Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3964

M. Umit Uyar
Ali Y. Duale
Mariusz A. Fecko (Eds.)

Testing
of Communicating
Systems

18th IFIP TC6/WG6.1 International Conference, TestCom 2006
New York, NY, USA, May 16-18, 2006
Proceedings

@ Springer

Volume Editors

M. Umit Uyar

The City College of The City University of New York
Electrical Engineering Department

140th Street at Convent Avenue, New York, NY 10031, USA
E-mail: umit@ccny.cuny.edu

Ali Y. Duale

IBM, Systems Assurance Kernel (SAK)
Poughkeepsie, NY 12601, USA
E-mail: duale @us.ibm.com

Mariusz A. Fecko

Telcordia Technologies, Inc.

Applied Research

One Telcordia Dr RRC-1E326, Piscataway, NJ 08854, USA
E-mail: mfecko@research.telcordia.com

Library of Congress Control Number: 2006925107

CR Subject Classification (1998): D.2.5, D.2, C.2

LNCS Sublibrary: SL 5 — Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-34184-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34184-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© TFIP International Federation for Information Processing 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11754008 06/3142 543210

Preface

This volume contains the proceedings of the 18th IFIP International Conference
on Testing Communicating Systems (TestCom 2006). It was the 18th event in a
series of international workshops and conferences which started in 1989 as the
International Workshop for Protocol Test Systems (IWPTS); it then became the
International Workshop on Testing Communicating Systems (IWTCS) in 1997.
The conference has been called TestCom since 2000.

TestCom 2006 was organized under the auspices of IFIP TC 6 WG 6.1 by the
City University of New York (CUNY), in cooperation with IBM and Telcordia
Technologies, Inc. The conference was held in New York City, USA, May 16-18.

The proceedings contain 23 papers that were selected from 48 submissions
in a carefully designed and transparent paper selection process. TestCom 2006
consisted of 8 sessions, whose scope covered:

Testing theory and foundations

— Testing non-deterministic and probabilistic systems
Testing the Internet and industrial systems
TTCN-3

— Compositional and distributed testing

— FSM-based testing and diagnosis

Testing timed systems

— Testing for security

We would like to thank the numerous people who contributed to the success of
TestCom 2006. The reviewing process involved all TPC members and a number
of additional reviewers (delegates of the TPC members) who are all listed in
this book. We would like to thank the local organizers for their excellent work to
make the conference run smoothly: Conference Manager Edward Baurin (CCNY)
for his dedicated and hard work, Joseph Driscoll (GC of CUNY) for efficiently
handling the local arrangements at the Graduate Center, Connie Shao (CCNY)
for flawlessly processing the registration funds, and the CUNY graduate students
Samrat Batth, Ibrahim Hokelek, Jianping Zou, and Constantinos Djouvas for
handling the technical matters.

We would like to thank our families for their patience, especially during our
evening conference calls.

May 2006 M. Umit Uyar
Ali Y. Duale
Mariusz A. Fecko

Organization

TestCom 2006 was organized by the City College and the Graduate Center of the
City University of New York (CUNY), in cooperation with IBM and Telcordia
Technologies, Inc.

Program Co-chairs

M. Umit Uyar (City University of New York, USA)
Ali Y. Duale (IBM, USA)
Mariusz A. Fecko (Telcordia Technologies, Inc., USA)

Technical Program Committee

A. Bertolino (ISTI-CNR, Italy)

G.v. Bochmann (University of Ottawa, Canada)
T. Brown (City University of New York, USA)

R. Castanet (LABRI, France)

R. Dssouli (Concordia University, Canada)

P. Frankl (Brooklyn Polytechnic, USA)

J. Grabowski (University of Goettingen, Germany)
. Griffeth (City University of New York, USA)

. Hierons (Brunel University, UK)

. Higashino (Osaka University, Japan)

. Hogrefe (University of Goettingen, Germany)

. Holzmann (Jet Propulsion Lab, USA)

. Jard (IRISA Rennes, France)

. Jéron (IRISA Rennes, France)

. Khendek (Concordia University, Canada)

. Kim (ICU, Korea)

. Koénig (BTU Cottbus, Germany)

. Lee (Ohio State University, USA)

. Maggiore (TIM, Italy)

. Ness (Telcordia, USA)

M. Nunez (UC de Madrid, Spain)

I. Schieferdecker (Fraunhofer Fokus, Germany)

K. Suzuki (University of Electro-Communications, Japan)
J. Tretmans (Radboud University, The Netherlands)
A. Ulrich (Siemens, Germany)

H. Ural (University of Ottawa, Canada)

M. Veanes (Microsoft, USA)

H. Yenigun (Sabanci University, Turkey)

N. Yevtushenko (Tomsk State University, Russia)

aNoNul=i- oo NoNoRwN N-vld

VIII Organization

Conference Staff

Conference Manager Edward Baurin (CCNY, USA)
Local Arrangements Joseph Driscoll (GC of CUNY, USA)
Registration Connie Shao (CCNY, USA)

Steering Committee

Chairman J. Derrick (University of Sheffield, UK)
Members A.R. Cavalli (INT, France)

R. Groz (LSR-IMAG, France)

A. Petrenko (CRIM, Canada)

Additional Referees

I. Berrada J.R. Horgan A. Rollet
A. Cavalli J. Huo K. Rowan
D. Chen G.-V. Jourdan F. Rubio

C. Chi F.-C. Kuo C. Viho

M. Ebner K. Li C. Werner
L. Frantzen C.M. Lott A. Williams
A. Gotlieb M.G. Merayo A. Petrenko
W. Grieskamp F. Patrick

Y. Gurevich I. Rodriguez

Sponsoring Institutions

International Federation for Information Processing (IFIP), Laxenburg, Austria
The Graduate Center and the City College of CUNY, New York, USA

IBM Corporation, Armonk, NY, USA

Telcordia Technologies, Inc., Piscataway, NJ, USA

Table of Contents

Session I: Testing Theory and Foundations

Symbolic Execution Techniques for Test Purpose Definition

Christophe Gaston, Pascale Le Gall, Nicolas Rapin, Assia Touil

Controllable Combinatorial Coverage in Grammar-Based Testing

Ralf Lammel, Wolfram Schulte

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses

Ismael Rodriguez, Mercedes G. Merayo, Manuel Nunez

Session II: Testing Non-deterministic and
Probabilistic Systems

Bounded Sequence Testing from Non-deterministic Finite State
Machines

Florentin Ipate e

LaTe, a Non-fully Deterministic Testing Language

Emmanuel Donin de Rosiére, Claude Jard, Benoit Parreaux

Customized Testing for Probabilistic Systems

Luis F. Llana-Diaz, Manuel Nunez, Ismael Rodriguez

Session III: Testing Internet and Industrial Systems

Generating Test Cases for Web Services Using Extended Finite State
Machine
ChangSup Keum, Sungwon Kang, In-Young Ko, Jongmoon Baik,

Young-I1 Chotio

Towards the Testing of Composed Web Services in 3"¢ Generation
Networks
Abdelghani Benharref, Rachida Dssouli, Roch Glitho,

Mohamed Adel Serhani

Application of Two Test Generation Tools to an Industrial Case Study
Ana Cavalli, Stéphane Maag, Wissam Mallouli, Mikael Marche,

Yves-Marie QUemenero

X Table of Contents

Session I'V: TTCN-3

Performance Analysis of Concurrent PCOs in TTCN-3
Maté J. Csorba, Sindor Palugyai, Sarolta Dibuz, Gyula Csopaki

Use of TTCN-3 for Software Module Testing
Andreas Johan Nyberg

Distributed Load Tests with TTCN-3
George Din, Sorin Tolea, Ina Schieferdecker

Session V: Compositional and Distributed Testing

Analyzing the Impact of Protocol Changes on Tests
Mahadevan Subramaniam, Zoltdn Pap

Detecting Observability Problems in Distributed Testing
Jessica Chen, Hasan Ural 0. 0.,

Compositional Testing of Communication Systems
Reinhard Gotzhein, Ferhat Khendek

Session VI: FSM-Based Testing and Diagnosis

FSM Test Translation Through Context

Khaled El-Fakih, Alexandre Petrenko, Nina Yevtushenko 245

Using Distinguishing and UIO Sequences Together in a Checking
Sequence

M. Cihan Yalcin, Husnu Yenigum, 259

Reducing the Lengths of Checking Sequences by Overlapping

Hasan Ural, Fan Zhang i i 274

Session VII: Timed Systems

Test Case Minimization for Real-Time Systems Using Timed Bound
Traces

Ismail Berrada, Richard Castanet, Patrick Féliz, Aziz Salah 289

Symbolic and on the Fly Testing with Real-Time Observers

Rachid Bouaziz, OQusmane Koné 306

Table of Contents XI

Using TrazepTTCN-3 in Interoperability Testing for Real-Time
Communication Systems

Zhiliang Wang, Jianping Wu, Xia Yin, Xingang Shi,

Beihang Tian oo 324

Session VIII: Testing for Security

Test Generation for Network Security Rules
Vianney Darmaillacq, Jean-Claude Fernandez, Roland Groz,
Laurent Mounier, Jean-Luc Richier, 341

Message Confidentiality Testing of Security Protocols — Passive

Monitoring and Active Checking
Guogiang Shu, David Lee i 357

Author Index e 373

Symbolic Execution Techniques
for Test Purpose Definition

Christophe Gaston®, Pascale Le Gall?, Nicolas Rapin!, and Assia Touil?*

! CEA/LIST Saclay,

F-91191 Gif sur Yvette, France
{christophe.gaston, nicolas.rapin}@cea.fr
2 Université d’Evry, IBISC - FRE CNRS 2873,

523 pl. des Terrasses F-91000 Evry, France
{legall, atouil}@lami.univ-evry.fr

Abstract. We propose an approach to test whether a system conforms
to its specification given in terms of an Input/Output Symbolic Transi-
tion System (IOSTS). IOSTSs use data types to enrich transitions with
data-based messages and guards depending on state variables. We use
symbolic execution techniques both to extract IOSTS behaviours to be
tested in the role of test purposes and to ground an algorithm of test
case generation. Thus, contrarily to some already existing approaches,
our test purposes are directly expressed as symbolic execution paths of
the specification. They are finite symbolic subtrees of its symbolic exe-
cution. Finally, we give coverage criteria and demonstrate our approach
on a running example.

Keywords: Conformance testing, Input/Output Symbolic Transition
Systems, Test Purposes, Symbolic Execution, Coverage Criteria.

1 Introduction

Symbolic Transition Systems (STS) are composed of a data part and of a state-
transition graph part. They specify behaviours of reactive systems with some
benefits compared to the use of classical labelled transition systems. Models are
often smaller and it is even possible to finitely denote systems having an infinite
number of states. In this paper, following the works of [BL[IIL3], we are inter-
ested in studying conformance testing in the context of Input/Output Symbolic
Transition Systems (IOSTS).

Approaches based on symbolic transformations make possible to exploit a
particular analysis technique, the so-called symbolic execution [2L[0], to define a
test selection strategy. This technique has been first defined to compute program
executions according to some constraints expressed on input values. The main
idea is to use symbols instead of concrete data as input values and to derive
a symbolic execution tree in order to describe all possible computations in a
symbolic way. In our contribution, test purposes are defined as some particular

* This work was partially supported by the RNRT French project STACS.

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 1-[I8] 2006.
© IFIP International Federation for Information Processing 2006

2 C. Gaston et al.

subtrees of this symbolic execution tree. They may be chosen by the user but we
also propose criteria to automatically compute tests purposes. This is a response
to industrial needs where engineers are not always able to define which behav-
iours they want to test. We introduce two criteria. The first one is called all
symbolic behaviours of length n criterion. The second one is called the restriction
by inclusion criterion: the extracted subtree satisfies a coverage criterion which
is based on a procedure of redundancy detection. According to these test pur-
poses, test cases are generated. Our algorithm for test case generation is given
by a set of inference rules. Each rule is dedicated to handle an observation from
the system under test (SUT) or a stimulation sent by the test case to the SUT.
This testing process leads to a verdict being either PASS, FAIL, INCONC or
WeakPASS. PASS means that the SUT succeeded in passing a test. FAIL means
that a non-conformance has been detected. INCONC means that conformance
is observed but the test purpose is not achieved while WeakPASS means that
we are not sure to have achieved the test purpose. This last case is essentially
due to the fact that the specifications may be non-deterministic.

Our work on symbolic conformance testing is close to the ones of [3[5]. Our
contribution on generation of test cases is inspired by the one of [3]. But as
the data part in [3] was only given according to a pure and abstract theoretical
description, the implementation counterpart and examples are clearly missing.
Associating a verdict to a test case execution requires to perform reachability
analysis. Indeed, one must be able to compute as soon as possible whether or
not a conformance may still be observed. In [5] over-approximation mechanisms
based on abstract interpretation are used to perform reachability analysis. In our
approach, we do not use such abstract interpretation techniques which have the
drawbacks of both being difficult to use and of sometimes giving only approx-
imated verdicts. We prefer to use symbolic execution based mechanisms which
have been already successfully advocated in [I0] to validate IOSTS models by
exhibiting pertinent scenarios or deadlock situations.

The paper is structured as follow. In Section [2] we present the IOSTS formal-
ism. Symbolic execution and restriction by inclusion are defined in Section Bl In
Section @ we present on-the-fly rules for generating test cases. In Section Bl we
discuss the usage of coverage criterion for test purposes definition.

2 Input Output Symbolic Transition Systems

Input/Output Symbolic Transition Systems (IOSTS) extend Input Output La-
belled Transition Systems (IOLTS) [10] by including data types. IOSTS are
used to specify dynamic aspects. This is done by describing modifications of
values associated to some variables, called attribute variables, in order to de-
note system state modifications. These modifications may be due to internal
operations denoted by attribute variable substitutions or to interactions with
the environment under the form of exchanges through communication chan-
nels of input/output messages. Those modifications may be conditioned by
guards.

Symbolic Execution Techniques for Test Purpose Definition 3

2.1 Data Types

Data types are specified with a typed equational specification framework.

Syntax. A data type signature is a couple 2 = (S,0Op) where S is a set of

type names, Op is a set of operation names, each one provided with a profile

81+ 8p—1 — 8p (for i < n, s; € 5). Let V = U Vs be a set of typed variable
ses

names. The set of £2-terms with variables in V' is denoted T (V') = U To(V)s

sES
and is inductively defined as usual over Op and V. To(() is simply denoted T%,.

A Q-substitution is a function o : V' — Tqo(V) preserving types. In the fol-
lowing, one notes To(V)V the set of all the £2-substitutions of the variables V.
Any substitution ¢ may be canonically extended to terms.

The set Sengn (V) of all typed equational £2-formulae contains the truth values
true, false and all formulae built using the equality predicates t = t’ for ¢,¢ €
To(V)s, and the usual connectives —, V, A, =.

Semantics. A 2-model is a family M = {M,}scs with, for each f : sy -5, —
s € Op, a function fpr : Mg, x --- x M, — M,. We define 2-interpretations
as applications v from V to M preserving types, extended to terms in T (V).
A model M satisfies a formula ¢, denoted by M | ¢, if and only if, for all
interpretations v, M |=, ¢, where M =, t = ' is defined by v(t) = v(t'), and
where the truth values and the connectives are handled as usual. MY is the set
of all 2-interpretations of V' in M. Given a model M and a formula ¢, ¢ is said
satisfiable in M, if there exists an interpretation v such that M =, ¢.

In the sequel, we suppose that data types of our IOSTS correspond to the
generic signature {2 = (5,0p) and are interpreted in a fixed model M. In the
following, elements of M are called concrete data and denoted by terms of T',.

2.2 Input/Output Symbolic Transition Systems

Definition 1 (IOSTS-signature). An [0STS-signature X is a triple

(£2, A, C) where §2 is a data type signature, A = U A is a set of variable names

seS
called attribute variables and C is a set of communication channel names.

An TOSTS communicates with its environment through communication actions:

Definition 2 (Actions). The set of communication actions, denoted Act(X) =
Input(X) U Output(X), is defined as follows, with c € C, y € A andt € T(A):

Input(X) = c?y|c? and Output(X) = clt | ¢!

Elements of Input(X') are stimulations of the system from the environment: ¢?x
(resp. ¢?) means that the system waits on the channel ¢ for a value that will be
assigned to the attribute variable x (resp. for a signal, for example, a pressed

4 C. Gaston et al.

button). Qutput(X) are responses of the system to the environment: ¢!t (resp. ¢!)
is the emission of the value t (resp. of a message without any sensible argument)
through the channel c.

Definition 3 (IOSTS). An IOSTS over X is a triple G = (Q,qo, Trans)
where @ is a set of state names, gy € @ is the initial state and Trans C
Q x Acts(A) x Seng(A) x To(A)* x Q. A transition (q,act, ¢, p,q') of Trans
is composed of a source state q, an action act, a guard ¢, a substitution of vari-
ables p and a target state q'. For each state q € Q, there is a finite number of
transitions of source state q.

Observations for a communicating system are made of output actions. However,
a system cannot always emit an output message from a given state g. It is then
said to be quiescent [I3]. In particular, quiescence from g depends on the current
values of the attribute variables and on the guards of all transitions outgoing
from ¢. As in [I3], we can complete an IOSTS to explicit quiescent situations. For
that, we add a special output communication action 6!, expressing the absence of
output, whose guard is complementary to all other guards of output transitions
from g. This enrichment by quiescence is given by:

Definition 4 (Enrichment by quiescence). Let G = (Q, qo, Trans) be an
I0STS over ¥ = (2, A,C). The enrichment of G by quiescence is the IOSTS
over Xs = (2, A,CU{6}), defined by Gs = (QU{qs}, qo, TransUTranss) where
(g,act,p,p,q') € Transs iff:

— act = 68!, p is the identity substitution and ¢’ = ¢s.
— Let us note try,--- ,tr, all transitions of the form tr; = (q, acti,%,pi,
with act; € Output(X). Then ¢ is Aicn—pi if n > 0 and is true otherwisd!.

Example 1. Let us consider an ATM system built over the communicating au-
tomaton depicted in Figure[[l This IOSTS specifies a system of cash withdrawal,
with the initial state go. The user asks for some amount (amount?z). The ATM
system checks if there is enough money in the account user (represented by the
variable m) and if this is the first or the second time that the user withdraws
money after a deposit. Then the user receives the asked amount by the channel
cash. If the user account is less than 1000 then the withdrawal operation is not
free and costs 1. Else, if there is not enough money in the account, the user
receives an error message by the channel screen. The user can also deposit some
money (¢) in his bank account by the channel deposit. This is added to the bank
account (m :=m +t). Moreover, the user can ask for the amount of its account
by the channel check, and receives the answer by the channel sum. There is only
one transition labelled by ¢! starting from the state ¢o. Indeed, the state ¢; and
g2 are such that whatever the values of the attribute variables are, it is always
possible to emit at least a message.

YT Aj<n—; is not a satisfiable formula, the (g, act, Ai<n—@i, p,¢') transition may
clearly be omitted.

Symbolic Execution Techniques for Test Purpose Definition 5

deposit?t
m:=m-+1 cp>2Vr>m

cp:=0 screen!” no money”
6
¢ ! .
\ amount?x
C

pi=cp+1

o - - @
sum!m
Theck? \\/
check? op < 2N
% r<mAm >= 1000
cash!x

m:=m-—x

cp <2Nx <mAm <1000
cash!x
m:=m-—x—1

Fig. 1. Example of ATM system with withdrawal according to some conditions

2.3 Semantics

Definition 5 (Runs of a transition). Let tr = (q,act, ¢, p,q’) € Trans. Let
us note Act(M) = (C x {?,!} x M) U (C x {?,!}). The set Run(tr) C M4 x
Act(M) x M4 of execution runs of tr is such that (v, actyr,v’) € Run(tr) iff:

— if act is of the form c!t (resp. c!) then M |=,: ¢, vi = vi o p and actp =
(e, v (1)) (resp. actar = (c, 1),

— if act is of the form c?y then M =, p, there exists v* such that v*(z) = v'(z)
for all z #y, vi =v%op and actpr = (c,?,v%(y)).

— if act is of the form c¢? then M =, ¢, v/ = v o p and actyr = (¢, ?).

We denote source(tr) (resp. target(tr)) the source (resp. target) state q (resp.
q') and act(tr) stands for act. For a runr = (v, actpr,vl), we denote source(r),
act(r) and target(r) respectively v, actyr and vf.

Definition 6 (Finite Paths of an IOSTS). The set of finite paths in G,
denoted FP(G) contains all finite sequence try ...tr, of transitions in Trans
such that source(tri) = qo and for all i < n, target(tr;) = source(triyi).
The runs of a finite path try .. .tr, in FP(G) are sequences ry . ..r, such that
for alli <mn, r; is a run of tr; and for all i < n, target(r;) = source(ri+1).
The set of concrete traces of a finite path p = try ... tr,, denoted Trace(p) is
the set of finite action sequences act(ry)...act(ry) for any run ry---ry, of p.

In the following, and as usual, for any p € FP(G), length(p) denotes the number
of occurrences of the transitions in the definition of p. We also note Ext,,.(p)
the set of finite paths of G extending p by a transition introducing an output
action. Formally, Extoy.(p) = {p’ € FP(G) | p' = p.tr A act(tr) € Output(X)}.

Definition 7. The semantics of an IOSTS G is Trace(G) = U Trace(p).

6 C. Gaston et al.

3 Symbolic Execution

3.1 Definition

In our context, we call a symbolic behaviour of an IOSTS any finite path p of
this IOSTS for which Trace(p) # 0. In order to characterize the set of traces
of a symbolic behaviour we propose to use a symbolic execution mechanism.
Symbolic execution has been first defined for programs [6}2,[9]. This technique
can naturally be adapted to the framework of IOSTS. The main idea is to replace
concrete input values and initialization values of attribute variables by symbolic
ones with fresh variables and to compute the constraints on these variables: those
constraints are called path conditions. In the sequel we assume that those fresh

variables are chosen in a set F' = U F; disjoint from the set of attribute variables

sesS
A. We now give the intermediate definition of symbolic extended state which is a

structure allowing to store information about a symbolic behaviour: the IOSTS
current state (target state of the last transition of the symbolic behaviour), the
path condition and the symbolic values associated to attribute variables.

Definition 8 (Symbolic extended state). A symbolic extended state over
F for an IOSTS G = (Q,qo,Trans) is a triple n = (q,n,0) where ¢ € Q,
7 € Seng(F) is called a path condition and o € To(F)?. n = (¢,7,0) is said
to be satisfiable if w is satisﬁableﬁ. One notes S (resp. Ssat) the set of all the
(resp. satisfiable) symbolic extended states over F'.

We now define the symbolic execution of an IOSTS. Intuitively, the symbolic
execution of an IOSTS can be seen as a tree whose edges are symbolic extended
states and vertexes are labelled by symbolic communication actions. The root is a
symbolic extended state made of the IOSTS initial state, the path condition true
(there is no constraint to begin the execution) and of an arbitrary initialization g
of variables of A in F'. Vertexes are computed by choosing a source symbolic state
n already computed and by symbolically executing a transition of the IOSTS
whose source is the state introduced in 7. The symbolic communication action
is computed from the transition communication action and from the symbolic
values associated to attribute variables in 7. A target symbolic extended state is
then computed. It stores the target state of the transition, a new path condition
derived from the path condition of n and from the transition guard, and finally
the new symbolic values associated to attribute variables.

Definition 9 (Symbolic execution of an IOSTS). Let G = (Q, qo, Trans)
be an I0STS over X = (2, A,C). Let us note Xp = ({2, F,C). A full symbolic
execution of G over F is a triple (S,init, R) with init = (qo, true, oo) where oy
is an injective substitution in F4 and R C 8 x Act(Xr) x S such that for any
two transitions in R respectively of the form (n',c?x,n') and (n'*,d?y,n'T), the
variables © and y are distinct and Va € A, 0¢(a) # x. For anyn € S of the form

2 Let us recall that here, 7 is satisfiable if and only if there exists v € M ¥ such that
M =, 7 since variables of 7 are by construction in F.

Symbolic Execution Techniques for Test Purpose Definition 7

(q,7,0), for all tr € Trans of the form (q,act,p, p,q’), there exists an unique
symbolic transition st = (n, sa,n’) in R such that

— if act = clt (resp. c!), then sa = clo(t) (resp. c!) andn' = (¢', 7 No(p),00p),
— if act = c?x with x in A then sa = ¢?z with z in F, and ' = (¢, 7 \No(p),00

(2 2)0p),
— if act = ¢? then sa =c?, and 7' = (¢',m No(p),0 0 p).

The symbolic execution of G over F is the triple SE(G) = (Ssat,init, Rsat)
where Rgqt is the restriction of R to Sgar X Act(Xr) X Ssat-

The trace semantics for a symbolic execution tree is defined in a natural way.
If one solves the path condition of a given path (i.e. the path condition of its
last state) one can then evaluate all symbolic actions labelling this path and
extract the corresponding trace. Since SE(G) is obtained from the symbolic
execution tree of G by removing only un-solvable paths, one can easily prove that
Trace(G) = Trace(SE(G)). Finally, since an IOSTS and its symbolic execution
share the same trace semantics, it is equivalent to study an IOSTS or its symbolic
execution in the context of conformance testing.

init : (qo, true, og)

!
amo[/ chc& (m

n : (qu, true, o1) n2 2 (g2, true, 09) 3 < (qo, true, o2) ns : (g5, true, op)

!
cashlz; sereen: sumlmyg
no money

a2 (qos m0,03) M5 1 (qosT1,04) M6 1 (qos T2, 01) M7 (qos true, o)

cashla;

oy =T — To,m — my,t — ty,cp — cpo o =cpo < 2 Az < my Amy < 1000
oy =T — x1,m — my,t — ty,cp — cpo+ 1 mo=cpy < 2Ax; < my Amy < 1000
Oy =T — Tog,m — My +t1,t — t1,cp — cpp Ty =cpy > 2V x> my

03 =T — T1,m — my — T1,t — tg,cp — cpo + 1

oy = —x;,m—my—x;— 1, t —ty,cp—cpp+1

Fig. 2. Symbolic execution tree

Ezxample 2. Figure [illustrates the beginning of the symbolic execution of the
ATM system presented in Figure [II

3.2 Inclusion Criterion

A reactive system is supposed to continuously interact with its environment.
Thus, behaviours viewed as sequences of interactions are very often arbitrary
long. It explains that IOSTS specifications of reactive systems often contain

8 C. Gaston et al.

internal loops. This implies that the symbolic execution of the corresponding
IOSTS has infinite paths. However, in practice, one can consider an arbitrary
long behaviour as a sequence of "basic” behaviours. For example, the ATM
system basically offers few basic behaviours. It may: (1) provide the user with
money, (2) receive deposit from the user or (3) give the current level of the
user account. Any ”complex” behaviour of the ATM system can be seen as a
sequence of such basic behaviours. Now if one considers the symbolic execution
of the ATM system, one would observe a lot (or even an infinite number) of
occurrences of those basic behaviours. In other words, information on symbolic
behaviours provided by the symbolic execution may be highly redundant in terms
of basic behaviours. We propose to cut the symbolic execution of an IOSTS in
order to lower this redundancy. Definition [A of symbolic execution shows that
behaviours are indeed determined by states, that is why our procedure to cut the
tree is grounded on a relation upon states. From a symbolic state n = (¢, 7, 0)
one can extract constraints on the set A of attribute variables : the set of all
possible interpretations v4 : A — M corresponding to i are restrictiondd to A of
all interpretations v : AU F — M such thatf] M &, Npcalz = o(x)) Am. If the
set of possible interpretations of A for 7; is included in the one of 72 one says
that m - 2.

Definition 10 (States inclusion). Let n = (¢,7,0) and ' = (q,7’,0’) be
two symbolic extended states with resp. I, and F,y as subsets of variables in F
occurring resp. in m and 7. n C 0’ iff, if for any v : AU F,, — M such that
M E, (Azea(z = o(z)) A m) then there exists v/ : AU F,y — M such that
via =y and M =y (Azea(a = o'(z)) A).

Let us consider 7; and 7y verifying 11 C 72. Any transition that can be sym-
bolically executed from 7; can also be symbolically executed from 7s. Moreover
if one executes a transition ¢ from 7, and from 7, this results in two target
symbolic extended states 1] and n4 such that] C n5. Recursively applying this
reasoning step allows one to deduce that any symbolic behaviour that can be
deduced from 7; can also be deduced from 7. Then we propose to consider a
reduced symbolic execution by removing the subtree of root 7;.

Definition 11 (Restriction by inclusion). Let SE(G) = (Ssat,init, Rsat)
be a symbolic execution of G. A restriction of SE(G) satisfying the inclusion
criterion is a triple SE(G)S = (Ssatg, init, Rsatg) where:

- Ssatg g Ssat; it S Ssatg; and Ezsatg g Rsat-

— For anyn € Sear S if there is no (n,sa,n’) € Resat= then either there is no
(n,8a,m") € Rsar or there exists ' € SsarS such that nCcn’.

— For anyn € SeaiS, if there exists (1, sa,n') € Rear= then for all (n, sa’,n") €
Rsat; (77’ SG,/, 77”) S Rsatg-

3 As usual, the restriction of an application f : X — Y to a subset Z of X will be
denoted by f|z.

* When reading = = o(x) for x € A in the formula, the reader should be aware that
o(z) denotes in fact an expression in terms of variables of F.

Symbolic Execution Techniques for Test Purpose Definition 9

Definition [Tl does not require that the restriction gets a finite number of sym-
bolic extended states: it may happen that symbolic extended states cannot be
compared through C. However, in practice, reactive systems generally have the
property that they regularly come back to already encountered states, as for
example the initial state. For such systems, the restriction by inclusion of their
symbolic execution generally gives a finite tree.

Example 3. Figure [corresponds in fact to a restriction by inclusion of the
symbolic execution of the ATM system. Indeed, ny C init since 14 contains the
same state qg as init and the constraints in 74, i.e. 1o = cpg < 2Ax1 < mgAmgy >
1000, are stronger that those in init (true). The symbolic extended states 73,
15, N6 and 77 are handled in the same way.

4 Conformance Testing for IOSTS

4.1 Owur Approach

Conformance testing supposes that a formal conformance relation is given be-
tween the specification G and the system under test SUT. We propose to adapt
the doco relation used for example in [I2]. As usual for conformance testing,
we consider that the SUT is only observable by its input/output sequences. In
particular, data handled in these sequences are concrete values which may be
denoted by ground terms of Ty,. By hypothesis, the SUT may be modelled as a
labelled transition system for which transitions are simple emissions (output) or
receptions (input) carrying concrete values. Moreover, as usual, the SUT is sup-
posed to accept all inputs in all states. The set of traces which can be observed
for the SUT, denoted by Trace(SUT), is a subsetf] of (Act(M)U {(6,H})*. Intu-
itively a SUT is conform to its specification with respect to ioco if the reactions
of the SUT are the same than those specified when it is stimulated by inputs
deduced from the specification.

Definition 12. SUT conforms to G if and only if for any tra € Trace(Gs) N
Trace(SUT), if there exists act € Act(M)U{(86,1)} of the form (c,1,t) or (c,!)
such that tra.act € Trace(SUTs), then tra.act € Trace(Gs).

Test purposes are used to select some behaviours to be tested. In our case, test
purposes consist of some finite paths of the symbolic execution of the specifica-
tion. For each of those paths, the last symbolic extended state is the target state
of an output action and is labelled by the keyword accept. All states belonging
to a chosen path (except the last one labelled by accept) are labelled by skip.
So, a skip label simply means that it is still possible to reach an accept state by
emitting or receiving additional messages . So, a test purpose is a finite subtree
of the symbolic execution whose leaves are labelled by accept and intermediate
nodes are labelled by skip. All other states, external to the test purpose, are

5 The absence of outputs from SUT can be observed through the emission ¢!, and in
this case, this cannot be directly followed by another emission.

10 C. Gaston et al.

labelled by ©: they are not meaningful with respect to the selected paths of the
test purpose.

Definition 13. Let G be an IOSTS with SE(Gs) = (Ssat,init, Reat) ils as-
sociated symbolic execution. A symbolic test purpose for G is an application
TP : Ssar — {skip,accept, ®} such that:

— there exists n verifying TP(n) = accept,

— for any n, 0 verifying TP(n) = TP(n') = accept, there is no finite path
sty -+~ sty such that for some i < n, source(st;) =n and target(st,) =1,

— for any ' verifying TP(n') = accept, there exists (n, sa,n’) in SE(Gs) such
that sa is of the form c!t or c!.

— TP(n) = skip iff there exists a finite path sty - - - st,, such that for somei < n,
source(st;) = n and T P(target(st,)) = accept. Otherwise TP(n) = ©.

Unlike [5], our test purposes directly characterize by construction a subset of the
specified behaviours since they are extracted from the symbolic execution of the
specification. In the following sections, the considered test purposes will refer to
an arbitrary test purpose generically denoted by T P.

4.2 Preliminary Definitions and Informal Description

A test execution consists in executing on the SUT a transition system, called
a test case and devoted to produce testing verdicts as PASS or FAIL. The
test case and the SUT share the same set of channels and are synchronized by
coupling emissions and receptions on a given communication channel. We focus
on the sequence of data exchanged between the test case and the SUT. These
data are in fact elements of M (the model of the data part) and will be denoted
by ground terms of Ty,. We use the following notations: obs(c!t) with ¢ in Ty,
to characterize that the SUT emits through the channel ¢ the concrete value
denoted ¢ and stim(c?t) to represent stimulations of the SUT, occurring when
the data t is sent by the test case to the SUT. We also use the following generic
notation [evy, evs,...,ev,|Verdict] for a sequence of synchronized transitions
between a test case and the SUT leading to the verdict Verdict, each action ev;
being issued either from an observation obs(ev;) or a stimulation stim(ev;).

Testing a SUT with respect to a given symbolic test purpose amounts to look
for stimulating and observing the SUT in such a way that when conformity
is not violated, the sequence of stimulations and observations corresponds to a
trace (belonging to semantics) of at least one path of the test purpose.

To reach this goal, the testing process achieves two tasks. The first one consists
in computing, each time it is required, a stimulation compatible with reaching an
accept state. The second one consists in computing all the symbolic states which
may have been reached taking into account the whole sequence of observations/
stimulations already encountered.

We firstly define contexts composed of a symbolic state and of a formula
expressing constraints induced by the sequence of previously encountered in-
puts/outputs.

Symbolic Execution Techniques for Test Purpose Definition 11

Definition 14 (Context). A context is a couple (s, f) where s € Ssqt and f is
a formula whose variables are in F.

As previously pointed out, there may be more than one single context compati-
ble with a sequence of observations/stimulations. This is taken into account by
using a set of contexts, generically noted SC' (for Set of Contexts), represent-
ing the set of all potential appropriate contexts for a given sequence of stimula-
tions/observations. We introduce some auxiliary functions useful to reason about
sets of contexts, in particular in order to be able to compute the sequence of sets
of contexts resulting from the successive application of elementary actions.

