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Introduction

Wind loads have a great deal of influence on building design and the design of other
kinds of civil engineering structures. Many whole structures or parts of structures that
fail, do so because inadequate thought was given to wind action at the design stage.

As this subject is very wide-ranging, we have had to limit our discussion of the subject.
We therefore recommend that readers also consult other books which deal in much more
detail with specific problems. Some chapters may seem rather lengthy, but this is either
due to the difficult nature of the subject or because we hope the additional information
will prove useful.

Wind and wind response

The concept of a wind-load chain was introduced by A.G. Davenport, see Figure 1.1. Each
link is necessary when wind actions and the response to actions are to be calculated. The
chain gives a picture of the particular task facing the designer. The concept of a chain
symbolizes that the total design process is only as reliable as the least reliable of the links.
Figure 1.1 also indicates some interactions between different phenomena in the chain.

Each link deals with random parameters, so statistically based methods are recom-
mended. Appendix A gives an explanation of some of these statistical concepts, including
stochastic processes.

Wind climate
This term covers the general wind conditions in different geographical regions, a subject
dealt with briefly in Chapter 2. The term includes only variations in wind velocities

Terrain: ‘ Mechanical response:
wind at low height /— wind pressure to
structural response

Wind climate: ZAerodynamic response: Design criteria
global wind wind flow to pressure

Fig. 1.1 The wind-load chain. (Reproduced by permission of Danish Building Research
Institute).



2 INTRODUCTION

averaged over a period of at least 10 min. The reference wind velocity is determined
mainly by the wind climate.

Terrain conditions

The roughness of the terrain exerts a major influence on the wind. The mean wind velocity
is reduced by the roughness of the ground, but at the same time the wind becomes turbulent
and more difficult to describe. Mean wind velocity increases with the height above the
ground.

Usually, the terrain can only be described in a very coarse way by introducing different
categories. These are then identified by the so-called roughness length zy. As the terrain
surrounding the structure in question characterizes the roughness, possible changes, such
as the erection or demolition of nearby buildings, which may take place during the lifetime
of the structure, may affect wind loads.

Chapter 3 is about the influence of the terrain.

Wind loads

Structural geometry has an important influence on wind load. This influence is most easily
measured by means of wind tunnel experiments, cf. Chapter 10. As reported values exist
for a large variety of structures, many problems may be solved by referring to the literature,
e.g. Cook, 1985. The determination of static wind load is discussed in Chapter 4.

Wind loads vary in space and time over the surface of structures. Dynamic analysis, i.e.
taking the product of structural mass and acceleration (inertial forces) into account—is
much more time consuming than static analysis. Therefore, an equivalent static calculation
may be used if this can be justified. For vibrating structures, the wind load may also depend
on structural motions. The aerodynamic response, i.e. the conversion from wind velocities
to loads, may be greatly influenced by the motions of the structure, cf. Chapters 7 to 9.

Mechanical response

In wind engineering, the mechanical response means the structural response caused by
wind load. Moderately stiff structures may vibrate in different ways when subjected to
wind loading. E.g. along-wind vibrations called buffeting may occur in connection with
the turbulence. This phenomenon is dealt with in Chapters 5 and 6.

Slender structures are especially susceptible to cross-wind vibrations caused by vortex
shedding, and within certain ranges of wind velocities, the wind load perpendicular to the
wind direction may be in resonance with the structure. Crosswind vibration is discussed
in Chapter 7.

Cable-supported bridges and some other structures may vibrate when vertical and
torsional movements are coupled. This phenomenon, called classical flutter, occurs only
at high wind velocities. However, bridges where flutter is likely to occur must be studied in
wind-tunnel experiments, as flutter can cause the structure to collapse completely. Wind-
induced bridge vibrations are dealt with in Chapter 8. Of special interest is the section
on suspension bridges under construction, as this appears not to have been published in
any other textbook.
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Design

Although design is as important as any of the other links in the wind-load chain, this
subject does not come within the scope of this book.

Codes

The importance of wind action is recognized in the codes of practice, and in 1995, a
preliminary Eurocode: Actions on structures—Wind actions, was published throughout
Europe. This preliminary Eurocode is officially called European Prestandard ENV 1991-
2-4, but for convenience it is referred to in this book by its popular title, Eurocode 1.
According to plan, it will be replaced by a European Standard in late 1998.

Eurocode 1 pays a great deal of attention to wind action and is likely to form the
basis for design against wind actions in Europe. However, in order to make reasonable
use of the codes, we need to understand the reasoning behind the clauses and rules of
application. One of the objectives of this book is to provide just such a background.



Wind Climate

Some knowledge of meteorology, in particular of the formation and duration of heavy
storms, is needed for a realistic prediction of wind load on structures.
This chapter reviews the most important meteorological phenomena.

2.1 METEOROLOGICAL CLASSIFICATION

Atmospheric motion usually takes place in such a way that different patterns of motion
are mutually independent both in time and in space. Figure 2.1 shows that the patterns
of atmospheric motion range from turbulence, (vortices of air in the range of a few
metres with a characteristic lifetime of some minutes), to local weather systems and large
planetary waves, which may circumvent the entire globe and have a lifetime of several
days. These phenomena are referred to as microscale, convective scale and macroscale
respectively, as shown in Figure 2.1.

The autospectrum for wind velocity is a useful tool for illustrating micro- and
macroscales. The autospectrum shows the variance of the wind as a function of the

A
6
10 1 10 days
5 Fronts and weather systems
1071 1day y
ol 10 hours Local wind systems
3 107
2] F 1 hour
c 3
S 107 ) Turbulence
o I 10 min
E Convection
5 1074 . (thermal conditions)
P 1 min.
2
© 10 A
p}
[a)
1 .
Microscale Convective scale  Macroscale
| Il 1 1 1 — 1 1 1 »

001 010 1 10 10% 10% 10* 10% 10° 10’

Geographical dimension, m

Fig. 2.1 Orders of magnitude in space and time for different patterns of motion in the atmo-
sphere. (After Fortak (1982). Reproduced by permission of Dietrich Reimer Verlag).



6 WIND CLIMATE

different frequencies, see Appendix A.3. There appears to be a distinction between the
high frequencies in the microscale and the low frequencies in the macroscale.

Figure 2.2 shows two different autospectra. The full curve is based upon measurements
during one year on open terrain at Lammefjorden in Denmark, at 30 m height. The dotted
curve shows the Van der Hoven spectrum, which is based on measurements at about
100 m height. The wind velocities were affected both by the wind climate (the first
element of the wind-load chain) and by turbulence in the atmospheric boundary layer (the
second element of the wind-load chain). Some important properties of the autospectra are
observed:

o There is a great deal of variance in movements lasting approximately 4 days, the same
lifetime as fully developed weather systems. In addition to this, the Lammefjorden
spectrum has a clear peak at a period of 1 day. The Van der Hoven spectrum shows
a peak at a period of { day.

!
4510 =
£
= VAN P
< \
= / \| A i
2 40’ AN AN T
s AN / \
\ / N
K N
N
107" L e 1
: ~
/o l \\\
3] 0 / \.\\
10 "L 4
3 \\
b \
70'3—g +
10 ) i i . il e acsuasal sl porTm| m.%

T T T T T T T
Frequency 10 %107 10 10°° 10 * 107 10 107" 10" 10" Hz
Period | l | l | |
1year 4days 1day  1h  10min 1s

Fig. 2.2 Autospectra for the wind velocity. The ordinate is the frequency n multiplied by
the autospectrum S (n) for the horizontal wind velocity. The full curve corresponds
to the autospectrum for wind measured at 30 m height at an open terrain (zo =
approximately 0.05 m) at Lammefjord, Denmark, see Courtney and Troen (1990).
The dotted line is a spectrum for wind velocities based on measurements at about
100 m height at Brookhaven, NY, USA, see van der Hoven (1957). The two spectra
resemble each other for periods in the range between about 10 minutes and 1 year.
The Lammefjord spectrum shows a distinct peak at a period of 1 day, and both
spectra have high values at periods of 4 to 5 days. In a range from about 10
minutes to some hours, the van der Hoven spectrum takes rather low values, this
phenomenon is referred to as the spectral gap. This tendency is not quite as obvious
as from the Lammefjord spectrum. The rather high values of the van der Hoven
spectrum at periods of about 1-2 minutes are probably due to turbulence and
cannot be related to the wind climate.
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e In both spectra, the amount of variance in periods between approximately 10 minutes
and about 5-10 hours is very low. This is referred to as a spectral gap.

e The van der Hoven spectrum takes rather high values corresponding to periods between
some seconds and about 5 minutes. This must be due to turbulence. The Lammefjord
spectrum has the same tendency, but much less pronounced.

Similar spectra from other locations show that the above-mentioned properties are
typical in temperate zones.

The spectral gap means that the wind climate and the turbulence in the atmospheric
boundary layer are mutually independent, so they may be treated separately and superim-
posed. Figure 2.3 shows how the turbulence in the boundary layer in a typical measurement
of wind superimposes the variation from the wind climate.
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Fig. 2.3 The gust wind velocity U + uy is separated into a wind climate component U and a
turbulence component ug. The wind climate component U is the 10 minute mean
wind velocity and the turbulence component u, is here calculated using an average
time of 10 s, i.e. ug = un(T =108.4)—un(T =600 s.t,) in equation (2.1.1). The
measurements shown are the Lammefjord data also used in Figure 2.2. The wind
velocities used in this figure were supplied by Riso National Laboratory, Denmark.
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As a consequence of the spectral gap, mean wind velocities based upon a period of
10 minutes. as assumed in Eurocode 1, or based upon | hour periods, as assumed in the
Canadian code, will not show much difference. Extreme mean wind velocity estimates
for open exposure based on 1-hour averaging periods are typically approximately 5% less
than estimates based on 10-minute averaging periods. If the wind velocity at the time ¢
at a certain point is called w,(¢r), then the mean value over a time interval 7 is defined as

1 o+ T
(T, 1)) = = / u,(1)dt (2.1.1)
T/,
This mean value depends on the interval 7 and on the starting time ¢,. If 1, varies such
that a storm event is covered, then the maximum value of u,, will decrease if the interval
length T is increased, e.g. from 10 minutes to 1 hour. Furthermore, the variation of u,,
with the time r; will decrease as T increases. The statistics of extreme wind velocities
are treated in Section 3.4.

2.2 GLOBAL ATMOSPHERIC CIRCULATION

Wind arises as a result of pressure differences in the atmosphere. A kind of “feedback™
effect occurs, because the wind itself then causes considerable changes in atmospheric
pressure. For this reason, one phenomenon cannot be used to predict the other, so the
distribution of pressure and flow must be understood as an entity.

For the Earth as a whole, there is equilibrium between the energy received from the
Sun and the energy which is radiated from the Earth into space. There is a surplus of
energy near the Equator and a deficiency near the poles. At the Equator, ground-level air
is heated, it expands, rises and flows away, leaving low pressure. Similarly, at the poles,
ground-level air cools and contracts, so at higher levels, air flows in and high pressure
results, see Figure 2.4.

This chapter deals with conditions in the Northern Hemisphere. Notice that the large
continents in the Northern Hemisphere cause important deviation from the simplified
explanation of pressures and flow given above. Analogous, but far less complicated,
conditions are found in the Southern Hemisphere. On the whole, the wind systems of the
Northern and Southern Hemispheres can be generally seen as separate.

Trade winds

In the equatorial region, warm air flows upwards. At high altitudes it flows away from the
Equator. Due to the rotation of the Earth, often explained by means of a fictitious force
named the Coriolis force, the flow is diverted eastwards. As the friction is negligible in
the higher layers of air, the deviation is complete at 30°-40° latitude, giving a westerly
wind at high altitudes. The permanent subtropical high pressure in this region initiates a
flow towards the Equator at ground level. This flow is bent westwards by the Coriolis
force, and forms a trade wind, so the trade wind is an easterly wind, i.e. coming from
the east.

Subtropical high-pressure zones

The subtropical high-pressure zone in the Northern Hemisphere at approximately 30°
latitude occurs because the flow away from the Equator at high altitude cannot penetrate
further north due to the Coriolis force.
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The North Pole, high pressure

Polar easterly wind

The polar front, low pressure

Warm westerly wind in temperate zone
Subtropical high pressure zone 3307’L
The trade wind
Equator, low pressure o [

Fig. 2.4 The general features in the global, atmospheric circulation (Jensen, 1985). The
arrows shown inside the circle describe wind conditions close to the Earth’s surface.
H and L stand for high and low pressure respectively. The part of the figure shown
to the right of the circle indicates the flow generated by air returning from the
higher levels of the troposphere. The scale in vertical direction is extremely exag-
gerated, as the whole phenomenon takes place below 10-15 km altitude. In the
figure this would correspond to less than 0.1 mm. (Reproduced by permission of
Teknisk Forlag).

In the layers near the ground, flow is directed towards the north by the subtropical
high-pressure zone. Due to the Coriolis force, it is then diverted eastwards and becomes
a westerly wind in the temperate zone.

Easterly polar winds

From the high pressure at the North Pole, the air flows to the south at low altitudes. The
flow is then diverted to the west and becomes the cold, easterly polar wind. The two main
flows, the west wind in the temperate zone and the easterly polar wind, pass along each
other at 50°-60° northern latitude, thereby forming the polar front.

The polar front

Schematically, the polar front is a surface which meets the ground along a latitude. A
warm westerly wind flows to the south of the polar front and a cold easterly wind flows to
the north of the front. Due to the temperature difference between the air masses separated
by the polar front, the front is inclined to flow northwards. This means that the warm air
flows above the cold air and vice versa.

The equilibrium at this front is very sensitive to changes in temperature, velocity and
the humidity of the two air masses. If the temperature of the warm air decreases, the
polar front becomes steeper, as the warm air pushes the base of the front to the north.
The cooling of warm air in one particular region causes a bulge in the polar front. Such a
bulge is unstable. The further development of such instabilities is illustrated in Figure 2.5.

Warm and cold fronts
In Figure 2.5(c), a vertical section of the system of fronts is shown below a horizontal
section of pressure at ground level and fronts. On the right, i.e. towards east, the warm
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Fig. 2.5 Development of a cyclone in the Northern Hemisphere. PF: polar front; CF:
cold front—advancing cold air;, WF: warm front—advancing warm air. Example
(a) shows a random bulge on the polar front. This bulge is unstable and grows as
shown in (b). In (c) the bulge has developed into a system of fronts, see the vertical
section in Figure (c,). The fronts meet at a low pressure zone, and the wind blows
anticlockwise around this zone. In (d) the fronts have collapsed (an occlusion) and
the cyclone has disintegrated. (After Jensen (1959)).

air is above the cold air, and the inclination of the surface of separation is very shallow
(1:100 or even less). In the western part of the section, the cold air passes below the
warm air. The surface of separation is steeper and is called the cold-front surface. The
intersections between the front surfaces and the ground are called the warm front and
the cold front, respectively. The entire system in Figure 2.5(c) moves eastwards, with the
cold front moving faster than the warm front. The warm section of the original bulge thus
becomes narrower and finally the two front surfaces will intersect each other in a line
above the ground. This is a “fold up” or “occlusion”, see Figure 2.5(d). In summertime,
the polar air to the west of the warm sector is colder than the air to the east, and the two
masses are separated by a surface like II. In the wintertime, surface I forms the usual
occlusion over Northern Europe because the sea is warmer than the continent.

Cyclones

The formation of fronts as described above gives rise to a low-pressure area where the
warm front and the cold front meet. As shown in Figure 2.5, the air moves counter
clockwise around the area of low pressure. This system is called a cyclone and usually
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moves from west to east. The wind velocity in the cyclone is greatest when the low
pressure is lowest. The diameter of such a polar cyclone is of the order 500-1000 km.
The wind velocity in the cyclone depends partly upon the pressure gradient. Over the
North Sea, a pressure gradient of 5 mb per 100 km corresponds to a wind velocity of
about 20 m/s (1 mb = 100 Pa). In Europe, cyclones are by far the most important source
of high wind velocities.

2.3 GEOSTROPHIC WIND AND GRADIENT WIND

The speed and direction of the wind at high altitudes above ground, say 1 km, is used
when evaluating the wind in the atmospheric boundary layer.

Geostrophic wind

The influence of ground surface on wind decreases with increasing height. The wind
moves in almost straight lines at heights of approximately 1 km above ground and in areas
that are far from high-pressure and low-pressure zones in the weather system considered.
Wind speed and direction of the wind depends only on the horizontal pressure gradient and
on the Coriolis force originating from the Earth’s rotation. This wind is called geostrophic,
see Figure 2.6.

The pressure gradient towards a low-pressure zone causes a mass of air to accelerate
along a curve, until a state of equilibrium between the pressure gradient and the Coriolis
force per unit of air volume is reached. This means that the two forces are of equal
magnitude, but in opposite directions, both perpendicular to the wind direction. It follows
then that the wind is parallel to the isobars, and the geostrophic wind velocity Ug, is

Isobar Low pressure

Force due to a
pressure gradient an

_——+ —> Wind velocity Ugeo

Higher pressure
Transient trajectory of
air particle

/
/\ Coriolis force

Fig. 2.6 Geostrophic wind. A particle of air is accelerated towards the low pressure area
due to the pressure gradient. However, due to the Coriolis force, its path will be
diverted. If the isobars are (almost) rectilinear, a state of equilibrium develops.
In this state, the force due to the pressure gradient and the Coriolis force are
of the same magnitude but are in opposite directions, and the wind velocity is
constant. The Coriolis force is perpendicular to the wind direction and in the Northern
Hemisphere to the right. The pressure gradient is orthogonal to the isobars, which
are assumed to have such large radii of curvature that the centrifugal force is
negligible. (Reproduced by permission of Danish Building Research Institute).
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given by

1 d
Ugeo = — (2.3.1)
pfodn

where dp/dn is the pressure gradient at the height of the geostrophic wind, p is the air
density and f, is the Coriolis parameter defined by

fo=2QsinA (2.3.2)

where Q is the angular velocity of the Earth (27r/24 hours = 7.27 x 107 rad/s), and A is
the latitude. For example, at Greenwich the latitude is ~ 51°, giving f, = 1.13x 10 * 57!,

This wind is called geostrophic and U, is the geostrophic wind velocity corresponding
to the pressure gradient. This wind flow is maintained as long as the system of isobars
remains the same. It follows from the derivation, that geostrophic wind does not diminish
pressure differences and that no energy supply is needed to maintain geostrophic wind.

Geostrophic wind occurs in cases where the radii of curvature of the isobars are so large
that the centrifugal force is unimportant. If, however, the radii of curvature are small, i.e.
less than a few thousand kilometres, centrifugal force must be taken into account which
results in the gradient wind described below.

Gradient wind

Wind follows a curved path in the vicinity of a low-pressure centre or a high-pressure
centre. Wind velocity and direction not only depend on the pressure gradient and the
Coriolis force but also on the centrifugal force of the curved path. The wind in question
is called the gradient wind, see Figure 2.7.

Cyclonic wind Anticyclonic wind

Isobar Isobar

Force due to a d 1

.. ap TCentrifugal force
pressure gradient g
—_—

I

Wind velocity Ug, Forceduetoa —]
. m— . dpy—>
Coriolis force pressure gradient an| Wind velocity Ug
S R | Wind velocity U

Coriolis force

Higher pressure Higher pressure

Fig. 2.7 Gradient wind with constant speed but following a curved path. When cyclonic flow
occurs around a low-pressure zone, i.e. anticlockwise in the Northern Hemisphere,
the force due to the pressure gradient is equal to the sum of the opposite directed
centrifugal force and Coriolis force.

When anticyclonic flow occurs around a high-pressure zone, i.e. clockwise in
the Northern Hemisphere, the Coriolis force is equal to the sum of the opposite
directed force due to the pressure gradient and the centrifugal force. (Reproduced
by permission of Danish Building Research Institute).



GEOSTROPHIC WIND AND GRADIENT WIND 13

Expressed in polar coordinates, the equation of motion is

Uz, 1 dp
4+ U= -2

= - 2.33
r podn ( )

where + and — correspond to cyclonic (i.e. around a low pressure) and anticyclonic
(i.e. around a high pressure) winds respectively, see Figure 2.7 showing conditions in
the Northern Hemisphere. Uy, is the velocity of the gradient wind and r is the radius of
curvature of the isobars.

The solution of the equation is

fer for\®  rdp
Uy =—— : -— 234
gr > + 5 + b dn ( )
for cyclonic winds, and
U=+ - f—') _rdp (23.5)
2 2 pdn

for anticyclonic winds.
For anticyclonic winds, the upper limit for Uy, is

fer
Ve="

Cyclonic winds, which are the most common, have no limits for the magnitude of U,,,
and give counter-clockwise flow in the Northern Hemisphere. For cyclonic winds, the
geostrophic wind velocity Uy, can be expressed using the gradient wind velocity Uy, as

(2.3.6)

Ugeo = Uy [1 + Ug'] (23.7)
Jer

from which it follows that Uy < Ugeo. Neither geostrophic wind nor gradient wind is

driven by forces along the trajectory of motion, as the flow direction is orthogonal to the

forces. This is however an idealization, as friction against lower layers of air has not been

taken in account.

The 850 mb “surface”
Atmospheric pressure decreases with height. At a height of approximately 1-2 km it is
850 mb. In meteorology, the 850 mb “surface” is used as reference where the effects
of friction are negligible and the winds can be explained by the simple theory of
gradient winds.

In the case of very low pressures, the 850 mb “surface” reaches down to approximately
1 km above sea level. It has been found empirically that in strong wind, the maximum
gust velocity near the ground is of the same order of magnitude as the wind velocity
found at the 850 mb surface.

Wind variation as a result of height

Close to the ground, wind velocity and direction varies as a function of height. This is
because the ground tends to reduce wind velocity and this effect spreads upwards. The
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effect wears off on reaching the height of the geostrophic wind or gradient wind, i.e.
above the atmospheric boundary layer, which is typically approximately 1 km thick.

The equilibrium of forces in the boundary layer is illustrated in Figure 2.8. The state of
equilibrium corresponds to a wind direction which crosses the isobars. The wind direction
continues to change down through the boundary layer and the wind speed gradually
decreases to zero, see Figure 2.9. The turn is typically 20°, but it may vary between
approximately 10° and 45° depending on ground roughness and atmospheric stability, see
also Section 3.1.

Lower pressure
Isobar

Force dueto a
pressure gradient an

f Wind velocity U

Net friction
\\
\

|
I Coriolis force
.

Higher pressure

Fig. 2.8 Equilibrium of forces in the atmospheric boundary layer. There is equilibrium
between the force due to the pressure gradient, the Coriolis force and the friction
generated. The wind direction is diverted in relation to the isobars. (Reproduced by
permission of Danish Building Research Institute).

Atmospheric
boundary layer

Fig. 29 Wind in the atmospheric boundary layer. Wind speed decreases downwards, as
illustrated by the length of the arrows. Furthermore, the direction of the wind is
increasingly diverted with respect to the isobars. The figure shows a simplified and
exaggerated picture of these directional changes. In reality, the total diversion of
wind direction is typically 20° through the boundary layer, which is usually of the
order of 1 km high. (Jensen, 1985). (Reproduced by permission of Teknisk Forlag).
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2.4 THERMALLY GENERATED SECONDARY
CIRCULATION (TYPHOONS)

Thermally generated secondary circulation occurs when centres of high pressure or low
pressure are created when the lower levels of the atmosphere are either heated or cooled.

Monsoons

During the summer, the sea heats up slower than the ground surface, so the air is colder
over the sea. As it gets hotter, the air close to the ground rises. This means that at low
altitudes, the wind is directed on shore away from the sea to fill the “void” caused by the
rising air. During the winter, the opposite happens.

These conditions result in monsoons, which are especially common in Asia and over
the Indian Ocean. During the winter, the dry north-easterly monsoon blows from the
Asian Continent towards the south-west, and during the summer the humid south-west
monsoon blows from the Indian Ocean over south-east Asia. The fertility of this area is
mainly due to the rain that accompanies the monsoon. Monsoons often last many days,
but generally the wind speeds are moderate.

Tropical storms (hurricanes)
Hurricanes are storms generated over tropical oceans where the water temperature exceeds
26°C. The energy in hurricanes comes from the release of latent heat when vapour
condenses.

Near the Equator, at latitudes of between 5° and 20°, warm air is occasionally lifted
to high altitudes by upwinds. During certain climatological conditions, the hot, humid

500

Fig. 2.10 The structure of a hurricane.

Region I: The eye of the hurricane is a circular, relatively dry almost calm core,
named the eye, about which the gale rages. At the outer limit of the eye, air rises
slowly, and it drops correspondingly at the centre.

Region II: Warm humid air rises. The vapour condenses, resulting in the release
of large amounts of energy and heavy rain.

Regions IlI-V: Air is sucked towards the eye along the ground surface. It

is transported through region Il and moves away from the eye at high altitude
(approximately 10 km).
Above water, the airflow moving inwards in region V causes warm humid air to
flow into region I, thus generating new energy for the storm. Above land, there is
more loss of energy due to the greater friction at the ground surface. The supply
of energy as warm, humid air is also reduced, which is why tropical storms usually
die out over land after a few days. (Reproduced by permission of Danish Building
Research Institute).
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air forms a cloud in which vapour condenses and releases latent heat. This can involve
extremely large amounts of energy, as the diameter of a hurricane usually measures several
hundred kilometers. The amount of energy released by a hurricane in just one hour is of
the order of the amount of electrical energy consumed by the USA during a whole week.

Generally, hurricanes rage for several days and cause extensive damage due to their
high wind speeds, often about 70-80 m/s. In the USA, on average about 2 billion dollars
worth of damage is caused by hurricanes every year. The principal structure of a hurricane
is shown in Figure 2.10.

2.5 LOCAL WEATHER SYSTEMS

Small, local weather systems have little influence on the global atmospheric circulation,
described in Section 2.2. However, the intensity of these weather systems may, in some
cases, be decisive for the design of exposed structures.

Rising and descending winds — the warm foehn or the cold bora

Strong, local storms sometimes form due to varying ground heights. If a mass of air
moves from lowlands over a mountainous region, the air cools down while ascending.
In the beginning, the temperature drops about 1°C per 100 m increase in ground level.
However, when the temperature falls to dew point, water separates into rain or snow, so
the drop in temperature slows to typically 0.5°C per 100 m rise. When the highest point
is passed, the air flows down again with an increase in temperature of 1°C per 100 m
fall, see Figure 2.11.

For example, let the air over a low region have a temperature of 10°C and a dew point
of 8°C. When the air meets a mountain, it rises and saturation starts at a height of 200 m.
On rising higher, the air produces rain or snow and the temperature drops by 0.5°C per
100 m. If the height of the mountain is 2000 m, the drop in temperature is 2°C for the
first 200 m and 9°C for the remaining 1800 m —a total of 11°C. Above the peak, the air
temperature is —1°C and the air is saturated with vapour. On reaching the other side of
the mountain, the air drops and the temperature rises 1°C per 100 m. If the land continues
at the same height, then the air arrives with a temperature of 20°C above the temperature

—%"C per 100m

//"\

\\:]1 °C per 100m

-1°C per 100m

=

Fig. 2.11 The foehn wind. Wind coming from a lowland area that is forced upwards along a
mountain is cooled 1°C per 100 m rise. If the dew point is passed, water separates
from the air and forms rain or snow. As it continues to rise, the air cools 0.5°C per
100 m rise. At the other side of the mountain the air drops, and the temperature
rises 1°C per 100 m. This air is very dry. (Reproduced by permission of Danish
Building Research Institute).



LOCAL WEATHER SYSTEMS 17

at the peak, i.e. 19°C. As the dew point is —1°C, the air is extremely dry. Such warm,
dry wind is called a foehn.

Under certain conditions, the air descending down the mountain is not heated suffi-
ciently to cause a warm foehn. Instead, a bora is produced, which is characteristically
cold and dry.

Such conditions are found in large ice-covered regions, where the air becomes very
cold and therefore has a high density. If ice-covered regions are at relatively high altitudes,
like the inland ice in Greenland, so-called drop winds (Piteraq) can be experienced locally
in valleys below the rim of the ice. The heavy air quite literally falls down into the valley
because of gravitational forces. The wind speed may be very high, 50-60 m/s is not
unusual, and this will generally determine the design needed to combat the wind action
experienced in Greenland.

Thunderstorms
Thunderstorms may form if there is an upward motion of warm, humid air. Such a motion
may occur at fronts.

A schematic sketch of a thunderstorm is shown in Figure 2.12. The condensation of
the rising, humid air releases energy, and the accompanying rain initiates the downward
motion at the centre. The length scale is about 10 km and the lifetime is of the order of
magnitude of 1 hour.

Tornadoes
Severe thunderstorms may develop into tornadoes with very high wind speeds. Tornadoes
cause about 100 million dollars’ worth of damage every year in the USA.

A tornado is a violent vortex about a vertical or inclining axis. Typically, its diameter is
approximately 300 m and it moves with a velocity of 10-30 m/s. The maximum tangential
wind speed is 100 m/s. Just below the tornado, which looks like a vertical tube-shaped
cloud, a sudden fall in barometric pressure takes place. Therefore, the external surfaces
of buildings are subjected to powerful suction. This can become so intense that buildings
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Fig. 212 Cross section of a thunderstorm. (Reproduced by permission of Danish Building
Research Institute).
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almost “explode”. Airborne debris is another source of damage. By breaking windows or
cladding, tornadoes give rise to changes in internal pressure that cause severe destruction
of roofs, etc.

Tornadoes are reported to be most frequent and violent in the USA, but they also
occur in other regions such as Europe, Japan, Australia and Russia. Some tornadoes have
been very destructive, like the one which completely destroyed 321 buildings in St Louis,
USA, in May 1896. Cook (1985) provides a great deal of information on damage caused
by tornadoes.

Dust devils

In very dry, hot areas, local vortices sometimes form. The phenomenon is initiated by a
very high local temperature over a smaller dark surface which is exposed to sunshine.
Dust devils can be up to several hundred metres tall and sand or dust is sucked up into
the air, hence the name. In contrast to tornadoes, they are not related to thunderstorms.
The damage caused by dust devils is not important in the design of structures.



The Atmospheric Boundary
Layer —Natural Wind

The turbulent nature of wind has been recognized for centuries. One of the early descrip-
tions of the chaotic character of wind was based upon observations of snow-drift. Roger
Ascham (1515-68) wrote:

And that which was most marvel of all, at one time two drifts of snow flew, the one out
of the west into the east, the other out of the north into the east: and I saw two winds
by reason of the snow, the one cross over the other, as it had been two highways. And
again, I should hear the wind blow in the air, when nothing was stirred at the ground.
And when all was still where I rode, not very far from me the snow should be lifted
wonderfully. This experience made me more marvel at the nature of the wind, then it
made me cunning in the knowledge of the wind.

Wind flow is turbulent due to the friction caused as it passes over surface terrain. A
turbulent wind flow varies in a complex, random way both in space and time. Conse-
quently, it must be described in statistical terms. The momentary velocity is described as
the sum of a mean velocity and of fluctuations (the turbulence components) representing
the disordered part of the turbulent flow, see Figure 2.3. According to the definition, after
a sufficiently long period, say 10 minutes, the mean value of the fluctuations is zero.

As mentioned in Chapter 2, the velocity of the wind increases with the height above
terrain in the atmospheric boundary layer. This variation of mean wind velocity is called
a wind profile, see Figure 3.12.

To summarize, the wind in the boundary layer may be characterized by a wind profile
for the mean wind velocity and the additional turbulence. The wind profile is expounded
in Section 3.2 and the turbulence in Section 3.5.

3.1 TURBULENT WIND

This book is about wind load on structures, and in order to avoid unnecessary compli-
cations, the following assumptions have been made in the description of the turbulent
wind field:

e At geostrophic wind height, where the conditions are independent of surface friction,
the flow is assumed horizontally homogeneous. This means that the wind has the same
universal speed and direction.

o The wind is stationary. According to international meteorological practice, a 10-minute
observation period is applied for calculating mean wind velocities. During this period
the wind field may normally be considered stationary, see Appendix A.3.
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Height 43.1m

wind velocity m/s

Minutes

Fig. 3.1 Wind velocities measured at Stigsnaes, Denmark, at three different heights (after
Sigbjérnsson (1974)). The differences of mean wind velocities should be noticed.
(Reproduced by permission of R. Sigbjérnsson).

e The direction of the wind does not change according to height above ground. Due to
frictional forces close to the ground, the geostrophical equilibrium of forces shown in
Figure 2.6 cannot be maintained, and wind direction will therefore change systemat-
ically from ground to geostrophic height, see Section 2.3. However, apart from very
high structures and structures which are unusually sensitive to wind direction, an
excellent approximation is obtained even though directional changing is not taken
into account. Measurements indicate that up to a height of 180 m, direction changes
only few degrees (Harris, 1970).

Mathematical description

A Cartesian coordinate system is applied, with the x-axis in the direction of the mean
wind velocity, the y-axis horizontal and the z-axis vertical, positive upwards.
The velocities at a given time ¢ are formulated as

in the longitudinal direction U)+ulx, v, 2, 1) (3.1.1)
in the lateral direction v(x, vz, 1) (3.1.2)
in the vertical direction wix, v, 2, 1) (3.1.3)

where the mean wind velocity U(z) depends only on the height z above ground. u, v and
w describe the fluctuating part of the wind field, and can be treated mathematically as
stationary, stochastic processes with a zero mean value. The mean wind velocity U(z) and
the turbulence component u in the wind direction are often the most important, as they
usually give the main contributions to the wind forces on a structure. v is the horizontal
wind velocity perpendicular to the wind direction and w is the vertical wind velocity. A
picture of possible wind velocities in the wind direction at a certain time is shown in
Figure 3.2.

Thermal conditions

The geostrophical wind velocity at high altitudes above ground is the direct cause of
the formation of the atmospheric boundary layer, which is described by the mean wind
velocity and turbulence components. The wind conditions in the boundary layer are
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g U(z)+u(x.y.z,t)
]

—U(z)
! Mean wind velocity

u(x,y,z.t)
Turbulence component
in the wind direction

y wind direction

Fig. 3.2 Simultaneous wind velocities in the wind direction at different heights above the
ground. The momentary wind velocities are shown as a solid curve. The wind
velocity is composed by a mean wind velocity U and a turbulence component
u (velocity fluctuation). The mean wind velocity, indicated by the dotted curve,
increases smoothly with the height z. The turbulence component is represented
by the difference between the solid and the dotted curve, indicating that u changes
between positive and negative values. The horizontal turbulence component v
perpendicular to the wind direction and the vertical turbulence component are
fluctuating around zero. (Reproduced by permission of Danish Building Research
Institute).

described as being mechanically generated, even though basically they have a thermal
origin, see Chapter 2.

In addition to the mechanically generated wind conditions, the thermal state of the
atmosphere may significantly influence the actual mean wind velocity and turbulence
components. These thermal effects cannot be ignored if the wind velocity is less than
approximately 10 m/s (Armitt, 1976). At higher wind velocities, mechanically generated
wind conditions are normally by far the most important.

In most cases, as extreme wind velocities are not influenced by the thermal conditions
in the atmosphere, the same will apply to the design wind load on structures. However,
for slender structures like chimneys, vortex shedding may give rise to the greatest wind
load on the structure, see Chapter 7. Vibrations introduced by vortex shedding often occur
at moderate wind velocities, and thermal conditions may be important in such cases. For
this reason, the Canadian code prescribes a considerable thermal influence on the load
due to vortex shedding, see Section 7.4.

Thermal influence on wind conditions

The atmosphere is assumed to be in equilibrium. The pressure p, the density of the air p
and the temperature T in kelvin (kelvin = Celsius + 273) is given in Figure 3.3, which

z

p+dp, p+dp, T+dT

Idz T

Ground
7

Fig. 3.3 Vertical section in the atmosphere. (Reproduced by permission of Danish Building
Research Institute).
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shows two horizontal planes, separated by the distance dz. The weight per unit of area
of the layer with the thickness dz is equal to the increase  p ot the pressure, so

dp
— =—pg (3.1.4)
d:
where ¢ is the acceleration due to gravity. The equation of state of an ideal gas is
P
— =RT (3.1.5)
P

R is the gas constant, R = 287.6 m°/s” /K.
From (3.1.4) and (3.1.5) it follows that the differential equation is
1 d 1 dT 4
A t4h 8 (3.1.6)
pd: T dz RT
When the variation of temperature T with height 7 is known, the air density p can be
determined. As an example, a constant temperature of T, gives the following air density:

[
/)(&.)—/)(())pr< RT(]) (3.1.7)
Thus, in an atmosphere with a constant, height-independent temperature, the air density
decreases exponentially according to height. If a small mass of air in such an atmosphere
moves from one level to another, higher, level without any exchange of heat. the mass of
air must expand in order to correspond to the decreased density. However, then its temper-
ature also decreases. Therefore, the mass of air cannot be in equilibrium at the new height,
but will sink again. Consequently, an atmosphere with a constant temperature is stable.

If the temperature increases with height, it is likewise shown that the atmosphere is
even more stable and the air is prevented from mixing. Stable conditions are typically
found when the ground surface —and therefore also the lower air layers —are cooled
down by radiation in a cloudless sky at night. This phenomenon is called inversion.

However, if the temperature decreases significantly up through the atmosphere, condi-
tions are unstable. A mass of air which is moved upwards will find itself surrounded
by heavier air and will probably move even higher. This phenomenon is called convec-
tion and gives rise to significant air mixing. Typically, it occurs when the sun heats the
ground surface, increasing the temperature in the lower part of the atmosphere in relation
to higher layers.

Between the stable and the unstable atmosphere there is a neutral state characterized
by equilibrium of the mass of air whatever its position, though only if there is no heat
exchange with the surroundings. It follows then, that the neutral state corresponds to a
moderate decrease of air temperature with height.

A dry atmosphere is in a neutral state when the temperature decreases upwards at 1°C
per 100 m. If the temperature decreases more, the atmosphere becomes unstable, and if
it drops at a slower rate or even increases upwards, the atmosphere becomes stable.

The influence of atmospheric stability conditions on air turbulence is illustrated by
smoke rising from a chimney, see Figure 3.4. The thermal influence on turbulence. positive
or negative, can also be seen in this figure.

Throughout most of the book, it is assumed that there is a neutral stability, i.e. thermal
contributions to wind conditions can be disregarded. However, this assumption cannot be
used in the case of vortex shedding, see Chapter 7.
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Fig. 3.4 Thermal influence upon the characteristics of a wisp of smoke. The solid curve to
the left indicates the variation of the temperature with the height above the ground.
The dotted line corresponds to a temperature decreasing 1°C per 100 m (neutral
state). (Reproduced by permission of Danish Building Research Institute).
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3.2 MEAN WIND VELOCITY —WIND PROFILE

Two characteristic length scales apply in the boundary layer. In the lower part of the
boundary layer, the dominant length scale is a measure of surface roughness. In the upper
part of the boundary layer, close to the free flow regime, the boundary layer height is an
important length scale.

In deriving the logarithmic profile shown below, only surface roughness is taken into
account, so the profile only applies close to the ground, i.e. up to 50-100 m above terrain.
In the so-called corrected logarithmic profile, the height of the boundary layer is also taken
into account. At high wind velocities, say more than 20 m/s, the corrected logarithmic
profile gives accurate results up to 300 m above ground.

Several codes have introduced a power law profile which is empirical. This is discussed
at the end of Section 3.2.

The logarithmic profile
The friction velocity u«, is defined by

Ty
Uy = | — (3.2.1)
Jo)

where 7)) 1s the shear stress at the ground surface and p is the air density. For extreme
winds, typical friction velocities are of the order of magnitude 1-2 m/s. Close to the
ground, the velocity gradient dU(2)/dz depends upon 1y, p and the height z above ground.
Based upon a dimensional analysis, a differential equation for the mean wind velocities
can be formulated, and if there is a long, fHat terrain upstream, its solution leads to the
following expression for the logarithmic profile

l -

U@) =u,—In= (3.2.2)
K 2

where « is von Karmdn's constant (« ~ 0.4) and 7y is called the roughness length, see
Tables 3.1 and 3.2.

Eurocode 1 uses the logarithmic profile for the mean wind velocity up to 200 m above
ground.

Table 3.1 Roughness lengths z, for different terrain categories.

Roughness length z; (m) Terrain type

10°5 Plane ice

104 Open sea without waves

103 Coastal areas, on-shore wind

0.01 Open land with little vegetation and few
houses, see Figure 3.6

0.05 Agricultural areas with few houses and wind-
breaks, see Figure 3.7

0.3 Villages and agricultural areas with

lots of wind breaks, see Figure 3.8
1-10 Urban areas
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Table 3.2 Terrain categories and related parameters kr, Zo, Zmin @nd ¢ from Eurocode 1. ¢
is a parameter used in an informative Annex of Eurocode 1 to calculate the integral length
scale of turbulence L% (z). The exponent « (not included in Eurocode 1) is used in the power
law profile, see equation (3.2.9).

Terrain category kr zp[m] Zepin[M] 3 o

| Rough, open sea, lakes 0.17 0.01 2 [0.13] 0.12
with at least 5 km fetch
upwind and smooth flat
country without obstacles

] Farmland with boundary 0.19 0.05 4 [0.26] 0.16
hedges, occasional small farm
structures, houses or trees

i Suburban or industrial areas 0.22 0.3 8 [0.37] 0.22
and permanent forests
v Urban areas in which at least 0.24 1 16 [0.46] 0.30

15% of the surface is covered
by buildings with an average
height exceeding 15 m

The roughness length zg

Simplified, the roughness length z; can be interpreted as the size of a characteristic
vortex, which is formed as a result of friction between the air and the ground surface, see
Figure 3.5. As indicated by formula (3.2.2), zy is the height above ground at which the
mean wind velocity 1s zero.

Roughness length 7y has been estimated from measurements taken at many locations
around the world. A scale of these lengths is shown in Table 3.1.

In Eurocode 1, four terrain categories are introduced. These are shown in Table 3.2,
which also introduces a terrain factor kr. This is proportional to the friction velocity,
increasing with surface roughness. The table also shows minimum height . Eurocode 1
prescribes a constant velocity below this height.

z
t ue

T m/%%

Fig. 3.5 Simplified illustration of the roughness length z,. (After Petersen et al. (1980).
Reproduced by permission of Riso National Laboratory, Denmark).
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Fig. 3.6 Examples of terrain with roughness length zo ~ 0.01 m. (After Petersen et al.
(1980). Drawn by architect Seren Rasmussen. Reproduced by permission of Riso
National Laboratory, Denmark).

Eurocode 1 states that the mean wind velocity above horizontal terrain varies according
to height ; above ground as follows:

U(z) = Upasky In (-) . if Zmin <2< 200 m
20
U(z) = UlzZnin), if 2 < Zmin (3.2.3)

where Uy, is the reference wind velocity, see Section 3.4. The ratio U(z2)/ Uy, is shown
in Figure 3.9 for the four categories in Eurocode 1.
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Fig. 3.7 Examples of terrain with roughness length z, ~ 0.05 m. (After Petersen et al.
(1980). Drawn by architect Seren Rasmussen. Reproduced by permission of Riso
National Laboratory, Denmark).

Theoretical estimation of roughness length

Elements in the terrain which contribute to the surface roughness are called roughness
elements. They give rise to increased frictional forces against the flow and thereby also
increased wind turbulence. Smooth, long hills are not classed as roughness elements.

If a number of roughness elements are uniformly distributed over a terrain, the following
empirical equation can be used to obtain a reasonable approximation (Businger, 1974):
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Fig. 3.8 Example of terrain with roughness length z, ~ 0.3 m. (After Petersen et al. (1980).
Drawn by architect Seren Rasmussen. Reproduced by permission of Riso National
Laboratory, Denmark).

200 2L z[m 10 03 005 001
/ P
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0.6 0.8 1 12 14 16 18

U(2) / Upas

Fig. 3.9 \Variation of mean wind velocity with height according to Eurocode 1.

= O.Sh/k (3.2.4)
1
where £ is the roughness element height, A, is the area of the element normal to the wind
direction, and A, is the ground area per roughness element. To illustrate a simple case,
A, and A, are shown in Figure 3.10.
As an example, consider an area containing houses 5 m high with facades 20 m long,
each with a ground area of 1000 m>. By applying formula (3.2.4), we find the roughness
length for wind normal to the facades is
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roughness element
A, area of A, ground area

roughness element per roughness
element

Fig. 3.10 /n a simple case the roughness length z, can be calculated from the height of
the roughness element, its area perpendicular to the wind and the ground area
per roughness element. (Reproduced by permission of Danish Building Research
Institute).

>N

Uz)

EERNASS I

Fig. 3.11 The wind profile above a wood. The whole flow is lifted, because the roughness
elements are very close to each other. (Reproduced by permission of Riso National
Laboratory, Denmark).

5 x 20
1000

If the area of the roughness element normal to the wind direction, A,, and the ground
area per roughness element, A,, are of the same order of magnitude, the flow will be
raised such that the tops of the roughness elements form a new surface. This is the case
in forests, as shown in Figure 3.11.

Mathematically, the change in base level is taken into account by introducing zero
displacement d in the logarithmic profile:

2=05x5x =0.25m

1 z—d
U(z)=u,—In
K 20

(3.2.5)

Corrected logarithmic profile

The expression (3.2.2) for the logarithmic profile is not valid at very high altitudes above
ground. A more precise expression based on the mathematical model developed by Harris
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and Deaves (1980) is

* 1—d
U = = |In 2=5
K <0
where the actual, effective height, z — d, is normalized by the gradient height -, when

calculating the non-dimensional argument a:

+5.75a — 1.884> — 1.33¢” 4+ 0.254% (3.2.6)

a=(—d)/z, (3.2.7)
The gradient height z, is given by
IR
o= (3.2.8)
8 6ﬁ

where f, is the Coriolis parameter, see formula (2.3.2). The model developed by Harris
and Deaves fits experimental data accurately and also covers surface roughness changes.
The last three terms of expression (3.2.6) are not significant for heights of up to 300 m
above ground.

The power-law profile
The empirical power-law profile is primarily used because of its simplicity, e.g. in the
Canadian code NBC 1990. It is expressed as

- u
U(:): U(:rct‘) (;‘> (329)
Tref
200 . . , . .
Logarithmic profile (3.2.2) i/
-——-Corrected log. profile (3.2.6) /: /
/
!

— - — Power law profile (3.2.9)

150

100

50

U(IZ) /U(10)
0.8 . . 1.6 1.8 20

Fig. 3.12 Comparison of the logarithmic profile, the corrected logarithmic profile and the
power-law profile. The roughness length is z, = 0.05 m, the site at 50" latitude
and in formula (3.2.9) the exponent « = 0.16. The corrected logarithmic profile is
calculated assuming the friction velocity u, = 2.0 m/s.
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where z.s is a reference height, usually 10 m. Representative values of the exponent o
are included in Table 3.2.

For a site with z, = 0.05 m, Figure 3.12 shows a comparison of the wind profiles
given by formulas (3.2.2), (3.2.6) and (3.2.9).

3.3 INHOMOGENEOUS TERRAIN

The influence of roughness change and topography on mean wind velocity is described
below.

