service do not change the service’s internal states. Each operation in
Web services has a request and response message with parameters. It is hard to test such
Web services because they are distributed applications with numerous runtime be-
haviors that are different from typical applications. Service consumers usually have to
use black-box testing because specifications are available but design and implementa-
tion details of Web services are not available. The specification is written in WSDL
(Web Services Description Language). Unfortunately, current WSDL does not contain
sufficient information for a consumer to test the available Web services. Although a
few technologies exist to verify syntactic aspects of the interactions, it is very difficult
to find out whether Web services behave correctly with all possible messages.

Specifically, protocol testing and Web services testing both require to perform some
message exchanges and to analyze the result. Furthermore, it is more important to test
sequences of messages than to test of single message. Also these two testing methods
are basically based on the black-box approach. In black-box testing, specification has a
strong influence on testing. Stateful Web services have reactive characteristics similar
to communication protocols; therefore specification languages for Web services are
favored which precisely define the temporal ordering of interactions. FSM (Finite State
Machine) model is often used for defining the temporal order of interaction. However,
the FSM model is often too restrictive for defining all aspects of a Web service speci-
fication because a Web service has input and output messages with data parameters. In
contrast with FSM, EFSM [3] includes additional variables, input and output events
including parameters. It consists of transitions which are characterized by a so-called
enabling predicate and a transition action. Therefore an extended FSM model seems to
be a very promising model for describing Web services behaviors.

We utilize the EFSM model to test Web services. Since current WSDL does not
contain sufficient information for a test engineer to test the available Web services,
temporal ordering information is added to describe Web services behaviors. EFSM
(Extended Finite State Machine) is well suited for describing Web services behavior
because it has the control part of the specification represented by pure FSM model and
the data part represented by the transition predicates and actions.

There are many benefits to constructing test cases on the basis of a formal model
specification such as EFSM. The benefits arise from the ability to precisely describe
and reason about potential faults. In particular, it means that test can be applied uni-
formly, with greater confidence in their fault detecting potential, and with the possi-
bility of full automation. Using an EFSM formal specification for a Web service, we
can generate test cases from the specification automatically if we are equipped with an
appropriate tool set such as EFSM analyzer, test case generator, and monitor.

The remainder of the paper is organized as follows. After reviewing existing Web
service testing methods in Section 2, we present a procedure from a WSDL specifica-
tion to an EFSM model and introduce test case generation algorithm using EFSM in

 Generating Test Cases for Web Services Using Extended Finite State Machine 105

Section 3. An application example is provided to show the efficiency of our method in
Section 4. We conclude the paper with a discussion of future work in Section 5.

2 Related Works

In this section, we review various methods for test cases generation for Web services
and discuss drawbacks of existing Web service testing.

Heckel and Mariani [4] generate test cases for Web services with individual rules by
selecting “likely” inputs. Possible inputs are further restricted by the preconditions of
the GT (graph transformation) rules [5]. This suggests the derivation of test cases using
a domain-based strategy, known as partition testing [6]. The idea is to select test cases
by dividing the input domain into subsets and choosing one or more elements from each
domain [7]. The execution of an operation can alter parts of service’s state that are used
by other operations. GT rules specify state modifications at a conceptual level. By
analyzing these rules we can understand dependencies and conflicts between opera-
tions without inspecting their actual implementation. In this method, data-flow testing
technique is used to test the interaction among production rules if creation of nodes and
edge is interpreted as “definition” and deletion as “use” [8]. Conceptually, each op-
eration (rule) can add or remove nodes and edges to or from the conceptual state, and
change the values of attributes. Authors expect sequences of operations, which include
the creation of an entity and its subsequent uses are likely to expose (state-based) fault.

In short, this method applies existing domain-based testing (partitioning testing) to
the GT rules to generate test cases which cover validation of both single operation and
sequences. The major problem of this method is that the definition of GT rules does not
contain the temporal aspects (control flow) of message interactions. This method only
considers data-flow to generate test cases for sequences of operations. This means that
[4] has no test criteria for control flow. Furthermore, splitting the input domain into
subsets relies on the tester’s experience. This could cause non-uniform and biased tests
for Web services.

In the paper [9], data perturbation is used as main method for testing Web service
components. The testing process operates by modifying request messages, retransmit-
ting messages, and analyzing the response messages for correct behavior. To do this
process, value data perturbation modifies values in SOAP messages in terms of the
types of the data. Data value perturbation relies on ideas from boundary value testing
[10]. Test cases are derived from default boundary values of XML schemas. Tests are
created by replacing each value with each boundary value, in turn, for appropriate type.

Concisely, the authors present a new approach to testing Web services based on data
perturbation. Data perturbation uses two methods to test Web services: data value
perturbation and interaction perturbation. However, this approach relies strictly on
syntactic information about the XML messages, does not use behavior information.
They consider only the selection of appropriate input parameter values. The sequences
of operations in Web service are not considered. They just focus on testing of single
operation of Web service.

Li et al. [11] provide some techniques for various kinds of Web Services testing such
as unit testing, functional testing, performance testing, Load/stress testing, security
testing and authorization testing. They provide detailed information on the key aspects
of Web service testing features related with performance, authorization, and security.

106 C. Keum et al.

Furthermore, they designed an automatic testing tool including SOAP-based log
analysis, script generator, recorder, and monitor. However, there is no detailed infor-
mation on the method of test cases generations in their paper.

In the paper [12], the authors propose a method of extending WSDL to describe
dependency information which is useful for Web service testing. They suggest several
extensions such as input-output dependency, invocation sequences, hierarchical func-
tional description, and concurrent sequence specification. Similar to [11], there is no
test case generation method and experimental data using the extension.

In summary, the existing Web service testing methods try to take advantage of syn-
tactic aspects of Web service rather than behavioral aspects of Web services because
standard WSDL does not contain such information. Therefore, they focused on the test
of single operations instead of sequences of operation. One of disadvantages using
those methods is that they rely on test engineer’s experience. This could lead to
non-uniform and biased testing. All these problems can be solved by augmenting be-
havior information to WSDL file. The behavior information holds control and data
dependencies of Web service operations because the information is represented as an
EFSM formal model. Using the augmented EFSM model, we can generate test cases
which cover control and data paths thoroughly. In the next section, we describe our
approach in detail.

3 Test Cases Generation for Web Services Using EFSM

In this section, we describe our test generation approach for Web services in detail. In
Section 3.1, we first give a procedure for deriving an EFSM model from a WSDL
specification of a service and illustrate the procedure with a banking Web service
example. Once an EFSM model is constructed, test cases can be generated easily us-
ing a well-known algorithm as described in Section 3.2.

3.1 Modeling Web Service with EFSM

A WSDL specification is used to describe how to access a Web service and what op-
erations it can perform. However, a WSDL specification does not provide sufficient
information for Web service test derivation because it only provides the interface for
the service. An EFSM starts from an initial state and moves from one state to another
through interactions with its environment. The EFSM model extends the FSM model
with variables, statements and conditions. An EFSM is a 6-tuple <S, s0, I, O, T, V>,
where S is a non-empty set of states, s0 is the initial state, I is an non-empty set of input
interactions, O is a non-empty set of output interactions, T is a non-empty set of tran-
sitions, and V is a set of variables. Each element of T is a 5-tuple of the form:
<source_state, dest_state, input, predicate, compute_block>, where “source state” and
“dest state” are states in S corresponding to the starting state and the target state of t,
respectively; “input” is either an input interaction from I or empty; “predicates” is a
predicate expressed in terms of variables in V, the parameters of the input interaction
and some constants, and “compute-block” is a computation block consisting of as-
signment and output statements. We will only consider deterministic EFSMs that are
completely specified. In addition, the initial state is always reachable from any state
with a given valid context.

 Generating Test Cases for Web Services Using Extended Finite State Machine 107

Is Web service
stateful?

Is Web service
stateful?

Step1: Analyze the WSDL and informal specification
and fill the WSDL analysis template

Step 2: Classify control and data variables and construct a state
machine based on the combination of control variables

Step 4: Supplement transitions using the operation information
in the WSDL analysis template

Use other Web service
test derivation methods

No

Yes

WSDL
Informal spec.

EFSM

Step 3: Adjust the state machine with state reduction and merging

Fig. 1. Procedure for deriving an EFSM model from a WSDL description of a service

Figure 1 presents our procedure for deriving EFSM model from a WSDL specifi-
cation. First of all, we have to decide whether the Web service to be modeled is stateful
or not. A Stateful Web service in general can be modeled as an EFSM. Stateful Web
service has several operations which change the service’s internal state that are used by
other operations. In that case, the operations may response with different output mes-
sages according to the internal state of Web service server. If the Web service is
stateless, then we have to use other Web service testing methods such as [4] and [9].
Otherwise, we continue with Steps 1 through 4.

Step 1). We analyze the WSDL specification and the web service specification in informal
language and fill the WSDL analysis template shown in Table 1. Each row of Table 1
describes an operation with its name, its parameter types and its return value type together
with its pre-condition and post-condition for each operation in WSDL specification.

For example, Table 2 shows the WSDL analysis template filled out for a banking
Web service. From WSDL description, we find out that the banking Web service pro-
vides four public operations, i.e. openAccount, deposit, withdraw, and closeAccount.
The operation openAccount expects a single parameter init which means an initial
deposit, and returns an account number identifier. The operation closeAccount expects
a single parameter id, which means account number, and returns the result of operation
such as ResultOK and Error. The operations deposit and withdraw expect two pa-
rameters id (identifier) and v(value), and return results such as ResultOK and Error. In
Table 2, value holds the balance of the bank account created by openAccount operation
and accountId means account number.

Step 2). To construct EFSM, it is necessary to classify variables in the pre-condition
and post-condition of Table 2 into control variables and data variables. Then a

108 C. Keum et al.

Table 1. WSDL analysis template

operation pre-condition post-condition
name:
parameter:
return:

… …

… … …

Table 2. WSDL analysis template for banking Web service

operation pre-condition post-condition
name: openAccount
parameter: init
return: identifier

init > 0
value’ = init
accountId > 0

name : deposit
parameter: id, v
return : res

accountId = id
v > 0

value’ = value + v
accountId > 0

name : withdraw
parameter: id, v
return : res

accountId = id
value >= v

value’ = value - v
accountId > 0

name : closeAccount
parameter: id
return : res

accountId = id
accountId = 0
¶ value’ = 0

Table 3. Classification of variables for banking Web service

operation pre-condition post-condition

control
variable

data
variable

control
variable

data
variable

name: openAccount
parameter: init
return: identifier

- init
accountId

value
init

name : deposit
parameter: id, v
return : res

accountId
v
id

value -

name : withdraw
parameter: id, v
return : res

accountId
value

v
id

value -

name : CloseAccount
parameter: id
return : res

accountId id
accountId

value
-

combination of different values of the control variables makes a state of the EFSM
under construction. For the banking Web service example, there are two control vari-
ables accountId and value. Table 3 presents the classification of variables for banking
Web service.

 Generating Test Cases for Web Services Using Extended Finite State Machine 109

Figure 2 shows an initial version of EFSM for the banking Web service. The states
are constructed by combining possible value range of control variables. The variable
accountId and value have two possible values: range 0 and greater than 0. If the control
variables have value 0, it means that it is not initialized yet. When the variable ac-
countId is initialized by openAccout operation, the variable has a value greater than 0
until it is closed by closeAccout operation. After initialization, the variable value keep a
balance greater than 0 according to the operation withdraw and deposit. Therefore, we
make four different states with combinations of the two control variables. Then we
associate transitions with the appropriate operations by examining the pre-condition
and post-condition of an operation.

value = 0
accountId = 0

value = 0
accountId = 0

value = 0
accountId > 0

value = 0
accountId > 0

value > 0
accountId = 0

value > 0
accountId = 0

value > 0
accountId > 0

value > 0
accountId > 0

openAccount closeAccount

deposit

withdraw

withdraw

Fig. 2. EFSM construction with control variables

Step 3). It is desirable to reduce states in the initial version of EFSM model because
first often the number of states would be otherwise huge and second there is a possi-
bility that unreachable states may exist. For example, the state with value >0 and ac-
countId = 0 is an unreachable state. Unreachable states should be deleted for the state
reduction. Some states could be merged into one state according to test engineer’s
judgment. Figure 3 gives an enhanced EFSM obtained by removing an unreachable
state and merging two states into a state named Active. For human readability, we as-
sign a meaningful name to each state.

Step 4). To make a concrete transition in EFSM, operation information in the WSDL
is used. An operation has input and output message. Input message is transformed into
input event and output message is transformed into output event in the transition.
Pre-condition is transformed into guard condition in the transition. Post-condition is
transformed into actions in the transition. Figure 4 shows our final EFSM model de-
rived from the WSDL specification for the banking Web service.

110 C. Keum et al.

InitialInitial

ActiveActive

openAccount

closeAccount

withdraw deposit

Fig. 3. Enhanced EFSM with state reduction and merging

InitialInitial

ActiveActive

t1: ?openAccount_Rq(init)
init > 0
value := init
!openAccount_Rp(accountId)

t2: ?deposit_Rq(id,v)
id == accountId
v > 0
value := value + v
!deposit_Rp(‘ResultOK’)

t3: ?withdraw_Rq(id,v)
id == accountId
value >= v
value := value - v
!withdraw_Rp(‘ResultOK’)

t4: ?closeAccount_Rq(id)
id == accountId
!closeAccount_Rp(‘ResultOK’)

Fig. 4. Final EFSM for banking Web service

3.2 Test Cases Generation Algorithm Using EFSM

In the paper [3], the authors provide a comparison of single EFSM-based test genera-
tion methods. We choose Bourhfir’s algorithm [13] as our test case generation method
for Web services because the algorithm considers both control and data flow with
better test coverage. The control flow criterion used is UIO (Unique Input Output)
sequence [14] and the data flow criterion is “all-definition-uses” criterion [15] where
all the paths in the specification containing a definition of a variable and its uses are

 Generating Test Cases for Web Services Using Extended Finite State Machine 111

generated. Moreover, the algorithm uses a technique called cycle analysis to handle
executability of test cases.

The detailed algorithm is described in Figure 5. For each state S in the EFSM, the
algorithm generates all its executable preambles (a preamble is a path such that its first
transition’s initial state is the initial state of the system and its last transition’s tail state
is S) and all its postambles (a postamble is a path such that its first transition’s start state
is S and its last transition’s tail state is the initial state). To generate the
“all-definition-uses” paths, the algorithm generates all paths between each definition of
a variable and each of its uses and verifies if these paths are executable, i.e., if all the
predicates in the paths are true. After the handling executability problem, the algo-
rithms removes the paths which is included in the already existing ones, completes the
remaining paths (by adding postambles) and adds paths to cover the transitions which
are not covered by the generated test cases.

Algorithm. Extended FSM Test Generation
Begin

Generate the dataflow graph G form the EFSM specification
Choose a value for each input parameter influencing the control flow
Call Executable-Du-Path-Generation(G) procedure
Remove the paths that are included in already existing ones
Add a postamble to each du-path to form a complete path
Make it executable for each complete path using cycle analysis
Add paths to cover the uncovered transitions
Generate its input/output sequence using symbolic evaluation

End.

Procedure Executable-Du-Path-Generation(flowgraph G)

Begin
Generate the shortest executable preamble for each transition
For each transition T in G

For each variable v which has an A-Use in T
For each transition U which has a P-Use or a C-Use of v

Find-All-Paths(T,U)
EndFor

EndFor
EndFor

End;

Fig. 5. Test case generation algorithm using EFSM

The following definitions that appeared in the paper [3] were used in the algorithm:

• A transition has an assignment-use (A-Use) of variable x, if x appears at the
left-hand side of an assignment statement in the transition.

• When a variable x appears in the input list of a transition, the transition is said to
have an input-use (I-Use) of variable x.

• A variable x is a definition (referred to as def), if x has an A-use or I-use.

112 C. Keum et al.

• When a variable x appears in the predicate expression of a transition (Provided
Clause), the transition has a predicate-use or P-Use of variable x.

• A transition is said to have a computational-use or C-use of variable x, if x occurs in
an output primitive or an assignment statement at the right-hand side.

• A path (t1,t2,…,tk,tn) is said to a def-clear-path with respect to (w.r.t) a variable x if
t2,…,tk do not contain defs of x.

• A path (t1,…,tk) is a Du-path (definition-uses) w.r.t a variable x, if x ∈ def (t1) and
either x ∈ c-use(tk) or x ∈ p-use(tk), and (t1,…,tk) is a def-clear-path w.r.t x from t1 to tk.

In Table 4 shows a part of test cases and test sequences without input parameters for
the EFSM in Figure 5.

Table 4. Test cases for the banking Web service

No Test Cases Input/Output Sequence
1 t1, t4 ?openAcount_Rq!openAccount_Rp

?closeAccountRq !closeAccount_Rp
2 t1,t2,t4 ?openAcount_Rq!openAccount_Rp

?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount_Rp

3 t1,t3,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp

4 t1,t3,t2,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount_Rp

5 t1, t2, t3, t4 ?openAcount_Rq!openAccount_Rp
?deposit_Rq!deposit_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp

4 Application to Parlay-X Web Services

To show that our method can be effectively used for nontrivial real world problems,
we applied it to Parlay-X Web services [16]. Parlay-X is a Web Services framework
for telecommunications domain. The architecture of the framework in which Parlay-X
Web services operate is shown in Figure 6. A Parlay-X Web service, Third Party
Call, is used to create and manage a call initiated by an application. The overall scope
of this Web service is to provide functions to application developers to create a call in
a simple way. Using the Third Party Call Web service, application developers can
invoke call handling functions without detailed telecommunication knowledge. The
Third Party Call Web service provides four operations: MakeCall, GetCallInforma-
tion, EndCall, and CancelCall.

For comparison, we generated test cases for the Third Party Call Web service
with three different methods, i.e. the method of Heckel et al [4], the method of
Offtutt et al [9] and finally our method. For the method of Heckel et al [4], we defined a

 Generating Test Cases for Web Services Using Extended Finite State Machine 113

domain based on GT production rules. Eight production rules for the four operations
were found. After that, we found attributes for each production rule. Test cases are
generated by fixing a boundary value for at least one of them and randomly generating
the other two values. In addition, we generated test cases using incorrect inputs for each
rule. The sequences of operations are generated by analyzing dependencies and con-
flicts of operations. Finally, 36 test cases were generated using this method. For the
method of Offtutt et al [9], 40 test cases were generated through the analysis of
boundary values of message parameters.

Parlay Gateway

Parlay X Web Services

Parlay X APIs

Parlay APIs

Parlay X
Applications

Parlay
Applications

Network Protocols
(e.g. SIP, INAP etc)

Network Elements

Increasing
abstraction

1. Third Party Call
2. Call Notification
3. Short Messaging
4. Multimedia Messaging
5. Payment
6. Account Management
7. Terminal Status
8. Terminal Location
9. Call Handling
10. Audio Call
11. Multimedia Conference
12. Address List

Management
13. Presence

Fig. 6. Architecture of Parlay-X Web services

IdleIdle

ConnectedConnectedCanceledCanceled

ProgressProgress

TerminatedTerminated

t1

t2

t3

t4

t5

t6

t9

t12
t7

t8

t10

t11

t13

t14

t15

Fig. 7. EFSM model for the third party call Web service

114 C. Keum et al.

Transition Input/Output/Computation
t1 ?MakeCall_Rq(cgNum,cdNum)

callId := GenerateCallId()
!MakeCall_Rp(callId)
status := Initial

t2 ?CancelCall_Rq(id) id == callId
status := Canceled
set timer

t3 ?EndCall_Rq(id) id == callId
status := Canceled
set timer

t4 ?NoAnswer id == callId
errCode := SVC0001
!ServiceError(id, errCode)
status := Canceled
set timer

t5 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t6 ?CallConnected
status := Connected

t7 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t8 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t9 ?CancelCall_Rq(id) id == callId
errCode := SVC0260
!ServiceError(id, errCode)

t10 ?CallTerminated
status := Terminated
set timer

t11 ?EndCall_Rq(id) id == callId
status := Terminated
set timer

t12 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t13 ?EndCall_Rq(id) id == callId
errCode := SVC0261
!ServiceError(id, errCode)

t14 expire_timer
t15 expire_timer

Fig. 7. (continued)

To generate test cases using our method, we followed the procedure described in
Section 3.1. First, we analyzed the WSDL specification of Third Party Call and the
informal specification of the Third Party Call Web service. For Step 2, three control
variables were identified by analyzing the WSDL analysis template. Then we con-
structed an EFSM based on these three control variables and the four operations. The
final EFSM shown in Figure 7 has five states and fifteen transitions. Using the EFSM
and the algorithm described in Section 3.2, 95 test cases were generated for Third
Party Call. Table 5 shows some of the test cases for Third Party Call Parlay-X Web
service.

 Generating Test Cases for Web Services Using Extended Finite State Machine 115

Table 5. Test cases for Parlay-X Web service Third Party Call

No Test cases

1 ?MakeCall !CallId, ?GetCallInformation !CallStatus ?CallConnected ?CancelCall
!ServiceError ?GetCallInformation !CallStatus ?CallTerminated ?TimeOut

2 ?MakeCall !CallId ?CallConnected ?CancelCall !ServiceError ?CallTerminated
?TimeOut

3 ?MakeCall !CallId ?GetCallInformation !CallStatus ?CallConnected ?CancelCall
!ServiceError ?CallTerminated ?TimeOut

4 ?MakeCall !CallId ?CallConnected ?GetCallInformation !CallStatus ?CancelCall
!ServiceError ?CallTerminated ?TimeOut

5 ?MakeCall !CallId, ?GetCallInformation !CallStatus ?CallConnected ?GetCallIn-
formation !CallStatus ?CancelCall !ServiceError ?CallTerminated ?TimeOut

Table 6. Comparison of test criteria

 Data flow criterion Control flow criterion
Method of Heckel et al [4] all-definitions-uses -
Method of Offtutt et al [9] - -
Our method all-definitions-uses UIO sequence

A test suite is a set of test cases and is said to satisfy a coverage criterion if for every
entity defined by coverage criterion, there is a test case in the test suite that exercises
the entity. Each method used in our experiment had its own test coverage criterion. The
comparison of test coverage criterion for three methods is summarized in Table 6.

The method [9] had no test coverage criterion, but we could generate test cases
easily through examining types of message parameters. There is a trade-off in choosing
test coverage criteria. The program could be more thoroughly tested with the stronger
criterion. However, usually the cost incurred by test cases generation and testing is
negligible compared to the cost incurred by the presence of faults in programs.

Test cases and results of different methods are summarized in Table 7. As we ex-
pected, our method located more faults than the other methods even though it spent
more time for executing a test case. Our method spent more time than other method
because test cases generated using our method consist of the complex sequences of
operations but almost all test cases generated using other method is made of a single
operation. To show the efficacy of our method, the number of test cases and the ac-
cumulated number of faults detected are analyzed in Figure 8. As shown in Figure 8,
our method detected many faults in the early phase of testing. Our methods detected
many errors that occurred during executing complex sequences of operations. For
example, the operation GetCallInformation worked well in the initial state and the
progress state, but the operation caused an error when it executed in the connected state.
The method [4] located some faults related with boundary value and incorrect input
values in the case of testing for single operations. However, the sequences of operations
derived from the method [4] were not effective for locating faults. Even if the method
[4] expected the data flow coverage criterion “all-definitions-uses” for generated test
cases, the generated test cases using relations of conflicts and casual dependencies
between productions rules did not find out any faults which were located by our

116 C. Keum et al.

method. During testing using the method [9], it was difficult to find faults because
faults rarely occurred when we executed single operations with different boundary
values. Only two faults related with message parameter value with maximum length
were founded.

Table 7. Test cases and results

Method of
Heckel et al [4]

Method of Offutt
et al [9] Our method

Number of test cases
generated 36 40 95

Number of faults found 5 2 18

total execution time
(sec.) 90 80 859

average execution time
(sec.) 2.5 2 9

0

5

10

15

20

10 20 30 40 50 60 70 80 90

of test cases

#

o
f

f
a
u
lt
s

Our method Method of Offutt Method of Heckel

Fig. 8. Number of test cases and number of faults found

5 Conclusion

In this paper, we presented a new test cases generation method for Web services. The
key idea is to augment a WSDL specification with an EFSM model that precisely de-
scribes the dynamic behavior of the service specified in the WSDL specification.
Generally speaking, modeling an EFSM for a Web service is not a trivial task. To
make this task easy and systematic, we suggested a procedure to derive an EFSM
model from WSDL description of a service.

In summary, the main contributions of this paper are as follows: First, this paper
introduces a new Web service testing method that augments WSDL specification with
an EFSM formal model and applies a formal technique to Web service test generation.
Second, using the EFSM based approach, we can generate a set of test cases with a very

 Generating Test Cases for Web Services Using Extended Finite State Machine 117

high test coverage which covers both control flow and data flow. Third, we applied our
method to an industry level example and showed the efficacy of our method in terms of
test coverage and fault detection.

One of drawbacks of our approach is the overhead to generate test cases based on an
EFSM. Even if we suggest a procedure to derive an EFSM model from a WSDL
specification, it may require additional jobs besides Figure 1 to complete a fully de-
scribed EFSM in case of very complicated WSDL files. The algorithm described in
Section 3.3 is also a heavy-weight algorithm. Without any automatic tool for generating
test cases using EFSM, it is a very tedious task to generate test cases manually.

In this paper, we focused on testing of a Web service with single EFSM derived from
a WSDL specification. For future work, we plan to extend our method to treat more
complex situations such as test cases generation for compositions of Web services.

References

1. E. Cerami, Web Services Essentials, O’Reilly, 2002.
2. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard,

Web Services Architecture. W3C working group note, W3C, 2004.
3. C. Bourhfir, E.Aboulhamid, F.Khendek, and R.Dssouli, “Test cases selection from SDL

specifications,” Computer Networks 35(6), pp.693-708, 2001.
4. R. Heckel and L. Mariani, “Automatic Conformance Testing of Web Services,” FASE

2005, LNCS 3442, pp. 34 – 48, 2005.
5. P. Baldan, B.Konig, and I.Sturmer, “Generating test cases for code generators by unfolding

graph transformation systems,” Proc. 2nd Intl. Conference on Graph Transformation,
Rome, Italy, 2004.

6. L. White and E. Cohen, “A domain strategy for computer program testing.” IEEE Trans-
actions on Software Engineering 6, pp. 247–257, 1980.

7. E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE Transactions on
Software Engineering 17, pp. 703–711, 1991.

8. S. Rapps, and E. Wejuker, “Data flow analysis techniques for program test data selection,”
6th Intl. Conference on Software Engineering. pp. 272–278, 1982.

9. J. Offutt and W. Xu, “Generating Test Cases for Web Services Using Data Perturbation,”
ACM SIGSOFT SEN, 2004.

10. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, Inc, New York NY, 2nd
edition, 1990.

11. Y. Li, M. Li, and J. Yu, “Web Service Testing, the Methodology, and the Implementation of
the Automation-Testing Tool,” GCC2003, LNCS 3032, pp.940-947, 2004.

12. W.T.Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending WSDL to Facilitate Web
Services Testing,” HASE 2002, 2002.

13. C. Bourhfir, R. Dssouli, E.Aboulhamid, and N.Rico, “Automatic executable test case gen-
eration for EFSM specified protocols,” IWTCS’97, pp.75-90, 1997.

14. K.Sabnani and A.Dahbura, “A new Technique for Generating Protocol Tests,” ACM
Comput. Commun. 15(4), 1985.

15. Weyuker, E.J. and Rapps, S., “Selecting Software Test Data using Data Flow Information”,
IEEE Transactions on Software Engineering, April, 1985.

16. Parlay X Working Group, Parlay-X White Paper, http://www.parlay.org, 2002.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 118 – 133, 2006.
© IFIP International Federation for Information Processing 2006

Towards the Testing of Composed Web Services in 3rd
Generation Networks

Abdelghani Benharref, Rachida Dssouli, Roch Glitho, and Mohamed Adel Serhani

Concordia University,
1455 de Maisonneuve West Bd, Montreal, Quebec,

H3G 1M8, Canada
{abdel, m_serhan}@ece.concordia.ca,
{dssouli, glitho}ciise.concordia.ca

Abstract. With the proliferation of web services in business and as the number
of web services is increasing, it is anticipated that a single web service will
become insufficient to handle multitude, heterogeneous, and complex functions.
Hence, web service composition will be used to create new value added
services with a wide range of functionalities. Management of a composed web
service is a complex issue compared to the management of a non-composed
(basic) web service. In this paper, we propose a multi-observer architecture for
detecting and locating faults in composed web services. It makes use of a
network of observers that cooperate together to observe a composed web
service. An observation strategy based on a set of heuristics is presented to
reduce the number of web services to be observed. Observers are developed as
mobile agent observers to help reducing the load introduced by the observation.
Algorithms for fault detection, notification, and collaboration between
observers are described. Finally, the architecture is illustrated through a case
study for observing a composed teleconferencing web services in a 3G network.
Different components of the architecture are developed. The network load
introduced by the observation is measured and the fault detection capabilities of
the architecture are discussed.

1 Introduction

Web services offer a set of mechanisms for program-to-program interactions over the
Internet [1]. They make use of a multitude of emerging standard protocols, such as
Simple Object Access Protocol (SOAP), Web Services Description Language
(WSDL), and Universal Description, Discovery and Integration (UDDI).

Managing web services is critical because they are being deployed actually in
heterogeneous environments and used in a wide range of applications especially in 3G
networks. In 3G networks, they are being used for engineering Value Added Services
(VAS). VAS are telecommunication standards that add value to those services already
available on the network. Another use is digital imaging where their use is being
standardized [2]. Their use in telecommunications networks is being standardized by
the Open Mobile Alliance (OMA) [3].

Testing web services in open environments with multitude of participants is a hot
issue. Testing can be active or passive. In active testing, fault detection is usually

 Towards the Testing of Composed Web Services in 3rd Generation Networks 119

based on test cases that are applied to the web service under test. Passive testing,
known also as passive observation, is based on traces collection and traces analysis.

A new kind of web services is known as “composed web services”. A composed
web service is any web service that makes use of a set of available web services to
provide a different, more complex, service. Web services composition is generating
considerable interest in recent years ([4], [5], [6]). It has a considerable potential of
reducing development time and effort for new applications by reusing already
available web services. The composed web service is also known as the final web
service and a service participating in a composition as a basic web service.

Currently, there are standards or languages that help building composed web
services such as: WSFL [7], DAML-S [8], and BPEL [9]. These languages make the
web services composition process easier by providing concepts to represent partners
and orchestrate their interactions. BPEL, which represents the merging of IBM's
WSFL and Microsoft’s XLANG, is gaining a lot of interest and is positioned to
become the primer standard for Web service composition. This is the main reason for
which BPEL is used in our work and then will be considered in the remaining parts of
this paper.

Observation of composed web services is more complex than observation of basic
web services. For instance, a fault occurring in the composed web service can
originate in one of the basic web services and propagate to another basic web service.
Furthermore, some faults may occur due to the composition itself, these faults are
known as feature interaction.

Tracking a fault into its originating web service, will require the passive
observation of all, or a subset of, the basic web services. As in distributed systems
[10], this observation requires a network of observers rather than a single observer.

In this paper, we propose a novel architecture for online fault management of
composed web services by observing their basic web services as well as the composed
web service. The architecture is rooted in passive observation. The observers are
model-based and are designed and implemented as mobile agents. The architecture
makes available a web service observer that can be invoked and mobile observers that
are sent back following an invocation.

The remainder sections of the paper are organized as follows: section 2 presents
briefly web services composition and involved technologies followed by related
works on management of composed web services. Section 3 and 4 discuss
respectively the requirements and the fault model of the new architecture for
observation of composed web services. Section 5 introduces different components of
the multi-observer based architecture. It also discusses the limitations of the
architecture in terms of necessary resources and network load. In section 6, we
illustrate the observation procedures through a case study where a conferencing
composed web service is observed. Finally, we provide a conclusion that summarizes
the paper and discusses items for future work.

2 Related Work

Management of composed web services is a key issue for their success. Nowadays,
this management is vendor-dependent and too much coupled to the application servers
on which the composed web services are deployed. Few companies provide limited

120 A. Benharref et al.

management features embedded within their platforms. The BPEL process manager
[11], ActiveBPEL [12] and Process eXecution Engine [13] provide web-based
consoles to deploy/undeploy services and manage their instances. These tools can
only be used by the service provider. They manage the composed web services as if it
was a basic web service, that is, without taking into consideration the management of
basic web services participating in the composition. Moreover, since the tools
managing basic web services are also vendor-dependent, exchange of information
between different tools managing different entities is not straightforward.

Most of research activities on management of composed web services are actually
on non-functional aspects of composed web services such as Quality of Service (QoS)
([14], [15], [16], [17]). For functional aspects, the authors in [18] propose the
publication of some testing scripts in the registries. These scripts can be used by
entities to test the correctness of desired web services. This approach requires active
testers and not transparent to concerned web services.

The web services-based architecture for management of web services presented in
[19] is limited to the observation of basic (non-composed) web services. It does not
offer mechanisms to observe composed web services. The observation starts by
invoking the web service observer. The latter generates a mobile agent and sends it to
the hosting platform. The mobile observer checks all the traffic between the client and
the observed web service and reports misbehaviors.

In this paper, we extend this architecture to observe composed web services while
respecting its initial properties of transparency and availability. The observation is
transparent since it does not invoke the web service for the sake of testing. The
architecture is also available to all involved parties including the web service provider
and the requestor since the architecture is based on web services.

3 Requirements

As stated above, observation of composed web services is based on the observation of the
final web service and the participating basic web services. A set of information/resources
is required for the sake of this observation. First of all, the web service observer must
have access to the choreography document describing this composition. Another issue to
solve toward making this observation possible is how to get the exact locations of the
participating web services. Once this list of locations is known, models of the web
services in this list (FSM or FSM annotated with timing properties) and WSDL
documents should also be handed to the observers before the observation.

Discussions of possible mechanisms to satisfy these requirements are presented in
section 5.4.

4 Fault Model

Fault detection is based on the information contained within the available resources.
The models of these resources can be grouped in two groups: statefull (FSM/Annotated
FSM, BPEL) and stateless (WSDL). The observers use this information to detect the
following classes of faults:

 Towards the Testing of Composed Web Services in 3rd Generation Networks 121

From BPEL:

• Ordering Faults (OF): This fault occurs when the order of invocations of
different participating web services is not respected. The “activities” section of the
BPEL document describes the rules and order in which participating web services
must be invoked. It is in fact a violation of an orchestration scenario that is a
global property. This fault only can be detected by a global observer.

From FSM/FSM with timing annotations:

• Input Fault (IF): An input fault occurs if a requestor invokes an operation
unavailable from the actual state of the web service. Unlike OF, this is a local
property.

• Timing Constraints Fault (TCF): When monitoring the response time of web
services, observers can measure the response time of web services and compare it
to the threshold described in the model.

From WSDL:

• Input Type Fault (ITF): An input type fault is observed when a method is
invoked with a wrong number and/or wrong types of parameters with regards to its
signature published in the WSDL.

• Output Type Fault (OTF): This fault occurs if the type of the returned result is
different from the type expected in the WSDL document.

5 Multi-observer Architecture

In this section, we will present different functional entities of the architecture and
their interactions. We will then detail required steps for observation, starting from the
invocation of the web service observer and ending with the result of the observation.
Some steps of this procedure will smoothly change depending on the participation of
different involved web services as will be presented latter.

5.1 Overall Architecture

The multi-observer architecture is illustrated in Figure 1 where the global observer
and the local observers cooperate for fault management of composed web services.
Local observers check exchanged messages observed at their points of observation
and send these messages to the global observer. Whenever a local observer detects a
fault, it informs the global observer then location and isolation procedures take place.
Due to the position of observation points, fault location at this level is restricted to the
location of a faulty web service, not the exact component within this web service.

In the case where a basic web service is itself a composed web service, the same
architecture applies for its observation. That is, the web services participating in its
composition will be observed also. This gives the architecture a tree structure and
makes it very flexible in the observation of composed web services.

One of the design keys to be studied is the number of observers. In some cases,
observing all participating web services in a composition is nothing but costly and
useless. A full observation can dump the observers and the network with redundant

122 A. Benharref et al.

Client Final
Service

Service 1

Service 2

Service 3

Global Observer

Local
Observer 1

Local
Observer 3

 Web services interaction Trace collection

Local
Observer 2

Fig. 1. Multi-observer architecture

information. Observing, for example, just the main web services that represent the core
of the composition can be enough from a fault detection point of view. Potential
suggestions and hints to select the web services to observe are discussed in section 5.3.

For each web service in this list, a mobile agent will passively observe its behavior.
Two problems to solve: who hosts the mobile agent and how to provide it with
exchanged messages? These problems are implementation-related issues and will be
discussed in section 6.3.

5.2 Procedure

Observation is performed in two main steps. The first step consists of the configuration
of the observation components, and the second step is fault management.

Observation is initiated by invocation of the web service observer. This is done by
the entity willing to observe, which can be the provider of the composed web service,
its client, one of the basic web services, or a mandated third party. After a successful
invocation, the web service observer generates a set of mobile agents and sends them
to the location(s) specified during invocation. Once the mobile agents reach their
target locations, one of them becomes the global observer; other mobile agents are
local observers. The local observers must inform the global observer of their locations
and information about particular basic web services they are observing. At that point,
all the components of the architecture are ready to start observation at the time
specified during the invocation.

After deployment and configuration of all the observers, they start traces analysis
at the time specified during the invocation. This observation will end at the time
specified also during invocation. Whenever misbehavior is observed, local observers
report to the global observer who reports to the web service observer.

5.3 Optimization

In this section, we discuss a set of suggestions and potential criteria that can be
considered to build the list of web services to be observed.

 Towards the Testing of Composed Web Services in 3rd Generation Networks 123

For the selection of web services to observe, an important criterion is the number
of interactions between the final web service and a basic web service. If a web service
has few published interfaces and is invoked few times while others are invoked very
often, observing the latter web services can be more appropriate. Another criterion is
the complexity of a basic web service, from its FSM model: more a model of a web
service is complex (number of states, number of transitions, etc.), more is the
necessity for its observation.

Statistics on previous detected faults is another criterion. If faults occurred in a web
service a certain number of times, a periodic observation of this web service can be a
wise decision.

Selection of web services to observe might be implied by preferences of the final
web service provider. These preferences depend on the importance a basic web
service is playing in the composition or the tolerance of the final web service to some
specific faults generated by some specific basic web services.

5.4 Participation of Web Services in Their Self Observation

The information required for observation (section 3) can be gathered through
participation of involved web services providers: the provider of the composed web
service, the providers of basic web services or from both. We designate these types of
participation, respectively, as final web service provider’s participation, basic web
services providers’ participation or hybrid participation.

Final Web Service Provider Participation. In this participation, the final web
service provider supplies all the required information and resources necessary for the
observation. This includes the BPEL description, WSDL documents, models of the
web services (basic and final), and the list of nodes to host the mobile agents
observers.

This kind of participation is completely transparent to basic web services and their
providers. Additionally, due to the cloning nature of mobile agents, the web service
observer sends only one mobile agent to the final web service provider’s side instead
of a separate mobile agent for each web service to be observed. This mobile agent
will clone itself once it gets into its location. Doing so reduces significantly the traffic
generated by moving mobile agents. If n is the number of web services to be
observed, the complexity of the introduced load decreases from Θ(n) to Θ(1).

The load that will be introduced by the cooperation of observers to detect and
locate a fault is limited to in-site load, that is, within the provider’s domain since all
observers are located there. The complexity of this load can be considered as Θ(1).
Synchronization of observers is also easier than if observers were scattered between
many sites.

The major weakness of the participation of one side is that all information,
resources and observation activities will be within one web service provider.

Basic Web Services Providers’ Participation. Unlike the centralized participation,
the basic web services’ participation requires the participation of the providers of all
web services that have to be observed, including the final web service. Each web
service provider supplies the WSDL document and the model of its web service and

124 A. Benharref et al.

hosts the associated mobile observer. In addition, the final web service provides the
BPEL document.

The network load is the major weakness of this type of participation. First, a
mobile agent is generated and sent to each web service in the list of web services to be
observed. The complexity of the load here is Θ(n). The cooperation of the observers
introduces also another Θ(n) network load since observers are in different locations.

Hybrid Participation. The hybrid participation is a compromise between the two
kinds of participation presented above. The participation is neither completely
distributed nor centered. The final web service provider supplies a portion of the
required information and resources while a subset of the list of web services to be
observed supplies the remaining portions.

This can be a possible alternative when the final web service can not provide all
the information and resources and only a subset of basic web services’ providers are
willing to participate in the observation. Those basic web services providers’ who
accept to participate in the observation will supply the information related to their
web services and host the associated mobile observers. The final web service
provider’s furnishes information for other basic web services.

The configuration of the hybrid participation ranges between the centralized
configuration and the distributed information, depending on how many basic web
services providers’ are participating in the observation and how much. Thus, the
complexity of the load generated by moving the mobile observers ranges from Θ(1) to
Θ(n) and for the cooperation of observers from in-site load to Θ(n). In the average,
these complexities are around Θ(log n).

In the following section, algorithms implemented by observers are presented and
discussed.

5.5 Algorithms

Passive observation is performed in two steps: 1) passive homing and 2) fault
detection [20]. The homing procedure is required to bring the observer to the same
state as the observed web service. It is needed if the observation starts while
interaction between entities has already started. When the observation starts at the
same time as the interaction between observed entities, the homing sequence is
empty.

For fault detection, every observed event in traces (request or response) is checked
against the expected behavior in the corresponding model. We must note here that
there are some cases where the observer can not decide if a response is expected or
not. This is due to the fact that when the observation starts, it may miss some previous
requests and the homing procedure might not give indication on requests not yet
served. This is mainly the case for asynchronous invocations.

Each time a fault is detected by a local observer, a notification is sent to the global
observer. Notifications must be purged before their correlation. This is done through
two methods: purgeFinalNotification implemented by the global observer and
purgeLocalNotification implemented by local observers. The main purging role is the
ability of a receiver (client, final web service or basic web service) to detect a faulty
received request or response. When a local observer detects an output fault, it notifies
the global observer. It waits then for the reaction of the invoked web service. If the

 Towards the Testing of Composed Web Services in 3rd Generation Networks 125

response of the latter contains a fault indication (in the SOAP message), the local
observer informs the global observer. Otherwise, it sends a second notification to the
global observer requesting fault location.

A faulty output generated by a web service will be detected by its associated
observer. It will also be detected as an input fault by the observer of the receiving web
service. Both observers will generate fault notification. The two notifications must be
correlated since they refer to the same fault.

After receiving a notification from a local observer, the global observer associates
it, if possible, to a previous fault or notification and updates the fault records
accordingly. It waits then for a second notification for a specific period of time before
starting the correlation. This starts by checking the fault records for previously
detected fault. If the same fault has been detected before, the list of suspected web
services is updated with the faulty web service(s) in the fault record. The list of
suspects is then augmented by all basic web services invoked before the notification.
This list is derived from the “activities” section of the BPEL document. Traces
observed by the local observers of the web services in this list are checked to find the
faulty web service. This process is repeated until a faulty web service is identified,
remaining web services are not observed, or no decision can be made due to a lack of
information on behaviors.

In the next section, we illustrate the applicability of the architecture through a
motivating example of a composed web service for conferencing. The detailed
requirements and steps for observation are depicted all along this example.

6 Case Study

In this section, we present our experiments using the multi-observer architecture to
observe a composed web service. We introduce the context of utilization of the
composed web service and its participating basic web services. We show a situation
where the observation of basic web services gives more insights for fault identification.
We present implementations of different components of the architecture, and discuss
results with analysis.

6.1 Context

For the end of year meetings, a general manager has to meet with managers from
different departments (Sales and R&D for example). Managers are located in different
locations and due to their time tables cannot meet in a single meeting room. A
practical option is to perform these meetings in a series of teleconferences. Only
mangers are concerned and only those of them that are in their offices can join a
conference. This is implied by security issues since confidential information will be
exchanged during the meetings and communication between different locations is
secured (VPN for example). At the end of each meeting, meetings’ reports must be
printed and distributed among all participating managers.

The manager decides to use a “Conferencing Web Service” (CWS), a composed
web service, who performs all of the required tasks. In fact, it allows creation of a
conference, add and remove users depending on their locations and profiles. At the

126 A. Benharref et al.

end of each meeting, the CWS submits the produced reports for printing. Once printed
and finalized, the paper version is distributed to appropriate locations.

6.2 Web Services

To perform the tasks presented above, the CWS is a composition of the following
basic web services:

• Presence WS: this web service contains information on users’ profiles (name,
address, location, status, position, availability).

• Sensors: this web service detects the physical presence of users.
• Call Control: this web service creates and manages a multiparty conference

(initiates the conference, adds/removes users, and ends conferences).
• Printing: at some points during the conferences or later on, managers may want to

print documents (meeting reports …). The printing web service will print these
documents and keeps them for shipping.

• Shipping: documents printed during and after the conference should be distributed
among users located in different locations. The CWS informs the shipping web
service of the location of the documents to be shipped and their final destinations.

Figure 2 shows the composed CWS and its interactions with the basic web services.

Sales Manager

General Manager

Sensors Network

Printing

Sensors

Call Control

CWS

Presence

Shipping
Sensors Network

R&D Manager

Fig. 2. Composed/composing web services

6.3 Implementation Issues

All web services, including the web service observer, are implemented in BEA
WebLogic. In fact, CWS is implemented in BEA even if it has a BPEL description.
This is due to some limitations of the BPEL language and the available (non
commercial) application servers. Implementing the CWS in BEA does not affect the
observation process since the latter deals only with the exchanged SOAP messages
which are independent from the adopted platform.

To host the mobile observers, a mobile agent platform should be available. In this
case study, we use JADE [21], an open source platform easy to configure and deploy.
All nodes willing to host mobile observers must download and configure the JADE
libraries. The configuration of jade consists of adding the path of different libraries to
the “path” system environment variable.

 Towards the Testing of Composed Web Services in 3rd Generation Networks 127

For trace collection, in this case study, we make use of the SOAP Handlers
available within the BEA platform. A SOAP Handler, a special java class, intercepts a
request or a response to/from a web service before it gets to the core web service or
the client respectively, and can perform operations on it. In our case, the SOAP
handler sends each event (request or response) in a UDP Datagram to the concerned
mobile observer. The date of occurrence of the event is also sent in this datagram so
that the observer can compute the response time. To be able to detect lost UDP
datagrams, a sequence number field is used. When a mobile observer detects a lost
Datagram (wrong sequence number), it suspends the fault detection and re-perform
the homing procedure. It restarts the fault detection once this procedure is achieved
correctly. Since the behavior of SOAP handlers within all observed web services is
similar, a unique generic SOAP Handler is developed and then distributed to all
providers.

6.4 Single Observation

When using the single-observer architecture initially presented in [19], the observer
will check only the traffic between the manager and the CWS. Figure 3 shows the
overall configuration and the information (traces) available to the observer where it is
not aware of the interactions (request/response pairs) between CWS and basic web
services. By doing so, if the CWS fails to provide the requested service or if the QoS
degrades, the observer cannot designate the faulty web service. For example, if the
“Sensors” web service (basic WS) fails to check the actual physical location of a
manager, the CWS can not create a conference. From the observer’s point of view
(and then the manager’s point of view), the CWS failed to create the conference. No
more indication on the failure is available. Figure 4 shows a typical observation
scenario from invocation of the observer (WSO) to the delivery of the verdict of
observation. In this scenario, traces are collected through a participation of the web
service’s provider.

Handler

BEA Weblogic

BEA Weblogic

BEA Weblogic

BEA Weblogic

Manager
Jade

Oberver

BEA Weblogic

WSO

Manager
WSO

web services interactions
Trace collection

CC

Presence

Sensors

Printing

Shipping

BEA Weblogic

BEA Weblogic

CWS
SOAP

Fig. 3. Single-observer configuration

As will be illustrated in the following subsections, the multi-observer architecture
gives more information in case of misbehaviors. This capability is made possible by
using a network of observers rather than a single observer. Whenever an abnormal
event occurs, cooperation between observers is initiated to track the faulty web service.

128 A. Benharref et al.

observation

General
Manager

WSO CWS Basic
WS

observe
generate
and send
Mobile Agent

Observer

request

trace collection request

response

request

response
response

trace collection
Result of

observationResult of

Fig. 4. Single-observer scenario

6.5 Multi-observer Observation Procedure

The general manager is highly concerned about the environment in which meetings
will be carried out using CWS. He decides to make use of the passive observer
available as a web service (WSO) to observe the behavior of the CWS. In addition to
the observation of the CWS, the manager needs to assure that all the steps are
performed according to the agreed on contract and QoS. All the providers accept to
participate in the observation. The provider of the CWS will host all the mobile
observers. It will also provide the BPEL and WSDLs documents, and the FSM
models of each of the basic web services.

Once deployed and configured, mobile observers start by performing the homing
procedure. When this procedure is carried out correctly, fault detection starts. Each
local observer is listening to a UDP port to receive events from SOAP handlers. The
global observer is listening to two different UDP ports: one to receive events (request
or response) from local observers and another port to receive information on detected
faults by the local observers. Each event from a client to its web service is sent by the
SOAP handler to the attached local observer. The latter forwards this event to the
global observer and checks the validity of this event with regards to the model of the
observed web service. If a fault is detected, the local observer notifies the global
observer through a UDP datagram. The global observer tries to associate the new
received fault with a previous fault. If the correlation fails, the global observer notifies
the final service provider, otherwise, the fault is logged and fault detection continues.
For the purpose of this case study, we developed a graphical client allowing the user
to select one of the operations to invoke and provide valid or invalid parameters.
Figure 5 shows the overall configuration of interacting web services, mobile
observers and communication between these entities.

The observation procedure of CWS is performed following the steps illustrated in
Figure 6. To keep the figure simple, just one web service handler and one web service
client are depicted in the figure.

 Towards the Testing of Composed Web Services in 3rd Generation Networks 129

CWS
SOAP

Handler
SOAP

Handler

BEA Weblogic

CC

SOAP
Handler

BEA Weblogic

Presence

SOAP
Handler

BEA Weblogic

Sensors

SOAP
Handler

BEA Weblogic

Printing

SOAP
Handler

BEA Weblogic

Shipping

for CWS
Mobile Oberver

Ja
de

Ja
de

for CC
Mobile Oberver

Ja
de Mobile Oberver

for Presence

Ja
de Mobile Oberver

for Sensors

Ja
de Mobile Oberver

for Printing

Ja
de Mobile Oberver

for Shipping

web services interactions
Trace collection
Trace collection and Fault notification

Jade

Global Oberver

Manager
WSO

BEA Weblogic

WSO

Manager

BEA Weblogic

Fig. 5. Multi-observer configuration

CWS

Global
Observer

Observer
Local

trace collection
and fault
notification

clone

WSO WS
(Handler)

WS−Client

observe observe

request

responsetrace collection

observation
Result of

observation
Result of observation

Result of

generate
and send
Mobile Agent

General
Manager

Fig. 6. Multi-observer scenario

6.6 Optimization

The main web service in the composition of the CWS is the Call Control web service.
For this reason, we decide to observe it. Moreover, security of communication during
conferences is of prime importance. As requested by the general manager, only
managers that are in their offices should participate in a conference. So, the
observation of the Presence and the Sensors web services is required. The Printing
and Shipping web services are the only web services that deal with documents, so we
decide to observe only one of them, the Printing web service. We assume that in case
of a misbehavior during printing and shipping procedures, if the fault is not detected
at the Printing web service by its attached observer, the fault is then within the
Shipping web service.

130 A. Benharref et al.

6.7 Results and Analysis

Network Load. The network load introduced by the observation is classified into two
classes: 1) load due to the deployment of mobile agents and 2) load due to the trace
collection process.

Deployment Load. Since all observation activities is taking place within the final
service provider’s side, only one mobile agent is generated by the web service
observer and sent to the hosting platform. The size of the traffic to move a mobile
agent from the web service observer to the final web service provider is around 600
Kilobytes (600 Kb). This size is smaller than the size of the mobile agent that was
initially used in [19]. The new mobile observer offers in addition to the fault detection
capabilities, correlation procedures. This includes the ability of a local observer to
send an event to the global event, and the global observer to process a received fault
and correlate it with previous faults. This reduction is made possible by reducing the
size of required libraries and tuning the used data structures.

Trace Collection Load. Generally, for each interaction between a web service and its
client, 2 UDP datagrams are generated: a first datagram from the SOAP handler to a
local observer, and a second datagram from this local observer to the global observer.
Whenever a fault is detected in a local observer, a third datagram is sent (fault
notification). The average size of a datagram is 150 bytes. So, each response/request
pair introduces 4 datagrams if everything goes fine, 5 datagrams if one of the events is
faulty, or 6 datagrams if both are faulty. We suppose that faults will not occur often,
and then few fault notifications will be generated. This assumption is realistic since
all web services are supposed to undergo an acceptable active testing process. The
trace collection load then is reduced to the forward of events, that is, 4 datagrams for
a request/response pair. This represents a load of 600 bytes.

Executed Scenarios. The client application offers, through its graphical interface, the
possibility to invoke any operation from those offered by the CWS. For each
operation, the client decides between a valid and invalid invocation. This selection is
imposed by the FSM-based observers, which are unable to process the parameters of
the invoked operation to decide between valid and invalid parameters. For all
operations, the web service should return the output “true” if the operation is valid
and “false” if the operation is invalid, otherwise a fault occurred.

To illustrate the detection capabilities of our architecture, we injected faults to the
web services and or in the network and monitored the behaviour of the observers.
Most of the injected faults have been detected by the observers. The global observer
was also able to link related notifications that are originated by the same faulty event.
From the BPEL document, the global observer builds the list of partners and the order
in which they are invoked. Correlation is based on this information and the event sent
within the fault notification message.

A fault that cannot be detected occurs when the last event in a communication
between a web service and its client is lost. As discussed before, traces are sent as
UDP packets. To be able to detect lost packets and recover the observation, a
sequence number attribute is used. An observer detects a lost packet if the sequence
number of the following received packet is different than expected. When a lost

 Towards the Testing of Composed Web Services in 3rd Generation Networks 131

packet carries the last event in a communication, observers will not be able to detect
this incident since no future packets will arrive. Table 1 shows brief descriptions of
some of the executed scenarios and the reactions of observers (both local and global)
to the fault.

Table 1. Some of the executed scenarios

Target web service Fault description Comments

CWS
Submit a printDocument
request before creating a
conference

Fault detected by local
and global observer

Call Control
Add a user before creating a
conference

Fault detected by local
and global observer

Shipping
A trace collection event
(shipDocument response) from
a handler to the local observer
is lost (Figure 7.a)

Neither the local
observer nor the global
observer will detect the
fault.

Shipping
A trace collection event
(shipDocument response) or a
fault notification from a local
observer to the global observer
is lost (Figure 7.b)

The global observer will
not be able to detect the
fault or process the
notification
(correlation)

notification

Global
Observer

Local
Observer

Shipping
Handler

trace collection

a. trace event does not reach the local observer b. trace event or fault notification does not reach
the Global Observer

Local
Observer

Global
Observer

Shipping
Handler

trace collection

or fault
trace collection

Fig. 7. Scenarios of non-detected faults

7 Conclusion and Future Work

As web services, both basic and composed, are rapidly emerging as a new concept for
business-to-business interactions, their management becomes a critical requirement
for their success. Management of composed web services is more complex than the
management of basic web services. This complexity is implied by the fact that a
composed web service aggregates a set of basic web services to provide a different,
more complex service. In fact, in addition to the management of the composed web
service in its own, management of basic web services must be performed accordingly
and all management entities should share management information.

132 A. Benharref et al.

In passive observation, the single observation of a composed web service does not
give insights on the behaviors of the basic web services. Many events observed
between a final web service and its client can not be studied and explained without
information on the exchanged events between the final web service and its basic web
services. Thus, observation of all basic web services or at least a subset of these web
services is needed.

In this paper, we presented a multi-observer architecture for the observation of
composed web services. The architecture proposes to observe the final web service
and a set of basic web services. Heuristics to select the basic web services to be
observed are also discussed. To reduce the network load generated by the observation,
the architecture considers mobile agent observers. We discussed also the network load
in terms of mathematical complexity for each type of participation of web services:
final web service provider’s participation, basic web services providers’ participation
or hybrid participation.

As a proof of concept, we developed a set of basic web services and a composed
web service for conferencing management. We also evaluated the network load
introduced by the observation and the fault detection capabilities of different
observers.

Future work includes the consideration of an Extended Finite State Machine based
observers. This is a main issue in web services interactions where data flow is
important and fundamental.

References

[1] http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
[2] http://www.i3a.org/i_cpxe.html
[3] http://openmobilealliance.org
[4] B. Benatallah, M. Dumas, Q. Z. heng, and A. Ngu. Declarative Composition and Peer-to-

Peer Provisioning of Dynamic Web services. In Proc. of ICDE'02, IEEE Computer
society, pages 297-308, and Jose, 2002.

[5] Rachid Hamadi, Boualem Benatallah. A Petri Net-based Model for Web services
Composition. ADC 2003: 191-200.

[6] S. Narayanan, and McIlraith, S.Simulation, verification and automated composition of
web services. In Proceedings of the World Wide Web Conference, 2002.

[7] F. Leymann, Web service flow language (WSFL) 1.0. Available online at http://www-
4.ibm.com/software/ solutions/webservices/pdf/WSFL.pdf 2001.

[8] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. McDermott, D. Martin, S.A.
McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, “DAML-S: Web Service
Description for the Semantic Web,” Proc. First Int’l Semantic Web Conf. (ISWC 02),
2002.

[9] BPEL4WS Version 1.1 specification, May 2003 ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf

[10] S. Ghosh and A. Mathur. Issues in testing distributed component-based systems. 1st
ICSE Workshop on Testing Distributed Component-Based Systems. May 1999.

[11] www.oracle.com
[12] http://www.activebpel.org
[13] http://www.fivesight.com/pxe.shtml
[14] A. Mani and A. Nagarajan, “Understanding quality of service for web services”, January

2002. IBM paper: http://www-106.ibm.com/developerworks/library/ws-quality.html

 Towards the Testing of Composed Web Services in 3rd Generation Networks 133

[15] M.A. Serhani, R.Dssouli, A. Hafid, H. Sahraoui “A QoS broker based architecture for
efficient web services selection” IEEE international conference on web services, July
2005, Orlando Florida, USA.

[16] Hongan Chen; Tao Yu; Kwei-Jay Lin, “QCWS: an implementation of QoS-capable
multimedia web services”, Proceedings of the Fifth International Symposium on
multimedia software engineering, 2003.

[17] M.A. Serhani, R.Dssouli, H. Sahraoui, A. Benharef, E. Badidi “QoS Integration in Value
Added Web Services” In second international conference on Innovations in Information
Technology (IIT05) Dubai, U.A.E, 26-28 September 2005.

[18] Tsai, W.T.; Chen, Y.; Paul, R.; Liao, N.; Huang, H.; “Cooperative and Group Testing in
Verification of Dynamic Composite Web Services” Computer Software and Applications
Conference, 2004. Proceedings of the 28th Annual International, Volume 2, 2004
Page(s):170 - 173 vol.2

[19] A Benharref, R. Glitho and R. Dssouli, Mobile Agents for Testing Web Services in Next
Generation Networks, 2nd International Workshop on Mobility Aware Technologies and
Applications, (MATA 2005), Montreal , Canada, October 2005

[20] D. Lee et al. Passive Testing and Applications to Network Management. Proceedings of
IEEE International Conference on Network Protocols, pages 113-122, October 1997.

[21] http://jade.tilab.com

Application of Two Test Generation Tools
to an Industrial Case Study

Ana Cavalli1, Stéphane Maag1, Wissam Mallouli1,
Mikael Marche2, and Yves-Marie Quemener2

1 Institut National des Télécommunications GET-INT,
Evry, France

{wissam.mallouli, ana.cavalli, stephane.maag}@int-evry.fr
2 France Télécom R&D Division,

Lannion, France
{mikael.marche, yvesmarie.quemener}@francetelecom.com

Abstract. Many tools for test generation already exist and are used in
industry; others are under development or improvement to allow faster
generation and more effective tests. Comparing testing tools permits to
acquire in-depth knowledge of the characteristics of each tool and to
discover its strong points and limitations. Thus, the analysis of different
automatic test generation tools provides a precise idea on the appropriate
tool to be used to attain the expected results. This paper describes the
application of two test generation tools to an industrial case study: a
reverse directory telephone service similar to deployed services of this
category developed by France Telecom. The tools used, for the automatic
test generation, are a commercial tool TestComposer and SIRIUS, a tool
developed by INT team. France Telecom R&D division provided the test
campaign designed manually by a France Telecom service expert used
to define the test objectives. The goal of this paper is to present the
experimental results of tools application, to compare their performances
and analyze some issues related to test execution.

Keywords: Case study, telephonic service, extended finite state ma-
chine, conformance testing, service testing, automatic test generation,
formal specification, test generation tools.

1 Introduction

In the telecommunication field, the complexity and the variety of the imple-
mented systems, as well as the high degree of reliability required for their global
functioning, justify the care provided to the design of the best possible tests.
Moreover, it is significant to automate these steps with an aim of reducing the
time and the development cost and especially of increasing the reliability of the
offered products. Manual tests are expensive in terms of time, and are less re-
liable. Thus methods of automatic test generation are proposed. The tools for
test generation are varied and closely related to the language (formal or not)
in which the system, protocol or service specification is written. Nevertheless,

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 134–148, 2006.
c© IFIP International Federation for Information Processing 2006

Application of Two Test Generation Tools to an Industrial Case Study 135

even if automatic test generation [5, 12] is seen as one of the most profitable
application of formal methods, there are still very few commercial tools capable
of automatically generating tests from a formal description and to execute them
on the real system. The main reason for this is the difficulty of incorporating
algorithms, to the methods, sufficiently powerful to make them scalable, i.e.,
applicable to real systems.

Our contribution: In this paper we present an industrial experience that con-
sists of the application of two test generation tools to an industrial case study,
a reverse directory service proposed by France Telecom, to perform test experi-
ments and to compare their performances. One of the tools is a commercial one,
TestComposer, while the other, SIRIUS, is a prototype developed in an academic
environment. Both tools automatically generate test sequences from test objec-
tives. These latter have been selected taking into account the testing campaign
designed by a service expert of France Telecom. The comparison between these
tools can help us to take a faster choice when modeling a system to validate it.
It is indeed important for the validation phase to know as soon as possible which
tool will be used. This comparison can be based on several criteria according to
the technical resources we have. Among these criteria we can quote: test gen-
eration time, length of test sequences, complexity of the objectives, etc. Other
aspects are also treated to clarify the strong points and the limits of each tool.

Different types of tests exist to ensure the reliability of a tested product.
The tests presented in this paper are conformance tests [4, 2], which consists of
testing that an implementation conforms its specification. It must be noted that
at the beginning standardization activities related to conformance concerned the
strict field of communication protocols. Later many researchers proposed [8] the
extension of the applicability of conformance testing methods and its techniques
to cover all the fields where it is possible to specify a system interface or an
operation in a formalism close to that used for protocols (automata, process
algebra, etc.). As this was the case for services specification, it was proposed to
apply these methods to services, in particular, to those provided to a network
user. However, this extension has several consequences on the test generation: it
is necessary to redefine the test methodology according to the characteristics of
the services to be tested; it is necessary to extend the capacity of expression of
the test description languages; it is necessary to define strategies for test selection
adapted to the various types of systems. The test of a transport protocol OSI is
not performed in the same way as a telephone service (i.e. we do not seek the
same errors). In this paper, we propose to apply and compare methods used for
protocol conformance testing to the test of services.

The rest of the paper is organized as follows. Section 2 gives an outline of
the test methodology and test assumptions. In Section 3 the tools applied to
the case study are presented. Section 4 presents the reverse directory service
specification, the test objectives to be checked on the service and provides an
outline of the test generation methods used by each tool. Section 5 presents the
results and compares the performance of each tool. Finally, Section 6 concludes
the paper.

136 A. Cavalli et al.

2 Basics

2.1 Service Definition

Before introducing our test methodology for services, it is necessary to provide
the service definition, the concept of service in telecommunication being indeed
very important. However, there is no unique definition of a service. In this paper,
we used the definition that considers a service as a product offered by an operator
to a customer in order to satisfy his needs.

2.2 Testing Methodology

The service conformance test methodology is based on the one presented in the
standard ISO9646 [2] and it is divided into four aspects:

1. The definition of test architecture: in general, services are hosted on servers
where direct access is difficult for the tester. The service access is done by
users and consequently, the points of control and observation (PCO) are
placed on the user side in order to initialize the transactions, to inject the
events (valid, inappropriate or invalid) and to recover the results. Points
of observation (PO) can be attached to certain strategic points to observe
that data are well transcribed during the transfer between the various enti-
ties (customer, server, Proxy, gateway...). Vocal services such as the reverse
directory studied here add a difficulty to test execution: the interaction is
made over the phone network, either by DTMF1 (phone keys) or by voice
which are difficult to handle automatically (see Section 5.6).

2. The description of service behavior using a formal specification language.
The description shows the behavior of the service by taking in consideration
the test architecture and includes the actions of the various entities that
intervene in the correct operation of the service. The formal specification
languages used for the description of the reverse directory service are SDL
[6] and IF2 .

3. The characterization of the tests to be carried out and the test generation.
It consists of a selection of tests according to certain preset criteria and the
tests generation following a given procedure. As the size of the specifications
for the services is rather considerable, the use of traditional methods that
produce a global reachability graph from which tests are generated is not
possible. Therefore, it is necessary to use methods which are based on a
partial generation of the accessibility graph by applying different algorithms.
These methods are based on the definition of test objectives to guide the
generation of the tests. In this work, test selection has been based on test
objectives that represent relevant aspects of the reverse directory service
behavior. Different test generation algorithms have been used by the tools
TestComposer and SIRIUS. Many of these algorithms can be embedded in

1 Dual Tone Multi-Frequency.
2 http://www-verimag.imag.fr/ãsync/IF/

Application of Two Test Generation Tools to an Industrial Case Study 137

several graph searching strategies like depth-first search (DFS), breath-first
search (BFS) and BDFS which is a random combination of the two methods.
In Section 5.2, we will explain the weight of these strategies in automatic
test generation.

4. Test execution. The generated tests are executed according to the defined test
architecture. Verdicts are established according to a conformance relation on
each PO and PCO. All verdicts are directed to a central tester that deduces
the final verdict. For this case study, test execution has been performed by
France Telecom internal tools, which enable to send DTMF or vocal requests
and to give a verdict from the vocal answers of the service.

After the description of the test methodology for services, we present in the
following section the two tools used for the automatic test generation which are
the commercial tool TestComposer and SIRIUS, a tool developed by INT team.

3 Tools Presentation

3.1 TestComposer

TestComposer [11] is a test generator tool commercialized by Telelogic. This tool
corresponds to a major revision of the ObjectGeode TTCgeN tool which is a test
generator produced by Verilog. TestComposer is based on two complementary
prototypes: Tveda and TGV.

Tveda is a tool developed by the research laboratory of France Telecom CNET
(currently France Telecom R&D division). The main features of Tveda are the
automatic generation of test purposes, its heuristic approach to the use of reach-
ability analysis, and the wealth of pragmatic customizations that have been
included to cater to the needs of many different applications within CNET. The
first versions of Tveda only accepted the Estelle language as an input language.
However, an extension that allows the use of SDL language as an input language
was introduced in the version 3, which is integrated with TGV in ObjectGeode.
And a new semantic approach based on the analysis of the reachability graph
produced by the Véda simulator was also applied in this version. The Tveda tool
allows the generation of test sequences by using the heuristics related to explo-
ration of the reachability graph. Its main advantage is that it calculates automat-
ically the test objectives, which is not the case with other existing approaches.

TGV (Test Generation using Verification Technology) is an automatic pro-
totype for the generation of conformance tests developed by IRISA/INRIA and
Verimag within the framework of the PAMPA3 project. It allows generating test
cases using an on-the-fly exploration of the state space based on test objectives.
The on-the-fly exploration permits to carry out the reachability graph creation
and the checking of a property at the same time. The advantage of that method
is that it just keeps the required part of the graph necessary for checking the
properties. Moreover, this technique can give a partial result even if it stops with
3 http://www.irisa.fr/pampa/

138 A. Cavalli et al.

a memory fault. Using on-the-fly algorithms makes the execution of the princi-
pal algorithm activates the execution of each intermediate stage. TGV needs the
specification and the test objective as input and generates the test case in an
Aldebaran automaton format [9]. This format can be then translated into the
TTCN language [13, 10].

3.2 SIRIUS

SIRIUS belongs to a set of powerful test tools (TestGen-SDL [3, 7]) developed by
the INT team. The major advantage of this tool is that it avoids the exhaustive
generation of the reachability graph of a system specified by building only partial
graphs, allowing solving combinative explosion constraints. SIRIUS is based
on one of the flagship algorithms of TestGen-SDL, namely Hit-or-Jump [7].
In particular it allows the automatic generation of test sequences for the test
in context. This is very significant mainly for the features integration in an
operating platform. In addition to the generation of test sequences from test
objectives, SIRIUS also offers many other functionalities. Indeed, it also allows:

– The automata minimization according to the bisimulation.
– The detection of sink nodes.
– The transformation of a possibly partial reachability graph in an Aldebaran

automaton.
– The parsing and lexing in the purpose of debugging all the output files of

ObjectGEODE.

4 The Reverse Directory Case Study

4.1 Vocal Services Presentation

The development of vocal services at France Telecom R&D division uses many
distinct competencies. There are specialists in the techniques of voice recognition
and text-to-speech systems which provide reusable components. The use and the
adaptation of these components are themselves rather technical: it is necessary
to build models of the sentences being able to be pronounced by the users and
to check the good pronunciation by the text-to-speech system of precise infor-
mation.

However, the main activity in the development of a vocal service consists in
the conception of the dialogue between the human being and the service. An
automaton should be defined, which, reacting to the input pronounced by the
user as determined by the voice recognition, will provide output information
via the text-to-speech system. This dialogue is often specified by a document in
natural language.

In order to formalize the process of the development and the validation of
vocal services, France Telecom R&D division developed a design tool based on
TauG24. This tool makes it possible to design the dialogue of the service in
4 http://www.telelogic.com/

Application of Two Test Generation Tools to an Industrial Case Study 139

the form of automata, and to produce a formal specification of it in IF. This
specification can be used for doing simulations and automatic test generation.

At first approximation, the dialogue to be specified can be seen like a reactive
system composed of a single automaton communicating by synchronous mes-
sages. This approximation corresponds to a rather simple problem looking to
the state of the art. However, the following points complicate this first approxi-
mation.

– The vocal services often need to have access to data provided by the infor-
mation system. That makes it necessary to model the vocal service in several
distinct components.

– The assumption of synchronism and atomicity of the vocal messages is not
entirely correct. It is necessary to be able to take into account phenomena
such as the duration of pronunciation of the statements, the fact that the
user can interrupt them or that this interruption can be blocked by the vocal
service (barge-in can be allowed or not).

As a consequence, each dialogue is formalized by a distinct automaton, and
the execution of the service corresponds to the parallel execution of each one,
activated or not in a given state.

Each automaton composing the service can react to inputs of types DTMF or
speech of the user. However, it is not important to model the voice recognition
and its possible errors in the behavior of the vocal service. It is enough to consider
an abstraction of this one starting from events in input of the service, and to
consider an event corresponding to a failure of the voice recognition.

4.2 A Reverse Directory Specification

France Telecom team has written a specification of a reverse directory vocal
service similar to real services of this category deployed over the network, using
the IF language. It is an intermediate language developed by VERIMAG5 to
describe timed communicating systems. Many tools were also developed allowing
the translation from languages like SDL, LOTOS, UML to IF and the generation
of code or labeled transition systems in order to formally verify some properties.

INT team has used the following tools: TestComposer from ObjectGeode and
SIRIUS developed at the INT. These two tools are based on a well adapted
language for the formal specification of interactive systems: SDL (Specification
Language Description). As the original specification was written in IF, we car-
ried out a translation from IF towards SDL. For that aim, we used the respective
relations between the semantics and syntax of SDL and IF. Moreover, Object-
GEODE tool gives the possibility to draw the specification using a graphical
mode which facilitates the comprehension of the service. Figure 1 produced by
ObjectGEODE tool presents two states of Dialog_NumSpec process of the re-
verse directory specification.

After the redaction of the specification, the ObjectGeode tool makes syntactic
and semantic verifications of the specification. The syntactic analysis ensures
5 http://www-verimag.imag.fr/

140 A. Cavalli et al.

Fig. 1. Reverse directory specification using ObjectGEODE tool

that the specification complies with the syntactic rules of SDL in order to have a
correct specification, whereas the semantic verification ensures the consistency of
the specification. This step is carried out not only by this static analysis but also
by an automatic exhaustive exploration of the specification. This is performed
by testing all possible ways of system execution, with a certain number of rules
and the cases of violations such as deadlocks, loops etc. During the verification,
the main analyzed properties are:

– Safety (absence of deadlock, unspecified reception, blocking cycles, etc).
Deadlock takes place when a state of the system, reachable from the ini-
tial state can not trigger a transition anymore.

– Promptness (livelock), indeed, a state is known as alive if it can be reached
starting from all the states of the global system.

4.3 Determination of Test Objectives

France Telecom provided the test campaign designed manually by a France Tele-
com service expert. This document was the first reference we used to define our
test objectives. In this document, the validation of the reverse directory service
was described and organized in several phases related on one hand to the service
conformance, and on the other hand to interoperability with the components
used for voice synthesis and recognition. 130 test cases that were informally de-
scribed cover the whole interactions of the service with the user, which includes:
- Unitary checking of each service’s functionality; - Checking of system behaviors
related to eventual user inactivity; - And checking of behaviors activated at the
time of voice recognition failures. The unit checking makes it possible to vali-
date that all the service functionalities conform to the specification. The other

Application of Two Test Generation Tools to an Industrial Case Study 141

verifications allow the validation of the service ergonomics in the case of defective
use, related either to the user or to the service.

Using this test campaign, we have chosen to test the most relevant service
reactions and functionalities. Therefore, 17 test objectives were obtained which
represent more than 95% of the specification states and transitions. These test
objectives can be classified in four categories: - Errors when dialing a number:
we suppose that the user makes mistakes while trying to dial the telephone
number of whom he wants to know the name. - Functionalities offered after
dialing a normal number: Three functionalities are offered to the user. Only
some reactions of the system are described. - Functionalities offered after dialing
a special number: Some reactions of the system are described. - Errors due to
user inactivity: we suppose that the user stops typing on the keys for a significant
period. Messages for assistance will try to guide him for a good use of the service.

The three first categories describe functional tests of the service. It represents
the details of what have been already called in France Telecom test campaign
"the unitary checking if each service’s functionality". The last category allows
exactly, like in the France Telecom document, the system behaviors verification
related to eventual user inactivity. We did not take into account in our test
objectives the system behaviors related to voice recognition failures because this
service feature was not specified.

Following are the test objectives we have defined in this case study:

N Objectives to be tested: To test the correct reaction of the system, following
this case:

1 The user does not press on any key after dialing the 3288. She then
receives messages for assistance before receiving three messages to ask her to
hang up followed by the stop of the service and the disconnection of the user.

2 After dialing the 3288, the user presses on the star key as it is
required by the welcome message. Then, if she does not press on any key, an
assistance message is transmitted to her explaining the functionalities of the
service.

3 Error when dialing a number: the user presses on # key without having entered
before a number. Sharp is a key which indicates the end of dialing.

4 Error when dialing a number: the user gives a telephone number that doesn’t
start with 0.

5 Error when dialing a number: the user gives a phone number which contains
less than 10 digits.

6 Error when dialing a number: the user gives a telephone number which contains
more than 10 digits.

7 Error when dialing a number: After having begun dialing, the user cancels his
input number and dials * to give another number.

8 The user gives a good normal number (a normal number is a number starting
with 0 and containing 10 digits). This number does not exist in the telephone
directory of the reverse directory, an informative message is then transmitted to
the user.

Fig. 2. Test Objectives for the case study

142 A. Cavalli et al.

N Objectives to be tested: To test the correct reaction of the system, following
this case:

9 The user gives a normal number, receives the name of the corresponding
person and remains inactive; this stops the service.

10 The user gives a normal number, listens to the name of the corresponding
person and then dials 1 to listen to the spelling of this name.

11 The user gives a normal number, receives the name of the corresponding
person and presses # that stops the service.

12 The user gives a normal number, listens to the name of the corresponding
person and then presses 3 to contact this person. The telephone of the called
rings without answer.

13 The user gives a normal number, listens to the name of the corresponding
person and presses 3 to contact this person. The connection succeeds.

14 The user gives a normal number, listens to the name of the corresponding
person and then dials 2 to listen to the address of the correspondent.

15 The user gives a good special number. This number does not exist in the
telephone directory of the reverse directory; an informative message is then
transmitted to the user.

16 The user gives a good special number that exists in the telephone directory.
Information concerning this special number is transmitted to the user.

17 The user gives a good special number that exists in the telephone directory.
Information concerning this special number is transmitted to the user.
Some variables’ values are transmitted to the system to allow generation of
statistics.

Fig. 2. (continued)

4.4 Generation with TestComposer

According to [11], TestComposer is based on two complementary prototypes
Tveda, which makes it possible to calculate automatically the test objectives and
TGV, which allows, starting from calculated objectives or specific objectives, to
calculate the corresponding tests. In our case, we give specific test objectives
using a "test condition" formalism. The defined or calculated test objectives
may be applied on a global SDL specification representing the system under test
(the case of the reverse directory). We are also able to apply them on a part
of this specification to test a component in a context. From the test objectives,
test cases are produced and stored in a database. Then, the test sequence built
from the obtained test cases is written in a TTCN file. Experimental results are
presented in the Section 5.

4.5 Generation with SIRIUS

As mentioned above, SIRIUS is based on Hit-or-Jump, an algorithm especially
used for components testing to perform test sequences generation through the
specification. This research is guided by objectives which are illustrated by pred-
icates on transitions. The research in the partial reachability graphs is performed

Application of Two Test Generation Tools to an Industrial Case Study 143

in depth, width or both at the same time, and is restricted by a limited depth.
In order to initialize the generation of test sequences, several parameters are
necessary. Four main files must be developed. The first is the specification of the
service (component to be tested), the second allows to initialize certain variables
if necessary, the third one mentions the stop conditions (i.e. test objectives) and
finally the last one allows the expert to guide the system at the beginning of the
simulation, this file is called preamble. This latter is very important; it allows
reducing in a consequent way the length of the sequence and the duration of
its generation. As for TestComposer, we present our analysis and experimental
results from the SIRIUS use in the following section.

5 Experimental Results

This section presents the results of the experimentation performed by both tools.
Different aspects related to test coverage and execution of the tests are also
discussed.

5.1 The Proposed Tools Are Scalable

The first objective of this paper is the application of two test generation tools
to an industrial case study. The reverse directory service is an example of signif-
icant size as illustrated by the following table that provides some metrics of the
specification, both in IF and SDL. These numbers are representative of real ex-
amples that have been treated at INT and France Telecom (MAP-GSM protocol,
TCP/IP, SSCOP). It must be noted that the specification in SDL of the service
has 4603 lines and the specification in IF has 1213 lines. The difference is due
to the fact that SDL specification contains many lines of comments describing
graphical aspects of the service specification (cf Figure 1). The SDL specification
has been used by both tools to generate the tests.

Blocks Processes States Transitions Signals Channels Number of lines
IF — 8 77 160 31 15 1213
SDL 1 8 77 160 31 15 4603

Fig. 3. Metrics of IF and SDL reverse directory service specification

5.2 Test Objectives Generation

The results of test generation for the seventeen objectives are recapitulated in
the following table. The tests are performed in the order in Section 4.3. For each
test, the length of the sequence (number of transitions), the test generation time
and the length of the preamble to be provided to guide the simulator to lead the
test objectives are given.