Definition 15 (Function Next(ev,SC)). Let SC be a finite set of contexts
and ev € Act(Xp). If ev is of the form cAt (resp. cA) with A € {?,1} then
(s', f') € Next(ev, SC) with s' = (¢', 7', 0") iff:

— there exists (s, f) € SC such that (s,cAu,s’) € R (resp. (s,c,s') € R)
— flis fA(t=w) (resp. f) and f' N7’ is satisfiable.

Thus, Next(ev, SC) computes the set of all contexts following directly the con-
text SC with the event ev. When stimulating the SUT, it matters to check
whether the computation of a stimulation is compatible with the goal of finally
reaching an accept state. For that, for any context ct, the targetCond(ct) pred-
icate allows us to confront constraints inherited from the first observations or
stimulations to the target states, those labelled by accept by the test purpose.

Definition 16 (targetCond(ct)). Let ct = (s, f) be a context such that TP(s) =
skip andd E = {s' € Syar | 3m € (Act(Zr))*, s 2 s' and TP(s') = accept},
then targetCond(ct) is the formula : \/ .

(¢,m,0)EE

Given a set of contexts SC, we distinguish among all contexts in Next(ev, SC)
those which are pertinent with respect to the considered test purpose:

Definition 17 (Functions NextSkip(ev, SC) and NextPass(ev,SC)). Let
SC' be a finite set of contexts and ev € Act(Xr). If ev is of the form c/\t (resp.
eN) with A € {21} then (s, f') € NextSkip(ev, SC) iff:

— there exists (s, f) € SC such that (s,cAu,s’) € R (resp. (s,cA\,s’) € R)
with TP(s") = skip
— flis fA(t=w) (resp. f) and [’ AtargetCond(s") is satisfiable.

NextPass(ev, SC) is defined in the same way with the difference that T P(s') is
required to be accept instead of skip.

Let us remark that for a given symbolic state ' = (¢, n’,0’), the predicate
targetCond(s’) is necessarily strongenl] than 7 since by definition of symbolic

5 For a labelled graph G' and a word m = ay.--- . an, the notation sy — s, stands
for any path so 2l 6 81 2 s, where each s; — Si+1 is a transition of G.

" 7’ is said to be stronger than r iff for any interpretation v, if M |=, 7', then M =, 7.

12 C. Gaston et al.

execution, the set of constraints is increasing at each new transition. Thus, we get
NeatSkip(ev, SC) C Next(ev,SC) and NextPass(ev,SC) C Next(ev,SC) for
all contexts SC and events ev. Emptiness of NextSkip(ev, SC) means that no
more accept is now reachable while non emptiness of NextPass(ev, SC) means
that at least an accept has been reached.

&0
g
©
©

obs(clt) an clt obs(d!l)

@) (o @

accept accept

an abs(s’x)

accept

(1) Pass (2) Inconc (3) WeakPass (4) Fail

Fig. 3. Algorithm’s explanations

Let us illustrate our algorithm with Figure Bl and describe an execution step
based on an emission ev from the SUT and starting from SC={(no, ¢o), (n1, 1)}
If Next(ev, SC) is empty, that is the case for ev = elz, this means that the emis-
sion is not specified and so we conclude FAIL (see Figure [(4)). If an accept
is reached (NextPass(ev, SC) non empty) we conclude PASS when no other
context is reached, see for example Figure Bl (1) with NextPass(clt,SC) =
{(n2,p2)}, or WeakPASS when others contexts are also reached, see for ex-
ample Figure Bl (3) with Next(clt, SC) = {(n2,¥2), (03, p3)}. In this last case,
we cannot distinguish whether the inner state of the SUT is represented by
the reached accept state (n2,p2) or by the state (n3,p3) outside of the test
purpose. At last, if NextSkip(ev, SC) is empty while Next(ev, SC) is not, see
Figure [(2) for ev = dll, this means that the emission was specified but was
not aimed by the test purpose. Then, we conclude by an inconclusive verdict

INCONC.

4.3 Inference Rules

Let us recall that our goal is to compute sequences [evy, ..., ev,|Verdict] rep-
resenting synchronized transitions between a test case and the SUT leading to
the verdict Verdict, each action ev; being derived either from an observation
obs(ev;) or a stimulation stim(ev;), and Verdict belonging to this set of key-
words : {PASS, WeakPASS, INCONC, FAIL}. For that, we will take into
account the knowledge of the associated contexts. Each step of the construc-
tion of such a sequence will be descrlbed by means of inference rules. Those
rules are structured as followsﬁ ¢ cond(ev) where SC is a set of contexts,
Result is either a set of contextb or a verdict, cond(ev) is a set of conditions
including the observation obs(ev) or the stimulation stim(ev). One should read

8 The initialisation rule will not respect this generic structure since it will simply
consist in introducing the starting context.

Symbolic Execution Techniques for Test Purpose Definition 13

a rule as follows: Given the current set of contexts SC, if cond(ev) is verified
then the algorithm may achieve a step of execution, with ev as elementary ac-
tion. As long as Result is a set of contexts, a new rule may be applied to pursue
the computation of the sequence. And of course, reaching a verdict stops the
algorithm.

Rule 0: Initialisation rule
{(init, true)}
Rule 1: The emission is compatible with the purpose but no accept is reached.

SC

Newt(eo, 5C) obs(ev), NextSkip (ev, SC) # 0, NextPass(ev,SC) = ()

Rule 2: The emission is not expected with regards to the specification.

SC

FAIL obs(ev), Next(ev, SC) = 0

Rule 3: The emission is specified but not compatible with the test purpose.

SC

INCONC obs(ev), Next(ev, SC) # 0, NextSkip(ev, SC) = 0, Next Pass(ev, SC) =)

Rule 4: All next contexts are accept ones.

SC
PASS

obs(ev), Next(ev, SC) = NextPass(ev,SC), Next(ev, SC) # ()

Rule 5: Some of the next contexts are labelled by accept, but not all of them.

SC

- C
WeakPASS obs(ev), NextPass(ev,SC) # 0, NextPass(ev,SC) G Next(ev, SO)

Rule 6: Stimulation of the SUT

% stim(ev), NextSkip (ev, SC) # ()

Rules from 1 to 5 concern observations while only Rule 6 concerns stimula-
tions. Rule 5 calls for some comments: a verdict WeakPASS means both that
the test purpose is reached and that the sequence of observations/stimulations
may correspond to another behaviour of the symbolic execution. This verdict
is thus a kind of warning. One should pursue the test execution sequence
to distinguish which states really correspond to the performed execution
sequence.

We can consider a transition system, denoted T'S(T'P), from a test purpose
T P and the set of inference rules. The states are the sets of contexts appearing in
the rules and four special states labelled by the verdicts. Two states are related
by a transition labelled by an emission ev = ¢!t or ev = ¢! (resp. a receipt
ev = ¢ or ev = ¢?) if they can be relied by the application of the unique

14 C. Gaston et al.

rule conditioned by stim(ev) (resp. of one of the rules conditioned by obs(ev)).
Such a transition system is a simple labelled one. If such a transition system
is synchronized with the system under test in such a way that emissions and
receptions are synchronized by sharing the same communication channel and
the same data, then any licit sequence of synchronized transitions is necessarily
finite and leads to one of the four verdicts. In fact, this transition system may
be viewed as a test case in the sense of [4], except that our transition system
may be non-deterministic. Indeed, for a given set of contexts, several rules may
be applied. In particular, depending of the form of the specification, one can
choose to send to the system a message, to wait for an emission or to observe
quiescence. Even worse, for a given rule, several choices are often possible for
the data carried by the associated observation or stimulation.

We note st(T'P,SUT) the set of [evy,...,ev,|Verdict] such that ev; ...ev, is
a sequence of synchronized transitions between T'S(T P) and SUT leading to the
final state labelled by Verdict in T'S(T P). Finally, we introduce the notation:
vdt(TP,SUT) = {Verdict | Jevy,...evy,[ev],..., evn|Verdict] € st(TP,SUT)}

Using these notations, we can now state the correctness and the completeness
of our algorithm:

Theorem 1. For any IOSTS G and any SUT:

Correctness: If SUT conforms to G, for any symbolic test purpose TP,
FAIL ¢ vdt(TP,SUT).

Completeness: If SUT does not conform to G, there exists a symbolic test
purpose TP such that FAIL € vdt(TP,SUT).

The completeness property holds up to all the non-deterministic choices induced
by our set of rules and captured in the set vdt(T P, SUT).

5 Criterion-Based Test Purposes

Most of the times, the set of all finite symbolic behaviours associated to a speci-
fication is lucky enough to be infinite. In such a case, one generally uses coverage
criteria to define test purposes.

The first idea is to simply cut the (infinite) symbolic execution of a specifica-
tion according to a parameter n indicating the length of the paths to be tested.
The corresponding test purpose will contain all the paths of length n derived
from the symbolic execution, provided that they are terminated by an output
action.

Definition 18 (“all paths of length n”). Let G be an IOSTS on the sig-
nature X and let us consider SE(Gs) = (Ssat, init, Rsqt) its associated symbolic
execution. Let n > 0. The test purpose ”all paths of length n” for G is the
test purpose TGy, : Ssar — {skip, accept, ©®} such that the only symbolic states
labelled by accept by TG, are given by the following property. For any path
p=ty---t, of SE(Gs) starting from init and verifying length(p) = n:

Symbolic Execution Techniques for Test Purpose Definition 15

— either act(t,) € Output(Xs) and TG, (target(t,)) = accept,
— or for ani] p.t € Extout(p), label(target(t)) = accept.

The criterion “all paths of length n” allows one to characterize a countable family
of test purposes, approaching more and more the whole symbolic execution of
the specification. Then, the tester can make an trade-off between the size of the
test purpose (in relation with the parameter n) and the testing cost. Moreover,
such a test purpose may be decomposed in as many test purposes as accept
states: indeed, for each accept state, we can build a dedicated test purpose with
this state as unique accept state. Such a decomposition allows the tester to
systematically try to reach each accept state, thus, to reach each path of length
n (up to the fact that they are not necessarily terminated by an output action).

The criterion “all paths of length n” allows us to build test purposes. However,
the pertinent length n to be chosen is up to the tester. In order to help the tester
to chose this parameter n, we propose to use the restriction by inclusion defined
in Definition [[Il This characterizes a subpart of a symbolic execution with no
redundant behaviours. The inclusion criterion gives some clear indications about
the size of basic behaviours of the specification. Intuitively, one can choose for
the value of the parameter n the length p,,.. of the longest path of a restriction
by inclusion of a symbolic execution. More generally, one can compose basic
behaviours by juxtaposing them. It suffices to take for the parameter n, pmqq,
2 X Pmazs - - - O k X Pmae if we want to consider all the combinations of k basic
behaviours.

Definition 19 (“k-inclusion” criterion). Let G be an IOSTS and
SE(Gs)S = (Seai S, init, RS) be a restriction of SE(Gs) satisfying the inclusion
criterion. Let us note pmar € FP(SE(Gs)S) such that for allpe FP(SE(Gs)<),
length(pmaz) > length(p). Let k > 0. The test purpose ”k-inclusion criterion”
associated to SE(Gs)S is the test purpose “all paths of length k x length(pmaz)”
for G.

Example /. Figure [illustrates the construction of test purposes. The leaves of
the symbolic tree constructed in Figure[2] .e. the restriction by inclusion of the
ATM system, are represented by a circle (). This tree is completed from the
symbolic state 13 with symbolic states (that are represented by a triangle A) to
have the same length for all paths of the tree (the dotted line marks the length 2).
For each leaf above the dotted line which does not result from an output, some
additional outputs are considered to ensure that paths to be tested are observed
by outputs. This last step introduces the states 111, 112, M3, 714, 715. Finally,
the states that are in a square [J are those labelled with accept. It corresponds
to the l-inclusion criterion (for lack of space, we cannot unfold the symbolic
tree until the 2-inclusion criterion but it would be the same construction). Now,
we can apply the rules of our algorithm over the paths of the symbolic tree of
Figure[@ We explain the computation of the final verdict by making explicit the

9 Let us recall that by extension, symbolic executions of IOSTS inherit from notions
associated to IOSTS: here, we have translated the notion Ext,.: defined for IOSTS.

16 C. Gaston et al.

init

amount?z,
check? deposit?1)
screen! sum!mg
cashlay o money” amount?a,,
cashlay check?
posit?ls
@) || @) ’

s

\
cashlzy SCreeIt | sumlmy
\'no money|
Cashlzy

M1 M2 M M5

Fig. 4. Construction of test purposes

intermediate applications of rules over the current set of contexts (SC') using the

action

following notation : SC ——— SC’ where action denotes the current element of

rule
the considered trace (either of the form clt, ¢!, ¢?t or ¢?), rule indicates which

rule is applied to get the next set of context SC'.
Let us consider the trace [deposit?250 amount?50 cash!50 | WeakPASS].

depos;it';250 SCl _ {(7]3,t1 _ 250)} amoulnt6?50 SCQ

SCy = {(init, true) }

cash!50
—_—

SCoy = {(7787 (tl =250 A xo = 50))} WeakPASS

ruled

The WeakPASS verdict is due to the 2 equalities:

o Next(cash!50, SCQ) = {(7711, (tl = 250/\l‘g = 50)), (7712, (tl = 250/\.732 = 50))}
e NextPass(cash!50,S5Cs) = {(m1, (t1 = 250 Az = 50)}.

One cannot decide whether the test purpose has been achieved (the real state
corresponds to 711) or missed (the real state corresponds to 712).

5.1 Implementation Issues

The work presented here is implemented as an extension of the AGAT H A tool
set [7L[I0] which uses symbolic execution techniques to debug and validate spec-
ifications. The AGAT H A tool allows to unfold IOSTS specifications in the form
of trees provided with path conditions for all paths of trees. Trees are computed
according to coverage criteria including those grounding test purpose definitions
discussed in Section Bl Those test purposes are thus obtained for free. All rules
defined in Section are implemented. However applying those rules does not
necessarily lead to a deterministic process. Implementing deterministic strategies
for rules appliance is still an open issue. Presburger arithmetics [8] constitutes
the data part of IOSTS treated by AGATHA. The algorithm requires some

Symbolic Execution Techniques for Test Purpose Definition 17

decision procedures (for inclusion criterion) and constraint solving (to compute
stimulations). This is done thanks to the Omega Library [I].

6 Conclusion

We have proposed an approach to test reactive systems specified as Input/
Output Symbolic Transition Systems (IOSTS). Symbolic execution allows us
to re-express the specification in the form of a tree whose set of paths denotes
the set of all behaviours of the specification. We propose to define test purposes
by selecting a finite set of behaviours (i.e. paths) in the symbolic execution tree.
We define an algorithm to test SUT with regard to a test purpose. This algo-
rithm is given by a set of rules, both to compute stimulations of SUT which
are adequate to achieve the test purpose and to assign a verdict to a test execu-
tion. There may be four verdicts: PASS, FAIL, INCONC and WeakPASS.
WeakPASS is a verdict which expresses that conformance is observed but we
are not able to ensure that the test purpose is really achieved. Indeed, it may
happen that an input/output sequence observed during a test execution can be
related to several behaviours, not all being accepting paths of the test purpose.

Test purposes may be defined manually but we also propose to use some cov-
erage criteria to automatically extract them. The first one is the all symbolic
behaviours of length n criterion which requires to cover all paths of length n in
the symbolic execution. The other one, so-called restriction by inclusion crite-
rion, extracts a subset of all paths of the symbolic execution tree by avoiding
redundancies. Concerning coverage criteria, we are currently investigating other
kinds of criteria. Our aim is to help the tester in defining test purposes. Indeed
on the one hand test purposes are difficult to define manually as soon as the
specification has a realistic size, but on the other hand the intervention of a
human is often necessary to characterize ”clever” test purposes (i.e. allowing to
discover subtle non conformance).

References

1. Omega 1.2. The Omega Project: Algorithms and Frameworks for Analyzing and
Transforming Scientific Programs. 1994.

2. L.-A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on software engineering, 2(3):215-222, September 1976.

3. L. Frantzen, J. Tretmans, and T. A.C. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, FATES 2004, number 3395
in LNCS, pages 1-15. Springer-Verlag, 2005.

4. C. Jard and T. Jéron. TGV: theory, principles and algorithms, a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Software Tools for Technology Transfer (STTT), 6, October 2004.

5. B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based
on approximate analysis. In 11th Int. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 3440, Edinburgh, April
2005.

18

7.

10.

11.

12.

13.

C. Gaston et al.

J.-C. King. A new approach to program testing. Proceedings of the international
conference on Reliable software, Los Angeles, California, 21-23:228-233, April 1975.
D. Lugato, N. Rapin, and J.-P. Gallois. Verification and tests generation for SDL
industrial specifications with the AGATHA toolset. In P. Petterson and S. Yovine,
editors, Proceedings of the Workshop on Real-Time Tools affiliated to CONCURO01,
Department of Information Technology UPPSALA UNIVERSITY Box 337, SE-751
05 Sweden, August 2001. ISSN 1404-3203.

. M. Presburger. Uber die Vollstindigkeit eines gewissen Systems der Arithmetic.

Comptes rendus du premier Congres des Math. des Pays Slaves, pages 92-101,395,
1929.

. C.-V. Ramamoorthy, S.-F. Ho, and W.-T. Chen. On the automated generation

of program test data. IEEE Transactions on software engineering, 2(4):293-300,
September 1976.

N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioural unfolding of
formal specifications based on communicating automata. In Proceedings of first
Workshop on Automated technology for verification and analysis, Taiwan, 2003.
V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation. In
IFM ’00: Proceedings of the Second International Conference on Integrated Formal
Methods, pages 338-357, London, UK, 2000. Springer-Verlag.

J. Tretmans. Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation. Computer Networks and ISDN Systems,
29:49-79, 1996.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103-120, 1996.

Controllable Combinatorial Coverage
in Grammar-Based Testing

Ralf Lammel' and Wolfram Schulte?

! Microsoft Corp., Webdata/XML, Redmond, USA
2 Microsoft Research, FSE Lab, Redmond, USA

Abstract. Given a grammar (or other sorts of meta-data), one can
trivially derive combinatorially exhaustive test-data sets up to a spec-
ified depth. Without further efforts, such test-data sets would be huge
at the least and explosive most of the time. Fortunately, scenarios of
grammar-based testing tend to admit non-explosive approximations of
naive combinatorial coverage.

In this paper, we describe the notion of controllable combinatorial
coverage and a corresponding algorithm for test-data generation. The
approach is based on a suite of control mechanisms to be used for the
characterization of test-data sets as well-defined and understandable ap-
proximations of full combinatorial coverage.

The approach has been implemented in the C#-based test-data gen-
erator Geno, which has been successfully used in projects that required
differential testing, stress testing and conformance testing of grammar-
driven functionality.

1 Introduction

This paper is about grammar-based testing of software. We use the term ‘gram-
mar’ as a placeholder for context-free grammars, algebraic signatures, XML
schemas, or other sorts of meta-data. The system under test may be a virtual
machine, a language implementation, a serialization framework for objects, or a
Web Service protocol with its schema-defined requests and responses. It is gener-
ally agreed that manual testing of grammar-driven functionality is quite limited.
Grammar-based test-data generation allows one to explore the productions of the
grammar and grammatical patterns more systematically. The test-oracle prob-
lem has to be addressed in one of two ways: either multiple implementations are
subjected to differential testing (e.g., [20]), or the intended meaning of each test
case is computed by an extra model (e.g., [23]).

Prior art in grammar-based testing uses stochastic test-data generation (e.g.,
[19,20.23]). The canonical approach is to annotate a grammar with probabilistic
weights on the productions and other hints. A test-data set is then generated
using probabilistic production selection and potentially further heuristics. Sto-
chastic approaches have been successfully applied to practical problems. We
note that this approach requires that coverage claims are based on stochas-
tic arguments. In our experience, the actual understanding of coverage may be

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 19-138] 2006.
© IFIP International Federation for Information Processing 2006

20 R. Lammel and W. Schulte

challenging due to intricacies of weights and other forms of control that ‘feature-
interact” with the basic stochastic model.

The work reported in this paper adopts an alternative approach to test-data
generation. The point of departure is full combinatorial coverage of the grammar
at hand, up to a given depth. Without further efforts, such test-data sets would
be huge at the least and explosive most of the time. Hence, approximations of
combinatorial coverage are needed. To this end, our approach provides control
mechanisms which can be used in modeling the test problem. For instance, one
may explicitly limit the recursive applications for a given sort (‘nonterminal’ﬂ,
and thereby scale down the ‘productivity’ of that sort. The control mechanisms
are designed in such a way that the approximations of combinatorial coverage are
intelligible. In particular, the effect of each use of a mechanism can be perceived
as a local restriction on the operation for term construction.

The approach has been implemented in the C#-based test-data generator
Genol The input language of Geno is a hybrid between EBNF and algebraic
signatures, where constructors and sorts can be annotated with control parame-
ters. Geno has been successfully used in development projects over the last 24
years at Microsoft. These projects required differential testing, stress testing and
conformance testing of grammar-driven functionality.

The paper is structured as follows. The overall approach is motivated and
illustrated in Sec. 2l The basics of combinatorial test-data generation are laid
out in Sec.[3l— Sec.[Bl The control mechanisms are defined in Sec.[6l A grammar-
based testing project is discussed in Sec. [l Related work is reviewed in Sec.
The paper is concluded in Sec. [0

2 Controllable Combinatorial Coverage in a Nutshell

The following illustrations will use a trivial expression language as the running
example, and it is assumed that we want to generate test-data for testing a
code generator or an interpreter. We further assume that we have access to a
test-oracle; so we only care about test-data generation at this point. Using the
grammar notation of Geno, the expression language is defined as follows:

Exp = BinExp (Exp , BOp, Exp) // Binary expressions
| UnaExp (UOp , Exp) // Unary expressions
| LitExp (Int) ; // Literals as expressions
BOp = "+" ; // A binary operator
UOp = "-" ; // A unary operator
Int = "1" ; // An integer literal

1 'We use grammar- vs. signature-biased terminology interchangeably. That is, we may
say nonterminal vs. sort, production vs. constructor, and word vs. term.

2 Geno reads as “Generate objects” hinting at the architectural property that test
data is materialized as objects that can be serialized in different ways by extra
functionality.

Controllable Combinatorial Coverage in Grammar-Based Testing

21

| Depth] Ga | < Ge | Ga_|
1 0 0 0 1
2 1 3 6 29
3 2 42 156 9.367
4 10 8.148 105.144 | 883.148.861
5 170 | 268.509.192 - —
6 33.490 - - -
7 — — — —

Fig.1. Number of terms with the given depth for different grammars
(‘- means outside the long integer range 2.147.483.647); G, is the initial grammar
from the beginning of this section; G comprises 3 integer literals (0, 1, 2), 2 unary
operators (‘+’, ‘=), and 4 binary operators (‘+’, ‘=, ‘x’, ¢/’); G further adds variables
as expression form along with three variable names (z, y, z); Gq further adds typical
expression forms of object-oriented languages such as C#

We can execute this grammar with Geno to generate all terms over the grammar
in the order of increasing depth. The following C# code applies Geno program-
matically to the above grammar (stored in a file "Expression.geno") complete
with a depth limit for the terms (cf. 4). The foreach loop iterates over the
generated test-data set such that the terms are simply printed.

using Microsoft.AsmL.Tools.Geno;

public class ExpressionGenerator {
public static void Main (string[] args) {
foreach(Term t in new Geno(Geno.Read("Expression.geno"), 4))
Console.WriteLine(t);

Let us review the combinatorial complexity of the grammar. We note that:

— there is no term of sort Exp with depth 1 (we start counting depth at 1);
there is 1 term of sort Exp with depth 2: LitExp(“1”);
— ... 2 terms ... with depth 3:
e UnaExp(“”,LitExp(“l”)),
e BinExp(LitExp(“l”),”+" ,LitExp(“1”));
— ... 10 terms ... with depth 4;
hence, there are 13 terms of sort Exp up to depth 4;
— the number of terms explodes for depth 6 — 7.

In Fig. [l the number of terms with increasing depth is shown. We also show
the varying numbers for slightly extended grammars. We note that all these
numbers are about expression terms alone, neglecting the context in which such
expressions may occur in a non-trivial language. Now suppose that we consider a

22 R. Lammel and W. Schulte

grammar which has nonterminals for programs, declarations and statements —
in addition to expressions that are used in statement contexts. With full com-
binatorial exploration, we cannot expect to reach expression contexts and to
explore them for some non-trivial depth.

Combinatorial coverage can be approzimated in a number of ways. One option
is to give up on combinatorial completeness for the argument domains when
constructing terms. In particular, one could choose to exhaust the argument
domains independently of each other. Such an approximation is justified when
the grammar-driven functionality under test indeed processes the corresponding
arguments independently, or when the test scenario is not concerned with the
dependencies between the arguments.

In reference to pairwise testing [I8] (or two-way testing), we use the term one-
way testing for testing argument domains independently of each other. Combi-
natorially exhaustive testing of arguments domains is then called all-way testing.
In the running example, we want to require one-way testing for the the construc-
tor of binary expressions. Here we assume that the system under test is a simple
code generator that performs independent traversal on the operands of BinExp.

A Geno grammar can be directly annotated with control parameters:

Exp = [Oneway] BinExp (Exp , BOp, Exp)
| UnaExp (UOp , Exp)
| LitExp (Int) ;

Alternatively, one may also collect control parameters in a separate test specifi-
cation that refers to an existing grammar. The above example is then encoded
as follows:

[Oneway] Exp/BinExp ;

Let us consider another opportunity for approximation. We may also restrict
the normal or recursive depth of terms on a specific argument position of a
specific constructor. By the latter we mean the number of nested applications
of recursive constructors. Such an approximation is justified when the grammar-
driven functionality under test performs only straightforward induction on the
argument position in question, or when the specific test scenario is not concerned
with that position. In the running example, we want to limit the recursive depth
of expressions used in the construction of unary expressions:

[MaxRecDepth = 1] Exp/UnaExp/2 ;

Here “2” refers to the 2nd parameter position of UnaExp. The helpful effect of the
Oneway and MaxRecDepth approximations is calculated in Fig. [2 We showcase
yet another form of control, for which purpose we need to slightly extend the
grammar for expressions. That is, we add a nonterminal, Args, for sequences of
arguments, just as in a method call.

Args = (Expx) ;

Controllable Combinatorial Coverage in Grammar-Based Testing 23

| Grammar|Depth = 1[Depth = 2[Depth = 3[Depth = 4|Depth = 5[Depth = 6]

Full 0 1 2 10 170 33490
Oneway 0 1 2 5 15 45
MaxRecDepth 0 1 1 3 21 651

Fig. 2. Impact of control mechanisms on size of test-data sets; 1st row: uncon-
strained combinatorial coverage (same as G, in Fig. [Il); 2nd row: one-way testing for
binary expressions — the resulting numbers reflect that we have eliminated the only
source of explosion for this trivial grammar; 3rd row: the recursive depth for operands
of unary operators is limited to 1 — explosion is slightly postponed

Now suppose that we face a test scenario such that we need to consider argument
sequences of different length, say of length 0, 1 and 2. We may want to further
constrain the sequences in an attempt to obtain a smaller data set or simply
because we want to honor certain invariants of the grammar-driven functionality
under test. Suppose that the order of arguments is irrelevant, and that duplicate
arguments are to be avoided. The following annotations express these different
approximation intents:

[MinLength = 0, MaxLength = 2, NoDuplicates, Unordered] Args ;
To enforce a finite data-set, we may impose a depth constraint on expressions:
[MaxDepth = 5] Exp ;

To summarize, we have illustrated several control mechanisms for combinatorial
coverage. These mechanisms require that the test engineer associates approxi-
mation intents with sorts, constructors or constructor arguments. The control
parameters can be injected into the actual grammar productions, and they can
also be given separately.

3 Definition of Combinatorial Coverage

For clarity, we will briefly define combinatorial coverage. (We will use folklore
term-algebraic terminology for some formal bits that follow.) Given is a signature
XY and a distinguished root sort, root (the latter in the sense of a start symbol
of a context-free grammar). As common, we use 7x (o) to denote the set of all
ground terms of sort o. A test-data set for X' is a subset of Tx(root). (We may
also consider test-data sets for sorts other than root, but a complete test datum
is of sort root.)
We say that T C Tx (o) achieves combinatorial coverage up to depth d for

o if:

TO{t|teTs(o),depth(t) <d}
Depth of terms is defined as follows; each term is of depth 1 at the least:

depth(c) =1

depth(c(t1,...,tn)) = maz({depth(t1),..., depth(ts)}) + 1

24 R. Lammel and W. Schulte

SPCLYD
Cly e

Fig.3. Sort and constructor graphs for an imperative programming lan-
guage; there are sorts for program blocks, declarations, statements, expressions, etc.
with all the usual constructors; the sort graph is clearly an abstraction of the construc-
tor graph.

It is clear that terms over a signature can be enumerated in increasing depth —
the basic algorithm, given below, does just that, in a certain way. More notation:
We use 7Z(o) to denote the set of all terms of sort o at a given depth d, and we
use T;d(o) to denote the set of all terms of sort o up to a given depth d — the
latter being the union over all 7} (o) for i = 1,...,d. By definition, ’T;d(o) is
the smallest set that achieves combinatorial coverage up to depth d for sort o.

4 Grammar Properties Related to Combinatorial
Coverage

We will discuss several grammar properties in this section. They are meant to
be useful for two purposes: (i) for the implementation of test-data generation;
(ii) as a feedback mechanism for the test engineer who needs to understand
the combinatorial complexity of a grammar in the process of modeling the test
scenario.

Example. The grammar of expressions in Sec. [2 did not admit any expression
terms of depth 1 since all constructors of sort Exp have one or more arguments;
the minimum depth for expression terms is 2. We call this the threshold of a sort.
Clearly, one should not attempt to specify a depth limit below the threshold.

All the properties of this section are conveniently described in terms of sort
and constructor graphs, which can be derived from any grammar; cf. Fig.
for an illustration. The nodes in the sort graph are the sorts, while an edge
from o to o/ means that ¢’ occurs as argument sort of some constructor of
sort 0. The constructor graph provides a more detailed view with two kinds of

Controllable Combinatorial Coverage in Grammar-Based Testing 25

nodes, namely constructors and sorts. There are edges from each sort to all of its
constructors. There is one edge for each argument of a constructor — from the
constructor node to the node of the argument’s sort. Our implementation, Geno,
compiles the input grammar into an internal representation containing the sort
and constructor graph. It uses this graph to direct the generation of objects.
Reachability of sorts from other sorts is extractable from the sort graph. Sort
o’ is reachable from o, denoted by psx(o,0’), if there is a path from o to o¢’.
In similarity to terminated context-free grammars, we require that all sorts are
reachable from root, except perhaps root itself. Based on reachability, we can
define recursiveness of sorts. A sort o is recursive, denoted by (o), if px(o,0).
(For a mutually recursive sort, there is a path through other sorts, thereby
uncovering a recursive clique. For a directly recursive sort, there is a self-edge.)
A stricter form of reachability is dominance. Sort o dominates o', denoted as
6x(0,0"), if all paths from root to ¢’ go through o. (root trivially dominates
every sort.) If ¢’ is reachable from o, then there is a distance between the sorts,
denoted as ex(0,0’), which is defined as the shortest path from o to o’.

Example. Suppose that the test engineer aims at combinatorial coverage of a
specific sort o up to a given depth d,. This implies that the root depth must
be at least d, + ex(root,c). In case of explosion, the test engineer may review
all dominators of o and limit the recursive depth for them so that the sort of
interest, o, is reached more cheaply.

Using the constructor graph, we can extract the threshold of a sort o, denoted
as 0x(0); it is the smallest 4 such that 74 (o) # 0. A more specific threshold can
be inquired for each constructor ¢ as denoted by 85 (c). The constructor graph
also facilitates shortest term completions both top-down and bottom-up.

5 The Basic Algorithm for Test-Data Generation

There are two overall options for test-data generation: top-down vs. bottom-up.
The top-down approach would lend itself to a recursive formulation as follows.
Given a depth and a sort, the recursive function for test-data generation con-
structs all terms of the given sort by applying all possible constructors to all
possible combinations of subterms of smaller depths; the latter are obtained
through recursive calls.

In Fig. @ we define an algorithm that adopts the bottom-up approach instead.
This formulation is only slightly more complex than a top-down recursive for-
mulation, while it offers one benefit. That is, an implementation (using reference
semantics for terms) can immediately use sharing for the constructed terms; each
term construction will be effectively a constant-time operation then (given that
the arities of constructors are bounded). It is true that the top-down approach
could employ some sort of memoization so that sharing is achieved, too. The
bottom-up approach also happens to provide useful feedback to the test engi-
neer. That is, the various sorts are inhabited in increasing depth; so “one can
observe explosion”, right when it happens.

26 R. Lammel and W. Schulte

Arguments
— Signature X' with root sort, root
— Depth d > 1 for combinatorial coverage
Result Test-data set T that covers X up to depth d
Variables _
— aty — terms of sort o at depth i (i.e., T5(0))
— kids — an array of sets of terms for building new terms
— len — current length of the kids array
Notation
— Y5 — the set of constructors from X that are of sort o
— args(c) — the sequence of argument sorts for the constructor ¢

— kids[1], kids[2], ... — array subscripting
— combine(c, kids, len) — build terms with constructor ¢ and subterms from
kids
Algorithm
fori=1,...,d do begin /] Term construction in increasing depth
for each ¢ in X do begin // Iterate over all sorts
at? = ;
if d —ex(root,o) > i then begin // Skip depth depending on distance from
T00t
if i > 6s(o) then begin // Skip depth if threshold has not been reached yet
for each ¢ in X5 do begin // Iterate over all constructors of sort
len ;= 0;
for each a in args(c) do begin // Iterate over all arguments of ¢
len :== len + 1;
kids[len] := atiU---Uati // Determine argument terms
end;
at’. := at’ U combine(c, kids, len); // Build and store terms
end;
end;
end;
end;
end;
T = atly,, U - U atd,; // Compose result

Fig. 4. Basic algorithm for bottom-up test-data generation

We denote the combinatorial construction of terms by combine(c, kids, len);
cf. Fig. @ Initially, this operation calculates the Cartesian product over the term
sets for the argument sorts of a constructor (i.e., over kids) — modulo a slight
detail. That is, a legal combination must involve at least one term of depth ¢ — 1
(as opposed to 1, ..., i —2); otherwise we were not constructing a term of depth
i. Controlled combinatorial coverage caters for options other than the Cartesian
product. Hence, combine(c, kids, len) is subject to redefinition by dependence
control; cf. Sec.

Controllable Combinatorial Coverage in Grammar-Based Testing 27
6 Control Mechanisms for Combinatorial Coverage

We will now define the mechanisms for controlling combinatorial coverage. The
basic algorithm, as presented above, will only need simple and local amendments
for each mechanism. The following mechanisms will be described:

— Depth control — limit depth of terms; not just for the root sort.

— Recursion control — limit nested applications of recursive constructors.