Roughness change

When wind flows over a wide area of constant roughness, its profile is determined as
described in the Section 3.2. If the wind meets terrain that has another roughness, the
wind profile changes, as illustrated in Figure 3.13.

The air moves from one terrain with roughness length 2 over a roughness shift to
another terrain with roughness length zj>. Over the terrain before the roughness shift,
and also above a height /> after the shift, the wind velocity is determined by the “old”
roughness length 2, only. After the roughness shift below the height /i;, wind velocity
depends only on the “new” roughness length z(,. In the region between the heights /7 and
h> a gradual transition takes place, and here both roughnesses influence wind velocity.
The region from the ground to the height /5 is called the internal boundary layer. The
lower part of this region, up to the height Ay, is called the equilibrium layer.

The height of the internal boundary layer
William P. Elliott formulated the height 4, of the internal boundary layer as

. N 0.8
ha(x) = 200 [075 +0.031n <ﬂ)] ( ! ) (3.3.1)
202 202

where the distance x is measured from the point where the roughness changes to the point
in the wind direction where the height is determined. It follows from the formula that /-

Internal boundary layer
hy

Shift of roughness

Equilibrium layer

-
Roughness length z,, Roughness length 2,
 E—
0 X

Fig. 3.13 Height of internal boundary layer and of equilibrium layer after a change of rough-
ness. (Reproduced by permission of Danish Building Research Institute).
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Fig. 3.14 Height of internal boundary layer after shift of roughness. The dotted curves show
the height of the equilibrium layer after Danish Code of Practice. DS410 (1983).

increases more rapidly after a shift to a rougher terrain than after a shift to a smoother
terrain, see Plate (1971). This is illustrated in Figure 3.14.

It should be kept in mind that the roughness of a terrain might change if buildings are
erected or demolished, or if other human activity alters the landscape. It may be advisable
to consider this at the design stage.

Eurocode | deals with the problems of roughness changes by stating that the smoother
terrain category in the upwind direction should be used if the structure is less than

e 2 km from the smoother category 1
e 1 km from the smoother category II and III

Eurocode | also mentions that if doubt exists concerning the category, the worse case
scenario should be used. However, these simple rules may be augmented by specific
information for each member state, and National Application Documents are likely to
incorporate more detailed rules.

Topography

When the wind meets an escarpment or hill, the air flow is forced into a smaller area
provided the boundary layer and the gradient height do not change. Therefore, the wind
speed and wind pressure increase.

Lemelin er al. (1988) deduced some rather simple formulae concerning escarpments
and hills with a smoothly curved shape.

In Eurocode 1, formulae are given based on idealized escarpments and hills, which
are angular in shape, see Figure 3.15. Eurocode 1 has introduced a topography coefficient
¢, related to mean wind speed at the base of the hill or escarpment. ¢, is expressed as
a function of the slope &, the length L of the escarpment or hill measured in the wind
direction, the site position x measured from the crest, and height z above ground as

1 for ® < 0.05
c = { 1 +2s® for 0.05 < ® < 0.3 3.3.2)
1 +0.6s for ® > 0.3
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Fig. 3.15 Hills and escarpments.

In Eurocode 1, the factor s is presented in diagrams as a function of z/L, and x/L, where
L, is the effective length of the upwind slope, defined by formula (3.3.3), L, is the actual
length of the upwind or downwind slope (for escarpments the downwind slope is taken as
the effective length L,). x is the horizontal distance from the top of the crest to the site,
positive in the wind direction, and z is the vertical distance from the ground level of the site

I {Lu for 0.05 < ® < 0.3

®L,/03 for ® > 0.3 (3.3.3)

The increase in speed should only be considered for locations closer than half the length
of the hill slope from the crest or 1.5 times the height of the cliff.
Note: Roughness has no importance in relation to the increase in speed.

3.4 EXTREME WINDS

In the temperate zones of Europe, storms are normally caused by frontal depressions,
usually passing in an easterly direction. When one storm mechanism generates the high
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winds above a site, the Type 1 extreme-value distribution normally gives a good statistical
representation of these extreme winds. In cases with two principal storm mechanisms, a
more accurate approach is needed. Gomes and Vickery (1978) suggest separating the high
winds according to their storm mechanism and then using the Type 1 distribution for each
individual storm mechanism. The statistical description of high winds originating from
one storm mechanism only is discussed below.

Usually, the wind load on structures is proportional to velocity pressure ¢ defined as

q=1ipU’ (3.4.1)

in which p is the density of the air and U is the mean wind velocity.

Normally, wind velocity as well as velocity pressure fit a Weibull distribution very
well, the wind velocity being nearly Rayleigh with a Weibull shape factor of 2 and the
velocity pressure being nearly exponential with a Weibull shape factor of 1. Thus, the
annual extreme wind velocity and the annual extreme velocity pressure both fit an extreme
value distribution of Type 1, see Appendix A for further statistical details.

The wind load on most structures depends on the velocity pressure, which gives this
variable natural preference. The probability distribution function F}I, the mean value /1,],
and the standard deviation (I(} of the annual extreme velocity pressure are given by

| q9—ay
— - - 342
wef(52)] o
H(l, =o, + vBy (3.4.3)
o, = %ﬁq (3.4.4)

where y = 0.5772 is Euler’s constant, and o, and §, are the location parameter (mode)
and scale parameter, respectively, that characterize the Type | extreme-value distribution.
The 50-year extreme velocity pressure also fits an extreme-value distribution of Type 1.

The mean value " and the standard deviation o," are given by

1) = g + By In(50) (3.4.5)
o) =o, (3.4.6)

The probability density functions of the annual extremes and the 50-year extremes are
illustrated in Figure 3.16.

Velocity pressure g(p) which has an annual probability of exceedence equal to p =
I — F(q), is given below, see also equation (3.4.2):

q(p) = a, — By In(=In(l — p)) (3.4.7)

Thus, the ratio between the velocity pressure g(p) and the 50-year velocity pressure gsq
is given by
q(p) _ 1 — Ky In(=In(1 = p))

= (3.4.8)
qs0 1 — K, In(—1n(0.98))

where K, = B,/a,. Inserting typical values of «, and B, gives K, ~ 0.2. The constant of
0.2 is specified as a representative value in Eurocode 1, which calculates the corresponding
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Fig. 3.16 Probability density function of the annual extreme and the 50-year extreme velocity
pressure. The standard deviation of the distributions is identical. Compared to the
annual extreme, the 50-year extreme probability density function is shifted towards
higher velocity pressures by B, In (50), see equation (3.4.5).

ratio of wind velocities, U(p)/Us, by taking the square root on both sides of the equality
sign in equation (3.4.8). The influence of non-constant air density is neglected.

Definition of reference wind velocity in Eurocode 1

Reference wind velocity Uy, is defined as the 10-minute mean wind velocity at 10 m
above terrain with the roughness length zp = 0.05 m and an annual probability of excee-
dence of 0.02, which corresponds to a return period of 50 years. The reference wind
velocity is representative for the climate of the site.

In Eurocode 1, Uy, is formulated as

Ubas = cDIRCTEMCALT Ubas.0 (3.4.9)

where the symbols mean

CDIR direction factor which takes into account the change of extreme winds with wind
direction;

CTEM temporary or seasonal factor, which may be of importance for the wind load on
temporary structures or structures during construction;

CALT altitude factor which takes into account the influence of altitude on extreme
winds;

Upaso  basic value of Uyys.

Information on a number of European countries is presented in an informative Annex
to Eurocode 1. For most countries, the ¢ factors in equation (3.4.9) are specified as 1. In
Eurocode 1 different basic values for reference wind speeds Uy, are presented. These
range from 19 m/s in some regions of Sweden to 36 m/s for Greek islands and coastal
zones of mainland Greece. The authors are not convinced that all reference wind speeds
specified in Eurocode 1 give a correct representation of the wind climate.
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The values of U, reflect the knowledge — or perhaps the limits of knowledge —of
storms experienced in Europe. This lack of knowledge is reflected in some remarkable
changes in the data provided for reference wind speeds at the borders between countries.
For instance in the Baltic region, the wind climate is generally homogeneous. However,
Southern Sweden prescribes Up,ys.g = 24-26 m/s, Denmark uses 27 m/s and coastal areas
of Germany prescribe 32 m/s.

European countries have used different traditions and procedures to estimate extreme
winds. Furthermore, the lack of a common understanding between meteorologists and
engineers regarding basic physical extreme-wind parameters may also have contributed
to the present confusion. Guidelines with clear definitions are needed if more realistic
extreme winds are to be established in the future. The note “Guidance for Member States
to Provide Wind Data for Incorporation into the Eurocode for Wind Actions”, prepared
in 1994 by an informal Eurocode 1 ad hoc panel on wind action, should be used as the
first step towards harmonizing extreme wind estimates across national borders in Europe.

Estimation of reference wind velocity

The term “reference wind velocity” implies expectations for the future. Normally, it is
based upon previous data, and as such it contains a hidden assumption that the climate
will remain as it is. In other words, a possible greenhouse effect is not taken into account
when estimating extreme winds.

Estimates of Uy, are based on measurements taken during a period of several years.
Unfortunately, as systematic collection of wind data from a larger number of positions
started only a few decades ago, a considerable element of uncertainty exists and should
be recognized.

Every time a storm occurs, the maximum wind is determined. Data from storms during
which the maximum wind is above a certain threshold level are used for analysis. This
ensures that only storms that generate extreme velocities are considered and that the storm
events analysed are mutually independent.

Three basic variables can be used to characterize extreme winds: Wind velocity, wind
velocity squared and velocity pressure. As the wind load on most structures depends on
the velocity pressure, this variable is naturally to be preferred.

Simulations carried out by (Cook, 1985), indicate that the convergence rate of the
velocity squared is much faster than the convergence rate of the wind velocity. However,
the velocity pressure and the velocity squared will have similar convergence rates. Conse-
quently, when only a limited number of observations are available, e.g. 10-20 years of
data, estimates should be based on the velocity pressure used in load calculations.

Previously, wind velocity was the most typical basic variable when estimating extreme
winds. However, the extreme winds specified in the Danish Code of Practice are based
on velocity pressures measured by Martin Jensen and Niels Franck from 1959 to 1966.
At that time it was considered a pioneering idea to base extreme winds on velocity
pressure rather than on wind velocity. The detector used was a large pitot-static tube that
rotated thanks to a wind vane. In this way, the pitot tube head faced into the wind at
all times. According to Jensen and Franck (1970) the instrumentation time constant gave
velocity -pressure averages over 3-5 seconds.

When plotted, Jensen and Franck’s data showed that the extreme values of ¢ followed
an exponential distribution. It then follows from formula (A.4.18) in Appendix A that the
relation between the velocity pressure ¢ and the expected annual number v of pressures
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larger than q is
¢g=C+Dlnv (3.4.10)

where C and D are parameters which should be based on the recorded data (C > 0
and D < 0). As the data used by Jensen and Franck were from a period spanning 7
years, the highest value of ¢ corresponds to only v = 1/7. This means that a remarkable
extrapolation is necessary in order to determine the reference value ¢so, which corresponds
to v = 1/50. However, analyses of wind velocities measured during a 35-year period from
1957 to 1992 show similar reference wind velocities to those obtained using the Jensen
and Franck data.
Equation (3.4.10) may be written

4 — A+ By (3.4.11)
qs0

where A and B are constants. Jensen and Franck’s data indicate

q
— =057=0.11Inv (3.4.12)

qs0

If this result is used for wind speeds, neglecting possible variations in air density. the

corresponding relation is:

U
U =057 -0.11Inv (3.4.13)

50

A comparison between the Jensen and Franck expression in equation (3.4.12) and the
Eurocode specification in equation (3.4.8) is shown in Figure 3.17. This is based on the
annual probability of exceedence. p, being equal to

p=1—exp(—vr) (3.4.14)

q(p) /g,
1.5
] I i Jensen and Franck -
D oo Eurocode 1
; —
0.5 T T T T
0 0.2 0.4 0.6 0.8

Annual probability of exceedence, p

Fig. 3.17 Comparison between the formula by Jensen and Franck and the specification in
Eurocode 1 for relative velocity pressure q/qso.
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Fig. 3.18 Annual probability of exceedence, p, as a function of the expected annual number
of upcrossings, v. The dotted line shows that the approximation p = v is only valid
if v is smaller than approximately 0.1 corresponding to return periods larger than
approximately 10 years.

where f; = [ year, see Appendix A.4. The two approaches are seen to give almost
identical results for annual probabilities of exceedences shown in the figure. Equation
(3.4.14) is illustrated in Figure 3.18 and gives the relation between the expected annual
number of up-crossings, v, and the annual probability of exceedence, p.

3.5 WIND TURBULENCE

The wind in the atmospheric boundary layer, i.e. natural wind, is always turbulent. This
means that the flow is chaotic, with random periods varying from fractions of a second to
several minutes. In order to describe a turbulent flow, statistical methods must be applied,
see Appendix A.

Wind velocity is described by mean velocity U and turbulence components i, v and w,
as stated in the formulas (3.1.1)-(3.1.3). The three turbulence components are described
below by means of their standard deviation, time scales and integral length scales. power-
spectral density functions that define the frequency distribution and normalized co-spectra
that specify the spatial correlation,

Eurocode | specifications relating to wind turbulence are discussed in Section 3.5.5.

3.5.1 Standard deviation of turbulence components

Assuming homogeneous terrain the flow will be horizontally homogeneous, meaning that
its statistical characteristics do not change in a horizontal plane. Standard deviations o,
o, and o, for the turbulence components will therefore only depend on the height = above
ground. The three standard deviations are close to zero at geostrophic wind heights, but
experimental results, e.g. Davenport (1967), Harris (1970) and Armitt (1976), show that
the three standard deviations usually decrease with height very slowly up to the heights of
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ordinary structures. Armitt (1976) states that the standard deviations are almost constant
up to approximately half the height of the internal boundary layer. Up to a height of about
100-200 m above homogeneous terrain, the standard deviations of the three turbulence
components « in the wind direction, v horizontal, perpendicular to « and w vertically, are
approximately

o, = Au, o. = 0.750, o, ~ 0.50, (3.5.1)

where the constant A~ 25if ;p =0.05mand A~ 1.8 if ;o = 0.3 m.
The turbulence intensity /,(z) for the along-wind turbulence component u at height :

is defined as:
0,(2)

Iu(: =
) U)

where ,(z) is the standard deviation of the turbulence component 1 and U(z) is the mean
wind velocity, both at height z. For flat terrain, the turbulence intensity is approximately
given by, see equation (3.2.2) and (3.5.1),

1

Iu(:) =
In(z/z0)

where 2y is the roughness length and o, /u, is assumed to be 2.5.

Up to 100-200 m above ground, it is usually reasonable to assume that the turbulence
components are distributed normally (see Appendix A) with a zero mean value and stan-
dard deviations as given by equation (3.5.1). However, this does not hold for the tails of
the distribution, i.e. when the turbulence components are outside a range of £3 standard
deviations. In this case, the assumption of normal distribution may lead to significant
errors.

3.5.2 Time scales and integral length scales

In Figure 3.19, the most important autocorrelation function p“T(;. 1) is defined as the
normalized mean value of the product of the turbulence component « at time ¢ and u at

7
Pz —-— From measurements 166m

1.0 above terrain at Rugby

Theoretically from Harris'
—— autospectrum,
see equation (3.5.21)

0.8

0.61

0.4

0.2¢

0.0 y—s
0 6 12 18 24 30 36 42 48 54
Seconds

Fig. 3.19 The autocorrelation function pl(z.t) (Harris, 1970). The time scale T(z) is also
shown. (Reproduced by permission of CIRIA).
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time t + 7, see Appendix A.3:
pf(:, 1) = Elu(x, v, 1) - u(x, v, 2. 1 + t)}/af(:) (3.5.4)

The function indicates how much information a measurement of the turbulence component
u(x, v, z, 1) in the mean wind direction will provide about the value of w(x, v. 2.t + 1)
measured time 1 later, at the same place.

The autocorrelation function depends only on height z above ground and on time
difference t due to the assumption of a horizontally homogeneous flow. 1 may be said to
have a characteristic time of memory, the so-called time scale T(z). Measurements of u
taken at time ¢ give a great deal of information about u at a time t later if 7 < T(z), but
only little information, if t > T(z). The formal definition of time scale 7(z) is

xX
T(:)Z/ plz. vydr (3.5.5)
JO

An example of an autocorrelation function is shown in Figure 3.19. A good approxi-
mate description of the autocorrelation function is (r positive):

pl(z. 1) = exp(—1/T(2)) (3.5.6)

Integral length scales are a measure of the sizes of the vortices in the wind, or in other
words the average size of a gust in a given direction. As an example, L}, is the integral
length scale for the turbulence component u measured in the longitudinal direction x.
Formally, it is defined similarly to the time scale in formula (3.5.5), i.e.:

oC
L’,‘,=/ pu(z, r)dry (3.5.7)
JO

in which p,(z, ry) is the cross correlation function (see Appendix A.3) between the turbu-
lence component u in two points separated longitudinally by a distance r, and measured
simultaneously.

Taylor’s hypothesis of convected “frozen turbulence”, see (Batchelor, 1953), is
normally considered to be an accurate approximation in natural wind. Using this
assumption, temporal variations are obtained via a translation of “frozen turbulence”
with the mean wind velocity. According to Taylor’s hypothesis, a statistical description of
temporal turbulence variations could be based on spatial wind velocity field characteristics
and vice versa.

According to Taylor’s hypothesis, p,(z. r.) = pl(z. 1), for r, = U(z)t, indicating that
the longitudinal integral length scale is equal to the time scale multiplied by the mean
wind velocity, L} (z) = U(2)T(2).

In total, 9 integral length scales are defined similarly as shown in equation (3.5.7):

For the longitudinal turbulence component u : L, L, L
For the lateral turbulence component v : L L) L
For the vertical turbulence component w : L. L. L.

Full-scale measurements are used to estimate integral length scales. However, results
show extensive scatter originating mainly from the variability of length and degree of
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Fig. 3.20 Values of C and m as functions of surface roughness z, (Counihan, 1975). C and
m are used to calculate the integral length scale in equation (3.5.8). (Reproduced
by permission of Pergamon Press).

stationarity of the records being analysed. The integral length scales depend on the height
z above ground and on the roughness of the terrain, i.e. roughness length 2. The wind
velocity may also influence the integral length scales at a site.

Counihan (1975) has suggested the following purely empirical expression for the longi-
tudinal integral length scale at heights z in the range of 10-240 m:

L =C" (3.5.8)

where C and m depend on roughness length z as shown in Figure 3.20, and 7 and L, are
stated in metres. According to Counihan, integral length scales decrease with increasing
surface roughness. The opposite variation is specified by ESDU 85020. Integral length
scales are discussed further in Section 6.6.1.

The remaining integral length scales are often expressed as a function of longitudinal
integral length scale L. Simultaneous measurements of longitudinal wind velocities in
a plane perpendicular to the mean wind direction indicate exponential decaying cross
correlation functions given by:

pulry) = exp(—ry/LY) (3.5.9)
Pulr:) = eXP(—r:/L,‘_,) (3.5.10)

with integral length scales of L) ~ 0.3L} and L; ~ 0.2L;.

3.5.3 Power-spectral density function

The frequency distribution of turbulent along-wind velocity component « is described by
the non-dimensional power spectral density function Ry (z. n) defined as:

’lSu(Z- Hn )

A (3.5.11)
0,(2)

RN(:, ’1) =
where n is the frequency in hertz and S, (z. i) is the power spectrum for the along-wind
turbulence component.

Turbulent energy is generated in large eddies (low frequencies) and dissipated in small
eddies (high frequencies). In the intermediate region, called the inertial subrange. the
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turbulent energy production is balanced by turbulent energy dissipation, and the turbulent
energy spectrum is independent of the specific mechanisms of generation and dissipation.
Assuming Taylor’s hypothesis of “frozen turbulence”, and considering frequencies in the
inertial subrange, the non-dimensional power spectrum function Ry is given by:

Ry(zon)=Af " (3.5.12)
where A is a constant depending slightly on height, the non-dimensional frequency f; =
nL(z)/U(2), and L(z) is a height-dependent length scale of the turbulence. Close to the
ground, the height : can be used as the turbulent length scale, indicating that Ry o f;z"@,
where the non-dimensional frequency f. = nz/U(z) is known as the Monin similarity
coordinate.

The constant A defined in equation (3.5.12) should be based on full-scale spectral
density functions measured at different heights, preferably using the integral length scale
in the high-frequency behaviour calculated by equation (3.5.12), i.e. L(z) = L}(z). This
facilitates the use of the comprehensive data sources on integral length scales published
in the literature. According to ESDU 85020, A is a function that decreases slowly with
height. For structures with heights of up to 200-300 m, spectral density functions are
obtained within approximately 5% accuracy using A = 0.14 for all heights assuming
L(z) = L (2).

The turbulent eddies at very low frequencies scale with the boundary layer height. For
most structures, these low-frequency fluctuations give no significant response contribu-
tions. The spectral density functions considered below do not focus thoroughly on this
aspect.

Kaimal spectral density form for the longitudinal turbulence component

A simple and commonly used spectral density with the correct high-frequency behaviour
as indicated in equation (3.5.12) was proposed by Kaimal et al. (1972) and also quoted
by Simiu and Scanlan (1986):

Irf
Ry(zon) = —3 = __. A =50 (3.5.13)
'V( n) (1+)\‘f:)5/3

where the non-dimensional parameter A serves to locate the maximum value of the spectral

density obtained for

3
= fona = — 3.5.14
fo=fom 7 ( )

The integral length scale L obtained using the spectral density function is equal to

U(:)S,«EZ‘O) _ lkz (3.5.15)
4 0,0 6

L) =U@RT() =

Except for low heights of up to approximately SO m, the integral length scales defined in
Section 3.5.2 are not proportional to height z as indicated in equation (3.5.15). For such
cases f. in the spectral density function should be replaced by

fu=nL(2)/U@) (3.5.16)
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and A changed to 10.2 in order to obtain A = 0.14, see equation (3.5.12). This gives the
following spectral density expression:

6.8
Ryn(zon) = ——fL—— (3.5.17)

T+ 102f)7

where f; in equation (3.5.16) should be calculated using the integral length scale L;, given
in Section 3.5.2. This spectrum is used in Eurocode 1.

This simple spectral form may be used for structures with a fundamental natural
frequency of vibration higher than the frequency corresponding to the lower end of the
inertial subrange. It gives an accurate representation of the turbulent fluctuations in the
frequency range of interest for most structures. For structures with very low natural
frequencies, e.g. flexible offshore structures, a more accurate spectral density representa-
tion of the low frequency range is called for, see for instance Hgjstrup et al. (1990) for
a description of the low-frequency part of the spectrum.

Other proposed spectral density forms for the longitudinal turbulence component

Several other power-spectral density functions have been suggested in the literature; see
Figure 3.21 illustrating the different functions.

The non-dimensional von Kdrman power-spectral density function can be written as
shown below, see (von Karman, 1948):

41

Ry(zon)= ————— (3.5.18)
< 2 ﬁ
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Fig. 3.21 Power-spectral density functions for the longitudinal turbulence component.
The integral length scale L has been assumed to be 180 m when plotting
the spectra suggested by Davenport (3.5.20) and Harris (3.5.21). For f, >
approximately 0.2, the Davenport spectrum gives the largest spectral values.
Compared to Eurocode 1 (3.5.17) the von Karman spectrum (3.5.18) gives slightly
lower spectral values for f, > approximately 1, see also Section 3.5.5.
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where the non-dimensional frequency is given by equation (3.5.16). The maximum value
of the spectral density is obtained for

3/2
fi = frmx = === = 0.146 (3.5.19)

The von Kdrmdn power spectral density function gives A = 0.115, which is slightly less
than the value of 0.14 recommended earlier, see equation (3.5.12). Harris (1990) discusses
the von Karman power spectral density function thoroughly, and introduces a systematic
modification of the spectrum using a functional series, which uses two terms to give an
accurate flow representation.

Davenport (1967) has suggested

_2
3+ )

with the non-dimensional frequency f;, = nL/U(z), where L =~ 1200 m. Harris (1970)
has suggested

Ry(z.n) (3.5.20)

2
Rx(z, = - (3.5.21)
N n) 3(2+f[)§/6

with the non-dimensional frequency f; = nL/U(z), where L ~ 1800 m.

Power spectra of lateral and vertical turbulence components

The power spectra of the lateral and vertical turbulence components are approximately
given by (see Simiu and Scanlan, 1986)

nS.(z, n) 15f.
W (149567 (35.22)
nS,(z. n) 3.36 f-
110 (3.5.23)

Conclusion

As shown in Figure 3.21, several power-spectral density functions have been suggested
for the longitudinal turbulence component. Except for structures with very low natural
frequencies, such as flexible offshore structures, the spectral values for frequencies in
the inertial subrange are the most important. The spectral density expression given in
equation (3.5.17) satisfies the inertial subrange criterion specified by ESDU 85020, i.e.
A = 0.14 and L(z) = L;(2) in equation (3.5.12). Appropriate choices of length scale could
also bring the other spectral density functions proposed into agreement with the inertial
subrange criterion mentioned.

3.5.4 Correlation between turbulence at two points

The normalized cross-spectrum describes the statistical dependence between the turbu-
lence components at two points at a given frequency n, as mentioned in Appendix A.
This dependence is due to the spatial dimension of the vortices in the wind field.
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The spatial distribution of the along-wind turbulence component is described by the
dimensionless normalized cross-spectrum Sy:
Suu(Pl- Plv n)

= (3.5.24)
\/Su(Ph n )Su(le n)

N

where Sy, is the cross-spectrum of the two longitudinal turbulence components at points
Py and P», respectively, i.e. a complex quantity. S, is the power spectrum of longitudinal
turbulence component in the point specified by the argument of P.

The real part of the normalized cross-spectrum is called the normalized co-spectrum
¥, and the imaginary part is called the normalized quad-spectrum. The root-coherence
function is defined as the absolute value of the normalized cross-spectrum ' Coh = |Sy|.

The normalized co-spectrum and the root-coherence function are identical, when the
phase spectrum is zero. The present description focuses on the normalized co-spectrum,
since this is the fundamental function to be used in response calculations.

The normalized co-spectrum v, must decrease with the distance r between the two
points considered. This decrease depends on the size of the vortices, and a measure of
size is the ratio between the mean wind velocity and the frequency, U/n.

The value of the normalized co-spectrum at zero frequency is of no relevance to the
correlation of mean wind velocities, as they are removed from the wind data before the
normalized co-spectrum is determined. As mentioned in Section 2.1, the variations of
mean wind velocities are expressed by the wind climate component, which is analysed
independently of the turbulence in the atmospheric boundary layer.

Exponential format

On a purely empirical basis, Davenport (1962) originally suggested an exponential expres-
sion as the normalized co-spectrum and a phase-spectrum of zero:

Yu(r,n) =exp(—=Crn/U) (3.5.25)

where C is a non-dimensional decay constant that determines the spatial extent of the
correlation in the turbulence.

For two points with transverse separation (r,,r.), Davenport (1977) extended the
expression to allow for different normalized co-spectrum decays horizontally and verti-
cally, respectively:

n o) i
VYu(ry, r-,n) = exp <_U\/(C"r‘")h + (C;r;)~> (3.5.26)

where the mean wind velocity used in the exponential expression is the mean value of
the wind velocities at the two points considered, U = %(U(:.) + U(z2)), and C, and
C. are non-dimensional decay constants. When choosing numerical values for the decay
constants, due consideration must be given to the fact that surface pressures are better
correlated than the turbulence in the undisturbed wind field. Typical values are C, = 10
and C. = 10.

The format of (3.5.25) and (3.5.26) has the advantage of simplicity, but incorporates
two inconsistencies:
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1. The function is positive for any separations leading to a positive value of the co-
spectrum integral over the plane perpendicular to the mean wind velocity. This is in
conflict with the definition of the longitudinal turbulence component with a zero mean.

2. The normalized co-spectrum approaches unity for small frequencies, n. This is not
true for separations of the same order of magnitude or even larger than the average
size of gusts, where the wind structure is characterized by a lack of correlation even
at low frequencies. Furthermore, the size of the normalized co-spectrum at large
separations and at low frequencies can be quite important in connection with the
response of several types of structures. This aspect is demonstrated in Chapter 6 for
a cantilevered bridge during construction.

Modified exponential format

Assuming locally isotropic turbulence, Krenk (1995) has derived a simple modified expo-

nential format not encumbered by the two inconsistencies mentioned above. It is based

on a generalized form of the von Karmdn spectrum given by
So

(1 + QanL U

where Sy is a constant, L is a length scale and the parameter y determines high-frequency

behaviour. For y = 5/6, the length scale is L = 1.34L}, see equation (3.5.18). The
normalized co-spectrum determined by Krenk (1995) is as follows:

Suln) = (3.5.27)

2 KiF\Y Kiryr+l
vulan = 5o [(7) Ky Gan - (5) Kl_y(w)} (3.5.28)
where T is the gamma function, K, and K; _, are modified Bessel functions of the second
kind and the modified wave number «; is given by

27n\* (12
KL = (T) +<Z> (3.5.29)

For y = 5/6 the Bessel-type expression for the normalized co-spectrum in equation
(3.5.28) corresponds to that given by Kristensen and Jensen (1979) and Harris (1970).
However, Harris (1970) used another argument definition that corresponded with the
spectral representation he suggested, see equation (3.5.21) . The normalized co-spectrum
form given in equation (3.5.28) with y = 5/6 is also suggested by ESDU 86010 using a
height-dependent length scale parameter. This is an attempt to include the lack of isotropy
in natural wind originating from boundary layer shear flow and blocking caused by the
surface.

For y = 1/2 the normalized co-spectrum takes the simple form:

Vulkyr) = (1 — Jkyr) exp(—kqr) (3.5.30)

which leads directly to the modified exponential format allowing for different horizontal
and vertical decay constants of C, and C;, see Krenk (1995):

1n,

Yulry, r;,n) = (1 - Ev\/(cyry)z + (Czrz)z) €xp (_n_UX \/(Cyry)z + (Czrl)z)
(3.5.31)
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where the modified frequency n, is

5

’+< v ) (
Ny = \/n- — .
) 2L

The two inconsistencies mentioned above are removed using this expression in cases
involving the normalized co-spectrum. The co-spectrum integral over the plane perpen-
dicular to the mean wind velocity is zero and for frequencies approaching zero, the
normalized co-spectrum approaches a value of less than 1 for separations larger than zero.

The modified exponential format and the traditional exponential format are compared
with full-scale measurements in Figure 3.22. The implications for structural response are
considered thoroughly in Chapter 6.

The isotropic turbulence model used above quite accurately describes the spectra and
cross-spectra for high frequencies and small separations compared to the length scale of
the turbulence. When low-frequency components and large separations are of primary
interest, a more accurate turbulence model should be used. (Mann and Krenk, 1994)
and (Mann, 1994) describes a turbulence model in which the effect of shear in natural
wind is taken into account by the rapid distortion theory. The influence of surface
blocking is also included in the model. Compared to the isotropic model, an eddy-
lifetime constant is introduced to give a more accurate second-order, two point statistical
description of the air flow. Spectra and cross-spectra calculated by this model match well
with full-scale measurements and wind tunnel test results. However, using this model
requires numerically complex calculations beyond the scope of the simple representation
proposed here.
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Fig. 3.22 Normalized co-spectrum as a function of wave number 2zn /U multiplied by the
separation r,. The full-scale data shown in the figure by + have been measured at
lateral separations of 15 m, 32.5 m and 47.5 m, respectively, at a height of 70 m
above sea at a mean wind velocity of approximately 22 m/s, see Mann (1994).
The solid lines show the modified exponential format given in equation (3.5.31)
using C, = CyM = 27 and L = 1.34L; = 240 m according to the integral length
scale given in equation (6.6.2). The dotted lines represent the simple exponential
function, see equation (3.5.26), using C, = CyE = 3xn. The modified exponential
format is seen to give a better representation of the full-scale data than the simple
exponential function, especially when the two points are far apart. (After Hansen
and Krenk (1996)). The normalized co-spectra measured were supplied by Riso
National Laboratory, Denmark.
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3.5.5 Wind turbulence according to Eurocode 1

The turbulence intensity given in equation (3.5.3) is also specified in Eurocode 1.
The Eurocode non-dimensional power-spectral density function Ry(z. n) has the form
indicated in equation (3.5.17):
6.8f1

Ry(zn) = ————5 (3.
N (1 +102f, )7

[99)
wn
(3%
(98]
=

where f; = nL;(2)/U(2). It has the correct high-frequency behaviour with A = 0.14,
see equation (3.5.12), using the integral length scale L, calculating the non-dimensional
frequency f;. The integral length scale L} used in the Eurocode is based on ESDU
74031. Later ESDU updates of turbulent length scales may provide more accurate response
estimates.

The normalized co-spectrum v, specified in the Eurocode is based on equation (3.5.26).
Decay constants of C, and C- are specified to be 11.5, based on a very large number of
full-scale measurements, (see Solari, 1993). The value of 11.5 is, apparently, the average
value of the measurements, rather than a fractile. The fact that pressures on the structure
are better correlated than the longitudinal turbulence in the undisturbed, oncoming air
flow has apparently not been taken into account in the choice of decay constants; see
Section 6.7 for further discussions.



Static Wind Load

For many structures, the wind-induced resonant vibrations are negligible and the fluctu-
ating wind responses can be calculated using procedures applicable for static loads. Since
the majority of buildings belong to this category, the so-called static wind load is very
important in connection with stress calculations and design.

In 1687, Isaac Newton (1642-1727) discovered that the load on a fixed body in a flow
is proportional to the flow velocity squared. This fact is still considered to be correct for
sharp-edged bodies, and also for curved structures in certain Reynolds number regions.

In 1738, Daniel Bernoulli published his Hydrodynamica with its famous physical inter-
pretation of the equation:

p+ %pU2 = constant along a streamline (4.1)

This specifies that the sum of the static pressure p and the velocity pressure %pUz is
constant along a streamline.

In 1755, Euler was the first to formulate general flow equations as we know them
today.

4.1 EXTREME STATIC LOAD

Mean wind velocity is superimposed by wind turbulence varying in space and time, and
probabilistic methods are used to describe the wind field. Turbulence gives a fluctu-
ating contribution to the wind load, which depends on structural geometry and on other
parameters. Wind loads on structures, therefore, always fluctuate.

The largest wind load occurring during a storm period of say 10 minutes is a sample
in a statistical distribution with a mean value which we call the characteristic wind load,
see Section 4.6. The characteristic wind load, Fp,y, is expressed by the 10-minute mean
wind load F, plus a peak factor k,, multiplied by the 10-minute standard deviation o:

Foax = Fq +kp(7F 4.1.1)

The characteristic structural response, such as stress or deflection, could also be expressed
as a mean structural response plus a peak factor multiplied by the standard deviation of the
structural response considered. The term “equivalent static load™ is defined as the static
load that gives a structural response equal to the characteristic response of the structure
or structural component due to the actual, fluctuating wind load.

The mean wind load depends on the mean wind velocity. Its variation during a given
period is, therefore, relatively slow.
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In the simple load model presented in Section 4.4, the load fluctuations are propor-
tional to twice the along-wind turbulence intensity /,, defined in Section 3.5. The standard
deviation ; may be expressed as

or = F 2L,k (4.1.2)

indicating that the gust factor ¢, defined by the ratio between the characteristic wind load
F o and the mean wind load F, is equal to:

max

F,

¢ = =1+ k,2L, 'k (4.1.3)
The background turbulence factor &, is an integral measure of the load reduction due to
a lack of surface pressure correlation for large structures. &, is equal to 1 for point-like
structures. Turbulent eddies with a size larger than, or the same size as, the structure or
structural component considered. contribute to k;,. Normally, the effect of eddies that are
considerably smaller than the structure is negligible.

In many codes, the extreme responses on finite areas of the structure are estimated
using the concept of “equivalent static gust™. The time series of either the fluctuating
velocity pressure in the undisturbed wind or of the surface pressure measured at a point is
filtered using running averaging to remove high-frequency fluctuations lasting for periods
shorter than typically 5 to 15 seconds. The cut-off frequency is chosen in accordance with
the size of the structural area in question.

“Equivalent static gust™ has been widely used in many countries during approximately
the last 30 years, e.g. in the United Kingdom, where a great deal of research has been
carried out regarding wind load on low-rise structures. The procedure is attractive due
to its simple way of dealing with area-averaging of fluctuating wind loads. It seems,
however, that the implementation of the procedure needs adjustments in order to improve
its accuracy. This is discussed further in Section 4.5.

Cook (1985, 1990) gives a very comprehensive description of the state of the art and
includes pressure coefficients for a wide variety of structures.

The procedure for dealing with extreme static loads in Eurocode 1 is discussed in
Section 4.8.

4.2 WIND LOAD ON BUILDINGS

When the undisturbed air flow approaches a building, it is forced around and over the
building. This creates areas of pressure or suction on the building facades, gables and
roof. Pressure and suction refer to air pressures above and below barometric pressure
levels, respectively. Pressure is marked by plus and suction is marked by minus in the
following figures.

Wind perpendicular to building facades

Wind loads on roofs depend on the roof shape. On a pitched roof with a slope exceeding
approximately 35°, there will be pressure on the windward part of the roof and suction
on the leeward part of the roof, see Figures 4.1-4.2. For flat roofs and for pitched roofs
with a slope of less than 157, suction affects the whole roof.



WIND LOAD ON BUILDINGS 51

Fig. 4.1 Wind load on external walls and pitched roof. The direction of the wind is perpen-
dicular to the longitudinal direction of the building. (Reproduced by permission of
Danish Building Research Institute) .
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Fig. 4.2 Distribution of pressure and suction on pitched roofs with 30° and 45° inclinations,
respectively (Jensen, 1959).

For pitched roofs with a slope of between 15° and 30°, suction as well as pressure may
occur on the upwind part of the roof. Eurocode 1 includes this by giving two load cases,
one specifying suction and one specifying pressure on the upwind part of the roof.

Canopy roofs are subject to vertical, lifting forces below the windward canopy. This
load acts with the wind load on the upper roof surfaces.

The flow pattern around a building with a 30° pitched roof is illustrated in Figure 4.3.
From a point on the surface in front of the building, the wind field is divided into two
parts. One part consists of the approaching, undisturbed wind passing above the roof of
the building. The other part includes the vortices generated in front of the building and
behind the building. When the roof slope is below 15°, there will also be strong vortices
above the windward part of the roof.

Wind parallel with building facades

When the wind flows along building facades, suction will always affect the roof. The
greatest suction is obtained close to the upwind gable end.
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Fig. 4.3 Streamlines of wind perpendicular to the longitudinal direction of the building
(Jensen, 1959).

Suction on pitched roofs is much greater than the suction on hipped roofs, see
Figure 4.4. This effect is very pronounced when considering roof failures in hurricane
areas. Failures are often prevented on structures with hipped roofs, whereas many flat roofs
and pitched roofs are blown off during strong hurricanes. If this aspect was incorporated
into the building traditions of areas prone to severe hurricanes, the number of low-rise
structural failures in these areas could be reduced in the future.

Skew wind

When skew wind approaches the building, extreme levels of suction may occur locally
on the roof close to the upwind corner of the building, see (Cook, 1990).
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Fig. 4.4 Suction on pitched roofs and hipped roofs, respectively, based on Eurocode 1. The
hipped roof has the same roof inclination at facades and gable ends. The wind
direction is along the building and the pressure coefficients shown refer to suction
on roof areas of 10 m? at the upwind roof corner.
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Fig. 4.5 When the wind blows along the building, the foremost part of the roof is subjected
to considerable suction. (Reproduced by permission of Danish Building Research
Institute. Photo: H.H. Knutsson).

Fig. 4.6 When the wind blows perpendicular to the longitudinal direction of the building, the
ridge is prone to a considerable amount of suction. (Reproduced by permission of
Danish Building Research Institute. Photo: H.H. Knutsson).



54 STATIC WIND LOAD

Fig. 4.7 When the wind approaches the gable, the roof at the corner is worst hit by
suction. (Reproduced by permission of Danish Building Research Institute. Photo:
H.H. Knutsson).

Fig. 4.8 Suction lifted the roof off entirely and the curtain was sucked out before the roof
settled back in position. This could have been avoided if the roof had been properly
anchored. (Reproduced by permission of Danish Building Research Institute. Photo:
H.H. Knutsson).
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Storm accidents on roofs
Suction effects on roofs are illustrated by photographs taken in Denmark after the storm
that occurred in the North Sea region on 24 November 1981, see Figures 4.5-4.8.

4.3 WIND LOAD AT A SURFACE POINT —
A MATHEMATICAL DESCRIPTION

Normally, extreme pressure or suction, F, at a point on a structure is calculated using the

following expression:
F=C,ipU; (4.3.1)

where the pressure coefficient C, is defined as the ratio between the extreme pres-
sure or suction on the building surface and the design velocity pressure of the undis-
turbed, approaching air flow. The design velocity pressure used, %pUE,, corresponds to
a certain representative reference height above ground, typically the roof height, see
Section 4.8. It is an extreme estimate based on the instantaneous velocity pressure 1 pU3,,
see equation (4.4.3), using a characteristic averaging time, depending on the actual surface
area considered. Typically, averaging times are of the order of 1-10 seconds, depending
on the code considered.

The wind load at a point fluctuates with time due to air turbulence and other effects,
see Figure 4.9. This will be considered further in connection with the determination of
the total wind load on a structure in Section 4.4.

Normally, pressure coefficient C, is determined by model tests in a wind tunnel,
see Chapter 10. Fluctuating pressures on the structure are measured for different wind
directions. The characteristic pressure and suction at each point are determined by a
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Fig. 4.9 Wind pressure measured at a point on a structure (Dalgliesh et al., 1967).
Suction is dominant. (Reproduced by permission of National Research Council,
Canada/Institute for Research in Construction).
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statistical analysis of the fluctuating signals measured. Different statistical methods to
determine the characteristic values have been proposed in the literature, see ¢.g. Cook
(1990). Caretul consideration must be given as to whether specific wind-tunnel test data
published in the literature or in codes are valid in a specific real-life situation.

4.4 TOTAL WIND LOAD ON A STRUCTURE —
DAVENPORT’S MODEL

In the early sixties, Davenport (1962) proposed a model for calculating fluctuating wind
load on a structure located in the atmospheric boundary layer. The fluctuating wind
load calculated is based on a statistical description of the turbulence characteristics of
the undisturbed air flow approaching the structure. The turbulence characteristics are
combined with acrodynamic admittance functions that convert the air flow properties
into wind load on the structure. The model was originally proposed in relation to along-
wind vibrations of dynamically sensitive structures, but it is also an important tool for
calculating the wind load on static structures. Davenport’s model is still widely used, and
is described below.

Wind load on a small surface area or point-like structure
A structure can be called small and point-like when its characteristic size is much smaller
than the wavelengths of the significant eddies in the natural wind. The characteristic size
of a structure may be defined in different ways, for instance as the squarce root of the wind-
exposed area A or as the diagonal dimension of A. Assuming quasistatic acrodynamics.
the total wind load on the structure, F, is given by:
N ~ { 2
Fio = CaAsply, (4.4.1)
Ufm = (U +u)r +v7 +n? (4.4.2)

where the shape factor Cy describes the ratio between the wind load per unit of area A
. . R . . . .
and the instantaneous velocity pressure $pU;, . where Uy, is the resulting wind velocity.
Normally. the mean wind velocity U is much greater than the absolute value of the
turbulence components w. v and w. A good approximation is. therefore, expressed by:
3 hl
Up,=U-+2U0u (4.4.3)

tot

Using equation (4.4.3). the standard deviation o, of the velocity pressure is calculated to
be ¢21,. where ¢ is the mean velocity pressure L pU? and I, is the along-wind turbulence
intensity defined in Section 3.5, The characteristic velocity pressure, ¢,y during a time
interval is expressed as the mean velocity pressure ¢ plus the peak factor &, multiplied
by the standard deviation of the velocity pressure o, i.c.:

Ymax = ¢ + k/’(rtl =q(1+kp21) (4.4.4)
The total wind load. F\. is found by adding the mean wind load, F,. and the fluctuating
wind load, F,, with a mean of zero:

Fo=F,+F, (4.4.5)
F,=CAipU” (4.4.6)
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F, = CsApUu (4.4.7)

The mean wind load, as well as the instantaneous wind load, may be determined by
a vector summation of the wind load contributions on the structural surface. However,
except for small surface areas, the extreme wind load cannot be calculated by a vector
summation of extreme surface pressures, since the extreme values of the individual surface
pressures occur at different times.

The power spectrum of the fluctuating wind load F, is given by the equation below,
see Appendix A.3:

By

. 4F
Sr(n) = (CaApU)S,(n) = U—;S,,(n) (4.4.8)

The variance of the fluctuating wind load F, is calculated by integrating the power spec-
trum Sg(n) over all frequencies n

. o 4F‘3 10_3
op = / —LS (n)ydn = 4F[/—”, (4.4.9)
o U~ U-
indicating that
IE %0 _ gy, (4.4.10)
F U

q

The characteristic wind load, F ., during a time interval is expressed as the mean wind
load F, plus the peak factor k,, multiplied by the standard deviation of o

szlsz(/"f'kpUF (411)

Thus, the gust factor ¢, defined as the ratio between the characteristic wind load F
and the mean wind load F, is equal to

F s O

=14k,
F +'F

¢ = =1+k,21, (4.4.11)

q q

Equation (4.1.3) indicates that background turbulence factor &y, is equal to 1 for a point-like
structure.

For a Gaussian process, the peak factor is typically in the range 3-5. This may often
be appropriate for pressures located in the surface boundary layers developed on the
upstream parts of the structure; see the description in Section 10.1.2 of boundary layers
developed on a circular cylinder. The peak factors for pressures located in the separated
regions are often much higher. In the high-suction regions at the windward corners of a
structure with rectangular cross sections, peak factors are typically of the order of 6-7.
Peak factors as high as approximately 10 have been measured on building roofs.

Wind load on a large structure

For structures that are not point-like, the reduced spatial pressure correlation over the
structural surface must be taken into account.

This is illustrated in Figure 4.10 which shows three time-history samples of wind load
measured simultaneously on a tall structure with an equilateral triangular cross section.
The time history shown at the bottom of the figure is calculated as the spatial average
of the three individual loads measured. The high-frequency fluctuations of the spatial
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Fig. 4.10 Wind pressure on the front of a mast with triangular cross section (Gerstoft, 1986).
F: and F, are the fluctuating and mean wind pressure, respectively, on the wind-
ward side at each level. The bottom curve indicates the average of the values in
the three upper curves. (Reproduced by permission of P. Gerstoft).

averaged load are seen to be much smaller than the high-frequency fluctuations of the

individual loads.