The results established in this table are obtained after a BFS (breath-first
search) exploration of the reachability graph. This choice is due to the specificity

144 A. Cavalli et al.

TestComposer SIRIUS
Nb of Generation Preamble Nb of Generation Preamble

transitions duration length transitions duration lenght
Test 1 8 0mn 0s 0 7 0mn 0s 0
Test 2 9 0mn 0s 0 5 0mn 0s 0
Test 3 22 0mn 2s 0 7 0mn 12s 0
Test 4 64 0mn 33s 35 15 3mn 36s 35
Test 5 11 0mn 0s 0 5 0mn 0s 0
Test 6 13 0mn 0s 0 5 0mn 1s 0
Test 7 13 0mn 0s 0 5 0mn 0s 0
Test 8 87 0mn 18s 50 28 1mn 40s 50
Test 9 83 0mn 34s 45 24 3mn 47s 45
Test 10 84 3mn 47s 45 25 2mn 33s 50
Test 11 82 0mn 24s 45 25 1mn 52s 45
Test 12 85 0mn 9s 50 24 0mn 36s 50
Test 13 89 0mn 10s 50 25 0mn 51s 50
Test 14 83 0mn 38s 45 24 3mn 59s 45
Test 15 47 0mn 32s 8 14 3mn 34s 8
Test 16 48 4mn 34s 8 14 3mn 36s 13
Test 17 49 0mn 12s 14 16 1mn 02s 14

Fig. 4. Some automatic test generation results

of the service which has to take into account after each transition all the possible
inputs injected by the user, to analyze them and generate the right output. The
test objectives we defined are reachable via quite short sequences (almost 50
transitions) and do not need a DFS or BDFS exploration that tries to search in
depth of the reachability graph.

5.3 Performance Analysis and Discussions

According to the Figure 4, we can elaborate on performancewise comparison
between TestComposer and SIRIUS. First, we can easily notice that the test
generation duration using SIRIUS is larger than using TestComposer. This fact
constitutes a positive point for TestComposer. But if we refer to another criterion
which is the length of test sequences, SIRIUS becomes more efficient. Actually,
the length of tests sequences constitutes a very significant comparative data since
test execution duration depends on it, and mainly when this execution is manual.
This is often the case for vocal services where the test automatization is difficult
because of the peculiarities of DTMF or vocal interaction (see Section 5.6). This
length is on average three times shorter for SIRIUS. Indeed, SIRIUS has an
advantage compared to TestComposer since it allows the automatic elimination
of silent transitions. With this operation, the length of the test sequence becomes
shorter and more comprehensible for the person carrying out the test. This fact
constitutes one of the strongest points of SIRIUS. The Figure 5 recapitulate the
length of the test sequences for the seventeen predefined objectives.

Application of Two Test Generation Tools to an Industrial Case Study 145

Fig. 5. Graphics comparison according to the length of test sequences

The automatic test generation is not always possible especially if the system
to be tested presents a complex reachability graph. It is sometimes necessary to
guide the simulator by providing a preamble. This preamble comprises the first
transitions to be followed in order to begin the research of the test objective.
The shortness of the preamble constitutes a strong point of the used tool. In
our application, TestComposer shows superiority compared to SIRIUS. Indeed,
we may in certain cases (test 10 for example) automatically generate tests using
TestComposer giving a 45 transition length preamble, whereas a generation with
SIRIUS requires 5 more transitions.

Another significant comparison criterion between various tools of simulation
and test generation is the memory use. With ObjectGEODE, the memory con-
sumption for the reverse directory telephone service is about 35.0 MB; this con-
sumption is 10 times lower with SIRIUS (3.1 MB). This is easy to understand,
first because SIRIUS only builds a part of the reachability graph for the test gen-
eration and second because ObjectGEODE has a graphic interface and several
other functionalities which is not the case of SIRIUS.

TestComposer SIRIUS
Generation duration + Fast generation -
Length of sequence - + Sequence 3 times shorter

Memory used - + Space 10 times smaller
Length of Preamble + Shorter preamble -

Fig. 6. Summary table

According to this summary table, the user can make his choice based on his
personal criteria and the characteristics of his application.

146 A. Cavalli et al.

5.4 Test Coverage Can Be Evaluated and Is Reasonable

The advantage of automatic test generation compared to the manual procedures
is that test selection is made by an algorithm and, therefore, it is possible to have
a precise evaluation of the coverage achieved. From this point of view, both tools
TestComposer and SIRIUS produce similar results that correspond to the notion
of coverage normally accepted. Both tools have been based on the know-how of
experts: test objectives were based in the test campaign proposed by the service
expert of France Telecom. By placing this know-how in an algorithmic form we
realize that their strategy for selecting tests correspond to branch coverage of
a subset carefully chosen in the specification. If the test passes successfully, the
implementation conforms the specification; assuming a uniformity hypothesis
(passing once through each branch is representative of the whole protocol).

Furthermore, it should be noted that this test objective study is appropriate,
since it corresponds to a reasonable number of tests. 17 test objectives have been
selected, which cover more than 95% of the specification states and transitions.

5.5 Tests Are Really Usable

The produced tests are really usable, since they have the same format as (and are
of comparable size to) test suites developed manually. Both tools, TestComposer
and SIRIUS, generated tests that are composed of a preamble (shortest path
between the initial state and the starting state for the transition to be tested),
followed by the transition being tested. The structure and length of the tests
produced by both tools correspond therefore to the usual standards. As a final
remark, it is interesting to note that tests can be produced in TTCN [13] and
MSC [1] notation facilitating the portability of the tests.

5.6 Automatic Test Execution

If the phase of automatic tests generation is a problem that can be adequately
treated by test generation tools, because of the nature of reactive system of the
specification, the phase of automatic tests execution encounters many difficulties.

The first difficulty, central with the problem, is related to the heterogeneity
of the platforms executing the services. This heterogeneity, characterized by the
lack of a standardized API to access to the platform, implies that a generic solu-
tion for the tests automation must be based on an emulation of the interaction
between the human and the service.

This consists in emulating the input of tests starting from text to speech or
recorded sound files, and to observe/control the outputs by using techniques of
voice recognition. However, even if it is technically rather easy to associate each
tests input with sound files, the recognition of the output is not good enough.

Concretely, France Telecom R&D division developed a test automaton based
on the voice recognition. This automaton ensures the validity of the PASS and
FAIL verdicts, but produced many false positive characterized by verdict UN-
CONCLUSIVE. Typically, a verdict is FAIL if the service produced an output

Application of Two Test Generation Tools to an Industrial Case Study 147

instead of a silence, and UNCONCLUSIVE if the output is well envisaged, but
not recognized by the voice recognition.

Taking into account these difficulties, many tests must be carried out manually
at the time of the validation of the service. However, the manual execution of
tests is expensive in resources, because it implies the mobilization of people and
time. In order to optimize the resources as well as possible, a great interest is
related in advance to the quality of the generated tests. Those tests must cover in
a minimum of occurrences the functionalities of the service, and must especially
comprise a minimum preamble to validate the test objective.

In this context, the quality of the preambles to the generated tests is a dis-
criminating element at the time of the selection of a tool for generating tests.

6 Conclusion

In this paper, we attempt to compare the performances of two test generation
tools, TestComposer and SIRIUS, by applying them to a real case study pro-
vided by France Telecom, a reverse directory telephone service . These tools
perform automatic test generation based on test objectives. The test objectives
used for the experiments were provided by the France Telecom test plan. Results
of the experimentation show that these test objectives covered quasi completely
the tests provided by the test plan, showing the interest of the use of formal
testing methods. Performance analysis shows that even if test generation time
could be no so important for industrials (they are looking for pertinent and cor-
rect test sequences), this criteria could be important from an academic point of
view in order to compare the algorithm performances. In addition, experiment
show that the length of test sequences is an important criterion to evaluate the
test sequences. In particular, for this case study this element was imperative
because the tests were executed manually by France Telecom. Tests were exe-
cuted manually because the reverse directory is a vocal service and it was very
difficult to automate test execution and mainly to automate voice recognition
that remains non deterministic. Finally, tools comparison allows us to improve
our understanding of the strong points and limitations of each tool.

It must be mentioned also, that this study could be extended to other test
generation tools. France Telecom’s authors are ready to give access to the spec-
ification and the original test plan. This could provide a realistic problem to
designers of automatic test generation tools.

References

1. ITU-T Rec. Z. 120 Message Sequence Charts, (MSC). Geneva, 1996.
2. ISO/IEC 9646-1. Information Technology - Open Systems Interconnection - Con-

formance testing methodology and framework Part 1: General Concepts.
3. R. Anido and al. Engendrer des tests pour un vrai protocole grâce à des tech-

niques éprouvées de vérifications. In Proceeding of CFIP96/Cinquième Colloque
Francophone sur l Ingénierie des Protocoles, editor, In ENSIAS, pages 499–513,
Rabat, Maroc, octobre 1996.

148 A. Cavalli et al.

4. A.V.Aho, A.T.Dahbura, D. Lee, and M.U.Uyar. An optimization technique for
protocol conformance test generation based on uio sequences and rural chinese
postman tours. In IEEE transactions on Communications, 39(3), pages 1604-1615.

5. C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Automatic executable
test case generation for EFSM specified protocols. In Chapman & Hall, editor,
IWTCS97, pages 75–90, 1997.

6. A. Cavalli and D. Hogrefe. Testing and validation of SDL systems : Tutorial. In
SDL’95 forum, 1995.

7. Ana Cavalli, David Lee, Christian Rinderknecht, and Fatiha Zaïdi. Hit-or-Jump:
An Algorithm for Embedded Testing with Applications to IN Services. In Jianping
Wu, Samuel T. Chanson, and Qiang Gao, editors, Formal Methods for Protocol
Engineering And Distributed Systems, pages 41–56, Beijing, China, october 1999.

8. M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches linking test
generation with verification techniques. In A. Cavalli and S. Budkowski, editors,
Protocol Test Systems VII. Chapman & Hall, 1996.

9. J.-C. Fernandez, H. Garavel, A. Kerbat, L. Mounier R. Mateescu, and M. Sighire-
anu. Cadp : A Protocol Validation and Verification Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, The 8th Conference on Computer-Aided Verifica-
tion, CAV’96, New Jersey, USA, August 1996. Springer Verlag.

10. G. Rethy I. Schieferdecker A. Wiles J. Grabowski, D. Hogrefe and Colin Willcock.
An introduction to the testing and test control notation (ttcn-3). In Computer
Networks 42(3), pages 375–403, 2003.

11. A. Kerbrat, T. Jeron, and R. Groz. Automated test generation from SDL speci-
fications. In R. Dssouli, G.V. Bochman, and Y. Lahav, editors, SDL’99. Elsiever
Science, 1999.

12. J. Tretmans and A. Belinfante. Automatic testing with formal methods. In Pro-
ceedings of the 7th European International Conference on Software Testing, Eu-
roSTAR’99, November 1999.

13. ETSI. TTCN-3. TTCN-3 – Core Language.

Performance Analysis of Concurrent PCOs
in TTCN-3

Máté J. Csorba1, Sándor Palugyai1, Sarolta Dibuz1, and Gyula Csopaki2

1 Ericsson Hungary Ltd., Test Competence Center,
H-1117 Budapest, Irinyi J. u. 4-20, Hungary
Tel.: (36) 1-437 7489; Fax: (36) 1-437 7576

2 Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics,

H-1117 Budapest, Magyar tudósok körútja 2, Hungary
{Mate.Csorba, Sandor.Palugyai, Sarolta.Dibuz}@ericsson.com

Csopaki@tmit.bme.hu

Abstract. This paper deals with a study and a mathematical model of concurrent
Points of Control and Observation (PCOs) realized in Testing and Test Control
Notation version 3 (TTCN-3). We study test scenarios that are gaining impor-
tance as TTCN-3 is emerging as a notation suitable for conducting load tests too.
We investigate communication between parallel test components (PTCs) and ana-
lyze race conditions between the queues underlying the implemented PCOs. This
way, we build an analytic model to investigate behavior of PCOs under stress
conditions and to assess possible latencies messages in a TTCN-3 based load test
system might suffer. We present a discrete-time Quasi Birth-Death process to pre-
dict performance indices of test components and we propose to use the results to
avoid indefinite postponement in the communication of PTCs. Also, we aim to
use the model for calculating traffic intensity limits under which it is feasible to
use TTCN-3 for load testing. Furthermore, we present the output of the model
together with an example load test scenario that is vulnerable to that types of
latencies.

1 Introduction

The subject of our investigation is the standardized test specification language the Test-
ing and Test control Notation version 3 (TTCN-3) [1]. TTCN-3 is widely used in dif-
ferent areas of testing including different fields of telecom and datacom and is gain-
ing acceptance even in automotive systems testing. The language itself has a variety
of applications including testing various systems for interoperability, robustness and
conformance.

Recently, there has been a sore need to assess the capabilities of TTCN-3 as a test-
ing solution not only for conformance and interoperability testing but for performance
evaluation of telecommunication systems as well. Since TTCN-3 is a rather high level
specification language, concerns have arisen regarding its applicability in load tests that
require a significant amount of processing power, e.g. a high number of packets per
second generated. On the other hand, tests and numerous pioneer projects show us that

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 149–160, 2006.
c© IFIP International Federation for Information Processing 2006

150 M.J. Csorba et al.

the language is capable of working at the edges of what the underlying hardware is ca-
pable of. Besides, emerging real-time extensions to the original notation also exist [2],
[3], [4]. So, usage of TTCN-3 in load tests should not imply a bottleneck if tests are
designed carefully.

Our work examines the event processing capabilities of test components that ex-
change messages via communication ports competing with each other for system re-
sources. By analyzing race conditions between the queues underlying the implemented
PCOs, we build an analytic model to investigate behavior of PCOs under stress con-
ditions and to assess possible latencies messages in a TTCN-3 based load test system
might suffer. A discrete-time Quasi Birth-Death process is presented to predict per-
formance indices of test components. We aim to use the model for predicting traffic
intensity limits under which it is feasible to use TTCN-3 for load testing purposes. The
remainder of this paper is organized as follows.

In Section 2, we introduce briefly a few basic issues in TTCN-3, the operation of
Points of Control and Observation (PCOs), and in Section 3, we present the mathe-
matical formalism used in this paper. Section 4 presents a parametrical model of test
components using multiple PCOs. In Section 5, analytic results of the model for an ex-
ample test component are detailed, together with an ns-2 [5] simulation that was used
mainly for validating and fine tuning of the model. Finally, in Section 6, concluding
remarks are given and future work is detailed.

2 Concurrent PCOs and Alternative Behavior in TTCN-3

This section outlines the basic structures in TTCN-3 we aim to model, together with
examples of load test scenarios that might be vulnerable to certain types of latencies
during execution. Moreover, we point out the performance indices we evaluate to pre-
dict the behavior of TTCN-3 test components.

In TTCN-3, configuration of the test system can be set dynamically. This means that
a configuration may consist of several components participating in the test [6], either
as a component that communicates directly with the System Under Test (SUT), or as a
component having only registration or internal purposes, meaning that it communicates
only with parts of the test system itself. Within every configuration there is only one
designated component, the Main Test Component (MTC) that is created automatically.
Other components can be created dynamically and are called Parallel Test Components
(PTCs). PTCs do not have any hierarchical order among them. PTCs communicate with
each other, and with the MTC also, via test ports. Similarly, communication towards the
SUT is established via test ports too, as in Figure 1.

Each test port that connects either two test components (internal port) or a test
component and the interface towards the SUT is modeled as a FIFO queue for the in-
coming/outgoing messages. Each component can access messages in its correspondent
queue one by one. Properties of the FIFO queues assigned to a test port are dependent on
the actual implementation of the TTCN-3 compiler. The queues can be infinite in princi-
ple, as long as the system memory lasts, but might overflow indeed. More importantly,
in a load test system response time must be considerably short. This means that it is
inexpedient to implement a virtually infinite buffer for a PCO and forget about message

Performance Analysis of Concurrent PCOs in TTCN-3 151

Fig. 1. Test Components and Test Ports

loss at all. Although a sufficiently long buffer might eliminate message loss, response
time increases significantly at the same time. Accordingly, we investigate message loss
in relatively short queues.

The actual behavior of a test case is defined by dynamic behavioral statements in a
test component that communicates over certain test ports. Usually, sequences of state-
ments can be expressed as a tree of execution paths, that is alternatives. In TTCN-3,
the alt statement is used to handle events possible in a particular state of the test com-
ponent. These events include reception of messages, timer events and termination of
other PTCs.

The alt statement uses a so-called snapshot logic [7]. This means, that before eval-
uating the actual alternatives in the alt a snapshot of the test component containing
any information that is relevant (e.g. status of the test ports involved in the alt, running
timers) is taken. Branches of the alt might have a Boolean guard expression assigned
to them that is evaluated before the branch is examined. The guard expression might be
based on the snapshot as well.

Different types of branches exist in an alt statement (e.g. timeout, receive). Each
time a receiving branch is found during execution a matching operation is done first.
In case the incoming message, that is first in the corresponding PCO’s FIFO, matches
the criteria the alt branch will be executed and the message will be removed from the
top of the queue. Otherwise, the execution continues and the next branch will be ex-
amined. However, execution does not stop after a snapshot was taken, so the state of
the test component and the queues assigned to it might change in between. However,
these events do not change the actual snapshot, until the alt statement is not executed
again.

So, generally the two most significant factors we consider, while evaluating the per-
formance of a test component are the matching mechanism and the queuing at the test
ports. See for example the following scenario (Figure 2).

152 M.J. Csorba et al.

Fig. 2. Load Testing Example Scenario

In this simple example we have two load test components that connect to the SUT
via two different PCOs and handle the actual protocol behavior. One test component is
receiving commands from the user via a user interface (UI). Besides, this component
can supply the user with additional data regarding the test case execution by querying
the load test components periodically. Let us say that in this setup LoadTest Comp.1
stimulates the SUT, which is for example an ATM switching center, and due to this
stimulation the SUT forwards a high number of calls towards LoadTest Comp.2. In this
case, LoadTest Comp.2 should be able to handle and examine a very high amount of
calls per second coming from the switch. The actual race condition results from the dif-
ferent functionalities of LoadTest Comp.2. Firstly, it receives a high amount of incom-
ing calls from the SUT and secondly it must answer status request messages, coming
from UI. Comp. on an internal port periodically. Although, status messages might be
relatively infrequent compared to the messages participating in the load test, they also
need to be handled by LoadTest Comp.2. most probably in the same alt structure. This
setup leads to a race condition between the two separate FIFO queues assigned to the
two test ports of the component. Namely, in the test component branches of the alt re-
ferring to the PCO towards the SUT receive significantly more hits in a unit of time than
branches referring to the internal port do, this way increasing the risk of an indefinite
postponement of the status messages.

In our modeling approach, we build an analytic model of test components that use al-
ternatives to handle internal messages and messages coming from the SUT. We describe
concurrent queues underlying the test ports of a component with a stochastic process
and calculate the steady-state solution. After solving the analytical model, we predict
the probability that one of the queues contain a message that is postponed indefinitely,
because of the fact that race conditions arise between the queues. The probability of
an indefinite postponement is calculated as a function of arrival intensities at the corre-
sponding queues and of other parameters relevant to the implementation of the actual
test component.

Performance Analysis of Concurrent PCOs in TTCN-3 153

3 Discrete-Time Quasi Birth-Death Processes

Our method uses a mathematical model that can be evaluated and performance indices
of the described components can be derived by existing solver techniques. The math-
ematical formalism behind our evaluation method can be identified as discrete-time
Quasi Birth-Death processes (QBDs) [8]. A simpler M/G/n type solution would not al-
low us to use finite queues and to calculate state distributions [9].

The mathematical analysis in turn, is based on matrix-geometric solution techniques
and matrix analytic methods [10]. In order to become acquainted with QBD processes
let us consider processes N(t) and J(t), where { N(t), J(t) } is a DTMC (Discrete-
Time Markov Chain). The two processes have the following meaning: N(t) is the level
process and J(t) is the phase process. { N(t), J(t) } is a QBD if the transitions between
levels are restricted to one level up or down, or inside the actual level. The structure of
the transition probability matrix P of a simple QBD is the following:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1
∗ A0 0 0 · · ·

A2 A1 A0 0 · · ·
0 A2 A1 A0 0

0 A2 A1 A0

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Matrix A0 describes the arrivals (transitions one level up), matrix A1 describes transi-
tions inside each level and matrix A2 describes departures (transitions one level down).
Matrix A∗

1 is an irregular transition matrix at level 0. The row sum of P is equal to
1 (discrete-time model). The tangible meaning of levels and phases can be seen in
Figure 3.

Fig. 3. Logical representation of a QBD process

The two-dimensional property of a QBD is utilized by our method significantly. On
one hand, we map the sequential branch examination and matching mechanisms of the
alt structures in a given test case we model, into the internal phases inside each level of
the QBD. On the other hand, we use the levels to describe queuing at the test port.

After the system’s behavior is described by the QBD model, with the aid of matrix
analytic methods the following properties of the model can be calculated: steady state
solution, queue length in steady state, phase distribution, mean value of time to tran-
sition back to level zero (meaning that the buffer is empty). As a result, a variety of

154 M.J. Csorba et al.

performance indices can be derived from the QBD model, such as packet loss ratios,
delays, and available throughput under stress conditions.

4 A QBD Model for PCOs

For the performance evaluation of PTCs that use alternatives to handle messages we
build the following novel QBD model. For the sake of simplicity consider a test com-
ponent using two test ports, each of them with a separate FIFO queue (e.g. in Section
2). The model will macroscopically look like a simple QBD that is infinite in one di-
mension similar to the example in Figure 3. So, in the first dimension the model is an
infinite QBD. This dimension represents the PCO that drives the system into a race con-
dition, call it PCO1. This might be the PCO serving a significant load coming inwards
from the SUT. But at a lower level another embedded QBD is to be found, representing
the PCO (call it PCO2) that is suppressed by the heavily loaded PCO1. Levels of the
QBD describe queue sizes in this case, accordingly the second dimension of the model
is in direct connection with the size of the queue assigned to PCO2. This dimension
will be finite with a parametrical size, in order to assure matrix-analytic solutions to
work [11], [12] and to allow the model to predict infinite postponement in the PCO,
which is underprivileged because of the race conditions between the concurrent PCOs
(Figure 4).

Example 1 (Example alt structure).

alt {
/*Group 1*/
[] PCO1.receive(template1) { Statements... }
[] PCO1.receive(template2) { Statements... }
[] PCO1.receive { // Trash unmatched messages

repeat }
/*End of Group 1*/
/*Group 2*/
[] PCO2.receive(template3) { Statements... }
[] PCO2.receive(template4) { Statements... }
[] PCO2.receive { // Trash unmatched messages

repeat }
/*End of Group 2*/
}

The vertical dimension, that is the number of distinct groups of states in Figure 4 is re-
stricted by the size of the FIFO queue of PCO2, which can be set as a model parameter.
Also, relatively short buffers are considered for the investigated PCO in order to keep
response time, that is crucial in a load test system, under a considerably low level. If
we look at this model as a simple QBD, transitions upwards and downwards are de-
scribed by matrices C and A respectively. Whereas, matrix B describes internal phase
transitions. Irregularities, denoted by ∗, occur at the first level, where there is no pos-
sibility of a transition downwards. Each group of phases (within ellipses) corresponds
to a group of alt branches that use the same PCO. Group to group (vertical) transitions
describe queuing and service of messages at PCO2. For example, see the excerpt in
Example 1.

In this example branches that refer to the same PCO are grouped together. Two
groups are formed that correspond to the separate groups of phases in Figure 4. In

Performance Analysis of Concurrent PCOs in TTCN-3 155

Fig. 4. Two dimensional model for two concurrent PCOs

effect, only branches of PCO2 are active in the first horizontal level of the model as
horizontal levels represent the queue of PCO1. Being at the first level means the buffer
of PCO1 is empty, so in this case queueing at the FIFO queue of PCO2 is considered
only, in addition to the matching mechanism. Similarly, when the queue of PCO2 is
empty but PCO1 is active the model moves on the horizontal axis across the first groups
of phases representing queueing at the FIFO of PCO1 and the matching mechanism on
the correspondent group of branches. Of course, the other phases describe mixed states,
when both queues contain messages.

Description of the transitions are realized by matrices A, B, C, A∗, B∗ and C∗ that
consist of several submatrices, for example matrix A and its irregular counterpart is
shown here (2).

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ã1 Ã0 0 0 · · ·
Ã2 A1 A0 0
0 A2 A1 A0 0

. . .
. . .

. . .

A2 Â1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã∗
1 Ã∗

0 0 0 · · ·
Ã∗

2 A∗
1 A∗

0 0
0 A∗

2 A∗
1 A∗

0 0
. . .

. . .
. . .

A∗
2 Â∗

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Submatrices A0 and A∗
0 describe a step forward (that is downwards vertically) in the

embedded QBD. This means, a new message has arrived into the queue of PCO2 (step
downwards) while a message has been served from the queue of PCO1 (one step left). In
a similar manner, matrices A1, A∗

1, Â1, Â∗
1, Ã1, and Ã∗

1 contain transition probabilities

156 M.J. Csorba et al.

confine to the case that there has been no new arrival on PCO2 (no vertical movement),
but exactly one message has undergone service from PCO1’s message queue (one step
left). Furthermore, matrices A2, A∗

2, Ã2 and Ã∗
2 are all equal to the zero matrix, because

only one message can be under service by the TTCN-3 executor at a time, naturally the
meaning of a transition left and upwards at the same time would mean that. In Figure 5,
transitions between group of states and the assigned matrices are depicted, restricted to
the case that a message is under service (A matrices only). Probabilities of the actual
phase (states of the embedded QBD) transitions are described by the specific elements
of the matrices.

Fig. 5. Possible transitions of the model while a message is under service in PCO1

Important cornerstones of the matrices that build up the generator matrix of the
model are the matching probabilities of branches the alt contains. Consider these values
as predicted hit rate counters for each branch stored in vectors (p), one for each PCO,
e.g. in case of two PCOs we apply p

′
for PCO1 and p

′′
for PCO2. Naturally, length of

the alt structures (groups of different PCOs) is equal to the length of the hit rate vectors
and determines the size of the submatrices among others in Equation 2. Elements of the
vectors (e.g. pi) contain the probability that a message under service does not match the
template at branch number i. In this case, it is checked against the template at the next
branch.

A further important input parameter of the model is the time slot (T) needed for one
elementary action in the TTCN-3 executor, e.g. the average time needed for the exam-
ination of one alt branch, the average time in which a template matching operation is
finished. Samples of messages traversing the PCOs the test component needs to deal
with are taken in discrete T time intervals (DTMC).

Furthermore, we describe the arrival intensities of the PCOs involved with a λ as-
signed to each of them. λ values are relative to the selected elementary T, e.g. λ1 =
1000 and T = 10−6 (1 μsec) means that one message arrives approximately every
millisecond (λ1 · T = 10−3) on PCO1. Accordingly, we use four different variables

Performance Analysis of Concurrent PCOs in TTCN-3 157

to include arrival intensities into the model. D00 denotes no arrival at a time slot. D10
and D01 indicate that one message has arrived on PCO1 or on PCO2 respectively. The
meaning of D11 is that a message has arrived on both PCOs at the same time concur-
rently, but this is disallowed by the model, since the TTCN-3 executor handles only one
message at a time. This leads to the following scheme (3).

D00 = 1 − (λ1 + λ2) · T ; D01 = λ2 · T ; D10 = λ1 · T ; D11 = 0; (3)

The transition submatrices are constructed using the D matrices and the matching prob-
ability vectors until every state transition of the state space is covered. For the sake of
clarity we present only one submatrix as it is defined (4). Matrix Â1 has elements only
in the first column and only until the s1th row, where s1 is the number of branches
referring to PCO1 (that is the size of p

′
). (D00 + D01) represents the probability that

either no message has arrived or exactly one arrival happened on PCO2.

Â1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − p
′

1
)· (D00 + D01) · · · 0

...
...

(1 − p
′

s1
)· (D00 + D01) · · · 0

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

When the matrices are built up we then calculate the ratio of time spent at the nth and
n+1th level before returning to level n, in matrix R. R is calculated using a logarithmic
reduction algorithm described in [8]. The complete distribution of states in the QBD
model is then calculated using R (5).

P 1 = P 0 · R; P 2 = P 1 · R; . . . Pn = P 0 · Rn (5)

Where vector Pi contains distribution of the phases at level i and it is not to be confused
with p

′
or with p

′′
that contain match probabilities, which are architectural constants of

the system. After the state distribution is available we can derive performance indices
of the system. In this case, we calculate the probability that a message suffers indefinite
postponement while in the buffer of PCO2, because PCO1 is under a significantly heav-
ier load. This means that we sum state probabilities at every (horizontal) level, but only
those at the vertically last group of states (subsets l and m). This gives us the following
equation, where matrix I is the identity matrix. Practically, we need state distributions
only at the first two levels and matrix R for the evaluation.

Pr(PCO2loss) =
∑

i

Poi +
∞∑

j=1

(
∑

k

Pjk) = . . . P0l
+

∞∑
j=1

(Pj
m

)s

= P0l
+

∞∑
j=1

(P1m
· Rj−1) = P0l

+ P1m
·

∞∑
k=0

(Rk)

= P0l
+ P1m

· (I − R)−1 (6)

158 M.J. Csorba et al.

This way, after obtaining steady state distributions of the QBD process, we can pre-
dict the probability that messages are postponed in the queue of the PCO that is in lack
of system resources because another PCO of the same test component used them up.
In the stochastic model this means that we have a new demand incoming in the queue
of that PCO that is already at the last level possible, so further messages cannot be
received or they will be lost. This analysis allows us to evaluate load test components
implemented differentially by setting the parameters of the model accordingly. Also,
analysis can be set up to examine a test component with different load requirements as
the arrival intensities are parametrical.

5 Model Results

After the transition matrices are defined according to the architectural constants, the
matching probability vectors and the arrival intensities for each PCO, the model has
been built up. Together with the arrival intensities the elementary time slot T has to be
set also. Besides, one more important input parameter exists, the size of the queue at
the PCO we investigate for possible latencies.

Accordingly, considering the simple example in Section 4 we can get the following
results on the probability that a message suffers indefinite postponement in the queue
of a PCO. In this example the test component uses two separate PCOs. Say PCO1
is a load generator with considerably high amount of packets generated, while PCO2

Fig. 6. Model results for different PCO queue sizes

Performance Analysis of Concurrent PCOs in TTCN-3 159

Table 1. Message loss probability, model and simulation results

Arrival intensity (λ) Messages per second Buffer size Model result Simulated value
0.08 80000 5 0.00831 0.01252
0.10 100000 4 0.04333 0.04333
0.11 110000 3 0.12333 0.59024
0.12 120000 4 0.06971 0.07333
0.14 140000 4 0.10102 0.14333
0.19 190000 5 0.12718 0.13333

handles lower priority operations, such as communicating with the user, or receiving
maintenance messages from the main test component. In the analytical model (Fig-
ure 6), message loss is calculated according to (6). Different sizes of queues underlying
the analyzed PCO are represented by each curve. In Figure 6 and in Table 1, the arrival
intensity in PCO1 is considered to be constant, while the arrival rate in PCO2, that is the
port we investigate, is variable from 0 to 0.5. An arrival rate (λ ·T) of 0.5 means, in case
we have a T = 1 μsecond, that approximately 500 messages arrive each millisecond to
PCO2.

Simulations in ns-2, that has been used for validating the model, show similar behav-
ior. The simulated scenario consists of two PCOs implemented as FIFOs with variable
buffer length. Among others, each simulated PCO has a variable length delay loop
sequence to simulate the matching mechanism too. Table 1 shows simulated results
together with the model results for the same parameters. On one hand we use this sim-
ulation to develop the analytic model for more precise results, on the other hand an
analytic model is necessary to analyze more complex test scenarios with more than two
PCOs involved.

6 Conclusions

Generally, load testing is not an easy task, neither with TTCN-3, nor with any other test
environment [13], [14]. Tests that work somehow are not sufficient, but load tests must
also work well. Careful test design and test optimization is a must in these kinds of
tests, meaning that tests have to be designed to work efficiently on the execution plat-
form that accommodates them. Efficiently, that is e.g. with low CPU load, even using
stock hardware elements. To evaluate a load test component and to verify it meets the
identified requirements, the complete path traversed by the corresponding messages has
to be taken into consideration.

Our analytical model is designed to evaluate load testing TTCN-3 parallel test com-
ponents to satisfy user requirements using discrete-time QBDs. In order to be able to
design test components that simulate behavior of real nodes in a telecom test network
and that are even interchangeable with a real node in terms of performance, modeling
of the components performance is nearly inevitable.

This modeling approach makes it possible to evaluate existing test components and
also to give a feedback to designers of load test scenarios. Also, the model can aid
distribution of load test traffic among the test components participating in test. The aim

160 M.J. Csorba et al.

of successful traffic mix composition is to simulate behavior of real nodes, or even to
produce an equivalent counterpart of the real node in TTCN-3.

Our future work on this topic includes extending the model to be capable of de-
scribing PTCs containing more than two concurrent PCOs at a time. Besides, further
simulations and measurements of real components are ongoing and observations are
gathered to improve our model beyond the current level.

References

1. ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2005.

2. H. Neukirchen, Z. Ru Dai, J. Grabowski. Communication Patterns for Expressing Real-Time
Requirements Using MSC and their Application to Testing. R. Groz, R. M. Hierons (Eds.)
TestCom 2004, LNCS 2978, pp. 144-159, 2004.

3. Z. Ru Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 Based Graphical Real-Time Test
Specification. D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 110-127,
2003.

4. Z. Ru Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 - A Real-time Extension for TTCN-
3. I. Schieferdecker and H. König and A. Wolisz (Eds.) Proceedings of the IFIP 14th Interna-
tional Conference on Testing Communicating Systems - TestCom 2002, pp. 407-424, 2002.

5. S. McCanne, S. Floyd. ns Network Simulator. http://www.isi.edu/nsnam/ns/
6. I. Schieferdecker, T. Vassiliou-Gioles. Realizing Distributed TTCN-3 Test Systems with TCI.

D. Hogrefe and A. Wiles (Eds.) TestCom 2003, LNCS 2644, pp. 95-109, 2003.
7. ETSI ES 201 873-4 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics", 2005.
8. G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Mod-

eling. by the American Statistical Association and the Society for Industrial and Applied
Mathematics, 1999, pp. 83-99, pp. 221-237.

9. S. Palugyai, M. J. Csorba. Performance Modeling of Rule-Based Architectures as Discrete-
Time Quasi Birth-Death Processes. Proceedings of the 14th IEEE Workshop on Local and
Metropolitan Area Networks, 2005, Chania, Greece.

10. M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University
Press, 1981, pp. 81-107, pp. 63-70, pp. 112-114.

11. T. Osogami, A. Wierman, M. Harchol-Balter, and A. Scheller-Wolf. A recursive analysis
technique for multi-dimensionally infinite Markov chains. Performance Evaluation Review,
32(2):3-5 (2004).

12. T. Osogami. Analysis of a QBD Process that Depends on Background QBD Processes. Tech-
nical Report CMU-CS-04-163 (2004).

13. G. Rößler, T. Steinert. Traffic Generator for Testing PABX and Call Center Performance. I.
Schieferdecker and H. König and A. Wolisz (Eds.) Proceedings of the IFIP 14th International
Conference on Testing Communicating Systems - TestCom 2002, pp. 139-151, 2002.

14. I. Acharya, H. Kumar Singh. Testing of 3G 1xEV-DV Stack - A Case Study. D. Hogrefe and
A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 20-32, 2003.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 161 – 176, 2006.
© IFIP International Federation for Information Processing 2006

Use of TTCN-3 for Software Module Testing

Andreas Johan Nyberg

Nokia Research Center, P.O. Box 407,
FIN-00045 NOKIA GROUP

Andreas.J.Nyberg@nokia.com

Abstract. Efficient testing of software modules remains a challenging task for
complex software implementations. TTCN-3 has so far been applied mainly in
the telecom domain but not yet in a larger extent to software module testing.
This paper describes a multi purpose TTCN-3 test system solution primarily
targeted for concurrent software and testing of software modules in isolation.
Apart from a test system solution, an approach for type mappings from C to
TTCN-3 is discussed, followed by an example of how test cases could be
implemented and how the discussed test system be utilized for a simple
software module.

Keywords: Software testing, concurrent software, mock objects, TTCN-3.

1 Introduction

Software module testing can be a complex task for non-trivial code, especially in
concurrent programming. Testing modules of concurrent software in isolation has a
number of requirements on the test framework used. The test system and test case
implementations must be able to handle concurrent behavior and support the use of
emulated components for module isolation. Testing of concurrent software has a
number of additional challenges[1],[2] compared to sequential software. These
include shared critical areas, synchronization, deadlocks, livelocks[3] and non-
deterministic behavior. When testing modules in isolation missing parts of the
implementation have to be emulated e.g., components and services.

This paper describes a multi purpose test system targeted for testing of complex
software implementations with concurrency aspects and requirements to test modules
in isolation. Several testing concepts must be handled by the test system which are
treated as requirements: The test system has to provide (1) test control and test
management, (2) test suite trace consistency, (3) handle non propagating errors from
earlier executed test cases and (4) support free choice of system under test (SUT)
execution environment. In addition, (5) language independency for the
implementation under test (IUT) is supported that comes for free with the choice of
the test language used in this paper, TTCN-3.

For well known CUnit[5],and JUnit[6] frameworks, software module testing using
the native language of the tested software module as test language has its advantages.
Among them are easy data type creation and instantiation, conditional tests, and
already existing knowledge of the language to write test cases in. Involving another

162 A.J. Nyberg

language for test case implementations in the testing process creates an overhead in
form of learning another language. Nevertheless using TTCN-3, a standardized test
language for test suite implementations and test systems, has some advantages and
might even opens up new possibilities for software testing.

TTCN-3 has evolved from the telecom testing industry and is a test implementation
language that looks very much like an ordinary programming language. It is currently
the best established standardized testing language on the market. TTCN-3 has been
used for testing in telecom related areas, e.g., protocols such as IPv6[7], SIP and
WiMax. What these test systems have in common is that they are fully asynchronous
and heavily rely on the message-based communication mechanism part of the TTCN-3
language. TTCN-3 supports however in addition also procedure-based communication.
The procedure-based paradigm can be applied to cases where there is a clear
distinction between a caller and replier of procedures. This makes TTCN-3 suitable for
calling remote procedures in a SUT, in the same way as Sun/ONC RPC[RFC 1831]
works.

TTCN-3 provides the concept of test components which makes it possible to
implement concurrent behavior in a natural synchronous procedure-based manner.
TTCN-3 has a built in extension mechanism that enables the import of notations in to
a test system. Examples of these extension mechanisms can be found in the
standardization work involving the IDL and XML language integrations [13].
As TTCN-3 is independent of the implementation language of the tested code the
language has to be mapped and imported to TTCN-3 through the extension
mechanism. The mapping has to cover up to the extent of functions, function
parameter and return value types. No semantics need to be mapped, only what is
publicly visible in interfaces. This paper covers a subset of the C to TTCN-3 mapping
which will be a future part of the TTCN-3 standards. The C language has language
specific features like pointers allowing for definition of complex types that have not
been covered in other TTCN-3 language mappings before.

2 Background

The targeted problems in this paper are to exemplify the possibility to create multi
purpose software testing test system based on the TTCN-3 standards. Difficult testing
areas such as concurrent software and module isolation with emulated components
will be addressed.

Two ways of testing concurrent software is through multiple execution and
deterministic execution of test cases[2],[8]. Test case implementation based on
methodologies for testing concurrent software such as above and in addition mutation
testing[9] and reachability testing[8] will only be addressed in the context of
applicability by using TTCN-3. The test system approach in this paper makes it
possible to perform multiple and deterministic execution of test cases utilizing testing
methodologies that are suitable for concurrent software testing by using the execution
semantics of TTCN-3.

Testing software modules in isolation is a difficult task even for non-trivial code.
One approach is to use mock objects[4] which are dummy implementations that
emulate real implementations to replace functionality in the testing domain of the

 Use of TTCN-3 for Software Module Testing 163

tested software module. There are many good reasons to use mock objects[10] such as
non-deterministic behavior, test object setup and call back functionality. This
approach can be utilized efficiently by using TTCN-3 not only for code level mock
objects but also for emulating behavior of external services something that will be
exemplified in this paper.

TTCN-3 telecom protocol test systems are already in product use, e.g.[7], in
addition established testers also for OMG CORBA interfaces are available. Test
systems for OMG CORBA implementations based on IDL interfaces require that the
interface definitions are mapped to TTCN-3[11]. The test system approach in this
paper requires that the language of the tested software module is mapped to TTCN-3.
To be more precise the interface of the module under test has to be represented in the
TTCN-3 test suite as is with parameters and type mappings.

3 TTCN-3 Test Systems

Suitable test architectures for testing software modules can be approached from
several different angles. Architectures and approaches can differ depending on the
stage in the development process or the kind of testing that is looked for. The
approach described in this section resembles a unit testing platform which is
applicable and targeted for unit testing and higher level testing such as functional
testing and system testing. The test language and the test system design allow for
efficient test suite implementations by using a mixture of message-based and
procedure-based communication. For example, a module can be tested through its
available interface at function level and at the same time it can be tested by using
message-based communication with external interfaces and mock objects, all from
within the same test suite. With multiple test capabilities software faults can be
detected at several levels of testing: early on in development using unit testing-like
approaches (with high code coverage), integration testing for interface and integration
faults as defined in[12], and in system and conformance testing for error detection at a
pure black box level.

Fig. 1. Overview of a TTCN-3 test system and SUT

164 A.J. Nyberg

Using TTCN-3 for test suite implementations requires a TTCN-3 test system which
contains more than TTCN-3 code[16]. The left part in Figure 1 shows the
composition of a TTCN-3 test system as defined in the TTCN-3 standards[13]. There
are several different entities involved in the test system which communicate over
standardized interfaces named TTCN-3 Control Interface (TCI) and TTCN-3 Runtime
Interface (TRI). The most central entity, the TTCN-3 Executable (TE) handles the
execution of the TTCN-3 code, either as compiled code or interpreted at runtime. The
user interacts through the Test Management (TM) entity which also provides
functionality for encoding and decoding of data values. The lower level containing the
SUT Adapter (SA) and Platform Adapter (PA) interfaces as the names implies relate
to the interaction towards the SUT and towards the test system operating system.

The interaction between the SUT and the SUT Adapter is a design choice for the
test system. In the illustrated case a separated Executable Test Suite (ETS) and SUT
has been chosen. This is defined as the distributed test method in ITU-T X.290[14].

3.1 IUT and the Test Harness

An IUT cannot be tested as it is. There needs to be a test harness present in the SUT.
The IUT together with test harness composes the SUT. As the test system that is
discussed in this paper is distributed, the test harness has to be able to handle,
communication between the test system and SUT, marshalling, and invocation of the
functions in the module under test. Marshalling builds valid C values to use in
function invocations. The distributed approach automatically puts requirements on the
mapping between C and TTCN-3 in order to make sure that values really can be built
from the mapped C value instances in the TTCN-3 test suite. Implementation of the
SUT test harness depends on the function interface, programming language of the
IUT and available tools for stub generation.

Fig. 2. Examples of distributed test system implementations

It is up to the SA on the tester side to keep track of the different executing SUTs
and its connections to the test executable. This can be managed at TTCN-3 test
component level where each executing test component is directly mapped to a single
executing SUT or even to a single thread in a SUT. On the left hand side in Fig. 2

 Use of TTCN-3 for Software Module Testing 165

software components or SUT threads which run in parallel are mapped to individual
TTCN-3 test components. The right hand side in Fig.2 shows an example of the
implementation language independency that TTCN-3 can provide.

3.2 TTCN-3 Concepts and Usability for Software Testing

Using TTCN-3 for software testing provides several very useful features. Apart from
what has been mentioned already in form of standardized test system interfaces and
independency of the language of the IUT there are other very testing specific
advantages.

TTCN-3 has very well defined execution semantics that guarantees that a test case
execution of a TTCN-3 test system will be the same with any TTCN-3 tool. There is
also an internal matching mechanism, that when combined with the TTCN-3 language
construct template, allows for the writing of very compact test cases. Using a template
construct which represents a value instance, all or selected parts of the value instance
can be targeted for matching i.e. when matching two structured types against each other.

Concurrency is something that can be handled very gracefully in TTCN-3 by using
test components and a test case verdict that can be set from any test component
without any need for component synchronization. The TTCN-3 test components also
allow performing of tests on several modules written in different languages, with the
same test system - even from within the same test case. Combining the procedural and
message-based aspects with the concept of TTCN-3 test components that can be
executed in parallel with individual behavior and complex test case scenarios can be
implemented in a clear and concise manner.

3.3 Distributed Test System Main Concepts

Distributing the test system as in Fig. 1 by separating the SUT from the ETS provides
capabilities that solve some of the test system requirements stated in the introduction.
These capabilities come with a number of benefits that outweigh the drawbacks of a
distributed test method, e.g., its communication latency:

• Test control and test management
A potential problem when running large test suites is the possibility to recover and
continue a test suite execution in case of a crash, deadlock or livelock in the IUT.
With the ETS running in isolation from the IUT the SUT can be restarted by the ETS
if needed, e.g. after a crash in the IUT or between each test case.

• Test suite trace consistency
Logs and test suite verdicts and summaries can be kept intact and will not be
corrupted. The ETS does not crash from a crash in the IUT and all test execution logs
can be finalized gracefully without the risk of loosing valuable test execution
information.

• Non propagating errors
Most software testing literature defines that the first step in the unit testing procedure
shall be to test the smallest possible unit, e.g. a function, to make sure errors do not
propagate into further development. With the separated SUT and ETS the SUT can be

166 A.J. Nyberg

restarted for every test case. This usually results in re-initialization of memory
through which the propagation of errors could propagate.

• Language independency
Most software unit testing tools are written in the same language as is used for writing
the tested software. Using a TTCN-3 based solution the test cases will not be written
in the same language as the IUT. In Fig. 2 the implementation language of the IUT is
independent of the test suite language, which adds to the goal of a multi purpose test
system.

• SUT execution environment
A distributed test system approach allows a free choice in execution environment with
regards to operating system and platform of the SUT. The only requirement is that the
target system must allow communication between the SUT Adapter in the test system
and the SUT test harness.

Test system distribution has advantages, but also has a few drawbacks that have to
be considered. Communication overhead is one issue while invocation latency and
marshalling are others. The latency has been measured in a comparison between two
almost identical test systems. One test system had the IUT directly attached to the
SUT adapter and thus execute in the same process as the ETS. The other test system is
the one described in this paper. The additional latency of having the SUT separated
from the ETS was approximately three to one. Invocation, marshalling and
communication latency are not alone the reasons for causing the performance
drawback. There is also additional routing functionality that has to be handled in the
SUT adaptation due to the possibility to have many separately executing SUTs or
SUT threads. There are a number of possible solutions which can be applied to the
distributed test system case for overcoming obstacles such as latency and memory
access overhead. One is through the use of inter-process communication (IPC) over
UNIX sockets utilizing shared memory between processes running at the same
machine which will reduce the time spent on pointer handling in the test cases.

Another drawback is that a model for memory access has to be defined before
writing test code for software which is implemented in programming languages that
utilize pointers or object references. Such references and pointers only reside in the
memory space of the SUT. However, a memory address or object reference has no
real meaning inside the test system which is executing in its own separate process.
This lack of pointer transparency requires that memory access is explicitly defined in
TTCN-3 test cases through the language mappings.

3.4 Testing Multithreaded and Concurrent Software Modules

One of the biggest challenges when testing concurrent software is to make sure that it
will be tested thoroughly when the software includes critical areas and shared data.
The order of execution of concurrent statements in the different threads or processes
must be considered. This non-deterministic behavior can cause execution sequences
to be different from execution to execution even with the same input data. This adds
synchronization complexity to test case implementations. Synchronization between
test components can be solved by connecting test component ports to each other

 Use of TTCN-3 for Software Module Testing 167

through the TTCN-3 operation connect which allows for message communication
internal to the TTCN-3 executable. Deterministic execution sequences can then be
synchronized utilizing this internal communication. Functional testing of individual
functions in isolation does not constitute enough assessment because none of the
functions under test will then deal with concurrency. What is needed is a test system
that can simultaneously trigger several functions to access critical sections in the IUT
at the same time. This problem can be solved by assigning one TTCN-3 test
component per thread or software component in the SUT. Here, each test component
in the test system creates its own connection to the SUT who in turn spawns a new
working thread for every connection and thereby establishes a coupling between the
test component and, e.g. a POSIX thread, in a C test harness.

Fig. 3. TTCN-3 test components spawn working threads in the SUT

All procedure-based calls between a test component and a working thread in the
SUT are transmitted via such an established connection. The connection which is not
visible from within the test case is a feature of the test system design. The spawned
working thread is part of the test harness in the SUT and is utilized for simulating
concurrent behavior in the IUT.

3.5 Usage of Mock Objects

When a software module is to be tested as an isolated entity, the test system has to
emulate any calls that a particular module makes to other functions or methods, that
are external to the tested module. This clearly moves away from pure black box
testing, as knowledge and understanding of internal functional details about the
module is needed. To properly isolate but still test the module in its intended
environment, we need to create test configurations with test components (mock
objects) that can act as the external, collaborating components.

By using parallel test components of TTCN-3, we can easily simulate the external
collaborating code modules and their behavior by allowing the test components to
make or expect calls to and from the tested module. The strength of this approach is
that it allows control of the behavior of these external parts in order to simulate

168 A.J. Nyberg

correct or incorrect external behavior and then analyze if the tested module is able to
handle problematic situations. This means that it will be possible to test error handling
code as well.

4 C to TTCN-3 Language Mappings

Specifying test cases in TTCN-3 requires that the tested functions of the software
module to test can be called from the TTCN-3 test suite. This is possible provided that
a mapping between the language of the software to test and TTCN-3 exists. Utilizing
the procedure-based paradigm in TTCN-3 with the concept of signatures a mapping
can be defined in a clear and evident way. This applies to all the tested functions,
functions in mock objects and to the types used as parameters and return values. This
section gives an overview of a subset of the C to TTCN-3 mappings that have been
defined.

4.1 A Practical Example

Mapping from the programming language of the IUT is an important part of a
working TTCN-3 test system. Selected parts of a C to TTCN-3 mapping is presented
and exemplified in this paper. We will use a simple reentrant thread safe C module
representing an automated teller machine (ATM) as ongoing example. The module
has functions with critical sections.

int login (int userId, int code);
int balance (int userId, int* balance);
int withdraw(int userId, int amount, int* balance);
int logout ();

The ATM server example requires the existence of a component that handles user
verification. This component in the example is replaced by a mock object to make it
possible to test the ATM module in isolation. Below is the sole function of the mock
object which is called from the IUT.

int verifyUser(int userId, int code);

The C module of the ATM can be tested in many ways, primarily through unit and
functional testing of functions followed by testing of concurrent scenarios.

The ATM example above is a typical example where a number of problematic
scenarios easily can be identified, e.g. read/write locks, starvation and partial failures.
Before exemplifying possible test cases for the ATM module the necessary mapping
from the language of the IUT (C) to TTCN-3 has to be defined.

4.2 Mapping of Functions

TTCN-3 signatures may specify parameter lists and return values where the direction
of the signature parameters is also defined. The interface of the ATM module and
mock object function are mapped and exemplified in Table 1.

 Use of TTCN-3 for Software Module Testing 169

Table 1. TTCN-3 signatures mapped from a set of the functions in the example

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016

/* ATM interface */
signature s_login(in CInt p_userId,
 in CInt p_code)
 return CInt;
signature s_balance(in CInt p_userId,
 in CIntPtr p_balance)
 return CInt;
signature s_withdraw(in CInt p_userId,
 in CInt p_amount,
 in CIntPtr p_balance)
 return CInt;
signature s_logout () return CInt;

/* mock object interface */
signature s_verifyUser(in CInt p_userId,
 in CInt p_code) return CInt;

All parameters are mapped with the direction set to in parameters as if passed by
value. This also applies to the case of pointer type parameters since a pointer address
cannot change during a function call.

4.3 Mapping of Pointers

Mapping of primitive and built in data types in C is rather straightforward. But
pointers need some more attention. A C pointer can been thought of as a four or eight
byte aligned value[15] and can therefore be represented as a TTCN-3 integer. The
contents pointed at by a pointer on the other hand calls for a more constructive
mapping than a simple string representing the memory address of the contents. One
possibility is to represent the pointer value by the data type it is pointing at in the test
suite. However, in the case of more complex types, e.g. cyclic data structures, this
approach fails. Another issue is that a pointer to e.g. an integer may not always
reference to a single integer. It can just as well point to the first element of an array of
integers of an unknown size. In general, a pointer must always refer to a data array
with one or more elements representing the memory space it is pointing at. Therefore
the C pointer’s content has to be mapped to the TTCN-3 list type record of. The
pointer itself is still mapped to an integer but when the contents are retrieved they are
represented by an ordered list of the pointed at data type. One benefit of this mapping
is that pointer arithmetic can be done easily in a test case implementation, e.g.
increment and decrement by direct indexing. This mapping is not sensitive regarding
the type of the pointer, complex and abstract data types are mapped in the same way
as for simple types.

Further functionality in the mapping is needed when working with pointers. A
check for null pointers can be enough for a simple test case. What is required are
means for allocating memory, assigning data and retrieving data. This functionality
is handled through type specific signatures as exemplified in Table 2. The test case
writer has to be aware of this mapping due to the nature of the transparent memory
access that has to be provided.

170 A.J. Nyberg

Table 2. Mapping of pointer to integer

 C

001 int* balance

TTCN-3

001
002
003
004
005
006
007
008
009
010

type integer CInt;
type integer CIntPtr;
type record of CInt CIntArr;

signature s_MallocCInt(in CInt size) return CIntPtr;
signature s_FreeCInt(in CIntPtr ptr);

signature s_SetCInt(in CIntPtr ptr, in CIntArr data);
signature s_GetCInt(in CIntPtr ptr, in CInt size)
 return CIntArr;

For data assignment and retrieval two signatures are sufficient, where the number
of elements to retrieve or assign has to be given. At all times a pointer’s content is
represented by the ordered list type, i.e. the record of type. Dealing with a pointer to a
single element is treated as a list containing only one element. For C pointers two
TTCN-3 signatures for every type representing the malloc and free calls are enough
for complete memory handling.

5 Test Case Implementations

Implementing unit test cases in TTCN-3 is done in a conditional test based manner
where return values and pointer parameters are matched in conditional statements
individually through implicit templates or through defined templates. If parameters
and return values are not enough for evaluation, the test system has to be extended
with additional functionality for testing outside a TTCN-3 signature definition,
e.g., file streams and connections. Test cases can implement testing functionality
resembling the assertion macros and functions of, e.g. the well known testing
frameworks CUnit[5] and JUnit[6]. Table 3 shows fragments of a simple unit test
case illustrated in Fig. 4. It tests for correct behavior when verifying a user against
a mock object that acts as the missing user verification component. The test case in
Table 3 tests the case where one user ‘known’ to the ATM system tries to log in
with an incorrect password. It also checks that the login function under test
realizes that the password is not correct from the user verification reply. On lines
10 to 11 in Table 3 two test components are created, one for the mock object and
one for the function to test. The behavior of the components is implemented in the
functions that are passed as arguments when the components are started on lines 13
and 14.

The user verification should fail and the failure shall be detected by the function
under test and then later in the test case the test case verdict is set to pass. This is
exemplified in Table 5 where the function login in the IUT is called on line 9 and the
alternative replies are evaluated on lines 12 to 21.

 Use of TTCN-3 for Software Module Testing 171

Table 3. The test case body where two components are created and started

 TTCN-3
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

testcase TC_UserVerification_Invalid_001()
 runs on IprPBComp
 system IpRouterPBTSI {

 // Start two components here. One for the login and one for
 // the mock object.
 var IprPBComp testComponent;
 var IprPBComp mockObject;

 testComponent := IprPBComp.create;
 mockObject := IprPBComp.create;

 mockObject.start(f_verifyUser_mockObject(0));
 testComponent.start(f_login_invalid(1));

 f_waitForComponentsToFinish(c_COMP_TIMEOUT);
}

The component representing the mock object for the user always returns a failed
reply. The behavior is defined in the function in Table 4 where a call from the SUT is
accepted (line 10) and the rejected user reply is returned (line 11).

Table 4. Code fragments from the mock object function f_verifyUser_mockObject

 TTCN-3
001
002
003
004
005
006
007
008
009
010
011
012
013
014

function f_verifyUser_mockObject(in integer p_compNo)
 runs on IprPBComp {

 f_initPBTcp(localIp,
 localPort+p_compNo,
 sutIp,
 sutPort);

 // Accept any user and always return invalid.
 pt_pb.getcall(s_verifyUser:{?,?});
 pt_pb.reply(s_verifyUser:{-,-} value c_REJECTED_USER);

 unmap(self:pt_pb, system:pt_pb);
}

For concurrent software modules the behavior of the threads executing on the IUT
has to be controlled by a dedicated TTCN-3 test component. Each test component has
to establish a new connection to the SUT which at the point of the accepted
connection spawns a working thread in the test harness. This is exemplified in Fig. 3
and in the right part of Fig. 4 which illustrates a test case with mutually exclusive data
and multiple accessing threads.

The purpose of the test case defined in the function in Table 6 is to determine if the
ATM module can handle (not crash) and recover from a function call that purposely
introduces an invalid parameter (null pointer), Table 7. Recovering means in this case

172 A.J. Nyberg

Table 5. The test purpose functionality that verifies that the function under test can detect a
failed login

 TTCN-3
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

function f_login_invalid(in integer p_compNo)
 runs on IprPBComp {

 f_initPBTcp(localIp,
 localPort+p_compNo,
 sutIp,
 sutPort);

 pt_pb.call(
 s_login:{c_USERID_A, c_BADSECRETCODE_A}, c_TIMEOUT_SEC) {

 [] pt_pb.getreply(s_login:? value c_REJECTED_USER) {
 setverdict(pass);
 }
 [] pt_pb.getreply(s_login:?) {
 setverdict(fail);
 }
 [] pt_pb.catch(timeout) {
 setverdict(fail);
 stop;
 }
 }

 unmap(self:pt_pb, system:pt_pb);
}

Fig. 4. Test cases visualized

that an invalid parameter shall not halt the ATM module by e.g. keeping mutexes
locked. The test case creates a set of components that all but one executes the
behavior in Table 6.

In Table 6 the behavior of the correctly executing test components can be seen.
A pointer is created (lines 13 to 25) and is used through out the test case execution. A

 Use of TTCN-3 for Software Module Testing 173

number of withdrawal requests are performed in a loop (lines 28 to 45) to keep the server
busy and to determine if it can recover when another test component introduces an error.
All components include detection of timeouts which will indicate that the IUT has
crashed or got locked by a deadlock or livelock (Table 6 line 14 and Table 7 line 25).

Table 6. The test behavior of the test components that correctly calls the withdraw function

 TTCN-3
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

function f_write_valid(in integer p_compNo)
 runs on IprPBComp {

 f_initPBTcp(localIp,
 localPort+p_compNo,
 sutIp,
 sutPort);

 // Create the integer pointer where to store the account
 // balance.
 var CIntPtr v_balance;

 pt_pb.call(s_MallocCInt:{ 1 }, c_TIMEOUT_SEC) {
 [] pt_pb.getreply(s_MallocCInt:? value c_NULLPTR) {
 setverdict(fail);
 stop;
 }
 [] pt_pb.getreply(s_MallocCInt:?) -> value v_balance {
 setverdict(pass);
 }
 [] pt_pb.catch(timeout) {
 setverdict(fail);
 stop;
 }
 }

 // Continuous withdrawals, no checking.
 for (i:=0; i<c_LOOPS; i:=i+1) {

 pt_pb.call(
 s_withdraw:{ c_USERID_A, 20/*€€ */, v_balance },
 c_TIMEOUT_SEC) {

 [] pt_pb.getreply(s_withdraw:? value c_WITHDRAW_OK) {
 setverdict(pass);
 }
 [] pt_pb.getreply(s_withdraw:? value c_WITHDRAW_ERROR) {
 setverdict(fail);
 stop;
 }
 [] pt_pb.catch(timeout) {
 setverdict(fail);
 stop;
 }
 }
 }
 unmap(self:pt_pb, system:pt_pb);
}

174 A.J. Nyberg

The function in Table 7 is executed by the component that introduces a possible
problem by passing a null pointer to the function withdraw (line 15). The correct
behavior of the IUT shall at this point be that the null pointer is detected, any locked
mutexes are released and an error is returned. Test case verdict according to how the
IUT behaves is set on lines 18 to 28.

Table 7. Code fragments of the test component that introduces an error by passing a null
pointer argument

 TTCN-3
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

function f_write_invalid(in integer p_compNo)
 runs on IprPBComp {

 f_initPBTcp(localIp,
 localPort+p_compNo,
 sutIp,
 sutPort);

 // Introduce the error after a few withdrawals have been done
 // already.
 f_sleep(1.0);

 // Withdrawal with NULL pointer.
 pt_pb.call(
 s_withdraw:{ c_USERID_B, 20/*€€ */, c_NULLPTR },
 c_TIMEOUT_SEC) {

 [] pt_pb.getreply(s_withdraw:? value c_WITHDRAW_OK) {
 setverdict(fail);
 }
 [] pt_pb.getreply(s_withdraw:? value c_WITHDRAW_ERROR) {
 setverdict(pass);
 stop;
 }
 [] pt_pb.catch(timeout) {
 setverdict(fail);
 stop;
 }
 }
 unmap(self:pt_pb, system:pt_pb);
}

The TTCN-3 verdict type is special in a way that its value can never be degraded,
meaning that if a verdict is set to fail it cannot later be set to pass. Any test component
can set the test case verdict eliminating the need for verdict synchronization after the
test components have executed.

6 Conclusions

This paper presented an approach to implement a TTCN-3 test platform for software
testing. The capabilities of TTCN-3 enable efficient ways of testing software modules
in a standardized way with standardized test system interfaces. One language can be
used for all test cases independent of the language of the IUT so there is no need to

 Use of TTCN-3 for Software Module Testing 175

learn test tool proprietary languages. Utilizing standardized interfaces for modular test
platforms make it possible to efficiently set up new test systems and at the same time
eliminate possible overlapping test system development work.

Setting up a distributed test system provides a number of advantages that cannot be
achieved with a tighter test system, e.g. the problem of a shared memory where the
tested IUT can crash the process responsible for executing and evaluating test suites,
and target platform independence.

The core TTCN-3 core language allows for creation of multi component test cases and
easy means to set up synchronization between the components, making it possible to
approach testing problematic domains as concurrency and non-deterministic behavior.

As the procedure-based paradigm is only a part of the TTCN-3 language a
combination with the message-based parts can be used for test suites that interact with
the SUT through different kinds of interfaces. This can lead to multi purpose test
suites with a lot of useful capabilities such as unit testing with mock objects and
possibilities to control the SUT with function calls while performing protocol testing.
Multi purpose functionality that can be hard to achieve based on test area targeted
frameworks e.g. unit testing and protocol testing frameworks.

Further case studies will be done to evaluate the usefulness of TTCN-3 based
software module testing in several areas such as ease of use, test suite reusability,
concurrent testing efficiency and implementation of synchronized deterministic test
cases. Also its applicability to testing of distributed operating systems and language
independent SUTs will be further explored. We believe that TTCN-3 has enough
advantages to make it as a powerful alternative and language for future software
module testing test systems. One test system and one test language offer the ability to
perform multi purpose software testing capabilities written in any language.

Currently a lot of mapping work has still to be done manually. However, this can
based on the language mappings be generated by tools, including TTCN-3 signatures
and types, marshalling, invocation and mock object parts for the SUT based on the
definition of the software module to test. The requirement is that a specified mapping
exists or can be made from the languages of the IUT to TTCN-3, something that has
proven to be a challenge especially for C and C++.

Acknowledgements

A lot of useful ideas for a C mapping has come from the long discussions with Matti
Kärkki and Pekka Pulkkinen who are the originators of some the C++ to TTCN-3
mapping work done. Special thanks also to the TTCN-3 people at the Nokia Research
Center, Thomas Deiß and Stephan Schulz for feedback and review of this paper, and
also to Federico Engler, Sami Heinonen, Martti Söderlund, Stephan Tobies and Colin
Willcock.

References

1. Itoh, E. Furukawa, Z. Ushijima, K. A prototype of a concurrent behavior monitoring tool
for testing of concurrent programs. IEEE, 1996.

2. Tai, K, C. Testing of Concurrent Software, Computer Software and Applications
Conference, 1989. COMPSAC 89, Proceedings of the 13th Annual International 20-22
Sept.

176 A.J. Nyberg

3. Tai, K. Definitions and detection of deadlock, livelock, and starvation in concurrent
programs. Proceedings 1994 International Conference Parallel Processing. 1994.

4. Mackinnon, T. Freeman, S. Craig, P. Endo-Testing: Unit Testing with Mock Objects,
Proceedings XP2000.

5. CUnit 2005: CUnit (2005) Retrieved November 9, 2005, from CUnit Web site:
http://cunit.sourceforge.net/.

6. JUnit 2005: JUnit (2005) Retrieved November 9, 2005, from JUnit Web site:
http://junit.org/index.htm.

7. Moseley, S. Randall, S. Wiles, A. Schulz, S. IPv6 Test Specifications from ETSI. Global
Ipv6 Summit, Barcelona, June 2005.

8. Hwang, G. Tai, K. Huang, T. Reachability Testing: an approach to testing concurrent
software. Software Engineering Conference, 1994. Proceedings. 1994 First Asia-Pacific 7-
9 Dec.

9. Carver, R. Mutation-based testing of concurrent programs. Test Conference, 1993.
Proceedings. International 17-21 Oct. 1993.

10. Thomas, D. Hunt, A. Mock Objects. Software, IEEE Volume 19, Issue 3, May-June 2002.
11. Ebner, M. (2001). A Mapping of OMG IDL to TTCN-3. University of Lübeck, Germany.
12. Beizer, B. Software Testing Techniques, 2nd ed, p41-54. Van Nostrand Reinhold, 1990.
13. ETSI ES 201 873 “Methods for Testing and Specification (MTS); The Testing and Test

Control Notation version 3”; V3.0.0, Sophia Antipolis, March 2005.
14. InformationTechnology, OSI conformance testing methodology and framework. ISO/IEC,

1994-1997. International Telecommunication Union recommendation X.290.
15. ISO/IEC 9899:1999: “Programming languages - C”. New York, NY, USA (1999-12)
16. Willcock, C. Deiß, T. Tobies, S. Keil, S. Engler, F. Schulz, S. (2005). TTCN-3 Test

Systems in Practice: An Introduction to TTCN-3. England: John Wiley and Sons Ltd.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 177 – 196, 2006.
© IFIP International Federation for Information Processing 2006

Distributed Load Tests with TTCN-3

George Din1, Sorin Tolea1, and Ina Schieferdecker1,2

1 Fraunhofer FOKUS, MOTION, Kaiserin-Augusta-Allee 31,
10589 Berlin, Germany

2 Technical University Berlin, Faculty IV,
Straße des 17. Juni 135, 10623 Berlin, Germany

{din, tolea, schieferdecker}@fokus.fraunhofer.de

Abstract. The design of TTCN-3 focused on extensions to address testing
needs of modern telecom and datacom technologies and widen the applicability
to many kinds of tests including performance tests. One of the most important
features of TTCN-3 is the platform independence which allows testers to
concentrate on the test specification while the complexity of the underlying
platform (i.e., operating system, hardware configuration, etc.) is left behind the
scene. As far as the test distribution is concerned, TTCN-3 provides the
necessary language elements for distributed tests. This is however supported in
a transparent fashion so that the same test may run either locally or distributed.
The distributed execution of a test enables the execution of test components
belonging to one test configuration on different computers (the test nodes),
sharing thus a bigger amount of computational resources. Test distribution is a
research challenge when it comes to the problem of how to distribute the test
components efficiently on the test nodes. Specifically for load testing – a
particular kind of performance test – we investigate strategies to distribute tests
on heterogeneous hardware in order to use the hardware resources of the test
nodes efficiently.

1 Introduction

Performance testing is a qualitative and quantitative evaluation of a System under
Test (SUT) under realistic conditions to identify problems for scalability or usability
aspects under heavy load and to collect measurements as success/fail rate, response
times or round-trip delay. Although performance testing is often used in different
ways, performance testing usually determines how fast a system reacts or how much
load a system can handle. The literature distinguishes [13]: load, robustness, stress, or
volume testing. Load testing simulates various loads and activities that a system is
expected to encounter during production time. The typical outcome of a load test is
the level of the load the system can handle but also measurements like fail rate, delays
under load etc. Load testing helps detecting problems of the SUT (like abnormal
delays, availability or scalability issues, or failover) when the number of emulated
users is increased. A load test defines real life like volumes of transactions to test
system stability, limits or thresholds. Typically, a number of emulated users
interacting with the SUT have to be created and managed while the functional
behaviour of their communication with the SUT has to be observed and validated.

178 G. Din, S. Tolea, and I. Schieferdecker

Scalability testing is a special kind of load testing, where the system is put under
increasing load. Robustness testing is load testing over extended periods to validate an
applications stability and reliability. Stress testing is the simulation of activities that
are more “stressful” than the application is expected to encounter when delivered to
real users. Stress tests measure various performance parameters of the application
under “stressful” conditions. Examples of stress tests are: spike testing (short burst of
extreme load), extreme load testing (load test with huge number of users), hammer
testing (continuous sending of requests). Volume testing is the kind of performance
test we run in order to find which volume of load an application under test can handle.

TTCN-3 (Testing and Test Control Notation) [2] enables systematic, specification-
based testing for various kinds of tests including functional, inter-operability,
integration, load, robustness, volume and stress testing. It allows an easy and efficient
description of complex distributed test behaviours in terms of sequences, alternatives,
and loops of stimuli and responses. The test system can use a number of test
components to perform test procedures in parallel. The task of describing the dynamic
and concurrent configuration is easy to perform since it is developed at a platform
independent level. The advantage of this approach is that the distribution
configuration is abstract and it does not depend on a particular test environment. The
same (potentially distributed) test specification can be executed on different hardware
environments and various distribution setups. For example, a test case which creates a
number of N test components can be distributed on 5 hosts, but can run also on 10, 2
or just 1 host.

The test workload definition belongs to a performance test plan. It is a description
of the test actions against a tested system and should reflect how users typically
utilize that system. Overloading an SUT with a huge number of requests tells us how
robust the system is, but this kind of test does not reflect normal performance
requirements and gives no information about the behaviour of the system in daily
scenarios. The workload definition should describe performance tests according to
real world scenarios taking into account social, statistical, and probabilistic criteria.

Test distribution is a technique to realize the load as required by the workload
definition on several test nodes. Only one test node might not be enough to emulate a
big number of users. A distributed test case may consist of two or more parts that
interact with each other, but each part is being processed on a different test node.

We concentrate our study on developing and executing distributed load tests with
TTCN-3. TTCN-3 offers the required flexibility in specifying load tests. Quite a
number of language concepts help to design complex workloads in an intuitive way.
However, the real distribution and deployment of the executable tests is out of
consideration of TTCN-3. Therefore, an additional layer of specifications is needed to
describe the real test configuration on a real target network of test nodes (being
potentially only one test node).

This paper discusses in Section 2 related work, and presents in Section 3
foundations like load test specification, test component distribution and factors
which influence the distribution. Next, in section 4 the architecture for load tests
execution is presented. Section 5 presents the distribution algorithms and discusses
their characteristics. Section 6 presents an example. The paper is concluded by a
summary.

 Distributed Load Tests with TTCN-3 179

2 Related Work

Related work on applying TTCN to performance testing targets either the
specification of distributed tests with TTCN (TTCN-3 or previous versions of it) or
concerns the test execution and test distribution over several test nodes.

The first experiments with TTCN applied to performance testing were done with the
version 2 of TTCN language. PerfTTCN [5] is an extension of TTCN-2 with notions of
time, measurements and performance. In [7] SDL specifications are used to generate
tests for distributed test architectures. This paper discusses also concepts related to
distributed and concurrent testing. TimedTTCN-3 [9] is a real-time extension for
TTCN-3 that supports the test and measurement of real-time requirements. This paper
introduces concepts like absolute time, definition of synchronization requirements for
test components and provides possibilities to specify online and offline evaluation
procedures for real-time requirements. Most of these ideas can be also reused in
performance testing with TTCN-3. The work in [4] presents a number of patterns in
specification of distributed tests. It uses also TTCN-3 to specify distributed tests and
discusses different facets of distributed testing. The test architecture topic is discussed
also in [8] where a generic test architecture is presented. As far as the execution of
distributed tests is concerned, [6] introduces TCI (Test Communication Interfaces) and
discusses the possibility to use TCI to realize distributed test execution environments.

Our paper uses principles of these works and analyses in particular, how test
components for load test scenarios can be efficiently specified, distributed and
executed.

3 Foundations

Test distribution with TTCN-3 implies, on first hand, the use of the language elements
to describe distributed load tests and, on the second hand, the development of an
execution environment capable to distribute tests. In this section, we investigate first
the TTCN-3 language capabilities to specify load tests along small examples. In
additions to this, we look into possible patterns the tester may use for specifying load
tests and analyse which are the constraints with respect to the distribution strategies
for those patterns.

3.1 Load Test Specification with TTCN-3

TTCN-3 offers various concepts to design load tests such as test components to
emulate SUT users/clients, ports to handle connections to the SUT, send/receive or
call/reply statements to communicate with the SUT, timers to measure the
responsiveness. These concepts are introduced along with small examples of how
they are useful in load testing.

component is the structural element which is used to define the clients involved in
the load test scenarios. One test may define more than one type of components in
order to distinguish users of different categories or scenarios.

180 G. Din, S. Tolea, and I. Schieferdecker

 type component UserType {
 port ConnectionType connection;
 timer respTime;
 var integer fail := 0;
 }

The specification of all test components, ports, connections and test system
interface involved in a test case is called test case configuration. Every test case has
one Main Test Component (MTC) which is the component on which the behaviour of
the test case is executed. The MTC is created automatically by the test system at the
start of the test case execution. The other test components defined for the test case are
called parallel test components (PTC) and are created dynamically during the
execution of the test case. The tested entity is called System under Test (SUT) and the
interface to communicate with it is the Abstract Test System Interface (system).

The behaviour of a test component is defined by a function. A function is used in
load tests to specify client activities within a test scenario. An SUT client may behave
in different ways when interacting with the SUT, thus the test system may have
different functions emulating different client behaviours.

 function clientBehavior(in integer cid)
 runs on UserType {
 // user behavior
 // communication with SUT
 }

TTCN-3 supports message-based and procedure-based communication. The
communication operations can be grouped into two parts: stimuli which send
information to the SUT (send, call, reply, raise) and responses used to
describe the expected reaction from the SUT (receive, getcall, getreply,
catch). To apply a sending operation (stimuli) there shall be specified a port used to
send the data, the value to be transmitted, and optionally an address to identify a
particular connection if the port is connected to many ports. Additionally, for
procedure based communication the response and exceptions are needed; they are
specified by using the getreply and catch operations.

 connection.send(aRequest(uid));
 respTime.start();
 alt {
 [] p.receive(correctResponse(uid)) { }
 [] p.receive { }
 [] respTime.timeout { }
 }

Timers are a further essential feature in the development of load tests with TTCN-3
in order to evaluate the performance of the SUT. The operations with timers are
start, stop, read (to read the elapsed time), running (to check if the timer is
running) and timeout (to check if timeout event occurred). The start command may
be used with parameter (the duration for which the timer will be running) or without
parameter (when the default value specified at declaration is used). For load testing
purpose, we define timers on test components and use them in the test behaviour to

 Distributed Load Tests with TTCN-3 181

measure the time between sending a stimuli and the SUT response. If the SUT answer
does not come in a predefined period of time, the fail rate statistics should be
correspondingly updated.

Another important mechanism provided by TTCN-3 is the inter-component
communication which allows connecting components to each other and transmitting
messages between them. This mechanism is used in load testing for synchronization
of actions (i.e. all components behaving as clients start together after receiving a
synchronization token) or for collecting statistical information at a central point.

The handling of verdicts in load tests is different from the traditional verdict
handling procedure in functional testing. In functional testing, we use the build-in
concept of verdict which is always set when an action influences significantly the
execution of the test (for example, if the SUT gives the correct answer we set the
verdict pass; if the response timer expires we set the verdict inconc or fail). Load
tests have also to maintain a verdict which should be presented to the tester at the end
of a test case execution. However, the verdict in this case has rather a statistical
meaning than only a functional one: Still, the verdict should be a sum of all verdicts
reported by client test components. In our approach, the verdict is set by counting the
rate of fails during one execution; i.e. if during the test more than a threshold
percentage of clients behave correctly we consider the test passed. The percentage of
correct behaviours in a tests must be configured by the tester himself and must be
adapted to each SUT and test separately.

The collection of statistical information like fails, timeouts, successful transactions
can be implemented by using counter variables on each component. These numbers
can be communicated at the end of the test to a central entity (i.e. MTC) which
computes the final results of the test. If the test needs to control the load based on the
values of these variables, that central entity must be periodically updated.

3.2 Load Test Specification Patterns

Test patterns are generic, extensible and adaptable test definitions. Reusable test
patterns are (as an analogy of software patterns [13][14][15]) derived from test
methods, test solutions and target system technologies. They are available in form of
software libraries and/or code generators which offer the tester ready to use code.

3.2.1 Workload Unit Specification
Even though the TTCN-3 language is very flexible and allows for various ways to
write a test, we believe that load test designers follow at least one of the specification
patterns presented in the following. The major role of a load test is to emulate the
parallel behaviour of multiple clients (or users) interacting with the SUT. In literature,
the SUT’s clients are also called WLUs (workload units) and they are implemented as
parallel processes or threads. Nevertheless, a parallel process may emulate the
behaviour of more than one user at a time. In TTCN-3, the test component is the
building block to be used to emulate one or more WLUs at a time. The parallelism is
realized by running a number of test components concurrently on a number of test
nodes. The methods to specify user behaviours as test components can be classified
into the following patterns:

182 G. Din, S. Tolea, and I. Schieferdecker

(a) The most obvious pattern to define a client is to define a component emulating
only one client, i.e. the one client per component pattern. On this component
we start a function which describes the actions the client interchanges with the
SUT. Despite the easiness to write load tests using this technique, two main
drawbacks exist. Firstly, load control is difficult to realize when the tester wants
to keep a constant number of parallel users. The controller needs to control
continuously the number of component acting in parallel and whenever a
component terminates a new one has to be created. Secondly, the creation, start
and termination of components are very expensive operations with respect to
CPU on a test node. Because of this, it is preferable to reuse the existing test
components to emulate more than one client on one test component. But, as we
will see in the next section, from the distribution point of view the one-client-
per-component specification style turns out to be an advantage for the
application of a large number of distribution strategies since the distribution
unit is small and the balancing of the load can often be reconfigured.

(b) Another pattern for the specification of load tests is the reuse of components to
emulate a new client once the current client terminates. This pattern implies
that one component repeats sequentially in a loop the behaviour of a client, but
for each client a new set of data (id, request data, client reaction times etc) is
used. This pattern, named sequential repetition of clients per component
pattern, has the advantage that only a fixed number of test components are
created and thus no additional time is spent on handling the test components.
The disadvantage of this approach is that a test component can be distributed
only once at the beginning and no further (re-)balancing is possible.

(c) An extension of the previous pattern is the interleaving of more than one client
on a test component. In this way, a test component is able to simulate in parallel
a number of clients. This pattern has the name interleaved client behaviours per
component pattern. Unfortunately, the mixture of parallel behaviours on one
component is complicate to specify and most of the time the TTCN-3 code
loses its readability and becomes difficult to maintain. The approach has the
same disadvantage as the previous pattern that the component can be
distributed only once, at the beginning and no further (re)balancing is possible.

3.2.2 Differentiate Component Types
The different client types are usually defined in TTCN-3 as distinct test component
types. This is in fact a recommended pattern in test specifications which helps to
recognize easier the different types of components at distribution time. Most of the
variables used during a test are usually defined directly as part of the test component
type so that they can be directly accessed from any function being started on a test
component of that type. This approach helps also at distribution time since at the
instantiation of a test component most of the memory required by the test component
is known right at creation time.

3.2.3 Test Architectures
With respect to test architectures, we identify at least two specification patterns of
how to group different kinds of clients interacting with the SUT:

 Distributed Load Tests with TTCN-3 183

(a) Most of the load tests create independent client components which depend only
on the interaction with the SUT. These components do not depend on other
components and therefore their distribution on different test nodes is by no
means constrained.

(b) Another category of test architectures requires pairs of clients or caller-callee
clients to interact with the SUT. Typically, these types of tests need extra
communication for coordination between the caller and callee component.
Therefore, for these types of tests, the distribution strategy should consider
that it is more efficient to install both components on the same test node since
the local communication is faster than the communication between two test
nodes.