— Balance control — limit depth variation for argument terms.

— Dependence control — limit combinatorial exhaustion of argument domains.
Construction control — constrain and enrich term construction.

Several of these mechanisms were illustrated in Sec. 2] complete with additional
mechanisms for lists (cf. MinLength, MaxLength, Unordered, NoDuplicates).
The latter mechanisms will not be formalized here because they are just list-
specific instantiations of depth control and dependence control.

6.1 Depth Control

With d as the limit for the depth of terms of the root sort, the depth limits
for all the other sorts are implied. For any given o, the implied depth limit is
d — ex(root, o), and the actual depth may actually vary per occurrence of the
sort. This fact suggests a parameterization of the basic algorithm such that a
depth limit, d,, can be supplied explicitly for each sort o. The algorithm evolves
as follows:

Before refinement

if d—ex(root,o) > i then begin // Skip depth depending on distance from
T00%

After refinement

if d, > i then begin // Skip depth depending on sort-specific limit

All but the depth limit for the root sort are considered optional. (Per notation, d
becomes d,0¢.) One should notice that per-sort limits can only lower the actual
depth limit beyond the limit that is already implied by the root limit. More
generally, the depth limit for any sort is also constrained by its dominators.
Hence, we assume that the explicit depth limits respect the following sanity
check:

Vo,0' € ¥. 65(0,0') = dy» < dy —ex(0,0")

Any control mechanism that works per sort, works per argument position of
constructors, too. We can view the control-parameter value for a sort as the
default for the control parameters for all argument positions of the same sort.
Let us generalize control depth in this manner. Hence, we parameterize the
algorithm by depth limits, d. ;, where c is a constructor and j =1,..., arity(c).
The algorithm evolves as follows:

28 R. Lammel and W. Schulte

Before refinement

kids[len] == at:U---Uath // Determine argument terms

After refinement

kids[len] :== atluU---U at;nm(i_l’d””“”); // Determine argument terms
We note that some argument position of a given sort may exercise a given depth,
whereas others do not. This is the reason that the above refinement needs to be
precise about indexing sets of terms.

6.2 Recursion Control

Depth control allows us to assign low priority to sorts in a way that full com-
binatorial coverage is consistently relaxed for subtrees of these sorts. Recursion
control allows us to assign low property to intermediary sorts only until combi-
natorial exploration hits sorts of interests. To this end, the recursive depth of
terms of intermediary sorts can be limited. (For simplicity, we ignore the issues
of recursive cliques in the following definition.) The recursive depth of a term ¢
for a given sort o is denoted as rdepthy, ,(t) and defined as follows:

rdepth s, ,(c) =1if c € X, then 1 else 0
rdepth s ,(c(t1,...,tn)) = if c € Xy then 1+ s else is
where ts = max({rdepthy ,(t1),...,rdepths, ,(tn)})

Recursion control is enabled by further parameterization of the algorithm. The
limits for recursive depth amount to parameters r. ;, where c is a constructor
and j = 1,..., arity(c). An unspecified limit is seen as co. The algorithm evolves
as follows:

Before refinement

ids[len] := atlU---Uat

min(i—1,d¢ jen) .
a en’s /| Determine argument terms

After refinement

min(i—1,d
a

kids[len] := {t catlu---Uat cten) | rdepthz,a(t) < Telen };

The actual term traversals for the calculation of (recursive) depth can be avoided
in an efficient implementation by readily maintaining recursive depth and normal
depth as term properties along with term construction.

6.3 Balance Control

Depth and recursion control cannot be used in cases where terms of ever-
increasing depth are needed (without causing explosion). This scenario is enabled
by balance control, which allows us to limit the variation on the depth of argu-
ment terms. Normally, when we build terms of depth ¢, we consider argument
terms of depth 1,...,7 — 1. An extreme limitation would be to only consider

Controllable Combinatorial Coverage in Grammar-Based Testing 29

terms of depth 7 — 1. In this case, the constructed terms were balanced — hence,
the name: balance control. In this case, it is also easy to see that the number
of terms would only grow by a constant factor. Balance control covers the full

spectrum of options — with 7 — 1 being one extreme and 1,...,7 — 1 the other.
We further parameterize the algorithm by limits, b.; > 1, where c is a con-
structor and j = 1,..., arity(c). Again, this parameter is trivially put to work

in the algorithm by adapting the step for argument terms (details omitted). An
unspecified limit is seen as oo.

6.4 Dependence Control

We will now explore options for controlling combinations of arguments for form-
ing new terms; recall the discussion of all-way vs. one-way coverage in Sec.
The main idea is to specify whether arguments should be varied dependently or
independently.

One-Way Coverage. The completely independent exhaustion of argument do-
mains is facilitated by a dedicated coverage criterion, which requires that each
argument term appears at least once in a datum for the constructor in question;
we say that T'C 7x (o) achieves one-way coverage of c: 01 X -+ X 0, > 0 € X
relative to Ty C Tx(01), ..., T € Tx(oy,) if:

Vi=1,....n.VteT. Ic(tr,....tn) €T t; =1

We recall that one-way coverage is justified if dependencies between argument
positions are not present in the system under test, or they are negligible in the
specific scenario. If necessary, we can even further relax one-way coverage such
that exhaustion of candidate sets is not required for specific argument positions.

Multi-way Coverage. In between all-way and one-way coverage, there is multi-
way coverage reminiscent of multi-way testing (see, e.g., [9]). Classic multi-way
testing is intended for testing functionality that involves several arguments. For
example, two-way testing (or pair-wise testing) assumes that only pair-wise com-
binations of arguments are to be explored as opposed to all combinations. The
justification for limiting combinations in this manner is that functionality tends
to branch on the basis of binary conditions that refer to two arguments. In
grammar-based testing, we can adopt this justification by relating to the func-
tionality that handles a given constructor by pattern matching or otherwise.
For example, some functionality on terms of the form f(¢1, {2, t3) might perform
parallel traversal on t; and ts without depending on t¢3. Then, it is mandatory
to exhaust combinations for ¢; and t5, while it is acceptable to exhaust t3 in-
dependently. Hence, we face two-way coverage for ¢1, to and one-way coverage
for t3.

We further parameterize the algorithm by o. for each constructor c¢. The para-
meters affect the workings of combine(c, kids, len). In turns out that there is a
fundamental way of specifying combinations. Suppose, c¢ is of arity n. A valid

30 R. Lammel and W. Schulte

specification o, must be a subset of P({1,...,n}). (Here, P(-) is the power-set
constructor.) Each element in o. enumerates indexes of arguments for which
combinations need to be considered. For instance, the aforementioned example
of f(t1,t2,t3) with two-way coverage for ¢; and to vs. one-way coverage for t3
would be specified as {{1,2}, {3}}. Here are representative specifications for the
general case with n arguments, complete with their intended meanings:

. {{1,...,n}}: all-way coverage.

. {{1},...,{n}}: one-way coverage with exhaustion of all components.

. 0: no exhaustion of any argument required.

{12y, {1, n}{2,3), ., {2,n}, ..., {n — 1,n}}: two-way coverage.

=W N =

This scheme makes sure that all forms of multi-way coverage can be specified.
Also, by leaving out certain components in o, they will be ignored for the
combinatorial exploration. The default for an unspecified parameter o. is the
full Cartesian product. We require minimality of the specifications o, such that
Va,y € o.. © ¢ y. (We can remove z because y provides a stronger require-
ment for combination.) Options (1.)—(3.) are readily implemented. Computing
minimum sets for pair-wise coverage (i.e., option (4.)), or more generally —
multi-way coverage — is expensive, but one can employ efficient strategies for
near-to-minimum test sets (see, e.g., [26]).

6.5 Construction Control

A general control mechanism is obtained by allowing the test engineer to cus-
tomize term construction through conditions and computations. This mechanism
provides expressiveness that is reminiscent of attribute grammars [I5]. Thereby,
we are able to semantically constrain test-data generation and to complete test
data into test cases such that additional data is computed by a test oracle and
attached to the constructed terms.

We require that conditions and computations are evaluated during bottom-
up data generation as opposed to an extra phase. Hence, ‘invalid’ terms are
eliminated early on — before they engage in new combinations and thereby
cause explosion. The early evaluation of computations allows conditions to take
advantage of the extra attributes. As an aside, we mention that some of the
previously described control mechanisms can be encoded through construction
control. For instance, we could use computations to actually compute depths as
attributes to be attached to terms, while term construction would be guarded by
a condition that enforced the depth limit for all sorts and constructor arguments.
A native implementation of depth control is simply more efficient.

We associate conditions and computations to constructors. Given a condition
(say, a predicate) p. for a constructor ¢, both of arity n, term construction
c(x1,...,xy,) is guarded by p.(z1,...,2,). Given a computation (say, a function)
fe for a constructor ¢ : o1 X -+ X 0, — 0¢ is of the following type:

Jei(o1 X Agy) X -+ X (0 X Ap,) — Asp

Controllable Combinatorial Coverage in Grammar-Based Testing 31

Here, A, is a domain that describes the attribute type for terms of sort o. The
function observes argument terms and attributes, and computes an attribute
value for the newly constructed term. This means that we assume purely syn-
thesized attribute grammars because immediate completion of computations and
conditions is thereby enabled. Hence, no expensive closures are constructed, and
both conditions and computation may effectively narrow down the combinator-
ial search space. For brevity, we do not illustrate attributes, but here are some
typical examples:

— Expression types in the sense of static typing.
— The evaluation results with regard to some dynamic semantics.
— Complexity measures that are taken into account for combination.

There is one more refinement that increases generality without causing overhead.
That is, we may want to customize term construction such that the proposed
candidate is replaced by a different term, or by several terms, or it is rejected
altogether. This provides us with the following generalized type of a conditional
computation which returns a set of attributed terms:

fei(o1 X Ag)) X -+ X (o X Ag,) — Plog X Agy)

Geno — our implementation of controllable combinatorial coverage — also pro-
vides another form of computations: one may code extra passes over the gener-
ated object structures to be part of the serialization process of the in-memory
test data to actual test data. Both kinds of computations (attribute grammar-
like and serialization-time) are expressed as functions in a .NET language.

7 Testing an Object Serialization Framework

The described grammar-based testing approach has been applied in the mean
time to a number of problems, in particular, to differential testing, stress testing
and conformance testing of language implementations and virtual processors (vir-
tual machines). Geno has been used to generate test-data from problem-specific
grammars for Tosca [25], XPath [28], XML Schema [29], the Microsoft Windows
Card runtime environment [11], the Web Service Policy Framework [22], and oth-
ers. Measurements for some applications of Geno are shown in Fig.

We will now discuss one grammar-based testing project in more detail. The
project is concerned with testing a framework for object serialization, i.e., a
framework that supports conversion of in-memory object instances into a form
that can be readily transported over the network or stored persistently so that
these instances can be de-serialized at some different location in a distributed
system, or at some later point in time. The specific technology under test is
‘data contracts’ as part of Microsoft’s WCF. This framework allows one to map
classes (CLR types) to XML schemas and to serialize object instances as XML.
Data contracts also support some sort of loose coupling.

The overall testing problem is to validate the proper declaration of data con-
tracts by CLR types, the proper mapping of CLR types (with valid data con-
tracts) to XML schemas, the proper serialization and de-serialization of object

32 R. Lammel and W. Schulte

Status Grammar Depth|Time| Terms| Memory
Uncontrolled| WindowsCard 5..] 0.05 7.657| 1.489.572

WS Policy 1.57| 313.041| 41.121.608
Tosca 0.08| 27.909| 2.737.204
XPath 0.09| 22.986| 2.218.004

0.14| 42.210| 5.669.616
22.33|2.576.177|365.881.216

Controlled |Tosca
Data Contract

S 0[N &=~ Ut

Fig. 5. Measuring some applications of Geno. Runtime is in seconds, generation
time on a Compaq OPTIPLEX GX280, Pentium 4, 3.2 Ghz, 2 Gigabyte of memory.
Memory consumption is in bytes. Column ‘Terms’ lists the number of different terms
for the root sort. The ‘uncontrolled’ measurements combinatorially exhaust the gram-
mar, except that the length of lists must be in the range 0,1,2. The maximum depth
before proper explosion (‘out of memory’) is shown. In the WindowsCard case, the
test set is actual finite; so we write “5..” to mean that test-data generation has con-
verged for depth 5. The depth for Tosca is insufficient to explore expression forms in all
possible contexts. The depth for XPath indicates that control is indispensable for gen-
erating non-trivial selector expressions. The ‘controlled’ measurements take advantage
of problem-specific grammar annotations. In the case of Tosca, the corresponding test-
data set achieves branch-coverage of a reference implementation. In the case of Data
Contract, all essential variation points of the serialization framework are exercised for
up to three classes with up to three fields each, complete with the necessary attributes
and interface implementations.

instances including round-tripping scenarios. (There are also numerous require-
ments regarding the expected behavior in case of invalid schemas or CLR types.)
Essentially, Geno is used in this project to generate classes like the following:

[DataContract]
public class Car : IUnknownSerializationData {

[DataMember]
public string Model;

[DataMember]
public string Maker;

[DataMember (Name="HP", VersionAdded=2, IsOptional=true)]
public int Horsepower;

public virtual UnknownSerializationData UnknownData {
get { ... ¥} set { ... } // omitted
}
}

In these classes, specific custom attributes are used to inform the serialization
framework. The DataContract attribute expresses that the class can be se-
rialized. Likewise, fields and properties are tagged for serialization using the

Controllable Combinatorial Coverage in Grammar-Based Testing 33

DataMember attribute. There is a default mapping from CLR names to XML
names, but the name mapping can be customized; see the attribute Name="HP".
There are several other attributes and features related to versioning and loose
coupling; cf. the implementation of IUnknownSerializationData which sup-
ports round-tripping of XML data that is not understood by a given CLR type.

The project delivered 7 Geno grammars for different validation aspects and
different feature sets. The baseline grammar, from which all other grammars
are derived by slight extensions, factoring and annotation has 21 nontermi-
nals and 34 productions (“alternatives”). Eventually, these grammars generated
about 200.000 well justified test cases. As shown in Fig. B Geno scales well
for grammars of this size. We have also tried to use state-of-the-art test-data
generation techniques such as Korat [5], AsmL-Test tool [10] or Unit Meis-
ter [27]. However these techniques were not able to cope with the complexity
of the serialization problem. (We continue this discussion in the related work
section.) The combinatorial search space is due to class hierarchies with multi-
ple classes, classes with multiple fields, various options for custom attributes,
different primitive types, potentially relevant interface implementations, etc.
The Geno-generated test cases uncovered around 25% of all filed bugs for the
technology.

8 Related Work

Coverage Criteria for Grammars. Controlled combinatorial coverage is a cov-
erage criterion for grammars, which generalizes on other such criteria. Purdom
devised a by-now folklore algorithm to generate a small set of short words from
a context-free grammar where each production of the grammar is used in the
derivation of at least one word [21], giving rise to rule coverage as a cover-
age criterion. The first author (Ldmmel) generalized rule coverage such that
all the different occurrences of a nonterminal are distinguished [I6] — denoted
as context-dependent rule coverage (and context-dependent branch coverage for
EBNF-like expressiveness). Harm and Lammel defined a simple, formal frame-
work based on regular path expressions on derivation trees that can express
various grammar-based coverage criteria including rule coverage and context-
dependent rule coverage [I7]. The same authors also designed a coverage notion
for attribute-grammar-like specifications, two-dimensional approximation cover-
age, using recursive depth in the definition of coverage [I2]. Controlled combi-
natorial coverage properly generalizes the aforementioned coverage criteria by
integrating depth of derivation, recursive depth of derivation, the dichotomy
one-way, two-way, multi-way, all-way as well as the point-wise specification of
these controls per sort, per constructor or even per constructor argument.

Grammar-Based Testing. Maurer designed a general grammar-based test-data
generator: DGL [19]. The grammar notation is presumably the most advanced
in the literature. Productions are associated with weights, but there also fea-
tures for actions, systematic enumeration, ordered selection of alternatives, and

34 R. Lammel and W. Schulte

others. McKeeman described differential testing for compilers and potentially
other grammar-driven functionality [20], while test-data generation is accom-
plished by a ‘stochastic grammar’. (Differential testing presumes the availability
of multiple implementations whose behavior on a test datum can be compared
such that a discrepancy reveals a problem with at least one of the implementa-
tions.) Slutz used a similar stochastic approach for differential testing of SQL
implementations and databases, even though the grammar knowledge is con-
cealed in the actual generator component [24]. Sirer and Bershad tested Java
Virtual machines [23] using ‘production grammars’ that involve weights as well
as guards and actions in order to control the generation process. The weights
are actually separated from the grammar so that the grammar may be used in
different configurations. This project did not use differential testing but more of
a model-based approach. That is, an executable specification of the meaning of
the generated JVM byte-code sequences served as an oracle for testing JVM im-
plementations. Claessen and Hughes have delivered a somewhat grammar-based
testing approach for Haskell [§], where programmers are encouraged to annotate
their functions with properties which are then checked by randomized test data.
The approach comprises techniques for the provision of test-data generators for
Haskell types including algebraic data types (‘signatures’). Again, constructors
are associated with probabilistic weights.

Testing Hypotheses. The seminal work on testing hypotheses by Gaudel et
al. [42] enables rigorous reasoning about the completeness of test-data sets.
Our control mechanisms are well in line with this work. Most importantly, depth
control corresponds to a form of a reqularity hypothesis, which concerns the com-
plexity of data sets. That is, suppose we have a model m and an implementa-
tion 7, both given as functions of the same type over the same signature, be it
m, i : T (root) — r, where the result type r admits intensional equality. We say
that i correctly implements m under the regularity hypothesis for sort root and
depth d if we assume that the following implication holds:

(Vt € Ti(root) U---Td(root). m(t) = i(t)) = (Vt € Tx(root). m(t) =i(t))

Hence, any use of a control mechanism for depth or recursive depth for either
sorts or constructors or constructors arguments can be viewed as an expression
of a regularity hypothesis. However, our approach does not presume that the
complexity measure for regularity is a property of the grammar of even the
sort; thereby we are able to express very fine-grained regularity hypotheses, as
necessary for practical problems. Dependence control does not map to regularity
hypotheses; instead it maps to independence hypotheses as common in classic
multi-way testing. So our approach integrates common kinds of hypotheses for
use in automated grammar-based testing.

Symbolic and Monitored Exrecution. Our approach does not leverage any sort
of existing model or reference implementation for test-data generation. By con-
trast, approaches based on symbolic execution or execution monitoring support

Controllable Combinatorial Coverage in Grammar-Based Testing 35

the derivation of test data from models or implementations. For instance, the
Korat framework for Java [5] is capable of generating systematically all non-
isomorphic test cases for the arguments of the method under test — given a
bound on the size of the input. To this end, Korat uses an advanced backtrack-
ing algorithm that monitors the execution of predicates for class invariants, and
makes various efforts to prune large portions of the search space. This technique
is also embodied in the AsmL-Test tool [I0]. Even more advanced approaches
use symbolic execution and constraint solving for the purpose of test-data gen-
eration [14127]. Approaches for execution monitoring and symbolic execution
can be very efficient when small intricate data structures need to be generated.
An archetypal example of a system under test is a library for AVL trees. These
approaches commit to a ‘small scope hypothesis’ [IL[I3], assuming that a high
portion of bugs can be found by testing the program for all test inputs within a
small scope. (In an OO language, a small scope corresponds to a small number
of conglomerating objects.) Hence, these techniques do not scale for the ‘large
or huge scopes’ needed for testing grammar-driven functionality, as discussed in

Sec. [1

9 Concluding Remarks

Summary and Results. Testing language implementations, virtual machines,
and other grammar-driven functionality is a complexity challenge. For instance,
highly optimized implementations of XPath (the selector language for XML)
execute different branches of code depending on selector patterns, the degree of
recursion, the use of the reverse axis and the state of the cache. In this con-
text, it is important to automate testing and to enable the exploration of test
data along non-trivial complexity metrics such as deep grammar patterns and
locally exhaustive combinations. We have described an approach to test-data
generation for grammar-based testing of grammar-driven functionality. This ap-
proach has been implemented in a tool, Geno, and validated in software de-
velopment projects. The distinguished characteristics of the approach is that
test data is generated in a combinatorially exhaustive manner modulo approx-
imations defined by the test engineer. It is indispensable that approximations
can be expressed: test engineers can generate test cases that focus on partic-
ular problematic areas in language implementations like capacity tests, or the
interplay between loading, security permissions and accessibility. We contend
that the approach is very powerful, and we have found that test-data genera-
tion is unprecedentedly efficient because of the possibility of a backtracking-free
bottom-up algorithm that cheaply allows for maximum sharing and semantic
constraint checking. Of course, test-data generation is only one ingredient of
a reasonable test strategy (others are: grammar development, test oracle, test-
run automation), but doing test-data generation systematically and efficiently is
beneficial.

Whether or Not to Randomize. Randomized test data generation is well estab-
lished [3l[7] in testing, in general, and in grammar-based testing, in particular.

36 R. Lammel and W. Schulte

The underlying assumption is that the resulting test sets — if large enough —
will include all ‘interesting cases’. In grammar-based testing, randomized test
data generation is indeed prevalent, but we fail to see that this approach would
be as clear as ours when it comes to reasoning about testing hypotheses [4,[2],
which are crucial in determining appropriateness of test sets. We contend that the
weights, which are typically associated with grammar productions, end up fulfill-
ing two blurred roles: (i) they specify the relative frequency of an alternative and
(ii) they control termination of recursive deepening. Instead, controlled combi-
natorial coverage appeals to hypotheses for regularity and subtree independence
by providing designated control mechanisms. Users of Geno have expressed that
they would like to leverage weights as an additional control mechanism, very
much in the sense of (i), and we plan to provide this mechanism in the next
version. In fact, it is a trivial extension as opposed to the dual marriage: adding
systematic test-data generation to a randomized setup is complicated [19, p.54]
implementation-wise, and its meaning is not clear either. In our case, weights
essentially define filters on subtree combinations.

Future Work. Geno and other tools for grammar-based testing are batch-
oriented: the test engineer devises a grammar and test-data generation is ini-
tiated in the hope that it terminates (normally). The actual generation may
provide little feedback to the test engineer; refinement of generator grammars
requires skills and is tedious. We envisage that the expression of testing hypothe-
ses could be done more interactively. To help in this process, a generator should
provide feedback such that it reports (say, visualizes) thresholds, distances and
explosive cliques in the grammar. (Some ideas have been explored in an exper-
imental extension of Geno [30].) A testing framework could also help in taking
apart initial test scenarios and then managing the identified smaller scenarios.

Another important area for improvement is the handling of problem-specific
identifiers in test-data generation. (Think of variable names in an imperative
language.) In fact, this issue very much challenges the generation of statically
correct test data. There exist pragmatic techniques in the literature on com-
piler testing and grammar-based testing; see, e.g., [B[I912]. Geno users are
currently advised to handle identifiers during test-data serialization in ad-hoc
manner. That is, a generator grammar only uses placeholders. Actual identifier
generation and the establishment of use-def relationships must be coded in extra
strategies that are part of the serialization process. We contend that the over-
all topic of general, declarative and efficient identifier handling deserves further
research. For some time in the past, we were hoping that symbolic execution of
attribute grammars, as in [12], potentially involving constraint solving, would
be a solution to that problem, but its scalability is not acceptable as far as we
know of.

Acknowledgments. We are grateful for contributions by Vadim Zaytsev and
Joe Zhou. We also acknowledge discussions with Ed Brinksma at an earlier
stage of this research. The TestCom 2006 referees have made several helpful
proposals.

Controllable Combinatorial Coverage in Grammar-Based Testing 37

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Andoni, D. Daniliuc, S. Khurshid, , and D. Marinov. Evaluating the
“Small Scope Hypothesis”. Unpublished; Available at http://sdg.lcs.mit.edu/
publications.html) Sept. 2002.

. G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal specifi-

cations: a theory and a tool. Software Engineering Journal, 6(6):387-405, 1991.
D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test
cases. IBM Systems Journal, 22(3):229-245, 1983.

L. Bouge, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test sets generation from
algebraic specifications using logic programming. Journal of Systems and Software,
6(4):343-360, 1986.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java
predicates. In Proc. International Symposium on Software testing and analysis,
pages 123-133. ACM Press, 2002.

C. Burgess. The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability, 4(2):81-99, June 1994.

C. J. Burgess and M. Saidi. The automatic generation of test cases for optimizing
Fortran compilers. Information and Software Technology, 38(2):111-119, Feb. 1996.
K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pages 268279, New York, NY,
USA, 2000. ACM Press.

D. Cohen, S. Dalal, M. Fredman, and G. Patton. The AETG system: An ap-
proach to testing based on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437-443, July 1997.

Foundations of Software Engineering, Microsoft Research. AsmL — Abstract State
Machine Language, 2005. http://research.microsoft.com/fse/AsmL/.

Y. Gurevich and C. Wallace. Specification and Verification of the Windows Card
Runtime Environment Using Abstract State Machines. Technical report, Microsoft
Research, Feb. 1999. MSR-TR-99-07.

J. Harm and R. Ldmmel. Two-dimensional Approximation Coverage. Informatica,
24(3):355-369, 2000.

D. Jackson and C. A. Damon. Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector. IEEE Transactions on Software Engi-
neering, 22(7):484-495, 1996.

J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, July 1976.

D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127-145, 1968. Corrections in 5:95-96, 1971.

R. Lammel. Grammar Testing. In H. Hussmann, editor, Proc. of Fundamental
Approaches to Software Engineering (FASE) 2001, volume 2029 of LNCS, pages
201-216. Springer-Verlag, 2001.

R. Lammel and J. Harm. Test case characterisation by regular path expressions.
In E. Brinksma and J. Tretmans, editors, Proc. Formal Approaches to Testing of
Software (FATES’01), Notes Series NS-01-4, pages 109-124. BRICS, Aug. 2001.
Y. Lei and K.-C. Tai. In-parameter-order: A test generation strategy for pairwise
testing. In HASE, pages 254-261. IEEE Computer Society, 1998.

P. Maurer. Generating test data with enhanced context-free grammars. [IEEE
Software, 7(4):50-56, 1990.

38

20

21.
22.

23.

24.

25.

26.

27.

28.

29.
30.

R. Lammel and W. Schulte

W. McKeeman. Differential testing for software. Digital Technical Journal of
Digital Equipment Corporation, 10(1):100-107, 1998.

P. Purdom. A sentence generator for testing parsers. BIT, 12(3):366-375, 1972.
J. Schlimmer et al. Web Services Policy Framework, Sept. 2004. Avail-
able at http://www-128.ibm.com/developerworks/library/specification/ws-
polfram/.

E. G. Sirer and B. N. Bershad. Using production grammars in software testing. In
USENIX, editor, Proceedings of the 2nd Conference on Domain-Specific Languages
(DSL °99), October 3-5, 1999, Austin, Texas, USA, pages 1-13, Berkeley, CA,
USA, 1999. USENIX.

D. Slutz. Massive Stochastic Testing for SQL. Technical Report MSR-TR~98-21,
Microsoft Research, Redmond, 1998. A shorter form of the paper appeared in the
Proc. of the 24th VLDB Conference, New York, USA, 1998.

S. Stepney. High Integrity Compilation: A Case Study. Prentice Hall, 1993.

K. Tai and Y. Lei. A Test Generation Strategy for Pairwise Testing. IEEE Trans-
actions on Software Engineering, 28(1):109-111, 2002.

N. Tillmann, W. Schulte, and W. Grieskamp. Parameterized Unit Tests. Technical
report, Microsoft Research, 2005. MSR-TR-2005-64; also appeared in FSE/ESEC
2005.

W3C. XML Path Language (XPath) Version 1.0, Nov. 1999. http://www.w3.org/
TR/xpath.

W3C. XML Schema, 2000-2003. http://www.w3.org/XML/Schemal

V. V. Zaytsev. Combinatorial test set generation: Concepts, implementation, case
study. Master’s thesis, Universiteit Twente, Enschede, The Netherlands, June 2004.

A Logic for Assessing Sets of Heterogeneous
Testing Hypotheses*

Ismael Rodriguez, Mercedes G. Merayo, and Manuel Nufiez

Dept. Sistemas Informéticos y Programacion,
Universidad Complutense de Madrid, 28040 Madrid, Spain
isrodrig@sip.ucm.es, mgmerayo@fdi.ucm.es, mn@sip.ucm.es

Abstract. To ensure the conformance of an implementation under test
(IUT) with respect to a specification requires, in general, the application
of an infinite number of tests. In order to use finite test suites, most
testing methodologies add some feasible hypotheses about the behavior
of the IUT. Since these methodologies are designed for considering a
fix set of hypotheses, they usually do not have the capability of dealing
with other scenarios where the set of assumed hypotheses varies. We
propose a logic to infer whether a set of observations (i.e., results of test
applications) allows to claim that the IUT conforms to the specification
if a specific set of hypotheses (taken from a repertory) is assumed.

1 Introduction

The time a tester can spend testing an IUT with respect to a specification
is finite, whereas IUTs define, in general, arbitrarily long behaviors. Hence, it
takes infinite time to assess the validity of all these behaviors with respect to
a specification. In order to overcome this problem, testers add some reasonable
assumptions about the implementation regarding the knowledge about its con-
struction. For example, the tester can suppose that the implementation can be
represented by means of a deterministic finite state machine, that it has at most
n states, etc. A lot of testing methodologies have been proposed which, for a
specific set of initial hypotheses, guarantee that a test suite extracted from the
specification is correct and complete to check the conformance of the IUT with
respect to the specification (e.g. [2,8,15,12]).

However, a framework of hypotheses established in advance is very strict and
limits the applicability of a specific testing methodology. For example, in a con-
crete environment, the tester could assume that the behavior in four specific
states of the implementation is deterministic and that two of them represent
equivalent states of the implementation. The tester could also make more com-
plex assumptions such as “non-deterministic states of the IUT cannot show out-
puts that the machine did not show once the state has been tested 100 times.” In

* Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,
the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 39-[54 2006.
© IFIP International Federation for Information Processing 2006

40 I. Rodriguez, M.G. Merayo, and M. Nifiez

a different scenario the tester could not believe this but think that “if she ob-
serves two sequences of length 200 and all their inputs and outputs coincide then
they actually traverse the same IUT states.” If the tester assumes the validity
of a set of hypotheses to test a given IUT, then a specific test suite would be
appropriate, while by using other hypotheses, the test suite could not be so.

It would be desirable to provide the tester with a tool to let her analyze the
impact of considering a given set of hypotheses in the testing process, as well as
the consequences of adding/eliminating hypotheses from the set. The goal of this
methodology would be to ascertain if a given finite set of observations extracted
by a test suite is complete in the case that the considered hypotheses hold, that
is, we assess whether obtaining these observations from the IUT implies that
the TUT conforms to the specification if the hypotheses hold. In this paper we
propose a logic called HOT L (Hypotheses and Observations Testing Logic). Its
aim is to assess whether a given set of observations implies the correctness of
the IUT under the assumption of a given set of hypotheses. In order to allow the
tester to compose sets of hypotheses, the logic provides a repertory of hypotheses,
including some of the ones appearing in known testing methodologies.

Our logic allows to perform at least three different tasks. First, a tester can
use it to customize the testing process to her specific environment. By using the
logic, she can infer not only the consequences of adding a new test, but also the
consequences of adding a new hypothesis. In this way, the tester has control over
a wide range of testing variables. In particular, the construction of test suites to
extract observations and the definition of hypotheses can influence each other.
This provides a dynamic testing scenario where, depending on the specification
and the tester’s knowledge of the IUT, different sets of tests and hypotheses
can be considered. Second, such logic allows the tester to evaluate the quality
of a test suite to discover errors in an implementation: If the observations that
could be extracted by the test suite require (for their completeness) a set of
hypotheses that is harder to be accepted than those required by another suite,
then the latter suite should be preferred. This is because this suite could allow
the tester to reach diagnostics in a less restrictive environment. Finally, our logic
provides a conceptual bridge between different testing approaches. In particular,
we may use it to represent the (fix) sets of hypotheses considered by different
approaches. Then, by considering the observations each test suite could obtain,
a test suite that is complete in an approach could be turned into a complete
suite in another. Similarly, we can analyze how the size of test suites is affected
by hypotheses. Moreover, we can use the logic to create intermediate approaches
where sets of hypotheses are appropriately mixed.

Let us concentrate on how our logic is applied to perform the first of the
previous tasks, that is, serving as core of a (dynamic) testing methodology. The
methodology is applied in two phases. The first phase consists in the classical
application of tests to the IUT. By using any of the available methods in the
literature, a test suite will be derived from the specification. If the application
of this test suite finds an unexpected result then the testing process stops: The
IUT is not conforming. However, if such a wrong behavior is not detected then

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 41

the tester cannot be sure that the IUT is correct. In this case, the second phase
begins, that is, the tester applies the logic described in this paper to infer whether
passing these tests implies that the IUT is correct if a given set of hypotheses is
assumed. If it does then the IUT is assumed to be correct; otherwise, the tester
may be interested in either applying more tests or in assuming more hypotheses
(in the latter case, on the cost of feasibility) and then applying the logic again
until the correctness of the IUT is effectively granted. In order to appropriately
apply the logic, the behavior of the IUT observed during the application of tests
must be properly represented. For each application of a test to the IUT, we
construct an observation, that is, a sequence of inputs and outputs denoting
the test and the response produced by the IUT, respectively. Both observations
and the assumed hypotheses will be represented by appropriate predicates of the
logic. Then, the deduction rules of the logic will allow to infer whether we can
claim that the TUT conforms to the specification (actually, the logic will check
whether all the implementations that could produce these observations and fulfill
the requirements of the hypotheses conform to the specification).

We distinguish two kinds of hypotheses in the predefined repertory: Hypothe-
ses concerning specific parts (states) of the IUT and hypotheses concerning the
whole IUT. In order to unambiguously denote the states regarded by the former,
they will be attached to the corresponding observations that reached these states.
For example, if the IUT was showing the sequence of outputs o1, 09,...,0, as
answer to the sequence of inputs i1, 4o, . .., 7, provided by the tester, the tester
may think that the state reached after performing i1 /01 is deterministic or that
the state reached after performing the sequence i1/01,i2/02 is the same as the
one reached after performing the whole sequence i1/01,i2/09,...,in/0n. Let us
remark that these are hypotheses that the tester is assuming. Thus, she might be
wrong and reach a wrong conclusion. However, this is similar to the case when
the tester assumes that the implementation is deterministic or that it has at
most n states and, in reality, this is not the case. In addition to using hypothe-
ses associated to observations, the tester can also consider global hypotheses
that concern the whole IUT. These are assumptions such as the ones that we
mentioned before: Assuming that the IUT is deterministic, that is has at most n
states, that is has a unique initial state, etc. In order to denote the assumption
of this kind of hypotheses, specific logic predicates will be used.

