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Preface

The information revolution has been changing
the world profoundly, irreversibly and problem-
atically for some time now, at a breathtaking pace
and with an unprecedented scope. Every year,

the world produces between 1 and 2 exabytes of
data, that is, roughly 250 megabytes for every
human being on earth (source: Lyman & Varian,
online, see figure P1). An exabyte is approximately

Figure P1
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Figure P2: PCs in use worldwide
Source: Computer Industry Almanac Inc., <http://www.c-i-a.com/pr0302.htm>.

1018 bytes, or a billion times a billion bytes, the
equivalent of about 20 billion copies of this
Guide. It has taken the entire history of human-
ity to accumulate 12 exabytes of data. Stored on
floppy disks, 12 exabytes of data would form a
stack 24 million miles high. At the rate of growth
measured in 1999, humanity will already have
created the next 12 exabytes by the time this
Guide is published.

To cope with exabytes of data, hundreds of
millions of computing machines are employed
every day. In 2001, the number of PCs in use
worldwide reached 600M units (source: Com-
puter Industry Almanac Inc., <http://www.
c-i-a.com/pr0302.htm>, see figure P2). By the
end of 2007, this number will have nearly
doubled to over 1.15B PCs, at a compound
annual growth of 11.4 percent. Of course, PCs are
among the greatest sources of further exabytes.

Figures P1 and P2 give some quantitative sub-
stance to the trite remark that we live in a “data-
based society.” They also show that the end of
the information society, understood as the mature
stabilization in the growth of quantity of data
and number of computational machines, is not
in sight.

The databased society has been brought
about by the information revolution, whose main
means have been first the PC and then the Web.
“Datifying” the world and human society has
created entirely new realities, made possible un-
precedented phenomena and experiences, pro-

vided a wealth of extremely powerful tools and
methodologies, raised a wide range of unique
problems and conceptual issues, and opened up
endless possibilities hitherto unimaginable.

Inevitably, the information revolution has also
deeply affected what philosophers do, how they
think about their problems, what problems they
consider worth their attention, how they con-
ceptualize their views, and even the vocabulary
they use (see Bynum & Moor 1998 and 2002,
Colburn 2000, Floridi 1999, and Mitcham &
Huning 1986 for references). It has made possi-
ble new approaches and original investigations,
posed or helped to identify unprecedented and
crucial questions, and given new meaning to
classic problems and traditional topics. In short,
information-theoretic and computational research
in philosophy has become increasingly innova-
tive, fertile, and pervasive. It has already pro-
duced a wealth of interesting and important
results. This Guide is the first systematic attempt
to map this new and vitally important area of
research. Owing to the novelty of the field, it is
an exploration as much as an introduction.

As an introduction, the 26 chapters in this
volume seek to provide a critical survey of the
fundamental themes, problems, arguments, theor-
ies, and methodologies constituting the new field
of philosophy of computing and information (PCI).
The chapters are organized into seven sections.
In Part I, four of the most crucial concepts
in PCI, namely computation, complexity, system,

Preface
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and information are analyzed. They are the four
columns on which the other chapters are built,
as it were. The following six parts are dedicated
to specific areas: the information society (compu-
ter ethics; communication and interaction; cyber-
philosophy and internet culture; and digital art);
mind and intelligence (philosophy of AI and its
critique; and computationalism, connectionism,
and the philosophy of mind); natural and
artificial realities (formal ontology; virtual reality;
the physics of information; cybernetics; and arti-
ficial life); language and knowledge (meaning and
information; knowledge and information; formal
languages; and hypertext theory); logic and prob-
ability (nonmonotonic logic; probabilistic reas-
oning; and game theory); and, finally, science,
technology, and methodology (computing in the
philosophy of science; methodology of computer
science; philosophy of IT; and computational
modeling as a philosophical methodology). Each
chapter has been planned as a freestanding intro-
duction to its subject. For this purpose, the
volume is further supported by an exhaustive
glossary of technical terms, available online
(http://www.blackwellpublishing.com/pci).

As an exploration, the Guide attempts to bring
into a reasonable relation the many computational
and informational issues with which philosophers
have been engaged at least since the 1950s. The
aim has been to identify a broad but clearly
definable and well-delimited field where before
there were many special problems and ideas
whose interrelations were not always explicit or
well understood. Each chapter is meant to pro-
vide not only a precise, clear, and accessible intro-
duction but also a substantial and constructive
contribution to the current debate.

Precisely because the Guide is also an explora-
tion, the name given to the new field is some-
what tentative. Various labels have recently been
suggested. Some follow fashionable terminology
(e.g. “cyberphilosophy,” “digital philosophy,”
“computational philosophy”), while the major-
ity expresses specific theoretical orientations (e.g.
“philosophy of computer science,” “philosophy
of computing/computation,” “philosophy of
AI,” “philosophy and computers,” “computing
and philosophy,” “philosophy of the artificial,”
“artificial epistemology,” “android epistemo-
logy”). For this Guide, the philosophy editors at

Blackwell and I agreed to use “philosophy of
computing and information.” PCI is a new but
still very recognizable label, which we hope will
serve both scholarly and marketing ends equally
well. In the introductory chapter, entitled “What
is the Philosophy of Information?,” I offer an
interpretation of the new informational paradigm
in philosophy and argue that philosophy of infor-
mation (PI) is conceptually a much more satis-
factory name for it, because it identifies far more
clearly what really lies at the heart of the new
paradigm. But much as I hope that PI will be-
come a useful label, I suspect that it would have
been premature and somewhat obscure as the
title for this volume. Since the chapter is meant
to prepare the ground for the Guide, I thought
it would be convenient to make it available on
the Web free of charge (it can be found online
at http://www.blackwellpublishing.com/pci). The
reader may wish to consider that the project for
the Guide was based on the hermeneutical frame
outlined in that chapter.
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Part I

Four Concepts





Computation

3

Chapter 1

Computation
B. Jack Copeland

The Birth of the Modern
Computer

As everyone who can operate a personal computer
knows, the way to make the machine perform
some desired task is to open the appropriate
program stored in the computer’s memory. Life
was not always so simple. The earliest large-scale
electronic digital computers, the British Colossus
(1943) and the American ENIAC (1945), did not
store programs in memory (see Copeland 2001).
To set up these computers for a fresh task, it
was necessary to modify some of the machine’s
wiring, rerouting cables by hand and setting
switches. The basic principle of the modern com-
puter – the idea of controlling the machine’s
operations by means of a program of coded
instructions stored in the computer’s memory –
was thought of by Alan Turing in 1935. His
abstract “universal computing machine,” soon
known simply as the universal Turing machine
(UTM), consists of a limitless memory, in which
both data and instructions are stored, and a
scanner that moves back and forth through the
memory, symbol by symbol, reading what it finds
and writing further symbols. By inserting differ-
ent programs into the memory, the machine is
made to carry out different computations.

Turing’s idea of a universal stored-program
computing machine was promulgated in the US

by John von Neumann and in the UK by Max
Newman, the two mathematicians who were by
and large responsible for placing Turing’s abstract
universal machine into the hands of electronic
engineers (Copeland 2001). By 1945, several
groups in both countries had embarked on creat-
ing a universal Turing machine in hardware. The
race to get the first electronic stored-program
computer up and running was won by Manchester
University where, in Newman’s Computing
Machine Laboratory, the “Manchester Baby” ran
its first program on June 21, 1948. By 1951,
electronic stored-program computers had begun
to arrive in the marketplace. The first model to
go on sale was the Ferranti Mark I, the pro-
duction version of the Manchester computer
(built by the Manchester firm Ferranti Ltd.). Nine
of the Ferranti machines were sold, in Britain,
Canada, Holland, and Italy, the first being
installed at Manchester University in February
1951. In the US, the Computer Corporation
sold its first UNIVAC later the same year. The
LEO computer also made its debut in 1951;
LEO was a commercial version of the prototype
EDSAC machine, which at Cambridge Uni-
versity in 1949 had become the second stored-
program electronic computer to function. In
1953 came the IBM 701, the company’s first
mass-produced stored-program electronic com-
puter (strongly influenced by von Neumann’s
prototype IAS computer, which was working at
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Figure 1.1: A Turing machine

Princeton University by the summer of 1951).
A new era had begun.

Turing introduced his abstract Turing
machines in a famous article entitled “On Com-
putable Numbers, with an Application to the
Entscheidungsproblem” (published in 1936).
Turing referred to his abstract machines simply
as “computing machines” – the American logician
Alonzo Church dubbed them “Turing machines”
(Church 1937: 43). “On Computable Numbers”
pioneered the theory of computation and is
regarded as the founding publication of the
modern science of computing. In addition,
Turing charted areas of mathematics lying bey-
ond the reach of the UTM. He showed that not
all precisely-stated mathematical problems can
be solved by a Turing machine. One of them is
the Entscheidungsproblem – “decision problem”
– described below. This discovery wreaked havoc
with received mathematical and philosophical
opinion. Turing’s work – together with contem-
poraneous work by Church (1936a, 1936b) –
initiated the important branch of mathematical
logic that investigates and codifies problems “too
hard” to be solvable by Turing machine. In a
single article, Turing ushered in both the mod-
ern computer and the mathematical study of the
uncomputable.

What is a Turing Machine?

A Turing machine consists of a limitless memory
and a scanner that moves back and forth through
the memory, symbol by symbol, reading what
it finds and writing further symbols. The memory

consists of a tape divided into squares. Each square
may be blank or may bear a single symbol, “0”
or “1,” for example, or some other symbol taken
from a finite alphabet. The scanner is able to
examine only one square of tape at a time (the
“scanned square”). (See figure 1.1.) The tape is
the machine’s general-purpose storage medium,
serving as the vehicle for input and output, and
as a working memory for storing the results of
intermediate steps of the computation. The tape
may also contain a program of instructions. The
input that is inscribed on the tape before the
computation starts must consist of a finite
number of symbols. However, the tape itself is
of unbounded length – since Turing’s aim was to
show that there are tasks which these machines
are unable to perform, even given unlimited
working memory and unlimited time. (A Turing
machine with a tape of fixed finite length is called
a finite state automaton. The theory of finite state
automata is not covered in this chapter. An intro-
duction may be found in Sipser 1997.)

The Basic Operations of
a Turing Machine

Each Turing machine has the same small
repertoire of basic (or “atomic”) operations.
These are logically simple. The scanner contains
mechanisms that enable it to erase the symbol
on the scanned square, to write a symbol on the
scanned square (first erasing any existing symbol),
and to shift position one square to the left or
right. Complexity of operation is achieved by
chaining together large numbers of these simple
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basic actions. The scanner will halt if instructed
to do so, i.e. will cease work, coming to rest on
some particular square, for example the square
containing the output (or if the output consists
of a string of several digits, then on the square
containing the left-most digit of the output, say).

In addition to the operations just mentioned,
erase, write, shift, and halt, the scanner is able to
change state. A device within the scanner is cap-
able of adopting a number of different positions.
This device may be conceptualized as consisting
of a dial with a finite number of positions, labeled
“a,” “b,” “c,” etc. Each of these positions counts
as a different state, and changing state amounts
to shifting the dial’s pointer from one labeled
position to another. The device functions as a
simple memory. As Turing said, by altering its
state the “machine can effectively remember
some of the symbols which it has ‘seen’ (scanned)
previously” (1936: 231). For example, a dial with
two positions can be used to keep a record of
which binary digit, 0 or 1, is present on the
square that the scanner has just vacated. If a
square might also be blank, then a dial with
three positions is required.

Commercially available computers are hard-
wired to perform basic operations considerably
more sophisticated than those of a Turing
machine – add, multiply, decrement, store-at-
address, branch, and so forth. The precise list of
basic operations varies from manufacturer to
manufacturer. It is a remarkable fact that none
of these computers can out-compute the UTM.
Despite the austere simplicity of Turing’s
machines, they are capable of computing any-
thing that any computer on the market can com-
pute. Indeed, because they are abstract machines,
they are capable of computations that no “real”
computer could perform.

Example of a Turing machine

The following simple example is from “On Com-
putable Numbers” (Turing 1936: 233). The
machine – call it M – starts work with a blank
tape. The tape is endless. The problem is to set
up the machine so that if the scanner is posi-
tioned over any square of the tape and the ma-
chine set in motion, it will print alternating binary
digits on the tape, 0 1 0 1 0 1 . . . , working to
the right from its starting place, leaving a blank
square in between each digit. In order to do its
work M makes use of four states labeled “a,”
“b,” “c,” and “d.” M is in state a when it starts
work. The operations that M is to perform can
be set out by means of a table with four columns
(see table 1.1). “R” abbreviates the instruction
“shift right one square,” “P[0]” abbreviates
“print 0 on the scanned square,” and likewise
“P[1].” The top line of table 1.1 reads: if you
are in state a and the square you are scanning is
blank, then print 0 on the scanned square, shift
right one square, and go into state b. A machine
acting in accordance with this table of instructions
– or program – toils endlessly on, printing the
desired sequence of digits while leaving alternate
squares blank.

Turing did not explain how it is to be brought
about that the machine acts in accordance with
the instructions. There was no need. Turing’s
machines are abstractions and it is not neces-
sary to propose any specific mechanism for
causing the machine to follow the instructions.
However, for purposes of visualization, one
might imagine the scanner to be accompanied
by a bank of switches and plugs resembling an
old-fashioned telephone switchboard. Arranging
the plugs and setting the switches in a certain
way causes the machine to act in accordance

Table 1.1

State Scanned square Operations Next state

a blank P[0], R b
b blank R c
c blank P[1], R d
d blank R a
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with the instructions in table 1.1. Other ways
of setting up the “switchboard” cause the
machine to act in accordance with other tables
of instructions.

The universal Turing machine

The UTM has a single, fixed table of instructions,
which we may imagine to have been set into the
machine by way of the switchboard-like arrange-
ment just mentioned. Operating in accordance
with this table of instructions, the UTM is able
to carry out any task for which a Turing-
machine instruction table can be written. The
trick is to place an instruction table for carrying
out the desired task onto the tape of the universal
machine, the first line of the table occupying the
first so many squares of the tape, the second
line the next so many squares, and so on. The
UTM reads the instructions and carries them
out on its tape. This ingenious idea is funda-
mental to computer science. The universal Turing
machine is in concept the stored-program digital
computer.

Turing’s greatest contributions to the develop-
ment of the modern computer were:

• The idea of controlling the function of the
computing machine by storing a program of
(symbolically or numerically encoded) instruc-
tions in the machine’s memory.

• His proof that, by this means, a single
machine of fixed structure is able to carry out
every computation that can be carried out by
any Turing machine whatsoever.

Human Computation

When Turing wrote “On Computable Num-
bers,” a computer was not a machine at all, but
a human being – a mathematical assistant who
calculated by rote, in accordance with some
“effective method” supplied by an overseer prior
to the calculation. A paper-and-pencil method is
said to be effective, in the mathematical sense,
if it (a) demands no insight or ingenuity from

the human carrying it out, and (b) produces
the correct answer in a finite number of steps.
(An example of an effective method well-known
among philosophers is the truth table test for
tautologousness.) Many thousands of human
computers were employed in business, govern-
ment, and research establishments, doing some
of the sorts of calculating work that nowadays
is performed by electronic computers. Like
filing clerks, computers might have little detailed
knowledge of the end to which their work was
directed.

The term “computing machine” was used to
refer to calculating machines that mechanized
elements of the human computer’s work. These
were in effect homunculi, calculating more
quickly than an unassisted human computer, but
doing nothing that could not in principle be
done by a human clerk working effectively. Early
computing machines were somewhat like today’s
nonprogrammable hand-calculators: they were
not automatic, and each step – each addition,
division, and so on – was initiated manually
by the human operator. For a complex calcula-
tion, several dozen human computers might be
required, each equipped with a desk-top com-
puting machine. By the 1940s, however, the scale
of some calculations required by physicists and
engineers had become so great that the work
could not easily be done in a reasonable time by
even a roomful of human computers with desk-
top computing machines. The need to develop
high-speed, large-scale, automatic computing
machinery was pressing.

In the late 1940s and early 1950s, with the
advent of electronic computing machines, the
phrase “computing machine” gave way gradu-
ally to “computer.” During the brief period in
which the old and new meanings of “computer”
co-existed, the prefix “electronic” or “digital”
would usually be used in order to distinguish
machine from human. As Turing stated, the new
electronic machines were “intended to carry out
any definite rule of thumb process which could
have been done by a human operator work-
ing in a disciplined but unintelligent manner”
(Turing 1950: 1). Main-frames, laptops, pocket
calculators, palm-pilots – all carry out work that
a human rote-worker could do, if he or she
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worked long enough, and had a plentiful enough
supply of paper and pencils.

The Turing machine is an idealization of
the human computer (Turing 1936: 231).
Wittgenstein put this point in a striking way:

Turing’s “Machines.” These machines are
humans who calculate. (Wittgenstein 1980:
§1096)

It was not, of course, some deficiency of
imagination that led Turing to model his logical
computing machines on what can be achieved
by a human being working effectively. The pur-
pose for which he introduced them demanded
it. The Turing machine played a key role in his
demonstration that there are mathematical tasks
which cannot be carried out by means of an
effective method.

The Church–Turing Thesis

The concept of an effective method is an informal
one. Attempts such as the above to explain what
counts as an effective method are not rigorous,
since the requirement that the method demand
neither insight nor ingenuity is left unexplicated.
One of Turing’s leading achievements – and
this was a large first step in the development
of the mathematical theory of computation –
was to propose a rigorously defined expression
with which the informal expression “by means
of an effective method” might be replaced. The
rigorously defined expression, of course, is “by
means of a Turing machine.” The importance
of Turing’s proposal is this: if the proposal is
correct, then talk about the existence and non-
existence of effective methods can be replaced
throughout mathematics and logic by talk about
the existence or non-existence of Turing machine
programs. For instance, one can establish that
there is no effective method at all for doing such-
and-such a thing by proving that no Turing
machine can do the thing in question.

Turing’s proposal is encapsulated in the
Church–Turing thesis, also known simply as
Turing’s thesis :

The UTM is able to perform any calculation
that any human computer can carry out.

An equivalent way of stating the thesis is:

Any effective – or mechanical – method can
be carried out by the UTM.

(“Mechanical” is a term of art in mathematics
and logic. It does not carry its everyday meaning,
being in its technical sense simply a synonym
for “effective.”) Notice that the converse of the
thesis – any problem-solving method that can be
carried out by the UTM is effective – is obvi-
ously true, since a human being can, in principle,
work through any Turing-machine program,
obeying the instructions (“in principle” because
we have to assume that the human does not go
crazy with boredom, or die of old age, or use up
every sheet of paper in the universe).

Church independently proposed a different
way of replacing talk about effective methods with
formally precise language (Church 1936a). Tur-
ing remarked that his own way of proceeding
was “possibly more convincing” (1937: 153);
Church acknowledged the point, saying that
Turing’s concept of computation by Turing
machine “has the advantage of making the iden-
tification with effectiveness . . . evident immedi-
ately” (Church 1937: 43).

The name “Church–Turing thesis,” now
standard, seems to have been introduced by
Kleene, with a flourish of bias in favor of his
mentor Church (Kleene 1967: 232):

Turing’s and Church’s theses are equivalent.
We shall usually refer to them both as Church’s
thesis, or in connection with that one of
its . . . versions which deals with “Turing
machines” as the Church–Turing thesis.

Soon ample evidence amassed for the Church–
Turing thesis. (A survey is given in chs. 12 and
13 of Kleene 1952.) Before long it was (as Turing
put it) “agreed amongst logicians” that his pro-
posal gives the “correct accurate rendering” of
talk about effective methods (Turing 1948: 7).
(Nevertheless, there have been occasional dis-
senting voices over the years; for example Kalmár
1959 and Péter 1959.)
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Beyond the Universal Turing
Machine

Computable and uncomputable
numbers

Turing calls any number that can be written out
by a Turing machine a computable number. That
is, a number is computable, in Turing’s sense, if
and only if there is a Turing machine that calcu-
lates each digit of the number’s decimal representa-
tion, in sequence. π, for example, is a computable
number. A suitably programmed Turing machine
will spend all eternity writing out the decimal
representation of π digit by digit, 3.14159 . . .

Straight off, one might expect it to be the
case that every number that has a decimal rep-
resentation (that is to say, every real number) is
computable. For what could prevent there being,
for any particular number, a Turing machine that
“churns out” that number’s decimal representa-
tion digit by digit? However, Turing proved that
not every real number is computable. In fact,
computable numbers are relatively scarce among
the real numbers. There are only countably many
computable numbers, because there are only
countably many different Turing-machine pro-
grams (instruction tables). (A collection of things
is countable if and only if either the collection
is finite or its members can be put into a one-
to-one correspondence with the integers, 1,
2, 3, . . . .) As Georg Cantor proved in 1874,
there are uncountably many real numbers – in
other words, there are more real numbers than
integers. There are literally not enough Turing-
machine programs to go around in order for
every real number to be computable.

The printing problem and the
halting problem

Turing described a number of mathematical
problems that cannot be solved by Turing
machine. One is the printing problem. Some pro-
grams print “0” at some stage in their computa-
tions; all the remaining programs never print
“0.” The printing problem is the problem of
deciding, given any arbitrarily selected program,

into which of these two categories it falls. Turing
showed that this problem cannot be solved by
the UTM.

The halting problem (Davis 1958) is another
example of a problem that cannot be solved by
the UTM (although not one explicitly consid-
ered by Turing). This is the problem of deter-
mining, given any arbitrary Turing machine,
whether or not the machine will eventually halt
when started on a blank tape. The machine
shown in table 1.1 is rather obviously one of
those that never halts – but in other cases it is
definitely not obvious from a machine’s table
whether or not it halts. And, of course, simply
watching the machine run (or a simulation of
the machine) is of no help at all, for what can be
concluded if after a week or a year the machine
has not halted? If the machine does eventually
halt, a watching human – or Turing machine –
will sooner or later find this out; but in the case
of a machine that has not yet halted, there is no
effective method for deciding whether or not it
is going to halt.

The halting function

A function is a mapping from “arguments” (or
inputs) to “values” (or outputs). For example,
addition (+) is a function that maps pairs of num-
bers to single numbers: the value of the function
+ for the pair of arguments 5, 7 is the number
12. The squaring function maps single numbers
to single numbers: e.g. the value of n2 for the
argument 3 is 9.

A function is said to be computable by Turing
machine if some Turing machine will take in
arguments of the function (or pairs of arguments,
etc.) and, after carrying out some finite number
of basic operations, produce the corresponding
value – and, moreover, will do this no matter
which argument of the function is presented. For
example, addition over the integers is comput-
able by Turing machine, since a Turing machine
can be set up so that whenever two integers are
inscribed on its tape (in binary notation, say),
the machine will output their sum.

The halting function is as follows. Assume the
Turing machines to be ordered in some way, so
that we may speak of the first machine in the
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ordering, the second, and so on. (There are vari-
ous standard ways of accomplishing this order-
ing, e.g. in terms of the number of symbols in
each machine’s instruction table.) The arguments
of the halting function are simply 1, 2, 3, . . . .
(Like the squaring function, the halting func-
tion takes single arguments.) The value of the
halting function for any argument n is 1 if the
nth Turing machine in the ordering eventually
halts when started on a blank tape, and is 0 if
the nth machine runs on forever (as would, for
example, a Turing machine programmed to pro-
duce in succession the digits of the decimal rep-
resentation of π).

The theorem that the UTM cannot solve the
halting problem is often expressed in terms of
the halting function.

Halting theorem: The halting function is
not computable by Turing machine.

The Entscheidungsproblem

The Entscheidungsproblem, or decision problem,
was Turing’s principal quarry in “On Computable
Numbers.” The decision problem was brought
to the fore of mathematics by the German math-
ematician David Hilbert (who in a lecture given
in Paris in 1900 set the agenda for much of
twentieth-century mathematics). Hilbert and his
followers held that mathematicians should seek
to express mathematics in the form of a com-
plete, consistent, decidable formal system – a
system expressing “the entire thought-content
of mathematics in a uniform way” (Hilbert 1927:
475). The project of formulating mathematics in
this way became known as the “Hilbert program.”

A consistent system is one that contains no
contradictions; a complete system one in which
every true mathematical statement is provable.
“Decidable” means that there is an effective
method for telling, of each mathematical state-
ment, whether or not the statement is provable
in the system. A complete, consistent, decidable
system would banish ignorance from math-
ematics. Given any mathematical statement, one
would be able to tell whether the statement is
true or false by deciding whether or not it is
provable in the system. Hilbert famously declared

in his Paris lecture: “in mathematics there is no
ignorabimus” (there is no we shall not know)
(Hilbert 1902: 445).

It is important that the system expressing the
“whole thought content of mathematics” be
consistent. An inconsistent system – a system
containing contradictions – is worthless, since
any statement whatsoever, true or false, can be
derived from a contradiction by simple logical
steps. So in an inconsistent system, absurdities
such as 0 = 1 and 6 ≠ 6 are provable. An incon-
sistent system would indeed contain all true
mathematical statements – would be complete,
in other words – but would in addition also
contain all false mathematical statements.

If ignorance is to be banished absolutely, the
system must be decidable. An undecidable sys-
tem might on occasion leave us in ignorance.
Only if the mathematical system were decidable
could we be confident of always being able to
tell whether or not any given statement is prov-
able. Unfortunately for the Hilbert program,
however, it became clear that most interesting
mathematical systems are, if consistent, incom-
plete and undecidable.

In 1931 Gödel showed that Hilbert’s ideal is
impossible to satisfy, even in the case of simple
arithmetic. He proved that the system called
Peano arithmetic is, if consistent, incomplete.
This is known as Gödel’s first incompleteness
theorem. (Gödel later generalized this result,
pointing out that “due to A. M. Turing’s work,
a precise and unquestionably adequate defini-
tion of the general concept of formal system can
now be given,” with the consequence that incom-
pleteness can “be proved rigorously for every
consistent formal system containing a certain
amount of finitary number theory” (Gödel 1965:
71).) Gödel had shown that no matter how
hard mathematicians might try to construct the
all-encompassing formal system envisaged by
Hilbert, the product of their labors would, if
consistent, inevitably be incomplete. As Hermann
Weyl – one of Hilbert’s greatest pupils –
observed, this was nothing less than “a catastro-
phe” for the Hilbert program (Weyl 1944: 644).

Gödel’s theorem does not mention decidabil-
ity. This aspect was addressed by Turing and by
Church. Each showed, working independently,
that no consistent formal system of arithmetic is
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decidable. They showed this by proving that not
even the weaker, purely logical system presup-
posed by any formal system of arithmetic and
called the first-order predicate calculus is decid-
able. Turing’s way of proving that the first-
order predicate calculus is undecidable involved
the printing problem. He showed that if a Tur-
ing machine could tell, of any given statement,
whether or not the statement is provable in the
first-order predicate calculus, then a Turing
machine could tell, of any given Turing machine,
whether or not it ever prints “0.” Since, as he
had already established, no Turing machine can
do the latter, it follows that no Turing machine
can do the former. The final step of the argu-
ment is to apply Turing’s thesis: if no Turing
machine can perform the task in question, then
there is no effective method for performing it.
The Hilbertian dream lay in total ruin.

Poor news though Turing’s and Church’s
result was for the Hilbert school, it was wel-
come news in other quarters, for a reason that
Hilbert’s illustrious pupil von Neumann had
given in 1927 (von Neumann 1927: 12):

If undecidability were to fail then mathematics,
in today’s sense, would cease to exist; its place
would be taken by a completely mechanical
rule, with the aid of which any man would be
able to decide, of any given statement, whether
the statement can be proven or not.

In a similar vein, the Cambridge mathematician
G. H. Hardy said in a lecture in 1928 (Hardy
1929: 16):

if there were . . . a mechanical set of rules for
the solution of all mathematical problems . . .
our activities as mathematicians would come
to an end.

The next section is based on Copeland 1996.

Misunderstandings of the
Church–Turing Thesis:
The Limits of Machines

A myth has arisen concerning Turing’s work,
namely that he gave a treatment of the limits of

mechanism, and established a fundamental result
to the effect that the UTM can simulate the
behavior of any machine. The myth has passed
into the philosophy of mind, theoretical psycho-
logy, cognitive science, Artificial Intelligence,
and Artificial Life, generally to pernicious effect.
For example, the Oxford Companion to the Mind
states: “Turing showed that his very simple
machine . . . can specify the steps required for
the solution of any problem that can be solved
by instructions, explicitly stated rules, or proced-
ures” (Gregory 1987: 784). Dennett maintains
that “Turing had proven – and this is probably
his greatest contribution – that his Universal
Turing machine can compute any function that
any computer, with any architecture, can com-
pute” (1991: 215); also that every “task for
which there is a clear recipe composed of simple
steps can be performed by a very simple com-
puter, a universal Turing machine, the universal
recipe-follower” (1978: xviii). Paul and Patricia
Churchland assert that Turing’s “results entail
something remarkable, namely that a standard
digital computer, given only the right program,
a large enough memory and sufficient time, can
compute any rule-governed input–output func-
tion. That is, it can display any systematic pat-
tern of responses to the environment whatsoever”
(1990: 26). Even Turing’s biographer, Hodges,
has endorsed the myth:

Alan had . . . discovered something almost . . .
miraculous, the idea of a universal machine
that could take over the work of any machine.
(Hodges 1992: 109)

Turing did not show that his machines can
solve any problem that can be solved “by instruc-
tions, explicitly stated rules, or procedures,” and
nor did he prove that the UTM “can compute
any function that any computer, with any archi-
tecture, can compute” or perform any “task for
which there is a clear recipe composed of simple
steps.” As previously explained, what he proved
is that the UTM can carry out any task that any
Turing machine can carry out. Each of the claims
just quoted says considerably more than this.

If what the Churchlands assert were true, then
the view that psychology must be capable of
being expressed in standard computational terms

10
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would be secure (as would a number of other
controversial claims). But Turing had no result
entailing that “a standard digital computer . . . can
compute any rule-governed input–output func-
tion.” What he did have was a result entailing
the exact opposite. The theorem that no Turing
machine can decide the predicate calculus entails
that there are rule-governed input–output func-
tions that no Turing machine is able to compute
– for example, the function whose output is 1
whenever the input is a statement that is prov-
able in the predicate calculus, and is 0 for all
other inputs. There are certainly possible pat-
terns of responses to the environment, perfectly
systematic patterns, that no Turing machine
can display. One is the pattern of responses just
described. The halting function is a mathemat-
ical characterization of another such pattern.

Distant cousins of the
Church–Turing thesis

As has already been emphasized, the Church–
Turing thesis concerns the extent of effective
methods. Putting this another way (and ignoring
contingencies such as boredom, death, or insuf-
ficiency of paper), the thesis concerns what a
human being can achieve when working by rote
with paper and pencil. The thesis carries no im-
plication concerning the extent of what machines
are capable of achieving (even digital machines
acting in accordance with “explicitly stated
rules”). For among a machine’s repertoire of basic
operations, there may be those that no human
working by rote with paper and pencil can
perform.

Essentially, then, the Church–Turing thesis
says that no human computer, or machine that
mimics a human computer, can out-compute the
UTM. However, a variety of other propositions,
very different from this, are from time to time
called the Church–Turing thesis (or Church’s
thesis), sometimes but not always with accom-
panying hedges such as “strong form” and
“physical version.” Some examples from the re-
cent literature are given below. This loosening
of established terminology is unfortunate, and
can easily lead to misunderstandings. In what
follows I use the expression “Church–Turing

thesis properly so called” for the proposition that
Turing and Church themselves endorsed.

[C]onnectionist models . . . may possibly even
challenge the strong construal of Church’s
Thesis as the claim that the class of well-
defined computations is exhausted by those of
Turing machines. (Smolensky 1988: 3)

Church–Turing thesis: If there is a well defined
procedure for manipulating symbols, then a
Turing machine can be designed to do the
procedure. (Henry 1993: 149)

[I]t is difficult to see how any language that
could actually be run on a physical computer
could do more than Fortran can do. The
idea that there is no such language is called
Church’s thesis. (Geroch & Hartle 1986: 539)

The first aspect that we examine of Church’s
Thesis . . . [w]e can formulate, more precisely:
The behaviour of any discrete physical system
evolving according to local mechanical laws is
recursive. (Odifreddi 1989: 107)

I can now state the physical version of the
Church–Turing principle: “Every finitely real-
izable physical system can be perfectly simu-
lated by a universal model computing machine
operating by finite means.” This formulation
is both better defined and more physical than
Turing’s own way of expressing it. (Deutsch
1985: 99)

That there exists a most general formulation
of machine and that it leads to a unique set of
input–output functions has come to be called
Church’s thesis. (Newell 1980: 150)

The maximality thesis

It is important to distinguish between the
Church–Turing thesis properly so called and what
I call the “maximality thesis” (Copeland 2000).
(Among the few writers to distinguish explicitly
between Turing’s thesis and stronger proposi-
tions along the lines of the maximality thesis are
Gandy 1980 and Sieg 1994.)

A machine m is said to be able to generate a
certain function if m can be set up so that if m is

11
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presented with any of the function’s arguments,
m will carry out some finite number of atomic
processing steps at the end of which m produces
the corresponding value of the function (mutatis
mutandis in the case of functions that, like addi-
tion, demand more than one argument).

Maximality Thesis: All functions that can
be generated by machines (working on finite
input in accordance with a finite program
of instructions) are computable by Turing
machine.

The maximality thesis (“thesis M”) admits of
two interpretations, according to whether the
phrase “can be generated by machine” is taken
in the this-worldly sense of “can be generated
by a machine that conforms to the physical laws
(if not to the resource constraints) of the actual
world,” or in a sense that abstracts from whether
or not the envisaged machine could exist in the
actual world. Under the latter interpretation,
thesis M is false. It is straightforward to describe
abstract machines that generate functions that
cannot be generated by the UTM (see e.g.
Abramson 1971, Copeland 2000, Copeland &
Proudfoot 2000, Stewart 1991). Such machines
are termed “hypercomputers” in Copeland and
Proudfoot (1999a).

It is an open empirical question whether or
not the this-worldly version of thesis M is true.
Speculation that there may be physical processes
– and so, potentially, machine-operations – whose
behavior conforms to functions not computable
by Turing machine stretches back over at least
five decades. (Copeland & Sylvan 1999 is a sur-
vey; see also Copeland & Proudfoot 1999b.)

A source of potential misunderstanding about
the limits of machines lies in the difference
between the technical and everyday meanings of
the word “mechanical.” As previously remarked,
in technical contexts “mechanical” and “effect-
ive” are often used interchangeably. (Gandy 1988
outlines the history of this usage of the word
“mechanical.”) For example:

Turing proposed that a certain class of abstract
machines could perform any “mechanical”
computing procedure. (Mendelson 1964: 229)

Understood correctly, this remark attributes to
Turing not a thesis concerning the limits of what
can be achieved by machine but the Church–
Turing thesis properly so called.

The technical usage of “mechanical” tends
to obscure the possibility that there may be
machines, or biological organs, that generate (or
compute, in a broad sense) functions that cannot
be computed by Turing machine. For the ques-
tion “Can a machine execute a procedure that
is not mechanical?” may appear self-answering,
yet this is precisely what is asked if thesis M is
questioned.

In the technical literature, the word “comput-
able” is often tied by definition to effectiveness:
a function is said to be computable if and only if
there is an effective method for determining its
values. The Church–Turing thesis then becomes:

Every computable function can be computed
by Turing machine.

Corollaries such as the following are sometimes
stated:

[C]ertain functions are uncomputable in an
absolute sense: uncomputable even by [Turing
machine], and, therefore, uncomputable by any
past, present, or future real machine. (Boolos
& Jeffrey 1980: 55)

When understood in the sense in which it is
intended, this remark is perfectly true. However,
to a casual reader of the technical literature, such
statements may appear to say more than they in
fact do.

Of course, the decision to tie the term “com-
putable” and its cognates to the concept of effect-
iveness does not settle the truth-value of thesis M.
Those who abide by this terminological decision
will not describe a machine that falsifies thesis M
as computing the function that it generates.

Putnam is one of the few writers on the
philosophy of mind to question the proposition
that Turing machines provide a maximally gen-
eral formulation of the notion of machine:

[M]aterialists are committed to the view that
a human being is – at least metaphorically – a
machine. It is understandable that the notion
of a Turing machine might be seen as just a
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way of making this materialist idea precise.
Understandable, but hardly well thought out.
The problem is the following: a “machine” in
the sense of a physical system obeying the laws
of Newtonian physics need not be a Turing
machine. (Putnam 1992: 4)

The Church–Turing fallacy

To commit what I call the Church–Turing fallacy
(Copeland 2000, 1998) is to believe that the
Church–Turing thesis, or some formal or semi-
formal result established by Turing or Church,
secures the following proposition:

If the mind–brain is a machine, then the
Turing-machine computable functions pro-
vide sufficient mathematical resources for a
full account of human cognition.

Perhaps some who commit this fallacy are misled
purely by the terminological practice already men-
tioned, whereby a thesis concerning which there
is little real doubt, the Church–Turing thesis pro-
perly so called, and a nexus of different theses,
some of unknown truth-value, are all referred to
as Church’s thesis or the Church–Turing thesis.

The Church–Turing fallacy has led to some
remarkable claims in the foundations of psycho-
logy. For example, one frequently encounters the
view that psychology must be capable of being
expressed ultimately in terms of the Turing ma-
chine (e.g. Fodor 1981: 130; Boden 1988: 259).
To anyone in the grip of the Church–Turing
fallacy, conceptual space will seem to contain no
room for mechanical models of the mind–brain
that are not equivalent to a Turing machine. Yet
it is certainly possible that psychology will find
the need to employ models of human cognition
that transcend Turing machines (see Chapter 10,
COMPUTATIONALISM, CONNECTIONISM, AND THE

PHILOSOPHY OF MIND).

The simulation fallacy

A closely related error, unfortunately also com-
mon in modern writing on computation and the
brain, is to hold that Turing’s results somehow

entail that the brain, and indeed any biological
or physical system whatever, can be simulated by
a Turing machine. For example, the entry on
Turing in A Companion to the Philosophy of Mind
contains the following claims: “we can depend
on there being a Turing machine that captures
the functional relations of the brain,” for so long
as “these relations between input and output
are functionally well-behaved enough to be de-
scribable by . . . mathematical relationships . . . we
know that some specific version of a Turing
machine will be able to mimic them” (Guttenplan
1994: 595). Even Dreyfus, in the course of criti-
cizing the view that “man is a Turing machine,”
succumbs to the belief that it is a “fundamental
truth that every form of ‘information process-
ing’ (even those which in practice can only be
carried out on an ‘analogue computer’) must in
principle be simulable on a [Turing machine]”
(1992: 195).