3.2.4 Load Control
In order to control the volume of the created load, the test case has to control the
number of users running in parallel. Such a mechanism is called load control and it is
usually implemented as a separate test component (most of the times it is the MTC)
which interacts with all other test components in order to increase or decrease the
number of interactions with the SUT. The load is controlled by increasing/decreasing
either the number of test components or the number of users emulated by one
component. In both cases, the increase of load will bring additionally more need for
hardware resources and therefore, increasing the number of components or users
emulated after a certain level of the load, the test system will not be able of increasing
its load but rather decrease it. Therefore, the tester should take care about this aspect
when tuning the test and observe continuously the load of the test system. If it
happens that the test system reaches the maximum producible load, then the tester
should either try a more efficient distribution strategy for the test components or
upgrade/extend the hardware resources.

3.2.5 Synchronization
The synchronization of the parallel test components is realized by passing
coordination messages. In general, load tests require synchronization only at the start
or stop of the parallel components and/or at increasing or decreasing the level of load.
Moreover, the synchronization does not have constraints with respect to the time
needed to realize the notification of all test components. TTCN-3 allows the tester to
connect all parallel test components, participating as workload units, to a central
component (i.e. MTC) which coordinates the synchronized activities.

3.3 Factors Influencing Test Distribution

Resource sharing (CPU, memory, disk or bandwidth) in parallel and distributed
computing has been intensively researched over the last decades being the activity of
efficient utilization of computing resources by partitioning and balancing the
computational load among computing nodes [1]. Load distribution is the strategy to
allocate parts of a bigger task to parallel workers (computers or processors) and, thus,
to decrease the execution time of a program. Many algorithms have been researched

184 G. Din, S. Tolea, and I. Schieferdecker

and applied to particular problems. Depending on the problem, the algorithms work
better or worse.

Very often, the parallel processes communicate with each other. Granularity is a
parallelism measure which characterizes the inter-process communication. We say
that the parallelism has big granularity in case of rare communication or has a fine
granularity in case of high frequency of communication between processes.

The class of operations to be performed by parallel processes is a further factor
which influences the performance of balancing algorithms. A non-exhaustive
overview of classes of operations may classify them into: computational operations
(i.e. floating point operations), memory access operations, operations with databases,
files operations or communication with other computers.

Synchronization of activities of parallel processes is often needed. A process can
be considered a sequence of atomic actions where each action transforms the state of
the process. Some of these actions have to be synchronized with actions of other
processes. Depending on the used synchronization mechanism, balancing algorithms
may perform better or worse. For example, the clock synchronization in difference to
message-passing based synchronization avoids the overhead added by the inter-
process communication. If the message-passing synchronization is applied, the
balancing algorithms should be aware also about the bandwidth consumed for
synchronization.

Load testing of hardware components or applications is a resource consuming
process which coupes also with the resource sharing discipline. Most of the times, in
order to run high performance tests against a hardware component or an application
(or just parts of it) many computers have to be involved in the test process so as to
create enough traffic to evaluate the behaviour of the SUT under load conditions. In
this respect, the tester has to be aware about the possible distribution algorithms and
be able to decide which algorithm to apply.

For the distribution of TTCN-3 test components, a number of factors have to be
considered when selecting the distribution algorithm. The distribution unit used for test
distribution is the parallel test component which can simulate the behaviour of one or
more clients. If the component emulates only one user, the component is relatively
small and terminates after execution of the test scenario. This design pattern presents
the advantage that the balance of resources can be performed at each component
instantiation. The creation of components happen at small intervals of times since
when a component terminates a new one is created in order to maintain the same
number of users. If the component emulates sequentially or interleaved behaviours of
more than one user, the component will live for a very long period of time (sometimes
until the end of the load test). In this case, the algorithm does not have too much
flexibility to balance the load except the creation of the component. In such situations,
the recommended strategy should be based on resource consuming predictions.

The existing load on the underlying hardware is a further factor to be taken into
consideration when applying a distribution strategy. The solution we foresee for
distribution of component targets deployment of load tests on heterogeneous
hardware which besides the test application may also run other tasks. Therefore, a
continuous observation of the hardware usage is recommended while the distribution
strategy considers the resource availability at any component instantiation.

 Distributed Load Tests with TTCN-3 185

4 TTCN-3 Test Distribution Realization

4.1 Test Component Distribution Language

The distribution strategy defines how the components are distributed among test
nodes and thus it plays a major role in the efficiency of a test system. Test distribution
defines which components are to be distributed and where they should be deployed.
Distribution of components is a mathematical function of different parameters which
is applied at deployment time separately for each test component in order to assign it
to a home location where it will be executed. In the following function definition, D is
the distribution function, p1, p2, ..., pn are the parameters which influence the
distribution and h is the home where the test component should be distributed.

h = D (p1, p2, ..., pn)

There are two types of parameters which are taken into consideration when
distributing test components: external parameters like bandwidth, CPU, memory and
internal parameters like the number of components, type of components, type of
behaviours, connections. The external parameters are application independent
parameters whose values depend on the execution environment and are constant for
all applications running on that environment. The internal parameters are related to
the test component based application itself and are different for each test case.

Unfortunately, in TTCN-3 it is not possible to recognize a component by its id.
This problem appears when creating test components like in the following example1:

for (i := 0; i < 100; i := i + 1) {
 var PTCType c := PTCType.create;
 map(c:port1, system:port1);
 c.start(someBehavior1());
}

In this example, the component variable c refers to the currently created test
component, but is overwritten at each create operation, so that the execution
environment has no differentiation of the test components. But there are some other
characteristics of test components in TTCN-3 which can be used during execution to
identify them. These characteristics are of two categories: behaviour independent and
behaviour dependent. The behaviour independent ones concern parameters which can
be accessed at the creation phase of the test component: the component type, the
instance number and the port types which belong to that component. The behaviour
dependent characteristics imply the use of characteristics of the test component we
can gather after the component is started or executed (i.e. which Id will receive the
test component from the SUT). The distribution mechanisms used in this case are
based on analyzing the TTCN-3 code before starting the execution and decide upon
execution monitoring where the test components should be deployed. This approach
requires running a calibration behaviour in which an instance of a test component is
created and its execution is monitored. The observed information is then used during
the “real” test in order to decide where to distribute that test component.

1 Please note that the new version of TTCN-3 being approved summer 2005 offers the

assignment of explicit names to test components during their creation, however, this was not
available for the presented work.

186 G. Din, S. Tolea, and I. Schieferdecker

A minimal language for defining the distributions of test components has been
defined. To help understanding the concepts related to test component distribution,
some examples written in this language are presented here. The distribution
specification is the process of assembling test components to hosts. The assembling
process groups all components to be deployed, in a big set while the assembling rules
shall define sub-sets of components with a common property (i.e. all components of
the same type). A (sub-)set defines a selector of components and the homes where the
selected components are placed. The filtering criteria of the selector handle
component types or component instance numbers. The homes are the possible
locations where the test components may be distributed; the homes reflect the user
constraints for distribution.

The next XML code is an example of a component assembly file. The special tag
indicates the host where the MTC component is deployed. The selector defines a
filter to select all components of type ptcType. The selected components can be
deployed either on container1 or on container2. One can define deployment
constraints for each container (for example, do not allow deployment of more than
100 components on container2). The user can also constrain the memory usage, the
CPU load, the number of components etc.

<component_assembly>
 <description>Example to use TCDL language</description>
 <special container="container1"/>
 <set>
 <component_selectors>
 <componenttype>ptcType</componenttype>
 </component_selectors>
 <homes distribution="round-robin">
 <container id="container1">
 <max_components>10</max_components>
 </container>
 <container id="container2"/>
 <max_components>100</max_components>
 </container>
 </homes>
 </set>
</component_assembly>

Usually, the definition of constraints is a difficult task; for complex setups it may
be very difficult to describe an efficient distribution. Therefore, the task of identifying
hardware options and constraints should be realized by the test execution environment
itself. It should provide services, which implement distribution algorithms that are
designed to be efficient for a certain type of problems. The task of the user remains to
select the algorithm which solves the problem best.

The code below shows a set which deploys the components of types ptcType2,
ptcType3 and the instances 1, 2 and 5 of type ptcType4 on the container2 and
container3, according to a round-robin algorithm.

 Distributed Load Tests with TTCN-3 187

 <set>
 <component_selectors>
 <componenttype>ptcType2</componenttype>
 <componenttype>ptcType3</componenttype>
 <instance type="single">
 <componenttype>ptcType4</componenttype>
 <number>1</number>
 <number>2</number>
 <number>5</number>
 </instance>
 </component_selectors>
 <homes distribution="round-robin">
 <container id="container2"/>
 <container id="container3"/>
 </homes>

</set>

The components which are not accepted by any set selector are deployed in a
default home. This home is defined by collector tag.

<collector>
 <container id="container1"/>
</collector>

4.2 TTCN-3 Architecture Design for Distributed Execution

For deploying and executing distributed tests, we have designed and implemented the
architecture depicted in Figure 1. This architecture follows the ETSI standard
architecture [10],[11] for realizing distributed tests . The platform consists of a set of
interacting entities which execute the code generated from a TTCN-3 specification,
realize the distributed communication between test nodes, realize the communication
with the SUT, implement external functions and handle timer operations.

Session ManagerTest Console

TE

TM

SA

CHCD

PA

Container

Daemon Daemon
TE

TM

SA

CDCH

PA

communication middleware

Load Balancer
Test Control
and Execution

Test Deployment

Container

Session ManagerTest Console

TE

TM

SA

CHCD

PA

Container

Daemon Daemon
TE

TM

SA

CDCH

PA

communication middleware

Load Balancer
Test Control
and Execution

Test Deployment

Container

Fig. 1. Distributed test architecture

188 G. Din, S. Tolea, and I. Schieferdecker

The Test Console handles the management operations to create test sessions,
deploy test components into containers and control the test execution. The tests are
deployed, configured and executed in the context of a test session. One of the most
important functionality of the session manager is the load balancing one, which
coordinates the distribution algorithms (compute the hosts of the components
according to assembly rules, performance requirements, distribution algorithms etc).
To supply the dynamic algorithms with the necessary information for distribution
computation, the Session Manager provides an interface to the daemons in order to
gather the resource consuming level.

Test Daemons are standalone processes installed on any hosts which manage the
test containers. Containers intercede between Test Console and test components,
providing services transparently to both of them, including transaction support and
resource pooling. The containers are the hosts of Test Executable; they manage
installation, configuration and removal of the parallel test components. Moreover,
containers are the target operational environment and comply with the TCI standard
for TTCN-3 test execution environment. Within the container, we find the specific
test system entities: TM (Test Management), CD (Coder-Decoder), TE (Test
Executable), CH (Component Handler), SA (System Adapter) and PA (Platform
Adapter). For more information on the API and interactions between these entities,
we refer [6]. The container subsystems are functionally bound together by the TCI
interfaces and communicate with each other via the CORBA platform.

The distributed handling of the test components is realized within CH. CH
distributes TTCN-3 configuration operations like create, start and stop of test
components, the connection between test components (connect and map), and inter-
component communication like send, call and reply among two TTCN-3 executables
participating in the test session. The CH is not implementing the core TTCN-3
functionality – this is done by the TE, for example a test component is created, etc.
Next, CH asks the Session Manager for a location for the new component. Based on
the decision of the Session Manager, the request for the creation of a component will
be either transmitted to the local TE or to a remote participating one if the component
has to be created on the remote TE. The remote TE will create the TTCN-3
component and will provide a handle back to the requesting (local) TE. The
requesting (local) TE can then operate on the remote created test component via the
component handle given by the remote TE.

Hardware load monitoring is used by dynamic algorithms for the balancing
decisions. The monitoring tools are running on each host used for the tests and is able
to provide to the SessionManager an evaluation of the current hardware consumption.
The monitoring tasks are controlled by the SessionManager over a specially designed
interface which allow activating/deactivating of different sensors, setting the update
refresh rate or counting a performance key parameter out of several parameters.

4.3 Test Execution Evaluation

The intensive use of hardware resources (i.e., 100% CPU) during the test execution
leads very often to malfunctions of the test system which ends up running slower than
expected. Consequently, the test results can be wrong as an effect of erroneous
evaluation of SUT’s responses. We encounter such a situation when, for example, the

 Distributed Load Tests with TTCN-3 189

test system creates too many parallel processes which share the same CPU. The
processes wait in a queue until (according to the used scheduling algorithm) they
acquire the CPU. Hence, the bigger the number of processes is, the more time a
process has to wait in the queue until it acquires the CPU. Since the execution of
critical operations (like timer evaluation, data encoding or decoding, template
matching) is automatically also delayed, the test system may consider an operation
timed out while, in reality, it did not. The same phenomenon has a considerable
impact also on load producing by decreasing the number of interaction per second.

The evaluation of load test results turns into a problem of determining whether the
SUT is that slow as the results reveal or rather the test system is overloaded by its
testing activities and cannot produce the necessary load and/or reacting in time. The
answer to this question can only be given after analyzing the quality of the execution.
To detect such problems we observe several parameters which help the tester to
validate the test execution.

One of these parameters is the duration of the execution of critical tasks. We assign
temporal dimensions to all operations to be executed sequentially in a test which
might influence the evaluation of SUT’s performance. For example when receiving a
message from SUT and this message is used to validate the reaction of SUT to a
previous request, the test system has to decode and match the received message only
in a small amount of time, otherwise the additional computation time will be counted
as the SUT reaction time. A further interesting parameter is the quantity of the
demanded resources. If the test system requires constantly the maximum of the
resources the underlying hardware can allocate to them, this is a first sign that the test
might not be valid. Another parameter is the deviation average from load shape. If the
load does fluctuate very often moving from lower to higher values, it proves that the
test system might be overloaded.

We consider that a performance test is valid only if the platform satisfies the
performance parameters of the workload. The quality of the load test execution is
guaranteed if the test tool fulfils the requirements with respect to execution of the
critical operations like decoding, matching, timer processing.

5 Balancing Algorithms Applied to Test Distribution

The literature differentiates load balancing algorithms by several criteria. Load
balancing algorithms can be static or dynamic; the difference is made by the
distribution decision which is known before actually running the test in case of static
algorithms, while the decision depends upon the state of the system when dynamic
algorithms are considered. The static algorithms work very well when the test nodes
have more or less the same resources (same memory, CPU etc) and the usage during
the tests is not influenced by other applications running on that hardware. According
to our experience, round-robin algorithm works very well in such situations. The
distribution function D, mentioned in section 4.1 is an incremental function over the
number of hosts, which selects sequentially the next host for deployment. In the case
of test nodes with different capacities, static algorithms do not work well anymore
because of hardware limitations. One may try to use round-robin algorithm with
empirically chosen constraints for the number of deployed components on each test

190 G. Din, S. Tolea, and I. Schieferdecker

node, but this method is difficult to use since the constraints have to be counted any
time the number of components is increased. However, the obvious way to handle
such hardware configuration is using of dynamic algorithms.

The criterion to distinguish dynamic algorithms is the adaptation to system load.
These algorithms monitor and use information about the load of the system before
making the distribution decision. The distribution function D is in this case a
maximum function over the memory and CPU availability, which selects the next
home the one with maximal resource availability. Some of them, the heuristic
algorithms even change their policies according to the load of the system; in this case
D takes in account a resource consuming threshold. The dynamic algorithms base on
thresholds imposed on resource consuming. The threshold can by either the
consuming level of a single resource (i.e. memory) or a key performance parameter
counted according to a formula which considers several parameters. Dynamic
algorithms require, unfortunately, extra activities (i.e., hardware monitoring) on the
test nodes, hence the overhead is also bigger than for static algorithms. Also the
updates on hardware consuming add some communication overhead when a new
component is instantiated. The update on hardware usage may be realized only before
a component creation or periodically according to an update rule. The periodical
update might be combined with heuristic methods to count the refresh rate, for
example the more loaded nodes should have longer delay between updates than nodes
which have fewer loads. These algorithms work very well for tests using one client
per component since the distribution may take into account the hardware consuming
level before any component creation. If the sequential of interleaved behaviour pattern
are used, it is recommended to wait a short period of time between component
creations until the component reach the average resource consuming level. This
approach is based on the assumption that the maximal (or average) resource
consuming level for a component remains constant at emulation of sequential clients.

Another category of algorithms are the prediction based algorithms where the
decision of deploying test components, formally defined as distribution function D, is
based on some preliminary predicted information. For prediction purpose, we have to
decide before the start of the test, how many test components to deploy on each node.
The preliminary information should also reflect the test component resource
consuming. In order to provide this information to the scheduler at the beginning of
the test, we should run a small preliminary test to learn something about the behaviour
of the test components. From this preliminary test we can measure parameters like:
the amount of memory that the test process allocate on each host, the time needed to
execute the test behaviour, the maximum amount of memory that a component
allocates (the hot-spot). Considering these parameters we may distinguish between
two categories of algorithms that can be implemented: memory based prediction
algorithms and time based prediction algorithms. Memory management is very
important in distributed testing because test components deal with important memory
consuming. In this case, running a test on a host which does not provide the necessary
amount of memory for test process could lead to a slower execution or a run out of
memory exception. For time prediction based algorithms the decision criteria is based
on a time factor proportional with the time duration of the component behaviour. To
obtain this duration we should measure the time duration of a test component on each
node. It is very important to measure the time duration of the same behaviour on each

 Distributed Load Tests with TTCN-3 191

node. The preliminary test can be executed with one or more components on each
node and after every execution an estimated time value (average value) should be
profiled from each node. Based on these values for each node, the distribution should
be made proportional with the time factor which indicates the number of components
deployed on each node.

The control of a load balancing algorithm can be centralized, distributed or semi-
distributed. A centralized approach is quite efficient as long the load balancer does not
get overwhelmed itself by the request handling task. The distributed approach
involves multiple load balancers in decision making. The semi-distributed approaches
combine the centralized and distributed approaches; there are several load-balancers
which group together multiple server instances and manage them in a centralized way.
In our environment we experienced only with the centralized approach since for load
testing purpose, the decision making does not add too much computational overhead.
We used for our test the sequential or interleaved behaviour specification patterns,
which imply that the components are created sequentially. This approach does not
necessary require the component to be created very fast, since actually the most
important issue is to use efficiently the resources and reach the load level after an
undefined period of time.

Depending on the algorithm, the communication overhead is added by the
algorithm for distribution and, consequently, the test system requires more resources.
In the implementation architecture of the execution platform we presented, the
SessionManager is the central entity responsible for the balancing of the test
components. We implemented the different distribution strategies within the
SessionManager which provides a distribution interface to all test daemons. This
interface permits daemons to ask the SessionManager before each test component
creation where to deploy that component. Therefore, the distribution operations using
the static and prediction based algorithms add only a small communication overhead
represented by the request for home location. The dynamic algorithms add a
considerable communication overhead since the SessionManager has to be updated by
each test node with the level of resource consumption.

6 An Example

In order to experiment with different categories of distribution algorithms we
considered a Web server application and designed a load test suite.

The SUT application is a small Web application running on an Apache server. The
application presents to its clients two different search forms: for cars and for houses.
The information requested by the client is searched in a MySql [12] database. In a
typical scenario, as depicted in Figure 2, the user accesses the main page of the SUT.
The SUT time, on SUT side, is the time the Web server needs to deliver the main
page to the user. The client thinking time on the user side is the time the client needs
to read the main page and decide to search a car or a house. When the selection is
made, a new request is sent to SUT which delivers back the search form. After
another thinking time (to fulfil the form) the user sends the fulfilled search form to
SUT. The SUT performs a search in the database and organizes the list of found items
in a HTML page. Finally, the result is returned to the client. The search operation can
obviously repeat for several times for any client.

192 G. Din, S. Tolea, and I. Schieferdecker

user thinking
time

user thinking
time

access main page

main.html

access search form

form.html

search operation

search result

SuT time

SuT time

SuT time

User SuT

user thinking
time

user thinking
time

access main page

main.html

access search form

form.html

search operation

search result

SuT time

SuT time

SuT time

User SuT

Fig. 2. The sequence of interactions between user and SUT

The design of the load test has the goal to emulate the parallel behaviour of a
number of clients which is given as parameter to the test. Any client follows the
interaction scenario presented before, but any client has arbitrary thinking times or
number of searches in the database. The load (number of requests per second) is
controlled by the MTC component which increases or decreases the number of
components.

We implemented four distribution algorithms in order to experience with different
categories of algorithms.

• Round-robin (RR). is a static algorithm which selects the hosts in a sequential
order. It proved to be a good algorithm when used on homogeneous environments.

• Memory threshold combined with round-robin based algorithm (MT). This is a
memory based algorithm that evaluates the percentage of free memory from the
Java virtual machine. The decision criterion is based on the available memory for
the JVM process on each host and it always deploys a new component on the host
with the most available memory. The memory threshold based algorithms used
alone could lead to the decision to deploy all components on the same node if the
number of components is relatively small and the memory of one host is fairly
bigger than on any other host. To avoid situations where all components would
be deployed on the same node, the memory threshold algorithm should be
combined with round-robin distribution in order to ensure that components will be
distributed.

• Memory factor based (MF). This algorithm considers the number of test
components to be deployed on each host to be proportional with the amount of
memory on that host. The rule of deploying components is based on a memory
factor that indicates how many components to deploy on each host. For obtaining
the memory factor it is necessary to execute a preliminary calibration test for
profiling the memory hot-spot.

• Execution time factor based (TF). The decision criterion of this algorithm is based
on a time factor associated to the behaviour of a client running on a component. To

 Distributed Load Tests with TTCN-3 193

obtain this duration we should measure the execution time duration of a test
component on each node. It is very important to measure the time duration of
the same behaviour on each node. The preliminary test can be executed with one
or more components on each node and after every execution an estimated time
value (average value) should be profiled from each node. Based on these values
for each node the distribution should be made proportional with the timeFactor
which indicates the number of components deployed on each node in a
sequence.

To compare the distribution algorithms we run the load tests and measure the
computation time needed by the Test System between receiving a response from the
SUT and processing it. This time usually increases with the number of components
deployed on the same host. Depending on the algorithm and hardware resources, this
time increases differently on the test nodes. The evaluation criterion considers that the
best algorithm is the one which makes the computation time stay as small as possible
on each node and the computation times grow up uniformly on the test nodes. All the
graphs presented next have represented on the vertical axis the time needed for
computation and on the horizontal axis the number of components deployed on that
host. The test nodes evolution curves are associated with test nodes through dashed
lines. The tests are executed on three computers with different hardware resources:
TestNode1 (mem=512Mb, cpu=1.9 Ghz), TestNode2 (mem=2G, cpu= 2 x 3.5
Ghz), TestNode3 (mem=1G, cpu=3.5Ghz).

0

100

200

300

400

500

600

700

800

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Nr.Components

m
s

TestNode1

TestNode2

TestNode3

Fig. 3. Execution with Round-Robin algorithm

The Round-Robin algorithm distributes equally the number of components on the
three test nodes. We observe that the computation times on the TestNode2 and
TestNode3 grow very slowly to a negligible value while on TestNode1 they start
growing up after deploying 60 components reaching at the end a computation time of
700ms. This delay may considerable influence the behaviour of the test making
possible that some timers will timeout due to a long delay at processing the
information received from SUT.

194 G. Din, S. Tolea, and I. Schieferdecker

0

50

100

150

200

250

300

350

400

450

500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Nr.Componets

m
s

TestNode1

TestNode2

TestNode3

Fig. 4. Execution with Memory Threshold based algorithm

0

50

100

150

200

250

300

350

400

450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Nr.Components

m
s

TestNode1

TestNode2

TestNode3

Fig. 5. Execution with Memory Factor based algorithm

Using the memory threshold based algorithm, the test system will deploy a bigger
number of components on TestNode2 so that TestNode1 will process a smaller
number of components. This way the computation time on TestNode1 will reach
only 450ms while on TestNode2 it will grow now to 250ms. Moreover, one may
notice the overhead of the monitoring system on the TestNode1; the computation
time when using memory threshold algorithm reaches 100 ms after 53 components in
comparison to using the round-robin algorithm where 100ms are reached first after 64
components.

A better result is obtained with Memory Factor based algorithm which will deploy
a very small number of components on TestNode1 and TestNode2. TestNode3
will process 126 components but because of its good hardware resources the
computation time will reach only 450 ms.

Even better results, are obtained by using the Time Factor based algorithm, which
puts more components (almost the same number) on TestNode2 and TestNode3 so
that TestNode1 remains with a small number of components. This strategy affects
again the performance on TestNode1 but the computation time reaches only 400 ms
which is less than the maximum obtained by the other algorithms.

 Distributed Load Tests with TTCN-3 195

0

50

100

150

200

250

300

350

400

450

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Nr.Components

m
s

TestNode1

TestNode2

TestNode3

Fig. 6. Execution with execution time factor algorithm

7 Summary

This paper presents a study on applying the TTCN-3 technology for load testing. It
introduces the language elements of TTCN-3 which can be used in test specification
and discusses several patterns to specify load tests. As far as the execution of TTCN-3
load tests is concerned, the distribution of parallel test components on different test
nodes is considered. The distribution is an interesting research topic since many
strategies to balance the load can be applied and the balancing algorithms may
influence the overall execution of a test. In this respect, we presented various factors
which influence the efficiency of test component distribution and discuss different
categories of load balancing algorithms. An emerging research subject is to establish
theoretically which algorithms are better for special cases of test patterns.

An implementation architecture of the execution environment is also described. In
order to experiment with several load balancing algorithms, a load test for a Web
server application was performed. The results of experiments show how the
distribution strategy influences the overall performance of the test system.

References

[1] B. A. Shirazi and K. M. Kavi and A. R. Hurson, Scheduling and Load Balancing in
Parallel and Distributed Systems, 1995, ISBN = 0818665874, IEEE Computer Society
Press

[2] ETSI ES 201 873-1 V3.1.1, Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Language, Sophia Antipolis,
France, July 2005.

[3] ETSI : TTCN-3 Homepage, http://www.TTCN-3.org, June 2005.
[4] H. W.Neukirchen, Languages, Tools and Patterns for the Specification of Distributed

Real-Time Tests, Dissertation, Universität Göttingen, November 2004 (electronically
published on http://Webdoc.sub.gwdg.de/diss/2004/neukirchen/index.html and archived
on http://deposit.ddb.de/cgi-bin/dokserv?idn=974026611)

[5] I. Schieferdecker, B. Stepien, A. Rennoch: PerfTTCN, a TTCN language extension for
performance testing, in IWTCS'97 Proceedings, Cheju Island, Korea

196 G. Din, S. Tolea, and I. Schieferdecker

[6] I. Schieferdecker, T. Vassiliou-Gioles: Realizing Distributed TTCN-3 Test Systems with
TCI. In TestCom 2003 Proceedings: 95-109

[7] J. Grabowski, B. Koch, M. Schmitt and D. Hogrefe, SDL and MSC Based Test
Generation for Distributed Test Architectures, In: 'SDL'99 - The next Millenium'
(Editors: R. Dssouli, G. v. Bochmann, Y. Lahav), Elsevier, June 1999.

[8] T. Walter, I. Schieferdecker and J. Grabowski, Test Architectures for Distributed Systems
- State of the Art and Beyond, Invited talk in: Testing of Communicating Systems
(Editors: A. Petrenko, N. Yevtuschenko), volume 11, Kluwer Academic Publishers,
1998.

[9] Z.R. Dai, J. Grabowski, and H. Neukirchen. TIMEDTTCN-3 -- A Real-Time Extension
for TTCN-3. In I. Schieferdecker, H. Konig, and A. Wolisz, editors, Testing of
Communicating Systems, volume 14, Berlin, March 2002. Kluwer.

[10] ETSI ES 201 873-5 V1.1.1: "The Testing and Test Control Notation version 3; Part 5:
TTCN-3 Runtime Interface (TRI)", February 2003.

[11] Draft ETSI ES 201 873-6 V1.0.0: “The Testing and Test Control Notation version 3;
Part 6: TTCN-3 Control Interfaces (TCI)”, March 2003

[12] MySQL Homepage, http://www.mysql.com
[13] R. Binder: Testing Object-Oriented Systems: Models, Patterns and Tools. Addison-

Wesley, 2000.
[14] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel.

A Pattern Language: Towns, Buildings, Construction. Oxford University Press, 1977
[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison Wesley, 1995

Analyzing the Impact of Protocol Changes
on Tests

Mahadevan Subramaniam1 and Zoltán Pap2

1 Computer Science Department,
University of Nebraska at Omaha,

Omaha, NE 68182, USA
msubramaniam@mail.unomaha.edu

2 Department of Telecommunications and Media Informatics – ETIK,
Budapest University of Technology and Economics,

Magyar tudósok körútja 2, H-1117, Budapest, Hungary
pap@tmit.bme.hu

Abstract. Protocols governing communication among system compo-
nents evolve during design and maintenance and need to be re-tested. For
faster testing turnaround time, it is important that the consistency of the
testing infrastructure with the protocol be preserved across changes. In
this paper, we propose a state exploration based approach to identify the
impacts of protocol changes on a given set of protocol tests. Protocols are
modeled as a network of communicating finite state machines exchanging
messages over bounded queues. Each machine denotes the behavior of an
individual protocol component (controller). A protocol test is modeled
as a sequence of inputs from the environment to the protocol controllers
in an execution starting from a stable protocol state. A notion of con-
sistency of a test relative to a protocol is introduced. Conditions under
which a protocol change requires changing a test to preserve the consis-
tency of the test are identified. Changes consisting of multiple atomic
updates are analyzed to remove redundancies and their impact on tests
is studied. A by-product of the proposed approach is a classification of
tests based on how they are impacted by protocol changes, which can
help users in regression test selection.

Keywords: Changes, evolution, protocol, communicating finite state
machines, test consistency.

1 Introduction

Testing of protocols has been extensively studied [1,2,3,4] due to the central role
played by protocols in both software and hardware. Typically, a protocol may
undergo several changes during the system design and maintenance phases and
may need to be repeatedly re-tested. Generating and running tests in response
to every protocol change is time consuming and may also not lead to good
cumulative coverage of protocol functionality across the changes. To re-test a
changed protocol it is important to analyze effects of changes on existing tests.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 197–212, 2006.
c© IFIP International Federation for Information Processing 2006

198 M. Subramaniam and Z. Pap

Changes to a protocol may affect existing tests in several ways. Several exist-
ing tests may be re-usable with changed protocol. However, only some of these
tests may exercise changed behaviors (in addition to original ones) whereas the
rest may exercise only original behaviors. Determining whether a re-usable test
exercises a changed behavior may be useful in generating new tests. Some exist-
ing tests may also become unusable for certain changes. It may be possible to
use some of these tests to test the changed protocol after patching while others
may have to be simply discarded. Given that a large number of tests are typ-
ically needed to validate even simple protocols, manually determining impacts
of changes on the existing tests is tedious and error prone. Determining such
impact may not be easy even for a single test since this may require considering
all executions that can happen in the test, which may be numerous.

In this paper, we propose a white-box1 approach to automatically determine
the impact of protocol changes on protocol tests. We model protocols as a net-
work of interacting communicating finite state machines (CFSM s) with bounded
queues [5, 6, 7]. The transition relation of each CFSM describes the behavior of
an individual protocol controller. The CFSM s interact with each other by mes-
sage exchanges over the queues. They also interact with an external environment
by exchanging messages over the queues to/from the environment to the con-
trollers. We consider protocol changes at the transition level. Protocol changes
add/delete/replace one or more transitions from one or more protocol controllers
and are explicitly represented as change specifications [8].

We formalize a protocol test as a protocol stable state along with a set of
environment inputs. The environment inputs are used in the executions starting
from the associated protocol stable state. A simple notion of consistency of a
test relative to a protocol is proposed. Informally, a test is consistent with a
protocol if it exactly specifies the environment inputs needed in each execution
that can happen in the test starting from the protocol stable state. At least one
execution must happen in each consistent test. Further, since a consistent test
exactly specifies the inputs used in their executions each execution can happen
in at most one consistent test.

Changes can potentially produce protocols whose executions cannot happen
in any consistent test. We consider such changes uninteresting. A notion of con-
sistently testable protocol is introduced. In a consistent testable protocol, it is
possible to design a consistent test for each execution such that the execution
happens in the consistent test. Consistent testability ensures that each protocol
execution can happen in exactly one consistent test.

We constrain changes to preserve consistent testability of protocols. We char-
acterize the impact of a change on an existing test in terms of whether the
change preserves the consistency of the test. To check whether a change pre-
serves the consistency of an existing test, it is enough to just find one execution

1 A testing environment consists of a set of protocol tests, along with a set of runtime
monitors derived from protocol specifications and/or correctness properties. The
runtime monitors observe sequences of global states during execution and check if
each protocol execution in each protocol test conforms to the specification.

Analyzing the Impact of Protocol Changes on Tests 199

of the changed protocol that can happen in the test such that the execution
uses all the inputs specified in the test. Otherwise, the test is inconsistent. This
is because for a consistent testable protocol, if a test is consistent for a single
execution that can happen in the test then the test must be consistent for all
executions that can happen in the test since otherwise, that execution cannot
happen in any consistent test. Consistent testability makes it easier to check
whether consistency of a test is preserved by a change since it is enough to
check this for just one execution of the changed protocol. For certain changes it
may not be necessary to analyze even a single execution. For instance, see the
discussion for changes that add transitions below.

Tests whose consistency is preserved by a change may either be independent
of the change or they may be re-usable. Informally, a test is independent of a
change if none of the executions that can happen in the test are affected by
the change. Independent tests may be discarded to minimize the testing effort
across changes. All other tests whose consistency is preserved by the change are
re-usable tests. Re-usable tests exercise the changed behavior and can be used
without any modifications to test the changed protocol.

State exploration is used to determine whether tests whose consistency is
preserved by a change are independent. This is done by computing an interaction
context for a given protocol transition. Interaction context of a given protocol
transition is the set of all consistent tests such that the transition appears in some
execution of each test. Informally, if a test whose consistency is preserved by a
change does not belong to the interaction context of transitions being changed,
then it is not affected by the change and is independent. If the test belongs to
the interaction contexts of a new transition introduced by a change then it is
re-usable.

If a test is made inconsistent by a change and the protocol stable state of the
test is a stable state of the changed protocol then the test is patched by changing
its inputs to be the external inputs used in the executions starting from that
stable state of the changed protocol. A patched test is generated for each such
execution with distinct environment inputs. Inconsistent tests whose protocol
stable state is not a stable state of the changed protocol are not patchable and
hence discarded. Interaction contexts of protocol transitions are used to patch an
inconsistent test whenever possible to do so. We also describe a state exploration
based procedure based on interaction contexts for checking consistent testability.

We first consider single transition changes and show that a change that adds
a new transition t′i to a controller, preserves the consistency of all existing tests.
This is because such a change preserves all the executions of the original protocol
in addition to preserving consistent testability. An existing consistent test γ is
re-usable with respect to such a change if it belongs to the interaction context
of the newly added transition t′i, which is computed over the changed protocol.
Otherwise, the test γ is independent of the change.

Consider a change replacing a transition ti by another transition t′i in the same
controller. To determine the impact of such a change on an existing consistent
test γ, the interaction context of transition t′i and the interaction contexts of the

200 M. Subramaniam and Z. Pap

transitions tjs in the original protocol that are distinct from ti are computed.
All the contexts are computed by state over the changed protocol. The test γ is
re-usable if it belongs to the interaction context of t′i and γ is independent if it
does not belong to the context of t′i but belongs to the context of some tj . In
this case, an execution of the original protocol without the replaced transition
ti can happen in the test γ. Otherwise, the test γ is inconsistent. The test is
patched, as described above, if the protocol stable state of γ belongs to any of
the interaction contexts of tj ’s. The test γ is discarded otherwise.

It is in practice inevitable to deal with complex changes consisting of multiple
atomic updates. Our method of analyzing the impact of multiple changes on
tests is based on examining the effect of the comprised individual add / delete
/ replacement changes. However, the approach developed for the single transi-
tion change cases can not be used as it is, some modifications are needed to
handle certain types of independence of the different atomic changes. If all the
atomic updates are only additions then the effect on a test can be determined
by considering the individual interaction contexts independently. However, for
replacements and deletions effects on a test can not be determined indepen-
dently since the inconsistency of a test whose executions contain a group of
replaced protocol transitions may not be detected. To avoid this problem, the
combined interaction contexts of the protocol transitions being replaced is used
to determine the impact on a test.

As multiple changes are usually defined during the development process in
an ad hoc manner, they are often confusing and redundant. The proposed ap-
proach also includes a novel approach to reduce complex changes and create the
shortest – or in an other sense optimal – sequence of update rules inducing the
required modifications.

The paper is organized as follows. After a brief discussion on the related
literature in Section 2, we introduce the background of the current research
including our model of protocols in Section 3. Protocol tests and the notion of
test consistency are introduced in Section 4. Section 5 presents a framework
for analyzing the impact of transition changes on tests and studies the effect of
single changes. Section 6 describes handling and impact of multiple transition
changes. Section 7 concludes the paper.

2 Related Work

Both test generation and software change impact analysis have been active areas
of research in the past. Testing is an indispensable phase of a system develop-
ment lifecycle, yet it has turned out to be a difficult task for the increasingly
complex protocols. Because of their practical importance, significant effort has
been devoted to the development of automatic test generation methods for pro-
tocols to overcome the inefficiency of manual testing [1,2,3,4]. Furthermore, with
the constant increase in complexity, protocol design and implementation has be-
come an increasingly evolutionary and iterative process. Motivated by this trend
there have been some studies investigating changes and their impacts [9,10,11].

Analyzing the Impact of Protocol Changes on Tests 201

Several researchers have focused earlier on evaluating the effect of system changes
on tests [10,11]. However, surprisingly, not much attention has been paid to evo-
lution of protocols and the impact of protocol changes on tests. To the best of
our knowledge, this is perhaps the first attempt towards analyzing the impact
of CFSM-based protocol changes on protocol tests. Further, most of the earlier
work on change impact analysis has been based on conservative static analysis
and hence does not provide precise answers. In contrast, the proposed approach
is based on formal approach based on state exploration that allows for accurate
analysis of change impacts and also enables us to provide more useful feedback
by synthesizing new tests that are guaranteed to be consistent with the changes.

The approach proposed in this paper builds on our earlier work in [8, 12].
In [8] we have developed a systematic approach to specify and consistently in-
corporate changes to CFSM-based protocols. This approach has been applied to
several protocols including industrial-strength cache coherence protocols. In [12]
we showed how the impact of consistent protocol changes on runtime monitors
can be automatically evaluated and new monitors can be synthesized. Typically,
in white-box testing environments, monitors are used in conjunction with tests
to observe and flag errors in protocol executions. This paper shows how change
impacts can be analyzed for tests and in this sense fills an important gap for
evaluating impact of protocol changes on the testing infrastructure.

3 Preliminaries

A protocol P = (P1, · · · , Pn, ε) is a network of CFSM s [5,6], where each Pi is a
protocol controller and ε is the environment. Communication among Pi’s and ε
is achieved by exchanging messages over a network of bounded queues.

Each protocol controller Pi is a CFSM, a 4-tuple, (Si, Ii, Mi, Ti) where Si

is a finite set of states, Ii ∈ Si is an initial state, Mi are the messages sent and
received by Pi, and Ti ⊆ Mi × Si �→ Si × 2Mi is a deterministic transition
relation. Each set Mi = Mi,j ∪ Mj,i, for {i, j} ∈ {1, · · · , n, ε}, i �= j, where Mi,j

is the set of messages sent by the controller Pi to the controller Pj and Mj,i is
the set of messages received by controller Pi from Pj . Each message in Mi,j is
written as mk(i, j) where mk is the message label and (i, j) denotes the message
queue from controller Pi to controller Pj . The set Mi,i is empty for all i; we
assume that no Pi exchanges messages with itself.

Each protocol transition ti in Ti is of the form m0(j, i), si �→ s′i, {m1(i, k1),
· · · , ml(i, kl)} where m0 is the input message, si and s′i are the input and output
states respectively, and m1, · · · , ml are the output messages to the controllers
k1 · · · kl, 1 ≤ l ≤ n, l �= i. Let S =

⋃
1≤i≤n Si be the set of protocol states.

A global protocol state, g = 〈u, v〉 is a pair where u is an n-tuple of the
individual controller states and v represents the messages, if any, in the protocol
message queues. Let u[j] stand for the state of the controller Pj in u and v[i, j]
stand for the messages in the queue (i, j) in v. For ease of exposition, we will
only show non-empty queues in v in a global protocol state. We write v = 〈〉
when we all queues are empty in the state g.

202 M. Subramaniam and Z. Pap

The initial global protocol state g0 = 〈u0, v0〉 is a pair where u0[i] ∈ Ii for all
i, and v0[i, j] = 〈〉 if i �= ε and j �= ε. So, the only non-empty queues in an initial
global protocol state are those containing messages from/to the environment ε.

A stable global protocol state is a global protocol state g = 〈u, 〈〉〉 where all
the queues are empty. We call the elements of S in u in a stable global protocol
state as stable controller states. Note that the initial global protocol state is a
stable global protocol state but not vice versa.

A transition ti: m0(j, i), si �→ s′i, {m1(i, k1), · · · , ml(i, kl)} is enabled in global
state g = 〈u, v〉 if u[i] is the input state si and the top of queue v[j, i] is the
input message m0(j, i), and all the output messages m1(i, k1), · · · , ml(i, kl) can
be enqueued (there is space to do so) in the corresponding queues in v.

An execution step, g →ti g′ using the transition ti enabled in the global
protocol state g produces a global protocol state g′ with the controller Pi in the
state s′i; other controller states are unchanged. The input message m0(j, i) is
dequeued from the queue v[j, i] and the output messages m1(i, k1), · · · , ml(i, kl)
are enqueued to the appropriate queues in v to produce g′. If ti is enabled in g
then we say that the global protocol state g′ is enabled by ti. The state g′ = g
if ti is not enabled in g.

An executable path of P , r1 = g0→t0g1 · · · →tk gk+1. We will simply represent
the path r1 by a sequence of transitions [t0,· · · ,tn−1].

A protocol run is an executable path starting and ending in stable global
protocol states. Each protocol run starts from a stable global protocol state by
processing the environment input messages leading to further message exchanges
until a stable global protocol state is reached.

Protocol P is consistent if and only if i) no two protocol transitions ti and
tj have the same input state and same input message, ii) every ti appears in a
protocol run, and iii) every executable path from a stable global state reaching
a state enabling a transition ti is a prefix of a protocol run.

Henceforth, we will assume that protocols are consistent. Note that in our
model, protocol controllers are not input-enabled since they communicate with
each other by exchanging messages over bounded queues. Our model thus more
closely relates to the process algebraic than the I/O model of concurrency.

Changes to protocols are specified as a finite set of rules, update rules (ur),
that may add, delete, or replace one or more transitions in one or more con-
trollers. urj : ti ⇒ t′i replaces a transition ti by a new transition t′i, urj : ti deletes
a transition ti, and urj : t′i adds a transition t′i in controller Pj . We consider
changes with both single as well multiple rules.

It is assumed that all changes preserve the consistency of a protocol.

4 Tests and Consistently Testable Protocols

We primarily focus on white-box testing in this paper [13]. In our testing model,
a protocol implementation under test is stimulated by the environment ε by
inputting messages. The implementation processes the messages one at a time,
starting from a stable global protocol state resulting in a protocol test run.

Analyzing the Impact of Protocol Changes on Tests 203

To ensure conformance of the implementation, a runtime monitor [14, 15]
is added to the implementation. The monitor observes certain global protocol
states in each run in a test. Starting from a conforming monitor state, the mon-
itor transitions with each observed global protocol state ending in a conforming
monitor state if the test run is behaviorally conforming to the protocol specifica-
tion; the monitor ends in an error state for non-conforming test runs. The global
protocol states observed by the monitor in a test run depend on the conformance
properties being checked.

A protocol test γ = 〈u, v〉 is a pair where u is an n-tuple of controller stable
states and v is an n-tuple of queues containing input messages from environment
ε to the n individual protocol controllers. For ease of exposition, we will only
show non-empty queues in v while describing a test γ.

A test run of the test γ is a protocol run starting from the stable global proto-
col state 〈u,〈〉〉 that processes all the environment input messages appearing in v.
In general, test γ may have several test runs based on the different interleavings
of the protocol transitions.

A test γ exercises a transition ti if ti appears in a test run of γ.
A test γ is consistent relative to a protocol if there is at least one test run for

γ and every executable path starting from γ is extensible to a test run of γ.
Note that if the test γ is consistent then v �= 〈〉 since protocol runs always start

with an environment input message. Further, the consistency of a test ensures
that every execution path starting from the stable state corresponding to that
test can be extended to a run that uses all the environment input messages
specified in test γ. More importantly, consistency of a test ensures that consistent
tests that share a test run must be identical.

Proposition 1. Consistent test γ1 = γ2 if test run of γ1 is a test run of γ2.

Proof Sketch. Let r1 be the common test run that starts from the stable global
stable state u. Let v be the external environment input messages used in run
r1. Let γ1 = 〈u1, v1〉 and γ2 = 〈u2, v2〉. Since r1 is a test run of both γ1 and
γ2, u1 =u2 =u and since both γ1 and γ2 are both consistent test, v1 =v2 =v. �

From Proposition 1, it follows that a protocol run is a test run of at most one
consistent test. An example of a consistent and an inconsistent test can be found
in Section 5.2 and Section 4.1, respectively.

In our testing model, the possible outcomes of a test are all the observable
sequences of global protocol states that can happen in all the test runs. Since
the global protocol states are directly accessible to the runtime monitor they are
not a part of a test. Our notion of consistency of a test is closely related to the
notion of valid tests that has been extensively studied earlier in the testing of
protocols and FSMs. An overview of FSM and protocol testing may be found
in [13]. A valid test is a consistent test whose outcome conforms to the protocol
specification. However, a consistent test need not be a valid test since consistency
does not require a conforming test outcome. A consistent test however, precludes
invalid or inconclusive tests [13] with inputs that cannot be processed in any run.

204 M. Subramaniam and Z. Pap

Further, in our model, the verdict associated with a test is determined by the
runtime monitor, based on the global states observed by the monitor. Hence on
changing an implementation, it may be necessary to change both the monitor as
well as the tests. In this paper, we assume that any change to the protocol imple-
mentation is preceded by a change to a specification and leads to an appropriate
change to the monitor2. We only focus on impact of implementation changes
on the test itself. Henceforth, in this paper, we do not explicitly distinguish a
protocol implementation under test from its specification and simply refer to the
former as the protocol.

Our choice of the above white-box testing model is largely motivated by the
experience of first author in designing real cache coherence, network, and I/O
protocol products. In practice, many protocols work over bounded resources
and hence are not input-enabled. For protocols with input-enabled components,
every test is trivially consistent. In such cases, the approach in [12] may be used
to determine how the change affects the test purpose.

4.1 Consistently Testable Protocols

As mentioned above, consistency of protocol tests ensures that any protocol
run is a test run of at most one consistent test. To test the conformance of a
protocol, we must also make sure that every protocol run is a test run of some
consistent test, i.e., it must be possible to devise a consistent test to check each
protocol run. A protocol is consistently testable if each protocol run is a test run
of a consistent test. Consequently, each protocol run of a consistently testable
protocol is a test run of exactly one consistent test.

A protocol may be consistent but it may not be consistently testable.

Example 1: Consider the following protocol with the controllers P1 and P2 with
respective controller stable states {s0} and {t0} with transitions,

P1 : 1. m0(ε, 1), s0 �→ s1, m1(1, 2), 2. m2(2, 1), s1 �→ s0, m3(1, 2),
3. m9(2, 1), s1 �→ s0, m4(1, ε).

P2 : 4. m1(ε, 2), t0 �→ t2, m9(2, 1), 5. m1(1, 2), t0, �→ t1, m2(2, 1),
6. m3(1, 2), t1 �→ t0, m4(2, ε), 7. m1(1, 2), t2 �→ t0, m5(2, ε),
8. m5(ε, 2), t1 �→ t1, m6(2, ε).

It can be verified that the above protocol is consistent. However, the protocol
is not consistently testable since the protocol run r1 = [1, 4, 3, 7] is not a test
run of any consistent test. This is because for r1 to be a test run, the test must
contain the environment input messages m0(ε, 1) and m1(ε, 2). Such a test is
not consistent since it can lead to the run r2 = [1, 5, 2, 6], which does not use
the input message m1(ε, 2) and cannot be further extended to a run ending in
a stable global protocol state while doing so.
2 In an earlier paper [12], we have shown how impact of protocol changes on runtime

monitors can be automatically evaluated. The procedure described there uses selec-
tive state exploration guided by protocol states observed by the monitor to identify
and automatically synthesize monitors for protocol changes. For more details the
reader may please refer to that paper.

Analyzing the Impact of Protocol Changes on Tests 205

In general, consistent testability imposes additional constraints on the runs
of a consistent protocol, which can be used to check whether a given protocol is
consistently testable.

In a consistent testable protocol, for any two protocol runs r1 and r2 that
start by processing the same environment input message in the same stable
state, the set of environment inputs processed by r1 (r2) should be a subset
of those processed by r2 (r1). If the environment messages used in r1 (r2) is a
proper subset of r2 (r1) then the extra messages in r2 (r1) should only transition
the protocol from one stable controller state to another.

In principle, to verify consistent testability of a given protocol, it suffices to
find two runs r1 and r2 that violate the above condition. For instance in the
above protocol, the runs r1 and r2 start from the same global stable state 〈〈s0,
t0〉, 〈〉〉, and process the same environment input message m0(ε, 1) in that stable
state. However, the environment messages processed by r2 is a proper subset
of those processed by r1; run r1 additionally processes the environment input
message m1(ε, 2), which does not transition the protocol from one stable state
to another. Hence the protocol is not consistently testable as shown above.

A more feasible approach for verifying consistent testability of a given protocol
is to compute the interaction contexts of the transitions of the protocol by state
exploration and analyze these contexts for the above described condition by
considering messages of context elements with the same stable state. This is
described in the next section.

5 Impact of Single Transition Changes on a Test

In this section, we describe how to determine the impact of addition, replace-
ment, and deletion of single protocol transitions on an existing protocol test.
Conditions under which the consistency of a test is preserved by a change are
identified. If such a test exercises the change then it may be re-used without any
additional modifications. Otherwise, the test is independent of the change and
may not be included to test the changed protocol3.

In this paper, we assume the changes are incorporated into protocols only
if they preserve the consistent testability. In principle, this can be checked by
considering the runs of the changed protocol starting from the same controller
stable state and checking whether their environment inputs are a subset of each
other as described above.

5.1 Interaction Context of Transitions

To determine the effect of changes on tests an interaction context is associated
with each protocol transition.

The interaction context of a transition ti, IC(ti) = {〈uj, vj〉} is the set of all
tests 〈uj, vj〉 exercising the transition ti.

3 Of course, such tests may be included in regression testing of the changed protocol
based on several coverage criteria and these are not considered here.

206 M. Subramaniam and Z. Pap

The interaction context IC(ti) is computed by doing repeated backward and
forward image computations over the global protocol state space starting re-
spectively from the global state enabling and the state enabled by the transition
ti. The computations stop once all reachable global states with controller stable
states and only environment inputs are obtained. The set of global stable pro-
tocol states produced by the forward and the backward computations are then
matched to produce global stable states and the environment inputs and form
one pair of the interaction context. The context IC(ti) is the set contains all
such pairs produced by the matching stable global protocol states.

For instance, consider computing the interaction context IC(5) of the transi-
tion 5 in the protocol example described in the previous section. The backward
image computation starts from the global state enabling transition 5, gp = 〈〈xs1,
t0〉, 〈m1(1, 2)〉〉 where xs1 is a symbolic state variable denoting the controller
P ′

1s state. One step image computation of state gp with transition 1 gives the
global state g1 = 〈〈s0, t0〉, 〈m0(ε, 1)〉〉 and this step also instantiates the variable
xs1 to value s1 to give the instantiated state gp = 〈〈s1, t0〉, 〈m1(1, 2)〉〉. Since
g1 is a stable global protocol state with only environment inputs and there are
no other predecessors of gp, the backward image computation stops.

Similarly, the forward image computation starts with the state gs = 〈〈xs2,
t1〉, 〈m2(2, 1)〉〉, and after two image computation steps using the transitions
2 followed by transition 6 stops with the global state g2 = 〈〈s0, t0〉, 〈〉〉. The
variable xs2 is instantiated with value s1 to produce the instantiated gs = 〈〈s1,
t1〉, 〈m2(2, 1)〉〉. The states g1 and g2 match since gp →5 gs is an execution step
for the instantiated states gp and gs. Hence the initial state g1 is included in the
context to produce IC(5) = {g1 = 〈〈s0, t0〉, 〈m1(ε, 1)〉〉}.

Interaction contexts may be used to check whether a protocol is consistently
testable. To do so, we union the interaction contexts of the protocol transitions.
Then, for each pair 〈u1, v1〉 and 〈u2,v2〉 such that u1 = u2 if v1 and v2 have the
same prefix of environment inputs then we check that v1 (v2) is a subset of v2(v1).
If one is proper subset of the other then it is ensured that each extra message mi

is processed by a transition whose input and output states are controller stable
states. This guarantees that the extra messages only transition the protocol
among global stable protocol states.

For each change, we consider the transitions appearing in the change and com-
pute their interaction contexts. The interaction context may be computed either
based on the original or computed based on the changed protocol depending on
whether we are adding, deleting or replacing a protocol transition. As explained
below, for replacement changes the interaction context of the transition being re-
placed is computed based on the original protocol whereas that of the transition
being added is computed using the changed protocol.

5.2 Adding a Transition

Consider an update rule ur: t′i, that adds transition t′i: m(j, i), si �→ s′i, m′(i,
k) to controller Pi of a protocol P . The update ur allows the controller Pi to
process the input message m(j, i) in state si, which is not possible in the original

Analyzing the Impact of Protocol Changes on Tests 207

protocol, and produces a consistent and consistent testable changed protocol. It
should be clear that every protocol run of the original protocol is a run of the
changed protocol since all transitions of P are also present in P ′. Further, since
the changed protocol must be consistent it also follows that the transition t′i
appears in at least one changed protocol run.

Let γ = 〈u, v〉 be any consistent protocol test of the original protocol. Since γ is
consistent, a run of the original protocol and therefore, a run of the changed pro-
tocol is a test run of γ. Now, since the changed protocol is consistently testable,
there is exactly one consistent test for each changed protocol run. Hence it follows
that γ is a consistent test of the changed protocol.

The effect of such a change on the test γ is determined by computing the
interaction context IC(t′i) of the newly added transition t′i, by performing state
exploration over the changed protocol as described above. If the test γ belongs
to IC(t′i) then the test γ exercises the newly added transition t′i. In this case γ
is re-usable. If the test does not appear in IC(ti) then none of the executions of
γ contain the transition t′i and hence γ is independent of the change.

Example 2: Consider the following protocol with controllers P1 and P2 with
stable states {s0, s′0} and {t0} respectively, with the transitions,

P1 : 1. m1(2, 1), s0 �→ s1, m2(1, 2), 2. m3(2, 1), s1 �→ s2, m4(1, 2),
3. m5(2, 1), s2 �→ s′

0, m6(1, ε), 4. m0(ε, 1), s′
0�→ s0, m0(1, e).

P2 : 5. m0(ε, 2), t0 �→ t0, m1(2, 1), 6. m2(1, 2), t0, �→ t0, m3(2, 1),
7. m4(1, 2), t0 �→ t0, m5(2, 1).

A consistent protocol test is γ = 〈〈s′0, t0〉, { m0(ε, 2), m0(ε, 1)} 〉; a test run
for γ is r1 = [4, 5, 1, 6, 2, 7, 3]. Suppose we add transition 8: m1(2, 1), s′0 �→
s1, m2(1, 2) to controller P1. It can be verified that this change preserves both
the consistency and the consistent testability of the protocol. The interaction
context of this new transition, IC(8) = {〈〈s′0, t0〉, { m0(ε, 2), m0(ε, 1)}, 〈〈s′0,
t0〉, {m0(ε, 1)}}, includes the test γ and hence the test γ is re-usable for the
changed protocol. A test run of γ with the new transition is [5, 8, 6, 2, 7, 3, 4].

Alternatively, we can add transition, 9 : m7(ε, 2), t0 �→ t0, m8(2, ε) to the
controller P2 of the above protocol while preserving its consistency and consistent
testability. Then, the interaction context IC(9) = {〈〈s0, t0〉, 〈m7(ε, 2)〉, 〈s′0, t0〉,
〈m7(ε, 2)〉}, does not include the test γ and it can be verified that test γ does
not exercise transition 9 and hence is independent of this change.

Note that each pair in the interaction context IC(t′i) corresponds to a con-
sistent test that exercises the newly added transition t′i. For changes that add a
single transition, we simply determine, which of these tests already exist for the
original protocol. The remaining pairs may be used as new tests.

5.3 Replacement and Deletion of Transition

Consider an update rule ur: ti ⇒ t′i that replaces a transition ti in controller
Pi with a new transition t′i in the same controller. The update ur produces a
consistent changed protocol in which there are runs containing the newly added

208 M. Subramaniam and Z. Pap

transition t′i. It also ensures that every transition tj that appears in an original
protocol run with the replaced transition ti appears in some other runs not
containing ti. The changed protocol is also consistently testable.

To determine the effect of the update ur on a consistent test γ of the original
protocol, we first determine whether γ exercises the new transition t′i in the
changed protocol. To do so, the interaction context IC(t′i) is computed over the
changed protocol. If γ belongs to IC(t′i) then a test run of γ containing t′i is a
protocol run of the changed protocol. In this case, the update ur must preserve
the consistency of γ since there is a run with t′i in the changed protocol that can
be tested only by using the test γ. Hence γ is re-usable.

However, if γ does not belong to IC(t′i) then it may no longer be a consistent
test of the changed protocol. As an example, consider changing the protocol
described in the previous subsection, using the rule ur: 4. m0(e, 1), s′0�→ s0,
m0(1, e), ⇒ 8: m1(2, 1), s′0 �→ s1, m2(1, 2) that replaces transition 4 by transition
8. The changed protocol is consistent and consistently testable. However, the
existing test γ = 〈〈s′0, t0〉, 〈m0(ε, 2), m0(ε, 1)〉〉 is no longer consistent since no
transition in the changed protocol can process the input message m0(ε, 1). Note
that a consistent test that exercises the new transition 8 is 〈〈s′0, t0〉, 〈m0(ε, 2)〉〉.

In general, the replacement change ur makes a test γ inconsistent only if every
test run of γ in the original protocol contains the replaced transition ti. We can
determine this by extending the interaction context computation to include the
executable paths. Then, it can be checked that every executable path in the
context IC(ti) computed over the original protocol contains the transition ti.

Alternatively, we can consider each transition tj distinct from ti in the original
protocol and compute the contexts IC(tj) and check that the test γ belongs to
one of these contexts. This ensures that γ exercises a transition tj different than
ti. To ensure that γ does not exercise ti we simply compute these contexts over
the changed protocol, where transition ti has been replaced.

If the test γ does not belong to any IC(tj) then it is inconsistent for the
changed protocol. In this case, we consider each pair 〈uj , vj〉 in each context
IC(tj). If u = uj for some pair then we patch γ to generate a new test γj = 〈u,
vj〉. If no such pair is found then γ cannot be patched and is discarded.

Obviously, if γ belongs to neither IC(ti) nor IC(t′i) then no runs in the original
protocol containing transition ti are test runs of γ and no runs in the changed
protocol containing t′i are test runs of γ. As these are the only runs affected by
the change, the test γ is consistent with respect to the changed protocol. In this
case, the test γ is independent of the replacement change and may be discarded
from the tests used for the changed protocol.

As an example, consider the protocol obtained from the protocol previous
subsection after addition of the transition 8. This protocol can be changed using
the replacement rule ur: 8 ⇒ 9, that replaces transition 8 by the transition
9 described there. The change produces a consistent and consistently testable
protocol. It can be verified that this replacement change preserves the consistency
of the existing test γ = 〈〈s′0, t0〉, 〈m0(ε, 2), m0(ε, 1)〉〉, since [4, 5, 1, 6, 2, 7, 3] is
a run of the original protocol from γ not containing the replaced transition 8.

Analyzing the Impact of Protocol Changes on Tests 209

The impact of changes that perform deletion of a transition ti is also deter-
mined by computing the interaction contexts of transitions tj distinct from ti
as described above. The test γ is re-usable across such a change if it belongs
to some context IC(tj); otherwise, γ is inconsistent. An inconsistent test γ is
patched in the same way as described above.

6 Impact of Multiple Transition Changes on a Test

It is in practice inevitable to deal with multiple updates simultaneously. Some of
the more general changes – for example the introduction of new states – are too
complex to be specified by a single update rule, thus multiple rules – sequences
of atomic rules – have to be used to define these changes. Furthermore, in any
development process it is not practical to modify and/or analyze the test suite
for the given protocol at each atomic update. Instead, test suites are revised at
certain stages of the development, typically after some substantial changes have
been introduced to the system.

Let ur: {t′1, t′2, · · · , t′i, ti+1 ⇒ t′i+1, · · · tm ⇒ t′m} be any protocol update,
denoting the set of transition changes to a given protocol P , where (primed)
transitions t′j’s are added and (unprimed) transitions tk’s are deleted.

The effect of change ur on a protocol test γ is determined by considering
the interaction contexts of the transitions in ur. The contexts of the (primed)
transitions t′j ’s are computed over the changed protocol and that of (unprimed)
transitions tk’s are computed over the original protocol.

The protocol transitions t′j ’s being added may be considered individually and
the effect on the test γ may be determined as described in the previous subsection
on addition of single transitions. However, determining the effect of deletion
of transitions by considering transitions tk’s individually does not work since
inconsistencies arising due to test runs containing multiple deleted transitions
may be missed. For instance, let t1 and t2 be any two transitions in ur that
are being deleted. Assume that every test run of γ contains either t1 or t2 but
not both. Hence in this case, removal of both t1 and t2 must make the test γ
inconsistent.

However, this will not be the case if we individually consider deletions since
while considering deletion of t1, the test γ will be consistent since there is a run
with t2. Similarly, individually considering t2 will also lead to γ being consistent
since there is a test run with t1.

To handle this problem the procedure for handling individual replacements is
modified to consider all the interaction contexts of the protocol transitions being
replaced. Let ICr =

⋃
tl�∈ur IC(tl) be the union of all the interaction contexts

of the transitions tl’s in the original protocol that are not being replaced. The
multi-controller ur preserves the consistency of a test γ only if it belongs to ICr.

6.1 Handling Redundancies in Multiple Updates

According to the discussion above, we sometimes have to consider significant
changes to a controller involving large sequences of individual update rules. As

210 M. Subramaniam and Z. Pap

the changes are defined in an ad hoc development process, they are often unnec-
essarily complex and contain redundancies. In such cases the impact of the given
update on tests can not be analyzed efficiently based on the original change spec-
ification. Instead, an equivalent multiple update is constructed, which is optimal
in the sense that it is the best suitable for the analysis.

The essence of our approach is as follows: Let us consider that we are given
a redundant update specification with multiple update rules, and we have to
analyze its impact on a given test. We apply the specified update to compute
a changed protocol and ensure that this protocol is consistent and consistently
testable. But then we do not immediately move on to analyze the impact of
the change based on the original update specification. Instead we first apply a
method to reduce the update, i.e., to determine equivalent set of atomic changes
that are producing the same changed protocol and that are more appropriate for
evaluating the impacts. The reduction in the most straightforward case brings on
the removal of redundancies, but in a more sophisticated approach it creates an
update that is optimal with respect to the cost of evaluating the impacts. Finally,
we apply the method described in the first part of this section to determine the
impact of the change on the test considering each atomic change of the optimized
multiple update.

We consider the previously discussed three types of atomic update rules: Ad-
dition, deletion and replacement of transitions. The problem of determining the
best equivalent update can be stated as follows: Let us consider an update δ with
multiple rules turning CFSM Pi to CFSM P ′

i . Identify the shortest equivalent
sequence of update rules changing CFSM Pi to P ′

i .
In a more sophisticated approach – if some update rules are preferred over

others – a cost function may be assigned to update rules. Let ρ be a cost function
that assigns a nonnegative real number ρ(ur) to each update rule. We constrain
ρ to be a distance metric. That is, it satisfies the following three properties:
ρ(ur) ≥ 0 and ρ(ur0) = 0 (nonnegative definiteness); ρ(ur) = ρ(ur−1) (sym-
metry); ρ(ur13) ≤ ρ(ur12) + ρ(ur23) for any three operations with the following
property: Pi ⇁ P ′

i via ur12, P ′
i ⇁ P ′′

i via ur23 and Pi ⇁ P ′′
i via ur13 (tri-

angle inequality). Furthermore, let the cost of an update with multiple rules
δ = {ur1, ur2, ..., urk} be ρ(δ) =

∑k
i=1 ρ(uri).

The cost of an update rule – in general – may represent any practical prop-
erty of the given atomic change. In our case costs reflect the impact of the given
atomic update rule on the test set; updates that are likely to induce inconsistent
tests are assigned a higher cost than others. For instance, consider a multiple
controller change that includes – among others – the addition of two interdepen-
dent transitions t′1 and t′2, such that t′2 occurs in a run in the changed protocol
iff t′1 also occurs. Obviously, the two update rules have the same interaction con-
texts, thus we only have to consider one of them to analyze the impacts. This
interdependency can be taken into account for example by setting the cost of
one of the update rules to 0.

As our costs are defined as distance metrics, the problem of optimizing mul-
tiple updates can be restated as finding the (edit) distance between two CFSMs

Analyzing the Impact of Protocol Changes on Tests 211

Pi and P ′
i , where the distance between Pi and P ′

i is defined to be the minimum
cost of all sequences of edit operations that change Pi to P ′

i :
4

Definition 1. dist(Pi, P
′
i) = min{ρ(δ) |δ is an update changing Pi to P ′

i}.

With this approach we have turned the problem of reducing multiple updates to
an approximate graph matching problem [16]. Thus the tools and algorithms of
the graph matching theory can be used to generate an update with the following
properties:5 It is equivalent to the original update specification, i.e., it induces
the required modifications; it is the lowest-cost update, i.e., the impact of the
given change on tests can be most effectively calculated based on it.

7 Conclusion

An automatic approach for determining impact of protocol changes on existing
protocol tests in a white-box testing model is proposed. Protocols are modeled
as a network of CFSMs that interact by message passing over bounded queues.
Protocol changes add/replace/delete one or more protocol transitions in one or
more controllers. Protocol tests are formalized as a protocol stable state along
with a set of external environment inputs. Notions of consistent tests and con-
sistently testable protocols are introduced. Changes must preserve consistently
testability of protocols so that it is still possible to test all the runs of the changed
protocol by using consistent tests. It is shown how symbolic state exploration
over the changed protocol can be used to ensure that the protocol is consis-
tently testable. The impact of a change on a test is characterized in terms of
whether the consistency of the test is preserved by the change. For tests, whose
consistency is preserved, we further show how state exploration can be used to
determine whether the test exercises the changed behavior in which case it is
re-usable; otherwise, the test is independent of change. We showed that single
transition additions always preserve consistency of existing tests. Single tran-
sition replacements may make tests inconsistent if every test run exercises the
deleted transition. We have shown how the approach can be extended to deal
with more complex changes where protocol transitions in multiple controllers are
simultaneously changed. We also describe a novel approach to reduce complex
changes and create the shortest – or in an other sense optimal – sequence of
changes inducing the required modifications. To the best of our knowledge, this
is perhaps the first paper to formally address the effect of changes to CFSM-
based protocols on protocol tests. We plan to extend this approach to use static
analysis to analyze the protocol transition dependencies [19] to make it more
useful in practice. We also plan to investigate augmenting existing tests with
addition information such as states where inputs are issued to further facilitate
the change impact analysis in practice.
4 The original problem identifying the shortest sequence of update rules is a special

case of the latter with all update rules having equal costs.
5 For the algorithms and their application considering CFSMs see [17] and our earlier

paper [18].

212 M. Subramaniam and Z. Pap

References

1. Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance
for software testing. In: ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, New York, NY, USA,
ACM Press (1994) 109–124

2. Linn, R.J., Uyar, M.., eds.: Conformance testing methodologies and architectures
for OSI protocols. IEEE Computer Society Press, Los Alamitos, CA, USA (1995)

3. Lee, D., Yiannakakis, M.: Principles and methods of testing finite state machines
– a survey. Proceedings of the IEEE 84(8) (1996) 1090–1123

4. Duale, A.Y., Uyar, M..: A method enabling feasible conformance test sequence
generation for efsm models. IEEE Trans. Comput. 53(5) (2004) 614–627

5. D. Brand, A.M., Zafiropulo, P.: On communicating finite state machines. In:
Journal of Associating Computing Machinery, JACM. Volume 30(2). (1983)

6. Peng, W., Purushothaman, S.: Data flow analyses of communicating finite state
machines. In: Transactions on Programming Languagaes and Systems TOPLAS.
Volume 13. (1991)

7. Holzmann, G.J.: Design and validation of computer protocols. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1991)

8. Subramaniam, M., Chundi, P.: Preserving consistency and executability of proto-
cols across updates. In: Proceedings of the 6th International Conference on Formal
Engineering Methods, ICFEM. Volume LNCS. (2004)

9. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos, CA, USA (1996)

10. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In:
Proceedings of PASTE-01. (2001)

11. Rothermal, G., Harrold, M.J.: A safe, efficient regression test selection technique.
In: ACM Transactions on Software Engineering and Methodology. Volume 6(2).
(6(2), 1997)

12. Subramaniam, M.: Preserving consistency of runtime monitors across protocol
changes. In: Proc. of Tenth IEEE International Conference on Engineering of
Complex Computer Systems ICECCS. (2005)

13. Schmitt, M.: Automatic Test Generation Based on Formal Specifications. Ph.d.,
Georg-August-University of Goettingen (2003)

14. M. Kaufmann, A.M., Pixely, C.: Design constraints in symbolic model checking.
In: Proc. of Intl. Conference on Computer-Aided Verification CAV. Volume LNCS.
(1998)

15. K. Shimizu, D. L. Dill, A.J.H.: Monitor-based formal specification of pci. In:
Proc. of Intl. Conference on Formal Methods in Computer-aided design, FMCAD.
Volume LNCS 1954. (LNCS 1954, 2000)

16. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications.
In: Proceedings of Vision Interface 2000, Montreal. (2000) 82–88

17. Wang, J.T.L., Zhang, K., Chirn, G.W.: Algorithms for approximate graph match-
ing. Information Sciences 82(1-2) (1995) 45–74

18. Pap, Z., Csopaki, G., Dibuz, S.: On the theory of patching. In: Proceedings of the
3rd IEEE International Conference on Software Engineering and Formal Methods,
SEFM. (2005) 263–271

19. Subramaniam, M., Shi, J.: Using dominators to extract protocol contexts. In:
Proceedings of the 3rd IEEE International Conference on Software Engineering
and Formal Methods, SEFM. (2005)

Detecting Observability Problems in Distributed
Testing

Jessica Chen1 and Hasan Ural2

1 School of Computer Science, University of Windsor,
Windsor, Ontario, Canada N9B 3P4

xjchen@uwindsor.ca
2 School of Information Technology and Engineering,

University of Ottawa,
Ottawa, Ontario, Canada K1N 6N5

ural@site.ottawa.ca

Abstract. Application of a test or checking sequence in a distributed
test architecture often requires the use of external coordination message
exchanges among multiple remote testers for eluding potential control-
lability and observability problems. Recent literature reports on condi-
tions on a given finite state machine (FSM) under which controllability
and observability problems can be overcome without using external co-
ordination messages. However, these conditions do not guarantee that
any test/checking sequence constructed from such FSMs are free from
controllability and observability problems. For a given test or checking
sequence, this paper investigates whether it is possible to eliminate the
need for external coordination messages and proposes algorithms to iden-
tify or construct subsequences either within the given sequence or as an
extension to the given sequence, respectively.

Keywords: Finite state machine, testing, distributed test architecture,
observability, controllability.

1 Introduction

In a distributed test architecture, there is one tester at each interface/port of
the system under test (SUT) N . These testers participate in applying a given
test sequence [1, 15, 16] or checking sequence [7, 9, 11, 19] which is a sequence
of input/output pairs, constructed from the specification M of the SUT N .
The use of multiple remote testers in a distributed architecture brings out the
possibility of controllability and observability problems during the application
of a test or checking sequence. A controllability problem arises when a tester is
required to send the current input and because it did not send the previous input
and did not receive the previous output it cannot determine when to send the
input. An observability problem arises when a tester is expecting an output in
response to either a previous input or the current input and because it is not the

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 213–226, 2006.
c© IFIP International Federation for Information Processing 2006

214 J. Chen and H. Ural

sender of the current input, it cannot determine when to start and stop waiting
for the output.

These problems and their solutions have been studied in the context where
M is a Finite State Machine (FSM) and N is a state-based system whose
externally observable behavior can also be represented by an FSM. Much of
the previous work has been focused on automatically generating test or check-
ing sequences from FSMs that causes no controllability or observability prob-
lems during its application in a distributed test architecture (see, for exam-
ple, [2, 6, 8, 10, 13, 17, 18, 20]). For some FSMs, there have been test/checking se-
quences in which the coordination among testers can be achieved indirectly via
their interactions with N [14, 16]. For some others, it may be necessary for testers
to communicate directly by exchanging external coordination messages among
themselves over a dedicated channel for overcoming the controllability and ob-
servability problems encountered during the application of the test/checking se-
quence [2, 3, 17]. Using external coordination messages introduces delays and the
necessity to set up a dedicated communications channel among testers. Thus,
the emphasis of the recent work is to minimize the use of external coordina-
tion message exchanges among testers [3, 10] or to identify conditions on a given
FSM M under which controllability and observability problems can be overcome
without using external coordination messages [4, 5].

Such conditions lead to the algorithms for identifying paths within a given
FSM M that provide evidence for the possibility of eliminating the controllability
and observability problems [4, 5]. [4] gives conditions on M so that each transition
involved in an observability problem can be independently verified at port p. By
verified at port p, it is meant that one can conclude that the output of this
transition at port p is correct if one observes the correct output sequence on a
certain path within M . By independently, it is meant that the above conclusion
regarding the output at port p for a transition does not rely on the correctness
of any other transitions. Since the notion of independence may not be required
in some cases, the above condition on M can be weakened in these cases. [5]
gives an algorithm that determines whether M satisfies this weaker condition
and when it does so, identifies paths within M that check the output of the
transitions.

In this paper, we assume that the given FSM M satisfies the condition in [5].
Then, we pose the following problem and solve it in a restricted setting: Given
an FSM M and a synchronizable test or checking sequence τ0 starting at the
initial state of M , extend τ0 with minimal number of subsequences to form a
synchronizable test or checking sequence τ∗ such that the detectability of the
observability problems in τ0 is guaranteed without using external coordination
messages exchanged among remote testers.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminary terminology. Section 3 gives a formal definition of the general problem
and defines a restricted version of this problem. Section 4 presents our solution.
Section 5 concludes the paper with our final remarks.

Detecting Observability Problems in Distributed Testing 215

2 An n-Port FSM and Directed Graphs

An n-port Finite State Machine M (called henceforth an FSM M) is defined as
M = (S, I, O, δ, λ, s0) where S is a finite set of states; s0 ∈ S is the initial state;
I =

⋃n
i=1 Ii, where Ii is the set of input symbols of port i, and Ii ∩ Ij = ∅ for

i, j ∈ [1, n], i �= j; O =
∏n

i=1(Oi ∪ {−}), where Oi is the set of output symbols
of port i, and − means null output; δ is the transition function that maps S × I
to S; and λ is the output function that maps S × I to O. Each y ∈ O is a vector
of outputs, i.e., y = 〈o1, o2, ..., on〉 where oi ∈ Oi ∪{−} for i ∈ [1, n]. A transition
of an FSM M is a triple t = (s1, s2, x/y), where s1, s2 ∈ S, x ∈ I, and y ∈ O
such that δ(s1, x) = s2, λ(s1, x) = y. s1 and s2 are called the starting state and
the ending state of t respectively. The input/output pair x/y is called the label
of t. p ∈ [1, n] will denote a port and we use y |p or t |p to denote the output at
p in output vector y or in transition t respectively. We use T to denote the set
of all transitions in M .

A path ρ = t1 t2 . . . tk (k ≥ 0) is a finite sequence of transitions such that for
k ≥ 2, the ending state of ti is the starting state of ti+1 for all i ∈ [1, k−1]. We say
t is contained in (or simply in) ρ if t is a transition along path ρ. When the ending
state of the last transition of path ρ1 is the starting state of the first transition
of path ρ2, we use ρ1ρ2 to denote the concatenation of ρ1 and ρ2. The label of
a path (s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) (k ≥ 1) is the sequence
of input/output pairs x1/y1 x2/y2 . . . xk/yk which is an input/output sequence.

When ρ is non-empty, we use first(ρ) and last(ρ) to denote the first and last
transitions of path ρ respectively and pre(ρ) to denote the path obtained from
ρ by removing its last transition.

Given an FSM M and a path t1t2 . . . tk (k > 1) of M with label x1/y1
x2/y2 . . . xk/yk, a controllability (also called synchronization) problem occurs
when, in the labels xi/yi and xi+1/yi+1 of two consecutive transitions, there
exists p ∈ [1, n] such that xi+1 ∈ Ip, xi �∈ Ip, yi |p= − (i ∈ [1, k − 1]). If this
controllability problem occurs then the tester at p does not know when to send
xi+1 and the test/checking sequence cannot be applied. Consecutive transitions
ti and ti+1 form a synchronizable pair of transitions if ti+1 can follow ti without
causing a synchronization problem. Any path in which every pair of consecutive
transitions is synchronizable is called a synchronizable path. An input/output
sequence is synchronizable if it is the label of a synchronizable path.

We assume that for every pair of transitions (t, t′) there is a synchronizable
path that starts with t and ends with t′. If this condition holds, then the FSM
is called intrinsically synchronizable.

Suppose that we are given an FSM M and a synchronizable path ρ =
t1t2 . . . tk of M with label x1/y1x2/y2 . . . xk/yk. An output shift fault in an im-
plementation N of M exists if one of the following holds for some 1 ≤ i < j ≤ k:

a) For some p ∈ [1, n] and o ∈ Op, yi |p= o in M and for all i < l ≤ j, yl |p= −
in M whereas for all i ≤ l < j, N produces output − at p in response to
xl after x1 . . . xl−1, and N produces output o at p in response to xj after
x1 . . . xj−1.

216 J. Chen and H. Ural

b) For some p ∈ [1, n] and o ∈ Op, yj |p= o in M and for all i ≤ l < j, yl |p= −
in M whereas for all i < l ≤ j, N produces output − at p in response to
xl after x1 . . . xl−1, and N produces output o at p in response to xi after
x1 . . . xi−1.

In a) the output o shifts from being produced in response to xi to being
produced in response to xj and the shift is from ti to tj (i.e., a forward shift). In
b) the output o shifts from being produced in response to xj to being produced
in response to xi and the shift is from tj to ti (i.e., a backward shift).

An instance of the observability problem manifests itself as a potentially
undetectable output shift fault if there is an output shift fault related to o ∈
Op in two transitions ti and tj in ρ with labels xi/yi and xj/yj , such that
xi+1 . . . xj �∈ Ip. The tester at p will not be able to detect the faults since it will
observe the expected sequence of interactions in response to xi . . . xj . Both ti
and tj are said to be involved in the potentially undetectable output shift fault.
When j = i + 1, we also call it potentially undetectable 1-shift output fault.

In the following, τ0 is a given test/checking sequence, which is the label of
path ρ0 = t1t2 . . . tm. We will use Tρ0,p to denote the set of transitions of M
that can be involved in potentially undetectable output shift faults in ρ0. Thus
t ∈ Tρ0,p if there exists a transition t′ and a synchronizable path tρt′ or t′ρt such
that both t and t′ are involved in a potentially undetectable output shift fault
when we apply τ0 to N .

Let t be a transition, and U a set of transitions in M . ρ is an absolute verifying
path upon U for (t, p) if

– ρ is a synchronizable path;
– t is contained in pre(ρ);
– first(ρ) and last(ρ) and only these two transitions in ρ have input at p;
– t �∈ U and for all t′ contained in pre(ρ), either t′∈ U or t′ |p=− ⇔ t |p=− [5].

Note that given t and ρ we will typically consider a minimal set U that
satisfies the above conditions: if t′ |p= − ⇔ t |p= − then t′ �∈ U .

Suppose that U is a set of transitions of M , R ⊆ U × U is a relation, and P
is a function from U to synchronizable paths of M . Let p be any port in M . The
set U of transitions is verifiable at p under R and P if the following hold [5].

(a) For all t ∈ U , P(t) is an absolute verifying path upon {t′ | (t, t′) ∈ R} for
(t, p);

(b) R ∪ {(t, t)|t ∈ U} is a partial order.