Regarding related work, there are several papers where testing hypotheses
are used to perform the testing process. For example, we may consider that the
implementation is deterministic (e.g. [I3]), that we are testing the coupling of
several components by assuming that all of them are correct or that at most
one of them is incorrect (e.g. [9]), etc. Our methodology provides a generaliza-
tion of these frameworks because it allows to decide the specific hypotheses we
will consider. In this line, we can compare the suitability of different test suites
or test criteria in terms of the hypotheses that are considered (e.g. [I0]); some
formal relations to compare them have been defined [6]. Since our logic provides
a mechanism to effectively compare sets of hypotheses, it may help to compute
relations defined in these terms. Even though we work with rules and properties,

42 I. Rodriguez, M.G. Merayo, and M. Nifiez

our work is not related to model checking [4] since we do not check the validity of
properties: We assume that they hold and we infer results about the conformity
of the IUT by using this assumption. In the same way, this work is not related to
some recent work on passive testing where the validity of a set of properties (ex-
pressed by means of invariants) is checked by passively observing the execution
of the system (e.g. [7LB]).

The rest of the paper is organized as follows. In Section 2 we present some basic
concepts related to the formalisms that we will use. In Section 3 we introduce
the predicates of HO7T L, while in Section 4 we present the deduction rules.
Finally, in Section 5 we present our conclusions and some directions for further
research. Due to the lack of space, some auxiliary definitions and rules have not
been included in this paper. All of them can be found in [I4].

2 Formal Model

In this section we introduce some basic concepts that will be used along the
paper to formally present our methodology. Specifically, we introduce the notion
of finite state machine and a conformance relation.

Definition 1. A finite state machine, in short FSM, is a tuple of five elements
M = (S, inputs, outputs,Z,7) where S is the set of states, inputs is the set
of input actions, outputs is the set of output actions, T C S is the set of initial
states, and T is the set of transitions. A transition is a tuple (s,i,0,8") € T
where s,s’ € S are the initial and final states, respectively, 7 € inputs is the

input that activates the transition, and o € outputs is the output produced in

response. A transition (s,,0,s") € 7 is also denoted by s _He, s

We say that (i1/01,...,in/0n) is a trace of M if there exists s; € Z and

i1/01 12/02 [/0
82,...,8,01 € S such that s; 89,80 ———— 83,...,8; ——— Sp11

are transitions of 7. The set of all traces of M is denoted by traces(M).

Let us consider s,s’ € S. We say that s’ is reachable from s, denoted by

isReachable(M, s, s), if either there exist u, 4,0 such that s e, u € 7T and

isReachable(M,u,s’) holds, or s = s’. The set reachableStates(M,s) con-
tains all s’ € S such that isReachable(M,s,s’).
Let s € S and i € inputs. outs(M, s,?) denotes the set of outputs that can

be produced in s in response to 4, that is, the set {03 s : s BULI T}.
We say that s € S is deterministic, denoted by isDet(M, s), if there do not
i/o i/o"

exist s sy s s” € T such that o' # 0" or s’ # s". O

In the previous definition, let us note that machines are allowed to be non-
deterministic. In order to fix the kind of formalisms our logic will deal with, the
following hypothesis will be imposed: Both implementations and specifications
can be represented by appropriate FSMs. As a consequence, we have that when
an input is offered to an IUT it always produces an observable response (that is,
quiescent states not producing any output are not considered). Next we present

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 43

the basic conformance relation that will be considered in our framework. This
relation is similar to ioco [15] but in the framework of FSMs. This relation has
been used in [II] as a preliminary step to define timed conformance relations.
Intuitively, an IUT is conforming if it does not invent behaviors for those traces

that can be executed by the specification. We will assume that the TUT is input-

enabled, that is, for all state s and input 7 there exist o, s’ such that s i, s’

belongs to the set of transitions of the IUT. During the rest of the paper, and
when no confusion arises, we will assume that the FSM representing a generic

specification is given by spec = (Sspec, inputs,,,., outputs,,.., Lspec, Lspec)-

Definition 2. Let S and I be two FSMs. We say that I conforms to S, denoted
by I conf S, if for all py = (i1/01,...,in—1/0n—1,in/0n) € traces(S), with
n > 1, we have po = (i1/01,...,in-1/0n—1,in/0),) € traces(I) implies ps €
traces(S). O

Ezample 1. A simple example, adapted from [5], will be used along the paper to
illustrate our framework. A medical ray beaming system is controlled by using
three buttons: A button for charging the machine (a single button press increases
the voltage by 10 mV), another one for the beam activation, and the last one for
resetting the machine at any time. The system will only charge the machine twice
(increasing the voltage up to 20 mV) and it only lets to beam twice. Any further
attempt to either increase the charge of the machine or to activate the beaming
will be rejected because there is a danger of seriously injuring the patient. The
FSM specifying this behavior is depicted in Figure [(left) and it is defined as
spec_ray = (Sspeciraya iHPUtsspec ray’ Outputsspec ray’ Ispecirayv ,Zspeciray)
We have Sspec ray = {7, 1,2, b1,b2}, where denotes the ready state, cl/c2
denote the states where the beamer has been charged one/two times, and b1/b2

O

brjerror < ’ be/error
brfmr
@ @ bb/mb

br/m,
bb/re pp/error be/re | befme bb/mb | bb/mb
bbjerror
N

be/me be/re
N WA e N
brfmr 'br ferror
v L

. be/error
brfmr /

bb/error

br/mr br/mr

bb/mb bb/mb

bb/re
be/error
@ brferr m‘

bb/error

Fig. 1. Finite State Machines spec_ray (left) and worstspec ray (right)

44 I. Rodriguez, M.G. Merayo, and M. Nifiez

denote the states where the first/second beaming is performed. inputs,,.. ,,,=

{br, be, bb}, where brr/bc/bb respectively denote that the reset/charging/beaming
button has been pressed. outputsg,.. 4, ={mr, me, mb,re}, where mr/mc/mb

respectively denote that the machine is ready/charging/beaming while re de-
notes that the command has been rejected. Finally, Ispecimy = {r}, that is, the
initial state is ready. O

3 Predicates of the Logic

In this section we present the predicates that will be part of HOT L. These
predicates allow to represent our knowledge and assumptions about the IUT. In
particular, they will allow us to represent the observations that we have obtained
from the IUT during the preliminary classical testing phase. Observations de-
note that, in response to a given sequence of inputs, the IUT produced a given
sequence of outputs. Let us remark that if one of the sequences shows a behav-
ior that is forbidden by the specification, then the IUT does not conform to the
specification and no further analysis is required, that is, there is no need to apply
our logic. As we said before, our notion of observation will be able to include
some assumptions about the IUT as well as the observed behavior.

3.1 Manipulating Observations

During the rest of the paper, Obs denotes the set of all the observations collected
during the preliminary interaction with the IUT, while Hyp denotes the set of
hypotheses the tester has assumed. In this latter set, we will not consider the
hypotheses that are implicitly introduced by means of observations.
Observations follow the form ob = (a1,i1/01,a2,...,0n,in/0n, ant1) € Obs,
where ob is a unique identification name. It denotes that when the sequence
of inputs 41,...,%, was proposed from the initial configuration of the imple-
mentation, the sequence o1,...,0, was obtained as response. In addition, for
all 1 < j < n+1, a; represents a set of special attributes concerning the state
of the implementation that we reached after performing i /01,...,4;—1/0j—1 in
this observation. Attributes denote our assumptions about this state. For all
1 < j < n the attributes in the set a; are of the form imp(s) or det, where
imp(s) denotes that the state reached after i1/01,...,4;_1/0;_1 is associated to
a state identifier s and det denotes that the implementation state reached after
i1/01,...,1j-1/0j—1 in this observation is deterministic. State identifiers are used
to match equal states: If two states are associated with the same state identifier
then they represent the same state of the implementationﬂ Besides, attributes
belonging to a,41 can also be of the form spec(s), with s € Sspec, denoting
that the state reached after i1/01,...,4,/0, is such that the subgraph that can
be reached from it is isomorphic to the subgraph that can be reached from the
state s of the specification. We assume that attributes of the form spec(s) can

! Let us remark that, since we consider the IUT to be a black-box, a tester cannot al-
ways be sure of the state where the IUT is placed. However, she may still hypothesize
that the reached states after performing two subsequences are in fact the same.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 45

appear only at the end of the observation, meaning that the behavior of the
implementation from that point on is known and there is no need to check its
correctness.

Ezxample 2. For our case study we will consider that the set of observations
Obs={o0b;|1 <14 < 11} was obtained. As illustration, we show the following ones
(the full set is given in [14]).

ob1 = ({det}, bc/me, {imp(q1)}, bb/mb, {imp(g2)}, bb/mb, 0)

obs = (0,bc/me, {imp(q1)}, bb/mb, {imp(gz2)}, bb/mb, {imp(gs)}, br/mr, 0, be/mc,
{imp(q1)}, bb/mb, {imp(q2)})

ob1o = (0, bc/me, {imp(q1)}, bb/mb, {imp(qz), det}, bb/mb, {imp(q2)}, bb/re,)

For example, obyy denotes that we initially do not make assumptions about
the state the TUT selected as initial for this observation (its set of attributes
is). After pressing the charging button, the beaming system is charged and the
state reached is identified by a specific state identifier (denoted by ¢1). Next, by
pressing the beaming button, the beaming is performed and we reach a certain
state, in principle different to previous ones, which is assumed to be deterministic
and is denoted by the identifier go. After pressing again the beaming button, the
beaming action is performed and we assume that we reach again the same state
as before (note that it is denoted by the same identifier g2). We press once
again the beaming button but this time the action is rejected, and we make no
assumptions about the state reached afterwards. a

3.2 Model Predicates

Observations will allow to create model predicates. A model predicate denotes
our knowledge about the implementation. Models will be constructed according
to the observations and hypotheses we consider. In particular, they induce a
graph consistent with the observations and hypotheses considered so far. As more
information is retrieved, models will be refined and particularized. We denote
model predicates by model (m), where m = (S,7,Z,A,&E,D,). The meaning
of the different components of the tuple are the following. S (states) is the set
of states that appear in the graph of the model. Despite the fact that this graph
attempts to represent (a part of) the behavior of the implementation, any name
belonging to S is fresh and by no means is related to the corresponding state
of the implementation. Let us note that after more information is considered, it
could turn out that some states belonging to S coincide. Next, 7 (transitions)
is the set of transitions appearing in the graph of the model. Z (initial states)
is the set of states that are initial in the model. A (accounting) is the set of
accounting registers. A register is a tuple (s, i, outs,n) denoting that in the state
s € S the input i has been offered n times and we have obtained the outputs
belonging to the set outs. This information allows to handle some hypotheses
about nondeterminism. If, due to the hypotheses that we consider, we infer
that the number of times we observed an input is enough to believe that the
implementation cannot react to that input in a way that has not happened
before (that is, either with an output that was not produced before or leading

46 I. Rodriguez, M.G. Merayo, and M. Nifiez

to a state that was not taken before), then the value n is set to T. In this case,
we say that the behavior of the state s for the input ¢ is closed. Next, £ (equality
relations) is the set of equalities relating states in S. Equalities have the form
s is s'. For example if s; is s € £ and s, is s € £ then we infer that s; = s5 and
that one of the names could be eliminated afterwards. D (deterministic states) is
the set of states that are deterministic (according to the hypotheses considered
so far). Finally, O (used observations) is the set of observations we have used
so far for the construction of this model. The aim of recording them is to avoid
considering the same observation several times, which could ruin the information
codified, for instance, in A.

In HOT L, conclusions about the conformance of a model (that is, of the
possible IUTs it represents) with respect to a specification will be established only
after the full set of observations Obs has been considered. Besides, we will require
that no other rule concerning hypotheses in Hyp can be applied. In Section] we
introduce some of the hypotheses a tester might consider in this set. These
hypotheses include usual ones such as to assume an upper bound on the number
of states of the IUT, the uniqueness of the initial state, the determinism of the
IUT, etcetera.

3.3 Other Predicates

We will also consider other predicates related to the correctness of models. The
correct(m) predicate denotes that m is a correct model, that is, it denotes a
behavior that has to be conforming to the specification. The allModelsCorrect
predicate represents a set of correct models. This predicate is the goal of the logic:
If it holds then all the IUTs that could produce the observations in Obs and meet
all the requirements in Hyp conform to the specification. The consistent(m)
predicate means that the model m does not include any inconsistency. Note that
the requirements imposed by Obs and Hyp could lead to inconsistent models. For
example, let us consider a model where a state s is assumed to be deterministic,
s is equal to another state s’, and s’ produces either o; or o when 1 is offered,
with 01 # 0z. There is no FSM that meets the requirements of this model. Since
a user of the logic can create a set of observations and hypotheses leading to
that model, inconsistent models may indeed appear. As we will see, the rules of
the logic will eliminate inconsistent models by deducing an empty set of models
from them. In addition, we will be provided with rules that allow to guarantee
the consistency of a model.

In general, several models can be constructed from a set of observations and
hypotheses. Hence, our logic will deal with sets of models. If M is a set of models
then the predicate models (M) denotes that, according to the observations and
hypotheses considered, M contains all the models that are valid candidates to
properly describe the implementation. Besides, modelsSubset (M’) denotes that
for some set M we have models (M) and M’ C M.

The formal semantics of predicates, which is defined in terms of the set of FSMs
that fulfill each predicate, is introduced in [T4]. These concepts are considered
there to prove the soundness and completeness of the logic.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 47

4 Deduction Rules of the Logic HOT L

The rules will be presented in the form % If B can be deduced from
A then we write A - B. If we want to be more specific, we write A -, B to
denote that B is deduced from A by applying the rule r. The ultimate goal is to
deduce the conformance of a set of observations Obs and hypotheses Hyp, that
is, whether all the FSMs that meet these conditions conform to the specification.
Since inconsistent models may appear, conformance will be granted only if there
exists at least one consistent model that meets these conditions. Some formal
definitions and rules could not be included in this version of the paper and can
be found in [14]. In these cases, brief informal explanations will be provided.

HOT L will consider observations and hypotheses in two phases. First, obser-
vations, as well as the hypotheses they can implicitly express, will be collected.
Once all of them have been considered (i.e., we have a model predicate with
O = 0Obs) a second phase, to add the rest of hypotheses, will start.

First, we present a rule to construct a model from an observation. Given
a predicate denoting that an observation was collected, the rule deduces some
details about the behavior of the implementation. These details are codified by
means of a model that shows this behavior. Basically, new states and transitions
will be created in the model so that it can produce the observation. Even though
some model states could actually coincide, we will not consider it yet. Thus,
we take fresh states to name all of them. Besides, the hypotheses denoted by
the attributes of the observation will affect the information associated to the
corresponding model states. In particular, if the tester assumes that the last
state of the observation is isomorphic to a state of the specification (i.e., spec(s),
for some s € Sspec) then the sets of states, transitions, accounting registers, and
deterministic states will be extended with some extra elements taken from the
specification and denoted by &', 7/, A’, and D’, respectively. The new states and
transitions S’ and 7, respectively, will copy the structure existing among the
states that can be reached from s in the specification. The new accounting, A’,
will denote that the knowledge concerning the new states is closed for all inputs,
that is, the only transitions departing from these states are those we copy from
the specification and no other transitions will be added in the future. Finally,
those model states that are images of deterministic specification states will be
included in the set D’ of deterministic states of the model.

(obser) ob = (a1,%1/01,a2,...,0n,1in/0n,an+1) € 0bs A $1,...,Snt+1 are fresh states
{81,...,Sn+1}U3/,
{s1 _/or 82,...,8n _in/on Snt1} UT {s1},
model {(sj,i5,{0;}, 1) |1 <j<n}uUd,

{sjissj|1 <j<n+1 A imp(s)) € a;},
{s;]11<j<n+1 A det €a;} UD’, {ob}

The formal definition of S’, 7', A’, and D’ follows. If there does not exist
s’ such that spec(s’) € ap41 then (8,77, A", D) = (0,0,0,0). Otherwise, that

48 I. Rodriguez, M.G. Merayo, and M. Nifiez

is, if spec(s) € an41 for some s € Sgpec, let us consider the following set of
states: U = {u; | uj isafreshstate A 1 < j < |reachableStates(spec,s)|}
and a bijective function f : reachableStates(spec,s) — U U {sy+1} such that
f(8) = spt1. Then, (§',7', A", D) is equal to
U, {f(s") e, G IE e, s e Tepec N\ isReachable(spec,s,s’)},
{(u, 1, outs(spec, s, i), T)|ju € UU{spnt1} N i € inputsspec},
{f(s')|isReachable(spec,s,s’) A isDet(spec,s’)}

Ezxample 3. If we apply the obser deduction rule to the observation obg given in
Example [2] then we obtain a model mg = (Ss, 76, Zs, As, €6, Ds, Og), where

Se = {526’527752875297530,5317532} and Zs = {826}

be/mec bb/mb bb/mb br/mr
S26 ——— S27,827 — > 528,828 — > S29,S829 — > S30,
Te =
be/m bb/mb
530 e, 831,831 ——— 832

Ag = { (s26,bc, {mc}, 1), (s27, bb, {mb}, 1), (s28, bb, {mb}, 1), (s29, br, {mr}, 1), }
(s30,bc, {mc}, 1), (s21, bb, {mb}, 1)

86 = {827 is q1, S28 is q2, 829 is g3, S31 is q1, 832 is qz},DG = (Z), and 06 = {Obﬁ}

Similarly, for all 1 < ¢ < 11 we can obtain a model m; by applying the
deduction rule obser to ob;. O

We will be able to join different models created from different observations into
a single model. The components of the new model will be the union of the
components of each model.

model (31,7-1,11,.141,51,1)1,@1) A\
model (32,7-2,12,.142,52,1)2,@2) ANO1NOy=0
mOdel(SlLJSz,?-lU/Tz,Il UIQ,.Al U.Az,gl ng,'D1 UD2,01U02)

(fusion)

The condition @7 N Oy = () appearing in the previous rule avoids to include
the same observation in a model more than once, which would be inefficient.
Besides, since models in the second phase must fulfill O = Obs, we avoid to use
the previous rule in the second phase.

By iteratively applying these two first rules, we will finally obtain a model
where O includes all the observations belonging to the set Obs.

Ezxample 4. The deduction rule fusion allows to join all the models obtained after
applying the deduction rule obser to the set of observations given in Example 2l
After it, we have a new model my defined as follows:

11 11 11 11
myp = model (U SJ?U] 1 J?Uj:levuj‘:l Aj»szl ‘Sjan:l Dj,Ubs)]

At this point, the inclusion of those hypotheses that are covered by observations
will begin. During this new phase, in general, we will need several models to
represent all the FSMs that are compatible with a set of observations and hy-
potheses. The next simple rule allows to represent a single model by means of

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 49

a set containing a single element. Since the forthcoming rules will concern only
the second phase, in all cases we will have O = Obs.
model (S,7,Z, A, E,D,Obs)
(5¢8) odels (1S, 7.7, A.2, D, 0bs)])

In order to reflect how a rule that applies to a single model affects the set in-
cluding this model, we provide the following rule. Let ¢ denote a logical predicate
(in particular, true) and m = model (S,7,Z, A, &, D,0bs). Then,

models (MU {m}) A ¢ A ((model(m) A) modelsSubset (M’))
models (M U M)

(propagation)

By using the previous rule, we will be able to use other rules that apply
to a single model and then propagate its change to the set where the model is
included as expected: As the previous rule states, this model changes while other
models belonging to the set remain unchanged. Most of the forthcoming rules
will apply to single models. After each of them is used, the rule propagation will
be applied to propagate its effect to the corresponding set of models.

Our logic will allow to discover that a state of the model coincides with an-
other one. In this case, we will eliminate one of the states and will allocate all of
its constraints to the other one. This will modify all the components that define
the model. This functionality is provided by the modelElim function. Specifically,
modelElim(m, s1, s2) denotes the elimination of the state sy and the transference
of all its responsibilities to state s; in the model m. This function returns a set
of models. If the transference of responsibilities creates an inconsistency in the
rest of the model, an empty set of models is returned. Sometimes we will use a
generalized version of this function to perform the elimination of several states
instead of a single state: modelElim(m, s, {s1,..., S, }) represents the substitu-
tion of s1 by s, followed by the substitution of so by s, and so on up to s,. The
formal definitions of both forms of the modelElim function are given in [14].

Next we present some rules that use this function. In the first one, we join
two states if the set of equalities allows to deduce that both coincide.

model (S§,7,Z,A,E,D,0bs) A s1,52 €S A {s1iss,s2iss} C&

lit
(equality) modelsSubset (modelElim((S,7,Z, A, E,D,0bs), s1, $2))

Another situation where two states can be fused appears when a deterministic
state shows two transitions labelled by the same input. Since the state is deter-
ministic, they must also be labelled by the same output. The determinism of the
state implies that both destinations are actually the same state. Hence, these
two reached states can be fused. Note that if both outputs are different then the
model is inconsistent, because the determinism of the state is not preserved. In
this case, an empty set of models is produced.

model (S§,7,Z,A,E,D,0bs) A
$,81,82 €S N s€D A {sﬂshsﬂsz}gT
modelsSubset (M’) [if 01 = 02 then M’ =modelElim(m, s1, s2) else M’ =]

(determ)

50 I. Rodriguez, M.G. Merayo, and M. Nifiez

Next we present the first rule dealing with an hypothesis that is not implicitly
given by an observation. This hypothesis allows to assume that the initial state
of the implementation is unique.

model (S§,7,Z,A,E,D,0bs) A T ={s1,...,5.} A singleInitial € Hyp
modelsSubset (modelElim((S, T,7,A,,D,0bs), s1, {s2, ..., sn}))

(singleInit)
If the tester adds the hypothesis that all the states are deterministic, then the
complete set of states S coincides with the set of deterministic states D.

model (S8,7,Z, A,E,D,0bs) A allDet € Hyp
modelsSubset ({(S,7,Z, A,&,S,0bs)})

(allDet)

The logic HOT L allows to consider other hypotheses about the IUT. For
example, the predicate allTranHappenWith(n) assumes that for all state s and
input ¢ such that the TUT behavior has been observed at least n times, all the
outgoing transitions from s having as input ¢, have been observed at least once.
This means that the IUT state s cannot react to ¢ with an output that has not
produced so far or moving to a state it has not moved before. If the hypoth-
esis is assumed then some accounting registers of the model will be set to the
value T, denoting that our knowledge about this state and input is closed. De-
pending on the compatibility of the hypothesis with the current model, several
models can be produced by this rule. If no model is returned then we infer that
the resulting model is inconsistent with the current model requirements. The
upperBound0fStates(n) hypothesis allows to assume that the IUT uses at most
n states. The reduction of states, based on the identification of several states
with the same state identifiers, will be performed by means of new equalities
s is s’ € £. The longSequencesSamePath(n) hypothesis assumes that if two
sequences of n transitions produce the same inputs and outputs, then they ac-
tually go through the same states. The set &£, containing the assumed equalities
between states, will be also used in this case. The formal definition of the rules
that allow to consider the allTranHappenWith(n), upperBoundOfStates(n),
and longSequencesSamePath(n) hypotheses can be found in [14].

We have seen some rules that may lead to inconsistent models. In some of
these cases, an empty set of models is produced, that is, the inconsistent model
is eliminated. Before granting conformance, we need to be sure that at least one
model belonging to the set is consistent. Next we provide a rule that labels a
model as consistent. Let us note that the inconsistences created by a rule can be
detected by the forthcoming applications of rules. For instance, the determ rule
can detect that a previous rule matched a deterministic state with another state
in such a way that both react to the input ¢ with a different output. Actually, all
inconsistencies can be detected by applying suitable rules. Thus, a model is free of
inconsistencies if for any other rule either it is not applicable to the model or the
application does not modify the model (i.e., it deduces the same model). Next we
introduce this concept. In the following definition, R denotes the set of all rules in
HOT L that follow the form required to apply the propagation rule. In particular,
it consists of all previous rules from equality up to the forthcoming correct rule.

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 51

Definition 3. We denote the set of all rules in HOT L that follow the form
(model(m) A ¢)F modelsSubset(M’) by R.

Let r = (model(m’) A ¢) | modelsSubset(M’') € R and m be a model.
The unable predicate for m and r, denoted by unable(m,r), is defined by the
expression unable(m,r) = —¢ V ((model(m) A ¢) b, modelsSubset ({m})).
We extend this predicate to deal with sets of rules as follows: unable(m, Q) =
A{unable(m,r)|r € Q}. |

The next rule detects that a model is consistent. It requires that no other rule
that manages hypotheses can modify the model. These rules consist of all the
rules in R we have seen so far.

m=(S,7,Z,A,E,D,0bs) A model (m) A

unable(m, R\{consistent, correct})
modelsSubset ({consistent(S,7,Z, A, E,D,0Obs)})

(consistent)

Since a model is a (probably incomplete) representation of the IUT, in order
to check whether a model conforms to the specification, two aspects must be
taken into account. First, only the conformance of consistent models will be
considered. Second, given a consistent model, we will check its conformance
with respect to the specification by considering the worst instance of the model,
that is, if this instance conforms to the specification then any other instance
extracted from the model does so. This worst instance is constructed as follows:
For each state s and input i such that the behavior of s for i is not closed and
either s is not deterministic or no transition with input ¢ exists in the model, a
new malicious transition is created. The new transition is labelled with a special
output error, that does not belong to outputs,,, .. This transition leads to a new
state L having no outgoing transitions. Since the specification cannot produce
the output error, this worst instance will conform to the specification only if the
unspecified parts of the model are not relevant for the correctness of the IUT it
represents.

Definition 4. Let m = (S,7,Z,.A,&,D,0bs) be a model. We define the worst
instance of the model m with respect to the considered specification spec, de-
noted by worstCase(m), as the FSM

SU{Ll}, inputs outputs,, . U {error},

spec’? spec

§ €S A i €imputs,, .. A

Tud s emror | Bouts : (s,i,outs, T) € AA T
(s¢DV /35',0:5&5’) O

Thus, the rule for indicating the correctness of a model is

m=(S,7,7,A,E,D,0bs) A consistent(m) A worstCase(m) conf spec
modelsSubset ({correct(m)})

(correct)

Now we can consider the conformance of a set of models. A set conforms
to the specification if all the elements do so and the set contains at least one

52 I. Rodriguez, M.G. Merayo, and M. Nifiez

element. Note that an empty set of models denotes that all the models were
inconsistent. Hence, granting the conformance of an empty set would imply
accepting models that do not represent any implementation. In fact, although
false implies anything, accepting inconsistent models is useless for a tester.

models (M) A M #£0 A M = {correct(m1),...,correct(my)}
allModelsCorrect

(allCorrect)

Ezxample 5. We consider the model mp obtained after applying the determ,
equality, long (see [14]), and singleInit deduction rules. The long rule is ap-
plied to introduce the hypothesis longSequencesSamePath(1). The singlelnit
and long rules are applied once, while determ and equality are applied as long
as we can. Let us recall that, after each of these rules is used, the propagation
rule must be applied as well. When the determ and equality rules cannot be
applied anymore, our model cannot be further manipulated to produce new in-
consistencies. Then, we can use the consistent and propagation rules to deduce
models ({consistent(mpg)}).

We build an FSM by applying the function worstCase to mpr and we verify
its conformance with respect to the specification. The obtained FSM, denoted by
WOrstspec ray, is graphically depicted in Figure[Il (right). For the sake of clarity,
we have included four states L, even though they correspond to only one state.

We have worstspec ray conf spec_ray and, by successively applying the
correct and propagation rules, we obtain models ({correct(mpg)}) and deduce,
by means of the allCorrect deduction rule, allModelsCorrect. A more detailed
description of the application of rules to this example can be found in [I14]. O

Now that we have presented the set of deduction rules, we introduce a correctness
criterion. In the next definition, in order to uniquely denote observations, fresh
names are assigned to them. Besides, let us note that all hypothesis predicates
follow the form h € Hyp for some h belonging to Hyp.

Definition 5. Let spec be an FSM, Obs be a set of observations, and Hyp be
a set of hypotheses. Let A = {0b = o] obis afreshname A o € Obs} and
B = {hy € Hyp, ..., h, € Hyp}, where Hyp = {hy, ..., h,}. If the deduction rules
allow to infer al1ModelsCorrect from the set of predicates C' = AU B, then we
say that C' logically conforms to spec and we denote it by C'logicConf spec. O

In order to prove the validity of our method, we have to relate the deductions
that we make by using our logic with the notion of conformance introduced in
Definition 2l The semantics of a logic predicate is described in terms of the set
of FSMs that fulfill the requirements given by the predicate; given a predicate
p, we denote this set by v(p). As illustration, the semantics of some predicates
is formally defined in [I4] by means of the function v. Let us consider that P
is the conjunction of all the considered observation and hypothesis predicates.
Then, the set v(P) denotes all the FSMs that can produce these observations and
fulfill these hypotheses, that is, it denotes all the FSMs that, according to our
knowledge, can define the IUT. So, if our logic deduces that all of these FSMs

A Logic for Assessing Sets of Heterogeneous Testing Hypotheses 53

conform to the specification (i.e., allModelsCorrect is obtained), then the IUT
actually conforms to the specification.

Theorem 1. Let spec be an FSM and C' be a set of predicates including at least
one observation predicate. Then, C' logicConf spec iff for all FSM f € v(A)
we have f conf spec and V(A ,cc) # 0. 0

Corollary 1. Let IUT and spec be FSMs and C' be a set of predicates including
at least one observation predicate. If IUT € I/(/\pec) then C logicConf spec
implies JUT conf spec. If there exists f € v(/\) such that f conf spec does
not hold then C' logicConf spec does not hold.

5 Conclusions and Future Work

In this paper we have presented a logic to infer whether a collection of obser-
vations obtained by testing an IUT together with a set of hypotheses allow to
deduce that the IUT conforms to the specification. A repertory of heterogeneous
hypotheses providing a tester with expressivity to denote a wide range of testing
scenarios has been presented. By considering those observations and hypotheses
that better fit into her necessities, the tester can obtain diagnosis results about
the conformance of an IUT in a flexible range of situations. Besides, our logic
allows her to iteratively add observations (i.e., the results of the application of
tests) and/or hypotheses until the complete set of predicates guarantees the con-
formance. In this sense, our logic can be used to dynamically guide the steps of
a testing methodology.

As future work, we will study some ways to improve our logic. We plan to
include an incorrectness rule, that is, a rule that detects whether a model is
necessarily incorrect. If an incorrect model is detected then the calculus can be
early terminated, which improves the efficiency. Moreover, the rule could be used
to detect which observations/hypotheses made the model incorrect. Besides, we
want to develop a more complex application example in the context of Internet
protocols. We would also like to introduce a feasibility score for each of the logic
rules. For example, for a given framework, we can consider that assuming that
all the states are deterministic is harder than assuming that the implementation
has less that 50 states. In this case, a lower feasibility score will be assigned
to the first hypothesis. By accounting the feasibility of all the hypotheses that
we have to add before ensuring conformance, we will obtain a measure of the
suitability of the considered observations and, indirectly, of the tests that we
used to obtain them. Hence, our logic can help a tester to choose her tests so
that more trustable diagnosis results are obtained. We also consider to extend
the repertory of hypotheses. Finally, we want to extend the logic so that it can
deal with extended finite state machines. In this case, different formalisms to
work with models and different sets of hypotheses will be considered.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments. Though they proposed very interesting ideas to improve our

54

I. Rodriguez, M.G. Merayo, and M. Nifiez

paper (some are commented above), we could not apply all of them due to the
lack of space. Certainly, these ideas will be considered in the future.

References

1.

2.

10.

11.

12.

13.

14.

15.

E. Bayse, A. Cavalli, M. Nufiez, and F. Zaidi. A passive testing approach based
on invariants: Application to the WAP. Computer Networks, 48(2):247-266, 2005.
B.S. Bosik and M.U. Uyar. Finite state machine based formal methods in protocol
conformance testing. Computer Networks & ISDN Systems, 22:7-33, 1991.

. A. Cavalli, C. Gervy, and S. Prokopenko. New approaches for passive testing using

an extended finite state machine specification. Journal of Information and Software
Technology, 45:837-852, 2003.

. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
. G. Eleftherakis and P. Kefalas. Towards model checking of finite state machines

extended with memory through refinement. In Advances in Signal Processing and
Computer Technologies, pages 321-326. World Scientific and Engineering Society
Press, 2001.

. R. Hierons. Comparing test sets and criteria in the presence of test hypotheses

and fault domains. ACM Transactions on Software Engineering and Methodology,
11(4):427-448, 2002.

. D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. A formal approach for

passive testing of protocol data portions. In 10th IEEE Int. Conf. on Network
Protocols, ICNP’02, pages 122-131. IEEE Computer Society Press, 2002.

. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:

A survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

. L.P. Lima and A. Cavalli. A pragmatic approach to generating tests sequences

for embedded systems. In 10th Workshop on Testing of Communicating Systems,
pages 288-307. Chapman & Hall, 1997.

S.C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions
on Software Engineering, 14:868-874, 1988.

M. Nufez and I. Rodriguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1-16. Springer, 2002.

A. Petrenko. Fault model-driven test derivation from finite state models: Annotated
bibliography. In 4th Summer School, MOVEP 2000, LNCS 2067, pages 196-205.
Springer, 2001.

A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing deterministic imple-
mentations from their nondeterministic specifications. In 9th Workshop on Testing
of Communicating Systems, pages 125-140. Chapman & Hall, 1996.

I. Rodriguez, M.G. Merayo, and M. Nuiez. A logic for assessing
sets of heterogeneous testing hypotheses: Extended version. Available at:
http://dalila.sip.ucm.es/ manolo/papers/logic-extended.pdf, 2006.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware — Concepts and Tools, 17(3):103-120, 1996.

Bounded Sequence Testing from
Non-deterministic Finite State Machines

Florentin Ipate

Department of Computer Science and Mathematics,
University of Pitesti, Romania
fipate@ifsoft.ro

Abstract. The widespread use of finite state machines (FSMs) in mod-
eling of communication protocols has lead to much interest in testing
from (deterministic and non-deterministic) FSMs. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state
counting. Generally, the existing methods of testing from FSMs check
that the implementation under test behaves as specified for all input se-
quences. On the other hand, in many applications, only input sequences
of limited length are used. In such cases, the test suite needs only to
establish that the IUT produces the specified results in response to in-
put sequences whose length does not exceed an upper bound I. A recent
paper devises methods for bounded sequence testing from deterministic
FSM specifications. This paper considers the, more general, situation
where the specification may be a non-deterministic F'SM and extends
state counting to the case of bounded sequences. The extension is not
trivial and has practical value since the test suite produced may contain
only a small fraction of all sequences of length less than or equal to the
upper bound.

1 Introduction

Finite state machines (FSMs) are widely used in modeling of communication
protocols. As testing is a vital part of system development, this has lead to
much interest in testing from FSMs [13], [9]. Given a FSM specification, for
which we have its transition diagram, and an implementation, which is a “black
box” for which we can only observe its input/output behavior, we want to test
whether the implementation under test (IUT) conforms to the specification. This
is called conformance testing or fault detection and a set of sequences that solves
this problem is called a test suite.