Searle writes in a similar fashion:

If the question [“Is consciousness comput-
able?”] asks “Is there some level of description
at which conscious processes and their cor-
related brain processes can be simulated [by a
Turing machine]?” the answer is trivially yes.
Anything that can be described as a precise
series of steps can be simulated [by a Turing
machine]. (Searle 1997: 87)

Can the operations of the brain be simulated
on a digital computer? . . . The answer seems
to me . . . demonstrably “Yes” . . . That is,
naturally interpreted, the question means: Is
there some description of the brain such that
under that description you could do a com-
putational simulation of the operations of the
brain. But given Church’s thesis that anything
that can be given a precise enough character-
ization as a set of steps can be simulated on a
digital computer, it follows trivially that the
question has an affirmative answer. (Searle
1992: 200)

Church’s thesis properly so called does not say
that anything that can be described as a precise
series of of steps can be simulated by Turing
machine.

Similarly, Johnson-Laird and the Churchlands
argue:
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If you assume that [consciousness] is scient-
ifically explicable . . . [and] [g]ranted that the
[Church–Turing] thesis is correct, then the
final dichotomy rests on Craik’s functionalism.
If you believe [functionalism] to be false . . .
then presumably you hold that consciousness
could be modelled in a computer program in
the same way that, say, the weather can be
modelled . . . If you accept functionalism, how-
ever, then you should believe that conscious-
ness is a computational process. (Johnson-Laird
1987: 252)

Church’s Thesis says that whatever is com-
putable is Turing computable. Assuming,
with some safety, that what the mind-brain
does is computable, then it can in principle be
simulated by a computer. (Churchland &
Churchland 1983: 6)

As previously mentioned, the Churchlands
believe, incorrectly, that Turing’s “results entail
. . . that a standard digital computer, given only
the right program, a large enough memory and
sufficient time, can . . . display any systematic
pattern of responses to the environment whatso-
ever” (1990: 26). This no doubt explains why
they think they can assume “with some safety”
that what the mind–brain does is computable,
for on their understanding of matters, this is to
assume only that the mind–brain is character-
ized by a “rule-governed” (1990: 26) input–
output function.

The Church–Turing thesis properly so called
does not entail that the brain (or the mind, or
consciousness) can be simulated by a Turing
machine, not even in conjunction with the belief
that the brain (or mind, etc.) is scientifically
explicable, or exhibits a systematic pattern of
responses to the environment, or is “rule-
governed” (etc.). Each of the authors quoted
seems to be assuming the truth of a close relat-
ive of thesis M, which I call “thesis S” (Copeland
2000).

Thesis S: Any process that can be given
a mathematical description (or a “precise
enough characterization as a set of steps,”
or that is scientifically describable or scient-
ifically explicable) can be simulated by a
Turing machine.

As with thesis M, thesis S is trivially false if it
is taken to concern all conceivable processes, and
its truth-value is unknown if it is taken to con-
cern only processes that conform to the physics
of the real world. For all we presently know, a
completed neuroscience may present the mind–
brain as a machine that – when abstracted out
from sources of inessential boundedness, such as
mortality – generates functions that no Turing
machine can generate.

The equivalence fallacy

Paramount among the evidence for the Church–
Turing thesis properly so called is the fact that
all attempts to give an exact analysis of the intuit-
ive notion of an effective method have turned
out to be equivalent, in the sense that each ana-
lysis has been proved to pick out the same class
of functions, namely those that are computable
by Turing machine. (For example, there have
been analyses in terms of lambda-definability,
recursivenes, register machines, Post’s canonical
and normal systems, combinatory definability,
Markov algorithms, and Gödel’s notion of
reckonability.) Because of the diversity of these
various analyses, their equivalence is generally
considered very strong evidence for the Church–
Turing thesis (although for a skeptical point of
view see Kreisel 1965: 144).

However, the equivalence of these diverse
analyses is sometimes taken to be evidence also
for stronger theses like M and S. This is nothing
more than a confusion – the equivalence fallacy
(Copeland 2000). The analyses under discussion
are of the notion of an effective method, not of
the notion of a machine-generable function; the
equivalence of the analyses bears only on the
issue of the extent of the former notion and
indicates nothing concerning the extent of the
latter.

Artificial intelligence and the
equivalence fallacy

Newell, discussing the possibility of artificial
intelligence, argues that (what he calls) a “phys-
ical symbol system” can be organized to exhibit
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general intelligence. A “physical symbol system”
is a universal Turing machine, or any equivalent
system, situated in the physical – as opposed
to the conceptual – world. (The tape of the
machine is accordingly finite; Newell specifies that
the storage capacity of the tape [or equivalent]
be unlimited in the practical sense of finite yet
not small enough to “force concern.”)

A [physical symbol] system always contains
the potential for being any other system if so
instructed. Thus, a [physical symbol] system
can become a generally intelligent system.
(Newell 1980: 170)

Is the premise of this pro-AI argument true?
A physical symbol system, being a universal
Turing machine situated in the real world, can,
if suitably instructed, simulate (or, metaphoric-
ally, become) any other physical symbol system
(modulo some fine print concerning storage
capacity). If this is what the premise means, then
it is true. However, if taken literally, the premise
is false, since as previously remarked, systems
can be specified which no Turing machine – and
so no physical symbol system – can simulate.
However, if the premise is interpreted in the
former manner, so that it is true, the conclusion
fails to follow from the premise. Only to one who
believes, as Newell does, that “the notion of
machine or determinate physical mechanism” is
“formalized” by the notion of a Turing machine
(ibid.) will the argument appear deductively valid.

Newell’s defense of his view that the uni-
versal Turing machine exhausts the possibilities
of mechanism involves an example of the equi-
valence fallacy:

[An] important chapter in the theory of com-
puting . . . has shown that all attempts to . . .
formulate . . . general notions of mechanism
. . . lead to classes of machines that are equival-
ent in that they encompass in toto exactly the
same set of input–output functions. In effect,
there is a single large frog pond of functions
no matter what species of frogs (types of
machines) is used. . . . A large zoo of different
formulations of maximal classes of machines is
known by now – Turing machines, recursive
functions, Post canonical systems, Markov
algorithms . . . (Newell 1980: 150)

Newell’s a priori argument for the claim that a
physical symbol system can become generally
intelligent founders in confusion.

Conclusion

Since there are problems that cannot be solved
by Turing machine, there are – given the
Church–Turing thesis – limits to what can be
accomplished by any form of machine that works
in accordance with effective methods. However,
not all possible machines share those limits. It is
an open empirical question whether there are
actual deterministic physical processes that, in the
long run, elude simulation by Turing machine;
and, if so, whether any such processes could use-
fully be harnessed in some form of calculating
machine. It is, furthermore, an open empirical
question whether any such processes are involved
in the working of the human brain.
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Chapter 2

Complexity
Alasdair Urquhart

other subjects. Much of this research is centered
in the Santa Fe Institute in New Mexico, where
work on “complex systems” of various kinds
is done. The confusion between the two fields
arises from the fact that the word “complexity”
is often used in different ways. A system or object
could reasonably be described as “complex”
under various conditions: if it consists of many
interacting parts; if it is disordered or exhibits
high entropy; if it exhibits diversity based on
hierarchical structure; if it exhibits detail on many
different scales, like fractal sets. Some of these
meanings of “complexity” are connected with
the theory of computational complexity, but
some are only tangentially related. In the present
chapter, we confine ourselves to the simple quant-
itative measures of time and space complexity of
computations.

A widely accepted working hypothesis in the
theoretical computer science community is that
practically feasible algorithms can be identified
with those whose running time can be bounded
by a polynomial in the size of the input. For
example, an algorithm that runs in time 10n for
inputs with n symbols would be very efficient;
this would be described as an algorithm running
in linear time. A quadratic time algorithm runs
in time cn2 for some constant c; obviously such
an algorithm is considerably less efficient than a
linear time algorithm, but could be quite prac-
tical for inputs of reasonable size. On the other

1 Introduction

The theory of computational complexity is con-
cerned with estimating the resources a computer
needs to solve a problem. The basic resources
are time (number of steps in a computation)
and space (amount of memory used). There are
problems in computer science, logic, algebra, and
calculus that are solvable in principle by com-
puters, but, in the worst case, require completely
infeasible amounts of space or time, so that in
practical terms they are insoluble. The goal of
complexity theory is to classify problems accord-
ing to their complexity, particularly problems that
are important in applications such as cryptology,
linear programming, and combinatorial optimiza-
tion. A major result of the theory is that prob-
lems fall into strict hierarchies when categorized
in accordance with their space and time require-
ments. The theory has been less successful in
relating the two basic measures; there are major
open questions about problems that are solvable
using only small space, but for which the best
algorithms known use exponential time.

The theory discussed in this chapter should
be distinguished from another area often called
“complexity theory,” a loosely defined interdis-
ciplinary stream of research that includes work
on complex dynamical systems, chaos theory,
artificial life, self-organized criticality, and many
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hand, a computer procedure requiring time ex-
ponential in the size of the input very rapidly
leads to infeasible running times.

To illustrate the point of the previous para-
graph, consider a modern fast computer. The
speed of such machines is often measured in the
number of numerical operations performed per
second; a commonly used standard is the num-
ber of floating-point operations per second. Sup-
pose we have a machine that performs a million
floating-point operations per second, slow by
current supercomputer standards. Then an algo-
rithm that requires n2 such operations for an
input of size n would take only a quarter of a
second for an input of size 500. Even if the
running time is bounded by n3, an input of size
500 would require at most 2 minutes 5 seconds.
On the other hand, an algorithm running in time
2n could in the worst case take over 35 years
for an input of size 50. The reader can easily
verify with the help of a pocket calculator that
this dramatic difference between polynomial and
exponential growth is robust, in the sense that
a thousand-fold increase in computer speed only
adds 10 to the size of the largest problem instance
we can solve in an hour with an exponential (2n)
time algorithm, whereas with a quadratic (n2)
time algorithm, the largest such problem increases
by a factor of over 30.

The theory of computational complexity has
provided rigorous proofs of the existence of com-
putational problems for which such exponential
behavior is unavoidable. This means that for
such problems, there are infinitely many “diffi-
cult” instances, for which any algorithm solving
the problem must take an exponentially long
time. An especially interesting and important class
of problems is the category of NP-complete
problems, of which the satisfiability problem of
propositional logic is the best-known case. These
problems all take the form of asking for a solu-
tion of a certain set of constraints (formulas of
propositional logic, in the case of the satisfiabil-
ity problem), where a proposed solution can be
quickly checked to see if it is indeed a solu-
tion, but in general there are exponentially many
candidate solutions. As an example of such a
problem, consider the problem of coloring a large
and complicated map with only three colors so
that no two countries with a common border

are colored alike (see below for more details
on this problem). The only known general
algorithms for such problems require exponenti-
ally long run-times in the worst case, and it is
widely conjectured that no polynomial time algo-
rithms exist for them. This conjecture is usually
phrased as the inequality “P ≠ NP,” the central
open problem in theoretical computer science,
and perhaps the most important open problem
in mathematical logic.

In this chapter, we begin by giving an outline
of the basic definitions and results of complexity
theory, including the existence of space and time
hierarchies, then explain the basics of the theories
of NP-completeness and parallel computation.
The chapter concludes with some brief reflec-
tions on the relevance of complexity theory to
questions in the philosophy of computing.

2 Time and Space in
Computation

The theory of complexity analyzes the computa-
tional resources necessary to solve a problem.
The most important of these resources are time
(number of steps in a computation) and space
(storage capacity of the computer). This chapter is
mainly concerned with the complexity of decision
problems having infinitely many instances. There
is another approach to complexity applicable
to individual objects, in which the complexity
of an object is measured by the size of the short-
est program that produces a description of
it. This is the Kolmogorov complexity of the
object; Li and Vitányi (1997) give a readable
and detailed introduction to this subject in their
textbook.

The model for computation chosen here is
the Turing machine, as defined in the preceding
chapter. The time for a computation is the num-
ber of steps taken before the machine halts; the
space is the number of cells of the tape visited
by the reading head during the computation.
Several other models of sequential computa-
tion have been proposed. The time and space
complexity of a problem clearly depend on the
machine model adopted. However, the basic
concepts of complexity theory defined here are
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robust in the sense that they are the same for
any reasonable model of sequential computation.

Let Σ be a finite alphabet, and Σ* the set of
all finite strings in this alphabet. A subset of Σ*
is said to be a problem (often called a “lan-
guage”), and a string in Σ* an instance of the
problem. The size | s | of an instance s is its length,
i.e. the number of occurrences of symbols in it.
A function f defined on Σ* and having strings as
its values is computed by a Turing machine M if
for any string s in Σ*, if M is started with s on its
tape, then it halts with f (s) on its tape. A prob-
lem L is solvable (decidable) if there is a Turing
machine that computes the characteristic func-
tion of L (the function f such that f (s) = 1 if s
is in L and f (s) = 0 otherwise). For example,
the satisfiability problem of determining whether
a formula of propositional logic is satisfiable
or not is solvable by the familiar method of
truth-tables.

Solvable problems can be classified according
to the time and space required for their solu-
tion. If f is a computable function, then we say
that f is computable in time T (n) if there is a
Turing machine computing f that for any input s
halts with output f (s) after O(T(| s |)) steps (that
is, there is a constant c such that M halts in at
most c · T(| s |) steps). Similarly, f is computable
in space T(n) if there is a machine M computing
f so that for any input s, M halts after visiting
O(T(| s |)) squares on its tape. A problem L is
solvable in time T(n) if the characteristic func-
tion of L is computable in time T(n); L is solv-
able in space S(n) if the characteristic function
of L is computable in space S(n). For example,
the truth-table method shows that the satisfiabil-
ity problem can be solved in time 2n and space n
(we need only enough tape space to evaluate the
truth-table one row at a time).

As an illustration of these rather abstract defini-
tions, let us consider a concrete problem. Sup-
pose that our alphabet contains only two symbols,
so that Σ = {a; b}, and Σ* is the set of all finite
strings consisting of a’s and b’s. The palindrome
problem PAL is defined by letting the instances
in PAL be all those strings in Σ* that read the
same forward as backwards; for example, aba
and bbb are both palindromes, but ab and bba
are not. This problem can be solved in time n2

by a simple strategy that involves checking the

first against the last symbol, deleting these two
symbols, and repeating this step until either the
empty string (with no symbols at all) or a string
consisting of exactly one symbol is reached. (This
is an instructive exercise in Turing machine pro-
gramming.) In fact, it is not possible to do much
better than this simple algorithm. Any algorithm
for a single-tape Turing machine requires cn2

steps to solve PAL for some c > 0; for an elegant
proof of this fact using the “incompressibility
method” see Li and Vitányi (1997: ch. 6).

Other natural examples of computational
problems arise in the area of games. For example,
given a chess position, consider the problem: “Is
this a winning position for White?”; that is to
say, does White have a plan that forces check-
mate no matter how Black plays? In this case,
there is a simple but crude algorithm to answer
any such question – simply compile a database
of all possible board positions, then classify them
as winning, losing, or drawing for White by con-
sidering all possible continuations. Such databases
have been compiled for the case of endgames
with only a few pieces (for example, queen versus
rook endgames). Can we do better than this
brute-force approach? There are reasons to think
not. The results of Fraenkel and Lichtenstein
described below show that computing a perfect
strategy for a generalization of chess on an n by
n board requires time exponential in n.

One of the most significant complexity classes
is the class P of problems solvable in polynomial
time. A function f is polynomial-time comput-
able if there exists a polynomial p for which f is
computable in time p(n). A problem is solvable
in polynomial time if its characteristic function
is polynomial-time computable. The importance
of the class rests on the widely accepted working
hypothesis that the class of practically feasible
algorithms can be identified with those algorithms
that operate in polynomial time. Similarly, the
class PSPACE contains those problems solvable
in polynomial space. The class EXPTIME con-
sists of the problems solvable in exponential
time; a problem is solvable in exponential time if
there is a k for which it is solvable in time 2nk

.
The class EXPSPACE contains those problems
solvable in exponential space. The satisfiability
problem is in EXPTIME; whether it is in P is a
major open problem.
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3 Hierarchies and Reducibility

A fundamental early result of complexity theory
is the existence of strict hierarchies among prob-
lems. So, for example, we can prove that there
are problems that can be solved in time n2, but
not in time n, and similar theorems hold for
space bounds on algorithms. To state this result
in its most general form, we introduce the con-
cept of a space constructible function. A func-
tion S(n) is said to be space constructible if there
is a Turing machine M that is S(n) space
bounded, and for each n there is an input of
length n on which M actually uses S(n) tape
cells. All “reasonable” functions such as n2, n3,
and 2n are space constructible. The space hier-
archy theorem, proved by Hartmanis, Lewis and
Stearns in 1965, says that if S1(n) and S2(n) are
space constructible functions, and S2 grows faster
than S1 asymptotically, so that

lim inf ( )
( )

  ,
n

S n
S n→ ∞

=1

2

0

then there exists a problem solvable in space
S2(n), but not in space S1(n). A similar hierarchy
theorem holds for complexity classes defined by
time bounds. The hard problems constructed in
the proofs of the hierarchy theorems are pro-
duced by diagonalizing over classes of machines,
and so are not directly relevant to problems aris-
ing in practice. However, we can prove lower
bounds on the complexity of such problems by
using the technique of efficient reduction. We
wish to formalize the notion that one problem
can be reduced to another in the sense that if we
had an efficient algorithm for the second prob-
lem, then we would have an efficient algorithm
for the first. Let L1 and L2 be problems ex-
pressed in alphabets Σ1 and Σ2. L1 is said to be
polynomial-time reducible to L2 (briefly, reduc-
ible to L2) if there is a polynomial-time comput-
able function f from Σ1* to Σ*2 such that for any
string s in Σ1*, s is in L1 if and only if f (s) is in
L2. Other notions of reducibility can be defined
by varying the class of functions f that imple-
ment the reduction. The importance of the con-
cept lies in the fact that if we have an efficient
algorithm solving the problem L2, then we can

use the function f to produce an efficient algo-
rithm for L1. Conversely, if there is no efficient
algorithm for L1, then there cannot be an efficient
algorithm for L2. Notice that the class P is closed
under polynomial-time reductions since if L1 is
reducible to L2, and L2 is in P, then L1 is also
in P.

If C is a complexity class, and L is a problem
in C so that any problem in C is reducible to L,
then L is said to be C-complete. Such problems
are the hardest problems in C; if any problem
in C is computationally intractable, then a C-
complete problem is intractable. The technique
of reducing one problem to another is very flex-
ible, and has been used to show a large variety
of problems in computer science, combinatorics,
algebra, and combinatorial game theory intrac-
table. We now provide some examples of such
problems.

The time hierarchy theorem implies that there
are problems in EXPTIME that require expon-
ential time for their solution, no matter what
algorithm is employed. The reduction method
then allows us to draw the same conclusion for
other problems. For example, let us define gen-
eralized chess to be a game with rules similar to
standard chess, but played on an n × n board,
rather than an 8 × 8 board. Fraenkel and
Lichtenstein (1981) used the reduction technique
to show that generalized chess is EXPTIME-
complete, and hence computationally intractable.

EXPSPACE-complete problems are also com-
putationally intractable. An example of a prob-
lem of this type in classical algebra is provided by
the word problem for commutative semigroups.
Here the problem is given in the form of a finite
set of equations formed from a set of constants
using a single binary operation that is assumed
to be associative and commutative, together with
a fixed equation s = t. The problem is to deter-
mine whether s = t is deducible from the set of
equations, assuming the usual rules for equality.
Mayr and Meyer in 1981 showed this problem
to be EXPSPACE-complete, so that any algo-
rithm solving this problem must use an expon-
ential amount of space on infinitely many inputs.

Logic also provides a fertile source of examples
of intractable problems. Although the decision
problem for true sentences of number theory is
unsolvable, if we restrict ourselves to sentences
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that involve only the constants 0 and 1, together
with identity and the addition symbol, then there
is an algorithm to determine whether such a sen-
tence is true or false, a result proved by Presburger
in 1930. However, in 1973 Rabin and Fischer
showed that the inherent complexity of this prob-
lem is doubly exponential. This means that for
any machine solving this problem, there is a con-
stant c > 0 so that for infinitely many sentences
the machine takes at least 22cn

 steps to determine
whether it is true or not.

If we add quantification over finite sets, then
we can prove even more powerful lower bounds.
The weak monadic second-order theory of one
successor (WS1S) is formulated in a second-
order language with equality, the constant 0 and
a successor function. In the intended interpreta-
tion for this theory, the second-order quantifiers
range over finite sets of non-negative integers.
The decision problem for this theory was proved
to be solvable by Büchi in 1960, but its inherent
complexity is very high. Albert Meyer showed in
1972 that an algorithm deciding this theory must
use for infinitely many inputs of length n an
amount of space that is bounded from below by
an iterated exponential function, where the stack
contains at least dn iterations, for a fixed d > 0.

The conclusion of the previous paragraph
could be challenged by pointing out that Meyer’s
lower bound is an asymptotic result that does not
rule out a practical decision procedure for sen-
tences of practically feasible size. However, a fur-
ther result shows that astronomical lower bounds
can be proved for WS1S even if we restrict the
length of sentences. A Boolean network or cir-
cuit is an acyclic directed graph in which the
nodes are labeled with logical operators such
as AND, OR, NOT etc. Such a network with
designated input and output nodes computes a
Boolean function in an obvious way. Meyer and
Stockmeyer showed that any such network that
decides the truth of all sentences of WS1S of
length 616 or less must contain at least 10123

nodes. Even if the nodes were the size of a
proton and connected by infinitely thin wires, the
network would densely fill the known universe.

Inherently intractable problems also exist in the
area of nonclassical propositional logics. The area
of substructural logics, such as linear logic and
relevance logics, provides us with several such

examples. The implication-conjunction fragment
of the logic R of relevant implication was proved
decidable by Saul Kripke in 1959 using a sophist-
icated combinatorial lemma. The author of the
present chapter showed (Urquhart 1999) that
this propositional logic has no primitive recursive
decision procedure, so that Kripke’s intricate
method is essentially optimal. This is perhaps the
most complex decidable nonclassical logic known.

4 NP-completeness and Beyond

A very common type of computational problem
consists in searching for a solution to a fixed set
of conditions, where it is easy to check whether
a proposed solution really is one. Such solutions
may be scattered through a very large set, so
that in the worst case we may be reduced to
doing an exhaustive search through an exponen-
tially large set of possibilities. Many problems of
practical as well as theoretical interest can be
described in this general setting. The theory of
NP-completeness derives its central importance
in computer science from its success in provid-
ing a flexible theoretical framework for this type
of problem.

A problem L belongs to the class NP if there
is a polynomial p and a polynomial-time com-
putable relation R so that a string x is in L if and
only if there is a string y so that the length of y
is bounded by p(|x |), and R(x, y) holds. The
idea behind the definition is that we think of y
as a succinct proof (or ‘certificate’) that x is in P,
where we insist that we can check efficiently that
an alleged proof really is a proof.

Here are a few examples to illustrate this
definition. Consider the problem of determining
whether an integer in decimal notation is non-
prime (that is to say, the strings in the problem
are the decimal representations of numbers that
are not prime). Then a proof that a number x is
not prime consists of a pair of numbers y, z > 1
so that yz = x. The satisfiability problem is also
easily seen to be in NP. Here a positive instance
of the problem consists of a satisfiable formula F
of propositional logic; the proof that F is satisfi-
able is simply a line of a truth-table. It is obvi-
ous that we can check very quickly if a formula
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is satisfied by an assignment; on the other hand,
the best current algorithms for satisfiability in
the worst case are forced to check exponentially
many possibilities, thus being not much differ-
ent from the crude brute-force method of trying
all possible lines in the truth-table for a given
formula.

The satisfiability problem occupies a central
place in theoretical computer science as the best
known NP-complete problem. Any problem in
NP can be reduced efficiently to the satisfiability
problem. This reflects the fact that the language
of propositional logic forms a kind of universal
language for problems of this type. Given a prob-
lem in NP, it is usually a routine exercise to see
how to translate the problem into a set of condi-
tions in propositional logic so that the problem
has a solution if and only if the set of conditions
is satisfiable. For example, consider the problem
of coloring a map in the plane with three colors.
Here the problem takes the form of a map, and
a set of three colors, say red, white, and blue, so
that adjacent countries are colored differently.
We can formalize this problem by introducing
a set of constants to stand for the countries in
the map, and variables Rx, Wx, Bx to stand for
“Country x is colored red (white, blue).” The
reader should check that given a map, we can
quickly write down a corresponding set of con-
ditions in propositional logic that formalizes the
statement that the map can be properly colored
with the three colors.

Cook’s famous theorem of 1971 showing that
satisfiability is NP-complete was quickly followed
by proofs that many other well-known computa-
tional problems fall into this class. Since then,
thousands of significant problems have been
proved NP-complete; for a partial list, see the
book by Garey and Johnson (1979). The ubiquity
of NP-completeness in the theory of combinator-
ial problems means that a proof of P = NP (that
is to say, a proof that there is a polynomial-time
algorithm for satisfiability) would have dramatic
consequences. It would mean that feasible solu-
tions would exist for hundreds of problems that
are currently intractable. For example, the RSA
cryptosystem, widely used for commercial trans-
actions on the internet, would immediately be
vulnerable to computer attack, since the security
of the system rests on the assumed intractability

of the problem of factoring a number that is the
product of two large prime numbers. The same
remarks apply to other cryptosystems, with the
exception of the theoretically invulnerable one-
time pad system. The fact that no such feasible
algorithm has been found for any of these prob-
lems is one of the main reasons for the wide-
spread belief in the conjecture that P ≠ NP.

The lower bounds described in the preceding
section were all proved by the diagonal method.
That is to say, the method in each case was an
adaptation of the technique originally employed
by Cantor to prove the set of real numbers un-
countable, and subsequently adapted by Church
and Turing to prove the decision problem for
predicate logic unsolvable. There are reasons to
think that this method will not succeed in resolv-
ing the problem of whether or not P = NP. To
explain these reasons, we need to introduce the
concept of a Turing machine with an oracle.
The concept of a Turing machine explicates the
notion of computability in an absolute sense.
Similarly, the concept of an oracle machine explic-
ates the general notion of what it means for a
problem to be solvable relative to another prob-
lem (the definition of reducibility above is a spe-
cial case of this general notion). If A is a set of
strings then a Turing machine with oracle A is
defined to be a Turing machine with three spe-
cial states q?, qy, and qn. The query state q? is
used to ask “Is the string of nonblank symbols
to the right of the reading head in A?” The
answer is supplied by having the machine change
on the next move to one of the two states qy

or qn, depending on whether the answer is yes
or no. Time and space of a computation by an
oracle machine are computed just as for an ordin-
ary Turing machine, counting the time taken for
the answer to the oracle query as one step (the
oracle answers any query instantaneously).

We can imagine an oracle machine as rep-
resenting a situation where we have access to a
“black box” that instantaneously answers ques-
tions belonging to a type for which we have
no algorithm, or for which the only known
algorithm is very inefficient. For example, sup-
pose that the oracle (black box) can answer all
queries of the form: “Do all integers n satisfy
the property P(n)?,” where P is a decidable prop-
erty of integers. Then the black box exhibits a
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kind of limited omniscience that would enable
us to answer instantaneously many open prob-
lems of current mathematics such as Goldbach’s
conjecture or the Riemann hypothesis. In spite
of this, it is possible to show that there are prob-
lems that such a miraculous machine cannot
answer; classical recursion theory (computability
theory) is largely taken up with such problems.

If A is any set of strings, then by imitating the
definitions of the complexity classes above, but
substituting “Turing machine with oracle A”
everywhere for “Turing machine” we can define
relativized complexity classes P(A), NP(A), and
so on. Baker, Gill, and Solovay proved in 1975
that there is a decidable oracle A for which P(A)
= NP(A), and a decidable oracle B for which
P(B) ≠ NP(B). The significance of this theorem
lies in the fact that known techniques of diagon-
alization, such as are used in computability the-
ory, continue to work in the presence of oracles.
Thus it provides evidence that standard diagonal
techniques are inadequate to settle such ques-
tions as “P = NP?”

The literature of theoretical computer sci-
ence contains many complexity classes beyond
the few discussed here; for details, the reader
should consult the collection of survey articles in
Van Leeuwen (1990). We conclude this section
with a brief description of an important com-
plexity class that, like the classes P and NP, has
strong connections with logic. The class PSPACE
consists of those problems solvable using a poly-
nomial amount of space. It is not hard to see that
this class contains the class NP, since we require
only a small amount of space to do an exhaustive
search through the space of all possible strings
that are candidates for certificates showing that a
string is a positive instance of an NP-complete
problem. This class of problems bears the same
relationship to the quantified propositional cal-
culus as the class NP to the ordinary propositional
calculus. In the quantified propositional calculus,
we add to ordinary propositional logic quantifiers
ranging over propositions. Thus, for example,
the formula ∃p∀q(p → q) is a logical truth in
this language. The valid (logically true) formulas
of quantified propositional logic constitute a
PSPACE-complete set (that is, the problem of
determining the validity of formulas in the quan-
tified language is PSPACE-complete).

The family of algorithms operating in polyno-
mial space appears to be a much more extensive
class than the family of algorithms operating in
polynomial time. However, we are unable on the
basis of current knowledge to refute the equality
P = PSPACE. This illustrates the point men-
tioned in the introduction, that in contrast to
the detailed hierarchy theorems known for time
and space separately, the problem of relating time
and space requirements for computations remains
largely unsolved.

5 Parallel Computation

The computational model discussed in the pre-
ceding sections was that of serial or sequential
computation, where the machine is limited to a
bounded number of actions at each step, for
example, writing a symbol, moving left or right,
and changing internal state in the case of the
Turing model. However, there is considerable
current interest, both theoretical and practical,
in parallel models of computation. Parallel com-
putation is attractive in applications such as
searching large databases, and also is of interest
in modeling brain function (since the brain seems,
to a first approximation, to be some kind of
parallel computer). In this section, we provide
a brief discussion of the complexity of parallel
computation.

In the case of parallel computation, various
models have been proposed, and there is no
universal agreement on the best. These include
models such as the PRAM (parallel random access
machine), where a large number of simple pro-
cessors with limited memory have joint access to
a large shared memory; various conventions on
read–write conflicts can be adopted. For more
details on these models, the readers should con-
sult the articles of van Emde Boas, Karp, and
Ramachandran in Van Leeuwen (1990). We shall
not discuss these models further here, but instead
describe the area of non-uniform complexity.

The Turing model has the property that a
single machine operates on inputs of arbitrary
length. An alternative approach to measuring
the complexity of computations is to limit our-
selves to functions of a fixed input and output
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“polynomially bounded amount of advice”; con-
versely, any problem solved by such a machine
has polynomial-size circuits.

The description of P/poly in the preceding
paragraph should make it clear that we are dealing
with an extremely powerful class of procedures,
since they have the ability to answer arbitrarily
complex questions about finite configurations in
the time it takes to write down the question
(and so should be considered as “algorithms”
only in an extended sense). Nevertheless, it is
widely conjectured that the satisfiability problem
does not have polynomial-size circuits. Current
proof techniques in the theory of Boolean cir-
cuits seem to be inadequate for resolving this
challenging conjecture.

6 Complexity and Philosophy

Philosophical treatments of the concept of
computation often ignore issues relating to com-
plexity. However, we shall argue in this section
that such questions are directly relevant to some
frequently discussed problems. Since Turing’s
famous article of 1950, it has been common to
replace the question “Can machines think?” –
which Turing thought too meaningless to dis-
cuss – with the question “Can digital computers
successfully play the imitation game?” Turing
made the following optimistic prediction:

I believe that in about fifty years’ time it will
be possible to programme computers, with a
storage capacity of about 109, to make them
play the imitation game so well that an aver-
age interrogator will not have more than
70 per cent chance of making the right identi-
fication after five minutes of questioning.
(Turing 1950)

It is clear that Turing was thinking of com-
puters as real physical devices. However, let us
suppose that for the moment we think of com-
puters as idealized mathematical machines, and
(as is common in the mathematical context of
computability theory) ignore all questions of
resources, efficiency, and so forth. Then it is a
mathematical triviality that the answer to Turing’s

size – Boolean functions, in the case of decision
problems – and then estimate the minimum size
of the circuitry needed to provide a “hard-wired”
version of the function.

We define a circuit as a finite, labeled, directed
graph with no directed cycles. The nodes with
no arrows pointing in are input nodes, while the
nodes with no arrows pointing out are output
nodes. The internal nodes are considered as logic
gates, and labeled with appropriate Boolean func-
tions. For example, a circuit could be built from
AND gates with two inputs and one output,
and NOT gates with one input and one output.
The important complexity measures for a circuit
are its depth (length of the shortest path from
an input node to an output node) and its size
(number of nodes in the circuit).

We can now define parallel complexity classes
using the circuit model. Perhaps the most im-
portant of these is the class of problems with
polynomial-size circuits, abbreviated as P/poly.
Given a problem L, we can encode the strings
of L in binary notation; let us refer to this
encoded problem as Lb. Then L is said to have
polynomial-size circuits if there is a polynomial p
so that for every n there is a Boolean circuit C
with size bounded by p(n) so that C gives the
output 1 exactly for those binary strings of length
n that belong to Lb, that is, exactly those strings
of length n that represent positive instances of
the problem L.

This is a much more powerful model of com-
putation than the standard Turing model; it is
non-uniform, since we allow a different circuit
for each input length n. In particular, it is not
hard to see that in this model, an unsolvable
problem can have polynomial-size circuits.

The connection between the circuit model and
the Turing model can be made more precise by
considering the oracle machines defined earlier.
Given a fixed circuit, we can easily program a
Turing machine to simulate its behavior, simply
by encoding the circuit as a big look-up table
(we discuss the philosophical import of this
observation below). Hence, if a problem L has
polynomial-size circuits, we can program an
oracle machine that, relative to the oracle set C
representing the encoding of the family of cir-
cuits solving L, solves the problem. The machine
can be considered as a machine that takes a
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question is affirmative. Let us recall the basic
situation for the imitation game. An interrogator
communicates by teletype with two participants,
one a human being, the other a digital computer.
The task of the interrogator is to determine
by skillful questioning which of the two is the
human being. For a computer to succeed at the
imitation game means that it can succeed in fool-
ing the interrogator in a substantial number of
cases, if the game is played repeatedly.

Turing envisages a limit of five minutes of
interrogation, but for our present purposes, let
us suppose that we simply limit the number of
symbols exchanged between the participants in
the game to some reasonably large number (bear-
ing in mind that all the participants have to type
at human speeds, otherwise the computer could
be spotted immediately). It is now easy to see that
there is indeed a machine (in the mathematical
sense) that can play this game with perfect suc-
cess (i.e. a skilled interrogator cannot improve
on random guessing in the game). Consider all
sequences of symbols representing a possible
sequence of questions and answers in the imita-
tion game. Of these, some will be bad, in the
sense that they will easily reveal to the inter-
rogator the identity of the computer, while others
are good (we can imagine these to be the sort of
responses produced when the computer is re-
placed by a human). Now provide the computer
with the set of all good sequences as a gigantic
look-up table, and program the computer to
answer in accordance with this table. By defini-
tion, the computer must succeed perfectly at the
game.

Of course, the “machine” described in the pre-
vious paragraph is a pure mathematical abstrac-
tion, but it suffices to illustrate the fact that in
philosophical, as opposed to mathematical, con-
texts, the purely abstract definition of a machine
is not appropriate. Similar remarks apply in the
case of the distinction between serial and parallel
computation.

It is currently fashionable to think of cognitive
processes as modeled by neural networks com-
posed of simple elements (typically threshold
gates of some kind), joined together in some
random fashion, and then “trained” on some
family of inputs, the “learning” process consisting
of altering the strength of connections between

gates. This model is sometimes described in the
cognitive science literature as “parallel distributed
processing” or “PDP” for short. If we take into
account speed of processing, then such models
may indeed provide more accurate simulations
of processes in real brains, since neurophysiology
indicates that mammalian brains are made out of
relatively slow elements (neurons) joined together
in a highly connected network. On the other
hand, there is nothing new here as compared
with the classical serial model of computation, if
we ignore limitations of time and space. Never-
theless, some of the literature in cognitive science
argues otherwise.

In their debate of 1990 with John Searle,
Paul and Patricia Churchland largely agree with
the conclusions of Searle’s critique of classical
AI (based on a serial model of computation),
for which Searle argues on the grounds of his
“Chinese room” thought experiment, but dis-
agree with the conclusions of his “Chinese gym”
thought experiment designed to refute the claims
of parallel processors to represent the mind. The
Churchlands first point out the implausibility of
the simulation (involving huge numbers of people
passing messages in an enormous network), but
then continue:

On the other hand, if such a system were to be
assembled on a suitably cosmic scale, with all
its pathways faithfully modeled on the human
case, we might then have a large, slow, oddly
made but still functional brain on our hands. In
that case the default assumption is surely that,
given proper inputs, it would think, not that it
couldn’t. (Churchland & Churchland 1990)

This imaginary cosmic network is a finite
object, working according to a fixed algorithm
(as embodied in its pattern of connections). It
follows that it can be simulated by a serial com-
puter (in fact, all of the early research on “neural
nets” was carried out by writing simulation pro-
grams on computers of conventional design). Of
course, there will be a loss of speed, but the
Churchlands explicitly rule out speed of opera-
tion as a relevant variable. It’s difficult to see,
though, why the serial computer doing the simu-
lation of the neural network should be ruled out
as a “functional brain.”
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Let us expand a little more on the implica-
tions of this analysis. The basic fact that serial
machines can simulate parallel machines (a point
emphasized by Searle himself ) should not be
considered as an argument for or against either
the Chinese-room argument or the Chinese-
gym argument, both of which involve obscure
questions concerning the presence or absence
of “mental contents” or “semantic contents.”
Rather, it points to the difficulties of a position
that rejects a serial model of computation for
the mind, but accepts a parallel model, while
ignoring questions of complexity and efficiency.