Where such R and P exist we also say that U is verifiable at p.
Let Tp be the set of all transitions involved in some potentially undetectable

output shift faults in M at port p. In this paper, we assume that Tp is verifiable
at p for all p ∈ [1, n].

A directed graph (digraph) G is defined by a tuple (V, E) in which V is a set
of vertices and E is a set of directed edges between the vertices. An edge e from
vertex vi to vertex vj is represented by (vi, vj). A walk is a sequence of pairwise
adjacent edges in G. A digraph is strongly connected if for any ordered pair of
vertices (vi, vj) there is a walk from vi to vj .

Detecting Observability Problems in Distributed Testing 217

3 The Problem Definition

Given a deterministic, minimal, and completely specified FSM M which is intrin-
sically synchronizable, and a synchronizable test/checking sequence τ0 starting at
the initial state of M , we consider the problem of constructing a synchronizable
test/checking sequence τ∗ that can be applied to resolve observability problems
in τ0 without using external coordination message exchanges by identifying the
subsequences within τ0 or to be appended to τ0.

Clearly, for each t ∈ Tρ0,p, we should verify its output at port p. As we
discussed in [5], to verify the output of transition t at port p, we can construct
an absolute verifying path upon a set U of transitions whose outputs at p are
verified. Such a path ρ has the following properties:

– it is synchronizable;
– we are able to determine the output sequence of ρ at p by applying the label

of ρ from the starting state of ρ;
– from the correct output sequence of ρ at p we can determine that the output

of t at p is correct.

This is because (i) no matter how ρ is concatenated with other subsequences,
we can always determine the output sequence produced at p in response to the
first |pre(ρ)| inputs in the label of ρ since this output sequence is immediately
preceded and followed by input at p; (ii) the condition for all t′ contained in
pre(ρ), either t′ ∈ U or t′ |p= − ⇔ t |p= − allows us to determine the correct
output of (t, p) from the correct output sequence of ρ at p (Proposition 2 in [5]).

Thus, to verify the outputs of the transitions in Tρ0,p at port p, we search for
an acyclic digraph of transitions such that all transitions in Tρ0,p are present,
and each transition has an absolute verifying path upon a set of transitions that
appear as its successors in the digraph. In other words, we search for R and P
such that set Tρ0,p of transitions is verifiable at p under R and P .

It is possible that ρ0 contains some absolute verifying paths for transitions in
Tρ0,p. Let Qp be the set of all those paths in codomain(P) but not as subsequences
in ρ0. τ∗ will be the label of a path ρ∗ which contains both ρ0 and all paths in Qp.

Clearly, for efficiency reasons,

– We should maximize the images of P in ρ0. That is, whenever possible, we
should define P(t) as a subsequence in ρ0 for any t ∈ T .

– No path in Qp should appear as a subsequence of another path in Qp. This
is always true as the absolute verifying paths have input at port p only in
its first and last transitions.

– There is no redundant path in Qp. An absolute verifying path ρ is redundant
in Qp if we can modify P (and R correspondingly) by changing the mapping
of all transitions whose image is ρ under P to some other paths in Qp while
keeping the property that Tρ0,p is verifiable at p under the modified defini-
tions of P and R. Figure 1(a) shows a case where {t1, t2, t3} is verifiable at
p under P and R where P(ti) = ρi for i = 1, 2, 3. Suppose that ρ2 is also
an absolute verifying path upon {t3} for (t1, p), then Figure 1(b) shows an

218 J. Chen and H. Ural

t2

ρ1: an absolute verifying path upon {t2} for (t1, p)

t1

t3

ρ2: an absolute verifying path upon {t3} for (t2, p)

ρ3: an absolute verifying path upon φ for (t3, p)

t2t1

t3

ρ2: an absolute verifying path upon {t3} for (t1, p) and (t2,p)

ρ3: an absolute verifying path upon φ for (t3, p)

(a) (b)

Fig. 1. An example of reducing paths in Qp

alternative way to verify {t1, t2, t3} which requires less paths in Qp to be
considered in constructing τ∗: P(t1) = P(t2) = ρ2, P(t3) = ρ3.

4 Our Proposed Solution

Now we present our solution to construct Qp and τ∗.

4.1 Identifying Transitions Involved in Observability Problems

Recall that τ0 = x1/y1 x2/y2 . . . xm/ym is a test/checking sequence of M which
is the label of a path ρ0 = t1t2 . . . tm. First we need to calculate Tρ0,p, the set of
transitions involved in potentially undetectable output shift faults at port p in
ρ0, for all p ∈ [1, n]. Figure 2 shows an algorithm for this purpose. It scans τ0
and uses emptyPointer and nonEmptyPointer as auxiliary variables. We do not
consider the case when |τ0| = 0 which is meaningless. Suppose we are currently
considering xi/yi ∈ τ0.

emptyPointer is the minimal index of the transitions in τ0 such that

– ∀k ∈ [emptyPointer + 1, i − 1]. xk �∈ Ip and
– ∀k ∈ [emptyPointer, i − 1]. yk |p= −

nonEmptyPointer is the index of the transitions in τ0 such that

– yk |p�= − for k = nonEmptyPointer and
– ∀k ∈ [nonEmptyPointer + 1, i − 1]. xk �∈ Ip ∧ yk |p= −

If neither emptyPointer nor nonEmptyPointer is null, then for all k ∈ [non-
EmptyPointer, i−1], tk is involved in a potentially undetectable forward output
shift fault. Furthermore, in the case xi �∈ Ip and yi |p= −, ti is also involved in
a potentially undetectable forward output shift fault.

If emptyPointer is not null, no matter whether nonEmptyPointer is null or
not, tk is involved in a potentially undetectable backward output shift fault for
all k ∈ [emptyPointer, i] when xi �∈ Ip and yi |p�= −.

Detecting Observability Problems in Distributed Testing 219

1: input: an FSM M , a port p, a test/checking sequence τ0 = x1/y1 x2/y2 . . . xm/ym

of M
2: output: Tρ0,p

3: nonEmptyPointer := null
4: emptyPointer := null
5: i := 1
6: while i < m do
7: if xi �∈ Ip then
8: if yi |p �= − then
9: if emptyPointer �= null ∧ nonEmptyPointer �= null then

10: add tnonEmptyPointer, . . . , ti to Tρ0,p

11: end if
12: if emptyPointer �= null ∧ nonEmptyPointer = null then
13: add temptyPointer, . . . , ti to Tρ0,p

14: end if
15: nonEmptyPointer := i
16: emptyPointer := null
17: else
18: if nonEmptyPointer = i − 1 then
19: emptyPointer = i
20: end if
21: end if
22: else
23: if emptyPointer �= null ∧ nonEmptyPointer �= null then
24: add tnonEmptyPointer, . . . , ti−1 to Tρ0,p

25: end if
26: if yi |p �= − then
27: nonEmptyPointer := i
28: emptyPointer := null
29: else
30: nonEmptyPointer := null
31: emptyPointer := i
32: end if
33: end if
34: i := i + 1
35: end while
36: if emptyPointer �= null ∧ nonEmptyPointer �= null then
37: add tnonEmptyPointer, . . . , tm to Tρ0,p

38: end if
39: if emptyPointer �= null ∧ nonEmptyPointer = null then
40: if xm �∈ Ip then
41: add temptyPointer, . . . , tm to Tρ0,p

42: else
43: add tm to Tρ0,p

44: end if
45: end if
46: if emptyPointer = null ∧ nonEmptyPointer �= null then
47: if xm �∈ Ip and ym |p= − then
48: add tm−1, tm to Tρ0,p

49: else
50: add tm to Tρ0,p

51: end if
52: end if

Fig. 2. Algorithm 1: Construction of Tρ0,p

220 J. Chen and H. Ural

Note that some transitions at the end of ρ0 that are not involved in any
potentially undetectable output shift fault in ρ0 may be involved in such faults
in the constructed ρ∗. All these transitions are also added into Tρ0,p in lines
36-52 which specifically handle the case when i = m.

The execution of Algorithm 1 can be done in O(|τ0|) time.

4.2 Identifying Verifiable Transitions

By definition, the transitions in T − Tρ0,p all have correct output at p. On the
other hand, not all transitions in Tρ0,p need to be verified for its output at p
with additional subsequences. This is based on the following two observations:

– A transition in Tρ0,p may appear in a different place in ρ0 where it is not
involved in any potentially undetectable output shift faults at p in ρ0, and
thus its output at p is verified in ρ0.

– Given a transition t ∈ Tρ0,p, there may exist an absolute verifying path upon
T − Tρ0,p for (t, p) in ρ0.

In general, before constructing additional subsequences to be appended to
τ0, we would like to find R0, P0 and U0 ⊂ Tρ0,p such that

– U0 is verifiable at p under R0 and P0 in ρ0, in the sense that U0 is verifiable
at p under R0 and P0, and the paths in codomain(P0) are all in ρ0;

– U0 is maximized, in the sense that for any R′
0, P ′

0 and U ′
0 such that U ′

0 is
verifiable at p under R′

0 and P ′
0 in ρ0, U ′

0 ⊆ U0.

The following proposition follows directly from the definition.

Proposition 1. Let ρ be a synchronizable path with input at p only in first(ρ)
and last(ρ), and t ∈ pre(ρ). Let Dt,ρ be the set of transitions in pre(ρ) such that
for any t′ ∈ Dt,ρ, t′ |p= − ⇔ t |p�= −. Then ρ is an absolute verifying path upon
Dt,ρ for (t, p).

Let ρ be a subsequence in ρ0 with input at p both at the beginning and at
the end. Based on the above proposition, if the set of all those transitions in
ρ with empty output at p is verifiable, then the set of all transitions in ρ is
verifiable using ρ as an absolute verifying path. Analogously, if the set of all
those transitions in ρ with non-empty output at p is verifiable, then the set of
all transitions in ρ is verifiable.

Thus, we can derive from ρ0 a set of so-called counter-pairs (L1, L2) of sets
of transitions. Each counter-pair (L1, L2) corresponds to a potential candidate
of absolute verifying path in ρ0 that can be used in defining P . It is obtained in
this way: for any subsequence ρ of ρ0 with input at p both at the beginning and
at the end (and no other input at p in it), there is a counter-pair (L1, L2) where
L1 contains all transitions in pre(ρ) with empty output at p, and L2 contains
all transitions in pre(ρ) with non-empty output at p. Such counter-pairs hold
the following property: for any set A of transitions in T , the outputs of all
transitions in L1 are verifiable upon A implies the outputs of all transitions

Detecting Observability Problems in Distributed Testing 221

1: input: an FSM M , a port p, a test/checking sequence τ0 = x1/y1x2/y2 . . . xm/ym

of M , and Tρ0,p

2: output: a set U0 of transitions that is verifiable at p in ρ0, and a set Θ of counter-
pairs of p

3: Θ := ∅
4: Let r ≤ m, s.t. xr ∈ Ip and ∀k, 1 ≤ k < r, xk �∈ Ip

5: while ∃j. r < j ≤ m s.t. xj ∈ Ip and ∀k, r < k < j, xk �∈ Ip do
6: let j be such that r < j ≤ m, xj ∈ Ip and ∀k, r < k < j, xk �∈ Ip

7: if ∃r ≤ k < j s.t. tk ∈ Tρ0,p then
8: L1 := ∅
9: L2 := ∅

10: for k, r ≤ k < j do
11: if yk |p= − then
12: add tk to L1

13: else
14: add tk to L2

15: end if
16: end for
17: add (L1,L2) to Θ
18: end if
19: r = j
20: end while
21: (U ′, Θ′) := counterPairsUpdate(T − Tρ0,p, Θ)
22: return U ′ and Θ′

Fig. 3. Algorithm 2: Construction of U0 and Θ

in L2 are verifiable upon A ∪ L1; and the outputs of all transitions in L2 are
verifiable upon A implies the outputs of all transitions in L1 are verifiable upon
A ∪ L2. Consequently, for any t ∈ L1, the path corresponding to (L1, L2) can
be used as an absolute verifying path upon U for (t, p) if L2 ⊆ U . Conversely,
for any t ∈ L2, the path corresponding to (L1, L2) can be used as an absolute
verifying path upon U for (t, p) if L1 ⊆ U .

Figure 3 gives an algorithm to calculate set U0 of transitions whose outputs
at p are verifiable in ρ0. Set Θ contains those counter-pairs that correspond to
potential candidates of absolute verifying paths. Given a set U0 of transitions
that is verifiable at p under R0 and P0 in ρ0, we can check if any potential
candidate of absolute verifying path can be used to extend U0. This operation
is performed in Figure 4. Counter-pairs whose corresponding paths will no more
be used during the construction of R0 and P0 are removed from Θ.

Note that if there is no input in τ0 that will be given at port p, then we are
not able to construct an absolute verifying path for any output at p. Since we
assume that Tp is verifiable, this implies that Tρ0,p = ∅, and thus there is no
need for the subsequences to be appended to ρ0 for port p. Hence we consider
there is at least one input at p in τ0.

At the end of Algorithm 2, we have that (i) U0 is verifiable at p under R0
and P0 in ρ0, and it is maximized; (ii) all potential absolute verifying paths in
ρ0 for further use have their correspondence in Θ.

222 J. Chen and H. Ural

1: input: U and Θ
2: output: updated U and Θ
3: change := true
4: while change = true do
5: for each (L1, L2) ∈ Θ do
6: L1 := L1 − U
7: L2 := L2 − U
8: end for
9: change := false

10: for each (L1, L2) ∈ Θ do
11: if L1 = ∅ then
12: add all transitions in L2 to U
13: remove (L1, L2) from Θ
14: change := true
15: end if
16: if L2 = ∅ then
17: add all transitions in L1 to U
18: remove (L1, L2) from Θ
19: change := true
20: end if
21: end for
22: end while

Fig. 4. Procedure of counterPairsUpdate

We know that Σ(L1,L2)∈Θ(|L1| + |L2|) ≤ |τ0|, and |U| ≤ |T |. So in Figure 4,
the first for-loop will be executed maximally |τ0|× |T | times, and the second for-
loop will be executed maximally |τ0| times. The while-loop each time removes
at least one counter-pair from Θ. So in total it takes O(|τ0| × |T | × |Θ|) time to
perform counterPairsUpdate. Consequently, it takes O(|τ0| × |T | × |Θ|) time to
run Algorithm 2.

4.3 Identifying Subsequences to Be Added to τ0

Given an initial set U0 of transitions that is verifiable at p in ρ0, and a set Θ
of counter-pairs corresponding to some potential absolute verifying paths, we
define P and R such that Tρ0,p is verifiable at p under R and P ; the images
of P in ρ0 is maximized; there is no redundant path in U . This leads to the
construction of Qp that we want.

Figure 5 gives an algorithm to construct Qp. Here checkset is used to keep the
transitions that we may need to construct additional subsequences to verify their
output at p. Since we assume that Tp is verifiable at port p, Tρ0,p−U is also verifi-
able. So for each iteration of the outer while-loop, we can surely find an absolute
verifying path upon U for some t ∈ checkset before checkset becomes empty.

Whenever we find an absolute verifying path upon U for some t ∈ checkset,
we add to U all transitions in pre(ρ) such that they have empty output at p if
and only if t has empty output at p. This is because if ρ is an absolute verifying
path upon U for (t, p), then ρ is an absolute verifying path upon U for (t′, p) for

Detecting Observability Problems in Distributed Testing 223

1: input: p, Tρ0,p, Θ and U0

2: output: Qp

3: U = U0

4: while Tρ0,p − U �= ∅ do
5: checkset := Tρ0,p − U
6: found := false
7: while found = false do
8: let t ∈ checkset
9: if there exists an absolute verifying path upon U for (t, p) then

10: let ρ be a minimal-length absolute verifying path upon U for (t, p)
11: add ρ to Qp

12: for each transition t′ ∈ pre(ρ) s.t. t′ |p= − ⇔ t |p= −, add t′ to U
13: (U , Θ) := counterPairsUpdate(U , Θ)
14: found := true
15: else
16: checkset := checkset − {t}
17: end if
18: end while
19: end while

Fig. 5. Algorithm 3: Construction of Qp

all t′ ∈ pre(ρ) such that t′ |p= − ⇔ t |p= − (Proposition 1 in [5]). This also
guarantees that when we search for an absolute verifying path upon U for (t, p),
we do not need to check whether previously constructed subsequences in Qp can
be re-used. Consequently, there is no redundant path in U .

Whenever an additional sequence is constructed and added to Qp, U is up-
dated. Correspondingly, we call procedure counterPairsUpdate to check if based
on the updated U any potential absolute verifying path in ρ0 can be used. As
the initial value of U is from Algorithm 2, this guarantees that for any ρ ∈ Qp,
ρ is not a subsequence of ρ0. Thus, the images of P in ρ0 is maximized.

¿From [5], we know that if ρ is an absolute verifying path upon U for (t, p),
then when we apply the label of ρ from a state in N similar to the starting state
of ρ, then we can verify that the output of t at p is correct. So, when we have
Tρ0,p − U = ∅ at the end of the algorithm, we know that if we apply τ0 from the
initial state of N and apply the label of ρ from a state similar to the starting
state of ρ for all ρ ∈ Qp, then we can verify that there is no undetectable output
shift faults occurred in applying τ0 to N .

To find a minimal-length absolute verifying path upon U for (t, p), similar as
in [5], we can construct G[t, U] which is obtained from G by removing all edges
except those corresponding to a transition t′ in one of the following cases:

– t′ has input at p;
– t′ |p= − if and only if t |p= −;
– t′ ∈ U

We then use breadth-first search to construct minimal-length synchronizable
path in G[t, U] that starts with input at p and ends with input at p. Note that
there may exist more than one such path with minimal-length.

224 J. Chen and H. Ural

Note also that while more transitions are added to U , there may exist shorter
path for a transition whose image under P was previously added to Qp.

Now we turn to the complexity of the algorithm. For each outer while-loop, U
is augmented by at least one transition. So the outer while-loop will be executed
at most v times where v is the number of transitions to be verified. For the inner
while-loop, we need to check if we can find an absolute verifying path upon U
for some t ∈ checkset where |checkset| ≤ v. This can be realized by trying to
construct an absolute verifying path upon U for each t in checkset until such
a path is found. This takes at most |checkset| times of effort for each attempt.
For each attempt to construct an absolute verifying path upon U for a given
transition t, it takes O(w × |T |) times where w is the number of states in M . In
summary, the time complexity of Algorithm 3 is O(v2 × w × |T |).

4.4 Adding Subsequences to τ0

Finally, given ρ0 and Qp for each p, we need to construct a minimal-length
test/checking sequence τ∗ so that (i) it is synchronizable; (ii) it starts with
τ0 and it contains all the input/output sequences of the paths in Qp for each
p ∈ [1, n]. Figure 6 gives such an algorithm. It generates a synchronizable path
ρ∗ and its label τ∗.

1: input: M , τ0, and Qp for each p ∈ [1, n]
2: output: test/checking sequence τ∗

3: Let Q = ∪p∈[1,n]Qp ∪ {ρ0}
4: Let graph G contain one vertex vρ for each path ρ in Q
5: for each ordered pair (ρ1, ρ2) ∈ Q such that ρ1 �= ρ2 do
6: find a shortest path ρ′ in M such that last(ρ1) ρ′ first(ρ2) is a synchronizable

path.
7: In G, add an edge e = (vρ1 , vρ2), with |ρ′| as its weight
8: let f1(e) = ρ1, f2(e) = ρ1ρ

′, f3(e) = ρ1ρ
′ρ2

9: end for
10: Find a walk r = e1e2 . . . ek in G that visits all vertices at least once with minimal

cost, and that f1(e1) = ρ0

11: Let ρ∗ = f2(e1)f2(e2) . . . f2(ek−1)f3(ek)
12: Let τ∗ be the label of ρ∗

Fig. 6. Algorithm 4: Addition of elements of Qp to ρ0 to form ρ∗

As we assume that M is intrinsically synchronizable, G is a strongly-
connected digraph. This guarantees the existence of r. In general, the time com-
plexity of Algorithm 4 is equivalent to that of finding a travelling saleman tour
in a digraph. Efficient heuristics exist for the solution of Travelling Saleman
Problem, cf. [12].

Note that ρ∗ may introduce new observability problems. However, since each
path in Qp has input at p in its first and last transitions, a new observability
problem cannot happen between a transition in a connecting path, i.e. a path

Detecting Observability Problems in Distributed Testing 225

used to connect paths in Qp, and a transition in an absolute verifying path in Qp.
It can only happen (i) within a connecting path; (ii) within an absolute verifying
path; or (iii) between a transition in ρ0 and a transition in a connecting path.
The new observability problems occurred in cases (i) and (ii) do not affect the
ability of τ∗ to verify that there is no undetectable output shift faults when τ0 is
applied to N . The new observability problems in case (iii) are resolved because
we have included into Tρ0,p all transitions that may possibly get involved in
some potentially undetectable output shift fault between a transition in ρ0 and
a transition in a path concatenated to the end of ρ0 (cf. Algorithm 1).

5 Conclusions and Final Remarks

We have presented a method for eliminating the use of external coordination
message exchanges for resolving observability problems in a given test/checking
sequence constructed from an FSM satisfying conditions given in [5]. There are
various optimization problems remaining to be solved. First, the existence of
multiple minimal-length absolute verifying paths can be used to optimize the
total length of ρ∗. Second, in our solution, the order of generating the subse-
quences will have an effect on the final set of additional subsequences. It will be
interesting to find approaches for eliminating this effect. Third, our solution only
considers the subproblem of constructing the subsequences for each port p indi-
vidually. It remains as an interesting problem to consider the global optimization
problem among all ports. Fourth, it will be quite interesting to incorporate some
of the algorithms proposed here into a checking sequence construction method to
construct a checking sequence in which there are no external coordination mes-
sage exchanges. It is anticipated that the complexity of the last two optimization
problems will be very high.

Acknowledgements

This work is supported by Natural Sciences and Engineering Research Council
(NSERC) of Canada under grant RGPIN 976 and 209774.

References

1. A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique for
protocol conformance test generation based on UIO sequences and Rural Chinese
Postman Tours. In Protocol Specification, Testing, and Verification VIII, pages
75–86, Atlantic City, 1988. Elsevier (North-Holland).

2. S. Boyd and H. Ural. The synchronization problem in protocol testing and its
complexity. Information Processing Letters, 40:131–136, 1991.

3. L. Cacciari and O. Rafiq. Controllability and observability in distributed testing.
Information and Software Technology, 41:767–780, 1999.

4. J. Chen, R. M. Hierons, and H. Ural. Conditions for resolving observability prob-
lems in distributed testing. In 24rd IFIP International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE 2004), volume 3235
of LNCS, pages 229–242. Springer-Verlag, 2004.

226 J. Chen and H. Ural

5. J. Chen, R. M. Hierons, and H. Ural. Resolving observability problems in distrib-
uted test architecture. In 25rd IFIP International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE 2005), volume 3731 of
LNCS, pages 219–232. Springer-Verlag, 2005.

6. W. Chen and H. Ural. Synchronizable checking sequences based on multiple UIO
sequences. IEEE/ACM Transactions on Networking, 3:152–157, 1995.

7. A. Gill. Introduction to the Theory of Finite-State Machines. New York: McGraw-
Hill, 1962.

8. S. Guyot and H. Ural. Synchronizable checking sequences based on UIO sequences.
In Proc. of IFIP IWPTS’95, pages 395–407, Evry, France, September 1995.

9. F.C. Hennie. Fault detecting experiments for sequential circuits. In Proc. of Fifth
Ann. Symp. Switching Circuit Theory and Logical Design, pages 95–110, Princeton,
N.J., 1964.

10. R. M. Hierons. Testing a distributed system: generating minimal synchronised test
sequences that detect output-shifting faults. Information and Software Technology,
43(9):551–560, 2001.

11. D. Lee and M. Yannakakis. Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE, 84(8):1089–1123, 1996.

12. S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, March-April 1973.

13. G. Luo, R. Dssouli, and G. v. Bochmann. Generating synchronizable test sequences
based on finite state machine with distributed ports. In The 6th IFIP Workshop
on Protocol Test Systems, pages 139–153. Elsevier (North-Holland), 1993.

14. G. Luo, R. Dssouli, G. v. Bochmann, P. Venkataram, and A. Ghedamsi. Test gen-
eration with respect to distributed interfaces. Computer Standards and Interfaces,
16:119–132, 1994.

15. K.K. Sabnani and A.T. Dahbura. A protocol test generation procedure. Computer
Networks, 15:285–297, 1988.

16. B. Sarikaya and G. v. Bochmann. Synchronization and specification issues in
protocol testing. IEEE Transactions on Communications, 32:389–395, April 1984.

17. K.C. Tai and Y.C. Young. Synchronizable test sequences of finite state machines.
Computer Networks, 13:1111–1134, 1998.

18. H. Ural and Z. Wang. Synchronizable test sequence generation using UIO se-
quences. Computer Communications, 16:653–661, 1993.

19. H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking sequences.
IEEE Transactions on Computers, 46:93–99, 1997.

20. Y.C. Young and K.C. Tai. Observation inaccuracy in conformance testing with
multiple testers. In Proc. of IEEE WASET, pages 80–85, 1998.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 227 – 244, 2006.
© IFIP International Federation for Information Processing 2006

Compositional Testing of Communication Systems

Reinhard Gotzhein1 and Ferhat Khendek2

1 Computer Science Department, University of Kaiserslautern,
Postfach 3049, D-67653 Kaiserslautern, Germany

gotzhein@informatik.uni-kl.de
2 ECE Department, Concordia University, 1455 de Maisonneuve Blvd. W.,

Montréal, Québec, Canada H3G 1M8
khendek@ece.concordia.ca

Abstract. In this paper, we propose the compositional test method (C-method),
which exploits the structure of component-based communication systems. The
C-method first tests each component separately for output and/or transfer faults,
using one of the traditional test methods, then checks for composability, and
finally tests the composite system for composition faults. To check for
composability and to derive the test suite for the detection of composition
faults, it is not required to construct the global state machine. Instead, all
information is derived from the component state machines, which avoids a
potential state explosion and lengthy test cases. Furthermore, the test suite
checks for composition faults only. This substantially reduces the size of the
test suite and thus the overall test effort.

1 Introduction

Systematic methods for testing protocol implementations have a long and successful
record. The relevance and the potential of protocol testing are first recognized in [16],
which has initiated a research stream that has produced a diversity of test methods
with different foci. These methods usually assume that the design of the protocol
implementation to be tested is given in the form of a finite state machine (FSM), and
that this state machine is minimal, completely specified, and fully connected. Some
methods further assume the FSM to be deterministic [3,7,20], while others relax this
constraint [12]. Recently, the focus has shifted to real-time systems testing [6,17,18],
interoperability testing [1,2,4,5] and testing in context [14,15].

On the other hand, component-based software engineering is becoming an
important trend among practitioners. This approach aims at shortening the
development process and therefore reducing the cost. Once developed and tested,
components are reused and glued together in different contexts. The testing of such
systems formed by reused components remains an open and challenging issue [21],
mainly because components are developed and reused by different people without or
with very little information sharing.

The purpose of this paper is to propose a formal approach for testing component-
based communicating systems, which we call compositional testing (C-method).
Here, communication systems are perceived as being built from components that can
be modeled as FSMs. Each of these components is tested using well-proven

228 R. Gotzhein and F. Khendek

techniques, such as the UIOv-method [20] or the Wp-method [7]. However, when
these components are composed, no monolithic FSM is constructed in order to derive
test cases for the composite system, which would lead to lengthy test cases, large test
suites, and a repetition of tests already performed on component level. Instead, the
composite system is only tested for composition faults, i.e., faulty composition code
(also called glue code) - a new type of fault that extends and complements the
classical fault model. We position our compositional testing approach among the
existing and related techniques that also view systems as a set of interacting
components, such as interoperability testing, testing in context and other
compositional testing techniques.

In this paper, we will develop these ideas up to a certain point, and illustrate them
through examples. We focus on a specific type of composition, called concurrent
com-position. However, other types of composition may be considered as well.
Section 2 defines the concurrent composition of asynchronously communicating
FSMs, and states necessary conditions for composability. The compositional test
method (C-method) is defined in Section 3. An application of the C-method is shown
in Section 4. In Section 5, related work is reviewed and the contributions of this
paper are positioned. We draw conclusions and indicate future research topics in
Section 6.

2 Concurrent Composition

In this section, we define the concurrent composition of two FSMs. Further types of
composition such as sequential composition are perceivable, for instance, in the
context of micro protocols [8] or general component-based software systems. At
specification level, composition can be expressed by defining a composition operator.
At implementation level, this operator is usually realized by a piece of code that
we call glue code.

Concurrent composition may be applied to put local and/or remote components
together. From the conceptual viewpoint, this should not make any difference. For
instance, we may compose protocol entities PE

1,1
 and PE

1,2
 as well as PE

1,2
 and PE

2,2

PE1,1

PE1,2

PE2,1

PE2,2

medium

c)

d)

PE1,1

PE1,2

PE2,1

PE2,2

a)

b)

Fig. 1. Concurrent composition of protocol entities

 Compositional Testing of Communication Systems 229

concurrently, as shown in Figure 1a and b, respectively. For the local composition, the
glue code may consist of internal data structures and operations to add signals to the
input queue of the other protocol entity (Figure 1c). For the remote composition, the
glue code may comprise an entire logical communication medium, which may in turn
be a composite system (Figure 1d). From the practical viewpoint, the usual constraints
concerning observability and controllability apply, which may be handled by external
coordination procedures.

In this paper, we use the standard definition of FSM, and a derived notion:

Definition 1: A finite state machine (FSM) M is a tuple (S,I,O,s
0
,λ

e
) with:

• S is a finite set of states.
• I is a finite input alphabet.
• O is a finite output alphabet.
• s

0
∈ S is the initial state.

• λ
e
 ⊆ S×I×O×S defines the transitions of M.

A finite state machine is completely specified, if for each state and each input, a
transition is defined. There exist several ways to extend a given FSM to a completely
specified machine, e.g., by assuming implicit transitions (cf. SDL [10]). The standard
definition of FSMs (see Definition 1) does not distinguish between explicit and
implicit transitions. We consider explicit transitions as regular behavior. Implicit
transitions are undesired behavior, but included to enhance testability of the
implementation. In this paper, we adopt this interpretation, but the proposed test
method does work for any interpretation of implicit transitions.

Definition 2: A completely specified finite state machine (csFSM) N = (S,I,O
e
,s

0
,λ) is

derived from an FSM M = (S,I,O,s
0
,λ

e
) as follows:

• S, I, s
0
 as in M.

• O
e
 = O ∪ {e}, where e ∉ O is called error output.

• λ = λ
e
∪λ

i
 is the transition relation of N. Tuples of λ are called transitions of N.

• λ
e
 defines the explicit transitions of N.

• λ
i
 = { (s,i,e,s) | s ∈ S ∧ i ∈ I ∧ ¬∃o ∈ O, s’ ∈ S: (s,i,o,s’) ∈λ

e
} defines the

implicit transitions of N.

In the rest of the paper, we omit the error output e and the relation λ
i
 for brevity.

To define the concurrent composition of csFSMs, we assume that they
communicate by asynchronous reliable signal exchange, where sending and receiving
of signals is modeled as output and input of the communicating csFSMs, respectively.
Therefore, an input queue collecting signals that are delivered, but not yet consumed,
is associated with each csFSM. Furthermore, each signal carries identifications of the
sending and receiving machine, which may be evaluated as needed. The
identifications are determined dynamically from the sending machine, the connection
structure of the communicating csFSMs consisting of typed channels, and explicit
addressing, if necessary.

230 R. Gotzhein and F. Khendek

Definition 3: Let N
1
 = (S

1
,I

1
,O

1
,s

0,1
,λ

1
) and N

2
 = (S

2
,I

2
,O

2
,s

0,2
,λ

2
) be csFSMs. Let OI

1,2
=

O
1
∩ I

2
 (OI

2,1
= O

2
∩ I

1
) be the set of signals exchanged between N

1
 and N

2
(N

2
 and N

1
),

called internal signals. The concurrent composition of N
1
and N

2
, denoted N

1
|| N

2
, is

defined by the derived state machine Q = (S,I,O,s
0
,λ) with:

• S = S
1
× I

1
* × S

2
× I

2
* is the set of states.

• I = (I
1
− OI

2,1
) ∪ (I

2
− OI

1,2
) is the (finite) input alphabet.

• O = (O
1
− OI

1,2
) ∪ (O

2
− OI

2,1
) is the (finite) output alphabet.

• s
0
 = (s

0,1
,<>,s

0,2
,<>) is the initial state, consisting of the initial states of N

1
 and N

2

and the initial states of input queues associated with N
1
 and N

2
, respectively.

• λ ⊆ S×I×O×S is the transition relation of Q. Tuples of λ are called transitions
of Q. λ is derived from λ

1
 and λ

2
 as follows:

(s,i,o,s’) with s = (s1,q1,s2,q2) and s’ = (s1’,q1’,s2’,q2’) iff
((s1,i,o,s1’) 1: (q1 = <i> q1’ q2’ = if o OI1,2 then q2 <o>

else q2 s2 = s2’))
((s2,i,o,s2’) 2: (q2 = <i> q2’ q1’ = if o OI2,1 then q1 <o>

else q1 s1 = s1’))

This definition includes the concurrent composition of two independent csFSMs, i.e.,
two csFSMs that do not exchange signals. In this case, OI

1,2
 = OI

2,1
 = {}.

A csFSM can be represented as a labeled directed graph, where states correspond
to nodes, and transitions correspond to edges labeled with input and output.

Definition 4: A labeled directed graph G is a tuple (V,L,E), consisting of a set of
nodes V, a set of labels L, and a relation E ⊆ V×V×L, defining the directed edges of
the graph. A path is a non-empty sequence of consecutive edges. A tour is a path that
starts and ends at the same node. It is called minimal, if no edge is contained more
than once in the tour. An initial tour is a tour that starts and ends at the initial node. A
directed graph G is strongly connected, if for each pair of nodes (v,v’), where v ≠ v’,
there is a path from v to v’.

Example 1: Figure 2 shows the concurrent composition of deterministic, strongly con-
nected csFSMs N

1
 and N

2
. Note that the error output as well as the implicit transitions

are not shown in the figure. The machines interact via channel ch, which is typed by

N1:

s0 s1

I1 = {x1,i2,i3}
O1 = {x4,x6,i1}

x1/i1

i3/x6

i2/x4

N2:

s0 s1

I2 = {x3,x5,i1}
O2 = {x2,i2,i3}

i1/x2

x5/i3

x3/i2

OI1,2 = {i1}

OI2,1 = {i2,i3}
ch

Xenv,1 = {x1}

X1,env = {x4,x6}

Xenv,2 = {x3,x5}

X2,env = {x2}
ch1 ch2

Fig. 2. Concurrent composition: component machines N
1
 and N

2
 (Example 1)

 Compositional Testing of Communication Systems 231

OI
1,2

 and OI
2,1

, and are connected to the environment by typed channels ch
1
 and ch

2
.

The resulting behavior after composition (see Figure 3) can be represented by the
state machine Q = N

1
|| N

2
, where states are represented as tuples (s

1
,q

1
,s

2
,q

2
) denoting

the states of N
1
 and N

2
, and of their input queues.

While it is syntactically possible to compose all kinds of csFSMs, this is not
always meaningful. Which csFSMs to compose first of all depends on the intended
global behavior, which is problem specific. However, some general composition
criteria can be stated:

CC
1
. Internal signals of either machine are eventually consumed by the other machine

in an explicit transition, i.e., the composed system is free of internal un-
specified receptions. This excludes transitions that have been added to obtain a
completely specified state machine, i.e., implicit transitions yielding an error
output (see Definition 2).

CC
2
. The composed system is free of internal deadlocks. Since it is assumed that

external signals can be produced in any order, this again restricts the internal
interaction only.

X2,env = {x2}X1,env = {x4,x6}
ch2ch1 Xenv,2 = {x3,x5}Xenv,1 = {x1}

Q = N1 || N2:

s0, ,s0,

i3/x6

i2/x4

s1, i2 ,s0,

s1, ,s1,

s1, ,s0,<i1

s1, i3 ,s0,

x1/i1

i1/x2

x3/i2

x5/i3

Fig. 3. Concurrent composition: derived machine Q (Example 1)

3 Compositional Testing of Concurrently Composed csFSMs

In this section, we will show how to derive test suites for testing the implementation
of concurrently composed csFSMs. We make certain assumptions about the
component csFSMs (e.g., strongly connected, deterministic) and their
implementations (e.g., concerning the number of states), and we assume that the
implementation of each csFSM can be tested using a test method that detects all
output and transfer faults.

A direct approach to test the composite system would be to determine its global
state machine, and then apply one of the existing test methods to derive test cases for
this machine. This, however, has the following drawbacks:

232 R. Gotzhein and F. Khendek

• The state set of the global state machine may be very large. Firstly, this can
consume considerable computational resources to determine the machine.
Secondly, it can lead to a large test suite containing lengthy test cases, implying
a testing effort that could quickly become unmanageable.

• The global state machine may be non-deterministic, due to the concurrency of
the composite system, which reduces the applicability of existing test methods.

• All tests already executed at the component level are repeated. This is a severe
drawback in general, and especially if components are to be reused in different
protocol configurations.

To avoid these disadvantages, a test method satisfying the following properties is
sought:

• It is not necessary to compute the global state machine.
• Only tests checking the correctness of the glue code of the csFSMs are derived.
• Tests already performed at the component level are not repeated.

These properties can only be satisfied if the implementations of the design
components, which have been tested at the component level, remain unchanged. This
means that only glue code to realize the specific type of composition is added, and all
what remains to be checked in this case is the correct implementation of the
composition operator.

In the following, we introduce a method for compositional testing - henceforth
called compositional test method (C-method) - that satisfies the above properties. We
start by defining the fault model, then introduce concepts, notations, and an initial
tour coverage graph, and finally give a procedural definition of the C-method.

3.1 Fault Model

The common way to check that a conformance relation that is defined on an infinite
set of input sequences holds between two FSMs is to reduce the set of possible
implementations to a finite number by assuming a fault model [13]. The classical fault
model for protocol testing assumes that the implementation I can be treated as a
mutant of the specification S, where a mutant may be obtained by altering outputs of
transitions (out-put faults), by altering tail states of transitions (transfer faults), by
adding states up to a given number as well as extra transitions to and from these
states. This general fault model is sometimes reduced to output and transfer faults by
assuming that the number of implementation states is less than a given maximum
number, and to deterministic implementations.

Implementations are tested by applying input sequences and observing the output
sequences. An implementation fault is detected, if an observed output sequence
differs from the expected output sequence. Whether this fault is an output fault or a
transfer fault, or due to an extra state or an extra transition, depends on the fault
model, on the diagnosis capability of the test method, and on the knowledge about the
implementation at the time of test execution.

The classical fault model is usually applied to single components that are specified
by an FSM, e.g., a single protocol entity. It may also be applied to a composite
system, e.g., protocol entities and an underlying medium, if an FSM of that system
can be constructed. This, however, causes the aforementioned problems (large state

 Compositional Testing of Communication Systems 233

spaces, non-determinism, repetition of tests). In order to avoid these problems, we
propose to take the structural aspect of the composition into account, and to
distinguish the following fault categories:

• component fault: the implementation of a component does not satisfy its
specification

• composition fault: the glue code does not satisfy its specification in the given
contex

The problem of compositional testing can then be stated as follows:

Let N
1
 and N

2
 be the specifications of two components, and I

1
 and I

2
 be their

implementations, where I
1
 and I

2
satisfy their specifications N

1
 and N

2
,

respectively. Then, derive a minimal test suite that is sufficient to check whether
the system I consisting of I

1
, I

2
, and glue code satisfies the specification N

1
|| N

2
.

As usual, implementations are tested by applying input sequences, and comparing
the observed and the expected output sequences. Again, it depends on the fault model,
the diagnosis capability of the test method, and the knowledge about the
implementation at the time of test execution how a detected fault may be classified.
For instance, if the components have already been tested successfully, and their
implementations are reused in the composite system, then detected faults can be
classified as composition faults.

To derive a minimal test suite that is sufficient to check the composed system, a
model of the glue code is needed. In general, the glue code could be a component or a
composite system itself, for instance, a logical communication medium, which may
have further attached components. As testing would be unfeasible in this general
setting, we make the following assumption:

i) Whenever I
1
 and I

2
are both in their initial states, the glue code is in a

determined state w.r.t. I
1
 and I

2
.

ii) The behavior of the glue code is deterministic w.r.t. I
1
 and I

2
.

iii) If the glue code interacts with other components, this has no effect on its
behavior towards I

1
 and I

2
.

iv) The glue code is not creating messages for I
1
 or I

2
.

The first assumption limits the maximum length of test suites to the set of all initial
tours, i.e., paths that start and end in the initial state. All assumptions together ensure
that a finite number of test cases are sufficient.

Notice that if a model of the glue is given as an FSM, then the composition fault
could be refined further into the same basic faults of an FSM based implementation.

3.2 Concepts and Notations

The following definitions recall and introduce some concepts and notations for
testing:

234 R. Gotzhein and F. Khendek

Definition 5: A test case tc is a non-empty sequence of inputs i
1
.i

2
.....i

n
. A test suite ts

is a non-empty set of test cases {tc
1
,tc

2
,...,tc

m
}. An augmented test case atc is defined

as a non-empty sequence of transitions (also called test elements) i
1
/o

1
.i

2
/o

2
.....i

n
/o

n
. An

augmented test suite ats is a non-empty set of augmented test cases {atc
1
,atc

2
,...,atc

m
}.

Definition 6: Let atc
1
 and atc

2
 be augmented test cases (sequences of transitions) of

deterministic csFSMs N
1
 and N

2
 that communicate via a common channel ch with sets

OI
1,2

 and OI
2,1

 of internal signals. The concurrent composition of atc
1
 and atc

2
, denoted

atc
1
|| atc

2
, is one path atc

1,2
of the tree obtained by sequencing the test elements in atc

1

and atc
2
 according to the following ordering constraints:

• the order of test elements of atc
1
 and atc

2
 is preserved;

• a test element of atc
1
 (atc

2
) triggered by an internal signal is constrained by the

corresponding test element in atc
2
 (atc

1
) that produces this internal signal;

• the order of outputs is preserved.

Example 2: For the csFSMs N
1
 and N

2
of Example 1, the following augmented test

cases can be derived and composed:

• atc
1
 = x

1
/i

1
.i

2
/x

4

• atc
2
 = i

1
/x

2
.x

3
/i

2

• atc
1
 || atc

2
 = x

1
/i

1
.i

1
/x

2
.x

3
/i

2
.i

2
/x

4

In this case, the composition produces only one path because the test elements are
totally ordered.

Definition 7: The concurrent composition of two augmented test cases is called
complete, iff all their test elements are included, and the input queues of the
corresponding csFSMs will be empty after their execution. Otherwise, it is called
incomplete.

Example 3: The concurrent composition of atc
1
 and atc

2
 in Example 2 is complete.

However, the concurrent composition of atc
1
 and atc

2
’ = i

1
/x

2
 results in x

1
/i

1
.i

1
/x

2
,

which is incomplete.

3.3 Initial Tour Coverage Tree

Selected augmented test cases of components form the basis for deriving a test suite
for validating the correct implementation of their composition. These test cases are
derived from a so-called initial tour coverage tree, reduced to the set of relevant test
cases, and composed with matching test cases of the other component.

Definition 8: Let N = (S,I,O
e
,s

0
,λ) be a csFSM with the underlying graph G, where G

is strongly connected. An initial tour coverage tree T is a tree containing all minimal
initial tours such that every edge is covered at least once and no tour is contained as a
prefix or a suffix of another tour in the set.

 Compositional Testing of Communication Systems 235

The rationale behind this choice is that (i) transition coverage can be achieved this
way1, and that (ii) both automata should be synchronized at least in their initial states,
a criterion for composability. The concept of initial tour coverage is different from
minimal transition tour, which visits every transition once and only once, but which
also relies on stronger conditions to exist. To construct an initial tour coverage tree,
we use a tree that, for a given state, captures all cycle free paths to the initial state,
called hom-ing tree:

Definition 9: Given a csFSM N = (S,I,O
e
,s

0
,λ) and a state s ∈ S, where the underlying

graph is strongly connected, a homing tree H(s) is a minimal tree that covers all cycle-
free paths of N leading from s to the initial state s

0
.

We give algorithms for the construction of homing trees and initial tour coverage
trees in Tables 1 and 2, respectively. Both algorithms are illustrated.

Table 1. Construction of a homing tree H(s)

Step 1: Start the construction of H(s) with its root node nr, labeled with s.
Step 2: Assume that H(s) has been constructed up to level k, k 1. Then level k+1

is built by examining the nodes of level k:
Step 2.1:A node n of level k is terminated, if its label is identical to the

label of a node on level j, where 1 j < k, or if it is identical to s0.
Step 2.2:Otherwise, let s denote the label of node n. Then, for all transi-

tions (s,x,y,s’), attach a branch and successor node to the current
node, labeled x/y and s’, respectively.

Step 3: Prune the resulting tree by successively removing all leaf nodes that have
a label s s0, and the corresponding edges.

N: s0

s1 s2

x1/y1

x2/y2 x3/y3

x4/y4

x5/y5

x6/y6

x7/y7

s0 s1

s0s0 s1 s2

s1

s2
H(s0): H(s1): H(s2):

x6/y6 x7/y7 x4/y4

x3/y3

x5/y5

s1

s0s0 s1 s2

x6/y6
x7/y7 x4/y4

x3/y3

x5/y5

Fig. 4. Homing trees (example)

3.4 The C-Method

In Section 2, we have stated general composition criteria CC
1
 and CC

2
that should be

satisfied for a meaningful composition at the design level. First, the composed system

1 Initial tour coverage is a reduced form of path coverage.

236 R. Gotzhein and F. Khendek

should be free of internal unspecified receptions, which means that receptions
occurring during „normal operation“ have to be consumed by explicit transitions. This
excludes transitions that have been added for mere technical reasons to obtain fully
specified state machines (see Definition 2). Also, the composed system should be free
of internal deadlocks.

To check whether two csFSMs N
1
 and N

2
 meet these criteria, we assume that they

are always capable to resynchronize in their initial states. In other words, if N
1
 is in its

initial state and stays there, N
2
 should be able to reach its initial state without further

Table 2. Construction of an initial tour coverage tree T

Step 1: For each state s of N, construct a homing tree H(s).
Step 2: Start the construction of T with the root node nr, labeled with the initial

state s0 of N. This is level 1 of T.
Step 3: Assume that T has been constructed up to level k, k 1. Then level k+1 is

built by examining the nodes of level k:
Step 3.1:A node n of level k is terminated, if its label is identical to the

label of a node on level j, where 1 j < k.

Step 3.2:Otherwise, let s denote the label of n. Then, for each transition
(s,x,y,s’), attach a branch and successor node to the current node,
labeled x/y and s’, respectively.

Step 4: To each leaf node n, attach the homing tree H(s) by merging the root node
of H(s) with n, where s denotes the label of n.

N: s0

s1 s2

x1/y1

x2/y2 x3/y3

x4/y4

x5/y5

x6/y6

x7/y7

s2

s1

s0s0

T: s0

s0 s1

s0s0

x1/y1 x2/y2

x7/y7x6/y6

x4/y4
x3/y3

x5/y5

x6/y6 x7/y7

s1

s0s0

x7/y7x6/y6

Fig. 5. Initial tour coverage tree (example)

 Compositional Testing of Communication Systems 237

Table 3. The C-method

C-method
Step 1: Test the implementations I1 and I2 of components N1 and N2.

Step 1.1:Select a test method (e.g., DS [11], UIOv [20], Wp [12]).
Step 1.2:Derive the test suites for N1 and N2.
Step 1.3:Execute the tests. If all tests are successful, continue with Step 2.

If not, correct the faults and repeat Step 1.
Step 2: Test the implementation of the concurrent composition of N1 and N2.

Step 2.1:Remove all transitions of N1 and N2 that yield an error output.
These transitions have already been tested during component
testing, and need not be tested again.

Step 2.2:Build the initial tour coverage trees for N1 and N2, and determine
all maximal paths, i.e., all paths that start at the root node and end
at a leaf node, constituting augmented test suites ats1 and ats2.

Step 2.3:From the augmented test suites ats1 (ats2), remove all internally
triggered test cases, i.e., those test cases that are triggered by N2
(N1).

Step 2.4:From the augmented test cases, remove all local tours, i.e.,
(sub)sequences of test case elements that (1) start and end in the
same state, and (2) contain only external inputs and outputs.
They have already been checked during component testing, and
need not be tested again.

Step 2.5:Remove the maximum suffix that does not contain an interaction
with the other component. These test elements have been
checked already.

Step 2.6:For each test case atc1,j of the augmented test suite ats1 after
Step 2.5, find an augmented test case atc2,j of N2 from Step 2.2
such that atc1,j || atc2,j is complete, and determine atc1,2,j = atc1,j
|| atc2,j, yielding the concurrent augmented test suite ats1,2.
Analogously for each test case atc2,j of ats2.

Step 2.7:Based on ats1, ats2, and ats1,2, check whether N1 and N2 meet the
composition criteria CC1 and CC2, i.e., whether for each test
case of ats1 (ats2), there is a matching test case of N2 (N1). Yes:
continue with Step 2.8; no: stop.

Step 2.8:For each test case in ats1,2: merge adjacent test case elements in
cases where (1) the internal output of the first matches the inter-
nal input of the second, and (2) the output is the only signal in
the queue after being sent. Replace internal inputs and outputs by
“-”, and remove test case elements “-/-”.

Step 2.9:Execute the test.

238 R. Gotzhein and F. Khendek

interaction with N
1
, and vice versa. If this assumption is satisfied, it suffices to

consider the explicit initial tours of both automata, i.e., the explicit transition
sequences starting and ending in the initial states, and to check whether for each
explicit initial tour, there is a matching explicit initial tour of the other automaton
such that their concurrent composition is complete. This design criterion can also be
stated in terms of concurrent composition of augmented test suites, and thus be
checked as a by-product of test case derivation.

In Table 3, the C-method is defined in a procedural style. We point out that in the
course of applying the test procedure, it is checked whether N

1
 and N

2
 satisfy the

composition criteria. This is a constraint imposed on design level, which should be
checked before implementing the design and testing the implementation. Thus, all
steps except Steps 1.2, 1.3, 2.8, and 2.9 should be executed in the design phase. Step
2.6 could be optimized further by reducing the number of considered compositions
(see [5]).

As expected, the augmented test suites ats
1
 and ats

2
 are reduced to empty test suites

in case N
1
 and N

2
 do not interact, i.e., in case of independent concurrent composition,

which, among other things, satisfies the criterion for concurrent composability. The
rea son is that all necessary testing has already been done on component level. Of
course, one can argue that in the implementation, interaction of the two components
may occur, and has to be excluded. This, however, is not covered by this type of tests.
When protocol components are reused, it is sufficient to test them once, which means
in a certain sense that testing is reused, too. In these cases, compositional testing starts
with Step 2.

4 Application of the C-Method

To illustrate the C-method, we apply it to the Initiator Responder (InRes) protocol [9].
The InRes protocol is a connection-oriented communication protocol for the reliable
exchange of message over an order-preserving, connection-less medium. It provides
an asymmetrical service: the initiator requests connections and sends data, the
responder accepts, refuses, and clears connections, and receives data. In this example,
the InRes protocol entities I and R are the components that are composed
concurrently, yielding a composite system I || R. In the implementation of this system,
the glue code is represented by the underlying medium. To be able to use this medium
for the implementation of the I || R, we assume that it does not lose messages.

Figure 6 shows the specifications I and R of the InRes protocol entities and their
concurrent composition. Both automata contain further transitions that can be derived
by applying Definition 2, and thus are fully-specified. To avoid cluttering, we have
omitted these transitions in the figure. The underlying graphs are deterministic, and
strongly connected. We assume that Step 1 of the C-method that tests the
implementations of I and R separately has already been executed successfully. Below,
we go through Step 2:

• Step 2.1: Removal of transitions yielding an error output
These transitions have been omitted in the figure, therefore, starting point for
Step 2.2 are the finite state automata shown in Figure 6.

 Compositional Testing of Communication Systems 239

• Step 2.2: Build initial tour coverage trees, and determine ats
I
 and ats

R.
The initial tour coverage trees for I and R are shown in Figure 7. Test suites are:
ats

I
 = {atc

I,1
,atc

I,2
,atc

I,3
,atc

I,4
}, with

atc
I,1

 = ICONreq/CR . DR/IDISind
atc

I,2
 = ICONreq/CR . CC/ICONcnf . DR/IDISind

atc
I,3

 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . DR/IDISind
atc

I,4
 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . AK/-. DR/IDISind

ats
R
 = {atc

R,1
,atc

R,2
,atc

R,3
,atc

R,4
}, with

atc
R,a

 = DT/atc
R,b

 = CR/ICONind . IDISreq/DR
atc

R,c
 = CR/ICONind . ICONrsp/CC . IDISreq/DR

atc
R,d

 = CR/ICONind . ICONrsp/CC . DT/IDATind . -/AK . IDISreq/DR

• Step 2.3: Remove test cases triggered by internal inputs.
All test cases of R are triggered by inputs of the Initiator and therefore removed:
ats

I
‘= {atc

I,1
,atc

I,2
,atc

I,3
,atc

I,4
}

ats
R
‘= {}

• Step 2.4: Remove external local tours.
Not applicable in the InRes example.

• Step 2.5: Remove suffix containing external interaction only.
Not applicable in the InRes example.

• Step 2.6: For each augmented test case in ats
I
 (ats

R
) after Step 2.5, find an

augmented test case of R (I) from Step 2.2 such that their concurrent composition
is complete, and determine the concurrent augmented test suite ats

1,2
.

ats1,2 = { atcI,1 || atcR,a, atcI,2 || atcR,b, atcI,3 || atcR,c, atcI,4 || atcR,d }, with:
atcI,1 = ICONreq/CR . DR/IDISind

atcR,a = CR/ICONind . IDISreq/DR
atcI,1 || atcR,a = { ICONreq/CR . CR/ICONind . IDISreq/DR . DR/IDISind }

atcI,2 = ICONreq/CR . CC/ICONcnf . DR/IDISind
atcR,b = CR/ICONind . ICONrsp/CC . IDISreq/DR
atcI,2 || atcR,b = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDISreq/DR . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . IDISreq/DR .
CC/ICONcnf . DR/IDISind }

atcI,3 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . DR/IDISind
atcR,c = CR/ICONind . ICONrsp/CC . IDISreq/DR . DT/-
atcI,3 || atcR,c = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDATreq/DT . IDISreq/DR . DR/IDISind . DT/-,
ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .
IDATreq/DT . IDISreq/DR . DT/- . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .
IDISreq/DR . IDATreq/DT . DT/- . DR/IDISind,
ICONreq/CR . CR/ICONind . ICONrsp/CC . IDISreq/DR .
CC/ICONcnf . IDATreq/DT . DT/- . DR/IDISind }

240 R. Gotzhein and F. Khendek

wait4CC

wait4AK

connected

idle

ICONreq/CR
DR/IDISind

CC/ICONcnf

IDATreq/DT
AK/-

DR/IDISind

DR/IDISind

wait4ICONrsp

AK2send

connected

idle

CR/ICONind
IDISreq/DR

ICONrsp/CC

DT/IDATind
-/AK

IDISreq/DR

DT/-

R:I:

OIR,I =
{CC,DR,AK}

OII,R = {CR,DT}

ch

Xenv,I = {ICONreq,IDATreq}

XI,env = {ICONcnf,IDISind}
ch1

Xenv,R = {ICONrsp,IDISreq}

XR,env = {ICONind,IDATind}
ch2

Fig. 6. InRes protocol entities I and R

1

idle

wait4CC

connected

wait4AK

wait4ICONrsp

ICONreq/CR

DR/IDISind CC/ICONcnf

IDATreq/DT

AK/-

DT/- CR/ICONind

IDISreq/DR ICONrsp/CC

DT/IDATind
idle

DR/IDISind

idle

DR/IDISind

idle connected

idle

DR/IDISind

idle

idle

idle connected

IDISreq/DR

idle AK2send

-/AK

connected

idle

IDISreq/DR

I: R:

2

3

4

1

2

3

4

Fig. 7. Initial tour coverage trees of I and R

 Compositional Testing of Communication Systems 241

atcI,4 = ICONreq/CR . CC/ICONcnf . IDATreq/DT . AK/- . DR/IDISind
atcR,d = CR/ICONind . ICONrsp/CC . DT/IDATind . -/AK . IDISreq/DR
atcI,4 || atcR,d = { ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf .

IDATreq/DT . DT/IDATind . -/AK . AK/- . IDISreq/DR .
DR/IDISind, ICONreq/CR . CR/ICONind . ICONrsp/CC .
CC/ICONcnf . IDATreq/DT . DT/IDATind . -/AK .
IDISreq/DR . AK/- . DR/IDISind}

• Step 2.7: Check the composition criteria CC
1
 and CC

2

For each test case of ats
I
, there is a test case of R such that their concurrent com-

position is complete. This trivially holds for ats
R
, which is empty.

• Step 2.8: Merge test case elements, and replace internal inputs and outputs by „-“
ats

1,2
 = { atc

I,1
 || atc

R,a
, atc

I,2
 || atc

R,b
, atc

I,3
 || atc

R,c
, atc

I,4
 || atc

R,d
 }, with:

atc
I,1

 || atc
R,a

 = {ICONreq/ICONind . IDISreq/IDISind }
atc

I,2
 || atc

R,b
 = {ICONreq/ICONind . ICONrsp/ICONcnf . IDISreq/IDISind }

atc
I,3

 || atc
R,c

 = { ICONreq/ICONind . ICONrsp/ICONcnf .
[IDATreq/- ||| IDISreq/-] . -/IDISind }

atc
I,4

 || atc
R,d

 = {ICONreq/ICONind . ICONrsp/ICONcnf . IDATreq/IDATind .

IDISreq/IDISind }

Note that test case atc
I,3

 || atc
R,c

 requires that test input IDATreq and IDISreq are to
be applied concurrently to stimulate this behavior. This is expressed by the notation
[tce

1
||| tce

2
]. The resulting test suite ats

1,2
consists of 4 test cases, with 14 test case

elements. In addition, component tests are to be performed.

5 Related Work

The purpose of this section is not to review deeply all the rich literature on FSM-
based testing, but to position the proposed C-method with respect to the related types
of testing such as interoperability testing, testing in context and compositional testing.

5.1 Interoperability Testing

Interoperability testing [1,2,4,5] aims at checking if two implementations, which are
conforming to a common specification, interact correctly and provide a required
service when interconnected through a communication medium. The communication
medium, i.e. the glue between the two protocol entities, is assumed to behave
correctly. This is different from the C-Method, where we assume that any integration
problem or fault is coming from the glue, once the components have been
individually tested. In addition, the C-Method also checks whether a required service
is provided (see Step 2.7 - composition criteria checking). However, these general
composition criteria are checked at the specification level in case of the C-Method,
while it is done at testing time in case of interoperability testing.

242 R. Gotzhein and F. Khendek

5.2 Testing in Context

Testing in context [14,15] consists of testing a component Cp in a given context Cx
formed by other components, with the purpose of detecting faults in Cp. The
component Cp is generally not directly observable from the environment or only
partially. The specifications of context Cx and component Cp are both available.

Testing in context is about testing the component Cp, not the behavior of the whole
system. However, since the component is not directly accessible, or only partially, but
it is tested through its context. Therefore, we select the observable behavior of the
global system that will stimulate the behavior of the component as much as possible,
and interpret the system output. This system reaction is generally coming from the
context following a reaction from the component under test. The global state space is
generally not constructed.

The aim of the C-method is to test a composed system that consists of n
components by testing individually each component against its specification, by
checking the composability of these components, and by testing the glue, which is
putting all these components together to obtain a particular system. It aims at
validating the whole system instead of the glue in context only, but by testing only
portions of the system behavior. Once the components are tested successfully, their
behavior is not questioned anymore. If an error happens, only the behavior of the glue
is in question.

5.3 Compositional Testing

An approach for compositional testing has been proposed in [19]. It is based on ioco
and therefore on a synchronous communications setting. The aim of this approach is
to find the conditions under which the conformance of the components to their
respective specification leads automatically, without any extra testing, to the
conformance of the system implementation to the system specification. The operator
considered so far is parallel composition. There is no glue code in this approach.

6 Conclusions and Future Work

In this paper, the compositional method (C-method) for testing communicating
systems has been introduced. The C-method first tests each protocol component
separately for component faults (output and/or transfer faults), using one of the
traditional test methods, and then checks their composition for composition faults.

To apply the C-method, it is not necessary to compute the global state machine. In-
stead, composition tests are derived from local initial tour coverage trees. Only tests
checking the glue code are derived. We have introduced and justified a fault model
for the glue code that leads to manageable composition test suites.

The work on compositional testing has been triggered by the component based
software engineering trend and our results on micro protocols [8], a concept to
structure communication systems and to foster reuse of protocol designs. Micro
protocols are protocols with a single (distributed) functionality and the required
collaboration among protocol entities. To develop customized communication systems,
micro protocol designs are selected from a library, composed to yield a complete

 Compositional Testing of Communication Systems 243

design, and implemented. We expect that the C-method will contribute to the testing of
customized communication systems that are composed of micro protocols.

The results presented in this paper leave room for further work. The following im-
provements and enhancements are perceivable:

• So far, only composition of two FSMs has been considered. It would be useful
to extend the C-method to compositions of more than two FSMs, and also to the
composition of composites that have already been tested successfully.

• Other types of compositions, for instance, concurrent composition with shared
variables, or composition through inheritance, are perceivable. Again, this re-
quires extensions to the C-method.

• The justification of the C-method and its benefits should be treated more rigor-
ously, developing a test theory rich enough to provide a formal proof that the
derived test suite is both necessary and sufficient to detect composition faults.

• The complexity of the C-method in comparison to other testing approaches
should be formally assessed. Since the C-method exploits the structure of the
system under test to reduce the number and length of test cases, we expect
significant improvements.

Finally, a generic testing approach, where interoperability testing, testing in context,
and compositional testing are seen as specific instances with different goals and
assumptions, will be an interesting research issue to pursue.

References

[1] R. Castanet, O. Kone: Deriving Coordinated Testers for Interoperability, Protocol Test
Systems, Volume VI C-19, Pau, France, 1994

[2] R. Castanet and O. Kone: Test Generation for Interworking Systems, Computer Commu-
nications, Elsevier, Vol. 23, 2000, pp. 642 652.

[3] T. S. Chow: Testing Software Design Modeled by Finite-State Machines, IEEE Transac-
tions on Software Engineering, Vol. 4, No. 3, 1978, pp. 178-187

[4] A. Desmoulin, C. Viho: Quiescence Management Improves Interoperability Testing, Pro-
ceedings of TestCom 2005, LNCS 3502, Springer, pp. 365-379

[5] A. Desmoulin, C. Viho: Formalizing interoperability testing: Quiescence management
and test generation, Proceedings of FORTE’2005, LNCS 3731, Springer, pp. 533-537

[6] A. En-Nouaary, R. Dssouli, F. Khendek: Timed Wp: Testing Real-Time Systems, IEEE
Transactions on Software Engineering, Vol. 28, No. 11, November 2002, pp. 1023-1038

[7] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi: Test Selection
Based on Finite State Models, IEEE ToSE, Vol. 17, No. 6, June 1991, pp. 591-603

[8] R. Gotzhein, F. Khendek, P. Schaible: Micro Protocol Design: The SNMP Case Study,
SDL and MSC Workshop (SAM’2002), LNCS 2599, Springer, 2002

[9] D. Hogrefe: OSI Formal Specification Case Study: The InRes Protocol and Service, re-
vised, Report No. IAM-91-012, Update May 1992, University of Berne, May 1992

[10] ITU-T Recommendation Z.100 (11/99) - Specification and Description Language (SDL),
International Telecommunication Union (ITU), 1999

[11] Z. Kohavi: Switching and Finite Automata Theory, McGraw Hill, USA, 1978
[12] G. Luo, G. v. Bochmann, A. Petrenko: Test Selection Based on Communicating

Nondeter-ministic Finite-State Machines Using a Generalized Wp-Method, IEEE
Transactions on Software Engineering, Vol. 20, No. 2, 1994, pp. 149-162

244 R. Gotzhein and F. Khendek

[13] A. Petrenko, G. v. Bochmann, M. Yao: On Fault Coverage of Tests for Finite State Spec-
ifications, Computer Networks and ISDN Systems, Vol. 29, 1996, pp. 81-106

[14] A. Petrenko, N. Yevtushenko, G. v. Bochmann, R. Dssouli: Testing in Context: Frame-
work and Test Derivation, Computer Communications, Elsevier, Vol. 19, 1996, pp.
12361249

[15] A. Petrenko, N. Yevtushenko, G. v. Bochmann: Fault Models for Testing in Context,
Proceedings of FORTE'96, pp. 163-178

[16] B. Sarikaya, G. v. Bochmann: Some Experience with Test Sequence Generation for
Proto-cols, Proceedings of the 2nd International Workshop on Protocol Specification,
Testing, and Verification, North Holland, 1982, pp. 555-567

[17] J. Springintveld, F. W. Vaandrager, P. R. D'Argenio: Testing timed automata,
Theoretical Computer Science, Vol. 254 (1-2), 2001, pp. 225-257

[18] M. Ü. Uyar, Y. Wang, S. S. Batth, A. Wise, M. A. Fecko: Timing Fault Models for
Systems with Multiple Timers, Proceedings of TestCom 2005, LNCS 3502, Springer,
192-208

[19] M. van der Bijl, A. Rensink, J. Tretmans: Compositional Testing with ioco, Proceedings
of FATES 2003, LNCS 2931, 2003

[20] S. T. Vuong, W. W. L. Chan, M. R. Ito: The UIOv-Method for Protocol Test Sequence
Generation, 2

nd
 International Workshop on Protocol Test Systems, Berlin, Germany,

1989
[21] E. J. Weyuker: Testing Component Based Software: A Cautionary Tale, IEEE Software,

September/October 1998, pp.54-59

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 245 – 258, 2006.
© IFIP International Federation for Information Processing 2006

FSM Test Translation Through Context

Khaled El-Fakih1, Alexandre Petrenko2, and Nina Yevtushenko3

1 American University of Sharjah, UAE
2 Centre de recherche informatique de Montreal (CRIM), Montreal, Canada

3 Tomsk State University, Russia
kelfakih@aus.edu, petrenko@crim.ca, yevtushenko@elefot.tsu.ru

Abstract. In this paper, we define a formal approach for translating internal
tests derived for a component embedded within a modular system into external
tests defined over the external observable alphabets of the system. The system
is represented as two communicating complete deterministic finite state
machines, an embedded component machine to be tested and a context machine
that represents the remaining part of the system. The context is assumed to be
fault free and the interactions between the component machines are observable.
When an internal test can not be translated in the given context, we demonstrate
how another test with the guaranteed fault detection power could be determined
(if such a test exists) that can be translated in the given context.

1 Introduction

The problem of testing in context is about testing a component embedded within a
modular system that is usually represented as two communicating machines, an
embedded component machine and a context machine that models the remaining part
of the system and is assumed to be correctly implemented.

A number of test derivation methods have been proposed for testing in context
[5,6,7,9,10] when the system components are modeled as Finite State Machines
(FSMs). Some of these methods derive test suites with the guaranteed fault coverage
directly from the embedded component [7,9,10]. However, such tests are generated in
the form of input/output sequences defined over the input/output alphabets of the
embedded machine. These tests have then to be translated into external tests defined
over the external observable alphabets of the overall system. The problem of
translating internal tests into external ones is known as the fault propagation or test
translation problem. Different approaches for solving the translation problem for the
case when the internal interactions between the component machines are
unobservable are given in [2,7].

In this paper, we formally define and solve the test translation problem for the case
when the interactions between the component FSMs are observable. Given an internal
test for the embedded component, we present necessary and sufficient conditions for
this test to be translated in the given context and show how to translate internal tests
into external tests with the same fault detection power (if it is possible). When internal
interactions are observable an external test that is a translation of an internal test has
the same fault detection power as an internal test, i.e., it detects every faulty
implementation of the embedded component that is detectable by the internal test in

246 K. El-Fakih, A. Petrenko, and N. Yevtushenko

isolation. If an internal test cannot be translated within the given context, we derive
(when possible) another internal test with the same fault detection power that can be
translated within the given context. For this purpose, a so-called observable
equivalent of the embedded component is derived. The notion of the observable
equivalent is close to the notion of the embedded equivalent in [10]. However, in that
work, the observable equivalent is derived under the assumption that the internal
channels are not observable; in fact, in this paper, the observable equivalent refines a
so-called conforming part of the embedded component [10] by restricting it to internal
alphabets. Any internal test case derived from the observable equivalent can be
translated in the given context.

The paper is organized as follows. Section 2 contains definitions of IOTS, FSM,
and other preliminaries. Section 3 includes a formal definition and a method for test
translation with simple application examples. Section 4 presents a method for
deriving, when possible, internal test suites with the guaranteed fault coverage that
can be translated in the given context. Section 5 concludes the paper.

2 Preliminaries

2.1 Input Output Transition Systems and Finite State Machines

We assume in this paper that components of a modular system are FSMs, however,
we find it more convenient to compose state machines by encoding them into IOTSs.

An Input/Output Transition System is a quintuple A = 〈S, I, O, λA, s0〉, where S is a
finite nonempty set of states with the initial state s0, I ∪ O is an alphabet of input and
output actions such that I ∩ O = ∅, and λA ⊆ S × (I ∪ O ∪ {τ}) × S is a transition
relation, where τ ∉ I ∪ O is the internal action. We say that there is a transition from
a state s to a state s' labeled with an action v ∈ (I ∪ O ∪ {τ}) if and only if the triple
(s, v, s') is in the transition relation λA.

For IOTS A = <S, I, O, λA, s0>, we use init(s) to denote the set of actions enabled in
state s ∈ S, i.e., init(s) = {a ∈ (I ∪ O ∪ {τ}) | ∃s'∈ S ((s, a, s') ∈ λA)}. We use in(s) ⊆
init(s) (out(s) ⊆ init(s)) to denote input (output) actions in state s. State s ∈ S is called
stable or quiescent if no output or internal actions are enabled in s: init(s) ∩ (O ∪
{τ}) = ∅. Otherwise, s is called unstable.

State s ∈ S with no action enabled, i.e., init(s) = ∅, is called a deadlock state. IOTS
A deadlocks if there is a deadlock state reachable from the initial state. An IOTS is
deterministic if it contains no internal action and the transition relation is a function,
i.e., (s, a, s1), (s, a, s2) ∈ λA for a ∈ I ∪ O implies s1 = s2.

As usual, the transition relation λA of the IOTS A is extended to sequences over the
alphabet V. These sequences are usually called traces of the IOTS A. Given a state s
of the IOTS A, the set of traces Tr(s) = {α ∈ V * | ∃ si ∈ S ((s, α, si) ∈ λA)} is called the
language generated at the state s. The language generated by the IOTS A at the initial
state is called the behavior of or language generated by the IOTS A, denoted by Tr(A).
As usual, given a language L over the alphabet V, the prefix closure 〈L〉 contains each
prefix of each sequence of L. The language is prefix closed if the language and its
prefix closure coincide. By definition, the language of an IOTS is prefix closed.

 FSM Test Translation Through Context 247

Given a trace α over alphabet V, the U-restriction of α, written α↓U, is obtained by
deleting from α all symbols that belong to the set V \U. Correspondingly, the U-
restriction of a set T of traces over alphabet V, written T↓U, is the set of all sequences
α↓U, α ∈ T. Given an IOTS A = 〈S, I, O, λA, s0〉 and U ⊆ I ∪ O, the U-restriction A↓U
of A is obtained by replacing actions in (I ∪ O)\U with the internal action τ and by
determinizing [3] the resulting IOTS.

Let A = 〈S, I, O, λA, s0〉 and B = 〈Q, I, O, λB, q0〉 be two IOTSs, state s of IOTS A
and state q of IOTS B are (trace) equivalent, if Tr(s) = Tr(q). IOTSs A and B are
(trace) equivalent if Tr(A) = Tr(B).

A finite state machine (FSM) is a 7-tuple M = 〈S, I, O, DM, ΔM, ΛM, s0〉, where S is a
finite nonempty set of states with the initial state s0, I and O are input and output
alphabets, DM ⊆ S × I is the specification domain and ΔM: DM → S and ΛM: DM → O are
the next state and the output functions. FSM M is called complete if DM = S × I; in this
case, DM can be omitted, i.e., a complete FSM is a 6-tuple M = 〈S, I, O, ΔM, ΛM, s0〉. If M
is not complete then it is partial. In usual way, the next state and output functions are
extended to input sequences. Given state s and input sequence i1…ik, ΔM(s, i1…ik) = s′
while ΛM(s, i1…ik) = o1…ok if and only if there exist states s1′,…, sk+1′ such that s1′ = s,
sk+1′ = s′, and ΔM(sj′, ij) = sj+1′ while ΛM(sj′, ij) = oj for each j = 1, …, k. In this case, the
sequence i1o1 … ikok is called an I/O sequence at state s. The set of all I/O sequences at
the initial state of M is the language of FSM M. Each FSM can be represented as a
deterministic IOTS with the same language by unfolding each transition [10].

We say that an IOTS has an FSM behavior if the IOTS is deterministic, has non-
empty input and output sets, inputs are enabled only at stable states, and stable and
unstable states alternate, i.e., for every stable state s and input a ∈ in(s), (s, a, s′) ∈ λA
implies that s′ is an unstable state and for every unstable state s and output a ∈ out(s),
(s, a, s′) ∈ λA implies that s′ is a stable state while the initial state is stable. If all input
actions are enabled at every stable state, we say that the IOTS has a behavior of a
complete FSM. If each input is followed by a single output, i.e., |out(s)| = 1 for each
unstable state s, we say that the IOTS has a behavior of a deterministic FSM.

2.2 Parallel Composition of IOTSs

To compose complete FSMs we consider their IOTS counterparts. The joint behavior
of k deterministic IOTSs Aj = <Sj, Ij, Oj, λj, sj0>, j = 1, ..., k, is described by the parallel
composition of IOTSs. The parallel composition ||Aj (written also as A1 || A2 … || Ak)
is the IOTS <R, ∪ Ij\∪ Oj, ∪ Oj, λ, s10...sk0>, where the set of states R ⊆ ×Sj and the
transition relation λ are the smallest sets obtained by applying the following inference
rules:

• s10...sk0 ∈ R;
• given (s1...sk) ∈ R, (s1'...sk') ∈ ×Sj and a ∈ ∪ Ij ∪ ∪ Oj, (s1...sk, a, s1'...sk') ∈ λ,

if for each j ∈ {1, ..., k} it holds that

if a ∈ Ij ∪ Oj then (sj, a, sj') ∈ λj and if a ∉ Ij ∪ Oj then sj' = sj.
Sometimes we need to hide some actions that are not observable in the resulting

composition. This is achieved using the U-restriction defined above. In particular,

248 K. El-Fakih, A. Petrenko, and N. Yevtushenko

C o n tex t

E m b

U V

I

O

Fig. 1. Parallel Composition of the IOTSs Context and Emb

given a subset I ⊆ ∪ Ij\∪ Oj and a subset O of the set ∪ Oj, I ∪ O ≠ ∅, (||Aj)↓I∪O is
obtained by restricting the IOTS ||Aj to the alphabet I ∪ O.

In this paper, we consider a system of two complete deterministic FSMs, each of
which is represented as an IOTS. The system consists of the context IOTS Context =
〈S, I ∪ V, O ∪ U, λCon, s0〉 and the embedded IOTS Emb = 〈Q, U, V, λEmb, q0〉, as
shown in Figure 1. The alphabets I and O represent the external inputs and outputs of
the system, while the alphabets V and U represent the internal interactions between
the two IOTSs. As usual, for the sake of simplicity, we assume that the sets I, O, V, U
are pair-wise disjoint. We also assume that the composition works in a slow
environment, i.e., an external input can be applied to the composition after the latter
has produced an external output to a previous external input. A behavior of such an
environment can be represented by the IOTS MAX = 〈{p0, p1}, I, O, λMax, p0〉, ∀ i ∈ I
(p0, i, p1) ∈ λMax and ∀ o ∈ O (p1, o, p0) ∈ λMax.

Therefore, the behavior of Context and Emb in the slow environment can be
described by the parallel composition MAX || Context || Emb. We note that the IOTS
MAX || Context || Emb does not have an FSM behavior. The reason is that the input set
is empty. The following proposition states how the language of the IOTS Context ||
Emb is constrained by a slow environment.

Proposition 1. The language of the IOTS MAX || Context || Emb is a subset of the
prefix closure of the language (I(UV)*O)*.

Proposition 1 states that when an environment is slow, the component machines
can execute a sequence of the set (UV)* before an external output is produced by the
context in response to external input i ∈ I received from the environment. Only after
the context has produced an external output to a previous input, a next external input
can be applied to the context.

3 Fault Propagation

3.1 Test Definitions

Definition 1. Given a specification IOTS A = 〈S, I, O, λA, s0〉, a test case (test) is a
non-empty sequence over alphabet I ∪ O. A test αb is said to be reduced (w.r.t. the
given specification A) if α is the longest prefix of αb that is a trace of the
specification.

 FSM Test Translation Through Context 249

Given an IOTS specification A, the set of all possible implementations of A that are
IOTSs over the alphabet I ∪ O, is called the fault domain of A, denoted by ℑ(A).
When A is clear from the context, we use the notation ℑ instead of ℑ(A). The fault
domain includes both, conforming and nonconforming implementations, where the
trace equivalence of IOTSs is the conformance relation. Thus, a fault to be detected
by a test occurs when an implementation IOTS has a trace that is not a valid trace of
the specification IOTS. To be more specific, such invalid trace has always an output
as its last symbol. This is true for any IOTS that encodes a complete FSM, as well as
for an IOTS that describes the composition of such IOTSs. It is not difficult to
demonstrate that for this class of IOTSs either only all input actions are enabled or
only output actions are enabled in each state, i.e., either init(s) = I or init(s) ⊆ O for all
s ∈ S. Thus, traces of specification and implementation (deterministic) IOTSs may
only differ on outputs and not on inputs.

Definition 2. Given the specification IOTS A, an implementation IOTS B ∈ ℑ that is
not trace equivalent to A, and a test α, we say that α detects B if there exists a prefix
of α that is a trace of the implementation IOTS B and not of A.

Given the specification IOTS A, the set ℑ of implementation IOTSs over the
alphabet I ∪ O, and a test α, ℑα ⊆ℑ denotes the subset of implementations that are
detected by α. The set ℑα can be empty, it is the case when, for example, α is a trace
of the specification.

Definition 3. A test suite is a finite set of tests. An implementation IOTS B ∈ ℑ that
is not trace equivalent to A is said to be detected by a test suite if the test suite has a
test that detects B.

If a test suite TS = {α1, ..., αk} and ℑTS ⊆ ℑ denotes the subset of implementations

that are detected by TS then ℑTS =
1αℑ ∪ ... ∪

kαℑ .

Given a test α over the alphabet I ∪ O, we derive a tree IOTS IOTSα = <T, I, O, λ, ε>,
where T is the prefix closure of α with the empty sequence ε as the initial state. Given
a proper prefix β of α and symbol a ∈ I ∪ O, (β, a, βa) ∈ λ if βa is a prefix of α. By
definition, state α is a deadlock state.

Given a test suite TS consisting of test cases α1, ..., αk over the alphabet I ∪ O, a

tree IOTS IOTSTS is determined by first deriving the union of the IOTSs
1αIOTS ,

2αIOTS , ...,
k

IOTSα [HoUI79] and then determinizing the obtained IOTS.

Definition 4. Given the specification IOTS A and a set ℑ ′ ⊆ ℑ of implementation
IOTSs over alphabets I ∪ O, let TS be a test suite. The test suite TS is exhaustive in
ℑ ′, if the test suite detects each B ∈ ℑ ′ that is not trace equivalent to A.

Given a test case αγ that is not reduced and B ∈ ℑαγ, in order to detect B we can
use the shortest prefix α of αγ that is not a trace of the specification A. In other words,
in order to detect all possible faulty implementations of the fault domain ℑαγ it is
sufficient to use the reduced test α, i.e., the following statement holds.

Proposition 2. Given the specification IOTS A, let α and αγ be test cases such that α is
not a trace of the specification A. The set of implementation IOTSs that are detected by
αγ coincides with the set of those implementations that are detected by α, i.e., ℑα =ℑαγ.

250 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Given a test suite exhaustive in ℑ ′, we can reduce the length of this test suite by
deleting every test that is a trace of the specification and replacing each remaining
non-reduced test with its shortest prefix that is not a trace of the specification.
According to Proposition 2, the resulting test suite is also exhaustive in ℑ ′.