Many test selection methods have been developed for the case where the
specification is a deterministic FSM. The best known methods are: Transition
Tour [I3], Unique Input Output (UIO) [13], Distinguishing Sequence [13], the
W method [2], [13] and its variant, the “partial W” (Wp) method [3]. The W
and Wp methods will find all the faults in the IUT provided that the number of
states of the IUT remain below a known upper bound.

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 55-[70} 2006.
© IFIP International Federation for Information Processing 2006

56 F. Ipate

When the specification is deterministic, equivalence is the natural notion of
correctness. On the other hand, when the specification is non-deterministic,
equivalence may often be too restrictive. Usually, a non-deterministic FSM spec-
ification provides a set of alternative output sequences that are valid responses
to some input sequence and the IUT may choose from these (when the IUT is de-
terministic only one choice is allowed, otherwise multiple choices can be made).
Consequently, the IUT is correct if and only if every input/output sequence that
is possible in the TUT is also present in the specification; we say that the IUT
is a reduction of the specification. Obviously, equivalence is a particular case
of reduction, where all specified choices are implemented. Most approaches for
selecting a test suite from a non-deterministic FSM are based on state counting
111, [12], [14].

Generally, the existing methods of testing from FSMs check that the IUT
behaves as specified for all input sequences. On the other hand, in many ap-
plications, only input sequences of limited length are used. In such cases, the
test suite needs only to establish that the IUT produces the specified results
in response to input sequences whose length does not exceed an upper bound
[. A recent paper extends the W and Wp methods to the case of bounded
sequences [8].

This paper considers the, more general, situation where the specification may
be a non-deterministic FSMs and extends the state counting based test selection
method to the case of bounded sequences. The extension is not straightforward
since it is not sufficient to extract the prefixes of length at most [from the test
suite produced in the unbounded case. Furthermore, the test suite produced may
contain only a small fraction of all sequences of length less than or equal to the
upper bound.

The paper is structured as follows. Section 2 introduces FSM related con-
cepts and results that are used later in the paper, while section 3 reviews the
use of state counting in testing from non-deterministic FSMs. Section 4 presents
the testing method for bounded sequences, while the following two sections pro-
vide its theoretical basis: the [-bounded product FSM is defined in section 5,
while in section 6, state counting is used to validate the test suite given earlier.
Conclusions are drawn in section 7.

2 Finite State Machines

This section introduces the finite state machine and related concepts and results
that will be used later in the paper.

First, the notation used is introduced. For a finite set A, we use A* to denote
the set of finite sequences with members in A; € denotes the empty sequence. For
a,b € A*, ab denotes the concatenation of sequences a and b. a™ is defined by
a®=cand a” =a" laforn>1.For U,V C A*, UV ={ab|acUbe V}; U"
is defined by U® = {e} and U™ = U"~'U for n > 1. Also, U[n] = Uycpe,, U".
For a sequence a € A*, ||al| denotes the length (number of elements) of a; in

Bounded Sequence Testing from Non-deterministic Finite State Machines 57

particular ||¢|| = 0. For a sequence a € A*, b € A* is said to be a prefiz of a if
there exists a sequence ¢ € A* such that a = be. The set of all prefixes of a is
denoted by pref(a). For U C A*, pref(U) denotes the set of all prefixes of the
elements in U. For a finite set A, |A| denotes the number of elements of A.

A finite state machine (FSM) M is a tuple (X, I,Q,h,qop), where X is the
finite input alphabet, I' is the finite output alphabet, Q is the finite set of states,
h:Q x X — 29%I" is the transition function and qo € Q is the initial state. A
FSM is usually described by a state-transition diagram. Given ¢,¢' € Q, 0 € X
and v € I, the application of input ¢ when M is in state ¢ may result in M
moving to state ¢’ and outputting v if and only if (¢’,~) € h(q, o).

M is said to be completely specified if for all ¢ € Q and o € X, |(h(g,0)| > 1.
If M is not completely specified, it may be transformed to form a completely
specified FSM by assuming that the “refused” inputs produce a designated error
output, which is not in the output alphabet of M; this behavior can be repre-
sented as self-looping transitions or transitions to an extra (error) state. M is
said to be deterministic if for all ¢ € Q and 0 € X, |(h(g,0)| < 1.

The function h may be extended to take input sequences and produce output
sequences, i.e. h: Q x X* — 29%I" The projections h; : Q x X* — 29 and
hy : Q x X* — 21" of h give the states reached (h;) and the output sequences
produced (h2) from a state, given an input.

A FSM M is said to be initially connected if every state ¢ is reachable from
the initial state of M, i.e. there exists s € X* such that ¢ € hi(qo,s). If M is
not initially connected it may be transformed into an initially connected FSM
by removing the unreachable states.

Given a state ¢, the associated language of ¢, L(q), contains the in-
put/output sequences allowed by M from g. More formally, Lys(q) = {(s,g) |
s € X* g € ha(q,s)}. The input/output sequences allowed by M from ¢y make
up the associated language of M, denoted by L(M).

States ¢ of M and ¢’ of M’ are said to be equivalent if Ly;(q) = L (q).
FSMs M and M’ are said to be equivalent if their initial states are equivalent,
i.e. L(M) = L(M'). The equivalence relation can be restricted to a set of input
sequences Y C X*; this is called Y-equivalence.

M is said to be observable if for every state ¢, input o and output v, M has
at most one transition leaving ¢ with input o and output =, i.e. |{¢’ | (¢,7) €
h(g,0)}| < 1. In such a FSM, given ¢ € Q, s € Z* and g € I'*, hy(g, s) is used
to denote the state (if exists) where input sequence s takes M from state ¢ while
outputting sequence g. Every FSM is equivalent to an observable FSM [I0]. It
will thus be assumed that any FSM considered is observable.

Suppose M and M’ are two completely specified FSMs. Given states g of M
and ¢’ of M, q is said to be a reduction of ¢’, written ¢ < ¢, if Las(q) C L (q').
Obviously, ¢ and ¢’ are equivalent if and only if ¢ < ¢’ and ¢’ < ¢q. On the class
of deterministic FSMs, the two relations coincide. The FSM M is said to be a
reduction of the FSM M’, written M < M’, if g9 < ¢. Given a set of input
sequences Y C X*, weaker reduction relations, denoted by <y, can be obtained
by restricting the above definitions to Y.

58 F. Ipate
3 Testing from Non-deterministic FSMs

This section briefly reviews the use of state counting in testing from (possibly)
non-deterministic FSMs [5]. One important case is where the IUT is known to
be deterministic [I2]. However, the general case where the IUT may also be non-
deterministic, is considered. All FSMs referred to are assumed to be initially
connected, completely specified and observable.

3.1 Prerequisites

When testing from a formal specification, it is usual to assume that the TUT
behaves like some unknown element from a fault domain. In the case of a FSM
specification M = (X, I',Q, h, qo), the fault domain consists of all initially con-
nected, completely specified and observable FSMs M’ = (X, I',Q’, I/, ¢() with
the same input and output alphabets as M and at most m’ states, where m/' is
a predetermined integer greater than or equal to the number m of states of M.
Furthermore, it will be assumed that the ITUT has a reliable reset. A FSM has a
reset operation if there is some input r that takes every state to the initial state.
A reliable reset is a reset that is known to have been implemented correctly and
might be implemented through the system being switched off and then on again.
The reset will not be included in the input alphabet.

A test suite is a finite set of input sequences that, for every M’ in the fault
model that is not a reduction of M, shows that M’ is erroneous. More for-
mally, Y C X* is a test suite if and only if for every M’ in the fault model,
M’ < M if and only if M’ <y M. Naturally, when the specification M is deter-
ministic, testing for M’ < M reduces to testing for the equivalence of the two
FSMs

When testing a non-deterministic implementation, it is normal to make a fair-
ness assumption, called the complete testing assumption [10], that there is some
known N such that if an input sequence is applied N times then every possi-
ble response is observed at least once. Naturally, this assumption automatically
holds when the implementation is deterministic. This paper will assume that the
complete testing assumption can be made.

When testing from a FSM M | sequences that reach and distinguish the states
of M are normally selected. These issues are now discussed.

3.2 Reaching States

Input sequence s € X* is said to deterministically-reach (d-reach) state q if
hi(qo,8) = {q}. That is, ¢ is the only state reached by s. ¢ is said to be d-
reachable [12]. The initial state is always d-reachable since it is d-reached by the
empty sequence €. Naturally, all reachable states of a deterministic FSM are also
d-reachable.

A set S C X* of input sequences is called a state cover of M if e € S and S
is a minimal set such that every d-reachable state of M is d-reached by some
sequence from S.

Bounded Sequence Testing from Non-deterministic Finite State Machines 59

b/0 b/0
a/0
2 >
a/l a/l
a/0 a/0
a/0
0
b/1 b/1

Fig. 1. The state-transition diagram of M

Consider, for example, M as represented in Fig. [Il States 0, 1 and 2 are d-
reached by €, a and aa, respectively. On the other hand, state 3 is not d-reachable.
Thus S = {€,a,aa} is a state cover of M.

3.3 Distinguishing States

In order for an input sequence s to distinguish two states ¢ and ¢’ of M, it is
sufficient that the corresponding sets of output sequences do not intersect, i.e.
ha(gq, s) N h5(q', s) = 0. Two states for which there exists an input sequence with
this property are said to be separable.

In the case of a non-deterministic FSM, however, it may be possible that there
is no single input sequence that distinguishes between two states, rather these
can be distinguished by a set of sequences. This idea leads to the, more general,
concept of r-distinguishable states, formally defined in an inductive manner as
follows [12]. States ¢ and ¢’ are said to be r(1)-distinguishable if there exists
o € X such that ha(q,0) N ha(q’,0) = 0. States g and ¢’ are said to be r(k)-
distinguishable, k > 1, if either ¢ and ¢’ are r(j)-distinguishable for some j,
1 < j < k, or there is some input o € X such that for all v € hy(g,0) Nha(¢, o),
the states h,(¢,0) and h, (¢, o) are r(j)-distinguishable for some j, 1 < j < k.
States ¢ and ¢’ are said to be r-distinguishable if there exists some k > 1 such
that ¢ and ¢’ are r(k)-distinguishable. Clearly, any two separable states are r-
distinguishable, but not vice versa. Naturally, the two notions coincide when the
FSM is deterministic.

The definition of r-distinguishable (r(k)-distinguishable) states naturally leads
to the concept of r-distinguishing set (r(k)-distinguishing set) of two states ¢ and
¢’; this can also be defined inductively [I2]. A set of input sequences that contains
an r-distinguishing (r(k)-distinguishing) set of ¢ and ¢’ is said to r-distinguish
(r(k)-distinguish) q and ¢'.

A set W C X* of input sequences is a called a characterization set of M if it
r-distinguishes each pair of r-distinguishable states of M.

60 F. Ipate

Consider again M in Fig. [l The pairs of states (0,2), (0,3), (1,2), (1,3)
and (0,1) are separable; the first four are r-distinguished by {b}, the last is r-
distinguished by {ab}. On the other hand, states 2 and 3 are not separable, but
they are r-distinguished by {ab, aab}. Thus W = {b, ab, aab} is a characterization
set of M.

3.4 Test Suite Generation

This section describes the generation of a test suite from a FSM using state
counting. The method is from [5] and is essentially based on the results given in
[12] for the case in which the IUT is known to be deterministic.

Suppose a state cover S and a characterization set W have been constructed.
Qs is used to denote the set of all d-reachable states of M. Let Q1, ..., Q7 denote
the maximal sets of pairwise r-distinguishable states of M. Let also Q% = Q'NQs,
1<i <y

Recall that the scope of testing is to check language inclusion between the
(unknown) implementation and the specification. Thus, the task is to find a
state ¢’ in the implementation such that the input/output exhibited from ¢’ is
not allowed from the corresponding state ¢ of the specification. A test suite will
be then constructed using a breadth-first search through input/output sequences
from each d-reachable state of M, in which the termination criterion is based on
the observation that if a pair of states (¢,¢’) € @ x @', from which a failure may
be exhibited, is reachable then it is reachable by some minimal input/output
sequence. Such a minimal sequence will not have visited the same pair of states
twice and, furthermore cannot contain pairs of states that have already been
reached by the sequences in S. More specifically, the following two ideas are
used:

— If an input/output sequence (s, g) visits states of some Q?, a tester can use
W after each prefix of (s, g) to distinguish between the corresponding states
visited along (s,g) in the implementation. If states from Q% are visited n;
times along a minimal sequence (s, ¢) in the specification, then n, distinct
states will be visited in the implementation. Thus, n; cannot exceed m/, the
upper bound on the number of states of the implementation, by more than 1.

— There could be some d-reachable states among those in Q° and the corre-
sponding states in the implementation will also be reached by sequences from
S; this leaves |Q%] less pairs of states to explore.

By combining these two ideas, the breadth-first search can be ended once it has
been established that states from some Q° have been visited m’ —|Q%| + 1 times.

More formally, given a state ¢ € Qg, the set Tr(q), called a traversal set in
[11], is constructed in the following way:

— A set TrIO(q) is defined to consist of all input/output sequences (s, g) for
which there exists 7, 1 < i < j, such that (s, g) visits states from Q? exactly
m’ —|Q%| +1 times when followed from ¢ (the initial state of the path is not
included in the counting) and this condition does not hold for any proper
prefix of (s, g).

Bounded Sequence Testing from Non-deterministic Finite State Machines 61

— Tr(q) is the set of input sequences such that there is some corresponding
input/output sequence in TrIO(q), i.e. Tr(q) ={s€ X* | Jge IT*-(s,9) €
TrIO(q)}.

Then the test suite produced is [5]:

Y = U {s}pref(Tr(qs))W

sesS

where for s € S, g5 denotes the state reached by s.

When all the states of M are d-reachable and pairwise r-distinguishable, the
test suite reduces to the set SX[m’ — m + 1|W. This is equivalent to the test
suite produced by the W-method when testing from a deterministic FSM. Where
the specification does not satisfy these conditions, a larger test suite is required.
Clearly, every sequence in T'r(q) has length at most m’ + 1. Based on the above
definition, an algorithm for constructing 7'r(q) is provided in [5].

Consider the specification M as represented in Fig.[Iland the upper bound on
the number of states of the implementation m’ = 4. There is a single maximal
set of pairwise r-distinguishable states, @' = {0, 1,2,3}. Since Qs = {0, 1,2},
Q% ={0,1,2}. Thus the termination criterion for TrIO(q) gives m’' —|QL|+1 =
4—-3+1=2 Hence Y = SY2]W.

4 Bounded Sequence Testing from Non-deterministic

FSMs

This section shows how the above test generation method can be extended to the
case of bounded sequences. In this case, the test suite will contain only sequences
of length less than or equal to an upper bound [> 1 and will have to establish if
the IUT behaves as specified for all sequences in X[l]. More formally, Y C Xi]
is a test suite if and only if for every M’ in the fault model, M’ <sp M if and
only if M’ <y M.

The extension is not straightforward, as it is not sufficient to extract the
prefixes of length at most [from the test suite produced in the unbounded case.
Consider, for example, M,,, n > 2, as represented in Fig. @ (a), m’ = n + 2
and [= n + 1. All states of M,, are d-reachable and pairwise r-distinguishable,
S ={ea,...,a" b} is a state cover of M,, and W = {a"b} is a characterization
set of M,,. Thus Y = SY[1]W = {e,a,...,a™, b}{e a,b}{a™b} and pref(Y) N
Xn+1] = pref(a™™) Upref({a’ba™ % | 0 < i < n}) Upref(bba™). Consider
M as represented in Fig. 2 (b). Let D = {azbybz | z,y,2z € X*,||z|| + |yl +
|zl < n—2} C X[n+1]. It can be observed that M) <sp,+ip\p My, but
M), <(s} M, does not hold for any sequence s € D. Since pref(Y)N D = 0,
M»,/L Spref(Y)ﬁE[nJrl] M,.

In what follows, it will be shown that state counting can be used to generate
tests for bounded sequences, provided that the sets S and W will contain se-
quences of minimum length that reach or distinguish states of M; these sets will
be called a proper state cover and a strong [-characterization set, respectively.

62 F. Ipate

a/2; b/l

Fig. 2. The state-transition diagrams of M,, (a) and M}, (b), My (c) and M} (d)

A few preliminary concepts are defined first. Without loss of generality, all
FSMs considered are assumed to be initially connected, completely specified and
observable and, furthermore, it will be assumed that every state can be reached
by some sequence of length less than or equal to (.

For each state ¢ € @, we define levelps(q) as the length of the shortest path(s)
from qo to g, i.e. levelp(q) = min{|ls|| | s € X*,q¢ € hi(qo,s)}. For M as
represented in Fig. [l levelp (i) =i, 0 <1 < 3.

States p and ¢ of M are said to be [-dissimilar if p and ¢ are r(k)-
distinguishable for some k < I — mazx{levelp(p),levelps(q)}. The notion of I-
dissimilar (I-similar) states is originally introduced in [I] and is used in [I] and
[7] for constructing a minimal deterministic automaton and a minimal determin-
istic stream X-machine for a finite language. For M as represented in Fig. [Tl and
[=4, states 2 and 3 are not [-dissimilar since they are not r(1)-distinguishable.
On the other hand, every two other states of M are [-dissimilar.

Definition 1. A set S C X* of input sequences is called a proper state cover
of M if S is a minimal set such that every state q of M that is d-reachable by
some sequence of length leveln(q) is d-reached by some sequence s, from S and
[[sqll = levelnr(q).

For M as represented in Fig.[[l S = {e, a,aa} is a proper state cover of M.

Bounded Sequence Testing from Non-deterministic Finite State Machines 63

The definition of a strong [-characterization set and the construction of the
test suite are first given for a particular class of FSM specifications (quasi-
deterministic FSMs) and then extended to the general type of FSM.

4.1 Quasi-deterministic FSMs

A quasi-deterministic FSM is a FSM in which for every k > 0, every pair of
states that are not X[k]-equivalent are r(k)-distinguishable. In particular, this
condition is satisfied by any deterministic FSM.

Definition 2. Suppose M is a quasi-deterministic FSM. A set W C X* of input
sequences is a called a strong [-characterization set of M, [> 1, if for every states
p and q of M and every k, 0 < k <1 —max{levelpy(p),levelpr(q)}, for which p
and q are r(k)-distinguishable, W r(k)-distinguishes p and q.

Obviously, it is sufficient to check that W r(k)-distinguishes p and ¢ for the
minimum integer k < | — max{levely(p),levely(¢)} for which p and ¢ are
r(k)-distinguishable. That is, the shortest possible sequences are included in W.
Naturally, W will r-distinguish any two [-dissimilar states of M.

Consider again M,, as represented in Fig. 2 (a), n > 2. For every pair
(4,7), 0 < i < j < n, i and j are X[n — j]-equivalent and r(n — j + 1)-
distinguishable. Furthermore, n + 1 is r(1)-distinguishable from any other state.
Thus M, is quasi-deterministic, but not deterministic. W = {a,...,a™, b} is
a strong [-characterization set of M,. On the other hand, M in Fig. [l is not
quasi-deterministic since states 2 and 3 are neither X[2]-equivalent nor r(2)-
distinguishable.

4.2 Test Suite Generation

Suppose that the specification M is a quasi-deterministic FSM, S is a proper
state cover of M and W is a strong [-characterization set of M. Qg is used to
denote the set of all states of M reached by sequences in S.

Let Q,...,Q’ denote the maximal sets of pairwise I-dissimilar states of M
and let Q4 = Q"N Qs, 1 < i < j. Under these conditions, the set Tr(qs) is
defined analogously to section [3.41

Then the test suite for bounded sequences is:

7 = ((J{stpref (Tr(g))Wo) 0 S0\ {e)

ses

where W, = W U {e}.

When Qg = @ and all states of M are pairwise [-dissimilar, the test suite
reduces to the set SX[m' —m + 1JW,. N X[I] \ {€}. This is equivalent to the test
suite produced in [§] for deterministic FSMs.

Consider again M,,, n > 2, as represented in Fig. 2 (a), m' =n+2,l=n+1
and the TUT M/, as represented in Fig. 2 (b). S = {¢,a,...,a™ b} is a proper
state cover of M,, and W = {a,...,a", b} is a strong I-characterization set of M,,.

64 F. Ipate

There is a single maximal set of pairwise [-dissimilar states, @* = {0,...,n+1}.
Since Qs = {0,...,n+1}, Q5 = {0,...,n+1}. Thus Z = SE[1|W.NX[n+1]\{e}
={ea,...,a", b}{e a,b}Hea,...,a",b}NEn+1]\{e={a" |1 <i<n+1}U
{a'ba/ |0<i<n0<j<n—itU{abb|0<i<n-—1}U{bba’|1<i<
n — 1} U {bab, bbb}. As abb € Z, M| <z M, does not hold.

Note that W, rather than only W, is needed in the definition of Z. Consider
the specification M as represented in Fig. @l (¢), I = 2, m’ = 2 and the faulty
implementation M| as represented in Fig. [(d). The only sequence that detects
the fault in the IUT is ba. S = {¢, b} is a proper state cover of My and W = {b}
is a strong Il-characterization set of My. Thus Z = SX[1|W. N X[2] \ {¢} =
{a,b,ab,ba,bb}. As ba € Z, M} <z My does not hold. On the other hand, if W
was used instead of W, in the definition of the test suite, then ba would not be
contained in Z, so no fault would be detected.

4.3 General Type of FSMs

We now consider the general type of FSM specifications. First, note that the
test suite given above may not be valid when the specification is not quasi-
deterministic. Consider, for example, M7 as represented in Fig. B (a), m’ = 3
and [= 4. M; is not quasi-deterministic since states 0 and 1 are neither r(1)-
distinguishable nor X'-equivalent. All states of M7 are d-reachable and pairwise [-
dissimilar. Then, according to the above definitions, S = {€,a,aa}, W = {a, aa}
and Z = SXY[1W. N X[4] \ {¢}. Consider M as defined in Fig. [(b). It
can be observed that Mj <sup 2wy Mi, but M{ <g; M; does not hold
for any sequence s € X2{bb}. Since Z N X?{bb} = 0, Z will detect no fault
in Mj.

Intuitively, this happens because, when M is not quasi-deterministic, there
may be states p’ and ¢’ in the implementation M’ that are r-distinguished by
shorter sequences than those that r-distinguish the corresponding states p and ¢
of the specification M. In our example, states 0 and 1 of M are r-distinguished
by {b}, whereas states 0 and 1 of M; are not r(1)-distinguishable and a longer
sequence, aa, is used to r-distinguish between them. Consequently, the incorrect
transition h'(2,b) = (0,1) cannot be detected by the above Z, since b was not
included in W. On the other hand, the sequence aabaa € SX[1]W, which results
from the inclusion in W of the distinguishing sequence aa, has length 5 and,
consequently, will not be contained in the test suite.

Now, observe that a sequence s can r-distinguish states p’ and ¢’ of the im-
plementation only if the corresponding states p and ¢ of the specification are
not {s}-equivalent, i.e. there exists g € I'* such that (s,g) € (Lay(p) \ La(q)) U
(La(@)\Larr(p)). Thus, the problem can be addressed by extending W to include
any sequence s for which there exist states of M that are neither {s}-equivalent,
nor r(||s||)-distinguishable. Then the definition of a strong I-characterization set
can be extended to the general type of FSM as follows:

Definition 3. A set W C X* of input sequences is a called a strong [-
characterization set of M, [> 1, if the following two conditions hold:

Bounded Sequence Testing from Non-deterministic Finite State Machines 65

— For every states p and q of M and every k, 0 < k < [—
max{levelps(p),levelpr(q)}, for which p and q are r(k)-distinguishable, W
r(k)-distinguishes p and gq.

— s € W for every s € X* for which there exist states p and q of M with
IIs|l < 1 — maz{levelp(p),levelni(q)} such that p and q are neither {s}-
equivalent nor r(||s||)-distinguishable.

With this revised definition of W, the construction of the suite remains the same
as for quasi-deterministic FSM specifications. The following two sections of the
paper provide the formal proofs to validate this construction.

For M in the above example, states 0 and 1 are neither {b}-equivalent, nor
r(1)-distinguishable. Thus W = {a, b, aa}. Then aabb € Z = SE[1|W.NX[4]\{e},
so M’ <z M does not hold.

Consider again M as represented in Fig.[Il m’ =4 and | = 4. S = {¢,a,aa}
is a proper state cover of M and Qg = {0, 1,2}. The pairs of states (0, 2), (0, 3),
(1,2) and (1,3) are r-distinguished by {b}; 0 and 1 are r-distinguished by {ab}
and are Y-equivalent. Since states 2 and 3 are Y-equivalent, no other sequence
needs to be included in W. Thus W = {b, ab} is a strong [-characterization set of
M. The maximal sets of pairwise [-dissimilar states of M are Q! = {0, 1,2} and
Q? = {0,1,3}. Thus Q§ = {0,1,2} and Q% = {0,1} and the two termination
criteria for TrIO(q) give m’ — |QL| +1=4—-3+1=2and m' — |Q%| +1 =
4 — 2+ 1 = 3, respectively. The tree generated in the construction of T'rIO(1)
is represented in Fig. @l A node is a leaf if the path from the root to it has
visited (after the root) n; = 2 states from Q! or ny = 3 states from Q2. On
the other hand, only paths of length at most I — levelp(1) = 4 — 1 = 3 need
to be constructed; in Fig. @ the remaining branches are drawn with dashed
line.

(a) v[\a/o
. a/l; b/0,1 ‘ a/l; b/1,2
b/l
(b) Aa/O
. a/l; bl0 . a/l; b/2
b/l

Fig. 3. The state-transition diagrams of M7 (a) and M (b)

5 The [-Bounded Product FSM

In order to compare the languages associated with two observable FSMs M
and M’, one can build a cross-product of their states, such that states (q,q’)
of the cross-product FSM correspond to pairs of states ¢, ¢ in the two FSMs.

66 F. Ipate

Fig. 4. The tree associated with TrI0(2)

A transition on input o and output v between states (q,¢') and (p,p’) exists
in the cross-product FSM if and only if the transitions (p,7y) € h(q,0) and
(p',v) € W (¢',0) exist in M and M’, respectively. The result of such a construc-
tion corresponds to the intersection of the languages L(M) and L(M'). When
checking that M’ is a reduction of M, a transition in M’ that is not allowed by
M will lead in the cross-product FSM to a Fail state. When only the results
produced by the two FSMs in response to input sequences of length at most
| are compared, an integer 7, 1 < ¢ < [, can be added to the state space and
incremented by each transition. No transition needs to be defined for ¢ = [. The
resulting construction will be called an I[-bounded product FSM of M and M’.

Definition 4. Given I > 1, the Il-bounded product FSM formed from
M = (X, IQ,h,q) and M' = (X,I,Q',},q}) is the FSM P(M,M’) =
(X, I,Qp,H,(q,49,0)) in which Qp = Q x Q" x {0,...,1} U {Fail} with
Fail ¢ Q x Q' x {0,...,1} and H is defined by the following rules for all
(¢,¢),(p,p)eQxQ,ie{0,....1 -1}, 0 € X andye I:

— if (p,7) € h(g,0) and (p',7) € W' (¢',0) then ((p,p,i+1),7) € H((q,q',7),0).
—if (p,y) € (¢, o) and v ¢ ha(q,0) then (Fail,y) € H((q,q,i),0)

and is undefined elsewhere.

As M and M’ are observable, P;(M, M’) is also observable (when M and M’
are both deterministic, P,(M, M’) is also deterministic [8]). On the other hand,

Bounded Sequence Testing from Non-deterministic Finite State Machines 67

P(M, M’) is not completely specified even though M and M’ are completely
specified. More importantly, checking M’ <sp;; M corresponds to establishing if
the Fail state of P,(M, M) is reachable.

Lemma 1. The Fail state of P,(M,M') is not reachable if and only if
M' <sp M.

Proof: From Definition] it follows that, for every s € X* and g € I'*,
Hy((q0,90,0),s) = Fail if and only if s = sy0 with s; € X[l — 1] and 0 € X and
g = g1y with g1 € I'[l — 1] and « € I" such that g1 € ha(qo, s1) N h5(q), s1) and
917 € hy(qp, 510) \ ha(qo, 510).

6 State Counting for Bounded Sequences

State counting can now be used to prove that, whenever the Fail state is reach-
able, it will be reached by some sequence in the test suite. As in the unbounded
case, it will be shown that the test suite contains all “minimal” input sequences
that could reach Fail. Among the shortest sequences, the minimal sequences
are those for which also the “distance” (defined in what follows) to the set S is
the shortest. The basic idea is similar to that used in bounded sequence test-
ing from deterministic FSM specifications [8]; however, when considering non-
deterministic FSMs, we have to take into account that non-equivalent states may
not necessarily be r-distinguishable (see Lemma [)).

Given z € X* and A C X* with € € A, the length of the shortest sequences(s)
t € X* for which there exists a sequence s € A such that st = z is denoted by
d(z, A), i.e. d(xz, A) = min({||t] | t € 2*,3s € A- st = x}. Since € € A, the set
{t € X* | ds € A- st ==z} is not empty, so d(z, A) is well defined.

Lemma 2. Let p,qg € Q, p',¢' € Q', U C X* and k > 0. If p <ynxp p»
¢ <vnx ¢ and U r(k)-distinguishes p and q then U r(k)-distinguishes p’ and q'.

Proof: Follows by induction on k.

Lemma 3. Let s € S and t € Tr(gs) such that ||st|| < 1 and s is the longest
prefiz of st that is in S. If M" <(sugsiprefywonsi M then there exist y; €
{s}pref()\{s}, y2 € SUpref(y1)\{y1} and w1, ws € I'* such that the following
two conditions hold:

= lly2ll <llyall or lly=ll < llyall and d(y2, S) < d(y1,5)

= Hu, (90, 9,0),91) = (a1, lsnll) and Hu,((90,490,0), y2) = (a2, 4", [ly2ll) for
some states q1,q2 € Q and ¢ € Q' such that Lar(q1) N L (¢') N (X x Il —
ly1lll = Lar(g2) N Lare(¢") 0 (2 x D) = [lya[]-

Proof: Let i, 1 § 1 < j. Suppose s; and s are two distinct elements of S such
that gs,,¢s, € Q" and let ¢}, € hi(qo,s1) and q;, € hi(qo, s2). Since g, and gs,
are [-dissimilar there exists k, 0 < k <1 — mazx{levelp(gs,), levelps(gs,)}, such
that ¢s, and gs, are r(k)-distinguishable. As W is a strong [-characterization set

68 F. Ipate

of M, W r(k)-distinguishes g5, and gs,. Since M' <gwnxp M, ¢, <wnsk s
and ¢, <wnsk s.- Thus, by Lemma 2] ¢; and ¢, are r(k)-distinguishable.
Consequently, the sequences in S will reach at least |Q%| distinct states of M.

On the other hand, since ¢ € Tr(gs), there is some g € I'* and i, 1 < i < j,
such that (t,g) visits states from Q° exactly m’ — card(Q%) + 1 times when
followed from gs. Since S has already reached at least |Q%| states, there will
be a state ¢’ of M’ that either has been visited twice by (¢,g) or has been
reached by some sequence in S. Thus, there exist y; € {s}pref(t)\ {s}, y2 € SU
{stpref(y1) \{y1} and wi, w2 € I'* such that hy, (g0, y1) = ¢1, hw, (90, y2) = g2,
hy, (46,y1) = ¢' and hy, (q),y2) = ¢'. for some states q1,¢2 € Q" and ¢’ € Q'.
Then Hw1((q07 Q670)7 yl) = (ql; qlv ||y1||) and sz((qm q(/)7 0)7y2) = (q27q,7 ||y2||)

Let p = max{||ly1]], ||ly2|l}. We prove by contradiction that ¢; and g2 are not
r(l — p)-distinguishable. Assume ¢; and g2 are r(I — p)-distinguishable, p < I.
Since W is a strong [-characterization set of M, W r(l — p)-distinguishes ¢;
and g2. On the other hand, since M" <¢, v rwnsy M, ¢ <wnsp—u @ and
¢ <wns—y g2- Thus, by Lemma[2 W would r(l — p)-distinguish ¢’ from itself.
This is obviously a contradiction.

We now show that ||y2|| < ||y1]] or ||y2]| < ||y1]| and d(yz2,S) < d(y1,5). If yo €
pref(y1)\ {1} then [lya|] < |1yl Otherwise yp € S\ {5}, 50 [l || = levelar(g2)-
Then there are two cases:

— q1 = q2. Then levelpr(g2) < |ly1ll so |lyz]l < |ly1]|- Since y1 ¢ S and y2 € S,
Az, 8) < d(yn, S).

— ¢q1 # q2. We prove by contradiction that ||ys|| < |ly1]|- Assume ||y1]] < [|y2]|-
Then levelpy(qr) < |l < |ly2l] = levelp(g2). Hence levelpy(q1) <
levelpr(g2) = |lyz2||- As q1,¢2 € QF, q1 and g2 are r(l — ||y2||)-distinguishable.
On the other hand, we have shown that ¢; and ¢ are not r(l — p)-
distinguishable. Since p = ||yz||, this is a contradiction.

Thus [lyal| < [lyall or [lyzll < llyall and d(y2, S) < d(y1,S). Since [ly2]| < [ly1],
= ||ly1l], so g1 and g2 are not r(I — ||y1||)-distinguishable.

Finally, we prove by contradiction that Las(q1)NLar (¢)N(Ex D)l —|ly1ll] =
Lp(g2) N Ly (¢') N (X x)|l — |ly1]l]]. Assume otherwise and let (so,g0) €
Lae(@) N (5 x D= yal] 0 (Earlaa) \ Lar(an) U (Lar(ar) \ Lar(g2)))- Since
W is a strong [-characterization set of M and ¢; and g2 are not r(l — ||y1]|)-
distinguishable, so € W. As M’ S{yhyz}WﬂE[l] M and ||y280|| < ||y1$o|| <l it
follows that M’ <(y, s, .y.s03 M. Thus, since (so, go) € Lar(q"), (50, 90) € Lar(q1)
and (so, g0) € Lar(gz). This provides a contradiction, as required.

Lemma 4. Let (q1,¢,71),(q2,¢,J2) € Q x Q' x {0,...,1},0<jo < jy <1-—1,
and (z,w) € (XX I')[l—j1]. Suppose Lpr(q1)NLar (¢)N(XZXT)[1—j1] = Lar(g2)N
Ly (@) (2 x D)l = j1]. If Hy((q1,4,j1),2) = Fail then Hy((q2,4¢, j2),x) =
Fail.

Proof: If Hy,((¢1,¢',j1),x) = Fail then x = so with s € X[l —j1 — 1], 0 € ¥
and w = gy with g € I'[l — j1 — 1], v € I" such that g € ha(q1,s) Nh5(¢', s) and
g7 € hh(q', so) \ ha(q1, so). Since Lar(q1) N Ly (¢)N (X x Tl — j1] = Lar(gz) N

Bounded Sequence Testing from Non-deterministic Finite State Machines 69

Ly (@)D (X x)|l = 1], g € ha(qa, s)Nhh (¢, s) and gy € hh(¢', s0)\ ha(ge, so).
As jo < j1, it follows that Hy((q2,¢’, j2), x) = Fail.