Since we are not limited by technological
feasibility, let us imagine a huge, super-fast serial
computer that simulates the Churchlands’ cosmic
network. Furthermore, to make the whole thing
more dramatic, let’s imagine that this marvelous
machine is wired up to a gigantic cosmic network
with flashing lights showing the progress of the
computation, working so fast that we can’t tell
the difference between a real cosmic network
and the big display. Is this a “functional brain”
or not? It’s hard to know what the criteria are
for having a “functional brain on our hands,”
but without considering questions of computa-
tional complexity, it is difficult to see how we
can reject serial candidates for “functional brains.”
For a more detailed discussion of the “Chinese
room” argument from a complexity-theoretic
perspective, the reader should consult Parberry
1994. (See also Chapter 9, THE PHILOSOPHY OF

AI AND ITS CRITIQUE.)
Current work in the philosophy of mind

manifests a fascination with far-fetched thought
experiments, involving humanoid creatures mag-
ically created out of swamp matter, zombies, and
similar imaginary entities. Philosophical discus-
sion on the foundations of cognitive science also
frequently revolves around implausible thought
experiments like Searle’s “Chinese room” argu-
ment. The point of the simple observations
above is that unless computational resources are
considered, arguments based on such imagin-
ary experiments may appear quite powerful.
On the other hand, by taking such resources
into account, we can distinguish between objects
that exist in the purely mathematical sense (such
as the Turing machine that succeeds at the

imitation game), and devices that are physically
constructible.
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Chapter 3

System: An Introduction to
Systems Science

Klaus Mainzer

The first section of this chapter defines the basic
concept of a dynamical system. The dynamics of
systems is measured by time series and modeled
in phase spaces, which are introduced in sec-
tion 2. Phase spaces are necessary to recognize
attractors of a system, such as chaos. In the case
of chaos, severe restrictions on long-term pre-
dictions and systems control must be taken into
account. But, in practice, there are only finitely
many measurements and observations of a time
series. So, in section 3, time-series analysis is
introduced in order to reconstruct phase spaces
and attractors of behavior. Section 4 presents ex-
amples of complex systems in nature and society.
From a philosophical point of view, dynamical
systems in nature and society can be considered
as information and computational systems. This
deep insight of modern systems science is dis-
cussed in the last section.

1 Basic Concepts of Systems
Science

A dynamical system is characterized by its ele-
ments and the time-depending development of
their states. In the simple case of a falling stone,

Introduction

Dynamical systems, with their astonishing variety
of forms and functions, have always fascinated
scientists and philosophers. Today, structures
and laws in nature and society are explained by
the dynamics of complex systems, from atomic
and molecular systems in physics and chemistry
to cellular organisms and ecological systems
in biology, from neural and cognitive systems
in brain research and cognitive science to
societies and market systems in sociology and
economics. In these cases, complexity refers
to the variety and dynamics of interacting ele-
ments causing the emergence of atomic and
molecular structures, cellular and neural patterns,
or social and economic order (on computa-
tional complexity see Chapter 1, COMPUTATION).
Computational systems can simulate the self-
organization of complex dynamical systems. In
these cases, complexity is a measure of computa-
tional degrees for predictability, depending on
the information flow in the dynamical systems.
The philosophy of modern systems science aims
to explain the information and computational
dynamics of complex systems in nature and
society.
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one may consider for example only the accelera-
tion of a single element. In a planetary system,
the states of planets are also determined by their
position and momentum. The states can also
refer to moving molecules in a gas, the excita-
tion of neurons in a neural net, nutrition of
populations in an ecological system, or products
in a market system. The dynamics of a system,
that is, the change of system states depending
on time, is mathematically described by differen-
tial equations. For deterministic processes (e.g.,
motions in a planetary system), each future state
is uniquely determined by the present state. A
conservative (Hamiltonian) system, e.g. an ideal
pendulum, is determined by the reversibility of
time direction and conservation of energy. Con-
servative systems are closed and have no ener-
getic dissipation with their environment. Thus,
conservative systems in the strict sense exist only
as approximations like, e.g., an ideal Thermos
bottle. In our everyday world, we mainly observe
dissipative systems with a distinct time direction.
Dissipative systems, e.g., a real pendulum with
friction, are irreversible.

In classical physics, the dynamics of a system
is analyzed as a continuous process. In a famous
quotation, Leibniz assumed that nature does
not jump (natura non facit saltus). However,
continuity is only a mathematical idealization.
Actually, a scientist deals with single observa-
tions or measurements at discrete time points
that are chosen equidistant or defined by other
measurement devices. In discrete processes, there
are finite differences between the measured states,
no infinitely small differences between the meas-
ured states, and no infinitely small differences
(differentials) that are assumed in a continuous
process. Thus, discrete processes are mathemat-
ically described by difference equations.

Random events (e.g., Brownian motion in
a fluid, mutation in evolution, innovations in
economy) are represented by additional fluctu-
ation terms. Classical stochastic processes, e.g. the
billions of unknown molecular states in a fluid,
are defined by time-depending differential equa-
tions with distribution functions of probabilistic
states. In quantum systems of elementary particles,
the dynamics of quantum states is defined by
Schrödinger’s equation with observables (e.g.,

position and momentum of a particle) depend-
ing on Heisenberg’s principle of uncertainty. The
latter principle allows only probabilistic forecasts
of future states.

2 Dynamical Systems, Chaos, and
Other Attractors

During the centuries of classical physics, the
universe was considered as a deterministic and
conservative system. The astronomer and math-
ematician Pierre-Simon Laplace (1814), for
example, assumed the total computability and
predictability of nature if all natural laws and ini-
tial states of celestial bodies are well known. The
Laplacean spirit well expressed philosophers’ faith
in determinism and computability of the world
during the eighteenth and nineteenth centuries.

Laplace was right about linear and conserva-
tive dynamical systems. A simple example is a so-
called harmonic oscillator, like a mass attached
to a spring oscillating regularly without friction.
Let us consider this example in more detail. It
will help us to introduce the basic notions of
time series, phase space, and trajectory, essential
to understand the structure and development of
dynamical systems. In general, a linear relation
means that the rate of change in a system is
proportional to its cause: small changes cause
small effects, while large changes cause large
effects. In the example of a harmonic oscillator,
a small compression of a spring causes a small
oscillation of the position of a mass, while a large
compression causes a large oscillation, following
Hooke’s law. Changes of a dynamical system
can be modeled in one dimension by changing
values of a time-depending quantity along the
time axis (time series). In figure 3.1a, the posi-
tion x(t) of a mass attached to a spring is oscil-
lating in regular cycles along the time axis t. x(t)
is the solution of a linear equation, according to
Hooke’s law. Mathematically, linear equations
are completely computable. This is the deeper
reason for Laplace’s philosophical assumption to
be right for linear and conservative systems.

In systems theory, the complete information
about a dynamical system at a certain time is
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Figure 3.1a: A solution x(t) of a linear equation as time series (Kaplan 1995: 211)
Figure 3.1b: Trajectories of two solutions of a linear equation in a 2-dimensional phase space (Kaplan
1995: 212)

determined by its state at that time. In the ex-
ample of a harmonic oscillator, the state of the
system is defined by the position x(t) and the
velocity v(t) of the oscillating mass at time t. Thus,
the state of the system is completely determined
by a pair of two quantities that can be represented
geometrically by a point in a 2-dimensional
phase space, with a coordinate of position and a
coordinate of velocity. The dynamics of a system
refers to the time-depending development of its
states. Thus, the dynamics of a system is illus-
trated by an orbit of points (trajectory) in a phase
space corresponding to the time-depending de-
velopment of its states. In the case of an harmonic
oscillator, the trajectories are closed ellipses
around a point of stability (figure 3.1b), cor-
responding to the periodic cycles of time series,
oscillating along the time axis (figure 3.1a).
Obviously, the regular behavior of a linear and
conservative system corresponds to a regular and
stable pattern of orbits. So, the past, present,
and future of the system are completely known.

In general, the state of a system is determined
by more than two quantities. This means that
higher dimensional phase space is required. From
a methodological point of view, time series and
phase spaces are important instruments to study
systems dynamics. The state space of a system con-
tains the complete information of its past, present
and future behavior. The dynamics of real sys-
tems in nature and society is, of course, more

complex, depending on more quantities, with pat-
terns of behavior that are not as regular as in the
simple case of a harmonic oscillator. It is a main
insight of modern systems theory that the beha-
vior of a dynamic system can only be recognized if
the corresponding state space can be reconstructed.

At the end of the nineteenth century, Henri
Poincaré (1892–3) discovered that celestial
mechanics is not a completely computable clock-
work, even if it is considered as a deterministic
and conservative system. The mutual gravita-
tional interactions of more than two celestial
bodies (“Many-bodies-problem”) correspond to
nonlinear and non-integrable equations with
instabilities and irregularities. According to the
Laplacean view, similar causes effectively deter-
mine similar effects. Thus, in the phase space,
trajectories that start close to each other also
remain close to each other during time evolu-
tion. Dynamical systems with deterministic chaos
exhibit an exponential dependence on initial
conditions for bounded orbits: the separation
of trajectories with close initial states increases
exponentially (figure 3.2).

Tiny deviations of initial data lead to expon-
entially increasing computational efforts to ana-
lyze future data, limiting long-term predictions,
although the dynamics is in principle uniquely
determined. This is known as the “butterfly
effect”: initial, small, and local causes soon lead to
unpredictable, large and global effects (see figure
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Figure 3.3: A measured signal Dt from a chaotic system (time series)

3.3). According to the famous KAM Theorem of
A. N. Kolmogorov (1954), V. I. Arnold (1963),
and J. K. Moser (1967), trajectories in the phase
space of classical mechanics are neither completely
regular, nor completely irregular, but depend
sensitively on the chosen initial conditions.

Dynamical systems can be classified on the basis
of the effects of the dynamics on a region of the
phase space. A conservative system is defined by
the fact that, during time evolution, the volume
of a region remains constant, although its shape
may be transformed. In a dissipative system, dy-
namics causes a volume contraction. An attractor
is a region of a phase space into which all traject-
ories departing from an adjacent region, the so-
called basin of attraction, tend to converge. There
are different kinds of attractors. Fixed points form
the simplest class of attractors. In this case, all
trajectories of adjacent regions converge to a
point. An example is a dissipative harmonic
oscillator with friction: the oscillating system is
gradually slowed down by frictional forces and
finally comes to a rest in an equilibrium point.

Conservative harmonic oscillators without
friction belong to the second class of attractors
with limit cycles, which can be classified as being

periodic or quasi-periodic. A periodic orbit is a
closed trajectory into which all trajectories depart-
ing from an adjacent region converge. For a
simple dynamical system with only two degrees
of freedom and continuous time, the only pos-
sible attractors are fixed points or periodic limit
cycles. An example is a Van der Pol oscillator
modeling a simple vacuum-tube oscillator circuit.

In continuous systems with a phase space of
dimension n > 2, more complex attractors are
possible. Dynamical systems with quasi-periodic
limit cycles show a time evolution that can be
decomposed into different periodic parts with-
out a unique periodic regime. The correspond-
ing time series consist of periodic parts of
oscillation without a common structure. Never-
theless, closely starting trajectories remain close
to each other during time evolution. The third
class contains dynamical systems with chaotic
attractors that are nonperiodic, with an exponen-
tial dependence on initial conditions for bounded
orbits. A famous example is the chaotic attractor
of a Lorenz system (Lorenz 1963) simulating
the chaotic development of weather caused by
local events, which cannot be forecast in the
long run (“butterfly effect”) (figure 3.4b).
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Figure3.4a: The reconstructed trajectory of a measured series (fig. 3.3) in an embedding phase space of
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Figure 3.4b: The trajectory of the original phase space of the chaotic system (Kaplan 1995: 310)

3 Dynamical Systems and Time-
series Analysis

We have started by seeing the kind of mathemat-
ical equations of dynamical systems required to
derive their patterns of behavior; the latter have
been characterized by time series and attractors
in phase spaces, such as fixed points, limit cycles,
and chaos. This top-down approach is typically
theoretical: we use our understanding of real sys-
tems to write dynamical equations. In empirical
practice, however, we must take the opposite
bottom-up approach and start with finite sequences
of measurements, i.e. finite time series, in order to
find appropriate equations of mathematical models
with predictions that can be compared with meas-
urements made in the field of application.

Measurements are often contaminated by un-
wanted noise, which must be separated from the
signals of specific interest. Moreover, in order to
forecast the behavior of a system, the develop-
ment of its future states must be reconstructed in
a corresponding phase space from a finite sequence
of measurements. So time-series analysis  is an
immense challenge in different fields of research
such as climatic data in meteorology, ECG-
signals in cardiology, EEG-data in brain research,
or economic data of business cycles in economics.

The goal for this kind of time-series analysis is
comparable to constructing a computer program
without any knowledge of the real system from
which the data come. As a black box, the com-
puter program would take the measured data
as input and provide as output a mathematical
model describing the data. But, in this case, it is
difficult to identify the meaning of components in
the mathematical model without understanding
the dynamics of the real systems. Thus, the top-
down and bottom-up approach, model-building
and time-series analysis, expert knowledge in the
fields of application, and mathematical and pro-
gramming skills, must all be integrated in an
interdisciplinary research strategy.

In practice, only a time series of a single (one-
dimensional) measured variable is often given,
although the real system is multidimensional.
The aim of forecasting is to predict the future
evolution of this variable. According to Takens’
theorem (1981), in nonlinear, deterministic, and
chaotic systems, it is possible to determine the
structure of the multidimensional dynamic system
from the measurement of a single dynamical
variable (figure 3.3).

Takens’ method results in the construction
of a multidimensional embedding phase space for
measured data (figure 3.4a) with a certain time
lag in which the dynamics of attractors is similar



Introduction to Systems Science

33

to the orbits in the phase space of the chaotic
system (figure 3.4b).

The disadvantage of Takens’ theorem is that
it does not detect and prove the existence of a
chaotic attractor. It only provides features of an
attractor from measured data, if the existence of
the attractor is already guaranteed (Grassberger
& Procaccia 1983). The dimension of an attractor
can be determined by a correlation integral
defining the different frequency with which a
region in an attractor is visited by the orbits.
Thus, the correlation integral also provides a
method to study the degrees of periodicity and
aperiodicity of orbits and measured time series.

The Lyapunov spectrum shows us the depend-
ence of dynamics from initial data. The so-called
Lyapunov exponents measure the averaged ex-
ponential rates of divergence or convergence of
neighboring orbits in phase space. If the largest
Lyapunov exponent is positive, the attractor is
chaotic, and the initial small difference between
two trajectories will diverge exponentially (figure
3.2). If the largest exponent is zero and the rest
is negative, the attractor is a periodic limit cycle.
If there is more than one exponent equal to
zero, the rest being negative, the behavior is
quasi-periodic. If the exponents are all negative,
the attractor is a fixed point. In general, for dis-
sipative systems, the sum of Lyapunov exponents
is negative, despite the fact that some exponents
could be positive.

4 Dynamical Systems in Nature
and Society

Structures in nature and society can be explained
by the dynamics and attractors of complex sys-
tems. They result from collective patterns of
interacting elements that cannot be reduced to
the features of single elements in a complex sys-
tem. Nonlinear interactions in multicomponent
(“complex”) systems often have synergetic ef-
fects, which can neither be traced back to single
causes nor be forecasted in the long run. The
mathematical formalism of complex dynamical
systems is taken from statistical physics. In gen-
eral, the theory of complex dynamical systems
deals with profound and striking analogies that

have been discovered in the self-organized
behavior of quite different systems in physics,
chemistry, biology, and sociology. These
multicomponent systems consist of many units
like elementary particles, atoms, cells, or organ-
isms. Properties of these elementary units, such
as their position and momentum vectors, and
their local interactions constitute the microscopic
level of description (imagine the interacting
molecules of a liquid or gas). The global state of
the complex systems results from the collective
configurations of the local multicomponent states.
At the macroscopic level, there are few collective
(“global”) quantities like, for instance, pressure,
density, temperature, and entropy characterizing
observable collective patterns or figures of the
units.

If the external conditions of a system are
changed by varying certain control parameters
(e.g., temperature), the system may undergo a
change in its macroscopic global states at some
threshold value. For instance, water as a com-
plex system of molecules changes spontaneously
from a liquid to a frozen state at the critical
value of temperature with zero celsius. In physics,
those transformations of collective states are
called phase transitions. Obviously, they describe
a change of self-organized behavior between the
interacting elements of a complex system.

According to Landau and Lifshitz (1959), the
suitable macrovariables characterizing this change
of global order are denoted as “order para-
meters.” In statistical mechanics the order trans-
ition of complex systems like fluids, gases, etc. is
modeled by differential equations of the global
state. A paradigmatic example is a ferromagnet
consisting of many elementary atomic mag-
nets (“dipoles”). The two possible local states
of a dipole are represented by upwards- and
downwards-pointing arrows. If the temperature
(“control parameter”) is annealed to the thermal
equilibrium, in this case the Curie point, then
the average distribution of upwards and down-
wards pointing dipoles (“order parameter”) is
spontaneously aligned in one regular direction
(figure 3.5). This regular pattern corresponds to
the macroscopic state of magnetization. Obvi-
ously, the emergence of magnetization is a self-
organized behavior of atoms that is modeled by
a phase transition of a certain order parameter,
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Figure 3.5: Phase transition in a 2-dimensional Ising model of a ferromagnet (Mainzer 1997: 134)

the atomic system during a critical transition.
The atoms have to “obey” the orders of order
parameters. This mathematical scheme has a very
comfortable consequence: it is not necessary (and
not possible) to compute all microstates of atoms
in a complex system; just find the few macro-
scopic order parameters, and you understand the
dynamics of a complex system.

Actually, the corresponding equations describe
a competition of several order parameters among
each other. The atoms will then obey that order
parameter that wins the competition. A typical
example is a Bénard experiment analyzing the
emergence of convection rolls in a fluid layer at
a critical value of a control parameter (temperat-
ure). The layers of the atmosphere provide fur-
ther examples. In this case, the order parameters
correspond to the two possible rolling directions:
“left” or “right” of the convection rolls. During
the phase transition of increasing temperature
it cannot be forecast which of the two possible
order parameters will win the competition,
because it depends on tiny initial fluctuations on
the molecular level. Thus, this phase transition
corresponds to a spontaneous symmetry breaking
of two possible orders. Fluctuations are the driv-
ing forces of the system’s evolution.

Simplifying, we may say that old structures
become unstable, broken down by changing con-
trol parameters, and new structures and attractors
are achieved. If, for example, the fluid of a stream
is driven further and further away from thermal
equilibrium, for example by increasing fluid
velocity (control parameter), then fluid patterns
of increasing complexity emerge from vortices
of fixed points, periodic and quasi-periodic oscilla-
tions to chaotic turbulence.

More mathematically, stochastic nonlinear dif-
ferential equations (e.g. Fokker–Planck equations,
Master equations) are employed to model the
dynamics of complex systems. The dominating

the average distribution of upwards and down-
wards pointing dipoles.

Landau’s scheme of phase transitions cannot
be generalized to all cases of phase transitions.
A main reason for its failure results from an
inadequate treatment of fluctuations, which are
typical for many multicomponent systems. Never-
theless, Landau’s scheme can be used as a heuristic
device to deal with several non-equilibrium trans-
itions. In this case, a complex system is driven
away from equilibrium by increasing energy (not
decreasing energy, as in the case of equilibrium
transitions like freezing water or magnetizing
ferromagnets). The phase transitions of nonlinear
dissipative complex systems far from thermal
equilibrium can be modeled by several math-
ematical methods (Haken 1983, Mainzer 1997,
Glansdorff & Prigogine 1971).

As an example, consider a solid-state laser. This
consists of a set of laser-active atoms embedded
in a solid-state configuration. The laser end-faces
act as mirrors and serve two purposes: they
select light modes in axial direction and with
discrete frequencies. If the laser atoms are excited
only weakly by external sources (“control para-
meters”), the laser acts as an ordinary lamp. The
atoms, independently of each other, emit wave-
tracks with random phases. The atoms, visualized
as oscillating dipoles, are oscillating completely
at random. If the level of excitement is further
increased, the atomic dipoles spontaneously oscil-
late in phase, although they are excited completely
at random. Obviously, the atoms show a self-
organized behavior of great regularity. The extra-
ordinary coherence of laser light results from the
collective cooperation of the atomic dipoles.

The laser shows features of phase transitions.
Order parameters describe mode amplitudes of
the light field becoming unstable at a critical
value of pumping. These slowly varying ampli-
tudes now “slave,” as Haken (1983) claimed,
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order parameters are founded by the adiabatic
elimination of fast-relaxing variables of these
equations. The reason is that the relaxation time
of unstable modes (order parameters) is very long,
compared to the fast-relaxing variables of stable
ones, which can therefore be neglected. Thus,
this concept of self-organization can be illustrated
by a quasi-biological slogan: long-living systems
dominate short-living systems.

Dynamical systems and their phase transitions
deliver a successful formalism to model the emer-
gence of order in nature and society. But these
methods are not reduced to special laws of
physics, although their mathematical principles
were first discovered and successfully applied in
physics. Methodologically, there is no physicalism,
but an interdisciplinary approach to explain the
increasing complexity and differentiation of forms
by phase transitions. The question is how to
select, interpret, and quantify the appropriate
variables of dynamical models. Let us consider a
few examples.

Thermodynamic self-organization is not suf-
ficient to explain the emergence of life (see also
Chapter 14 in this volume, CYBERNETICS). As
nonlinear mechanism of genetics we use the
autocatalytic process of genetic self-replication.
The evolution of new species by mutation and
selection can be modeled by nonlinear stochastic
equations of second-order non-equilibrium phase
transitions. Mutations are mathematized as “fluc-
tuating forces” and selections as “driving forces.”
Fitness degrees are the order parameters dominat-
ing the phase transitions to new species. During
evolution a sensible network of equilibria between
populations of animals and plants has developed.
The nonlinear Lotka–Volterra equations (Lotka
1925, Volterra 1931) model the ecological equi-
librium between prey and predator populations
which can be represented by oscillating time series
of population growth or limit cycles around
points of stability. Open dissipative systems of
ecology may become unstable because of local
perturbations, e.g., pollution of the atmosphere,
leading to global chaos of the atmosphere in the
sense of the butterfly effect.

In cardiology, the heart is modeled as a com-
plex dynamical system of electrically interacting
cells producing collective patterns of beating,
which are then represented by time series of ECG

signals or orbits in a phase space. There is no
commanding cell, but an attractor of collective
behavior (“order parameter”) dominating the
beating regime of the heart from healthy oscilla-
tions to dangerous chaos.

In brain research, the brain is considered as a
complex dynamical system of firing and nonfiring
neurons, self-organizing in macroscopic pat-
terns of cell assemblies through neurochemical
interactions. Their dynamical attractors are cor-
related with states of perception, motion, emotion,
thoughts, or even consciousness. There is no
“mother neuron” that can feel, think, or at least
coordinate the appropriate neurons. The famous
binding problem of pixels and features in a per-
ception is explained by clusters of synchronously
firing neurons dominated by learned attractors
of brain dynamics.

The self-organization of complex systems
can also be observed in social groups. If a group
of workers is directed by another worker, the
so-called foreman, then we get an organized
behavior to produce some product that is by no
means self-organized. Self-organization means
that there are no external orders from a foreman,
but that the workers work together by some
kind of mutual understanding, each one doing his
job according to a collective concept dominating
their behavior.

In a political community, collective trends
or majorities of opinions can be considered as
order parameters produced by mutual discussion
and interaction of the people in a more or less
“heated” situation. They can even be initiated
by some few people in a critical and unstable
(“revolutionary”) situation of the whole com-
munity. There may be a competition of order
concepts during heavy fluctuations. The essential
point is that the winning concept of order will
dominate the collective behavior of the people.
Thus, there is a kind of feedback: the collective
order of a complex system is generated by the
interactions of its elements (“self organization”).
On the other hand, the behavior of the elements
is dominated by the collective order. People have
their individual will to influence collective trends
of society. But, they are also driven by attractors
of collective behavior.

In classical economics, an economy was be-
lieved to be a conservative equilibrium system.
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According to Adam Smith (1976), the market
is self-organized by an “invisible hand,” tending
to the equilibrium of supply and demand. In
the age of globalization, markets are open, non-
equilibrium systems at the edge of chaos (in the
technical sense of the word seen above), with
sensible dependence on local perturbations (but-
terfly effect). The time series of stock markets
and business cycles are examples of economic
signals.

Another application of social dynamics is
the behavior of car drivers. In automobile traffic
systems, a phase transition from nonjamming to
jamming phases depends on the averaged car
density as control parameter. At a critical value,
fluctuations with fractal or self-similar features
can be observed. The term self-similarity states
that the time series of measured traffic flow looks
the same on different time scales, at least from a
qualitative point of view with small statistical
deviations. In the theory of complex systems,
self-similarity is a (not sufficient) hint at chaotic
dynamics. These signals can be used by traffic
guiding systems.

5 Dynamical, Information, and
Computational Systems

Dynamical systems can be characterized by in-
formation and computational concepts. A dynam-
ical system can be considered as an information
processing machine, computing a present state as
output from an initial state of input. Thus, the
computational efforts to determine the states of a
system characterize the complexity of a dynam-
ical system. The transition from regular to chaotic
systems corresponds to increasing computational
problems, according to increasing degrees in the
computational theory of complexity (see Chapter
1 in this volume, COMPUTATION). In statistical
mechanics, the information flow of a dynamical
system describes the intrinsic evolution of statist-
ical correlations. In chaotic systems with sensitiv-
ity to the initial states, there is an increasing loss
of information about the initial data, according
to the decay of correlations between the entire
past and future states of the system. In general,
dynamical systems can be considered as deter-

ministic, stochastic, or quantum computers, com-
puting information about present or future
states from initial conditions by the correspond-
ing dynamical equations. In the case of quantum
systems, the binary concept of information is
replaced by quantum information with superposi-
tion of binary digits. Thus, quantum informa-
tion only provides probabilistic forecasts of future
states.

The complex system approach offers a research
program to bridge the gap between brain research
and cognitive science. In a famous metaphor,
Leibniz compared the machinery of a human
brain and body with the machinery of a mill
that can be explored inside and observed in its
behavior. In modern brain research, the inter-
acting cogs of the mill are the firing and nonfiring
neurons which could be technically constructed
by a neural net. If the human brain is considered
as a complex dynamical system, then emergence
of mental states can be modeled by phase trans-
itions of macroscopic order parameters which are
achieved by collective nonlinear interactions of
neurons, but which are not reducible to micro-
scopic states of the system: A single neuron can-
not think or feel. The complex system approach
is an empirical research program that can be
specified and tested in appropriate experimental
applications to understand the dynamics of the
human cognitive system. Further on, it gives heur-
istic devices to construct artificial systems with
cognitive features in robotics (see Chapters 8,
13–16 in this volume).

In a dramatic step, the complex systems
approach has been enlarged from neural networks
to global computer networks like the World Wide
Web. The internet can be considered as a com-
plex open computer network of autonomous nodes
(hosts, routers, gateways, etc.), self-organizing
without central control mechanisms. The informa-
tion traffic is constructed by information packets
with source and destination addresses. Routers
are nodes of the network determining the local
path of each packet by using local routing tables
with cost metrics for neighboring routers. A
router forwards each packet to a neighboring
router with lowest costs to the destination. As a
router can only deal with one packet, other arriv-
ing packets at a certain time must be stored in a
buffer. If more packets arrive than a buffer can
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store, the router discards the overflowed packets.
Senders of packets wait for confirmation mess-
age from the destination host. These buffering
and resending activities of routers can cause
congestion in the internet. A control parameter of
data density is defined by the propagation of
congestion from a router to neighboring routers
and dissolution of the congestion at each router.
The cumulative distribution of congestion dura-
tion is an order parameter of phase transition. At
a critical point, when the congestion propagation
rate is equal to congestion dissolution, fractal
and chaotic features can be observed in data
traffic. Congested buffers behave in surprising
analogy to infected people. If a buffer is over-
loaded, it tries to send packets to the neighbor-
ing routers. Therefore the congestion spreads
spatially. On the other hand, routers can recover
when the congestion from and to the own subnet
are lower than the service rate of the router.
That is not only an illustrative metaphor, but
hints at nonlinear mathematical models describ-
ing true epidemic processes like malaria extension
as well as the dynamics of routers. Computer net-
works are computational ecologies. The capability
to manage the complexity of modern societies
depends decisively on effective communication
networks.

The transformation of the internet into a sys-
tem with self-organizing features of learning and
adapting is not merely a metaphor. Information
retrieval is already realized by neural networks
adapting to the information preferences of a
human user with synaptic plasticity. In sociobio-
logy, we can learn from populations of ants and
termites how to organize traffic and information
processing by swarm intelligence. From a tech-
nical point of view, we need intelligent programs
distributed in the nets. There are already more
or less intelligent virtual organisms (“agents”),
learning, self-organizing, and adapting to our
individual preferences of information, selecting
our e-mails, preparing economic transactions,
or defending against attacks by hostile com-
puter viruses, like the immune system of our
body. Complexity of global networking not only
means increasing numbers of PCs, workstations,
servers, and supercomputers interacting via data
traffic in the internet. Below the complexity of
a PC, low-power, cheap, and smart devices are

distributed in the intelligent environments of our
everyday world. Like GPS (the Global Position
System) in car traffic, things in everyday life could
interact telematically by sensors. The real power
of the concept does not come from any one of
these single devices. In the sense of complex sys-
tems, the power emerges from the collective inter-
action of all of them. For instance, the optimal
use of energy could be considered as a macro-
scopic order parameter of a household realized
by the self-organizing use of different household
goods according to less consumption of electri-
city during special time-periods with cheap prices.
The processors, chips, and displays of these smart
devices don’t need a user interface like a mouse,
windows, or keyboards, but just a pleasant and
effective place to get things done. Wireless com-
puting devices on small scales become more and
more invisible to the user. Ubiquitous comput-
ing enables people to live, work, use, and enjoy
things directly without being aware of their com-
puting devices.

What are the human perspectives in these devel-
opments of dynamical, information, and com-
putational systems? Modern societies, economies,
and information networks are highly dimensional
systems with a complex nonlinear dynamics.
From a methodological point of view, it is a chal-
lenge to improve and enlarge the instruments of
modelization (cf. sections 1–3 above) from low-
to high-dimensional systems. Modern systems
science offers an interdisciplinary methodology to
understand the typical features of self-organizing
dynamics in nature and society. As nonlinear
models are applied in different fields of research,
we gain general insights into the predictable
horizons of oscillatory chemical reactions, fluctu-
ations of species, populations, fluid turbulence,
and economic processes. The emergence of sun-
spots, for instance, which was formerly analyzed
by statistical time-series methods, is by no means
a random activity. It can be modeled by a non-
linear chaotic system with several characteristic
periods and a strange attractor, allowing bounded
forecasts of the variations. In nonlinear models
of public opinion formation, for instance, we
may distinguish a predictable stable state before
public voting (bifurcation) when neither of two
possible opinions is preferred, a short interval of
bifurcation when tiny unpredictable fluctuations
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may induce abrupt changes, and a transition to a
stable majority. The situation can be compared
to growing air bubbles in turbulently boiling
water: When a bubble has become big enough,
its steady growth on its way upward is predict-
able. But its origin and early growth is a ques-
tion of random fluctuation. Obviously, nonlinear
modeling explains the difficulties of the modern
sibyls of demoscopy.

Today, nonlinear forecasting models don’t
always deliver better and more efficient predic-
tions than the standard linear procedures. Their
main advantage is the explanation of the actual
nonlinear dynamics in real processes, the identi-
fication and improvement of local horizons with
short-term predictions. But first of all the phase
space and an appropriate dynamical equation
governing a time series of observations must be
reconstructed to predict future behavior by solv-
ing that equation. Even in the natural sciences,
it is still unclear whether appropriate equations
for complex fields such as earthquakes can be
derived. We may hope to set up a list in a com-
puter memory with typical nonlinear equations
whose coefficients can be automatically adjusted
for the observed process. Instead, to make an
exhaustive search for all possible relevant para-
meters, a learning strategy may start with a crude
model operating over relatively short times, and
then specify a smaller number of parameters in a
relatively narrow range of values. An improve-
ment of short-term forecasting has been realized
by the learning strategies of neural networks.
On the basis of learned data, neural nets can
weight the input data and minimize the fore-
casting errors of short-term stock quotations by
self-organizing procedures. So long as only some
stock-market advisers use this technical support,
they may do well. But if all agents in a market
use the same learning strategy, the forecasting
will become a self-defeating prophecy. The reason
is that human societies are not complex systems
of molecules or ants, but the result of highly
intentional acting beings with a greater or lesser
amount of free will. A particular kind of self-
fulfilling prophecy is the Oedipus effect: like the
legendary Greek king, people try, in vain, to
change their future as forecasted to them.

From a macroscopic viewpoint we may, of
course, observe single individuals contributing

with their activities to the collective macrostate
of society representing cultural, political, and eco-
nomic order (order parameters). Yet, macrostates
of a society, of course, don’t simply average over
its parts. Its order parameters strongly influ-
ence the individuals of the society by orientating
(enslaving) their activities and by activating or
deactivating their attitudes and capabilities. This
kind of feedback is typical for complex dynam-
ical systems. lf the control parameters of the
environmental conditions attain certain critical
values due to internal or external interactions,
the macrovariables may move into an unstable
domain out of which highly divergent alternat-
ive paths are possible. Tiny unpredictable micro-
fluctuations (e.g., actions of a few influential
people, scientific discoveries, new technologies)
may decide which of the diverging paths in an
unstable state of bifurcation society will follow.
So, the paradigm of a centralized control must be
given up by the insights in the self-organizing
dynamics of highly dimensional systems. By
detecting global trends and the order para-
meters of complex dynamics, we have the chance
of implementing favorite tendencies. By under-
standing complex systems we can make much
more progress in evaluating our information tech-
nologies and choosing our next steps. Under-
standing complex systems supports deciding and
acting in a complex world.
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Chapter 4

Information
Luciano Floridi

capture all major concepts of information (from
Shannon’s to Baudrillard’s, from genetic to
neural), but also sufficiently specific to discriminate
between semantic nuances. They attempt to show
that all kinds of information are ultimately reduc-
ible conceptually, genetically, or genealogically
to some Ur-concept, the mother of all instances.
The development of a systematic UTI is a matter
of time, patience, and ingenuity. The ultimate
UTI will be hierarchical, linear (even if probably
branching), inclusive, and incompatible with any
alternative model.

Reductionist strategies are unlikely to succeed.
Several surveys have shown no consensus or even
convergence on a single, unified definition of
information (see for example Braman 1989,
Losee 1997, Machlup 1983, NATO 1974, 1975,
1983, Schrader 1984, Wellisch 1972, Wersig
& Neveling 1975). This is hardly surprising.
Information is such a powerful and flexible con-
cept and such a complex phenomenon that, as
an explicandum, it can be associated with several
explanations, depending on the level of abstrac-
tion adopted and the cluster of requirements and
desiderata orientating a theory. Claude Shannon
(1993a: 180), for one, was very cautious:

The word “information” has been given dif-
ferent meanings by various writers in the gen-
eral field of information theory. It is likely that
at least a number of these will prove sufficiently

1 Introduction

Information “can be said in many ways,” just as
being can (Aristotle, Metaphysics Γ.2), and the
correlation is probably not accidental. Informa-
tion, with its cognate concepts like computa-
tion, data, communication, etc., plays a key role
in the ways we have come to understand, model,
and transform reality. Quite naturally, informa-
tion has adapted to some of being’s contours.

Because information is a multifaceted and poly-
valent concept, the question “what is informa-
tion?” is misleadingly simple, exactly like “what
is being?” As an instance of the Socratic ques-
tion “ti esti . . . ?,” it poses a fundamental and
complex problem, intrinsically fascinating and
no less challenging than “what is truth?,” “what
is virtue?,” “what is knowledge?,” or “what is
meaning?” It is not a request for dictionary
explorations but an ideal point of intersection
of philosophical investigations, whose answers
can diverge both because of the conclusions
reached and because of the approaches adopted.
Approaches to a Socratic question can usually
be divided into three broad groups: reductionist,
antireductionist, and nonreductionist. Philosoph-
ical theories of information are no exception.

Reductionists support the feasibility of a
“unified theory of information” (UTI, see the
UTI website for references), general enough to
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useful in certain applications to deserve further
study and permanent recognition. It is hardly
to be expected that a single concept of information
would satisfactorily account for the numerous
possible applications of this general field. [italics
added]

At the opposite end, antireductionists stress
the multifarious nature of the concept of informa-
tion and of the corresponding phenomena. They
defend the radical irreducibility of the differ-
ent species to a single stem, objecting especially
to reductionist attempts to identify Shannon’s
quantitative concept of information as the re-
quired Ur-concept and to ground a UTI on the
mathematical theory of communication. Anti-
reductionist strategies are essentially negative
and can soon become an impasse rather than a
solution. They allow specialized analyses of the
various concepts of information to develop inde-
pendently, thus avoiding the vague generaliza-
tions and mistaken confusions that may burden
UTI strategies. But their fragmented nominalism
remains unsatisfactory insofar as it fails to account
for the ostensible connections permeating and
influencing the various ways in which informa-
tion qua information “can be said.” Connections,
mind, not Wittgensteinian family resemblances.
The genealogical analogy would only muddy
the waters here, giving the superficial impression
of having finally solved the difficulty by merely
hiding the actual divergences. The die-hard
reductionist would still argue that all informa-
tion concepts descend from the same family,
while the unrepentant antireductionist would still
object that we are facing mere resemblances, and
that the various information concepts truly have
different roots.

Nonreductionists seek to escape the dichotomy
between reductionism and antireductionism by
replacing the reductionist hierarchical model with
a distributed network of connected concepts,
linked by mutual and dynamic influences that
are not necessarily genetic or genealogical. This
“hypertextual analysis” can be centralized in vari-
ous ways or completely decentralized and per-
haps multicentered.

According to decentralized or multicentered
approaches, there is no key concept of informa-
tion. More than one concept is equally import-

ant, and the “periphery” plays a counterbalancing
role. Depending on the orientation, information
is seen as interpretation, power, narrative, mes-
sage or medium, conversation, construction, a
commodity, and so on. Thus, philosophers like
Baudrillard, Foucault, Lyotard, McLuhan, Rorty,
and Derrida are united by what they dismiss, if
not challenge: the predominance of the factual.
For them information is not in, from, or about
reality. They downplay the aboutness of informa-
tion and bend its referential thrust into a self-
referential circle of hermeneutical communication.
Their classic target is Cartesian foundationalism
seen as the clearest expression of a hierarchical
and authoritarian approach to the genesis, justi-
fication, and flow of information. Disoriented,
they mistake it (Cartesian foundationalism) as the
only alternative to their fully decentralized view.