For a line-like area, the reduced spatial correlations are taken into account by the aero-
dynamic admittance function, x>(nl/U), in which the argument is the ratio between the
length / of the structure and the characteristic eddy size of natural wind, U/n. For a rectan-
gular area with side lengths of /| and /5, respectively, the reduced spatial correlations are
taken into account by the aerodynamic admittance function, x>(n/,/U. nl>/U), in which
the arguments are the ratio between the side lengths of /, and /,, and the characteristic
eddy size of natural wind, U/n.
The power spectrum of fluctuating wind load, F,, acting on an area is

2
q

SF( =
n)= >
) Uh

XSu(n)

(4.4.12)
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where the aerodynamic admittance function x* is equal to

5 [ nl 1 ! .
v/~ A : 4.4.13
X <U) [/() 2(1 1)]7[/[7(1,71,U)d, ( )

for a line-like area and equal to

5 (nly nls 1 /’1 /l: ( r ) ( ’_2>
U - 4{1——)(1==|¥,(r.roon.Uydrdr, (44.14
X <U U) ]1/3.“ Jo ]1 [2 ]//I('l r.n Yydridr> ( )

for a rectangular area. The normalized co-spectrum 1/, of the surface pressures on the
structure is discussed thoroughly in Section 4.5.1.

The aerodynamic admittance functions given above are obtained assuming a uniform
weighting of the pressures acting on the areas considered. Other aerodynamic admittance
functions are described in Sections 4.5.2 and 4.5.3 in which wind response based on the
general response influence function /5 is analysed.

The aerodynamic admittance function for uniform weighting is always less than or
equal to 1. Values for various plates and prisms are shown in Figure 4.11, which agrees
qualitatively with the data outlined in Figure 4.10.

The variance o of the fluctuating wind load, F,, is calculated by integrating the power
spectrum Sy (n) over the frequency range:

x 4F? nly nl;
2 g 2 1 2
oy = > —,— 18 d 44.15
F Jo U2 < U U ) «(n)ydn ( )
Defining the background turbulence contribution &, as
x L /nly nla\ S,n)
k, = / '(—‘ "> —dn (4.4.16)
’ Jo X U U a,
gives
‘;—F =20,k (4.4.17)

q

Thus, the gust factor ¢, defined as the ratio between the characteristic wind load F .«
and the mean wind load F,, is equal to:
Fmax

p="7" = 14 k21, ks (4.4.18)
q

Since the aerodynamic admittance function is less than or equal to 1 for all frequencies,
assuming uniform weighting, the background resonance factor k;, will also be lower than
or equal to 1.

The size-effect factor ¢, is defined by the ratio between the gust factor for a large
structure given in equation (4.4.18) and the gust factor for a small structure given in
equation (4.4.11), i.e.

k210 k,

e = < (4.4.19)
1+ k521,

where the superscripts L and S of the peak factor k, refer to large and small structures,
respectively.
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4.5 AERODYNAMIC ADMITTANCE FUNCTION

Davenport’s load model can be used to calculate aerodynamic admittance functions theo-
retically. Extreme wind responses, such as bending moments, stresses and deflections, are
estimated based on a statistical description of the fluctuating load on the structure.

The aerodynamic admittance function depends on the normalized co-spectrum of pres-
sures on a building. The normalized co-spectrum data described in Section 4.5.1 are used
as input when calculating wind responses on line-like areas, see Section 4.5.2, and on the
rectangular areas considered in Section 4.5.3. The statistical definition of the normalized
co-spectrum is given in Section 3.5.4.

The determination of extreme wind responses based on aerodynamic admittance func-
tions is cumbersome and in many situations easier approaches are called for. A popular
concept is that of an “equivalent static gust”, which is defined as the shortest-duration.
hence smallest, gust which fully loads the structure or structural component considered.
The basic idea is to estimate extreme wind loads on the basis of air turbulence measured at
one point only. The spatial distribution of the load is taken into account by time averaging
the air turbulence measured. The load on large structures corresponds to long averaging
times, whereas short averaging times are used for small structures.

The “equivalent static gust™ concept discussed thoroughly in Sections 4.5.2 and 4.5.3
is used in many codes. A similar discussion was published by Holmes (1995).

4.5.1 Normalized co-spectrum of surface pressures

Full-scale measurements indicate that the normalized co-spectrum, yr,(n. r, U). of surface
pressures on a building could be described using an exponential decay function:

Yp(n.r.U) =exp (—C,.ﬂ) (4.5.1)
U

where n is the frequency, r is the distance between the two points considered, U is the

mean wind velocity usually taken at building height, and C, is a decay constant.

Full-scale measurements on Royex House in London, England, see Newberry et al.
(1967, 1973), show that a decay constant of C, = 4.5 fits the normalized co-spectrum of
pressures on the windward wall in boundary layer turbulence. The decay constant of 4.5
applies to vertical as well as horizontal point separations on the wall.

Full-scale measurements of the turbulence-induced along-wind load per unit of height
on a 130 m high, tapered concrete chimney in Denmark show a normalized co-spectrum
decay constant of approximately 5-6 for loads per unit of height, vertically separated by
up to 47 m corresponding to approximately seven chimney diameters. The decay constants
estimated are based on measurements carried out simultaneously at different heights on
the upper 2/3 of the concrete chimney. The chimney is located close to the sea and it is
exposed to winds with a roughness length of approximately 0.01 m.

The results of the two full-scale experiments are in reasonable agreement and give
normalized co-spectrum decay constants of the order of 5. Pressures are, therefore, better
correlated than the approaching air turbulence with a co-spectrum decay constant of
approximately 10, see Section 3.5. Pressures are also better correlated than normally
assumed in gust loading calculations of dynamic sensitive structures such as those consid-
ered in Chapter 6.
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A normalized co-spectrum decay constant of 4.5 is used in the examples shown in
Sections 4.5.2 and 4.5.3. This value was also suggested by Cook (1985) and Lawson
(1980).

The exponential normalized co-spectrum decay suggested above results in full correla-
tion at low frequencies, even when the pressure points are considerable distances apart. For
very large structures, the lack of correlation at low frequencies may be taken into account
using the more accurate, normalized co-spectrum description shown in Section 3.5.

The “equivalent static gust” concept used in many codes corresponds to a moving
average filter of the form shown below, see Lawson (1980):

sin(rmT;))2 (4.5.2)

anT,;

x7(n.T)) = <

where T, is the averaging time used. Lawson (1980) and Cook (1985) specify that the
appropriate moving average time for a structure of characteristic dimension / is given by

T, =Crl/U (45.3)

where Cr = C, = 4.5. Appropriate values of Cy are discussed in Sections 4.5.2 and
4.5.3. Aerodynamic admittance functions calculated correctly, as shown in the following
equation (4.5.5) and (4.5.8), are compared to the moving average filter in Figures 4.12
and 4.14.

4.5.2 Line-like areas

Responses, such as bending moments and deflections, are calculated as a summation of
surface pressures multiplied by response-influence functions. These response-influence
functions should be incorporated into the aerodynamic admittance function that corre-
sponds to the response in question.

The wind response at time ¢, R(t), is calculated as

!
R(r) = / Ir(DF(z. 1) dz (4.5.4)
Jo

where [x(2) is the response-influence function of the point specified by the coordinate
2, and F (2, t) is the wind load at point 7 at time ¢. R(r) could be a bending moment or
a deflection. Assuming that the wind load spectra do not vary along the structure, the
aerodynamic admittance function x*(¢) can be calculated as, see Appendices A and B
for further details:

1 I
7 / k(ryp(r,n . U)dr
Jo

1/ :
<—/ |1R(2)|(1:>
I Jo

where the non-dimensional parameter ¢ = C,nl/U, i.e. the decay constant C, multi-
plied by the reduced frequency f = n{/U. The normalized co-influence function k(r) is
given by

[

X (@)=

2 ol —r
k(r) = 7 / IR(DIR(z+ 1) dz (4.5.6)
Jo
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The absolute value of Iz used in the denominator of equation (4.5.5) facilitates a
normalisation that is valid for response-influence functions with constant signs as well
as for response-influence functions with changing signs. Response-influence functions
with constant signs give aerodynamic admittance functions which are equal to 1 for
full pressure correlation occurring at zero frequency according to the exponential decay
function in equation (4.5.1).

The normalized co-influence function k and the aerodynamic admittance function x-
are shown in Appendix B for different response-influence functions of /g, e.g. uniform,
sinusoidal and cantilever functions. In Appendix B the response-influence function is
designated g, which corresponds to the non-dimensional g functions used in Chapter 6.

Line-like areas, where the response-influence functions have constant signs

The aerodynamic admittance function for a one-wave sinusoidal response -influence func-
tion is shown in Figure 4.12 as a function of the non-dimensional parameter ¢. The
equivalent moving average filters based on Cy = C, and Cy = C,/3, respectively, are
also shown.

The equivalent moving average filter that uses Cr = C, was originally suggested by
Lawson (1980) and Cook (1985). This filter clearly underestimates the correct aerody-
namic admittance functions.

Using Cr = C,/3 gives an aerodynamic admittance function of the correct order of
magnitude for the frequencies of interest. The illustrated choice of C+ = C,/3 satis-
fies that the background turbulence contribution &, given in equation (4.4.16) using the
von Kdrmén longitudinal power spectrum with an integral length scale of 150 m, see
equation (3.5.18), is identical to the k;, value calculated for a sinusoidal response -influence
function, assuming a structure length of approximately 25 m. Shorter structures would
require larger Cy values of up to approximately C,/2, and longer structures give lower
Cr values of approximately C,/3.5.
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Fig. 4.12 Aerodynamic admittance function for line-like areas, where the response -influence
function, Ir, is one-wave sinusoidal (solid line). The equivalent moving-average
aerodynamic admittance functions for two different decay constants, Cr, are also
shown (dotted lines). The non-dimensional parameter ¢ is given by ¢ = C.nl /U
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Fig. 4.13 The figure refers to the bending moment at central midspan of a three-span contin-
uous beam. The left-hand figure shows the normalized bending moment influence
function and the normalized co-influence function. The corresponding aerody-
namic admittance function is shown in the right-hand figure. The reference bending
moment, |, used in the normalization on the left-hand figure is I« = 0.0583 /,
in which | is the total beam length. The denominator on the right-hand side of
equation (4.5.5) is equal to 0.0567 |2

ref”

Line-like areas, where response -influence functions nave changing signs

The bending-moment influence functions of @ multi-span continuous beam have changing
signs, see Figure 4.13. This is of importance for several types of structures. e.g. roof
purlins. The aerodynamic admittance function corresponding to the central midspan
bending-moment influence function is shown in Figure 4.13. The acrodynamic admittance
function has a maximum for a non-dimensional parameter ¢ of approximately 7. At lower
reduced frequencies, the larger pressure correlation reduces the response. The acrodynamic
admittance function approaches zero at very high reduced frequencies due to the lTack of
pressure correlation.

The “equivalent static gust™ concept tails when the response -influence function changes
sign. For instance, if the wind-induced bending moment has a mean value close to zero,
the use of an “equivalent static gust™ will give design bending moments which are much
lower than the actual wind-induced bending moments. Shear bracing in lattice towers,
heavily citfelated, can also have a mean wind action close to zero. Situations hike this
are codified using the concept of so-called free actions. i.e. actions which may have any
spatial distribution over the structure within given limits, see Eurocode 1, Basis of Design.

4.5.3 Rectangular areas

Only rectangular areas have been considered. The wind response at time £, R(1). is calcu-
lated as

o/ ol
R{t) = / / TR(z. 2 F(Z o D doadz (4.5.7)
oo Jo
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where I (21, 22) is the response —influence function of the point specified by the coordinate
(z1.22). F(zy. 22, 1) is the wind load at point (7, 25) at time 7. Assuming that the wind
load spectra do not depend on the coordinate (2. 22), the aerodynamic admittance function
X~ (1. ¢>) can be calculated (see Appendices A and B for further details) as

-y

L)Y o, Uydradry
X (1. ha) = = (4.5.8)

h
(1 I / / iz 20)] daad )

where ¢ = C,nl, /U, ¢ = Cpnl>/U and the normalized co-influence function k(r. r2)
is given by

~/1*I'1 '/:—1'3

k(ri.r) = 1" I(zy. 22, ry ) doad s (4.5.9)

where 7 is equal to
Iy =T o p(zr o+ ) HIp(zc 2+ e p(zy + 1. 22) (4.5.10)

The absolute value of Ig used in the denominator of equation (4.5.8) gives a
normalization valid for response-influence functions with constant signs as well as
for response-influence functions that change signs. Response-influence functions with
constant signs give aerodynamic admittance functions which are equal to 1 for full-
pressure correlation occurring at zero frequency in accordance with the exponential decay
function in equation (4.5.1).

For response-influence functions with constant signs, the aerodynamic admittance
function can be approximated by the expressions below, see Section 6.5:

N 1
X (1. ¢2) = (4.5.11)

) B
1+ V/(Gl¢| )+ (Gapn) + (;GI¢IGZ¢2>

" c, nly " c nl-

(4.5.12)
U’ U

For a uniform response-influence function, both constants GG; and G are equal to 1/2.
The aerodynamic admittance function for a uniform response-influence function is
shown in Figure 4.14 as a function of the non-dimensional parameter ¢ = C,.nl/U,

Rl
where the effective length chosen is the length of the rectangular diagonal, [ = \//f + 13,
The equivalent moving-average filters based on Cy = C, and Cr = C,/3. respectively.
are also shown.

The equivalent moving-average filter based on Cy = C, clearly underestimates the
correct aerodynamic admittance functions.

Using Cy = C,/3 gives an aerodynamic admittance function of the correct order
of magnitude for the frequencies of interest. The example of Cy = C,/3 shown was
estimated in relation to the aerodynamic admittance functions for line-like structures, see
Figure 4.12.
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Fig. 4.14 Aerodynamic admittance functions for a square area with a uniform
response-influence function Ilg. The equivalent moving-average aerodynamic
admittance functions for two different decay constants, Cr, are also shown.

Conclusion
In conclusion, the “equivalent static gust” concept will give reasonable estimates of
extreme wind responses with constant signs. The actual time averaging T, used for
specific structures should be determined as T; &~ 1.5//U. The averaging time indicated in
equation (4.5.3) with 7, = 4.5//U will underestimate the wind response according to the
theoretical basis presented. Whether a more accurate wind-load model would modify the
estimated relation of T, = 1.5//U cannot be ruled out, but equation (4.5.3) with Cy = 4.5
is not even close to the present results. The use of Cy = 4.5 should be evaluated carefully
considering the risk of underestimating the wind response.

The “equivalent static gust” concept does not give accurate results for
response-influence functions that change signs.

4.6 PEAK FACTOR FOR A GAUSSIAN PROCESS

As mentioned previously, a wind load fluctuates with time in a very complicated way.
This is analysed theoretically using stochastic processes, see Appendix A.3. Of the various
concepts used to describe a stochastic process, mean value and standard deviation are two
of the most important.

The probability distribution of the largest wind load occurring during a specific period
of time, typically taken as 10 minutes, is especially important in connection with designing
wind-loaded structures. The normalized stochastic process Y (¢) is defined as:

vy =20~k (4.6.1)

Ox
where X (¢) is the wind load in question with a mean value of i, and a standard deviation of
o,. Assuming that X(r) is a Gaussian process, the mean value fty max and the standard devi-
ation oy max Of the probability distribution describing the largest value of Y (¢) occurring
during the time T is asymptotically given (see Cartwright and Longuet-Higgins, 1956) by
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14

v 2In(wT)
b4 1
Oy max = = ——=—
o V6 \/2In(vT)

where y = 0.577 is Euler’s constant and v is the zero-upcrossing frequency determined by

My max = V2In(vT) +

(4.6.3)

v= /2 (4.6.4)
moy

mq and m> are spectral moments defined as
oc .
mj = / n’Sy(n)dn (4.6.5)
Jo

where Sy(n) is the power spectrum of the process Y (r). vT is the expected number of
zero upcrossings during time 7.

The mean value px m. of the largest wind load during time 7 is determined as the
sum of the mean wind load u, and the standard deviation o, of the wind load, multiplied
by a peak factor normally designated as k,:

UX max = My + kpo,\ (46())

Comparing equations (4.6.1) and (4.6.6) gives that k, = py ma, the latter appears in
equation (4.6.2). The peak factor as a function of the expected number of zero upcrossings
is shown in Figure 4.15.

The ratio between the rate of zero upcrossings and the rate of local maxima of the
normalized process Y (t) is an important parameter which contains information about the
regularity of the process, see Madsen et al. (1986). This ratio is called the regularity factor
« and can be calculated by

N
s

(4.6.7)
mony

- v[HZ]

—_
—
o

0.01 0.1

Fig. 4.15 Peak factor k, as a function of the expected number of zero upcrossings. T =
600 s.



68 STATIC WIND LOAD

Narrow-band process

A stochastic process with a & 1 is called a narrow-band process. The response of flexible
structures vibrating at a natural frequency of n, is described by a narrow-band process
with a zero-upcrossing frequency of v = n,.

Broad-band process

The power spectrum of the wind load on static structures with high natural frequencies is
characterized by the frequency content of the natural wind, modified by the acrodynamic
admittance function, see equation (4.4.12). The peak factor in equation (4.4.18) is calcu-
lated by inserting the power spectrum of the normalized wind load into equation (4.6.5).

4.7 INTERNAL WIND LOAD

There is no such thing as a completely airtight building. To some extent there will always
be leakages around windows and doors, and these will make the internal pressures depen-
dent on the external wind field around the building.

Rooms on the upwind side of the building will experience positive pressures, and rooms
in the leeward side will experience suction, i.e. absolute pressures below the barometric
pressure. Whether the pressure or suction is dominant inside the building depends on the
size and distribution of leakages around the building surfaces. Walls and roofs must be
designed to withstand the total load acting, i.e. the external and internal pressures.

Roofs that are almost completely airtight, such as old copper roofs, are often constructed
with holes in order to obtain a pressure equalization between external and internal pres-
sures. This reduces the upward wind load on the roof and thereby reduces the risk of
structural failure. When the copper roof on Ribe Cathedral in Denmark was replaced
around year 1900, the holes found in the old roof were not deemed necessary in the new
roof. Consequently, the new roof was blown oft in the first storm after the repairs were
made. The holes were installed again and there have been no problems since.

Cook (1985) gives a comprehensive description of models used to calculate internal
wind load according to different assumptions regarding building geometry. leakages etc.

Just as for external pressures, the codes and literature specify several pressure coeffi-
cients for internal wind load. Careful evaluations must always be made to assess whether
the published data are representative of the actual situation under consideration.

4.8 STATIC WIND LOAD ACCORDING TO EUROCODE 1

The static wind load specified in Eurocode 1 is divided into wind pressures acting on
surfaces and global wind forces.

4.8.1 Wind pressures
Wind pressures acting on external and internal surfaces, respectively, are specified in

Eurocode 1.

External pressures

In Eurocode 1, the mean wind velocity at height z, U(2). is defined by multiplying the
reference wind velocity Uy, representative for the climate of the site, see Section 3.4,
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by coefficients that take into account the effects of terrain roughness and topography as
functions of height above ground:

U(2) = ¢ () (DU (4.8.1)
¢,(2) is the roughness coefficient at height - defined by the logarithmic profile:
c (2) = kyIn(z/z0) (4.8.2)

¢, is equal to one at a height of 10 m above reference terrain with a roughness length
of 0.05 m and Ay is defined in Section 3.2. The topography coefficient, ¢,(z), takes into
account the increase of mean wind velocity over hills and escarpments, see Section 3.3.
For flat terrain ¢,(z) = 1, indicating that the mean wind velocity at height 2, U(2), is
equal to the roughness coefficient multiplied by the reference wind velocity:

U(:) = ('r(Z)Uhus (483)

The characteristic wind pressure acting on the external surfaces of a structure, F,, is

calculated as
F(, = qhm('(.(:(, )('pc (484)

where ¢, is the reference velocity pressure representative for the climate of the site,
see Section 3.4, ¢, is the exposure coefficient which takes into account the effects of
terrain roughness, topography and height above ground on the mean wind velocity and
air turbulence, z, is the reference height for the external pressure considered and ¢ is
the external pressure coefficient specified in Eurocode 1. External pressure cocefficients are
tabulated for areas of 1 and 10 m?, respectively, and coefficients for intermediate surface
areas are found using a logarithmic interpolation based on area. The lack of pressure
correlation over surfaces larger than 1 m? is thereby taken into account.
The exposure coefficient at height 2, ¢.(z), is defined as

g1+ 2k, 1,(2))

Ubas

(4.8.5)

¢ (2)
where the ratio between the mean velocity pressure at height 2, ¢(2), and the reference
velocity pressure, g, is given by the equation below, see equation (4.8.1):

4(2)
Ahas

= 7 (D) (2) (4.8.6)

The exposure coefficient is seen to be the ratio between the characteristic velocity pressure
gmax = ¢(1 + 2k,1,), see equation (4.4.4), and the reference velocity pressure gp,s. The
external pressure coefficient, ¢pe, could be interpreted as the ratio between the character-
istic external wind pressure, F,, and the characteristic velocity pressure ¢max.

The characteristic velocity pressure used for static wind load, i.e. the “simple™ method
stated in Eurocode 1, is arbitrarily based on a peak factor of 3.5. Other peak factor
choices would have given alternative specifications of external pressure coefficients and
exposure coefficients, but the wind pressure £, should not, of course, be influenced by the
arbitrary peak factor chosen for codification. For more wind-sensitive structures, such as
buildings over 200 m high or bridges with spans greater than 200 m, and for all structures
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deemed to be dynamically sensitive, as defined by the value of a dynamic coefficient (see
Section 4.8.2), this assumption of a peak factor of 3.5 is not adopted in Eurocode 1.

The external pressure coefficients given in Eurocode 1 are based on results obtained
in experiments, typically wind-tunnel tests. Extreme pressures and suctions measured
in the experiments are normalized as shown in equation (4.8.4) in order to determine
the external pressure coefficients specified. Coefficients equal to the ratio between mean
pressures/mean suctions and mean velocity pressures are often different from the external
pressure coefficients specified in Eurocode 1. The external pressure coefficients ¢ give
no detailed information on mean pressures and mean suctions on the structure.

For flat roofs, monopitch roofs, duopitch roofs, hipped roofs and multispan roofs, the
height of the highest roof point is chosen as the reference height, z.. For the walls of
rectangular buildings, the reference height specified depends on the building aspect ratio
h/b. For low buildings where h < b, the roof height is chosen as the reference. For taller
buildings, the wall is divided into different regions, each with a specific reference height.

Internal pressures

The pressure acting on internal surfaces, F;, is calculated using an expression similar to
equation (4.8.4) valid for external pressures:

Fi = quusCe (3 )Cpi (4.8.7)

where the exposure coefficient is calculated at the reference height, z;, and ¢ is the
internal pressure coefficient.

4.8.2 Global wind forces
The global force, F, is obtained from the following expression:
F\r = qhus('e(:e )(’1[('fArcf (488)

where the dynamic coefficient, ¢,, accounts for both pressure correlation and dynamic
magnification. ¢, is the force coefficient and A is the reference area, typically the
projected area of the structure normal to the wind direction.

The dynamic coefficient ¢, is defined as the ratio between the dynamic value of the
exposure coefficient representing the gust load on the structure, and the value of the
exposure coefficient ¢, corresponding to quasistatic gust load at a point at reference
height Z..t. The dynamic coefficient is calculated using

_ 1+ 2k/)114(:rcf)\/ kh + kr

(4.8.9)
1+ 71 (Zref)

Cd

where zf is a representative reference height. The peak factor &, the background response
factor k;, and the resonant response factor &, are described further in Chapters 5 and 6.
For quasistatic response of a point-like structure, the values k, = 3.5, k, = 1 and k, =0
are assumed in (4.8.9), so ¢y = 1 for this case.

Figures are provided in Eurocode 1 that give dynamic coefficients for typical structures.
The curves shown are based on a number of assumptions, i.e. a terrain category of 1
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Fig. 4.16 Dynamic coefficients for unlined, welded steel chimneys based on the detailed
procedure specified in Eurocode 1 for dynamic responses. The curves shown for
constant dynamic coefficients differ slightly from the ones specified in Eurocode 1.
The reason for this discrepancy is not known at present.

with a roughness length equal to 0.01 m and a reference wind velocity equal to 28 m/s.
Figure 4.16 corresponds to the figure in Eurocode 1 for unlined, welded steel chimneys.

The dynamic coefficient of unlined welded steel chimneys is shown in Figure 4.17 as
a function of terrain roughness. The dynamic coefficient is approximately 10% lower for
terrain category IV with great roughness (zp = 1 m), compared to terrain category I with
low roughness (zp = 0.01 m). The observed decrease of the dynamic coefficient with
increasing roughness occurs because the increase in quasistatic gust load at a point (¢4
denominator) is larger than the increase in the exposure coefficient which represents the
gust load on the whole structure (¢, numerator).

In Eurocode 1, the dynamic coefficient is used to select a simple procedure suitable
for static structures and a detailed procedure specified for structures sensitive to dynamic
gust loading. According to Eurocode 1, the detailed procedure should be used when the
dynamic coefficient ¢, > 1.2, and Eurocode 1 recommends the detailed procedure for
1.0< ey € 1.2

The dynamic coefficient takes into account both the load-reduction effects resulting
from lack of pressure correlation over surfaces and the magnification effects due to the
frequency content of turbulence close to the fundamental frequency of the structure.
A dynamic coefficient of 1 indicates that the load reduction due to lack of pressure
correlation is balanced by resonant magnification effects. For large structures, where the
lack of pressure correlation is pronounced, the resonant magnification will, therefore, be
significant when the dynamic coefficient is equal to 1.

For the static structures considered in this chapter, the dynamic magnification included
in the dynamic coefficient, ¢4, is negligible.

The concept “mildly dynamic structures” is introduced in Eurocode 1 without an accu-
rate definition. The dynamic coefficient should, however, be less than 1.2 for these
structures. Figure 4.18 throws some light on the implications of a dynamic coefficient
of 1.15 for an unlined, welded steel chimney. As the chimney increases in size, the back-
ground response part, k;, decreases from lack of pressure correlation, and the resonant
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Fig. 4.17 Dynamic coefficient as a function of terrain roughness. The remaining assumptions

Fig. 4.18

used are as specified for unlined welded steel chimneys in Eurocode 1, i.e. a refer-
ence wind velocity of Uwas = 28 m/s, structural damping §s = 0.015, aerodynamic
damping equal to 0 and a natural frequency calculated as shown in Eurocode 1.
The chimney height is 30 m and its diameter is 3 m.
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The background response part k,, (solid curve) and the resonant response part
k. (dotted curve) were calculated using the detailed procedure prescribed in
Eurocode 1 for unlined welded steel chimneys. Each chimney has a dynamic
coefficient of 1.15. The response is shown as a function of chimney height h. The
corresponding diameter that gives the dynamic coefficient of ¢, = 1.15 assumed is
also shown. The response is based on a reference wind velocity of Upas = 28 my/s,
terrain category I, §; = 0.015, aerodynamic damping equal to 0 and a natural
frequency calculated as shown in Eurocode 1.
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response part, k., described in Chapters 5 and 6, increases, mainly due to the greater
turbulent energy content at lower natural frequencies obtained with taller chimneys. For a
mildly dynamic structure, the resonant response can become greater than the background
response.

4.8.3 Size-effect factor

The size-effect factor ¢, given in equation (4.4.19) is not defined explicitly in Eurocode 1.
This factor is, however, indirectly defined as the dynamic coefficient ¢, assuming a
resonant response factor &, equal to 0, i.e.

o = 1 2LV (4.8.10)

1 + 7114(:rcf)

The size-effect factor is illustrated in Figure 4.19 as a function of the diagonal dimension
of the square area considered. The size-effect factor is approximately equal to 1 for a
surface area of 10 m*. A diagonal dimension of 20 m, corresponding to a square surface
area of 200 m?, gives a size-effect factor of the order of 0.9.

The curves shown in Figure 4.19 can be used to estimate pressure coefficient ¢, as a
function of the diagonal dimension corresponding to surface areas larger than 10 m?:

Cpe = CyCpe 10 (4.8.11)
Thus, the lack of surface pressure correlation causes the load per unit of area to decrease

with increasing diagonal dimension.
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Fig. 4.19 Size-effect factor as a function of diagonal dimension | of a building with a square
frontal area. The building is situated on terrain. The 4 curves shown correspond to
terrain categories -1V specified in Eurocode 1. The minimum height z, indicated
in Table 3.2 gives clearly visible curve bends, e.g. at a diagonal dimension of
37.7 m for terrain category IV with z, equal to 1 m. The reduction of load per unit
of area increases when the terrain becomes rougher.



Along-wind Response,
SDOF Structures

Wind turbulence causes a fluctuating load on a structure. This implies that the struc-
ture starts to vibrate. If these vibrations are significant, the dynamic response must be
calculated.

The number of degrees of freedom a structure has is equal to the number of parameters
required to define the positions of all parts of the structure. For many structures, the
dynamic along-wind response can be calculated with reasonable accuracy, assuming that
the structure has only a single degree of freedom (SDOF). As an example, the structure
shown in Figure 5.1 is considered.

Only the along-wind turbulence component « is taken into account, as the other turbu-
lence components are unimportant for the structural vibrations considered.

5.1 EQUIVALENT STATIC LOAD AND DYNAMIC
RESPONSE
The concept of characteristic wind load F,,,, which was introduced in Section 4.1, is

frequently used in wind engineering. The gust factor ¢ is defined as the ratio between
F e and the mean wind load F,. For an SDOF structure, ¢ is expressed as

F ax
@ = F"‘ =1+k,21,Vky + k&, (5.1.1)
q

kp is the peak factor, defined as the ratio between the expected maximum of the fluctuating
part of the response and the standard deviation of the response, see Sections 4.6 and 5.4.
The derivation of the formula is shown in Section 5.2.

1, is turbulence intensity. 2/, is the ratio between the standard deviation of the fluctu-
ating load and the mean wind load for point-like structures, see Section 5.2.

kp accounts for contributions from low frequency turbulence. Vortices of at least the
same size as the relevant structural part are most important in this respect, as effects
from small vortices are smoothed out, integrating the fluctuating wind pressures over the
structural surface. The normalization used in formula (5.1.1) is made so that k;, is 1 for
point-like structures and less than 1 for large structures, see Sections 5.2 and 5.3.

k, accounts for contributions from turbulence in resonance with the structure.

Formula (5.1.1) resembles formula (4.1.3). However, the vibrations of the structure
at its natural frequency introduces k, , which did not occur in formula (4.1.3), as this
formula was related to a non-vibrating structure.
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Area A ®U+u

Z

Fig. 5.1 Structure with a single degree of freedom. (Reproduced by permission of Danish
Building Research Institute).

As in Chapter 4, analyses are performed for a point-like structure and for a large
structure.

5.2 WIND LOAD ON POINT-LIKE STRUCTURES

It has been assumed that the structure can be modelled as a mass m supported by an
elastic spring with stiffness & acting in parallel with a viscous damper with the damping
coefficient ¢,. The deflection &4 follows from

médcf + ("\édcf + kger = Fro (5.2.1)

where F\, is the along-wind load on the structure.
A dot above a letter means differentiation with respect to time. The load Fy is given by

Fia = CpALp(U + u — &ger)’ (5.2.2)

where Cpy is the drag coefficient and A is the area of the structure perpendicular to the
mean wind direction. The load is determined using the relative wind velocity seen by the
structure, i.e. with regard to the velocity Eger of the structure. This is important, as it gives
rise to the aerodynamic damping which is often of the same order of magnitude as the
structural damping.

Normally, the mean wind velocity U is much larger than the numerical values of the
longitudinal turbulence component 1 and the velocity of the structure &"M‘ Consequently,
the following is a good approximation:

(U 4t — Eger)* = U +2Uu — 2UEqs (5.2.3)

The total wind load is split into three components: a mean wind load F
load F, caused by the turbulence, and an aerodynamic damping load F,:

4» @ fluctuating

Foa=F,+F —F, (5.2.4)
F,=CpAipU’ (5.2.5)
F,=CpApUu (5.2.6)
Fo= CpApUky = Cubuer (5.2.7)

¢q = CpApU (5.2.8)
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The aerodynamic damping constant ¢, is added to the structural damping constant ¢,
giving a total damping constant ¢:

c=c,+ ¢ (5.2.9)

Mean deflection
The mean deflection j¢; is the mean wind load F, divided by the structural stiffness &,

F,

and F, is given by formula (5.2.5).

Structural vibrations
The autospectrum Sz(n) for the deflection is determined by

Se(n)y = |H)|*Sk(n) (5.2.11)

in which H(n) is the frequency response function for the structure and Sy (n) is the
autospectrum for the load, see Appendix C.

The autospectrum Sy(n) of the wind load is determined by (4.4.8). Consequently, the
variance (rg of deflection &y is found by integrating the autospectrum given by (5.2.11)

k) B 4F? > g ~ wS”
o; = / Se(n)ydn = —1 U—"., / k=|H (n)|- (:I)dn (5.2.12)
Jo k= U= Jo a,

"

Inserting the turbulence intensity /,, = o,/U and using (5.2.10) gives

> Sll
Te _ 21, / k2 H (n))? (:1) dn (5.2.13)
Me 40 o,

Provided that the natural frequency n, is not very low, it is a good approximation to
calculate the integral as the sum k, + k. (k, is the contribution from low frequency
turbulence and &, is the contribution from turbulence in resonance with the structure):

X 2 gsu(”)
k, = k=|H(n = 0)| —dn =1 (5.2.14)
Jo a,
T i '7SH !’SN ¢
ky = / k*|H(n)|” (:1) dn = ”—5")1 (5.2.15)
Jo o, o, 4

and finally from (5.2.13)

a,
220k K, (5.2.16)

He
¢ in (5.2.15) is the damping ratio given by

Cq T+ ¢

= (5.2.17)
2V mk
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5.3 WIND LOAD ON LARGE STRUCTURES

The reduced spatial correlation of wind pressure is important when considering large
structures. As shown in Section 4.4, this is done by means of the aerodynamic admittance
function. Then factors k;, and k, are expressed as

* L (nl\ S,
k;,:/ X <L> (:I)dn (5.3.1)
Jo v) o,
5 (AN n,S,(n,)
k=x|—)———— 532
¢ () s s (5.3.2)

u

in which x° is the aerodynamic admittance function and / is a characteristic length of the
wind exposed area. S,(n) and o, are related to the centre of this area.

The aerodynamic admittance function is less than or equal to 1 for all values of its
argument, and consequently k;, is also less than or equal to 1.

5.4 GUST RESPONSE FACTOR

The characteristic deflection &, during a certain period of time is expressed as the mean
deflection p plus the peak factor k, multiplied by the standard deviation o,

Smax = Mg + k,0¢ (54.1)
The gust factor is
Emzlx UE
He He

and using (5.2.16),

0 =1+k,21,\ky + kr (5.4.3)

The peak factor is discussed in Section 4.6. Here, however, the zero-upcrossing frequency
v should be taken as a weighted average from background and resonance contributions,
and the time 7 = 600 s, as a 10-minute mean value is used to determine the mean wind
velocity. Then from (4.6.2)

0.577
ky = \2In(0T) + ———— (5.4.4)

v 2In(vT)

nf,k/; + nf,k,
kh + kr

where n, is the resonant frequency (Hz) for the along-wind vibrations of the structure
and ny is the representative frequency (Hz) of the gust loading on rigid structures. The

frequency ny is determined as
/"* 22<nl>S( '
Rn — | Su(n)dn
Jo X U ‘

/m ’<"1>5( Vd
=) S (m)dn
Jo X U

V=

(5.4.6)

g =



The Along-wind Response
of Bluff Bodies

A structure’s dynamic along-wind response to a turbulent wind can be estimated theo-
retically by methods originally proposed by A.G. Davenport in the early 1960s, see
Section 4.4. The calculation procedures developed during the preparation of the paper
by Hansen and Krenk (1996) are included in the description.

The response calculations described in the present chapter are based on simple line-
like and plate-like structures, see Figure 6.1. The theoretical formulations presented lead
directly to a simple design procedure which may conveniently be used in design codes to
improve their accuracy. The design procedure proposed is based on consistent expressions
for plate-like structures and a simplified representation of wind turbulence, see Section 6.6.
Section 6.7 deals with dynamic along-wind response of simple structures as described in
Eurocode 1.

6.1 ASSUMPTIONS

This procedure assumes that the structure is simple in shape, e.g. as indicated in Figure 6.1.
Furthermore, it is assumed that:

1. The wind load is determined from the undisturbed wind field.
2. The structure is assumed to be linear-elastic with viscous damping.
3. The along-wind mode considered is uncoupled from other modes.

Coupling between modes occurs for structures with closely spaced or identical natural
frequencies, e.g. certain guyed masts. The response calculations described do not cover
mode coupling, but the basic wind load assumptions presented could be used as input for
a dynamic analysis that does include mode coupling.

Structures such as guyed masts and transmission lines can have many modes that
contribute to the resonant response. If more than one mode gives significant response
contributions, the methods described can be used to calculate each single modal response
o,;. The total resonant response is given by

op =Y o, (6.1.1)

assuming that the cross terms from mode coupling are negligible; see Appendix C for
further details.
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Fig. 6.1 Structures covered by this procedure (Davenport (1977)). (Reproduced by permis-
sion of Tapir, Trondheim).

Pressure correlation

According to assumption 1 mentioned above, the pressure correlation is assumed to be
identical to the correlation of the longitudinal turbulence in the undisturbed wind field.
This assumption will lead to an overestimation of the load, due to the lack of corre-
lation between wind load on the structure front face and on the rear face. The load
will be underestimated due to the fact that pressures on the structure are better corre-
lated than the longitudinal turbulence in the undisturbed wind field. These two aspects,
which to some extent counterbalance each other when predicting loads, are not taken into
account due to the rather limited data available. Furthermore, the data show considerable
scatter. Comprehensive pressure correlation data covering a variety of structures, such as
line-like structures, buildings and bridges, could be used to refine the load model at a
later stage.

For rectangular buildings, pressure fluctuations on the building’s rear face are much
less pronounced than the pressure fluctuations on the front face (see Simiu and Scanlan,
1986). Furthermore, wind-tunnel measurements on buildings indicate that pressures on a
building front face are almost uncorrelated with the pressures on the rear face with typical
correlation coefficients of the order of 0.1-0.2. The fluctuating wind load on the building
front face will, therefore, give the main contributions to the total fluctuating wind load.
Neglecting the wind load fluctuations on the rear face completely will not underestimate
the total wind load fluctuations on the building significantly. However, if the lack of
correlation between pressures on the front face and rear face is taken into account, a more
accurate model for calculating the fluctuating wind load on the building’s front face is
called for. For instance, the fact that pressures on the structure are better correlated than
the longitudinal turbulence in the undisturbed wind field should be taken into account.
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6.2 JOINT ACCEPTANCE FUNCTIONS AND SIZE
REDUCTION FUNCTIONS

In order to systematize the somewhat complicated calculations of dynamic response, we
shall introduce two frequency functions; the joint acceptance function and the size reduc-
tion function. The joint acceptance function describes the interaction of the actual mode
shape and wind load fluctuations on the structure. If the mode shape has constant sign
over the structure, the size reduction function is defined as the joint acceptance function
normalized to 1 at zero frequency. Therefore, the size reduction function describes the
response reduction from the interaction between mode shape and lack of load correlation
over the structure as a function of frequency.

The evaluation of response statistics is computationally intensive and involves double
integration over the line-like structure and fourfold integration over the plate-like structure
when calculating the joint acceptance function. The present chapter uses the integration
format described in Appendix B. This means that the joint acceptance function can be
found using a single integral for line-like structures and a double integral for plate-
like structures. The method is based on normalized co-influence functions, which are
straightforward to calculate.

In many codes, the joint acceptance function for plate-like structures is given as a
product of joint acceptance functions for two line-like structures. The error introduced
by this simplification is discussed and a new simple approximate expression of the joint
acceptance function for plate-like structures is given. This new and more accurate expres-
sion has the correct asymptotes for low as well as high frequencies based on exponential
correlation functions.

6.3 EXTREME STRUCTURAL RESPONSE

The largest structural response occurring during a storm period of say 10 minutes is a
sample in a statistical distribution with a mean value which we call the characteristic
response, see Section 4.6. The characteristic response, Ru.x. is expressed by the mean
structural response, ug, plus a peak factor, k,, multiplied by the standard deviation oy of
the structural response:

Rmux = MR + kp("l\’ (631)

Structural responses such as bending moments, deflections and stresses are considered.
The mean structural response, pg, originates from the static wind load on the structure,
and is calculated using standard procedures applicable for non-vibrating structures. Back-
ground turbulence, i.e. low-frequency turbulence fluctuations, and resonance turbulence,
i.e. turbulence in resonance with the natural frequencies of the structure, give contributions
to the fluctuating part of the structural response. The standard deviation of the structural

response is given by
or = \/og-i—o,? (6.3.2)

where standard deviations a;, and o, originate from background turbulence and resonance
turbulence, respectively. In situations where the fluctuating response can be expressed as
functions of the mean response, the following equations are useful in order to systematize
the response presentation:

Op = MRZIHJCfH/)\/k_h (6.3.3)
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Or = UR2 et H:\/E (6.3.4)

I, rer is the turbulence intensity at a reference point with a height ;¢ above terrain.
6, and 6, are factors that incorporate the effect of different influence functions for the
mean and fluctuating response, respectively. The background turbulence factor &, is an
integral measure of the load reduction caused by a lack of surface pressure correlation
for large structures. The resonance turbulence factor &, includes the effect of structural
amplification, lack of surface pressure correlation and turbulence fluctuations, all at the
structure’s natural frequency.

The gust factor ¢, defined as the ratio between the characteristic structural response
Rmax and the mean response ug, is given by

© = 1+ k20, s/ 63kp + 62K, (6.3.5)

The gust factor is a useful concept when the mean response is significant, e.g. for build-
ings, bridges and chimneys. It should not be used when the mean response is negligible,
e.g. for the cantilevered bridge considered in Section 6.6.2.

Typically, the bulk of variance in the longitudinal component of turbulence is at
frequencies well below the natural frequencies of the structure. This indicates that
the background turbulent response can be calculated, assuming that the wind load is
quasistatic. This approach is simple and provides accurate response estimates in most
situations. Alternatively, the background turbulent response could have been included
in the modal analysis. However, this approach is more cumbersome, since often several
modes are needed to represent the background turbulent response with sufficient accuracy.

The resonant response is calculated using the principles for vibrating structures outlined
in Appendix C.

6.4 RESPONSE OF LINE-LIKE STRUCTURES

The wind load per unit of length, F(z, 1), is calculated by
Fzot) = 1p(U) + uz 1) — Eger(z. 1) d()C(2) (6.4.1)

U(2) + u(z. 1) is the wind velocity found by adding the mean wind velocity U(z) and the
longitudinal turbulence component u(z, r). The wind load depends on the relative wind
velocity with respect to the structure, i.e. U(z) + u(z. 1) — édcf(:. 1). The quantity d(z) is
the width of the structure perpendicular to the wind direction and C(z) is the shape factor.
In most cases mean wind velocity U(z) is much larger than the absolute values of
turbulence component u(z,t) and structural velocity éd€,~(:.r). The wind load is then

given by
F(zty=Fy)+ F(z,t) = Fuz. 1) (6.4.2)

where mean wind load F, fluctuating wind load from turbulence F,, and aerodynamic
damping load F, are given by

Fy(2) = $pU(2)d(2)C(2) (6.4.3)
Fiz. 1) = pUu(z, Nd(2)C(2) (6.4.4)
Fo(z. 1) = pU(2Eger(z. d(2)C(2) (6.4.5)
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The aerodynamic damping load is taken into account using a logarithmic decrement §
describing the total damping and calculated as

5 =26, +38, (6.4.6)

where &, is the logarithmic decrement corresponding to the structural damping, and §,
is the logarithmic decrement originating from aerodynamic damping. Making use of the
assumption that the deflections of the structure are affine with the non-dimensional mode
shape £(z), the aerodynamic damping is determined by the following equations:

1 Ured
80 = 5Cret VY 6.4.7
> reeredV ( )
U,
Uped = —— (6.4.8)
”edref
m,/h
Meq = "ﬁ (6.4.9)
'Odref
h 2/
mg=/ m(:)g ,(”)d: (6.4.10)
0 -

ref

1 (" C(2)d(x) Uz) £z
0 Cret dret Urer s;ef

where Ce is a reference shape factor, U,eq is a non-dimensional reduced wind velocity,
M4 is a non-dimensional mass ratio, m is the mass per unit of length, m, is the normal-
ized, generalized mass of the mode considered and y, is a factor that accounts for the
actual distribution of shape factor, width, wind velocity and mode shape along the struc-
ture. Aerodynamic damping increases with increasing wind velocity and decreasing mass
ratio, respectively. Aerodynamic damping gives significant response reductions for light
structures such as steel chimneys and lattice towers.

6.4.1 Mean response

The mean response, ug, which originates from the mean wind load acting on the structure,
is calculated by

h
uR=/ F(DIr(2)dz (6.4.12)
JO

where Iz(z) is the response-influence function. /g(z) is equal to the response obtained
for a unit, static load applied at height z. For example, /£(z) = z for the bending moment
at z = 0. The mean response is given by the following equations, see equation (6.4.3),
giving the mean wind load F:

MR = hdrefCref%pUrzeflR,refym (6.4.13)

1 h
Ym = / gm(:)d: (6414)
h Jo
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C(2) U (2)d(2) I(2)
Cret Uch dret TR .ret

gn(2) = (6.4.15)

&m 18 a non-dimensional function describing the variation of the mean wind load and the
response-influence function along the structure. y,, gives the integral effect of the g,
function.

6.4.2 Background turbulent response

The background turbulent response, R,(t), is calculated by treating the fluctuating wind
load caused by turbulence, F,(z. ), in a quasistatic fashion:

h
Rb(f)=/ Fi(z.Hlr(2)dz (6.4.16)

JO

where /x(z) is the response~influence function introduced to calculate the mean response.
The standard deviation of the background response, 0y, is given by the following equations:

0/?; = (hdrct‘Crcl’pUrd(’u.rcl‘)zliA,chf, (6.4.17)
N 1 h ph
‘/[-7 =3 / / Pu(":)gb(ll )gl;(::)d:ﬂ[:: (6418)
= Jo Jo

CUR 0, (2)d(2) 1r(2)
Crei Uret Ouret dret TRrer

AN (6.4.19)
The subscript “ref” refers to the function value at the reference point chosen. g, is a
non-dimensional function describing the background turbulent wind-load variation along
the structure. p,(r.) is the correlation coefficient for longitudinal turbulence components
separated by r. vertically. The non-dimensional response variance J; in equation (6.4.18)
is determined by a double integral, which can be calculated as shown in Appendix B, i.e.

s 1 h
‘,/_7 = ]_ / k(":)pu(":)dl'_- (6.4.20)
T.Jo
where the co-influence function k(r.) is given as
2 h—r.
k(r:) = h / &gz + r)d: (6.4.21)
T .Jo

The non-dimensional response variance, J,z,, and co-influence functions, k, are calculated
for different functions of g in Appendix B. The exponential correlation function p, defined
in equation (3.5.10) is used in the calculations.