I
C o n te x t

I m p

T E S T E R
O

V
U

Fig. 2. Test architecture

3.2 Test Architecture

We consider the composition of IOTSs Context and Emb with the IOTS TESTER, and
assume that during testing all actions can be observed (Figure 2). In this case, the
closed system is the parallel composition TESTER || Context || Emb with the output set
I ∪ O ∪ U ∪ V.

As usual, we assume that the Context component is fault free and only an
implementation of the embedded component may be faulty. Moreover, we assume
that each possibly faulty implementation is a complete deterministic FSM with a
restricted number of states represented as an IOTS and denote ℑ(Emb) the fault
domain of Emb, i.e., ℑ(Emb) is the set of IOTSs that represent all possible Emb
implementations. Thus, a fault domain of the system MAX || Context || Emb is ℑ(Con-
Emb) = {MAX || Context || Imp : Imp ∈ ℑ(Emb)}. Given Imp ∈ ℑ(Emb), Imp is said to
be a conforming (in the given context) implementation of Emb if IOTSs MAX ||
Context || Imp and MAX || Context || Emb are trace equivalent. Otherwise, Imp is a
nonconforming implementation. Not every implementation of the embedded
component that is not trace equivalent to Emb and thus, can be detected in isolation, is
a nonconforming implementation in context [10]. As an example, consider the
specification Emb and the faulty implementation Imp1 shown in Figures 3a and 3b,
respectively. The context IOTS is shown in Figure 4. The composition MAX || Context
|| Imp1 is trace equivalent to the MAX || Context || Emb. Therefore, the fact that the
implementation Imp1 is not trace equivalent to Emb cannot be established within the
given context.

According to the above test architecture, during the testing process a tester applies
actions of the set I to the external input of Context and draws a conclusion whether an
implementation Imp of the embedded component conforms to its specification by
observing the outputs over the set O ∪ U ∪ V. Thus, traces of a tester are defined over
the alphabet I ∪ O ∪ U ∪ V. Since we are interested in the system of communicating
IOTSs Context and Imp that work in a slow environment, the tester has also to be
slow, i.e., the tester can apply the next symbol i ∈ I only after it has obtained, from
Context, an external output o ∈ O to the previously applied input of the set I. We call
such tester a slow tester and according to Proposition 1, a slow tester executes traces

 FSM Test Translation Through Context 251

in the set (I(UV)*O)*. Each trace of a tester is called an external test (case). In fact, a
tester is a tree IOTS derived from an external test suite. As usual, an external test
suite is a finite set of external tests. Following Definitions 2 and 3, an external test
detects each implementation system MAX || Context || Imp of the set ℑ(Con-Emb) if
some prefix of the external test is a trace of MAX || Context || Imp, but not a trace of
the composition MAX || Context || Emb. In this case, the tester detects a fault that
makes Imp nonconforming. Otherwise, i.e., when the external test is a trace of MAX ||
Context || Emb, the implementation Imp has no faults that can be detected by this test.

1

3 6

4

2 5

u1
u1

v2
v2

v1 u2
u2

v1

a. Emb

1

3 5

4

2

u1

v2v1
u2

v1

u 1
, u 2

b. Imp1

Fig. 3. Specification Emb and a faulty implementation Imp1

a

d

m

p

s

r

t

b

m h

f g

c

n

x 2,
 x

3

x3

u2

x
2, x

3

x
1 , x

3

x1

x1

x2

u1 v1

v2

o2

o2

x2

v
1 , v

2

o1

o2o1
v1

v2

u2

x1

o1

v1,v2

o3

Fig. 4. Context IOTS

3.3 Problem Definition

Given the embedded component Emb over input alphabet U and output alphabet V, an
internal test (case) is a trace over the alphabet U ∪ V. Since the IOTS Emb has an

252 K. El-Fakih, A. Petrenko, and N. Yevtushenko

FSM behavior, an internal test is a non-empty sequence of the language (UV)*.
Correspondingly, an internal test suite is a finite set of internal tests.

When the implementation is tested through the context, the internal inputs of the
embedded component are not directly controllable; except for the context of FIFO queues
[4,11]. For other types of contexts, internal tests have to be translated to external tests.

Given an internal test InTest, let ℑInTest(Emb) ⊆ ℑ(Emb) denote the set of possible
faulty implementations of the embedded component Emb that can be detected by
InTest when testing the IOTS Emb in isolation. Naturally, it makes sense to consider
internal tests which detect at least one nonconforming implementation, i.e., tests
which belong to the set (UV)*\Tr(Emb). We first introduce the notion that relates fault
detection capability of internal and external tests.

Definition 5. Given InTest ∈ (UV)*\Tr(Emb), an external test ExtTest has the same
fault detection power as InTest if ExtTest detects each implementation system MAX ||
Context || Imp, where Imp ∈ ℑInTest(Emb). Similarly, given an internal test suite InTS
⊆ (UV)*\Tr(Emb), an external test suite ExtTS has the same fault detection power as
InTS, if ExtTS detects each implementation system MAX || Context || Imp, where Imp
∈ ℑInTS(Emb).

The problem of translating InTest is to determine an external test (if it exists) with
the same fault detection power, i.e., to determine an external test case that detects
each IOTS MAX || Context || Imp, where Imp ∈ ℑInTest(Emb). The problem is called the
test translation or the fault propagation problem [2,7].

In the rest of the paper, given an internal test suite, we propose a method of
translating (when possible) it into an external one with the same fault detection
power. Moreover, in Section 4, we propose methods for deriving internal test suites
with the guaranteed fault coverage that can be translated within the given context.

3.4 Translation of an Internal Test Case

Given an internal test case InTest ∈ (UV)*\Tr(Emb), let Imp ∈ ℑInTest(Emb) be an
implementation that is detected by InTest, i.e., Imp has a trace that is not a trace of the
embedded component Emb. Therefore, a tester, that induces InTest at the channels U
and V in the composition TESTER || Context || Imp, will detect that Imp is a
nonconforming implementation. In other words, if the IOTS (TESTER || Context ||
Imp)↓U∪V has a trace InTest, then a tester detects the nonconforming implementation
Imp, and, thus, we have the following definition that relates internal and external tests.

Definition 6. Given InTest ∈ (UV)*\Tr(Emb), an external test ∈ 〈(I(UV)*O)*〉 is a
translation of InTest, denoted Transl(InTest), if the IOTS (IOTSTransl(InTest) || Context ||
IOTSInTest)↓U∪V is trace equivalent to the IOTS IOTSInTest. Correspondingly, given an
internal test suite InTS ⊆ (UV)*\Tr(Emb), an external test suite ⊆ 〈(I(UV)*O)*〉 is a
translation of InTS, denoted Transl(InTS), if the (IOTSTransl(InTS) || Context ||
IOTSInTS)↓U∪V is trace equivalent to the IOTS IOTSInTS.

The following statement is implied immediately.

Proposition 3. Given InTS ⊆ (UV)*\Tr(Emb), an external test suite Transl(InTS)
detects each implementation system MAX || Context || Imp, Imp ∈ ℑInTS(Emb), i.e.,
Transl(InTS) has the same fault detection power as InTS.

 FSM Test Translation Through Context 253

Due to Definition 6, in order to determine a translation of a given internal test
InTest we have to establish conditions under which the composition (TESTER ||
Context || Imp)↓U∪V has the trace InTest. According to the definition of the parallel
composition, the following statement holds for traces of the composition (TESTER ||
Context || Imp)↓U∪V.

Proposition 4. Given an internal test case InTest, the composition (TESTER || Context
|| Imp)↓U∪V has a trace InTest if and only if the IOTS Imp and the composition
(TESTER || Context)↓U∪V have the trace InTest. Correspondingly, given an internal test
suite InTS, the set of traces of the composition (TESTER || Context || Imp)↓U∪V
contains InTS if and only if the set of traces of the IOTS Imp and of the composition
(TESTER || Context)↓U∪V contains the set InTS.

Here we note that not each internal case can be translated, as the context may render
it impossible. According to Proposition 4, the following sufficient and necessary
conditions can be established for the translation of an internal test in the given context.

Let Aug
InTestIOTS denote the IOTS obtained from IOTSInTest by adding self-loops

labeled with all i ∈ I (input) and o ∈ O (output) at every non-deadlock state.

Theorem 1. Given a context Context and internal test InTest, the test InTest can be
translated in the context if and only if the IOTS (MAX || Context || IOTSInTest)↓U∪V is
trace equivalent to IOTSInTest. Moreover, if the test InTest is reduced and can be
translated in the context then the set of traces with the (U∪V)-restriction InTest that

take the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state coincides with the

set of all reduced translations of the test InTest.
In fact, the first statement of the theorem is a direct corollary to Proposition 4. In

the second statement of the theorem, we use Aug
InTestIOTS instead of IOTSInTest in the

composition, to force a tester to stop after the first unexpected output v of InTest is
produced by an implementation. Thus, each trace with the (U∪V)-restriction InTest

that takes the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state is a reduced

external test if InTest is reduced. As the set of traces the IOTS MAX || Context has
each trace that can occur in the composition of the system Context || Imp, Imp ∈
ℑ(Emb), with a slow tester, the set of all traces with the (U∪V)-restriction InTest that

take the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state coincides with the

set of all reduced translations of the test InTest.

According to Theorem 1, each trace with the (U∪V)-restriction InTest that takes the

IOTS MAX || Context || Aug
InTestIOTS into a deadlock state has the same fault detection

power as the internal test InTest and is a translation of InTest.

In general, the IOTS MAX || Context || Aug
InTestIOTS has many traces that lead to a

deadlock state and have the (U∪V)-restriction InTest. Each such trace can be selected
as a translation of InTest. However, we are interested in a shortest translation, i.e., in
the translation that is a reduced external test. According to Theorem 1, in order to
determine a shortest translation of InTest it is sufficient to find a shortest trace that

254 K. El-Fakih, A. Petrenko, and N. Yevtushenko

takes MAX || Context || Aug
InTestIOTS to a deadlock state and has the (U∪V)-restriction

InTest. Therefore, the problem of finding a shortest translation Transl(InTest) of
InTest can be solved by determining a shortest trace that takes the IOTS MAX ||

Context || Aug
InTestIOTS to a deadlock state and has InTest as its (U∪V)-restriction.

In our working example, consider the internal test u2v2. By direct inspection
(Figure 5), one can assure that the trace x1o1x1u2v2 is a translation of u2v2. For the
internal test u2v2, we have two shortest translations x1o1x1u2v2 and x3o1x1u2v2 (Figure 5).

p0a1
p1m 1

p0b1

p1f1

p1t1
p1d1

p1p1

p0s1

p1r1

x1

x2
o1

p1b2 p1h3

o3

x1

u2
v2

x2

x3

o1
x2
x3

x1

u2

Fig. 5. IOTS MAX || Context || Aug
vuIOTS
22

3.5 Translation of an Internal Test Suite

Since an internal test suite is a finite set, it can be translated by translating each of its
test cases separately, as described in the previous subsection. To reduce the length of
a resulting external test suite we have to select for each internal test InTest a shortest
translation of InTest.

However, all the tests of an internal test suite InTS can be translated altogether.

Given IOTSInTS, we denote Aug
InTSIOTS the IOTS obtained from IOTSInTS by adding

self-loops labeled with all i ∈ I and o ∈ O at every non-deadlock state. According to
Theorem 1, the following statement holds.

Theorem 2. Given a context Context and an internal test suite InTS, the test suite InTS
can be translated in the context, if and only if the IOTS (MAX || Context ||
IOTSInTS)↓U∪V is trace equivalent to IOTSInTS. Moreover, if the test suite InTS has only
reduced tests and can be translated in the context then the set of traces with the

(U∪V)-restriction InTS that take the IOTS MAX || Context || Aug
InTSIOTS into a

deadlock state contains each set of reduced translations of the test suite InTS.

 FSM Test Translation Through Context 255

Due to Theorem 2, each subset of traces with the (U∪V)-restriction InTS that take

the IOTS MAX || Context || Aug
InTestIOTS into a deadlock state has the same fault

detection power as the internal test suite InTS and is a translation of InTS.
Here we note the resulting translation of InTS (i.e. an external test suite)

Transl(InTS) can have tests whose I-restrictions are prefixes of the same sequence
over the alphabet I. According to our test architecture, for a tester it is sufficient to
apply to the context longest I-restrictions of sequences of Transl(InTS). As an
example, consider the internal test suite {u2v2, u2v1u2v1}. One of its translations is an
external test suite {x2u2v2, x2u2v1u2v1}. When executing the external test suite {x2u2v2,
x2u2v1u2v1} that is a translation of the internal test suite {u2v2, u2v1u2v1} the tester has
to apply only the external input x2 to the context and observe the obtained outputs.

4 Exhaustive External Test Suites

When an internal test suite cannot be translated throughout the given context, there
may still exist another internal test suite that detects the same set of faulty
implementations of Emb and can be translated in the given context. Therefore, given a
fault domain ℑ(Emb), we would like to derive an internal test suite for Emb that can
be translated in the given context to obtain a translation exhaustive in the fault domain
ℑ(Con-Emb).

As an example, consider a fault domain ℑ(Emb) of Emb (Figure 3a) that contains
each IOTS with a behavior of a complete deterministic FSM with at most two states
and an exhaustive test suite for Emb w.r.t. the fault domain ℑ(Emb). Such a test suite
can be derived using the W-method [1,12] or its derivatives. The W-method provides
an exhaustive test suite E = {u2u1, u1u1u1, u1u2u1} as a set of input sequences over
alphabet U. In order to transform this set into an internal test suite InTS for the IOTS
Emb we proceed as follows. For each sequence u1...uk of the set E we determine a
corresponding trace u1v1...ukvk of the embedded component Emb. Then, we append
each prefix u1v1...uj, j ≤ k, of the trace u1v1...ukvk with all possible wrong internal
outputs v′ ∈ V\{vj} and include the resulting sequences into the internal test suite
InTS. In our example, we obtain InTS = {u2v2, u2v1u1v2, u1v2, u1v1u1v1, u1v1u1v2u1v2,
u1v1u2v1, u1v1u2v2u1v2}, the I-restriction of this set is exactly the set E.

By direct inspection, one can assure that this test suite cannot be translated through
the given context. The reason is that, for example, an internal test case u1v1u1v1 is not
in the set of traces of the IOTS (MAX || Context)↓U∪V and thus, cannot be executed in
the given context.

Therefore, to derive an exhaustive internal test suite w.r.t. the above fault domain
ℑ(Emb) that can be translated into an exhaustive external test suite w.r.t. the fault
domain ℑ(Con-Emb), we have to consider only the behavior of the embedded
component Emb for the sequences that can be executed in the given context. To this
end, we define an IOTS a so called observable equivalent of Emb, by removing from
it the sequences that cannot be executed with the given context.

Definition 7. Given IOTSs MAX, Context and Emb, the IOTS EqEmb is an observable
equivalent of Emb if Tr(EqEmb) = Tr(Emb) ∩ Tr((MAX || Context)↓U∪V).

256 K. El-Fakih, A. Petrenko, and N. Yevtushenko

Due to Definition 7 and Proposition 4, the observable equivalent EqEmb of an
embedded component Emb can be derived as follows: EqEmb = (MAX || Context ||
Emb)↓U∪V. For our working example, the observable equivalent is shown in Figure 6.

1

3 5

4

2

u 1

v2v1
u 2

v1

u2

Fig. 6. Observable equivalent IOTS EqEmb

As a corollary to Theorem 2, the following statement holds.

Theorem 3. A reduced internal test u1v1...ukvk ∈ (UV)*\Tr(Emb) can be translated in
the given context if and only if the input sequence u1...uk is a trace of the U-restriction
of the IOTS EqEmb, i.e., u1...uk ∈ (MAX || Context || Emb)↓U.

If a reduced internal test InTest can be translated in the given context then every
external translation of InTest has the same fault detection power as InTest
(Proposition 3). According to Theorem 3, a reduced internal test u1v1...ukvk can be
translated if the internal input sequence u1...uk is a trace of the U-restriction of the
IOTS EqEmb. Therefore, the following two statements hold as corollaries to Theorem 3.

Corollary 2. Given a reduced internal test InTest such that the U-restriction of InTest
is a trace of the IOTS (EqEmb)↓U, the composition of the context and a faulty
implementation Imp ∈ ℑ(Emb) is detected by the external test Transl(InTest) if and
only if Imp is detected by InTest.

Corollary 3. Given an internal test suite InTS with reduced tests such that the U-
restriction of each test of InTS is a trace of the IOTS (EqEmb)↓U, the composition of the
context and a faulty implementation Imp ∈ ℑ(Emb) is detected by the external test
suite Transl-InTS if and only if Imp is detected by InTS.

There is a special case when Tr(EqEmb)↓U = U*. This means that the context has a
behavior of a complete FSM and any internal test case can be translated.

Corollary 4. Given the observable equivalent EqEmb of the embedded component, if
Tr(EqEmb)↓U = U* then each reduced internal test can be translated through the given
context.

Here we note that the notion of the observable equivalent is close to the notion of
the embedded equivalent in [10]. However, in that work, the observable equivalent is
derived under the assumption that the internal channels are not observable; in fact, the
construction refines a so-called conforming part of the embedded component Emb
restricting it to alphabets of Emb.

According to Corollary 3, internal test suites are derived from the specification of
the embedded component that has a behavior of a partial deterministic FSM. Then an
internal test suite for the embedded component can be derived, using the State

 FSM Test Translation Through Context 257

Counting (SC) method in [8], exhaustive w.r.t. the fault model <Spec, ≤, FD>, where
Spec is a partial FSM, ≤ is the quasi-equivalence relation, called weak conformance in
[13], and FD is the set of all possible implementation FSMs with a restricted number
of states.

Applied to the partial FSM that is encoded as the IOTS EqEmb, the SC-method
returns a set E of internal (over the alphabet U) input sequences. In order to transform
this set into an internal test suite InTS we again for each sequence u1...uk of the set E,
determine a corresponding trace u1v1...ukvk of the embedded component Emb, append
each prefix u1v1...uj, j ≤ k, of the trace u1v1...ukvk with all possible wrong internal
outputs v′ ∈ V\{vj} and include the resulting sequences into the internal test suite
InTS.

Consider the observable equivalent IOTS EqEmb of Emb in Figure 6. The IOTS
EqEmb has a behavior of a partial FSM with two states. If we consider the fault domain
ℑ(Emb) of all IOTSs that have a behavior of a complete deterministic FSM with at
most two states, then we can derive, using the SC-method or the method in [13], the
test suite {u1v2, u1v1u2v1, u1v1u2v2u2v2, u2v2, u2v1u2v2} exhaustive w.r.t. the fault
domain ℑ(Emb) and quasi-equivalence relation. The corresponding external tests are
{x2u1v2, x2u1v1u2v1, x1o1x1u2v2, x1o1x1u2v1o1x1u2v2} and according to Theorem 3, this
external test suite is exhaustive w.r.t. the fault domain ℑ(Con-Emb).

Another approach for test derivation from the embedded equivalent is mutant-
based testing. A mutant may model certain suspected faults, which have to be tested
for their presence. The approach is based on the enumeration of mutants of the
embedded component Emb and finding external tests that kill these mutants. To this
end, given a mutant Imp ∈ ℑ(Emb), we consider the IOTS Imp || EqEmb. We first note
that the observable equivalent EqEmb does not deadlock, since each IOTS Context and
Emb has a behavior of a complete FSM. Secondly, given Imp ∈ ℑ(Emb), Imp is not
trace equivalent to Emb if and only if the IOTS Imp || Emb deadlocks. If the IOTS Imp
|| EqEmb does not deadlock then the mutant IOTS Imp is a conforming implementation
of Emb. Otherwise, each trace of Imp such that its U-restriction takes the IOTS (Imp ||
EqEmb)↓U to a deadlock state is an internal test that detects a faulty implementation Imp
and this internal test can be translated through the given context.

As an example, consider the faulty implementation Imp1 (Figure 3b) of the
embedded component Emb (Figure 3a). The composition Imp1 || EqEmb is similar to
the EqEmb in Figure 6; only state labels are renamed 11, 22, 33, 44, and 55. Since the
composition Imp1 || Emb does not deadlock, the faulty implementation Imp1 cannot be
detected through the given context, and thus Imp1 is a conforming implementation (in
the given context). As another example, consider the faulty implementation Imp2
which is similar to Imp1 of Fig. 3b except that the transition connecting states 5 and 1
has the label v1 instead of v2. The composition Imp2 || Emb deadlocks after the trace
u1v1u2 and thus Imp2 can be detected through the given context.

5 Conclusions

In this paper, we proposed an approach for translating internal tests derived for a
component embedded within a modular system into external tests of the system. The
system is represented as two complete deterministic communicating finite state

258 K. El-Fakih, A. Petrenko, and N. Yevtushenko

machines, an embedded component machine to be tested and a context machine that
represents the remaining part of the system. The context is assumed to be fault free
and the interactions between the component machines are observable. Also, in this
paper, we established necessary and sufficient conditions for an internal test (suite) to
be translated in the given context. If a test cannot be translated, we demonstrated
another test with the guaranteed fault detection power could be determined (if such a
test exists) that can be translated in the given context. In our future work, we intend to
generalize the fault translation approach elaborated in this paper for communicating
finite state machines to input output transition systems.

References

1. T. S. Chow, "Test design modeled by finite-state machines", IEEE Trans. SE, vol. 4, no.3,
pp. 178-187, 1978.

2. K. El-Fakih and N. Yevtushenko, "Fault propagation by equation solving", Proc. of the
IFIP 24th International Conference on Formal Techniques for Networked and Distributed
Systems, Madrid, Spain, LNCS 3235, pp. 185-198, 2004.

3. J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and
computation, Addison-Wesley, N.Y., 1979.

4. C. Jard, T. Jéron, L. Tanguy, and C. Viho, "Remote testing can be as powerful as local
testing", Proc. of the IFIP Joint Intl. Conf. Formal Description Techniques for Distributed
Systems and Communication Protocols and Protocol Specification, Testing and
Verification (FORTE XII / PSTV XIX), volume 156 of IFIP Conference Proceedings,
Beijing, China, Oct. 5-8, Kluwer, pp. 25–40, 1999.

5. L. P. Lima, "A pragmatic method to generate test sequences for embedded systems",
Ph.D. Thesis, Institute National des Telecommunications, Evry, France, 1998.

6. L. P Lima and A. R. Cavalli, "A pragmatic approach to generating test sequences for
embedded systems", Proc. of the 10th International Workshop on Testing of
Communicating Systems, pp: 125-140, 1997.

7. A. Petrenko and N. Yevtushenko, "Testing faults in embedded components", Proc. of the
10th International Workshop on Testing of Communicating Systems, pp. 272-287, 1997.

8. A. Petrenko and N. Yevtushenko, "Testing from partial deterministic FSM specifications",
IEEE Transactions on Computers, vol. 54, no. 9, pp. 1154-1165, 2005.

9. A. Petrenko, N. Yevtushenko, and G. v. Bochmann, "Fault models for testing in context",
Proc. International Conference on Formal Techniques for Networked and Distributed
Systems, pp. 125-140, 1996.

10. A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, "Testing in context:
framework and test derivation", Computer communications, Vol. 19, pp. 1236-1249, 1996.

11. J. Tretmans and L. Verhaard, "A queue model relating synchronous and asynchronous
communication", In R. J. Linn, Jr. and M. Ü. Uyar, eds., Proc. of the IFIP TC6/WG6.1
12th Intl. Symp. Protocol Specification, Testing and Verification, volume C-8 of IFIP
Transactions, Lake Buena Vista, Florida, USA, pp. 131–145, 1992.

12. M. P. Vasilevskii, "Failure diagnosis of automata", translated from Kibernetika, no.4, pp.
98-108, 1973.

13. M. Yannakakis and D. Lee, "Testing finite state machines", Proc. of the 23rd Annual
ACM Symposium on Theory of Computing, New Orleans, Louisiana, pp. 476-485, 1995.

Using Distinguishing and UIO Sequences
Together in a Checking Sequence

M. Cihan Yalcin and Husnu Yenigun

Faculty of Engineering and Natural Sciences, Sabanci University,
Tuzla 34956, Istanbul, Turkey

Abstract. If a finite state machine M does not have a distinguishing
sequence, but has UIO sequences for its states, there are methods to
produce a checking sequence for M . However, if M has a distinguishing
sequence D̄, then there are methods that make use of D̄ to construct
checking sequences that are much shorter than the ones that would be
constructed by using only the UIO sequences for M . The methods to
applied when a distinguishing sequence exists, only make use of the dis-
tinguishing sequences. In this paper we show that, even if M has a dis-
tinguishing sequence D̄, the UIO sequences can still be used together
with D̄ to construct shorter checking sequences.

1 Introduction

Finite state machines (FSM) have been successfully used to model the externally
observable behavior of systems [1]. Based on the FSM model M of a system under
test (SUT) N , a test sequence can be constructed to check if N is implemented
correctly [2, 3].

Such a test sequence, which will be called a checking sequence, is a sequence
of inputs such that, if N produces the expected outputs then this information
provides sufficient evidence to conclude that N is a correct implementation of
M . Of course, such a checking sequence cannot be found in general. Two im-
portant assumptions are made on N in practice. First assumption is that N
is deterministic and does not change during the experiments. The second as-
sumption is that N has at most the same number of states as M . Although the
latter assumption seems to be restrictive, this assumption provides a basis to
construct a checking sequence. Based on the methods that can generate check-
ing sequences under this assumption, it is possible to extend these methods to
generate checking sequences when this assumption is relaxed and N is assumed
to have at most n + Δ states for some constant Δ, where n is the number of
states in M (e.g. see [4]).

Basically, a checking sequence consists of parts that challenge N to provide
evidence for the correct implementation of every transition in M . To do this,
the checking sequence brings N to a state, applies an input at that state (to see
if it would produce the correct output), and then it applies a sequence of inputs
to recognize the state reached. As we will explain, bringing N to a certain state
is also based on recognizing states, which can only be performed by observing
distinct outputs produced to the same input sequence by different states.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 259–273, 2006.
c© IFIP International Federation for Information Processing 2006

260 M.C. Yalcin and H. Yenigun

Recognizing states can be based on distinguishing sequences [3], a charac-
terization set [3] or unique input-output (UIO) sequences [5]. It is known that
a distinguishing sequence may not exist for every minimal FSM [6], and that
determining the existence of a distinguishing sequence for an FSM is PSPACE-
complete [7]. However, if M has a distinguishing sequence, there are methods
already available in the literature (e.g. [3, 8, 9]) to produce a checking sequence
in which distinguishing sequences are used to recognize the states. It is quite
easy to understand why a distinguishing sequence D̄ can be used to recognize a
state, since all the states in M produces a different output sequence to the same
input sequence D̄.

If an FSM M does not have a distinguishing sequence, it is still possible to
construct a checking sequence for M . For example in [5] and in [10], it is shown
how a checking sequence can be constructed by using UIO sequences, which are
sequences that may exist even when a distinguishing sequence is not available.
However, the authors of [11] show that, the original method proposed in [5] is not
sufficient, and they propose the UIOv method to fix the problems of the method
given in [5]. Since the UIO sequences of the states are not necessarily the same,
although the response of a state to is UIO Ū is unique in the specification, we
have to make sure that no other state produces the same response to Ū in N .
As this must be guaranteed for the UIO sequences of all the states, checking
sequences based on UIO sequences tend to be longer. Hence the UIOv and the
other UIO based methods are considered only when a distinguishing sequence
does not exist.

In this paper we propose that, even if there exists a distinguishing sequence
for an FSM M , UIO sequences for the states of M (which are guaranteed to
exist since M is known to have a distinguishing sequence) can also be used to
construct a checking sequence in conjunction with the distinguishing sequence.
We explain a method to show how to construct such a checking sequence. We
also give an example for which the length of the checking sequence based on
the distinguishing sequence and UIO sequences is less than the length of the
checking sequence based on the distinguishing sequence only.

The rest of the paper is organized as follows. Section 2 introduces the concepts
used in constructing checking sequences. In Section 3, an existing method to con-
struct checking sequences based on distinguishing sequences is given. Section 4
explains the conditions under which a UIO sequence can be used to recognize
states in a checking sequence. In Section 5, we give a modification of the method
in Section 3 that constructs checking sequences in which UIO sequences are also
used for state recognition. Finally, Section 6 concludes the paper and provides
future research directions on the topic.

2 Preliminaries

We directly adopt the formalism and the notation for finite state machines
from [12] and include it below for completeness. A deterministic FSM M is
defined by a tuple (S, s1, X, Y, δ, λ) where

Using Distinguishing and UIO Sequences Together in a Checking Sequence 261

– S is a finite set of states,
– s1 ∈ S is the initial state,
– X is the finite input alphabet,
– Y is the finite output alphabet,
– δ : S × X → S is the next state function, and
– λ : S × X → Y is the output function.

Throughout the paper, we use barred symbols (e.g. x̄, P̄ , . . .) to denote se-
quences, and juxtaposition to denote concatenation. The next state function δ
and the output function λ can be extended to sequences in a straightforward
manner as, for an input symbol a ∈ X , a sequence of inputs x̄ ∈ X�, and a state
s ∈ S,

δ(s, ax̄) = δ(δ(s, a), x̄) and λ(s, ax̄) = λ(s, a)λ(δ(s, a), x̄)

The number of states of M is denoted n and the states of M are enumerated,
giving S = {s1, s2, . . . , sn}. An FSM is completely specified if the functions λ
and δ are total.

An FSM, that will be denoted M0 throughout this paper, is described in
Figure 1. Here, S = {s1, s2, s3}, X = {a, b} and Y = {0, 1}.

s1

s2 s3

a/0

a/0

a/1

b/0

b/1

b/0

Fig. 1. The FSM M0

In an FSM M , si ∈ S and sj ∈ S, si �= sj , are equivalent if, ∀x̄ ∈ X∗,
λ(si, x̄) = λ(sj , x̄). If ∃x̄ ∈ X∗ such that λ(si, x̄) �= λ(sj , x̄) then x̄ is said to
distinguish si and sj . An FSM M is said to be minimal if none of its states are
equivalent.

A distinguishing sequence for an FSM M is an input sequence D̄ for which
each state of M produces a distinct output. More formally, for all si, sj ∈ S
if si �= sj then λ(si, D̄) �= λ(sj , D̄). Thus, for example, M0 in Figure 1 has
distinguishing sequence aa.

A unique input output sequence (a UIO sequence, or simply a UIO) for a
state si of an FSM M is an input sequence Ūi which distinguishes si from the
other states. More formally, Ūi is a UIO for si if for all sj ∈ S, if sj �= si, then
λ(si, Ūi) �= λ(sj , Ūi). Thus, for example, s3 of M0 has UIO Ū3 = b.

It is known that some FSMs do not have a distinguishing sequence, and some
states do not have UIO sequences. However, when we consider a machine M =
(S, s1, X, Y, δ, λ) with a distinguishing sequence D̄ (let D̄ be a shortest such

262 M.C. Yalcin and H. Yenigun

sequence), and a state si ∈ S with a UIO sequence Ūi (let Ūi be a shortest such
sequence), we can easily observe the following fact: D̄ distinguishes between all
pairs of states (si and sj , ∀si, sj ∈ S), whereas Ūi distinguishes only between
certain pairs of states (si and sj , ∀sj ∈ S). Hence, Ūi must be at most as long as
D̄. In fact, any distinguishing sequence is also a UIO sequence for all the states
by definition.

For example, for the state s3 in M0 of Figure 1, Ū3 = b is shorter than the
distinguishing sequence D̄ = aa. However, for the states s1 and s2, shortest UIO
sequences are of length 2, which is the same as the length of the distinguishing
sequence.

Therefore, when we do have a distinguishing sequence for an FSM M , we may
be able to find shorter UIO sequences for the states of M . It is this observation
that will allow us to form shorter checking sequences, as explained in the rest of
the paper.

An FSM M can be represented by a directed graph (digraph) G = (V, E)
where a set of vertices V represents the set S of states of M , and a set of
directed edges E represents all transitions of M . Each edge e = (vj , vk, x/y) ∈ E
represents a transition t = (sj , sk, x/y) of M from state sj to state sk with input
x and output y where sj, sk ∈ S, x ∈ X , and y ∈ Y such that δ(sj , x) = sk,
λ(sj , x) = y.

A sequence P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1) of
pairwise adjacent edges from G forms a path in which each node ni repre-
sents a vertex from V and thus, ultimately, a state from S. Here initial(P̄)
denotes n1, which is the initial node of P̄ , and final(P̄) denotes nk, which is
the final node of P̄ . Two paths P̄1 and P̄2 can be concatenated as P̄1P̄2 only if
final(P̄1) = initial(P̄2).

The sequence Q̄ = (x1/y1)(x2/y2) . . . (xk−1/yk−1) is the label of P̄ and is
denoted label(P̄). In this case, Q̄ is said to label the path P̄ . Q̄ is said to be a
transfer sequence from n1 to nk. The path P̄ can be represented by the tuple
(n1, nk, Q̄) or by the tuple (n1, nk, x̄/ȳ) in which x̄ = x1x2 . . . xk−1 is the input
portion of Q̄ and ȳ = y1y2 . . . yk−1 is the output portion of Q̄.

A tour is a path whose initial and final nodes are the same. Given a tour
Γ̄ = e1e2 . . . ek, P̄ = ejej+1 . . . eke1e2 . . . ej−1 is a path formed by starting Γ̄
with edge ej, and hence by ending Γ̄ with edge ej−1. An Euler Tour is a tour
that contains each edge exactly once. A set E′ of edges from G is acyclic if no
tour can be formed using the edges in E′.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj) there
is a path from vi to vj . An FSM is strongly connected if the digraph that repre-
sents it is strongly connected. It will be assumed that any FSM considered in this
paper is deterministic, minimal, completely specified, and strongly connected.

Given an FSM M , let Φ(M) be the set of FSMs each of which has at most
n states and the same input and output alphabets as M . Let N be an FSM
of Φ(M). N is isomorphic to M if there is a one-to-one and onto function f
on the state sets of M and N such that for any state transition (si, sj , x/y)
of M , (f(si), f(sj), x/y) is a transition of N . A checking sequence of M is an

Using Distinguishing and UIO Sequences Together in a Checking Sequence 263

input sequence starting at the initial state s1 of M that distinguishes M from
any N of Φ(M) that is not isomorphic to M . In the context of testing, this
means that in response to this input sequence, any faulty implementation N
from Φ(M) will produce an output sequence different from the expected output,
thereby indicating the presence of a fault/faults. As stated earlier, a crucial part
of testing the correct implementation of each transition of M in N from Φ(M)
is recognizing the starting and terminating states of the transition which lead
to the notions of state recognition and transition verification used in algorithms
for constructing checking sequences (for example, [9, 13]).

3 An Existing Approach

In this section, we will present an existing approach for generating checking se-
quences. The approach is based on distinguishing sequences only, and directly
imported from [12] for completeness. After understanding the components (and
their purpose) that are put together to form a checking sequence by this ap-
proach, it will be easier to understand how we can use UIO sequences instead
of some of these components, that will hopefully make the generated checking
sequences shorter. In fact, the algorithm for generating a checking sequence that
will be proposed in this paper is a modification on the algorithm of [12], which
was first given in [13].

3.1 Basics

The checking sequence C̄ will be a sequence of inputs to be applied to SUT N ,
that will identify whether N is a correct implementation of M or not, i.e. whether
N is isomorphic to M or not. Suppose that we trace C̄ on the digraph G =
(V, E) representing M . Since M is deterministic, the trace will correspond to a
unique path P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1). Below
we will refer to the checking sequence C̄ as the input portion of the input/output
sequence Q̄ which is the label of the path P̄ .

P̄ can also be viewed as the application of C̄ to N . In this view, the nodes
n1, n2, . . . , nk (or equivalently the states of N visited during this application)
are not known. A checking sequence C̄, or equivalently P̄ , should be designed
in such a way that, the inputs and the corresponding outputs should provide
sufficient evidence to let us identify these unknown states that are visited during
the application of C̄ to N .

If M has a distinguishing sequence D̄, then D̄ can be used in C̄ to help
to identify the states. Let us call T̄i = D̄/λ(si, D̄)B̄i as a T–sequence, where
B̄i = Īi/λ(δ(si, D̄), Īi) for a possibly empty transfer sequence Īi. For example,
for FSM M0 in Figure 1, if we take Ī1,Ī2 and Ī3 as empty sequences, T̄1 = aa/00,
T̄2 = aa/01, T̄3 = aa/10.

Inference Rule IR1: Let R̄i = (np, nq, T̄i) be a subpath in P̄ . Since the re-
sponse of N to D̄ at np is λ(si, D̄), this unknown state np of N at step p, has
some relation to the state si of M . Of course, this does not guarantee that np

264 M.C. Yalcin and H. Yenigun

is equivalent to the state si under the light of this evidence only. N may be
a faulty implementation of M , yet it may still have a state that produces the
same output λ(si, D̄) to D̄. Therefore we only say that, if np produces the same
output to D̄ as si, then np is recognized as state si of M in Q̄.

Based on the assumption that N does not change during the experiments, the
following inference rule can also be used.

Inference Rule IR2: If P̄1 = (np, nq, x̄/ȳ) and P̄2 = (nr, ns, x̄/ȳ) are two
subpaths of P̄ such that np and nr are recognized as state si of M and nq is
recognized as state sj of M , then ns is said to be recognized (in Q̄) as state
sj of M . Intuitively, this rule says that if P̄1 and P̄2 are labeled by the same
input/output sequence and their starting vertices are both recognized as the
same state si of M , then their terminating vertices correspond to the same state
sj of M .

For N to be a correct implementation of M , first of all, for each state si of M ,
N must have a state which is recognized as si. If P has subpaths R̄i = (np, nq, T̄i)
for all i ∈ {1, 2, . . . , n}, then it will check existence of the corresponding states
in N . If N does not produce the expected outputs, then N is a faulty imple-
mentation of M . However, if N produces the expected outputs, then for each
state si in M , N must have at least one state corresponding to (recognized as)
si. When combined with the assumption that N has at most n states, this will
form a one–to–one correspondence between the states of M and the states of N .

As explained in the paragraph above, for each T̄i, P̄ will have at least one
subpath R̄i = (np, nq, T̄i). Based on IR1, initial(R̄i) will be recognized as si.
Note that, if there exists another subpath R̄′

i = (n′
p, n

′
q, T̄i), initial(R̄′

i) will
again be recognized as si. In other words, for every subpath with the label
T̄i, the initial node of the subpath will be recognized as si. We will abuse the
notation and let initial(T̄i) denote the state si. Since, N is deterministic and
does not change during experiments, we can also argue that for any subpath
R̄i with the label T̄i, final(R̄i) will be recognized as the same state sj , where
sj = δ(si, D̄Īi). We will use final(T̄i) to denote this state sj. Below we explain
how final(R̄i) can be recognized as well.

In order to recognize final(R̄i), P̄ will include subpaths with the labels as
explained below. Let α′–set A = {ᾱ′

1, ᾱ
′
2, . . . ᾱ

′
q} be a set of input/output se-

quences such that ᾱ′
k (1 ≤ k ≤ q) is the sequence T̄k1 T̄k2 . . . T̄krk

, for some
1 ≤ k1, k2, . . . , krk

≤ n, such that ∀i ∈ {1, 2, . . . rk − 1}, initial(T̄ki+1) =
final(T̄ki). Each ᾱ′

k is called an α′–sequence, and an α′–set A satisfies the fol-
lowing condition [13]: For all i ∈ {1, 2, . . . , n}, there exists a j ∈ {1, 2, . . . , n}
and a k ∈ {1, 2, . . . , q}, such that T̄iT̄j is a subsequence of ᾱ′

k. For example
{T̄1T̄3, T̄3T̄2, T̄2T̄1} is an α′–set for FSM M0 given in Figure 1.

Lemma 1. Let T = {T̄1, T̄2, . . . , T̄n} be a T–set, and A = {ᾱ′
1, ᾱ

′
2, . . . , ᾱ

′
q} be an

α′–set based on T . If Q̄ = label(P̄) includes all ᾱ′
k, 1 ≤ k ≤ q, as a subsequence

then:

1. For all k ∈ {1, 2, . . . q}, if (np, nq, ᾱ
′
k) is a subpath in P̄ , then np is recognized.

2. For all i ∈ {1, 2, . . . , n}, T̄i is a subsequence in Q̄.

Using Distinguishing and UIO Sequences Together in a Checking Sequence 265

3. For all i ∈ {1, 2, . . . , n}, if (nr, ns, T̄i) is a subsequence in P̄ , then ns is
recognized in P̄ .

4. For all k ∈ {1, 2, . . . q}, if (np, nq, ᾱ
′
k) is a subpath in P̄ , then nq is recognized.

Proof. 1. Since ᾱ′
k starts with a T̄i that has a prefix D̄/λ(si, D̄), np is recognized

as si in Q̄ (IR1).
2. Since for each T̄i, there exists a T̄j such that T̄iT̄j is a subsequence of some

ᾱ′
k, which in turn is a subsequence in Q̄, T̄i is a subsequence in Q̄.

3. There exists a T̄j such that T̄iT̄j is a subsequence of some ᾱ′
k, which in turn

is a subsequence in Q̄. In other words, there exists a subpath (np, nt, T̄iT̄j)
in P̄ . After dividing this path into two as (np, nq, T̄i)(nq, nt, T̄j), it is easy
to see that, np and nq are recognized as states si and sj respectively. But
then, we can use IR2 on (np, nq, T̄i) and (nr, ns, T̄i) to deduce that ns is
recognized as sj .

4. Since ᾱ′
k ends with a T̄i, based on the discussion given in (3) above, nq is

recognized. �	

Different α′ sets can be found for a given set of T –sequences {T̄1, T̄2, . . . , T̄n}.
For example {T̄3T̄2T̄1T̄3} and {T̄1T̄3T̄2T̄1} are also α′–sets for M0 of Figure 1.
Since C̄ will have the input portion of α′–sequences as subsequences, it may be
desirable to minimize the total length of α′–sequences. Note that, this is just a
heuristic to minimize the length of C̄. In [14] authors explain how to find a set
of α′–sequences with a minimal total length from a given set of T –sequences.

Besides these components to recognize the states in N , a checking sequence
will also have components to check if the transitions are implemented correctly.
We say that the transition (si, sj , x/y) of M is verified in Q̄ = label(P̄) if
(np, nq, x/y) is a subpath of P̄ , np is recognized as si and nq is recognized
as sj. np will have to be recognized using IR2. nq can be recognized using IR1,
by applying a T̄i. Since α′–sequences start with T̄i’s, they can also be used to
recognize the end state of the transitions [13].

In the next section we will explain a method to generate a checking sequence,
which is based on Theorem 1.

Theorem 1. (Theorem 1, [9]) Let Q̄ be the label of a path P̄ on G representing
an FSM M that starts at s1. If every transition of M is verified in Q̄, then the
input portion of Q̄ is a checking sequence of M .

3.2 Checking Sequence Construction

In [13], the following method is explained to produce a checking sequence. Given
G = (V, E) corresponding to an FSM M , a T –sequence set T = {T̄1, T̄2, . . . , T̄n},
and an α′–set A = {ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q}, first another digraph G′ = (V ′, E′) is pro-

duced by augmenting the digraph G as follows (Figure 2 is the digraph G′

corresponding to the digraph G of FSM M0 given in Figure 1):

a) V ′ = V ∪ U ′ where U ′ = {v′ : v ∈ V }, i.e. for each vertex v in G, there are
two copies of v in G′. In Figure 2, the nodes on the left are the nodes in V ,
and the nodes on the right are the nodes in U ′.

266 M.C. Yalcin and H. Yenigun

b) E′ = EC ∪ ET ∪ Eα′ ∪ E′′ where
i) EC = {(v′i, vj , x/y) : (vi, vj , x/y) ∈ E}. The solid edges leaving the nodes

on the right in Figure 2 are the edges in EC .
ii) ET = {(vi, v

′
j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. For ex-

ample, since initial(T̄1) = s1 and final(T̄1) = s2, there is an edge
(v1, v

′
2, T̄1) in Figure 2.

iii) Eα′ = {(vi, v
′
j , ᾱ

′
k) : ᾱ′

k ∈ A, ᾱ′
k = T̄i . . . T̄l, initial(T̄i) = si, f inal(T̄l) =

sj}. For example, in Figure 2 we consider a singleton α′–set A = {ᾱ′
1 =

T̄1T̄3T̄2T̄1}. There is an edge (v1, v
′
3, ᾱ

′
1) in Figure 2 since initial(T̄1) = s1

(the first T –sequence in ᾱ′
1 is T̄1), and final(T̄1) = s3 (the last T –

sequence in ᾱ′
1 is T̄1).

iv) E′′ ⊆ {(v′i, v
′
j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is a subset of the copies of

the edges in E placed between the corresponding nodes in U ′. E′′ is
selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected.

v′
1

v′
2

v′
3

v1

v2

v3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

a/0
b/0

b/0
a/0 a/1

b/1

a/0

Fig. 2. G′ for M0

We would like to highlight the followings about G′:

– The edges in EC represent the transitions to be verified.
– On a path in G′, an edge in EC will have to be followed by an edge in ET

or Eα′ . Since an α′–sequence also starts with a T –sequence, this means that
a transition will always be followed by a T –sequence, hence the end state of
the transition will be recognized.

– On a path in G′, the nodes in U ′ will be recognized. If a node v′ in U ′ is
reached by using an edge in ET or an edge Eα′ , it is easy to show that
v′ is recognized since the final states of T –sequences and α′–sequences are
recognized as explained previously in Lemma 1. As long as G′′ = (U ′, E′′)

Using Distinguishing and UIO Sequences Together in a Checking Sequence 267

is acyclic, it is also guaranteed that v′ will be recognized if it is reached by
using an edge in E′′ (please see the proof of Theorem 2 in [9] for the sketch
of a proof of this claim).

– Based on the previous claim, the initial states of the transitions will also
be recognized in a path P̄ in G′, since the edges in EC representing the
transitions always have their initial nodes in U ′.

Suppose that we form a path P̄ in G′ that starts from and ends at v1 such
that, it includes all the edges in Eα′ (so that the states are recognized), and it
also includes all the edges in EC (so that the transitions are verified). On the
basis of Theorem 1, it is argued in [13] that the input portion of the label of
such a path P̄ which is followed by D̄ is a checking sequence of M .

In fact, since we would like to keep the length of the checking sequence small,
an optimization is used to find a short path. The approach given in [13] forms
a minimal symmetric augmentation G∗ of the digraph induced by Eα′ ∪ EC by
adding replications of edges from E′ . If G∗, with its isolated vertices removed,
is connected, then G∗ has an Euler tour. Otherwise, a heuristic such as the one
given in [9] is applied to make G∗ connected and an Euler tour of this new
digraph is formed to find a path from v1 to v1.

(v1, v
′
3, ᾱ

′
1)(v′

3, v2, b/1)(v2, v
′
1, T̄2)(v′

1, v2, a/0)(v2, v
′
1, T̄2)(v′

1, v3, b/0)(v3, v
′
2, T̄3)

(v′
2, v3, a/0)(v3, v

′
2, T̄3)(v′

2, v3, b/0)(v3, v
′
2, T̄3)(v′

2, v
′
3, a/0)(v′

3, v1, a/1)

Fig. 3. An tour in G′

The checking sequence constructed based on the tour given in Figure 3 would
be the label of the path of Figure 3 followed by D̄. Hence the length of the
checking sequence is 27.

4 Using UIO Sequences for State Recognition

The method explained in Section 3 uses a distinguishing sequence to recognize
the end state of a transition (si, sj , x/y) by applying D̄ after the execution of
the transition, and by observing the output λ(sj , D̄) which is unique among
all the states. The purpose of an edge (vi, v

′
j , T̄i) in G′ is twofold: (i) it recognizes

the final state of a transition, and (ii) it also recognizes the final state of itself
(see Lemma 1). In other words, when the input portion of T̄i is applied to SUT
N and the expected output is observed, we do not only recognize the state
before the application, but we also recognize the state that is reached after the
application of the input part of T̄i. This is obviously based on the fact that, the
input portion of all the α′–sequences are also applied and the expected outputs
are observed from N .

A UIO sequence Ūj for a state sj also provides a similar information. In other
words, to recognize the end state of a transition (si, sj , x/y), one can apply Ūj

after the execution of the transition, and observe the output λ(sj , Ūj) which is

268 M.C. Yalcin and H. Yenigun

also unique among all the states. Since Ūj will be at most as long as D̄, using UIO
sequences instead of distinguishing sequences may shorten the overall checking
sequence.

However, for a UIO sequence Ūj for a state sj, suppose that P̄ contains
(np, nq, Ūj/λ(sj , Ūj)) as a subpath. (i) Can we conclude that np must be recog-
nized as sj? (ii) Can we conclude that nq must be recognized as δ(sj , Ūj)? Below
we explain under what conditions both of these questions can be answered pos-
itively.

For a sequence x̄ ∈ X∗, let symb(x̄) ⊆ X denote the set of input symbols that
appear in x̄. For example, if x̄ = aba, then symb(x̄) = {a, b}.

Theorem 2. Let Q̄ be the label of a path P̄ in G = (V, E) corresponding to an
FSM M , and Ūj be a UIO for a state sj in M . Assume that ∀x ∈ symb(Ūj)
and for all states s in M , the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄.
If (np, nq, Ūj/λ(sj , Ūj)) is a subpath of P̄ , then np is recognized as sj and nq is
recognized as δ(sj , Ūj).

We will need the following result to prove Theorem 2.

Lemma 2. Let Q̄ be the label of a path P̄ in G = (V, E) corresponding to
an FSM M , and x̄′ ∈ X∗ be an input sequence. Assume that ∀x ∈ symb(x̄′)
and for all states s in M , the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄.
If (nr, ns, x̄

′/λ(s′, x̄′)) is a subpath of P̄ and nr is recognized as s′, then ns is
recognized as δ(s′, x̄′).

Proof. The proof is based on induction on the length of x̄′. When the length
of x̄′ is 1, i.e. when x̄′ = a for some a ∈ X , we have P̄1 = (nr, ns, a/λ(s′, a))
as a subpath in P̄ . Since ∀x ∈ symb(x̄′) = {a} and for all states s in M ,
the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄, there must exist a subpath
P̄2 = (np, nq, a/λ(s′, a)) in P̄ such that np is recognized as s′, and nq is recognized
as δ(s′, a). Using P̄1 and P̄2 and the inference rule IR2, we can deduce that ns

is recognized as δ(s′, a).
For the inductive step, assume that x̄′ = ax̄′′, in other words we have a

subpath P̄1 = (nr, ns, ax̄′′/λ(s′, ax̄′′)), or equivalently by dividing P̄1 into two,
we have the subpaths P̄11 = (nr, nt, a/λ(s′, a)), P̄12 = (nt, ns, x̄

′′/λ(δ(s′, a), x̄′′)).
Based on the discussion given in the base step of the proof, nt is recognized
as δ(s′, a). This completes the proof, since nt is recognized, and x̄′′ is shorter
than x̄′. �	

We can now go back to the proof of Theorem 2:

Proof (of Theorem 2). We know that the transitions of all the states for all the
input symbols in Ūj are implemented correctly. Since Ūj is a UIO sequence for
sj , this means that only the state that should be recognized as state sj in N
produces the output λ(sj , Ūj) to Ūj. Hence, for the subpath (np, nq, Ūj/λ(sj , Ūj))
of P̄ , np must be recognized as sj .

When np is recognized, we can use Lemma 2 to show that nq is also
recognized. �	

Using Distinguishing and UIO Sequences Together in a Checking Sequence 269

What Theorem 2 suggests is that, when it is guaranteed that the transitions of
the states for the input symbols that appear in a UIO sequence Ūj are verified,
then Ūj/λ(sj , Ūj) can be used in a checking sequence exactly in the same way
and for the same purpose as the T –sequence T̄j. Based on this observation, we
will propose a modification on the method given in Section 3.2 for constructing
checking sequences.

5 Modified Method for Checking Sequence Construction

The modification will actually be quite intuitive, and very simple for a reader
who understands the purposes of the components of the digraph G′ given in
Section 3.2.

v′
1

v′
2

v′
3

v1

v2

v3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

Ū3/
λ(s3,

Ū3)

a/0
b/0

b/0
a/0 a/1

b/1

a/0

Fig. 4. The first (unseccuessful) attempt for the modification

Let us explain the modified method on our running example first. We will
provide the method formally later. Consider M0 in Figure 1, and the digraph G′

for M0 given in Figure 2, and let us focus on the edge (v′2, v3, a/0). In G′, this
edge will have to followed by the edge (v3, v

′
2, T̄3), which would both recognize

v3 as s3, and also recognize v′2 as s2.
The state s3 in M0 has the UIO Ū3 = b. Based on the discussions given Sec-

tion 4, we can add outgoing edge to (v3, v
′
2, Ū3/λ(s3, Ū3)) in G′, since Ū3/λ(s3, Ū3)

can also be used in a similar way as T̄3 is used in G′ (Figure 4).
However, we also require that the input symbols that appear in the UIO

sequences that are used to recognize states to be verified. We have to avoid
verifying an edge depending on the correctness of itself. In other words, there
are some transitions with the input b whose final states are s3. Namely the edges
(v′1, v3, b/0) and (v′2, v3, b/0) in Figure 4. The verification of the corresponding
transitions of these edges will have to be performed in the conventional way. In

270 M.C. Yalcin and H. Yenigun

other words, we will need to force to use the edge with the label T̄3 when these
two edges are used to reach v3, to guarantee that b transitions of s2 and s3 are
verified.

This can be achieved by having two copies of v3 in G′. One copy of v3 will
be the usual v3 that already exists in G′, and have the outgoing edge with label
T̄3. The other copy of v3 (say vU

3) will have an outgoing edge with the label
Ū3/λ(s3, Ū3). Note that, having this edge as the only outgoing edge of vU

3 would
force Ū3 to be used to recognize the node vU

3 . However, if we also add an edge
(vU

3 , v3, ε), this would introduce the possibility and the flexibility of using T̄3
(and any α′–sequence originating from v3 if there were any) to recognize the
node vU

3 . The final digraph G′ that will be used for our example is given in
Figure 5.

v′
1

v′
2

v′
3

v1

v2

v3

vU
3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

a/0
b/0

b/0

a/0

a/1

b/1

ε

Ū3
/λ

(s3
, Ū

3
)

a/0

Fig. 5. G′ after modification

We now explain the modified method more formally. Given G = (V, E) corre-
sponding to an FSM M , a T –sequence set T = {T̄1, T̄2, . . . , T̄n}, and an α′–set
A = {ᾱ′

1, ᾱ
′
2, . . . , ᾱ

′
q}, we will again generate a digraph G′ = (V ′, E′) by aug-

menting G. Assume that we are also given a set of UIO sequences for some
of the states to recognize these states. Let U = {Ūi1 , Ūi2 , . . . , Ūik

} be such a
set of UIO sequences. Suppose that the UIO sequence Ūij ∈ U is a UIO se-
quence for the state sij . Let symb(U) = symb(Ūi1)∪symb(Ūi2)∪· · ·∪symb(Ūik

)
below.

Using Distinguishing and UIO Sequences Together in a Checking Sequence 271

a) V ′ = V ∪ V U ∪ U ′ where
i) U ′ = {v′ : v ∈ V }. For each v ∈ V , we have a copy of v in U ′.
ii) V U = {vu

j : vj ∈ V, j ∈ {i1, i2, . . . , ik}}
If U includes a UIO sequence Ūj for the state sj , then for the corre-
sponding node vj ∈ V , we create a copy vU

j in V U .
b) E′ = EC ∪ ET ∪ EU ∪ Eε ∪ Eα′ ∪ E′′ where

i) EC ={(v′i, v
U
j , x/y) : (vi, vj , x/y)∈E, x �∈ symb(U), j ∈ {i1, i2, . . . , ik}} ∪

{(v′i, vj , x/y) : (vi, vj , x/y) ∈ E, (x ∈ symb(U) or j �∈ {i1, i2, . . . , ik})}.
EC will again correspond to the transitions to be verified. However, we
have now two different types of edges in EC . If the input symbol of the
transition is not one of the input symbols in symb(U) (i.e. it does not
appear in any of the UIO sequences provided), and there exists a UIO
sequence Ūj ∈ U for the recognition of final state sj of the transition,
then the edge is connected to the node vU

j . Otherwise, the edge will be
connected to the node vj .

ii) ET = {(vi, v
′
j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. There is no

change in this component.
iii) EU = {(vU

i , v′j , Ūi/λ(si, Ūi)) : Ūi ∈ U , sj = δ(si, Ūi)}. If Ūi ∈ U is a UIO
sequence for a state si, then we place the outgoing edge from vU

i for the
UIO recognition, hence it has the label Ūi/λ(si, Ūi).

iv) Eε = {(vU
i , v′i, ε) : Ūi ∈ U}. If Ūi ∈ U is a UIO sequence for a state si,

then we insert an ε edge from vU
i to vi for increased flexibility of using

T̄i from vi (or an α′–sequence outgoing from vi, if exists) for recognizing
the end state of an edge in EC that ends in vU

i .
v) Eα′ = {(vi, v

′
j , ᾱ

′
k) : ᾱ′

k ∈ A, ᾱ′
k = T̄i . . . T̄l, initial(T̄i) = si, f inal(T̄l) =

sj}. There is no change in this component.
vi) E′′ ⊆ {(v′i, v

′
j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is again a subset of the copies

of the edges in E placed between the corresponding nodes in U ′. E′′ is
selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected.

As in the case of the previous method, a tour is found in G′ that includes all
the edges in Eα′ ∪ EC . Figure 6 shows a tour in G′ given in Figure 5. The tour
includes the necessary edges, and hence can be used to form a checking sequence
as explained below.

(v1, v
′
3, ᾱ

′
1)(v′

3, v2, b/1)(v2, v
′
1, T̄2)(v′

1, v2, a/0)(v2, v
′
1, T̄2)(v′

1, v3, b/0)(v3, v
′
2, T̄3)

(v′
2, v

U
3 , a/0)(vU

3 , v′
2, Ū3/λ(s3, Ū3))(v′

2, v3, b/0)(v3, v
′
2, T̄3)(v′

2, v
′
3, a/0)(v′

3, v1, a/1)

Fig. 6. An tour in the modified G′

The checking sequence constructed based on the tour given in Figure 6 would
be the label of the path of Figure 6 followed by D̄. Hence the length of the
checking sequence is 26. The length of the new checking sequence is 1 less than
the length of the checking sequence produced by the previous method.

272 M.C. Yalcin and H. Yenigun

6 Conclusion and Future Work

We have shown that, for a FSM M with a distinguishing sequence, UIO sequences
for states can also be used to recognize states in a checking sequence. Existing
methods in the literature use only distinguishing sequences to recognize states in
a checking sequence when M has a distinguishing sequence. However, when an
FSM M has a distinguishing sequence, the states of M may have shorter UIO
sequences. Therefore using UIO sequences instead of distinguishing sequences
may result in shorter checking sequences. We have given an example of such a
case, where the length of the checking sequence is reduced.

We have also shown how a checking sequence that uses UIO sequences for state
recognition can be constructed by modifying an already existing checking se-
quence construction technique, which is based on using distinguishing sequences
only for state recognition.

It is assumed that we are given a set of UIO sequences to be used for state
recognition. Further research is required to compute a set of UIO sequences for an
FSM M , that will help shortening the length of a checking sequence. Intuitively,
if for a state sj , there is a large number of transitions incoming into the state sj ,
and if we can find a UIO Ūj for sj such that a small number of different input
symbols appear in Ūj , then heuristically, using Ūj for recognizing sj seems to be
promising to reduce the length of the checking sequence.

This paper shows that it is possible to decrease the length of a checking
sequence using the method proposed. However, an experimental study would
also be useful to understand the magnitude of a typical reduction.

References

1. Tanenbaum, A.S.: Computer Networks. 3rd edn. Prentice Hall International Edi-
tions, Prentice Hall (1996)

2. Gill, A.: Introduction to the Theory of Finite–State Machines. McGraw–Hill, New
York (1962)

3. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey (1964) 95–110

4. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84(8) (1996) 1089–1123

5. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works 15 (1988) 285–297

6. Kohavi, Z.: Switching and Finite Automata Theory. McGraw–Hill, New York
(1978)

7. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43(3) (1994) 306–320

8. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19 (1970) 551–558

9. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46(1) (1997) 93–99

Using Distinguishing and UIO Sequences Together in a Checking Sequence 273

10. Aho, A., Dahbura, A., Lee, D., Uyar, M.: An optimization technique for protocol
conformance test generation based on UIO sequences and rural chinese postman
tours. IEEE Transactions on Communications 39(11) (1991) 1604–1615

11. Chan, W., Vuong, C., Otp, M.: An improved protocol test generation procedure
based on UIOS. ACM SIGCOMM Computer Communication Review 19(4) (1989)
283–294

12. Tekle, K.T., Ural, H., Yalcin, M.C., Yenigun, H.: Generalizing redundancy elimina-
tion in checking sequences. In: 20th International Symposium on Information and
Computer Sciences (ISCIS). Volume 3733 of Lecture Notes in Computer Science.,
Istanbul, Turkey (2005) 915–926

13. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51(9) (2002) 1111–1117

14. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE
Transactions on Computers (2004) accepted for publication.

Abstract. There are two main shortcomings in the existing models for
generating checking sequences based on distinguishing sequences. First, these
models require a priori selection of state recognition sequences (called α-
sequences) which may not be the best selection for yielding substantial
reduction in the length of checking sequences. Second, they do not take
advantage of overlapping to further reduce the length of checking sequences.
This paper proposes an optimization model that tackles these shortcomings to
reduce the lengths of checking sequences beyond what is achieved by the
existing models by replacing the state recognition sequences with a set of basic
sequences called α-elements and by making use of overlapping.

1 Introduction

To ensure the correct functioning of implementations of a Finite State Machine
(FSM) M, a fault detection experiment can be formed [14]: Such an experiment
consists of applying an input sequence (derived from M) to an implementation N of
M, observing the actual output sequence produced by N in response to the application
of the input sequence, and comparing the actual output sequence to the expected
output sequence. The applied input sequence is called a checking sequence which
determines whether N is a correct or faulty implementation of M [8, 10].

A checking sequence of M is constructed in such a way that the output sequence
produced by N in response to the application of the checking sequence provides
sufficient information to verify that every state transition of M is implemented
correctly by N. That is, in order to verify the implementation of a transition from state
a to state b under input x, 1) N is transferred to the state recognized as state a of M; 2)
the output produced by N in response to x is checked to be as specified in M (to detect
an output fault); and 3) the state reached by N after the application of x is recognized
as state b of M (to detect a transfer fault). Hence, a crucial part of testing the correct
implementation of each transition is recognizing the starting and terminating states of
the transition which can be achieved by a distinguishing sequence [8], a
characterization set [8] or a unique input-output (UIO) sequence [6]. A distinguishing
sequence for M is an input sequence for which each state of M produces a distinct
output sequence. It is known that a distinguishing sequence may not exist for every

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 274 – 288, 2006.
© IFIP International Federation for Information Processing 2006

minimal FSM [14], and that determining the existence of a distinguishing sequence
for an FSM is PSPACE-complete [15]. However, based on distinguishing sequences,
various methods have been proposed for FSM based testing (e.g., [4, 9-11, 16, 17]).

Reducing the Lengths of Checking Sequences
by Overlapping

Hasan Ural and Fan Zhang

School of Information Technology and Engineering, University of Ottawa
ural@site.uottawa.ca, fzhang@site.uottawa.ca

Recent methods for constructing reduced length checking sequences based on
distinguishing sequences utilize optimization models. In these models, a
distinguishing sequence for M is used to form both α-sequences and test segments
[11, 16]. The α-sequences, which consist of consecutive applications of the
distinguishing sequence for M, are formed to ensure that each state of M is also a
distinct state of N; the test segments, which consist of the application of the input
triggering the corresponding transition and the distinguishing sequence for M, are
formed to verify that every state transition of M is implemented correctly by N. The
α-sequences collectively confirm that if N produces the corresponding distinct output
sequence for each state of M, then the distinguishing sequence for M is also a
distinguishing sequence for N, that is, the distinguishing sequence used in the
formation of the α-sequences defines a bijection between states of M and N. Thus,
when a path P of the directed graph G representing M is formed such that the input
sequence that induces P on G covers each α-sequence and each test segment, that
input sequence is a checking sequence of M.

In these models, however, there are two main shortcomings. These models require
a priori selection of a set of α-sequences which may not guarantee a substantial
reduction in the length of a resulting checking sequence. Also, these models connect
the α-sequences and test segments to form a checking sequence and thus do not take
advantage of potential overlapping among the α-sequences and test segments that
could be used to further reduce the lengths of checking sequences.

This paper proposes a novel optimization model that tackles these shortcomings in
generating the minimal-length checking sequences: The proposed model does not
require selection of α-sequences in advance. It employs a set of α-elements where
there is an α-element for each state of M which consists of the application of the
distinguishing sequence for M twice. The set of α-elements are then used for the same
purpose as the α-sequences in the earlier models. The proposed model does not
simply connect the α-sequences and test segments to form a checking sequence. It
facilitates the use of overlapping among the α-elements and test segments to further
reduce the lengths of resulting checking sequences.

In the remainder of the paper, the proposed model is presented after some
preliminary definitions. An example is used to illustrate the model and the steps of its
construction. It is then proven that the proposed model constructs a checking
sequence. The extensions and the potential uses of the model are discussed in the
concluding remarks.

2 Preliminaries

A deterministic and completely specified FSM (finite state machine) is a quintuple M
= (S, X, Y, δ, λ), where S = {s

1
, s

2
, ..., s

n
} is a finite set of states with n = |S| and s

1
 ∈ S

as the initial state, X is a finite set of inputs, Y is a finite set of outputs, δ is a state

Reducing the Lengths of Checking Sequences by Overlapping 275

transition function that maps S×X to S, and λ is an output function that maps S×X to Y.
M is minimal if, for any different states s

i
, s

j
 ∈ S, there is an input sequence I ∈ X*

such that λ(s
i
, I) ≠ λ(s

j
, I). M can be represented by a directed graph (digraph) G = (V,

E) (Figure 1) where a set of vertices V = {v
1
, v

2
, ..., v

n
} represents the set of states of

M and a set of directed edges E={(v
j
, v

k
; x/y): v

j
, v

k ∈ V} represents all specified
transitions of M. More specifically, each edge e = (v

j
, v

k
; x/y) ∈ E represents a state

transition t = (s
j
, s

k
; x/y) of M from state s

j
 to s

k
 with input x ∈ X and output y ∈ Y, and

the (input/output) pair x/y is the label of e.
A path P = (n

1
, n

2
; x

1
/y

1
)(n

2
, n

3
; x

2
/y

2
) ... (n

r-1
, n

r
; x

r-1
/y

r-1
), r > 1, of G = (V, E) is a

finite sequence of adjacent (not necessarily distinct) edges in E, where each node n
i
, 1

≤ i ≤ r, represents a vertex of V; n
1
 and n

r
 are called start and end of P, and the

input/output sequence (x
1
/y

1
)(x

2
/y

2
) ... (x

r-1
/y

r-1
) is called label of P, denoted label(P). P

is represented by (n
1
, n

r
; I/O), where I/O is called the transfer sequence T from n

1
 to

n
r
, I = “x

1
x

2
 ... x

r-1
” is called the input portion of I/O, O = “y

1
y

2
 ... y

r-1
” is called the

output portion of I/O. In this case, I (or I/O) is said to induce P at n
1
. The length (or

cost) of an input sequence I (or input/output sequence I/O) is its number of inputs,
denoted |I| (or |I/O|). The length (or cost) of a path P = (n

1
, n

r
; I/O) is the length (or

cost) of the input sequence I, denoted |P|. A sequence i1 i2 … ik is a subsequence of x1
x2 … xm if there exists a Δ, 0 ≤ Δ ≤ m-k, such that for all j, 1 ≤ j ≤ k, ij = xj+Δ.
Subsequence i1 i2 … ik is a prefix of x1 x2 … xm if i1 = x1.

A digraph G = (V, E) is strongly connected if, for every pair of vertices vj and vk,
there exists a path from vj to vk. A Rural Postman (RP) path from vertex v

i
 to vertex

v
j
 over a subset of edges E' in G = (V, E) is a path which starts at v

i
, ends at v

j
, and

includes all edges of E'; the Rural Chinese Postman (RCP) Problem is to find an RP
path of minimum cost i.e., an RCP path, which is the optimization model we will
formulate. Algorithms for solving the RCP problem and its special cases important to
testing can be found in [1, 16], which are left outside of the scope of this paper.

Let M = (S, X, Y, δ, λ) denote a completely specified, minimal, and deterministic
FSM, which is represented by a strongly connected digraph G = (V, E). Given an
FSM M, let Φ(M) be the set of FSMs each of which has at most n states and the same
input and output sets as M. Let N be an FSM of Φ(M). N is isomorphic to M if there
is a one-to-one and onto function f on the state sets of M and N such that for any state
transition (si, sj; x/y) of M, (f(si), f(sj); x/y) is a transition of N. A checking sequence of
M is an input sequence starting at the initial state s1 of M that distinguishes M from
any N of Φ(M) that is not isomorphic to M i.e., the output sequence produced by any
such N of Φ(M) is different from the output sequence produced by M. In the context
of testing, this means that in response to this input sequence, any faulty
implementation N from Φ(M) will produce an output sequence different from the
expected output, thereby indicating the presence of a fault(s). As stated earlier, a
crucial part of testing the correct implementation of each transition of M in N from
Φ(M) is recognizing the starting and terminating states of the transition which lead to
the notions of state recognition and transition verification used in algorithms for
constructing checking sequences (for example, [11], [16]). These notions are defined
below in terms of a given distinguishing sequence D for FSM M.

276 H. Ural and F. Zhang

A distinguishing sequence (DS) of M is an input sequence D such that the output
sequence produced by M in response to D is different for each state of M (i.e., ∀ si, sj
∈ S, si ≠ sj, λ(si, D) ≠ λ(sj, D)). A distinguishing sequence for FSM M0 is shown in
Table 1. Based on this definition, the concepts of state recognition and transition

verification can be defined as follows. Let an IO-sequence Q be the label of a path P
= e1e2 …er of G starting at v1, where ej = (nj, nj+1; xj/yj) for all j, 1 ≤ j ≤ r, i.e., Q =
(x1/y1)… (xr/yr). Then the following defines state recognition and transition
verification as in [16].

1

3

2

t
3
:a/0

t
1
:a/0

t
5
:a/1

t
4
:b/0

t
2
:b/1

t
6
:b/1

Fig. 1. FSM M0

Table 1. A DS D = “aa” and responses of each state of FSM M0

Start state End state D = “aa”
1 3 00
2 1 01
3 2 10

Recognition of a node ni of P (in Q) as some state of M is defined recurrently and is
associated with a nonnegative number depth(ni): Let depth(ni) = ∞ initially;

• 1) A node ni of P is d-recognized (in Q) as some state s of M if ni is the start of a
subpath of P whose label is D/λ(s, D); depth(ni) ← 0.

• 2) Suppose that (nq, ni; T) and (nj, nk; T) are subpaths of P such that nodes nq and nj
are d-recognized as state s of M, and nk is d-recognized as state s' of M but ni is not
d-recognized. Then, node ni is t-recognized as state s' of M; depth(ni) ← 1.

• 3) Suppose that (nq, ni; T) and (nj, nk; T) are subpaths of P such that nq and nj are
either d-recognized or t-recognized as state s of M, and nk is either d-recognized or
t-recognized as state s' of M. Then, node ni is t-recognized as state s' of M;
depth(ni) ← min{depth(ni), 1 + max{depth(nq), depth(nj), depth(nk)}}.

• A node of P is said to be recognized if it is either d-recognized or t-recognized as
some state of M.

A transition t = (s, s'; x/y) of M is verified (in Q) if there is an edge (ni, ni+1; xi/yi) of P
such that nodes ni and ni+1 are recognized as states s and s' of M, and xi/yi =x/y.

Verification of the transitions of M leads to forming checking sequences as shown
in Theorem 1 below, which forms the foundation for our proposed model.

Reducing the Lengths of Checking Sequences by Overlapping 277

Theorem 1 [16] Let Q be the label of a path P of G (for FSM M) such that every
transition is verified in Q. Then the input portion of Q is a checking sequence of M.

In the proposed model, recognition of nodes n
i
 and n

i+1
 of edge (n

i
, n

i+1
; x

i
/y

i
) of P

(of G for FSM M), which corresponds to the transition t = (s, s'; x/y) of M, will be
achieved as follows. The node n

i+1
 will be d-recognized in Q as state s' of M, hence

there must be a subpath (n
i+1

, n
k
; D/λ(s', D)) of P. This subpath of P will be used to

construct a test segment for t = (s, s'; x/y), which is denoted t' = (n
i
, n

i+1
; x

i
/y

i
)(n

i+1
, n

k
;

D/λ(s', D)) (or t' = (n
i
, n

k
; xiD/λ(s, xiD)) in short). The collection of test segments for

all transitions of M will be denoted PC, i.e., PC = {(si, sj; x/y)(sj, δ(sj, D); D/λ(sj, D)):
for all t = (si, sj; x/y) of M} (or PC = {(si, δ(si, xD); xD/λ(si, xD)): for all t = (si, sj; x/y)
of M} in short). Table 2 shows PC for FSM M0.

Table 2. Test Segments of FSM M0 with DS D = “aa”

k 1 2 3 4 5 6
tk (1, 2; a/0) (1, 3; b/1) (2, 3; a/0) (2, 1; b/0) (3, 1; a/1) (3, 3; b/1)
tk' (1,1;aD

/001)
(1,2;bD
/110)

(2,2;aD
/010)

(2,3;bD
/000)

(3,3;aD/
100)

(3,2;bD
/110)

The node n
i
 of P will be t-recognized in Q as state s of M, hence there must be

subpaths (n
j
, n

k
; T) and (n

q
, n

i
; T) of P such that n

j
 and n

q
 are either d-recognized or t-

recognized as state s of M, and n
k
 is either d-recognized or t-recognized as state s' of

M. These subpaths will be formed by using what is called α-elements. A set of α-
elements for M is a set of paths {αi = (si, δ(si, D); D/λ(si, D))(δ(si, D), δ(δ(si, D), D);
D/λ(δ(si, D), D)): i = 1, …, n} (or {αi = (si, δ(si, DD); DD/λ(si, DD)): i = 1, …, n} in
short), denoted by Pα . For example, Table 3 shows Pα for FSM M0 with D = “aa”.

Proposition 1: Let Q be the label of a path P of G (for FSM M with a distinguishing
sequence D) such that Q contains n subsequences of the form DD/λ(si, DD), i = 1, …,
n. If Q induces a path in N of Φ(M) then D is also a distinguishing sequence for N
and defines a bijection from the states of M to the states of N.

Proof: Since D is a distinguishing sequence for M, each of these subsequences of the
form D/λ(si, D), which is a prefix of DD/λ(si, DD), i = 1, …, n, is unique. If Q induces
a path of N from Φ(M) then, since N has at most n states, D must also be a
distinguishing sequence for N. This says that if n different responses to D are
observed in N, then D defines a one-to-one correspondence between the states of M
and N. In this case, we say that the uniqueness of the response of each of the n states
of N to D is verified and hence N has n distinct states [13]. �

Proposition 2: Let Q be the label of a path P of G (for FSM M with a distinguishing
sequence D) such that each α-element αi = (si, δ(si, DD); DD/λ(si, DD)), i = 1, …, n,
is a subpath P of G. Then, for each (si, δ(si, D); D/λ(si, D)), 1 ≤ i ≤ n, appearing in P
as a subpath (n

j
, n

k
; D/λ(si, D)),

1. the start node n
j
 of (n

j
, n

k
; D/λ(si, D)) is d-recognized

2. the end node n
k
 of (n

j
, n

k
; D/λ(si, D)) is t-(or d-)recognized

278 H. Ural and F. Zhang

:

recognized, the end node n
k
 of (n

j
, n

k
; D/λ(si, D)) must be t-recognized as δ(si, D) if it

is not d-recognized, by the definition of state recognition. �

Table 3. α-elements for FSM M0 (with D = “aa”)

3 The Optimization Model

We wish to pose the following optimization problem: Given an FSM M (represented
by a digraph G= (V, E)) and DS D for M, generate a minimum-length checking
sequence of M starting at the initial state s1 through composing an RCP path P of G
which starts at v1 and contains every element of Pα∪PC. As in the earlier models for
constructing reduced length checking sequences based on distinguishing sequences, it
will be shown that since this RCP path P of G contains every element of Pα∪PC, it
establishes that all states of M are recognized and all transitions of M are verified.

In order to reduce the overall length of the resulting checking sequence, we will
take advantage of the overlapping among elements of Pα∪PC in generating a
minimum-length checking sequence in our model as follows: Let P1 and P2 denote
two paths of G. If P1 has a suffix R that is a prefix of P2, namely, P1 = R1R and P2 =
RR2 for some paths R1 and R2 of G, we say that P1 overlaps P2 by R. In this case, a
new path P1,2 of G can be formed by overlapping P1 and P2 by R, namely, P12 = R1RR2,
with |P12| = |P1| + |P2| − |R|. Furthermore, if label(P2) has D as the prefix of its input
portion, we call overlap of this type D-overlap by R. This definition offers a way to
check if P1 D-overlap P2 or not by first checking if D is the prefix of the input portion
of label(P2) and then identifying the maximal overlapping portion R.

D-overlap of a sequence of paths (of G) P1, P2, …, Pk, where k > 2, can be defined
inductively as follows: If D-overlapping of the sequence P1, …, Pk-1 forms a new path
P1,k-1 and if this P1,k-1 D-overlaps Pk forming a path P1,k, then D-overlapping of the
sequence P1, P2, …, Pk forms P1,k.

The proposed algorithm for the solution of the optimization problem augments G =
(V, E) to form a digraph G* = (V*, E*) and then formulates the construction of a
minimum-length checking sequence for M starting at the initial state s1 as finding an
RCP path P of G* which starts at v1 and contains every element of Pα∪PC.

The proposed algorithm is given as follows:
Initially, G* = (V*, E*) ← G = (V, E)

1. For every τ = (si, sj; Iτ /Oτ) that is either an α-element or a test segment,
a) add to V* two new vertices s'iτ , s"jτ for the start and end states of τ, resp.
b) add to E*

 Start state si End state label(αi) = DD/λ(si, DD)
α1 1 2 aaaa/0010
α2 2 3 aaaa/0100
α3 3 1 aaaa/1001

Reducing the Lengths of Checking Sequences by Overlapping 279

Proof: Part 1) is a direct consequence of the definition state recognition. Part 2) can
easily be shown as follows. The α-element αi = (si, δ(si, DD); DD/λ(si, DD)) appears
in P as a subpath (n

q
, n

r
; D/λ(si, D))(n

r
, n

v
; D/λ(δ(si, D), D)). As n

q
, n

r
 and n

j
 are d-

2. a) Add to V* an artificial node s1* (representing the initial state s1)
 b) Add to E* an edge (s1*, s'1τ) with cost 0, for each of those τ = (s1, sj; Iτ /Oτ) ∈
Pα∪PC such that D is a prefix of Iτ

3. For any pair of two different τ = (si, sj; Iτ /Oτ) and µ = (sk, sr; Iµ /Oµ), each being
either an α-element or a test segment, such that τ D-overlaps µ by R (which can be
determined by first checking if D is the prefix of Iµ and if yes then identifying the
maximal overlapping portion R of τ and µ), add to E* an edge (s"jτ , s'kµ) with
(negative) cost –|R| (which reflects the effect of D-overlapping).

4. Find an RCP path P of G* starting from s1* traversing at least once the edges
representing the α-elements and the test segments. Use the input portion of
label(P) as a checking sequence of M.
More specifically, the algorithm is as follows:
Construct G* = (V*, E*) whose vertex-set and edge-set are
V* = V ∪ V' ∪ V" ∪ { s1*} and E* = E ∪ E0 ∪ Eα ∪ EC ∪ E' ∪ E" ∪ ΕD
from G = (V, E) representing a given FSM M, where
 V' = {s'iτ : for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC},
 V" = {s"jτ : for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC},

E0 = {(s1*, s'1τ; ε) with cost 0: for all τ = (s1, sj; Iτ /Oτ) ∈ Pα∪PC
 such that D is a prefix of Iτ },

 Eα = {(s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|: for all τ = (si, sj; Iτ /Oτ) ∈ Pα},
 EC = {(s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|: for all τ = (si, sj; Iτ /Oτ) ∈ PC},
 E' = {(si, s'iτ; ε) with cost 0: for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC},
 E" = {(s"jτ , sj; ε) with cost 0: for all τ = (si, sj; Iτ /Oτ) ∈ Pα∪PC}, and

ΕD = {(s"jτ , s'kµ; ε) with cost −|R|: for all τ = (si, sj; Iτ /Oτ), µ = (sk, sr; Iµ /Oµ) ∈
 P α∪P C such that τ D-overlaps µ by some R}.