Centralized approaches interpret the vari-
ous meanings, uses, applications, and types of
information as a system gravitating around a core
notion with theoretical priority. The core notion
works as a hermeneutical device that influences,
interrelates, and helps to access other notions.
In metaphysics, Aristotle held a similar view about
being, and argued in favor of the primacy of
the concept of substance. In the philosophy
of information, this “substantial” role has long
been claimed by factual or epistemically oriented
semantic information. The basic idea is simple.
In order to understand what information is, the
best thing to do is to start by analyzing it in terms
of the knowledge it can yield about its reference
(the “abouted”). This epistemic approach is not
without competitors. Weaver (1949), for example,
supported a tripartite analysis of information in
terms of (1) technical problems concerning the
quantification of information and dealt with by
Shannon’s theory; (2) semantic problems relat-
ing to meaning and truth; and (3) what he called
“influential” problems concerning the impact and
effectiveness of information on human behavior,
which he thought had to play an equally import-
ant role. Moreover, in pragmatic contexts, it is
common to privilege a view of information as
primarily a resource for decision-making pro-
cesses. One of the tasks of this chapter is to show
how in each case the centrality of epistemically
oriented semantic information is presupposed
rather than replaced.
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We are now well placed to look at the struc-
ture of this chapter. In the following pages the
question “what is information?” is approached
from a nonreductionist and epistemically cent-
ralized perspective. In section 2, the concept
of semantic information is reviewed assuming
that factual information is the most important
and influential sense in which information qua
information “can be said.” However, no attempt
is made to reduce all other concepts to factual
information. Factual information is like the capital
of the informational archipelagos, crucially posi-
tioned to provide both a clear grasp of what
information is and a privileged gateway to other
important concepts that are interconnected but
not necessarily reducible to a single Ur-concept.
To show this in practice and to enrich our under-
standing of what else information may be, we
shall look at two neighboring areas of great
importance. Section 3 summarizes the mathemat-
ical theory of communication, which studies the
statistical behavior of uninterpreted data, a much-
impoverished concept of information. Section 4
outlines some important philosophical programs
of research that investigate a more enriched con-
cept of semantic information. Space constraints
prevent discussion of several other important con-
cepts of information, but some of them are briefly
mentioned in the conclusion.

2 Semantic Information

In this section, a general definition of semantic
information is introduced, followed by a special
definition of factually oriented semantic infor-
mation. The contents of the section are based
on Floridi forthcoming a and c. The approach
is loosely connected with the methodology
developed in situation logic (see section 3.2).

2.1 Semantic information as content

Information is often used in connection with
communication phenomena to refer to objective
(in the sense of mind-independent or external,
and informee-independent) semantic contents.
These can be of various size and value, formulated

in a range of codes and formats, embedded in
physical implementations of different kinds. They
can variously be produced, processed, commun-
icated, and accessed. The Cambridge Dictionary
of Philosophy, for example, defines information
thus:

an objective (mind independent) entity. It can
be generated or carried by messages (words,
sentences) or by other products of cognizers
(interpreters). Information can be encoded and
transmitted, but the information would exist
independently of its encoding or transmission.

Examples of information in this broad sense
are this Guide, Edgar Allan Poe’s The Raven,
Verlaine’s Song of Autumn, the Rosetta Stone
and the movie Fahrenheit 451.

Over the last three decades, many analyses have
converged on a General Definition of Informa-
tion (GDI) as semantic content in terms of
data + meaning (see Floridi forthcoming a for
extended bibliography):

GDI) σ is an instance of information, under-
stood as objective semantic content, if
and only if:

GDI.1) σ consists of n data (d), for n ≥ 1;
GDI.2) the data are well-formed (wfd);
GDI.3) the wfd are meaningful (mwfd = δ).

GDI has become an operational standard especi-
ally in fields that treat data and information as
reified entities (consider, for example, the now
common expressions “data mining” and “informa-
tion management”). Examples include Informa-
tion Science; Information Systems Theory,
Methodology, Analysis, and Design; Information
(Systems) Management; Database Design; and
Decision Theory. Recently, GDI has begun
to influence the philosophy of computing and
information (Floridi 1999 and Mingers 1997).

According to GDI, information can consist of
different types of data δ. Data can be of four
types (Floridi 1999):

δ.1) primary data. These are the principal
data stored in a database, e.g. a simple
array of numbers. They are the data
an information-management system is
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generally designed to convey to the user
in the first place.

δ.2) metadata. These are secondary indications
about the nature of the primary data. They
describe properties such as location, format,
updating, availability, copyright restrictions,
and so forth.

δ.3) operational data. These are data regard-
ing usage of the data themselves, the
operations of the whole data system and
the system’s performance.

δ.4) derivative data. These are data that can
be extracted from δ.1–δ.3, whenever the
latter are used as sources in search of pat-
terns, clues, or inferential evidence, e.g.
for comparative and quantitative analyses
(ideometry).

GDI indicates that information cannot be data-
less, but it does not specify which types of data
constitute information. This typological neutral-
ity (TyN) is justified by the fact that, when
the apparent absence of data is not reducible to
the occurrence of negative primary data, what
becomes available and qualifies as information is
some further nonprimary information µ about σ
constituted by some nonprimary data δ.2–δ.4.
For example, if a database query provides an
answer, it will provide at least a negative answer,
e.g. “no documents found.” If the database pro-
vides no answer, either it fails to provide any
data at all, in which case no specific information
σ is available, or it can provide some data δ to
establish, for example, that it is running in a
loop. Likewise, silence, as a reply to a question,
could represent negative information, e.g. as
implicit assent or denial, or it could carry some
nonprimary information µ, e.g. the person has
not heard the question.

Information cannot be dataless but, in the
simplest case, it can consist of a single datum
(d ). A datum is reducible to just a lack of uni-
formity between two signs. So our definition of
a datum (Dd ) is:

Dd) d = (x ≠ y), where the x and the y are two
uninterpreted variables.

The dependence of information on the occur-
rence of syntactically well-formed data, and of

data on the occurrence of differences variously
implementable physically, explain why informa-
tion can be decoupled from its support. Inter-
pretations of this support-independence vary
radically because Dd leaves underdetermined not
only the logical type to which the relata belong
(see TyN), but also the classification of the relata
(taxonomic neutrality), the kind of support re-
quired for the implementation of their inequality
(ontological neutrality), and the dependence of
their semantics on a producer (genetic neutrality).

Consider the taxonomic neutrality (TaN) first.
A datum is usually classified as the entity exhib-
iting the anomaly, often because the latter is
perceptually more conspicuous or less redundant
than the background conditions. However, the
relation of inequality is binary and symmetric.
A white sheet of paper is not just the necessary
background condition for the occurrence of a
black dot as a datum, it is a constitutive part of
the datum itself, together with the fundamental
relation of inequality that couples it with the dot.
Nothing is a datum per se. Being a datum is an
external property. GDI endorses the following
thesis:

TaN) A datum is a relational entity.

So, no data without relata, but GDI is neutral
with respect to the identification of data with
specific relata. In our example, GDI refrains from
identifying either the black dot or the white sheet
of paper as the datum.

Understood as relational entities, data are
constraining affordances, exploitable by a sys-
tem as input of adequate queries that correctly
semanticize them to produce information as out-
put. In short, information as content can also be
described erotetically as data + queries (Floridi
1999). I shall return to this definition in sec-
tion 3.2.

Consider now the ontological neutrality (ON).
By rejecting the possibility of dataless informa-
tion, GDI endorses the following modest thesis:

ON) No information without data representa-
tion.

Following Landauer and Bennett 1985 and
Landauer 1987, 1991, and 1996, ON is often
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interpreted materialistically, as advocating the
impossibility of physically disembodied informa-
tion, through the equation “representation =
physical implementation”:

ON.1) No information without physical
implementation.

ON.1 is an inevitable assumption when working
on the physics of computation, since computer
science must necessarily take into account the
physical properties and limits of the data carriers.
Thus, the debate on ON.1 has flourished especi-
ally in the context of the philosophy of quantum
computing (see Landauer 1991, Deutsch 1985,
1997; Di Vincenzo & Loss 1998; Steane 1998
provides a review). ON.1 is also the ontological
assumption behind the Physical Symbol System
Hypothesis in AI and Cognitive Science (Newell
& Simon 1976). But ON, and hence GDI, does
not specify whether, ultimately, the occurrence
of every discrete state necessarily requires a mater-
ial implementation of the data representations.
Arguably, environments in which all entities,
properties, and processes are ultimately noetic
(e.g. Berkeley, Spinoza), or in which the material
or extended universe has a noetic or non-
extended matrix as its ontological foundation (e.g.
Pythagoras, Plato, Descartes, Leibniz, Fichte,
Hegel), seem perfectly capable of upholding
ON without necessarily embracing ON.1. The
relata in Dd could be monads, for example.
Indeed, the classic realism debate can be recon-
structed in terms of the possible interpretations
of ON.

All this explains why GDI is also consistent
with two other popular slogans this time favorable
to the proto-physical nature of information and
hence completely antithetic to ON.1:

ON.2) “It from bit. Otherwise put, every ‘it’
– every particle, every field of force, even
the space-time continuum itself –
derives its function, its meaning, its very
existence entirely – even if in some con-
texts indirectly – from the apparatus-
elicited answers to yes-or-no questions,
binary choices, bits. ‘It from bit’ sym-
bolizes the idea that every item of the
physical world has at bottom – a very

deep bottom, in most instances – an
immaterial source and explanation; that
which we call reality arises in the last
analysis from the posing of yes–no ques-
tions and the registering of equipment-
evoked responses; in short, that all
things physical are information-theoretic
in origin and that this is a participatory
universe” (Wheeler 1990, 5);

and

ON.3) “[information is] a name for the con-
tent of what is exchanged with the outer
world as we adjust to it, and make our
adjustment felt upon it.” (Wiener 1954,
17). “Information is information, not
matter or energy. No materialism which
does not admit this can survive at the
present day” (Wiener 1961: 132).

ON.2 endorses an information-theoretic, meta-
physical monism: the universe’s essential nature is
digital, being fundamentally composed of informa-
tion as data instead of matter or energy, with
material objects as a complex secondary mani-
festation (a similar position has been defended
more recently in physics by Frieden 1998, whose
work is based on a Platonist perspective). ON.2
may but does not have to endorse a strictly
computational view of information processes.
ON.3 advocates a more pluralistic approach along
similar lines. Both are compatible with GDI.

A final comment concerning GDI.3 can be
introduced by discussing a fourth slogan:

ON.4) “In fact, what we mean by information
– the elementary unit of information –
is a difference which makes a differ-
ence.” (Bateson 1973: 428)

ON.4 is one of the earliest and most popular
formulations of GDI (see for example Franklin
1995, 34 and Chalmers 1997: 281; note that the
formulation in MacKay 1969, that is, “informa-
tion is a distinction that makes a difference,”
predates Bateson’s and, although less memorable,
is more accurate). A “difference” is just a dis-
crete state (that is, a datum), and “making a
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difference” simply means that the datum is
“meaningful,” at least potentially.

Finally, let us consider the semantic nature
of the data. How data can come to have an
assigned meaning and function in a semiotic
system in the first place is one of the hardest
problems in semantics. Luckily, the point in
question here is not how but whether data con-
stituting information as semantic content can be
meaningful independently of an informee. The
genetic neutrality (GeN) supported by GDI states
that:

GeN) δ can have a semantics independently of
any informee.

Before the discovery of the Rosetta Stone,
Egyptian hieroglyphics were already regarded
as information, even if their semantics was bey-
ond the comprehension of any interpreter. The
discovery of an interface between Greek and
Egyptian did not affect the semantics of the hiero-
glyphics but only its accessibility. This is the weak,
conditional-counterfactual sense in which GDI.
3 speaks of meaningful data being embedded
in information carriers informee-independently.
GeN supports the possibility of information with-
out an informed subject, to adapt a Popperian
phrase. Meaning is not (at least not only) in the
mind of the user. GeN is to be distinguished
from the stronger, realist thesis, supported for
example by Dretske (1981), according to which
data could also have their own semantics inde-
pendently of an intelligent producer/informer.
This is also known as environmental informa-
tion, and a typical example given is the series
of concentric rings visible in the wood of a cut
tree trunk, which may be used to estimate its
age.

To summarize, GDI defines information
broadly understood as semantic content com-
prised of syntactically well-formed and meaning-
ful data. Its four types of neutrality (TyN, TaN,
ON, and GeN) represent an obvious advantage,
as they make GDI perfectly scalable to more
complex cases and reasonably flexible in terms of
applicability and compatibility. The next question
is whether GDI is satisfactory when discussing
the most important type of semantic information,
namely factual information.

2.2 Semantic information as
factual information

We have seen that semantic information is usu-
ally associated with communication. Within this
context, the most important type of semantic
information is factual information, which tells
the informee something about something else,
for example where a place is, what the time is,
whether lunch is ready, or that penguins are birds.
Factual information has a declarative (Kant’s
judicial) nature, is satisfactorily interpretable in
terms of first-order, classic predicate logic, is cor-
rectly qualifiable alethically, and can be appro-
priately analyzed in the following form “a’s being
(of type) F carries the information that b is G”
(Dretske 1981, Barwise & Seligman 1997).

Does GDI provide a definition of factual
information? Some philosophers (Barwise &
Seligman 1997, Dretske 1981, Floridi forthcom-
ing a and c. Grice 1989) have argued that it
does not, because otherwise false information
would have to count as a type of factual informa-
tion, and there are no convincing reasons to
believe it does, while there are compelling rea-
sons to believe that it does not (for a detailed
analysis see Floridi forthcoming a). As Dretske
and Grice have put it: “false information and
mis-information are not kinds of information –
any more than decoy ducks and rubber ducks
are kinds of ducks” (Dretske 1981: 45) and
“False information is not an inferior kind of
information; it just is not information” (Grice
1989: 371). Let us look at the problem in more
detail.

The difficulty lies here with yet another import-
ant neutrality in GDI. GDI makes no comment
on the truthfulness of data that may comprise
information (alethic neutrality AN):

AN) Meaningful and well-formed data qualify
as information, no matter whether they
represent or convey a truth or a falsehood
or have no alethic value at all.

Verlaine’s Song of Autumn counts as informa-
tion even if it does not make sense to ask whether
it is true or false, and so does every sentence in
Old Moore’s Almanac, no matter how downright
false. Information as purely semantic content is
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completely decoupled from any alethic consid-
eration (Colburn 2000, Fetzer forthcoming, and
Fox 1983 can be read as defending this perspec-
tive). However, if GDI is also taken to define
factual information, then

a) false information about the world (includ-
ing contradictions), i.e. misinformation, be-
comes a genuine type of factual information;

b) tautologies qualify as factual information;
c) “it is true that p” where p can be replaced

by any instance of genuine factual informa-
tion, is no longer a redundant expression,
e.g. “it is true” in the conjunction “ ‘the
earth is round’ qualifies as information and
it is true” cannot be eliminated without
semantic loss; and finally

d) it becomes impossible to erase factual
information semantically (we shall be more
and more informed about x, no matter what
the truth value of our data about x is).

None of these consequences is ultimately defens-
ible, and their rejection forces a revision of GDI.
“False” in “false information” is used attribut-
ively, not predicatively. As in the case of a false
constable, false information is not factual informa-
tion that is false, but not factual information
at all. So “false information” is, like “false evid-
ence,” not an oxymoron, but a way of specifying
that the informational contents in question do
not conform to the situation they purport to
map (or “to about”), and so fail to qualify as
factual information. Well-formed and meaning-
ful data may be of poor quality. Data that are
incorrect (vitiated by errors or inconsistencies),
imprecise (precision is a measure of the repeatab-
ility of the collected data), or inaccurate (accuracy
refers to how close the average data value is to
the actual value) are still data and may be re-
coverable. But, if they are not truthful, they can
only amount to semantic content at best and
misinformation at worst.

The special definition of information (SDI)
needs to include a fourth condition about the
positive alethic nature of the data in question:

SDI) σ is an instance of factual information
if and only if:

SDI.1) σ consists of n data (d), for n ≥ 1;

SDI.2) the data are well-formed (wfd);
SDI.3) the wfd are meaningful (mwfd = δ);
SDI.4) the δ are truthful.

Factual information encapsulates truthfulness,
which does not contingently supervene on, but
is necessarily embedded in it. And since informa-
tion is “said primarily in factual ways,” to put it
in Aristotelian terms, false information can be dis-
missed as no factual information at all, although
it can still count as information in the trivial
sense of semantic content.

3 The Mathematical Theory of
Communication

Some features of information are intuitively
quantitative. Information can be encoded, stored,
and transmitted. We also expect it to be additive
and non-negative. Similar properties of informa-
tion are investigated by the mathematical theory
of communication (MTC) with the primary aim
of devising efficient ways of encoding and trans-
ferring data.

MTC is not the only successful mathematical
approach to information theory, but it certainly
is the best and most widely known, and the one
that has had the most profound impact on philo-
sophical analyses. The name for this branch of
probability theory comes from Shannon’s seminal
work (Shannon 1948, now Shannon & Weaver
1998). Shannon pioneered this field and obtained
many of its principal results, but he acknow-
ledged the importance of previous work done by
other researchers at Bell laboratories, most not-
ably Nyquist and Hartley (see Cherry 1978 and
Mabon 1975). After Shannon, MTC became
known as information theory, an appealing but
unfortunate label, which continues to cause end-
less misunderstandings. Shannon came to regret
its widespread popularity, and we shall avoid
using it in this context.

This section outlines some of the key ideas
behind MTC, with the aim of understanding
the relation between MTC and the philosophy
of information. The reader with no taste for
mathematical formulae may wish to go directly
to section 3.2, where some implications of
MTC are discussed. The reader interested in
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Figure 4.1: Communication model (adapted from Shannon 1948, 1998)

knowing more can start by reading Weaver 1949
and Shannon 1993b, then Schneider 2000,
Pierce 1980, and Jones 1979, and finally Cover
& Thomas 1991.

3.1 The quantification of raw
information

MTC has its origin in the field of electrical com-
munication, as the study of communication limits.
It develops a quantitative approach to informa-
tion as a means to answer two fundamental prob-
lems: the ultimate level of data compression and
the ultimate rate of data transmission. The two
solutions are the entropy H in equation (4.9)
(see below) and the channel capacity C. The rest
of this section illustrates how to get from the
problems to the solutions.

Imagine a very boring device that can pro-
duce only one symbol, like Poe’s raven, who can
answer only “nevermore.” This is called a unary
device. Even at this elementary level, Shannon’s
simple model of communication applies (see
figure 4.1). The raven is the informer, we are
the informee, “nevermore” is the message (the
informant), there is a coding and decoding pro-
cedure through a language (English), a channel
of communication, and some possible noise.

Informer and informee share the same
background knowledge about the collection of
usable symbols (the alphabet). Given this a priori

knowledge, it is obvious that a unary device pro-
duces zero amount of information. Simplifying,
we already know the outcome so our ignorance
cannot be decreased. Whatever the informational
state of the system, asking appropriate questions
to the raven does not make any difference. Note
that a unary source answers every question all
the time with only one symbol, not with silence
or symbol, since silence counts as a signal, as we
saw in section 2.1. It follows that a completely
silent source also qualifies as a unary source.

Consider now a binary device that can pro-
duce two symbols, like a fair coin A with its two
equiprobable symbols {h, t}; or, as Matthew 5:37
suggests, “Let your communication be Yea, yea;
Nay, nay: for whatsoever is more than these
cometh of evil.” Before the coin is tossed, the
informee (for example a computer) is in a state
of data deficit greater than zero: the informee
does not “know” which symbol the device will
actually produce. Shannon used the technical
term “uncertainty” to refer to data deficit. In a
nonmathematical context this is a misleading term
because of its strongly semantic connotations,
especially from a Cartesian perspective. Recall
that the informee can be a very simple machine,
and psychological, mental, or doxastic states are
clearly irrelevant. Once the coin has been tossed,
the system produces an amount of raw informa-
tion that is a function of the possible outputs, in
this case 2 equiprobable symbols, and equal to
the data deficit that it removes.
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Table 4.1: Examples of communication devices and their informational power

Device Alphabet Bits of information per symbol

Poe’s raven (unary) 1 symbol log(1) = 0
1 coin (binary) 2 equiprobable symbols log(2) = 1
2 coins 4 equiprobable symbols log(4) = 2
1 die 6 equiprobable symbols log(6) = 2.58
3 coins 8 equiprobable symbols log(8) = 3

Let us build a slightly more complex system,
made of two fair coins A and B. The AB system
can produce 4 ordered outputs: <h, h>, <h, t>,
<t, h>, <t, t>. It generates a data deficit of 4
units, each couple counting as a symbol in the
source alphabet. In the AB system, the occur-
rence of each symbol <_, _> removes a higher
data deficit than the occurrence of a symbol in
the A system. In other words, each symbol pro-
vides more raw information. Adding an extra
coin would produce a 8 units of data deficit,
further increasing the amount of information
carried by each symbol in the ABC system, and
so on.

We are ready to generalize the examples. Call
the number of possible symbols N. For N = 1,
the amount of information produced by a unary
device is 0. For N = 2, by producing an
equiprobable symbol, the device delivers 1 unit
of information. And for N = 4, by producing an
equiprobable symbol the device delivers the sum
of the amount of information provided by coin
A plus the amount of information provided by
coin B, that is, 2 units of information, although
the total number of symbols is obtained by
multiplying A’s symbols by B’s symbols. Now,
our information measure should be a continuous
and monotonic function of the probability of
the symbols. The most efficient way of satisfying
these requirements is by using the logarithm to
the base 2 of the number of possible symbols
(the logarithm to the base 2 of a number n is
the power to which 2 must be raised to give the
number n, for example log28 = 3, since 23 = 8).
Logarithms have the useful property of turn-
ing multiplication of symbols into addition of
information units. By taking the logarithm to
the base 2 (henceforth log simply means log2)
we have the further advantage of expressing the

units in bits. The base is partly a matter of con-
vention, like using centimeters instead of inches,
partly a matter of convenience, since it is useful
when dealing with digital devices that use binary
codes to represent data. Given an alphabet of
N equiprobable symbols, we can rephrase some
examples more precisely (table 4.1) by using
equation (4.1):

log2(N ) = bits of information per symbol
(4.1)

The basic idea is all in equation (4.1). Raw in-
formation can be quantified in terms of decrease
in data deficit (Shannon’s uncertainty). Unfortun-
ately, real coins are always biased. To calculate
how much information they produce one must
rely on the frequency of the occurrences of
symbols in a finite series of tosses, or on their
probabilities, if the tosses are supposed to go on
indefinitely. Compared to a fair coin, a slightly
biased coin must produce less than 1 bit of
information, but still more than 0. The raven
produced no information at all because the
occurrence of a string S of “nevermore” was not
informative (not surprising, to use a more intu-
itive but psychologistic vocabulary), and that
is because the probability of the occurrence of
“nevermore” was maximum, so overly predict-
able. Likewise, the amount of raw information
produced by the biased coin depends on the
average informativeness (also known as average
surprisal, another unfortunate term to refer to
the average statistical rarity) of the string S of h
and t produced by the coin. The average informat-
iveness of the resulting string S depends on the
probability of the occurrence of each symbol.
The higher the frequency of a symbol in S, the
less raw information is being produced by the
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coin, up to the point when the coin is so biased
to produce always the same symbol and stops
being informative, behaving like the raven. So,
to calculate the average informativeness of S
we need to know how to calculate S and the
informativeness of an i th symbol in general. This
requires understanding what the probability of
an i th symbol (Pi) to occur is.

The probability Pi of the i th symbol can be
“extracted” from equation (4.1), where it is
embedded in log(N ), a special case in which
the symbols are equiprobable. Using some ele-
mentary properties of the logarithmic function
we have:

log(N ) = −log(N −1) = −log
1
N

⎛
⎝⎜

⎞
⎠⎟

= −log(P )

(4.2)

The value of 1/N = P can range from 0 to 1. If
the raven is our source, the probability of “good
morning” is 0. In the case of the coin, P(h) +
P(t) = 1, no matter how biased the coin is. Prob-
ability is like a cake that gets sliced more and
more thinly depending on the number of guests,
but never grows beyond its original size. More
formally:

Pi
i

N

=
∑ =

1

1 (4.3)

The sigma notation simply means that if we add
all probabilities values from i = 1 to i = N the
sum is equal to 1.

We can now be precise about the raven: “never-
more” is not informative at all because Pnevermore

= 1. Clearly, the lower the probability of occur-
rence of a symbol, the higher is the informative-
ness of its actual occurrence. The informativeness
u of an i th symbol can be expressed by analogy
with −log (P ) in equation (4.2):

ui = −log(Pi) (4.4)

Next, we need to calculate the length of a gen-
eral string S. Suppose that the biased coin, tossed
10 times, produces the string: <h, h, t, h, h, t, t,
h, h, t>. The (length of the) string S (in our case
equal to 10) is equal to the number of times the

h type of symbol occurs added to the numbers
of times the t type of symbol occurs. Generaliz-
ing for i types of symbols:

S Si
i

N

=
=
∑

1

(4.5)

Putting together equations (4.4) and (4.5) we
see that the average informativeness for a string
of S symbols is the sum of the informativeness of
each symbol divided by the sum of all symbols:

S u

S

i i
i

N

i
i

N
=

=

∑

∑
1

1

(4.6)

Formula (4.6) can be simplified thus:

S
S

ui

i

N

i
=

∑
1

(4.7)

Now Si/S is the frequency with which the i th

symbol occurs in S when S is finite. If the length
of S is left undetermined (as long as one wishes),
then the frequency of the i th symbol becomes its
probability Pi. So, further generalizing formula
(4.7) we have:

i

N

i iP u
=
∑

1

(4.8)

Finally, by using equation (4.4) we can substi-
tute for ui and obtain

H
i

N

= −
=

∑
1

Pi log Pi (bits per symbol) (4.9)

Equation (4.9) is Shannon’s formula for H =
uncertainty, which we have called data deficit
(actually, Shannon’s original formula includes a
positive constant K which amounts to a choice
of a unit of measure, bits in our case; apparently,
Shannon used the letter H because of R. V. L.
Hartley’s previous work). Equation (4.9) indic-
ates that the quantity of raw information pro-
duced by a device corresponds to the amount of
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data deficit erased. It is a function of the average
informativeness of the (potentially unlimited)
string of symbols produced by the device. It is
easy to prove that, if symbols are equiprobable,
(4.9) reduces to (4.1) and that the highest quan-
tity of raw information is produced by a system
whose symbols are equiprobable (compare the
fair coin to the biased one).

To arrive at (4.9) we have used some very
simple examples: a raven and a handful of coins.
Things in life are far more complex. For example,
we have assumed that the strings of symbols are
ergodic: the probability distribution for the occur-
rences of each symbol is assumed to be stable
through time and independently of the selec-
tion of a certain string. Our raven and coins are
discrete and zero-memory sources. The successive
symbols they produce are statistically independ-
ent. But in real life occurrences of symbols are
often interdependent. Sources can be non-ergodic
and have a memory. Symbols can be continuous,
and the occurrence of one symbol may depend
upon a finite number n of preceding symbols,
in which case the string is known as a Markov
chain and the source an nth order Markov source.
Consider for example the probability of being
sent an “e” before or after having received the
string “welcom.” And consider the same example
through time, in the case of a child learning how
to spell English words. In brief, MTC develops
the previous analysis to cover a whole variety of
more complex cases. We shall stop here, how-
ever, because in the rest of this section we need
to concentrate on other central aspects of MTC.

The quantitative approach just sketched plays
a fundamental role in coding theory (hence in
cryptography) and in data storage and transmis-
sion techniques. Recall that MTC is primarily a
study of the properties of a channel of commun-
ication and of codes that can efficiently encipher
data into recordable and transmittable signals.
Since data can be distributed either in terms of
here/there or now/then, diachronic communica-
tion and synchronic analysis of a memory can
be based on the same principles and concepts
(our coin becomes a bi-stable circuit or flip-flop,
for example), two of which are so important to
deserve a brief explanation: redundancy and noise.

Consider our AB system. Each symbol occurs
with 0.25 probability. A simple way of encoding

its symbols is to associate each of them with two
digits:

<h, h> = 00
<h, t> = 01
<t, h> = 10
<t, t> = 11

Call this Code 1. In Code 1 a message conveys
2 bits of information, as expected. Do not con-
fuse bits as bi-nary units of information (recall
that we decided to use log2 also as a matter of
convenience) with bits as bi-nary digits, which is
what a 2-symbols system like a CD-ROM uses
to encode a message. Suppose now that the AB
system is biased, and that the four symbols occur
with the following probabilities:

<h, h> = 0.5
<h, t> = 0.25
<t, h> = 0.125
<t, t> = 0.125

This system produces less information, so by
using Code 1 we would be wasting resources. A
more efficient Code 2 should take into account
the symbols’ probabilities, with the following
outcomes:

<h, h> = 0 0.5 × 1 binary digit = .5
<h, t> = 10 0.25 × 2 binary digits = .5
<t, h> = 110 0.125 × 3 binary digits = .375
<t, t> = 111 0.125 × 3 binary digits = .375

In Code 2, known as Fano Code, a message
conveys 1.75 bits of information. One can prove
that, given that probability distribution, no other
coding system will do better than Fano Code.
On the other hand, in real life a good codification
is also modestly redundant. Redundancy refers to
the difference between the physical representation
of a message and the mathematical representa-
tion of the same message that uses no more bits
than necessary. Compression procedures work by
reducing data redundancy, but redundancy is not
always a bad thing, for it can help to counteract
equivocation (data sent but never received) and
noise (received but unwanted data). A message +
noise contains more data than the original mess-
age by itself, but the aim of a communication
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process is fidelity, the accurate transfer of the
original message from sender to receiver, not
data increase. We are more likely to reconstruct a
message correctly at the end of the transmission
if some degree of redundancy counterbalances
the inevitable noise and equivocation introduced
by the physical process of communication and
the environment. Noise extends the informee’s
freedom of choice in selecting a message, but it
is an undesirable freedom and some redundancy
can help to limit it. That is why, in a crowded
pub, you shout your orders twice and add some
gestures.

We are now ready to understand Shannon’s
two fundamental theorems. Suppose the 2-coins
biased system produces the following message:
<t, h> <h, h> <t, t> <h, t> <h, t>. Using Fano
Code we obtain: 11001111010. The next step
is to send this string through a channel. Channels
have different transmission rates (C ), calculated
in terms of bits per second (bps). Shannon’s
fundamental theorem of the noiseless channel
states that

Let a source have entropy H (bits per symbol)
and a channel have a capacity C (bits per sec-
ond). Then it is possible to encode the output
of the source in such a way as to transmit at
the average rate of C/H − ε symbols per sec-
ond over the channel where ε is arbitrarily
small. It is not possible to transmit at an
average rate greater than C/H. (Shannon &
Weaver 1998: 59)

In other words, if you devise a good code you
can transmit symbols over a noiseless channel at
an average rate as close to C/H as one may wish
but, no matter how clever the coding is, that
average can never exceed C/H. We have already
seen that the task is made more difficult by
the inevitable presence of noise. However, the
fundamental theorem for a discrete channel with
noise comes to our rescue:

Let a discrete channel have the capacity C and
a discrete source the entropy per second H.
If H ≤ C there exists a coding system such
that the output of the source can be transmit-
ted over the channel with an arbitrarily small
frequency of errors (or an arbitrarily small

equivocation). If H > C it is possible to encode
the source so that the equivocation is less than
H − C + ε where ε is arbitrarily small. There
is no method of encoding which gives an
equivocation less than H − C. (Shannon &
Weaver 1998: 71)

Roughly, if the channel can transmit as much or
more information than the source can produce,
then one can devise an efficient way to code and
transmit messages with as small an error probab-
ility as desired. These two fundamental theorems
are among Shannon’s greatest achievements. And
with our message finally sent, we may close this
section.

3.2 Some conceptual implications
of MTC

For the mathematical theory of communication
(MTC), information is only a selection of one
symbol from a set of possible symbols, so a
simple way of grasping how MTC quantifies raw
information is by considering the number of yes/
no questions required to guess what the source
is communicating. One question is sufficient to
guess the output of a fair coin, which therefore
is said to produce 1 bit of information. A 2-fair-
coins system produces 4 ordered outputs (<h,
h>, <h, t>, <t, h>, <t, t>) and therefore requires
two questions, each output containing 2 bits of
information, and so on. This erotetic analysis
clarifies two important points.

First, MTC is not a theory of information in
the ordinary sense of the word. The expression
“raw information” has been used to stress the
fact that in MTC information has an entirely
technical meaning. Consider some examples. Two
equiprobable “yes” contain the same quantity of
raw information, no matter whether their cor-
responding questions are “would you like some
tea?” or “would you marry me?” If we knew
that a device could send us with equal probab-
ilities either the movie Fahrenheit 451 or this
whole Guide, by receiving one or the other we
would receive many bytes of data but only one
bit of raw information. On June 1, 1944, the
BBC broadcasted a line from Verlaine’s Song of
Autumn: “Les sanglots longs des violons de
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messages constituted by uninterpreted symbols
encoded in well-formed strings of signals, it is
commonly described as a study of information
at the syntactic level. MTC can be successfully
applied in ICT (information and communica-
tion technologies) because computers are syntact-
ical devices. What remains to be clarified is how
H in equation (4.9) should be interpreted.

Assuming the ideal case of a noiseless channel
of communication, H is a measure of three
equivalent quantities:

a) the average amount of raw information per
symbol produced by the informer, or

b) the corresponding average amount of data
deficit (Shannon’s uncertainty) that the
informee has before the inspection of the
output of the informer, or

c) the corresponding informational potential-
ity of the same source, that is, its informa-
tional entropy.

H can equally indicate (a) or (b) because, by
selecting a particular alphabet, the informer auto-
matically creates a data deficit (uncertainty) in the
informee, which then can be satisfied (resolved)
in various degrees by the informant. Recall the
erotetic game. If you use a single fair coin, I
immediately find myself in a 1-bit deficit predica-
ment. Use two fair coins and my deficit doubles,
but use the raven, and my deficit becomes null.
My empty glass is an exact measure of your capa-
city to fill it. Of course, it makes sense to talk of
raw information as quantified by H only if one
can specify the probability distribution.

Regarding (c), MTC treats raw information
like a physical quantity, such as mass or energy,
and the closeness between equation (4.9) and the
formulation of the concept of entropy in statist-
ical mechanics was already discussed by Shannon.
The informational and the thermodynamic con-
cepts of entropy are related through the concepts
of probability and randomness (“randomness” is
better than “disorder” since the former is a syn-
tactical concept whereas the latter has a strongly
semantic value), entropy being a measure of the
amount of “mixed-up-ness” in processes and sys-
tems bearing energy or information. Entropy can
also be seen as an indicator of reversibility: if
there is no change of entropy then the process is

Autumne.” The message contained almost 1 bit
of information, an increasingly likely “yes” to
the question whether the D-Day invasion was
imminent. The BBC then broadcasted the sec-
ond line “Blessent mon coeur d’une longueur
monotone.” Another almost meaningless string
of letters, but almost another bit of information,
since it was the other long-expected “yes” to the
question whether the invasion was to take place
immediately. German intelligence knew about
the code, intercepted those messages, and even
notified Berlin, but the high command failed
to alert the Seventh Army Corps stationed in
Normandy. Hitler had all the information in
Shannon’s sense of the word, but failed to under-
stand the real meaning and importance of those
two small bits of data. As for ourselves, we were
not surprised to conclude that the maximum
amount of raw information is produced by a
text where each character is equally distributed,
that is by a perfectly random sequence.

Second, since MTC is a theory of informa-
tion without meaning, and information minus
meaning = data, mathematical theory of data
communication is a far more appropriate descrip-
tion than information theory. In section 2.1, we
saw that information as semantic content can
also be described erotetically as data + queries.
Imagine a piece of information such as “the earth
has only one moon.” It is easy to polarize almost
all its semantic content by transforming it into a
query + binary answer: “does the earth have only
one moon? + yes.” Subtract the “yes” and you are
left with virtually all the semantic content, fully
de-alethicized (the query is neither true nor false).
The datum “yes” works as a key to unlock the
information contained in the query. MTC studies
the codification and transmission of raw informa-
tion by treating it as data keys, as the amount of
details in a signal or message or memory space
necessary to unlock the informee’s knowledge. As
Weaver (1949: 12) remarked, “the word informa-
tion relates not so much to what you do say, as
to what you could say. MTC deals with the car-
riers of information, symbols and signals, not
with information itself. That is, information is
the measure of your freedom of choice when
you select a message.”

Since MTC deals not with information itself
but with the carriers of information, that is,



Information

53

reversible. A highly structured, perfectly organ-
ized message contains a lower degree of entropy
or randomness, less raw information, and causes
a smaller data deficit – consider the raven. The
higher the potential randomness of the symbols
in the alphabet, the more bits of information
can be produced by the device. Entropy assumes
its maximum value in the extreme case of uni-
form distribution. Which is to say that a glass of
water with a cube of ice contains less entropy
than the glass of water once the cube has melted,
and a biased coin has less entropy than a fair coin.
In thermodynamics, we know that the greater
the entropy, the less available the energy. This
means that high entropy corresponds to high
energy deficit, but so does entropy in MTC:
higher values of H correspond to higher quant-
ities of data deficit.

4 Some Philosophical Approaches
to Semantic Information

The mathematical theory of communication
approaches information as a physical phenomenon.
Its central question is whether and how much
uninterpreted data can be encoded and trans-
mitted efficiently by means of a given alphabet
and through a given channel. MTC is not inter-
ested in the meaning, aboutness, relevance, use-
fulness, or interpretation of information, but only
in the level of detail and frequency in the un-
interpreted data, being these symbols, signals
or messages. On the other hand, philosophical
approaches seek to give an account of informa-
tion as semantic content, investigating questions
like “how can something count as information?
and why?,” “how can something carry informa-
tion about something else?,” “how can semantic
information being generated and flow?,” “how
is information related to error, truth and know-
ledge?,” “when is information useful?” Philo-
sophers usually adopt a propositional orientation
and an epistemic outlook, endorsing, often im-
plicitly, the prevalence of the factual (they analyze
examples like “The Bodleian library is in Ox-
ford”). How relevant is MTC to similar analyses?

In the past, some research programs tried
to elaborate information theories alternative to

MTC, with the aim of incorporating the semantic
dimension. Donald M. MacKay (1969) proposed
a quantitative theory of qualitative information
that has interesting connections with situation
logic (see below), whereas Doede Nauta (1972)
developed a semiotic-cybernetic approach. Nowa-
days, few philosophers follow these lines of
research. The majority agree that MTC provides a
rigorous constraint to any further theorizing on
all the semantic and pragmatic aspects of informa-
tion. The disagreement concerns the crucial issue
of the strength of the constraint. At one extreme
of the spectrum, a theory of semantic informa-
tion is supposed to be very strongly constrained,
perhaps even overdetermined, by MTC, some-
what as mechanical engineering is by Newtonian
physics. Weaver’s interpretation of Shannon’s
work is a typical example. At the other extreme, a
theory is supposed to be only weakly constrained,
perhaps even completely underdetermined, by
MTC, somewhat as tennis is constrained by
Newtonian physics, that is, in the most uninter-
esting, inconsequential, and hence disregardable
sense (see for example Sloman 1978 and Thagard
1990). The emergence of MTC in the 1950s
generated earlier philosophical enthusiasm that
has gradually cooled down through the decades.
Historically, philosophical theories of semantic
information have moved from “very strongly con-
strained” to “only weakly constrained,” becom-
ing increasingly autonomous from MTC (for a
review, see Floridi forthcoming b).