The asymptotic behaviour of J;, using the exponential correlation function, is given by

J3 = k(0)/¢- for ¢- = h/L;, - (6.4.22)
Ji—y; forg.—0 (6.4.23)

where the normalization constant y;, is

1 h
Vo= — / gr(2)dz (6.4.24)
h JO
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Table 6.1 Asymptotic behaviour of the non-dimensional response variance
J2(¢;), where ¢, = h/LZ. It can also be interpreted as joint acceptance function
asymptotes replacing L2 = U/(nC,) ie. ¢, = C,nh/U, in which C, is the
normalized co-spectrum decay constant introduced in Section 3.5.4, equation
(3.5.26). T in the last column is used to calculate background turbulence factor
ky in equation (6.4.27).

Load J2 asymptote J2 asymptote v (6.4.24) I (6.4.27)
variation for ¢, —» 0 for ¢, — oc: vr (6.4.45) G (6.5.30)
function g JZ=1/J;¢;)
1 1 2/¢: 1 !
z/h : 2/(3¢;) : 2
z/hy 3 2/(5¢,) : 2
(z/h ) = 2/(7¢2) : %
z/h) x 2/(9¢:) : 5
sin(zz /h) 4/72 1/¢; 2/7 4/m?
2z/h —1 ¢:/15 2/(3¢;) 0 —

corresponding to J;, for full correlation with p, = 1 for all distances of interest. y, gives
the integral effect of the g, function.
Table 6.1 shows the asymptotic behaviour of the non-dimensional response variance J;.

dm and gp functions with constant sign

When the g, and g, functions have constant signs, the background response can be
expressed in terms of the mean response using equation (6.3.3) and setting the constants
of 6, and k;, equal to

9/1 = yh/ym (6425)

The asymptote of k;, for structural heights approaching infinity is given by 1/(I'¢.),
where ¢- = /i/L; and I" is a constant dependent on the function g,(z) (see Table 6.1). An
approximation of &, is given by

1

kl; =
vy

(6.4.27)

The approximation introduced for k; is quite accurate in most situations, see Figure 6.2.
The factor 6, is shown in Table 6.2 for some simple functions of g,(z) and g,,(2).

Table 6.2 4, for different functions of g,(z) in
equation (6.4.19) and g, (2 ) in equation (6.4.15).

Gm(2) fz) z/h (z/hy (z/hy®
gv(Z) f(z) 1 z/h (z/hy?
Bp 1 2 2 2

2 3
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Fig. 6.2 Non-dimensional response variance J02 as a function of ¢, = h/LZ for gp(z) = 1,
go(Z)=2z/h, and g,(z) = sin(nz /h), respectively. The solid lines are in accordance
with the accurate expressions derived in Appendix B. The dotted lines correspond
to the approximation introduced in equation (6.4.27). The curves shown can also
be interpreted as joint acceptance functions replacing L = U/(nC,), ie. ¢, =
C.nh /U, see Section 6.4.3.
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Fig. 6.3 Non-dimensional response variance Jb2 as a function of ¢, = h/LZ for gp(z) =
2z /h — 1. The solid line is in accordance with the accurate expression derived
in Appendix B. The dotted line corresponds to the approximation introduced in
equation (6.4.28). The curves shown can also be interpreted as joint acceptance
functions replacing L; = U /(nC,), i.e. ¢, = C,nh/U, see Section 6.4.3.

gm and gy functions with changing signs

We shall limit ourselves to the rather simplified variation given by function g,(z) =
2z/h — 1, ie. a simple linear variation antisymmetrical with respect to the midpoint
: = h/2. The non-dimensional response variance J7 is shown in Figure 6.3 with the quite
accurate approximation:
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26.

S (6.4.28)
3¢7 + 10¢. + 30

Ji(p) =

where ¢. = h/L;.

6.4.3 Resonant turbulent response

The structural response of the dynamic part of the along-wind loading may be calculated
using modal analysis. The response to gusty wind is usually dominated by the fundamental
mode, and the corresponding generalized fluctuating load Q(r) is

h
Q) = / CpUu(z. DER)(2) dz (6.4.29)
JO

where A is the structure height, C is the shape factor, p is the air density. u is the along-
wind turbulence component, £ is the non-dimensional mode shape, d is the width of the
structure, and z is a coordinate along the structure. The dynamic part of the structural
deflection may, as an approximation, be written as a(r)&(z), where a(r) is a stochastic
amplitude function. The spectral density, S,(n), of a(t) is proportional to the structural
frequency response function squared, |H (1)|°, and to the generalized load spectrum:

S.(n) = (hCrcprrefErcfdrcf)le(" )|2|J:(” )Izsuﬁrct‘(”) (6.4.30)

where the joint acceptance function |J.(n)|?, describing the interaction between air flow
correlation and structural mode shapes, is calculated by the expression:

5 1 h h
-(n)]” = 7/ / & (21 g (2. MYr(ron, U)dudz: (6.4.31)
1™ Jo Jo

The non-dimensional resonant wind-load distribution function g,(z, 1) is defined as

C(yUz) [Sulz 0d(z
e = COVO [Sem g de) 6432,
Cret Urer V| Surei(n) &res drer

where g, is a non-dimensional function describing the resonant wind load variation along
the structure and Y (r-. n, U) is the normalized co-spectrum for the wind load components
at two points with a distance of r.. In the present load model, ¥ is equal to the normalized
co-spectrum ), for the longitudinal turbulence components described in Section 3.5.4. n
is the frequency in hertz and U is the mean wind velocity. The subscript “ref” refers to
the function value at the reference point chosen.

The inertia force is proportional to acceleration. The variance of the acceleration at
reference height Z.q, 02, is determined as the integral from zero frequency to infinity
of the spectral density function in equation (6.4.30) multiplied by &..(27n)*. Using
Appendix C.3, the definition of the turbulence intensity /, in equation (3.5.2) and the
non-dimensional power spectral density function Ry defined in equation (3.5.11) give the
following expression for o= :

ace’

R s s Qlrer)? 1, ,m? 2
O = &r4(2mn, )405 = r;f (hCrcf_pU;cfdrcf)-%RN(:rcf. n()’./;(n‘,)] (6.4.33)

n, 2
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where 7, ¢ is the turbulence intensity at reference height and the normalized generalized
mass m, is given in equation (6.4.10).

Since the normalized co-spectrum function depends solely on the distance of r. and
not on each of the point coordinates, the joint acceptance function can be calculated (see
Appendix B) by

’ 1 h
|J-(n)|- = p / k(r-cm)e(r-.n, U)dr- (6.4.34)
tJo

where the normalized co-influence function k-(r-, n) is given as

Y pher

k-(r-,n) = i / gr(on)g (z+r. n)d: (6.4.35)
Jo

The use of equations (6.4.34) and (6.4.35) to calculate the joint acceptance function was

originally introduced by Dyrbye and Hansen (1988).

All load pairs with a distance of r. give a contribution to the joint acceptance function
that is equal to k-(r-, m)p(r..n, U)dr.. Equation (6.4.34) is simply an integral adding
joint acceptance function contributions that originate from load pairs, all with a distance
of r..

The power spectrum S, given by equations (3.5.17) or (3.5.18) indicates that function
g, and thereby co-influence function k-, is independent of the frequency n, except for
very low frequencies not important for the resonant turbulent response considered here.
Furthermore, the power spectra described in Section 3.5 do not give an accurate repre-
sentation of the longitudinal turbulence at low frequencies. The frequency dependence of
g may, therefore, be disregarded without any loss of accuracy.

Examples of normalized co-influence functions are given in Appendix B for different
functions of g, = g.

Resonant response R,, e.g. the bending moment in the structure, is found by applving
inertia forces F,(zZ, t) to the structure and using the response influence function, /x(2).
introduced when calculating the mean response:

il
Rr(!)=/ Fi(z,0lg(2)dz (6.4.36)
(

JO

Fiiz,t)y = 171(:)(277;1,,)35(:)(1(0 (6.4.37)

Horizontal line-like structure

For a horizontal line-like structure, the joint acceptance function |J,(n)|* is given by an
expression similar to equation (6.4.34):

, 1 b
|Jv()]- = p / ko(roonm)Wrp(ry,n. U)dr, (6.4.38)
, 5 ), , , .
where b is the length of the horizontal line-like structure, r, is the horizontal distance

between two points on the structure and k, is calculated by, see equation (6.4.35)
and (6.4.32):

2 h—r,
ki(ry.n)= b / g mg (y+r.n)dy (6.4.39)
' 2 .Jo ‘
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' ' ul ), ) d(y
ey = SUO) Sty n) B dy) (6.4.40)
Cret Urer Suret(n) Er drer

For flat terrain, the mean wind velocity ratio U(v)/U.s and power spectrum ratio
Su(y, 1)/S, er(n) used in equation (6.4.40) are both equal to 1.

Asymptotic behaviour

For line-like structures, the asymptotes of the joint acceptance function have been
described thoroughly by Davenport (1977) using the exponential coherence function
given in equation (3.5.25). The similarity between the exponential correlation function
and the exponential normalized co-spectrum indicates that the upper frequency limits for
horizontal and vertical line-like structures, respectively. are given by

o) — (6.4.41)

Jpy

, 1
Wl — (6.4.42)

where ¢, = C,nb/U and ¢. = C.nh/U and C, and C-. are the normalized co-spectrum
decay constants introduced in Section 3.5.4, equation (3.5.26). The J constants depend on
function g,, see Table 6.1. Thus, for line-like structures of length /, the joint acceptance
function is inversely proportional to the non-dimensional frequency f;, = nl//U for high
frequencies. Typical joint acceptance functions are shown in Figures 6.2 and 6.3.

The modified exponential coherence function in equation (3.5.31) leads to high-
frequency asymptotes equal to half of the asymptotes given in equations (6.4.41) and
(6.4.42), see Figure 6.4. Half of this difference in asymptotic behaviour is taken into
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Fig. 6.4 Joint acceptance functions of |JE (¢)|> and |JY (¢)|? for a constant mode shape
(&(z) = 1) using the exponential coherence function and the modified exponential
coherence function, respectively. With these two expressions, the low-frequency
behaviour is identical for mode shapes with constant signs. However, |JM(¢)? =
3IE ()12 for frequencies approaching infinity.
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account by different estimates of coherence decay constants in the two expressions,
ie. CM ~ ICE, where the upper index refers to the coherence expression used,
see Figure 3.22. Therefore, the modified exponential coherence function leads to
resonant response reductions corresponding to a joint acceptance function reduction of
approximately 25%.

Modes with constant signs

When the mode shape has a constant sign, the resonant response can be expressed by the
mean response using equation (6.3.4) and setting the constants of 6, and &, equal to

v 1t £(z) I2(2)

0, = —— m(z) d: (6.4.43)
Ym Mg Jo Eret R ref
-772 )
k, = '2_3RN(Zrcf~ ne)”:("e)l—/y; (6.4.44)
where the normalization constant y, = [/-(0)| is given by
1 h
h Jo

and m, is the normalized, generalized mass defined in equation (6.4.10).

Modes with changing signs

For high frequencies corresponding to gusts with wavelengths much smaller than the
structure length, the interaction between the wind turbulence and structural modes with
changing signs follows the asymptotic behaviour described above. For low frequencies
corresponding to gusts with wavelengths of the same size or larger than the structure
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= 4+
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Fig. 6.5 Joint acceptance functions of |JE(¢)?> and |JM (¢)? for the linear mode shape
changing sign, using the exponential coherence function and the modified
exponential coherence function, respectively. |J™ (¢)1? = 1|/ (¢)I? for frequencies
approaching infinity.
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length, the interaction between wind turbulence and structural modes that do not have
constant signs is different from the features described for modes with constant signs.

The normalized co-spectrum does not approach unity for low frequencies when the
separation is of the same order of magnitude or larger than the turbulent length scale.
This fact has a pronounced effect on the wind-induced response, especially for structures
with modes that do not have constant signs.

We shall limit ourselves to the rather simplified variation given by function g.(y. n) =
2y/b — 1, i.e. a simple linear variation antisymmetrical with respect to the midpoint
v = b/2. The joint acceptance functions shown in Figure 6.5 are based on the exponential
normalized co-spectrum in equation (3.5.26) and the more accurate modified exponential
expression in equation (3.5.31), respectively.

6.5 RESPONSE OF PLATE-LIKE STRUCTURES

The response of plate-like structures is calculated according to the same basic principles
as those that applied to line-like structures.

The concept “plate-like” indicates that the lack of correlation along the structural width
perpendicular to the mean wind direction is important in the response calculations. This
aspect becomes significant when the width is of the same order of magnitude or larger
than the wavelength taken at the natural frequency, U/n,. Therefore, “plate-like” applies
to structures such as buildings, chimneys, bridges etc.

6.5.1 Mean response

The mean response, 11, which originates from the mean wind load acting on the structure,
is calculated by

h b
MR = / / Fy(v. DIg(y, 2)dvdz (6.5.1)
JO JO

where the mean wind load per unit of area F(y,2) = %pUz(:)C(_\'. 2), and Ig(yv, 2) is
the response -influence function. /z(y. z) is equal to the response obtained for a unit load
acting at point (v, 2). A chimney has /z(y, 2) = 7 for the bending moment at - = 0. A
bridge with a length b and simply supported at each end has /g(y, ) = 1 — v/b for the
reaction force in the support at y = 0.

The mean response is given by the following equations:

MR = thrcf%pU;?ef[Rmcfym (6.5.2)
1 h  pb
m = 7, m\V¥. T dvd: 6.5.3
Ym bhAAg('\)“ ( )
C(y.2) U*(2) Ir(y. 2)
gm(¥y, 2) = .3) ) IrC (6.5.4)

5
Cret U;:ef TR ref

&n 1s a non-dimensional function describing the variation of mean wind load and response-
influence function over the structure. y,, gives the integral effect of the g,, function.
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6.5.2 Background turbulent response
The background turbulent response, Ry (), is calculated by treating the fluctuating wind

load from turbulence, F(y.z.1) = pU()u(y, 2. )C(¥, 2), in a quasistatic fashion:

-h b
Ry(1) = / / Fi(vo 2. OIg(v. 2)dvd: (6.5.5)
Jo Jo

where /g(y. 2) is the response-influence function introduced when calculating the mean
response. The standard deviation of the background response, ;. is given by the following
equations:

0 = (BhCretpU et0, etV 13 1ot 3 (6.5.6)

’ 1 e ph pb pb
Jj, = —/ / / / Pulry rgn(y. 208 (2, ) dy dyadzidzn
b=h=Jo Juo Jo Jo

Cv.2 U@ o (D Tr(y. 2
a(yv.2) = — : k(Y. 2) (6.5.8)
Cret  Urer Ouret IR ret

g» 1s a non-dimensional function describing the variation of the background turbulent
wind load and response-influence function over the structure. p,(r,, r-) is the correlation
coefficient for longitudinal turbulence components separated r, horizontally and r. verti-
cally. The non-dimensional response variance Jj, in equation (6.5.7) is determined by the
fourfold integral, which can be calculated as shown in Appendix B, i.e.:
R 1 h b
J3 / k(ro ropu(ry raydrdr. (6.5.9)

b= bh,(] Jo

where the co-influence function k(r,, r.) is given as

2 h—r.  pb—r,
k(ry.r-) = b / / (gr(V 28y +ro 2+ r) + gr(y. 2+ r)gp(v + ry. 2 dvd:
JO JO
(6.5.10)

gm and gp functions with constant signs

When the g,, and g, functions have constant signs, background response can be expressed
by the mean response using equation (6.3.3) and setting the constants of 6, and k;, equal to:

(')I) = yb/y;n (651 1)
kpy ZJi/V;E (6.5.12)

where the normalization constant y;, given by
1 hpb

Vo = */ / gr(y 2)dvdz (6.5.13)
bh Jo Jo

is equal to J,, for full correlation with p, = 1 for all distances of interest. y, gives the
integral effect of the g; function.
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Assuming that g(v.2) = g,(v)g-(2), background response factor k; can be approxi-
mated by the expressions:

ky = : - (6.5.14)
; 2
1+ V’ (') +(Tp.)* + <;F,\¢>,\»F;¢;)

where T values are obtained for line-like structures, and I is given in Table 6.1 for typical
¢ functions. T", is obtained for ¢ = g,. and I'. is obtained for ¢ = g.. The asymptotic
behaviour that gives the value of 2/7 in the denominator of equation (6.5.14) is explained
thoroughly in Section 6.5.3. The background response factor is illustrated in Figure 6.6.
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Fig. 6.6 The solid and dotted lines show the size reduction function given in
equations (6.5.29) and (6.5.30), respectively. The curves shown can also be
interpreted as the background response factor k, using ¢, = h/L? and ¢, = b/L.
(After Hansen and Krenk (1996)).
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6.5.3 Resonant turbulent response

The generalized load in the mode considered is given by

b ph
o) = / C(yv.2)pU(y, Duly, 2, DE(y, 2)dvdz (6.5.16)
0 Jo

The dynamic part of the structural deflection can be written as a(r) - £(y. ), where a(1) is
a stochastic amplitude function and &(y. 2) is a non-dimensional mode shape. The spectral
density, S, (n), of a(t) is given by

Sa(n) = (thrcl’pUruf'Erct‘)?"H(” )'ZU(” )|ZSu.rcf(”) (6.5.17)

where the joint acceptance function |J(n)| is found from the expression

, 1 o ph pb b
()" = = / / / / gy i m)gv o mp(ry, r-on Uy dyvdysdzidzs
h=b= Jo Jo Jo Jo '

(6.5.18)
and function g(v, z, n) is defined by

Uv,2) 1S,(v.2n) Clv.2) E(v. D)
glv.on)= . - - - (6.5.19)
Uret Siret() Crer Eret

where Yp(ry. r-.n. U) 1s the normalized co-spectrum for the longitudinal turbulence
component at two points with a separation r, horizontally and r. vertically, n is the
frequency in hertz and U is the mean wind velocity. The subscript “ref” refers to the
function value at the reference point chosen.

Like the integration procedures used for line-like structures, the joint acceptance func-
tion is found as follows, see Appendix B for further details:

R 1 h b

(JJ(n)|- = — k(roor-cm)p(roor-on, Uydrydr- (6.5.20)

hb Jo Jo ’ ’
where the normalized co-influence function k(ry. r., ) is given by
2 ch—r. b—r,
Aroor-on) = — / (gv.zomg(y+r..2+r-.n)

' Wb Jo o ’

+ (v 2+ r. gy +r. on)dvdz: (6.5.21)

The normalized co-influence function k(ry,r.,n) multiplied by the normalized co-
spectrum gives the relative spectral response contribution from all pairs of surface points
with separations r, horizontally and r. vertically.

All load pairs with a distance of r, horizontally and r. vertically give a contribution to
the joint acceptance function equal to k(ry. r-. n)¥p(ry, r-.n. U) dr.dr.. Equation (6.5.20)
is simply a double integral that adds joint acceptance function contributions originating
from load pairs that have distances of (r,.r.).

If the function g can be written as

gyv.zon)y =g (y.n)g.(z.n) (6.5.22)
the normalized co-influence function & is given by

K(ro.r-on) = kolry, mdk-(r-, n) (6.5.23)
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where k, and k. are given in equations (6.4.35) and (6.4.39), respectively. The normalized
co-influence function given in equation (6.5.21) is expressed in terms of one-dimensional
characteristics.

Frequency asymptotes for joint acceptance function

For n — 0 corresponding to large wavelengths in the air flow, the joint acceptance
function asymptote is given by

R 1 h b
V)~ — — / / k(rv,r-.n = 0)We(re. r-,n =0)dr.dr. (6.5.24)
hb Jo Jo ' ) )

For n — oc corresponding to small wavelengths in the air flow, the correlation ¥ is

local, i.e. r. & r. = 0, and the joint acceptance function asymptote is given by

s 1 h prb
[J(m)]" = k(ry,=0,r-=0,n — oc)ﬁ / Ye(ry.r-.n = oo)drydr-  (6.5.25)
' 0 Jo Jo ' '
For high frequencies, the exponential coherence function is used as an approximation of
the normalized co-spectrum, see equation (3.5.26). Using this assumption, the upper limit
of the joint acceptance function is given by

/2

( nb)( nlz)
C,— C.—
U U

If the function g is given as a product of the two one-dimensional functions, g, and g, see
equation (6.5.22), the asymptote of influence function k is given (see equation (6.5.23)) by

W (n)|* = k(ry, =0,r. =0,n — oc) (6.5.26)

k(ro=0,r.=0,n - o) =k, (r, =0,n > 00)k-(r.- =0.n — o) (6.5.27)

Comparing equation (6.5.26) and (6.5.27) with the asymptotic behaviour of the line-like
joint acceptance functions given in equation (6.4.41) and (6.4.42) leads to the following
relation:

(n — oo)? = g—um — o)1 — o0))? (6.5.28)

The factor of /2 is the ratio between the plate-like joint acceptance function and
the product of the two line-like joint acceptance functions for high frequencies of n.
Using products of line-like joint acceptance functions, which is common practice in most
building codes, may therefore lead to underestimated response estimates. Normally. this
is taken into account using safe estimates of flow parameters, such as normalized co-
spectrum decay constants C, and C-..

6.5.4 Modes with constant signs

Size reduction function K,(n) accounts for the interaction between wind turbulence and
the structural mode of vibration. For modes with constant signs, the size reduction function
approaches its maximum value for low frequencies at which wind turbulence is best
correlated over the structure. The correlation, and thereby the size reduction function,
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decreases as the frequency increases. The size reduction function is given by

N N/
K.n)= / / k(roor-om)Wrp(roor-,n, U)dmd}}/ / / k(ryor-on =0Mydrdr-
Jo Jo Jo Jo

(6.5.29)
where the normalized co-influence function k(r,. r-. n) multiplied by the normalized co-
spectrum function gives the relative spectral response contribution from all pairs of surface
points with separations of r, horizontally and r- vertically. The normalized co-influence
function & is given by equation (6.5.21).

The size reduction function may be approximated by the expressions:

1
K.,n)= (6.5.30)

b 2
I+ V (G,\'q‘),\‘ )+ (G- )+ (;G\’¢\G:¢:>

C.bn _ C:hn
Urcf T Urci'

¢ = 6.5.31)

where G, and G. are determined from the response of equivalent one-dimensional struc-
tures with horizontal length b and vertical height A, respectively. The approximation of
the size reduction function has the correct asymptotes for frequencies approaching zero
and infinity, respectively, see Section 6.5.3.

Some examples of function g(-) and the corresponding coefficient G are given in
Table 6.1. In many cases. function g does not depend upon frequency n.

The resonant response can be expressed in terms of the mean response using
equation (6.3.4) and setting the constants of 6, and &, equal to

N -
/ / . E(\ D IRy —)1' d-
~r IRm

HI. = v 7 ‘() S 3 )
Vm L 2)
uiv, :) dvd:z
Jo &
7
k, = ;SR\(M n)K(n.) (6.5.33)

where normalization constant y, = |J(0)] is given by

1 b
V= — / / gy, 2)dvd: (6.5.34)
hb Jy Jo

and p(v. 7) is the structure mass per unit of area.

6.5.5 Modes with changing signs

We shall limit ourselves to the rather simplified variation given by function g.(v) =
2y/b — 1. i.e. a simple linear variation, antisymmetrical with respect to the midpoint
v = b/2. The height variation is described by g-(z) = 1 and g-(2) = z/h, respectively.
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Fig. 6.7 This figure shows the joint acceptance function given in equation (6.5.20). The
curves shown can also be interpreted as the non-dimensional response variance
J2 using ¢, = b/LY, and ¢, = h/L%. The dotted lines give the asymptotic behaviour
according to equation (6.5.26). (After Hansen and Krenk (1996)).

6.6 DESIGN PROCEDURES

Now we will look at a design procedure which follows the principles described previously
in the chapter. Section 6.6.1 includes examples of a chimney, a bridge and a building to
illustrate the procedure proposed, in which the mode shape does not change sign. The
special aspects for structures with a mode shape that changes sign are demonstrated in
Section 6.6.2, which considers a cantilevered bridge during construction. Section 6.6.3
shows the response calculations for structures with complicated mode shapes not covered
by the simple procedures given in Sections 6.6.1-6.6.2.

The algebraic approximations used in the design procedures proposed here are typically
accurate within approximately 5%. The uncertainties inherent in the response estimates
are, therefore, primarily connected to the accuracy of the input parameters, such as decay
constants of the normalized co-spectrum and structural damping.
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The design procedures proposed in Sections 6.6.1 and 6.6.2 may conveniently be used
in design codes, thereby improving their accuracy.

6.6.1 Design procedure for mode shapes with constant sign

The structures covered by this procedure are shown in Figure 6.8. The design procedure
proposed covers structures with heights of up to 200 m that have mode shapes with
constant signs. The procedure given is not appropriate for dynamic analysis of guyed
masts, continuous bridges, cable-stayed bridges or arch bridges. The height limit of 200 m
is due to the simple logarithmic profile used in the design procedure, see Section 3.2.

The structure considered has a vertical dimension 4 and a horizontal dimension b. If the
width varies with height for a vertical line-like structure, the width of b at reference height
Zref sShown in Figure 6.8 should be chosen. If the structure is horizontal and line-like, the
width of / at the centre point should be chosen.

Wind structure
The mean wind velocity at height 7 above ground, U(z2), is assumed to vary according to
the logarithmic profile:

U(z) = Upuskr In(2/20) (6.6.1)

where Uy, is the reference wind velocity that specifies the climate of the site, k7 is the
terrain factor and gy is the roughness length; see Chapter 3 which describes the velocity
profile.

Full-scale measurements are used to estimate integral length scales. The results show
very wide scatter originating mainly from the variability of length and degree of station-
arity of the records being analysed. The integral length scale depends on height ; above
ground and on terrain roughness. Wind velocity may also influence integral length scales.

Counihan (1975) suggests, that the integral length scale decreases with increasing
surface roughness, see Section 3.5.2. The opposite variation is specified by ESDU 85020.
The integral length scale depends on surface characteristics on a very long upstream
fetch, say of the order of 50 km. Except for offshore structures and structures within
a few kilometres of the sea, the integral length scale will typically be influenced in a
complicated way by several different terrain categories. At present, there does not seem
to be a simple, accurate procedure available in order to determine the integral length scale
for terrain with surface roughness changes that occur in most practical design work.

We propose a simple representation of the integral length scale L}, in which the
response estimated might be slightly on the safe side in some special cases. This approach
is supported by the fact that the response does not depend greatly on the integral length

d b
I
wind =
Zm"‘»\b; ‘d/‘ h!} )LZM
6h

Zraf =hy+ g

Fig. 6.8 Structures covered by the design procedure proposed.
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scale. The resonant response depends on the integral length scale to the power of minus
one third, i.e. a rather slow decrease for increasing length scale.
The integral length scale used in the design procedure is proposed to be

0.3
210

where z;p = 10 m and Ly = 100 m are independent of surface roughness. The integral

length scale at 7 = 10 m is also used for heights lower than 10 m.

The remaining integral length scales used in the design procedure are given by L, =
%L’lf and L, = %L’,‘;, see Section 3.5.2. These integral length scales, which are used to
calculate the background response, are deliberately slightly overestimated in order to give
conservative response estimates.

The design procedure proposed uses the turbulence intensity given in equation (3.5.3),
the non-dimensional power spectral density function, Ry (z, n), given in equation (3.5.17)
and the exponential normalized co-spectrum given in equation (3.5.26). Decay constants
of C, and C; are specified to be 10, calculating the resonant response.

Gust factor

The gust factor ¢ is defined as the ratio between a static wind load which gives the
maximum response of the structure during a reference time interval, normally taken as
10 minutes, and the mean wind load which gives the mean response of the structure. The
gust factor is calculated as shown below, see equation (6.3.5):

@ =1+ k21, et/ Onkp, + 62k, (6.6.3)

A representative reference height is defined in Figure 6.8. The factors of 6), and 6, incor-
porate the effect of different distributions of mean wind load compared to fluctuating
wind load. In the design procedure, 6, = 1 and 6, = 1, which is a good approximation
for the most common structures.

Peak factor k,

The peak factor k,, is defined as the ratio between the peak and standard deviation of
the fluctuating load within reference time interval 7. The peak factor is calculated (see

Section 4.6) as
0.5772
k,=+2In(0T) + ——x (6.6.4)

V2In(vT)

where v is the zero-upcrossing frequency and 7 = 600 seconds is the averaging time for
the reference wind velocity. The zero-upcrossing frequency v is calculated from back-
ground and resonance contributions as

nf,k/, + n(z,k,.
kh + kl'

(6.6.5)

where n, is the natural frequency (Hz) for the alongwind vibrations of the structure and
is the representative frequency (Hz) of the gust loading on rigid structures. The frequency
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ny is defined as

~
/ n-Ks(n)S,(n. Zer)dn
u (6.6.6)

ny =

*OC
/ Ks(n)S,(n, Zer)dn
JO

where the size reduction function K¢(n) is given in equation (6.5.30). The frequency ny
is approximated by

U(:rcf) \/E

ny = ()3 —_— Ry § n, ((‘!67]
Vhb \ L
where L, = L;(Z.r). If equation (6.6.7) gives ny > n,, then ny = n, should be used.
V'hb has been chosen as a characteristic dimension, according to the asymptotic behaviour
of the size reduction function for frequencies approaching infinity. The approximation
overestimates frequency ny, and thereby the response, slightly, see Figure 6.9.

Background response

The distribution of the background response is assumed to give I'y = % and T'. =

i. see Table 6.1. Background response factor &, takes the excitation from background

turbulence into account and is given by equation (6.5.14) using I'\¢, = %[]/Ll: and I'.¢. =
3 S
sh/Ly, le.

1
ky = (6.6.8)

N 'by+<hy+(3bhy
2 Lu Lu T Lu L,

The background response factor k;, approaches %anl/bh for large structures with i = b.
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Fig. 6.9 This figure shows frequency nq as a function of building height and width. The solid
line corresponds to the accurate expression in equation (6.6.6) and the approxima-
tion given in equation (6.6.7) is shown by the dotted line.
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Resonant response
Resonant response factor k., which gives the excitation caused by turbulent fluctuations
close to the natural frequency n, of the structure, is defined (see equation (6.5.33)) by

5

M
k= 5o Ry Grer K (1) (6.6.9)

where the non-dimensional spectral density Ry (Zpr. 11.) is given in equation (3.5.17). the
size reduction function K,(n.) is given in cquation (6.5.30) and § is the logarithmic
damping decrement of the along-wind vibrations equal to

3 =46, + 4, (6.6.10)
in which 4§, is structural damping and acrodynamic damping §,, is
CpU(Zret)
S, = —LL'— (6.6.11)
20,4t

where C is the shape factor, p is the air density, U(Z) is the mean wind velocity at the
reference height and y¢ is the structural mass per unit of arca taken at reference height,
and for a horizontal line-like structure at the centre point. For line-like structures, the
mass per unit of length is equal to ¢ multiplied by the structure width.

Examples
The design procedure calculations are illustrated for three structures: (1) a 150 m tall
concrete chimney, (2) a 100 m long bridge and (3) a 50 m tall, 20 m wide building, sce
Tables 6.3 and 6.4. Wind load and structural vibrations along the mean wind direction are
considered. The natural frequencies and structural damping chosen for the three structures,
see rows 7-8 in Table 6.3, are based on experience. They should be estimated accurately
for the particular structure in question.

The g functions assumed are as follows:

Structure 1: g, = 1, g. = (z/h)*.

Structure 2: g, = sin(zy/b), g- = 1.

Structure 3: ¢, =1, g. = z/h.

Table 6.3 Input parameters specifying the wind climate, terrain and structural characteristics.
Struc. 1 Struc. 2 Struc. 3

Wind climate

1. Reference wind velocity Upas (M/s) 25 25 25

2. Air density p (kg/m?3) 1.25 1.25 1.25
Site specifications

3. Roughness length z5 (m) Table 3.2 0.05 0.01 0.3

4. Terrain factor kr Table 3.2 0.19 0.17 0.22
Structure specifications

5. Horizontal dimension b (m) 6 100 20

6. Vertical dimension h (m) 150 5 50

7. Natural frequency n. (Hz) 0.3 1.0 0.9

8. Logarithmic decrement é 0.06 0.04 0.08

9. Mass per unit of area y (kg/m?) 700 1000 500

10. Shape factor C 0.6 1.0 1.2
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Table 6.4 The results calculated were obtained using the design procedure specifications
indicated in the table.

Design parameters Struc. 1 Struc. 2 Struc. 3
11. Reference height z,¢ (M) Figure 6.8 90 50 30
12. Mean wind velocity U (z;e) (M/s) (6.6.1) 35.6 36.2 253
13. Turbulence intensity [, (Zret) = 1y ref (3.5.3) 0.133 0.117 0.217
14. Integral length scale L, = L} (Z,e1) (M) (6.6.2) 193 162 139
15. Aerodynamic damping &, (6.6.11) 0.064 0.023 0.042
16. Total damping § (6.6.10) 0.124 0.063 0.122
17. Background response frequency ny (Hz) (6.6.7) 0.140 0.180 0.115
18. Background response K (6.6.8) 0.462 0.519 0.631
19. Spectral density function Ry (Zyef. Ne ) (3.5.17) 0.093 0.050 0.047
20. Mode-shape coefficient G, Table 6.1 0.500 0.405 0.500
21. Non-dimensional parameter ¢, (6.5.31) 0.506 27.6 7.1
22. Mode-shape coefficient G, Table 6.1 0.278 0.500 0.375
23. Non-dimensional parameter ¢, (6.5.31) 12.6 1.38 17.8
24. Size reduction factor Ks(ne) (6.5.30) 0.219 0.075 0.056
25. Resonant response k, (6.6.9) 0.813 0.299 0.107
26. Zero-upcrossing frequency v (Hz) (6.6.5) 0.254 0.622 0.359
27. Peak factor k, (6.6.4) 3.35 3.61 3.45
28. Gust factor ¢ (6.6.3) 2.01 1.77 2.29

The chimney site is characterized as farmland, the bridge is assumed to be 50 m above
sea level and the building is located in suburban terrain.

6.6.2 Design procedure for mode shapes with changing sign

The structure covered by the procedure is shown in Figure 6.10, i.e. a horizontal line-
like structure with a simple linear mode shape antisymmetrical about the midpoint. The
cantilevered line-like bridge considered has a length of b.

The wind structure is assumed to be as described in Section 6.6.1.

The extreme torsional moment at the top of the support is calculated using the design
procedure. The standard gust factor approach cannot be used, since the mean torsional
moment is zero. Instead, the gust factor ¢ is defined as the ratio between the maximum
torsional moment occurring during the reference time interval of 10 minutes, and torsional
moment ftx obtained when the mean wind load acts on the left (or right) half of the bridge
alone, i.e.:

Roux = pug = kllzlll(:rcl) kp + kp g (6.6.12)

where
UR = %b%bdrcf'crcf%pur{-f (6.6.13)

where dr is the reference width of the bridge deck perpendicular to the mean wind
direction.

The effect of background turbulence on the peak factor is assumed to be negligible,
indicating that peak factor k, is determined using equation (6.6.4) with v = n,.
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Fig. 6.10 Cantilevered bridge covered by the design procedure proposed. Wind load and
horizontal vibrations along the mean wind direction are considered in this design
procedure. (Reproduced by permission of Danish Building Research Institute).

The standard deviation of the background response, op, is given below, see
equation (6.4.17) using g f = b/2:

g = 2],,.ref 4.1,,,uR (6.6.14)
which shows that the background response factor is equal to
ky = 16J; (6.6.15)

where J;, is determined using equation (6.4.28) with arguments of ¢, = b/L; and L} =
l -
L,\

u*

’ The standard deviation of the resonant response factor, o,, which gives the excitation
from turbulent fluctuations close to the natural frequency of the structure, is determined by
equations (6.4.33), (6.4.36) and (6.4.37). This indicates that the resonant response factor
is equal to

™ etz 2 6.6.16
%R,V(wcf. n)J (1)l (6.6.16)
where the non-dimensional spectral density Ry (Zrer, 11,) is given in equation (3.5.17) and
joint acceptance function |J‘\.(n(,)|2 is given in equation (6.4.28) using ¢, = C.nb/U
as an argument. § is the logarithmic damping decrement of the along-wind vibrations
consisting of structural damping and aerodynamic damping. The latter is calculated as

shown in equation (6.6.11).

k=16

Examples

The design procedure calculations are illustrated for three bridge lengths: 50 m, 150 m
and 300 m, see Tables 6.5 and 6.6. The natural frequencies in row 7 of Table 6.5 are
based on experience and they refer to the horizontal, torsional vibrations of a cantilevered
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Table 6.5 /nput parameters specifying wind climate, terrain and structural characteristics.

Bridge Bridge Bridge
1 2 3
Wind climate
1. Reference wind velocity Uypas (M/s) 25 25 25
2. Air density p (kg/m®) 1.25 1.25 1.25
Site specifications
3. Roughness length z, (m) Table 3.2 0.01 0.01 0.01
4. Terrain factor kr Table 3.2 0.17 0.17 0.17
Structure specifications
5. Horizontal dimension b (m) 50 150 300
6. Vertical width d.e (M) 5 5 5
7. Natural frequency n. (Hz) 2.0 1.0 0.5
8. Logarithmic decrement 4 0.05 0.05 0.05
9. Mass per unit of area j: (kg/m?) 500 500 500
10. Shape factor C 0.6 0.6 0.6

Table 6.6 The results calculated were obtained using the design procedure specifications

indicated in the table.

Design parameters Bridge Bridge Bridge
1 2 3

11. Reference height z,¢ (M) Figure 6.10 50 50 50
12. Mean wind velocity U (Z.f) (M/s) (6.6.1) 36.2 36.2 36.2
13. Turbulence intensity /,(Zer) = 1y cet (3.5.3) 0.117 0.117 0.117
14. Integral length scale L, = L} (Z.) (M) (6.6.2) 162 162 162
15. Aerodynamic damping 4§ (6.6.11) 0.014 0.027 0.054
16. Total damping § (6.6.10) 0.064 0.077 0.104
17. ¢, = b/Ll =3b/L, 0.926 2.78 5.55
18. Background response k, (6.6.15) 0.708 1.098 0.998
19. Spectral density function Ry (Z,er. Ne ) (3.5.17) 0.032 0.050 0.077
20. ¢, = Cynb /U, et (6.5.31) 27.6 41.4 41.4
21. Joint acceptance function \Jy(ne)l2 (6.4.28) 0.021 0.015 0.015
22. Resonant response k; (6.6.16) 0.853 0.763 0.865
23. Peak factor k,(v = ne) (6.6.4) 3.92 3.74 3.55
24. Gust factor ¢ (6.6.12) 1.15 1.20 1.14

bridge. The natural frequency should be calculated accurately for the particular structure

in question.

The bridge is assumed to be 50 m above sea level.

6.6.3 Structures with complicated mode shapes

The calculations will be illustrated by a horizontal, line-like. three-span continuous beam,

tfor which the aerodynamic admittance function was shown in Figure 4.13. The gust factor

and the maximum wind-induced bending moment at central midspan are determined.
The height above terrain is 30 m. The beam has a constant mass and stiffness along

its length assumed to be 120 m, i.e. each span is 40 m.



The mode shape is a simple sinusoidal function and the natural frequency is assumed
to be 1 Hz. The resonant acceleration at central midspan is determined by the procedure
outlined in Section 6.4.2. In order to determine the resonant bending moment at central
midspan, the ratio between the resonant bending moment and resonant acceleration at
central midspan has been calculated to be 405 kNm/(m/s*) for this particular mode shape
assuming a mass of 2500 kg per unit of beam length. This ratio is used in row 26 of
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Table 6.8 to calculate the resonant bending moment at central midspan.

Table 6.8

Table 6.7 Input parameters specifying wind climate, terrain and

structural characteristics.

Wind climate

1. Reference wind velocity Upas (M/s)

2. Air density p (kg/m®)
Site specifications
. Roughness length z, (m)
. Terrain factor kr
Structure specifications
. Horizontal length b (m)
. Beam width d\e (M)
. Natural frequency n, (Hz)
. Logarithmic decrement &
. Mass per unit of area u (kg/m?)
. Shape factor C

W

O O ow=~NOW,;

Table 3.2
Table 3.2

25
1.25

0.01
0.17

120
5.0
1.0
0.05

500
0.6

Design parameters for a three-span beam with a total length of 120 m.

Design parameters

11.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

Reference height z,s (M)

Mean wind velocity U (z,e) (M/s)
Reference influence number (Nm/N)
Integral effect of g, i.e. ym

Mean bending moment at midspan (kNm)

Turbulence intensity 1, (Ziet) = 1, ret
Integral length scale L, = L} (Zef) (M)
Ll =L,/3 (m)

Non-dimensional response variance J;?
Background bending moment o, (kNm)
Aerodynamic damping 4§,

Total damping &

Spectral density function Ry (Zer. Ne )
oy = C nb/U,e, y = =10)

Joint acceptance function |J, (1, )2
Resonant bending moment o, (kNm)
Peak factor k, (v = n,)

Maximum bending moment Rpax (KNm)
Gust factor ¢ = Rmax/1A

(6.6.1)
Figure 4.13
(6.4.14)
(6.4.13)
(3.5.3)
(6.6.2)

(6.4.20)
(6.4.17)
(6.6.11)
(6.6.10)
(3.5.17)

(6.4.34)
(6.4.33)
(6.6.4)
(6.3.1)
(6.3.1), (6.3.2)

30.0
34.0
7.0
0.0476
86.7
0.125
139
46.3
0.0095
44.4
0.0255
0.0755
0.0533
353
0.0265
53.4
3.74
346
3.99
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6.7 DISCUSSION OF EUROCODE 1

The dynamic along-wind response of simple structures is specified in an informative
Annex of Eurocode 1.

Two papers by Solari (1993) give background information on the calculation procedure
used in the Eurocode.

Wind structure
The turbulence intensity given in equation (3.5.3) is also specified in the Eurocode.

The Eurocode’s non-dimensional power-spectral density function, Ry(z. n), has the
form indicated in equation (3.5.17). The length-scale parameter L; used in the Eurocode
was originally given in ESDU 74031. Later ESDU updates of turbulent length scales may
provide more accurate response estimates.

The Eurocode’s normalized co-spectrum function is as given in equation (3.5.26).
Decay constants of C, and C. are specified to be 11.5, based on an extensive number of
full-scale measurements of longitudinal turbulence, see Solari (19934, b). The fact that
pressures on the structure are better correlated than the longitudinal turbulence in the
undisturbed, oncoming air flow has apparently not been taken into account in the choice
of normalized co-spectrum decay constants. However, this is to some extent balanced out
by neglecting the lack of correlation between pressures on the front face and rear face of
the structure.

Dynamic coefficient

In the Eurocode, dynamic coefficient ¢, is defined as the ratio between the dynamic value
of the exposure coefficient that represents the gust load on the structure, and the value of
exposure coefficient ¢, corresponding to the quasistatic gust load at a point. The dynamic
coefficient is calculated from

_ 1 + k,;zlu(:ref) V kh + kr

1+ 71, (Zref)

Cy (6.7.1)
where Zrr is a representative reference height. Peak factor k,, background response factor
kp, and resonant response factor k, are specified in the Eurocode. For quasistatic response
of a point-like structure, the values k, = 3.5, k, = 1 and k, = 0 are assumed in (6.7.1),
so ¢g = 1 for this case.

The gust factor is equal to the dynamic coefficient multiplied by reference exposure
coefficient ¢, which corresponds to quasistatic gust load at a point.

Peak factor k,

Eurocode 1 uses a complicated approximation of frequency ng. The characteristic dimen-
sion of b + h used in the Eurocode is difficult to interpret physically. However, the
Eurocode approximation and the approximation proposed in equation (6.6.7) lead to
almost identical results in most situations.

Background response

In the Eurocode, the approximation of background excitation &, is specified to be
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Fig. 6.11 Background turbulence factor based on the accurate expression given in
equation (6.5.12) (solid lines) and on the Eurocode expression in equation (6.7.2)
illustrated by dotted lines.

1
ky, = (6.7.2)

b l 0.63
1+0.9< + ')

u

where the Eurocode integral length scale L, was discussed in Section 3.5.5. The charac-
teristic dimension of b + h used in this expression is also difficult to interpret physically.

In Figure 6.11, the Eurocode background turbulence response is compared to the
derived background turbulence response in equation (6.5.12) assuming g, = 1, L;, = L} /4
and L) = L;/3. The Eurocode underestimates the background turbulence response for
structures with width b or height & below approximately 50 m. For larger structures, the
Eurocode overestimates the background turbulence response. Furthermore, the asymptotic

behaviour is not reproduced in the simplified expression used in Eurocode 1.

Resonant response
The size reduction function specified in the Eurocode is given by

Ki(n) = Ky(n)Kp(n) (6.7.3)

where K, is the size reduction corresponding to a vertical line-like structure and K, is
the size reduction as found for a horizontal line-like structure. The product format used
in Eurocode 1 will tend to underestimate the size reduction function by a factor of up to
/2, see equation (6.5.30).

The product format in equation (6.7.3) leads to an underestimated resonant response.
Whether the response obtained using Eurocode 1 is unsafe depends on the accuracy of the
method itself and on the choices used for the remaining flow and structural parameters
inherent in the calculations.

The Eurocode is more complicated and in the author’s opinion less accurate than the
design procedure proposed in Section 6.6.1.



Cross-wind Vibrations
Induced by Vortex Shedding

Vibrations generated by vortex shedding may occur in slender structures such as cables,
chimneys, towers or bridge-decks. In rare cases, vortex shedding might induce ovalling
vibrations of steel chimneys, i.e. vibrations in which the shape of the cross section varies
in time.

The risk of vortex-induced vibrations increases if

e slender structures are in line, separated by a distance of less than approximately 10-15
times the width of the structures;

e aslender structure is affected by the vortices shed by an adjacent large solid structure.

Such phenomena usually call for model tests in a wind tunnel.

Calculation models

Although a great deal of effort has been made during recent decades to improve the
analytical models used for predicting vibrations due to vortex shedding, the analytical
models available are still rather crude. The cross-wind forcing mechanisms have proved to
be so complex that there is no general analytical method available to calculate cross-wind
structural response. The main physical parameters involved in the forcing mechanisms
have been clarified, but the basic data used in full-scale predictions have not reached a
general agreement among researchers.

Some of the most important pioneering research contributions during approximately
the last 20 years have come from the University of Western Ontario (UWO) in Canada and
the Technical University Aachen (RWTH) in Germany. These two research groups have
directed their efforts towards identifying different aspects of vortex-induced vibrations.
However, the methods they use to take aeroelastic effects, i.e. motion-dependent forces,
into account differ considerably.

The mathematical spectral model proposed by the Canadian research group is used as
the basis for the Canadian Code of Practice. It gives accurate results for relatively stiff
structures, such as concrete chimneys, in which aeroelastic effects are relatively small or
moderate. Flexible structures, such as many steel chimneys, call for accurate modelling
of large aeroelastic effects. The mathematical vortex-resonance model suggested by the
German research group focuses mainly on these aeroelastic effects. The practical applica-
tion of the two different approaches is illustrated here by considering the Canadian Code
of Practice, see Section 7.4.2, and the Eurocode. The latter is based on the approach
suggested by the German research group, see Section 7.5.2. The widely used CICIND
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Model Code is mentioned in Section 7.4.3, and a comparison between these codes is
presented in Section 7.5.3.