Lemma 5. If M’ <z M then the Fail state of P,(M,M') is not reachable.

Proof: We provide a proof by contradiction. Assume Fail is reachable and let
X be the set of all sequences of minimum length that reach Fail. Let u =
min{d(z,S) |z € X} and X, = {z € X | d(z,5) = pu}.

We prove by contradiction that X, N (U,cg{stpref(Tr(qs))) # 0. As-
sume X, N (Usegistpref(Tr(qs))) = 0 and let o € X,. Then z ¢
Usesistpref(Tr(gs)). Since € € S, x € SX*. Let s € S be the longest pre-
fix of x that is in S. Then = = stu, for some ¢t € Tr(gs) and u € X* \ {e}
with ||stu|| <1 and there exist g,v € I'* such that g € ha(qo, st) N h5(gp, st) and
gv € hb(qf, stu)\ ha(qo, stu). Since M’ <z M and (SU{s}pref(t)W.)NX[l] C Z,
by Lemma [B] there exist y1 € {s}pref(t)\ {s}, y2 € SUpref(y1) \ {y1} and
w1, we € I'* such that the following two conditions hold:

= llw2ll < llyall or [ly2ll < llsn [l and d(y2, §) < d(y1,5)
- le((quQ6a0)7yl) = (Q17q/7 ||y1||) and HUJQ((qoaQ67O)ay2) - (Q27q/7 ||y2||) fOI‘
some states q1,¢2 € @ and ¢’ € Q' such that Ly (q1) N Lar (¢)N(E x D[l —

ly1ll] = Lar(gz) N Lar (¢") N (X x T)[L = |lyall]-

Let z € X* such that st = y;2z and w, € I'™* such that ¢ = wjw,. As
Hy,((90,90,0),2) = Fail, Hy,»((q1,4¢,]|y1]]), 2u) = Fail. Then, by Lemma
B Hy.o((g2,d, |ly2l), 2u) = Fail. Thus Hyyw,v((90, 4}, 0), y22u) = Fail. If
lly2ll < |ly1]| then yozu is a sequence shorter than x that reaches Fail. Thus
x ¢ X, which is a contradiction. Otherwise, ||yz|| = |ly1]| and d(y2, S) < d(y1,S).
Since no sequence in {y; }pref(zu) is contained in S, d(y2zu,S) < d(y1zu, S).
Consequently ||y2zul| = ||z| and d(y22u,S) < d(z,S). Thus = ¢ X,,, which
provides a contradiction, as required. Hence X, N (U,cg{s}pref(Tr(gs))) # 0.

On the other hand, since M’ <z M, no sequence in Z will reach Fail. Thus
X, NZ =10. As U,cq{stpref(Tr(qs)) C Z, this provides a contradiction, as
required. Hence F'ail is not reachable.

Theorem 1. M’ <y M if and only if M' <z M.

Proof: “=7: Obvious, since Z C X[l]. “<”: Follows from Lemmas [l and [

7 Conclusions

This paper extends the state counting based method of deriving tests from a non-
deterministic FSM to the case of bounded sequences. The method for bounded
sequences has practical value, as many applications of finite state machines ac-
tually use only input sequences of limited length. In such applications, the test
suite produced may contain only a small fraction of all sequences of length less
than or equal to the upper bound. The test suite for M,, in our example (Fig.
(a)), W =n+2 and [= n + 1 will contain only (n? + 9n + 6)/2 sequences out
of a total of 22 — 2 sequences.

70

F. Ipate

Improvements in the size of the test suite may be obtained by using only

subsets of W to identify the states reached by the sequences in Tr(gs), in a
way similar to the Wp method for unbounded [3] and bounded [§] sequences.
This will be the subject of a future paper. Possible future work also involves the
generalization of these bounded sequence testing methods to classes of extended
finite state machines, such as stream X-machines [6].

References

10.

11.

12.

13.

14.

. Campeanu, C., Santean, N., Yu, S. Minimal cover automata for finite languages.

Theoretical Computer Science, 267, 3-16 (1999)
Chow, T. S. Testing software design modeled by finite state machines, IEEE Trans-
actions on Software Engineering, 4(3), 178-187 (1978)

. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M. and Ghedamsi A. Test

Selection Based on Finite State Models. IEEE Transactions on Software Engineer-
ing, 17(6), 591-603 (1991)

Hierons, R. M. Adaptive testing of a deterministic implementation against a non-
deterministic finite state machine. The Computer Journal, 41(5), 349-355 (1998)

. Hierons, R. M. Testing from a Non-Deterministic Finite State Machine Using Adap-

tive State Counting. IEEE Transactions on Computers 53(10), 1330-1342 (2004)
Holcombe, M., Ipate, F. Correct Systems: Building a Business Process Solution.
Springer Verlag, Berlin (1998)

Ipate, F. On the Minimality of Finite Automata and Stream X-machines for Finite
Languages, The Computer Journal, 48(2), 157-167 (2005)

Ipate, F. Bounded Sequence Test Selection from Finite State Machines, submitted.
Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State
Machines - A Survey. Proceedings of the IEEFE, 84(8), 1090-1123 (1996)

Luo, G. L., Bochmann, G. v. and Petrenko, A. Test selection based on commu-
nicating nondeterministic finite-state machines using a generalized Wp-method.
IEEE Transactions on Software Engineering, 20(2), 149-161 (1994)

Petrenko, A., Yevtushenko, N., Lebedev, A. and Das, A. Nondeterministic state
machines in protocol conformance testing. In Proc. of Protocol Test Systems, VI
(C-19), Pau, France, 28-30 September, Elsevier Science, 363-378 (1994)

Petrenko, A., Yevtushenko, N., Bochmann G.v. Testing deterministic implemen-
tations from nondeterministic FSM specifications. In Proc. of 9th International
Workshop on Testing of Communicating Systems (IWTCS’96), Darmstadt, Ger-
many, 9-11 September 1996, Chapman and Hall, 125-140 (1996)

Sidhu, D. and Leung, T. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering, 15(4), 413-426, 1989.

Yevtushenko, N. V., Lebedev, A. V. and Petrenko, A. F. On checking experiments
with nondeterministic automata. Automatic Control and Computer Sciences, 6,
81-85 (1991)

LaTe, a Non-fully Deterministic Testing
Language

Emmanuel Donin de Rosiere!, Claude Jard?, and Benoit Parreaux!
! France Télécom R&D,

2 Avenue Pierre Marzin 22307 Lannion, France
emmanuel .doninderosiere@francetelecom. com,

benoit.parreaux@francetelecom.com

2 ENS Cachan,
Campus de Kerlann, 35 170 Bruz, France
claude. jard@bretagne.ens-cachan.fr

Abstract. This paper presents a case study which is the test of a voice-
based service. To develop this application, we propose new functionalities
for testing languages and a new language called LaTe that implements
them.

With LaTe, one testing scenario can describe several different execu-
tions and the interpreter tries to find the execution that best fits with
the real behavior of the System Under Testing (SUT).

We propose an operational semantics of these non-deterministic op-
erators. Experimental results of the test of the voice-based service are
also included.

1 Introduction

The world of testing languages remains complex and dense: there are often more
than one language by application domain, e.g. hardware testing [I,2], protocol
testing [3], component testing [4L[5]. .. Several systems take programming lan-
guages in order to use them for testing purpose [6,[7]. One objective of this
paper is to experiment with a paradigm that is non-deterministic testing. De-
spite a more complex interpretation, we will prove that this can increase the
quality of black box testing languages (also called functional testing languages)
on complex SUT.

This paper focuses on black box testing, i.e. the fact of testing a system where
inputs and outputs of functions are known, but internal code structure is irrele-
vant. It is a form of testing which cannot target specific software components or
portions of the code. So, in the rest of this article, we will use the same definitions
than TTCN [8] which is the reference in this domain. This language, in its ver-
sion 3, tries to be as generalist as possible and the most independent of the SUT.

SUT are more and more complex (and sometimes non-deterministic), so we
need a testing language that has to be as powerful and expressive as a program-
ming language. This is exemplified by the evolution of TTCN. Another instance

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 7188} 2006.
© IFIP International Federation for Information Processing 2006

72 E. Donin de Rosiere, C. Jard, and B. Parreaux

is Tela (an UML 1.4 based testing language) [9], which gives lots of control struc-
tures like loops, branches, guards, interleaving and so on. However, Tela is more
a test description language than a test execution language.

New operators which are resource-greedy can be proposed if they have good
qualities because the time of test execution is not something important in our
context. For decreasing the cost of learning a new testing language, they must
be as easy and generalist as possible in order to test several different SUT with
the same testing language (e.g. web services, java SUT etc).

This paper is organized as follows. In the next section, we present LaTe, a
testing language which implements non deterministic operators. We also give
the semantics of these operators. Then, we give some information about the
case study: testing a voice-based service and the actual difficulties. Section H is
dedicated to the test architecture of the experiments and to the examples of test
cases in order to show the pros and cons of the constructions proposed here.
Finally, we discuss the results and conclude.

2 Presentation of LaTe

One of the aims of this study is to show that non-deterministic operators can
be very useful in testing languages. In order to evaluate these new operators,
we have created a new language, but they could be added in a more complete
language like TTCN. In this section, the main characteristics of LaTe will be
presented. Then a description of the non-deterministic operators will be given.
Finally, we will see the power of these operators and LaTe through a small
example of unanimity vote.

2.1 Main Requirements
In Late, we try to select some important features:

Genericity: The language should be able to test different SUT. It is unfortunate
to have to learn a different testing language for each system you want to test.
So, it is better if an unique language can test every SUT (may be through
an adaptation layer). As in TTCN, the use of SUT adapters can be useful.
Nevertheless, unlike TTCN, it is interesting to write only one SUT adapter
to test different SUT of the same type, e.g. one SUT adapter for testing
all the SUT written in JAVA, one SUT adapter for Web services. Actually,
three SUT adaptor factories have been written: the Java one, the C one and
the socket one and. They contain respectively 250, 400 and 100 lines of code.
It was very easy to write them because of the use of reflection in Java and
the Java Native Interface that allows use C functions in Java code.

Using stubs: It is sometimes useful to develop stubs in order to test some SUT.
But, in most languages, the user needs to write a specific stub for each
test case. In addition, the interactions between the SUT and the tester and
those between the stub and the SUT are often described separately. Thus,
it is necessary to add synchronization points in the scenario in order to

LaTe, a Non-fully Deterministic Testing Language 73

express precedence between an action of the tester and one of the stub. With
LaTe, like for SUT adapters, you need to write only one stub constructor to
create stubs for a specific type of SUT and all the interactions between
stubs and the SUT are directly written in the global scenario. For example,
the following code specifies the creation of a Java stub that implements the
interface MyInterface.

mystub:=createStub("Java","MyInterface");

//You create a stub

callSut (mysut,"register",mystub) ;

//You send it to the previously created sut
stubcall:=getCalled(mystub) ;

//You verify that the stub is called by the sut

This example shows that you can easily describe the general behavior of the
system. In a system where you must separate the behavior of the stub and
the tester component, the tester has to send a message to the stub in order
to inform it that the call to the SUT have been made and it will receive a
call from it. With our scenario, it is more compact and we can easily show
the event succession.

Powerful API: SUT become more and more complex and non deterministic. A
large collection of APIs is then needed to check that the value returned by
the SUT is in accordance with the specification. The easiest way to have a
large collection of API is to allow testers to use API from a programming
language. In our language, we can easily use the Java APIs.

Dynamic language: Just like above, some SUT can create dynamically PCO
(Point of Control and Observation) so we need to discover them during the
execution of the scenario and dynamically connect to these PCO.

Something like a scripting language: Sometimes, the tester needs to test in
real-time the SUT. For example, when the tester debugs a test scenario, he
may need to have a console to execute his own commands. So an interpreted
language will therefore be more useful than a compiled one. Moreover, it will
be easier to have a dynamically typed language in order to write quickly the
scenario and avoid the check and cast of values each line.

2.2 Non-deterministic Operators

As mentioned above, SUT become more complex, and this complexity leads
to more non determinism. However the non determinism in a SUT is some-
thing quite difficult for a test writer because he has to infer the possible state
of the SUT. So he has to add lots of if ... then ... elsif ... and if it
cannot distinguish two cases, he may have to indicate an inconclusive verdict.
Unfortunately, some SUT are intrinsically non deterministic: there are not fully
observable, so we cannot know their internal state just from their outputs. To
succeed in testing non deterministic SUT, we have hadded two non determin-
istic operators in the language. These operators are the non deterministic in-
terleaving and the non deterministic choice. They are presented in details in

74 E. Donin de Rosiere, C. Jard, and B. Parreaux

this section. Note that a similar paradigm has already been used in the procol
testing domain in [I0].

In a nutshell, the solution of the non deterministic SUT problem is to have
different executions at the same time for the same scenario. When a divergence
point is found in an execution, several executions are created in order to cover
all the possibilities. When a contradiction is detected in an execution, then this
execution is stopped and destroyed. The test passes when there is at least one
execution that arrives at the end of the scenario, otherwise, it fails.

The first non-deterministic operator we define is noted ||. It represents a
choice in a scenario. For instance, a:=3||a:=5 means that we have two exe-
cutions: one where a equals 3 and another where a equals 5. All statements
afterwards will be executed twice, once for each execution.

It can be done because the statements in one execution are independent of
the ones of another execution. However, communications between the tester and
the SUT do modify the state of the SUT, so precautions must be taken before
executing these instructions.

In LaTe, when an execution wants to send a message, it always requests it to
a component that can view all the current executions.

The other non-deterministic operator is noted &&. It represents a non deter-
ministic interleaving. It executes all of the possible interleavings of two given
branches. For example, {A;B}&&{C;D} is equivalent to:

{A;B;C;D}| {A;C;B;D}|{A;C;D;B}| [{C;D;A;B}| |{C;A;B;D}| |{C;A;D;B}.

This operator helps to easily describe two independent behaviors. For ex-
ample, when stubs are used in a scenario, it allows to specify that the behav-
ior of one is independent of the other. Nevertheless, the longer the branches
are, the more different executions are evaluated. Thus, in order to decrease
this number, we decide that only communication with the SUT statements will
cause the evaluation of new execution. For instance, with the following sce-
nario: { 7a; assert(a==5) } && { ?b;assert(b==6) }, only two executions
will be evaluated: ?a;assert(a==5) ;7?b;assert (b==6) and ?b;assert (b==6) ;
7a;assert(a==5) instead of the 6 possible interleavings. We can do this be-
cause we suppose the instructions that do not communicate with the SUT can
be executed in any order without changing anything. This can be true only if
a statement of a particular branch cannot influence other branches. In order to
prevent this, we implement a locking variable system: if a variable is modified
in a particular branch, it cannot be read or written in other branches. With all
these restrictions, we can verify the initial hypothesis.

As we said before, we need a component that can view all the executions in
order to decide which messages can be sent and when. This component will be
called top level in this article. Each time an execution wants to send a message,
it sends a request to the top level. If all the executions want to send the same
message, the top level emits it and wakes up all the executions. If all the execu-
tions want to emit different messages then the top level may choose randomly

LaTe, a Non-fully Deterministic Testing Language 75

an execution, sends the corresponding message and destroys the other messages
or may stop the evaluation of the scenario and returns an error depending of the
configuration of the LaTe interpreter.

2.3 Operational Semantics

In the following equations, B(S) denotes the set of all subsets of S, e the con-
catenation operator and . the shuffle product.
Let] be the following semantic operator:

[l P x (5 x RT)® x RY x B(Ze x RY) —

PP x (X, x RN)® x RT x P(X. x RT) x P(X, x RT)))

P corresponds to the set of all programs formed by waiting, sending and
receiving statements and interleaving, alternative and sequence operators. It
also contains the null program (FPp).

X is the set of messages that can be sent by the SUT and X, is the set of all
messages sent by the tester.

This operator expresses the set of all possible futures from a program P, a
trace o’ containing the received messages and their arriving times, the current
time, and a list of sendable messages. Each future is made up by the remaining
program to execute (which can be null), the current time, the list of sendable
messages and the set of messages to send. If the remaining program is null, then
all the statements were executed else the execution is waiting for the authoriza-
tion to send a message to the SUT.

The null program can be executed but does not modify the context:

[Po,0",t,a] = {(Po, 0", t,a,0)} (2)

Let ?7e<% be the statement meaning that the next message received must be e
and that it must arrive before w seconds. If it is true (¢*(0) = ™ and t+w > 7),
then e is deleted from the trace and the clock is moved forward by 7.

{(Py, 0 t+71,a,0)} ifoi(0)=e" At+w>T

10} otherwise

[7e<%, 0", t,a] = { (3)

Let !E be the statement that means E must be sent to the SUT. First, if £
belongs to the set of sendable messages, it is sent. If not, the execution is stopped,
and E (associated with the current time) is added to the list of messages we want
to send. We also verify that any more incoming message does not arrive.

{(Py,0%t',a\ {e},¢)} if W, t" eRT,If € X
e cana'(0)=f Nt >t
e, t,a] = < ¢ if vt/ e RY,3t" e RT,If € X| (4)
e eand'(0)=f" A" <V
{(le,a*,t,a,{e'})} otherwise

76 E. Donin de Rosiere, C. Jard, and B. Parreaux

In order to execute P;(@Q, P is executed first with the current environment.
Then, for each possible future where all the statements were executed, @ is exe-
cuted with the new environment. For each future where a sending authorization
is awaiting, the remaining program is rebuilt.

[[P’ Q7 0—27 t’ a]] = U{IIQ’ 0—]7 tl? a/]”(PO’ 0—]7 tl? al’ ¢) 6 [[P7 0—27 t7 a]]}
U J{(PQ. 07t d,d)|(P',07 ¥ ,d,d) € [P,o"t,a] A P' # Py}
()
The possible futures of P||Q are the union of possible futures of P with those
of Q: 4 ' '
[Pl|Q,0" t,a] =[P, o",t,a] U[Q, 0", t,d] (6)

The interleaving operator (&&) is the most complex operator in these
semantics.

In order to execute P&&Q, P and Q are executed separately. To do this, two
disjoint sets a, and a, are extracted from a. Each set corresponds to the part
of a used by each process. o \ 0/ is also divided into two parts thanks to two
projections h;, and hgy. If the two processes are fully executed, the execution is
well finished and the new current time is the maximum of the two final times.
If at least one of them is waiting for a sending authorization, the state of the
program is rebuilt at the moment of the send of the message. Therefore, waiting
times (S(t' —t) and S(¢" —t)) have to be added in order to take the passing time
into account.

[P&&Q, o t,a] = {(Py, 07, max(t',t"),a\ (ap Uay), ¢),3j > i,
3hy, hg € Projection, 3t',t" € RT, Ja,, aq € P(Xe x RT)
lc*\ 07 € hy(o"\ 07) wihy(o"\ o)
A (Po, 07 t,¢,¢) € [P hy(o"\ 07) @0l 1 a,]
A (P07 Uja t7 ¢7 (b) € [[Qa h’q(o'i \ UJ) L4 O-ja tllv a’p]]
NapNag=¢ANay, Calay Ca}l
UL((S(t' —t); PY&&(S{H" —1);Q"), 07, t,¢,dp Udy) \3j > 1,
3hy, hy € Projection, 3t',t" € RT, Ja,, a, € P(Xe x RT)
0\ 07 € hylot \ o) why(07 \ o)
A(P ol t' ¢, dy) € [P hy(c" \ o?)eo? t,a,]
/\ (Q/a O-ja tllv ¢7 dq) 6 [[Q7 h’q(ai \ O-j) L4 Uj7 ta aq]]
NapNag=¢NapUag=aAd,Ud, # ¢}
(7)

We have just seen that some executions may enter in a waiting state. In fact,

an emission is something that cannot be cancelled. As a result, we have to check

that all executions want to send the same message. Indeed, in order to choose
what and when an emission can be made, we must have a total view of all the

LaTe, a Non-fully Deterministic Testing Language 77

executions. It is why the use of a top level is unavoidable. It is the only element
that can see the global state of the tester. This component gets back the emission
requests, computes them in order to find if the executions are determinable. After
that, it gives the authorization to send messages.

Let T'L be semantics of the top level:

TL: PP x (L, x RT)™® x RT x P(X. x RT) x P(X. x RT)) — Bool
TL is defined as follow:

true if 3o € (X, x RT)>® 3t € RY|(Py, 0", t,¢,¢) € P,
TL(NH[P,0,t,d]|Fa € P(Xe x RY), (P,0,t,¢,a) € P,}) if 3d
EP(Z. xRY) , d={em)|vd;, 3t; et € d}Nd# GNPy # ¢
false otherwise

TL(Py) =

(®)

If one possible future finishes its execution, the trace conforms to the testing
scenario. Otherwise, all the executions are waiting at least one sending autho-
rization. If the intersection of all of these requests is not empty, we authorize
their emission. In any other cases, we cannot find a consensus. Thus, the test is
declared false. Denote that the same emission for different executions must be
done in the same time (because there can be only one real emission). We emit
therefore this message at the maximum time given by all executions.

With these semantics, we do not assure that the emission will immediately
take place when the request is made. We use a best effort policy. Nevertheless,
these semantics can be easily modified in order to emit the message immediately,
but it risks compelling too much the executions of the scenario.

Finally, we just have to compute TL([P,c",0, ¢]) to find if a trace o satisfies
a program P.

2.4 An Example: Unanimity Vote

We point out some of the advantages of these operators through a small example:
a system of unanimity vote. Here, the SUT is a java class that can be called to
register to the electoral list an object implementing a particular interface. When
a question is asked to the SUT, it transmits the question to some electors. These
calls can be executed concurrently and if one of the electors replies false, the
returned value of the SUT will be false and all the electors may not be asked
to vote (it is a unanimity vote).
This example is quite difficult to test using classical systems because:

— it has to use stubs for electors and has to control each stub;

— some of the interactions are concurrent. We have to verify if the test scenario
agrees with all the possibilities of interleaving the SUT interactions;

— it contains lots of non-determinism: if one of the electors replies false, the
SUT may continue to call all of the electors but it also can stop and directly
replies to the tester. The test scenario must describe all of these cases.

78 E. Donin de Rosiere, C. Jard, and B. Parreaux

With LaTe, it is quite simple to write a testing case for this SUT. For example,
for 2 electors, the scenario may be the following:

1 mysut:=createStub("Java","SUT");

2 electorl:=createStub("Java","ElectorInterface");
3 callSut(mysut,"register",electorl);

4 //We create a stub and register it to the SUT

5 elector2:=createStub("Java","ElectorInterface");
6 callSut(mysut,"register",elector2);

7 //We create a stub and register it to the SUT

8

9 sutcall:=callSUT(mysut,"ask","Is 42 prime ?");
10 {

11 @<10*sec{stubcalll:=getCalled(electorl)};

12 replySUT (stubcalll,false);

13 //The SUT asks the question to the elector 1 and we reply false
14 3}

15 &&

16 {

17 {

18 @<10*sec{stubcall2:=getCalled(elector2)};

19 replySUT (stubcall2, true) ;

20 //The SUT may ask the question to the elector 2 and we reply true
21 }

22 I

23 {

24 }

25 //But it is optional

26 };

27 assert(getReply(callSut)==false);
28 //The answer is "false"

Listing 1.1. LaTe scenario for the unanimity vote

As mentioned above, LaTe evaluates all the possible interleavings of the sce-
nario. In other words, whatever the order of stub calls by the SUT and whatever
the number of called stubs, LaTe is capable of verifying that the execution fits
the specification described in the scenario. Time specification can also be easily
added by using the @ operator.

Nevertheless, LaTe may have difficulties to evaluate particular scenarios. For
instance, the pseudo code { 7a;'A } && { ?b;!B } is problematic if the SUT
sends the two messages a and b, without waiting for the replies A or B, because
this behavior is extremely non deterministic. All the executions are presented in
Figure [1l

In this example, if the SUT sends a and waits for A before sending b, there
is also a problem. All the branches beginning by 7b are not executable because

LaTe, a Non-fully Deterministic Testing Language 79

Fig. 1. All the possible interleavings

the first message received by the tester is a and the assertion 7b, which signifies
that the next message receive by the tester is b, will be broken. Thus, in the next
step, two executions are possible: ?b and !'A. The second execution (with ?b) is
in a waiting state, because the SUT does not send an additional message and
the first execution cannot emit A, because there is an execution that does not
want to send something. We are in a livelock. In order to resolve this conflict, the
scenario must contain information about timeouts in all the receive instructions,
e.g. if the 7b lasts more than 5 seconds, this execution will be destroyed, and
there will be only one possible execution (the first one). The evaluation of the
scenario will continue.

In other case, if the SUT sends the two messages a and then b without waiting
for the replies A or B, there will be another problem. Three executions will be then
possible. They are displayed with dash in Figure[ll Two of these executions want
to send A and the last intends to emit B. This is because of the exact symmetry
of the test scenario (there is no difference between the two stubs). In this case,
we decide that LaTe may choose randomly an execution and continues it. Then,
LaTe prints a warning message in order to warn the tester that the scenario con-
tains conflicts. LaTe may also stop the execution according to its configuration.

Through this example, we can see some of the advantages of the non-deter-
minism operators of LaTe: they permit to easily describe the parallelism and
the non-determinism of the SUT. Although this example is an extreme case
of non-determinism associated with concurrency, we can test quite easily this
behavior. Nevertheless, the tester has to think of all possible executions. In the
next sections, a more complex example will be studied in details, the voice-based
service that we will just study: the vocal-based telephone directory.

3 Description of the Case Study: Testing a Voice-Based
Service

We decided to validate our approach on the test execution of voice-based services
and particularly a vocal-activated telephone directory. In this service, the user
gives a name and the service seeks this name and then proposes to put the

80 E. Donin de Rosiere, C. Jard, and B. Parreaux

user in relation with the found number. In the case of homonyms, the service
proposes several solutions and requests the user to choose the solution which is
appropriate to him.

The new voice-based services use intensively speech synthesis and recognition.
These functionalities simplify the access to the voice-based services but compli-
cate their validation. Indeed, they produce lots of non-determinism if we try to
automatically test it. For example, the volume and the speed of the voice during
two different conversations can change. If we need to recognize automatically
the sentences pronounced by the voice-based services using a speech recognition
tool, we should make the verdict even more random.

Furthermore, the use of speech recognition for the tester also increases the non-
determinism of all the system. Many factors can affect the result of the speech
recognition such as the quality of the transmitted messages and the quality of the
line and so on. It is possible for a same message to be correctly recognized the first
time but not the following times. Thus, the presence of speech recognition and
synthesis causes a significant number of inconclusive verdicts during automatic
tests.

One current solution for this problem is to replace all speech signals emitted
and expedted by the platform by DTMF (Dual Tone Multi Frequency) signals.
These signals are the sounds produced when you dial a number with your phone.
This solution is not completely satisfactory because it requires the modification
of the voice-based service. The verdict of the tests can also be deteriorated by
these modifications. The other solution is to carry out the tests, taking the risk
of obtaining a significant number of inconclusives verdicts. No other solution
are possible with common testing languages. The language that we propose in
this article enables us to bring a new solution to this problem by using non-
deterministic operators in the test scenario. So this vocal-based phone directory,
although very simple, is enough to clarify the interests of our language.

4 Methodology of the Experiment

In this section, we will see in details how the vocal-based telephone directory
was tested using LaTe. First, we will see the test architecture of this experiment,
then we study the communication protocol between the tester and the calling
platform. Finally, some test scenarios will be presented.

4.1 Test Architecture

In section [B] we discussed in details how works the vocal-based telephone direc-
tory testing here. Thus, we develop a special test architecture in order to allow
the tester to connect to the voiceXML service. This architecture is represented
in Figure

The tester represents the machine where LaTe and the scenarios are executed.
It communicates through a socket with the call API. This computer is linked to a
call card which can makes calls and conversation on an analogic line. Therefore,
this computer can call the voice-based service. As we just said, there is a dialog

LaTe, a Non-fully Deterministic Testing Language 81

)))
—/ —/ >
— — VoiceXML Service
Socket Analogic line
O O
Tester Call API
e’ e’)

Fig. 2. Test Architecture

between the tester and the call API through a socket. A special protocol has
been defined to allow the tester to test the service and obtain information about
the conversation. This protocol uses all of these messages:

BECMDCall num ENDCMD: this message asks the call API to call the number
num.

BECMDDTMF num ENDCMD: it asks the call API to simulate the pushing of a par-
ticular touch (defined by num) in the telephone keyboard. This is done by
emiting a special sound called DTMF during the conversation.

BECMDWaitDTMF num ENDCMD: this message asks the API to wait a particular
DTMF sent by the directory.

BECMDTalk file ENDCMD: it asks to play a particular file during the conversa-
tion. This file must be in a PCM format at a good frequency.

BECMDRecordAll file ENDCMD: it asks the API to record all of the conversation
in the file file. This conversation will be saved in a PCM format.

BECMDHangUp ENDCMD: sent when the tester wants to hang up.

BECMDEnd ENDCMD: sent when the tester wants to stop the communication be-
tween it and the calling computer.

For each of this message, the call API sends a corresponding done message
when the operation executed without any problem or a not started when a
problem occurs. Moreover, the call API can emit particular messages:

BEGINFDetect Speech ENDINF: it is sent when the call API discovers that there
is someone who speak during the conversation.

BEGINFEnd Speech ENDINF: it is sent when the call API discovers that the
speech finishes.

BEGINFHangUp ENDINF: sent when the call API discovers that the line has been
hanged up.

At first, we tried to allow the API to use vocal synthesis in order to send every
possible message. However, we discovered that the speech recognition system of
the voiceXML service has lots of difficulties to recognize generated voice. These
problems increase the number of cases we have to manage in our scenarios, so we
finally preferred to record the sentences we will play during the tests for this reason.

82 E. Donin de Rosiere, C. Jard, and B. Parreaux

We also imagine using a speech recognition system for our call API. Indeed,
if we can know what was pronounced by the service, we can deduct in which
state is the SUT. Nevertheless, as for the previous remark, speech recognition
has difficulties to recognized generated voices. So lots of recognized sentences
were wrong because we were comparing character to character these sentences
with the sentences of the specification. We may modify the speech recognition
system in order to give for each sentence pronounced by the voiceXML service,
the sentence of the specification that may have been pronounced.

With respect to our aim, we develop a socket SUT adaptor factory. Thus, in
LaTe, you just have to specify the host and the port of the server and LaTe
automatically creates the stub adaptor and connects itself to the server. The
code of this factory is quite simple but we will not show it here because we
are not specially interested by this information in this paper. Just with these
information, we allow LaTe to easily test the vocal-based directory. So in the
next section, we will see in details some scenarios and further the advantages of
the non-deterministic operators on this particular test case.

4.2 Some Test Cases

For all of the following test cases, we defined several LaTe functions to simplify
the writing of scenarios. These functions are:

connection(host,port): this function initializes the communication between
the tester and the call API.

call(sut,num): for a giving SUT, it send a message for calling the phone
number num.

sendCommand (sut, command): it sends the corresponding command to the SUT.

listenSpeech(sut,tl,t2): it verifies that a sentence is prononced before the
time t1 and during at most the time t2. Otherwise, the execution is de-
stroyed.

getMessageIn(sut,message,t): it waits at most the time t for a particular
message. If any message arrives or the first message was not message, the
execution is destroyed.

getMessage (sutl,message): it makes the same thing than the previous func-
tion, but without any timeout.

It is very easy to write thess fonctions. For example, the code of the function
listenSpeech is the following:

function listenSpeech(sutl,tl,t2)

{

0<t1{ assert(getMessage (sut)=="BEGINFDetect SpeechENDINF") };
0<t2{ assert(getMessage (sut)=="BEGINFEnd SpeechENDINF") };

I8

Tl W N~

Listing 1.2. User-defined function

LaTe, a Non-fully Deterministic Testing Language 83

For the first test case, our aim is to connect to the call API, call the directory,
pronounce a name and verify that people picks up.

1 sut:=connection("1-at7290",4442);

2 call(sut,"123");

3 sendCommand (sut,"RecordAll communication.pcm");

4 1listenSpeech(sut,30*sec,30*sec);

5 sendCommand(sut,"Talk testername");

6 { 1listenSpeech(sut,50*sec,30*sec); }

7T &&

8 { getCommandeTimer (sut,"Send talk done",20*sec); 1};
9 wait(5000);

10 sendCommand(sut,"Talk yes");

11 { 1listenSpeech(sut,50*sec,30*sec); }

12 &&

13 { getMessageIn(sut,"Send talk done",15%sec); };
14 sendCommand (sut, "HangUp") ;

15 {

16 { getMessage(sut,"HangUp detected"); }

17 &&

18 { 1listenSpeech(sut,50*sec,30*sec); }

19 }

20 ||

21 { getMessage(sut,"HangUp detected"); };

22 { getMessagelIn(sut,"RecordAll done",15%sec); }
23 &

24 { getMessageIn(sut,"HangUp done",15%*sec); };

Listing 1.3. LaTe scenario for a simple test

The fact that we use an analogic line to connect to the service adds randomness
in the receipt order of messages. For example, we do not know in advance if the
message Send talk done will be received before the beginning of the speech. So
we have to set that all of Send talk done messages can be interleaved with the
listenSpeech function. A lot of executions will be evaluated, but only one will fit
the real events.

Moreover, when the tester executes manually the test, he can observe that
sometimes the call API detects two different speeches and other times, only one.
Thus, in the scenario (lines 15 to 21) we specify that these two cases can occur
by using the || operator. We have either an HangUp detected message, or a
HangUp detected message interleaved with a speech detection. At the end of the
scenario, we also specify that a HangUp done is interleaved with a RecordAll
done message.

84 E. Donin de Rosiere, C. Jard, and B. Parreaux

5 Experimental Results and Discussion

5.1 Results and Pros

The use of LaTe in this case allowed the tester to semi automatically test the
voiceXML service. It was not fully automatic because the test needs an operator
which verifies that his phone rings and picks up for some test cases. But compared
to the manual testing, this solution reduces the interactions between the tester
and the SUT.

If we compare this solution to one based on TTCN, we can observe that TTCN
contains an interleave statement that specifies that different branches must be
executed concurrently. TTCN allows user to write its own functions (internally
or externally), nevertheless, they can be used in an interleave branche. In this
particular case, LaTe is more powerfull than TTCN, because we don’t have to
inline the getMessage and listenSpeech functions. Moreover, TTCN does not
allow to specify in a test scenario that something is optional. The only statement
that can be used for that is the alternative one, but the user have to give a
guard for each branches of the alternative statement which is very difficult in
our example.

Another advantage of this testing architecture is that we have to our disposal
all the traces of the conversations between the tester and the voiceXML service.
So when we discover an error, we can easily locate it thanks to these traces.