Popper (1935) is often credited as the first
philosopher to have advocated the inverse rela-
tion between the probability of p and the amount
of semantic information carried by p. However,
systematic attempts to develop a formal calculus
were made only after Shannon’s breakthrough.
MTC defines information in terms of probab-
ility space distribution. Along similar lines, the
probabilistic approach to semantic information
defines the semantic information in p in terms of
logical probability space and the inverse relation
between information and the probability of p.
This approach was initially suggested by Bar-
Hillel and Carnap (Bar-Hillel & Carnap 1953,
Bar-Hillel 1964) and further developed by
Hintikka (especially Hintikka & Suppes 1970)
and Dretske 1981 (on Dretske’s approach see
also Chapters 16 and 17, on MEANING and on
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KNOWLEDGE). The details are complex but the
original idea is simple. The semantic content
(CONT) in p is measured as the complement of
the a priori probability of p:

CONT(p) = 1 − P(p) (4.10)

CONT does not satisfy the two requirements of
additivity and conditionalization, which are
satisfied by another measure, the informativeness
(INF) of p, which is calculated, following equa-
tions (4.9) and (4.10), as the reciprocal of P(p),
expressed in bits, where P(p) = 1 − CONT(p) :

INF(p) = log   log ( )
1

1 −
= −

CONT
P p (4.11)

Things are complicated by the fact that the con-
cept of probability employed in equations (4.10)
and (4.11) is subject to different interpretations.
In Bar-Hillel and Carnap the probability distribu-
tion is the outcome of a logical construction of
atomic statements according to a chosen formal
language. This introduces a problematic reliance
on a strict correspondence between observational
and formal language. In Dretske, the solution is
to make probability values refer to states of affairs
(s) of the world observed:

I(s) = −log P (s) (4.12)

The modal approach modifies the probabilistic
approach by defining semantic information in
terms of modal space and in/consistency. The
information conveyed by p becomes the set of
all possible worlds or (more cautiously) the set
of all the descriptions of the relevant possible
states of the universe that are excluded by p.
The systemic approach, developed especially in
situation logic (Barwise & Perry 1983, Israel &
Perry 1990, Devlin 1991; Barwise & Seligman
1997 provide a foundation for a general theory
of information flow) also defines information in
terms of states space and consistency. However,
it is less ontologically demanding than the
modal approach, since it assumes a clearly limited
domain of application, and it is compatible with
Dretske’s probabilistic approach, although it does
not require a probability measure on sets of states.

The informational content of p is not determined
a priori, through a calculus of possible states
allowed by a representational language, but in
terms of factual content that p carries with respect
to a given situation. Information tracks possible
transitions in a system’s states space under normal
conditions. Both Dretske and situation theories
require some presence of information already
immanent in the environment (environmental
information), as nomic regularities or constraints.
This “semantic externalism” can be controversial
both epistemologically and ontologically. Finally,
the inferential approach defines information in
terms of entailment space: information depends
on valid inference relative to a person’s theory
or epistemic state.

Most approaches close to MTC assume the
principle of alethic neutrality, and run into the
difficulties I outlined in section 2.2 (Dretske
and Barwise are important exceptions; Devlin
rejects truthfulness as a necessary condition). As
a result, the semantic approach (Floridi forth-
coming a and c) adopts SDI and defines factual
information in terms of data space.

Suppose there will be exactly three guests for
dinner tonight. This is our situation w. Imagine
that you are told that

T) there may or may not be some guests for
dinner tonight; or

V) there will be some guests tonight; or
P) there will be three guests tonight.

The degree of informativeness of T is zero because,
as a tautology, T applies both to w and to ¬w. V
performs better, and P has the maximum degree
of informativeness because, as a fully accurate,
precise, and contingent truth, it “zeros in” on its
target w. Generalizing, the more distant a true
σ is from its target w, the larger is the number
of situations to which it applies, the lower its
degree of informativeness becomes. A tautology
is a true σ that is most “distant” from the world.
Let us use the letter ϑ to refer to the distance
between a true σ and w. Using the more precise
vocabulary of situation logic, ϑ indicates the
degree of support offered by w to σ. We can
now map on the x axis the values of ϑ given a
specific σ and a corresponding target w. In our
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example, we know that ϑ(T) = 1 and ϑ(P) = 0.
For the sake of simplicity, let us assume that
ϑ(V) = 0.25 (see Floridi forthcoming c on how
to calculate ϑ values). We now need a formula to
calculate the degree of informativeness ι of σ in
relation to ϑ(σ). It can be shown that the most
elegant solution is provided by the complement
of the square value of ϑ(σ), that is y = 1 − x2.
Using the symbols jut introduced we have:

ι(σ) = 1 − ϑ(σ)2 (4.13)

Figure 4.2 shows the graph generated by equa-
tion (4.13) when we also include negative values
of distance for false σ (ϑ ranges from −1 =
contradiction to 1 = tautology).

If σ has a very high degree of informativeness
ι (very low ϑ) we want to be able to say that it
contains a large quantity of semantic informa-
tion and, vice versa, the lower the degree of
informativeness of σ is, the smaller the quantity
of semantic information conveyed by σ should
be. To calculate the quantity of semantic informa-
tion contained in σ relative to ι(σ) we need to
calculate the area delimited by equation (4.13),

that is, the definite integral of the function ι(σ)
on the interval [0, 1]. As we know, the max-
imum quantity of semantic information (call it
α) is carried by P, whose ϑ = 0. This is equivalent
to the whole area delimited by the curve. Gen-
eralizing to σ we have:

  0

1 2
3� ι σ α ( )     dx = = (4.14)

Figure 4.3 shows the graph generated by equa-
tion (4.14). The shaded area is the maximum
amount of semantic information α carried by σ.

Consider now V, “there will be some guests
tonight.” V can be analyzed as a (reasonably
finite) string of disjunctions, that is V = [“there
will be one guest tonight” or “there will be two
guests tonight” or . . . “there will be n guests
tonight”], where n is the reasonable limit we
wish to consider (things are more complex than
this, but here we only need to grasp the general
principle). Only one of the descriptions in V
will be fully accurate. This means that V also
contains some (perhaps much) information that
is simply irrelevant or redundant. We shall refer
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to this “informational waste” in V as vacuous
information in V. The amount of vacuous
information (call it β) in V is also a function of
the distance ϑ of V from w, or more generally

  0

ϑ
ι σ β�  ( )   dx = (4.16)

Since ϑ(V) = 0.25, we have

  0

0 25
0 24479

.
 ( )   .� ι V dx = (4.17)

Figure 4.4 shows the graph generated by equa-
tion (4.17). The shaded area is the amount of
vacuous information β in V. Clearly, the amount
of semantic information in V is simply the
difference between α (the maximum amount
of information that can be carried in principle
by σ) and β (the amount of vacuous informa-
tion actually carried by σ), that is, the clear area
in the graph of figure 4.4. More generally, the
amount of semantic information γ in σ is:

γ(σ) = (α − β) (4.18)

Note the similarity between 4.14 and 4.16. When
ϑ(σ) = 1, that is, when the distance between σ
and w is maximum, then α = β and γ(σ) = 0.
This is what happens when we consider T. T is
so distant from w as to contain only vacuous
information. In other words, T contains as
much vacuous information as P contains relevant
information.

A final comment, before closing this section.
Each of the previous extentionalist approaches
can be given an intentionalist interpretation by
considering the relevant space as a doxastic space,
in which information is seen as a reduction in
the degree of personal uncertainty given a state
of knowledge of the informee.

5 Conclusion

In this chapter, we have been able to visit only a
few interesting places. The connoisseur might
be disappointed and the supporter of some local
interests appalled. To try to appease both and to
whet the appetite of the beginner here is a list of
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where characteristics such as relevance, timeliness,
updatedness, cost, significance, and so forth are
crucial (see Chapter 22, on GAME THEORY);

valuable information in ethical contexts (see
Chapter 5, on COMPUTER ETHICS, and Floridi
2003);

environmental information, that is, the possible
location and nature of information in the world
(Dretske 1981 and see Chapters 11–13, on
ONTOLOGY, on VIRTUAL REALITY, and on THE

PHYSICS OF INFORMATION, respectively);

physical information and the relation between
being and information (see Leff & Rex 1990
and again Chapters 11–13);

biological information (see Chapter 15, on
ARTIFICIAL LIFE). The biologically minded reader
will notice that the 4 symbols in the AB system
we built in section 3.1 could be adenine, guanine,
cytosine, and thymine, the four bases whose order
in the molecular chain of DNA or RNA codes
genetic information.

The nature of these and other information
concepts, the analysis of their interrelations and

some very important concepts of information that
have not been discussed:

informational complexity (Kolmogorov and
Chaitin, among others), a measure of the com-
plexity of a string of data defined in terms of the
length of the shortest binary program required
to compute that string. Note that Shannon’s H
can be considered a special case of Kolmogorov
complexity K, since H ≈ K if the sequence is
drawn at random from a probability distribution
with entropy = H;

instructional information (imagine a recipe, an
algorithm, or an order), a crucial concept in fields
like computer science, genetics, biochemistry,
neuroscience, cognitive science, and AI (see
Chapters 1 and 2, on COMPUTATION and on
COMPLEXITY);

pragmatic information, central in any theory
addressing the question of how much informa-
tion a certain informant carries for an informee
in a given doxastic state and within a specific
informational environment. This includes useful
information, a key concept in economics, informa-
tion management theory, and decision theory,
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of their possible dependence on MTC, and the
investigation of their usefulness and influence in
the discussion of philosophical problems are some
of the crucial issues that a philosophy of informa-
tion needs to address. There is clearly plenty of
very interesting and important work to do.
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Some Web Resources

There are many useful resources freely available
on the web, of which the following have been
used in writing this chapter:

Feldman D., A Brief Tutorial on Information
Theory, Excess Entropy and Statistical Complex-
ity: <http://hornacek.coa.edu/dave/Tutorial/
index.html>

Fraundorf P., Information-Physics on the Web:
<http://newton.umsl.edu/infophys/
infophys.html>

Introduction to Information Theory, by Lucent
Technologies Bell Labs Innovation: <http://
www.lucent.com/minds/infotheory/>

MacKay J. C., A Short Course in Information
Theory:
<http://www.inference.phy.cam.ac.uk/mackay/
info-theory/course.html>

Shannon C. E. 1948. A Mathematical Theory of
Communication:
<http://cm.bell-labs.com/cm/ms/what/
shannonday/paper.html> [The classic text on the
mathematical theory of information, graduate
level.]

Schneider T. 2000. Information Theory Primer –
With an Appendix on Logarithms:
<http://www-lmmb.ncifcrf.gov/~toms/paper/
primer/index.html> [A very clear and accessible
introduction, undergraduate level.]

UTI, the Unified Theory of Information website,
contains documents, and links about the develop-
ment of UTI:
<http://kaneda.iguw.tuwien.ac.at/uti/uti4/
index.html>
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Computer Ethics

1 Introduction

From the moment of their invention, computers
have generated complex social, ethical, and value
concerns. These concerns have been expressed
in a variety of ways, from the science fiction
stories of Isaac Asimov (1970) to a dense three-
volume treatise on social theory by Manuel
Castells (1996, 1997, 1998), and with much in
between. Generally, the literature describes the
social consequences of computing, speculates on
the meaning of computation and information
technology in human history, and creatively
predicts the future path of development of com-
puter technology and social institutions around
it. A small, though steadily increasing, number
of philosophers has focused specifically on the
ethical issues.

As computer technology evolves and gets de-
ployed in new ways, certain issues persist – issues
of privacy, property rights, accountability, and
social values. At the same time, seemingly new
and unique issues emerge. The ethical issues can
be organized in at least three different ways:
according to the type of technology; according
to the sector in which the technology is used;
and according to ethical concepts or themes. In
this chapter I will take the third approach. How-
ever, before doing so it will be useful to briefly
describe the other two approaches.

The first is to organize the ethical issues by
type of technology and its use. When computers
were first invented, they were understood to be
essentially sophisticated calculating machines, but
they seemed to have the capacity to do that which
was thought to be uniquely human – to reason
and exhibit a high degree of rationality; hence,
there was concern that computers threatened
ideas about what it means to be human. In the
shadow of the Second World War, concerns
quickly turned to the use of computers by gov-
ernments to centralize and concentrate power.
These concerns accompanied the expanding use
of computers for record-keeping and the expon-
ential growth in the scale of databases, allow-
ing the creation, maintenance, and manipulation
of huge quantities of personal information. This
was followed by the inception of software con-
trol systems and video games, raising issues of
accountability–liability and property rights. This
evolution of computer technology can be fol-
lowed through to more recent developments
including the internet, simulation and imaging
technologies, and virtual reality systems. Each
one of these developments was accompanied by
conceptual and moral uncertainty. What will this
or that development mean for the lives and values
of human beings? What will it do to the relation-
ship between government and citizen? Between
employer and employee? Between businesses and
consumers?
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A second enlightening approach is to organize
the issues according to the sector in which they
occur. Ethical issues arise in real-world contexts,
and computer-ethical issues arise in the con-
texts in which computers are used. Each context
or sector has distinctive issues, and if we ignore
this context we can miss important aspects of
computer-ethical issues. For example, in dealing
with privacy protection in general, we might miss
the special importance of privacy protection for
medical records where confidentiality is so essen-
tial to the doctor–patient relationship. Similarly,
one might not fully understand the appropriate
role for computers in education were one not
sensitive to distinctive goals of education.

Both of these approaches – examining issues
by types and uses of particular technologies, and
sector by sector – are important and illuminat-
ing; however, they take us too far afield of the
philosophical issues. The third approach – the
approach to be taken in this chapter – is to em-
phasize ethical concepts and themes that persist
across types of technology and sectors. Here the
issues are sorted by their philosophical and eth-
ical content. In this chapter I divide the issues
into two broad categories: (1) metatheoretical
and methodological issues, and (2) traditional
and emerging issues.

2 Metatheoretical and
Methodological Issues

Perhaps the deepest philosophical thinking on
computer-ethical issues has been reflection on the
field itself – its appropriate subject matter, its
relationship to other fields, and its methodology.
In a seminal piece entitled “What is Computer
Ethics?” Moor (1985) recognized that when
computers are first introduced into an environ-
ment, they make it possible for human beings
(individuals and institutions) to do things they
couldn’t do before, and this creates policy
vacuums. We do not have rules, policies, and
conventions on how to behave with regard to
the new possibilities. Should employers monitor
employees to the extent possible with com-
puter software? Should doctors perform surgery
remotely? Should I make copies of proprietary

software? Is there any harm in me taking on a
pseudo-identity in an online chatroom? Should
companies doing business online be allowed to
sell the transaction-generated information they
collect? These are examples of policy vacuums
created by computer technology.

Moor’s account of computer ethics has shaped
the field of computer ethics with many com-
puter ethicists understanding their task to be that
of helping to fill policy vacuums. Indeed, one of
the topics of interest in computer ethics is to
understand this activity of filling policy vacuums.
This will be addressed later on.

2.1 The connection between technology
and ethics

While Moor’s account of computer ethics remains
influential, it leaves several questions unanswered.
Hence, discussion and debate continue around
the question of why there is or should be a field
of computer ethics and what the focus of the
field should be.

In one of the deeper analyses, Floridi (1999)
argues for a metaphysical foundation for com-
puter ethics. He provides an account of com-
puter ethics in which information has status such
that destroying information can itself be morally
wrong. In my own work I have tried to establish
the foundation of computer ethics in the non-
obvious connection between technology and
ethics (Johnson 2001). Why is technology of
relevance to ethics? What difference can tech-
nology make to human action? To human affairs?
To moral concepts or theories?

Two steps are involved in answering these
questions. The first step involves fully recogniz-
ing something that Moor’s account acknow-
ledges, namely that technology often makes it
possible for human beings to do what they could
not do without it. Think of spaceships that take
human beings to the moon; think of imaging
technology that allows us to view internal organs;
or think of computer viruses that wreak havoc
on the internet.

Of course, it is not just that human beings can
do what they couldn’t do before. It is also that we
can do the same sorts of things we did before,
only in new ways. As a result of technology, we
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can travel, work, keep records, be entertained,
communicate, and engage in warfare in new ways.
When we engage in these activities using com-
puter technology, our actions have different prop-
erties, properties that may change the character
of the activity or action-type. Consider the act
of writing with various technologies. When I write
with paper and pencil, the pencil moves over
paper; when I write using a typewriter, levers and
gears move; when I write using a computer, elec-
tronic impulses change configurations in micro-
chips. So, the physical events that take place when
I write are very different when I use computer
technology.

Using action theory, the change can be char-
acterized as a change in the possible act tokens
of an act type. An act type is a kind of action
(e.g. reading a book, walking) and an act token
is a particular instance of an act type. An act
token is an instance of the act type performed
by a particular person, at a particular time, and
in a particular place. For example, “Jan is, at this
moment, playing chess with Jim in Room 200
of Thornton Hall on the campus of University
of Virginia” is an act token of the act type “play-
ing chess.” When technology is involved in the
performance of an act type, a new set of act
tokens may become possible. It is now possible,
for example, to “play chess” while sitting in
front of a computer and not involving another
human being. Instead of manually moving three-
dimensional pieces, one presses keys on a key-
board or clicks on a mouse. Thus, when human
beings perform actions with computers, new sets
of tokens (of act types) become possible. Most
important, the new act tokens have properties
that are distinct from other tokens of the same
act type.

Computer technology instruments human
action in ways that turn very simple movements
into very powerful actions. Consider hardly-
visible finger movements on a keyboard. When
the keyboard is connected to a computer and the
computer is connected to the internet, and when
the simple finger movements create and launch
a computer virus, those simple finger movements
can wreak havoc in the lives of thousands (even
millions) of people. The technology has instru-
mented an action not possible without it. To be
sure, individuals could wreak havoc on the lives of

others before computer technology, but not in
this way and perhaps not quite so easily. Computer
technology is not unique among technologies
in this respect; other technologies have turned
simple movements of the body into powerful
actions, e.g. dynamite, automobiles.

Recognizing the intimate connection between
technology and human action is important for
stopping the deflection of human responsibility
in technology-instrumented activities, especially
when something goes wrong. Hence, the hacker
cannot avoid responsibility for launching a virus
on grounds that he simply moved his fingers
while sitting in his home. Technology does noth-
ing independent of human initiative; though, of
course, sometimes human beings cannot foresee
what it is they are doing with technology.

Thus, the first step in understanding the con-
nection between computer technology and ethics
is to acknowledge how intimate the connection
between (computer) technology and human
action can be. The second step is to connect
human action to ethics. This step may seem too
obvious to be worthy of mention since ethics is
often understood to be exclusively the domain
of human action. Even so, computer technology
changes the domain of human action; hence, it
is worth asking whether these changes have moral
significance. Does the involvement of computer
technology – in a human situation – have moral
significance? Does the instrumentation of human
action affect the character of ethical issues, the
nature of ethical theory, or ethical decision-
making?

The involvement of computer technology
has moral significance for several reasons. As men-
tioned earlier, technology creates new possibilities
for human action and this means that human
beings face ethical questions they never faced
before. Should we develop biological weapons
and risk a biological war? Should I give my organs
for transplantation? In the case of computer
technology, is it wrong to monitor keystrokes of
employees who are using computers? To place
cookies on computers when the computers are
used to visit a website? To combine separate
pieces of personal data into a single comprehens-
ive portfolio of a person?

When technology changes the properties of
tokens of an act type, the moral character of the
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act type can change. In workplace monitoring,
for example, while it is generally morally accept-
able for employers to keep track of the work of
employees, the creation of software that allows
the employer to record and analyze every key-
stroke an employee makes raises the question in a
new way. The rights of employers and employees
have to be reconsidered in light of this new
possibility. Or to use a different sort of example,
when it comes to property rights in software,
the notion of property and the stakes in owning
and copying are significantly different when it
comes to computer software because computer
software has properties unlike that of anything
else. Most notably, software can be replicated
with no loss to the owner in terms of possession
or usefulness (though, of course, there is a loss
in the value of the software in the marketplace).

So, computers and ethics are connected inso-
far as computers make it possible for humans
to do things they couldn’t do before and to do
things they could do before but in new ways.
These changes often have moral significance.

2 Applied and Synthetic Ethics

To say that computer technology creates new
tokens of an act type may lead some to categorize
computer ethics as a branch of applied or practical
ethics. Once a computer ethical issue is under-
stood to involve familiar act types, it might be
presumed, all that is necessary to resolve the
issue is to use moral principles and theories that
generally apply to the act type. For example, if
the situation involves honesty in communicating
information, simply follow the principle, “tell
the truth,” with all its special conditions and
caveats. Or, if the situation involves producing
some positive and negative effects, simply do the
utilitarian calculation. This account of computer
ethics is, however, as controversial as is the notion
of “applied ethics” more generally.

For one thing, computer technology and the
human situations arising around it are not always
so easy to understand. As Moor has pointed out,
often there are conceptual muddles (1985). What
is software? What is a computer virus? How are

we to conceptualize a search engine? A cookie?
A virtual harm? In other words, computer ethi-
cists do more than “apply” principles and theor-
ies; they do conceptual analysis. Moreover, the
analysis of a computer-ethical issue often involves
synthesis, synthesis that creates an understanding
of both the technology and the ethical situation.
A fascinating illustration of this is the case of a
virtual rape (Dibbell 1993). Here a character in
a multi-user virtual reality game rapes another
character. Those participating in the game are
outraged and consider the behavior of the real
person controlling the virtual characters offens-
ive and bad. The computer ethical issue involves
figuring out what, if anything, wrong the real
person controlling the virtual character has done.
This involves understanding how the technology
works, what the real person did, figuring out how
to characterize the actions, and then recommend-
ing how the behavior should be viewed and re-
sponded to. Again, analysis of this kind involves
more than simply “applying” principles and theor-
ies. It involves conceptual analysis and interpreta-
tion. Indeed, the synthetic analysis may have
implications that reflect back on the meaning of,
or our understanding of, familiar moral principles
and theories.

To be sure, philosophical work in computer
ethics often does involve drawing on and extend-
ing the work of well-known philosophers and
making use of familiar moral concepts, principles,
and theories. For example, computer ethical issues
have frequently been framed in utilitarian,
deontological, and social contract theory. Many
scholars writing about the internet have drawn on
the work of existentialist philosophers such as
Søren Kierkegaard (Dreyfus 1999; Prosser & Ward
2000) and Gabriel Marcel (Anderson 2000). The
work of Jürgen Habermas has been an import-
ant influence on scholars working on computer-
mediated communication (Ess 1996). Recently
van den Hoven (1999) has used Michael Walzer’s
“spheres of justice” to analyze the information
society; Cohen (2000) and Introna (2001) have
used Emmanuel Levinas to understand internet
communication; Adams and Ofori-Amanfo (2000)
have been connecting feminist ethics to compu-
ter ethics; and Grodzinsky (1999) has developed
virtue theory to illuminate computer ethics.
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Nevertheless, while computer ethicists often
draw on, extend, and “apply” moral concepts and
theories, computer ethics involves much more
than this. Brey (2000) has recently argued for
an approach that he labels “disclosive computer
ethics.” The applied ethics model, he notes,
emphasizes controversial issues for which the eth-
ical component is transparent. Brey argues that
there are many nontransparent issues, issues that
are not so readily recognized. Analysis must be
done to “disclose” and make visible the values
at stake in the design and use of computer tech-
nology. A salient example here is work by Introna
and Nissenbaum (2000) on search engines. They
show how the design of search engines is laden
with value choices. In order to address those
value choices explicitly, the values embedded
in search engine design must be uncovered and
disclosed. This may sound simple but in fact
uncovering the values embedded in technology
involves understanding how the technology
works and how it affects human behavior and
human values.

Setting aside what is the best account of
computer ethics, it should be clear that a major
concern of the field is to understand its domain,
its methodology, its reason for being, and its
relationship to other areas of ethical inquiry. As
computer technology evolves and gets deployed
in new ways, more and more ethical issues are
likely to arise.

3 Traditional and Emerging
Issues

“Information society” is the term often used
(especially by economists and sociologists) to
characterize societies in which human activity
and social institutions have been significantly
transformed by computer and information tech-
nology. Using this term, computer ethics can
be thought of as the field that examines ethical
issues distinctive to “an information society.”
Here I will focus on a subset of these issues,
those having to do with professional ethics,
privacy, cyber crime, virtual reality, and general
characteristics of the internet.

3.1 Ethics for computer professionals

In an information society, a large number of
individuals are educated for and employed in
jobs that involve development, maintenance,
buying and selling, and use of computer and
information technology. Indeed, an information
society is dependent on such individuals –
dependent on their special knowledge and
expertise and on their fulfilling correlative social
responsibilities. Expertise in computing can be
deployed recklessly or cautiously, used for good
or ill, and the organization of information tech-
nology experts into occupations/professions is
an important social means of managing that
expertise in ways that serve human well-being.

An important philosophical issue here has to
do with understanding and justifying the social
responsibilities of computer experts. Recogniz-
ing that justification of the social responsibilities
of computer experts is connected to more general
notions of duty and responsibility, computer ethi-
cists have drawn on a variety of traditional philo-
sophical concepts and theories, but especially
social contract theory.

Notice that the connection between being a
computer expert and having a duty to deploy that
expertise for the good of humanity cannot be
explained simply as a causal relationship. For one
thing, one can ask “why?” Why does the role of
computer expert carry with it social responsibil-
ities? For another, individuals acting in occupa-
tional roles are typically not acting simply as
individual autonomous moral agents; they act as
employees of companies or agencies, and may
not be involved in the decisions that most critic-
ally determine project outcomes. Hence, there is
a theoretical problem in explaining why and to
what extent individuals acting in occupational
roles are responsible for the effects of their work.

Social contract theory provides an account of
the connection between occupational roles and
social responsibilities. A social contract exists
between members of an occupational group and
the communities or societies of which they are
a part. Society (states, provinces, communities)
allows occupational groups to form professional
organizations, to make use of educational institu-
tions to train their members, to control admission,
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and so on, but all of this is granted in exchange
for a commitment to organize and control the
occupational group in ways that benefit society.
In other words, a profession and its members
acquire certain privileges in exchange for accept-
ing certain social responsibilities.

The substantive content of those responsibil-
ities has also been a topic of focus for computer
ethicists. Computer professional groups have
developed and promulgated codes of professional
and ethical conduct that delineate in broad terms
what is and is not required of computer experts.
See, for example, the ACM Code of Ethics and
Professional Conduct or the Code of Conduct
of the British Computer Society. Since these
codes are very general, there has been a good
deal of discussion as to their appropriate role
and function. Should they be considered com-
parable to law? Should there be enforcement
mechanisms and sanctions for those who violate
the code? Or should codes of conduct aim at
inspiration? If so, then they should merely con-
sist of a statement of ideals and need not be
followed “to the letter” but only in spirit.

At least one computer ethicist has gone so far
as to argue that the central task of the field of
computer ethics is to work out issues of pro-
fessional ethics for computer professionals.
Gotterbarn (1995: 21) writes that the “only way
to make sense of ‘Computer Ethics’ is to narrow
its focus to those actions that are within the
control of the individual moral computer
professional.”

While Gotterbarn’s position is provocative, it
is not at all clear that it is right. For one thing,
many of the core issues in computer ethics are
social value and policy issues, such as privacy
and property rights. These are issues for all cit-
izens, not just computer professionals. Moreover,
many of the core issues faced by computer pro-
fessionals are not unique to computing; they are
similar to issues facing other occupational groups:
What do we owe our clients? Our employers?
When are we justified in blowing the whistle?
How can we best protect the public from risk?
Furthermore, since many computer professionals
work in private industry, many of the issues they
face are general issues of business ethics. They
have to do with buying and selling, advertising,
proprietary data, competitive practices, and so

on. Thus, it would be a mistake to think that all
of the ethical issues surrounding computer and
information technology are simply ethical issues
for computer professionals. Computer experts
face many complex and distinctive issues, but
these are only a subset of the ethical issues sur-
rounding computer and information technology.

3.2 Privacy

In an “information society” privacy is a major
concern in that much (though by no means all)
of the information gathered and processed is
information about individuals. Computer tech-
nology makes possible a previously unimaginable
magnitude of data collection, storage, retention,
and exchange. Indeed, computer technology has
made information collection a built-in feature of
many activities, for example, using a credit card,
making a phone call, browsing the web. Such
information is often referred to as transaction-
generated information or TGI.

Computer ethicists often draw on prior philo-
sophical and legal analysis of privacy and focus
on two fundamental questions: What is privacy?
Why is it of value? These questions have been
contentious and privacy often appears to be an
elusive concept. Some argue that privacy can be
reduced to other concepts such as property or
liberty; some argue that privacy is something
in its own right and that it is intrinsically valu-
able; yet others argue that while not intrinsically
valuable, privacy is instrumental to other things
that we value deeply – friendship, intimacy, and
democracy.

Computer ethicists have taken up privacy
issues in parallel with more popular public con-
cerns about the social effects of so much personal
information being gathered and exchanged. The
fear is that an “information society” can easily
become a “surveillance society.” Here computer
ethicists have drawn on the work of Bentham
and Foucault suggesting that all the data being
gathered about individuals may create a world
in which we effectively live our daily lives in a
panopticon (Reiman 1995). “Panopticon” is
the shape of a structure that Jeremy Bentham
designed for prisons. In a panopticon, prison cells
are arranged in a circle with the inside wall of
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each cell made of glass so that a guard, sitting in
a guard tower situated in the center of the circle,
can see everything that happens in each and every
cell. The effect is not two-way; that is, the pris-
oners cannot see the guard in the tower. In fact,
a prison guard need not be in the guard tower
for the panopticon to have its effect; it is enough
that prisoners believe they are being watched.
When individuals believe they are being watched,
they adjust their behavior accordingly; they take
into account how the watcher will perceive their
behavior. This influences individual behavior and
how individuals see themselves.

While computerized information-gathering
does not physically create the structure of a
panopticon, it does something similar insofar as
it makes a good deal of individual behavior avail-
able for observation. Thus, data collection activ-
ities of an information society could have the
panopticon effect. Individuals would know that
most of what they do can be observed and this
could influence how they behave. When human
behavior is monitored, recorded, and tracked,
individuals could become intent on conforming
to norms for fear of negative consequences. If
this were to happen to a significant extent, it
might incapacitate individuals in acting freely and
thinking critically – capacities necessary to real-
ize democracy. In this respect, the privacy issues
around computer technology go to the heart of
freedom and democracy.

It might be argued that the panoptic effect
will not occur in information societies because
data collection is invisible so that individuals are
unaware they are being watched. This is a pos-
sibility, but it is also possible that as individuals
become more and more accustomed to informa-
tion societies, they will become more aware of
the extent to which they are being watched. They
may come to see how information gathered in
various places is put together and used to make
decisions that affect their interactions with gov-
ernment agencies, credit bureaus, insurance com-
panies, educational institutions, employers, etc.

Concerns about privacy have been taken up
in the policy arena, with a variety of legislation
controlling and limiting the collection and use
of personal data. An important focus here has
been comparative analyses of policies in different
countries – for they vary a good deal. The Amer-

ican approach has been piecemeal, with separate
legislation for different kinds of records (i.e.,
medical records, employment histories, credit
records), whereas several European countries have
comprehensive policies that specify what kind
of information can be collected under what
conditions in all domains. Currently the policy
debates are pressured by the intensification of
global business. Information-gathering organiza-
tions promise data subjects that they will only
use information in certain ways; yet, in a global
economy, data collected in one country – with a
certain kind of data protection – can flow to
another country where there is no or different
protection. An information-gathering organiza-
tion might promise to treat information in a
certain way, and then send the information
abroad where it is treated in a completely differ-
ent way, thus breaking the promise made to the
data subject. To assure that this does not hap-
pen, a good deal of attention is currently being
focused on working out international arrange-
ments and agreements for the flow of data across
national boundaries.

3.3 Cybercrime and abuse

While the threats to privacy described above arise
from uses of computer and information techno-
logy, other threats arise from abuses. As individuals
and companies do more and more electronically,
their privacy and property rights become ever
more important, and these rights are sometimes
threatened by individuals who defy the law or
test its limits. Such individuals may seek personal
gain or may just enjoy the challenge of figuring
out how to crack security mechanisms. They are
often called hackers or crackers. The term hacker
used to refer to individuals who simply loved the
challenge of working on programs and figuring
out how to do complex things with computers,
but did not necessarily break the law. Crackers
were those who broke the law. However, the
terms are now used somewhat interchangeably
to refer to those who engage in criminal activity.

The culture of hackers and crackers has been
of interest not only because of the threat posed
by their activities, but also because the culture
of hackers and crackers represents an alternative
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vision of how computer technology might be
developed and used, one that has intrigued philo-
sophers. (See Chapter 7 on INTERNET CULTURE.)
Hackers and crackers often defend their behavior
by arguing for a much more open system of com-
puting with a freer flow of information, creating
an environment in which individuals can readily
share tools and ideas. In particular, the culture
suggests that a policy of no ownership of soft-
ware might lead to better computing. This issue
goes to the heart of philosophical theories of
property, raising traditional debates about the
foundations of property, especially intellectual
property.

Some draw on Locke’s labor theory of property
and argue that software developers have a natural
right to control the use of their software. Others,
such as me, argue that while there are good
utilitarian reasons for granting ownership in soft-
ware, natural rights arguments do not justify
private ownership of software (Johnson 2001).
There is nothing inherently unfair about living
in a world in which one does not own and cannot
control the use of software one has created.

Nevertheless, currently, in many industrialized
countries there are laws against copying and dis-
tributing proprietary software, and computer ethi-
cists have addressed issues around violations of
these laws. Conceptually, some have wondered
whether there is a difference between familiar
crimes such as theft or harassment and parallel
crimes done using computers. Is there any
morally significant difference between stealing
(copying and selling copies of ) a software pro-
gram and stealing a car? Is harassment via the
internet morally any different than face-to-face
harassment? The question arises because actions
and interactions on the internet have some dis-
tinguishing features. On the internet, individuals
can act under the shroud of a certain kind of
anonymity. They can disguise themselves through
the mediation of computers. This together with
the reproducibility of information in computer
systems makes for a distinctive environment for
criminal behavior. One obvious difference in
cybertheft is that the thief does not deprive the
owner of the use of the property. The owner
still has access to the software, though of course
the market value of the software is diminished
when there is rampant copying.

Computer ethicists have taken up the task of
trying to understand and conceptualize cyber-
crimes as well as determining how to think about
their severity and appropriate punishment. Crim-
inal behavior is nothing new, but in an informa-
tion society new types of crimes are made possible,
and the actions necessary to catch criminals and
prevent crimes are different.

3.4 Internet issues

Arguably the internet is the most powerful
technological development of the late twentieth
century. The internet brings together many
industries, but especially the computer, telecom-
munications, and media enterprises. It brings
together and provides a forum for millions of
individuals and businesses around the world. It
is not surprising, then, that the internet is cur-
rently a major focus of attention for computer
ethicists. The development of the internet has
involved moving many basic social institutions
from a paper and ink medium to the electronic
medium. The question for ethicists is this: is there
anything ethically distinctive about the internet?
(A parallel question was asked in the last section
with regard to cybercrime.)

The internet seems to have three features that
make it unusual or special. First, it has an unusual
scope in that it provides many-to-many commun-
ication on a global scale. Of course, television
and radio as well as the telephone are global in
scale, but television and radio are one-to-many
forms of communication, and the telephone,
which is many-to-many, is expensive and more
difficult to use. With the internet, individuals
and companies can have much more frequent
communication with one another, in real time,
at relatively low cost, with ease and with visual as
well as sound components. Second, the internet
facilitates a certain kind of anonymity. One can
communicate extensively with individuals across
the globe (with ease and minimal cost), using
pseudonyms or real identities, and yet one never
has to encounter the others face-to-face. This
type of anonymity affects the content and nature
of the communication that takes place on the
internet. The third special feature of the internet
is its reproducibility. When put on the internet,
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text, software, music, and video can be duplicated
ad infinitum. They can also be altered with ease.
Moreover, the reproducibility of the medium
means that all activity on the internet is recorded
and can be traced.

These three features of the internet – global
many-to-many scope, anonymity, and reproduc-
ibility – have enormous positive as well as negat-
ive potential. The global, many-to-many scope
can bring people from around the globe closer
together, relegating geographic distance to insig-
nificance. This feature is especially freeing to those
for whom travel is physically challenging or
inordinately expensive. At the same time, these
potential benefits come with drawbacks; one of
the drawbacks is that this power also goes to
those who would use it for heinous purposes.
Individuals can – while sitting anywhere in the
world, with very little effort – launch viruses and
disrupt communication between others. They can
misrepresent themselves and dupe others on a
much larger scale than before the internet.

Similarly, anonymity has both benefits and
dangers. The kind of anonymity available on the
internet frees some individuals by removing bar-
riers based on physical appearance. For example,
in contexts in which race and gender may get in
the way of fair treatment, the anonymity provided
by the internet can eliminate bias; for example, in
on-line education, race, gender, and physical ap-
pearance are removed as factors affecting student-
to-student interactions as well as the teacher
evaluations of students. Anonymity may also
facilitate participation in beneficial activities such
as discussions among rape victims or battered
wives or ex-cons where individuals might be re-
luctant to participate unless they had anonymity.

Nevertheless, anonymity leads to serious
problems of accountability and for the integrity
of information. It is difficult to catch criminals
who act under the shroud of anonymity. And
anonymity contributes to the lack of integrity
of electronic information. Perhaps the best illus-
tration of this is information one acquires in
chatrooms on the internet. It is difficult (though
not impossible) to be certain of the identities
of the persons with whom one is chatting. The
same person may be contributing information
under multiple identities; multiple individuals may
be using the same identity; participants may have

vested interests in the information being discussed
(e.g., a participant may be an employee of the
company/product being discussed). When one
can’t determine the real source of information
or develop a history of experiences with a source,
it is impossible to gauge the trustworthiness of
the information.

Like global scope and anonymity, reproducib-
ility also has benefits and dangers. Reproducibility
facilitates access to information and commun-
ication; it allows words and documents to be
forwarded (and downloaded) to an almost
infinite number of sites. It also helps in tra-
cing cybercriminals. At the same time, however,
reproducibility threatens privacy and property
rights. It adds to the problems of accountability
and integrity of information arising from anony-
mity. For example, when I am teaching a class,
students can now send their assignments to
me electronically. This saves time, is convenient,
saves paper, etc. At the same time, however, the
reproducibility of the medium raises questions
about the integrity of the assignments. How can
I be sure the student wrote the paper and didn’t
download it from the web?

When human activities move to the internet,
features of these activities change and the changes
may have ethical implications. The internet has
led to a wide array of such changes. The task of
computer ethics is to ferret out these changes
and address the policy vacuums they create.