Find an RCP path P of G* that starts at s'1τ and contains all edges of Eα∪EC.
The input portion of label(P) is a checking sequence of M.

Example: For FSM M0 with D = “aa”, Table 4 shows D-overlapping between pairs of
elements of Pα∪PC and the resulting negative cost from each overlapping. More
specifically, it shows all pairs τ, µ ∈ Pα∪PC such that τ D-overlaps µ by R with
negative cost −|R|. Figure 2 shows an example of the result of application of the
proposed algorithm to G (for M0), using only part of D-overlapping in Table 4 (so that
Figure 2 does not become too complicated to follow). In Figure 2, thick lines
represent edges of Eα∪EC and for simplicity, s'i, s"j are used for s'iτ and s"jτ. Note that
in Tables 4-6, we dropped output portion of the paths for ease of presentation. An
RCP path P (starting at vertex 1* and ending at vertex 2") is found as

P = (1*,1'; ε)t1'-α1-t3'-α2-t5'-α3 (1",1; ε)(1,1'; ε)t2'(2",2; ε)(2,2'; ε)t4'(3",3; ε)(3,3'; ε)t6'

where each hyphen sign indicates an occurrence of D-overlapping. Its corresponding
input sequence (without overlapping) is:

 “εaaa-aaaa-aaa-aaaa-aaa-aaaaεεbaaεεbaaεεbaa”.

280 H. Ural and F. Zhang

• an edge (s'iτ , s"jτ ; Iτ /Oτ) with cost |Iτ|
• an edge (s"jτ , sj) with cost 0
• an edge (si, s'iτ) with cost 0

Table 4. Overlapping among Pα∪PC for FSM M0

τ = P1 µ = P2 R −|R| E ∈ ED Inuse*
α1 = (1, 2, aaaa) α2 = (2, 3; aaaa) (2, 2; aaa) −3 (2τ", 2µ') y

 α1 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y
 α1 t'1 = (1, 1; aaa) (1, 2; a) −1 (2τ", 1µ')
 α1 t'3 = (2, 2; aaa) (2, 2; aaa) −3 (2τ", 2µ') y
 α1 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ')

α2 = (2, 3; aaaa) α1 = (1, 2, aaaa) (1, 3; aa) −2 (3τ", 1µ') y
 α2 α3 = (3, 1; aaaa) (3, 3; aaa) −3 (3τ", 3µ') y
 α2 t'1 = (1, 1; aaa) (1, 3; aa) −2 (3τ", 1µ')
 α2 t'3 = (2, 2; aaa) (2, 3; a) −1 (3τ", 2µ')
 α2 t'5 = (3, 3; aaa) (3, 3; aaa) −3 (3τ", 3µ') y

α3 = (3, 1; aaaa) α1 = (1, 2, aaaa) (1, 1; aaa) −3 (1τ", 1µ') y
 α3 α2 = (2, 3; aaaa) (2, 1; aa) −2 (1τ", 2µ') y
 α3 t'1 = (1, 1; aaa) (1, 1; aaa) −3 (1τ", 1µ') y
 α3 t'3 = (2, 2; aaa) (2, 1; aa) −2 (1τ", 2µ')
 α3 t'5 = (3, 3; aaa) (3, 1; a) −1 (1τ", 3µ')

t'1 = (1, 1; aaa) α1 = (1, 2, aaaa) (1, 1; aaa) −3 (1τ", 1µ') y
 t'1 α2 = (2, 3; aaaa) (2, 1; aa) −2 (1τ", 2µ') y
 t'1 α3 = (3, 1; aaaa) (3, 1; a) −1 (1τ", 3µ')
 t'1 t'3 = (2, 2; aaa) (2, 1; aa) −2 (1τ", 2µ') y
 t'1 t'5 = (3, 3; aaa) (3, 1; a) −1 (1τ", 3µ')

t'2 = (1, 2; baa) α1 = (1, 2, aaaa) (1, 2; a) −1 (2τ", 1µ')
 t'2 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y
 t'2 t'1 = (1, 1; aaa) (1, 2; a) −1 (2τ", 1µ')
 t'2 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ') y

t'3 = (2, 2; aaa) α1 = (1, 2, aaaa) (1, 2; a) −1 (2τ", 1µ')
 t'3 α2 = (2, 3; aaaa) (2, 2; aaa) −3 (2τ", 2µ') y
 t'3 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y
 t'3 t'1 = (1, 1; aaa) (1, 2; a) −1 (2τ", 1µ')
 t'3 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ') y

t'4 = (2, 3; baa) α1 = (1, 2, aaaa) (1, 3; aa) −2 (3τ", 1µ') y
 t'4 α2 = (2, 3; aaaa) (2, 3; a) −1 (3τ", 2µ')
 t'4 t'1 = (1, 1; aaa) (1, 3; aa) −2 (3τ", 1µ') y
 t'4 t'3 = (2, 2; aaa) (2, 3; a) −1 (3τ", 2µ')

t'5 = (3, 3; aaa) α1 = (1, 2, aaaa) (1, 3; aa) −2 (3τ", 1µ')
 t'5 α2 = (2, 3; aaaa) (2, 3; a) −1 (3τ", 2µ')
 t'5 α3 = (3, 1; aaaa) (3, 3; aaa) −3 (3τ", 3µ') y
 t'5 t'1 = (1, 1; aaa) (1, 3; aa) −2 (3τ", 1µ') y
 t'5 t'3 = (2, 2; aaa) (2, 3; a) −1 (3τ", 2µ')

t'6 = (3, 2; baa) α1 = (1, 2, aaaa) (1, 2; a) −1 (2τ", 1µ')
 t'6 α3 = (3, 1; aaaa) (3, 2; aa) −2 (2τ", 3µ') y
 t'6 t'1 = (1, 1; aaa) (1, 2; a) −1 (2τ", 1µ')
 t'6 t'5 = (3, 3; aaa) (3, 2; aa) −2 (2τ", 3µ') y

Reducing the Lengths of Checking Sequences by Overlapping 281

The last column with “y” indicates the overlapping is used in Figure 2 for
generating an RCP path. The ones with blank space indicated the overlapping is not
considered in Figure 2 as we do not want the Figure too complicated.

1

3

2

t
3

t
1

t
5

t
4

t
2

DD1' 2"

2' 3"DD

3' 1"DD

1' 1"t
1
'

t
2
'

2' 2"t
3
'

t
4
'

3' 3"t
5
'

t
6
'

- 2

- 2-2

- 2

- 2

- 2

- 2

-3

-2

- 3

3' 2"

- 2

2' 3"

1' 2"

-3

- 2

- 2

- 2

- 3

- 3

- 3

- 2
- 3

- 3

- 3

1*

- 2

Fig. 2. Optimization Model for FSM M0

282 H. Ural and F. Zhang

The checking sequence obtained from P with D-overlapping starting at state 1 is
 “εaaa-aaaa-aaa-aaaa-aaa-aaaa baa baa baa”

whose length is 15.
For the same example, a reduced length checking sequence was found to have

length 32 in [11].

Note that D-overlapping between two elements Pα∪PC is shown explicitly in the
optimization model whereas D-overlapping among a sequence of elements are formed

Theorem 2: Let P be an RCP path of G0 = (V, E ∪ Eπ) such that P starts at v1 and
contains every edge of Eπ and D is the prefix of the input portion of its label Q. Let E1
denote the set of edges of P after excluding Eπ, i.e., E1 = E(P) ∩ E. If G1 = (V, E1)

does not contain a cycle, then the input portion of Q forms a checking sequence of M.

Proof: Suppose that P = (n
1
, n

2
; L

1
)… (n

r
, n

r+1
; L

r
) and its label Q = L

1
L

2
...L

 r
, where

each (n
j
, n

j+1
; L

j
), 1 ≤ j ≤ r, is an edge (of G0) representing either a single edge or a

subpath of G = (V, E). First we claim that every n
j
 of P, 1 ≤ j ≤ r, is recognized (in Q).

Suppose the claim is not true. Since G1 = (V, E1) does not contain a cycle, it is well
known [2] that the vertices of V can be assigned an order "∝" such that u ∝ v if there
exists a path from u to v in G1. Let n

i
 be a node corresponding to the smallest member

of V (with respect to "∝") such that n
i
 is not recognized. Note that i > 1 as n

1
 is d-

recognized. We consider (n
i-1

, n
i
; L

i-1
) of P and derive a contradiction for each of all

possible cases below.
If (n

i-1
, n

i
; L

i-1
) corresponds to an edge of Eπ, then n

i
 corresponds to the end of either

an α-sequence or a test segment, which must be t-recognized, a contradiction. If (n
i-1

,
n

i
; L

i-1
) ∈ E1, i.e., (n

i-1
, n

i
; L

i-1
) = (u, v; x/y) ∈ E, then n

i-1
 is recognized as u ∝ n

i
. Note

that P contains the test segment for this edge of E, say (n
j
, n

j+1
; L

j
) where L

j
 =

(xDv)/λ(u, xDv). As n
j
 corresponds to u ∝ n

i
, n

j
 is recognized. Also the node adjacent

to n
j
 in the subpath (n

j
, n

j+1
; L

j
), δ(n

j
, x), is d-recognized. Thus, n

i
 is t-recognized as

δ(u, x) of M, another contradiction. Therefore, every n
i
 is recognized.

For every transition t of M, its test segment t' is contained in a subpath Pi (of P)
represented by an edge (n

i-1
, n

i
; L

i-1
) of P. If the start state of t' is n

i-1
, from the

argument above, n
i-1

 recognized; otherwise, t' is contained through D-overlapping, its
start state is d-recognized. Hence, t' is verified in Q, and by Theorem 1, the input
portion of Q is a checking sequence of M. �

Correctness of the proposed algorithm is a direct consequence of Theorem 2.
Notice that Eπ is formed naturally in the process of solving for an RCP path P of G*.
The RCP path P of G* can be viewed as a path of G0 = (V, E∪Eπ), by mapping the
nodes of P into the corresponding vertices of G. Thus, as long as the premise of
Theorem 2 holds, the correctness of the proposed algorithm is guaranteed.

Up to this point, we have presented the proposed optimization model with a
simplification for ease of presentation. This simplification is in the formation of α-
elements, that is, instead of using a more general form DTiDTj, where Ti, Tj are
transfer sequences, we used DD (equivalently, assumed Ti = Tj = ε). In the previous
models [11, 16] for constructing reduced-length checking sequences, a given set of
transfer sequences Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n, is used for two main

Reducing the Lengths of Checking Sequences by Overlapping 283

automatically in the process of finding an RCP path P and can be identified in P. To
prove the correctness of the proposed algorithm, let Π denote a set paths (of G)
obtained from D-overlapping among elements (paths) of Pα∪PC, such that every
element of Pα∪PC is a subpath of a path of Π. In G*, such a Π is naturally formed to
consist of the maximal paths generated from D-overlapping among elements of
Pα∪PC and those elements of Pα∪PC not contained in any D-overlapping path. Let Eπ
be a set of edges, whose end vertices are in V of G, that represent the paths of Π.

Let Pα = {(si, sj; DIi/λ(si, DIi))(sj, δ(sj, DIj); DIj/λ(sj, DIj)): i = 1, …, n} and PC =
{(si, sj; x/y)(sj, λ(sj, DIj); DIj/λ(sj, DIj)): for all t = (si, sj; x/y) of M}.

This adjustment amounts to replacing subsequences of the form DD/λ(si, DD) with
subsequences of the form DIiDIj/λ(si, DIiDIj), i = 1, …, n, 1≤ j ≤ n as the labels of α-
elements; and replacing subsequences of the form xD/λ(si, xD) with subsequences of
the form xDIj/λ(si, xDIj), i = 1, …, n, 1≤ j ≤ n as the labels of test segments. As such,
the adjustment does not alter the validity of the Propositions 1 and 2, and Theorem 2:
Their proofs are similar to the proofs of those given for the optimization model
presented in the previous section. With these new Pα and PC, we can apply the
proposed algorithm to solve the same optimization problem as the one given earlier.

Example: For FSM M0, D = “aa”, and a given set of transfer sequences T1 = a/1, T2 =
T3 = ε, the set Pα of α-elements and the set PC of test segments are listed in Table 5
and Table 6 below. Figure 3 shows the general optimization model for FSM M0 with
the given Ti, i = 1, 2, 3. (Note that t1' and t3' are prefixes of α-elements, and thus, they
are eliminated from the model.) We obtain the optimal solution to the general model
as an RCP path P of G* starting at 1* (and ending at state 2"), which is:

P = (1*,1'; ε)t1'-α1-α2-α3-t3'-t5'(1",1; ε)(1,1'; ε)t2'(2",2; ε)(2,2'; ε)t4'(1",1; ε)t2(3,3'; ε)t6'

where each hyphen sign indicates an occurrence of D-overlapping. Its corresponding
input sequence (without overlapping) is:

 εaaa-aaaaaa-aaaaa-aaaa-aaa-aaaεεbaaεεbaaεbεbaa
The checking sequence obtained from P with D-overlapping starting at state 1 is

 aaa-aaaaaa-aaaaa-aaaa-aaa-aaa baa baa b baa
whose length is: 3+3+1+1+3+3+1+3 = 18.

Table 5. α-elements for FSM M0 (with D = “aa”, T1 = a/1, T2 = T3 = ε)

start si λ(si, DIi) sj = δ(si,DIi) λ(sj, DIj) end δ(sj,DIj)
1 001 1 001 1
2 01 1 001 1
3 10 2 01 1

284 H. Ural and F. Zhang

purposes. First, it is used to redefine a set of test segments as PC = {(si, sj; x/y)(sj, λ(sj,
DIj); DIj/λ(sj, DIj)): for all t = (si, sj; x/y) of M}, so that every state can be reached by
at least one of these test segments. Second, it is used to increase the flexibility of the
models to obtain a possible further reduction in the lengths of checking sequences.

Now we present a generalization of the optimization model that incorporates a
given set of transfer sequences Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n through
an adjustment of α-elements and test segments as follows.

Table 6. Test Segments of FSM M0 (with D = “aa”, T1 = a/1, T2 = T3 = ε)

k 1 2 3 4 5 6
tk (1,2; a/0) (1,3; b/1) (2,3; a/0) (2,1; b/0) (3,1; a/1) (3,3; b/1)
tk' (1,1;aD/

001)
(1,2;bD/
110)

(2,2;aD/
010)

(2,1;bDa/
0001)

(3,1;aDa/
1001)

(3,2;bD/
110)

1

3

2

t
3

t
1

t
5

t
4

t
2

DaDa1' 1"

2' 1"DDa

3' 1"DD

1' 1"t
1
'

t
2
'

2' 2"t
3
'

t
4
'

3' 1"t
5
'

t
6
'

- 3

- 2 - 4

- 2

- 2

- 3

- 2

- 3

- 2

- 3

3' 2"

- 2

2' 1"

1' 2"

- 3

- 2

- 2

- 3

- 5

- 4

- 3

1 *

- 3

- 3

- 3

- 2

Fig. 3. The General Model for FSM M0

Reducing the Lengths of Checking Sequences by Overlapping 285

Theorem 3. Given an FSM M represented by graph G, a DS D for M and a set of TS
Ti = Ii/Oi starting at state δ(si, D), i = 1, …, n, the minimum-length checking sequence
constructed by our general model is at least as short as the ones constructed by the
previous optimization models of [11, 16].

This result is longer than the checking sequence produced by the optimization
model presented earlier where all Ti = ε, i = 1, 2, 3. Indeed, an experimental study
reported in [12] confirms the intuitive hypothesis that using empty transfer sequences
results in shorter checking sequences based on distinguishing sequences.

Proof: In the previous models [11, 16], a set of I/O sequences of M is first generated,
where each I/O sequence, called an α-sequence αk in [16], α'-sequence αk' in [11], is
the label of a path Pk (of G, k = 1,…, q) that is formed by concatenating some of the

T k

mk
=(I k

mk
/O k

mk
) is a transfer sequence from δ(v k

mk
, D) to v k

w
, w ∈{1, 2, ..., m

k
}

T k
w

=(I k
w

/O k

w
) is some T k

j , 1≤ j≤ mk, where T k

j , T k

mk
, and T k

w
 may be empty

sequences; or define α'k [11] as above except that v k
w

 may not necessarily be in Vk.
In both models [11, 16], the set of paths P1, ..., Pq is included in the augmented

digraph G* = (V*, E*) as edges in Eα ⊂ E*. The set of test segments, which is {(v
i
,

(δ(v
i
, xDI kj)); (xDI kj)/λ(v

i
, xDI kj)): for every (vi, vj; x/y) ∈ Ε} in [16], is included as

edges in Ec ⊂ E*. The set of test segments is not explicitly formed in [11]. However,
it is implicitly formed since each element of Ec = {(vi, vj; x/y): (vi, vj; x/y) ∈ Ε } is

followed by a (DI kj)/λ(vj, D I kj)) or an α'k. An RCP path P is sought in G* over
Eα ∪ Ec (without considering their overlapping) and the input portion of label(P)
obtained is used as a checking sequence. On the other hand, the general model makes
use of the best available combination of α-elements and makes use of overlapping not
only among Pα but also among Pα∪PC, and thus generates a checking sequence that is
at least as short as the one generated by [11, 16].

4 Conclusions

We have presented an optimization model (and its generalization) that allow any
possible overlapping of α-elements and test segments to construct a minimal-length
checking sequence of a given deterministic, completely specified, minimal and
strongly connected FSM M. The optimal solution of the model is based on all possible
combinations rather than a single a priori selection of a set of state recognition
sequences and on all possible overlapping between the α-elements and test segments.
This model generates a checking sequence that is at least as short as the ones
generated by the previous models [11, 16].

Potential simplifications of the proposed optimization model include the following:
(i) In the model, if a vertex v of G* has only one incoming edge (s, v) and one

outgoing edge (v, s'), it may be merged into another vertex, which simplifies the
model. This is particularly useful when a test segment is not involved in D-

286 H. Ural and F. Zhang

a path P of G, the following requirements are satisfied:

• For each D/λ(si, D)Ti in label(P), 1 ≤ i ≤ n, its start node is d-recognized;
• For each D/λ(si, D)Ti in label(P), 1 ≤ i ≤ n, its end node is t-(or d-)recognized.

αk (or α'k) = label(Pk), 1 ≤ k ≤ q which is formed as follows: Let V={v1, v2, ..., vn}
and let V1, V2, ..., Vq, q ≥ 1, be subsets of V, i.e., Vk ⊆ V, 1 ≤ k ≤ q, whose union is V.
Without loss of generality, assume that Vk = {v k

1
, v k

2
, ..., v k

mk
}, 1 ≤ k ≤ q, and for Vk,

define αk [16] as:α
k =D/λ(v k

1
, D)T k

1
D/λ(v k

2
, D)T k

2
...D/λ(v k

mk
, D)T k

mk
D/λ(v k

w
, D)T k

w

where T k

j =(I kj /O k

j) is a transfer sequence from δ(v kj , D) to v kj 1+ for j = 1, 2, ..., m
k-1

paths {(si, δ(si, DIi); D/λ(si, DIi)): i = 1,…, n}, such that, by including all P1, …, Pq in

It must be noted that the RCP problem is NP-complete [7]. However, for some
systems, the given FSM M has a reset feature, i.e. there is input r such that δ(si, r) = s1
for every state si. With this reset feature, an optimal solution of our proposed model
can be found in polynomial-time and is guaranteed to be a checking sequence for M
as follows. For each transition t of form (si, s1; r/λ(si, r)), i.e., t is triggered by r, its
test segment t' = (si, δ(s1, DI1); (rDI1)/λ(si, rDI1)) is added to the graph G* with both
vertices in V (as no overlapping is involved). These edges consist of a connected
spanning subgraph of G. In this case, the problem of finding an RP path with
minimum cost is reduced to a min-cost flow problem as in [1, 16], which can be
solved in polynomial-time [5].

In the generalized model, a given set of transfer sequences {Ti: i = 1, …, n} is used
together with a DS in forming α-elements and test segments. Although it was shown
experimentally that empty TS (i.e., Ti = ε, i = 1, …, n) leads to shorter checking
sequences [12], the best selection of such a set is unknown and worth further study.

Reducing the Lengths of Checking Sequences by Overlapping 287

References

1. A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, “An optimization technique for
protocolconformance test sequence generation based on UIO sequences and rural Chinese
postmantours”, IEEE Trans. on Comm. vol.39, pp.1604-1615, 1991.

2. J.A.Bondy and U.S.R. Murty, Graph Theory with Applications, New York: Elsevier North
Holland, Inc. 1976.

3. J. Chen, R.M. Hierons, H. Ural and H. Yenigun, “Eliminating redundant tests in a
checkingsequence”, Proc. of IFIP TestCom 2005, May 2005, pp.146-158.

4. T. Chow, “Testing software design modeled by finite-state machines”, IEEE Trans.
Software Eng., vol.SE-4, pp.178-187, 1978.

5. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A. Schrijver, Combinatorial
Optimization, John Wiley and Sons, New York, 1998.

6. A.T. Dahbura, K.K. Sabnani, and M.U. Uyar, “Formal methods for generating protocol
conformance test sequences”, Proc. of IEEE, vol.78, pp.1317-1325, 1990.

7. M.R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman and
Company, New York, 1979.

overlapping. This simplification is clearly applicable to both the proposed model and
its generalization.

(ii) Further simplification may also be achieved by eliminating some test segments
from the model as they are part of the α-elements. The elimination of test segments
that are related to the transitions traversed as the last transition of a path induced by D
in an α-sequence, formed by concatenated DIi/λ(si, DIi)’s where Ii= ε, has been
proposed in [3]. Such elimination can be incorporated into the model as follows: First,
identify the test segments that are covered by α-elements and do not include them in
PC. Then, find an RCP P in the simplified model that contains all α-elements and
those remaining test segments, and use the input portion of label(P) as a checking
sequence. Since the generalization of the proposed model utilizes DIi/λ(si, DIi)’s
where Ii ≠ ε, incorporation of this simplification requires further study.

8. A. Gill, Introduction to the Theory of Finite-State Machines, NY: McGraw-Hill, 1962.
9. G. Gonenc, “A method for the design of fault detection experiments”, IEEE Trans. on

Computer, vol.19, pp.551-558, June 1970.

10. F.C. Hennie, “Fault detecting experiments for sequential circuits”, Proc. 5th. Symp.
Switching Circuit Theory and Logical Design, pp.95-110, Princeton, N.J.,1964.

11. R.M. Hierons and H. Ural, “Reduced length checking sequences”, IEEE Trans. on
Computers, vol.51(9), pp.1111-1117, 2002.

12. R. Hieron and H. Ural, “Optimizing the length of checking sequences”, submitted to IEEE
Trans on Computers, 2004.

13. K. Inan and H. Ural, “Efficient checking sequences for testing finite state
machines”,Information and Software Technology, vol.41, pp.799-812, 1999.

14. Z. Kohavi, Switching and Finite State Automata Theory, McGraw-Hill, 1978.
15. D. Lee and M. Yannakakis, “Testing finite state machines: state identification and

verification", IEEE Trans. on Computers, vol.43, pp.306-320, 1994.
16. H. Ural, X. Wu and F. Zhang, “On minimizing the length of checking sequence”, IEEE

Trans. on Computers, vol.46, pp.93-99, 1997.
17. M.P. Vasilevskii, “Failure diagnosis of automata”, Kibernetika, vol.4, pp.98-108, 1973.

288 H. Ural and F. Zhang

Test Case Minimization for Real-Time Systems
Using Timed Bound Traces�

Ismaïl Berrada1, Richard Castanet1, Patrick Félix1, and Aziz Salah2

1 LaBRI - CNRS - UMR 5800 Université Bordeaux 1,
33405 Talence cedex, France

{berrada, castanet, felix}@labri.fr
2 Département d’Informatique,

Université du Québec à Montréal,
201, avenue du Président-Kennedy, Montreal,

Quebec H2X 3Y7, Canada
aziz.salah@uqam.ca

Abstract. Real-Time systems (RTS for short) are those systems whose
behavior is time dependent. Reliability and safety are of paramount im-
portance in designing and building RTS because a failure of an RTS puts
the public and/or the environment at risk. For the purpose of effective
error reporting and testing, this paper considers the trace inclusion prob-
lem for RTS: given a path ρ (resp. ρ′) of length n of a timed automaton
A (resp. B), find whether the set of timed traces of ρ of length n are
included in the set of timed traces of ρ′ of length n such that A is known
but not B. We assume that the traces of ρ′ are only defined by a decision
procedure.

The proposed solution is based on the identification of a set of timed
bound traces. The latter gives a finite representation of the trace space
of a path. The number of these timed bounds varies between 1 and
2 × (n +1). The trace inclusion problem is then reduced to the inclusion
of timed bound traces. The paper shows also how these results can be
used to reduce the number of test cases for an RTS.

Keywords: Timed Input Output Automata, Trace Inclusion, Black-Box
Testing, Conformance Testing.

1 Introduction

Nowadays, real-time systems (RTS for short) span various domains of our daily
life such as telephone systems, patient monitoring systems, and air traffic con-
trol. All these systems are time sensitive because their behavior does not only
depend on the logical result of the computation but also on the time at which
the inputs and outputs are observed. It is well-known to RTS research commu-
nity that the misbehavior of an RTS is generally due to the violation of time
� This research has been supported by the French RNTL project AVERROES and the

Marie Curie RTN TAROT (MCRTN 505121).

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 289–305, 2006.
c© IFIP International Federation for Information Processing 2006

290 I. Berrada et al.

constraints. Such malfunctioning may have catastrophic consequences on both
human lives and the environment. Therefore, it is very necessary to make sure
that the implementation of an RTS is error-free before its deployment.

Two formal techniques, namely verification and testing, are usually used to
detect errors in RTS systems. Verification aims at checking that a specification
or a model of the system respects some functional and timing requirements.
However, testing deals with the implementation of the system, usually referred
to as Implementation Under Test or IUT for short, and checks its conformance
to the specification of the system in three steps. First of all, test cases are gen-
erated according to some coverage criteria. Then, those test cases are executed
against the IUT and its reactions are logged. Finally, the verdict is concluded by
analyzing the reactions of the IUT: if the behavior of the IUT during test cases
doesn’t conform to its specification, the IUT is said faulty.

In this paper, we study the following problem:

Trace Inclusion Problem. Consider a path ρ (resp. ρ′) of length n ∈ N of a
timed automaton A (resp. B). How to show that TTrace(ρ) ⊆ TTrace(ρ′) such
that:

– ρ is known: the different constraints and clock updates of ρ are given.
– ρ′ is unknown: only the set TTrace(ρ′) is given (the different constraints and

clock updates of ρ′ are unknown).

with TTrace(ρ) (resp. TTrace(ρ′)) are the timed traces of ρ (resp. ρ′) of length
n1.

Our motivation for studying this problem is testing. The testing research
community distinguishes between three main testing strategies: black-box test-
ing, white-box testing, and grey-box testing. Those testing strategies differ from
each other on the way the test cases are generated. In the case of black-box
testing of RTS, the code of IUT is unknown and only its timed traces are given.
Black-box testing consists then of deriving test cases based solely on the spec-
ification of the IUT. The use of so called conformance relations give formal
characterizations of conditions under which an IUT can be considered as con-
formant to its specification. Checking a conformance relation can be reduced,
in general, to the trace inclusion problem between the implementation and the
specification. By studying this problem, the paper gives the necessary and suffi-
cient conditions to check a conformance relation based on trace inclusion. These
conditions can be then used to reduce the number of test cases considered for
testing an RTS.

The main contribution of this paper is the proposition of a solution to the trace
inclusion problem. The proposed solution is based on the identification of the
timed bound traces of a path. The latter considers only the behaviors of the RTS
on the constraint bounds. Their number varies between 1 and 2× (n+1), where
n is the length of the path. The proof of the existence of those traces 1) considers
the constraint polyhedron corresponding to the set of constraints that each timed
1 A formal definition of TTrace() is given in section 3.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 291

trace of the path has to satisfy and 2) uses some graph transformations that
preserve the positivity of the graph cycles.

As a second contribution, the paper proposes an approach to reduce the num-
ber of test cases considered while testing RTS. The proposed approach is based
on the use of the simulation graph introduced by Tripakis [19]. The fact that the
trace inclusion problem can be solved by the inclusion of timed bound traces,
provides a method to reduce the number of test cases.

The rest of this paper is structured as follows. Section 2 introduces the theo-
retical background of the paper. Section 3 presents the model of timed automata
and its corresponding notations. Section 4 corresponds to the core of this paper
and shows how to generate timed traces from a path. Section 5, based on the
result of Section 4, outlines a method for minimizing the number of test cases
considered while testing RTS. Section 6 presents the related work. Finally, we
conclude and draw some perspectives in Section 7.

2 Background

Through-out this paper, we write R, R
≥0, N for the sets of reals, nonnegative

reals and naturals, respectively. +∞ (resp. −∞) is the positive infinity (resp.
negative) such that: t ∈ R, −∞ ≤ t ≤ +∞, t + (+∞) = (+∞) + t = +∞ and
t + (−∞) = (−∞) + t = −∞. R is the set R ∪ {+∞, −∞}. For a set P , 2P is
the powerset of P and for a given order on P , min(P) is the smallest element of
P . Logical “and” and “or” are written ∧ and ∨, respectively.

2.1 Timed Event and Timed Sequence

Let Σ be a finite set of symbols. As usual, Σ∗ will denote the set of finite
sequences and ε ∈ Σ∗ the empty sequence. τ will denote an action not in Σ and
Στ the set Σ ∪ {τ}. Let σ be a sequence and X ⊆ Σ. Then, σ|X is the sequence
obtained by erasing from σ all symbols not in X (projection on X).

A timed event over Σ is a pair u = (a, d) such that a ∈ Σ and d ∈ R
≥0.

If a is interpreted to denote an event occurrence then d is interpreted as the
timestamp of the occurrence of a. A timed sequence σ = (a1, d1)...(an, dn)
over Σ is a member of (Σ × R

≥0)∗ such that the sequence of timestamps is
monotonically increasing. For example, σ = (a1, 3)(a2, 5) is a timed sequence,
however σ′ = (a1, 3)(a2, 2) is not. The set of timed sequences over Σ is noted
TS(Σ). Note that, when X ⊆ Σ, the projection of a timed sequence σ over X
is obtained by erasing from σ all symbols such that the associated event is not
in X .

2.2 Valuations and Polyhedra

Valuations. Let V be a finite set of variables ranged over R
≥0. A valuation ν

over V is a function ν : V 	→ R
≥0 that assigns to each variable a real value. V(V)

will denote the set of all valuations over V . Let X ⊆ V , d ∈ R and ν ∈ V(V).

292 I. Berrada et al.

Then ν[X := 0] is the valuation defined by ν[X := 0](x) = ν(x) if x �∈ X and
ν[X := 0](x) = 0 otherwise. Intuitively, ν[X := 0] assigns to each variable in X
the value 0 and leaves the rest of variables unchanged. ν + d is a valuation such
that for all x ∈ V , (ν + d)(x) = ν(x) + d. Intuitively, ν + d is obtained from ν
by advancing all variables by d.

c-Closure [19]. Let c ∈ N. Two valuations ν and ν′ over V are called
c-equivalent if:

– for any x ∈ V , either ν(x) = ν′(x) or (ν(x) > c and ν′(x) > c).
– for any pair (x, y) ∈ V 2, either ν(x)−ν(y) = ν′(x)−ν′(y) or (|ν(x)−ν(y)| > c

and |ν′(x) − ν′(y)| > c).

Polyhedra. An atomic constraint over V is an expression of the form x �	 n or
x − y �	 m where (x, y) ∈ V 2, �	∈ {≤, ≥} and (n, m) ∈ N

2. The set of formulas
that are finite conjunctions of atomic constraints (resp. of constraints of the
form x �	 n) will be denoted by Φ(V) (resp. ΦI(V)). Elements of Φ(V) are called
polyhedra. We write true for

�
∀x∈V x ≥ 0 and zero for

�
∀x∈V (x ≤ 0 ∧ x ≥ 0).

Let ν ∈ V(V) and Z ∈ Φ(V). Then ν satisfies Z, noted ν ∈ Z, if ν satisfies
all constraints of Z. Z is bounded iff there is d ∈ N such that for all ν ∈ Z,
ν + d �∈ Z.

Given a polyhedron Z, the c-closure of Z, noted close(Z, c), is the greatest
polyhedron Z ′ such that Z ⊆ Z ′, and for all ν′ ∈ Z ′ there exists ν ∈ Z such that
ν and ν′ are c-equivalent.

Operations on Polyhedra. We define the operations Z[X := 0] and Z↑ of
forward clock reset and forward time elapse of a polyhedron Z, respectively, as
follows (X ⊆ V):

Z[X := 0] = {ν[X := 0] | ν ∈ Z} Z↑ = {ν + d | ν ∈ Z, d ∈ R
≥0}

3 Timed Automata

A clock is a variable that allows to record the passage of time. It is ranged over
R

≥0, and the only assignment allowed is clock reset of the form x := 0.

Timed Automata [1]. A timed automaton (TA) A over Σ is a tuple A =
(L, l0, Σ, C, I,→) such that:

– L is a finite set of locations,
– l0 is the initial location,
– Σ is an alphabet of actions,
– C is a finite set of clocks,
– I : L 	→ ΦI(C) is a mapping that assigns invariants to locations, and
– →⊆ L × Φ(C) × Στ × 2C × L is the set of edges. An edge has a source, a

label, a guard, a set of clocks to be reset with this edge, and a target.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 293

The labels in Σ represent the observable interactions of A; the special label τ �∈ Σ
represents an unobservable, internal action. A transition t = (l, Z, a, r, l′) ∈→ is
noted by l

Z,a,r−−−→ l′. T A(Σ) denotes the set of all TAs over Σ.

Semantics. The semantics of a TA A is defined by associating a labeled transi-
tion system (LTS) S(A) = (S, s0, Γ, →A). A state of S(A) is a couple (l, ν) ∈ S
such that l is a location of A and ν is valuation over C such that ν satisfies the
invariant I(l). The initial state s0 of S(A) is (l0, ν) where ν ∈ zero. Labels of Γ
are included in Στ ∪ {ε(d) | d ∈ R} such that {ε(d) | d ∈ R} corresponds to the
elapse of time (Waiting d units of time is noted ε(d)). There are two types of
transitions in S(A):

– State change due to elapse of time: for a state (l, ν) and d ∈ R
≥0 (l, ν)

ε(d)−−→A

(l, ν + d) if for all 0 ≤ d′ ≤ d, ν + d′ ∈ I(l) (a timed transition).
– State change due to a location-edge: for a state (l, ν) and an edge (l, Z, a, r, l′),

(l, ν) a−→A (l′, ν[r := 0]) if ν ∈ Z and ν[r := 0] ∈ I(l′) (a discrete transition).

Runs. Let A = (L, l0, Σ, C, I, →) ∈ T A(Σ) and σ = (a1, d1)...(an, dn) ∈
TS(Στ). A run r of A over σ, denoted by (l, ν), is a finite sequence of the
form:

r : (l0, ν0)
(a1,d1)−−−−→ (l1, ν1) ... (ln−1, νn−1)

(an,dn)−−−−−→ (ln, νn)

with li ∈ L, and νi ∈ V(C), for all i ∈ [0, n], satisfying the following requirements:

1. Initiation: for all x ∈ C, ν0(x) = 0.
2. Consecution: for all i ∈ [1, n], there is an edge ti = (li−1, Zi, ai, ri, li) of A,

such that:
– νi−1 + (di − di−1) ∈ Zi.
– νi equals to (νi−1 + (di − di−1))[ri := 0].
– νi−1 + d ∈ I(li−1) holds for all 0 ≤ d ≤ di − di−1.

Intuitively, at the initial location l0, the values of clocks are defined to be zero.
When the transition ti+1 from state li to li+1 occurs, we use the value νi +
(di+1 − di) to check the clock constraints, however, at time di+1, the value of
clocks that are reset in ti+1 is defined to be 0. By convention, d0 is equal to 0.

Example 1. Consider the TA A of the Fig.1 and the timed sequence (a, 2)(b, 3.7).
The run corresponding to this sequence is given below. A clock interpretation is
represented by listing the values [x, y].

(l1, [0, 0])
(a,2)−−−→ (l2, [2, 0])

(b,3.7)−−−−→ (l3, [3.7, 1.7]). �

The set of timed sequences of A, noted Run(A), is defined by:

Run(A) = {σ | A has a run over σ ∈ TS(Στ)}.

The set of timed traces of A, noted TTrace(A), is defined by:

TTrace(A) = {σ | ∃σ′ ∈ Run(A), σ′
|Σ = σ}.

294 I. Berrada et al.

6

1

2

4

5

3

A

x ≤ 8

true true

x ≤ 4

true

true

x ≤ 5/a/y := 0

x ≥ 3 ∧ y ≤ 4/b/−

x ≤ 8/c/x := 0

x ≥ 2/d/− x ≤ 2/e/−

Fig. 1. Timed automata

Finally, for a path ρ of A of length n (i.e. a suite of n transitions of A), we use
TTrace(ρ) to denote the set of timed traces of length n of the automaton Aρ

induced by ρ 2.

4 Timed Bound Traces of a Path

The goal of this section is to provide an approach to extract timed traces from
a given path. As we will see in the next section, these traces can be used to test
RTS.

The idea behind our approach is as follows: to a path ρ, we can associate a
constraint polyhedron Zρ defining the set of constraints to be satisfied by each
trace of TTrace(ρ). From this polyhedron, we identify some timed traces of ρ
called the timed bound traces (TBT). These latter give a finite representation
of the trace space of ρ. The proof of the existence of TBT is based on some
transformations on the constraint graph associated to a polyhedron, and can be
found in Annex B.

For the rest of this paper, ρ = t1 · · · tn will denote a path of a TA A =
(L, l0, Σ, C, I,→) such that ti = (li−1, Zi, ai, ri, li), for all i ∈ [1, n]. V =
{v1, v2, ..., vn} will denote a set of variables ranged over R

≥0, and V0 = V ∪{v0}
the set V extended with a fictive variable v0 which is always equals to 0. We will
confound elements of Φ(V) with elements of Φ(V0) and a valuation over V with
a valuation over V0.

4.1 Constraint Polyhedron

Let σ = (a1, d1) . . . (an, dn) ∈ TTrace(ρ). According to the definition of
TTrace(ρ), the different instants (di)i∈[1,n] satisfy a set of constraints related
to the transitions of ρ. So, we can associate to ρ a constraint polyhedron Zρ

2 Aρ has the same states and transitions as ρ.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 295

over variables V0 = {v0, v1, · · · , vn} such that: σ ∈ TTrace(ρ) iff the valuation
ν ∈ V(V0) defined by ν(vi) = di, for all ∀i ∈ [0, n], is in Zρ.

In order to define the constraint polyhedron, we need some additional nota-
tions. For a clock x ∈ C and i ∈ [1, n], ρi = t1...ti will denote the path composed
of the first i transitions of ρ. lastxi will denote the index of the transition where
the clock x has been reset most recently before i. Recall that all clocks are reset
at the initial location l0, and thus lastxi = 0 if x was not reset in ρi. Zi will de-
note the constraint polyhedron associated to ρi. The construction of Zi is done
by induction: for i ∈ [1, n],

1. Z0 = true
2. Zi is obtained from Zi−1 as follows:

– Zi := Zi−1 ∧ vi−1 ≤ vi

– If the guard of ti has a term of the form x �	 k then Zi := Zi∧vi−vj �	 k,
where j = lastxi .

– If the guard of ti has a term of the form x−y �	 k then Zi := Zi∧vp−vq �	
k, where q = lastxi and p = lastyi .

– If the invariant of li−1 has a term of the form x �	 k then Zi := Zi ∧ vi −
vj �	 k, where j = lastxi .

Next, Zn will be noted Zρ.

Proposition 1. σ = (a1, d1) · · · (an, dn) ∈ TTrace(ρ) iff there is a valuation
ν ∈ Zρ such that ν(vi) = di, for all ∀i ∈ [0, n]. �

Proof. See Annex A. �

Example 2. Consider the path ρ of the automaton of Fig.1, defined by:

(l1, x ≤ 8)
x≤5/a/y:=0−−−−−−−−→ (l2, true)

x≥3∧y≤4/b/−−−−−−−−−−→ (l3, true).

Recall that v0 is equal to zero all time. Then,

Z0 = true, Z1 = v0 ≤ v1 ∧ v1 − v0 ≤ 5 ∧ v1 − v0 ≤ 8

Zρ = Z2 = v0 ≤ v1 ∧v1 −v0 ≤ 5∧v1 −v0 ≤ 8∧v1 ≤ v2 ∧v2 −v0 ≥ 3∧v2 −v1 ≤ 4

By consequence, σ = (a, d1).(b, d2) ∈ TTrace(ρ) iff the valuation ν defined by
ν(v1) = d1, ν(v2) = d2 is in Zρ. �

Convention. Without losing the generality and for simplicity reasons, we as-
sume that Zρ can be written (syntactically) as:

Zρ =
∧

vi,vj∈V0,vi
=vj

(vi − vj ≤ lij), lij ∈ R.

In fact, a constraint of the form vi ≤ c can be written as vi − v0 ≤ c (v0 is equal
to 0) and vi ≤ c∧vi ≤ c′ can be written as vi−v0 ≤ min(c, c′). Furthermore, if vi

does not have a upper bound in Zρ, then we can add the constraint vi−v0 ≤ +∞.
These remarks hold for a constraint of the form vi − vj ≤ c.

296 I. Berrada et al.

Definition 1. Zρ =
∧

vi,vj∈V0,vi
=vj
(vi − vj ≤ lij) �= ∅ is said in its canonical

form if for all i ∈ [0, n], j ∈ [0, n], there exists a valuation ν ∈ Zρ such that :
ν(vi) − ν(vj) = lij �

Definition 2. The canonical form of Zρ, noted cf(Zρ), is the greatest canonical
polyhedron included in Zρ. �

Note that cf(Zρ) and Zρ represent the same space portion and cf(Zρ) = Zρ if
Zρ is in its canonical form.

4.2 Main Results

Theorem 1. Let ρ be a path and cf(Zρ) =
∧

vi,vj∈V0, vi
=vj
(vi − vj ≤ lij) be the

canonical form of its constraint polyhedron. Assume that Zρ is bounded and not
empty (Zρ �= ∅). Then, for all k ∈ [0, n] :

1. There is a valuation νM
k (Zρ) of Zρ such that: for all i ∈ [0, n], i �= k,

νM
k (Zρ)(vi) − νM

k (Zρ)(vk) = lik.
2. There is a valuation νm

k (Zρ) of Zρ such that: for all i ∈ [0, n], i �= k,
νm

k (Zρ)(vk) − νm
k (Zρ)(vi) = lki. �

Intuitively, if Zρ is bounded and nonempty, then for each variable vk ∈ V0, there
is a valuation νM

k (Zρ) (resp. νm
k (Zρ)) which reaches the bounds (lik)k
=i,i∈[0,n]

(resp. (lki)k
=i,i∈[0,n]) of cf(Zρ) constraints, where vk is a right (resp. left) mem-
ber. We have assumed that Zρ is bounded to ensure the existence of νM

k (Z).
The valuations νm

k (Z) exist even Zρ is not bounded because variables of V0 are
ranged over R

≥0.

Proof. See Annex B. �

Computation of νM
k (Zρ) and νm

k (Zρ). Theorem 1 establishes the existence
of valuations (νM

k (Zρ))k∈[0,n] and νm
k (Zρ)k∈[0,n], and their unicity. Having in

mind that v0 = 0, a direct application of this theorem gives: for all k ∈ [0, n],

1. νM
k (Zρ) is the valuation defined by:
– If k = 0 then νM

k (Zρ)(vi) = li0.
– Else νM

k (Zρ)(vi) = −l0k + lik and νM
k (Zρ)(vk) = −l0k

for all i ∈ [1, n], i �= k.
2. νm

k (Zρ) is the valuation defined by:
– If k = 0 then νm

k (Zρ)(vi) = −l0i.
– Else νm

k (Zρ)(vi) = lk0 − lki and νm
k (Zρ)(vk) = lk0

for all i ∈ [1, n], i �= k.

Example 3. Let Zρ = 0 ≤ v1 ∧ v1 ≤ v2 ∧ v1 ≤ 5 ∧ v2 ≥ 3 ∧ v2 − v1 ≤ 4 be
the constraint polyhedron of the example 2. Zρ is bounded. Its canonical form
is defined by: cf(Zρ) = (v2 − v0 ≤ 5)∧ (v0 − v2 ≤ 0) ∧ (v1 − v0 ≤ 9) ∧ (v0 − v1 ≤
−3) ∧ (v1 − v2 ≤ 4) ∧ (v2 − v1 ≤ 2). Then,

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 297

νM
0 (Zρ) =

(
9
5

)
v1
v2

νM
1 (Zρ) =

(
3
5

)
νM
2 (Zρ) =

(
4
0

)

νm
0 (Zρ) =

(
3
0

)
νm
1 (Zρ) =

(
9
5

)
νm
2 (Zρ) =

(
3
5

)
�

Now, consider the two suites of timed sequences (σMk)k∈[0,n] and (σmk)k∈[0,n]
defined by:

– σMk = (a1, ν
M
k (Zρ)(v1)) · · · (an, νM

k (Zρ)(vn)).
– σmk = (a1, ν

m
k (Zρ)(v1)) · · · (an, νm

k (Zρ)(vn)).

Note that, for all k ∈ [0, n], σMk ∈ TTrace(ρ) and σmk ∈ TTrace(ρ) (according
to proposition 1).

Definition 3. The timed sequences (σMk)k∈[0,n] and (σmk)k∈[0,n] are called the
timed bound traces (TBT) associated to ρ. �

Timed bound traces give a finite representation of the trace space of a path.
According to Theorem 1, the number of TBT is 2 × (n + 1) (n is the length of
the path). However, this number varies between 1 and 2 × (n + 1) and depends
on the number of clock resets used in the path. Thus, a path without clock resets
has at most 2 TBT. The complexity of computing σMk or σmk from cf(Zρ) is
O(n). The computation of the canonical form of a polyhedron depends on the
data structures used. The algorithm given in [8] allows to compute this form and
to test if a polyhedron is empty. Its complexity is O(n3).

4.3 Trace Inclusion

Consider a path ρ (resp. ρ′) of length n ∈ N of a timed automaton A (resp. B). To
show that TTrace(ρ) ⊆ TTrace(ρ′) is equivalent to show that cf(Zρ) ⊆ cf(Zρ′).
We consider here the case where Zρ is known and only the set TTrace(ρ′) is
known. We assume that Zρ (resp. Zρ′) is bounded and not empty.

Corollary 1. TTrace(ρ) ⊆ TTrace(ρ′) iff σMk ∈ TTrace(ρ′) and σmk ∈
TTrace(ρ′), for all k ∈ [0, n]. �

Intuitively, the corollary gives the necessary and sufficient conditions to show
that TTrace(ρ) ⊆ TTrace(ρ′). In fact, it is sufficient to show that timed bound
traces of TTrace(ρ) are also timed traces of TTrace(ρ′).

Proof. See Annex C. �

5 Application: Testing

A test case (test for short) is an experience performed on the IUT by the tester.
In the case of RTS, there are different types of tests, depending on the capabilities
of the tester to observe and react to event. Analog-clock tests [9, 13] can measure

298 I. Berrada et al.

precisely the real-time delay between observed actions. Digital-clock tests can
only count how many “ticks” of a finite-granularity clock have occurred between
two actions. Analog-clock testers can measure real-time precisely, but they are
difficult (if not impossible) to implement for real-time IUT. Digital-clock testers
have access to a periodic clock/counter and are implementable for any IUT.
However, they can announce a “Pass” verdict when it is “Fail” (the reception of
an event “a” after 2.7 units of time and the same reception after 2.8 units of time
will look the same for a digital-clock tester). The use of a digital-clock tester
does not mean the discretization of time, the specification is still dense-time but
the capabilities of the tester are discrete-time. In this paper, we consider digital-
clock testers. Furthermore, we will consider static tests, i.e. the response of the
digital-clock tester is the same and known in advance.

5.1 Simulation Graph [19]

Tripakis defines a number of different abstractions for timed automata and study
the properties they preserve. These abstractions are based on the simulation
graph, which is built by forward reachability and preserves all linear properties.
In the simulation graph, the passage of time is hidden and only the discrete-state
changes can be observed.

Let A be a TA, S = (l, Z) be a symbolic state (i.e. a location l of A and a
polyhedron Z), and t = (l, Z ′, a, r, l′) be a transition of A. Then,

postc(S, t) = (l′, close(((Z ∩ Z ′)[r := 0])↑, c))

Intuitively, postc() contains all states (and their c-closure) that can be reached
from states in S by taking transition t and letting some time pass. Given the
initial location l0 of A, the simulation graph S(A, c) (c is a natural constant
greater than the closure of A) is generated using a depth-first search starting
from S0 = (l0, zero↑) and generating for each vertex S = (l, Z) in the stack,
the successors S′ = postc(S, t), for each transition t = (l, Z1, a, r, l′) of source l
in A. The exploration of the branch leading to Si is stopped if: either Si = ∅
or there is a previously generated vertex Si ⊂ S′. Otherwise, Si is added to the
set of vertexes and S

a−→ Si to the set of edges of the simulation graph. It has
been shown in [19] that S(A, c) is finite and there is a run of A from l0 to lf if
in the simulation graph there is a vertex S = (lf , −). Moreover, for each path
S0 = (l0, Z0)

a1−→ S1 = (l1, Z1)...
an−−→ Sn = (ln, Zn) in the simulation graph,

there is a run r = (l, ν) of A such that νi ∈ Zi, for all i ∈ [0, n], and vice versa.

5.2 Digital-Clock Test Derivation

Our goal here is not to provide a complete method to derive digital-clock tests,
but only to give the broad lines of an approach to build statically digital-clock
tests. The reader can found in [3] a complete algorithm to derive tests for digital-
clock/analog-clock testers.

For generating tests, our approach uses the simulation graph. In fact, as we
have said, S(A, c) gives a finite representation of the reachable state space; each

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 299

path of S(A, c) has a run of A and each run of A is inscribed in path of S(A, c).
Classical methods for untimed systems can be applied, in general, to derive a
set of paths from the graph S(A, c). Let ATSM (A) be a set of paths derived
from S(A, c) with a method M , and with respect to a given coverage criterion
(states, transitions,...). Element of ATSM (A) can not be used directly to test a
given implementation of A because they are abstract.

Each path ρ ∈ ATSM (A) defines a set of timed traces TTrace(ρ). Corollary
1 has a great influence on test cases considered for the path ρ. In fact, according
to this corollary, the number of distinct tests required for the trace inclusion is
between 1 and 2 × (n + 1) test cases corresponding to the timed bound traces
of ρ. Here, we assume that the time is bounded for each ρ ∈ ATSM (A) because
testing is a finite experience. When a path ρ ∈ ATSM (A) is not bounded, we
can choose a natural constant MAX to limit the time of observations.

Thus, the approach that we introduce derives abstract paths form the simu-
lation graph; for each abstract path derived, between 1 and 2× (n+1) test cases
are generated corresponding to TBT of this path. These latter are then deco-
rated by the different verdicts. Our approach does not suffer from the explosion
problem, since we use only tests that meet the timed bound traces.

6 Related Work

Regarding works in analyzing RTS, [2] have studied the problem of timestamp
generation. The solution proposed consists in computing one timed trace cor-
responding to the minimal accumulate delay run. The approach of Tripakis for
generating timed diagnostics presented in [19, 20] was based on a symbolic analy-
sis. The solution proposed uses the simulation graph to generate abstract paths.
For each abstract path, the authors chose randomly the instant of firing the tran-
sitions. In [14], the authors show the existence of timed diagnostics associated to
a symbolic path, but do not provide a method to compute them. In [10], the au-
thors propose to use the verification tool Uppaal to generate the optimal timed
trace corresponding to a state. In [16], the authors propose several algorithms
to compute the minimal timed diagnostic that reach a given state.

Regarding works on testing, [13] propose a method to derive analog/digital-
clock test cases. The approach proposed was based on a symbolic analysis. How-
ever, the proposed method for digital tests considers “ticks” of clocks as an
observable event. As a consequence of this choice, is the presence of long chains
of ticks in the test cases generated as reported in [13]. The authors propose then
a heuristic to compact chains of ticks, but this heuristic does not give always
minimal tests and it is not trivial.

An extension of test theory for Mealy machines in the case of dense RTS was
proposed by Springintveld et al. [18]. The authors suggested to perform a kind of
discretization of the region graph model. Another work generating test sequences
for a discretized deterministic timed automaton is given by En-Nouaary et al. in
[7]. The authors propose to build a grid automaton from the region graph, and
use a Wp method for the generation assuring a good coverage of the initial spec-
ification, but the number of generated test cases can be large. In [5], an implicit

300 I. Berrada et al.

clock is used, the time is discrete and the proposed model is a temporized tran-
sition system. In [12], the authors have chosen as model temporized automata
with discrete time. The model is transformed into automaton without time, but
with two special events on clocks: set and expire. In [6], the system specifica-
tion is based on a constraint graph. From a fault model, the authors define test
criteria and generate test cases according to the test criteria. Since constraint
graph is used as a model, only delays can be expressed between two successive
events, and the coverage of faults cannot be complete. In [15], the generation of
test cases is produced from logic formula (time is expressed by using two con-
structors: future and past). A unique clock is used and the temporal domain is
discrete. [11] propose a generation method based on must/may traceability. The
authors propose to test first, the correctness of the implementation of states and
transitions. For that, they transform the specification into a FSM, and use the
UIOv-method to derive test cases. [17] use symbolic analysis for event-recording
automata inspired by the Uppaal model-checker.

All of these methods successfully generate timed test cases but most of them
suffer from an exorbitant number of test cases. The solution that we have pro-
posed was based on the use of timed bound traces and does not suffer from these
problems.

7 Discussion

In this paper, we have studied the trace inclusion problem of RTS. Our solution
was based on the identification of the timed bound traces (TBT) corresponding
to a given path. The trace inclusion problem is then reduced to the inclusion of
TBT. As an application, the paper showed how to use these results to reduce the
number of test cases for an RTS. The idea behind our approach was the use of
the simulation graph to derive abstract paths and the generation of a finite set
of test cases from each abstract path corresponding to the timed bound traces.

To our knowledge, the identification of TBT, and the solution proposed for
trace inclusion problem are new results. Furthermore, our approach for gener-
ating tests, does not suffer from an exorbitant number of test cases because we
consider only test cases corresponding to TBT.

To have a complete coverage of the timed trace space of the specification while
testing (according to corollary 1), the assumption of the event determinism of the
specification is required. This model is quite restrictive, and the generalization
will benefit many RTS. Especially, the determinism assumption may be broken
by the on-the-fly determinization techniques. Of course, for the class of event-
recording automata (ERA), the determinism assumption is not a limitation since
this class of timed automata can be determinized.

Finally, timed bounds traces can be used to report counterexamples during
timing verification: once the verification tool determines the sequence of transi-
tions that leads to a violation of a safety property, the timed bound traces pro-
vide greater diagnostic feedback. In this case, the TBT are called timed bound
diagnostics.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 301

References

1. R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science,
126:183-235, 1994.

2. R. Alur, R. Kurshan and M. Viswanathan. Membership problems for timed and
hybrid automata. 19th IEEE Real-Time Systems Symposium, 1998.

3. Ismail Berrada. Modélisation, Analyse et Test des Systèmes Communicants à Con-
traintes Temporelles : Vers une Approche Ouverte du Test. Phd thesis, Université
Bordeaux 1, Bordeaux, France, 14 December, 2005.

4. Laura Brandán and Ed Brinksma. A test generation framework for quiescent real-
time systems. Proceedings of the 4rd International Workshop on Formal Approaches
to Testing of Software, FATES2004, Linz, Austria September 21, 2004.

5. Rachel Cardell-Oliver. Conformance testing of real-time systems with timed au-
tomata specifications. Formal Aspects of Computing, 12(5):350-371, 2000.

6. Duncan Clarke and Insup Lee. Automatic test generation for the analysis of a
real-time system: case study. In 3rd IEEE Real-Time Technology and Applications
Symposium,

7. A. En-Nouaary, R. Dssouli, F. Khenedek and A. Elqortobi. Timed test cases gener-
ation based on state characterization technique. In 19th IEEE Real Time Systems
Symposium (RTSS’98), Madrid, Spain, 1998.

8. Robert W. Floyd. Algorithm 97 (shortest path). Communications of the
ACM,18(3):165-172, 1964.

9. T. Henzinger, Z. Manna and A. Pnueli. What good are digital clocks?. ICALP’92,
LNCS 623, 1992.

10. Anders Hessel, Kim G. Larsen, Brian Nielson, Paul Pettersson and Arne Skou.
Time-optimal real-time test case generation using Uppaal. In FATES2003, Mon-
treal, Quebec, Canada, October, LNCS 2931, pp. 118-135, Springer.

11. T. Higashino, A. Nakata, K. Taniguchi and A. Cavalli. Generating test cases for a
timed i/o automaton model. TESTCOM99, Budapest, Hungary, September 1999.

12. A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for
testing real time protocols, TESTCOM, Ottawa, Canada, 2000.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN 2004, Spring-Verlag Heidelberg, pp. 109-126, 2004.

14. Kim G. Larsen, Paul Pettersson and Wang Yi. Diagnostic model-checking for
real-time systems. In Proc. of WVCHS III, number 1066 in LNCS, pp. 575-586.
Springer-Verlag, October 1995.

15. Dino Mandrioli, Sandro Morasca and Angelo Morzenti. Generating test cases for
real-time systems from logic specifications. ACM Transactions on Computer Sys-
tems, 13(4):365-398, 1995.

16. P. Niebert, S. Tripakis and S. Yovine. Minimum-time reachability for timed au-
tomata. In Mediterranean Conference on Control and Automation, 2000.

17. B. Neilson ans A. Skou. Automated test generation for timed automata. TACAS’01,
LNCS 2031, Springer 2001.

18. Jan Springintveld, Frits Vaandrager and Pedro R. D’Argenio. Testing timed au-
tomata. Theoretical Computer Science, 252(1-2):225-257, March 2001.

19. Stavros Tripakis. The formal analysis of timed systems in practice. PhD thesis,
Université Joseph Fourier, Grenoble, 1998.

20. Stavros Tripakis. Timed diagnostics for reachability properties. In Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS’99, Amsterdam,
Holland, 1999.

302 I. Berrada et al.

Annex A: Proof of Proposition 1

Proof. For all i ∈ [0, n], vi represents the instant of firing ti according to a global
clock. Thus, the suite (vi)i∈[0,n] is monotonically increasing. By convention, we
assume the existence of a transition t0 where all clocks are reset at instant v0 = 0.
Initially, Z0 is equal to true. At step i ∈ [1, n], if ti has a term over x of the form
x �	 k, then the actual value of x corresponds to the time elapsed since the last
reset of x. Thus, the value of x is exactly vi −vj where j = lastix. The constraint
vi − vj �	 k is then added to Zi. If ti has a term of the form x − y �	 k then, the
constraint vp − vq �	 k is added to Zρ, where q = lastxi et p = lastyi . In fact, the
time elapsed since the last reset of x (resp. y) in transition tq (resp. tp) is equal
to vi − vq (resp. vi − vp). Thus, x − y = (vi − vq) − (vi − vp) = vp − vq. Finally,
the same approach is applied to the invariant of a location. �

Annex B: Proof of Theorem 1

In subsection 4.1, we have showed that we can associate to ρ a constraint poly-
hedron Zρ. In order to proof the main theorem of subsection 4.2, we need to
define the constraint graph Gρ associated to the polyhedron Zρ and some trans-
formations on Gρ. Before that, let us recall some graph notions.

Graph Notations

Graphs. A directed labeled graph (DLG for short) G is a triple (V, E, w), where

– V is a finite set of elements {v1, v2, · · · , vk} called vertexes,
– E is the set of couples of distinct elements of the cartesian product V × V

called edges (E = {(vi, vj)|vi, vj ∈ V ∧ vi �= vj}),
– wG : E 	→ R is a function that assigns to each edge a weight.

The couple (vi, vj) ∈ E, noted vi → vj , represents the edge of source vi and
target vj . Note that G is a complete graph.

Paths. Let G = (V, E, w) be a DLG. A path p is a sequence of edges e1.e2...en

(ei is an edge). A path of length n is a path of n edges. The weight of p, noted
w(p), is defined by: w(p) =

∑
i∈[1,n] w(ei). Let e = vi → vj be an edge. Then,

path(e) is the set of paths of source vi and target vj . A cycle with root vi is path
from vi to itself. An elementary cycle (e-cycle for short) is a cycle that does not
visit a vertex twice, except from the root vertex. The graph G is said:

– nonnegative if the weight of each cycle of G is nonnegative. Formally, for all
cycle c, w(c) ≥ 0.

– minimal if the weight of each edge e is less than or equal to the weight of each
path of path(e). Formally, for all e ∈ E, for all p ∈ path(e), w(e) ≤ w(p).

Next, we will use the term graph to denote a DLG.

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 303

Graph-Theoretic Formulation

Let Zρ =
∧

vi,vj∈V0,vi
=vj
(vi − vj ≤ lij) be the constraint polyhedron associated

to ρ. The constraint graph Gρ = (V0, E, w) associated to Zρ is the graph defined
by (Recall that V0 = {v0, v1, ..., vn}):

w(vj → vi) = lij ∧ vj → vi ∈ E ⇐⇒ vi − vj ≤ lij is a term of Zρ.

Proposition 2. Zρ is not empty iff Gρ is nonnegative. �

Intuitively, the set TTrace(ρ) is not empty iff the constraint graph Gρ does not
contain negative cycles. The proof of the theorem can be found in [8].

Definition 4. Zρ is said in its canonical form if its constraint graph Gρ is
minimal. �

This definition is equivalent to the definition 1 (subsection 4.1). Next, we will
introduce three transformations that keep the positivity and/or the minimality
of the transformed graph. To save space we omitted the proof of the next lemmas,
but they are based on the comparison of the weights of e-cycles, and can be found
in [3]. Let G = (V0, E, wG) be the constraint graph of Zρ.

Transformation m(). The function m() associates to G = (V0, E, wG) the
graph G′ = (V0, E, wG′) such that: for each edge vp → vq ∈ E,

wG′(vp → vq) = min({wG(p) | p ∈ path(vp → vq)}).

Intuitively, the weight of e = vp → vq, in G′, is equal to the minimal weight,
in G, of all paths of source vp and target vq. This weight is either reached by a
path, i.e. there is p ∈ path(e) such that wG′(e) = wG(p), or wG′(e) = −∞ when
{wG(p) | p ∈ path(e)} is not bounded. Note that, G′ is a minimal graph.

Proposition 3. G is a nonnegative graph iff m(G) is not. �

Intuitively, the transformation m() preserves the positivity of cycles.

Definition 5. Let m(Gρ) = (V0, E, wm) be the minimal graph of Gρ. The can-
onical form of Zρ, noted cf(Zρ), is the polyhedron defined by:

cf(Z) =
∧

∀vi,vj∈V0, vi
=vj

(vi − vj ≤ lij) such that vj −→ vi ∈ E, wm(vj −→ vi) = lij .

�

This definition is equivalent to definition 2 (subsection 4.1) and gives a method
to compute the canonical form of a polyhedron.

304 I. Berrada et al.

Transformation Ri→∗(). Let i ∈ [0, n]. The function Ri→∗() associates to
G = (V0, E, wG) the graph G′ = (V0, E, wG′) such that: for each edge vp → vq ∈
E,

wG′(vp → vq) =

{
−wG(vi → vp) if q = i

wG(vp → vq) otherwise

Intuitively, if vp → vq is not an incoming edge of the vertex vi then, this edge
keeps the same weight in G and G′. Otherwise, the weight of vp → vq is replaced,
in G′, by the opposite weight of the outgoing edge vi → vq of vi. The next lemma
establishes some properties of this transformation related to the minimality and
the positivity of the transformed graph.

Lemma 1. Let G be a nonnegative graph and i ∈ [0, n]. Consider the graph
G′ = m(Ri→∗(G)). Then,

1. Ri→∗(G) is a nonnegative graph.
2. If G is minimal then, for all edges vp → vq ∈ E :

wG′(vp → vq) =

⎧
⎪⎨

⎪⎩

wG(vi → vq) if p = i

−wG(vi → vp) if q = i

−wG(vi → vp) + wG(vi → vq) otherwise �

Intuitively, the transformation Ri→∗() preserves the positivity of cycles. When
G is minimal and nonnegative, the second point of the lemma gives a method
to compute the minimal graph associated to Ri→∗(G) using the weights of G.

Transformation R∗→i(). This transformation is similar to Ri→∗(). The trans-
formed graph G′ = (V0, E, wG′) is defined by: for each edge vp → vq ∈ E,

wG′(vp → vq) =

{
−wG(vq → vi) if p = i

wG(vp → vq) otherwise

Intuitively, the only difference between G and G′ is in the weights of outgoing
edges of vertex vi: for all vi → vq ∈ E, wG′(vi → vq) is equal to the opposite
weight of wG(vq → vi). The next lemma reports properties similar to those of
Ri→∗(G).

Lemma 2. Let G be a nonnegative graph and i ∈ [0, n]. Consider the graph
G′ = m(R∗→i(G)). Then,

1. R∗→i(G) is a nonnegative graph.
2. If G is minimal then, for all edges vp → vq ∈ E :

wG′(vp → vq) =

⎧
⎪⎨

⎪⎩

wG(vp → vi) if q = i

−wG(vq → vi) if p = i

wG(vp → vi) − wG(vq → vi) otherwise �

Test Case Minimization for Real-Time Systems Using Timed Bound Traces 305

Proof of Theorem 1

Proof. To prove the theorem, it is equivalent to show that, for all k ∈ [0, n], the
polyhedra:

ZM
k =

∧

viV0, vi
=vk

(vi − vk ≤ lik ∧ vk − vi ≤ −lik) ∧
∧

vi,vj∈V0, vi
=vj
=vk

(vi − vj ≤ lij)

and

Zm
k =

∧

viV0, vi
=vk

(vk − vi ≤ lki ∧ vi − vk ≤ −lki) ∧
∧

vi,vj∈V0, vi
=vj
=vk

(vi − vj ≤ lij)

are not empty sets (ZM
k �= ∅ and Zm

k �= ∅). In fact, let Gρ be the constraint
graph of cf(Zρ) and k ∈ [0, n]. cf(Zρ) is canonical then Gρ is minimal. Zρ �= ∅
implies that Gρ is a nonnegative graph (proposition 2). Now, one can notice
that the constraint graph G(ZM

k) (resp. G(Zm
k)) associated to ZM

k (resp. Zm
k)

is nothing else than the graph obtained from Gρ by the transformation Rk→∗()
(resp.R∗→k()) defined above: G(ZM

k) = Rk→∗(Gρ) et G(Zm
k) = R∗→k(Gρ). So,

according to the first point of the lemma 1 (resp. lemma 2), we deduce that
G(ZM

k) (resp. G(Zm
k)) is a nonnegative graph and by consequence, ZM

k �= ∅
(resp. Zm

k �= ∅). Furthermore, the second point of lemma 1 (resp, lemma 2) gives
a method to compute the canonical form of ZM

k (resp. Zm
k). �

Annex C: Proof of Corollary 1

Proof. The proof is a consequence of TTrace(ρ) ⊆ TTrace(ρ′) iff cf(Zρ) ⊆
cf(Zρ′). As (νM

k (Zρ))k∈[0,n] and (νm
k (Zρ))k∈[0,n] reach all bounds of cf(Zρ), then

if νM
k (Zρ) ∈ Zρ′ and νm

k (Zρ) ∈ cf(Zρ′), we can deduce that bounds of cf(Zρ)
are less than the bounds of cf(Zρ′). The density and convexity properties of sets
cf(Zρ) and cf(Zρ′) imply that all ν ∈ cf(Zρ) is also in cf(Zρ′). �

Symbolic and on the Fly Testing
with Real-Time Observers

Rachid Bouaziz and Ousmane Koné

University of Toulouse - CNRS IRIT, 31062 Toulouse Cedex - France
{bouaziz, kone}@irit.fr

Abstract. Analyzing real-time specifications involves new difficulties in
the test generation process. In addition to usual combinatory explosion,
issues like tests executability and controllability become more problem-
atic. To deal with such issues, the new method proposed in this pa-
per combines both on the fly computation (not on line) and optimized
symbolic analysis with the underlying concept of real-time observers. A
symbolic forward analysis is used for test executability and a backward
analysis is performed to refine the tests controllability in view of avoiding
inconclusive verdicts. The featured observers and the backward compu-
tation are the basis for a more targeted test selection. To illustrate the
method, the work example is a process control communication system.
Finally, we introduce Real-time Ethernet and the related tests produced
with our method.

1 Introduction

Real time applications are those are applications for which real-time (i.e. physical
time) is the main execution constraint. They are concerned with business lines
such as aeronautics, aerospace, automotive or telecommunications. These appli-
cations often manage the systems and even the people security and therefore
must be designed with very rigorous techniques. For testing real-time systems,
one must carefully define when to submit an input to the Implementation Under
Test (IUT) and when to observe an output. A major issue of automatic test se-
lection from a formal specification is the combinatory explosion of the analyzed
behaviour. In the presence of real time constraints, the test selection problem
is worsened as a huge number of time instances are relevant to test. Moreover
controllability and test executability becomes non trivial [10]. To deal with such
problems, the method proposed in this paper combines different strategies to
improve the efficiency of automatic test selection.

Symbolic techniques were firstly introduced in the field of formal methods, as
they produced reachability graph of reduced size [13, 4, 17, 14]. These techniques
have recently been used for the purpose of “real-time testing”, with some idea
of on line testing [9]. But in these testing approaches, the meaning of “on line”
is that the test sequences are not computed in advance, before test execution.
There is no test suite available before, but the tests are calculated “on line”, event
after event, during test execution. Since these approaches are based on the reuse

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 306–323, 2006.
c© IFIP International Federation for Information Processing 2006

Symbolic and on the Fly Testing with Real-Time Observers 307

of model-checking tools, the resulting tests can not be directly reproduced as
they often correspond to diagnostic traces or run time executions. This also dis-
ables a reasonable prediction of test suite coverage. Meanwhile, an explicit test
suite selection strategy can be performed when using test purposes to character-
ize the expected tests [8, 6, 7] and, above all, “to guide” the test selection process,
“off line”, before test execution. This is a different and now classical basis for
test selection against combinatory explosion. Indeed, the “on the fly traversal”
consists of searching the test pattern from the system model, while avoiding the
whole exploration of the model. For timed systems, the principles of on the fly
test selection from test purposes were presented a few years ago [6, 15]. The new
features and improvements here are the combination of on-the-fly traversal and
modern symbolic abstractions together with enhanced real-time observers, for
improving the efficiency of test case selection. Here, real-time observers are used
to target the expected tests. Then a symbolic forward analysis is used for test
executability and a backward analysis is performed to refine the tests controlla-
bility in view of avoiding inconclusive verdicts. For illustration, an example of
process control system is presented and finally the case study started with Real-
time Ethernet protocol is introduced. The current work is being implemented
in a prototype tool named OOTEST, and which architecture will be introduced.
The papers is organized as follows. Section 2 presents the formalism and nota-
tions related timed automata. The kernel of the test methodology is presented in
section 3. Section 4 and 6 are complementary comments and concluding remarks.

2 Timed Input Output Automata

Let R+ be a set of non-negative real numbers and let X be a set of non negative
real-time valued variables called clocks. The set of Guards G(X) is defined by
the grammar g := x ∼ c | x − y ∼ c | g ∧ g | true, where x and y ∈ X ,
c ∈ R+ and ∼∈ {<, ≤, >, ≥}. We denote by T the finite sequences of elements
in R+ called time domain, and by Σ the finite set of actions. A time sequence
over T is a finite no decreasing sequence ρ = t1, t2, . . . , tn and a timed word
w = (a1, t1,), (a2, t2) . . . (an, tn) is an element of (Σ×R+)∗. A clock valuation is
a function ν : X →R+, if δ ∈ T the ν + δ denotes the valuation such that for
each clock x ∈ X, (ν + δ)(x) = ν(x) + δ. If r ⊆ X then ν[r := 0] denotes the
valuation such that for each clock x ∈ X \ r, ν[r := 0](x) = ν(x) and for each
clock x ∈ r, ν[r := 0](x) = 0. [r := ∞]ν denotes the valuation such that for each
clock x ∈ X \r, [r := ∞]ν(x) = ν(x) and for each clock x ∈ r, [r := ∞]ν(x) = ∞.

Definition. A Timed Automaton (TA) is a tuple A = (L, L0, Lf , X, Σ, E, I),
where L is a finite set of locations, L0(Lf) ⊂ L is a subset of initial (final)
locations, X is a finite set of clocks. Σ is a finite set of events. If the set of events
(actions) is partitioned in two disjoint subsets Σ? and Σ!, where Σ? is the set
of input actions and Σ! is the set of output actions, the TA A is called Timed
Input Output Automaton (TIOA). E ⊆ L × G(X) × Σ × R(X) × L is a set of
edges. We write l

a,g,r−−−→ l′ iff (l, a, g, r, l′) ∈ E, where l, l′ ∈ L are the source and

308 R. Bouaziz and O. Koné

destination locations, g ∈ G(X) is a conjunction of constraints in G(X), a ∈ Σ
is the action (or event), r ∈ R(X) is the set of clocks to be reset. I : l → G(X)
assigns invariants to locations.

We use the notation such as l
a−→ (resp. l �a−→) to denote that there exists l′

such that l
a−→ l′ (resp. there is no such l′). This notation naturally extends to

time sequences. We write l
(a,t)−−−→ if from location l, a can be executed at time t.

A TIOA A is said to be complete, if it accepts every action in Σ at every time.
It is said to be input-complete if it accepts every input action in Σ! at every

time. A TIOA is called deterministic if ∀l, l′, l′′ ∈ L · ∀a ∈ Σ · ∀t ∈ R+ · l
(a,t)−−−→

l′ ∧ l
(a,t)−−−→ l′′ ⇒ l′ = l′′. It is called non-blocking if ∀l ∈ L, ∀a ∈ Σ! ∪ R+ · l

a−→.
A Path P in TA A is a finite sequence of consecutive transitions l0

g1,a1,r1−−−−−→
l1

g2,a2,r2−−−−−→ l2 It is said to be Accepting if it starts in an initial location (l0 ∈
L0) and ends in a final location (lf ∈ Lf). A Run of the automaton along the path
P is a sequence of the form (l0, ν0)

g1,a1,r1−−−−−→
t1

(l1, ν1)
g2,a2,r2−−−−−→

t2
(l2, ν2) . . . , where

σ = t1, t2 . . . is a time sequence in T , and νi(i = 1, 2 . . .) is a clock valuation such
that: ν0(x) = 0, ∀x ∈ X ; νi−1 +(ti−ti−1) |= gi ; νi = [ri := 0](νi−1 +(ti−ti−1)).
The label of the run is the timed word ω = (a1, t1), (a2, t2), . . . (an, tn). The set
of all timed words in A is denoted Traces(A). If the path P is accepting the
timed word ω then it is said to be accepted by the TA A.

Example. The following presents a process control communication system in
an energy production center. The system operates under real-time constraints
with a fault recovery mechanism. The overall system (figure 1) is composed
of a Sensor module, an Actuator module and a Main module. The different
modules communicate through synchronization ports. In the sequel, we focus on
the Sensor module only, which model in represented with figure 2. The sensor
tries to detect the temperature signal from the environment (?t). If no signal was
received within 4 time units, the famine signal (!f) is sent to the main module.
Otherwise the system proceeds with checking the pressure (?p) and then sends
the (!v) signal to the actuator, for subsequent operation. In case of failure during
this walk, an error procedure (!e) is started for an new tentative. Finally the
sensor resets (!r) and returns to initial state, etc.

The automaton of figure 1 contains six locations L = {S0, S1, S2, S3, S4, S5},
where the set of initial locations is L0 = {S0}, the set of final locations is
Lf = {S0}. Two clocks x and y and ten transitions are used. An accepted path
of the automaton can be represented by:

Main
module

Sensor
module

Actuator
module

Fig. 1. The process control system - Communicating sensor and actuator

Symbolic and on the Fly Testing with Real-Time Observers 309

x:=0

x:=0, y:=0

x:=0, y:=0

y=2

x:=0, y:=0

S0 S1 S2 S3

S4 S5

x:=0 y:=0

x>4
!f

!e

x>=2, ?t

x:=0

!e

!v

y=2
y<1

y:=0
y:=0

y<1

x<2, ! v

!r

y=1, !r

y =1, !r

y>=1, ?p

?p

0<=x<=31<=x<=5

Fig. 2. A process control communication system

S0
(x≥2),?t,(y)−−−−−−−−→ S1

(y≥1),?p,(x)−−−−−−−−→ S2
(y=2),!e,(y)−−−−−−−→ S5

(y=1),!r,(x,y)−−−−−−−−−→ S0.

An accepting run of this path is:(S0, (3, ∞))
(x≥2),?t,(y)−−−−−−−−→

3
(S1, (4.5, 1.5))

(y≥1),?p,(x)−−−−−−−→
4.5

. (S2, (0.5, 2))
(y=2),!e,(y)−−−−−−−→

5
(S5, (1.5, 1))

(y=1),!r,(x,y)−−−−−−−−−→
6

S0(0, 0).

where (4.5, 1.5) is the valuation ν associated to the clock x and y such that
ν(x) = 4.5 and ν(y) = 1.5.

An accepted timed word of this run is : (?t, 3), (?p, 4.5), (!e, 5), (!r, 6).

3 Test Design

3.1 From Symbolic Abstraction to Executability and Controllability

Since actual IUT runs correspond to test execution, the executability problem
turns to standard reachability analysis that handles all the possible executions of
the system. For timed automata, symbolic reachability is now a well established
technique addressing the explosion problem of the reachability graph. Rather
than enumerating all the states (e.g. like regions) the states are characterized
and gathered by a Boolean formula. Different approaches exist for representing
the nodes of the reachability graph (Zones represented by Difference Bound Ma-
trix, Clock Difference Diagram, State classes etc). Currently, we have started
to implement them as options in our OOTEST tool, in view of a further perfor-
mance comparison and analysis. In the sequel, we illustrate the method with
DBM (Difference Bound Matrix) which have an intuitive representation. For in-
stance, the constraint 0 ≤ x ≤ 4 ∧ y = 0 defines a zone that can be represented
using a DBM. The DBM is (n + 1) × (n + 1) matrix where n is the number of

310 R. Bouaziz and O. Koné

clocks. Each element Di,j of a matrix D is an upper bound of the difference of
two clocks xi and xj (xi − xj ≺ Di,j where ≺∈ {≤, <}). Given a TA A, the
reachability graph (or Reachable Automaton) RA associated with A is a graph
where the nodes (the symbolic states) have the form (l, z), where l is a location
of A and z is a DBM. The construction of RA is performed with a standard
reachability algorithm, augmented with the computation of successors (future
after time progress) of zones. This construction is called Forward Reachability
as it computes symbolic states (l, z) which are reachable from initial locations
of A. The following procedure computes the successor of a symbolic state (l, z).

Input: (l, z)
g,a,r−−−→ (l′, I(l′)) such that z ⊆ I(l).

Output: (l′, z′): Reachable target state.

1. Compute z1 = {ν + δ · ν ∈ z and δ ∈ R+}; The clock valuations that can be
reached from z by delaying.

2. Compute z2 = z1 ∩ I(l); The clock valuations where the constraints of both
z1 and the invariant of l are satisfied.

3. Compute z3 = z2 ∩ g; The clock valuations where the constraints of both z2
and the guard condition are satisfied.

4. Compute z4 = z3[r := 0] = {ν[r := 0]·ν ∈ z3}; The clock valuations obtained
by resetting clocks in r in the zone z3.

5. Compute z′ = z4 ∩ I(l′); The initial reachable clock valuations in l′.

The Forward Reachability will guarantee the tests executability. But as ex-
plained in the following section, we are also interested in improving the control-
lability of the tests execution towards some specific (Pass) states. So we also need
to compute the sufficient and necessary constraints that can lead from an initial
configuration to such particular states. For that, the backward propagation of
constraints from the target states to the initial states should be computed. Such
computation is called Backward Reachability as it calculates symbolic states
(l, z) with the actual necessary constraints for reaching a given state (l′, z′). The
following procedure computes the predecessor of a symbolic state (l′, z′).