Chimney vibrations calculated using the spectral model depend on the joint acceptance
function, which is expressed as a double integral. This integral is calculated in two steps
as single integrals by applying the integration format described in Appendix B. This gives
a simplified expression for the deflections.

7.1 PHYSICAL BACKGROUND

Vortex-induced vibrations occur when vortices are shed alternately from opposite sides
of the structure. This gives rise to a fluctuating load perpendicular to the wind direction,
see Figure 7.1. When a vortex is formed on one side of the structure, the wind speed is
increased on the other side, and according to Bernoulli’'s theory, see formula (4.1), this
results in reduced pressure. Thus, the structure is subjected to a lateral force away from
the side where a vortex is formed. As the vortices are shed alternately first from one
side then the other, a harmonically varying lateral load with the same frequency as the
frequency of the vortex shedding is formed. In most practical situations the idealized flow
pattern described with one vortex shedding frequency is modified due to air turbulence.

In its most simple form a stable street of staggered vortices forms behind the structure,
see Figure 7.1. The along-wind velocity, U, of the vortices is approximately 0.85U,
where U is the wind velocity in the undisturbed field. This vortex street has been analysed
by Th. von Karman, and is called a von Kdrman vortex street.

For a non-vibrating structure the distance /, between vortices rotating in the same
direction must be proportional to the structure width, d, perpendicular to the direction
of the wind, since « is the only relevant length. The time between the vortices equals
distance /. divided by velocity U, of the vortices. This means that frequency n, of the
lateral load caused by vortex shedding is U,/!,, which is proportional to U/d. The factor
of proportionality is called the Strouhal number S¢, so

U
n.\.:St—J (7.1.1)
In civil engineering structures, large vibrations may occur if the dominating frequency of
vortex shedding n; is the same as a natural frequency n, for the structure vibrating in
a mode in the crosswind direction. Therefore the critical wind velocity U, defined by
ng=n,is

Acrosswind force ~— Vortices —_
Wind velocity U <

Fig. 7.1 Principal sketch of vortex street behind a cylinder. S-point of stagnation, i.e. the
foremost point of the cylindrical cross section. SP-points of separation where the
vortices separate from the structure. (Reproduced by permission of Danish Building
Research Institute).
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1
Ugic = E_T"(,d (7.1.2)
For many structures, the critical wind velocity for the first mode, i.e. n, = ny, is of

the order of 10 m/s, i.e. frequent wind velocities that give rise to risk of fatigue, see
Section 7.6.
Vortex shedding also generates a harmonically varying longitudinal load with a
frequency of 2n,. However, this load contribution is insignificant for most structures.
The vortex shedding frequency, n, given in equation (7.1.1) will be modified by turbu-
lence and structural vibrations. Turbulence modifies the wind velocity, see Section 7.2, and
structural vibrations change the effective structure width seen by the wind, see Section 7.3.

Reynolds number Re

For a structure with a circular cross section, the crosswind load is strongly dependent on
the Reynolds number Re = Ud/v; see Section 10.1.2, Reynolds’ model law. For high
chimneys with circular cross sections, the Reynolds number is usually in the super- or
transcritical range for all wind speeds of interest, see Figure 7.2.

The subcritical and transcritical ranges resemble each other, as vortex shedding is
regular. Figure 7.3 indicates that aeroelasticity gives rise to a similar regularity, also in
the supercritical range.

Strouhal number St

The Strouhal number St is named after the Czech engineer V. Strouhal, who published
this relation in 1878. St depends on the shape on the cross section, the surface roughness
and the turbulence of the wind.

In Figure 7.3, the Strouhal number is shown to depend on the Reynolds number for a
stationary smooth cylinder and for an aeroelastic model chimney. The figure shows that
the Strouhal number depends on the motion of the structure (aeroelasticity).

For rectangular cross sections, the Strouhal number depends on the ratio between the
structure’s depth and width, see Figure 7.4. The Reynolds number is not important for
sharp-edged, rectangular cross sections.

Diameter d(z), m

14 F T T T T T
10| J
| \—Re=35-10°
Transcritical range i
6f Supercritical range 4

Subcritical range

d 1 1

0 10 20 3L0 40
Mean wind velocity U(z), m/s

Fig. 7.2 Diagram for determining the type of flow around structures of circular cross section
at a given wind velocity (temperature 5°C). (Reproduced by permission of Danish
Building Research Institute).
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Fig. 7.3 Strouhal number St as a function of Reynolds number Re (Wooton and Scruton,
1970). (Reproduced by permission of CIRIA).

Fig. 7.4 Strouhal number defined by St = bns/U as a function of the ratio between the
depth and width of a rectangular section (Eurocode 1).

Chatracteristics of cross-wind gross loading

Gross loading which generates crosswind vibrations can generally be classified under the
following three headings:

e Net gust load caused by lateral wind fluctuations (gusts). Lateral turbulence is often
very important in the design of bridges, see Chapter 8.

e Loads caused by vortex shedding, see Section 7.2. The load occurs whether or not the
structure is moving, but may be strongly dependent on the size of the motion. This
part of the load is called net vortex shedding load.

e Motion-induced forces, see Section 7.3. Most important is the negative aerodynamic
damping generated by vortex shedding.

Mathematically, the gross wind load F per unit of length is determined by:
F=F +F +F, (7.1.3)

in which F, is the net gust wind load due to air turbulence, F, is the net vortex shedding
wind load and F,, is the motion-induced wind load.

Two turbulence conditions increase the risk of violent vortex shedding structural
vibrations:

1. Smooth air flow, for instance that which occurs in the stable atmosphere described in
Section 3.1. Structures located close to the sea with no upstream structures generating
turbulence are known to be significantly more susceptible to violent vibrations induced
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by vortex shedding than structures located in rougher terrain. Topographical features
may also increase the risk of smooth air flow.

Negative aerodynamic damping generated by vortex shedding is increased in
smooth air flow, see Section 7.3.
2. Increased small-scale turbulence, for instance that occurring in the wake of a slender,
nearby structure of similar size.

Small-scale turbulence increases the lift coefficient induced by vortex shedding as
defined in Section 7.2. Small-scale turbulence is discussed thoroughly in Section 10.1.

The influence of smooth air flow and small-scale turbulence on vibrations induced by
vortex shedding are described further in the following sections.

7.2 VORTEX SHEDDING ON A NOMINALLY
STATIONARY STRUCTURE

The net load caused by vortex shedding can be characterized by four aerodynamic parame-
ters; the lift coefficient, the Strouhal number, the load spectral bandwidth and the spanwise
load correlation. All four aerodynamic parameters depend on the cross-sectional shape,
the Reynolds number, the turbulence scale and intensity, and the aspect ratio.

The vortex shedding net wind load per unit of length may be written as

Fuz.t)y=q(2)d()Cr(z. 1) (7.2.1H)

where ¢(z) is the velocity pressure equal to 3 pU?(2), where U(z) is the mean wind velocity
at height z, d(z) is the structural width and C,(z, t) is a non-dimensional, normalized lift
force. Cy(z.1) is a stochastic process with a zero mean.

The autospectrum of normalized lift force C,

Let u’ be the part of the turbulence that has large wavelengths compared with the width
of the structure. Then «' may be considered as a contribution to a moderately varying
mean wind velocity U + u', see Figure 7.5. This wind velocity, used in equation (7.1.1)
for the vortex shedding frequency, yields

U+

ng+n, =S8t (7.2.2)

which indicates that vortex shedding is within a band of frequencies and not just limited
to a single frequency n;.

u' may also be defined as the part of the turbulence with periods much longer than
the natural vibration period of the structure. Using U + « instead of U reflects the need
of a shorter wind velocity averaging time than 10 minutes considering vortex shedding
vibrations of structures with natural frequencies of the order of say 1 Hz.

In the atmospheric boundary layer, it is a good approximation to assume that the
turbulence «’ follows a normal distribution, see Section 3.5.1. Hence it is logical to express
the autospectrum S¢, (2, n) of the normalized lift force using the formula (see Vickery

and Clark, 1972)

nSc, (z,n) n [1 —n/ns(z)]:

o = exp |- | — Lt (7.2.3)
Ci(2) B, ) P [ B(z)
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Fig. 7.5 Principal sketch based on wind measurements at Lammefjord, Denmark (see
' “Courtney and Troen, 1990). A thick line indicates the moderately varying mean
wind velocity U + u'. U is the mean wind velocity over the measured period of
~40 minutes, u' and uy are the along-wind turbulence component averaged over
63 s and 3 s, respectively. (The wind velocities used in this figure were supplied by

Riso National Laboratory, Denmark).

where the lift coefficient @L(;) specifies the standard deviation of the normalized lift
force C,.
Spectral bandwidth B(7) is a dimensionless measure of the band of frequencies, within
=~ which vortices are shed. If there is no turbulence, the autospectrum contains only contri-
butions close to vortex shedding frequency n,.
Full-scale data measured for the net wind load on circular cross-sections situated in
the atmospheric boundary layer suggest that the spectral bandwidth is approximated by

B(z) = 0.1 +2.01,(z) (7.2.4)

where /,(z) is the along-wind turbulence intensity, see Vickery (1995). Smali-scale turbu-
lence generated by nearby structures has no pronounced effect on the net wind load
spectral bandwidth. Typical spectral bandwidth estimates are approximately 0.25.

The shape of the autospectrum agrees well with experimental results both from the
subcritical and the transcritical Reynolds number ranges. A typical example is shown in
Figure 7.6.

Vortex shedding frequency n, increases if the mean wind velocity U increases, and if
the structural width ¢ is reduced. Therefore, the velocity profile of the wind, the turbulence
of the wind field and a structure width decreasing with height affects the cross-wind net
vortex shedding load on the structure as shown in Figure 7.7. The net vortex shedding
load occurs within a band of frequencies and not just at a specific frequency.

Large-scale turbulence with characteristic frequencies of up to approximately 0.1 Hz
may be interpreted as a slowly varying mean wind velocity. The lift coefficient will not
depend greatly on large-scale turbulence, since vortex shedding occurs at much higher
frequencies —typically of the order of 1 Hz. Turbulence at scales of the same order as

- structural width will, on the other hand, be of major importance for the lift coefficient.

The undisturbed air flow approaching high, isolated chimneys will be characterized
by a relatively low energy content of small-scale turbulence. This tends to give the
vortex shedding load on the chimney rather low lift coefficients. The air in the wake
behind a slender, nearby structure will have much more pronounced small-scale turbu-
lence contributions, indicating increased lift coefficients on the chimney. This has been
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The left-hand figure shows the non-dimensional autospectrum of the normalized
lift force C, fitted to measured data on a 130 m high, tapered concrete chimney
at Stigsnaes, Denmark. The right-hand figure shows the lift coefficient C, as a
function of small-scale turbulence intensity, the latter defined as the turbulence
intensity multiplied by the third root of the ratio between cylinder diameter and
integral scale of turbulence (Vickery and Daly, 1984). The lift coefficients used to
estimate the curve shown have been based on full-scale measurements on chim-
neys at Reynolds numbers of approximately 107. (Reproduced by permission of
Elsevier Science Ltd).
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Principal sketch indicating how height above terrain, turbulence and a decreasing
diameter of the structure affects the autospectrum of the crosswind load.

A. When both the wind velocity and the diameter of the structure are independent
of the height above ground, then the frequency of the vortex shedding is also
constant. Due to the lack of turbulence the bandwidth of the spectrum is narrow.

B. When the diameter is constant and when the wind velocity increases with the
height, then the frequency of the vortex shedding increases with the height. Due to
the turbulence the bandwidth is broader than in case A (smooth flow).

C. When diameter decreases and wind velocity increases with height, then again
the frequency of the vortex shedding increases with height, but in another and more
pronounced way than in the case of constant diameter (case B). (Reproduced by
permission of Danish Building Research Institute).
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noted in several full-scale observations carried out on concrete chimneys, see Figure 7.16
in Section 7.4.4.

Full-scale pressure measurements on the 130 m high, tapered concrete chimney at
Stigsnas in Denmark showed lift coefficients of the order of 0.05, when the approaching
undisturbed wind has turbulence intensities of approximately 10%, see Hansen (1981).
In one of the Stigsnes recordings, however, the approaching wind was influenced by
an upstream chimney, which is also 130 m tall. The distance between the two similar
chimneys corresponds to approximately 15 chimney diameters. The largest lift coefficient
measured in this recording was equal to C; = (.16, i.e. about 3 times larger than the lift
coefficient found for other wind directions. Thus, the lift coefficient depends a great deal
on the small-scale turbulence contributions. This fact was originally observed by Vickery
(see Vickery and Daly, 1984).

During smooth flow, vortex motions increase, see Section 7.1 and also Section 7.4.2
which discusses the Canadian Code of Practice.

Coherence and phase spectra for normalized lift force C;,

There is evidence from measurements on structures that the coherence and phase spectra
for normalized lift force C; may be approximated by

VCoh(CL) = exp(—as”) (7.2.5)
d(Cy) =bs (7.2.6)

where s is a dimensionless distance
¢ — 2(2',1 - 22)
’ d(zy)+ d(z2)

a and b are constants, approximately ¢ ~ 0.1 and b is a constant between 0 and 1 for
circular cross-sections. These expressions also apply to frequencies near the peak of the
autospectrum.

Full-scale measurements carried out on the 130 m high concrete chimney at Stigsnzs,
Denmark, confirm that the expressions for the auto-, coherence, and phase spectra of C;,
are reasonable approximations.

A non-dimensional correlation length, i.e. the ratio of correlation length to diameter,
is defined as

x Jn b
A= / VvV Coh(Cp)cos(P(Cp))ds = —=exp | —— (7.2.7)
Jo 2Va 4a
Non-dimensional correlation length A is often found to be near unity or perhaps a little

greater.

The exact expressions used to describe the coherence and phase spectra are not impor-
tant for structural response estimates. The correlation integral effect included in the
correlation length is the most important parameter.

7.3 CROSSWIND LOADING CAUSED BY
STRUCTURAL MOTION

Structural motion induces a feedback to the air flow generating the crosswind load on
the structure. For flexible structures, such as steel chimneys, these motion-induced wind
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loads are significant. The concept of aeroelasticity covering these load contributions is
described below.

Lock-in

Structural motion interacts with the wind field in such a way that the dominating vortex
shedding frequency n, synchronizes with the structure’s natural frequency n,.. This
phenomenon, which is shown in Figure 7.8, is called lock-in.

Correlation length

Many experiments have been made in order to determine the influence of structural
motions on the correlations of the crosswind loading. The results from one of these
investigations is shown in Figure 7.9, indicating that increasing vibration amplitudes cause
an increase of correlation length.

Mathematical description of aeroelasticity

The properties of lock-in and motion-dependent correlations are related to aerodynamic
cross-wind loading caused by the structural vibrations. In its most simple form, the motion-
induced load F,, defined in equation (7.1.3) consists of an inertial load proportional to the
accelerations of the structure and an aerodynamic damping proportional to the velocity
of the structure:

Fy = 'huédef - ('ué‘-dcf (7.3.1)

et Eder and &qor are the cross-flow deflections, velocities and accelerations, respectively,
of the structure. For most civil engineering structures in air, the “added mass of air™
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Fig. 7.8 Experimental investigation of lock-in (after Feng, 1968).
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Fig. 7.9 Influence of the amplitude of motion upon the correlation length estimated by flow
measurements (Wooton and Scruton, 1970). Four curves are shown corresponding
to four different amplitudes of the structure. The correlation length increases with
the amplitude. (Reproduced by permission of CIRIA).

h, is small relative to the structural mass, and may thus be disregarded. However, the
aerodynamic damping force c.€aer Will reduce the effective damping of the vibrations
when ¢, is negative. As this occurs for wind velocities close to the critical wind velocity
it is a very essential parameter when calculating the response.

The linear dependence between loading and velocity indicated in equation (7.3.1)
is sufficiently accurate for small vibration amplitudes of up to approximately 10-20%
of structural width. When the vibration amplitudes are larger, non-linear damping
terms become important. Vickery (1981) suggests an aerodynamic damping of the form
akger — bE} ., where the term —b&,, is a non-linear positive damping that ensures that the
response is self-limiting. An equilibrium is attained at an amplitude for which the energy
extracted from the flow is equal to the energy dissipated by structural damping.

Structural and aerodynamic damping at small amplitudes

Aerodynamic damping is of primary concern, bearing in mind the risk of violent vortex-

induced vibrations. It depends on the ratio between the wind velocity and the critical

velocity, the Reynolds number, and scale and intensity of the incoming turbulence.
Aerodynamic damping may be characterized by a dimensionless parameter Sa as

Ca

Sa = (7.3.2)

bl
pdn,

Alternatively, Sa may be expressed in terms of the corresponding logarithmic decrement
3, of aerodynamic damping, as

28,m,
Sa = 3 (7.3.3)
pd”

where m, is an equivalent mass per unit of length corresponding to the mode considered

N <h
m, = / m(:)(é(:)):d:// (S(:))Zd: (7.3.4)
JO JO
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&(z) is the mode shape, see Appendix C. Aerodynamic parameter Su is negative for
negative aerodynamic damping, which is the situation that leads to significant vortex-
induced vibrations.

The Scruton number Sc is defined in a similar way as aerodynamic parameter Sa by

_ 26,m,

5 (7.3.5)
pd-

¢

where §, is the logarithmic decrement of structural damping. The effective structural
damping is then proportional to the sum between Scruton number Sc¢ and parameter Sa.

Normally. structural damping increases with vibration amplitude. This structural
behaviour is not taken into account in the present formulation using a single Scruton
number value characterizing the tendency to obtain large vortex shedding induced
vibrations. It might become necessary to specify the structural damping as a function of
vibration amplitude in order to establish reliable and accurate models describing vortex
shedding induced vibrations.

The variation of aerodynamic damping with wind velocity and Reynolds number is
shown in Figure 7.10. The test results shown refer to smooth air flow. The modulating
influence of large-scale turbulence can be accounted for by replacing the negative aerody-
namic damping in smooth air flow by its average value in turbulent flow using a Gaussian

Re
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Fig. 7.10 \Variation of the aerodynamic damping with USt/(n.d) (Vickery, 1978). Positive
values in the diagram represent a negative aerodynamic damping. The curves
show test results in smooth air flow at five different values of Reynolds number
Re, normalized such that the maximum normalized damping value is 1.
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Fig. 7.11 The left-hand figure shows the ratio between the aerodynamic damping in turbulent
flow, 81, and smooth flow, 85, as a function of the large-scale turbulence inten-
sity. The increase in large-scale turbulence reduces the risk of significant negative
aerodynamic damping, see left-hand figure, and thereby also the risk of violent
vortex-induced vibrations, see right-hand figure. The aerodynamic damping, the
Scruton number and the large-scale turbulence intensities indicated on the axes
should be considered as rough guidelines judging the risk of violent vortex shed-
ding vibrations of circular cylinders.

probability distribution of the fluctuating wind velocity. So turbulence reduces the most
negative aerodynamic damping found in smooth flow, see left-hand Figure 7.11, where
the ratio between the most negative aerodynamic damping in turbulent flow, 87, and
smooth flow, 83, is shown as a function of large-scale turbulence intensity.

The risk of violent vortex-induced vibrations depends on a combination of Scruton
number and large-scale turbulence intensity of the incoming wind field. High intensity
of large-scale turbulence and/or high Scruton numbers reduce the risk of violent vortex-
induced vibrations, see right-hand part of Figure 7.11. Experience shows that there is no
risk of lock-in if S¢ > approximately 20. If, on the other hand, S¢ < 10, then the risk of
lock-in is very pronounced.

A structure with a given Scruton number may be stable in the kind of turbulent flow
normally encountered and unstable in rare cases with low turbulence occurring under
stable atmospheric stratification, see Section 3.1. For structures with a medium Scruton
number of approximately 5-10, the critical combination of stable stratification, wind direc-
tion and critical wind velocity may occur with return periods of say 10-20 years. There
are examples of structures which show no signs of significant vibrations during approx-
imately the first 20 years of service and then, due to certain meteorological conditions,
violent vortex-induced vibrations start. A given structure may be perfectly stable during
its lifetime in one location and unstable at another location where critical meteorological
conditions can occur, albeit relatively seldom.

Violent vortex-induced vibrations are unacceptable, not least because spectators
complain and cracks form in the critical spots of the steel structure.

The aerodynamic damping parameters for a variety of simple cross sections are shown
in Figure 7.12. All data measured were obtained in model studies carried out on moving
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Fig. 7.12 Aerodynamic damping measured in turbulent shear flow for a circular cylinder, an
octagon and a square (Vickery, 1995). The negative value of the aerodynamic
damping parameter K, defined by equation (7.4.11) is shown as a function of
Un/nd, where U, is the mean wind velocity at the structure top, n is the frequency
and d is the structure width.

prismatic, base-pivoted structures in a simulated atmospheric boundary layer with a turbu-
lence intensity of approximately 8% over the upper part of the models. It is obvious that
negative aerodynamic damping, and thereby the risk of large vortex shedding induced
vibrations, is most pronounced for structures with sharp-edged cross sections, but these
structures are sensitive to the wind direction.

7.4 VORTEX SHEDDING RESPONSE BASED ON THE
SPECTRAL MODEL

Vortex shedding response based on the spectral approach is calculated theoretically in
Section 7.4.1. The Canadian Code of Practice and the widely used CICIND Model Code,
which are both based on the spectral approach, are described in Sections 7.4.2 and
7.4.3, respectively. In Section 7.4.4, the calculated responses are compared with full-scale

observations.
The spectral model gives accurate predictions for relatively stiff structures, such as

concrete chimneys.

7.4.1 Spectral vortex shedding response

The procedure used to calculate spectral vortex shedding response is based on a modal
analysis. Normally, the natural frequencies of chimneys vibrating in a cross-wind direction
are well separated, indicating that only the mode, where the wind velocity is equal to the
critical wind velocity, contributes to the vortex shedding induced vibrations. The net
generalized force Q(r) of the mode considered is

h

o(n) = / F.(z.0&(2)dz (7.4.1)
JO

where F,(z, 1) is the net vortex shedding loading per unit of height, see equation (7.2.1),

&(z) is the mode shape and # is the structural height. n, is the natural frequency of the

mode considered.
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The deflection of the chimney can be written as a(£)£(z), where the modal displacement
a(t) is a stochastic process with the spectral density shown below (subscript “ref” indicates
a reference value): 3
(g dCLE)

\/7—rBrefne

where |H(n)|? is the modal frequency response function of the structure and |J(n)|? is
the joint acceptance function given by

Saa(n) = [H(n) 1T (n)I? (7.4.2)

1 h h
IJ(n))* = ;5/0 /0 g(z1, m)g(zz, Mp(zy, 22)dz dzs (7.4.3)

where p is the correlation function and function g is defined by the following equation:

d(z)C B I
2z n) = q2) (Z)~ L(2)5(@) [ Brer ( n/ng (z)) (7.4.4)
(q dCE)ret B(Z s(z B(z)
In most cases, it is sufficiently accurate to assume that the correlation depends only on

the distance between the two points considered and not on each of the coordinates. Thus
the double integral can be expressed as two single integrals, see Appendix B:

h
)P = % / k(r, n)p(r)dr (7.45)
0

2 h r
k(r,n) = E/o g(z,n)g(z+r,n)dz (7.4.6)

where r is the distance between the two points considered.
Corresponding functions g and k are shown in Figure 7.13 below. It is worth nothing
that k(0, n,) = approximately 0.30-0.35 for both structures considered in the figure.
Since the correlation length for the net vortex shedding loading is relatively small
(about one diameter), the joint acceptance function is approximately given by

|J(n)|* = l%k(o n) = 2x-——/ (g(z, n))* dz (7.4.7)

where Ads is the correlation length.
Using the white noise approximation described in Appendix C, the standard deviation
of deflection y is given by, see equation (7.4.2)

oy(2) = 5(2)\// Saa(n)dn
0
p 7 y e d
_ ‘4/7—[ S(z) CL,ref‘/;"_ h~/0 (g(z 8 )) ¢ [dref ‘Irefdref

T V2 Mietbret /Bt Q2mn. )y, h \/8/(2m)

where n, is the natural frequency and y, is a non-dimensional factor that takes into
account the actual distribution of mass and mode shape along the structure

w=- /M—(Z—) (74.9)
h 0

m ref’ grct

(7.4.8)
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Fig. 7.13 Corresponding functions of g and k for two 100 m high structures with a constant
diameter and a linearly decreasing diameter with height, respectively. The mode
shape is assumed to be a parabola, ie. £z) = z% and the vortex shedding
frequency ns is equal to the natural frequency n. at the upper quarter point on
the structure, i.e. for z/h = 3/4. The roughness length is z, = 0.05 m and the
spectral bandwidth is B = 0.25. The lift coefficient is assumed to be independent
of height.

where m(z) is the mass per unit length of the structure. § is the logarithmic decrement,
taking both structural damping &, and aerodynamic damping §, into account:

8 =38, + 8, (7.4.10)

&
= _27nK, pm'ff (7.4.11)

where p is the air density, dr is the reference width of the structure and m, is an
equivalent mass per unit length defined in equation (7.3.4). The aerodynamic param-
eter K, = —Sa/4m, where Sa was given in equation (7.3.3), is positive for negative
aerodynamic damping. This is the normal sign convention used in the literature.

The maximum bending moment acting on the chimney originates from the inertia
forces, which have an amplitude, F,(z), given as the peak factor k, multiplied by the
standard deviation of the inertia force:

Fi(z) = k,,m(:,)(Zrm(,)2(7,(:) (7.4.12)

Inserting equation (7.4.8) in equation (7.4.12) gives

1 Crre [t / ref Gref dre
Fi(o) = l\,,\/;m( DE(2) L. 1\/_ / (g(e. n, ) d: [ dierdet 413
\/3 Myet&rer Vo \/5/ (2m)
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Fig. 7.14 Peak factor as a function of the ratio of structural to aerodynamic damping. The
curve shown follows the specification used in the CICIND model code.

An equivalent static load used in design should yield a bending moment similar to the
bending moments originating from the maximum inertia force given in equation (7.4.13).

The peak factor &, depends on the type of vibration. For the stochastic type of response,
the peak factor reaches approximately 4.0, and for the single harmonic type of response
with constant amplitude the peak factor is equal to /2. Typically the response type caused
by vortex shedding corresponds to peak factors somewhere between the two extremes
mentioned. The peak factor is illustrated in Figure 7.14 as a function of the ratio of
structural damping to aerodynamic damping. The peak factor shown in Figure 7.14 corre-
sponds to the CICIND Model Code which specifies the following (see Ruscheweyh and
Sedlacek, 1988):

k, = v2(1+ 1.2tan""(0.75(S¢/Sa)*)) (7.4.14)

7.4.2 The Canadian code NBC 1990

The dependence of the Strouhal number St on the Reynolds number Re is taken into
account. For a circular cylinder the code states

|

and St varies approximately linearly between the two mentioned values of Re.
Let U}, denote the value of the wind speed at the top of the chimney when the frequency
of vortex shedding at the top equals the natural frequency 1, of the chimney. Then

if Re < 2 x 10°

. (7.4.15)
if Re > 2.5 x 10°

N— DN —

od
U, =24 (7.4.16)
St

where d is the diameter at the top of the chimney. The Reynolds number is
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_ Uyd
=

Re

(7.4.17)

where the kinematic viscosity is v = 1.5 x 107° m?/s, corresponding to a temperature of
approximately 19°C.
Combining formulas (7.4.15), (7.4.16) and (7.4.17) leads to the rule

on.d for n.d* <0.5ms

U, = , ; 7.4.18
; {511‘,(1 for n.d- > 0.75 m-/s ( )
In the range between these limits, the code uses an interpolation formula
1.5 m"/s ) , ,
U, =|3n.d+ — for 0.5 m=/s < n.d= <0.75 m~/s (7.4.19)

The dynamic effects of vortex shedding are determined as the effects of an equivalent
static force F; per unit of length acting over the top one-third of the structure. F; is

given by
1 d
FL = C| —_—— 7([/,(/ (742(])
2 Voh

pd-
¢ C‘\
¢ “m

where the following notations are used:

Ci, Co  non-dimensional parameters

m average mass per meter over the top one-third of the chimney
qn velocity pressure corresponding to U,

gy damping ratio of the structure

If the diameter variation exceeds 10%, then the effective static load should be applied
only to that part of the structure over which the diameter is within 10% of the average
for that part.

Alternatively, the dynamic effects of vortex shedding can be specified by the maximum
top amplitude vp, calculated as below, see the ISO TC98 proposal: “Wind loads on
structures” based on the Canadian code:

Vmax _ Cx—pdz/m— i (7.4.21)
d 2V h
pd
C\ - C

T m

where C3; = 1 corresponds to equation (7.4.22) and C3 = 2 corresponds to equation
(7.4.24).
In most cases, NBC 1990 specifies the parameters C; and C> to be

3 if h > 16d
0.75h/d if h < 16d

C>=0.6 (7.4.23)
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Ife, < Cgpd:/m, then vibrations with an amplitude of up to 1 diameter may occur. For
such cases, the NBC 1990 refers to a more complete treatment (Vickery and Basu, 1983).

If the velocity U, is low, then turbulence levels may be very low, due to temperature
gradients, and vortex-induced motions are significantly increased. Thus, if U, < 10 m/s
and it h > 12d, then

Ci =6 (7.4.24)
C,=12 (7.4.25)

These rules also apply to tapered structures, provided the variation of the diameter along
the top third is less than one tenth of the average diameter of the top third.

By comparing equation (7.4.11) and equation (7.4.13) with equation (7.4.20) it is seen
that C> = K, and

h.

myé&y,

JrI8 1 [T m(2)E) : 1 Coav/n
Ci=k,—=— —dz| —
0 h Yo By

f h
e 042
/35 vh /, (g(z.n.))-d: (7.4.26)

gives that the bending moment at the chimney foundation is identical when calculated
using F;(2) in equation (7.4.13) and F, in equation (7.4.20) over the top third. The
chimney height is used as the reference height.

Assuming a constant mass per unit of height, C, = 3, k, = 4, &(z) = =7, B(z) = 0.25,
A =1 and k0, n,) = 0.35 (see equation (7.4.6)) gives C.n = 0.21, which is in good
agreement with the largest lift coefficients shown in Figure 7.6.

7.4.3 The CICIND model code

The CICIND model code is based on the spectral model using a large number of full-
scale observations to estimate the relevant parameters, see Daly (1986). The self-limiting
vibration amplitude due to the non-linear damping term is also accounted for.

In the CICIND model code for steel chimneys, May 1988, the following procedure is
given for chimneys with circular cross-sections.

The Strouhal number is St = 0.2, and the critical wind speed is

Ucrit = M (7.4.27)
St

If the chimney has a constant cross section, then Scruton number Sc is

28.m

pd?

Sc= (7.4.28)

where the same symbols are used as before. According to the CICIND code. p =
1.25 kg/m*.

If S¢ > 15, crosswind oscillations will be so small that no action against vortex
shedding is required.

If S¢ < 5, the crosswind oscillations may be violent and stabilizers or damping devices
are mandatory.
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Fig. 7.15 Relative amplitude as a function of Scruton number according to the CICIND mode/
code.

If 5 < Sc¢ < 15, the designer is permitted to use the structure if response calculations
confirm that it will not suffer from fatigue damage.

The Scruton number limits indicated above are primarily based on deflection response
criteria. The stress response and the accumulated fatigue damage should always be deter-
mined as a part of the structural design.

Using test results and approximative assumptions, the curves shown in Figure 7.15
have been established. They show the relative top amplitude as a function of the Scruton
number. Each curve corresponds to a certain flow regime characterized by the Reynolds
number. The supercritical range mentioned in Section 7.1 is divided up into two Reynolds
number regimes in the CICIND model code, see Figure 7.15.

7.4.4 Comparison of predicted and observed
responses —concrete chimneys

Vickery and Basu (1984) compared theoretical predictions based on the spectral model
with full-scale experiments on several concrete chimneys. They found that the spectral
model gave reasonable predictions of the concrete structures concerning vortex shedding.
Their comprehensive investigations are supplemented here by full-scale data from two
sites with 130 m and 150 m tall, tapered concrete chimneys, respectively. At both sites a
similar chimney is located at a distance of approximately 15 diameters from the chimney
in question.

The measurements on the chimneys at both sites indicate much larger vibrations
in cross-wind directions, when the neighbouring chimney is located upstream. see
Figure 7.16. This is due to the increase in small-scale turbulence produced by the upstream
chimney. The predictions based on the spectral model are seen to be in good agreement
with the full-scale measurements considered here. The predictions based on the Canadian
code also shown in Figure 7.16 are in good agreement with the response observed on the
two chimneys in question.
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Fig. 7.16 Standard deviation of the top acceleration as a function of mean wind velocity
for a 150 m (Amager) and a 130 m (Stigsnaes) high tapered concrete chimney.
The theoretical prediction is based on a Strouhal number of St = 0.2, a spectral
bandwidth B = 0.25, a correlation length ). = 1.0, and an aerodynamic mass-
damping parameter K, = 0.5. The solid lines correspond to a lift coefficient of C, =
0.16 found to be representative for the wind direction with a similar chimney located
approximately 15 diameters upstream. Predictions for all other wind directions are

shown by the dotted lines based on C, = 0.05. The Canadian code is shown as
reference assuming a peak factor of 4.0.

7.5 VORTEX SHEDDING RESPONSE BASED ON THE
VORTEX RESONANCE MODEL

Vortex shedding responses based on the vortex resonance model are calculated theoreti-
cally in Section 7.5.1. As described in Section 7.5.2, Eurocode 1 is based on the vortex
resonance model. In Section 7.5.3 the calculated responses based on code specifications
are compared with full-scale observations.

The vortex resonance model seeks to include large aeroelastic effects that occur with
flexible structures, such as many steel chimneys, by a single harmonic gross load.

7.5.1 Vortex resonance response

The modal force Q(r) of the mode considered is
h
o) = / F(z. né&(2)dz (7.5.1)
JO

where the vortex resonance model specifies the cross-wind loading per unit of height due
to vortex shedding, F(z. 1), as (see Ruscheweyh, 1982)

F(z. 1) = q(2)d(D)ep(2)sin(2n ot + p(2)m) (7.5.2)

where ¢(z) is velocity pressure, d(z) is width, cg(2) is a non-dimensional shape factor
describing the load amplitude and n, is the vortex shedding frequency. p(z) is a factor



VORTEX SHEDDING RESPONSE BASED ON THE VORTEX RESONANCE MODEL 129

equal to 0 or 1 facilitating that the load has the same sign as the mode shape in all
points along the structure. For modes with constant sign y(z) = 0. The shape factor,
¢p(z), depends on vibration amplitude, air turbulence, the Reynolds number, the Strouhal
number, cross section and aspect ratio.
Maximum deflection amplitude v,y is calculated by
F. T
.\mux et (Zmz(, )2’”0 8‘. (753)
where §, is the logarithmic decrement describing the structural damping. The equivalent
mass m, per unit of length is given in equation (7.3.4) and the equivalent load F, is
given by
h h N
Fo = &max / q(:)d(:)t‘r(:)é(:)d:/ £-(2)d: (7.5.4)
Jo Jo
where &n,x 1S the maximum mode shape amplitude.
The maximum deflection amplitude is obtained when the load frequency n, is equal
to the natural frequency n,:

h
q(0)d(2)
cr(2)8()dz
4 qref dref f 5 11

»
.\max .
- gmax

‘1rcf

h Lol
4n / £ () dz Se st

Jo
where the Scruton number Sc is calculated as shown in equation (7.3.5) using the reference
diameter ¢ = d,., and St is the Strouhal number defined by equation (7.1.1) using
U = Uy and d = d.

The load amplitude fluctuates in time and the limited load correlation described by the
correlation length indicates that maximum loads do not occur simultaneously along the
structure. Ruscheweyh (1982) takes the effect of limited correlation into account by inte-
grating the maximum load amplitude over length L', where L'/2 is the correlation length
equal to the integral of the correlation function from zero to infinity, see Figure 7.17. The
maximum load amplitudes are taken near the points with maximum mode deflections.
This is because of aeroelastic effects and in order to obtain the wind action that gives the
largest response.

d
=

—
h - IL' L'
| |
correlation !
,L;/— function j:d

Fig. 7.17 Definition of correlation length according to Ruscheweyh (1982). The correlation
length is equal to L' /2, where the length L' is shown in the figure for a cantilevered
beam (left hand) and a simply supported beam (right hand). (Reproduced by
permission of Bauverlag GmbH).
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The variation of velocity pressure and structure width over heights of the order of the
correlation length will normally be insignificant. Further assuming that the mode has a
constant sign, the integral in the numerator of equation (7.5.5) can be approximated as

h oL
/ Cr(EEYdT = Cuky / &(x)dz (7.5.6)
JO .
where &, is the peak factor, ¢y, is the standard deviation of the load, and the integral on
the right-hand site of the equation is taken over the length L. The maximum load has
been set equal to the standard deviation multiplied by the peak factor.

Ruscheweyh takes the peak factor into account by integrating the mode shape over a
so-called effective correlation length L, defined by

L, A
/ E(:)d;zk,;/ £(z)d: (7.5.7)

Thus, the effective correlation length incorporates the influence of load correlation as well
as the peak factor.

Inserting equations (7.5.6) and (7.5.7) in equation (7.5.3) shows that the maximum
deflection amplitude is given by

Vmax K.K 11 (7.5.8)
= wllat o 3 .
dret ¢ l [S(‘ St-
where constants K¢ and K, are defined as shown in Eurocode 1:
oh
§(2)dz
K: = &max— 0 e (7.5.9)
dr [ E()d:
Jo
L,
/ &) dz
K, =—F—— (7.5.10)
£(2)dz

JO

For modes that have no constant sign, the load is assumed to act in the same direction
as the mode deflection. This is taken into account by modifying the definitions of K; in
equation (7.5.9) and K, in equation (7.5.10), see Eurocode 1.

7.5.2 Eurocode 1

Eurocode 1 states that chimneys need not be checked for vortex shedding if their height
is less than 8 diameters. For other chimneys, the following method is described in an
informative Annex.
The Strouhal number is taken as St = (.2 for a circular cvlinder, and the critical wind
velocity U follows as
ned

St

(7.5.11)

crit =
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where n, is the fundamental frequency of the structure and d is the diameter at the centre
of the fully correlated loading length, see Eurocode 1.
The Reynolds number Re will be calculated from the velocity U i

_ dUcrit

Re (7.5.12)

v
where kinematic viscosity v = 1.5 x 107 m?/s corresponding to an air temperature of
approximately 19°C.
The basic value ¢, of the aerodynamic exciting force coefficient for circular cylinders
is defined as
0.7 for Re < 3 x 10°
Clao = 4 0.2 for 5 x 10° < Re < 4 x 10° (7.5.13)
0.3 for Re > 107

In each of the intervals 3 x 10° < Re <5 x 107 and 4 x 10° < Re < 107, it is assumed
that ¢, varies linearly with In(Re).

In most cases, the lift coefficient ¢jy = c¢j.0. However, ¢}, is reduced for high winds
with return periods of the order of 50 years. Eurocode 1 assumes that high winds have a
limited duration and are not able to excite the structure to its stationary response amplitude
within its action time.

The next step in the calculations is a determination of a maximum amplitude vy
using equation (7.5.8) and an effective correlation length L, = L;, given by

,V ax
L 6 for =54 < 0.1 |
it . (7.5.14)
d 12 for ~1 > 0.6

In the interval 0.1 < ynya/d < 0.6, it is assumed that L;/d is a linear function of yn../d.
For a cantilever structure with an assumed mode shape of &(7) = =°

Ke=0.13 (7.5.15)
% 3—3,'+(L,-’) 1f%<0263

Kn = ! ! ! ! (7.5.16)
0.6 if Ehi > 0.263

Rules for determining &, to be used in the Scruton number, see equation (7.3.5), are given
in an Annex of Eurocode 1. An example is presented in Section 7.8.

Equations (7.5.8) and (7.5.14)-(7.5.16) are solved by an iterative procedure. Then the
lift coefficient ¢;, should be checked to see if it needs correcting. The mean wind velocity
U, at the centre of the fully correlated loading Iength is determined. If Uy < 0.83U,,.
no corrections are necessary. If Uy > 1.25U,, vortex shedding will not be taken into
account. If U, is between these limits, ¢y, is reduced to

U‘ri
Clat = (3 —24-—" ‘) Clato (7.5.17)

nt
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7.5.3 Comparison between predicted and observed
response — steel structures

Predictions based on the Canadian code, Eurocode 1 and the CICIND model code are
compared in Figure 7.18. The figure shows the relative chimney top amplitude, vy, /d, as
a function of the Scruton number. Large differences in predicted amplitudes are observed,
especially for low Scruton numbers. The Canadian code does not give useful predictions
for Scruton numbers below approximately 10, i.e. Scruton numbers encountered for many
steel structures constructed in practice. The CICIND model code applies to all Scruton
numbers, but it gives much larger response predictions than Eurocode 1, especially for
low Scruton numbers.

Ruscheweyh and Sedlacek (1988) compared vortex shedding specifications according
to ISO TC98, CICIND and DIN 4133 with results from full-scale experiments on steel
chimneys. They concluded that predictions based on 1ISO TC98, which is similar to the
Canadian code, and on CICIND, overestimate the response from vortex shedding and
that predictions based on DIN 4133 coincide with full-scale response measured in the
whole range of relevant Scruton numbers. Since DIN 4133 and Eurocode 1 give identical
specifications for the structures considered here, their conclusion holds for Eurocode 1
as well.

The full-scale measurements analysed below have been selected in order to investigate
whether Eurocode 1 may sometimes underestimate the response induced by vortex shed-
ding. In Figure 7.19 full-scale vibrations of 8 steel chimneys and 1 distillation column
are compared with the theoretical predictions based on Eurocode 1. Six of the nine struc-
tures have Scruton numbers below approximately 10, making them susceptible to vortex
shedding vibrations. The main structural data are given in Table 7.1.

1.0 Re < 3-10° 510° < Re < 4-10°
5 _ T, ! ----- CICIND i ! !
~. 08 | 1| — - —NBC 1990 1 I
o 1] ) ) ]
>:s - Ic4 =06l Eurocode 1 . IC=0.6]
g o ISR BB
é- _J ) Se ! 1 Co=(1.2 ] \‘s\ ' Co=12
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Fig. 7.18 Relative amplitude as a function of Scruton number as specified by the CICIND
model code, the Canadian code and Eurocode 1. In agreement with the Reynolds
number limits given in Eurocode 1, the left-hand figure refers to Reynolds number
Re below 3 x 10° and the right-hand figure to 5 x 105 < Re < 4 x 10° For
all curves the Strouhal number St = 0.2, the slenderness ratio h/d = 20 and
m/(pd?) = 100.
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Fig. 7.19 Comparison between relative amplitudes measured full-scale and relative ampli-
tudes predicted using the CICIND model code and Eurocode 1. In agreement
with the Reynolds number limits given in Eurocode 1, the left-hand figure refers
to Reynolds number Re below 3 x 10% and the right-hand figure to 5 x 105 <
Re < 4 x 108. According to the full-scale structures considered, see Table 7.1, the
slenderness ratio h /d is chosen to be 36.8 in the left-hand figure and 20.0 in the
right-hand figure.

Danish steel chimneys

Full-scale measurements on the four Danish steel chimneys mentioned in columns 1-4
in Table 7.1 were carried out in the late 1970s (see Frandsen, 1979). They were part
of a research project that primarily aimed to improve the prediction accuracy regarding
the vortex shedding response of steel chimneys. None of chimneys used in the project
had experienced unacceptable vibrations during service. Natural frequencies and struc-
tural damping were determined by ambient vibration tests and wind-induced vibration
amplitudes were measured.

According to the measurements carried out in the late 1970s, Eurocode 1 does not
underestimate the response, see Table 7.1. However, at least three Danish steel chimneys
have experienced unacceptable large vibrations in December 1995, sce columns 4-6 in
Table 7.1. All three chimneys were constructed in the 1970s, and no serious vibrations
were reported until the large vibrations occurred in December 1995, i.¢. approximately
20 years after construction. It is worth noting that one of the three chimneys in question
was used in the full-scale experiment carried out in the 1970s.

The large vibrations were observed during periods of cold weather with temperatures
of approximately —5°C to —10°C. They occurred in the morning and in the evening,
indicating that the air flow is characterized by extremely low turbulence levels due to
stable stratification of the atmosphere. For the chimney in Thyboren, see Column 4 in
Table 7.1, the vibrations caused a 1 m long crack in the shell at the smoke pipe inlet. A
tuned mass damper has now been installed at the top of the chimney.

The observations indicate that chimneys are susceptible to large vortex shedding
induced vibrations, especially in cold weather with low turbulence levels. The risk of
smooth air flow at the critical wind velocities should be carefully considered in the



Table 7.1 The first six chimneys described, see columns 1-6, are all situated in Denmark (see Frandsen, 1979) describing full-scale
measurements carried out on the first four chimneys in columns 1-4. Chimneys A and B in columns 7-8 are situated in Poland and they
are described by Ciesielski et al. (1992). The full-scale measurements on the 80 m steel distillation column in column 9 were published in
Basu (1983). Rows 1-6 give the main structural data. Derived Eurocode 1 parameters are shown in rows 7-14. The last two rows give the
maximum amplitude predicted by Eurocode 1 and as measured or observed at full-scale. Key: M: measured, O: observed, EC1: Eurocode 1.

1 2 3 4 5 6 7 8 9
Equation  Nykebing Skjern Brovst Thyboren Odense Herning Chimney A Chimney B Distil. column
M/ECH
1. Height h (m) — 50 45 54 64 75 56 26 30 80
2. Diameter d (m) — 2.20 1.10 2.20 2.80 2.4 1.8 1.25 0.816 3.96
3. Slenderness ratio h/d - 22.7 40.9 24.5 229 313 31.1 20.8 36.8 20.2
4. Top shell thickness (mm) — 6 5 8 8 5 6 5 5 not informed
5. Natural freq. ne (Hz) — 092 (M) 063(M) 061 (M) 058/0.60 0.37 (EC1) 0.49 (EC1) 1.88 (Calc) 1.06 (M) 0.53 (M)
6. Log. decrement & — 0.014 (M) 0.034 (M) 0.059 (M) 0.014/0.03 0.03 (EC1) 0.025 (EC1)  0.03 (M) 0.02 (M) 0.02 (M)
7. Scruton number Sc (7.3.5) 4.27 1.3 15.9 3.03/4.42" 4.08 4.77 6.1 6.5 10.4
8. Crit. velocity Ugit (mV/s) (7.5.12) 101 3.5 6.7 8.1/8.4 4.4 4.4 11.8 43 105
9. Re x 10 ° (7.5.13) 148 25 9.8 15.1/15.7 7.08 5.26 9.8 24 27.7
10. Crat = Claro (7.5.14) 0.2 0.7 0.2 0.2/0.2 0.2 0.2 0.2 0.7 0.2
11. Eff. correlation length (7.5.15) 6 6 6 6.35/6 6 6 6 6.7 6
12. K. (7.5.16) 0.13 0.13 0.13 0.13/0.13 0.13 0.13 0.13 0.13 0.13
13, Ky (7.5.17) 0.6 0.379 0.569 0.6/0.599 0.472 0474 0.6 0.454 0.6
14. Eurocode 1 ymax (mm) (759 201 84 51 361/247 181 116 80 130 149
15. Measured/observed ymax — 35 (M) 28 (M) 26 (M) 98 (M) 1000 (O) > 500 (0) 250 (O) 300 (O) 690 (M)
(mm) =1000 (O)

" The difference in Scruton number is due 1o differences in structural damping and assumed mode shape.
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design. The large air density in cold weather with a barometric pressure above normal
standard should also be taken into account calculating the Scruton number.