5.2 Discussion

As we said previously, this method for testing the vocal-based phone directory
is not perfect: the tester does not know exactly what is pronounced during
the conversation and he has to pre-record all of the sentences before using it.
Thus, one possible evolution of this technique is to use speech recognition. We
saw in section 1] that a normal system may not work for our example. The
recognition is not something perfect and may make mistakes. So some verdicts
may be fail with any difference between the specification and the SUT. One
possible solution is to modify the speech recognition system so that it gives a set
of possible sentences that may have been pronounced. With this modification,
the speech recognition system will someway be non deterministic: several possible
verdicts will be returned. Associated with our non-deterministic operators, it can
easily find after few steps which sentence was pronounced thanks to the following
sentences. Thus, with only few modifications of the scenarios, this system will
explore more deeply the real behavior of the SUT and will be more capable of
detecting mistakes.

Another possible improvement of this system is to generate directly the LaTe
scenarios from the specification. One of our perspective is to modify TGV [11]
for this aim. TGV allows the generation of an abstract test case from a specifica-
tion and a test purpose. The generation is done “on-the-fly” on the synchronous
product of the specification with the test purpose. It is based on Tarjan’s al-
gorithm. During the depth-first search (DFS), TGV performs abstraction and

LaTe, a Non-fully Deterministic Testing Language 85

determinization of this product. The DFS stops when an accepting state of test
purpose is reached. During the backtracking, TGV synthesizes the transitions of
the test case.

Currently, TGV generates test cases in both BCG [12] and Aut [13] formats,
so if it can be modified to directly generate test scenarios in LaTe format, we
will be able to reduce the work of writing these scenarios.

6 Conclusion

Some SUT are so complex and non-deterministic that usual testing systems and
languages have difficulties to evaluate the state of the SUT. Thus, we have de-
fined two particular operators for testing languages, the non-deterministic choice
and the non-deterministic interleaving. These operators allow the tester to main-
tain several different executions at the same time. Each execution is independent
of the others and is destroyed when a contradiction is found. Nevertheless, com-
munications between these executions and the SUT must be managed because
of the communication cannot be undone and modify the environment of all
executions.

In order to show that these non-deterministic constructions may be useful, we
have implemented them in a new language, LaTe and we have applied them on a
particular case study: testing a vocal-based telephone directory. They were par-
ticularly useful on this case because the SUT contains lots of non-deterministic
behavior like interleaved events, optional messages etc. Thus, these constructions
allowed to increase the automation of this task and also allowed the scenarios to
test deeper behavior than usual test scenarios. Finally, we have proposed several
enhancements for this particular case study, like adding a speech recognition
system in order to increase the power of the system and test deeper voice-based
services.

References

1. Thomas, D.E., Moorby, P.R.: The Verilog Hardware Description Language. 3rd
edn. Kluwer Academic Publishers (1996)

2. Offerman, A., Goor, A.: An experimental user level implementation of tcp. Tech-
nical Report 1-68340-44(1997)07, Delft University of Technology (1997)

3. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and rural chinese
postman tours. IEEE Transactions on Communications 39 (1991) 1604-1615

4. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology 3 (1994)
101-130

5. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing: The
JML and JUnit Way. In: ecoop. (2002)

6. Beck, K., Gamma, E.: Junit test infected: Programmers love writing tests. Tech-
nical report, Java Report (1998)

7. Massol, V., Husted, T.: JUnit In Action. Manning (2003)

86

10.

11.

12.

13.

E. Donin de Rosiere, C. Jard, and B. Parreaux

. ITU-T Z.140: The Tree and Tabular Combined Notation Version 3 (TTCN-3):

Core Language. (2001)

. Pickin, S., Jard, C., Le Traon, Y., Jézéquel, J., Le Guennec, A.: System test

synthesis from uml models of distributed software. In: FORTE’2002, IFIP Int.
Conf. on Formal description techniques, Houston, Texas (2002)

Ghriga, M., Frankl, P.G.: Adaptive testing of non-deterministic communication
protocols. In: Protocol Test Systems. (1993) 347-362

J. C. Fernandez, C. Jard, T. Jéron, G. Viho: Using on-the-fly verification tech-
niques for the generation of test suites. In Rajeev Alur, Thomas A. Henzinger,
eds.: Proceedings of the Eighth International Conference on Computer Aided Ver-
ification CAV. Volume 1102., New Brunswick, NJ, USA, Springer—Verlag (1996)
348-359

Tock, L.P.: The bcg postscript format. Technical report, INRIA Rhéne-Alpes
(1995)

Fernandez, J.C.: Aldebaran user’s manual. Technical report, Laboratoire de Génie
Informatique - Institut IMAG (1989)

Customized Testing for Probabilistic Systems*

Luis F. Llana-Diaz, Manuel Nunez, and Ismael Rodriguez

Dept. Sistemas Informéticos y Programacion,
Universidad Complutense de Madrid, 28040 Madrid, Spain
{l1lana, mn, isrodrigl}@sip.ucm.es

Abstract. In order to test the correctness of an IUT (implementation
under test) with respect to a specification, testing its whole behavior is
desirable but unfeasible. In some situations, testing the behavior of the
IUT assuming that it is stimulated by a given usage model is more ap-
propriate. Though considering this approach to test functional behaviors
consists simply in testing a subset of the IUT, to study the probabilistic
behavior of systems by using this customized testing approach leads to
some new possibilities. If usage models specify the probabilistic behavior
of stimuli and specifications define the probabilistic behavior of reactions
to these stimuli, then, by composing them, the probabilistic behavior of
any behavior is completely specified. So, after a finite set of behaviors of
the IUT is checked, we can compute an upper bound of the probability
that a user following the usage model finds an error in the IUT. This
can be done by considering the worst case scenario, that is, that any
unchecked behavior is wrong.

1 Introduction

Even though testing the whole behavior of a system is desirable, this implies,
in general, applying an infinite number of tests. So, formal testing methodolo-
gies usually focus on critical parts or aspects of the system. In particular, it is
specially important to check that systems provide some minimal functionalities,
even if other less relevant functionalities fail. That is, we check that some critical
usage modes are correct and remain available as expected. More generally, we can
group and abstract a set of usage modes in terms of a (probably abstract) user
that produces them, that is, in terms of a user model that represents a subset
of manners to use the system. Once we are provided with a suitable user model,
this model can be used to particularize the goals of the testing procedure. In
other words, we can test the correctness of an implementation under test (IUT)
with respect to a specification under the assumption that the system is stimu-
lated according to the user model. Let us note that if our testing methodology
focuses on checking the functional behavior of the IUT (i.e., what it does and
what it does not), then testing the IUT with respect to a user model may be

* Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01,
the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 87-[I02] 2006.
© IFIP International Federation for Information Processing 2006

88 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

easy. In particular, it is enough that, among all the stimulation sequences that
can be proposed to the system (i.e., among all stimulation sequences considered
in the specification), we consider only those that can be produced by the user
model as well. That is, testing the IUT with respect to a specification and a
user model actually consists in testing the IUT with respect to a subset of the
specification.

However, the application of this user customized approach to test other types
of properties is less trivial and more interesting. This is the case if we consider
the probabilistic behavior of entities. Let us suppose that the specification pro-
vides the desirable probabilistic behavior of the IUT and that, in addition, the
user model explicitly defines the probabilistic propensity of each action stimulat-
ing the IUT. In this case, we have an environment where the ideal probabilistic
behavior of the system, consisting of the IUT and the user model, is completely
specified. That is, in any interaction between a user and a correct IUT, the prob-
abilistic weight of each choice can be quantified. This extra information allows
the testing methodology to go further than other methodologies by providing a
relevant diagnosis result: After a finite set of tests is applied, we can compute, for
a given feasibility degree, an upper bound of the probability that a user behaving
according to the considered user model finds a wrong behavior in the TUT. This
measure will be computed by considering that all the IUT traces that have not
been produced yet behave incorrectly. Let us note that, after applying a finite set
of tests, the number of traces that have not been studied yet is, in general, infi-
nite. However, the cumulated probability of these traces (that is, the probability
that any of them is produced) is, like any probability, finite, and we can compute
it. Actually, this probability is the complementary of the probability that any
already analyzed trace is performed. Let us remark that the (ideal) probability
of each of these traces is given by the probability defined in the specification for
that trace. Unfortunately, we cannot know with certainty whether the traces of
the IUT that have been already analyzed actually follow the probabilities defined
in the specification. However, by testing each nondeterministic choice of the IUT
a high number of times and by applying a suitable contrast hypothesis, we can
determine, for a given feasibility or credibility degree, whether the probabilistic
behavior of the IUT corresponds to the one of the specification. For instance, if
the specification indicates that, at a given point, the probabilities of performing
a and b are the same, then, if the implementation has performed a 507 times
and b 493 times then that credibility will be high. However, the credibility will
be lower if they were recorded 614 and 386 times, respectively. Since our knowl-
edge of the probabilistic behavior of the ITUT will depend on a feasibility degree,
the upper bound of the probability that a user finds an error in an IUT will be
defined in probabilistic terms as well, that is, for a given feasibility degree.

Let us note that to provide an upper bound of the probability of error is not
only useful for a (probabilistic) diagnostic of the IUT correctness. In fact, it may
guide the testing process itself. The task of selecting, among an infinite set of
tests, a finite set of tests to be applied during the (finite) time assigned to testing
is not simple. Thus, we will be interested in tests with high discrimination power.

Customized Testing for Probabilistic Systems 89

In other words, we should choose tests such that, when successfully passed,
induce a high certainty about the correctness of the IUT. Actually, the upper
bound of error probability implicitly provides a guide for selecting tests. We
will prefer those sets of tests such that, when correctly passed by the IUT,
provide a lower upper bound of error, that is, provide a higher certainty of the
IUT correctness. That is, we will prefer those sets providing upper bounds with
higher feasibility degrees.

In this paper we develop these ideas and we construct a testing methodol-
ogy for testing probabilistic systems that interact with user models. We define
two implementation relations. The first one directly compares the probabilities
of the traces in the IUT and in the specification. The second one indirectly
compares these probabilities by applying a contrast hypothesis to a sample col-
lected by interacting with the IUT. Besides, we show how the measure that we
commented before is computed from an TUT sample. In terms of related work,
there is significant work on testing preorders and equivalences for probabilistic
processes |2} [T0L[12,3],1L[T3}7,[5]. Most of these proposals follow the de Nicola and
Hennessy’s style [6L[4], that is, two processes are equivalent if the application of
any test belonging to a given set returns the same result. Instead, we are in-
terested in checking whether an implementation conforms to a specification. In
particular, our relations are more similar to the ones introduced in [I4.[8]. Re-
garding probabilistic user models, it is worth to point out that these previous
works do not explicitly consider this notion. User models have been used in spe-
cific software testing scenarios (e.g., to test C++ templates [1I]). Other work
deals with user models in the testing context [I6}15], but they do not consider
formal conformance testing techniques.

The rest of the paper is structured as follows. In the next section we present
some basic notions to denote specifications, IUTs, and user models. In Section 3]
we show how these notions are related and we define tests. In Section Hl we
present our (probabilistic) conformance relations. Then, in Section [l we give the
upper bound of the probability that a user finds an error in an IUT. Finally, in
Section [6] we present our conclusions.

2 Basic Notions

In this section we present some basic notions used in the paper. First, we in-
troduce some statistics notions. An event is any reaction we can detect from a
system or environment; a random variable is a function associating each event
with its probability.

Definition 1. Let A be a set of events and £ : A — [0,1] be a function such
that Y . 4 &(a) = 1. We say that £ is a random variable for the set of events A.

If we observe that the event a € A is produced by a random source whose
probabilistic behavior is given by & then we say that o has been generated by &.
We extend this notion to sequences of events as expected: If we observe that
the sequence of events H = (a1, ..., ay) is consecutively produced by a random

90 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

source whose probabilistic behavior is given by £ then we say that H has been
generated by € or that H is a sample of €.

Given the random variable £ and a sequence of events H, we denote the
confidence that H is generated by by (&, H). O

This definition introduces a simple version of discrete random variable where all
the events are independent. The actual definition of a random wvariable is more
complex but it is pointless to use its generality in our setting. In the previous
definition, the application of a suitable hypothesis contrast is abstracted by the
function . We have that (¢, H) takes a value in [0, 1]. Intuitively, a sample
will be rejected if the probability of observing that sample from a given random
variable is low. At the end of this section we present a working definition of the
function ~. It is worth to point out that the results of this paper do not depend
on the formulation of 7, being possible to abstract the actual definition.

Next we present the formalism we will use to define specifications and imple-
mentations. A probabilistic finite state machine is a finite state machine where
each transition is equipped with a probability denoting its probabilistic propen-

sity. Thus, a transition s L p s denotes that, when the machine is in state
s and the input 7 is received, then, with probability p, it moves to the state s’
and produces the output 0. We will assume that the environment stimulates the
machine with a single input at any time. Given an input, the machine prob-
abilistically chooses the transition it takes from its current state. Hence, the
probability of a transition allows to compare its propensity with the one of any
other transition departing from the same state and receiving the same input.
That is, given s and 7, the addition of all values p such that there exist o, s’ with

s L » 8 must be equal to 1. In contrast, there is no requirement binding the
probabilities departing from the same state and receiving different inputs be-
cause each one describes (part of) a different probabilistic choice of the machine.

Definition 2. A Probabilistic Finite State Machine, in short PFSM, is a tuple
M =(S,1,0,6,sp) where

— S is the set of states and sg € S is the initial state.
— I and O, with I N O = &, denote the sets of input and output actions,
respectively.

— 6 CSxIx0x(0,1] x S is the set of transitions. We will write s ﬁp s
to denote (s,i,0,p,s’) € 6.

Transitions and states fulfill the following additional conditions:

— For all s € S and i € I, the probabilities associated with outgoing transitions

add up to 1, that is, Y {p|Jo€ O, s €S SLP s} =1

— PFSMs are free of non-observable non-determinism, that is, if whenever we

have the transitions s Lm s1and s £>p2, So then p1 = po and s1 = s9.
— In addition, we will assume that implementations are input-enabled, that is,

for all state s and input 7 there exist o, p, s’ such that s Lp s’ O

Customized Testing for Probabilistic Systems 91

Although PFSMs will be used to define specifications, a different formalism will be
used to define user models. Specifically, we will use probabilistic labeled transition
systems. A user model represents the external environment of a system. User
models actively produce inputs that stimulate the system, while passively receive
outputs produced by the system as a response. The states of a user model are split
into two categories: Input states and output states. In input states, all outgoing
transitions denote a different input action. Since inputs are probabilistically
chosen by user models, any input transition is endowed with a probability. In
particular, s —i>p s" denotes that, with probability p, in the input state s, the
input ¢ is produced and the state is moved to s’. Given an input state s, the
addition of all probabilities p such that there exists i, s’ with s —— p & must
be lower than or equal to 1. If it is lower then we consider that the remainder
up to 1 implicitly denotes the probability that the interaction with the system
finishes at the current state. Regarding output states, all transitions departing
from an output state are labeled by a different output action. However, output
transitions do not have any probability value (let us remind that outputs are
chosen by the system). Input and output states will strictly alternate, that is,
for any input state s, with s —i>p s’, s’ is an output state, and for any output
state s, with s —2» s’, s’ is an input state.

Definition 3. A probabilistic labeled transition system, in short PLTS, is a tuple
U= (5r,50,1,0,6,sp) where

— S and Sp, with St N So = @, are the sets of input and output states,
respectively. so € St is the initial state.

— I'and O, with INO = @, are the sets of input and output actions, respectively.

— 6 C(SrxIx(0,1] x So)U(So x O x Sy) is the transition relation. We will
write s ——, s’ to denote (s,4,p,s') € Sy x I x (0,1] x So and s =% s’ to
denote (s,0,s") € So x O x S.

Transitions and states fulfill the following additional conditions:

— For all input states s € S; and input actions i € I there exists at most one
outgoing transition from s: |[{s ——, s’ |3 p € (0,1], s’ € So}| < 1.

— For all output states s € So and output actions o € O there exists exactly
one outgoing transition labeled with o: [{s — s’ |3 s’ € Sr}| = 1.

— For all input state s € Sy the addition of the probabilities associated with
the outgoing transitions is lower than or equal to 1, that is, cont(s) =
S{p| 3s' € So : s —i>p s’} < 1. So, the probability of stopping at that
state s is stop(s) = 1 — cont(s). 0

By iteratively executing transitions, both PFSMs and PLTSs can produce se-
quences of inputs and outputs. The probabilities of these sequences are given
by the probabilities of the transitions. Next we introduce some trace notions. A
probability trace is a sequence of probabilities, a trace is a sequence of inputs and
outputs, and a probabilistic trace is a tuple containing both.

92 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

Definition 4. A probability trace 7 is a finite sequence of probabilities, that
is, a possibly empty sequence (p1,p2,...,pn) € (0,1]*. The symbol e denotes
the empty probability trace. Let m = (p1,p2,...,pn) be a probability trace. We
define its sef-product, denoted by [[n, as [],,;<, pi- Since [[,., = 1, we have
[Te=1.Let 7 = (p1,p2,...,pn) and 7’ = (p}, P, ..., pm) be probablhty traces.

Then, 7 - 7’ denotes their concatenation that is, (p1,pa,...,Pn, D1, Das-- s Dm);
while 7 * 7" denotes its pairwise product, that is, (py * p},p2 * P, ..., pr * L),
where r = min(n, m).

A trace p is a finite sequence of input/output actions (i1/01,42/02, ..., in/0n).

The symbol ¢ denotes the empty trace. Let p and p’ be traces. Then, p - p’
denotes their concatenation. A probabilistic trace is a pair (p,m) where p is a
trace (i1/01,12/02,...,in/0n) and ™ = (p1,p2, ..., pn) is a probability trace. If p
and 7 are both empty then we have the empty probabilistic trace, written as (e, €).
Let (p,m) and (p’, ') be probabilistic traces. Then, (p,7) - (o', 7’) denotes their
concatenation, that is, (p- p/, 7 - 7). a

Next we define how to extract traces from PFSMs and PLTSs. First, we consider
the reflexive and transitive closure of the transition relation, and we call it gen-
eralized transition. Then, probabilistic traces are constructed from generalized
transitions by considering their sequences of actions and probabilities.

Definition 5. Let M be a PFSM. We inductively define the generalized transi-
tions of M as follows:

— If s € S then s == s is a generalized transition of M.

—IfseS, s :>7T s’', and s’ # p 51 then s :/> (p) S1 is a generalized
transition of M.

We say that (p,7) is a probabilistic trace of M if there exists s € S such that

so == » s. In addition, we say that p is a trace of M. The sets pTr(M) and
tr(M) denote the sets of probabilistic traces and traces of M, respectively. 0O

The previous notions can be defined for PLTSs. In order to obtain sequences
of paired inputs and outputs, traces begin and end at input states; generalized
transitions are constructed by taking pairs of consecutive PLTS transitions.

Definition 6. Let M be a PLTS. We inductively define the generalized transi-
tions of U as follows:

— Ifs€ S;then s ==,.sisa generahzed transition of U.

"

p-i/o .
—IfsES;,s:st and s’ —>ps —>81thens:> (py S1 1s a

generalized transition of U.

We say that (p,) is a probabilistic trace of U if there exists s € St such that

S0 :p>7T s. In addition, we say that p is a trace of U. We define the probability
of U to stop after p, denoted by stopy(p), as stop(s). The sets pTr(U) and
tr(U) denote the set of probabilistic traces and traces of U, respectively. O

Customized Testing for Probabilistic Systems 93

2.1 Definition of a Hypothesis Contrast: Pearson’s x?2

In this paper we consider Pearson’s x> contrast but other contrasts could be
used. The mechanism is the following. Once we have collected a sample of size
n we perform the following steps:

— We split the sample into k classes covering all the possible range of values. We
denote by O; the observed frequency in class i (i.e., the number of elements
belonging to the class 7).

— We calculate, according to the proposed random variable, the probability p;
of each class i. We denote by E; the expected frequency of class i, that is,
E; = np;.

— We calculate the discrepancy between observed and expected frequencies
as X2 = Y, (01};7&)2 When the model is correct, this discrepancy is
approximately distributed as a y? random variable.

— The number of freedom degrees of x2? is k — 1. In general, this number is
equal to k —r — 1, where r is the number of parameters of the model which
have been estimated by maximal likelihood over the sample to estimate the
values of p;. In our framework we have r = 0 because the model completely
specifies the values of p; before the samples are observed.

— We will accept that the sample follows the proposed random variable if the
probability to obtain a discrepancy greater than or equal to the detected
discrepancy is high enough, that is, if X? < y2 (k—1) for some « high enough.
Actually, as such margin to accept the sample decreases as « increases, we
can obtain a measure of the validity of the sample as max{a|X? < x2(k—1)}.

According to the previous steps, next we present an operative definition of
the function v that was introduced in Definition [l We will consider two sets
of events A and A’, with A C A’. The set A gives the domain of the random
variable £, while the events denoted by H belong to A’. If the sample includes
any event a that is not considered by the random variable (i.e., a € A) then the
sample cannot be generated by the random variable and the minimal feasibility,
that is 0, is returned. Otherwise, we return the maximal feasibility « such that
the hypothesis contrast is passed.

Definition 7. Let A and A’ be sets of events, with A C A’, and H be a sample
of elements belonging to A’. Let £ : A — (0,1] be a random variable. We define
the confidence of £ on H, denoted by (£, H), as follows:

0 if HNA# @
(& H) = {max{a | Xg <x%2(k—1)} otherwise

where X§2 denotes the discrepancy level of the sample H on &, calculated as
explained above by considering that the sampling space is A. a

3 Tests and Composition of Machines

In this section we define our tests as well as the interaction between the notions
introduced in the previous section (PFSMs and PLTSs). As we said before, we will

94 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

use PLTSs to define the behavior of the external environment of a system, that
is, a user model. Moreover, PLTSs are also appropriate to define the tests we will
apply to an IUT. Tests are PLTSs fulfilling some additional conditions. Basically,
a test defines a finite sequence of inputs that can be interrupted depending on
the outputs produced by the IUT as response: If one of the expected outputs
is received then the next input is applied, otherwise the interaction with the
TUT finishes. Since tests consider a single sequence of inputs, each intermediate
input state of the sequence contains a single outgoing transition labeled by the
next input and probability 1. Output states offer transitions with different out-
puts. Only one of the input states reached by these transitions offers a (single)
transition; the interaction finishes in the rest of them.

Definition 8. A test T' = (S1,S0,1,0,06,s0) is a PLTS such that for all s € S

there is at most one transition s —— , s’ (so, in this transition p = 1), and for
all s € Sp there is at most one transition s —2» s’ with a continuation, that is,

{s”|3iel,oc0,s" €So,pe(0,1]: s 2 s" -, "} <1.]

Let us note that, contrarily to other frameworks, tests are not provided with di-
agnostic capabilities on their own. In other words, tests do not have fail /success
states. Since our framework is probabilistic, the requirements defined by spec-
ifications are given in probabilistic terms. Moreover, the absence of transitions
labeled by specific outputs in specification states is considered in probabilistic
terms as well: If there exists a state s, an input 4, and an output o such that

there do not exist p, s’ with s Lp s’ then we consider that the probability of
producing o in the state s after receiving the input i is 0. As we will see in the
next section, deciding whether the IUT conforms to the specification will also be
done in probabilistic terms. In particular, we will consider whether it is feasible
that the IUT behaves as if it were defined as the specification indicates. We will
check this fact by means of a suitable hypothesis contrast.

Our testing methodology consists in testing the behavior of a system under
the assumption that it is stimulated by a given user model. Thus, the sequences
we use to stimulate it, that is, the tests, will be extracted from the behavior of the
user model. Next we show how a test is constructed from a probabilistic trace of
a user model. The input and output states of the test are identified with natural
numbers. All the input states (but the first and last ones) are also endowed with
an output action. In order to distinguish between input and output states we
decorate them with ® and *, respectively.

Definition 9. Let p = (i1/01,42/09,...,i,/0,) be a trace, I be a set of input
actions such that {é1,...4,} C I, and O be a set of output actions such that
{01,...,00} C O. We define the associated test to p, denoted by assoc(p), as
the test (Srr, Sor, I, O, ér,0%), where

— Sir = {0',7“'} U {(j,o)'|0 €c0,1<j< ’I“} and Sor = {j*‘l <j< T}.
Lj41

—Foralll <j<roec0:(jo0) ——1(G+1)*, j* = (j,0)°® € ér. We

7 0
also have 0° —=, 0%, r* == r® € 6p.

Customized Testing for Probabilistic Systems 95

Fig. 1. Normalization if composition of PFSMs and PLTSs

Let U be a PLTS. The set of associated tests to U, denoted by assoc(U), is
the set of tests associated to its traces, that is {assoc(p)| p € tr(U)}. O

Next we define the composition of a PFSM (denoting either a specification or
an IUT) with a PLTS (denoting either a user model or a test) in terms of its
behavior, that is, in terms of traces and probabilistic traces. The set of traces is
easily computed as the intersection of the traces produced by both components.
In order to define the set of probabilistic traces, the ones provided by both
components are considered. For a given input/output pair i/o, the probability
of producing ¢ will be taken from the corresponding transition of the PLTS, while
the probability of producing o as a response to i will be given by a transition
of the PFSM. Let us note that the states of a specification do not necessarily
define outgoing transitions for all available inputs, that is, specifications are
not necessarily input-enabled. So, a PFSM representing a specification could not
provide a response for an input produced by a PLTS. Since the specification does
not define any behavior in this case, we will assume that the PFSM is allowed
to produce any behavior from this point on. The composition of a PLTS and a
PFSM will be constructed to check whether the traces defined by the specification
are correctly produced by the implementation (under the assumption that these
machines are stimulated by the user model). Hence, undefined behaviors will
not be considered relevant and will not provide any trace to the composition of
the PLTS and the PFSM. In order to appropriately represent the probabilities of
the relevant traces, their probabilities will be normalized if undefined behaviors
appear. We illustrate this process in the following example.

Ezample 1. Let us suppose that a user model can produce the inputs i1, i3, and
13 with probabilities %, % and %, respectively (see Figure [I left). At the same
time, the corresponding specification provides outgoing transitions with inputs
i1 and 492, but not with i3 (see Figure [Il right). Since the specification does
not define any reaction to i3, the probabilities of taking inputs ¢; or is in the
composition of the specification and the user model are normalized to denote

that i3 is not considered. So, the probability of i; becomes ;,/73 = % while the
probability of iy is ;'/Tj =1 O

Definition 10. Let M = (S, I, 0, 8n, som) be a PFSM and let us consider a

PLTS U = (S]U, SOU717076U750U) such that SoM :p>ﬂ—1 S1 and Sou :p>ﬂ—2 S9.
We define:

96 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

— The sum of the probabilities of continuing together after p as

cont v (p) = Z {P

— The normalization factor of M || U after p as the sum of the previous prob-
ability plus the probability of U to stop after p, that is normy;y(p) =

cont s (p) + stopy(p). O

i/o

Sg = p sh A s ——, 8

Hiel,on,sgeSOU,s’leSM,re(O,l]:}

Definition 11. Let M = (S, I, 0,8, sonm) be a PFSM and let us consider a
PLTS U = (Siv,Sou, I, 0,6y, sou). The set of traces generated by the compo-
sition of M and U, denoted by tr(M || U), is defined as tr(M) N tr(U). The
set of probabilistic traces generated by the composition of M and U, denoted by
pTr(M | U), is defined as the smallest set such that

— (6,€) € pTr(M || V).
— If we have that (p,7) € pTr(M || U), som =L — e, p S1, and

7

Sou :p>7r2 sh —p, s 2> so, then (p-i/o,m- (p)) € pTr(M || U), where

p is the product of p; and py normalized with respect to the normalization

factor of M || U after p, that is, p = #ﬁi(p)' O
Let us remark that the probabilistic behavior of the traces belonging to the
composition of PFSMs and PLTSs is completely specified: The probabilities of
inputs are provided by the PLTS while the probabilities of outputs are given by
the PFSM. So, a random variable denoting the probability of each trace produced
by the composition can be constructed. Moreover, the composition of the spec-
ification and the user model provides a source to randomly generate tests. In
fact, tests are constructed by following a specific sequence of inputs and outputs
of the user model. Hence, the random selection of tests can be represented by
a random variable associating tests with the probability that the probabilistic
trace guiding the test is taken in the composition of the specification and the
user model.

Definition 12. Let M = (Sp, I, 0,8, sonm) be a PFSM and let us consider a
PLTS U = (Siu,Sou, I, 0,6y, sov). We define the traces random variable of the
composition of M and U as the function {yy @ tr(M || U) — (0,1] such that
for all (p,7) € pTr(M || U) we have &upju(p) =[] 7+ (1 — stopy(p)).

Let T ={T|petr(M|U) N T = assoc(p)}. We define the tests random
variable of the composition of M and U as the function Cprjy : 7 — (0,1]
such that for all test T' € 7 we have Cuu(T) = p iff (p,7) € pTr(U), (p,7’) €
pTr(M), T = assoc(p), and p = [[7« [[7' * (1 — stopy(p)). O

Let us note that the sum of the probabilities of all traces may be strictly less
than 1. This is because random variables have to take into account some events
that are not directly considered in the traces: The choice of a user to stop in a
state. Next we identify some properties of our framework.

Customized Testing for Probabilistic Systems 97

Proposition 1. Let S be a PFSM, U be a PLTS, (p,7w) € pTr(U), and T =
assoc(p). The following properties hold:

— tr(T) Ctr(U) and tx(S || T) C tx(S| U).
if (p,7") € pTr(S || T) then (p, 7 - 7') € pTx(S || U).
—tr(U) = {tx(T)| T € assoc(U)}.
—tr(S|U)=U{tx(S||T)| T € assoc(U)}. |

—

4 Probabilistic Relations

In this section we introduce our probabilistic conformance relations. Following
our user customized approach, they relate an IUT and a user model with a
specification and the same user model. These three elements will be related
if the probabilistic behavior shown by the IUT when stimulated by the user
model appropriately follows the corresponding behavior of the specification. In
particular, we will compare the probabilistic traces of the composition of the TUT
and the user with those corresponding to the composition of the specification
and the user. Let us remind that IUTs are input-enabled but specifications might
not be so. So, the IUT could define probabilistic traces including sequences of
inputs that are not defined in the specification. Since there are no specification
requirements for them, these behaviors will be ignored by the relation. In order
to do it, an appropriate subset of the traces of the composition of the IUT and
the user must be taken. In the following relation, we require that the probabilities
of the corresponding traces are exactly the same in both compositions. Later we
will see another relation where, due to practical reasons, this requirement will
be relaxed.

Definition 13. Let S, I be PFSMs, U be a PLTS, and sgg, Sor, and soy be their
initial states, respectively. We define the set of probabilistic traces generated by
the implementation I and the user model U modulo the specification S, denoted
by pTr(I || U)sg, as the smallest set such that:

— (e,¢) € pTr(I | U)s.
— If (p,m) € pTr({ || U)s and we have the following sequences of transitions:

o S0 ==, 5 ——p, 51 =2 51, and
p i/o
® 507 =5, S5 —p, 52,
P , ifo
® S0s :>7r3 S§3 — ' p3 53,
then (p-i/o,m - (p)) € pTr(I || U)g, where p is the product of p; and po
normalized with respect to the normalization factor of S| U after p, that is
— P1-p2
p= normg |y (p) *
Let S, I be PFSMs and U be a PLTS. We say that I conforms to S with respect
to U, denoted by I confy S, if pTr(I || U)s = pTr(S || U). O

Although the previous relation properly defines our probabilistic requirements,
it cannot be used in practice because we cannot read the probability attached

98 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

to a transition in a black-box IUT. So, a more applicable version of the rela-
tion is required. Let us note that even though a single observation does not
provide valuable information about the probability of an IUT trace, an approz-
imation to this value can be calculated by interacting a high number of times
with the IUT and analyzing its reactions. In particular, we can compare the
empirical behavior of the IUT with the ideal behavior defined by the specifica-
tion and check whether it is feasible that the IUT would have behaved like this
if, internally, it were defined conforming to the specification. Depending on the
empirical observations, this feasibility may be different. The feasibility degree
of a set of samples with respect to its ideal probabilistic behavior (defined by
a random variable) will be provided by a suitable contrast hypothesis. We will
rewrite the previous relation in these terms. The new relation will be parame-
terized by two values: The samples collected by means of interactions with the
IUT and a feasibility threshold. Then, by using an indirect approach, the new
relation will impose the same probabilistic constraints as the relation defined
before.

We must establish the way samples are collected. First, we generate the tests
associated to the user model U and then we let these tests to interact with
the TUT. Then, we must check if the obtained sample conforms to the ran-
dom variable corresponding to the user and the specification, that is, {57, as
introduced in Definition This last point will be done via the hypothesis con-
trast. We will require that the feasibility of the hypothesis contrast reaches a re-
quired threshold. Before we present the new relation, we introduce the notion of
sampling.

Definition 14. Let M be a PFSM and U be a PLTS. We say that a sequence
(P1,p2,- .., pn) is a trace sample of M || U if it is generated by &{pr . We say
that a sequence (T1,T5,...T},) is a test sample of M || U if it is generated by
Cuu- Let (T1,Ty,...Ty) be a test sample of M || U. We say that a sequence
(1, P2, - -, pn) is a trace-test sample of M || U if for all 1 < i < n we have that
pi is the result of a probabilistic execution of M || T;. O

Next we introduce the new conformance relation defined in probabilistic terms.
As before, we will ignore any implementation behavior involving sequences of
inputs not considered by the specification. This will be done by removing them
from the trace-test sample we use to compare the IUT and the specification. In
the next definition, Hg represents the sequence of traces resulting after removing
those traces from the original trace-test sample H.

Definition 15. Let S be a PFSM and H = (p1,p2,...,pn) be a sequence of
traces. Hg denotes the sub-sequence (p,1, pr2,...,prn) of H that contains all
the probabilistic traces whose input sequences can be produced by S, that is,
p = (i1/o1,...im/om) € Hg iff p € H and there exist o}, ...0], € O such that
(i1/0h, ... im/0h,) € tx(9).

Let S and I be PFSMs, U be a PLTS, H = (p1,p2,...,pn) be a trace-test
sample of I || U, and 0 < o < 1. We write S conf g o) I if v({gv, Hs) > a. O

Customized Testing for Probabilistic Systems 99
5 Upper Bound of Probability of Failure for a User

In this section we provide an alternative measure of the correctness of an TUT.
Similarly to the conformance relation given in Definition [it will be calcu-
lated by using a sample collected from the interaction with the IUT. This mea-
sure is an upper bound of the probability that the user obtains from the TUT
a trace whose probabilistic behavior is wrong with respect to the specification.
That is, it provides an upper bound of the probability of finding an error in
the TUT. Since this measure will be computed from a specific sample, it will
also be parameterized by a feasibility degree a. We assess the measure as we
sketched in the introduction: From a given interaction sample with the IUT,
we consider the feasibility degree « that this sample was generated according
to the probabilistic behavior defined by the specification. Next we consider the
probability of producing a behavior that is not included in the sample. Since
we can assume that the probabilities of the traces in the sample are correct
with feasibility «, we can use these probabilities to compute the probability of
producing any other trace by adding the probabilities of all traces in the sam-
ple and by considering the complementary probability. Then, we consider the
worst case of these traces, that is, we suppose that the probabilistic behavior
of all of them is wrong. Hence, we obtain an upper bound of the probability
that the user interacts with the IUT and observes a trace whose propensity is
not that given by the specification (with feasibility «). First, we define the pre-
fizes of a probabilistic trace that will allow to structure samples in a suitable
form.