3.5 Virtual reality

One of the most philosophically intriguing
capacities of computer technology is “virtual real-
ity systems.” These are systems that graphically
and aurally represent environments, environments
into which individuals can project themselves and
interact. Virtual environments can be designed
to represent real-life situations and then used to
train individuals for those environments, e.g., pilot
training programs. They can also be designed to
do just the opposite, that is, to create environ-
ments with features radically different from the
real world, e.g., fantasy games. Ethicists have
just begun to take up the issues posed by virtual
reality and the issues are deep (Brey 1999). The
meaning of actions in virtual reality is what is at
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stake as well as the moral accountability of indi-
vidual behavior in virtual systems. When one acts
in virtual systems one “does” something, though
it is not the action represented. For example,
killing a figure in a violent fantasy game is not
the equivalent of killing a real person. Neverthe-
less, actions in virtual systems can have real-world
consequences; for example, violence in a fantasy
game may have an impact on the real player or,
as another example, the pilot flying in the flight
simulator may be judged unprepared for real
flight. As human beings spend more and more
time in virtual systems, ethicists will have to
analyze what virtual actions mean and what, if
any, accountability individuals bear for their
virtual actions. (See Chapter 12 for more on
VIRTUAL REALITY.)

4 Conclusion

This chapter has covered only a selection of the
topics addressed by philosophers working in the
field of computer ethics. Since computers and
information technology are likely to continue to
evolve and become further integrated into the
human and natural world, new ethical issues are
likely to arise. On the other hand, as we become
more and more accustomed to acting with and
through computer technology, the difference
between “ethics” and “computer ethics” may well
disappear.

Websites and Other Resources

Ethics and Information Technology, an interna-
tional quarterly journal by Kluwer Academic
Publishers (and the only journal devoted speci-
fically to moral philosophy and information and
communication technology; first published in
1999), contains articles on a variety of topics.

Tavani, H. 1996. “Bibliography: a computer ethics
bibliography.” Computers & Society SIGCASE
Reader 1996. New York, NY: ACM Inc. This is
an extremely useful resource which Tavani con-
tinues to update at: <http://www.rivier.edu/
faculty/htavani/biblio.htm>.

<http://www.ethics.ubc.ca/resources/
computer/>
This is the Computer and Information Ethics
Resources portion of the website of the Centre
for Applied Ethics of the University of British
Columbia. The site includes Starting Points in
Computer Ethics/Info-Tech Ethics, a set of
papers to read, and a bookstore showing books
in computer and information ethics which are
linked to Amazon.com.

<http://www.wolfson.ox.ac.uk/~floridi/>
This website is the work of Luciano Floridi. It
contains his paper entitled “Information ethics:
on the philosophical foundation of computer
ethics,” and includes a list of resources as well as
links to other projects and papers by Floridi.

<http://www.ccsr.cse.dmu.ac.uk/contents/>
This is the site for the Centre for Computing
and Social Responsibility (CCSR), in the UK,
provides access to a variety of useful materials
including a list of conferences, a discussion
forum and links to other sites.

<http://onlineethics.org>
This website is devoted broadly to engineering
and computer ethics, and contains bibliographic
materials and case studies, as well as links to
other sites.
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Chapter 6

Computer-mediated
Communication and

Human–Computer Interaction
Charles Ess

and so forth (on this new methodological turn
see also Chapter 26, PHILOSOPHY OF INFORMA-
TION TECHNOLOGY).

To see how this is so, this chapter begins with
some elementary definitions. The second section
provides an analysis of some of the key philo-
sophical issues that are illuminated through vari-
ous disciplinary approaches that incorporate CMC
technologies. This discussion is organized in
terms of the fundamental elements of worldview,
i.e., of ontology, epistemology (including semi-
otics, hypertext, and logic), the meaning of iden-
tity and personhood (including issues of gender
and embodiment), and ethical and political values
(especially those clustering about the claim that
these technologies will issue in a global demo-
cracy vs. the correlative dangers of commercial-
ization and a “computer-mediated colonization”).
In the last section, some suggestions of possible
research directions for, and potential contribu-
tions of, “computer-mediated philosophy” are
offered, in view of a philosophical inquiry ori-
ented towards the sorts of theories, praxis, and
interdisciplinary dialogues described here. Perhaps
most importantly, philosophers may be able to
contribute to a renewed education – one taking

Introduction: CMC and
Philosophy

From Anaximander through Kant, philosophers
have recognized that knowing a thing involves
knowledge of its limits, i.e., the boundaries or
edges that define (delimit) both what a thing is
and what it is not. Information and Computing
Technologies (ICT) give philosophers powerful
new venues for examining previously held be-
liefs concerning what delimits human beings, for
instance, artificial vis-à-vis natural intelligence.
As we will see, ICT further allow us to test long-
debated claims regarding human nature and thus
politics, that is, questions like whether we are
capable of democratic governance or we require
authoritarian control. Computer-Mediated Com-
munication (CMC) and Human–Computer Inter-
action (HCI) provide philosophers with new
laboratories in which claims that previously rested
primarily on the force of the best arguments can
now be reevaluated empirically, in light of the
attempts made to implement these assumptions
in the praxis of human–machine interaction, in
the potentially democratizing effects of CMC,
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Socrates as its model – that is required for cul-
tural flows facilitated by CMC.

1 Some Definitions

CMC may be defined as interactive communica-
tion between two or more intelligent agents that
relies on ICT – usually personal computers and
networks – as its primary medium. Examples in-
clude: e-mail, chatrooms, USENET newsgroups,
MUDs and MOOs, listserves, “instant messaging”
services (ICQ, AOL Instant Messager, etc.),
audio- and video-teleconferencing, shared virtual
reality systems, and other ways of sharing files
and information via networks and the internet,
including peer-to-peer file transfers (via a service
such as Gnutella, <http://www.gnutella.com>),
and the multimedia communication of the web
(e.g., personal homepages, folder- and link-
sharing via <http://www.backflip.com>, photo-
file sharing on commercial servers, etc.). This
definition allows for the possibility of humans
communicating with intelligent but artificial
agents via computers and networks and, as we
will see below, thus points towards artificial in-
telligence and related developments as limiting
issues for CMC (see Herring 2002 for a more
complete description and history of the most
significant examples of CMC).

HCI may be construed as a narrowly defined
variant of CMC. While CMC refers to any com-
munication between intelligent agents mediated
by computers, such communication usually in-
cludes, and thus presupposes, successful interac-
tion between human agents and the mediating
technologies. Such interaction requires an inter-
face design that, ideally, allows for “seamless” or
“intuitive” communication between human and
machine. The design of such interfaces, and the
correlative investigations into human and machine
capacities, cognitive abilities, and possible ways
of interacting with the world and one another
constitute the subject matter of HCI. While HCI
is incipient in every computer design, early HCI
literature largely assumed that machines would
be used by an elite of technical experts; but as
computing technologies became more ubiquitous,

so the need increased for more “user-friendly”
interface design, thus requiring greater attention
to HCI issues (Bardini 2000, Hollan 1999,
Suchman 1987).

Finally, as Carleen Maitland (2001) points out,
the research area of computer-supported co-
operative work (CSCW) may be included as a
subarea of CMC/HCI.

2 Philosophical Perspectives:
Worldview

While extensive and growing almost as explos-
ively as the internet and the web themselves,
both scholarly and popular literatures in CMC,
HCI, and CSCW remain primarily within the
boundaries of the disciplines of computer sci-
ence, “human factors” as understood in terms
of ergonomics, communication theory, cultural
studies, and such social sciences as ethnography,
anthropology, psychology, and, especially, in the
case of CSCW, the social psychology of group
work (Hakken 1999; Bell 2000). Some theorists
and designers exploit the theoretical frameworks
and insights of cognitive psychology, cognitive
science, artificial intelligence, and so forth, thus
approaching more directly philosophical domains.
Finally, some examples represent an explicit dia-
logue between CMC and HCI on the one hand,
and philosophical concerns on the other. The
communication theorists Chesebro and Bertelson,
for example, utilize a theory of communication ori-
ginally developed by Innis, Eisenstein, McLuhan,
and Ong, that sees communication as a techno-
logy that in turn centrally defines culture, in order
to explicitly address philosophical concerns with
epistemology, ontology, critical reasoning, etc.
(Chesebro & Bertelson 1996; see Ess 1999).
Taken together, these contribute significantly to
the characteristically philosophical projects of un-
covering and articulating basic worldview assump-
tions such as epistemology (including questions
concerning the nature of truth, whether truth
may have a universally valid status, etc.), ontology
(including questions concerning the reality and
meaning of being human), ethics, politics (includ-
ing issues of democracy and justice), and so forth
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(see also in this volume Chapters 11 and 12,
ONTOLOGY and VIRTUAL REALITY).

2.1 Ontology, epistemology, personhood

In this chapter the term “ontology” is used in a
broad sense, one that includes more traditional
metaphysics. This category raises questions about
the nature of the real, including both internal
entities (such as a self, mind, and/or spirit), and
external realities as well as an external world or
worlds, including persons, transcendental realities
(mathematical, ethical [e.g., values and rights that
are not reducible to the strictly material], religious,
etc.), causal and other possible relationships.

Beyond questions regarding ontology and vir-
tual reality, questions concerning human nature
and the self are among the most prominent
ontological questions evoked by, and explored
in, CMC and HCI. These questions are perhaps
as ancient as speculation concerning the Golem
and automata in the fifteenth and sixteenth cen-
turies. In any case, directions for design of HCI
were defined from the 1950s on by two distinct
philosophical visions. The first (originally, the
minority position represented by Douglas Engel-
bart) was a more humanistic – indeed, classically
Enlightenment/Cartesian – vision of using com-
puting technologies as slaves, in a symbiosis
intended to augment, not replace, human intel-
ligence. The second (originally more domin-
ant) vision of the AI community was to build
superior replacements of the human mind. This
general project is commonly characterized by a
Cartesian dualism, one that regards the mind as
reason divorced from body and whose primary
mode of knowledge is mathematical and sym-
bolic (see, however, Floridi 1999 for a more
extensive analysis of the philosophical assump-
tions underlying so-called strong AI, one that
argues against the view that AI rests on Cartesian
roots). The former emphasized the need for HCI
design to accommodate the machine to the
human by recognizing that the machine differs
from the human in important ways. Its binary
language and symbolic processes do not neatly
match human natural language, and the human
“interface” with our world includes that of an
embodied mind, one whose interaction with the

machine will thus turn on a variety of physical
devices (most famously, Engelbart’s mouse)
and multiple senses (including a graphical user
interface that exploits the visual organization of
information). The AI orientation tended to min-
imize matching human and computer in terms
of interface, partly because any human–machine
symbiosis was seen as only an intermediate stage
on the way to machines replacing human beings
(Bardini 2000: 21). Engelbart’s “coevolutionary”
approach to HCI, by contrast, rests on an ana-
logous dialogue between disciplines. He was
directly influenced by linguist Benjamin Whorf
and the recognition of the role of natural lan-
guage in shaping worldview (Bardini 2000: 36).
Worldview is thus the conceptual interface
between HCI, linguistics, and philosophy.

Winograd and Flores (1986) more explicitly
take up the philosophical dimensions of the split
in HCI between AI and Engelbart. They explore
the intersections between computer technology
and the nature of human existence, including
“the background of a tacit understanding of
human nature and human work.” They clarify
that “in designing tools we are designing ways
of being” (1986: xi). That is: tools are designed
with the goal of making specific actions and pro-
cesses easier and thus their design reflects a range
of assumptions, including worldview assumptions
regarding what is valuable, what is possible and
easy for the users involved, and what are the
preferred ways of facilitating these processes. As
they make certain actions and processes easier,
tools thus embody and embed these assump-
tions, while excluding others. In doing so, they
thus bias their users in specific directions and,
in this way, shape our possible ways of being.
Following Bardini’s analysis of the dominance of
AI-oriented approaches in earlier HCI, Winograd
and Flores interpret the worldview of much com-
puter design as “rationalistic,” “because of its
emphasis on particular styles of consciously
rationalized thought and action” (1986: 8). They
seek to correct its “particular blindness about
the nature of human thought and language” by
highlighting how language and thought depend
on social interaction, an analysis based on the
philosophical traditions of hermeneutics and phe-
nomenology and including Heidegger, Austin,
Searle, and Habermas (1986: 9).
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Winograd and Flores’s project of unveiling the
established but tacit background knowledge of
computer designers regarding what it means to
be human anticipates a burgeoning discussion in
CMC, HCI, and CSCW literatures in the 1990s
concerning specific conceptions of personhood
and identity presumed by various design philo-
sophies. A central focal point for this discussion
is the notion of the cyborg, the human–machine
symbiosis originally figuring in science fiction,
perhaps most prominently as the Borg in Star
Trek: The Next Generation. The Borg can rep-
resent humanity’s worst fears about technology.
Once the boundary between humanity and
machinery is breached, the machinery will irre-
sistibly take control, destroying our nature (spe-
cifically, the capacities for independent agency
and compassion towards others) in the process.
By contrast, Donna Haraway’s “Cyborg Mani-
festo” (1990) argues that women as embodied
creatures are thus trapped in a real world of
patriarchal oppression, one in which women,
body, and sexuality are demonized. Women (and
men) can thus find genuine equality and libera-
tion only as disembodied minds in cyberspace,
as cyborgs liberated rather than dehumanized
through technology.

Philosophers will recognize in Haraway’s
vision of technologically mediated liberation a
dualism that echoes Descartes’ mind–body split.
For historians of religion, such dualism further
recalls Gnostic beliefs. Gnostics held that the
human spirit is a kind of divine spark fallen from
heaven and trapped within the debased materiality
of the human body. For such a spirit – as onto-
logically and ethically opposed to the body –
salvation can come only through liberation from
the body. Such Gnosticism appears to be at work
in numerous visions of liberation through CMC
technologies, including explicitly religious ones
(O’Leary & Brasher 1996; Wertheim 1999). As
Katherine Hayles (1999) has documented, this
dualism emerges in the foundational assumptions
of cybernetics and a conception of formalistic
rationality in AI, one that issues most famously
in Hans Moravec’s hope that humans will soon
be able to download their consciousness into
robotic bodies that will live forever (1988). This
dualism, moreover, can be seen at work in the
relatively early celebration of hypertext and CMC

as marking out a cultural shift as revolutionary
as the printing press, if not the invention of fire
(e.g., Lyotard 1984, Bolter 1984, 1991, Landow
1992, 1994). That is, to emphasize the radical
difference between print culture and what Ong
has called the “secondary orality” of electronic
media and culture (1988) requires us to establish
a dualistic opposition between these two cultural
stages, one fostered by especially post-modernist
emphases on such a radical dichotomy between
modernity and postmodernity. This emphasis on
the radical/revolutionary difference between past
and future is, precisely, consistent with Haraway’s
early “cyber-gnosticism,” the equally dualistic
presumption that the mind/persona in cyberspace
is radically divorced from the body sitting back
at the keyboard. Such cyber-gnosticism takes
political expression in the libertarian hopes for
a complete liberation from the chains of mod-
ernity and the constraints of what John Perry
Barlow so contemptuously called “meatspace”
(1996).

The difficulties of dualism and Gnosticism,
however, are well known, ranging from the mind–
body problem (in Descartes’s terms, how does
mind as a thinking, non-extended substance com-
municate with and affect the body as a non-
thinking, extended substance?) to what Nietzsche
identified as “the metaphysics of the hangman,”
i.e., the objection that especially Christian dualisms
result in a denigration of body, sexuality, women,
and “this life” in general (1954: 500). In light
of these classical difficulties, the more recent turn
from such dualisms in the literatures of CMC and
HCI is not surprising. To begin with, alternatives
to the Cartesian/AI conceptions of knowledge
began to emerge within the literatures of cyber-
netics and HCI, e.g. in Bateson’s notion of dis-
tributed cognition (1972, 1979) and Engelbart’s
emphasis on kinesthetic knowledge (Bardini
2000: 228f.; Hayles 1999: 76–90; cf. Suchman
1987). A more recent example of this turn is
Hayles’ version of the “posthuman,” as charac-
terized by an explicit epistemological agenda:
“reflexive epistemology replaces objectivism . . .
embodiment replaces a body seen as a support
system for the mind; and a dynamic partner-
ship between humans and intelligent machines
replaces the liberal humanist subject’s manifest
destiny to dominate and control nature” (1999:
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288). That is, Hayles foregrounds here the shift
from an objectivist epistemology, based on a
dualistic separation of subject–object (and thus
between subjective vs. objective modes of know-
ledge, so as to then insist that only “objective”
modes of knowledge are of value), to an epi-
stemology which (echoing Kant) emphasizes the
inevitable interaction between subject and object
in shaping our knowledge of the world. Know-
ledge is not an “either/or” between subjective
and objective, it is both subjective and objective.
In the same way, Hayles further focuses precisely
on the meanings of embodiment in what many
now see as a post-Cartesian understanding of
mind-and-body in cyberspace (Bolter 2001;
Brown & Duguid 2000; Dertouzos 2001). These
shifts, finally, undercut the Cartesian project of
using technology to “master and possess nature”
(Descartes 1637: 35). Such a project makes sense
for a Cartesian mind radically divorced from its
own body and nature, indeed, a mind for whom
nature is seen as inferior and dependent (1637:
19). But as the environmental crises of our own
day make abundantly clear, as embodied beings
(not just “brains on a stick”) we are intimately
interwoven with a richly complex natural order,
contra the Cartesian dualisms underlying what
Hayles calls the liberal project of mastery and
domination of nature. More broadly, especially
as the demographics of the Net change, and
women are now the majority of users, it seems
likely that the literature on gender, cyborgs, and
personhood will continue to offer new philo-
sophical insights and directions.

There emerges here then a series of debates
between postmodern/dualistic emphases on rad-
ical difference between mind and body, humanity
and nature, electronic and print cultures, etc.,
and more recent reconsiderations that stress con-
nection between these dyadic elements. These
debates are further at work in philosophical con-
siderations of space and place. On the one hand,
the very term “cyberspace” indicates that our
ordinary conceptions cannot fully apply to the
new sorts of individual and social spaces enabled
by these technologies. Similarly, Mike Sandbothe
(1999), partly relying on Rorty and Derrida, has
argued that the internet and the web collapse
“natural” senses of time into the virtually instan-
taneous, thus making the experience of time one

shaped by users. Especially given a postmodernist
or social-constructivist epistemology that minim-
izes the role of any external givens as constrain-
ing our knowledge, time and space may become
our own creations, the result of aesthetic choices
and our narrative and cooperative imagination.

On the other hand, the renewed stress on the
ontological/epistemological connections between
mind and world and the corresponding ethical
and political responsibilities entailed by such
connections further parallel observations that,
contra the ostensibly transnational character of
the web and the Net, social and national bound-
aries are in fact observed in cyberspace (Halavais
2000), with potentially imperialistic consequences
(Barwell & Bowles 2000). As we will see in the
discussion of politics, the strength of the connec-
tions between physical spaces and cyberspace is
further apparent if we examine the role of diverse
cultures in resisting a “computer-mediated colon-
ialism,” i.e., the imposition of Western values
and communication preferences across the globe
as these values and preferences are embedded in
the current technologies of CMC and CSCW.
Recent work documents the many ways in which
especially Asian cultures – whose cultural values
and communicative preferences perhaps most
clearly diverge from those embedded in Western
CMC and CSCW technologies – are able to
reshape CMC and CSCW technologies in order
better to preserve and enhance distinctive cultural
values and identity.

2.2 Epistemology: semiotics, hypertext,
and logic

The notion of “communication” in CMC com-
bines philosophical and communication theoret-
ical views. For example, Shank and Cunningham
(1996) argue that CMC requires moving from a
Cartesian view, according to which autonomous
minds transfer information across a transparent
medium, to a theoretical approach reflecting both
communication theories that stress intersubject-
ivity (as instantiated in dialogues and multilogues,
in contrast with a monologue) and C. S. Peirce’s
semiotics, which emphasizes the emergence of
meaning out of an interconnected triad of objects,
signs, and persons (or, more generally what Peirce
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calls “interpretants”). Peirce remains an import-
ant point of dialogue between philosophers and
CMC theorists (Mayer 1998, Groleau & Cooren
1999).

Chapter 19 takes up hypertext in greater de-
tail. Here we can note that David Kolb (1996)
has explored how hypertextual CMC techno-
logies may preserve and expand the discursive
moves of argument and criticism, in a domain
that is both hypertextual and, using Ong’s terms,
“oral” (i.e., ostensibly marked by greater equal-
ity and participation than in the more hierar-
chical societies of literate and print cultures)
vis-à-vis the ostensive linearity of print. Against
the postmodern emphasis on hypertext as radi-
cally overturning ostensibly modern and/or solely
literate modes of reasoning and knowledge, Kolb
argues that hypertext can facilitate especially the
dialectical patterns of Hegelian and Nietzschean
argument. But contra postmodern celebrations
of hypertext as exploding all print-based con-
straints, Kolb emphasizes the reality of humans
as finite creatures. In the face of the “informa-
tion flood” of an exponentially expanding web
of argumentative hypertexts, Kolb (rightly) pre-
dicts that the finitude of human knowers will
require new centers of access to exploding infor-
mation flows, thus engendering new forms of
hypertextual discourse.

Herbert Hrachovec (2001) has explored CMC
as a potential “space of Reason,” one whose
hypertextual dimensions either (a) reinstantiate
traditional print-based modes of knowledge rep-
resentation and argument (the Talmud, indices,
cross-references, use of images in medieval manu-
scripts, etc.) and/or (b) fundamentally challenge
and surpass traditional forms of knowledge,
argument, and reason (for similar sorts of dis-
cussion concerning how computer technologies
may reshape received notions of logic, see Scaltsas
1998, Barwise & Etchemendy 1998).

Some famous (but controversial) studies have
documented negative social consequences corre-
lating with increased participation in cyberspace.
Even such prominent proponents as Jay David
Bolter (2001) acknowledge that electronic envir-
onments favor the personal and playful rather
than abstract reasoning. These observations raise
additional questions as to how CMC technologies
may be shaping consciousness in ways potentially

antiphilosophical, or at least “differently” philo-
sophical. For example, if we live increasingly in
a style of multitasking and “partial attention”
(Friedman 2001), how well will complex philo-
sophical arguments requiring sustained intel-
lectual attention remain accessible to novice
philosophers? Similarly, traditional philosophical
conceptions of the self include a singular agent,
as a moral agent responsible for its acts over time
or as an epistemological agent, such as Kant’s
transcendental unity of apperception, whose unit-
ary nature is inferred from the coherence of an
experiential stream of sense-data that otherwise
tends to scatter centrifugally. Of course, post-
modernism counters with notions of multiple,
decentered, fragmented selves. Postmodernist
theories dominated early CMC literature, cel-
ebrating the hypertextual web of cyberspace
precisely as it appeared to instantiate such con-
ceptions of self. Should our immersion into
cyberspace issue exactly in such decentered selves,
however, the philosophical debates between
modernists and postmodernists concerning the
self may become irrelevant. Selves that are de
facto decentered and fragmented would be
incapable of the sustained attention required for
complex philosophical arguments – as well as
incapable of acting as singular epistemological
and moral agents. Such selves would not dem-
onstrate the cogency of the postmodern concept
as resulting from rigorous philosophical debate
between moderns and postmoderns. Rather, such
selves would represent only a technologically
aided self-fulfilling prophecy, i.e., the result of
adopting such technologies in the first place
because we uncritically and without further
argument presume the truth of the postmodern
notions of self as justification for immersing
ourselves in the technologies that produce such
selves. As this last phrase tries to make clear,
such self-fulfilling prophecies are, in logical terms,
viciously circular arguments, for their conclusions
are already asserted in their premises. At stake in
the debate, however, is nothing less than our
most fundamental conceptions of what it means
to be a human and/or a person. Both these con-
ceptions and the consequences of uncritically
accepting a given (e.g., postmodernist) concep-
tion over another are too important to have them
decided for us on the basis of circular argument
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and self-fulfilling prophecy, rather than through
more logically sound philosophical debate.

2.3 Ethics and politics:
democratization vs. the panopticon
and modernism vs. postmodernism

Perhaps the single most important claim made
in the effort to legitimate – if not simply sell –
CMC technologies is that they will democratize,
in the sense of flatten, both local (including
corporate) and global hierarchies, bringing about
greater freedom and equality. These claims
obviously appeal to Western – specifically, both
modern liberal and postmodernist – values, but
require philosophical scrutiny. To begin with,
much CMC and popular literature assumes that
“democracy” means especially a libertarian form
of democracy, in contrast with communitarian
and pluralist forms (Ess 1996: 198–202; Hamelink
2000: 165–85). Much of the theoretically in-
formed debate turns on especially Habermasian
conceptions of democracy, the public sphere, and
a notion of communicative reason which, cou-
pled with the rules of discourse, may achieve, in
an ideal speech situation, the freedom, equality,
and critical rationality required for democracy
(Ess 1996: 203–12; Hamelink 2000: 165–85).
Seen as simply a final expression of modern
Enlightenment, however, Habermas is criticized
by feminists and postmodernists for attempting
to save a notion of reason that, at best, may be
simply a male form of “rationality” and, at worst,
contrary to its intentions to achieve freedom and
equality, threatens instead to become its own
form of totalitarian power (e.g. Poster 1997:
206–10). Habermas responds to these critiques
by incorporating especially feminist notions of
solidarity and perspective-taking, and by criticiz-
ing postmodernism in turn as ethically relativistic
and thus unable to sustain its own preferences
for democratic polity over other forms (Ess 1996:
212–16; Hamelink 2000: 55–76). More recent
debate between Habermas and Niklas Luhmann
further sharpens the theoretical limitations of
the former’s conception of democracy and the
public sphere. Habermas’s conception of “partial
publics” (Teilöffentlichkeiten) survives here as
something of a theoretical compromise between

a full-fledged public sphere on the internet and
its complete absence in a postmodernist em-
phasis on fragmentation and decentering (Becker
& Wehner 2001; cf. Jones’s conceptions of
“micropolis” and “compunity,” 2001: 56–7;
Stevenson 2000).

Examining how CMC technologies are imple-
mented in praxis further illuminates this debate,
where the emphasis on testing theory by attempt-
ing to realize it precisely within the particulars
of everyday life is itself a Habermasian – indeed,
Aristotelian – requirement. Specific instances of
decision-making facilitated by CMC technolo-
gies appear to approximate the ideal speech situ-
ation and realize at least a partial public sphere
(Ess 1996: 218–20; Becker & Wehner 2001;
Sy 2001). At the same time, however, counter-
examples abound, including cases of CMC
technologies serving authoritarian ends and
preserving cultural hierarchies of power, status,
privilege, etc. (Yoon 1996: 2001). There are also
middle grounds, with examples of CMC tech-
nologies leading to partial fulfillment of hopes
for democracy and equality in cultural contexts
previously marked by more centralized and
hierarchical forms of government (Dahan 1999,
Hongladarom 2000, 2001, Wheeler 2001). These
diverse results suggest that realizing the demo-
cratic potentials of CMC will require conscious
attention to the social context of use, including
education, a point we shall return to below.

2.4 Globalization, commercialization,
and commodification vs. individual,

local identity

Economic and infrastructure realities dramatically
call into question the assumption that CMC rep-
resents a democratizing technology insofar as it
is interactive and can place a printing press in
the hands of anyone who can afford a computer
and internet access. Currently, less than 7 per-
cent of the world’s population enjoys such access
(see <http://www.nua.ie/surveys/how_many_
online/>). Commercialization and commodifica-
tion work against any such democratization
effect (Poster 1997, Stratton 1997, McChesney
2000, Willis 2000, Yoon 2001; see Plant 2000
for a discussion of Irigaray’s notion of the
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commodification of women in the “specular
economy”). In particular, Sy (2001) describes
the “commodification of the lifeworld,” drawing
on Habermas to understand how CMC tech-
nologies in the Philippines threaten to override
local cultural values and communication prefer-
ences. This is a process now well-documented
for numerous cultures. In the context of India, for
example, Keniston (2001) analyzes commodifica-
tion and other forces contributing to an emer-
ging, culturall homogenous “McWorld,” a threat
to local and regional identity that understand-
ably evokes sometimes violent but fragmenting
efforts of preservation (Sardar 2000). Hamelink
(1999) refers to this process as the “Disneyfica-
tion scenario” (cf. Bukatman 2000).

Nevertheless, recent research shows how local
or “thick” cultures both resist a computer-
mediated colonization of the lifeworld and re-
shape extant CMC and CSCW technologies to
better preserve and enhance distinctive com-
municative preferences and cultural values. In the
literature of CSCW, for example, Lorna Heaton
(2001) documents how Japanese CSCW resear-
chers developed their own CSCW technologies
to capture the many elements of nonverbal com-
munication crucial in Japanese culture (gesture,
gaze, etc.). Similarly, in Thailand (Hongladarom
2000, 2001) and the Philippines (Sy 2001) it
appears that any emerging global culture remains
“thin” in Walzer’s sense, i.e., it provides no sense
of historical/spatial location nor any of the
“thick” moral commitments and resources that
distinguish the practices and preferences of one
culture from the next (cf. Hamelink 1999). The
dangers and problems of globalization, especially
as fostered by the rapid diffusion of CMC
technologies – including the presumption of a
consumerist, resource-intensive, and thus non-
sustainable lifestyle – are not to be dismissed.
However, contra the claims of technological
determinism, these and similar reports suggest
that CMC technologies will not inevitably over-
run diverse cultural values and preferences.
Rather, especially when implemented in ways that
attend to the social context of use, including
education, these technologies may be appropri-
ated by diverse cultures in ways that make both
global (but “thin”) communication and culture
possible without compromising local/“thick”

cultural values and preferences (e.g., Harris
et al. 2001).

3 Interdisciplinary Dialogue and
Future Directions in Philosophy

Philosophers have much to gain from the theory
and praxis of the many disciplines clustered about
CMC technologies. Despite fledgling (Ess 2001)
and more considered work (Borgman 1984, 1999,
Graham 1999), philosophers yet have much to
contribute to an interdisciplinary dialogue with
theorists and practitioners in CMC. The follow-
ing is only a brief overview of three key areas of
research.

3.1 Critical reflection and history
of ideas

To begin with, philosophers can extend – and,
when necessary, amplify and challenge – the
developing histories and conceptual frameworks
of CMC, especially as these intersect questions of
epistemology, ethics, and ontology. Researchers
in communication theory, cultural studies, HCI,
etc., are not as fully versed in the history of ideas
and the often complex arguments more familiar
to philosophers. These limitations can result in
lacunae, oversimplifications, and errors of fact
and logic that philosophers can amend, thereby
adding greater accuracy and conceptual strength
to the discussion and development of CMC.
Specifically, beyond issues of epistemology, em-
bodiment, and what it means to be a person,
philosophers may also contribute to the related
theoretical-metatheoretical issue of what we mean
by culture (see Ess 2001: 20–2).

3.2 Uncovering worldview

CMC technologies force us to articulate and,
perhaps, alter and transcend the most basic ele-
ments of our worldview, including our presump-
tions of identity, ontology, and epistemology
(Sandbothe 1999). At the same time, the aban-
doning of Cartesian dualism in early Haraway
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and Barlow involves a renewed interest in phe-
nomenological and hermeneutical approaches
that emphasize connectedness between body and
mind and between the individual and a larger
community as shaped by history, tradition, cul-
ture, etc. Thus, Paul Ricoeur is enjoying a new
currency (Richards 1998; Bolter 2001), as are
Husserl and Nozick (McBeath & Webb 2000).
In this light, Winograd and Flores, in their appeal
to the hermeneutical/phenomenological philo-
sophies of Gadamer and Heidegger, were con-
siderably ahead of their time.

3.3 Contributing to global dialogue

Sandbothe (1999) takes up Rorty’s hope that
the new media may lead to a transcultural com-
munication, one that will help us become more
empathic, understanding, and receptive towards
others. Sandbothe argues that as internet com-
munication forces users to articulate our most
basic assumptions about identity, time, and space,
it thereby also helps us recognize the contingent
(i.e. non-universal) character of these most basic
presumptions. Such communication thereby
issues in a kind of epistemological humility. This
should short-circuit ethnocentrisms that other-
wise root both tacit and overt forms of cultural
imperialism, thereby contributing to the genu-
ine dialogue across and between cultures required
for the much-prophesied global village of online
communities that extend beyond specific cultural
boundaries (see also Ess 2001).

3.4 Education for an intercultural
global village?

By engaging in an interdisciplinary theory and
praxis of CMC, philosophers may contribute to
a specific sort of education for the citizens of an
intercultural electronic village that is required to
avoid the cultural homogenization of McWorld
and the radical fragmentation of Jihad.

While Plato (at least in a straw-man form) is
routinely targeted especially by postmodernist
critics for an alleged dualism that then grounds
subsequent dualisms in Western thought, one
can argue that his allegory of the cave in the

Republic remains a vital metaphor for both philo-
sophy and education as processes of making
tacit assumptions explicit and thereby enabling a
critical examination of worldview. Philosophical
education moves us from the ethnocentrism of
the cave to more encompassing and finally dia-
logical conceptions of human beings (Ess 2001).
Cees Hamelink (2000: 182ff.), in his many re-
commendations for how to democratize tech-
nology choices, calls for an explicitly “Socratic
education,” one that stresses critical thinking
about the risks of deploying information and
communication technologies. Hamelink appeals
for an education that will “prepare people for
the ‘culture of dialogue’ that the democratic
process requires,” a (partially Habermasian) dia-
logue that will be based on citizens’ “capacity to
reason through their own positions and justify
their preferences” as they jointly “deliberate and
reflect on the choices that optimally serve the
common interest” (184). Drawing on John
Dewey and Martha Nussbaum, Hamelink sees
such education as vital to sustaining a demo-
cratic society as now centrally engaged with the
technologies of CMC. One could add that such
education is simultaneously vital to any hopes
for intercultural dialogue and democracy on a
global scale. In addition to historical and con-
ceptual metaphors of the postmodern and
posthuman, philosophical education in intercul-
tural values may contribute to a new Renaissance
of cultural flows facilitated by CMC technologies
in dramatic new ways.
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for surfers, a commercial space much in need of
zoning, the mother of all Swiss Army knives, a
tool palette for artists, a lucid dream or magic, a
telephone or newspaper or holodeck, a monster
that has escaped DARPA’s control, the Linux
penguin, sliced bread, an addiction, the Grand
Canyon, and on and on.

Before attempting to think through these
metaphors, it is worthwhile to note at the outset
that we regular users of the internet are only a
minority, even in societies that have passed
through industrialization and are now exploring
economies in which information technology has
become central. There are important technical,
moral, and political issues about conversion of
this minority into a majority, including whether
that would be a good thing, whether it is
required by fairness, how much priority should
be given to information technology in develop-
ing countries especially relative to processes of
industrialization, and so forth. It is clear, how-
ever, that desire for connection to the Net is not
a minority taste, something only for a military or
academic elite, but rather it corresponds closely
to the enormous demand for the ubiquitous com-
puter itself at every social level. So the prospect
of a global electronic metropolis, in which citizens
can reliably be expected to be netizens, is not an
idle dream, or nightmare. The internet is so new
that we don’t know yet whether it has an Aristo-
telian telos of some benign or malign nature, or

Introduction

The internet is a magnet for many metaphors.
It is cyberspace or the matrix, the “information
superhighway” or infobahn or information hair-
ball, a looking-glass its users step through to
meet others, a cosmopolitan city with tony and
shady neighborhoods, a web that can withstand
nuclear attack, electric Gaia or God, The World
Wide Wait, connective tissue knitting us into a
group mind, an organism or “vivisystem,” a petri
dish for viruses, high seas for information pirates,
a battleground for a war between encrypters and
decrypters, eye candy for discreet consumers of
a tsunami of pornography, a haven for vilified
minorities and those who seek escape from stulti-
fying real-world locales, a world encyclopedia
or messy library or textbook or post office, chat
“rooms” and schoolrooms and academic confer-
ences, a vast playground or an office complex, a
cash cow for the dot.coms, The Widow Maker,
training wheels for new forms of delinquency
practiced by script kiddies and warez d00des, a
wild frontier with very little law and order, the
glimmer in the eyes of virtual-reality creators, a
workshop for Open Source programmers, a poll-
ing booth for the twenty-first century, a market-
place for mass speech, a jungle where children
are prey, a public square or global village, a mall
or concert hall, a stake for homesteaders, a safari
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whether instead it will always be a loose and
disjointed Humean thing, evading every attempt
to discern an underlying unity.

Although the internet is bringing us together,
it also keeps us apart in two general ways. First,
time spent online is inevitably time spent in a
greater or lesser degree of detachment from one’s
physical surroundings, including local others.
Second, the connection to distant others is itself
a form of detachment, as coolly a matter of busi-
ness as online banking or as etiolated a form of
sociability as a chat room. The major issue about
the former is simply time management. Almost
everyone has decided that local detachment is all
right, because we do it when reading, watching
television, listening to music, and so forth. But
there are still questions about how internet use
will impact on these other forms of detachment,
for instance in reading less or, worse, less well.
The latter issue is more complex. Detachment
from distant others can be valued for purposes of
efficiency, as with banking, or because it affords
anonymity to members of unpopular subcultures,
as with some chat rooms, or because one happens
to find that level of sociability to one’s liking.
There is not anything evidently wrong with any
of this, putting criminal or pathological cases aside
– hacking into banks, planning terrorist attacks,
escaping from life, and so on. Perhaps the major
issue about online detachment will have to do
with its transformation as more “bandwidth” gets
piped into our ever more versatile computers,
giving them audiovisual and even tactile powers
to create experiences that are very different from
invoking File Transfer Protocol from a command
line to send scientific data from node A to node B.

The internet is also changing us. Users of the
internet are not the people they would have been
in the absence of the computer revolution. At
one level this is a truism: experiences change us.
But many interpreters of postmodern culture,
the culture of postindustrial societies particularly
as influenced by information technology such as
the internet (and computers, CDs, etc.), detect a
change in us that is understated even by emphas-
izing that our personalities have become differ-
ent. Some of these interpretations are pretentious
babble, including much theorizing that passes as
postmodernist philosophy or psychology when
it opines that there is nothing outside the text,

that the self is an outmoded social construct,
and so forth. Postmodernist theory should be
sharply distinguished from postmodern culture.
The latter, however it is to be characterized in
detail, is a large social fact; the former, whether
it is true or false or meaningful or nonsensical, is
precisely a theory; one can be a participant in
postmodern culture without espousing post-
modernist doctrine. Interpretations of postmodern
culture, including many insightful ones, point to
the need for a theory of personhood and personal
identity that does full justice to the changes in
us, and gives us a way of thinking constructively
about them. Many different disciplines, from
philosophy to psychology, from linguistics to
sociology, from anthropology to literary studies,
should converge so as to develop such a theory.