Polish steel chimneys, see Ciesielski et al. (1992)

The Polish steel chimneys did experience large vibrations just after construction. Cracks
in the shell of chimney B, see Table 7.1, were observed in the corner of a burned-gas
outlet shortly after the chimney was constructed.

The vibration amplitudes indicated in Table 7.1 are based on visual comparison with a
reference non-vibrating object, e.g. a building. The structural damping given was measured
and interpreted as independent of the size of the motion.

The vibrations of the Polish chimneys, which were observed during the winter season,
are approximately three times larger than those predicted using Eurocode 1.

80 m steel distillation column, see Basu (1983)
Over a period of some months, large peak amplitudes of 0.38 m and 0.69 m were
measured. The natural frequency and structural damping were determined by ambient
vibration tests.

The vibrations measured are approximately 3-4 times larger than those predicted using
Eurocode 1.

Full-scale results —conclusion

According to the results shown in Table 7.1, under special conditions, e.g. certain mete-
orological situations with cold and smooth air flow over a relatively long period of time,
say of approximately 1 hour, some slender steel structures may experience larger vibra-
tions than predicted by Eurocode 1. Furthermore, the low temperatures may increase the
risk of brittle fracture due to low ductility steel.

The vibration amplitude and structural damping of the 80 m steel distillation column
are based on actual measurements that are expected to be reliable. The Polish and some
of the Danish vibration amplitudes are based on observations, which might overestimate
the actual vibration amplitudes. However, the uncertainties related to observations are not
expected to be able to explain the large discrepancies, where responses observed are of
the order of 5 times larger than the vibration amplitudes calculated using Eurocode 1.

In conclusion, Eurocode 1 sometimes overestimates and sometimes underestimates the
response caused by vortex shedding. There seems to be a need for adjustments of the
calculation procedure specified and in the basic parameters used to estimate the response.
The meteorological situations that lead to larger vibration amplitudes than predicted using
Eurocode 1 should be clarified. The present models describing the phenomenon of vortex
shedding might still be too crude to establish the level of clarification needed. If so, a
more conservative approach than Eurocode 1 is asked for when designing steel structures
against vortex shedding.

The CICIND model code can be used for all Scruton numbers and does not under-
estimate the response induced by vortex shedding on the structures considered here.

7.6 DESIGN

As vibrations from vortex shedding occur at moderate wind speeds, structures may
undergo a considerable number of stress variations. Thus, the risk of fatigue must be
taken into account at the design stage.
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Information about the probability of critical wind speeds, i.e. wind speeds which cause
structural vibrations, is needed in order to perform a fatigue analysis.

Even if a fatigue analysis is not explicitly demanded in the code which is applied, the
risk of fatigue should be kept in mind, especially with regard to slender steel chimneys.

Information about the probability of wind speeds is given in the European Wind Atlas
(Troen and Petersen, 1989). The probability has been found to follow a Weibull distribu-
tion, see Appendix A.1. The probability P that a mean wind speed U at a certain time is
in a range between U, and U, is expressed as

UNC U\ €

(A) exp{ <A) } (7.6.1)
where scale parameter A and shape parameter C in the Weibull distribution are given in
tables in the wind atlas for a large number of locations in the 12 countries that formed
the EEC in 1989. For each location, parameters are given for four roughness classes at
five different heights, and corresponding to twelve sectors of 3(°. Data giving a total for
all sectors are also presented.

A chimney may be located at a site where the roughness varies according to wind
direction. If &, is the probability for direction no. i, (7.6.1) should be replaced by

I ¢ , c
Uu ' Ul; '
P= § hi {exp - (—) - (—) } (7.6.2)
i=1 A, A

The interval U, < U < U, is not obvious, but should be related to the lock-in
phenomenon. Ruscheweyh (1982) shows a lock-in range for both sides of the critical wind
speed, whereas Simiu and Scanlan (1986) have Uy as a lower limit to be U, = U
and the upper limit to be U, = approximately 1.3U ;. Accurate estimates of the upper
limit depend on the Scruton number used.

The expected number of cycies N during a period of T vears is

P =exp

—exp

N=365%x24 x60x60xTnP=315x l()7Tn,,P (7.6.3)

where 1, is the natural frequency of the mode considered. P follows from formula (7.6.1)
or (7.6.2).

7.7 REDUCTION OF VORTEX-INDUCED VIBRATIONS

As demonstrated in Section 7.8, steel chimneys may be subjected to considerable motion
caused by vortex shedding. Therefore it may be necessary to reduce such vibrations using
aerodynamic or mechanical provisions.

Aerodynamic measures
Many kinds of aerodynamic devices for removing or diminishing the risk of vibrations
induced by vortex shedding have been suggested, (see Zdravkovich, 1981). They all aim
to change the air flow around the structure in order to remove the cause of the rhythmic
formation of vortices.

Helical strakes on the top third of the chimney, as shown in Figure 7.20, are a widely
used device. Often three strakes are used with a pitch of one revolution in three diameters
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Fig. 7.20 Chimney with helical strake. (Reproduced by permission of Danish Building
Research Institute. Photo: H.H. Knutsson).

and with a height of approximately 10% of the chimney diameter. Helical strakes should
not be used for Scruton numbers below approximately 5.

Spirals increase along-wind loading. Both Eurocode 1 and CICIND introduce a shape
factor of 1.4 for along-wind loading, which is to be calculated with an area corresponding
to the same area as without the strakes. The shape factor should only be applied in the
zone containing strakes.

Tuned mass dampers (TMD)

Introducing mechanical damping in the structure is another effective way of reducing
the vibrational response to vortex shedding. A frequently applied method is to suspend a
mass in a spring—damper system at the top of the chimney. The mass should be about
0.01-0.02 times the total mass of the chimney, and the natural frequency of this device
should be close to the natural frequency of the structure.

Total damping should be used when calculating the amplitude of the induced vibrations.
When a steel chimney is provided with a TMD, the order of magnitude of the logarithmic
decrement is typically &; ~ 0.1. The principles for calculating responses when TMDs are
applied are described in many textbooks on structural dynamics (see e.g. Smith, 1988).
Many papers on vibrations and dampers were presented at the 8" International Conference
on Wind Engineering in 1991, see Journ. of Wind Engineering 43, 1881-2071. Several
examples of TMDs are shown by Ruscheweyh (1982).
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7.8 EXAMPLE: A STEEL CHIMNEY 60 METRES TALL

In order to-demonstrate the application of the theories in the preceding section, the cross-
wind loading induced by vortex shedding will now be calculated for a steel chimney with
one liner. Steel rather than concrete has been chosen because of its greater sensitivity to
vortex shedding. In the example, Eurocode 1, the Canadian NBC 1990 and the CICIND
model code are applied.

For damping, coefficient of fluctuating lift etc., the values in the codes are used without
further comments. In order to simplify the calculations and make it easier for the reader to
-verify the results, a constant thickness of the shell is assumed, although this is unrealistic.

The foundation at ground level is assumed to be perfectly stiff. This means that the
“chimney may be considered to be a clamped-free beam.

The influence of a TMD will be investigated.

In-this example, only the vortex shedding is analysed.

Data on the chimney

o Location: In the UK, in-a flat, rural area in East Anglia, i.e. farmland with very few
buildings and trees.

Lifetime: T = 50 years

Height: /i = 60 m

External diameter: d = 3 m

Thickness of shell: 1 = 10 mm
Moment of inertia: / = 0.1050 m*
Steel grade: S355, ctf. Eurocode 3.
Young's modulus: £ = 2.1 x 10° MPa
Steel density: ps = 7850 kg/m*

Mass of shell: 740 kg/m

Mass of liner etc.: 260 kg/m

Total mass: m = 1000 kg/m

The first two natural frequencies are calculated as n, = 0.73 Hz and n>» = 4.57 Hz.
Data from the Euwropean Wind Atlas (Troen and Petersen, 1989) will be used to estimate
~the risk of fatigue. Data from Coltishall, 14 km NNE of Norwich is deemed to be best
suited to the purpose. According to the description, the roughness class is no. 1 with the
" roughness length z, = 0.01 m. At the height of 50 m above ground, the scale parameter
is A = 7.6 and the shape parameter is C = 2.25. No distinction is made for different
wind directions.

Eurocode 1
As h/d = 20 > 8, vortex shedding will be dealt with.
~ The Strouhal number St = 0.2, and the critical wind velocity is

_dnp 3.0 x0.73 10.9 m/s
Ucril—?—T—’ 9 m/s

Corresponding to the second mode. the value becomes

dn> _3.0x 4.57

T 03 =69 m/s
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According to Eurocode 1, the terrain category is between I and II. Here we shall assume
category I, but it should be kept in mind that future changes in the surroundings may
alter the category at a later date. From this category, the roughness length z, = 0.01 m
and the terrain factor k7 = 0.17. According to the wind map of the UK, Uy, = 25 m/s.

Assuming the effective correlation length to be about 20 m, the mean wind velocity
for the 50-year wind should be determined at a height of 50 m:

U,y =25x%x0.17 x In(50/0.01) = 36 m/s.

Thus U < 0.83U,,, and as 69 > 1.25 x 36, only the response in the first mode will be
considered.

According to Eurocode 1, the logarithmic decrement should be taken as 8, = 0.025, the
value given for welded steel stacks with 1 liner. The air density, according to Eurocode
1, is p = 1.25 kg/m?. Then the Scruton number is found using (7.3.5) to be

2% 0.025 x 1000

c= 3 =44
1.25 x 3.0-
At the critical wind velocity, Reynolds number is
3.0x 109
o= o S 220 % 10"
1.5 x 107

so, from (7.5.13) ¢jg0 = 0.2, and as Uy, < 0.83U,,, ¢y = 0.2,

Equations (7.5.8) and (7.5.14)-(7.5.16) are solved by iteration, starting by assuming
the effective correlation length L; = 6d. Iteration leads to the effective correlation length
18 m and the maximum amplitude v, = (.266 m.

For vibrations in the fundamental mode, the moment amplitude at foundation level
then becomes ~5.73 MN m.

The corresponding maximum bending stresses are

573 x 1.5
Omax = T———— = 82 MPa
0.1050
which is an unacceptably high value.

A tuned mass damper will be used at the top of the chimney. It should be fixed with
some spring devices leading to a natural frequency close to .73 Hz. We shall assume an
increase in damping that leads to a logarithmic decrement §, = 0.1 and thus S¢ = 17.8.
The correlation length remains 18 m, and the top amplitude reduces to 0.066 m. The
moment amplitude at the bottom becomes 1.42 MNm and the stress amplitude 20.2 MPa.

According to Eurocode 1, the number of stress cycles N is given by

UC‘ . ! Ayl
N=63x10"Tns ( U”‘) e e U

0
Equation (7.6.3) has been used with a probability P given by
> (U
pea (L) (8 )
0

Bandwidth factor &, and the velocity U, equal to V2 times the modal value of the
probability distribution of the wind velocity are specified in Eurocode 1 to be

£y = 0.3
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U() = %Um.lj

where U,, ;; is the mean wind velocity at the centre of the effective correlation length,
i.e. 51 m above ground,

Ui =25 x0.17 x In(51/0.01) = 36.3 m/s,

Uy =726 m/s
. 10.91° 10.97°
N=63x10"x50x073x03|-—| exp|—|z=
7.26 7.26
= 1.63 x 10%,

The fatigue check is not specifically demanded in Eurocode 1, but according to Eurocode 3
the fatigue stress range Aog = 29 MPa, as N > 10% and transverse butt welds are
foreseen.

Assuming the steel temperature is less than 200°C, the partial safety factor for acces-
sible joints, where local failure leads rapidly to failure of the structure is, according to
Eurocode 3, yg = 1.25 (boxed value). Then the stress range Ao shall satisfy the condition

AU<%:23MP3

As the calculated stress range is Ao = 40 MPa, the chimney with the assumed TMD is
not acceptable.

In order to obtain a satisfactory structure, the damping should be larger. If the loga-
rithmic damping decrement is increased to &, = 0.2, then the Scruton number will be
S¢ = 35.6. The moment amplitude drops to 0.71 MNm at the bottom, and the stress
amplitude becomes 10.1 MPa. Then the stress variation is Ag = 20 < 23 MPa, meaning
that the structure is acceptable.

The Canadian code NBC 1990

Formula (7.4.18) gives U, = 5n\d, as n;d> = 0.73 x 3> > 0.75 m*/s. Then U, =
5 % 0.73 x 3.0 = 11.0 m/s. The aspect ratio is i/d = 60/3 = 20, and as U, > 10 m/s,
the parameters C; and C» in formula (7.4.22) and (7.4.23) are C| = 3 and C2 = 0.6:

/> 1.20 x 3°
LU 062 — 0.0065

C =
m 1000

The structure’s damping ratio ¢, is only indicated in the supplement to National
Building Code of Canada, 1990. However, it is likely to be &, < 0.0065, so exten-
sive motions may be expected, amplitudes of about 1 diameter, according to the code, i.e.
3.0 m. This means that some precautions are necessary, and a TMD is assumed, leading
to a logarithmic decrement of 0.1 — corresponding to a damping ratio &, = 0.1/(27) =
0.016.

Using formula (7.4.20) gives

1 3
—— x —_—
v 0.016 — 0.0065 60

1 s
F, =3 x X 5 X 1.2 x 11.0° x 3.107% = 1.50 kN/m
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If F, is applied as a static load on the top third of the chimney, the bending moment at

the bottom is
M=150x20x50kN m=150 MN m

and the maximum bending stresses are

1.50 x 1.5
Omux = ———— = 21.4 MPa
0.1050

CICIND model code

The damping ratio for a steel chimney with a liner on a stiff foundation is presented as
&, = 0.006, from which

47 x 0.006 x 1000
T 125x30°

As 5 < Sc¢ < 15, the top amplitude should be checked. And as Ugic = 10.9 m/s, the
Reynolds number is

6.7

10.9 x 3.0
o= — T
1.5%x 107

Using Figure 7.15, it is obvious that the response is very sensitive to the Scruton number,
and the top amplitude is approximately 0.4 diameter, i.e. 1.2 m. The bending moment at
the bottom is 26 MN m, and the maximum bending stress opn,x = 369 MPa, which must
be reduced.

If a tuned mass damper is used, giving rise to a logarithmic decrement §; = 0.1,
then S¢ = 2 x 0.1 x 1000/(1.25 x 3.0%) = 17.8, and from Figure 7.15 follows that
Ymax = 0.032d = 0.096 m. This corresponds to a bending moment M = 2.1 MN m at
the bottom, and the maximum bending stress is op,« = 30 MPa.

=22x10% <3 x 10°

Comparison between the codes

The results of the calculations according to the three different codes are briefly summarized
in Table 7.2. Using the structure without a damper or other device is not possible in any

Table 7.2 Results of calculations. Comparison of

the codes.
Code EC1 NBC CICIND
No TMD:
8s 0.025 — 0.038
Ymax (M) 0.27 ~ 3.0 1.2
omax (MPa) 82 — 369
TMD, 5 0.1 0.1 0.1
Ymax (M) 0.066 — 0.096
Omax (MPa) 20.2 21.4 30
TMD, 0.2 0.2 0.2
Ymax (M) 0.033 —

Omax (MPa) 10 13.1 —
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of the cases. The application of a tuned mass damper is effective in reducing the vibration
amplitude and the bending stresses in the chimney. It is obvious from the example that
the method used in Eurocode 1 leads to lower stresses than the methods in the Canadian
code and the CICIND model code.



Wind Load on Bridges

This chapter focuses on wind-induced vibrations of cable-supported bridges induced by
fluctuating wind load on the bridge deck. The large flexibility of cable-supported bridges
indicates that bridge movements are of primary interest, i.e. deflections. accelerations etc.
The induced stresses in the structure should also be considered carefully during the design.

The total wind load on a bridge deck, Fy, is found by adding the time-averaged mean
wind load, F . the fluctuating wind load due to air turbulence (buffeting), F,, and the
motion-induced wind load, F,,. i.e.

F[<)[:F(I+F,+Fm (8])

The motion-induced wind load plays an important role for cable-supported bridges. The
bridge vibration frequencies and the aerodynamic damping terms depend strongly on the
wind velocity. In the mathematical formulation presented, clear distinctions are made
between still-air and in-wind bridge characteristics.

Flutter occurs at the critical flutter wind velocity defined as the wind velocity at which
the energy input from the motion-induced wind load is equal to the energy dissipated by
structural damping. At the critical flutter wind velocity the dominating term in equation
(8.1) is the motion-induced wind load. The critical flutter wind velocity found assuming
zero mean wind load and zero buffeting wind load is a mathematical abstraction often
used as a guideline for judging the aerodynamic behaviour of the bridge, see Section 8.2.4
considering critical flutter wind velocities in a pure torsional motion and Section 8.4
analysing coupled flutter vibrations.

Many modes are involved in structural bridge vibrations. Vibrations occur as a coupling
of a vertical bending mode and a torsional mode, both with significant bridge-deck move-
ments. Furthermore, the modes that give coupled vibrations have their largest deflections
at the same part of the bridge-deck structure. The first symmetrical vertical bending mode
may couple with the first symmetrical torsional mode of the bridge. Having said this,
the first symmetrical bending mode is not likely to couple with the first antisymmet-
rical torsional mode, since the largest vertical deflections are found where the torsional
vibrations are small. The influence of coupling between vertical and torsional modes is
analysed in more detail in Section 8.3 considering buffeting vibrations and in Section 8.4
analysing coupled flutter-induced vibrations.

The bridge will also be subject to horizontal deflections. However, in most situations
the vertical deflection/vertical load and angular rotation/torsional moment are not coupled
strongly to the horizontal bridge deflections. This uncoupling is assumed in the following
formulation.
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For suspension bridges with very long spans of above 1-2 km, for example, hori-
zontal deflections will be significant. Mode shapes, where horizontal, vertical and torsional
deflections couple, may also become important. In such situations, the present formulation
should be expanded by additional motion-induced load terms, see for instance Jain er al.
(1995) in which 18 different aerodynamic derivatives are introduced: 3 load components,
combined with 3 deflection and 3 velocity terms (18 = 3 x (3 + 3)).

Aerodynamic characteristics

The aerodynamic characteristics of a bridge deck have a significant influence on the vibra-
tions encountered. Streamlined bridge decks improve aerodynamic stability, changing the
critical flutter conditions to higher wind velocities. Typically, the aerodynamic bridge-deck
data used in analyses are based on wind-tunnel test results or numerical flow simulations.

Structures with limited torsional stiffness, such as suspension bridges and cable-stayed
bridges, are susceptible to flutter vibrations. Increasing the torsional stiffness improves
stability. This is possibly the most important reason for using closed, box-shaped cross
sections in long-span suspension bridges such as the Severn Bridge, Humber Bridge and
the Great Belt Bridge.

Wind screens and safety barriers on bridge decks significantly alter the aerodynamic
characteristics and typically reduce the critical flutter wind velocities. In cold areas, iced-
up wind screens may reduce the critical flutter wind velocities even further. Rail and
road traffic may also influence the aerodynamic behaviour of a bridge, so the effect of
screens, safety barriers and traffic should be considered carefully during the design of
flutter-susceptible bridges.

The mathematical model presented is useful when calculating the wind-induced vibra-
tions of a bridge deck. The structural characteristics are combined with aerodynamic data
described by aerodynamic derivatives, see Section 8.2.3. The structural data used include
modal masses, natural frequencies and damping ratios of the vertical and torsional modes
coupling in the flutter vibrations.

The principles outlined in the following are explained using a flat plate as an example.
Flat-plate aerodynamics are often used as a guideline during the preliminary design of
flutter-sensitive bridges, see e.g. Selberg and Hjorth-Hansen (1966).

Content of Chapter 8

The analysis presented in this chapter supplements the extensive description of wind load
on bridges given in the literature, see e.g. Simiu and Scanlan (1986). The mathematical
formulation outlined is basically the same. Some additional aspects are, however, included
in this text:

1. A detailed analysis of suspension bridges during construction. The example used
explains the main features of flutter-induced vibrations using a physical approach
that is easy to comprehend. The description given adds to the sparse information
published about wind loads on suspension bridges during construction.

]

Emphasis will be placed on the importance of choosing an accurate scaled mass
and mass moment of inertia in full-scale predictions based on section-model tests. A
detailed description of the principles used in section-model tests is given by Hjorth-
Hansen (1992).
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3. A thorough discussion of the aerodynamic admittance functions defined as the ratio
between load spectra and wind velocity spectra.

4. The coherence of the aerodynamic forces is stronger than that of the turbulence
fluctuations in the oncoming, undisturbed air flow. Results obtained in recent wind-
tunnel tests are used to quantify the importance of this aspect.

5. The buffeting response calculations presented include the influence of coupling
between vertical and torsional bridge modes. Mode coupling is investigated in detail
for a streamlined bridge section.

The mean wind load including the static stability of a bridge deck is analysed in
Section 8.1. The motion-induced wind load is described thoroughly in Section 8.2 using
aerodynamic derivatives. Buffeting vibrations are discussed in Section 8.3, in which
aerodynamic admittance functions are introduced. Flutter vibrations initiated mainly by
the motion-induced wind load is analysed theoretically in Section 8.4, and Section 8.5
describes flutter vibrations of suspension bridges during construction.

Where vortex shedding vibrations of bridge decks are concerned, reference is made to
the literature, see e.g. Simiu and Scanlan (1986).

A number of comments on the Eurocode 1 clauses are given in Section 8.6.

8.1 MEAN WIND LOAD ON BRIDGE DECKS

The mean wind load on the bridge deck is described by drag (Fﬁl) ), lift (Fs) and moment
(FqM) loads per unit of length as follows:

FP(y) = LpU*(WhCp(a(y)) (8.1.1)
FE(y) = 3pU*(1bCL(a(y)) (8.1.2)
Fil(y) = 1pU (0B Cy((y)) (8.1.3)

in which U(y) is the mean wind velocity as a function of the coordinate y along the
bridge deck, and Cp, C; and Cy are non-dimensional shape factors depending on the
angle of incidence «(y). The positive directions of loads and angle of incidence are shown
in Figure 8.1. Typical shape-factors determined for streamlined box girder sections are
shown in Figure 8.2.

Flat plate approximation

It is assumed that the mean wind velocity, U, and the angle of incidence, a, are constant
along the flat plate.

Shear centre axis

Fig. 8.1 Definition of positive directions of loads and angle of incidence. The moment acts
with respect to the shear center axis.
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Fig. 8.2 Shape factors for streamlined box girder sections (Hjorth-Hansen, 1993). The theo-
retical flat plate slopes of the aerodynamic lift and moment coefficients are also
shown.

Several authors have theoretically calculated the aerodynamic lift, F(’,’, and moment,
F,!. acting on a stationary, thin, flat plate per unit of length, see e.g. Joukowski (1916):

! | ~ (I’CL (IC[‘
Fila) = 5pUb o — =2 (8.1.4)
4 - do do
, 5 ~dCy {C
Fi)’(a) = %pU'b“‘ M M /2 (8.1.5)
da da

where b is the plate width, and dC; /da and dCy /du are the slope of aerodynamic lift
and moment, respectively. Equations (8.1.4) and (8.1.5) are valid for small angles of
attack. The width as the main structural dimension is logical, bearing in mind that the
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Fig. 8.3 Wind load on a stationary, flat plate. The dotted lines in the right-hand figure show
the nondimensional coefficient for the force perpendicular to the flat plate, Cy =
Fy /(3pU%b), and the non-dimensional eccentricity factor e based on theoretical
calculations assuming small angles of attack. The solid lines in the right-hand figure
show Cy and e based on wind-tunnel test results in small turbulent flow (Jensen and
Franck, 1965). The flat plate tested has a thickness of 3.5% of the plate width and is
located at a distance from the wind tunnel floor equal to the plate width. The sudden
drop in lift force at an angle of attack of approximately 7° is due to flow separation
occurring at angles of attack larger than approximately 7°. Flow separation has not
been taken into account in the theoretical calculations presented. (Reproduced by
permission of N. Franck).
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aerodynamic lift and moment originate from pressures and suctions acting on the top and
bottom of the flat plate. The total effect can be described as a force, F qN , per unit of length
acting in the so-called aerodynamic centre, see Figure 8.3. According to the theoretical
calculations this is located in the foremost quarter point of the plate width.

Static stability
It is assumed that the mean wind velocity, U, and the slope of the aerodynamic moment,
dCy /da, are constant along the bridge deck.

The aerodynamic moment tends to increase the angle of attack, giving an apparent
reduction in torsional stiffness. The structural modal torsional stiffness, k,, in still air
will be equal to the aerodynamic modal torsional stiffness ky = quM/da for the wind
velocity, Uiy, given by, see equation (8.1.3):

(8.1.6)

The wind velocity Uyg;, is called the divergence velocity. If the gust wind velocity acting
over the bridge span exceeds the divergence velocity, the structure will collapse due to
excessive twist, because any angle of incidence, however small, will increase without
limit. An adequate safety margin against divergence should always be ensured.

The structural modal torsional stiffness, kg, in still air is equal to

ky = (2mng)’l, (8.1.7)

in which n, is the torsional natural frequency in still air and I, is the equivalent mass
moment of inertia introduced in equation (8.2.11). Inserting this expression of k, in
equation (8.1.3), and using the flat plate approximation of dCy/da = m/2, the non-
dimensional reduced divergence velocity, Ugiy/n:b, is found to be
% =4 ny,n—a (8.1.8)
ngb ng
in which #n; is the vertical natural frequency in still air and y; is the non-dimensional mass
moment of inertia ratio, y; = I,/(pb*). The normalization used for the divergence velocity
facilitates a direct comparison between the reduced divergence velocity and the reduced
critical flutter wind velocities, U, /(ngb), calculated in Section 8.4, see Figure 8.17.
Typically, the flat plate approximation used in equation (8.1.8) will underestimate the
divergence velocity, since most cross sections have lower aerodynamic moment slopes
than the flat plate, see Figure 8.2.

8.2 MOTION-INDUCED WIND LOAD

Originally, this mathematical model was formulated in the aeronautical field of application.
The formulation was transported into the bridge community by R.H. Scanlan and has been
described in several papers and textbooks, see e.g. (Simiu and Scanlan, 1986).

The cross section shown in Figure 8.4 has a mass m per unit of length and the mass
moment of inertia per unit of length is designated /. The structure is assumed to have
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Shear centre

Fig. 8.4 Definition of wind load and deflections.

a vertical deflection, &4.¢(y, f), and an angular rotation equal to ags(y, t), both functions
of the coordinate y along the bridge deck and time ¢. The natural vibrations of the two
modes in still air are assumed to be mutually independent.

8.2.1 Bridge-deck sections

Assuming harmonic vibrations at a frequency n, and using the notation by Scanlan (1992),
the motion-induced wind load on the structure with constant mode shapes is given by
(see Scanlan 1992)

Fh=1pU%
[ o Edet s 1o DOdet 2o 2y o Sdef
KHI(K)F + KH3(K) U + K H3(K)ager + K H4(K)—b— (8.2.1)
Fi = 1pU%b?
[ et w o DOt 2 2 x g o Sdef
KA,(K)—U- + KA (K) U + KA (K)otges + K A4(K)—b— (8.2.2)
and the reduced non-dimensional frequency K is defined as
K= bo b(2nn) 8.2.3)
U U -

where b is the deck width of the structure, U is the wind velocity, w is the angular
frequency of the oscillation and n is the frequency in hertz. The non-dimensional coeffi-
cients H} and A} (i = 1,2, 3, 4) are called aerodynamic derivatives; H} and A} are the
aerodynamic damping in the vertical and torsional motion, respectively.

It is worth noting that the notation used gives aerodynamic derivatives twice the magni-
tude of the aerodynamic derivatives defined by Simiu and Scanlan (1986). Furthermore,
H3, H3, A} and A} have opposite signs due to the present sign convention, in which
the lift force and vertical deflection are both positive upwards. The notation used here is
identical to the one used by Jacobsen (1995).

The motion-induced wind load on the structure is proportional to velocity pressure
%pUz. The vertical wind load is proportional to bridge-deck width & and the torsional
moment is proportional to the width squared, b*. The width as the main structural dimen-
sion was also used for the aerodynamic lift and moment on a stationary, thin, flat plate,
see Section 8.1.
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The wind load depends in a complicated way on angular rotation ag.r and vertical and
angular velocities &g and dgr, respectively, as given by the aerodynamic derivatives.
The H} and A} terms proportional to &y originate from 90° out-of-phase load terms
proportional to Sdtf and 180° out-of-phase load terms proportional to acceleration gdtf
The quantities otgef, Edtf/U and bag.r/U are non-dimensional, effective angles of attack.

The Fourier transforms &L () of FL and ® (w) of F are given by

m m

dE () = Fre(@)Eger(@) + Fo(0)Ager(@) (8.2.4)

nt

Y () = Fue() Zger(@) + Fpa(@)Ager(@) (8.2.5)

m
where Zger(w) and Ager(w) are the Fourier transforms of &4.¢(f) and ay.((1), respectively,
and

Fre(w) = Lp0’b*(H + iH})  Fralw) = Ypw™b (H +iH3)  (8.2.6)

Fysw) = $p0’b (A5 +iA})  Fyo(w) = Lp0’b (A} +iA3) (8.2.7)

In order to satisfy system causality, the 4 F functions in equation (8.2.6) and (8.2.7)

should all have real inverse Fourier transforms, which are zero for negative arguments.

This may be used to check the validity of aerodynamic derivatives determined experi-
mentally.

8.2.2 Modal loads

Vertical and torsional modes that couple in the flutter vibrations are described by
Eaer (v 1) = E(V)p(1) (8.2.8)
ager( v 1) = a(v)g(t) (8.2.9)

in which &(v) and «(v) are the vertical and torsional modes that couple to produce flutter
vibrations.

The modal mass is defined in Appendix C. The equivalent mass, m,, and equivalent
mass moment of inertia, /., are defined by the respective modal masses normalized by
the square of the mode shape integrated over the bridge deck length, i.e.

s D

"’u=/ nz()')Ez(_\')d)'// £(v)dy (8.2.10)
s , n

=/ l(y)a'(_\')d_\‘// a - (yv)ydy (8.2.11)

The integrals in the numerators are the modal mass and modal mass moment of inertia
taking the whole structure including bridge deck, cables and pylons into account. The
integrals in the denominators are the squares of the mode shapes integrated over the
bridge deck length where the motion-induced force acts. The equivalent masses defined
above are similar to the equivalent mass defined in Chapter 7 in connection with vortex
shedding induced vibrations.

s, &, are structural damping ratios to critical in still air, and wg, w, are the natural
angular frequencies in still air defined by

39}
N
3]
Nt

wg = 27N, (

®©
oot
=

Wy, = 2mn, (
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where ng, n, are the natural frequencies in still air, expressed in hertz, in the vertical and
torsional degrees of freedom, respectively.

Assuming linear elasticity and viscous damping, the differential equations for vertical
and torsional motion are given by

D
me(p+ 2ewe p+ Wi p) = FE o + Fhoda / / E(v)dy (8.2.14)

D
10§+ 2500g + 02q) = FM i+ FM / / o*(v)dy (8.2.15)

in which the motion-induced modal wind load on the bridge deck is described by modal
loads normalized by the square of the mode shape integrated over the bridge deck length:

Fll;l.modul = %pU:b
[ * [7 * bq 2 * 2rr%* 14
X KHI(K)U +KC5H2(K)U+K C:H3(K)g + K H4(K)B (8.2.16)

FM — lpU:bZ

m.modal 2

- . b i .

x KC(,A’{(K)g + KAg(K)Uq + K2ANK)g + K-CuAj(K>£] (8.2.17)
L

FLooga and FM .\ are modal loads due to air turbulence defined by

N
Fl g1 = / Fh(y ng(y) dy (8.2.18)

S
F ol () = / FM(y, ha(yv)dy (8.2.19)

in which 1 is the time.
The non-dimensional coefficients C¢ and C, are given by

D D |
C: = E(,\')a(_\‘)d_\'// E(v)dy (8.2.20)

D D
Cu:/ E(_\')a(y)d_y// o> (v)dy (8.2.21)

Mode coupling depends on the product C¢C, of the non-dimensional coefficients. When
the vertical and torsional mode shapes are equal, e.g. for section models with constant
mode shapes, C:C, = 1 indicating possible mode coupling. Mode shapes not likely to
couple give C:C, close to zero. For instance, mode coupling is impossible combining a
symmetrical bending mode and an antisymmetrical torsional mode giving Cz = C, = 0.

8.2.3 Aerodynamic derivatives

Normally, aerodynamic derivatives are given as functions of the non-dimensional reduced
velocity U, defined by

U, =— (8.2.22)
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Aerodynamic derivatives depend on the external shape of the bridge deck and can be deter-
mined using wind-tunnel tests. Since they describe the fluctuating forces on a vibrating
bridge deck, the aerodynamic derivatives should be obtained using a vibrating model in
the tests. The bridge-deck section is suspended in a dynamic test rig that simulates the
relevant bridge-vibration characteristics, typically the vertical and torsional bridge modes.
Unequal full-scale vertical and torsional mode shapes are handled as if they were identical
in the section model test. The wind-tunnel tests can be carried out using one of several
procedures:

1. Vibration tests where the bridge deck is given an initial vertical and torsional displace-
ment. The aerodynamic derivatives are based on the transient behaviour that occurs
when the bridge deck is released.

2. A forced oscillation technique that involves forcing the model through a prescribed
motion and measuring the aerodynamic forces on the model. The aerodynamic forces
may be determined using pressure measurements at a number of pressure taps on the
model.

3. Buffeting tests, where bridge-deck behaviour is analysed for different wind velocities
in the tunnel. The behaviour observed in the simulated natural wind is analysed in
accordance with the theoretical models presented in equations (8.2.14) and (8.2.15).

Examples of aerodynamic derivatives are shown in Figure 8.5, where flat plate data have
been included for reference. It is worth noting that the aerodynamic derivatives measured
on the Great Belt Bridge by procedure 1 and 2 above differ considerably. Of special
importance is the large discrepancies measured for the aerodynamic damping in torsion,
A3. The bridge response calculated depends strongly on this parameter. Aerodynamic
derivatives obtained by numerical flow simulations with the Great Belt Bridge are also
shown in Figure 8.5, see Walther (1994).

The following aerodynamic derivatives can be calculated for flat plates, see e.g. Theo-
dorsen (1934):

nF (k) aF (k)
H*K = — * = —
'(K) p ANK) =
p 2G(k) 2G(k)
HiK)= Z |1+ Fiy+ 22 (K) = R - 260
3(K) 4k[ +F+ = } ASK) = [1 Flo - = ]
k2 kG (k) kG (k)
H*(K Fihy— =28 ALK Fky— =220
N P71 R A AT
26k
H(K) = [1+ %J ALK) = %@ (8.2.23)

where F and G are the real and imaginary parts of the Theodorsen circulatory function,
see Figure 8.6, and k is based on the half chord, i.e. k = K/2. F and G are given by
Ji(J1+Yo)+ Y (Y1 —Jo)

Fk) = 5 = (8.2.24)
Ji1+ Y+ (Y1 —Jo)
JiJ Y,Y
Gk) = — ot Tiko (8.2.25)
Ji+ Yo+ (Y1 —Jo)

where J; and Y; are Bessel functions of the first and second kind, respectively, of order i.
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Fig. 8.5 Aerodynamic derivatives. The solid lines correspond to the theoretical expression
for a flat plate (8.2.23). 1 and 2 refer to data for the Great Belt Bridge (a stream-
lined box-girder section) obtained by procedure 1 and 2, respectively, mentioned
above. + refer to numerical flow simulations also for the Great Belt Bridge (see
Walther, 1994). —-— correspond to a truss-supported bridge girder. The numerical
flow simulation data are used by permission of J.H. Walther.
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Fig. 8.6 Theodorsen circulatory function C (k) = F (k) +iG (k).

At present, it is not clear whether all eight aerodynamic derivatives for bridge decks
may be expressed by universal functions such as the F and G functions for {at plates.

8.2.4 Natural frequencies and damping ratios in wind

Vertical and torsional natural frequencies in wind depend on the stiffness modifications
caused by the aerodynamic wind load terms proportional to the aerodynamic derivatives
H} and A3}, respectively, see equations (8.2.16) and (8.2.17). Since aerodynamic deriva-
tives depend on U/(nb), the actual vibration frequency n should, in principle, be estimated
iteratively. In most situations, however, quite accurate results are obtained using approx-
imations, in which iterative calculations are avoided, see equations (8.2.28) and (8.2.32)
below. If not, iterative calculations should be carried out in order to obtain correct corre-
spondence between vibration frequencies and the function parameters used to calculate
aerodynamic derivatives H} and Aj.

Pure vertical bending
Pure vertical bending is obtained if H3 = 0 and H3 = 0. The apparent stiffness kg wing Of
the structure in wind is given by (see equations (8.2.14) and (8.2.16))

kewing = ke — 3 pU K H (K ) (8.2.26)

in which the structural stiffness per unit of length is k; = mf,wg and m, is the equivalent
mass per unit of length. Negative H} values increase the apparent stiffness and thereby also
increase the natural vibration frequency 7 wing Of the structure in wind, i.e. g wing > n¢:

b2 ni U b* U
Mewing = ey | 1 = 2 ey (2 N 1= 22y (=) 8.2.27)
2m, n P N winad 2m, ngb

where the approximation used above:
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"g.wind . U ) *< U )
H ~H | — 8.2.28
ng ! ("E,windb 4 nEb ( )

is typically quite accurate.
The observed damping ratio with wind, &z wing, 1S the sum of structural damping ¢;
corrected for the change of natural frequency and aerodynamic damping &y

a ng a pr * U
Ce+ & = gy — H ( > (8.2.29)
Mg wind $Tok Mewind © dme ' \ g ingb

ne

St wind =

For bridge decks normally used for long span bridges, aerodynamic damping in pure
vertical bending vibrations is positive due to the negative values of H7, see Figure 8.5.

Pure torsional motion

Pure torsional motion is obtained when A7 = 0 and A} = 0. The apparent stiffness ky wind
of the structure in wind is given by (see equations (8.2.15) and (8.2.17)):

kawind = ko — 3pU*b*K*A5(K) (8.2.30)

where the structural stiffness per unit of length is k, = /w2 and /, is the equivalent mass
moment of inertia per unit of length. Positive A3 values reduce this apparent stiffness and
thereby also reduce the natural frequency n, wing Of the structure in wind, i.e. ny wing < Rg:

P 4
pb™ NG wind Y pb ( U
ind = Nt/ 1 — — —=5—A3 X ngy/1 — —A% 8.2.31
Mo wind " \/ 21, ng : <”avwindb> " \/7 2, ! neb ( )

where the approximation used above:

5

n- . U U
a";mdA; < ) %A; <__> (8.2.32)
n na,windb nab

o

is typically quite accurate.
The observed damping ratio in wind, gy wind> 1S the sum of structural damping ¢,
corrected for the change of natural frequency and aerodynamic damping ¢5:

o o b* U
. $o + Cg = ‘n—za - LA'*) ( > (8.2.33)

4. wind Ny wind 4l, ° \ Ny wingb

Sa.wind =

For streamlined bridge decks, aerodynamic damping in pure torsional vibrations is
positive due to the negative values of A3, see Figure 8.5. However, non-streamlined bridge
decks may have positive values of A3 causing negative aerodynamic damping and thereby
increasing the risk of aerodynamic instabilities due to flutter. When the total damping
Ca.wind 1S Negative, vibrations will increase in amplitude until the structure collapses. The
critical flutter wind velocity, U, is found when the total damping is zero:

U. 41 n n

A3 < L ) = —fla—— =4yl — (8.2.34)
na.windb ,Ob Ny wind Ny wind

in which the non-dimensional mass moment of inertia ratio, y; = I,/pb*, is introduced.

When y; and the structural damping ratio g, are increased, the critical flutter wind velocity,

U, also increases.
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8.3 BUFFETING VIBRATIONS

Motion-induced wind loads were represented in Section 8.2 using aerodynamic deriva-
tives. In the most simple formulation, all cross terms (H3, H3, A}, A}) are assumed
negligible in the buffeting calculation. This assumption may be justified in buffeting
response predictions when the wind velocity is considerably smaller than velocities in
the vicinity of any coupled instabilities. Thus, motion-induced forces can be transferred
to the left-hand side of the motion equations, and perceived as changes in the structural
damping and stiffness characteristics. The response calculations follow the general prin-
ciples set out in Chapter 6 using damping and stiffness characteristics that include the
motion-induced wind load on the bridge deck.

The present section analyses the coupled buffeting vibrations occurring in vertical
and torsional modes. The tendency of two modes to couple depends on the frequency
separation in still air and on the similarities between the two mode shapes in question.
Bridge buffeting calculations that include the influence of coupling are considerably more
lengthy than the uncoupled response calculations presented in Chapter 6. Furthermore,
the complexity is enhanced by the fact that both the longitudinal and vertical turbu-
lence components contribute to the bridge deflections, whereas the longitudinal turbulence
component was the only one considered in Chapter 6.

The buffeting response calculations presented take into account that mean wind veloci-
ties and turbulence characteristics may vary along the bridge deck, e.g. due to topograph-
ical effects. This is of interest for many cable-supported bridge sites.

Lateral bridge deflections, which are assumed to be uncoupled from other vibrational
modes, are determined using the theory outlined in Chapter 6.

Coupled buffeting vibrations

The coupled buffeting vibrations are calculated by spectral analysis. The motion-induced
wind loads given in equations (8.2.16) and (8.2.17) are transferred to the left-hand side of
the equations of motion (8.2.14) and (8.2.15). Taking the Fourier transform on both sides
gives the following well-known matrix equation for vibration systems with two degrees
of freedom (*: transposed and complex conjugated matrix):

Spp Srn/} ral [SLL Sim } <=1
=A A 8.3.1
I:S([]J Sqq Sur  Smm ( ) ( )

in which spectra and cross-spectra of p and g, defined by equations (8.2.8) and (8.2.9),
are the matrix elements on the left-hand side, spectra and cross-spectra of FL_ .. and
FM oqa- defined by equations (8.2.18) and (8.2.19), are the elements in the second matrix
on the right-hand side, and the stiffness matrix A is given by

_ [a”m(,wgf[)éz(y)dy a|:mew§be€2(.\')d.\']

, , R s (8.3.2)
azllewg}, fD a’(ndy axnl.w; f” a-(y)dy

The spectra of the vertical deflection &4¢¢ and of the angular rotation ag.s are equal to the
spectra S, and S, multiplied by their respective mode shapes squared.
The elements a ;. are given by

By

<

ay = - +25Q+1 -

(H} + iH?) (8.3.3)

Ym
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5

Q_
ap=——C:(H}+iH?) (8.3.4)
2y, : -
m
Qz * C Ak
ar = _,)—Cu(A4 + lAl) (8.3.5)
“n
2 : 2 Qz * Ak
azny = =7+ 2i¢u v, + v, — 5 (A3 + A7) (8.3.6)
<y
in which
Q=w/w; (8.3.7)
Yo = (Uu/(UE Ym = ’nl'/pb: Y = [‘,/pb4 (838)

Thus, A becomes a diagonal matrix when the coefficients C; and C, defined in equations
(8.2.20) and (8.2.21) are both equal to zero. The two mode shapes considered will be
uncoupled and response calculations follow the principles outlined in Chapter 6.

Wind load spectra
The right-hand sides of the motion equations are given by the fluctuating buffeting lift,
FL, and moment, FM, per unit of length as follows:

dcC,

[ : ] S B ["/U} (8.3.9)
F}[\l Z ECM[') d(?a‘;u b W/U

All shape factors and shape-factor derivatives shall be taken at an angle of attack equal
to «,(y) corresponding to the mean wind load acting on the bridge. Normally, the most
important coefficients in equation (8.3.9) are the derivatives of the lift coefficient and
moment coefficient used in combination with the vertical turbulence component. The
vertical turbulence component is, therefore, of primary interest when calculating the
buffeting response of bridges.

Using the theory outlined in Appendix C, the spectra of the modal loading components
associated with the modal displacement functions, see equations (8.2.18) and (8.2.19), are
given by

[ See(n) .

Swusm(n) | = (3pUesbl)”
L Siar(n)

AR & (G + Cop) Wintmr

R 5 5 5 2 R Suret (1)
@2 2Ch b)Y |y ()] ey ( des b) i 00 [S‘M(" J (8.3.10)
_Erct'arcl'4C1,CMbl-]liM(’1 )|2 Ereflret & + C[)h @bu;“;”(n )|2
do b) da

where [ is the bridge deck length, and the joint acceptance functions for modal loading
components are (X, Y =L M; j=u w)

, R . 1 bt .
iy I = [xxy(n )l'/—z / / g (vgy O (r n)dyidya (8.3.11)
Jo Jo
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where the so-called cross-sectional aerodynamic admittance functions of frequency n,
X%y (m)]*, take into account the load correlation at a certain bridge-deck cross-section.
and y; is the normalized co-spectrum for lateral separations with distances of r.. The g
functions are given by

EV)CryvyUly) // S.(v.n)

gy =-— (8.3.12)

L et CI..rcf User \/ Su‘rcf(”)

" EV) dCr(v)/ da+ Cp(h/b U(y) J Syplyon) 8.3.13)
i (y) = AR I
ST e WC dat Coh/bhe U \| Surn)

u (v) = O/(_\') CM(,\‘) U(\) Sll(_\.‘ n) (8.3.14)
Swtl = et CM.rcf Uper Su,rcf(”) o

‘ ) dCy () da U(v) [S,(v.
v = al(y) dCuy(v)/ da U(y) 1 yon) (8.3.15)

et (dCpp/da)er Uper V Syrer(r)

All cross-spectra between the longitudinal turbulence component i and the vertical turbu-
lence component w have been assumed to be negligible, and all phase spectra are assumed
equal to zero. This assumption does not influence response predictions significantly,
since the main response contributions normally originate from the vertical turbulence
component.

The ratios between the wind velocity spectra used to calculate the g functions above
are assumed to be independent of the frequency, see Chapter 6 for further discussions on
this topic.

The double integral in equation (8.3.11) is conveniently calculated by two single
integrals as shown in Chapter 6 and Appendix B. The double integral approximations
introduced in Chapter 6 may also turn out to be useful here.