Input: (l′, z′)
g,a,r←−−− (l, z).

Output (l, z′′): Actual predecessor state.

1. Compute z′1 = {ν · ∃δ ∈ R+ · ν + δ ∈ z′}; The set of clock valuations that
can reach z′ by delaying.

2. Compute z′2 = z′1[r := 0]; The clock valuations just after performing the
transition between l and l′ and thus after resetting clocks in r.

3. Compute z′3 = [r := ∞]z′2; The clock valuations just before executing the
transition; All clocks in r are allowed to have any values.

4. Compute z′4 = z′3 ∩ g; The set of clock valuations where the constraints of
both z′2 and the condition that allowed to fire the transition are satisfied.

5. Compute z′′ = z′4 ∩ z; Concrete predecessor constraints in l obtained by
the intersection between the clock valuations in z′4 and the invariant of l
(included in z).

A full example will be presented later with figure 8.

Symbolic and on the Fly Testing with Real-Time Observers 311

3.2 Real-Time Observers

The current developments are aimed to be used with the observers currently
designed in the framework of the Open source Topcased project[11, 12]. These
observers have been initially defined for capturing several extra features like
fault tolerance, diagnosis, etc, with an underlying structure of extended timed
automata. In this paper, for the time being, we consider the aspects related to
functional conformance requirements. In addition to standard timing require-
ments, the observers define not only the expected behaviour expressed in terms
of test purpose, but also some aspects of the behaviour that we are not currently
interested in. The latter are excluded during the search of the target test se-
quence and therefore enable restricting the behaviour to be computed. It is up
to the test engineer to define a given test observer. We assume that he has the
required knowledge for deciding which features are to be included or excluded.
In the following, we present an approach to model and construct a real-time
observer.

Modelling the Observer. The observer is used for checking the interactions within
the test environment. Obviously, its design will be related to the one of the
reference specification considered.

Let AS = (LS, L0S , LfS, XS , Σ?
S , Σ!

S , ES , IS) be a TIOA model of the Specifi-
cation. An observer of specification is a TIOA AO = (LO, L0O, LfO, XO, Σ?

O, Σ!
O,

EO, IO) with the following characteristics:

– The set of locations LO is equipped with two new disjoint locations Accept ∈
LfO and Reject ∈ LfO. If the location Accept is reached, we conclude that
the functionality modeled by the observer has been satisfied. An efficient set
of test cases can be extracted from all paths reaching and no traversing a
location Accept. All path reaching or traversing a Reject location should be
ignored (cf below).

– ΣO = ΣS such that Σ!
O = Σ!

S and Σ?
O = Σ?

S .
– AO is non blocking, deterministic, and complete TIOA.

In this paper, we use passive observers. They basically model a test purpose
which characterizes some expected functionality involving a Pass verdict, but
they also capture undesired (even if correct) behaviour that lead to inconclusive
verdicts. An example is presented in figure 3. The construction of an observer can
be done by completing the test purpose basic functionality. From every location
l in the test purpose, outgoing transitions are added according to the following
cases :

1. For every a ∈ ΣS such that l
g, a−−→ is an outgoing transition in the test

purpose
– If we’d like to test a under (g) only, then a transition l

¬g, a−−−→ Reject is
added to (EO).
(¬g is the negation of g)

– If we are interested in the occurrence of a under another constraint (g′),
then

312 R. Bouaziz and O. Koné

Accept

z:=0

Accept Reject

l0

l1 l1

The functionality to be tested
Its observer where:

?t

!v

?t
z:=0

(*, True)

!v

l0!f, n< 4

(#,True) (#,True)

* is one of {?p, !e, !r,!v}
** is one of {?p, !e, !f}

!f, n>=4

is one of {!f, ?t, !e, ?p, ?v, !r}

(**, True)

!v

!r
z<=1.3 z>1.3z<=1.3

Fig. 3. An example of real-time observer

(a) A loop l
a,g′

−−→ l is added;

(b) A transition l
a,¬g∧¬g′

−−−−−−→ Reject is added.
2. If the action a ∈ ΣS is not specified in the outgoing transitions of l

– If we are interested in the occurrence of a under the constraints (g) then
a loop in l

a,g−−→ l and a transition l
¬g, a−−−→ Reject are added to (EO).

– If we do not take care of the occurrence of a, a loop l
a,true−−−−→ l is added

to the (EO).

Example. Let us consider the process control example of figure 2. A main charac-
teristic of that real-time system is that only “fresh signals” must be transmitted.
We may be interested in the following properties (test purposes).

1. The system sends signal (!v) to the actuator in less than 1.3 time units after
the reception of the temperature signal (?t).

2. If an error occurs, it can be corrected within 1 time unit.
etc ...

The figure 3 (right part) represents the observer modelled from the first func-
tionality described above. In this observer all traces starting with (!f, n ≥ 4)
are rejected. Such traces increase the behaviour to be analyzed while they are
useless for the expected tests. On the other hand, (!f, n < 4) should be preserved
as it can detect conformance violation.

3.3 On the Fly Traversal

The main characteristic of our test selection approach is to perform an on-the-
fly traversal of the Reachable (symbolic) Automaton of specification AS until the
current observer AO is exhausted (Accept state reached). As usual, this can be
formulated on the basis of a synchronous product of AS and AO. This is done

Symbolic and on the Fly Testing with Real-Time Observers 313

in the following, in terms of full synchronization as the observer is assumed to
be complete, by its construction.

Let AS =(LS , L0S, LfS , XS , Σ?
S, Σ!

S , ES , IS) and AO =(LO, L0O, LfO, XO, Σ?
O,

Σ!
O, EO, IO). The synchronous product of AS and AO is a TIOA ASP = (LSP ,

L0SP , LfSP , XSP , ΣSP , ESP , ISP) where:

– LSP = LS × LO is the set of states equipped by two distinguished sets of
Accepting and Rejecting states which are defined as follows :

• AcceptSP = LS × {Accept} = LfSP ;
• RejectSP = LS × {Reject}.

An accepting state is an element from AcceptSP , and it has the form
(lS , Accept), and a rejecting state is an element of RejectSP and it has
the form (lS , Reject).

– L0SP = L0S × L0O is the set of initial locations;
– ΣSP = Σ?

SP ∪ Σ!
SP such that : Σ?

SP = Σ?
S = Σ?

O, and Σ!
SP = Σ!

S = Σ!
O is

the set of actions;
– XSP = XS ∪ XO is the set of clocks ;
– ESP is the set of transitions defined by the following minimal rule :

(lS
a,gS ,rS−−−−−→ l′S) ∧ (lO

a,gO,rO−−−−−→ l′O)

(lS , lO) a,gS∧gO,rS∪rO−−−−−−−−−−→ (l′S , l′O)

– ISP is such that I((lS , lO)) = I(lS) ∧ I(lO) is the invariants to locations in
ASP .

The synchronous product is illustrated with the specification of figure 2 and
the observer of figure 3. For space and readability reasons, the picture has been
decomposed into figure 4 and figure 5, and is partially drawn.

Optimizing the on the Fly Traversal. The intuition behind the use of the Accept
and Reject states is to eliminate some behaviours and therefore improve (or
optimize) the computation during the search of target test case. The search
must be stopped if Accept state is reached while transitions towards Reject state
are not considered. This improves the reachability of the resulting test graph
since much of the behaviour is eliminated. The test graph (the tester structure)
can be defined by the following operations on the synchronous product.

1. Each element of Accepting states in synchronous product TIOA must be
transformed in PASS state.

2. Each element of Rejecting states in synchronous product TIOA must be
transformed in INCONCLUSIVE state.

3. Each transition which initial location is a PASS must be removed.
4. Each transition which initial location is an INCONCLUSIVE state must be

removed.

Starting from specification of figure 2 and observer of figure 3, and their
product in figure 4 and figure 5, the operations below produce the test graph of

314 R. Bouaziz and O. Koné

S0,l0

S1,l1

S5,l1S3,Accept

S2,Accept S4,Accept

S1,Accept

S0,Accept

S5,Accept

x:=0

S2,l1

x:=0, y:=0

x:=0, y:=0

y=2

x:0

x>=2

?t

y:=0, z:=0

S4,l1

x>=2

?t

y:=0

y>= 1 y=2,
!e

x<2

!v

!v

x:=0, y:=0

y>=1

!e

y=2

!v

y:=0

y:=0!e
y:=0

!r

y=1,!r
!r

y<1

y=1

x> 4

x:=0!f,

?p

y<1, ?p, x:=0

?p

y<1 ?p, x:=0

 S0,Reject
x> 4

!f, x:=0

y=2
!e
y:=0

y =1

!r

x:=0, y:=0

x:=0, y:=0

!r

y =1
!v

x>4,

!f

x:=0

 z >4

x<2,z<=1.3

y<1,z<=1.3 !v

x<2,z>1.3

Fig. 4. Synchronous product of Specification and Observer

 S4,Reject S2,Reject

 S5,Reject S3,Reject

 S0,Reject

 S1,Reject

x>=2
?t
y:=0

y=2,!e
x:0

!v

x:=0, y:=0

! vy=1,!r

y=2,

!e
y:=0

y=1,!r

x<2

y<1

y:=0

x:=0,y:=0

y>=1,

x> 4

!f, x:=0

!r

x:=0, y:=0

?p

y<1 ?p, x:=0

S2l1 S0l0S4l1S5,l1

Fig. 5. Synchronous product of Specification and Observer (cont.)

Symbolic and on the Fly Testing with Real-Time Observers 315

figure 6 which is transformed into the final tester structure in figure 7. In the
latter, the inputs of specification are transformed into outputs and vice versa,
and a Fail state is added to capture all the unexpected outputs.

The test graph defines the subset of the product automaton that is consid-
ered for the reachability. Moreover, during the symbolic reachability analysis,
the target is the (Accept/PASS) state and all the transitions that lead to (Re-
ject/INCONCLUSIVE) are not to be traversed. This obviously improves the
performance of the forward analysis. An on the fly traversal of the synchro-
nous product (restricted to the test graph) produces the test path depicted in
figure 8-(A). This accepting path is submitted to symbolic analysis for gener-
ating test cases, which can be performed during the on the fly traversal (next
subsection).

3.4 Test Paths Executability and Controllability Improved

Forward Symbolic for Executability. Let us consider the accepting test path
depicted in figure 8-(A). A forward symbolic reachability detects that a state
such as (S1; (x = 3, y = 1.7)) is not actually reachable in this path because
whenever the automaton occupies location S1, the difference between x and y
is at last 2 time units (x − y >= 2). Therefore, a test run containing such state
is unsound and may fail with a correct implementation. The following presents
such unsound test case.

(S0, (2, 2))
x>=2,!t,(y)−−−−−−−→

t1
(S1, (3, 1.7))

y>=1,!p,(x)−−−−−−−−→
t2

(S2, (0.1, 1.8))
x<2,?v,()−−−−−−→

t3
(S3, (0.2, 1.8)).

To guarantee the executability and the test soundness, the “forward” pro-
cedure previously presented must be performed, throughout the sequence of
transitions in the test path, so that to insure the correctness of the propagated
constraints (in the related zones). Figure 8-(B) presents the computed (correct)
symbolic states that enable test executability and soundness.

Backward Symbolic for Controllability. The future of an IUT run is potentially
a tree structure and one can not always control its evolution towards a specific
expected state. This often turns to inconclusive verdict (There was no error but
the expected test could not be completed). To try to avoid such situation, one
must compute the minimal constraints necessary to lead the IUT towards the
expected state. Such constraint is computed in a backward manner with the
target symbolic state as input. The “backward” procedure previously presented
must be performed, throughout the sequence of transitions in the executable
test path so that to refine the propagated constraints (in the related zones) until
the beginning of the path.

Figure 8-(C) indicates that the PASS state is reachable only if the input !p
is sent when the clock x takes a value in the interval [3, 5] rather than in [2, 5],
and the clock y takes a value in [1, 1.3] rather than [1, 2]. In state the S1 of
figure 2, such interval [1.3, 2] where y > 1.3 can not allow the interaction !p to

316 R. Bouaziz and O. Koné

S0,l0

S1,l1

S5,l1

S2,l1

x>=2

?t

y:=0, z:=0

S4,l1

y>=1

!e

y=2

 INCONLUSIVE

x:=0, y:=0

x:=0?p

x:=0 y:=0

x>4, n>4, !f

PASS

!v

y=2

!e

y:=0

!v

y=1,!r

x:=0, y:=0

!v

y<1, ?p, x:=0

x<2,z<=1.3

y<1,z<=1.3

y=1,!r
x<2,z>1.3

Fig. 6. Reduced/optimised graph of synchronous product

S0,l0

S1,l1

S5,l1

x:=0

S2,l1

x>=2

y:=0, z:=0

S4,l1

y=2

PASS INCONLUSIVE

x:=0, y:=0

x:=0

?v

?e

FAIL

y>=1

FAIL

FAIL

x>4, n>4, ?f

!t

!p

y:=0

y=1,?r

(?v, True) or (?e, True) or (?f, z>4)

or (?r, True)

 (?e,y< 2) or (?r, True)

or (?v, True)

or (?r, True)

or (?e,y<2) y=2

?e

y:=0
?v

x:=0, y:=0

y=1,?r

?v

(?v, x>=2)
y<1, !p, x:=0

x<2,z<=1.3

x<2,z>1.3

x<1,z<=1.3

Fig. 7. Complete test graph

be executed in a timely manner, which implies an inconclusive outcome. Figure 9
shows the controllable zone in S1 in which we must submit the action !p, where
Z is the reachable state space and Zf is the controllable zone. If the action !p is

Symbolic and on the Fly Testing with Real-Time Observers 317

PASSS1
x:=0

PASS

S0 S2

S0 S1 S2

PASSS0 S1

y>=0

!t

B: FORWARD REACHABILITY

A: ONE PATH LEADING TO PASS

!t

!p

!p

C: BACKWARD REACHABILITY

 y>=0

0<=x<=4
y>=0

S2
?v

x>=2, !t

0<=x<=4
 y:=0, z=0

0<=y<2
1<=x<=5
0<=y<2

2<=x<=5

2<= x−y<=4

y>=1, !p x<2, z<=1.3, ?v

?v

0<=x<=1

0<=x<=3

 2<=x−y<=4

2<=x<=4

0<=(y=z)< 2

1<=y=z<=1.3
0<=x<=0.3

1<=(y−x)<=1.3

0<=x<= inf
1<=y=z<=inf

0<=x<= inf
1<=y=z<=inf

1<=(y−x)<=1.3

1<=(y−x)<=1.31<=y−x<2
1<=(y=z)<2

1<=y<=1.3
3<=x<=5

Fig. 8. Forward and backward reachability analysis for one accepting path

1

2 3 4 5

1.3

2

x

y Z

Zf

Z1

Z2I(S1)\ Z

Fig. 9. Controllable zone of S1

sent in the Zone Z1 ∪ I(S1) \ Z, an unsound test is generated, and if it is sent
in the zone Z2, an INCONCLUSIVE test is generated. To avoid such situations,
!p should be submitted only in the controllable zone Zf .

Finally, to instantiate concrete tests, particular valuations (ν) of clocks can
be chosen and propagated in the backward reachability. One could for instance
consider extreme values like “minimal/maximal clock valuation” etc.

Example of Successful Test Run. Let us consider the path shown in figure 8-(A).
After computing forward and backward reachability graphs (figures 8-(B) and
8-(C)), we obtain the actual symbolic test path below.

R=S0
(2≤x≤4),!t−−−−−−−→S1

(3≤x≤5,1≤y≤1.3,2≤(y−x)≤4),!p−−−−−−−−−−−−−−−−−−−−−→S2
(0≤x≤0.3,1≤y≤1.3,1≤(y−x)≤1.3),?v−−−−−−−−−−−−−−−−−−−−−−−−→S3

318 R. Bouaziz and O. Koné

The symbolic test path above can be instantiated with the following test case:

S0
x=2,!t−−−−→

2
S1

y=1,!p−−−−→
3

S2
x≤0.3,?v−−−−−−→

3.3
PASS

This test case means that the tester sends signal !t at 2 time units, waits at last
1 time unit and submits signal !p. Then it should receive ?v no later than 0.3
time unit after !p was performed.

4 Further Comments on the Proposed Method

Algorithms and Complexity - Efficiency, Savings of the Method. In this paper,
the test selection algorithm proceeds in two steps: First, it uses an on the fly
traversal of the product (specification, observer) with a standard DFS (Depth
First Search) performed in conjunction with the symbolic forward computation.
Second, the intermediate test pattern obtained at this step is analysed in a
backward manner for controllability refinement.

The on the fly DFS algorithm is linear with respect to the transitions relation
and state space of the product. Moreover, our approach performs the on the fly
selection with an optimized graph, with a reduced transition relation and state
space: Check the savings by comparing the reduced/optimized graph (figure 6)
against the synchronous product (figure 4 continued in figure 5). Finally, sym-
bolic computation is known to produce fewer reachable vertices, which leads to
better performances.

The other aspect is related to controllability during test experiment. As the
implementation is “free”, it can happen that one does not manage to carry out
the desired scenario. The test experiment thus is to be replayed several times
in the hope of exhibit the desired behavior, which is very expensive in times of
development. The controllability analysis is necessary for the selection of more
targeted scenarios and for saving the coast of tests (cf previous comments on the
refinements and gain in figure 9).

Fault Detection and Conformance Relation. For timed systems, the principal
models of errors identified in the literature are : output error (when an un-
expected output action arrived), transfer error (when an unexpected state is
reached), and time constraints errors (when an output action arrived too early
or too late). The method presented in this paper detects output and time con-
straints errors. Moreover, it can be related to the implementation relation, re-
ferred to as tioco below, since the detection of such errors imply a violation of
this implementation relation. The tioco relation is a time extension of the ioco
implementation relation used for input-output systems: Let AI and AS be two
TIOAs modelling the IUT and the specification. The IUT conforms to its spec-
ification if for each behavior of specification, the possible outputs of the IUT
after this behavior is a subset of possible outputs of the specification behaviors.
To formally define this, we use the following notations: Given a run σ, Aafterσ is
the set of all states of A that can be reached after the execution of σ. Formally,

Symbolic and on the Fly Testing with Real-Time Observers 319

Model Transformation
Other

(Open)

Tools

OOTEST kernel

Environment

(Graphical)

User

Interface

OOTEST Models

S−analysis

Library for

Fig. 10. Architecture of OOTEST environment

A after σ = {l ∈ LA ·l0 σ−→ l}. The set out refers to the set of all output actions or
delay that can occur when the automaton reach l : out(l) = {a ∈ Σ! ∪R+ · l a−→}.
The relation tioco is defined as follows:

AI tioco AS iff ∀σ ∈ Traces(AS) · out(AI after σ) ⊆ out(AS after σ).

Coverage. The test purpose is a natural basis to coverage analysis. It defines/
specifies the tests to be computed from the system model. The method proposed
in the paper computes at least one test case for a given test purpose, if it exists.
One could try to compute all the test paths corresponding to a given test purpose.
This option is easily implemented, but we incur combinatory explosion, and
incur loosing the benefits of the on the fly search. Moreover, without additional
hypotheses on the time domains, it is impossible to compute all the possible
instances of timed tests because of dense time.

ArchitectureandStatus ofOOTEST. Theprototype toolOOTEST is under a very “Beta
version”. The test paths generated before backward analysis are not always the
shortest one (there is no search optimization implemented yet). The architecture
is presented in figure 10. The tool is designed to be flexible, evolutive and must
be connected to other platforms and tools. Currently the tool inputs are timed
automata generated from a Graphical User Interface, developed in the french
Averroes project [2]. For symbolic analysis, the tool reuses existing libraries
for the manipulation of polyhedra. Many such libraries are available as open
source and we have currently used some extensions of the Polylib library [5].
We can manipulate structures equivalent to DBM, and few modifications enable
the manipulation of Clock Difference Diagrams, or state classes. The Averroes
platformpartially implements somemodel transformationandgenerates automata
in XML format that can be parsed towards over model-checking tools.

5 Real-Time Ethernet Protocol

In this section we briefly comment the case study that we are currently carrying
in our laboratory, for testing RT-EP (Real Time Ethernet Protocol). More details
can be found in the report [3].

320 R. Bouaziz and O. Koné

RT-EP [16] has been designed to avoid collision in the Ethernet media, and
to achieve a relatively high speed mechanism for real time communication at
a low cost, while keeping the predictable timing behaviors required in the dis-
tributed hard real time communication. Each station (processing or CPU) in
RT-EP has a transmission queue and a set of reception queues. The number
of reception queues can be configured depending on the number of applications
threads running in the system and requiring reception of messages.

The network is logically organized as a ring. Each station knows which other
station is its predecessor and its successor. The protocol works by rotating a
token in this ring. The token holds information about the station having a highest
priority packet to be transmitted and its priority value. The network operates
in two phases. The first phase corresponds to the priority arbitration, and the
second phase to the transmission of an application message.

The following operations show the functionality of RT-EP.

– Firstly, each station in RT-EP reads a configuration file describing the token
ring and gets configured as one of its station. The station configured as initial
token-master sends the Initial Token (In-Token) to the successor station.

– Each station listens for the arrival of any packet. When a packet is received,
a check is done to determine its type:

• If it is an information packet (infos) the information is written into the
appropriate reception queue and the station becomes the token-master.

• If it is a token packet, the station checks its type. (1) If it is a Regular
Token (Rg-Token) the station compares the priority carried by the token
with the highest priority element on its transmission queue, changes the
regular token if its own priority is higher, and sends the Update Token
(Up-Token) to the next station. (2) If the token is the Initial Token the
station sends information (infos) if it has the highest priority, or sends
the permission (action Tr-Token) to the highest priority station. (3) If
the token is the Transmit Token the state has the highest priority on
the ring and it is allowed to transmit it.

To recover faults due to the loss of packets, each station, after sending a
packet (information or token) listens to the media for an acknowledge (action
ack), which is the transmission of the next frame by the receiving station. If no
acknowledge is received after some specified timeout, the station assumes that
the packet is lost and retransmits it. The station repeats this process until an
acknowledge is received or a specified number of retrials is produced. In the latter
case the receiving station is considered as a failing station and will be excluded
from the ring (action dk).

Each station in RT-EP can be modeled by the two concurrent automata: a
sender module and a receiver module. The sender is shown in Figure 12, it uses
3 clocks (x, y, ω).

More details on RT-EP can be found in [16, 3].
For testing RT-EP, if we want to test the ability of the protocol to handle

faults due to the loss of packets, we study the following examples:

Symbolic and on the Fly Testing with Real-Time Observers 321

!Infos

 ?Tr−Token

?ack

?Rg−Token
?Rg−Token

 ?Tr−Token
?Infos

!Up−Token

!Tr−Token !In−Token

!dk

?In−Token
?Rg−Token

Predecessor station Successor station

NETWORK

Fig. 11. Operations in RT-EP

932<=y<= 1851

y:=0

932<=y<=

y:=0

1851

!Infos!Infos

?Tr−Token

x:0, w:=0 x:0, w:=0

S1

S3

x:0, w:=0 x:0, w:=0

?Rg−Token

y:=0

!Up−Token

x:=0 x:=0 x:=0

!Tr−Token !Infos

2430<=y<= 4139

932<=y<= 1851

?ack

?ack

!dk

?ack

x<1851

!dk

!dk

?Init

y:=0

x:=0,w:=0

w=?ack

S2

S4 S5 S6

S7 S8 S9

x<1851

x<1851

!In−Token!In−Token

3085<=y<= 4116

w=11374

x = 1851, w<11374

x:=0

x = 1851, w<9990

3744<=y<= 4163

9990, !dkx<1851

!Infos

?In−Token

2430<=y<= 2593
3744<=y<= 4163

!Tr−Token

x = 1851, w<8652

w=8652

!Up−Token

x = 1851, w<8650

w=8650

Fig. 12. Transmission module

1. A station should not be excluded from the ring only if it cannot response
after 4 retransmission from the predecessor station.

2. When an Information packet is received, the station can submit an acknowl-
edge no later than 1851 ns.

The observer related to the first property is shown in figure 13-(B).
As examples of test sequences leading to the PASS we have:

Tc1 = (S1, L1) !Init−−−→
y:=0

(S3, L1)
y=932,!Tr−Token−−−−−−−−−−−−→

y:=0
(S6, L1)

y=4163,?Infos−−−−−−−−−−−→
x:=0,w:=0,m:=0

(S9, L2) ...

... (S9, L2)
w:=11374,m:=11374,?dk−−−−−−−−−−−−−−−→ PASS.

T c2 = (N1, F1) !Init−−−→
m:=0

(N2, F1)
y=2119,!Infos−−−−−−−−−→

m:=0
(N2, F2)

k<1851,m<1851,?ack−−−−−−−−−−−−−−→ PASS.

322 R. Bouaziz and O. Koné

?ack

!dk ?ack

m:=0

Reject Accept AcceptReject

(*, True)

(*, True)

(*, True)

(*, True)(*, True)

(A) (B)

V’ := 1

V’=4

(*, True) (*, True)

(*, True)

!Infos

!dk

m<11374

m=11374

V’ < 4, V’ := V’+1

! Infos(V’) !Infos

!Infos (V’)

L1

L2

L1

L2

(*, True): Actions not specified in the set of output transitions of each state

Fig. 13. Observer of the first property; (A) with variable and (B) with temporal inter-
pretation

The first test case is generated from the complete test graph of the trans-
mission module specification of RT-EP (Figure 12) and the observer of Fig-
ure 13. Here we propagated the minimal value of the time in the case of emission
and the maximal value of the time in the case of reception. This test means
that after initialization the tester emits to the IUT a transmit token packet
at 930 ns and should observe the information packet no later than 4163 af-
ter sending the transmit token, waits 11374 ns and should observe the out-
put (dk). For receiving the output (dk) the tester should not submit to the
IUT the input (ack). The second test case is generated from the complete test
graph of the reception module of RT-EP and the observer related to the second
property.

6 Conclusion

We have presented a method to test selection for real-time systems. Some ideas
in our test design process are inspired by techniques used, in other respects,
in different research fields. The forward symbolic analysis was used for model-
checking of timed systems. The backward analysis was a technique used in fault
tolerance analysis to track the cause of a failure in the past of system execution.
Combining such techniques for the purpose of testing is - to our knowledge - a
new contribution for test selection improvement.

The current work is concerned with functional conformance requirements, and
it does not address the full features of the real-time observers actually to be used
in the current project. These observers are expected to model extra features like
failures of the run-time environment, etc. For future work, our method and its
implementation within the OOTEST tool will upgrade in a short term, to take
some aspects of robustness testing into account.

Symbolic and on the Fly Testing with Real-Time Observers 323

References

1. R. Alur and D. Dill, A Theory of Timed Automata. Theoretical Computer Science
126:183-235, 1994.

2. Analysis and VERification for the Reliability Of Embedded Sys-
tems.(www.education.gouv.fr/rntl)

3. R.Bouaziz, O.Koné. Design principles and applications of the OOTEST tool. Technical
Report, CNRS University of Toulouse 2006.

4. Lori Clarke and Debra Richardson. Symbolic evaluation methods for program analy-
sis. In Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones,
Eds. Prentice-Hall, Englewood Cliffs, NJ, 79–101. 1981

5. Ph. Clauss and V. Loechner PolyLib: A Library for Manipulating Parameterized
Polyhedra. Technical Report, University of Strasbourg, 1999.

6. R. Castanet, O. Koné and P. Laurencot, On-the-Fly Test Generation for Real-
Time Protocols. IEEE International Conference on Computer Communication and
Networks. Lafayatte, 1998.

7. A. En-Nouaary and G. Liu : Timed Test Cases Generation Based on MSC-2000
Test Purposes, in Workshop on Integrated-reliability with Telecommunications and
UML Languages (WITUL’04), part of the 15th IEEE International Symposium on
Software Reliability Engineering (ISSRE), Rennes, France, November 2004.

8. GrabowskiJ.,HogrefeD.,NahmR.Testcasegenerationwithtestpurposespecifications
by MSCs. 6th SDL Forum. Elsevier Science, North Holland, 1993. Pages 253-266.

9. K. Larsen, M. Mikucionis, and B. Nielsen, On line Testing of Real-Time Systems.
Formal Approaches To Testing of Software, Link2, Austria. September 2004.

10. T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli, Generating Test Cases for
a Timed I/O Automaton Model. IFIP (IWTCS’99) Budapest, 1999.

11. P.Gaufillet. The TOPCASED project: a Toolkit in OPen source for Critical Aero-
nautic SystEm Design ERTS2006 - 3rd Embedded Real Time Software Conference
- Toulouse January 2006. http://www.topcased.org

12. Ph.Dhaussy, JC.Roger, H.Bonin, E.Saves and J.Honnoré. Experimentation of
Timed Observers for Validation of an Avionics Software. Toulouse, January 2006.

13. William E. Howden. Methodology for the Generation of Program Test Data. IEEE
Trans. Computers, 24(5): 554-560, 1975

14. T. Hinzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for
Real-Time Systems. Information and Computation. 111(2): 193-244, June 1994.

15. O.Koné. A local approach to the testing of real-time systems. The Computer Jour-
nal, British Computer Society, Oxford Press. Vol. 44 N.5, 2001.

16. J. M. Martinez, M. G. Harbour, and J. J Gutierrez, RT-EP : Real-Time Ethernet
for analyzable distributed application an a minimum real-time POXIS-kernel. 2nd
International Workshop on Real-Time LANs in the Internet Age. RTLIA 2003.

17. K.L.McMillan. Symbolic model-checking: An approach to the state explosion prob-
lem. Kluwer Academic, 1993.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 324 – 340, 2006.
© IFIP International Federation for Information Processing 2006

Using TIMEDTTCN-3 in Interoperability Testing
for Real-Time Communication Systems

Zhiliang Wang1, Jianping Wu1, Xia Yin1, Xingang Shi2, and Beihang Tian1

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, P.R. China, 100084

{wzl, yxia, tbh}@csnet1.cs.tsinghua.edu.cn,
jianping@cernet.edu.cn

2 Network Research Center, Tsinghua University,
Beijing, P.R. China, 100084
shixg@cernet.edu.cn

Abstract. Interoperability testing is an important technique to ensure the quality
of implementations of network communication software, and real-time protocol
interoperability testing is an important issue in this area. TIMEDTTCN-3 is a
real-time extension of test specification language TTCN-3. In this paper, test
notations for real-time interoperability testing are studied. Test behavior trees
are constructed from specifications of system under test and then transformed to
TIMEDTTCN-3 test cases. We also investigate real-time TTCN and analyze the
insufficiency of its capabilities in specifying time constraints. Possible exten-
sions for real-time TTCN are given to specify real-time interoperability test
cases. From the comparisons between the two real-time test notations, it can be
concluded that TIMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be suitable for real-time interoperability testing.

1 Introduction

In order to ensure the quality of communication software, protocol test techniques are
widely used. Conformance testing is the basic method of protocol testing, which can
be used to test whether an implementation conforms to its protocol specification. As
the complement of conformance testing, interoperability testing is often used to test
whether two or more protocol implementations can communicate with each other
correctly and inter-operate as a whole system to perform functions specified in proto-
col specifications. Interoperability testing is necessary because (1) It is difficult to
perform exhaustive conformance testing, that is, a conformance test suite can hardly
ensure 100% test coverage; (2) Many optional features may be contained in network
protocols, and moreover vendors perhaps have their own extensions, so if two imple-
mentations implement different options, problems on interoperability will happen.
Interoperability testing is also being performed by IETF and ETSI in the process of
protocol design ([KD03]). Interoperability testing events have been organized by
these organizations.

In the area of interoperability testing, [Hao97] proposed a TTCN-2 based
framework for interoperability testing, [VBT01] presented a formal framework for

 Using TIMEDTTCN-3 in Interoperability Testing 325

interoperability testing and several interoperability relations were defined to guide test
generation. Interoperability test generation is an important issue in this field. In most
works of test generation, the basic idea is to model the interoperability system under
test as a system of communicating finite state machines and generate test sequences
for the composition of these machines ([RC90]). Based on this idea, a series of test
generation techniques have been proposed ([KSK00, SKKJ03, TKS03, SKCK04,
ETSY04]). Different from the above literatures, [HLSG04] proposed an efficient
method only considering the specification of one protocol entity. By this method,
there is no need to generate the composition machine and the state space explosion
can be alleviated.

But in most real-life network protocols, not only the behaviors of input and output,
but also their time of occurrence should be considered, that is, such protocols can be
modeled by real-time systems. In order to test real-time systems, we should check if
the I/O behaviors act under the specified time constraints. In the field of real-time
testing, many methods of conformance testing have been proposed. In most of these
works, Timed Automaton [AD94] or its variants have been used to specify real-time
system. [SVD01, EDK02] converted timed automaton to grid automaton, and applied
existing test generation methods for finite state machine (FSM) to it. But this method
suffers from the state space explosion problem. [HNTC99] presented a test generation
method of executability decision. [KJM03, KT04, LMN04, BB04] defined timed
conformance relations, and proposed associated test generation methods. As far as we
know, [WWY04] is the first work to study interoperability testing of real-time sys-
tems. An interoperability test generation method of time dependent protocols was
presented in [WWY04].

In this paper, we focus on the problems of test notations suitable for interoperabil-
ity testing of real-time communication systems, i.e., how to specify test cases. The
testing and test control notation version 3(TTCN-3) ([TTCN3, GHRS03]) is a new
test specification language standardized by ETSI (European Telecommunications
Standards Institute), which is a new version and redesign of TTCN (tree and tabular
combined notation) ([TTCN]). TIMEDTTCN-3 ([DGN02]) is a real-time extension of
TTCN-3. [DGN03] presented a method of generating TIMEDTTCN-3 code from MSC
test specifications; and [NDG04] used TIMEDTTCN-3 in specifying real-time commu-
nication patterns. In this paper, we intend to use TIMEDTTCN-3 in real-time interop-
erability testing. Following the test generation method presented in [WWY06], a
parameterized test behavior tree will be generated from the formal model of system
under test (SUT). Parameters in the test behavior tree are relative time intervals be-
tween IO events. In this paper, firstly the test behavior tree will be converted from the
view of SUT to the view of test system, which is an intermediate notation of test
cases. Then we give transformation rules to transform such a test behavior tree to a
TIMEDTTCN-3 test case.

We also investigate the real-time extension of TTCN – real-time TTCN ([WG99])
and intend to use real-time TTCN to specify test cases. But unfortunately, we find that
real-time TTCN has no enough capabilities to specify timed interoperability test
cases. We also give possible extensions of real-time TTCN on the syntactical and
semantic levels to specify test cases. Based on the transformation results to
TIMEDTTCN-3 and extended real-time TTCN test cases, we compare the two test
notations mainly on the capabilities of specifying hard real-time requirements.

326 Z. Wang et al.

The rest of the paper is structured as follows. Section 2 gives the formal model
Communicating Multi-port TIOA (CMpTIOA) to specify interoperability system
under test; and as a working example, a simple real-time communication protocol
system is specified by using this model. In Section 3, test architecture is given and test
behavior trees will be generated. In Section 4, we give transformation rules from test
behavior trees to TIMEDTTCN-3 test cases. In Section 5, we investigate real-time
TTCN and draw a comparisons between TIMEDTTCN-3 and real-time TTCN. Conclu-
sion and future work are given in Section 6.

2 Preliminaries

2.1 Multi-port TIOA

Timed Automaton ([AD94]) is a widely-used model of real-time system. TIOA
(Timed Input Output Automata [EDK02]) is a variant of Timed Automaton, which
distinguishes whether an action is an input or output. To specify an entity interact-
ing with more than one other entities, we extend TIOA to Multi-port TIOA as
follows.

Definition 1. Multi-port Timed Input Output Automaton (MpTIOA)
A Timed Input Output Automaton with n ports (for short, np-TIOA) is a 6-tuple (L, I,
O, l0, C, T), where,

• L is a finite set of locations;
• It has n ports communicating with environment, which are denoted as P1, P2, …, Pn

respectively;
• I is an n-tuple: I=(I1, I2, …, In), where Ik(k=1,2,…,n) is the set of input action sym-

bols of port Pk; nIIII ∪∪∪= "21 is the set of input action symbols; An input ac-

tion symbol occurring in port Pk can be denoted as Pk?a (a∈Ik);
• O is an n-tuple: O=(O1, O2, …On), where Ok(k=1,2,…,n) is the set of output action

symbols of port Pk; n21 OOOO ∪∪∪= " is the set of output action symbols.

An output action symbol occurring in port Pk can be denoted as Pk!b (b∈Ok);
• l0 ∈ L is the initial location;
• C is a finite set of clocks {t1, t2, …, t|C|}, where, |C| is the number of clocks;.

vi∈R+(non-negative real numbers) is the clock value of ti;)(|C|21 v,,v,vv "G
= de-

notes a clock valuation;
• T is a set of transitions: Tl,l,a,P,R ∈′)(, where, Ll,l ∈′ are the source and destina-

tion locations; OIa ∪∈ is an input or output action symbol; P is the time con-
straint, which is a Boolean conjunction over linear inequalities P(v

G
); The subset

R ⊆ C specifies the clocks to be reset to 0. The transition Tl,l,a,P,R ∈′)(can be

also denoted as ll a[P]/R ′⎯⎯ →⎯ ; □

 Using TIMEDTTCN-3 in Interoperability Testing 327

In the model, we assume that time constraints of transitions are all the format of
)(~dvi∧ , where ~∈ {<, >, ≤, ≥, =}, and d∈ R+. We distinguish two urgency types

([BST98]) of transitions implicitly: (1) Lazy, for transitions with input actions, means
that input actions may be not taken because they are controlled by environment (such
a property is also called “Unforced Inputs”); and (2) Delayable, for transitions with
output actions, means that the corresponding output action must be taken during such
transitions’ enabling time.

The semantics of MpTIOA can be defined as a TIOTS (Timed Input Output Tran-

sition System))(→,A,A,s,S outin0 , where IAin = and OAout = . We denote

outin AAAct ∪= as the set of all IO symbols. Its states are the pairs)(v,ls
G

= , where
Ll ∈ is a location,)(|C|21 v,,v,vv "G

= is a clock valuation. S is the set of all possible

states. SRActS ××→⊆ +)(∪ is the set of transitions. There are two types of transi-

tions: Timed transitions and Discrete transitions. Timed transitions model time
progress, which are the form)(v,lv,l d , where +∈ Rd is the delaying time,

)(＝ d,,d,dvdvv "GGGG
+=+′ , and in this period, no discrete transitions occur. Discrete

transitions)(）(v,lv,l a GG ′′⎯→⎯ correspond to execution of the transition)(l,l,a,P,R ′ in
MpTIOA, where P is satisfied by v

G
(P(v

G
)=true) and v

G′ is obtained by updating v
G

according to R.

2.2 Communicating Multi-port TIOA

To specify an interoperability system under test including two or more entities, we
introduce a formal model Communicating MpTIOA (CMpTIOA). In the model,
MpTIOA can model each single entity, and all these entities in the system can com-
municate with each others via channels between different MpTIOAs.

Definition 2. Communicating Multi-port Timed Input Output Automata (CMpTIOA)
A Communicating MpTIOA is composed of a set of MpTIOAs M and a set of chan-
nels Ch, where,

(1) M={M1, M2, …, Mm} is a finite set of m MpTIOAs;
(2) Ch = {Cij | i, j = 1, 2, …, m ∧ i ≠ j} is a finite set of channels between

MpTIOAs: Cij∈Ch represents the communicating channel from MpTIOA
Mi to Mj. □

In the definition of CMpTIOA, channels behave like FIFO queues. Intuitively, the
semantic of channels is that outputs of MpTIOA Mi can be transferred via channel Cij
to be inputs of Mj. In this paper, we assume that transfer time of actions in communi-
cating channels can be neglected, that is, the channels are lossless and non-delayed.

Definition 3. Port Mapping Relations of CMpTIOA
Port Mapping Relations R of CMpTIOA M is an m-tuple: R=(R1, R2,…, Rm), where
Rk(k=1,2,…,m) is the Port Mapping Relations of MpTIOA Mk; Rk is a set of Port Map-
ping Relations for all ports of Mk: Rk={r1, r2,…, rn}, where n is the port number of Mk,
and ri(i=1,2,…, n) can be the format of 1) Pi -> Mj:Ph(j≠k), which means that the port

328 Z. Wang et al.

Pi of Mk is connected to the port Ph of Mj via the channel Ckj; 2) Pi -> env, which
means that the port Pi of Mk is connected to the external environment of the system. □

According to the above definitions, we can get the abstract topology of the system
under test. We furthermore denote the ports communicating with the external envi-
ronment as "external ports"; and others as "internal ports". Inputs/outputs on exter-
nal/internal ports are "external/internal inputs/outputs".

2.3 A Simple Real-Time Communication Protocol

We specify a simple real-time communication protocol by using MpTIOA. Fig. 1 (a)
shows the specification of such a protocol, which is a 2p-TIOA with two ports
(U and l) and two clocks {t1, t2}. IU={A}, OU={B,C}, Il=Ol={a,b,c}. The initial loca-
tion is ‘0’. The protocol can be specified informally as follows:

(1) Initiate a connection to a remote entity actively
If an input ‘A’ is received from port U in the initial location 0, the protocol entity should
initiate a connection to a remote entity actively; In this transition (0,U?A,true,{t1,t2},1),
the two local clocks t1 and t2 should be reset to 0. Within 2 time units, an output ‘a’
should be sent from port l to remote entity, and the clock t1 should be reset to 0 (transi-
tion (1,l!a,[t1<2],{t1},2)). After that, three cases should be considered:

(a) Receiving an input ‘b’ from port l in time, i.e., transition
(2,l?b,[t1≥1,t2<2],{},3), indicates that the connection can be established;

(b) Receiving an input ‘b’ from port l too late, i.e., transition
(2,l?b,[t2≥2],{t1},4), indicates that the connection cannot be established;

(c) Receiving an input ‘c’ from port l, i.e., transition (2,l?c,true,{t1},4), indicates
that the connection cannot be established.

If the connection can be established, an output ‘B’ should be sent to port U, i.e.,
transition (3,U!B,[2<t2<3],{},0); else, an output ‘C’ should be sent to port U, i.e.,
transition (4,U!C,[t1<1],{},0).

(2) Respond a connection request from a remote entity passively

(a) Sending an output ‘b’ to port l, i.e., transition (5,l!b,[1<t1<3],{},0);
(b) Sending an output ‘c’ to port l, i.e., transition (5,l!c,[t1<3],{},0).

To test interoperability, we make an assumption that both specifications and im-
plementations are input-complete, that is, they can accept any inputs at any loca-
tions. To make a specification input-complete, some self-loop transitions can be
added to it, which indicates that a specification ignores the unspecified input ac-
tions. Fig. 1(b) shows an input-complete specification after adding self-loops to
Fig. 1(a).

Fig. 2 shows an example of a system under test specified by CMpTIOA, which is a
real-time communication system containing two real-time protocol entities. M={M1,
M2}, Ch={C12, C21}. The specifications of M1 and M2 are both the MpTIOA of Fig.
1(b). We use subscript 1, 2 on ports and actions to distinguish them. Port Mapping
Relations are ({U1->env, l1->M2:l2}, {U2->env, l2->M1:l1}).

 Using TIMEDTTCN-3 in Interoperability Testing 329

0

1

2

3 4

U?A/
{t1,t2}

l!a
[t1<2]
/{t1}

l?b
[t1>=1,t2<2]

l?b
[t2>=2]
/{t1}

l?c/{t1}

U!B
[2<t2<3]
/{t1,t2}

U!C[t1<1]
/{t1,t2}

5

l?a/
{t1}

l!b
[1<t1<3]
/{t1,t2}

l!c
[t1<3]
/{t1,t2}

l?a/{t1}

l?b
l?c

l?a,b,c
U?A

U?A
l?b[t1<1,t2<2]

l?a,b,c
U?A

l?a,b,c
U?A

l?a,b,c
U?A

 (a) Specification of a MpTIOA (b) an input-complete specification

Fig. 1. A simple real-time protocol specified by using MpTIOA

Fig. 2. An example of CMpTIOA

3 Test Behavior Tree

3.1 Test architecture

To test interoperability of protocol system, test architecture should be defined firstly.
Fig. 3 shows test architecture that can be used to test SUT in Fig. 2. In the test archi-
tecture, there are two types of access points to SUT in the test system: PCO (Point of

Fig. 3. Test architecture used to test SUT in Fig.2

330 Z. Wang et al.

Control and Observation) and PO (Point of Observation). PCOs have capabilities of
control and observation, which can either apply stimuli to or receive responses from
SUT; and POs only have capabilities of monitoring the interactions of SUT. In Fig. 3,
PCO1 and PCO2 are connected to the external ports U1 and U2 respectively, and only
one PO is contained in test architecture to monitor the IO behaviors in channel C12
and C21.

3.2 Generating Test Behavior Tree

In [WWY06], based on timed interoperability relations, a test generation method was
presented. This method starts from the formal model of SUT, and as a result, a pa-
rameterized test behavior tree can be generated. Such a test behavior tree is just an
intermediate notation. In this paper, we do not intend to introduce this method in
detail.

Fig. 4 is a part of resulting parameterized test behavior tree. Leaf nodes of a test
behavior tree are the verdict “pass” or “fail”. For “fail” verdict, it is also necessary to
indicate which implementation the fault is located in. The other internal nodes repre-
sent the tester’s knowledge of the SUT’s current global states, denoted as (s1, s2, …,
sm), where ）（ iii v,ls

G
= (i =1,2,…,m), representing local states of Mi. The root node is

the initial global state GS0=)(m
0

2
0

1
0 ,...,s,ss of SUT, where ）（ i

0
i
0

i
0 v,ls

G
= (i =1,2,…,m).

Edges between nodes are labeled as possible input/output events and their time con-
straints in SUT. Parameters di(i=0,1,2,…) in a test behavior tree represent relative
time intervals between the two consecutive IO events. There are two types of parame-
ters: controllable parameters are time intervals between an external input event and
its last IO event in the tree, and their values should be set in test cases in advance, so
such parameters are controllable for test system, e.g., d0 in Fig. 4; uncontrollable
parameters are time intervals between an internal or external output event and its last
IO event, and their values are dependent on SUT and only can be retrieved on the
process of test execution and cannot be set in advance, so such parameters are uncon-
trollable for test system, e.g., d1, d2, d3 in Fig. 4.

Parameterized test behavior tree in Fig. 4 is described from the view of SUT. To
generate executable test case, at first, it should be converted to the test behavior tree
which is described from the view of test system. The basic idea is to convert edges of
the original tree to nodes of the resulting tree, and associate each IO event with one
access point of test system; e.g., for test architecture of Fig. 3, IO events on the port
U1 of M1 are associated with PCO1, events on U2 of M2 are associated with PCO2 and
events on the two internal ports l1 and l2 are all associated with PO. On PCO1 and
PCO2, input/output actions of SUT should be converted to sending/receiving test
events of test system. On PO, all actions should be converted to receiving test events
of test system.

Fig. 5 shows the resulting test behavior tree described from the view of test system:
the root node represents the start point of the test; other internal nodes are labeled as
test events and their time constraints; black leaf nodes represent pass verdicts, and
gray leaf nodes represent fail verdicts. In the timing axis on the right of the tree, the
global time for the same level of test events occurring are denoted as Ti(i=0,1,2,…),
so relative time intervals between two consecutive events are di=Ti+1-Ti (i=0,1,2,…).

 Using TIMEDTTCN-3 in Interoperability Testing 331

Fig. 4. A part of parameterized test behavior tree (from the view of SUT)

Fig. 5. Test behavior tree (from the view of test system)

332 Z. Wang et al.

We have proved in [WWY06], all time constraints on each test event can be repre-
sented by a conjunction over a set of linear inequalities on parameters (see Lemma
1), e.g., on the time point T3, time constraints of node (1) are [1<d2<3 and d2≥1 and
d1+d2<2] ([1<d2<3 and d1+d2<2]).

Lemma 1. On the time point Tk, time constraints of the test event nodes can be repre-
sented by a conjunction over a set of linear inequalities on di(i=0,1,…,k-1). □

4 Transformation to TIMEDTTCN-3 Codes

4.1 TIMEDTTCN-3

TIMEDTTCN-3 ([DGN02]) is a real-time extension of TTCN-3([TTCN3]). In
TIMEDTTCN-3, the concept of absolute time is introduced, so TIMEDTTCN-3 provides
a capability of testing hard real-time requirements. TIMEDTTCN-3 (1) introduces a
new verdict conf to indicate functional pass but no-functional fail; (2) introduces the
concept of absolute time and provides mechanisms of retrieving the current local time
and delaying the execution of a test component; (3) extends the TTCN-3 logging
mechanism; (4) supports both online and offline evaluation.

4.2 Transformation to TIMEDTTCN-3 Test Cases

Now we consider how to convert a test behavior tree to a TIMEDTTCN-3 test case. In
this paper, for the sake of simplicity, only test architecture with one single main test
component is considered. Firstly, not considering time constraints, a test behavior tree
can be converted to a TTCN-3 test case easily: Pre-order traversing method can be
used to covert a test behavior tree to dynamic behaviors of a TTCN-3 test case. In a
test behavior tree, each node of sending event corresponds to a TTCN-3 statement of
send operation, and each node of receiving event corresponds to a TTCN-3 statement
of receive operation. The nodes of the same level in a test behavior tree can be repre-
sented by using alt statements of TTCN-3, which are called a set of alternatives.
When reaching a leaf node of the test behavior tree, a verdict should be set by using a
setverdict statement, and the test case will be stopped.

Now we consider time constraints in test behavior trees and give transformation
rules from test behavior trees to TIMEDTTCN-3 test cases.

(1) Get global time values of nodes in the test behavior tree
In TIMEDTTCN-3, the concept of absolute time is introduced. To get global time values
of nodes, e.g., T0, T1, T2 … in Fig. 5, now operations in TIMEDTTCN-3 can be used. The
now statements should be placed directly after the associated statements of receive
operations that correspond to nodes of receiving events. For example, in Table 1, for the
receive operation of line 9 corresponding to node (b) or (c) in Fig. 5, a now statement is
placed directly in line 10 to get the global time and store it in a float variable T2.

(2) Get the real values of uncontrollable parameters
In the test behavior tree, uncontrollable parameters are time intervals between an
internal or external output event and its last IO event, which can be calculated only in

 Using TIMEDTTCN-3 in Interoperability Testing 333

Table 1. The TIMEDTTCN-3 test case for the test behavior tree in Fig. 5

1 testcase testcase1() runs on simple_rtp {
2 var float T0,T1,T2,T3,T4; //global clock
3 var float d1,d2,d3; //time interval
4 T0 := self.now;
5 T1 := T0 + 1;
6 resume(T1) ; //wait until T1 point
7 PCO1.send(A1); //node (a)
8 alt { //alt 1
9 []PO.receive(a) {
10 T2 := self.now;
11 d1 := T2 – T1;
12 if(d1 < 2) { //node (b)
13 alt { //alt 2
14 []PO.receive(b) {
15 T3 := self.now;
16 d2 := T3 – T2;
17 if((d2>1) and (d2<3)
 and ((d1+d2)<2)){ //node(1)
18 alt { //alt 3
19 []PCO1.receive(B1) {
20 T4 := self.now;
21 d3 := T4 – T3;
22 if(((d1+d2+d3)>2) and
 ((d1+d2+d3)<3)){//node(7)

23 setverdict(pass);
24 } else { //node (8)
25 setverdict(conf);
26 }
27 }
28 []PCO1.receive { //node(9)
29 setverdict(fail);
30 }
31 } //end of alt 3
32 } else if((d2>1) and (d2<3)
 and ((d1+d2)>=2)){ //node(2)

33 alt { //alt 4
34 []PCO1.receive(C1) {
35 T4 := self.now;
36 d3 := T4 – T3;
37 if(d3 < 1) { //node (10)
38 setverdict(pass);
39 } else { //node (11)
40 setverdict(conf);
41 }

42 }
43 []PCO1.receive{ //node(12)
44 setverdict(fail);
45 }
46 } //end of alt 4
47 } else { //node(4)
48 setverdict(conf);
49 }
50 }
51 []PO.receive(c) {
52 T3 := self.now;
53 d2 := T3 - T2;
54 if(d2 < 3) { //node (3)
55 alt { //alt 5
56 [] PCO1.receive(C1) {
57 T4 := self.now;
58 d3 := T4 - T3;
59 if(d3 < 1) { //node(13)
60 setverdict(pass);
61 } else { //node(14)
62 setverdict(conf);
63 }
64 }
65 [] PCO1.receive {//node (15)
66 setverdict(fail);
67 }
68 } //end of alt 5
69 } else { //node (5)
70 setverdict(conf);
71 }
72 }
73 []PO.receive { //node (6)
74 setverdict(fail);
75 }
76 } //end of alt 2
77 } else {
78 setverdict(conf);
79 }
80 }
81 []PO.receive {
82 setverdict(fail);
83 }
84 } //end of alt 1
85 } //end of test case

334 Z. Wang et al.

the process of test execution. In TIMEDTTCN-3, assignment statements can be used
to get the real values of such parameters. These values can be calculated by expres-
sions on global time values, in fact, di=Ti+1-Ti (i=0,1,2,…). For example, an uncontrol-
lable parameter d1 can be calculated by an assignment statement in line 11.

(3) Implementation of controllable parameters
In the test behavior tree, controllable parameters are time intervals between an exter-
nal input event and its last IO event, which should be set in advance. To implement
such parameters, resume statements can be used. For example, we set the controllable
parameter d0 in Fig. 5 to 1 time unit, so this parameter can be implemented by line
4~7 in Table 1, which means that after waiting 1 time unit from the time point T0,
PCO1 will send A1 to SUT.

(4) Online evaluations and verdicts setting
Only online evaluation can be used to test hard real-time requirements in real-time
interoperability testing. According to Lemma 1, Time constraints of the test event
nodes on the time point Tk can be represented by a conjunction over a set of linear
inequalities on parameters di(i=0,1,…,k-1). Until the time point Tk, values of all un-
controllable parameters have been calculated by transformation rule (2) and values of
all controllable parameters have been set in advance, so during the testrun, Mathe-
matical formulae on the values of di(i=0,1,…,k-1) can be used in online evaluations
on the time point Tk. In the example of Table 1, the if statement of line 17 checks if
the test event node (1) is reached by using the condition 1<d2<3 and d1+d2<2.

When verdict nodes of the test behavior tree are reached, verdicts should be set by
using setverdict statements. Besides pass or fail verdicts, if functional requirements
are satisfied, i.e., received messages are correct, but non-functional requirements are
violated, i.e., time constraints are not satisfied, a conf verdict should be set. In the
example of Table 1, setverdict statement in line 23 set a pass verdict for node (7) in
Fig. 5; and setverdict statement in line 25 set a conf verdict for node (8) in Fig. 5.

According to above transformation rules, the test behavior tree in Fig. 5 can be
converted to the TIMEDTTCN-3 test case with about 85 lines codes shown in Table 1.

5 Comparisons with Real-Time TTCN

5.1 Real-Time TTCN

Real-time TTCN ([WG99]) is a real-time extension of TTCN-2, which is a previous
version of TTCN-3. Table 2 is an example of real-time TTCN behavior description.
Real-time TTCN extends TTCN-2 both on the level of syntax and semantics. In real-
time TTCN, an assumption is made that execution of each statement is instantaneous.
On the syntactical level, real-time TTCN adds two columns in dynamic behavior
description table: Time and Time options column. Time columns are used to define
the earliest and latest execution times (EET and LET) to constrain relative time inter-
val between the associated test event statement and a previous or earlier test event. In
real-time TTCN, two types of methods for specifying EET and LET are defined: (1)
Define the two values by using time expressions directly, which indicate relative time
interval between the execution time of the associated statement and its previous state-
ment (just the parent node in the test behavior tree). In the example of Table 2, line 1

 Using TIMEDTTCN-3 in Interoperability Testing 335

is defined by two constants directly, and line 3 is defined by using a time name, which
should be defined in Time Declaration table and be evaluated by an assignment
statement before use (line 2). (2) Define the two values by using Labels, which indi-
cate relative time interval between the execution time of the associated statement and
its earlier statement that labeled as this Label. For example, in Table 2, line 5 defines
time constraints (L1+WFN, L1+LET), which means that the time interval between the
execution time of line 5 and line 1 are from WFN to LET. The two types of specifica-
tions are different from the starting time points for relative time interval. In real-time
TTCN, entries in Time Options columns are combinations of M and N. On the seman-
tics level, [WG99] defines its operational semantics and formal semantics based on
timed transition system.

Table 2. An example of real-time TTCN behavior description ([WG99])

Test Case Dynamic Behaviour
Nr La Time Time

Options
Behaviour Description C V Comments

1
2
3
4
5

L1

2, 4

2, NoDur

L1+WFN,
L1+LET

M

M, N

A ? DATA_ind
 (NoDur := 3)
 A ! DATA_ack
 A ? DATA_ind
 B ? Alarm

 Time Label
Time Assignment

5.2 Problems in Transformation from Test Behavior Tree to Real-Time TTCN

We consider how to transform a test behavior tree to a real-time TTCN test case. Not
considering time constraints, the method of transformation is similar to the one for
TTCN-3. Now consider time constraints of each node in the test behavior tree of Fig.
5. For controllable parameters, three cases should be considered:

Case 1: Node (3) PO?c, d2[d2<3]
In this case, d2 is just the time interval between the execution time of this statement
and its previous statement corresponding to its parent node in the test behavior tree, so
the first method of specifying EET and LET in real-time TTCN can be used: EET(3) =
0, LET(3) = 3.

Case 2: Node (7) PCO1?B1, d3[2<d1+d2+d3<3]
In this case, d1+d2+d3 = T4 - T1, is just the time interval between the execution time of
this statement and the statement corresponding to node (a), so the second method of
specifying EET and LET in real-time TTCN can be used: Label the statement corre-
sponding to node (a) as L1, then EET(7) = L1+2, LET(7) = L1+3. See Table 3.

Case 3: Node (2) PO?b, d2[1<d2<3 and d1+d2≥2]
This case is most complicated. In this case, time constraints of the node are 1<d2<3
and d1+d2≥2: on the one hand, 1<d2<3 indicates the time interval between the execu-
tion time of this statement and its parent statement; on the other hand, d1+d2=T3 - T1,
so d1+d2≥2 indicates the time interval between the execution time of this statement

336 Z. Wang et al.

and the statement corresponding to node (a) must be not less than 2 time units. Thus
neither the two methods of specifying EET and LET can satisfy the two real-time
requirements at the same time. If real-time TTCN should be used in real-time interop-
erability testing, real-time TTCN must be extended to solve this problem.

For uncontrollable parameters, their values should be set in advance, so the relative
time intervals corresponding to such parameters must be fixed values. In this case,
EET and LET are the same. For example, in Table 4, line 1 represents the node (a) in
the test behavior tree, so its EET and LET are both 1 time unit.

Table 3. Real-time TTCN representation of Node (7) in Fig. 5

Test Case Dynamic Behaviour
Nr La Time TOpt Behaviour Description C V Com-

ments
1
2
3
4

L1

L1+2,L1+3

PCO1!A1
 ……

 PCO1?B1
 ……

P

Node (a)

Node (7)

Table 4. the real-time TTCN test case for the test behavior tree in Fig. 5

Test Case Dynamic Behaviour
Nr La Time TOpt Behaviour Description C V Comments

1
2
3
4
5
6
7
8
9
10
11
12
13
14

L1
L2

1
0,2
1, 2-T(L2)+T(L1)
L1+2,L1+3

max(2-T(L2)+T(L1),1), 3
0,1

0,3
0,1

0,1

M

PCO1!A1
PO?a

PO?b
PCO1?B1
PCO1?otherwise

PO?b
PCO1?C1
PCO1?otherwise

PO?c
PCO1?C1
PCO1?otherwise

PO?b
PO?otherwise

PO?otherwise

P
F

P
F

P
F
F
F
F

Node (a)
Node (b)
Node (1)
Node (7)
Node (9)
Node (2)
Node (10)
Node (12)
Node (3)
Node (13)
Node (15)
Node (4)
Node (6)

5.3 Possible Extensions of Real-Time TTCN

In this section, we give a suggestion of possible extensions of real-time TTCN for
interoperability testing of real-time communication system.

In the Case 3 of Section 5.2, time constraints can also be represented as
max(2-d1,1)<d2<3, where the return value of the function max() is the maximal value of
parameters. With different values of d1, the values of max(2-d1,1) are possibly different:
in fact, when d1<1, max(2-d1,1)=2-d1, so time constraints can be represented as 2-
d1<d2<3; when d1≥1, max(2-d1,1)=1, so time constraints are 1<d2<3. If the above vari-
ous cases are distinguished in dynamic behavior descriptions, test cases will become

 Using TIMEDTTCN-3 in Interoperability Testing 337

very fussy. To avoid such a problem, a uniform syntax can be used. Here, the concept of
absolute time must be introduced in real-time TTCN just like in TIMEDTTCN-3. Possi-
ble extensions for real-time TTCN on the syntactical level can be as follows.

(1) Introduce a timestamp recording function T(): for a lable L, T(L) returns the
absolute time value of the execution time for the statement labeled as L;

(2) Introduce the third type of method for specifying EET and LET: the mean-
ings of EET and LET are the same with the first type of specifying method,
i.e., time constraints of the relative time interval between the execution time
of the associated statement and the previous statement corresponding to its
parent node; in the expressions of EET and LET, function T(), max() and
min() can be used.

Proposition 1. In real-time interoperability testing, all time constraints of each node
in test behavior trees can be represented as EET and LET by the above syntactical
extensions.

Proof. According to Lemma 1, on the time point Tk, time constraints of the test event
nodes can be represented by a conjunction over a set of linear inequalities on
di(i=0,1,…,k-1). So on the time point Tk+1 (k=0,1,2…), time constraints of dk can be
reduced to the two following formats: (1))(1k10k ,d,,ddfd −≤ " or (2)

)(1k10k ,d,,ddgd −≥ " , here,)(1k10 ,d,,ddf −" and)(1k10 ,d,,ddg −" are both linear

expressions on d0, d1,…, dk-1; thus EET and LET of the statement corresponding to
this node can be represented as max{)(1k10 ,d,,ddg −" } and min{)(1k10 ,d,,ddf −" }

respectively. Because of di =Ti+1-Ti (i=0,1,2,…), so EET and LET also can be repre-
sented as max{)(k10 ,T,,TTg "′ } and min{)(k10 ,T,,TTf "′ }, here,)(k10 ,T,,TTg "′

and)(k10 ,T,,TTf "′ are expressions by using Ti+1-Ti in instead of di in

)(1k10 ,d,,ddg −" and)(1k10 ,d,,ddf −" respectively, and they are all linear expres-

sions on T0, T1,…, Tk. If a label is attached to the corresponding statement, Ti
(i=0,1,2,…) can be get by function T(). Thus EET and LET of the statement can be
specified by using function T(), max() and min(). □

On the semantics level, we can also refine operational semantics for the syntactical
extensions. Before evaluating a set of alternatives, the values of EET and LET for
each alternative should be evaluated at first. If the value of EET for one statement is
greater than LET, the corresponding statement should be ignored in the process of
evaluation, and test execution should not be stopped.

By using these extensions of real-time TTCN, the test behavior tree shown in
Fig. 5 can be converted to a real-time TTCN test case in Table 4.

5.4 Comparisons Between TIMEDTTCN-3 and Real-Time TTCN

Since TIMEDTTCN-3 is a real-time extension of TTCN-3, it has also the characteris-
tics of TTCN-3. In this section, we compare TIMEDTTCN-3 with real-time TTCN
only from the aspect of the capability of real-time testing. From the discussions in
Section 4 and 5, we can see that

338 Z. Wang et al.

(1) TIMEDTTCN-3 is powerful enough to specify time constraints in real-time in-
teroperability testing; even more complicated time constraints can be evalu-
ated easily by retrieving current absolute time, storing its value in a variable
and passing it to expression statements. In real-time TTCN, no concept of ab-
solute time is introduced; only Time and Time Options columns are added to
Dynamic Behavior table to specify the earliest and latest execution times,
which are constraints of time intervals relative to a fixed time point. So
real-time TTCN cannot specify some complicated real-time requirements; one
example of such situations has been analyzed in Case 3 of Section 5.2. To
remedy this gap, real-time TTCN should be extended both on the syntactical
and semantic levels.

(2) TIMEDTTCN-3 is more flexible than real-time TTCN for its style like common
programming languages in specifying real-time requirements. However, the
style of real-time TTCN is more compact and formal.

(3) The semantics of TIMEDTTCN-3 is straightforward and simple, just like a com-
mon programming language. However, the semantics of real-time TTCN is a lit-
tle more complicated, especially the two time options are fussy and impenetrable.

(4) TIMEDTTCN-3 supports both online and offline evaluations, so it has the ca-
pabilities of evaluating both hard and soft real-time requirements and it can be
used not only real-time testing but performance testing. However, real-time
TTCN has only capabilities of evaluating hard real-time requirements.

6 Conclusion

TIMEDTTCN-3 is a real-time extension of TTCN-3. In this paper, we use
TIMEDTTCN-3 in real-time interoperability testing. From system specifications, test
behavior trees can be generated. Then transformation rules from such intermediate
notations to TIMEDTTCN-3 test cases are given. We also investigate a real-time exten-
sion of TTCN – real-time TTCN. Since this notation has not enough capabilities of
specifying time constraints in real-time interoperability testing, we extend real-time
TTCN to fill in such a gap and transform test behavior trees to extended real-time
TTCN test cases. From the comparisons between the two real-time test notations, it
can be concluded that TIMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be more suitable for real-time interoperability testing.

We have implemented initial prototypes of test execution for both real-time TTCN
and TIMEDTTCN-3. In our future work, we plan to study real-time interoperability
testing under distributed test architecture and use the TIMEDTTCN-3 based test system
in real-life timed interoperability testing.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China
under Grant No. 90104002 and No. 60572082/F010110, and 973 Program of China
under Grant No. 2003CB314801.

 Using TIMEDTTCN-3 in Interoperability Testing 339

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
1994, 126(2): 183–235.

[BB04] L. B. Briones, E. Brinksma. A Test Generation Framework for quiescent Real-
Time Systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 64-78.

[BST98] S.Bornot, J.Sifakis, S. Tripakis. Modeling Urgency in Timed Systems.
COMPOS'97, LNCS 1536, Springer Verlag, 1998.

[DGN02] Z. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 -- A Real-Time
Extension for TTCN-3. Testcom2002: 407-424.

[DGN03] Z. Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 Based Graphical Real-
Time Test Specification. TestCom 2003: 110-127.

[EDK02] A. En-Nouaary, R. Dssouli, F. Khendek. Timed Wp-method: testing real-time
systems. IEEE Transactions on Software Engineering, 2002, 28(11): 1023 -1038.

[ETSY04] K. El-Fakih, V. Trenkaev, N. Spitsyna and N. Yevtushenko. FSM Based Interop-
erability Testing Methods for Multi Stimuli Model. TestCom 2004: 60-75.

[GHRS03] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, et al. An introduction to
the testing and test control notation (TTCN-3). Computer Networks, 2003, 42(3):
375-403.

[Hao97] R. Hao. Research on Protocol Conformance and Interoperability Testing based on
Formal Methods (In Chinese). PhD thesis, Tsinghua University, P. R. China, 1997.

[HLSG04] R. Hao, D. Lee, R.K. Sinha and N. Griffeth. Integrated System Interoperability
Testing With Applications to VoIP. IEEE/ACM Transactions on Networking,
2004, 12(5): 823-836.

[HNTC99] T. Higashino, A. Nakata, K. Taniguchi, and A. R. Cavalli. Generating test cases
for a timed I/O automaton model. IFIP TC6 12th International Workshop on
Testing Communicating Systems, 1999: 197-214.

[KD03] P. Krémer and S. Dibuz. Framework and Model for Automated Interoperability
Test and Its Application to ROHC. Testcom2003: 243 - 257.

[KJM03] A. Khoumsi, T. Jéron and H. Marchand. Test cases generation for nondeterminis-
tic real-time systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2003, LNCS 2931: 131-146.

[KSK00] S. Kang, J. Shin, and M. Kim. Interoperability Test Suite Derivation for Commu-
nication Protocols. Computer Networks, 2000, 32(3): 347-364.

[KT04] M. Krichen and S. Tripakis. Black-Box Conformance Testing for Real-Time
Systems. SPIN 2004: 109-126.

[LMN04] K. Larsen, M. Mikucionis, B. Nielsen. Online Testing of Real-time Systems
Using Uppaal. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 79-94.

[NDG04] H. Neukirchen, Z. Dai, J. Grabowski. Communication Patterns for Expressing
Real-Time Requirements Using MSC and Their Application to Testing. TestCom
2004: 144-159.

[RC90] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
The 3rd Int. Workshop on Protocol Test Systems, 1990.

[SKCK04] S. Seol, M. Kim, S. T. Chanson, and S. Kang. Interoperability Test Generation
and Minimization for Communication Protocols Based on the Multiple Stimuli
Principle. IEEE Journal on Selected Areas in Communications (JSAC), 2004,
22(10): 2062-2074.

340 Z. Wang et al.

[SKKJ03] S. Seol, M. Kim, S. Kang and J. Ryu. Fully Automated Interoperability Test
Suite Derivation for Communication Protocols. Computer Networks, 2003,
43(6): 735-759.

[SVD01] J. Springintveld, F. Vaandrager, and P.R. D'Argenio. Testing Timed Automata.
Theoretical Computer Science, 2001, 254(1-2): 225-257.

[TKS03] V. Trenkaev, M Kim, and S. Seol. Interoperability Testing Based on a Fault
Model for a System of Communicating FSMs. TestCom 2003, LNCS 2644: 226–
242.

[TTCN] ITU-T Recommendation X.292 (1998): OSI Conformance Testing Methodology
and Framework for Protocol Recommendations for ITU-T Applications––The
Tree and Tabular Combined Notation (TTCN). ITU-T, Geneva (Switzerland).

[TTCN3] ETSI European Standard (ES) 201 873-1 V2.2.1 (2002-08): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Tele-
communications Standards Institute (ETSI), Sophia-Antipolis (France), 2002.

[VBT01] C. Viho, S.Barbin and L. Tanguy. Towards a formal framework for interoperabil-
ity testing. FORTE 2001: 51-68.

[WG99] T. Walter, J. Grabowski. A framework for the specification of test cases for real-
time distributed systems. Information & Software Technology, 1999, 41(11-12):
781-798.

[WWY04] Zhiliang Wang, Jianping Wu, Xia Yin. Towards Interoperability Test Generation
of Time Dependent Protocols: a Case Study. IEEE Globecom2004, Vol. 2: 589-
594.

[WWY06] Zhiliang Wang, Jianping Wu and Xia Yin. A Formal Framework to Interopera-
bility Testing for Real-time Systems. Submitted.

Test Generation for Network Security Rules

Vianney Darmaillacq1, Jean-Claude Fernandez2, Roland Groz1,
Laurent Mounier2, and Jean-Luc Richier1,�

1 Laboratoire LSR-IMAG,
BP 72, 38402 St Martin d’Hères, France

2 Laboratoire Vérimag,
Centre Equation - 2, avenue de Vignate, 38610 Gières, France

{Vianney.Darmaillacq, Jean-Claude.Fernandez, Roland.Groz,
Laurent.Mounier, Jean-Luc.Richier}@imag.fr

Abstract. Checking that a security policy has been correctly deployed
over a network is a key issue for system administrators. Since policies
are usually expressed by rules, we propose a method to derive tests from
a set of rules with a single modality. For each element of our language
and each type of rule, we propose a pattern of test, which we call a tile.
We then combine those tiles into a test for the whole rule.

1 Introduction

Network and system administrators are in charge of implementing and control-
ling the security policies of their organisations. Enforcing a policy typically relies
on the adequate configuration of Policy Enforcement Points (PEP) in dedicated
equipment (such as firewalls, ciphering chips) or specific software (e.g. account
managers, mail scanners). Since most networks and systems would undergo daily
changes, maintaining the consistency of the rules actually implemented by the
PEPs and their conformance to the specified security objectives and the rules
expressed in the policy is not an easy task.

One way to guarantee a correct policy enforcement is to derive configura-
tions from a description of the policy (top-down approach). In order to do that
systematically, the description must be formal enough to provide unambiguous
rules and translations of them into configurations of security devices. Since most
policies consist of combination of rules with various scopes and potentially con-
flicting modalities (e.g. restricting access for generic subjects but authorising it
for specific categories), the descriptions usually include constructs or semantic
rules to solve conflicts between policy statements. Ponder [5] and OrBAC [1] are
typical such description languages with associated methods to allow deployment
on networks.

In this paper, we investigate another approach. We consider that testing a
given network configuration for compliance with a stated policy is a kind of con-
formance testing. Therefore, we aim at deriving tests from a formal specification
� This work has been partly funded by the POTESTAT project of the national research

programme on security (ACI Sécurité) and by the IMAG project Modeste.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 341–356, 2006.
c© IFIP International Federation for Information Processing 2006

342 V. Darmaillacq et al.

of the security policy to check whether the implementation is correct. These tests
could be used either after some initial deployment of a policy to check whether
it can be and actually is well implemented, or typically on a more regular basis
to see whether any update on the configurations might have breached security
rules. Some sort of testing is actually performed by system administrators to
check for known vulnerabilities: portscans and password crackers fall into that
category. However, such tests are usually limited to just a single security mecha-
nism. With existing techniques, it is difficult to address the issue of consistency
of configurations on distributed devices. Although some work has been published
on the analysis of the consistency of firewall rules (typically to minimise them or
to detect conflicts), this is still limited to specific points of security policies. [12]
is an application of the idea of generating conformance tests for a single firewall.

In our work, we address conformance with respect to a global specification of
a security policy for a network of interconnected systems. Although at first view
this might appear as just another instance of conformance testing of an imple-
mentation w.r.t. a given formal specification, there are a number of significant
differences with the framework of such standards as IS9646 and its formal coun-
terpart FMCT [8]. We investigated a few of these differences in [6]: typically,
protocol conformance testing is done on a well defined protocol level, whereas
security policies are often implemented with a mixture of mechanisms at various
levels of communication and O/S interfaces. One major issue for test generation
is that we cannot expect to start from an updated comprehensive model of the
system: this is why we adopt a method based on (security) requirements.

In this paper, we focus on a method to derive tests from a policy expressed
as a set of rules. More precisely, we consider an LTL-like specification language
that can be used to formalise a reasonable subset of the rules usually found in
network security policies. This restricted language allows us to design a “tile-
based” generation method. For each element of our language and each type of
rule, we propose a pattern of test, which we call a tile. The simple form of
rules makes it possible to compose a global test by simply combining the tiles
associated to the elements.

This paper is organised as follows. In section 2, we present our approach,
in particular the types of rules that we cover and their relation to proposed
formal methods for the description of security policies. Our notation for rules is
presented in section 3. In section 4, we define the test generation tiles and the
algorithm to derive tests. The whole approach is illustrated in section 5 on a
typical example taken from an e-mail security architecture. Finally, in section 6
we present our perspectives for development from this basis.

2 Approach

Our aim is to automatically generate test cases from network policy rules. We
intend to adapt the approach used in protocol conformance testing. We first
started by looking for a formal description of security policies that would make
it possible to generate tests. In order to identify typical requirements and the
corresponding tests, we worked from a case study.

Test Generation for Network Security Rules 343

2.1 A Case Study

We carried out during the summer of 2004 a case study to identify the security
policies used in the IMAG network, which connects our laboratories. This study
included the analysis of documents provided to the administrators and the users,
and interviews. We collected information at different levels of management, from
the laboratory to the access supplier. The analysis resulted in a rather broad and
detailed description of a typical network security policy in a university environ-
ment. In this paper, we shall present a small subset of rules, centred on electronic
mail. This set was selected to be rich enough to show the majority of the con-
cepts to be studied: several levels of policies and inter-connected organisations,
variety of the services and of the access methods.

No Requirement
1 Mail relays accepting messages from the exterior should be located at the

entry of the network, in the DMZ if possible.
2 There should be no user account on hosts located in the DMZ.
3 Mailbox servers containing user accounts should be in the private zone.

There can be as many of these servers as necessary.
4 Relays in the DMZ are the only machines allowed to communicate with the

exterior world using the SMTP protocol. Relay of inbound mails (to mail-
boxes) and of outbound mails (to exterior) is done using these relays.

5 At the entry of the site, a filtering default policy is applied, which forbid all
traffic not explicitly authorised.

6 It is forbidden to hosts of the network to relay mails from an external host
to an external host.

7 All messages coming from the exterior are redirected to mail relays located
at the entry of the site (using DNS MX records), probably in the DMZ.

8 It is forbidden to communicate with a host belonging to the blacklist updated
daily provided by the MAPS (Mail Abuse Prevention System) partner.

9 Antivirus and spam filters shall be installed on hosts acting as relays or
mailboxes.

10 A mail shall be checked by antivirus software before being opened.
11 All mails entering the network infected by a virus shall be disinfected.
12 All mail shall be modified if it contains a potentially dangerous attached file.

The original file is kept somewhere in the network. Recipients are notified.
13 All mail analysed as a possible spam shall be flagged.

Fig. 1. Security rules for e-mail

In a network, security distinguishes inside and outside. The inside of the net-
work is the set of machines under the responsibility of the organisation. The
outside consists of uncontrolled machines considered dangerous for security pur-
poses. This can be refined by considering other zones, differing by degrees of
administration, reliability and trust. The sub-zones of the internal zone corre-
spond in general to architectural criteria, for example separations between phys-
ical sub-networks, whereas the outside sub-zones correspond to different levels of

344 V. Darmaillacq et al.

trust. One distinguishes moreover among the internal hosts those which provide
services accessible from the outside. Due to their visibility, these hosts are more
often subject to attacks. Therefore the standard approach is to define for these
hosts a strongly controlled buffer zone, often called DMZ (demilitarized zone).
Only the hosts in this zone can communicate with the outside world, and all the
traffic between the DMZ and the rest of the internal network is controlled.

We give in figure 1 a sample set of rules for the electronic mail drawn from
our case study. This sample illustrates: flows of information, separation in zones,
possibility, obligation or prohibition of certain actions, at different levels of de-
tails. To simplify the problem, we suppose that certain global hypotheses are
true and do not have to be clarified: correct routing, systems up to date w.r.t
vulnerability patches . . .

2.2 Description Techniques for Network Security

Most of the rules in the case study (which actually covers much more than e-
mail) express some constraints about the possible behaviour of the system. More
specifically, they are of the form “Mod P”, where Mod is a modality among
obligation, permission or interdiction, and P is either a predicate on the system
or a behaviour.

The deontic logic of von Wright [14] is a modal logic whose modal operator
semantic is that of obligation. With only this operator authorisation of a formula
is defined as the negation of the obligation of the negation of the formula, while
interdiction is defined as the negation of the obligation of the formula. However
deontic logic raises a number of paradoxes that have hindered its wider use [10].
Nevertheless modalities are a key issues in formal models of security policies, in
particular in formal description techniques such as PDL, Ponder and Or-BAC,
which have been proposed to address network security policies.

PDL is a language created to model network management policies, including
security requirements. It is based on the idea that a policy is a specification
of the behaviour the network should have according to what happened in the
network [9]. A rule states that an action is triggered by an event, provided a
condition holds. PDL was used to monitor switches in a network, to guarantee
quality of service [13].

Ponder is a language created to specify network security policies [5] and pro-
poses a full choice of different modalities: conditional obligation, authorisation,
interdiction, delegation and refrain policies could be specified.

Or-BAC [1] is another access control model, loosely based on RBAC. While
RBAC abstracts subjects into roles, Or-BAC abstracts moreover objects into
views and actions into activities, and introduces the notion of organisation. Or-
BAC has been used to model a network security policy, and to generate firewall
rules from it [4, 2].

All these formalisms include structuring and typing constructs, resolution of
conflict mechanisms and various aspects which are important. In this paper, we
go for a simpler course, since we want to derive tests from the rules. These rules
could be extracted from description in the above formalisms. All we need is a

Test Generation for Network Security Rules 345

description with just enough expressive power to represent the modalities used in
PDL, Ponder or Or-BAC, at least as they can be tested through network events.

2.3 Approach for Test Generation

Compared to classical conformance testing for communication protocols, test
generation in our case exhibits two major differences.

– The policy is not described by a comprehensive model such as a global LTS
or state machine, but by a collection of rules. This is similar to deriving tests
from requirements. Much work has been done in test generation from test
purposes which are confronted to a formal model of the protocol. Here, we
do not assume any formal model of the network, we derive tests from the
rules. Our approach is rule based: it generates separate tests for each rule.