The internet is changing our relationship to
nature, not only in the way that postmodernist
theorists emphasize, by “thickening” the layers of
images that mediate our perception of the external
world and our interactions with it, but also by
starting to lessen the stress on nature caused by
the technologies of the industrial revolution. The
two are related. The thickened layers can include
the images that constitute the emerging tech-
nology of teleconferencing, and the lessened
stress, we have reason to hope, will take the
form of reduced environmental damage caused
by planes, trains, and automobiles; alternatives
to fossil fuel will depend, either at the research
stage or in implementation, on digital techno-
logy to harness the energy of the sun, the wind,
hydrogen, and so forth. The layers can include
the electronic paper that is clearly visible now
on the technological horizon, and the relief for
nature will be felt by our forests. The power of
computer modeling should also be mentioned, a
new way of representing the world that is prov-
ing its value for understanding, monitoring, and
controlling natural processes, from the human
genome to the weather; it is changing the way
traditional sciences are undertaken as well as
birthing relatively new sciences such as cognitive
psychology, artificial intelligence, and nanotech-
nology. These changes in the images or representa-
tions that we rely upon are introducing social
changes as well, ranging from less reliance on
the amenities of cities for educational and enter-
tainment purposes, to new forms of populism as
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groups organize on the internet despite lack of
access to high-cost tools. The great engine of
acculturation, schooling, is now producing genera-
tions for whom computer use is second nature,
a presence in the classroom since the first year.
This large fact presents a challenge to the exist-
ence of a “mainstream culture,” since this gen-
eration will be influenced by such various cultural
forces that even the cultural fragmentation occa-
sioned by the 500-channel television will only
hint at the upshot. Let this thought be the back-
ground to the question whether the internet and
information technology not only are having im-
pact on the larger culture, but also whether they
have a culture of their own.

Internet Culture?

Is there internet culture, something more sub-
stantial than shared mastery of the email or
chatroom “smiley,” or is that an oxymoron? Is
the internet a tool, or something more? Is the
internet improving education or corrupting it?
Is the space of cyberspace a place to explore
utopian possibilities, or a wrecking yard for
traditional culture, or something as neutral with
respect to questions of value as a screwdriver?
These are some of the questions that a philosophy
of internet culture should address. The answers
to be found in a large and diverse literature on
the subject are classifiable as utopian, dystopian,
or instrumental. A utopian view sees the internet
as good, perhaps profoundly so, or at least good-
on-balance. As dystopian, it is profoundly bad
or at least bad-on-balance. And as instrumental,
the Net is a tool, perhaps merely a tool or at
least a tool that does not harbor profoundly good
or evil values.

The notion of profundity in this trichotomy
acknowledges the influence of Martin Heidegger
on the philosophy of technology, especially his
The Question Concerning Technology. Many inter-
preters of the internet have borrowed from him
the idea that a technology can be inseparable from
a value commitment. Heidegger would not have
liked the term “value.” In “Letter on Humanism”
he writes, “Every valuing, even where it values
positively, is subjectivising. It does not let beings:

be . . . the thinking that inquires into the truth
of Being and so defines man’s essential abode
from Being and toward Being is neither ethics
nor ontology” (1977: 87). This chapter returns
to Heidegger under the heading of dystopian
inherence, making the case that Heidegger’s
philosophy of technology does indeed betray a
significant value commitment, contrary to its aim
at something more profound, a commitment that
undermines its authority as a model for under-
standing the internet.

The general Heideggerian idea of a value
inherent in technology is instanced in the state-
ment that the high technology of factory farming,
or “agribusiness,” is inseparable from a bad way
of relating to nature, understanding it, and treat-
ing it simply as something to be processed
in wholesale fashion for satisfaction of human
appetites. Heidegger’s idea has been adopted
mainly by dystopian theorists like his translator
Michael Heim, who argues in The Metaphysics
of Virtual Reality that the “Boolean logic” of
the computer marks a “new psychic framework”
that “cuts off the peripheral vision of the mind’s
eye” and generates infomania (1993: 22, 25),
as he indicates in the following passage.

Note already one telltale sign of infomania:
the priority of system. When system precedes
relevance, the way becomes clear for the
primacy of information. For it to become
manipulable and transmissible as information,
knowledge must first be reduced to homogen-
ized units. With the influx of homogenized
bits of information, the sense of overall signi-
ficance dwindles. This subtle emptying of
meaning appears in the Venn diagrams that
graphically display Boolean logic. (1993: 17)

Heim’s profound or inherence dystopianism
may be contrasted with on-balance or simply
balance dystopianism, exemplified by Sven
Birkerts’ The Gutenberg Elegies: The Fate of Read-
ing in an Electronic Age, and particularly by the
cost–benefit analysis of the computer revolution
that he provides in the following passage.

We can think of the matter in terms of gains
and losses. The gains of electronic postmodern-
ity could be said to include, for individuals,
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(a) an increased awareness of the “big
picture,” a global perspective that admits the
extraordinary complexity of interrelations;
(b) an expanded neural capacity, an ability to
accommodate a broad range of stimuli simul-
taneously; (c) a relativistic comprehension of
situations that promotes the erosion of old
biases and often expresses itself as tolerance;
and (d) a matter-of-fact and unencumbered
sort of readiness, a willingness to try new situ-
ations and arrangements.

In the loss column, meanwhile, are (a) a
fragmented sense of time and a loss of the
so-called duration of experience, that depth
phenomenon we associate with reverie; (b) a
reduced attention span and a general impati-
ence with sustained inquiry; (c) a shattered
faith in institutions and in the explanatory
narratives that formerly gave shape to subject-
ive experience; (d) a divorce from the past,
from a vital sense of history as a cumulative or
organic process; (e) an estrangement from
geographic place and community; and (f ) an
absence of any strong vision of a personal or
collective future. (Birkerts 1994: 27)

Note that the distinction between inherence and
balance dystopians concerns the form of argu-
mentation rather than conclusions about the tech-
nology, which may be similar. Heim would agree
with Birkerts that, as the latter writes, “We are at
a watershed point. One way of processing informa-
tion is yielding to another. Bound up with
each is a huge array of aptitudes, assumptions,
and understandings about the world” (1994: 27).
But Heim has an extra reason for that conclu-
sion, the profound one about the “infomania”
value inherent in the new technology.

Heidegger’s idea, this extra reason, can be
extended to utopianism. An inherence utopian
about the internet, on this extension, is one who
believes that there is something good about it
beyond a simple toting up of gains and losses.
For instance, Wired magazine editor Kevin Kelly’s
Out Of Control: The New Biology of Machines,
Social Systems, and the Economic World theorizes
the internet as a vivisystem, and as such an
instance of, in his words,

[t]he overlap of the mechanical and the life-
like [that] increases year by year. Part of this

bionic convergence is a matter of words. The
meanings of “mechanical” and “life” are both
stretching until all complicated things can be
perceived as machines, and all self-sustaining
machines can be perceived as alive. Yet beyond
semantics, two concrete trends are happening:
(1) Human-made things are behaving more
lifelike, and (2) Life is becoming more engin-
eered. The apparent veil between the organic
and the manufactured has crumpled to reveal
that the two really are, and have always been,
of one being. What should we call that com-
mon soul between the organic communities
we know of as organisms and ecologies, and
their manufactured counterparts of robots,
corporations, economies, and computer cir-
cuits? I call those examples, both made and
born, “vivisystems” for the lifelikeness each
kind of system holds. (1994: 3)

The inherent value for Kelly is the value of a
vivisystem, as revelatory of a hidden connection
between the natural and the mechanical. Kelly’s
focus on vivisystems is comparable to historian
Bruce Mazlish’s reconstruction of how we have
overcome the fourth discontinuity, between our-
selves and machines, the earlier discontinuities
having been overcome when Copernicus showed
that our earth was not the center of the universe,
when Darwin showed that man did not have a
privileged place in creation, and when Freud
showed that our rationality is not so perfect as
to set us apart from the other animals. Kelly’s
vivisystems allow Mazlish’s point to be put
positively, in terms of continuity rather than dis-
continuity: the range of manmade and natural
vivisystems reveals the continuity between our-
selves and machines.

Vivisystems figure in the version of James
Lovelock’s Gaia Hypothesis that Kelly endorses.
This is the hypothesis, that, in Lovelock’s words,
“The entire range of living matter on Earth,
from whales to viruses, from oaks to algae, could
be regarded as constituting a single living entity,
capable of manipulating the Earth’s atmosphere
to suit its overall needs and endowed with facult-
ies and powers far beyond those of its constitu-
ent parts” (Kelly 1994: 83). (Kelly is quoting
from Lovelock’s The Ages of Gaia.) Although
there may be controversy about whether Gaia is
an organism, Kelly thinks there should be no
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doubt that, as he writes, “it really is a system
that has living characteristics. It is a vivisystem.
It is a system that is alive, whether or not it
possesses all the attributes needed for an organ-
ism” (1994: 84). Gaia is not only alive but it is
coming to have a mind, thanks to the internet
and other networking technologies. Kelly makes
the point in dramatic language.

There is a sense in which a global mind also
emerges in a network culture. The global mind
is the union of computer and nature – of
telephones and human brains and more. It is a
very large complexity of indeterminate shape
governed by an invisible hand of its own. We
humans will be unconscious of what the global
mind ponders. This is not because we are not
smart enough, but because the design of a
mind does not allow the parts to understand
the whole. The particular thoughts of the
global mind – and its subsequent actions –
will be out of our control and beyond our
understanding. Thus network economics will
breed a new spiritualism.

Our primary difficulty in comprehending the
global mind of a network culture will be that
it does not have a central “I” to appeal to.
No headquarters, no head. That will be most
exasperating and discouraging. In the past,
adventurous men have sought the holy grail,
or the source of the Nile, or Prester John, or
the secrets of the pyramids. In the future the
quest will be to find the “I am” of the global
mind, the source of its coherence. Many souls
will lose all they have searching for it – and
many will be the theories of where the global
mind’s “I am” hides. But it will be a never-
ending quest like the others before it. (1994:
202)

Another inherence-utopian vision incorporates
the internet’s group mind as only a minor fore-
shadowing of an end-of-time God, intelligent
life connected throughout the universe, as a
result of colonization of space (and so forth). It
will tap into the energy created by gravity’s
“divergence towards infinity” in the Big Crunch
so as to reproduce all past experience in massive
computations that generate the requisite virtual
realities. Construing our brains as virtual reality
generators themselves, these theorists prophesy

that brains can be replaced by their Turing-
machine essence: we will be brought back to life
as programs suitable for generating the virtual-
reality renderings that capture our lived experi-
ence, with the unpleasant bits trimmed away and
desirable additions inserted, perhaps additions
from program-based future societies, if we can
tolerate the culture shock. The details can be
found in Frank J. Tipler’s The Physics of Immor-
tality and David Deutsch’s The Fabric of Reality.

This much will serve to introduce a frame-
work for understanding internet culture and
the theorizing that surrounds it: the utopian/
dystopian/instrumental trichotomy and the
balance/inherence dichotomy. The stage is set
for a critical illustration of balance utopianism,
in the next section; then inherence dystopianism;
and then inherence instrumentalism; and fin-
ally some concluding remarks, including some
caveats and qualifications about the framework
just bruited.

Balance Utopianism

The advent of the internet took Sherry Turkle
by surprise. She had published The Second Self in
1984, describing the identity-transforming power
of the computer at that stage of the computer
revolution. Reflecting on her experience and the
experience of others with the new Apple and
IBM PC computers, she conceived of the rela-
tionship of a person to her computer as one-on-
one, a person alone with a machine. By 1995,
when Life on the Screen appeared, she was writ-
ing about something quite different, “a rapidly
expanding system of networks, collectively known
as the internet, [which] links millions of people
in new spaces that are changing the way we think,
the nature of our sexuality, the form of our com-
munities, our very identities” (1995: 9).

Though Turkle speaks neutrally here of
“change” in these matters, she fits into the
“utopian” category of her trichotomy between
utopian, apocalyptic, and utilitarian evaluations
of the internet. The computer is a new and
important tool, most assuredly, but the internet
makes it “even more than a tool and mirror: We
are able to step through the looking glass. We
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are learning to live in virtual worlds. We may
find ourselves alone as we navigate virtual oceans,
unravel virtual mysteries, and engineer virtual
skyscrapers. But increasingly, when we step
through the looking glass, other people are there
as well” (1995: 9). Whereas apocalyptic theorists
diagnose this as stepping through the looking-
glass to cultural impoverishment or a new form
of mental illness, Turkle theorizes the new experi-
ences by reference to colonization of a new land.

This metaphor of colonization should be
understood carefully, however, as she is not sug-
gesting that Sherry Turkle, sociologist and MIT
professor, should be left behind in favor of a
new life as the cybernaut ST on LambdaMOO.
That suggestion comes from an extreme form of
inherence utopianism about the internet, or it
is the equally extreme suggestion of inherence
dystopian theorists, like Mark Slouka in War of
the Worlds, who diagnose the internet experi-
ence as equivalent to wholescale departure from
everyday reality. More in Turkle’s spirit is the
thought that a new dimension of human life is
being colonized, and although that raises a host
of new issues about budgeting time and effort,
and even about physical and mental health, Turkle
is not proposing that it be undertaken in the
spirit of these extreme forms of utopianism.

She does indeed characterize her colonists as
“constructing identity in the culture of simula-
tion,” in a cultural context of “eroding boundar-
ies between the real and the virtual, the animate
and the inanimate, the unitary and the multiple
self” (1995: 10), a context in which experiences
on the internet figure prominently but share a
cultural drift with changes in art, such as the
postmodern architecture that the cultural critic
Fredric Jameson studies; science, such as research
in psychoanalysis and elsewhere inspired by
connectionist models of the mind/brain; and
entertainment, such as films and music videos in
which traditional narrative structure is hard to
discern. Constructing identity in the culture of
simulation – our postmodern culture, as Turkle
interprets it – involves two closely related ideas.
First, there is the idea that we are newly aware
of a rich continuum of states between the real and
the virtual, the animate and the inanimate, the
unitary and the multiple self. A boundary that
may have been a sharp line is now a complex

zone. For instance, a player who manipulates a
character or avatar in an online virtual reality
such as a Multi-User Dungeon (MUD) is dis-
tinctly located in that zone. By contrast, traveling
to Rome or viewing someone’s movie about
Rome, even when doing so is “virtually like
being there,” is safely on one side or the other
of the real/virtual line, awakening no awareness
of the zone being constructed and explored by
Turkle’s colonists.

Second, constructing identity involves some-
thing like the notion of a dimension as it was
just introduced: although Turkle is distinctly on
the “real” side of the real/virtual continuum,
she now builds her identity partially by reference
to dimensions of herself that owe their existence
to activity in the border zone. To the degree
that MUDing is important to her, for instance,
to that degree it is constitutive of who she is.
This is a high-technology application of the gen-
eral principle that we are self-defining creatures.
It is not the idea that crossing the postmodern
divide has somehow destroyed personal identity.
Although some psychologists and sociologists
adopt the conceit of speaking this way, it is no
more than acknowledging the complexity of self-
definition in modern society; or else this way of
speaking falsely equates personal identity with
a soul-pellet or Cartesian Thinking Substance,
in which case it is broadcasting the stale news
that such conceptions of the self are largely dis-
credited. Turkle discusses the phenomenon of
Multiple Personality Disorder, and it may be that
MPD is more common because of the stresses
of modern life, and not because, say, the medic-
alization of human experience leads us to find
mental illnesses today that weren’t there yester-
day. But constructing identity is, and always has
been, distinct from going crazy, even when the
building material is a new high-tech dimension.

This is not to say that Turkle always gets this
exactly right. Setting out some of her interviews
with students who play MUDs, she writes that
“as players participate, they become authors not
only of text but of themselves, constructing new
selves through social interaction. One player says,
‘You are the character and you are not the char-
acter, both at the same time.’ Another says, ‘You
are who you pretend to be.’” Analyzing these
interviews, she continues, “MUDs make possible
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the creation of an identity so fluid and multiple
that it strains the limits of the notion. Identity,
after all, refers to the sameness between two
qualities, in this case between a person and his
or her persona. But in MUDs one can be many”
(1995: 12). The short path out of these woods
is to deny that a person and his or her persona
are identical: you are not who you pretend to
be, but rather you are pretending to be some-
one in such a way as to call upon your verbal,
emotional, and imaginative resources to accom-
plish the pretense.

One of Turkle’s major themes is the trans-
ition from modern to postmodern culture,
which she glosses as follows, beginning with a
set of ideas that have come to be known as
“postmodernism.”

These ideas are difficult to define simply, but
they are characterized by such terms as
“decentered,” “fluid,” “nonlinear,” and
“opaque.” They contrast with modernism, the
classical world-view that has dominated West-
ern thinking since the Enlightenment. The
modernist view of reality is characterized by
such terms as “linear,” “logical,” “hierarch-
ical,” and by having “depths” that can be
plumbed and understood. MUDs offer an
experience of the abstract postmodern ideas
that had intrigued yet confused me during
my intellectual coming of age. In this, MUDs
exemplify a phenomenon we shall meet often
in these pages, that of computer-mediated
experiences bringing philosophy down to earth.
(1995: 17)

It does so, Turkle suggests, because the trans-
ition from modernism to post-modernism, from
the early post-Second World War years onward,
is paralleled in the world of computers by a trans-
ition from a culture of calculation to a culture
of simulation. For those caught up in the war
effort, like John von Neumann, the new com-
puters were objects to calculate with, specifically
to make the staggeringly complex calculations
that would tell whether an implosion device
would detonate an atomic bomb. Even the relat-
ively carefree hackers at the MIT AI Lab in the
fifties and sixties were privy to this culture,
prizing what Turkle calls “vertical” understanding
of the computer: understanding it all the way

down from high-level programming languages
to assembler to machine language, and wanting
to know as well the engineering architecture of
the hardware. (Hackers who loved to code but
knew little about hardware were called “soft-
ies.”) By contrast the consumer computers that
were brought to the market in the mid-seventies
to early eighties, first by Apple and then by IBM
and many others, made computers accessible
far beyond the military, industry, and academe.
For Turkle the Apple Macintosh’s graphical
user interface, as well as its presenting itself
as “opposed and even hostile to the traditional
modernist expectation that one could take a
technology, open the hood, and see inside”
(1995: 35), are crucial developments, giving
the computer massive popular appeal to many
who preferred “horizontal understanding,” of an
operating system’s or an application’s interface,
surface over depth.

The power of the Macintosh was how its
attractive simulations and screen icons helped
organize an unambiguous access to programs
and data. The user was presented with a scin-
tillating surface on which to float, skim, and
play. There was nowhere visible to dive. (1995:
34)

The massive growth of internet culture, from its
roots in the MIT/ARPANET connection and the
UNIX/USENET connection, into the behemoth
we see now, turned on the fact that a lot of
people want to be pilots, not mechanics.

Turkle acknowledges that even her beloved
Macintosh ultimately requires the skills and tools
of modernist culture, but it strove to make these
“irrelevant” to the user, and in this way “the tools
of the modernist culture of calculation became
layered underneath the experience of the culture
of simulation” (1995: 34). This is an important
point, and one that she may not have developed
sufficiently. The culture of simulation requires a
modernist spine. It requires technicians to keep
its computer network running, for one thing,
but it also needs inventors and theoreticians to
explore its possibilities. More generally, it needs
a background of a world that is external to its
rapidly thickening layers of images and other
representations, a world that is best disclosed by
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the sciences, in contradistinction to the post-
modern conceit that there is nothing outside
the text, that science is just one among many
narratives in an anarchic cacophony, etc. Often
enough to counsel attention, modernist values
consort with plain truths. (This of course rejects
the postmodernist theoretician’s notion that truth
reduces to what passes for true, which is a func-
tion of which community’s values you subscribe
to.) The plain truth of science’s superior track
record consorts with the modernist value that
discerns a hierarchy in which science ranks higher
than, say, wishful thinking in its power to reveal
the nature of things. The plain truth that there
is an external world consorts with the modernist
value of depth, in this case a depth beyond our
images, symbols, and other representations. The
modernist value of prudence, of rational self-
interest which gives equal weight to each mo-
ment of one’s life, consorts with the plain truth
about personal identity that I canvassed earlier.
The value and the fact are not the same: one can
grant that there is personal identity through time
and rational concern about it, without embrac-
ing the modernist conception of prudence that
requires one to be a shepherd, so to speak, for a
whole human life. For instance, it is not irra-
tional, on certain conceptions of rationality, to
severely discount one’s distant future. But such
conceptions aren’t those that have had influence
in building our senses of ourselves and our social
institutions, like social and medical insurance.
Those reflect modernist values.

Inherence Dystopianism

A leitmotiv of some dystopian critique is a fal-
lacy: an inference from features of computation
to features of the media that the computation
enables. Call this the Frame Fallacy, after the
mistake of inferring from the fact that a movie is
made up of discrete frames, the conclusion that
the experience of watching a movie is the experi-
ence of a series of discrete frames.

For instance, Fred Evans makes observations
about the algorithmic character of computation
and infers from this that computer scientists
and cognitive psychologists are in league with

technocratic bureaucrats who are concerned
only with efficient administration. There are in
fact two fallacies here. First, efficient administra-
tion with respect to programming might be put
to the service of organizations that are devoted
to human rights and opposed to technocratic
manipulation of citizens. To suppose the con-
trary to is to commit the simple Frame Fallacy.
Additionally, Evans makes an unwitting philo-
sophical pun – a fallacy of equivocation – on
the term efficiency. The two fallacies blend in a
spectacular howler.

Evans’s Psychology and Nihilism: A Genealo-
gical Critique of the Computational Model of Mind
argues that “technocratic rationality” is a secret
value presupposed by the computer model of
mind, which he takes to be the model that defines
cognitive science and cognitive psychology. His
fear (“the crisis of modernity”) is that conscious-
ness itself “might be reduced to just those para-
meters necessary for the continued reproduction
of restrictive and univocal social, cultural, and eco-
nomic systems” (1993: 2). In this way the com-
puter model of cognitive psychology “serves the
interest of the new technocratic elite by emulat-
ing their style of thinking” (1993: 7). Assimilating
us to machines, cognitive psychology implicitly
denies those cultural values that affirm and celeb-
rate life, and consequently it is “nihilist.”

Evans’s main argument is as follows.

Because we can precisely state its properties,
we shall use the Turing machine as our for-
malization and the idealization of “analytic
discourse.” Like analytic discourse, the Turing
machine divides its subject matter into a set of
discrete entities, maintains a strict separation
between its program (language) and the
domain over which it operates (the same pro-
gram can imitate many different machines),
adheres to an ideal of transparency in its code
and in what it codifies, and subordinates its
subject matter to the achievement of a pre-
established goal that requires no change in the
basic rules and symbols of the Turing machine’s
own program (the ideal of “domination” or
“administration”). For both analytic discourse
and the Turing machine, the ideal is to trans-
form everything into an “effective procedure,”
and this is exactly the task of technocratic ration-
ality. In more historical terms, the Turing
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machine transforms the “clearness and distinct-
ness” dictum of Descartes into “imitatable by
the Turing machine.” (1993: 64)

At bottom, this argument is a bad pun. Evans is
equivocating on “effective procedure,” between
cost-effective administration on one hand, and
algorithm on the other. It is the same sort of
mistake as supposing that, since the Bank of
Montreal and the bank of the Saskatchewan River
are both banks, it must follow that they both
make financial transactions. Effective procedures
in the sense that interested Alan Turing are fea-
tures of mathematical reasoning, not features of
administration of people. Evans’s mistaken in-
ference from features of computation to features
of the research communities that make use of
them is egregiously abetted by his equivocation
on “effective procedure.”

One reason to be wary of utopian or dystopian
inherence theories is that they encourage a tend-
ency toward blanket denunciation and renunci-
ation of the internet, or the blanket opposite,
when what is needed is a piecemeal evaluation
of this or that use of it, this or that tool that
is enabled by the internet metatool. A striking
contemporary instance of the blanket approach
is the Montana philosopher Albert Borgmann’s
position, in Holding on to Reality, that digitally
generated information is incapable of making
a positive contribution to culture, but on the
contrary threatens to dissolve it, by introducing
information as reality to compete with the picture
of the world that is drawn from natural informa-
tion (information about reality, as in weather
reports) and cultural information (information
for reality, as in recipes for baking things).

The technological information on a compact
disc is so detailed and controlled that it
addresses us virtually as reality. What comes
from a recording of a Bach cantata on a CD is
not a report about the cantata nor a recipe
– the score – for performing the cantata, it is
in the common understanding music itself.
Information through the power of technology
steps forward as a rival of reality.

Today the three kinds of information are
layered over one another in one place, grind
against each other in a second place, and are

heaved and folded up in a third. But clearly
technological information is the most pro-
minent layer of the contemporary cultural
landscape, and increasingly it is more of a
flood than a layer, a deluge that threatens to
erode, suspend, and dissolve its predecessors.
(1999: 2)

This has led some disciples of Borgmann to
eschew all digitally recorded music, insisting
on listening only to live performances. Another
example of inherence dystopianism leading to
blanket evaluations is Neil Postman’s Technopoly:
The Surrender of Culture to Technology, which
indicts the United States as a “technopoly,”
along with “Japan and several European nations
that are striving to become Technopolies as
well” (1993: 48–9). A Technopoly does no less,
according to Postman, than eliminate “alternat-
ives to itself in precisely the way Aldous Huxley
outlined in Brave New World” (1993: 48).

An object lesson about the wholesale approach
can be drawn from Richard Bernstein’s analysis
of the father of dystopian theories of high tech-
nology, Heidegger. In “Heidegger’s Silence?:
Ethos and Technology” Bernstein makes the case
that the great German philosopher’s brief but
active support of Hitler and the Nazis, during
the 10-month period when he served as Rector
of the University of Freiburg between April 1933
and February 1934, is symptomatic of a philo-
sophical failing that expresses itself in what he
said and did before and after those 10 months,
notably in his silence about the Holocaust after
the war, when there were no longer any serious
doubts about the full horror of the Nazi regime.
“But we are delivered over to [technology] in
the worst possible way,” Heidegger writes in
The Question Concerning Technology, “when we
regard it as something neutral; for this concep-
tion of it, to which today we particularly like to
do homage, makes us blind to the essence of
technology” (1977: 91).

According to Bernstein’s account of the link
between his biography and his philosophy,
Heidegger conceals and passes over in silence
the importance for the Greeks, specifically
Aristotle, of phronesis, the state of the soul that
pertains to praxis. He refers to a discussion by
Aristotle in Nicomachean Ethics that has “special
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importance,” but his reference is partial and one-
sided, bringing out the role of techne in relation
to poiesis, as sketched above, but not tracking
the full discussion, which Aristotle summarizes
in the following passage.

Then let us begin over again, and discuss these
states of the soul. Let us say, then, that there
are five states in which the soul grasps the
truth [aletheia] in its affirmations or denials.
These are craft [techne], scientific knowledge
[episteme], [practical] intelligence [phronesis],
wisdom [sophia], and understanding [nous] . . .
(cited in Bernstein 1992: 121)

Bernstein asks, “Why should we think that the
response that modern technology calls forth is
to be found by “re-turning” to techne and poiesis,
rather than phronesis and praxis?” He objects
that Heidegger does not even consider this pos-
sibility, writing that “[t]he entire rhetorical con-
struction of The Question Concerning Technology
seduces us into thinking that the only alternative
to the threatening danger of Gestell is poiesis. It
excludes and conceals the possibility of phronesis
and praxis” (1992: 122). Bernstein urges that
our destiny rests not solely with the thinkers and
the poets who are guardians of the abode in
which man dwells, but with the phronesis of
ordinary citizens’ contribution to public life. The
possible upsurgence of the saving power may
be revealed in action (praxis) and not only in
“poetic dwelling.”

Bernstein asks again, “Why is Heidegger blind
to those aspects of praxis and phronesis high-
lighted by Taminiaux, Gadamer, Arendt, and
Habermas?” He agrees with Habermas’s sugges-
tion: that Heidegger is guilty of “a terrible intel-
lectual hubris” when he suggests that the only
proper and authentic response to the supreme
danger is to prepare ourselves to watch over
unconcealment.

Bernstein next draws attention to an unpub-
lished manuscript of the 1949 lecture that became
The Question Concerning Technology, which con-
tains the following passage that has been deleted
from the published text.

Agriculture is now motorized food industry –
in essence the same as the manufacturing of

corpses in gas chambers and extermination
camps, the same as blockading and starving of
nations [it was the year of the Berlin blockade],
the same as the manufacture of hydrogen
bombs. (cited in Bernstein 1992: 130)

Bernstein understands this grotesque passage
as a natural expression of Heidegger’s reaction
against the “correct” definition of technology
as a neutral instrument which can be used for
benign ends of increased food production or
the malignant end of extermination of human
beings.

But if we focus on the essence of technology
then these differences are “non-essential.” The
manufacturing of corpses in gas chambers more
fully reveals the essence of technology . . .
Unless we fully acknowledge and confront the
essence of technology, even in “manufacturing
of corpses in gas chambers,” unless we realize
that all its manifestations are “in essence the
same,” we will never confront the supreme
danger and the possible upsurgence of the
saving power. (1992: 131)

Bernstein concludes that the deleted passage is
not simply some insensitive remark but rather a
necessary consequence of the very way in which
Heidegger characterizes Gestell, as an unconceal-
ment that claims man and over which he has
no control. He sets out a formulaic pattern in
Heidgegger’s thinking,

a pattern that turns us away from such “mun-
dane” issues as mass extermination, human
misery, life and death, to the “real” plight, the
“real” danger – the failure to keep meditative
thinking alive . . . It is as if in Heidegger’s
obsession with man’s estrangement from
Being, nothing else counts as essential or true
except pondering one’s ethos . . . It becomes
clear that the only response that is really
important and appropriate is the response to
the silent call of Being, not to the silent
screams of our fellow human beings . . . when
we listen carefully to what he is saying, when
we pay attention to the “deepest laws of
Heideggerian discourse” then Heidegger’s
“silence” is resounding, deafening, and damn-
ing. (1992: 136)
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Bernstein’s analysis and conclusions suggests a
moral critique of utopian and dystopian theories
of internet culture. Although none of the theories
I have reviewed is so damned by its inherence
arguments as Heidegger’s, which blinded him to
the specific evil of the Holocaust, yet a Postmanian
anti-Technopolist may be blinded in parallel
fashion to something good or bad about this
or that specific aspect of American culture; a
Borgmannian may be blinded to something
specifically good or bad about some digitally
generated artifact; and a gung-ho cybernaut of
the Leary persuasion may be blinded to the
old-fashioned pleasures of embodiment.

Inherence Instrumentalism

Turkle’s category of utilitarian interpretation
understands the internet as a tool. The version
scouted here under the rubric of inherence
instrumentalism interprets the internet as essen-
tially a metatool for creating tools. This general
idea derives from Robert Nozick’s discussion of
a libertarian utopia in Anarchy, State and Utopia.
Although he did not have the internet in mind,
what he says there about a framework for utopia
transfers quite naturally to the internet, as well as
having greater plausibility there than in political
philosophy for the real world.

The internet does not have a culture of simu-
lation, on this metatool account, because it is a
tool for creating a variety of subcultures, some
of which may fit Turkle’s description of internet
culture, some of which will not, not to mention
the variety of internet activity, like setting up a
webpage for lecture notes, that does not amount
to creating a subculture. The internet is the Swiss
Army knife of information technology.

Libertarians sometimes think of utopia in this
way: ideally, everyone would be free – would
have the Lockean “natural right” – to migrate
or emigrate as he or she chose. The worlds that
result from such to-ing and fro-ing they call
associations. Acknowledging that there is no
single world that’s everyone’s perfect cup of tea,
the libertarian is inspired by a utopia which is a
set of possible worlds, with permeable borders,
in which one world is the best imaginable for each

of us. Those whom you would have in your
ideal world are also free to imagine and relocate,
perhaps to a world of their own imagining. There
could be an incessant churn of relocation, all
worlds being ephemeral, or some stable worlds
might emerge in which everyone would choose to
remain. There will be no one in a stable associ-
ation who wants out, and no one will be in whose
presence is not valued by the others. Libertari-
anism may be bad politics, but its conception of
utopia is a plausible model of the internet.

The claim that inherence instrumentalism
makes to being “value free” is provocative, defy-
ing a post-Weberian tradition of deconstructing
such claims with a view to revealing hidden value
commitments, an argumentative strategy that
bears Heidegger’s imprimatur, as noted above.
It may be helpful to clarify the claim with an
analogy to a box of paints and a variety of paint-
ings made with them, some of them good paint-
ings, some of them bad, some of them so-so. It
would be a logical error, a “category mistake” in
Rylean terminology, to evaluate the box of paints
as a good, poor, or so-so painting. It is not a
painting at all. Classification of the internet as a
metatool aims at a similar conclusion. Corres-
ponding to the variety of paintings in the ana-
logy is the variety of content on the internet.
None of this content is value free in the sense
that is being reserved for the internet as a
metatool. Content in the middle of the con-
tinuum from poor to good might be deemed
value free in the sense that it excites no judg-
ments of praise or condemnation with respect to
this or that value; such internet content might
be described as bland. But the sense in which
the internet is value free is not like this. Rather,
it is like the freedom of the box of paints from
being judged a good, bad, or so-so painting. It
is not a bland painting, and the internet is not
bland internet content, on the inherence instru-
mentalist account. Inherence dystopians and
utopians purport to find something deeply good
or bad about the internet, but on an instrument-
alist diagnosis either they become so deep that
they loose touch with the truth, as illustrated by
the attempt to tie the computer inevitably to a
society of technocratic administration, or else they
are guilty of a part–whole fallacy, judging the
whole internet by some of its uses. Even if all
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uses had some bad value or effect X, that would
ground only a balance-of-reasons judgment that
one should or should not use the internet,
depending on whether X outweighs the good
value or effect Y.

Conclusion

To illustrate once more the dystopian/
instrumental/utopian continuum and the
balance/inherence vectors that can be traced
by reference to it, consider the changes being
wrought in work and leisure by the computer
revolution. Offices have been transformed by
the computer over the past two decades, while
web surfing, computer gaming, and internet
chatrooms have become significant leisure activit-
ies. As recent events in Afghanistan testify, even
war, that most regrettably necessary form of work,
must be fought with sophisticated information
technology in order to achieve success in the
battlefield of the twenty-first century; the leisure
activity of correspondence is migrating from the
pen and the typewriter to computer email, a trans-
ition from manipulating matter to manipulating
digital bytes that is as significant as any preceding
revolution in communication technology. Despite
the uneven track record of “dot.coms,” business
activity on the internet is starting to take giant
strides; new communities are being formed on
the internet, like Multi-User Dungeons (MUDs),
Internet Relay Chat (IRC), and so on, online
“third places” between work and home that
allow users of the Net a respite from the demands
of office and household. Work as traditional as
farming is becoming reliant on the boost to
organization and efficiency that computers make
possible; games like chess, go, poker, and bridge
are just as likely to play out on the internet as in
physical spaces. Computers and the internet are
opening up new employment opportunities, new
tools, and new media for artists; correspondingly,
creating and maintaining a personal webpage has
become an art that many pursue in their free
time. Telecommuting and teleconferencing are
becoming more widespread, with potentially
enormous implications for city design and trans-
portation systems; making friends is no longer

channeled by physical neighborhood, and with the
development of automatic translation software a
great obstacle to cross-cultural friendships, namely
lack of a common language, is being removed.
New motivations and organizational structures
for work are being discovered on the internet,
notably the “open source” initiative associated
with Linus Torvalds, Eric Raymond, and a legion
of true hackers, showing how psychic rewards
can replace monetary ones in high-quality soft-
ware development within the internet milieu; if
work is understood as paid employment, con-
tributions to such software development is not
work, whereas if it is understood as activity that
is instrumental to some further end, such as a
new Linux kernel, it is work calling for a high
level of skill. This raises the question whether
the suffusion of IT into work and leisure will
eventually lead to their transcendance in “mean-
ingful work” that is pursued because of its
intrinsic motivations, not extrinsic ones such as
money. Is there something about information
technology that makes it inherently amenable to
meaningful work? The case could be made that
will do so by following a negative and a positive
path. The via negativa is the elimination of
“agonistic work,” work that one would gladly
avoid if it weren’t necessary. The via positiva is
the creation of attractive environments in which
one is always able to work “just as one has a
mind.” Marx had such an environment in mind
when he speculated about the higher stages of
communism, in which the division of labor char-
acteristic of capitalism has been overcome and
one’s distinctively human powers are fully real-
ized, without the compulsion of necessity. In
The German Ideology he made the point like this:

For as soon as the distribution of labor comes
into being, each man has a particular, exclus-
ive sphere of activity which is forced upon him
and from which he cannot escape. He is a
hunter, a fisherman, a shepherd, or a critical
critic, and must remain so if he does not want
to lose his means of livelihood; while in com-
munist society, where nobody has one exclus-
ive sphere of activity but each can become
accomplished in any branch he wishes, society
regulates the general production and thus makes
it possible for me to do one thing today and
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another tomorrow, to hunt in the morning,
fish in the afternoon, rear cattle in the even-
ing, criticize after dinner, just as I have a mind,
without ever becoming hunter, fisherman,
shepherd, or critic. (Tucker, ed., 1974: 124)

Add to Marx’s flight of fancy the thought that
information technology will be the means by
which “society regulates the general production,”
and you have a form of inherence utopianism
about IT. However, given the failure of com-
mand economies in real-world tests such as the
USSR, Heideggerian inherence dystopianism may
recommend itself instead. IT will have taught
us, on this account, to view nature as so much
“standing reserve” and not even the overcoming
of the division of labor will protect us from a
mental architecture that we should want to avoid.
Another inherence-dystopian option argues that
a core value of our civilization, to which our
self-respect is inexorably tied, is agonistic work;
IT, by showing us how to eliminate such work,
will have the unintended consequence of remov-
ing the bases of our self-esteem. The aspect of
technological determinism is noticeable in these
three options. An alternative is the outlook that
Karl Popper advocated in The Open Society and
its Enemies and elsewhere, which views with
suspicion ideas about the necessity of history’s
unfolding and recommends instead that oppor-
tunities for change be monitored for unintended
consequences, so that choices can be made that
reflect knowledge of where change is going
wrong. The current debate about genetically
modified foods is an example of such monitor-
ing; it also illustrates a tendency for inherence
voices to emerge at the dystopian and utopian
extremes.

The Popperian outlook may be viewed as
contributing to an inherence-instrumentalist
interpretation of internet culture, wherein the
metatool character of the technology acknow-
ledges dystopian fears and utopian hopes with
respect to particular content. At the metalevel,
however, the internet is neither good nor bad
nor in-between; at the level of specific content,
it may be any of these things. The Popperian
contribution theorizes the internet, not as his-
torical inevitability to be deplored or valorized
holus-bolus, but rather as a locus of possibilities,

to be monitored carefully in order to make prac-
tically wise choices about its use. As the “Mount
Carmel Declaration on Technology and Moral
Responsibility” observed in 1974 in its eighth
article, “We need guardian disciplines to mon-
itor and assess technological innovations, with
especial attention to their moral implications”
(Hester & Ford 2001: 38). No technology is
morally neutral if that means freedom from moral
evaluation. But there is no inherent reason why
that evaluation should be pro or con.
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to arms against the influence of technology on
culture.]