Buffeting response
The bridge buffeting vibrations increase as the mean wind velocity increases. Typically,
this increase is described by the mean wind velocity raised to a power considerably larger
than 2. This is mainly due to the aeroelasticity introduced by motion-induced forces that
give natural frequencies and critical damping ratios dependent on the mean wind velocity.

The influence of mode coupling is described in Figures 8.7-8.9, illustrating the typical
buffeting behaviour of cable supported bridges with a streamlined box-girder section.
The aerodynamic derivatives used here correspond approximately to the data given in
Figure 8.5 for the Great Belt Bridge. The vertical wind spectrum assumed is in accordance
with equation (3.5.23), and the normalized co-spectrum of vertical turbulence components
with lateral separations follows an exponential expression, see equation (3.5.25), with a
decay constant equal to 8. The critical flutter wind velocity of the bridge considered is
equal to approximately 90 m/s.

The influence of wind direction is shown in Figure 8.10. The bridge is most sensitive
to winds perpendicular to the bridge axis.

The aerodynamic admittance functions and the correlation of forces described by the
normalized co-spectrum are discussed below. The information available in the literature is
rather sparse, see Jacobsen (1995), Davenport et al. (1992) and Larose (1992) however.
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Fig. 8.7 Bridge buffeting response as a function of mean wind velocity. Mode coupling is
included in the solid lines, not in the dotted lines. Mode coupling is seen to become
important for mean wind velocities larger than approximately 60% of the critical
flutter wind velocity. The response increases rapidly for wind velocities close to the
critical flutter wind velocity.
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Fig. 8.8 Response spectra at 70 m/s, i.e. a mean wind velocity of approximately 80% of the
critical flutter wind velocity. The influence of mode coupling is most significant for
the vertical response, less significant for the torsional response. Two spectral peaks
are seen to occur for the coupled vertical response.

On-going research projects focus on aerodynamic admittance functions and correlation
of forces on bridge-decks. Increasing information on these aspects will, therefore, be
available in the years to come.

Aerodynamic admittance functions

The relationship between fluctuating wind velocity and fluctuating wind load acting on a
structure is commonly referred to as “aerodynamic admittance”. Generally, this relation
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Fig. 8.9 Response spectra at three mean wind velocities. In the curves shown, the response
spectra have been normalized by the mean wind velocity squared. Mode coupling
has been included in all spectra shown. The torsional vibration frequency gradually
decreases as the wind velocity increases. Except for wind velocities very close to
the critical fluttter wind velocity, the vertical vibration frequency does not depend
strongly on wind velocity. The vertical and torsional vibration frequencies become
identical at wind velocities close to the critical flutter wind velocity.

Response
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Fig. 8.10 Bridge buffeting response as a function of wind direction.

is based on coefficients determined experimentally, since the flow around a structure in
turbulent wind is too complex to be dealt with analytically.

The cross-sectional admittance functions for bridge decks take into account the change
of power spectral density function due to the “non-line-like” shape of the bridge deck.
The influence of the pressure correlation around the deck periphery is included in the
cross-sectional admittance functions.

At very low frequencies, the wavelengths of the air flow will be much larger than
the bridge deck width. The aerodynamic admittance functions should, therefore, approach
unity for low frequencies. At higher frequencies corresponding to smaller wavelengths,
the aerodynamic admittance functions are expected to decline.

The aerodynamic admittance functions can be measured on motionless wind-tunnel
models using different approaches, see Jacobsen (1995). One method is based on simul-
taneous measurements of cross-sectional surface pressures and the approaching incoming
wind turbulence.

The observed form of aerodynamic admittance functions for the streamlined box-girder
bridge-deck section used for the Great Belt Bridge is shown in Figure 8.11. The vertical
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Fig. 8.11 Aerodynamic admittance functions between the vertical turbulence component and
the wind load. The so-called Sears function calculated for thin, symmetrical airfoils
is shown for reference as a solid line, see equation (8.3.16). The aerodynamic
admittance function shown by the dotted line has been determined using a wind-
tunnel test with a streamlined box-girder bridge section (Davenport et al. 1992).
(Reproduced by permission of A.A. Balkema, Rotterdam).

and longitudinal turbulence wind components were measured using hot-wire anemometers
located upwind of the model.

The Sears function, see Sears (1941), is shown for reference in Figure 8.11. It seems
to fit the aerodynamic admittance function measured over the frequency region typically
of interest for cable-supported bridges. The Sears function is derived theoretically as the
aerodynamic admittance function of a thin, symmetrical airfoil and is given by

) Jo)K X)) + i (()K (i)
Xoeann (M) = . .
KiGx)+ Kolixv)

in which the non-dimensional parameter x = new/U. ¢ is the chord length, J, and J, are
Bessel functions of the first kind, and K, and K, are modified Bessel functions of the
second kind. The Sears function may be approximated by a somewhat simpler expression
suggested by Liepmann (1952):

(8.3.16)

1

—— (8.3.17)
|+ 27~ (ne/U)

5
Xsears (n) =

Correlation of forces

Several wind-tunnel tests and full-scale experiments have shown that the correlation of
aerodynamic forces is stronger than that of the turbulence fluctuations in the incoming
air flow: see Chapter 4 which discusses this aspect in connection with static load on
structures.

For a streamlined box-girder bridge section, wind-induced forces on the deck have
been measured simultaneously at different span-wise separations using pressure trans-
ducers located inside the deck-section model. The mean and fluctuating lift and moment
forces were determined, including the correlation of forces along the bridge deck. see
Figure 8.12. These tests have shown that the load on a bridge deck is better correlated
than the undisturbed incoming air flow.
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Fig. 8.12 Span-wise zero-lag correlation of vertical turbulence fluctuations, and lift and
moment acting on a streamlined box-girder bridge section (Jakobsen, 1995).
Vertical turbulence has been used for comparison, since this velocity component
gives the major part of the fluctuating load observed on the bridge section.
(Reproduced by permission of J.B. Jakobsen).

8.4 COUPLED FLUTTER VIBRATIONS

For a single degree of freedom system, the mechanism for aerodynamic instability is
negative aerodynamic damping; see Chapter 7 and the critical flutter wind velocity deter-
mined in equation (8.2.34) for a pure torsional motion. Coupled flutter, on the other hand,
can occur even if all diagonal aerodynamic damping terms are positive (H} and A%). It
arises because of the coupling of two vibrational modes.

The flutter vibrations discussed below include the aeroelastic phenomenon in which
angular rotation and vertical translation of the structure combine as an unstable oscillation.
Coupling of the two modes gives the characteristic aeroelastic behaviour of flutter-
susceptible engineering structures such as suspension bridges and cable-stayed bridges.

Coupled flutter vibrations can occur when the torsional natural frequency exceeds the
vertical natural frequency, both referring to still air.

The wind-load terms described by aerodynamic derivatives H} and A} will tend
to increase vertical stiffness and reduce torsional stiffness, respectively. The apparent
frequency separation, 1, wind — He.wing 1N Wind is thereby reduced by the motion-induced
wind load on the structure. Flutter occurs at a wind velocity that has a motion-induced
wind load at which the vertical and torsional vibration couple at a certain oscillation
frequency n of between n; and n,, both in still air.

The risk of flutter-induced vibrations is significant when the torsional natural frequency
ny 1s only slightly larger than the vertical natural frequency »n; in still air; see Figure 8.16,
in which the influence of frequency ratio is considered in detail.

During a coupled flutter oscillation, the vertical and torsional motions occur together
with a phase difference. The phase difference is essential for the energy transfer from air
flow to the structure, see Figure 8.13 below.

If the structure is given an initial disturbance, its motion will either decay or diverge.
The divergent flutter behaviour is established when energy transfer from the air flow
to the structure exceeds the energy dissipated by structural damping. The critical flutter
condition occurs at a wind velocity at which the energy input is equal to the energy
dissipated. This wind velocity is called the critical flutter wind velocity.

Energy input and energy dissipation
Assuming constant mode shapes, the energy input per meter over a vibration period is
given by the equation

Einpul = / F,Lnédcfdf + / F;:,Iddcfdr = %ﬂpUZKZEObQ’()(Ech + Eger) (8.4.1)
Jperiod J period
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Fig. 8.13 Coupled vibrations with a phase difference of 180° and 45°, respectively. Typical
flutter vibrations observed for streamiined box girder sections resemble the vibra-
tion pattern shown in the upper figure. This corresponds to the fact that the critical
flutter wind velocity often does not depend strongly on structural damping for these
types of deck sections.

in which & and « are vibration amplitudes, and the normalized velocity-related energy,
E.., and the normalized deflection-related energy, E g, are defined as
&o

b |
Eva = (H3(K) + A*(K)) cos(8) + (H’{(K)E n A:juoﬂ) (8.4.2)
0 0

Eget = (mH3(K) + A(K))sin(6) (8.4.3)
where 6 is the phase angle, which the torsional displacement lags behind the vertical
displacement. Terms —H and A} feed energy into the structural vibrations, whereas the
aerodynamic damping terms A} and AJ extract energy where streamlined box-girder deck

sections are concerned.
The energy dissipated per meter due to mechanical damping is equal to

Egis = / 2m,Gewe (Eger)” dit + / 21 o (Gger)” dt
o period J period

= 27r(mgtgw5a)5(; + Igawawalz,) (8.4.4)

The input and dissipation energies are illustrated in Figure 8.14 below. In the example
considered, structural damping increases the flutter wind velocity from approximately
32 m/s to approximately 37 m/s.

Solving flutter equations

Assuming that £ and « are proportional to ¢, the solution obtained will, in general, be
of the form w = w; + iw>, and will therefore represent either a decaying (w> > () or a
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Fig. 8.14 The input (solid line) and dissipated (dotted line) energy per vibration period are
shown as a function of wind velocity, assuming flat-plate aerodynamic derivatives
and a fixed ratio of bag/&y determined for the critical flutter wind velocity. The
energy input is shown for a small and a larger frequency ratio of y,, = w,/w:.
For low wind velocities, the energy input is negative, giving a stable structure.
The energy input exceeds the energy dissipation when the wind velocity is above
the critical flutter wind velocity, giving unstable vibrations. The two sets of curves
shown cross each other for a wirid velocity equal to the critical flutter wind velocity
marked by +.

divergent (w> < 0) oscillation. The critical flutter wind velocity U, is found for the value
K. of K, where the solution is purely imaginary (v = w;, w> = 0):

_ba)

8.4.5
K. ( )

U,
The oscillation frequency n in hertz is equal to w /(27). This procedure has been described
thoroughly by Simiu and Scanlan (1986) for the case in which H} and A} are both equal
to 0. The expressions given in Appendix D include all the aerodynamic derivatives.
The absolute critical flutter vibration amplitudes &, and « are indefinite. However,
the ratio bag /&, and the phase angle between the vertical and torsional deflection can be
determined using the flutter equations.

Influence of wind direction and wind inclination

The flutter wind velocities shown above are determined on the assumption that the wind
direction is perpendicular to the bridge axis. In skew winds, flutter wind velocities are
often increased considerably.

The influence of wind direction not being perpendicular to the bridge axis has been
investigated by a number of researchers using wind-tunnel tests (see e.g. Davenport,
1982). Rough estimates of flutter wind velocities for different wind directions could be
based on the so-called cosine rule, which uses the projection of the wind velocity on the
axis perpendicular to the bridge as a reference wind velocity.

The influence of wind inclination with horizontal is not important for streamlined box-
girder sections, see Figure 8.15. However, truss-supported bridge decks may give consid-
erably lower critical flutter wind velocities for inclined wind compared to horizontal wind.
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Fig. 8.15 Critical flutter wind velocities as a function of wind inclination with horizontal (Osten-
feld et al. 1970).

Flat plate approximations

The principles outlined in the following are explained using a flat plate as an example.
Flat-plate aerodynamics is often used as a guideline during the preliminary design of
flutter-sensitive bridges. It is straightforward to calculate critical flutter wind velocities
for flat plates using the mass, natural frequencies and damping ratios of the actual bridge.
The critical flutter wind velocity of the actual bridge, U, can be calculated by multiplying
the critical flutter wind velocity for the flat plate with a positive constant 8 describing
the aerodynamic characteristics of the bridge deck geometry. 8 values for different bridge
decks are given in Table 8.1. As shown, velocity ratio B approaches unity for streamlined
bridge sections.

The reduced critical flutter wind velocity, U,./(n¢b), for a flat plate depends on the
aerodynamic derivatives, on the damping ratios ¢ and ¢, in still air, and on the non-
dimensional frequency ratio y,, in still air, mass ratio y,, and mass moment of inertia
ratio y| given by

Vo = o)Wz Vi =m./(pb?) i =1./(pb*) (8.4.6)

The reduced critical flutter wind velocities illustrated in Figure 8.16 are based on
flat-plate aerodynamic derivatives. Closed box-girder sections have critical flutter wind
velocities which are approximately 10% lower than the velocities based on flat-plate

Table 8.1 Typical ratios g between the critical flutter wind velocity of actual bridge decks and
the critical flutter wind velocity of a flat plate with the same mass, natural frequencies and
damping ratios. The flutter vibrations are assumed to be a coupling of two vibrational modes.

Bridge-deck section B

Flate plate —— 1

Streamlined box-girder section < > approximately 0.8-0.9

Non-streamlined box-girder section approximately 0.4-0.6

| J
Truss-stiffened girder Ilr\[ V‘j approximately 0.6-0.8
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Fig. 8.16 Reduced critical flutter wind velocity, U /(n:b), for a flat plate as a function of the
frequency ratio y,, = w,/w. in still air for 4 different combinations of mass ratios
ym = Me/(pb?) and y, = l./(pb*). The curves are based on damping ratios of
0% (left) and 1% (right), respectively, and it has been assumed that C. = 1 and
C.=1.

aerodynamics. Compared to the flat plate data, truss-stiffened girders normally experience
larger flutter velocity reductions than closed box-girder sections.

The critical flutter wind velocity increases as the frequency ratio increases (y. >
approximately 1.1). The minimum critical flutter wind velocity is found for frequency
ratios y,, of approximately 1.1 dependent on structural damping. As the frequency ratio
Y., approaches unity, the critical flutter wind velocity approaches infinity, see Figure 8.16.

The critical flutter wind velocity increases with increasing bridge mass and bridge mass
moment of inertia. This is considered thoroughly in Section 8.5.

The influence of damping is only significant for small frequency ratios.

A large frequency ratio of y,, may be obtained using closed box girders with significant
torsional rigidity, see for instance the Humber Bridge and the Great Belt Bridge. For very
long span suspension bridges, the torsional rigidity of the closed box-girder section may.
however, become too small. Instead, large critical flutter wind velocities may be obtained
using a design in which the torsional and vertical natural frequencies are deliberately made
identical. The torsional deck rigidity should be low and the deck-mass distribution should
give the same cable stiffness in vertical and torsional vibrations. To the authors™ know-
ledge, this principle has not yet been used in practice in the design of suspension bridges.

The torsional rigidity must not be reduced to a level giving static divergence. sce
Section 8.1 and Figure 8.17 below comparing static divergence wind velocities with crit-
ical flutter wind velocities for a flat plate.

Design criteria

Typically, large bridges have decks that are high above the ground or sea surface.
indicating that the design-wind velocities at bridge-deck levels are much higher than
the design-wind velocities at lower heights of say 10 m. Furthermore, the low surtace
roughness of the sea will also tend to give high design-wind velocities for many bridges.
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Fig. 8.17 Reduced divergence wind velocity, Uqy/n:b, and critical flutter wind velocity,
U./n:b, for a flat plate as a function of frequency ratio y,, in still air. The structural
damping ratio is assumed to be 0.01.

The critical flutter wind velocity calculated should be much larger than the character-
istic wind velocity of the site. In most neutral climatic zones, i.e. not typhoon zones, a
vearly probability of failure of 1077, which is often used for long-span bridges. will be
obtained for a critical flutter wind velocity approximately 50% larger than the character-
istic 10 minute mean velocity at bridge-deck height.

8.5 FLUTTER VIBRATIONS OF SUSPENSION BRIDGES
DURING CONSTRUCTION

Suspension bridge flutter vibrations in service have been investigated in many textbooks
and papers. The information available on suspension bridges during construction is much
sparser. See Brancaleoni (1992), Larsen and Jacobsen (1992) and Jensen and Petersen
(1994), however.

Typically, truss-stiffened girders do not display any severe flutter behaviour during
construction. The erection of the traffic decks, which give the bridge cross section the
flutter sensitive shape, may be postponed until the bridge is sufficiently stiff to prevent
any flutter vibrations.

Of course, this construction principle is not possible for closed box girders using prefab-
ricated girder sections. Neighbouring box-girder sections are only hinged by preliminary
welds during construction because the bridge geometry continuously changes as the main
cable curve changes. The lack of the bridge deck’s torsional rigidity and the fact that
the bridge deck lacks continuity from pylon to pylon, means that the critical flutter wind
velocity during construction is normally much lower than that of the completed bridge,
see Figure 8.23.

Some important and interesting aspects of bridge-flutter calculations relate to suspen-
sion bridges at the beginning of the construction stage. It is, for instance, very important
to distinguish between actual masses and modal masses when calculating realistic flutter
wind velocities. The presentation given below, therefore, concentrates on these aspects.
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Fig. 8.18 Three different erection-sequence strategies for suspension bridges.

Erection sequence strategies
Different erection sequences may be used, see Figure 8.18:

1. Starting from midspan. This strategy, which is most commonly used in practice, relies
on the increase in torsional rigidity originating from the increased cable stiffness
during construction. The minimum critical flutter wind velocity is obtained at the
beginning of the construction stage in a coupled vibration of the symmetrical vertical
and torsional modes. In these symmetrical modal vibrations of the relatively short
deck lengths erected, bridge-deck rigidity gives no significant contributions to the
total stiffness of the structure, which mainly originates from the cables.

2. Starting from the two pylons simultancously. This strategy ensures that the torsional
bridge-deck rigidity may become active in increasing the bridge flutter wind velocity
at the beginning of the construction stage. However, the positive influence of bridge-
deck rigidity decreases during the construction stage and critical flutter wind velocities
may become lower than the minimum critical flutter velocities obtained using the first
erection sequence strategy that starts from midspan.

3. Starting from the two pylons and at midspan simultaneously. This strategy combines
the positive effects of starting from midspan and starting from the two pylons simul-
taneously. Furthermore, the increased dead load on the cables close to the pylons
will increase the effective stiffness of the main cables for a given midspan deck
length erected. This leads to higher torsional frequencies and thereby higher critical
flutter wind velocities during construction. One disadvantage is the increased number
of bridge-deck lifting positions the contractor must use. Typically, this increases
construction costs considerably.

The critical flutter wind velocities obtained during the different erection sequences
depend on the actual vertical and torsional natural frequencies obtained, especially
frequency separation. Modal masses in the bending and torsional modes are also important.

Kinetic energy connected with cable vibrations should also be considered when
selecting the most appropriate erection sequence. The midspan erection sequence may
lead to relatively large cable movements during the beginning of the construction period.
The energy input from wind load on the small bridge-deck length converts primarily into
kinetic energy in the cables. This will have a stabilizing effect on the bridge and will
significantly increase critical flutter wind velocities.

The midspan erection sequence (1 above) has been assumed below.

Natural vibrations — midspan erection sequence

Flutter vibrations could occur as a coupling of anti-symmetrical and symmetrical vertical
and torsional mode shapes. For anti-symmetrical mode shapes, torsional frequencies are
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very high because of the high torsional rigidity of the bridge deck erected. The lowest
flutter wind velocities are obtained by combining the lowest symmetrical pure vertical
and pure torsional modes. Consequently, only symmetric in-plane cable vibrations are
analysed below.

For short deck lengths, the deck mode shapes are close to being constant along the
deck erected. Therefore, large deck displacements will not produce any significant stresses
in the structure.

Natural vibrations in early erection stages can be determined using a simplified descrip-
tion of the main cable with a distributed load which acts symmetrically on the midspan
and represents the mass of the bridge deck.

The basic principles will be explained considering a suspension bridge with the
following characteristics:

Main span length: 1500 m

Deck mass: 10 t/m
Deck-mass moment of inertia: 1000 tm*/m
Main-cable mass: 3 t/m (each cable)
Distance between cable planes: 30 m

Initial cable sag: 150 m

The natural frequencies of the lowest symmetrical pure vertical and pure torsional
modes obtained during the early erection stages depend on pylon stiffness. Longitudinal
and torsional pylon stiffness are important for both the vertical modes and torsional
modes, respectively. The influence of pylon stiftness depends on the actual suspension
bridge design, e.g. whether concrete or steel pylons have been chosen. Figure 8.19 shows
a typical evolution of natural frequencies obtained during carly erection stages. but the
actual values should only be considered as a rough guideline for the behaviour of an
actual suspension bridge.
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Fig. 8.19 The natural frequencies as a function of deck length erected. The torsional natural
frequency is greater than the vertical natural frequency even when only the cable
is in position with no deck erected. This is due to the different influence of pylon
stiffness in the two modes considered.
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Fig. 8.20 The solid line shows the ratio between the bridge (cable and deck) modal-mass
moment of inertia per unit of deck length erected, |, and the modal-mass moment
of inertia per unit of deck length erected, I, of the bridge deck alone. The dotted

line indicates the equivalent ratio, m/m,, based on modal masses for vertical
bridge vibrations.

The vertical frequency is seen to be almost unaffected by the deck length erected
as cable stiffness increases proportionally to the increase in mass loading. The torsional
frequency increases gradually as more deck is erected because torsional mass loading is
smaller than the mass loading that gives cable stiffness.

At the very start of deck erection, the vertical and torsional frequencies will be almost
equal, provided that the pylon-top flexibility is similar for the two modes considered. This
may lead to large critical flutter velocities, as shown in Figure 8.16.

The modal masses during the early erection stages are shown in Figure 8.20. The calcu-
lations have been carried out assuming infinitely stiff pylons and the influence of bridge
deck stiffness and cable movements in the side spans have been neglected. This simplified
approach will often be a good approximation in the early erection stages considered.

In the early erection stages, large cable masses per unit of deck length erected partici-
pate in the vibrations, see Figure 8.21. It is obvious that cable masses contribute consid-
erably to the bridge modal mass. This tends to significantly increase the critical flutter
wind velocity. However, small frequency separations for short deck lengths erected, see

Figure 8.16, will have an opposite effect, i.e. they will decrease the critical flutter wind
velocities.

Influence of bridge deck-end effect

For short deck lengths erected at the beginning of the construction sequence, bridge deck-
end effects will tend to increase the critical flutter wind velocity. End effects depend on
the aspect ratio defined as the deck length erected divided by the width of the bridge deck.

The influence of bridge deck-end effects has been analysed for elliptic wings with
aspect ratios of 3 and 6, respectively, see Jones (1939). In a specific example with a stream-
lined, closed box-girder section, the elliptical wing data were, however, not sufficient to
fully explain the end effects measured on a wind-tunnel section model. This might be due



170 WIND LOAD ON BRIDGES

o
o

|
o
19

|
-
(w]

Vertical cable location / initial cable sag

L
o

0 0.2 0.4 0.6 0.8 1
Horizontal coordinate / distance between pylons

Fig. 8.21 The vertical cable movements in torsion when 20% of bridge deck is erected.
The solid line refers to static cable displacements. The dotted line shows the
cable displacements in the symmetrical mode. The lack of deck stiffness assumed
in this approach is obvious when considering the cable movements close to
midspan. However, the overall cable behaviour is not significantly influenced by
this assumption.

to the actual shape of the wing ends with a gradually decreasing width towards the ends.
Since bridge decks have a constant width that gives an abrupt change of cross section,
end effects are expected to be more pronounced for bridge decks.

Lift-force coefficient data for airfoils with different aspect ratios also give some indi-
cations of the order of magnitude of end effects. According to Von Mises (1945), the end
effects on the static lift force can be described by

Cew ! (8.5.1)
Cro 1+ 2b/1
in which [ is the deck length and b is the deck width. This relation is illustrated in
Figure 8.22.

As a first rough estimate critical flutter wind velocities for relatively short deck lengths
erected could be calculated by reducing all aerodynamic derivatives according to the
reduction of lift-force coefficients shown in Figure 8.22. For a specific streamlined, closed
box-girder section, this procedure agreed reasonably with the end effects measured on a
wind tunnel section model with an aspect ratio of 8.

In conclusion, bridge deck-end effects will increase the critical flutter wind velocity
for suspension bridges during construction. If accurate end-correction effects are called
for, wind-tunnel tests simulating the actual geometric configurations of interest should be
carried out. The wind-tunnel models used should also simulate the actual bridge modal
masses accurately.

Critical flutter velocities —midspan erection sequence

At the beginning of the construction stage, large flutter wind velocities occur because of
the significant amount of moving cable mass per unit deck length erected. For short deck
lengths erected, the disturbed air flow around bridge deck ends increases the flutter wind
velocity even further (see Figure 8.23).
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Fig. 8.22 Shows the lift-force coefficient for airfoils as a function of aspect ratio (Von Mises,
1945). The lift-force coefficients shown have been normalized by the lift-force
coefficient obtained for infinite aspect ratio, i.e. two-dimensional flow with no end
effects.

This is a coupled vibration of the lowest symmetrical pure bending and pure torsional
bridge mode. For longer deck lengths erected, the critical flutter wind velocity increases
during the construction stage. This is due to the increased separation of torsional and
vertical natural frequency of the structure erected.

The wind loads on the main cables give significant contributions to aerodynamic
damping. Since this is not included in the aerodynamic derivatives describing the wind
load on the deck, the structural damping used when estimating critical flutter wind veloc-
ities should also include the aerodynamic damping of the cables.

For the suspension bridge example considered, the critical flutter wind velocity is
underestimated by approximately 40% using actual masses and no deck-end effects in
the early erection stages, when the bridge is most sensitive to flutter vibrations. The
influence of using modal masses instead of actual masses is less pronounced when the
bridge span is smaller than the 1500 m main span considered here. For longer bridge
spans, the importance of choosing modal masses in the calculations will be crucial in
order to estimate realistic critical flutter wind velocities.

Provisional measures during construction

If the critical flutter wind velocities during construction do not meet the requirements,
different provisional measures may be used to improve bridge stability.

Critical flutter wind velocities during early critical erection stages could be increased
using additional masses located symmetrically and outside the two cable planes. Coupled
flutter vibrations do not occur when the torsional natural frequency is lower than the
vertical natural frequency.

Additional masses located to the windward side of the bridge’s centre line can also
improve flutter conditions. The principle is to move the bridge mass centre upwind in
order to improve the aerodynamic characteristics of the bridge deck. It has been used
in practice in connection with the construction of the Humber Bridge (see Brancaleoni,
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Fig. 8.23 Critical flutter wind velocity of a box-girder suspension bridge during construc-
tion using actual masses and modal masses, respectively, in the calculations.
Actual mass corresponds to bridge deck mass plus main cable mass, i.e. 16 t/m
in the example considered. The solid lines include deck-end effects which are not
taken into account by the dotted lines. Damping ratios to critical of 1% have been
assumed in the calculations shown. The lowest critical flutter wind velocities are
found when approximately 10% of the deck is erected.

1992). Water was used to provide the additional mass. If high wind has been forecast, the
water on the leeward side of the bridge centre line should be released.

Of course, the safety margin against divergence should also be checked for suspension
bridges during construction.

8.6 EUROCODE 1 CLAUSES ON BRIDGES

Eurocode 1 specifies lift-force coefficients which for wide bridge sections should corre-
spond to lift forces on flat plates. For the flat-plate limit, the lift-force coefficient is
specified to be +£0.9 when the wind inclination is + 10°. This agrees well with the
flat-plate data based on wind tunnel test results given in Section 8.1.

The divergence velocity derived in Section 8.1 is found in Eurocode 1. The influence
of plate thickness is also specified in Eurocode 1.

According to Eurocode 1, a bridge will not be prone to flutter vibrations when the
lowest torsional natural frequency is larger than 2 times the lowest vertical natural
frequency. Eurocode 1 does not indicate whether the natural frequencies are to be calcu-
lated in still air or in wind. Independent of the interpretation, the guideline will probably
be valid for the bridges covered by Eurocode 1, i.e. highway and railway bridges up to
200 m span and footbridges up to 30 m span. Cable-supported bridges are not covered
by Eurocode 1.

Cable-supported bridges with long spans, of say 1-2 km, may be susceptible to flutter-
induced vibrations even if the lowest torsional natural frequency is larger than two times
the lowest vertical natural frequency, both taken in still air. The reduced critical flutter
wind velocity is relatively high, see Figure 8.16, but long suspended spans give low
natural frequencies and thereby also low critical flutter wind velocities which may be too
small in areas exposed to wind.



Galloping

Galloping refers to structural vibrations in a direction almost perpendicular to the wind
direction, if these vibrations are mainly due to negative aerodynamic damping.

One possible mechanism is illustrated in Figure 9.1. The total wind load consists of
contributions from the time-averaged mean wind load F,, contributions F, from turbu-
lence, and contributions F,, from the motion of the structure. These contributions cannot
be considered as mutually independent. In particular, the values of F,, are usually signifi-
cantly influenced by the turbulence, an influence that may be favourable or unfavourable.
Figure 9.1 shows that an upwards motion may give rise to such changes in the suctions
that the resultant of forces, F, perpendicular to the wind velocity in the free field has
the same direction as the velocity édef, of the structure.

The forces are shown in Figure 9.2, with components F, and F'.. It is convenient to
use components Fp in the direction of the relative wind velocity U, and F; perpendicular
to Fp, where Fp is drag and F is lift.

If the influence of turbulence is neglected, then the drag and lift forces are expressed as

Fp=1pUidCp (9.1)
Fp=1pUldC, 9.2)

d is the structural width, Cj and C, are the drag and lift coefficients, respectively. Cp
and C,; depend on the geometry of the structure, on the wind direction and generally
also on the turbulence of the wind (see Figure 10.6). Cp and C; can be determined by
wind-tunnel tests.

The velocity of the structure implies that the wind direction, relative to the structure,
varies. The wind direction is characterized by an angle o shown in Figure 9.2.

Positive values of &g correspond to negative values of @, and « is determined by

tana = —Eger/U 9.3)
It follows from Figure 9.2 that the force F, is expressed as
F,=Fpsina + F;cosa (9.4)
This force is expressed in terms of the wind velocity U as
Fy=1pU%dC, (9.5)

C, is a shape factor, and it follows from Figure 9.2 and from formulas (9.1)-(9.5) that

1
C,=(C,+Cptana)—— (9.6)
’ Cos o
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Fig. 9.1 Cross section of a prismatic structure. On the left, the structure is supposed to be
stationary, and if the wind is perpendicular to the left side, then on average, the
suctions Fs 1 and Fs , are equal. On the right, the structure is supposed to vibrate
perpendicular to the wind direction positive upwards. Relative to the structure, the
wind velocity is the vector sum of the wind velocity U in the free field minus the
structural velocity Eqer. FoOr certain cross-sections and under some circumstances,
this may cause F; 1 > F; 5, which is equivalent to a negative aerodynamic damping.
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Fig. 9.2 Cross section of a prismatic structure moving downwards. The arrows indicate posi-
tive directions for the wind force on the structure per unit of length. It may be
described either by components F, and F, along the sides of the prism, or as drag
and lift components Fp and F, parallel to the relative wind velocity and perpendic-
ular to it. The angle « between U and U, is positive when the structural velocity Eqes
is negative.

Referring to the case shown in Figure 9.1 and 9.2, C; and consequently C, are 0 if & = 0.
Then a Taylor’s expansion shows that

dcC,

F,=1pU%d
: 2P da

o (9.7)

a=()

From formulas (9.3) and (9.6)

. dcC
F, = "jlpU";’-defd (—‘“L + CD) (9.8)

da

a={)

As an approximation, it is assumed that the structural motions vary along the structure as
a mode shape, i.e.

Eaer = §(D)alt) (9.9)
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where £(z) is the mode shape function and a(r) is an amplitude function of time ¢. The
differential equation for determining a(t) takes the form

2

d? d’e(z . .
a(t)— (El(z)—é(z—)) + ca(é(2) + p()éa(r) = F, (9.10)

dz? z

<

This equation is multiplied by £(z) and integrated over the height 4 of the structure. Then
dividing by f(,h(é(z))zdz, we arrive at the equation (see Appendix C)

dC
me(d(t) + 28,wea(t) + w?a(t)) = —%pUd (—5—L + CD> a(t) (9.11)
o a=0
where m, is the equivalent mass per unit of length
h h ,
m, = / n(2)(E@)* dz / (§(2))* dz (9.12)
Jo 0

w, is the angular, natural frequency and ¢, is the damping ratio of structural damping. As
the loading term on the right-hand side of equation (9.11) is proportional to a(t), it can
be combined with the damping term on the left-hand side of equation (9.11) fo give an
overall damping F; of

dc
Fy= (2me¢xwf + 1pUd <7£ + CD>
- o

) a(r) (9.13)
a=(0

The second term is the aerodynamic damping. A necessary condition for the occurrence
of galloping is that the acrodynamic damping is negative. This leads to the so-called Den

Hartog criterion:
dc
(——L+CD) <0 (9.14)
doa

a=(
For galloping to occur, the overall damping must also be negative. It follows from equation
(9.13) that this is the case only if the wind velocity U is greater than a critical velocity

am,g, 1
U, = _ mebswe (9.15)

dc
pd (—L +CD>

da

a=(

The value of dC; /da + Cp depends not only on the shape of the cross section but also
on the mean wind direction. In November 1972, a pylon for the cable-stayed bridge,
Lodemann Briicke, was ruined due to galloping. Later wind-tunnel tests with a model of
the hexagonal cross section of the pylon showed that Cp and C; varied with the wind
direction in a way that explained the galloping (see Mahrenholz and Bardowicks, 1979).

It follows from (9.15) that the wind velocity necessary to cause galloping increases with
the damping and mass of the structure. Thus galloping is more likely in steel structures
than in corresponding concrete structures.



Wind-tunnel Testing

Describing the wind flow over a smooth landscape is straightforward. Meteorological
observations provide a further basis for estimating the magnitude of the extreme veloci-
ties in such winds. However, a theoretical calculation of the wind load on a structure based
on this knowledge is very difficult. The fundamental equations that describe the mechanics
of air flows are very complicated, and there are many parameters in the boundary condi-
tions for the system of equations. This is particularly true of the boundary conditions that
describe the geometry of the structure and its surroundings.

In spite of the evolution of computers, numerical calculations of wind load on structures
in turbulent flow will only be obtained accurately in very few cases. Today, to a certain
degree the design wind load must be based on measurements. However, the increase in
computer power during the decades to come is expected to make numerical calculations
of wind load more common in the future.

The most accurate measurements for determining wind loads will be on full-scale
structures. However, in order to obtain more general insight we need to study the effects of
all the important parameters. As this would be impossible in practice, the most appropriate
method for determining wind load is using model tests in a wind tunnel. Full-scale tests
are normally only carried out in connection with research projects to verify the methods
of simulation that are applied in model tests in the wind tunnel.

The validation of wind-tunnel tests using full-scale measurements has been carried out
for several structures during the years. The most comprehensive validation of pressure
measurements is probably the many model and full-scale tests carried out on the Texas
Tech University experimental building, see e.g. Cochran and Cermak (1992). Tunnel-to-
tunnel differences in pressure measurements on low-rise structures have been investigated
in the Aylesbury experiment, see Sill et al. (1992).

Model tests are used partly for systematic investigations, which form the basis for
the rules in different codes, and partly as a tool for determining the wind load on
special structures, which are not covered by the codes. For these reasons, the following
subsections aim to provide a more in-depth description of model laws and wind-tunnel
technique.

Of course, the model laws presented should be followed as closely as possible.
However, in most practical situations discrepancies have to be accepted, indicating that the
conversion of model-scale results to full-scale predictions should be assessed carefully.
The interpretation of model-scale data should focus on the basic physical mechanisms
generating the wind load in question.
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10.1 MODEL LAWS

A model law describes a condition for model testing and for the interpretation of test
results with regard to the prototype.

Formally, model laws are formulated either by introducing a number of crucial non-
dimensional parameters, or by considering a system of equations which are known to
give a good description of the relevant phenomena. In wind engineering, the number of
parameters is so large that it is impossible to satisfy all the conditions simultaneously.
Therefore it becomes necessary to disregard parameters that are of minor importance for
the actual case in question. In this way a basis is created for formulating different model
laws that separately give realistic results within a certain range of validity.

In wind-tunnel tests, models are geometrically similar to the real structures in a prede-
termined length scale. The wind flow around the model should be similar to the wind
around the prototype. This is achieved when the forces acting on a mass of air are modelled
in the same mutual ratio as in full scale. These forces are

e inertia forces
e gravitational forces
e viscous forces.

Each of these forces occurs in any flow, but usually their relative importance varies a
great deal. The model conditions can only be fulfilled if the three above-mentioned forces
are not acting simultaneously. In the mechanics of flows, two model laws are often used:

e Froude’s model law, which accounts for inertia and gravitational forces but disregards
viscous forces.

e Reynolds’ model law, which accounts for inertia and viscous forces but disregards
gravitational forces.

In order to achieve realistic results from model tests in a wind tunnel, the flow in
the atmospheric boundary layer should be simulated. Chapter 3 describes how the flow
in the atmospheric boundary layer is influenced by the roughness of the terrain. If the
terrain roughness in the wind tunnel is modelled similarly to the full scale conditions
and if Reynolds’ law is respected, then the lower part of the atmospheric boundary layer
is correctly simulated in the model test. However, as the flow around bodies with sharp
edges is almost independent of Reynolds number, see Figure 10.1, terrain roughness is the
completely dominating parameter. The demand for correct scaling of terrain roughness
was first formulated in the mid 1950s by Martin Jensen, and is now called Martin Jensen’s
model law. The remaining part of this section deals with the model laws from Froude,
Reynolds and Jensen in this order.

It is convenient to introduce a parameter scale A, of any parameter p as

Ap = Pmodel/ Pprototype (10.1.1)
and the first one to be chosen is in most cases the length scale
A= Imodel/lprolotypc (10.1.2)

In order to scale wind turbulence described by the spectra and co-spectra introduced in
Section 3.5, see e.g. equations (3.5.12) and (3.5.26), the scaling of wind velocities is
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Fig. 10.1 Dependence of the drag coefficient Cp upon Reynolds number Re and the radius
r of curvature at the edges (Scruton and Rogers, 1971).

expressed by
(nl/U)model = (’1[/U)pr0tolype (10.1.3)

in which »n is the frequency, { a characteristic length and U the wind velocity. This scaling
also follows from the similarity requirement of a model scale Strouhal number equal to
the full-scale value.

Equation (10.1.3) gives the time scale Ar as follows:

Ar=1/ky =AM /Ay (10.1.4)

Time scale At is inversely proportional to frequency scale %, and is given as the ratio
between length scale A; and wind velocity scale A, .
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10.1.1 Froude’s model law

The Froude number, Fr, is defined as the ratio between the inertia forces of the flow to
the gravity forces acting on the structure:

Fr = inertia forces of flow/gravity forces on structure = c(plPa)/pd’s (10.1.5)

in which ¢ is a constant, « is the acceleration of the air, [ is a characteristic length, g is
the acceleration of gravity, p is air density and p, is the structure density.

If U is the wind velocity, then the acceleration, «, is proportional to U?/I, which
follows from the dimensions. Since the ratio p/p, is assumed to be taken into account in
the mass scaling used in the model test, the Froude number may be presented as

Fr=U?%gl (10.1.6)

Froude’s model law, which was published in about 1870, neglects the importance of
viscous forces.

For aeroelastic structures with the property that wind-induced vibrations are influenced
by gravity, it is important to satisfy Froude’s model law. This means that the Froude
number should be the same for the model as for the prototype. Examples of such structures
are transmission lines, suspension bridges, cable-stayed bridges and guy cables for masts.

The Froude number is not significant in relation to wind-induced vibrations of high-rise
buildings. The permanent load is gravitational, but is taken directly to the foundations
and does not interact with the wind-induced vibrations of the building.

In order to fulfil Froude's model law, the velocity scale A, must correspond to the
square root of the length scale A,

A= (10.1.7)

A typical length scale for aeroelastic model studies of suspension bridges and cable-stayed
bridges is 1:200. Thus, the wind speed in the tunnel should be about 15 times lower than
in full scale, i.e. about 2-3 m/s.

In aeroelastic model studies, the significant natural frequencies should be scaled in
accordance with the Froude frequency scaling of A, = Ay/A; = 1/V/A;. However, since
it will be impossible to construct an aeroelastic model satisfying this criterion literally
for all natural frequencies of interest, the conversion of model-scale results to full-scale
predictions should always be evaluated carefully.

10.1.2 Reynolds’ model law

The Reynolds number Re is defined as the ratio between the inertia forces and the viscous
forces acting on the flow

Re = inertia force/viscous force = p13a/12r (10.1.8)

where t is the shear stress. Reynolds™ model law, which was published in 1883, disregards
gravitational forces (Reynolds, 1883).
Dimensional methods lead to

a~ Ul (10.1.9)

U
T~ s~ U/l (10.1.10)
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where u is the dynamic air viscosity. The kinematic viscosity, v, is defined as
v=u/p (10.1.11)

Based on these expressions, the following formulation is generally used for Reynolds

number:
Re =Ul/v (10.1.12)

If the viscous forces are decisive for the flow around a structure, Reynolds’ model law
is important.

Small values of Reynolds number mean that the viscous forces are large compared
with the inertia force acting on a mass of air. This indicates that any particle acceleration
will soon be damped by viscous forces, and therefore the flow is laminar.

Large Reynolds numbers mean that the viscous forces are small compared with the
inertia forces. Therefore, a generated turbulence in the flow is not well damped, and the
flow remains turbulent.

The importance of Reynolds number is illustrated by the following description of the
flow near the surface of a circular cylinder. Generally, cylinder diameter d is chosen to
be the characteristic length, i.e.

Re = Ud/v (10.1.13)

The flow around the cylinder is illustrated in Figure 10.2. The position of the separation
points, and thus the width of the vortex street, depends on the Reynolds number. In the
literature, e.g. Walshe (1972) and Roshko (1961), the different ranges of Reynolds number
are described as:

Subcritical: approx. The boundary-layer flow at the cylinder surface
300 < Re < approx. 10° is laminar, and the points of separation are
about 80° from the point of stagnation.

Vortices are shed from alternate sides of the
cylinder within a relatively narrow frequency
band. Thus, the autospectrum of the lateral load
has a characteristic maximum at the
predominant frequency of vortex shedding.

Supercritical: approx. The points of separation are on the leeward side

10° < Re < approx. 3.5 x 10° and the wake has become much narrower. This
range gives the transition to the transcritical
range.

The lateral load is aperiodic and random, and
the autospectrum has no characteristic

maximum.
Transcritical: approx. The boundary-layer flow at the cylinder surface
3.5 x 10° < Re is turbulent, and the points of separation are

about 115° from the point of stagnation. The
wake is narrower than in the subcritical range
but wider than in the supercritical range.

Vortices are shed from alternate sides of the
structure within a relatively narrow frequency
band, thus resembling the subcritical range.
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Fig. 10.2 Flow around a circular cylinder. S: stagnation point; SP: separation point; B:
boundary layer at the surface. (Reproduced by permission of Danish Building
Research Institute).

The value of the critical Reynolds number, i.e. the limit between the subcritical range
and the supercritical range, depends both on the free-stream turbulence in the natural wind
and on the surface roughness of the structure.

The description presented here explains that the drag coefficient, Cp, depends on
the Reynolds number, see Figure 10.1. The conditions for the circular cross section are
compared with a prismatic body with sharp or rounded edges. Cp is independent of the
Reynolds number if the edges are sharp, but strongly dependent even if the edges are
only slightly rounded.

For prismatic structures with sharp edges, the points of separation are at the edges,
which explains that C), is independent of Re. On curved surfaces the separation points
are strongly dependent on Reynolds number, so the flow around the structure as a whole
varies with Re.

Consequently, the wind load on structures with curved surfaces depends upon the
Reynolds number, and Reynolds’ model law is relevant for wind-tunnel tests with such
structures.

Usually, atmospheric pressure exists in a boundary-layer wind tunnel, and the kinematic
viscosity, v, has the same value in the model test as in full scale. In order to obtain the
same value of Re in the model test as in full scale, the velocity scale should be the
reciprocal of the length scale, i.e.

Ay =1/4 (10.1.14)

Even for a rather large length scale such as A; = 1:100 this leads to a velocity of some
kilometres per second, which is out of the question. Normally, we have to accept that
Reynolds’ model law cannot be fulfilled in a boundary layer wind tunnel. When testing
structures with curved surfaces, scale effects must be accepted and their importance should
be estimated.
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Fig. 10.3 The dependence of drag coefficient Cp of a cyclinder upon Reynolds number Re
and surface roughness characterized by the grain size, k (Scruton and Rogers,
1971).
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When simulating flow features corresponding to high Reynolds numbers a frequently
applied measure is to make the curved surfaces rough, as this creates a turbulent boundary
layer along the surface. The importance of surface roughness for the drag coefficient of
the cylinder is shown in Figure 10.3.

It should be emphasized that although the roughness at best may reduce the scale
effects, it cannot eliminate them.

10.1.3 Jensen’s model law

Martin Jensen formulated the condition for realistic model tests:

e The flow in the wind tunnel should be turbulent in the same way as the flow in the
natural wind.

This demand is fulfilled with good approximation in boundary-layer wind tunnels (see
Section 10.2). Typical vortex structures and vortex sizes in natural wind can be represented
in a wind tunnel in the same scale as that used for the structure. It is particularly important
that vortices controlling the pattern of air flow around the structure are modelled correctly,
see the discussion on small-scale turbulence later in this section.

Wind turbulence follows from the roughness of the terrain. If the terrain surrounding
the structure is built in the wind tunnel to the same scale as the structure, then Jensen’s
model law is satisfied. Mathematically this is expressed as

h h
— ={— (10.1.15)
20/ model 20 / prototype

where h is the height of the structure and g, is the roughness length of the surrounding
terrain.

Verifying the fulfillment of the model law in a specific test requires only an experi-
mental determination of the velocity profile —and thus of the roughness length, ;o —in
the wind tunnel. If the model law is fulfilled, the velocity profile in the lower part of the
boundary layer, in which the surface roughness is the dominating length scale, will be
simulated satisfactorily. Turbulence characteristics of the simulated flow should also be
demonstrated.

Although Jensen’s model law seems obvious nowadays, it led to a complete break with
the common practice when it was put forward (Jensen, 1958). The importance of this law
is illustrated in Figure 10.4.

Like other non-dimensional parameters such as Reynolds number and Strouhal number,
Jensen number has been introduced as

Je=h/zy (10.1.16)

where £ is the height of the structure and gz is the roughness length of the surrounding
terrain.

When Jensen’s model law is satisfied, the turbulent vortex structures and hence the
spectra of the natural wind as presented in Section 3.5 will be simulated with reason-
able accuracy in the wind tunnel. However, the low-frequency turbulent fluctuations
that scale with the boundary layer height will not be represented automatically using
Jensen’s model law. This dilemma is discussed further below, see the discussions related
to Figure 10.7.
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Fig. 10.4 The pressure coefficient as a function of Jensen number Je defined in equation
(10.1.16) (Jensen and Franck, 1965). (Reproduced by permission of N. Franck).