Definition 16. Let (p,7) = ((i1/01,...,in/0n), (P1,...,Pn)) be a probabilistic
trace. We say that a probabilistic trace (p’,) is a prefix of (p, 7) if either (p/, 7') =
(e;e)or (o), ') = ((i1/01,...,4j/05), (P1,-..,p;)), for some 1 < j < n. We denote
by prefix(p,) the set of all prefixes of the probabilistic trace (p, 7). O

Let us consider a finite set of probabilistic traces such that all their prefixes are
also included in the set. In fact, if these traces are a sample produced by the
IUT then we can represent our knowledge about the IUT by means of a suitable
machine producing these traces. Since we assume that the IUT does not have
non-observable non-determinism, if two observed samples share a common prefix
then we can consider that the common parts of both traces traverse the same
path of states in the IUT. This fact can be reflected in the machine we construct
by making both traces to share the same states until they diverge. Besides, let
us note that we cannot detect whether a loop of states is taken in the IUT during
our interaction with it, since we consider that the IUT is a black box. So, the
machine representing our knowledge about the IUT, extracted from a sample,
will be a tree: All traces in the sample depart from the initial state and traces
share paths while they traverse common prefixes.

Definition 17. Let tr be a prefix-closed set of probabilistic traces. We say that
tr is a probabilistic tree if the following conditions hold:

100 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

— The nodes of the tree are labeled by probabilistic traces belonging to ¢r.
— The arcs between nodes are labeled by pairs (i/o0, p), where i is an input, o is
an output, and p is a probability. There exists an arc between two nodes (p, 7)

and (o, '), denoted by (p, 1) ", (o', '), if (o/.7") = (p- (i/0).7 - (p)).
— For each node (p, 7), the probabilities of all the outgoing arcs is less than or

equal to 1, that is, L=> {p|34,0,p: (p,7) ﬁp (p-(i/o),m-(p))} < 1.
Hence, the probability of stopping in (p,) is given by stop, (p) =1 — L.
— The probability of reaching a node (p, 7) is equal to [] . 0

After a sample of traces H is extracted from the IUT, the conf g o) relation
given in Definition [[5] allows to check whether the feasibility that H is produced
by the specification is at least «. If this is the case then we can construct a set
of probabilistic traces from H by attaching each trace in H with the probability
given in the specification for that trace. The feasibility that the probabilities we
attach are actually correct is equal to . Then, the probabilistic tree representing
this set shows, with feasibility «, the behavior of the IUT regarding the traces
belonging to H. In order to compute the upper bound of the error probability,
we will consider that any trace leaving this tree behaves incorrectly. We will
identify these traces by considering a higher tree denoting all the traces that can
be produced, not only those we observed in the sample. Then, the probability of
producing any unobserved trace will be computed by considering the probability
of performing a trace that leaves the lower tree. This probability is computed
by adding the probabilities of all the traces reaching the border of the lower tree
and performing an additional transition to leave it.

Definition 18. Let tr; and tro be probabilistic trees such that tr; C try and
trq is finite. The probability of reaching tro from tri, denoted by rch(try, tra), is
defined as > {(1—stop,(p))*[] 7|(p, 7) maximal probabilistic trace in ¢tr1}. O

The higher tree tro will be given by the set of probabilistic traces that are
produced by the composition of the specification and the user model. This tree is
used to compute the probability of leaving the lower tree. In particular, only the
probabilities of transitions departing from leaves of the lower tree are considered.
The following result shows how higher trees can be constructed.

Proposition 2. Let S be a PFSM and U be a PLTS. We have that the set of
probabilistic traces pTr(S || U) is a probabilistic tree. Moreover, there exists an
arc labeled by (i/0, p) between two nodes (p,7) and (p- (i/0), 7 - (p)) iff we have

. P i/o , P i / .
the sequences sopg =7, 51 ——p, 51 and Soy =7, S2 —p, S5, Where p is
the normalized product of p; and po after p, that is, p = —ELP2 O

normg) iy (p) *

Next we show how the lower tree is created. A tree containing the traces of a
given sample is constructed by considering both the sample and the composition
of the specification and the user model. Let us note that, despite the sample
being produced by the interaction with the implementation, the probabilities of
traces will be taken from the specification. Let us also note that we will be able

Customized Testing for Probabilistic Systems 101

to do this if the sample passes the hypothesis contrast that compares it with the
behavior of the specification. This hypothesis contrast is implicitly applied by
the relation conf g).

Definition 19. Let S,I be PFSMs such that S conf(y o) I, U be a PLTS and
H = (p1,p2,...,pr) be a trace-test sample of I || U. The probabilistic tree of H,
denoted by pTree(H), is defined as U e, (p.x)epre(s)or) Prefix(p, m). |

Due to the way probabilistic trees are constructed from implementations, spec-
ifications, and user models, the following result holds.

Proposition 3. Let S and I be PFSMs, U be a PLTS, and H = {p1, p2,---,n)
be a trace-test sample of I || U such that S conf g 4y I. We have that pTree(H)
is finite and pTree(H) C pTr(S || U). O

Now we are provided with all the needed machinery to define the upper bound
of the probability that a user interacting with the IUT observes a probabilistic
behavior that does not conform to the specification.

Definition 20. Let S and I be PFSMs, U be a PLTS, and H = (p1, p2, ..., pn) be
a trace-test sample of I || U such that S conf (g) 1. The upper bound of the prob-
ability that the user U observes a wrong probabilistic behavior in I with feasibility
«a, denoted by wrong(U, I, «), is given by rch(pTree(H),pTr (S || U)). O

6 Conclusions and Future Work

In this paper we have presented a probabilistic testing methodology that allows
to consider user models. On the one hand, by applying user models, we can
focus on testing a specific critical behavior. On the other hand, since we explicitly
consider the propensity of each non-deterministic choice of systems, we can study
systems not only on the basis of what they do but also on how often they
do it. Since actual probabilities cannot be extracted from a black-box system,
the probabilistic behavior of implementations and specifications is compared
by means of suitable hypothesis contrasts. In addition, the combination of user
models and the probabilistic approach allows to compute a relevant measure that
cannot be computed in other frameworks: For a given feasibility degree, we can
provide an upper bound of the probability of finding an error in the IUT. After a
finite test suite is applied to an IUT, this measure allows to assess how confident
we are the IUT is correct. Moreover, it implicitly provides a method to evaluate
the quality of a test suite to evaluate an IUT with respect to a specification: If
a given test suite is passed and it provides a lower upper bound (or an upper
bound with a higher feasibility) than another suite that is also passed, then the
former suite is preferred.

As future work, we plan to extend our framework to deal with symbolic proba-
bilities that allow to denote ranges of probabilities instead of fix probabilities [5].
Besides, we will also introduce stochastic temporal delays to denote the time con-
sumed by actions, that is, temporal delays defined in probabilistic terms [9].

102 L.F. Llana-Diaz, M. Nunez, and 1. Rodriguez

Acknowledgements. We would like to thank the anonymous referees of this
paper for their suggestions and valuable comments.

References

1. D. Cazorla, F. Cuartero, V. Valero, F. Pelayo, and J. Pardo. Algebraic theory
of probabilistic and non-deterministic processes. Journal of Logic and Algebraic
Programming, 55(1-2):57-103, 2003.

2. I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In CONCUR’90, LNCS 458, pages 126-140. Springer, 1990.

3. R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for proba-
bilistic processes. Information and Computation, 154(2):93-148, 1999.

4. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

5. N. Lopez, M. Nufnez, and 1. Rodriguez. Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science, 353(1—
3):228-248, 2006.

6. R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

7. M. Nunez. Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming, 56(1-2):117-177, 2003.

8. M. Nunez and I. Rodriguez. Encoding PAMR into (timed) EFSMs. In FORTE 2002,
LNCS 2529, pages 1-16. Springer, 2002.

9. M. Nunez and I. Rodriguez. Towards testing stochastic timed systems. In FORTE
2003, LNCS 2767, pages 335—-350. Springer, 2003.

10. M. Nuifiez and D. de Frutos. Testing semantics for probabilistic LOTOS. In Formal
Description Techniques VIII, pages 365—-380. Chapman & Hall, 1995.

11. K. Sayre. Usage model-based automated testing of C++ templates. In Interna-
tional Conference on Software Engineering. Proceedings of the first international
workshop on Advances in model-based testing, pages 1-5. ACM Press, 2005.

12. R. Segala. Testing probabilistic automata. In CONCUR’96, LNCS 1119, pages
299-314. Springer, 1996.

13. M. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic automata.
In ICALP 2003, LNCS 2719, pages 464-477. Springer, 2003.

14. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware — Concepts and Tools, 17(3):103-120, 1996.

15. G.H. Walton, J.H. Poore, and C.J. Trammell. Statistical testing of software based
on a usage model. Software - Practice & Experience, 25(1):97-108, 1995.

16. J.A. Whittaker and J.H. Poore. Markov analysis of software specifications. ACM
Transactions on Software Engineering and Methodology, 2(1):93-106, 1993.

Generating Test Cases for Web Services Using Extended
Finite State Machine

ChangSup Keum', Sungwon Kang?, In-Young Ko?,
Jongmoon Baik®, and Young-Il Choi'

! BeN Research Division,
Electronics and Telecommunications Research Institute
{cskeum, yichoi}@etri.re.kr
% School of Engineering,
Information and Communications University
{kangsw, iko, jbaik}@icu.ac.kr

Abstract. Web services utilize a standard communication infrastructure such as
XML and SOAP to communicate through the Internet. Even though Web ser-
vices are becoming more and more widespread as an emerging technology, it is
hard to test Web services because they are distributed applications with numer-
ous aspects of runtime behavior that are different from typical applications. This
paper presents a new approach to testing Web services based on EFSM (Ex-
tended Finite State Machine). WSDL (Web Services Description Language) file
alone does not provide dynamic behavior information. This problem can be
overcome by augmenting it with a behavior specification of the service. Rather
than domain partitioning or perturbation techniques, we choose EFSM because
Web services have control flow as well as data flow like communication proto-
cols. By appending this formal model of EFSM to standard WSDL, we can
generate a set of test cases which has a better test coverage than other methods.
Moreover, a procedure for deriving an EFSM model from WSDL specification is
provided to help a service provider augment the EFSM model describing dy-
namic behaviors of the Web service. To show the efficacy of our approach, we
applied our approach to Parlay-X Web services. In this way, we can test Web
services with greater confidence in potential fault detection.

1 Introduction

A Web service is any service available on the Internet that uses a standardized XML
messaging system and is not tied to a operating system or programming language. In
other words, Web service is a collection of components that are wrapped with SOAP
(Simple Object Access Protocol) interfaces so they can exchange XML-based (Extensi-
ble Markup Language) messages [1]. Using Web Services, companies can integrate ex-
isting business applications into new and innovative business applications, publish them
as services, discover and subscribe to other services, and exchange information [2].
Some testing techniques that are used to test software components are being
extended to Web services. A few papers have presented testing techniques for Web
services, but the dynamic discovery and invocation capabilities of Web services bring
up many testing issues. Existing Web service testing methods try to take advantage of

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 103 2006.
© IFIP International Federation for Information Processing 2006

104 C. Keum et al.

syntactic aspects of Web service rather than semantic, dynamic, and behavioral in-
formation because standard WSDL is not capable of containing such information.
Therefore, they focused on testing of single operations rather than testing sequences of
operations. Furthermore, they heavily rely on the test engineers’ experience.

In this paper, we propose a new approach to test Web services. This idea stems from
similarities between communication protocol testing and stateful Web services testing.
Web services can be either stateless or stateful. Stateful Web services have several
operations which affect the service’s state that are used by other operations. Operations
in stateless Web service do not change the service’s internal states. Each operation in
Web services has a request and response message with parameters. It is hard to test such
Web services because they are distributed applications with numerous runtime be-
haviors that are different from typical applications. Service consumers usually have to
use black-box testing because specifications are available but design and implementa-
tion details of Web services are not available. The specification is written in WSDL
(Web Services Description Language). Unfortunately, current WSDL does not contain
sufficient information for a consumer to test the available Web services. Although a
few technologies exist to verify syntactic aspects of the interactions, it is very difficult
to find out whether Web services behave correctly with all possible messages.

Specifically, protocol testing and Web services testing both require to perform some
message exchanges and to analyze the result. Furthermore, it is more important to test
sequences of messages than to test of single message. Also these two testing methods
are basically based on the black-box approach. In black-box testing, specification has a
strong influence on testing. Stateful Web services have reactive characteristics similar
to communication protocols; therefore specification languages for Web services are
favored which precisely define the temporal ordering of interactions. FSM (Finite State
Machine) model is often used for defining the temporal order of interaction. However,
the FSM model is often too restrictive for defining all aspects of a Web service speci-
fication because a Web service has input and output messages with data parameters. In
contrast with FSM, EFSM [3] includes additional variables, input and output events
including parameters. It consists of transitions which are characterized by a so-called
enabling predicate and a transition action. Therefore an extended FSM model seems to
be a very promising model for describing Web services behaviors.

We utilize the EFSM model to test Web services. Since current WSDL does not
contain sufficient information for a test engineer to test the available Web services,
temporal ordering information is added to describe Web services behaviors. EFSM
(Extended Finite State Machine) is well suited for describing Web services behavior
because it has the control part of the specification represented by pure FSM model and
the data part represented by the transition predicates and actions.

There are many benefits to constructing test cases on the basis of a formal model
specification such as EFSM. The benefits arise from the ability to precisely describe
and reason about potential faults. In particular, it means that test can be applied uni-
formly, with greater confidence in their fault detecting potential, and with the possi-
bility of full automation. Using an EFSM formal specification for a Web service, we
can generate test cases from the specification automatically if we are equipped with an
appropriate tool set such as EFSM analyzer, test case generator, and monitor.

The remainder of the paper is organized as follows. After reviewing existing Web
service testing methods in Section 2, we present a procedure from a WSDL specifica-
tion to an EFSM model and introduce test case generation algorithm using EFSM in

Generating Test Cases for Web Services Using Extended Finite State Machine 105

Section 3. An application example is provided to show the efficiency of our method in
Section 4. We conclude the paper with a discussion of future work in Section 5.

2 Related Works

In this section, we review various methods for test cases generation for Web services
and discuss drawbacks of existing Web service testing.

Heckel and Mariani [4] generate test cases for Web services with individual rules by
selecting “likely” inputs. Possible inputs are further restricted by the preconditions of
the GT (graph transformation) rules [5]. This suggests the derivation of test cases using
a domain-based strategy, known as partition testing [6]. The idea is to select test cases
by dividing the input domain into subsets and choosing one or more elements from each
domain [7]. The execution of an operation can alter parts of service’s state that are used
by other operations. GT rules specify state modifications at a conceptual level. By
analyzing these rules we can understand dependencies and conflicts between opera-
tions without inspecting their actual implementation. In this method, data-flow testing
technique is used to test the interaction among production rules if creation of nodes and
edge is interpreted as “definition” and deletion as “use” [8]. Conceptually, each op-
eration (rule) can add or remove nodes and edges to or from the conceptual state, and
change the values of attributes. Authors expect sequences of operations, which include
the creation of an entity and its subsequent uses are likely to expose (state-based) fault.

In short, this method applies existing domain-based testing (partitioning testing) to
the GT rules to generate test cases which cover validation of both single operation and
sequences. The major problem of this method is that the definition of GT rules does not
contain the temporal aspects (control flow) of message interactions. This method only
considers data-flow to generate test cases for sequences of operations. This means that
[4] has no test criteria for control flow. Furthermore, splitting the input domain into
subsets relies on the tester’s experience. This could cause non-uniform and biased tests
for Web services.

In the paper [9], data perturbation is used as main method for testing Web service
components. The testing process operates by modifying request messages, retransmit-
ting messages, and analyzing the response messages for correct behavior. To do this
process, value data perturbation modifies values in SOAP messages in terms of the
types of the data. Data value perturbation relies on ideas from boundary value testing
[10]. Test cases are derived from default boundary values of XML schemas. Tests are
created by replacing each value with each boundary value, in turn, for appropriate type.

Concisely, the authors present a new approach to testing Web services based on data
perturbation. Data perturbation uses two methods to test Web services: data value
perturbation and interaction perturbation. However, this approach relies strictly on
syntactic information about the XML messages, does not use behavior information.
They consider only the selection of appropriate input parameter values. The sequences
of operations in Web service are not considered. They just focus on testing of single
operation of Web service.

Lietal. [11] provide some techniques for various kinds of Web Services testing such
as unit testing, functional testing, performance testing, Load/stress testing, security
testing and authorization testing. They provide detailed information on the key aspects
of Web service testing features related with performance, authorization, and security.

106 C. Keum et al.

Furthermore, they designed an automatic testing tool including SOAP-based log
analysis, script generator, recorder, and monitor. However, there is no detailed infor-
mation on the method of test cases generations in their paper.

In the paper [12], the authors propose a method of extending WSDL to describe
dependency information which is useful for Web service testing. They suggest several
extensions such as input-output dependency, invocation sequences, hierarchical func-
tional description, and concurrent sequence specification. Similar to [11], there is no
test case generation method and experimental data using the extension.

In summary, the existing Web service testing methods try to take advantage of syn-
tactic aspects of Web service rather than behavioral aspects of Web services because
standard WSDL does not contain such information. Therefore, they focused on the test
of single operations instead of sequences of operation. One of disadvantages using
those methods is that they rely on test engineer’s experience. This could lead to
non-uniform and biased testing. All these problems can be solved by augmenting be-
havior information to WSDL file. The behavior information holds control and data
dependencies of Web service operations because the information is represented as an
EFSM formal model. Using the augmented EFSM model, we can generate test cases
which cover control and data paths thoroughly. In the next section, we describe our
approach in detail.

3 Test Cases Generation for Web Services Using EFSM

In this section, we describe our test generation approach for Web services in detail. In
Section 3.1, we first give a procedure for deriving an EFSM model from a WSDL
specification of a service and illustrate the procedure with a banking Web service
example. Once an EFSM model is constructed, test cases can be generated easily us-
ing a well-known algorithm as described in Section 3.2.

3.1 Modeling Web Service with EFSM

A WSDL specification is used to describe how to access a Web service and what op-
erations it can perform. However, a WSDL specification does not provide sufficient
information for Web service test derivation because it only provides the interface for
the service. An EFSM starts from an initial state and moves from one state to another
through interactions with its environment. The EFSM model extends the FSM model
with variables, statements and conditions. An EFSM is a 6-tuple <S, sy, I, O, T, V>,
where S is a non-empty set of states, sy is the initial state, / is an non-empty set of input
interactions, O is a non-empty set of output interactions, 7 is a non-empty set of tran-
sitions, and V is a set of variables. Each element of T is a 5-tuple of the form:
<source_state, dest_state, input, predicate, compute_block>, where “source state” and
“dest state” are states in S corresponding to the starting state and the target state of ¢,
respectively; “input” is either an input interaction from 7 or empty; “predicates” is a
predicate expressed in terms of variables in V, the parameters of the input interaction
and some constants, and “compute-block” is a computation block consisting of as-
signment and output statements. We will only consider deterministic EFSMs that are
completely specified. In addition, the initial state is always reachable from any state
with a given valid context.

Generating Test Cases for Web Services Using Extended Finite State Machine 107

WSDL Is Web service
Informal spec. stateful? No

Yes
v
Stepl: Analyze the WSDL and informal specification Use otl?er Web service
and fill the WSDL analysis template test derivation methods

Step 2: Classify control and data variables and construct a state
machine based on the combination of control variables

| Step 3: Adjust the state machine with state reduction and merging

Step 4: Supplement transitions using the operation information
in the WSDL analysis template

L] EFSM

Fig. 1. Procedure for deriving an EFSM model from a WSDL description of a service

Figure 1 presents our procedure for deriving EFSM model from a WSDL specifi-
cation. First of all, we have to decide whether the Web service to be modeled is stateful
or not. A Stateful Web service in general can be modeled as an EFSM. Stateful Web
service has several operations which change the service’s internal state that are used by
other operations. In that case, the operations may response with different output mes-
sages according to the internal state of Web service server. If the Web service is
stateless, then we have to use other Web service testing methods such as [4] and [9].
Otherwise, we continue with Steps 1 through 4.

Step 1). We analyze the WSDL specification and the web service specification in informal
language and fill the WSDL analysis template shown in Table 1. Each row of Table 1
describes an operation with its name, its parameter types and its return value type together
with its pre-condition and post-condition for each operation in WSDL specification.

For example, Table 2 shows the WSDL analysis template filled out for a banking
Web service. From WSDL description, we find out that the banking Web service pro-
vides four public operations, i.e. openAccount, deposit, withdraw, and closeAccount.
The operation openAccount expects a single parameter init which means an initial
deposit, and returns an account number identifier. The operation closeAccount expects
a single parameter id, which means account number, and returns the result of operation
such as ResultOK and Error. The operations deposit and withdraw expect two pa-
rameters id (identifier) and v(value), and return results such as ResultOK and Error. In
Table 2, value holds the balance of the bank account created by openAccount operation
and accountld means account number.

Step 2). To construct EFSM, it is necessary to classify variables in the pre-condition
and post-condition of Table 2 into control variables and data variables. Then a

108 C. Keum et al.
Table 1. WSDL analysis template
operation pre-condition post-condition
name:
parameter:
return:

Table 2. WSDL analysis template for banking Web service

operation

pre-condition

post-condition

name: openAccount
parameter: init
return: identifier

init> 0

value’ = init
accountld > 0

name : deposit
parameter: id, v
return : res

accountld = id
v>0

value’ = value + v
accountld > 0

name : withdraw
parameter: id, v
return : res

accountld = id
value >=v

value’ = value - v
accountld > 0

name : closeAccount
parameter: id
return : res

accountld = id

accountld =0
A value’ =0

Table 3. Classification of variables for banking Web service

operation pre-condition post-condition
control data control data
variable variable variable variable
name: openAccount
penA .. accountld ..
parameter: 1nit - nit nit
. e value
return: identifier
name : deposit v
parameter: id, v accountld d value -
return : res
name : withdraw
. accountld \%
parameter: id, v . value -
value id
return : res
name : CloseAccount
. . accountld
parameter: id accountld id -
value
return : res

combination of different values of the control variables makes a state of the EFSM
under construction. For the banking Web service example, there are two control vari-
ables accountld and value. Table 3 presents the classification of variables for banking
Web service.

Generating Test Cases for Web Services Using Extended Finite State Machine 109

Figure 2 shows an initial version of EFSM for the banking Web service. The states
are constructed by combining possible value range of control variables. The variable
accountld and value have two possible values: range 0 and greater than 0. If the control
variables have value 0, it means that it is not initialized yet. When the variable ac-
countld is initialized by openAccout operation, the variable has a value greater than 0
until it is closed by closeAccout operation. After initialization, the variable value keep a
balance greater than 0 according to the operation withdraw and deposit. Therefore, we
make four different states with combinations of the two control variables. Then we
associate transitions with the appropriate operations by examining the pre-condition
and post-condition of an operation.

value =0

accountld = 0

openAccount closeAccount

value =0

value > 0
accountld = 0

accountld > 0

withdraw

withdraw value > 0 deposit

accountld > 0

Fig. 2. EFSM construction with control variables

Step 3). It is desirable to reduce states in the initial version of EFSM model because
first often the number of states would be otherwise huge and second there is a possi-
bility that unreachable states may exist. For example, the state with value >0 and ac-
countld = 0 is an unreachable state. Unreachable states should be deleted for the state
reduction. Some states could be merged into one state according to test engineer’s
judgment. Figure 3 gives an enhanced EFSM obtained by removing an unreachable
state and merging two states into a state named Active. For human readability, we as-
sign a meaningful name to each state.

Step 4). To make a concrete transition in EFSM, operation information in the WSDL
is used. An operation has input and output message. Input message is transformed into
input event and output message is transformed into output event in the transition.
Pre-condition is transformed into guard condition in the transition. Post-condition is
transformed into actions in the transition. Figure 4 shows our final EFSM model de-
rived from the WSDL specification for the banking Web service.

110 C. Keum et al.

(Initial)

openAccount

closeAccount

A4

Active

withdraw deposit

Fig. 3. Enhanced EFSM with state reduction and merging

t4: 7closeAccount_Rq(id)
id == accountId

value := init IcloseAccount_Rp(‘ResultOK”)
lopenAccount_Rp(accountId)

t1: 2openAccount_Rq(init)
init >0

t2: ?deposit_Rq(id,v)
id == accountld
v>0
value := value + v
!deposit_Rp(‘ResultOK’)

3: ?withdraw_Rq(id,v)
id == accountId
value >=v
value := value - v
lwithdraw_Rp(‘ResultOK”)

Fig. 4. Final EFSM for banking Web service

3.2 Test Cases Generation Algorithm Using EFSM

In the paper [3], the authors provide a comparison of single EFSM-based test genera-
tion methods. We choose Bourhfir’s algorithm [13] as our test case generation method
for Web services because the algorithm considers both control and data flow with
better test coverage. The control flow criterion used is UIO (Unique Input Output)
sequence [14] and the data flow criterion is “all-definition-uses” criterion [15] where
all the paths in the specification containing a definition of a variable and its uses are

Generating Test Cases for Web Services Using Extended Finite State Machine 111

generated. Moreover, the algorithm uses a technique called cycle analysis to handle
executability of test cases.

The detailed algorithm is described in Figure 5. For each state S in the EFSM, the
algorithm generates all its executable preambles (a preamble is a path such that its first
transition’s initial state is the initial state of the system and its last transition’s tail state
is S) and all its postambles (a postamble is a path such that its first transition’s start state
is S and its last transition’s tail state is the initial state). To generate the
“all-definition-uses” paths, the algorithm generates all paths between each definition of
a variable and each of its uses and verifies if these paths are executable, i.e., if all the
predicates in the paths are true. After the handling executability problem, the algo-
rithms removes the paths which is included in the already existing ones, completes the
remaining paths (by adding postambles) and adds paths to cover the transitions which
are not covered by the generated test cases.

Algorithm. Extended FSM Test Generation
Begin
Generate the dataflow graph G form the EFSM specification
Choose a value for each input parameter influencing the control flow
Call Executable-Du-Path-Generation(G) procedure
Remove the paths that are included in already existing ones
Add a postamble to each du-path to form a complete path
Make it executable for each complete path using cycle analysis
Add paths to cover the uncovered transitions
Generate its input/output sequence using symbolic evaluation
End.

Procedure Executable-Du-Path-Generation(flowgraph G)
Begin
Generate the shortest executable preamble for each transition
For each transition T in G
For each variable v which has an A-Use in T
For each transition U which has a P-Use or a C-Use of v
Find-All-Paths(T,U)
EndFor
EndFor
EndFor
End;

Fig. 5. Test case generation algorithm using EFSM

The following definitions that appeared in the paper [3] were used in the algorithm:

e A transition has an assignment-use (A-Use) of variable x, if x appears at the
left-hand side of an assignment statement in the transition.

e When a variable x appears in the input list of a transition, the transition is said to
have an input-use (I-Use) of variable x.

e A variable x is a definition (referred to as def), if x has an A-use or I-use.

112 C. Keum et al.

e When a variable x appears in the predicate expression of a transition (Provided
Clause), the transition has a predicate-use or P-Use of variable x.

e A transition is said to have a computational-use or C-use of variable X, if X occurs in
an output primitive or an assignment statement at the right-hand side.

e A path (t;,t,,...,tt,) is said to a def-clear-path with respect to (w.r.t) a variable x if
ty,...,t do not contain defs of x.

e A path (t,...,t;) is a Du-path (definition-uses) w.r.t a variable x, if x € def (t;) and
either x € c-use(ty) or X € p-use(ty), and (ty,...,t) is a def-clear-path w.r.t x from t; to t,.

In Table 4 shows a part of test cases and test sequences without input parameters for
the EFSM in Figure 5.

Table 4. Test cases for the banking Web service

No Test Cases Input/Output Sequence

1 tl, t4 ?openAcount_Rq!openAccount_Rp
?closeAccountRq !closeAccount_Rp

2 t1,62,t4 ?openAcount_Rq!openAccount_Rp

?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount_Rp
3 t1,13,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp
4 t1,63,t2,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount Rp
5 t1, 2, t3, t4 ?openAcount_Rq!openAccount_Rp
?deposit_Rq!deposit_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp

4 Application to Parlay-X Web Services

To show that our method can be effectively used for nontrivial real world problems,
we applied it to Parlay-X Web services [16]. Parlay-X is a Web Services framework
for telecommunications domain. The architecture of the framework in which Parlay-X
Web services operate is shown in Figure 6. A Parlay-X Web service, Third Party
Call, is used to create and manage a call initiated by an application. The overall scope
of this Web service is to provide functions to application developers to create a call in
a simple way. Using the Third Party Call Web service, application developers can
invoke call handling functions without detailed telecommunication knowledge. The
Third Party Call Web service provides four operations: MakeCall, GetCalllnforma-
tion, EndCall, and CancelCall.

For comparison, we generated test cases for the Third Party Call Web service
with three different methods, i.e. the method of Heckel et al [4], the method of
Offtutt et al [9] and finally our method. For the method of Heckel et al [4], we defined a

Generating Test Cases for Web Services Using Extended Finite State Machine

domain based on GT production rules. Eight production rules for the four operations
were found. After that, we found attributes for each production rule. Test cases are
generated by fixing a boundary value for at least one of them and randomly generating
the other two values. In addition, we generated test cases using incorrect inputs for each
rule. The sequences of operations are generated by analyzing dependencies and con-
flicts of operations. Finally, 36 test cases were generated using this method. For the
method of Offtutt et al [9], 40 test cases were generated through the analysis of

boundary values of message parameters.

Increasing
abstraction

Parlay

Parlay X
Applications .

- - - - Parlay X APIs

Applications

Network Elements

Network Protocols
" (e.g. SIP, INAP etc)

PN AN

Third Party Call

Call Notification

Short Messaging
Multimedia Messaging
Payment

Account Management
Terminal Status
Terminal Location
Call Handling

Audio Call

. Multimedia Conference|

Address List
Management
Presence

Fig. 7. EFSM model for the third party call Web service

114 C. Keum et al.

Transition Input/Output/Computation
tl MakeCall_Rq(cgNum,cdNum)
callld := GenerateCallld()
IMakeCall_Rp(callld)

status := Initial

2 ?CancelCall_Rq(id) id == callld
status := Canceled

set timer

t3 ?EndCall_Rq(id) id == callld
status := Canceled

set timer

t4 ?NoAnswer id == callld
errCode := SVC0001
IServiceError(id, errCode)
status := Canceled

set timer

t5 ?GetCalllnformation_Rq(id) id == callld
!Getcalllnformation_Rp(status)

to ?CallConnected
status := Connected

t7 ?GetCalllnformation_Rq(id) id == callld
!GetcallInformation_Rp(status)

t8 ?GetCallInformation_Rq(id) id == callld
!Getcalllnformation_Rp(status)

t9 ?CancelCall_Rq(id) id == callld

errCode := SVC0260
IServiceError(id, errCode)

t10 ?CallTerminated

status := Terminated

set timer

tl1 ?EndCall_Rq(id) id == callld
status := Terminated

set timer

t12 ?GetCallInformation_Rq(id) id == callld
!Getcalllnformation_Rp(status)
t13 ?EndCall_Rq(id) id == callld
errCode := SVC0261
IServiceError(id, errCode)

tl4 expire_timer

tl5 expire_timer

Fig. 7. (continued)

To generate test cases using our method, we followed the procedure described in
Section 3.1. First, we analyzed the WSDL specification of Third Party Call and the
informal specification of the Third Party Call Web service. For Step 2, three control
variables were identified by analyzing the WSDL analysis template. Then we con-
structed an EFSM based on these three control variables and the four operations. The
final EFSM shown in Figure 7 has five states and fifteen transitions. Using the EFSM
and the algorithm described in Section 3.2, 95 test cases were generated for Third
Party Call. Table 5 shows some of the test cases for Third Party Call Parlay-X Web
service.

Generating Test Cases for Web Services Using Extended Finite State Machine 115

Table 5. Test cases for Parlay-X Web service Third Party Call

No Test cases

1 ?MakeCall !Callld, ?GetCalllnformation !CallStatus ?CallConnected ?CancelCall
IServiceError ?GetCalllnformation !CallStatus ?CallTerminated ?TimeOut
2 ?MakeCall !Callld ?CallConnected ?CancelCall !ServiceError ?CallTerminated
7TimeOut
3 ?MakeCall !Callld ?GetCalllnformation !CallStatus ?CallConnected ?CancelCall
IServiceError ?CallTerminated ?TimeOut
4 ?MakeCall !Callld ?CallConnected ?GetCalllnformation !CallStatus ?CancelCall
IServiceError ?CallTerminated ?TimeOut
5 ?MakeCall !Callld, ?GetCallInformation !CallStatus ?CallConnected ?GetCallln-
formation !CallStatus ?CancelCall !ServiceError ?CallTerminated ?TimeOut

Table 6. Comparison of test criteria

Data flow criterion Control flow criterion
Method of Heckel et al [4] all-definitions-uses -
Method of Offtutt et al [9] - -
Our method all-definitions-uses UIO sequence

A test suite is a set of test cases and is said to satisfy a coverage criterion if for every
entity defined by coverage criterion, there is a test case in the test suite that exercises
the entity. Each method used in our experiment had its own test coverage criterion. The
comparison of test coverage criterion for three methods is summarized in Table 6.

The method [9] had no test coverage criterion, but we could generate test cases
easily through examining types of message parameters. There is a trade-off in choosing
test coverage criteria. The program could be more thoroughly tested with the stronger
criterion. However, usually the cost incurred by test cases generation and testing is
negligible compared to the cost incurred by the presence of faults in programs.

Test cases and results of different methods are summarized in Table 7. As we ex-
pected, our method located more faults than the other methods even though it spent
more time for executing a test case. Our method spent more time than other method
because test cases generated using our method consist of the complex sequences of
operations but almost all test cases generated using other method is made of a single
operation. To show the efficacy of our method, the number of test cases and the ac-
cumulated number of faults detected are analyzed in Figure 8. As shown in Figure 8§,
our method detected many faults in the early phase of testing. Our methods detected
many errors that occurred during executing complex sequences of operations. For
example, the operation GetCalllnformation worked well in the initial state and the
progress state, but the operation caused an error when it executed in the connected state.
The method [4] located some faults related with boundary value and incorrect input
values in the case of testing for single operations. However, the sequences of operations
derived from the method [4] were not effective for locating faults. Even if the method
[4] expected the data flow coverage criterion “all-definitions-uses” for gener