– The policy is described at a much higher level than the actual events that
can be observed or controlled in the network; whereas the specification of a
communication protocol would refer to PDUs or SDUs even though some of
them might occur at non-observable interfaces. We need to establish a cor-
respondence between the basic predicates appearing in a rule and sequences
of events that can represent a test or instances of such predicates.

To each high-level predicate (such as externRelay(h) meaning that machine
h can relay mails sent from outside the domain considered) we associate a test
pattern which we call a tile. For instance, in the case of external relaying of mails, a
tester would have to establish a SMTP connection to the machine from an external
machine and try to send a mail. However, there are different types of predicates.
Some may have to be tested dynamically through interaction with the system.
Others might be checked without PDU exchanges, for instance if we have access
to the configuration files of the system when the test is set up. In the case of
externRelay(h), this could be checked in the configuration of the mail system on h.
The choice of one method or another may depend on accessibility to the system,
but on trust as well: typically, information on configurations might not be reliable.

In [7], we investigated a refinement approach to derive control at PDU level
from security rules. In this paper, we will consider that the tiles are provided. A
policy would be described by combining elementary predicates which would be
well-known elements for security policies, so that the corresponding tiles would
be readily available.

In this paper, we concentrate on the combination of tiles, based on the struc-
ture of the formula in the rule. We address formulas of a restricted form with
just one modality, as this corresponds to the usual style of security policy rules;
Ponder, PDL and OrBAC also propose a single modality on each rule. We first
propose a formal description of the rules in the next section, then we describe
the combination of tiles in the following one.

3 Rules Formalisation

We first give the syntax and semantics of a rather general formalism and then
we restrict it to a smaller subset used in this work to generate test cases.

346 V. Darmaillacq et al.

Preliminaries. A labelled transition system (LTS, for short) is a quadruplet
(Q, A, T, q0) where Q is a set of states, A a set of labels, T the transition relation
(T ⊆ Q × A × Q) and q0 the initial state (q0 ∈ Q). We will use the following
definitions and notations: (p, a, q) ∈ T is noted p

a−→T q (or simply p
a−→ q). An

execution sequence ρ is a composition of transitions: q0 a1−→ q1
a2−→ q2 · · · an−→ qn.

We denote by σρ (resp. αρ) the sequence of states (resp. observables actions)
associated with ρ. The sequence of actions αρ is called a trace. We note by ΣS ,
the set of finite execution sequences starting from the initial state q0 of S. For
any sequence λ of length n, λi or λ(i) denotes the i-th element and λ[i···n] denotes
the suffix λi · · · λn.

We also consider in the sequel Boolean Labelled Transition Systems in order
to obtain a more compact representation of test cases. A Boolean Labelled
Transition System (BLTS for short) is a tuple (Xb, Q, A, T, q0) where Xb is a set
of Boolean variables, Q is a set of states, A is a set of actions, q0 is the initial
state and T ⊆ Q × (Bexp × A × Bcmd) × Q is the set of transitions, where:

– Bexp is a guard, i.e. a Boolean expression constructed using the following
grammar b ::= True | x | False | b ∧ b | ¬ b (where x∈ Xb);

– Bcmd is either an assignment x := b (where x∈ Xb, b ∈ Bexp) or the null
command skip.

As usual, we note p
(b,a,c)−→ q for (p, (b, a, c), q) ∈ T . We can omit b (resp. c) when

b is True (resp. c is skip).
The semantics of a BLTS is given by a LTS. We define a notion of configu-

ration (p, γ), where p is a state of the BLTS and γ : Xb �→ Bool a valuation,
where Bool = {True, False}, is the set of Boolean values. Valuation γ are
extended to Bexp in the usual way (i.e., γ : Bexp �→ Bool). Given a BLTS
B = (Xb, Q, A, T, q0) and the initial valuation γ0, where γ0(x) = False for all
x ∈ Xb, the underlying LTS SB = (Q1, A, T1, q

0
1) is defined as follows:

Q1 ⊆ Q × BoolXb ,

(p, γ) a−→ (p1, γ1) iff (p, (b, a, c), q) ∈ T and γ(b) = True,

γ1 =
{

γ[v/x] if c is x:=e, γ(e) = v and γ(b) = true
γ if c is skip

q0
1 = (q0, γ0)

3.1 Syntax of Security Rules

The formalism we adopt to express security policy rules is based on a variant of
the LTL temporal logic [11], with only the F and G modalities, and mixing state-
based and event-based atomic predicates. Each rule is expressed by a logical
formula (ϕ), built upon literals. Each literal can be either a condition literal
(pc ∈ Pc), or an event literal (pe ∈ Pe). A conjunction of condition literals is
simply called a condition (C), whereas a conjunction of a single event literal and
a condition is called a (guarded) event (E). Finally, we also use a modal operator
F , the dual one G, and the usual Boolean connectors ¬ and ⇒.

Test Generation for Network Security Rules 347

The abstract syntax of a formula is then given by the following grammar:

ϕ ::= C | E | ¬ϕ | ϕ ⇒ ϕ | Fϕ | Gϕ

C ::= p1
c ∧ · · · ∧ pn

c where pi
c ∈ Pc

E ::= pe[C] where pe ∈ Pe

3.2 Semantics

Formulas are interpreted over LTS. Intuitively, an LTS S satisfies a formula ϕ
iff all its execution sequences ρ do, where condition literals are interpreted over
states, event literals are interpreted over labels and the modal operator Fϕ means
that there exists a suffix ρ[i..|ρ|] of ρ such that ϕ holds on ρ[i..|ρ|], where |ρ| is
the number of elements of ρ. We first introduce two interpretation functions for
condition and event literals:
fc : Pc → 2Q, associates to pc the set of states on which pc holds;
fe : Pe → 2A, associates to pe the set of labels on which pe holds.

The satisfaction relation of a formula ϕ on an execution sequence ρ (ρ |= ϕ)
is then (inductively) defined as follows:

– ρ |= C for C = p1
c ∧ · · · ∧ pn

c iff ∀i. σρ(1) ∈ f(pi
c)

– ρ |= E for E = pe[C] iff αρ(1) ∈ g(pe) ∧ σρ(2) |= C
– ρ |= ¬ϕ iff ρ 	|= ϕ
– ρ |= ϕ1 ⇒ ϕ2 iff ((ρ |= ϕ1) ⇒ (ρ |= ϕ2))
– ρ |= Fϕ iff ∃i ∈ [1, |ρ|]. ρ[i···|ρ|] |= ϕ
– ρ |= Gϕ iff ∀i ∈ [1, |ρ|]. ρ[i···|ρ|] |= ϕ

Finally, S |= ϕ iff ∀ρ ∈ ΣS . ρ |= ϕ.

3.3 Expression of Security Rules

Our purpose is to use the specification language defined in the previous para-
graph to express security rules to be satisfied by a network. In this particular
context its semantics should be interpreted as follows:
– The network behaviour is expressed by the LTS S: each state of S represents

the global state of the network at a given time (network configuration and
topology, transiting PDUs, etc.), and each label of S represents an observ-
able action performed at the network level (modification of the configura-
tion/topology, PDU reception, PDU emission, etc.).

– A condition literal pc expresses a (static) predicate on a network state, at the
security policy level. For instance externRelay(h1) holds on a state iff ma-
chine h1 is configured as an external mail relay in this state, or infected(m1)
holds on a state iff message m1 contains a virus.

– An event literal pe expresses a (dynamic) predicate on a network transition,
from a given state, at the security policy level. For instance enterNetwork(m)
holds iff the current transition corresponds to reception of mail m by the
network, and chkVirus(m) holds iff the current transition corresponds to a
virus check on mail m.

– The F operator is used here to express an obligation, meaning that a given
formula should eventually hold later, in a bounded future. For instance

348 V. Darmaillacq et al.

enterNetwork(m) ⇒ FchkVirus(m) means that whenever mail m enters
the network then it should be checked.

As a matter of fact, it happens that all the formulas found in the case study
could be expressed using only a restricted subset of this language. In particular
formulas can be classified into three types, according to the following grammar:

ϕ ::= G C−Rule | G F−Rule | G G−Rule

C−Rule ::= C ⇒ C | E ⇒ C

F−Rule ::= E ⇒ FE

G−Rule ::= C ⇒ G¬E | E ⇒ G¬E

A C−Rule expresses a static conditional implication, an F−Rule expresses
a (triggered) obligation and a G−Rule expresses that, when a given condition
holds or when a given event happens, then a particular event is always prohibited.

4 Test Generation

In this section, we propose a “tile-based” approach to generate abstract test
cases from a formula expressing a security rule. The test generation principle
is the following: assuming that elementary test cases (i.e., tiles) ti are provided
for each (condition and event) literals appearing in a formula ϕ, the test case
t associated to ϕ is obtained by combining test cases ti with “test operators”
(defined below), corresponding to the logical operators appearing in ϕ. This
allows defining a structural correspondence between formulas and test cases.

4.1 Test Cases and Test Execution

We can define the notion of test case as a BLTS extended with two special
actions (to deal with timers), and three special states (called verdicts): action
timerset means a timer initialisation to a given value, and action timeout means
the timer expiration; verdict states are “sink states”, indicating the end of a
successful (pass), unsuccessful (fail) or inconclusive (inconc) test execution. We
denote by At the set A∪{timeout , timerset}, and by V the set {pass , fail , inconc}.
We denote by Σpass

S (resp. Σfail
S , Σinconc

S) the set of execution sequences, starting
from the initial state and ending in the state pass (resp. fail , inconc). A test
case t is then a BLTS t = (Xp, Q, At, T, q0, V), with V ⊆ Q.

A test case is supposed to be executed by a tester against a network whose
behaviour can be modelled by an LTS I = (QI , AI , T I) (we ignore initial states
for the network). Usually, in “black-box” conformance testing, this behaviour
is observed/controlled by the tester only through a restricted interface. For the
sake of simplicity we assume here that any output action (resp. input action)
performed by the network can be observed (resp. controlled) by the tester. Thus,
execution of a test t on an IUT I, noted Exec(t, I), is expressed as a set of
common execution sequences of St and I, defined by a composition operator ⊗:

Let ρI = qI
0

a1−→ qI
1

a2−→ qI
2 · · · an−→ qI

n · · · ∈ ΣI and ρSt = q0,t a1−→ qt
1

a2−→
qt
2 · · · an−→ qt

n ∈ ΣSt , then

Test Generation for Network Security Rules 349

ρSt ⊗ ρI = (q0,t, qI
0) a1−→ (qt

1, q
I
1) · · · an−→ (qt

n, qI
n) ∈ Exec(t, I).

For ρ ∈ Exec(t, I), we define the verdict function: VExec(ρ) = pass (resp.
fail , inconc) iff there is ρSt ∈ Σpass

St
(resp Σfail

St
, Σinconc

St
) and ρI ∈ ΣI such that

ρSt ⊗ ρI = ρ.

4.2 Test Generation Functions

Let ϕ be a formula, let pe, pi
c its literals, and tpe , tpi

c
their corresponding elemen-

tary test cases. Note that an elementary test case is reduced to a simple verdict
state when it corresponds to a literal that can be immediately checked on the
network behaviour (without requiring any interaction sequence with a tester).
The test generation function gentest(ϕ) is inductively defined on the syntax of
the formula, where X1 denotes either a condition C or an event E, and test
operators �rrF, �lrF, �rrC, �lrC, �llX and Inv are defined below:

gentest(X1 ⇒ C2) = gentest lX(X1) �lrC gentest rC(C2)
gentest(E1 ⇒ FE2) = gentest lX(E1) �lrF gentest rF(E2)

gentest(X1 ⇒ G¬E2) = Inv(gentest lX(X1) �lrF gentest rF(E2))
gentest lX(p1

c ∧ · · · ∧ pn
c) = (((tp1

c
�llX tp2

c
) �llX . . .) �llX tpn

c
)

gentest lX(pe[C]) = te �llX gentest lX(C)
gentest rC(p1

c ∧ · · · ∧ pn
c) = (((tp1

c
�rrC tp2

c
) �rrC . . .) �rrC tpn

c
)

gentest rC(pe[C]) = te �rrC gentest rC(C)
gentest rF(pe[C]) = te �rrF gentest rC(C)

4.3 Test Operators

In the following we assume that t1 = (Xb1 , Q1, A1, T1, q
0
1, {pass1, fail1, inconc1})

and t2 = (Xb2 , Q2, A2, T2, q
0
2 , {pass2, fail2, inconc2}) are two test cases. For each

binary test operator � we define the test case t = (Xb, Q, A, T, q0, V) such that
t = t1 � t2 and V = {pass , fail , inconc}. For each operator, a graphical presen-
tation is proposed on figure 2 and we give hereafter the formal definition of only
three operators, the three others being similar.

Operator �llX (t = t1 �llX t2). This operator is used to combine two test
cases appearing on the left-hand side of an implication. Therefore, t pass iff t1
and t2 does, and t is inconclusive otherwise (the entire formula cannot be tested).
More formally:

Xb = Xb1 ∪ Xb2 ,
Q = (Q1 \ V1) ∪ (Q2 \ V2) ∪ V,
A = A1 ∪ A2,
q0 = q0

1 ,
T = T1 \ {(p, a, q) | q ∈ V1} ∪ T2 \ {(p, a, q) | q ∈ V2}

∪ {(p, a, q0
2) | (p, a, pass1) ∈ T1} ∪ {(p, a, pass) | (p, a, pass2) ∈ T2}

∪ {(p, a, inconc) | (p, a, q) ∈ T1 ∧ q ∈ {inconc1, fail1}}
∪ {(p, a, inconc) | (p, a, q) ∈ T2 ∧ q ∈ {inconc2, fail2}} (α)

350 V. Darmaillacq et al.

t1 �llX t2 t1 �lrC t2 t1 �rrC t2

t1 �rrF t2

t1 �lrF t2

t1

t2

I1P1F1

I2P2F2

II

PI I

t1

t2

P2 I2F2

P1 I1F1

PF I

II

t2

P I

F

t1

F

P
[t1pass]

t1pass:=True
t1pass:=False

[¬ t1pass]
I

P2 I2F2

F1 P1 I1

t1

t2

tinconc:=True

P

IF

P1 I1F1

P2 I2F2
tinconc:=True

timerset, tinconc:=False
[¬ tinconc]

timeout
[tinconc]

t1

t2

timerset, t2inconc:=False

P

t2inconc:=True
IF

P2 I2F2

P1 I1F1

I I
[t2inconc]

timeout

[¬ t2inconc]
timeout timeout

Fig. 2. Test operators

Operator �lrC (t = t1�lrCt2). This operator is used to combine the left-hand
side (t1) and the right-hand side (t2) of an implication for a C−Rule. Therefore
t can be expressed by a sequential execution of t1 and t2, and it pass iff t1 and
t2 does, it fails when t1 pass and t2 fails (implication), and it is inconclusive
otherwise. Formal definition of test t is then simply obtained by replacing the
line (α) of the previous definition (operator �llX) by the following one:

{(p, a, inconc) | (p, a, inconc2) ∈ T2} ∪ {(p, a, fail) | (p, a, fail2) ∈ T2}

Operator �rrC (t = t1 �rrC t2). This operator is used to combine two test
cases appearing on the right-hand side of an implication, for a C−Rule. There-
fore t pass when t1 and t2 does, t fails when t1 or t2 fails, and it is inconclusive
otherwise. Thus, t can be obtained by executing t1 first, followed by t2 (when t1
does not fail). A Boolean variable t1pass is used to store the verdict of t1.

Operator �lrF (t = t1 �lrF t2). This operator is used to combine the left-
hand side (t1) and the right-hand side (t2) of an implication for an F−Rule. It
is therefore similar to the �lrC operator, excepted that, due to the F temporal
modality, t pass iff t1 pass and t2 pass at some point later in the future (remem-
ber that the right-hand side of an F−Rule is necessarily an event). t is then
obtained by executing t1 first, and then repeatedly executing t2 until either it

Test Generation for Network Security Rules 351

passes or a given timeout is reached (to ensure that the test execution remains
finite). A Boolean variable t2inconc is used to keep track of an occurrence of
an inconclusive verdict of t2 (during its repeated execution), hence leading to an
inconclusive verdict of t. More formally:

Xb = Xb1 ∪ Xb2 ∪ {t2inconc},
Q = (Q1 \ V1) ∪ (Q2 \ V2) ∪ V ∪ {q0},
A = A1 ∪ A2,
T = T1 \ {(p, a, q) | q ∈ V1} ∪ T2 \ {(p, a, q) | q ∈ V2}

∪ {(q0, (timerset , tinconc := False), q0
1)}

∪ {(p, a, inconc) | (p, a, q) ∈ T1 ∧ q ∈ {inconc1, fail1}}
∪ {(p, a, q0

2) | (p, a, pass1) ∈ T1}
∪ {(p, a, q0

2) | (p, a, fail2) ∈ T2}} ∪ {(p, a, pass) | (p, a, pass2) ∈ T2}
∪ {(p, (a, t2inconc := True), q0

2) | (p, a, inconc2) ∈ T2}
∪ {(q0

2 , (¬t2inconc, timeout), fail)} ∪ {(q0
2 , (t2inconc, timeout), inconc)}

Operator �rrF (t = t1 �lrF t2). This operator is used to combine two test
cases appearing on the right-hand side of an implication for an F−Rule, where
t1 tests the occurrence of an event literal pe and t2 a (static) condition C (possibly
restricting pe). Therefore, t pass iff both the expected event occurs at some point
(t1 pass) and condition C holds on the same time. t is then obtained by repeating
t1 followed by t2 until both pass. Here again, a timeout ensures that execution
of t always remains finite, and a Boolean variable tinconc is used to keep track
of an inconclusive verdict of t1 or t2.

Operator Inv (t = Inv(t1)). This operator simply “reverts” the pass and
fail verdicts produced by a test case.

4.4 Soundness of the Test Generation Function

It now remains to establish that an abstract test case produced by function
gentest(ϕ) is always sound, i.e., it delivers a fail verdict when executed on a
network behaviour I only if formula ϕ does not hold on I.

Two hypotheses are required in order to prove this soundness property:

H1. First, for any formula ϕ, we assume that each elementary test case ti pro-
vided for the (event or condition) literals pi appearing in ϕ is strongly sound
in the following sense:

∀ρ ∈ Exec(ti, I)·(VExec(ρ) = Pass ⇒ρ |= pi)∧(VExec(ρ) = Fail ⇒ ρ 	|= pi)

H2. Second, we assume that the whole execution of a (provided or generated)
test case t associated to a condition C is stable with respect to condition
literals: the valuation of these literal does not change during the test ex-
ecution. This simply means that the network configuration is supposed to
remain stable when a condition is tested. Formally:

∀pi ∈ Pc. ∀ρ ∈ ΣI · ρSt ⊗ ρ ∈ Exec(t, I) ⇒ (σρ ⊆ fc(pi) ∨ σρ ∩ fc(pi) = ∅)

where σρ denotes here tacitly a set of states instead of a sequence.

352 V. Darmaillacq et al.

We now formulate the soundness property:

Proposition: Let ϕ a formula, I an LTS and t = gentest(ϕ). Then:

ρ ∈ Exec(t, I) ∧ VExec(ρ) = fail =⇒ I 	|= ϕ.

The proof of this proposition relies on the following lemma:

Lemma 1. Test cases generated by auxiliary function gentest lX are strongly
sound, and test cases generated by auxiliary functions gentest rC and gentest rF
are sound.

Proof sketch of Lemma 1. Let t a test case generated by function gentest lX.
The proof that t is strongly sound is performed by recurrence on the number of
elementary tests cases ti appearing in t (assuming that each ti itself is strongly
sound according to hypothesis H1). A similar proof can be done for functions
gentest rC and gentest rF.

Proof of Proposition. By structural induction on the formulas ϕ (we only detail
here some representative induction steps).

– ϕ = C1 ⇒ C2. By definition of function gentest there exists test cases t1 and
t2 such that t1 = gentest lX(C1), t2 = gentest rC(C2), and t = t1�lrC t2. Let
ρ be an execution sequence of Exec(t, I) such that VExec(ρ) = fail . Then, by
definition of operator �lrC, there exist ρ1 and ρ2 such that: ρ = ρ1.ρ2, ρ1 ∈
Exec(t1, I), ρ2 ∈ Exec(t2, I), VExec(ρ1) = pass1 and VExec(ρ2) = fail2.
Therefore, by Lemma 1, ρ1 |= C1, hence σρ(1) |= C1 and similarly ρ2 	|= C2
and σρ(|ρ1|) 	|= C2. By hypothesis H2 we obtain σρ(1) 	|= C2 and then
σρ(1) 	|= ϕ.

– ϕ = E1 ⇒ FE2. By definition of function gentest there exist test cases t1 and
t2 such that t1 = gentest lX(E1), t2 = gentest rF(E2), and t = t1 �lrF t2. Let
ρ be an execution sequence of Exec(t, I) such that VExec(ρ) = fail . Then,
by definition of operator �lrF, there exist ρ1, ρ2 such that: ρ = q0

a0−→ q1
0

ρ1−→
pass1(

ρ2−→ fail2)∗
a1−→ q2

0
a2−→ fail , with a0 = (timerset , t2inconc := False),

a1 = t2inconc := False, and a2 = (timeout , ¬t2inconc). Moreover, ρ1 ∈
Exec(t1, I) and ρ2 ∈ Exec(t2, I). Therefore (by Lemma 1) σρ(1) |= E1 and,
for all i in [|ρ1|, |ρ|], σρ(i) 	|= E2. We conclude that σρ(1) 	|= (E1 ⇒ FE2).

5 Case Study Application

This section shows how the approach presented above can be applied to generate
concrete tests for some examples from the case study of section 2.1.

5.1 C−Rule

Consider the requirement “External relays shall be in the DMZ”, which can be
modelled by the C−Rule:

externRelay(h) ⇒ inDMZ (h)

Test Generation for Network Security Rules 353

The goal of the test is to verify that each external relay is in the DMZ. As
noted in section 4.2, an elementary test case is reduced to a simple verdict
state when it corresponds to a literal that can be checked without requiring an
interaction sequence. Such a case arises when the value can be checked by an
analysis of the configuration of devices in the network and/or administrators’
databases. For example, if the value of externRelay(h) is true, that means that
h is defined as an external relay in the administrators’ database and/or by the
configuration of the network. This is known and trusted, not to be tested.

On the other side, the value is unsure if one has no knowledge about the fact
that h is an external relay from the analysis of configurations, or if these data are
untrusted. In this case the behaviour of the network should be tested to decide
whether h acts as an external relay.

The following table shows the different formulas that may be built depending
on which literals can be immediately asserted:

externRelay(h)=true ... = false ... unsure
inDMZ(h)=true tpass tinconc texternRelay(h) �lrC tpass
inDMZ(h)=false tfail tinconc texternRelay(h) �lrC tfail
inDMZ(h) unsure tpass �lrC tinDMZ(h) tinconc texternRelay(h) �lrC tinDMZ(h)

If both values of externRelay(h) and inDMZ (h) are known and trusted, there
is nothing to test. Also, no test is needed if externRelay(h) is false, as we cannot
put the system in the desired state, and the verdict is inconc. If the value of
inDMZ (h) (resp. externRelay(h)) is unsure, then it should be tested whether h
behave like a host in the DMZ (resp. an external relay). These tests are then
composed as described in section 4 into the formula texternRelay(h)�lrC tinDMZ (h),
as illustrated in figure 3.

5.2 F−Rule

Consider the requirement “If an electronic mail is infected by a virus, the virus
shall be deleted from the mail”. It can be modelled by the F−Rule rule:

enterNetwork(m)[infected(m)] ⇒
F transfer(h1, h2, m)[interior(h2) ∧ ¬infected(m)]

The goal of this test is to verify that if a mail infected by a virus is sent to a
user in the network, eventually one of the hosts the mail is passing through will
suppress the virus, before a certain time elapses.

As always in our approach, a choice is made concerning which predicates are
sure or unsure. The formula t = (tenterNetwork(m)�llX tpass)�lrF (ttransfer(h1,h2,m)
�rrF (tpass �rrF t¬infected(m))) corresponds to the case when we build a test tile
with a parameter m made of an infected message. This is the case because we
choose to actively test the conformity of this particular rule against infected
messages. One could also use a “passive” mode, checking the infected(m) literal
in the left part of the formula on incoming messages.

354 V. Darmaillacq et al.

Fig. 3. Composition for example of C−Rule

On the other hand the literal ¬infected(m) in the right part shall be tested.
The event predicate enterNetwork(m) and the static predicate ¬infected(m) are
tested by the tiles shown in figure 4. Using these tiles, the formula tenterNetwork(m)
�lrF (ttransfer(m) �rrF t¬infected(m)) gives the test on figure 4. The tinconc and
t2inconc variables have been suppressed since they cannot be true, and also the
corresponding transitions.

6 Perspectives

In this paper, we have proposed a “tile-based” approach to derive test cases from
rules expressed using a restricted set of logical operators that can be applied to
network security policies. Complete test cases (dedicated to a whole formula)
are obtained by combinations of more elementary ones (the tiles), following a
syntax driven approach (a test combinator is associated to each logical operator
of the formula). Elementary test cases, allowing to test basic events or predicates
appearing in the security policy, have to be provided by the user (the way of
testing such predicate depends on the network architecture and protocols in-
volved). Our test generation method is based on the fact that security policies
are most of the time expressed by rules which can be captured by a restricted
logic as the one we described in section 3.

This approach is not limited to security, the idea of combining test tiles into
a new one can be applied to other domains, for example testing software archi-
tecture, or testing systems built from existing components. However the com-

Test Generation for Network Security Rules 355

Fig. 4. Composition for example of F−Rule

bination operators are based on the form of the rule being tested, and thus
may be dependent on the domain. Up to now our examples use general purpose
modalities, but we may have to consider more specialised cases.

At this point this work should be viewed essentially as a first step towards
a formal approach to (automatically) test the compliance of a network with a
given security policy. Therefore it should be extended into several directions.

First of all, the test cases produced are still very abstract. Turning them into
executable test cases needs to take into consideration a concrete test architecture.
Assuming that each elementary test case complies with this architecture, it would
remain to ensure that it is also the case for the complete test case (or alternatively
to take this architecture into account during the combination process). Moreover,
these abstract test cases also need to be instantiated with concrete data (e.g.
by selecting particular machines of the network). Suitable selection strategies
should therefore be investigated (for instance a test could focus on the more
recent changes in a network configuration, as in regression testing).

Furthermore, the proposed generation technique itself could be improved. In
particular, the test case currently produced to test a condition (i.e., a disjunc-
tion of static predicates) consists in executing each corresponding elementary
test case in sequence (according to the definition of our test combinators). An
alternative way would have been to consider the parallel execution of such test
cases (when it is compatible with the test architecture).

Another improvement could be to extend the formalism we considered to
specify the security rules. This initial choice was motivated by our case study,
and it was sufficient to demonstrate the effectiveness of the approach. However, it
is clear that this formalism may be not sufficient to deal with arbitrary security
rules, and that more specific operator/modalities need to be considered. One
can think for instance of a triggered obligation bounded by an event (and not
by an arbitrary timeout), or of some of the general operators proposed in the

356 V. Darmaillacq et al.

Nomad logic [3]. Further work remains to be done in order to check which of
these operators could be supported by our tile-based approach.

Finally, we also intend to evaluate this work on other case studies, and to
prototype it on a real network.

Acknowledgements. The authors thank Keqin Li for giving valuable com-
ments on this paper.

References

1. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based Access
Control. In IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, 2003.

2. S. Benferhat, R. E. Baida, and F. Cuppens. A Stratification-Based Approach for
Handling Conflicts in Access Control. In 8th ACM Symposium on Access Control
Models and Technologies, 2003.

3. F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A security model with
non atomic actions and deadlines. In 18th IEEE Computer Security Foundations
Workshop, (CSFW-18 2005), pages 186–196, Aix-en-Provence, France, 2005.

4. F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A formal approach
to specify and deploy a network security policy. In Second Workshop on Formal
Aspects in Security and Trust (FAST), 2004.

5. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In International Workshop on Policies for Distributed Systems and
Networks, 2001.

6. V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier. Éléments
de modélisation pour le test de politiques de sécurité. In Colloque sur les RIsques
et la Sécurité d’Internet et des Systèmes, CRiSIS, Bourges, France, 2005.

7. V. Darmaillacq and N. Stouls. Développement formel d’un moniteur détectant
les violations de politiques de sécurité de réseaux. In AFADL2006 - Approches
Formelles dans l’Assistance au Développement de Logiciels, Paris, March 2006.

8. ITU. Framework on formal methods in conformance testing. ITU-T Recommen-
dation Z.500, ITU, 1997.

9. J. Lobo, R. Bhatia, and S. Naqvi. A Policy Description Language. In AAAI’99,
1999.

10. J.-C. Meyer, F. Dignum, and R. Wieringa. The Paradoxes of Deontic Logic Revis-
ited: A Computer Science Perspective. Technical Report UU-CS-1994-38, Utrecht
University, 1994.

11. A. Pnueli. The Temporal Logic of Programs. In I. C. S. Press, editor, 18th Annual
Symposium on Foundations of Computer Science, 1977.

12. D. Senn, D. Basin, and G. Caronni. Firewall Conformance Testing. In TestCom
2005, 17th IFIP TC6/WG6.1 International Conference on Testing of Communi-
cating Systems, Montréal, LNCS 3502, June 2005.

13. A. Virmani, J. Lobo, and M. Kohli. Netmon: Network Management for the SARAS
Softswitch. In IEEE/IFIP Network Operations and Management Symposium, 2000.

14. G. H. von Wright. Deontic Logic. Mind, 60:1–15, 1951.

M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 357 – 372, 2006.
© IFIP International Federation for Information Processing 2006

Message Confidentiality Testing of Security
Protocols – Passive Monitoring and Active Checking*

Guoqiang Shu and David Lee

Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210, USA

{shug, lee}@cse.ohio-state.edu

Abstract. Security protocols provide critical services for distributed communi-
cation infrastructures. However, it is a challenge to ensure the correct function-
ing of their implementations, particularly, in the presence of malicious parties.
We study testing of message confidentiality – an essential security property. We
formally model protocol systems with an intruder using Dolev-Yao model. We
discuss both passive monitoring and active testing of message confidentiality.
For adaptive testing, we apply a guided random walk that selects next input on-
line based on transition coverage and intruder's knowledge acquisition. For mu-
tation testing, we investigate a class of monotonic security flaws, for which
only a small number of mutants need to be tested for a complete checking. The
well-known Needham-Schroeder-Lowe protocol is used to illustrate our
approaches.

1 Introduction

Security protocols have been playing an important role in the critical distributed sys-
tems such as E-Commerce and military infrastructure. Most security protocols use
cryptography to achieve data transmission, authentication and key distribution [16,
17] in a hostile environment [1]. The existence of diverse intruders renders the resil-
ience of those protocol systems more significant, and more challenging. Various for-
mal modeling and analysis techniques, such as BAN logic, model-checking and strand
spaces [14, 18, 19] have been developed in the recent years to ensure the correctness
of security protocol system. These works are focused on validating the protocol speci-
fication. However, errors can also be introduced to the system in implementation
phases, even if the specification is proven to be flawless. Furthermore, interconnected
communication system interfaces may result in security problems, such as message
content exposure. Systematic testing approaches for security protocols have been
largely neglected by the research community, even though numerous reports show
programming errors in security-critical systems are very common [22,23].

Testing for system security, often known as penetration testing [22] or red-team
testing, refers to the activity of executing a predefined test script with the goal of
finding a security exploit. Thomson in [23] classified four general penetration testing

* This work was supported in part by the U.S. National Science Foundation (NSF) under grant

awards CNS-0403342, CNS-0548403, and by the U.S. Department of Defense under grant
award N41756-06-C-5541.

358 G. Shu and D. Lee

methods: (1) Testing dependency; (2) Testing unanticipated user input; (3) Expose
design vulnerabilities; and (4) Expose implementation vulnerabilities. Under these
guidelines practical testing has been conducted in industry and proved to be very
helpful. Nonetheless, most of the current penetration testing activities are ad-hoc and
rely on expert knowledge of target systems or existing exploits [7]; the cost of a com-
prehensive testing is high and the response time is too long. On the other hand, cur-
rent testing methods are largely at system level on system misconfiguration [20] or
unexpected side effect of operations [2]. Protocol level penetration testing has not
drawn adequate attention yet is crucial for discovering security protocol implementa-
tion errors. Particularly, automated test selection and execution techniques are desir-
able for complex protocols and for real-time response to security flaws.

In this paper we focus on automated testing of the key property of security proto-
cols: message confidentiality. Several unique characteristics of security protocols
make the traditional conformance testing approaches insufficient and pose new chal-
lenges for both modeling and test generation tasks. First, security protocols have a
huge and special data portion. The I/O messages are from a language defined by cryp-
tographic primitives such as public/private encryption and decryption. The formidable
size of the alphabet makes generating a complete checking sequence infeasible.
Therefore, tradeoff is usually made to focus only on a special type of nonconformance
– security flaws. We use Extended Finite State Machine (EFSM) based formal model
[5, 12] to specify the security protocol and augment the model to include security
protocol message types as the parameter of I/O symbols. On the other hand, security
properties can be tested only with a precise intruder model. We use EFSM to formally
specify the intruder’s behaviors based on the well-known Dolev-Yao model [4],
which models most powerful and yet realistic intruder. Consequently, the whole pro-
tocol system is modeled as the communication system composed of the intruder and a
set of legitimate principals. Furthermore, we define the notion of intruder’s knowl-
edge and message confidentiality requirement, and use it as the goal of testing.

Based on this formal model several testing approaches are proposed. We first give
a simple passive monitoring procedure and then describe an active guided random
walk algorithm. The algorithm is inspired by the earlier work [11] where heuristics
are used to achieve high coverage of transitions in a CFSM model. Here our algorithm
uses a new heuristic transition selection criterion that favors both new transition and
new knowledge acquisition by the intruder. Both testing algorithms are unstructured
in terms of the global system model, and the composite EFSM does not need to be
computed. We also study mutation testing, since it is known to be efficient for a range
of particular types of errors in software testing [3, 15]. Wimmel’s et al’s work based
on their elegant validation tool AutoFocus [9, 24] is among the first attempts to apply
the idea of mutation testing to security system. The greatest challenge (unaddressed
by [9, 24]) of mutation testing is to control the number of mutants. This paper defines
mutation functions with special property such that only mutants with single fault need
to be considered for test generation. As a case study, we model the predicate (guard)
absence fault type FPA with this property, then present and analyze the test generation
algorithm. We use the well-known Needham-Schroeder-Lowe (NSL) mutual authen-
tication protocol [18] to illustrate our formal model and testing algorithms.

 Message Confidentiality Testing of Security Protocols 359

2 Modeling and Methodologies

After describing a formal model of security protocol systems we present our testing
methods for both passive monitoring and active testing for message confidentiality.

2.1 Security Protocol Model

We define the security protocol message type as follows. First, there are three atom
types: Int, Key and Nonce. A value of type Int is a non-negative bounded integer. A
value of type Key ranges over a finite set K of keys. A value of type Nonce ranges
over a finite set N of nonces. A protocol message is recursively defined as: (1) An
atom; (2) Encryption of a message with a key; or (3) Concatenation of atoms and
encryptions. A message can be represented by a string. For example E(kb,(ka.na)) is a
messages that is formed by encrypting the concatenation of ka and na with another key
kb. Given A=<K, N>, a set of keys and nonces, denote L(A) as the message type and
the set of messages formed using atoms in A. L(A) is obviously infinite, and even if
we restrict the number of atoms that a message contains, its size is exponential.

Among the atom types, Key and Nonce are treated as symbols in the sense that they
can not be composed or calculated using other atom values. Also, Key type contains
both symmetric keys and asymmetric key pairs. For the latter we use ku to represent a
public key and kr for a private key. There are some basic operations defined on mes-
sage type. Let msg be a message, function Elem(msg,i) calculates the ith component
in msg, and D(k,msg) returns m’ when msg = E(k,m’). Both functions are partial and
they are undefined for messages with incompatible formats.

We define an extended finite state machine model that uses protocol message set
L(A) as input and output alphabet.

Definition 1. An Extended Finite State Machine (EFSM) with symbolic message type
is a 7-tuple M=<S, sinit, A, I, O, X, T> where

1. S is a finite set of states;
2. sinit is the initial state;
3. A is the set of atoms, and L(A) is the set of messages formed using atoms in A;
4. I = {i0, i1,…, iP-1} is the input alphabet of size P; each input symbol ik)0(Pk <≤

contains a parameter π(ik) of type L(A) ;
5. O = {o0, o1,…, oQ-1} is the output alphabet of size Q ;each output symbol ok

)0(Qk <≤ contains a parameter π(ok) of type L(A);

6. X is a vector denoting a finite set of variables of type L(A);
7. T is a finite set of transitions; for Tt ∈ , t = <s, s’, i, o, p(x, π(i)),a(x, π(i), π(o))> is

a transition where s and s’ are the start and end state, respectively; π(i) and π(o) are
the input/output symbol parameters; p(x, π(i)) is a predicate, and a(x, π(i), π(o)) is
an action on the current variable values and parameters.

For practical protocol systems, the machine is often partially specified because a tran-
sition can only be triggered by a message with expected format. We use predicates to
model the basic type checking capability. Upon receiving a message, the machine can
reconstruct each element of it if the message format is correct. The
special case is that some of the encrypted messages might be opaque to a machine

360 G. Shu and D. Lee

because it does not possess the required key. For each combination of state and input
symbol, there is one transition with a special predicate “else”, meaning that it is en-
abled when all other transitions are not. We further assume that upon an input if none
of the transitions are triggered, and then an implicit “else” transition make the ma-
chine stay at the current state and output nothing. For simplicity, we assume the ma-
chine contains a reliable reset symbol that takes the machine back to the initial state
sinit and resets all state variables. In order to model the global uniqueness of nonce, a
fresh new set of nonce N’ ⊆ N will be used whenever the machine is reset, so that
different runs (sessions) of the protocol will use different nonces. Since N is finite we
can only model finite number of sessions and each session only uses finite nonces.
Finally, we only consider deterministic EFSM model.

A security protocol is specified by a set of communicating EFSM {M1,M2,···,MC}
that share the same message type L. Each component machine Mk represents a princi-
pal in the protocol system. It is possible that two machines are the same, meaning
there are symmetric peers in the protocol. Moreover, for each transition in a compo-
nent machine Mk, the input (output) symbol carries an extra parameter of the sender
(receiver) identifier. We denote an input message received from Ma as Ma?i and an
output to Ma as Ma!o. The semantics of message sending/receiving follow the typical
communicating FSM model [11]: the input/output is synchronized as a rendezvous
and executed simultaneously.

2.2 Intruder Model

We model an intruder as an additional EFSM MI in the protocol system that runs a
special protocol. To model general behaviors of the intruder, we adapt Dolev-Yao’s
assumptions for two party message exchange protocols [4] that define a widely ac-
cepted powerful intruder model. It has been proved that one intruder poses the same
security threat as multiple intruders and we model only one in our study.

An intruder is first a legitimate principal of the communication system; it can not
only initiate a session with any other component machine Ma but also be the (passive)
peer of any session. Furthermore, the intruder is capable of intercepting messages
between any two legitimate principals. The important effect of this behavior is that
the semantics of message sending and receiving in the original communicating EFSM
model are altered. A transition in Ma with output message Mb!msg now will be jointly
executed with a transition in MI that takes input Ma → Mb?msg, instead of the transi-
tion in the intended receiver Mb. This should be clearly distinguished with the first
case where the intruder MI is the intended receiver (e.g. Ma outputs MI!msg). Simi-
larly, the intruder can inject any message, impersonating any other machines. That is,
MI can send output Ma → Mb!msg to Mb and this output matches the transition of Mb
with input Ma?msg.

Besides the capability of catching and injecting normal protocol traffic, the intruder
is also assumed to be able to generate any new message based on all and only the
messages it possesses. Formally, we define the knowledge of the intruder as a set of
messages Ω = Encl(Ω0+MSG) where Ω0 is the initial knowledge known to the intruder
containing the public and intruder’s own information, and MSG represents the set of
messages the intruder has received. Function Encl(L) is defined as the enclosure of L
under the functions Elem(), D() and E(). Therefore, Ω can be regarded as all the mes-

 Message Confidentiality Testing of Security Protocols 361

sages that the intruder is able to construct, using only the messages it obtains. Once
the intruder gains a message it will not forget it and Ω never shrinks. As far as a real-
istic testing scenario is concerned, we have to assume the intruder has the capability
of recognizing the message format, either by guessing the data field, or by reading the
meta-info such as an XML schema.

Intercept (Ma Mb?msg) / -
[a I] / = Encl(+ {msg})

MI
State Variable

: L
Parameters
a,b [1..C]

msg L

S0

- / Inject (Ma Mb!msg)
[msg in] & [b I] / {}

Fig. 1. EFSM model for the intruder

Fig. 1 shows the EFSM model of the intruder. MI contains only one state and two
transitions for message interception and injection respectively. Intercept transition
takes any message msg sent from Ma to Mb as input. The guard ensures msg is not
from MI itself and the action updates the knowledge set. Inject transition outputs a
message in the current knowledge set to another machine Mb under the disguise of Ma.
The model of MI is obviously independent of the other component machines. Note
that messages meant to be delivered to MI will also be caught by the Intercept transi-
tion, and in case the intruder does not want to intercept a message, the Inject transition
is fired right after Intercept transition with the same message.

2.3 Testing Security Requirement: Message Confidentiality

Given the specification of protocol roles {M1, M2,…, MC} and the intruder MI, the
global behavior of the whole protocol system under investigation is described by the
Cartesian product of all the machines: M1×M2×···×MC×MI with the input/output
matching rule we define in the previous subsection. Since all the transitions involve
one of the two intruder transitions, an I/O trace produced by the system can be de-
scribed by an interleaving sequence of Intercept and Inject transitions each with a
message in the parameters.

In this paper we focus on black-box penetration testing. The implementations of all
protocol principals are treated as pure black boxes, i.e. B = {B1, B2,…, BC}, each Bi
can be a correct or faulty implementation of Mi. The tester plays the role of intruder
and simulates the machine MI. This is an active testing process because the tester can
choose arbitrarily the parameters of Inject transition, namely the sender, receiver and
message. A test sequence seq is defined as an I/O trace produced by the communicat-
ing system of MI and B. Starting from the initial states, denote the value of Ω in MI
after a test sequence seq is applied as Ω(B, seq), which is the knowledge that an in-
truder gains by performing penetration test seq.

For a given security protocol system, there are many security requirements depend-
ing on the specific application needs. Typically, they include message confidentiality,
message integrity, authentication, and non-repudiation [20]. In this paper we focus on

362 G. Shu and D. Lee

the message confidentiality requirement that is the key property of a security protocol
system. Other requirements can be handled, for instance, by appropriate hash func-
tions, and we shall not digress here.

Definition 2. A protocol implementation B = {B1, B2,…, BC} is insecure with regard
to the confidentiality of messages M* ⊂ L if and only if there exists a test sequence seq
and a message m∈M* such that m∈Ω(B, seq).

An implementation is flawed if and only if message content can be uncovered by the
intruder after a test sequence is applied. We model the intruder following Dolev-
Yao’s approach, our definition 2 is consistent with their notion of security of two
party cascade and name stamp protocols [4]. One natural question is that whether the
protocol specification itself is secure. When the implementation of each component
machine is equivalent to its specification, i.e. Bi = Mi, the intruder might still be able
to obtain the secret if the protocol design itself is flawed [14]. Since our goal is testing
rather than validation, we assume the protocol design and specification are secure.

As an example of modeling security protocols, we consider the well-known
Needham-Schroeder-Lowe (NSL) mutual authentication protocol [18]. Among many
of its variants, we use a simplest one with three message exchanges [14]. Two princi-
ples, the initiator and the responder, are involved and they are specified as MA and MB,
respectively. The message sequence of a successful run is shown below.

A → B (Ask): A.B.E(KUB,(NA.A))

B → A (Rpl): B.A.E(KUA, (NA.NB.B))

A → B (Cfm): A.B.E(KUB, (NB))

The protocol functions as follows. The initiator A encrypts a nonce with the re-
sponder B’s public key and sends it to B. B then decrypts it and encrypts it together
with another nonce using A’s public key. Finally A gets the second nonce and sends it
back. The purpose of NSL protocol is to allow both principles authenticate each other
and exchange some secrets (two nonces), which later on can be used to construct
shared keys. Fig. 2 shows the two complete EFSM specifications. We assign index 0,
1 and 2 to MA, MB and the intruder MI. The intruder can participate legally as both the
initiator and responder. The atom messages in this protocol include the public keys
(KUA, KUB and KUI) and the nonces. In order to express the security requirement
conveniently, we distinguish the nonces used for different peers. For instance, the
nonce MB uses to challenge MI is NB[I]. Initially the intruder only knows its own key
and nonces, i.e., Ω0 = {KUI, NI[A],NI[B]}. The secret message set is M* =
{NA[B],NB[A]}; the intruder should not obtain the nonces that are only supposed to be
shared only between A and B. Note that in Fig. 2 the parameter (message) of each I/O
symbol is expanded by its structure, which is a short notation for format checking of
the message. A special symbol Rst is used to reset the session when invalid message
is processed.

To summarize this section, we essentially reduce the security testing problem to
searching for special I/O sequences produced by a mixed communicating system,
which contains MI and one or more black boxes as principals. The characteristic of
those sequences is that they lead the reachability graph of MI to a state where the
value of variable Ω contains message content/secret. The tester has full control over
MI but can only observe the I/O behaviors of the other protocol principals.

 Message Confidentiality Testing of Security Protocols 363

(a)

- / Mpid!Cfm(A.pid.E(KU[pid],N2))
[pid=X1] & [X3=X1] & [N1=N] /{}

Init (p) / Mp!
Ask(A.p.E(KU[p],NA[p],A))

[p A] / {pid=p;N=NA[p];}

Mp?Rpl(x1.x2.E(k,n1,n2,x3)) /-
[x2=A] & [k=KU[A]] & [p=pid]
/ {N1=n1; N2=n2; X1=x1; X3=x3;}

MA
State Variable

pid,N,N1,N2,X1,X3
S0

SS1

SR1

SA - / Mp!Rst
else/ {}

MpRst? / -
[p=pid]/ {}

MpRst? / -
[p=pid]/ {}

(b)

MpRst? / -
[p=pid]/ {}

- / Mp!Rst
else/ {}

MB
State Variable

pid, pm,N,N1,X1,X3

Mp?Ask(x1.x2.E(k,n1,x3)) /-
[x2 = B] & [k=KU[B]]
/ {N1=n1; X1=x1; X3=x3; pm=p;}

-/ Mpm!Rpl(B.X1.E(KU[X1],N1,NB[X1],B))
[X3 = X1] & [X1 B] / {pid=X1;N=NB[pid];}

-/-
[N1=N] & [pid=X1]
/{}

Mp?Cfm(x1.x2.E(k,n1)) /-
[x2 = B] & [k=KU[B]] & [p=pm]
/ {N1=n1; X1=x1;}

S0

SR1

SS1

SR2

SA

- / Mp!Rst
else/ {}

Fig. 2. Needham-Schroeder-Lowe protocol (a) Initiator MA (b) Responder MB

3 Message Confidentiality Testing

After presenting a simple passive monitoring algorithm, we describe an active testing
procedure that is based on a guided random walk.

3.1 A Simple Passive Monitoring Algorithm

A passive tester or monitor of security protocol implementation is easy to devise. The
intruder (tester) intercepts all messages among the component machines, updates its
knowledge, replies if the message is directed to itself, and otherwise forwards it with-
out any modification. The testing terminates when the intruder derives any secrets.
The procedure is shown in Algorithm 1. As inherent to all passive testing approaches,
this algorithm only utilizes part of the intruder’s capability and it is suitable when the
intruder could only conduct eavesdropping [1].

364 G. Shu and D. Lee

Algorithm 1 (Passive Monitoring)
Input: {B1, B2,…, BC}, message secrets M*, Intruder initial knowledge Ω0.
Output: security flaw if observed.
begin
1. Ω=Ω0;
2. while (true)
3. try to execute Intercept (Bi → Bj?msg) transition with any Bi;
4. if succeed
5. if (M* ∩Ω φ≠) return flaw;

6. if (j=I)
7. generate reply msg’ ;
8. execute Inject (MI → Bi?msg’) transition;
9. else
10. execute Inject (Bi → Bj?msg) transition;
End

3.2 Active Testing – Guided Random Walk

Now we study active testing approaches that utilize the full power of the intruder. One
simple-minded method of active testing is random walk. Starting with an initial
knowledge set, the intruder (tester) randomly chooses either to intercept a message
from a pair of principals or to construct a message using its current knowledge and
send it to a principal. Pure random walk has several limitations; the coverage of the
model is not high and, more importantly, it does not use the intruder’s knowledge
acquired. We present a guided random walk approach with a high coverage and fully
utilizing the intruder’s knowledge acquired.

The approach is adaptive and unstructured in terms of the composite (global) state
machine. We keep track of the current state Si and variable values Xi for each black
box Bi in order to guide the selection of next transitions. Note that in general tracking
current state is not always possible even under the assumption that Bi contains no
transition errors; it is due to the fact that part of the message is encrypted and intruder
can not utilize the information to infer the current transition and state if he does not
have the key. In this case, the algorithm makes a random guess.

At each step, the intruder always tries to intercept the messages coming from every
machine Bi. Once a message is intercepted, the state of the sender as well as the in-
truder’s knowledge is updated. Then the intruder constructs a message and injects it to
a machine to fire a carefully selected transition. Our algorithm selects transition and
message based on the following criteria. First the transitions of all component EFSM
should be covered fairly. The algorithm keeps track of a counter cnt[t] for each transi-
tion t, and at each step the one that has been executed least is favored. Moreover, we
only select the transitions that could possibly be enabled by some input message and
ignore those transitions that will definitely not be triggered (the current state variables
themselves disable the predicate). We calculate Ttrue as the set of all possible
transitions:

 Ttrue = { t<Si, S’i, I, p, a> | t ∈ Mi and ∃ msg∈Ω: p(Xi,msg) = true}

 Message Confidentiality Testing of Security Protocols 365

Once a transition t is determined, we construct an enabling input message for t us-
ing a greedy algorithm. Ideally we want an input message that will lead the machine
to a state that can generate more new knowledge. That is, for all candidate messages
we calculate the destination state S’ of t, and select one that enables at least one output
transition t’ with parameter msg’ not in Ω. We use subroutine lookahead(Ω, S, X, t) to
calculate such messages. If such messages do not exist or there are ties, an enabling
message is randomly picked:

lookahead(Ω, S, X, t<Si, S’i, I, p, a>) = {msg | p(Xi,msg) =true and (∃ t’<
Si’,Si”,O(msg’),p’,a’>:p’(Xi’)=true and msg’∉Ω) }

Algorithm 2 (Active Testing - Guided Random Walk)
Input: {B1, B2,…, BC}, secrets M*, Intruder initial knowledge Ω0.
Output: Adaptive test sequence.
begin
1. initialize each Mi , for all transition t, cnt[t] = 0;
2. X=<X1,...,XC>, S=<S1,...,SC>;
3. Ω=Ω0 , seq=φ ;

4. while (seq.len < L)
5. foreach component Bi
6. try to execute Intercept(Bi → Bj?msg) with Bi;
7. if succeed
8. deduce or guess the transition t;
9. update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t};
10. calculate Ttrue ,select t∈Ttrue with smallest cnt[t];
11. select msg from lookahead(Ω, S, X, t);
12. try to execute Inject transition with t using msg;
13. if succeed
14. update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t};
15. if (M* ∩Ω Φ≠) return seq;
16. return seq;
end

To avoid infinite tests, the algorithm terminates when either the secret message
content is obtained or the length of test sequence reaches a preset limit. This algo-
rithm is more effective than random walk because the greedy heuristics take into
account both coverage and intruder knowledge acquisition. However, it still has many
inherent limitations. For example, calculation of Ttrue and lookahead() is rather expen-
sive. Also, the effectiveness of the heuristic relies on the estimation of current state
and variable values, and if it fails the algorithm behaves the same as random walk.
Advanced passive testing techniques [8, 10] that estimate data portion more accu-
rately could be applied here to improve the performance.

3.3 Experiment

We conduct an experiment of Algorithm 2 on NSL protocol specified as Fig. 2. Two
implementations are created with a common programming error in each. Then we
treat them as black-boxes and run the algorithm to test for confidentiality violations.

366 G. Shu and D. Lee

Implementation X: The responder does not verify the encrypted identifier of the initia-
tor after it receives Ask message, and proceeds as if it were correct.

Implementation Y: The initiator does not verify the encrypted identifier of the re-
sponder after it receives Rpl message, and proceeds as if it were correct. This error
was first uncovered by Lowe [14] as a design flaw in the original Needham-Schroeder
protocol.

For both Implementation X and Y errors have been detected. Table 1 (a) and (b) show
the successful test sequences for them. In the first test sequence, at the beginning the
intruder intercepts an Ask message from M0 to M1, and updates the state to <Ss1,S0>.
Now three transitions are feasible and as the result M1?Ask is selected. Lookahead()
returns a random message that enables M1?Ask because no message will further trigger
an output transition. In the second round we intercept an Rpl message, and the intruder
will obtain a secret (N0[1]) and terminate the test. The sequence for Y is more complex.
After injecting an Ask message to M1 and intercepting the response, we have two transi-
tions in Ttrue. M1!Cfm is chosen and executed with a random message. At next step M0
happens to initiate a session with MI. This is a rare event yet critical for detecting errors
in this implementation. The only transition that could be enabled is M0?Rpl, and now
the intruder happens to have a message to enable it. The last step is the interception of
Cfm message from M0 that exposes the nonce – secret N1[0].

Table 1. Detection of Errors in Implementation X (a) and Y (b)

States Action Note
<S0, S0> Intercept M0 → M1? Ask

(0.1.E(KU[1], N0[1], 0))
Ω+ = {E(KU[1],N0[1],0)}

<SS1, S0> Inject M2 → M1! Ask
(2.1.E(KU[1], N0[1], 0))

Ttrue = {M0?Rpl, M0?Rst, M1?Ask}
t = M1?Ask

<SS1, SR1> Intercept M1 → M2? Rpl
(1.2.E(KU[2], N0[1], N1[2],1))

Ω+ = {N0[1], N1[2]}
N0[1]∈M*

(a)

States Action Note
<S0, S0> Inject M0 → M1! Ask

(0.1.E(KU[1], N2[1], 0))
Ttrue = {M1?Ask}
t = M1?Ask

<S0, SR1> Intercept M1 → M0? Rpl
(1.0.E(KU[0], N2[1], N1[0], 1))

Ω+ = { E(KU[0], N2[1], N1[0], 1)}

<S0, SS1> Inject M0 → M1! Cfm
(0.1.E(KU[1], N2[1], 0))

Ttrue = {M1?Rst, M1?Cfm }
t = M1?Cfm

<S0,SR2> Intercept M0 → M2? Ask
(0.2.E(KU[2],N0[2],0))

Ω+ = {N0[2]}

<SS1,SR2> Inject M2 → M0! Rpl
(2.0. E(KU[0], N2[1], N1[0], 1))

Ttrue = {M0?Rpl}
t = M0?Rpl

<SR1,SR2> Intercept M0 → M2? Cfm
(0.2.E(KU[2],N1[0],0))

Ω+ = {N1[0]}
N1[0]∈M*

(b)

 Message Confidentiality Testing of Security Protocols 367

4 Mutation Testing

In this section we investigate mutation testing of security protocol, and design struc-
tured and preset test sequences. As introduced earlier mutation testing is a powerful
technique for detecting specific types of security errors. Given the specification Mspec
= {M1, M2,…, MC}, we introduce some faults, resulting in a mutant {M1’, M2’,…,
MC’}. Given a set of mutants P, a test suite is generated such that for each mutant p,
there is at least one test sequence that distinguishes (detects) it with the specification
(correct implementation). A main challenge of mutation testing, when applied to soft-
ware in general, is that the number of mutants (therefore the number of tests required)
is huge. The situation is not mitigated in our EFSM model given its equivalent com-
puting power of Turing machine. We model a security flaw as a mutation function δ
on a specification EFSM, and a type of fault F as a set of similar mutation functions.
A mutant under F is the application of one or more such functions. If the type F con-
tains k functions, then the number of mutants is O(2k).

One can take two hypotheses to reduce the number of mutants generated [3]. First,
competent programmer hypothesis assumes that an implementation only contains a
small number (C) of faults. This reduces the number of mutants to O(kC), which is
still quite large. Second, coupling effect hypothesis states that the test sequences used
to distinguish mutants with simple fault are sensitive enough to also uncover complex
fault. Clearly this is not always true. Given an arbitrary mutation function, a test se-
quence that obtains the secret on δ1(Mspec) may not be effective for δ2δ1(Mspec). In fact,
mutant δ2δ1(Mspec) could even be secure. On the other hand, if we could select test
sequence that satisfies this property, then the number of mutants could be further
reduced to k. For message confidentiality testing, we can reduce the number of mu-
tants based on this observation.

4.1 A Fault Model: Predicate or Guard Absence

There are generally two categories of security sensitive fault in the protocol model.
The first is message format fault. For example, one might use the private key to en-
crypt part of the message instead of the public key, or attach an unnecessary part, both
giving the intruder more information. This type is easier to observe since it changes
the alphabet of some component machines. The second category of fault is related to
the predicate or action of the transitions, but has no effect on the message types.
Based on the observation of security protocols, a commonly encountered implementa-
tion error is neglecting critical condition checking. Usually an action is taken place
only if some condition – predicate - is satisfied by the current state and/or the input
message. For example in the NSL protocol, the responder only replies to the message
Ask(x1.x2.E(k,n1,x3)) when the x2 is equal to its own index, and similarly the initiator
only generates to the Cfm message when it verifies the responder’s reply with the
same nonce as the one it sends out. If the programmer neglects to check such condi-
tion such as in Implementation X and Y in section 3, it is likely that the resulting im-
plementation is insecure. This type of fault is reflected in the EFSM model as the
absence of part of the predicate in a transition - or often called a guard. Assuming the
predicate is specified as a conjunctive normal form of Boolean expressions (i.e.
b1&b2&b3) , we formally define this fault type.

368 G. Shu and D. Lee

Definition 3. For all the transitions tj, j=0,1,…, from a state s with a same in-
put/output symbol y, a predicate absence (PA) mutation function δPA(s,y,t,b) with
regard to a Boolean expression b in the predicate pj of t=ti, is obtained by removing b
from pj and adding (!pi) to pj for all i ≠ j.

Basically the mutation function removes one Boolean expression from a transition. In
order to keep the resulting machine deterministic, we add its negation to all other
transitions with the same start state and input/output symbol. Fig. 3 shows an example
of a mutant of the function δPA(S1,Y, t, [a=1]).

Mx!Y(m1)
[b=1]&[a 2]&[a 3]/{}

Mi
State Variable
a,b

Mx!Y(m4)
else / {}

Mx!Y(m3)
[a=3]&[b=1]/ {}

Mx!Y(m2)
[a=2]&[b=1]/ {}

Mx!Y(m1)
[a=1]&[b=1]/{} S2

S1

S3

S5

S4

Mx!Y(m4)
else / {}

Mx!Y(m3)
[a=3]&[b=1]/ {}

Mx!Y(m2)
[a=2]&[b=1]/ {}

S2

S1

S3

S5

S4

(a) Specification (b) Mutant δpa(S1,Y, t, [a=1])

Fig. 3. Example of mutant δPA

Definition 4. For a protocol specification Mspec, a predicate absence (PA) fault type
FPA is obtained by applying one or more PA mutation functions δPA(s, y, t, b) on Mspec.
A mutant under FPA is defined as δS (Mspec) =δ1δ2… δn (M), where S = {δ1, δ2,…,
δn} ⊆ FPA, and for any δa(s, y, ta, ba), δb(s, y, tb, bb)∈S, ta = tb.

A mutant under the PA fault type is the result of application of a set of PA mutation
functions, each removing a Boolean expression from a predicate. Note that although
this definition does not limit the number of faults in one mutant, it relies on the com-
petent programmer hypothesis to assume that for each combination of component
machine, state and I/O symbol, only a predicate from one transition could be re-
moved. Consequently, if each transition contains a constant number of Boolean ex-
pressions, there are totally O(T) mutation functions and O(2(C × N × P)) mutants where
T is the number of transitions, C is the number component machines, N is the maxi-
mum number of states and P is the number of I/O symbols.

Intuitively a mutant with more predicate missing should allow more transitions to
be executed and therefore the security flaws are “monotonically” increasing with
inclusion of more faults in Fpa. This is formulated in the following proposition.

Definition 5. A progressive I/O sequence of a communicating system is an I/O se-
quence that does not trigger any “else” transition of any component machine.

 Message Confidentiality Testing of Security Protocols 369

Proposition 1 (Monotonicity). For any two mutants δS1(M) and δS2(M) under Fpa with
S1 ⊆ S2, if a progressive I/O sequence seq could be generated by MI and δS1(M), then
seq could also be generated by MI and δS2(M).

Sketch of proof: The proof of this proposition is quite straightforward using an induc-
tion on the length of the sequence. Suppose a prefix of seq has already been executed
by δS2(M) and the next message in seq will trigger transition t in Mi. if δS2(M) has the
same t as δS1(M) then t will be executed. If δS2(M) further removes some expressions
from t, then the current states and input message will satisfy the guard of the new
transition, since t is not the “else” transition, and, therefore, t is executed.

An important implication of Proposition 1 is that if a progressive test sequence dis-
covers a message secret for M, and we apply some other mutation functions to intro-
duce more errors, the same test sequence can still expose the message content on the
new mutant. In other words, faults do not cancel the evidence of each other with re-
gard to a progressive test sequence. We remark that singularity about “else” transition
does not decrease the applicability of this model because this special type of transition
is usually used to model the behavior in abnormal conditions, and will not be included
in an I/O sequence that achieves the functionalities of the protocol.

4.2 Mutation Test Generation Algorithm

Now we describe the procedure of generating test sequences for monotonic flaw type
of FPA. The goal is to generate a set of test sequence that distinguishes all mutants
under FPA. One valid concern would be that not all mutants are necessarily insecure
according to the confidentiality requirement and it is reasonable to only focus on
mutants, which lead to message confidentiality violations. This is a well-studied vali-
dation problem and we shall not digress here. For simplicity, we treat all mutants as
potentially insecure and generate tests to detect each of them:

Algorithm 3 (Test Generation for Fault Type FPA)
Input: Mspec = {M1, M2,…, MC}, secrets M*.
Output: test suite S, fault type F’PA
begin
1. S = {}; F’PA = {};
2. remove all “else” transitions from Mspec
3. calculate and minimize MI × Mspec;
4. foreach mutation function δi
5. calculate δi(Mspec);
6. calculate and minimize MI × δi(Mspec);
7. if (MI × Mspec != MI × δi(Mspec))
8. t = separating sequence of MI × Mspec and MI × δi(Mspec)
9. S = S + {t};
10. F’PA = F’PA + {δi};
11. return S
end

370 G. Shu and D. Lee

Algorithm 3 applies each mutation function alone to the specification and calcu-
lates a progressive separating sequence. This is done by removing all “else” transi-
tions, minimizing the Cartesian product of the mutant and intruder machine, and
calculate a separating sequence. The comparison in Line 7 refers to an equivalence
test of two machines. The algorithm produces a new fault type F’PA which only con-
tains the mutation functions if the corresponding mutants are distinguishable. The
number of test sequences generated by Algorithm 3 is no more than the number of
mutants in F’PA. The time needed for minimization is O(NlogN) with online minimi-
zation algorithm [13], and the calculation of separating sequence requires O(N2)
where N is the number of states in the reduced machine. We propose an optimization
technique for generating separating sequence online in [21], which will reduce the
cost of this algorithm for average case but the worst case complexity is the same.

As far as the fault detection capability is concerned, the test suite generated
includes a test case to distinguish every mutant that is derived by applying one
mutation function in F’PA. Since all test sequences are progressive sequence, from
Proposition 1, we have:

Proposition 2. Tests generated from Algorithm 3 detect all mutants under F’PA in
time O(N2) where N is the number of states in the reduced machine.

Algorithm 3 also applies to all other fault models that satisfy proposition 1. Note that
the test suite does not discover all faulty mutants in FPA; if a mutation function itself is
not distinguishable, then Algorithm 3 simply discards it.

4.3 Experiment

We again conduct the experiment using NSL protocol. In the specification (Fig. 2) a
total of 19 Boolean expressions are identified, as shown in Fig. 4. These expressions
are used to construct the fault type FPA and the mutants. Among them δb12 and δb7
correspond to the three implementations X and Y in Section 4, respectively. Algorithm
3 produces F’PA = FPA –{δb18, δb19} and the set of 17 test sequences. The last two Boo-
lean expressions are not associated with any I/O behaviors and are not observable.
The lengths of those sequences are shown in Table 2 and the details are omitted. All
the sequences are short (less than 4). This set of test sequences detect all implementa-
tions with one or more Boolean expressions missing.

MpRst? / -
b17

- / Mp!Rst- / Mp!Rst

MB

-/ Mpm!Rpl
b12,b13

-/-
b18,b19

Mp?Cfm /-
b14,b15,b16

S0

SR1

SS1

SR2

SA

Mp?Ask /-
b10,b11

MpRst? / -
b9

- / Mp!Rst- / Mpid!Cfm
b6,b7,b8

MpRst? / -
b2

Mp?Rpl /-
b3,b4,b5

MA

SS1

SR1

SA

S0

Ini (p)/Mp! Ask
b1

Fig. 4. Boolean Expressions in NSL Specification

 Message Confidentiality Testing of Security Protocols 371

Table 2. Test Sequence Lengths Generated by Algorithm 3

0

1

2

3

4

5

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

b
1
6

b
1
7

b
1
8

b
1
9

Boolean Expression

L
e
n
g
t
h

o
f

T
e
s
t

5 Conclusion

This paper studies the problem of testing message confidentiality of security proto-
cols. EFSM with symbolic message type is used to model security protocol system
with an omnipotent intruder. A formal definition of message confidentiality property
and the black box testing model are provided. Passive monitoring, guided random
walk and mutation testing approaches are presented with case studies.

A lot of issues remain to be explored, such as efficient modeling for intruder
knowledge acquisition for more powerful testing results, thorough and structured
active testing procedures, and more general mutation testing with more focus on mes-
sage confidentiality violation yet with less computation costs. On the other hand,
systematic experiments are to be conducted on the de-facto security protocols, such as
Kerberos, electronic payment, and IPSec.

References

1. Achilles Proxy. http://www.mavensecurity.com/achilles
2. S. Chen, Z. Kalbarczyk, J. Xu and Ravishankar K. Iyer. A Data-Driven Finite State Ma-

chine Model for Analyzing Security Vulnerabilities. International Conference on Depend-
able Systems and Networks (DSN'03), page 605, 2003.

3. R. DeMillo, R. Lipton, and F. Sayward. Hints on Test. Data Selection : Help For The
Practicing Programmer. IEEE Computer, vol. 1 l(4), pages 34-41, 1978.

4. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transaction on In-
formation Theory 29, pages 198-208, 1983.

5. A. Duale and M. Ümit Uyar. A Method Enabling Feasible Conformance Test Sequence
Generation for EFSM Models. IEEE Trans. Computers 53(5): pages 614-627, 2004.

6. S. Fabbri, J. Maldonado, T. Sugeta, and P. Masiero. Mutation testing applied to validate
specifications based on statecharts. In International Symposium on Software Reliability
Systems (ISSRE), pages 210-219, 1999.

372 G. Shu and D. Lee

7. D Geer and J. Harthorne. Penetration Testing: A Duet. In Proceedings of. the 18th Annual
Computer Security Applications Conference (ACSAC), pages 185–198, 2002.

8. S. Jaiswal, G. Iannaccone, J. Kurose and D. Towlsey. Formal Analysis of Passive Meas-
urement Inference Techniques. To appear in Proceedings of IEEE Infocom 2006.

9. J. Jurjens and G. Wimmel. Formally Testing Fail-Safety of Electronic Purse Protocols.
IEEE International Conference on Automated Software Engineering, page 408, 2001.

10. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin. A formal approach for passive
testing of protocol data portions. In Proceedings of ICNP, pages 122–131, 2002.

11. D. Lee, K. K. Sabnani, D. M. Kristol and S. Paul. Conformance Testing of Protocols
Specified as Communicating Finite State Machines - a Guided Random Walk Based Ap-
proach. IEEE Trans. on Communications, Vol. 44, No. 5, pages 631-640, 1996.

12. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A
survey. In Proceedings of the IEEE, pages 1090–1123, August 1996.

13. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceedings of
STOC, pages 264–274, 1992.

14. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
In Proceedings of TACAS'96, LNCS 1055, 1996.

15. B. Marick. The Weak Mutation Hypothesis. Proceedings of The ACM SIGSOFT Sympo-
sium on. Testing, Analysis, and Verification, October, 1991.

16. C. Meadows. Applying formal methods to the analysis of a key management protocol, J.
Comput. Security 1, pages 5-53, 1992.

17. C. Meadows. Formal methods for cryptographic protocol analysis: emerging issues and
trends. IEEE Journal on Selected Areas in Communications, 21(1), pages 44-54, 2003.

18. R. Needham, M. Schroeder. Using encryption for authentication in large networks of com-
puters, Communications of the ACM, 21(12), pages 993-999, 1978.

19. S. Schneider. Security Properties and CSP, Proceedings of the 1996 IEEE Symposium on
Security and Privacy, page 174, 1996.

20. O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing. Automated Generation and
Analysis of Attack Graphs. IEEE Symposium on Security and Privacy, 2002.

21. G. Shu and D. Lee. Network Protocol System Fingerprinting – A Formal Approach. To
appear in Proceedings of IEEE Infocom 2006.

22. H. Thompson. Application Penetration Testing. IEEE Security & Privacy. 3(1), pages 66–
69, 2005.

23. H. Thompson. Why Security Testing Is Hard. IEEE Security and Privacy. 1(4), pages 83-
86, July-August, 2003.

24. G. Wimmel, J. Jürjens, Specification-Based Test Generation for Security-Critical Systems
Using Mutations. Proceedings of ICFEM pages 471-482, 2002.

Author Index

Baik, Jongmoon 103
Benharref, Abdelghani 118
Berrada, Ismäıl 289
Bouaziz, Rachid 306

Castanet, Richard 289
Cavalli, Ana 134
Chen, Jessica 213
Choi, Young-Il 103
Csopaki, Gyula 149
Csorba, Máté J. 149

Darmaillacq, Vianney 341
Donin de Rosière, Emmanuel 71
Dibuz, Sarolta 149
Din, George 177
Dssouli, Rachida 118

El-Fakih, Khaled 245

Félix, Patrick 289
Fernandez, Jean-Claude 341

Gaston, Christophe 1
Glitho, Roch 118
Gotzhein, Reinhard 227
Groz, Roland 341

Ipate, Florentin 55

Jard, Claude 71

Kang, Sungwon 103
Keum, ChangSup 103
Khendek, Ferhat 227
Ko, In-Young 103
Koné, Ousmane 306

Lämmel, Ralf 19
Le Gall, Pascale 1
Lee, David 357
Llana-Dı́az, Luis F. 87

Maag, Stéphane 134
Mallouli, Wissam 134
Marche, Mikael 134
Merayo, Mercedes G. 39
Mounier, Laurent 341

Núñez, Manuel 39, 87
Nyberg, Andreas Johan 161

Palugyai, Sándor 149
Pap, Zoltán 197
Parreaux, Benôıt 71
Petrenko, Alexandre 245

Quemener, Yves-Marie 134

Rapin, Nicolas 1
Richier, Jean-Luc 341
Rodŕıguez, Ismael 39, 87

Salah, Aziz 289
Schieferdecker, Ina 177
Schulte, Wolfram 19
Serhani, Mohamed Adel 118
Shi, Xingang 324
Shu, Guoqiang 357
Subramaniam, Mahadevan 197

Tian, Beihang 324
Tolea, Sorin 177
Touil, Assia 1

Ural, Hasan 213, 274

Wang, Zhiliang 324
Wu, Jianping 324

Yalcin, M. Cihan 259
Yenigun, Husnu 259
Yevtushenko, Nina 245
Yin, Xia 324

Zhang, Fan 274

	Front matter
	Chapter 1
	Introduction
	Input Output Symbolic Transition Systems
	Data Types
	Input/Output Symbolic Transition Systems
	Semantics

	Symbolic Execution
	Definition
	Inclusion Criterion

	Conformance Testing for IOSTS
	Our Approach
	Preliminary Definitions and Informal Description
	Inference Rules

	Criterion-Based Test Purposes
	Implementation Issues

	Conclusion

	Chapter 2
	Introduction
	Controllable Combinatorial Coverage in a Nutshell
	Definition of Combinatorial Coverage
	Grammar Properties Related to Combinatorial Coverage
	The Basic Algorithm for Test-Data Generation
	Control Mechanisms for Combinatorial Coverage
	Depth Control
	Recursion Control
	Balance Control
	Dependence Control
	Construction Control

	Testing an Object Serialization Framework
	Related Work
	Concluding Remarks

	Chapter 3
	Introduction
	Formal Model
	Predicates of the Logic
	Manipulating Observations
	Model Predicates
	Other Predicates

	Deduction Rules of the Logic $\calH \calO \calT \calL$
	Conclusions and Future Work

	Chapter 4
	Introduction
	Finite State Machines
	Testing from Non-deterministic FSMs
	Prerequisites
	Reaching States
	Distinguishing States
	Test Suite Generation

	Bounded Sequence Testing from Non-deterministic FSMs
	Quasi-deterministic FSMs
	Test Suite Generation
	General Type of FSMs

	The l-Bounded Product FSM
	State Counting for Bounded Sequences
	Conclusions

	Chapter 5
	Introduction
	Presentation of $LaTe$
	Main Requirements
	Non-deterministic Operators
	Operational Semantics
	An Example: Unanimity Vote

	Description of the Case Study: Testing a Voice-Based Service
	Methodology of the Experiment
	Test Architecture
	Some Test Cases

	Experimental Results and Discussion
	Results and Pros
	Discussion

	Conclusion

	Chapter 6
	Introduction
	Basic Notions
	Definition of a Hypothesis Contrast: Pearson's χ^2

	Tests and Composition of Machines
	Probabilistic Relations
	Upper Bound of Probability of Failure for a User
	Conclusions and Future Work

	Chapter 7
	Introduction
	Related Works
	Test Cases Generation for Web Services Using EFSM
	Modeling Web Service with EFSM
	Test Cases Generation Algorithm Using EFSM

	Application to Parlay-X Web Services
	Conclusion
	References

	Chapter 8
	Introduction
	Related Work
	Requirements
	Fault Model
	Multi-observer Architecture
	Overall Architecture
	Procedure
	Optimization
	Participation of Web Services in Their Self Observation
	Algorithms

	Case Study
	Context
	Web Services
	Implementation Issues
	Single Observation
	Multi-observer Observation Procedure
	Optimization

	Conclusion and Future Work
	References

	Chapter 9
	Introduction
	Basics
	Service Definition
	Testing Methodology

	Tools Presentation
	TestComposer
	SIRIUS

	The Reverse Directory Case Study
	Vocal Services Presentation
	A Reverse Directory Specification
	Determination of Test Objectives
	Generation with TestComposer
	Generation with SIRIUS

	Experimental Results
	The Proposed Tools Are Scalable
	Test Objectives Generation
	Performance Analysis and Discussions
	Test Coverage Can Be Evaluated and Is Reasonable
	Tests Are Really Usable
	Automatic Test Execution

	Conclusion

	Chapter 10
	Introduction
	Concurrent PCOs and Alternative Behavior in TTCN-3
	Discrete-Time Quasi Birth-Death Processes
	A QBD Model for PCOs
	Model Results
	Conclusions

	Chapter 11
	Introduction
	Background
	TTCN-3 Test Systems
	IUT and the Test Harness
	TTCN-3 Concepts and Usability for Software Testing
	Distributed Test System Main Concepts
	Testing Multithreaded and Concurrent Software Modules
	Usage of Mock Objects

	C to TTCN-3 Language Mappings
	A Practical Example
	Mapping of Functions
	Mapping of Pointers

	Test Case Implementations
	Conclusions
	References

	Chapter 12
	Introduction
	Related Work
	Foundations
	Load Test Specification with TTCN-3
	Load Test Specification Patterns
	Factors Influencing Test Distribution

	TTCN-3 Test Distribution Realization
	Test Component Distribution Language
	TTCN-3 Architecture Design for Distributed Execution
	Test Execution Evaluation

	Balancing Algorithms Applied to Test Distribution
	An Example
	Summary
	References

	Chapter 13
	Introduction
	Related Work
	Preliminaries
	Tests and Consistently Testable Protocols
	Consistently Testable Protocols

	Impact of Single Transition Changes on a Test
	Interaction Context of Transitions
	Adding a Transition
	Replacement and Deletion of Transition

	Impact of Multiple Transition Changes on a Test
	Handling Redundancies in Multiple Updates

	Conclusion

	Chapter 14
	Introduction
	An n-Port FSM and Directed Graphs
	The Problem Definition
	Our Proposed Solution
	Identifying Transitions Involved in Observability Problems
	Identifying Verifiable Transitions
	Identifying Subsequences to Be Added to τ_0
	Adding Subsequences to τ_0

	Conclusions and Final Remarks

	Chapter 15
	Introduction
	Concurrent Composition
	Compositional Testing of Concurrently Composed csFSMs
	Fault Model
	Concepts and Notations
	Initial Tour Coverage Tree
	The C-Method

	Application of the C-Method
	Related Work
	Interoperability Testing
	Testing in Context
	Compositional Testing

	Conclusions and Future Work
	References

	Chapter 16
	Introduction
	Preliminaries
	Input Output Transition Systems and Finite State Machines
	Parallel Composition of IOTSs

	Fault Propagation
	Test Definitions
	Test Architecture
	Problem Definition
	Translation of an Internal Test Case
	Translation of an Internal Test Suite

	Exhaustive External Test Suites
	Conclusions
	References

	Chapter 17
	Introduction
	Preliminaries
	An Existing Approach
	Basics
	Checking Sequence Construction

	Using UIO Sequences for State Recognition
	Modified Method for Checking Sequence Construction
	Conclusion and Future Work

	Chapter 18
	Introduction
	Preliminaries
	The Optimization Model
	Conclusions
	References

	Chapter 19
	Introduction
	Background
	Timed Event and Timed Sequence
	Valuations and Polyhedra

	Timed Automata
	Timed Bound Traces of a Path
	Constraint Polyhedron
	Main Results
	Trace Inclusion

	Application: Testing
	Simulation Graph [19]
	Digital-Clock Test Derivation

	Related Work
	Discussion

	Chapter 20
	Introduction
	Timed Input Output Automata
	Test Design
	From Symbolic Abstraction to Executability and Controllability
	Real-Time Observers
	On the Fly Traversal
	Test Paths Executability and Controllability Improved

	Further Comments on the Proposed Method
	Real-Time Ethernet Protocol
	Conclusion

	Chapter 21
	Introduction
	Preliminaries
	Multi-port TIOA
	Communicating Multi-port TIOA
	A Simple Real-Time Communication Protocol

	Test Behavior Tree
	Test architecture
	Generating Test Behavior Tree

	Transformation to \sc{TIMED}TTCN-3 Codes
	$\sc{TIMED}TTCN-3
	Transformation to $\sc{TIMED}TTCN-3 Test Cases

	Comparisons with Real-Time TTCN
	Real-Time TTCN
	Problems in Transformation from Test Behavior Tree to Real-Time TTCN
	Possible Extensions of Real-Time TTCN
	Comparisons Between \sc{TIMED}TTCN-3 and Real-Time TTCN

	Conclusion
	References

	Chapter 22
	Introduction
	Approach
	A Case Study
	Description Techniques for Network Security
	Approach for Test Generation

	Rules Formalisation
	Syntax of Security Rules
	Semantics
	Expression of Security Rules

	Test Generation
	Test Cases and Test Execution
	Test Generation Functions
	Test Operators
	Soundness of the Test Generation Function

	Case Study Application
	${\cal C}$-Rule
	${\cal F}$-Rule

	Perspectives

	Chapter 23
	Introduction
	Modeling and Methodologies
	Security Protocol Model
	Intruder Model
	Testing Security Requirement: Message Confidentiality

	Message Confidentiality Testing
	A Simple Passive Monitoring Algorithm
	Active Testing – Guided Random Walk
	Experiment

	Mutation Testing
	A Fault Model: Predicate or Guard Absence
	Mutation Test Generation Algorithm
	Experiment

	Conclusion
	References

	Back matter