Small-scale turbulence

The free-stream turbulence controls the pressure fluctuations on the upstream face of a
structure. It also determines the shear layer behaviour, see Figure 10.5. The shear layer
behaviour is crucial for the flow around the structure and thereby for the mean and fluc-
tuating pressures acting on the structure. Increasing the free-stream turbulence increases
the rate of entrainment of wake fluid into the more turbulent shear layers, which in turn
changes the pressures acting on the structure. Gartshore (1973) showed that free-stream
turbulence affects the drag and lift on rectangular sections. see Figure 10.6.

“he shear layer behaviour is mainly determined by the small-scale turbulence compo-
uouls L. the free ~tieam, i.e. turbulent components with scales of the order of the shear
layer width. Melbourne (1975) introduced the small-scale spectral density parameter, S,
as the normalized spectral density of the longitudinal velocity component at a wavelength
U/n with an order of magnitude lower than the typical frontal body dimension defined

Free-stream flow _j Wake region

f

Fig. 10.5 Time-average pattern of the flow past a square cylinder.
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Fig. 10.6 Increased free-stream turbulence increases the rate of entrainment of wake fluid
into the more turbulent shear layer, see Gartshore (1973).

as the square root of the frontal area A. The spectral density of the longitudinal velocity
component is normalized by the mean wind velocity U squared giving a small-scale
spectral density parameter defined as

S, U
s= U hiva (10.1.17)
n

U-

where n is the frequency in hertz. For a surface-mounted prism, whose plan dimension b
is smaller than its height /1, Tieleman (1995) suggested using the prism width as a typical
body dimension for defining the small-scale spectral density parameter. For a low-rise
structure with h < b, Tieleman suggested using the prism height. These length-scale
choices seem logical, when considering the mechanisms that generate shear layers.

Melbourne (1975) showed the dominating role of small-scale turbulence on shear-layer
behaviour and on the magnitude of the low pressures under reattaching shear layers. An
increase in small-scale turbulence in the approaching air flow increases the magnitude of
high negative suction occurring near the leading edge under a reattaching shear layer. The
exact role of small-scale turbulence is, however, not clear at present, see the overview
given by Melbourne (1995).

Air-flow scaling alternatives

The observations described above should be taken into account when choosing the appro-
priate scaling for model studies of loads on bluff bodies in turbulent flow. It is most
important that the main physical features that generate the load on the structure are simu-
lated in the wind tunnel, and that the generation of wind load at model scale and full scale
follows the same basic load mechanism. The actual flow scaling chosen in a specific test
should not only be based on the scaling effects on the test results itself, but rather on the
accuracy obtained for the test results corrected mathematically for scaling effects.
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Fig. 10.7 In the left-hand figure the spectrum of the longitudinal wind velocity component
is shifted to the right when compared to the full-scale spectrum. The turbulence
intensity is simulated correctly, but the low-frequency fluctuations in the wind tunnel
are underestimated, and the small-scale turbulence is overestimated. In the right-
hand figure, the turbulence intensity has deliberately been reduced in the wind
tunnel in order to obtain the correct scaling of small-scale turbulence and thereby
of shear layer behaviour.

Using model scales larger than flow scales underestimates the low-frequency velocity
fluctuations. The small-scale spectral density parameter is then too large, see scaling alter-
native A in Figure 10.7. This is probably the most common situation in wind-tunnel tests
carried out in practice, and it is a natural consequence originating from the restrictions
imposed on the flow by the wind tunnel’s walls and roof. The effects of the underesti-
mated low-frequency velocity fluctuations and turbulent integral length scales may often
be corrected for mathematically. However, the shear layer influence on the load is not
represented satisfactorily in the model due to the overestimated small-scale turbulence.
Consequently, a mathematical scaling correction of measured data to full-scale conditions
will often be difficult or impossible.

Scaling alternative B shown in Figure 10.7 may provide a more accurate full-scale
load prediction. The influence of small-scale turbulence is reproduced using this scaling
principle with Spodel = Sprototype in Which the small-scale spectral density parameter, S,
is defined in equation (10.1.17). Just as in alternative A described above. the influence
of the underestimated low-frequency fluctuations may often be corrected mathematically.
Scaling alternative B may, therefore, provide the most accurate load predictions in many
situations.

10.2 WIND-TUNNEL TECHNIQUE

Boundary-layer wind tunnels and procedures used in wind-tunnel model studies are
described briefly below.
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Boundary-layer wind tunnels

Before Martin Jensen's model law was published in the mid 1950s, the wind tunnels used
were often aeronautical tunnels with short working sections. They were converted for
use in civil engineering applications by adding passive devices, such as grids, in the test
section entrance in order to generate turbulence. However, turbulence generated in these
tunnels does not meet the basic similarity requirements necessary to obtain realistic test
results for structures situated in the atmospheric boundary layer.

Martin Jensen’s model law changed wind-tunnel practice fundamentally. Boundary-
layer wind tunnels with long working sections have been constructed since the model
law was published in the mid 1950s. The long working section, typically of the order
of 20-30 m., facilitates a natural grown boundary layer according to the Martin Jensen
model law.

One of the first large boundary layer wind tunnels was designed by Professor
A.G. Davenport. It was constructed and commissioned in November 1965 at the
University of Western Ontario in Canada. Today, boundary-layer wind tunnels have been
constructed in most parts of the world. One example is shown in Figure 10.8.

Fig. 10.8 The boundary-layer wind tunnel at the Norwegian University of Science and Tech-
nology. A typical bridge section model suspended by springs is shown in the figure.
The springs to the left and right outside the tunnel are used to simulate the stiffness
of the bridge modes investigated in the test. The model mass and mass moment
of inertia are scaled down from the modal characteristics of the full-scale bridge.
The basin with liquid outside the tunnel in the front is used to simulate full-scale
structural damping by having a moving part of the wind-tunnel model submerged
in the liquid. (Reproduced by permission of Erik Hjorth-Hansen).
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Procedures used in wind-tunnel model studies

Procedures used in wind-tunnel model studies vary widely depending on particular
objectives and available resources. However, a number of commonly used tests have
emerged, e.g.:

o Topographic model tests used to determine the wind conditions in the flow over
complex terrains. Typical scales are of the order of 1:2000 to 1:5000.

Topographic model tests may be used to assess wind energy potentials of particular
sites and to estimate wind velocity distributions along bridges located in a complex
terrain. Typically, this type of test is used to connect wind conditions of the site with
wind velocities measured full scale at a measuring station.

Length scales of the order of 1:5000 give very low Reynolds numbers in the wind-
tunnel test. The atmospheric boundary layer simulated at these low Reynolds numbers
may possess a significant scaling distortion, making the west results obtained difficult
to interpret. Sometimes the roughness of the model surface is increased deliberately
in order to obtain an improved boundary layer simulation and to avoid a so-called
aerodynamically smooth surface in the tests.

e Tests of local pressures using scaled static models with pressure taps. Typical scales
are of the order of 1:100 to 1:500.

Mean and fluctuating pressures are often measured by connecting the pressure
taps on the model with pressure transducers using thin vinyl tubing. The distortion
of pressure fluctuations caused by the long tubes may be corrected using Fourier
transform techniques. Alternatively, tubes giving low distortion up to high frequencies
of several hundred hertz may be used in the tests, see e.g. the tubing system developed
by Gerstoft and Hansen (1987).

The fluctuating pressures measured in the wind tunnel are used to calculate the
characteristic pressure and suction at each point of the structure.

e Tests of area wind loads using pressure models. Typical scales are of the order of
1:100 to 1:500.

Simultaneous measurement of several fluctuating pressures facilitate that the fluctu-
ating area wind load can be determined by adding linear combinations of the pressures
measured. Each pressure is weighed according to its influence on the actual loading
in question. Pressures measured along a simply supported model beam, for instance,
could be used to estimate reaction forces and bending moments. The response is esti-
mated by appropriate linear pressure combinations based on the influence functions
related to the response considered.

e Direct measurements of overall wind loads. Typical scales are of the order of 1:100
to 1:500.

The model is fixed to a base balance measuring the overall wind load acting on
the model. Some balances measure all six load components, i.e. three forces and three
moments, other balances measure only some of the load components.

Specially designed high-frequency base balances may be used to measure the fluc-
tuating overall wind load on the model without significant distortion from natural
model vibrations. The models used in these tests should have a natural frequency in
excess of the most significant wind-loading frequencies. Light and stiff models are
asked for, e.g. models constructed by foam.
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e Section model tests as shown in Figure 10.8. Typical scales are of the order of 1:50
to 1:100. Section model tests are used to determine the aerodynamic data outlined
in Chapter 8, see e.g. the aerodynamic derivatives described in Section 8.2.3 and the
flutter vibrations analysed in Section 8.4.

e Acroelastic tests using dynamically scaled models of buildings, bridges etc. Typical
scales are of the order of 1:100 to 1:300.

In aeroelastic tests the model movements should be affine with the movements of
the full-scale structure, and the natural frequencies and structural damping should be
simulated in the test. The construction of aeroelastic models is often time consuming
due the demand of accurate scaling of the many significant modes contributing to the
wind-induced structural behaviour.

Thus, a large variety of wind-tunnel test procedures are used to determine wind actions on
structures. In a particular situation the best choice of test depends on the type of design
data required and the intended use of mathematical models for converting model-scale
data to full-scale predictions.



Appendix A Random Variables
and Stochastic Processes

Within the field of engineering there are many phenomena which cannot be predicted
deterministically either in time or in space. However, if a phenomenon has been
measured/recorded on many occasions during sufficiently long intervals of time, then
certain statistical properties of the phenomenon can be deduced. Statistical properties
may also be based on mathematical modelling of the phenomenon.

The phenomenon itself is then described as a stochastic process, and any measured
sample during a time period is called a realization of the stochastic process.

Expected values of the process itself, or combinations of the process at different times or
positions, can be derived from measurements or mathematical modelling. If these expected
values are time-independent, and if correlations between values at different times only
depend on time differences, then the process is called stationary. In wind engineering
it is common practice to describe wind velocity as a stationary, stochastic process. The
assumption of stationarity is not quite correct, but the errors are not important and the
calculations are significantly simplified as a result.

Some of the concepts frequently used with random variables and stochastic processes
are defined below.

A.1 ONE RANDOM VARIABLE

In this Appendix, random variables are indicated by capital letters. The probability density
function fx(x) is introduced, corresponding to one random variable X. The meaning of
this function follows from the fact that the probability of x; < X < x» is given by the
expression

Plxy < X <xa} = / () dy (A.1.1)

where the symbol P{ } means probability.
The concept of probability is defined in such a way that the probability of a certain
event is 1, hence

~
/ Se()dx =1 (A.1.2)

Furthermore, as probability is non-negative,

fx(x) > 0 for all x (A.1.3)
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The notation for the mean value of a random variable X is px or E{x} and is determined by

wx = [ xrwds (A14)

x

The variance o3 of random variable X is defined as

2
(7‘3, =F{(X — uy ):} = / (x — uy )lf,\(\)d\ (A.1.5)
o =D
By definition, oy > 0, and oy is called the standard deviation of the random variable X.
If uy > 0, the coefficient of variation Vy can be defined as
ox

Vy = — (A.1.6)
HUx

Gaussian distribution

It is often a good approximation to assume that a random variable has a Gaussian distri-
bution, cf. Figure A.1. The probability density function is then given by mean value puy
and standard deviation oy, and is calculated by the formula

fx(x) = : L (X my 2 (A.1.7)
X) = ex - — A.l.
I \/ﬂox P 2 Ox

1x)

Vor oy

] : 1 + 4 4 » X

+ + + t
=20y oy Hy Hy+ Oy 1+ 20,

Fig. A1 Probability density function for a Gaussian distribution. j1x may be interpreted as
the x coordinate of the centre of gravity of the area between fx (x) and the X-axis.
(Reproduced by permission of Danish Building Research Institute).
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Weibull distribution
The Weibull distribution is also commonly used in wind engineering. With this distribu-
tion, random variable X can only take positive values. This distribution is characterized
by two parameters — the scale parameter A and the shape parameter C. Both parameters
are positive.

The Weibull probability density function fy(xv) is given as

i ex (— (l>(> (A.1.8)
1C p 1 1.

Using (A.1.4) and (A.1.5), mean value juy and variance o} are

fylxy=C-

1
/.tx=AF<1+E> (A.1.9)

hl b 2 D 1
oy =A" ({1 + =) -T" {1+~ A.1.10)
= < c)-rli+¢)) (
in which the gamma function I'(x) is defined by the integral
[Mx) = / e dr (A.1.11)
Jo

The gamma function is a differentiable function that satisfies the condition
Fx+1)=xT"(y) (A.1.12)

For positive integer values n of x, the gamma function satisfies the condition

'n)y=m —1)! (A.1.13)
Another useful value is
r{d)=vn (A.1.14)

If the random variable X is Weibull distributed, then the coefficient of variation Vy,
defined by (A.1.6), takes the value

=
v,\:),‘TvC(Hé)r:(Hé) (A.1.15)
r(1+5>

Note that Vy depends only upon parameter C.
The values in Table A.1 have been calculated for some special values of C:

Table A.1 The Weibull distribution.

C x /A oZ JA? Vi
1/2 2 20 V5
1 1 1 1

2 /2 1—n/4 V(4 =y
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Fig. A.2 Weibull distributions with E{X} = 1. (Reproduced by permission of Danish Building
Research Institute).

Expressions (A.1.12) and (A.1.14) are used to calculate ux for C = 2. Some examples
of Weibull distributions are shown in Figure A.2. The Weibull distribution with a shape
factor C = 2 is called a Rayleigh distribution, and with a shape factor C = 1, it is called
an exponential distribution.

A.2 TWO RANDOM VARIABLES

The probability density function fxy(x. y) for a combined event of the two random vari-
ables X and Y can be defined, and its meaning is derived from

X
Ploy <X <Ay <Y <nl= / / Fxy(x.y)dvdx (A.2.1)
Jxp Sy
in which the symbol A denotes ‘and’. The probability of a certain event is 1, giving

/- / Sey(x. vdvdx =1 (A.2.2)
J= J =20

If only one of the random variables, X, is considered, then the probability density function
is found to be

Felx) = / v (e vy dy (A2.3)
DAEate @

and it follows from (A.2.2) that the condition (A.1.2) has been satisfied.
If random variable Y is known to take a certain value v,, then the corresponding
probability density function for X is called conditional, and

X
/ f)‘(le = )'())d)( =1 (A.2.4)
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Consequently

oC
Se(xXlY = yp) = fxy(x ¥) / (/ Sy (x, ,\‘n)d.\) (A.2.5)
If and only if the random variables X and Y are independent, then
Sy (o ¥y = fx () fr(») (A.2.6)

Gaussian distribution
Gaussian random variables are of particular importance. In this case the combined prob-
ability density function is

1

1
Sey(x,y) = exp(—gxy(x, ¥))
2noxoy 1 — 2
\ Pxy

in which pxy is the correlation coefficient describing the mutual dependence between the
two random variables, and gxy (x, v) is defined by

(A.2.7)

2

(x — ux)
2(1 — pyy) 0% oy ’ ox oy

gxy(x,y) =

From (A.2.3) it follows that fx(x) is given by (A.1.7), meaning that X follows a Gaussian
distribution with the mean value uy and the standard deviation oy.

The correlation coefficient pyy is introduced in formula (A.2.7). The value of pyy
must be between —1 and +1, and its importance is most easily explained by the condi-
tional probability density function determined by (A.2.5). The conditional distribution is
Gaussian, with a mean value of u§y and a standard deviation of o} given by

¢ ox
My = ux + pXY;(.\'o — iy) (A.2.9)
,

oy =ox\/1 — p3y (A.2.10)

From (A.2.10) it follows that standard deviation o} takes values of between 0 and oy. If
pxy = 0, then u§ = ux and oy = ox, and the known value of ¥ has no influence on
the value of X. In this special case, X and Y are said to be uncorrelated or statistically
independent. If pxy = 1, then o = 0, and the value of X is uniquely determined by the
known value of Y. In this case, X and Y are called fully correlated.

Covariance
In cases where two random variables are involved, it is convenient to define the concept
of covariance, Cov{X, Y}, This is defined as

CoviX. Y} = E{(X — ux)(Y — uy)) (A.2.11)

which is calculated as

Cov{X.Y} = / / (x — pux)(v — py) fxy(x, y)dvdx (A.2.12)
J= S =X
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and generally the correlation coefficient pyy can be defined as
1
pxy = —— Cov{X.Y} (A.2.13)
Ox0y

which is in agreement with the introduction of pxy in cases where a Gaussian distribution
is involved.

A.3 STOCHASTIC PROCESSES

Mean value

For stationary and ergodic processes (which covers the processes included in this book)
denoted by X(r). mean value px can be determined as an average during a long time
interval T, by the mathematical formulation

l s+ T
uy = E{X)) = Tlim 7 / X(t)dt (A3.1)
— Jn

The stationarity implies that px is independent of time. The limit should be interpreted
as a need for an integration period of sufficient length.

Variance

The variance o of the process X (1) is defined as

5

oy = E{(X(1) = pux)*} (A.3.2)

At this point, it is useful to review some simple rules about mean values. The mean value
of a sum is the sum of the mean values. Let X(¢) and Y (1) be stationary processes, then

E{X(1)+ YD} = E{X (1)} + E{Y (1)} (A.3.3)
A constant factor k can be taken outside the expectation symbol:
E(kX (1)} = kE{X (1)} (A.3.4)
Applying these rules to the expression (A.3.2) for the variance yields

0i = E{X())) — 13 (A.3.5)

Covariance and correlation
Let X(r) and Y(r) be stationary. stochastic processes. The cross-covariance k(1) is
defined by

kxy (1) = E{(X(t) — pux) (Yt + 1) — py)} (A.3.6)

Due to stationarity. «yy (1) is independent of . Then we can use 1 — v in place of 7. which
gives
Kyy(T) = E{(Y (1) — jiy) (X (1 — 1) — jayx)} (A.3.7)
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since, according to the definition, the last expression equals «yy(—1), we have the rule
kxy (1) = kyx(—1) (A.3.8)
If Y(¢) is the same process as X(t), then (A.3.6) gives
kx (1) = E{(X(1) — ux )X (1 + 1) — ux)} (A.3.9)

and expression (A.3.8) gives
kx (1) = kx(=7) (A.3.10)

indicating that the covariance is an even function of time difference 7. Taking T = 0, a
comparison between expressions (A.3.2) and (A.3.9) shows that

oy = kx(0) (A.3.11)

Thus, the variance equals the covariance at a zero time difference. It can be verified that
Kk (7) satisfies the inequalities:

—kx(0) < kx(1) < kx(0) (A.3.12)
The correlation function py(7) is a normalized version of the covariance function

py(r) = X0 (A3.13)

ox

and from (A.3.11) and (A.3.12) it follows that —1 < px (1) < 1. In particular, px(0) = 1.
Cross-correlation function pyy () is correspondingly defined by

kxy(T)
Ox0Oy

pxy(T) = (A.3.14)

Derivatives of a stochastic process

Next, xx(7) is assumed to be a differentiable function of t, and it is further assumed that
the stochastic process X(r) can be differentiated with respect to t. The following symbols
are introduced

: dX()
dr
. d*X(1)
X)) = 5 (A.3.16)
dr-
Consider the expression
tH X
X() —X(1) = / X(r)dt (A.3.17)
J

The mean value of an integral is the integral of the mean value. As X(r) is stationary,
the expected value of the left-hand side of (A.3.17) is zero, from which the following

important rule is found:
uy =0 (A.3.18)
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As the derivative of the mean value is the mean value of the derivative, then from (A.3.9),
(A.3.15) and (A.3.18)

dix (1)
dr

= E{(X(1) — ux)X(t + 1)}

= E{(X(1) — )X (1 +7) = py)) = kyx (1) (A.3.19)
As kx (1) is an even function of 7, its derivative is zero when t = 0. Then using (A.3.19):
Ky (0) =0 (A.3.20)

This result shows that simultaneous values of a stationary process X(¢) and its derivative
X (1) are statistically uncorrelated.
In (A.3.19) the stationarity is used to replace t with r —

Iy (1) .
‘ (’[‘T = E{(X(r — 1) — )X (1) — 113)) (A.3.21)
and further differentiation and use of (A.3.18) yields
112/(;(1') . .
= E((=X (= X (1) = )
dt-
= —E{(X(1) — u )Xt + 1) — g} (A.3.22)
which gives the rule
12
D o (A.3.23)
dr-
and especially by taking T =0
1 5
ﬂgh:u = —0} (A.3.24)
dt- ‘

Spectra
In wind engineering, the one-sided spectrum Sx(n) for process X(t) is defined by the

cosine transform ~

Sy(ny=4 / ky(t)cos2antdrt (A.3.25)
Jo
which only implies positive values of frequency n. It can be proved that the inverse
transformation is valid: ~
Ky (1) = / Sx(n)cos2antdn (A.3.26)
Jo
If T =0 is used in (A.3.26), then according to (A.3.11)

0§=/ Sx(n)dn (A.3.27)
JO

The autospectrum Sy (n) indicates how the variance is distributed at the frequency axis.
It can be proved that Sx(n) > 0 for all values of n.
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Equations (A.3.25) and (A.3.26) can be written in complex form (the Fourier transfor-
mation)

=
Sx(n) = 2/ kx(T)e™ ™" dt (A.3.28)
-
o i
kx(1t) = 1/2/ Sx(n)e' ™" dn (A.3.29)
—20
where i is the imaginary unit, i> = —1, and Sx(n) is an even function in the frequency.

The cross-spectrum Sy (1), corresponding to two different processes X(r) and Y (1), is
defined by the complex transformation

20
Sxy(n) =2/ Kxy(T)e™ 2™ dt (A.3.30)

o0

with the inverse transformation
ocC .
kxy (1) = 1/2/ Sxy(m)e' ™ dn (A.3.31)
-

In general, the cross-spectrum Sxy(n) is complex, whereas the spectrum Sy (n) is real.
The cross-spectrum may be written

Sxy(n) = [Sxy(n)le’®r™ (A.3.32)

where [Syy(n)| is called the cross-amplitude spectrum and ®xy(n) is called the phase
spectrum.

In wind engineering, the concept of the coherence spectrum or just coherence is
frequently used. Coherence is defined as

ISy
Cohyy(n) = Sy 0TSy () (A.3.33)

and from (A.3.31) and (A.3.32) it follows that

Sxy(n) = \/Sx(n)Sy(n)y/Cohyy (n)e' " (A.3.34)

Coherence is a measure of the correlation between the processes. A comparison of formula
(A.3.33) and formula (A.2.13) shows that at each frequency » there is an analogy between
the square root of the coherence for stochastic processes and the correlation coefficient
for random variables.

Example A.3.1
A stochastic process represented by realizations can be expressed as

X(1) =A;sinwt + A>coswt

where w; is a deterministic angular frequency and A; and A, are mutually independent
random variables with the same probability density function. Let the mean value be
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Fig. A.3 Autospectrum for the process in Example A.3.1. (Reproduced by permission of
Danish Building Research Institute).
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Fig. A.4 Examples of the autocovariance corresponding to the autospectrum in Figure A.3.
The upper figure corresponds to An = n,/20, the middle to An = n,/4 and the
lower to An = n,. When An = n,/20, quite high values are found for relatively high

values of n t, but when An = n,, the autocovariance is only important at relatively
small values of nyt.

ta = 0 and the variance be 3. According to (A.3.9) the covariance function is
kx (1) = E{(A, sinwt + A>cosw t)(A; sinw(t + 7) + A>cosw(t + 1)}

= E{Af} sinwtsinw (1 + 1) + E{A%}coswltcosm(t + 1)
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Fig. A.5 Autospectrum (at the top) and autocovariance (at the bottom) for the variation in

4
Example A.3.2 with ox = 1. A steeper decrease of the autospectrum is reflected in
a less steep decrease of the autocovariance. (Reproduced by permission of Danish
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= aj[sin wtsinw(t + 1) 4+ cos w;t cos w; (t + )]

,
= 0;CcosW|T

since the independence between A; and A, implies E{AA,} = 0.

Due to convergence problems, the spectrum cannot be derived using formula (A.3.25).

However, let us start with a spectrum such as that shown in Figure A.3, which is only
nonzero in an interval An around the central frequency n, = w;/2x. In this interval with
the value Sy(n) = af(/An, we can form a picture of the spectrum.

It follows from (A.3.26) that the covariance corresponding to this spectrum is

ni+Ans2 2
kx(T) = / X cos2nntdn

ny—An/2 An
0)2( . An i An
= sin27({n+ — |t —sin2r|{n —— |1
An2nt 2 2
Ox

= —"—SINTARNTCOS W T
TANT

If An is close to 0, then «y () will be close to of( cos w7, and thus the spectrum related
to this covariance is expressed by means of a Dirac delta function Sy(n) = 01%8(;1 —ny).

Figure A.4 shows some examples of the covariance connected with the spectrum in
Figure A.3.

Example A.3.2
With a spectrum

2., —
Sx(n) =oyre ™"

where X is a constant, and equation (A.3.27) is satisfied, the covariance is

* 5 , N
kx(T) = / oyre” " cos2mntdn = oy =————
Jo AT+ 4T
corresponding to x = 1/2, 1 and 2, spectra and covariance functions are shown in

Figure A.S.

A.4 THRESHOLD CROSSINGS AND EXTREME VALUES

In relation to phenomena which are described by means of stochastic processes, it is
often important to know the probability of the process making an upcrossing of a certain
threshold during a specific time interval. In practice, high thresholds with rare events are
most important. Figure A.6 shows a realization of a stochastic process. An upcrossing
of the threshold & at the time ¢, means that X(t) < & immediately before and X(r) > £
immediately after the time f,.
Let an upward crossing take place between the times 7 and 1 + Ar, where Ar is so
small that
X(t+ A = X(1) + X (DAt (A4.1)
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>

Fig. A.6 A realization of the stochastic process X (t). (Reproduced by permission of Danish
Building Research Institute).

The expected number of upcrossings of the threshold & per unit of time is called ve. The

probability P of an upcrossing during the time interval Ar is given by

veAt = P{X(t) < £ and X (1) + X(t)At > &) (A.4.2)

The probability density function for the combined event X(r) and X(t) is Sxx(x, x), and
from (A.4.2) it follows that

D Y (/‘E . ) .
Ve = lim — Sxx(x, x)dx | dx (A.4.3)
¢ a0 At fy E—X(1)At XX
With the limit A7 — 0, the innermost integral becomes
& )
/ O fra(x X) dx = X ()AL fyg (€. %) (A.4.4)
E-X(1)At

and consequently (A.4.3) is reduced to
oc .
Vg = / X(t) fyx (& x)dx (A4.5)
0

As X and X are taken at the same time, they are statistically independent, and according
to (A.2.6):
fxx(§.%) = fx () fx (x) (A.4.6)

and the formula for v¢ becomes

e = fx (&) /0 i fi(0) d (A4.7)

For simplicity, let X () be a stationary, Gaussian process. Then X (1) will also be Gaussian,
and according to (A.3.18) with the mean value uy = 0. Then the probability density
function for X(¢) is

s

(A.4.8)

f‘(x)—#ex v
x —x/gax P 20)2(
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This is used in (A.4.7) and with the substitution y = %°/ (2(7§), v is calculated as
1

ve = — fx(E)oy (A.4.9)
3 \/ﬂfx X

Formula (A.4.9) was found by Rice in 1944. If X(r) is not Gaussian, the constant factor
1 /27 should be replaced by another value in formula (A.4.9).

oy can be calculated using the spectrum Sy(n) for X(r). From (A.3.26) and (A.3.23)
it follows that

e
K‘X(l')=/ 4°n=Sy(n)cos 2Tntdn (A.4.10)
Jo

and from (A.3.11)
X
(Ii, = / 470 Sy (n)dn (A4.11)
JO

From the spectrum Sy(rn) and the probability density function fy(x), frequency v: of
upcrossing threshold & is determined.

Rare upcrossing events

Next, the problems concerning upcrossings of a threshold are examined more closely.
High thresholds with rare upcrossings are assumed.
The following three assumptions are made:

1. The upcrossings are mutually independent.

18

The probability of an upcrossing in the infinitesimal time from ¢ to t 4 dt is propor-
tional to dt and is independent of r.

3. The probability of more than 1 passage during the differential time dt is infinitely
small compared to the probability of 1 upcrossing during dr.

Let P(r.1)) be the probability of r upcrossings during a time interval ¢;. From the
assumptions (1) and (3) it follows that

P(r.ty +dt)y = P(r, t )P0, dt) + P(r — 1, 1))P(1.dt) (A4.12)
and using assumption (2)
P(l.dt) = vedt (A.4.13)
PO, dty=1—vedt (A4.14)
These equations are satisfied by the expression
P(r.1)) = (”E:‘ X exp(=vety) (A.4.15)

which shows that the upcrossings are described by a Poisson process.

During time interval ¢, one thing is certain, that there will be either 0 or a positive
number of upcrossings and as a certain event has the probability 1, the following condition
must be fulfilled:

ZP(,.’II)= 1 (A.4.16)

r={
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which agrees with the series expansion of the exponential function
o \J-
X o
e = Z“ S (A4.17)
r=

Let Fx(&, 1)) denote the probability of X < & during time interval t;. This is the same as
the probability of 0 upcrossings of the threshold & during ¢, given that X < & from the
beginning of the time interval.

Exponential distribution

As a specific example, let X(¢) be Weibull distributed with shape parameter C = 1, also
called an exponential distribution. Then by (A.1.8) and Table A.1

1
Sx(&) = —exp (—S> (A.4.18)
Ox (

and using (A.4.9)

Ve = Lz& exp <—i> (A.4.19)
V2m Ox ox

From (A.4.15) it follows that the probability of 0 threshold upcrossings is

P(0.t)) = exp (—brl exp <——E—>> (A.4.20)
ox
where, for clarity, the abbreviation b is introduced as
S (A4.21)
V27 ox

In deriving formula (A.4.20), the value £ of the threshold is assumed to be so high that
the probability of finding X(¢) above the threshold at the start of the time interval is
extremely small.

The probability of at least 1 upcrossing during a time interval r is

P{X > &, at least once during t} =1 — P(0, 1) (A.4.22)

and, corresponding to the specific threshold &, a probability density function f,(r) over
time is found by differentiating (A.4.22) with respect to time ¢

Ji(t) = bexp <—£> exp (—btexp (i)) (A.4.23)
ox ax

The mean time w, which must be expected before a threshold upcrossing is given by

= / tfAt)dt (A.4.24)
JO
which gives the following reasonable result using formula (A.4.19):

= — (A.4.25)
115
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If a threshold is crossed upwards on average once per 50 years, then v = ;'(—) year™!. The
corresponding threshold is called &5g. Analogously, &k is a threshold which is only crossed
once per K years on average. Then it is concluded from (A.4.19) and (A.4.21) that

f/( h‘l(bK)

= (A.4.26)
&0 In(50b)

As far as wind speeds are concerned, b ~ 1300 year~' (Davenport, 1977). Then the
100-year velocity Uy ~ 1.06Us, where Us is the 50-year velocity.

The probability of crossing the K-year threshold at least once during K years follows
from (A.4.19)-(A.4.22)

1
P{X > &k. at least once during K years} =1 — - = 0.63 (A.4.27)
e

and this value does not depend on K.



Appendix B Calculation of
Multiple Integrals

In calculating a joint acceptance function, it may be useful to find a quantity A from an
integral

1,1
A= / / g(x)gx)Y(s)dx dxs (B.1)
0o Jo

where the parameter s is
s = |X| — .\‘7_[ (BZ)

The following operations are straightforward:

| - 1 1
A= / / sengtvin —xdads + [ [ gtigaewie - v dudy
Jx=0 Jra=0 Ja=0 =

1 -,

1 R¥}
=/ / g(x)g(x)y — )Y(s)dsdx) + glxp)g(xy + )¥(s) dsdx,
=0 Js=0 .

=0 .Js=0

s=0 =0

| 1 1 l—~s
= / / g(x1)glx) — s)¥(s)dyds + / g(x)g(xy + s)Y(s)dxds
Js=0Jx=s . 7 X

Thus, an influence function k(s) may be introduced (see Dyrbye and Hansen, 1988), so

{
A=/ k(s)Y/(s) ds (B.3)
JO

I—s

1
k(s) = / g(xy)glx; —s)dx) + / g(xglxy + s)dx (B.4)

s =0

In the first integral in (B.4), substitute x; = x 4 s, and in the second integral, substitute
x1 = x, from which

I—s
k(s) =2 / gx)g(x + s)dx (B.5)
Jo

We recommend using (B.3) and (B.5) to calculate the integral given by (B.1).
Joint acceptance functions depend on a parameter ¢, and are found from (B.3) using

Y(s) = exp(—¢s) (B.6)

Some special cases are shown in Table B.1; and values of A; and B, are shown in
Table B.2. Some of the cases are illustrated in Figure B.1.
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(x). k(s) A
9 — 0.5 i ‘ :
N 3 . ‘ |
M NS 0.4 L ;
T N ' \\\ ] { ‘ Wl' ‘
\\\\ I S 4 0.3 1 \S|
0 g = 7 | \
o “,fll 0.2 ] i J ‘ | Lr #U {
c - 2T T TN
1 a0 | o i A1\
------ ~ | e
- T ] += x.s 0 Rl T ¢
0 0.5 1 0.01 0.1 1 10 100
Fig. B.1 The left-hand figure shows influence functions k for a sinusoidal (S) and a cantilever
(C) distribution function g. The right-hand figure shows the corresponding integrals
A from formulae (B.3) and (B.6).
Table B.1 Influence functions and the integral from formula (B.1) for different distribution

functions g. Parameter ¢ is determined in the main text.

Response influence

Normalized co-spectrum

A from formulae (B.3) and

function g(x) influence function k(s ) (B.6)
Uniform: g =1 2(1 —-s) ¢%(¢>—1+e'¢)

ear o) — o 3 2 1.2 g.(2, 2
Linear: g(x) =x 5(2-35 +5°) 36 4 +¢4 e pe +¢4

gix)=x! Al,“ L AD DA - L
Cantilever:
—ox - 209 _ 3 2 _2 .8
gx)=2x -1 (1 =35 +2s°) 3% ¢2+¢4
<r(33-8)

Sinusoidal:

g(x) = sin(rx)

(1 —s)cos(rs) + %sin(nsi

Table B.2 Constants A; and B, cf. Table B.1.

j A Bo B B Bs Ba
0 1 2

1 3 2 1

2 15 6 3 1

3 70 20 10 4 1

4 315 70 35 15 5 1




209

Another important problem concerns the determination of quadruple integral

1 1 I pl
B = / / / / g0y, 2)g(va )Y (v — ¥val. |21 — 22D dvydvadid 2 (B.7)
JO Jo JO JO

Using a procedure similar to that which was used for the double integral leads to the
more convenient form

1l
B = / / k(sy, SY(s,. s-)ds ds. (B.8)
Jo Jo
in which
sy = |y — ¥l (B.9)
s: =z — 22| (B.10)

and the influence function k(s,, s.) is

-5y pl—s-
k(sy,s5.)=2 / / 8y, 2)g(y+ sy 2+s)+ gy, 2+s5.)g(v+5,.2))dvdz (B.11)
JO JO

If, as a special case, function g(y,z) is given as
8(y. ) = g,v(¥)g:(2) (B.12)
then influence function k(s,, s.) is likewise
k(sy, 52) = ko(s,)k-(s-) (B.13)
in which

I—s,
ko(sy) =2 / gr(Mgv(y + 5,)dy (B.14)
Jo

and .
k(s:)=2 / » g-(gAz+s.)d: (B.15)
Jo



Appendix C Vibrations of
Linear Structures

C.1 ORTHOGONALITY OF MODE SHAPES

In the book, several applications of modal analysis are made. Modal analysis is based on
the fundamental theorem of orthogonality. The theorem holds true for any kind of linear
structure, but here it is only shown for beams.

We introduce the notation v(x, r) for the lateral deflection of the beam at position x at
time ¢. If damping is neglected, free vibrations may correspond to a motion

y(x, t) = &;(x)cosw;t (C.1.1)

w; is called a natural, circular frequency and &;(x) is the corresponding mode shape
function. The motions are only possible at certain values of w;; they are numbered such
that w; < w2 < w3 < ... Mode shape &;(x) is as simple as possible, i.e. it has the least
possible number of nodal points.
The accelerations are given by
Ly s
y= P = —wj§;(x)cosw;t (C.1.2)
2 .

At times when ) is a multiple of 27, the structure has zero velocity but is deflected in
the mode shape &;(x). The accelerations are

§ = —w;(x) (C.1.3)
and therefore the mass of the beam is acted upon by forces
mx)y = —w?m(x)éj(.\') (C.1.4)

This means that the mass will act upon the beam with forces of the same magnitude but
opposite direction, therefore mode shape function &;(x) is the deflection corresponding to
static loading

pi(x) = a)fm(.r)gj (x) (C.1.5)

Correspondingly, the k mode shape function & (x) is the deflection corresponding to a
loading
pelx) = wf,m(x).?;‘k (x) (C.1.6)

Let us slowly, i.e. without any vibrations, load the structure first with p;(x) and then with
pr(x). When the loads are increased from 0 to p;(x), the deflections increase from 0 to
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&;(x), and the work done is

L
wjj:%/ P& (x)dx (C.1.7)
JO

where L is the total length of the beam.
Then, the load py(x) is placed slowly, thus increasing the deflections with & (x). The
work done by the load p;(x) is

L
ijz/ P& (x)dx (C.1.8)
0

and the work done by the load py(x) is

L
Wi = % / Pk(.\‘)ék(l')dx (C.1.9)
JO

The total work done by the load is
Wa=W;i+ Wy +Wg (C.1.10)

If the structure had been loaded in the opposite order, we would have found the total
work as
Wit =Wu + Wi, + W, (C.1.11)

where W is the work done by the loading pi(x) as the deflections &;(x) from the loading
p;(x) are applied,

L
WU:/ Pr(X)E;(x)dx (C.1.12)
Jo

Since the structure is assumed to be linear, the total work is independent of the order in
which the loading is applied. Therefore, W ;; and Wy are equal, which leads to

L L
/ wfm(.\')Ej(_\‘)fk(.\')dx = / wpm(0)EL(X)E; (x) dx (C.1.13)
Jo Jo
and if w; # wy, this is only fulfilled if
L
/ m(x)€;j(x)€(x)dx =0 j#Ek (C.1.14)
Jo

This is the condition of orthogonality of the mode shape functions with respect to the mass
distribution. This condition is frequently used, and it forms the basis of modal analysis.
The mode shapes are not unambiguously determined, because if £;(x) is a mode shape,
then &;(x) multiplied by any constant is likewise a possible representation of the deflections
in mode number j. Usually, a principle is used. This may be a maximum value taken as
1 or a motion at a certain point taken as 1.
The modal mass m; corresponding to mode no. j is defined as

L
m,:/ m(x)(&;(x))” dx (C.1.15)
JO

so it depends upon the choice of the factor mentioned above.
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C.2 EQUATION OF MOTION

If an elastic beam is slender, then the deflections are usually determined by the effects of
bending alone. The differential equation is

a

dx

-

d*y

El(x) :} = p(x) (C.2.1)
dx-

where EI(x) is the bending stiffness, v is the deflection and p(x) is the loading. In the

case of dynamic actions, a part of the loading may be thought of as used for accelerations,

and (C.2.1) is changed to

*F [ Py
5 1 ET(x) : = p(x. 1) — m(x)¥ (C.2.2)
ax~ I 8.\‘“_
usually written as ) i
3 3y .
5 |ENx)—=5 | + m(x)y = p(x, 1) (C.2.3)
ox~ I ax“J
In the case of free vibrations, p(x,t) =0 and v follows from (C.1.1), hence
dz d2 X )
ﬁ El(x) f,(’\)} = w;m(.\')i;‘f(.\') (C.2.4)
ax- - ’ ’

C.3 RESPONSE TO EXTERNAL LOADING

Let a beam be subjected to a loading p(x, t). The symbols indicate that the loading may
vary both in space and time. The response y(x, ) to the loading will also vary in time,
and may be written as a sum of the contributions from the different modes:

~
Y ) =Y £ f(n) (C.3.1)
i=1
This expression is inserted into (C.2.3) and if we use (C.2.4) we reach

Z(_f,-(r) + wif,v(r))m(.\')é,(.\') = plx, 1) (C.3.2)
=1
This equation is multiplied by the ith mode shape function &;(x) and integrated over length
L. Then from (C.1.14) and (C.1.15)

.. 5 1
filh +of fi(t) = ;p,-(r) (C.3.4)

where the generalized mass »m; and the generalized load p;(t) follows as

L
m :/ m(x)(&(x))* dx (C.3.5)

JO
L
pi(t) = / E(x)plx, )ydx (C.3.6)
JO
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In the derivation, damping has been neglected. It would often be chosen to include viscous
damping. thereby changing (C.3.4) to

. . X 1
Ji0) + 250 fi (0 + ] fi(0) = — pit1) (€3.7)
where ¢; is the damping ratio in mode no. i. The solution of (C.3.7) may be written
!
filty = / pi(Dhi(t — 1) dt (C.3.8)
J=0C
where |
hi(s) = —e %" sina;s (C.3.9)
m;o;
and

O(,'=(1),'\/1—2;,: (C.3.10)

If the load varies harmonically in time, then the generalized load p;(r) also has a harmonic
variation, and may be expressed

pi(t) = a; cos wt (C.3.11)

The time function f;(r) varies harmonically as well, but due to the damping it is not in
phase with the loading. It is
fi(t) = b; cos(wt — 6;) (C.3.12)

where b; is the amplitude and 6; is a phase angle. It follows from (C.3.7) that
b = |Hi(w)|a; (C.3.13)

in which H;(w) is the frequency response function. It can be proved that H;(w) is the
Fourier transform of the impulse response function #;(s). It can also be shown that

5 1 1 1 |
|H,(CU)1-=V, 2 RN 5 5 3 — 73 RN RPN (C3l4)
m; (w7 —w™ ) + 45w o kT (1 — Q7)) +457Q;
in which Q; = w/w; and k = m;w;.
Calculating the variance of a response often leads to an integral of the type
. .
I = / |H;(n)|"F(n)dn (C.3.15)
Jo

where frequency n = w/2m is used.
If the following conditions are met:

e the damping is low meaning ¢; < 1,
e F(n) has most of its values at frequencies below n;,

then / may be approximated as

1= H, ) /

x O 5
F(n)dn + F(n;) / |H;(n)|"dn (C.3.16)
0 Jo
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The last integral is found by contour integration, and
e 1 1; T 1 n; 2
/ |Hi(n)|* dn :—,—’—4— = —j———4n— (C.3.17)
Jo m; (2nn)* 46 m; (2mn;)T 26;
For small damping ratios, i.e. & < 1, the logarithmic decrement is



Appendix D Solving
Flutter Equations

Reference is made here to the equations of motion given in Section 8.2.2 which analyse
wind loads on bridge decks.

Assuming that the vertical deflection, &, and the angular rotation, «, of the bridge deck
are proportional to e, the solution obtained will, in general, be of the form & = w| +iw:,
and will therefore represent either a decaying (w2 > 0) or a divergent (w < 0) oscillation.
The critical flutter wind velocity U, is found for the value K. of K where the solution is
purely imaginary (w = w,, w> = 0), see equation (8.4.5):

_ba)

D.1
K. (b.1)

U,
The oscillation frequency n in hertz is equal to w/(27). This procedure has been described
thoroughly by Simiu and Scanlan (1986) for the case in which H} and A} are both equal
to 0. The expressions given below include all the aerodynamic derivatives. Larsen (1995)
has also described the solution of flutter equations including the H} and A} terms. The
printing errors in Larsen (1995) have been corrected in the formulas presented here.
Inserting the harmonic functions of & and « in equations (8.2.14), (8.2.15), (8.2.16)
and (8.2.17), and assuming that the wind load due to air turbulence can be neglected,
gives the following two equations:

) PPN A KoY o L,

—Q-—f—ZIZ;gQ-Fl— (H4+IH1) [—— 2—(H7’+1H2) OQ:O(DZ)
m 7 Vm

C.° . . |& 3 A, . QL
—— (A} +IAY)| =+ |7+ 2i8 .+ v, — =— (A3 +1AS) . = 0(D.3)

2y b 2yp -

where

Yo = wu/wE VYm = me/(pb:) Y = 11’/()0[)4) (D.5)

and &. and o, are complex deflection amplitudes of & and «, respectively. In accordance
with the four F-functions introduced in equation (8.2.6) and (8.2.7), the eight acrodynamic
derivatives are grouped in pairs as follows:

Hi+iHT  HI+iH; AL 4+iAT AL +iA; (D.6)
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Setting the determinant of the coefficient matrix for equations (D.2) and (D.3) equal to

zero and separating the real and imaginary parts gives:
R+ R+ R+ RQ+y2 =0
LY+ LQY+ 11Q + 28y, + 28] =0
where the coefficients R;, I;(i =1...4, j =1...3) are given by
R =0
Ry = —yi — 4abev — L = AY/Q2y1) — VoH 3/ Q2ya)

Ry = CuYuH T/ Vm + LA v

(CECC(ATH; - A;”T + HIA: - CECLXA:H:)/(4VMVI)

Iy = =y H1/2yn) = A3/ 2y1)
12 = _24-01)/(1) - 24-5 - CdywH:/ym - CsAi/)/l

(H3AS + HIA — C:CoHAT — CcC HAY) /(4ymyr)

(D.7)
(D.8)

(D.9)
(D.10)
(D.11)

(D.12)
(D.13)

(D.14)

(D.15)

The solution of the fiutter determinant is found by plotting curves corresponding to the
roots of the real and imaginary parts of the flutter determinant as a function of the reduced
velocity U/(nb). The intersection point (U./(n.b), Q2,) between the real and imaginary
root curves with the lowest value of U, defines the critical flutter wind velocity, see

equation (D.16) below.

Absolute critical flutter-vibration amplitudes &; and oy may have any value. However,
the ratio bay/&) and the phase angle between the vertical and angular deflection can be

determined using the flutter equations.

Q
2.0

T

~ Real root curve
1.8

\ ------ Imaginary root curve 7]

6 Qc LTI %"“i -“
1.4 | \
: I
12 :
1.0 T T T
U./(ng b)
4 8 12

16

Fig. D.1 Determination of critical flutter wind velocities from intersection of root curves.
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Flutter wind velocities
The reduced critical flutter wind velocity, U./(ngh), is equal to (see equations (D.1)
and (D.4))

U, U,

= — (D.16)
ngb  n.b

where U,./(n.b) and 2. are determined as described above. The reduced critical flutter
wind velocity depends on the aerodynamic derivatives, on the damping ratios ¢ and &,
and on the non-dimensional frequency ratio y,,, mass ratio y,, and mass moment of inertia
ratio y; defined in equation (D.5).
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