Slouka, Mark. 1995. War of the Worlds. New York:
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traditional art media and practices. Art appreci-
ators, once passive receptacles of aesthetic delight,
may finally participate actively in the art process.
Pronouncements such as these spring less from
careful study and more from marketing forces
and simple misunderstandings of a complex and
multifaceted technology. An accurate conception
of the nature of digital art and its potential may
channel without dousing the enthusiasm that
attends any innovation. At the same time, it coun-
terbalances some cultural critics’ jeremiads against
digital art. Radical antihype often depends for its
rhetorical force on our reaction to hype. When
we are told that electronic music or fractal art
or virtual-reality goggles are the future of art, we
are given good reason to doubt the credibility
of our informant and this doubt may engender
blanket skepticism about digital art. But while
most digital art is admittedly dreadful, this does
not show that it never has value or interest. The
correct lesson to draw is that we should proceed
with caution.

This chapter is divided into three sections. The
first reports on the use of computers as tools in
art-making. The second describes some artworks
that capitalize on the distinctive capabilities of
digital computers and digital networks. To make
sense of these works we must define digital art
and consider whether it is a new art medium. The
third reviews the use of computers as instruments
that yield general insights into art-making. This

Introduction

Artworks are artifacts, their making always
involves some technology, and much new art
exploits and explores new technologies. There
would be no novels without inexpensive print-
ing and book binding. The modern skyscraper is
a product of steel manufacture. Jazz married the
European technology of the diatonic scale to
African rhythms. A factor in the origins of Im-
pressionism was the manufacture of ready-made
oil paints in tubes, which facilitated painting
outdoors in natural light. As soon as computers
became available, they were used to make art –
the first computer-based artwork was created as
early as 1951 (Reffen Smith 1997: 99) – and
since then the body of digital artworks has grown
by leaps and bounds. But although the first philo-
sophical paper on “cybernetic art” appeared in
1961 (Parkinson 1961), philosophers are only
now beginning to address in depth the ques-
tions raised by digital art. What is digital art?
How, if at all, is it new and interesting as an art
medium? Can it teach us anything about art as
a whole?

Answering these questions provides an antidote
to the hype that frequently attaches to digital
art. We hear that computer art is overhauling
our culture and revolutionizing the way we think
about art. It frees artists from the materiality of

Chapter 8

Digital Art
Dominic McIver Lopes
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three-section division is one case of a useful way
of thinking about any use of computers, not just
in the arts. For example, a philosophy of artificial
intelligence might begin by discussing computers
as cognitive aids (e.g. to help with calculations),
then consider whether computers possess a kind
of intelligence, and close with a discussion of
the use of computer models of the human mind
in cognitive psychology.

1 Making Art Digitally

The digital computer has occasioned two quite
distinct kinds of innovation. It has automated
and sped up many tasks, especially routine ones,
that were once relatively difficult or slow. It has
also made some activities possible that were pre-
viously impossible or else prohibitively difficult.
Most discussions of digital art are captivated by
the latter kind of innovation; however, the im-
pact of the former should not be ignored. If art
always involves some craft then the practice of
that craft may incorporate the use of computers.
Moreover, a clear view of the uses of computers
as art-making tools can help crystallize a con-
ception of the kind of innovation that involves
opening up new possibilities for art.

When the craft underlying an art medium has
practical, non-art applications, digital technology
is frequently brought to bear to make the exercise
of that craft easier and more efficient. Here the
use of computers in making art simply extends
their use in other areas of human endeavor. The
first computer imagining technologies, output
plotter drawings, were developed for engineering
and scientific uses, but were quickly adopted by
artists in the early 1960s. It hardly needs to be
pointed out that word-processors have proved
as much a boon to literary authors as to office
managers. Software created for aeronautical
design paved the way for the stunning, complex
curves that characterize Frank Gehry’s recent
buildings, notably the Guggenheim Bilbao. Since
digital sound processing and the MIDI protocol
were developed specifically with music in mind,
music is an exception to the rule that digital art
technologies adapt technologies fashioned for
some non-art purpose. In each of these cases,

however, the computer merely realizes efficiencies
in art-making or art distribution. Digital tech-
nology, including digital networking and the
compact disk, is used to store music, as did vinyl
records, but in a format that is considerably more
portable and transmissible without introducing
noise. Musical recordings that once required
live musicians, a studio, and several technicians,
can now be made at a fraction of the cost by
one person in her garage with a keyboard and a
computer.

Computers sometimes make it easier for artists
to work and, by reducing the technical demands
of the craft underlying an art medium, they some-
times make it easier for untutored novices to
make art. In addition, some uses of computers
in making and distributing art cause artworks to
have properties they would not otherwise have.
The use of typewriters by some modernist writers
in the early twentieth century influenced the
character of their writing. Relatively inexpensive
digital movie editing encourages film-makers to
experiment with faster pacing and more complex
sequencing. Poor musical technique is now no
barrier to recording music and distributing it
worldwide from one’s desk. Tod Machover’s
hyperinstruments can be played in interesting
ways – some, for instance, are soft toys whose
sound depends on how they are squeezed – and
can be used to make music whose sound reflects
its instrumentation (see <http://www.media.mit.
edu/hyperins>). What properties artworks of an
era possess depends in part upon the techno-
logies employed in making art during that era.
Art’s history is partly driven by technological
innovation.

While the kinds of innovations discussed so
far generate artworks with new properties, they
neither beget new art media nor change our
standards for evaluating artworks. An aesthetic
evaluation of a performance of a pop song need
not take into account whether the recording of
it is analog, digitally remastered, or direct-to-
digital, and whether that recording is played back
from a vinyl record, a reel of magnetic tape, a
compact disk, or an MP3 file. The relative ease
of online publication means that much more is
published, but the nature of literature and its
aesthetically relevant properties endure. A novel
is a novel and is as good or as bad as it is whether
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it is printed and bound into a book or emailed
to one’s friends. It is important to recognize how
computers have found their way into artists’
studios – or made the resources of a studio
more widely and cheaply available. But this is no
revolution in the nature of the arts.

2 The Digital Palette

Computers ease the performance of some tasks
but they also equip us to undertake new tasks.
Exploiting this, artists may invent new varieties
of art, including what we may designate the
“digital arts.” One question to be answered is
what is characteristic of digital art media. Theor-
ists typically propose that digital art is novel in
two ways, the first deriving from virtual-reality
technologies and the second deriving from the
capacity of computers to support interactivity.
Something must be said about what virtual real-
ity and interactivity are, and it will be helpful to
describe some artistic uses of each. But since our
goal is to devise a theory of digital art, it is prudent
to begin by considering what an adequate theory
of any art medium should look like.

Art media are species of a genus that com-
prises all and only works of art. This genus can
be characterized either evaluatively or descript-
ively. According to evaluative characterizations,
works of art are necessarily good as works of art,
and “art” is an essentially honorific term. Some
theorists who write about digital art (especially
its critics) have this characterization in mind.
Brian Reffen Smith, himself a computer artist,
dismisses much of what goes under the banner
of digital art as “graphic design looking a bit
like art” (Reffen Smith 1997: 102). He does not
allow that the works in question are poor art,
for art, he assumes, is necessarily good as art.
Descriptive conceptions of art allow that some
works may be failures as works art and yet
deserve the name, so that to call something “art”
is not necessarily to commend it but merely to
acknowledge its membership in the class of
artworks, good and bad. It is a matter of con-
siderable controversy how to characterize the
conditions of membership in this class (see Carroll
2000, Davies 2000). Fortunately, consensus is

not necessary if our aim is to characterize digital
art. We may assume that digital art is a kind of
art and concentrate our efforts on what distin-
guishes it from other kinds of art. And although
we may proceed with either an evaluative or
descriptive characterization of art, it is wiser to
characterize digital art as art in the descriptive
sense, so as not to beg any questions about its
quality.

The assumption that digital art should be
considered art, even when art is characterized
descriptively, is not uncontroversial. One theorist
asks of digital graphic art,

whether we should call it “art” at all. In treating
it as art we have tended to weigh it down with
the burden of conventional art history and art
criticism. Even now – and knowing that the use
of computing will give rise to developments
that are as far from conventional art as com-
puters are from the abacus – is it not too late
for us to think of “computer art” as some-
thing different from “art”? As something that
perhaps carries with it parallel aesthetic and
emotional charges but having different and
more appropriate aims, purposes and cultural
baggage? (Lansdown 1997: 19)

There are two reasons that this objection should
not give us pause, however. Even granting that
what we count as art depends on a welter of
social practices and institutions, art status is not
a matter for deliberate legislation. More import-
antly, the objection misses an important fact
about art. We never judge or see an artwork
merely as art but always as some kind of artwork
– as belonging to some art medium. If digital
art is art, it remains an open question whether
it is an art medium that inherits the history,
purposes, standards of criticism, and “cultural
baggage” of any other art media.

In his classic paper “Categories of Art,”
Kendall Walton maintains that we perceive every
work of art as belonging to some category of
art, where art categories are defined by three
kinds of properties: standard, variable, and con-
trastandard properties (Walton 1970). Standard
properties of works in a category are ones in
virtue of which they belong to the category; lack-
ing a feature standard for a category would tend
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to disqualify a work from the category (“having
an unhappy ending” is a standard property of
tragedies). We discriminate among works in a
category with respect to their variable properties
(“featuring an indecisive prince” is a variable
property of works in the category of tragedies).
Contrastandard properties of works with respect
to a category are the absence of standard fea-
tures in respect of the category. A tragedy may
have the contrastandard feature of having an
ending that is not unhappy. But why perceive a
work in a category when it has properties that
are contrastandard with respect to that category?
For Walton, at least four factors determine what
category we should perceive a work as belong-
ing to: the work’s having a relatively large number
of properties that are standard for the category,
the artist’s intention or expectation that the work
be perceived as in the category, the existence
of social practices that place it in the category,
and the aesthetic benefits to be gleaned from
perceiving the work as being in the category – a
drama with a happy ending that is inventive,
even shocking, when viewed as tragedy, may seem
old hat when viewed as comedy.

Art categories provide a context within which
we appropriately interpret and evaluate artworks.
To appreciate a work of art one must know
how it resembles and differs from other works of
art, but not every resemblance or difference is
aesthetically significant. There is only a point to
noticing differences among works that belong
to a kind and to noticing similarities among works
when the similarity is not shared by everything
of its kind. Acid jazz differs from opera, but to
appreciate John Scofield’s “Green Tea” as a work
of acid jazz it is not enough to hear how it
differs from Rigoletto – one must recognize how
it differs from other works of acid jazz.

Moreover, what properties are standard,
contrastandard, and variable with respect to a
category is subject to change. Suppose that it is
a standard property of photography that photo-
graphs accurately record visible events. As the
use of software for editing rasterized photographs
increases, this may become a variable property
of the category. Digital image doctoring may
thereby change how we see all photographs
(Mitchell 1992; Savedoff 1997). The lesson is
that contexts within which we appreciate and

evaluate works of art are fluid and can be shaped
by technological forces.

As the examples given indicate, there are
several schemes of categories into which artworks
can be portioned. One scheme comprises the
art media – music, painting, literature, theater,
and the like. Another scheme comprises genres
of art, such as tragedy and melodrama; works
in these categories may belong to different art
media. A third scheme, that of styles, also cuts
across media and genres. There are postmodernist
parodies and postmodernist comedies; some of
the former are musical while others are architec-
tural and some of the latter are literary while
others are pictorial. How, then, should we char-
acterize the scheme of art categories that com-
prises the art media? For it is within this scheme
that we might expect to make room for a cat-
egory of digital art.

One way to characterize the art media is with
reference to their physical bases. Musical works
are sounds; pictures are flat, colored surfaces;
and theatrical performances consist in human
bodies, their gestures and speech, together with
the spaces in which they are located. Indeed, we
use the term “medium” ambiguously to name
an art form and its physical embodiment. The
“medium of pictures” can denote the pictorial art
form or it can denote the stuff of which pictures
are made – oil paint, acrylic, encaustic, ink, and
the like. Nevertheless, ordinary usage notwith-
standing, we should distinguish art media from
what I shall call, following Jerrold Levinson, their
“physical dimensions” (Levinson 1990: 29). The
reason is that works in different art media may
share the same physical dimension and works in
the same art medium may have different physical
dimensions. The case of literature is instructive.
Literary works can have many physical dimen-
sions, for they can be recited from memory as
well as printed on paper. Moreover, when novels
are printed on paper they have the same physical
dimension as many pictures, but although some
artworks are both literary and pictorial (visual
poems for instance), printed volumes of Lady
Chatterley’s Lover are not pictures.

The medium of literature is independent of
any particular physical dimension because works
of literature are made up of bits of language and
language is independent of any particular physical



Dominic McIver Lopes

110

dimension. Yet there is a sense, however
stretched, in which every art medium comprises
a “language,” understood as embodied in a set
of practices that govern how the materials of the
medium are worked. This is all we need in order
to characterize the art media. Artworks standardly
belong to the same art medium when and only
when they are produced in accordance with a set
of practices for working with some materials,
whether physical, as in sculpture, or symbolic, as
in literature. These materials together with the
practices of shaping them determine what works
are possible in an art medium. Call the materials
and the practices governing how they can be
worked the art medium’s “palette.”

The digital palette comprises a suite of tech-
nologies and ways of using them that determine
what properties digital artworks can possess, in-
cluding those properties that are standard and
variable with respect to the category of digital
art. Since computers can be programmed to serve
indefinitely many tasks, the digital palette is un-
bounded. But we can discern, if only in outline,
some of the potential of the digital palette by
canvassing some typical cases of innovative
digital art. We should keep in mind throughout
that the point of thinking of digital artworks as
belonging to a digital art medium is that we
properly appreciate and evaluate digital artworks
only when we perceive them within the category
or medium of digital art, as it is characterized by
the digital palette.

One digital technology that is much discussed
in recent years among media theorists and that
is thought to engender a new digital art form is
virtual reality. This is standardly defined as a “syn-
thetic technology combining three-dimensional
video, audio, and other sensory components to
achieve a sense of immersion in an interactive,
computer-generated environment” (Heim 1998:
442). The vagueness of this definition accurately
reflects the wide range of technologies that are
called virtual reality. “Three-dimensional video”
can denote the use of perspective animations
to represent three-dimensional scenes on two-
dimensional computer monitors, often with ex-
aggerated foreshortening (as in most computer
games), or it can denote the use of stereoscopic
animations viewed through virtual-reality goggles.
The question to ask is whether virtual reality

makes possible an art medium with distinctive
properties.

Some claim that virtual reality uniquely gen-
erates an illusion that the user is in the computer-
generated environment, perceiving it. But what
is meant by “illusion”? On the one hand, it does
not appear that even the most sophisticated
virtual-reality set-ups normally cause their users
to believe, mistakenly, that they are part of and
perceiving the computer-generated environment.
On the other hand, any imagistic representation
elicits an experience like that of perceiving the
represented scene, even images (e.g. outline
drawings) that are far from realistic. Virtual
reality could be redescribed without loss as
“realistic imaging” and classified with other real-
istic imaging such as cinema or three-imensional
(stereoscopic) cinema. If virtual reality offers any-
thing new it is the possibility for interaction with
the occupants and furniture of the computer-
generated environment. As Derek Stanovsky puts
the point, “computer representations are dif-
ferent because people are able to interact with
them in ways that resemble their interaction with
the genuine articles” (see Chapter 12, VIRTUAL

REALITY). Virtual reality as realistic imaging
should not be confused with interactivity.

The interactivity of computers capitalizes on
their ability to implement complex control struc-
tures and algorithms that allow outputs to be
fine tuned in response to different histories of
inputs. What properties a work of interactive
digital art possesses depends on the actions of
its user. The point is not that every user has a
different experience when engaging with an art-
work – that is arguably true of our experiences
of all artworks. The point is rather that the struc-
tural properties of the work itself, not just how
our experience represents the work, depend on
how we interact with it (Lopes 2001). Defined
in this way, digital interactive art is something
new and it exists precisely because of the special
capabilities of computing technology.

A hypertext story, such as Michael Joyce’s
widely read Afternoon, A Story of 1987, is inter-
active because it allows the reader to follow
multiple narrative pathways, so that the story
goes differently on each reading. But there is no
reason that hypertext need involve hyperlinked
text that the user selects. Simon Bigg’s Great
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Wall of China of 1999 (at <http://hosted.
simonbiggs.easynet.co.uk>) transforms a display
of the text of Kafka’s story in accordance with
movements of the user’s mouse. The reader of
Jeffrey Shaw’s 1989 Legible City sits on a fixed
bicycle which he or she uses to navigate a land-
scape built of words, each route through the
landscape telling a story about a city. Indeed,
the input of users to interactive artworks can
take a variety of forms: gesture, movement,
sound, drawing, writing, and mere physical pres-
ence have all been used. Nor is interactive art
always narrative in form. Avatar technologies and
synchronous remote puppeteering enable users
to act in represented performance spaces. Peter
Gabriel’s Xplora 1 CD-ROM of 1993 allows its
owner to remix Gabriel’s music so that it has
different sound properties from one occasion of
interaction to the next. Robert Rowe’s Cypher
and George Lewis’s Voyager are computer pro-
grams that improvise music in real time as part
of an ensemble that includes human musicians.
Since what music the computer makes depends
on what the other players in the ensemble do, the
computer is as interactive as musicians jamming
with each other.

One way to see what is special about the works
just described is to consider their ontology.
Artworks can have, broadly speaking, one of two
ontologies. Some artworks, paradigmatically
paintings, have a unitary ontology: the work just
is the painting, a spatio-temporally bounded par-
ticular. Multiple-instance artworks, paradigmatic-
ally works of music and literature, have a dual
ontology: they are types whose instances are
tokens. Most musical performances, for example,
are tokens of types that are musical works. The
work type determines the properties which any-
thing must possess in order to count as instances
of it, yet we apprehend the work through its
instances. In the case of music, we typically
abstract the musical work from performances
of it by stripping from them properties of the
performances themselves. This explains how it is
possible for a work and its instances to have
different as well as shared properties, especially
different aesthetic properties. We evaluate per-
formances as aesthetic objects in their own right
and yet we evaluate a work performed without
thereby evaluating any performance of it. A good

work can be given poor performances and a poor
work given performances that are, qua perform-
ances, good but not redeeming.

According to Timothy Binkley, the aesthetic-
ally relevant features of a predigital artwork are
features of its physical embodiment (Binkley 1997,
1998a, 1998b). To make an artwork is tradition-
ally to “maculate” some physical substance, shap-
ing it into the work. But digital artworks are not
physical objects, for the computer “computes
abstract numbers with mathematical algorithms
rather than plying physical material with manual
implements” (Binkley 1998a: 413). Instead of
making things, digital artists manipulate data
structures; they “mensurate” symbols instead of
“maculating” physical stuff. Of course, Binkley
realizes that the data structures making up di-
gital artworks always take some physical, usually
electronic, embodiment; his point is that the data
and its structure is independent of any particular
physical embodiment. For this reason digital
art “bears no telltale traces of the magnetism,
electricity, or cardboard that might happen to
host its abstract symbols” (Binkley 1998b: 48).
Digital artworks are therefore types. Their aes-
thetically relevant features are not features of
physical objects. They are indefinitely reusable
and can be copied with perfect accuracy (think
of a digital image sent by email from one person
to many others). Binkley concludes that digital
art diminishes the importance of art’s physical
dimension (Binkley 1997: 114; Binkley 1998b:
50). It is, he writes, “an art form dedicated to pro-
cess rather than product” (Binkley 1998a: 413).

The claim that digital artworks are types is
instructive, as is the observation that they are for
this reason indefinitely reusable and perfectly
reproducible. Also instructive, however, are two
related mistakes in Binkley’s account. Binkley’s
first mistake is to take painting’s ontology as
paradigmatic of all art – that is, by assuming
that all nondigital artworks are physical objects.
Literature, as we have seen, is a clear counter-
example. Musical works, if they are types tokened in
individual performances or playings, are another
counterexample. When I listen to a performance
of “Summertime” I am hearing two things. One
is the performance, which is a physical event, and
the second is the song itself, which is not ident-
ical to the performance though I apprehend its
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features by listening to the performance. The
case of music indicates Binkley’s second mistake.
From the fact that digital artwork types are
nonphysical it does not follow that their tokens
are not physical. Performances of “Summertime”
are physical events and our aesthetic interest in
them is partly an interest in their physical qual-
ities. Binkley thinks of a computer as a central
processing unit and a digital artwork as the data
structure a CPU processes. But this ignores two
additional and essential components of the
computer, the input and output transducers. A
digital image is a data structure but it is tokened
only by being displayed on an appropriate
device, usually a printer or monitor. Indeed, our
aesthetic interest in the image is an interest above
all in properties of the physical embodiment of
its tokens.

David Saltz identifies three design elements
essential to digital interactivity: a sensing device
(such as a keyboard or mouse) that transduces
user actions as inputs, a computational process
that systematically relates inputs to outputs, and
a display mechanism that transduces outputs into
something humanly perceptible (Saltz 1997: 118).
All three elements must be in place in order for
an interactive piece to vary in its content or ap-
pearance with human interaction. For this reason,
Saltz models the ontology of interactive art on
that of performance art. An interaction is perform-
ative, according to Saltz, “when the interaction
itself becomes an aesthetic object . . . interactions
are performative to the extent that they are about
their own interactions” (Saltz 1997: 123). The
aesthetically relevant properties of performative
interactions are properties of the interactor in the
work, who plays a role in the interaction’s unfold-
ing. But there is no work type of which individual
interactions are tokens since the interactions are
unscripted, and in the performing arts it is the
script (or score or choreography) that identifies
individual performances as tokens of one work
type. Saltz infers that “to interact with a work of
computer art does not produce a token of the
work the way performing a dramatic or musical
work does” (Saltz 1997: 123).

Neither Binkley’s nor Saltz’s view adequately
describes the ontology of interactive digital art.
According to Binkley, only digital work types
are objects of aesthetic attention; according to

Saltz interactive works are not tokens of aes-
thetically interesting types. However, the virtue
of the application of the type–token distinction
to art is that it allows for dual objects of aesthetic
attention. We usually attend simultaneously to
properties of a performance qua performance and
to properties of the work performed. The fact
that we direct our attention upon interactive
processes, or upon our own actions as interactors,
does not show that we cannot and do not simul-
taneously attend to properties of a work type
with which we are interacting. Saltz is right that
there is no interactive work type understood as
what is indicated by a script or score. But it does
not follow that we cannot descry features of an
interactive work type through instances of inter-
action with it. The contours of the work type are
drawn by what interactions it makes possible.
Afternoon is many stories, but it is important to
know what set of stories it tells and how: these
give access to properties of Afternoon itself, not
the individual stories our interactions with it
generate. Moreover, we miss something import-
ant if we do not view interaction instances as
instances of a work type, since to fully appreciate
an interaction as an interaction, one must regard
it as means of discerning the work’s properties.
As one commentator puts the point, “the inter-
active art experience is one that blends together
two individualized narratives. The first is the story
of mastering the interface and the second is about
uncovering the content that the artist brings to
the work” (Holmes 2001: 90).

Interactive work instances are not tokened by
performance or playing (as in live and recorded
music) and they are not tokened by recital or
printing (as in literature); they are tokened by
our interaction with them. The way instances
of an interactive work are tokened cannot be
modeled on the way musical or literary works
are tokened. In place of the score, the script,
and the text we have the individual user’s inter-
action (Lopes 2001). This is one way of seeing
what is new about interactive digital art. It gives
a role to its user, not just in interpreting and
experiencing the work but in generating instances
of it, that users of no other art media enjoy. An
interactor tokens an interactive artwork in a way
that a reader or spectator of a non-interactive
artwork does not.
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Interactivity, unlike virtual reality, is distinctive
of the digital palette, but not all digital art is
interactive. There are many rather more mun-
dane functions that computers perform and that
provide resources for the digital palette. Word-
processors routinely check the spelling of docu-
ments: Brian Reffen Smith has created artworks
by first running a text in English through a French
spell checker, which substitutes orthographically
similar French words for the English originals,
and then translating the French words back into
English (Reffen Smith 1997: 101–2). So-called
interface artworks are applications that change
the way familiar graphical user interfaces work.
I/O/D’s Web Stalker provides an alternative,
exploded perspective on websites, for instance
(see <http://bak.spc.org/iod>). Like much art
of the past century that takes as one of its main
subjects the technical basis of its own medium,
some digital art uses digital technologies in order
to represent or draw our attention to features of
the digital art medium.

Early explorations of a new medium tend to
imitate the media from which it sprang. Photo-
graphy aspired at first to the look of painting
and it was only after several decades that photo-
graphers made unabashedly photographic photo-
graphs. One explanation for this is that a new
medium must establish its status as art by asso-
ciating itself with a recognized art medium.
Another explanation is that it is difficult to dis-
cern the full potential of a medium’s palette in
advance of actually using it to make art. What-
ever the explanation, it is only with time that we
can expect digital art to look less like other kinds
of art and to acquire a character of its own. This
process involves coming to see what standard
and variable properties characterize the digital
medium and how they are determined by the
digital palette. It culminates in our evaluating
digital art on its own terms, as digital art.

3 Computing Creativity

Making art is a cognitive activity, as well as a
physical and a social activity. Just as philo-
sophers and behavioral scientists study cognitive
processes such as vision or language acquisition

by developing computer models of those pro-
cesses, they may learn about the cognitive under-
pinnings of art-making by building art-making
computers. Computers have been programmed
as a means to learn about drawing, musical com-
position, poetic writing, architectural style, and
artistic creativity in general.

One may immediately object to the viability
of this enterprise. Artworks are necessarily arti-
facts and artifacts are the products of intentional
action, but if “art”-making computers have no
intentions, then they cannot make artworks. If
they cannot make artworks, it is pointless to use
them to study art-making processes. The objection
does not assume that no computers or robots
can have intentions. It assumes only that the com-
puters that have been programmed to make “art”
are not intentional agents – and this is a plausible
assumption. The drawing system described below
can be downloaded from the internet and installed
on a computer that can otherwise do nothing
more than send email and word-process.

Granting that artworks are intentionally made
artifacts, two replies can be made to this objec-
tion. The first challenges the objection directly
by arguing that computer-made “art” is art
indeed. Typical acts of art-making involve two
intentions: an artist intends to make an object
that has certain intrinsic properties (e.g. a given
arrangement of colors, a meaning) and further
intends, typically through the realization of the
first intention, to make a work of art. Distin-
guishing these intentions makes sense of some
atypical acts of art-making. An artist selects a
piece of driftwood, mounts it, and labels it
(alluding to Duchamp’s snow shovel) Notes in
Advance of a Broken Arm. If Notes is a work
of art, it is a work of art in the absence of an
intention to create an object with the physical
features possessed by the driftwood. Qua drift-
wood, the object is not an artifact, yet it is an
artifact qua artwork, since it is mounted and
displayed with the intention that it be a work of
art. We may view a drawing made by a computer
as, like the driftwood, shaped by a force of
nature, and yet deem it art since we intend that
it be displayed as art. The second reply concedes
that computer-made “art” is not art but suggests
that it is quasi-art instead. Computer drawing is
sufficiently like human drawing that we can use
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the former to study the latter. We cannot use
what a computer does to study that part of the
art-making process that depends on agency or
on social institutions, but that is no limitation
we need worry about.

Early experiments in computer creativity ex-
tend a venerable tradition of automatic art. Wind
chimes or aeolian harps are designed to make
music, but the particular music they make is not
composed. Humans can be involved in making
automatic art when they do nothing more than
implement an algorithm. Mozart’s “Musikalisches
Würfelspiel” requires its players to role dice that
determine how the music goes. In the surrealists’
game of Exquisite Corpse, each player draws on
part of a surface the rest of which is blocked from
view, making part of an image that, as a single
image, nobody drew. During the 1950s and
1960s, the heyday of “systems art,” composers
such as Iannis Xénakis and John Cage created
algorithms for music generation that were im-
plemented on computers. A currently popular
form of automatic art is genetic art, in which a
computer randomly propagates several mutations
of a form, of which humans select one, that pro-
vides the material for another round of mutation
and selection (e.g. Sims 1991).

Clearly, not all computer-based automatic art
illuminates processes of human art-making. What
is required is, first, that the computer’s computa-
tional architecture be designed to model that
of humans, at least at relatively high levels of
abstraction, and, second, that the choice of algo-
rithms be constrained so as to produce works
that resemble those made by humans. Whereas
automatic art looks, sounds, or reads like auto-
matic art, art made by computers designed to
model human art-making should pass an aesthetic
version of Turing’s imitation game.

Harold Cohen’s AARON, a version of which
can be installed as a screen saver on personal
computers, draws convincing figures – figures
that are sufficiently charming that they have been
exhibited in art galleries (see <http://www.
kurzweilcyberart.com>). The system’s four-
component architecture reflects some of what
we would have to know in order to understand
how we make images (Burton 1997). AARON
possesses a way of creating physical images, either
by coloring pixels on a screen or by sending data

to a printer or a plotter. It has also been supplied
with a set of “cognitive primitives” – the basic
elements of line pattern and coloration that form
the universal building blocks of pictures. A set of
behavioral rules governs how the system deploys
the cognitive primitives in response to feedback
from the work in progress. Finally, a second set of
behavioral rules directs the system’s work in light
of knowledge of how things look in the world –
knowledge, for instance, of human anatomy.
While these rules might be devised so as to pro-
duce only realistic images in canonical perspective,
AARON is able to produce images that fit into
a variety of human drawing systems, including
those favored by children of different ages.

AARON models an isolated artist, one who
works outside a drawing tradition. David Cope’s
EMI is designed to write music that mimics music
in the style of historical composers on the basis
of “listening” to a selection of their work (Cope
1991). EMI’s top-level algorithm comprises six
steps: encoding input works by a target com-
poser into a format it can manipulate, running a
pattern matcher on the input, finding the patterns
that make up the composer’s stylistic “signature,”
composing some music in accordance with an
appropriate set of rules, overlaying the composer’s
“signature” upon the newly composed music,
and finally adding musical textures that conform
to the composer’s style. The technologies em-
ployed include rule-based expert systems, pattern
recognition neural nets, LISP transition networks,
and a style dictionary. The results are remarkable:
expert audiences are unable to reliably distinguish
EMI’s versions of music in the styles of Mozart
and Rachmaninoff from the originals.

Specialized applications of this technology
enable systems to improvise music in real time
with or without human musicians. These systems
incorporate real-time listening, musical analysis,
and classification with real-time music genera-
tion. Moreover, since the music generated at a
given time must be recognizably related in an
appropriate style to earlier elements of the piece,
these systems have been developed in tandem
with computational theories of improvisation
(Johnson-Laird 1993). Analogous style recogni-
tion and art-production systems have been
designed for architecture (e.g. Stiny & Mitchell
1980) and poetry. Here is a haiku written by
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Ray Kurzweil’s Cybernetic Poet in imitation
of the style of Wendy Dennis (<http://www.
kurzweilcyberart.com/poetry/rkcp_poetry_
samples.php3>):

Page

Sashay down the page
through the lioness
nestled in my soul

Supposing AARON, EMI, and the Cybernetic
Poet make art, or quasi-art, it does not follow
that their activities are creative. This means it is
possible to study what creativity is by consider-
ing the possibility of creative computers. Margaret
Boden approaches the topic of creativity in sci-
ence and art by asking: can computation help
us understand creativity? can computers appear
creative? can computers appear to recognize cre-
ativity? can computers be creative? (Boden 1994:
85; Boden 1998). The point is not to answer
these questions primarily so as to understand
the capabilities of computers but rather so as to
gain a deeper understanding of creativity itself.

Boden, for example, draws a distinction be-
tween historical creativity, a property of a valu-
able idea that nobody has ever had before, and
psychological creativity, a property of a valuable
idea that could not have arisen before in the
mind of the thinker who has the idea (Boden
1994: 76). Computers can clearly originate his-
torically creative ideas; it is their capacity for ori-
ginating psychologically creative ideas that is in
question. To resolve this question we need to
know what it means to say an idea “could not”
have arisen before in a thinker. A creative idea is
not merely a novel idea in the sense that a com-
putational system is said to be able to generate
novel outputs. I have never before written the
previous sentence but the sentence is hardly
creative, for my capacity to write the sentence is
a computational capacity to generate novel sen-
tences. Boden proposes that a system is creative
only when it can change itself so as to expand
the space of novel ideas it is capable of generat-
ing. In order to change itself in this way, it
must represent its own lower-level processes for
generating ideas and it must have some way of
tweaking these processes. Genetic algorithms,
which enable a system to rewrite its own code,

appear to meet these conditions, and so suggest
one way in which computers can be made to be
genuinely creative. What is important here is not
the ultimate adequacy of Boden’s account but
its value as an illustration of the prospects of
developing a theory of creativity by modeling it
computationally.

It is tempting to assume that the cutting-edge
applications of digital technologies are exclusively
scientific or industrial. Artists have explored the
potential of computers since their invention,
sometimes using them in surprising ways. We
might learn something about computers from
their use by artists. Yet a great deal of computer-
based art is pure techno-spectacle that has not
much more to offer us than the shiny newness
of its technology. Digital technology is as much
a challenge as well as an opportunity.
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Historical Background

Prior to the advent of computing machines, theor-
izing about the nature of mentality and thought
was predominantly the province of philosophers,
among whom perhaps the most influential his-
torically has been René Descartes (1596–1650),
often called “the father of modern philosophy.”
Descartes advanced an ontic (or ontological) thesis
about the kind of thing minds are as features of
the world and an epistemic (or epistemological)
thesis about how things of that kind could be
known. According to Descartes, who advocated
a form of dualism for which mind and body are
mutually exclusive categories, “minds” are things
that can think, where access to minds can be
secured by means of a faculty known as “intro-
spection,” which is a kind of inward perception
of a person’s own mental states.

Descartes’s approach exerted enormous influ-
ence well into the twentieth century, when the
development of digital computers began to cap-
tivate the imagination of those who sought a more
scientific and less subjective conception of the
nature of thinking things. The most important
innovations were introduced by Alan Turing

Chapter 9

The Philosophy of AI
and its Critique

James H. Fetzer

(1912–54), a brilliant British mathematician, cry-
ptographer, theoretician, and philosopher. Some
of Turing’s most important research concerned
the limitations of proof within mathematics,
where he proposed that the boundaries of the
computable (of mathematical problems whose
solutions were obtainable on the basis of finite
applications of logical rules) were the same as
those that can be solved using a specific kind of
problem-solving machinery.

Things of this kind, which are known as
Turing machines, consist of an arbitrarily long
segmented tape and a device capable of four
operations upon that tape, namely: making a
mark, removing a mark, moving the tape one
segment forward, and moving the tape one seg-
ment backward. (The state of the tape before a
series of operations is applied can be referred to
as “input,” the state of the tape after it has been
applied as “output,” and the series of instruc-
tions as a “program.”) From the perspective of
these machines, it became obvious there are
mathematical problems for which no finite or
computable solutions exist. Similar results relat-
ing effective procedures to computable problems
were concurrently obtained by the great Amer-
ican logician Alonzo Church.
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The Turing Test

Church’s work was based on purely mathematical
assumptions, while Turing’s work appealed to a
very specific kind of machine, which provided an
abstract model for the physical embodiment of
the procedures that suitably define “(digital) com-
puters” and laid the foundation for the theory of
computing. Turing argued that such procedures
impose limits upon human thought, thereby com-
bining the concept of a program with that of a
mind in the form of a machine which in principle
could be capable of having many types of physical
implementation. His work thus introduced what
has come to be known as the computational con-
ception of the mind, which inverts the Cartesian
account of machines as mindless by turning minds
themselves into special kinds of machines, where
the boundaries of computability define the bound-
aries of thought.

Turing’s claim to have fathered AI rests upon
the introduction of what is known as the Turing
test, where a thing or things of one kind are
pitted against a thing or things of another kind.
Adapting a party game where a man and a woman
might compete to see whether the man could
deceive a contestant into mistaking him for the
woman (in a context that would not give the
game away), he proposed pitting a human being
against an inanimate machine (equipped with a
suitable program and mode of communication).
Thus, if an interlocutor could not differentiate
between them on the basis of the answers they
provided to questions that they were asked, then
those systems should be regarded as equal (or
equipotent) with respect to (what he took to
be) intelligence (Turing 1950).

This represented a remarkable advance over
Cartesian conceptions in three different respects.
First, it improved upon the vague notion of a
thinking thing by introducing the precise notion
of a Turing machine as a device capable of mark
manipulation under the control of a program.
Second, it implied a solution to the mind/body
problem, according to which hardware is to soft-
ware as bodies are to minds, that was less meta-
phorical and more scientific than the notion of
bodies with minds. Third, it appealed to a

behavioral rather than introspective criterion for
empirical evidence supporting inferences to the
existence of thinking things, making the study
of the mind appear far less subjective.

Physical Machines

Descartes’s conception of human minds as
thinking things depends upon actually having
thoughts, which might not be the case when
they are unconscious (say, asleep, drugged,
or otherwise incapable of thought), since their
existence as things that think would not then
be subject to introspective verification, which
supports hypothesis (h1):

(h1) (Conscious) human minds are
thinking things (Descartes);

Analogously, Turing’s conception of these
machines as thinking things depends upon the
exercise of the capacity to manipulate marks as a
sufficient condition for the possession of intel-
ligence which could be comparable to that of
humans, suggesting hypothesis (h2):

(h2) Turing machines manipulating marks
possess intelligence (Turing);

where the identification of intelligence with
mentality offers support for the conclusion that
suitably programmed and properly functioning
Turing machines might qualify as manmade
thinking things or, in the phrase of John
McCarthy, as “artificial intelligence.”

As idealized devices that are endowed with
properties that physical systems may not possess,
including segmented tapes (or “memories”) of
arbitrary length and perfection in performance,
however, Turing machines are abstract entities.
Because they do not exist in space/time, they are
incapable of exerting any causal influence upon
things in space/time, even though, by defini-
tion, they perform exactly as intended (Fetzer
1988). The distinction is analogous to that
between numbers and numerals, where numbers
are abstract entities that do not exist in space/
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time, while numerals that stand for them are
physical things that do exist in space/time.
Roman numerals, Arabic numerals, and such have
specific locations at specific times, specific shapes
and sizes, come into and go out of existence,
none which is true of numbers as timeless and
unchanging abstract entities.

These “machines,” nevertheless, might be sub-
ject to at least partial implementations as phys-
ical things in different ways employing different
materials, such as by means of digital sequences of
0s and 1s, of switches that are “on” or “off,” or
of higher and lower voltage. Some might be con-
structed out of vacuum tubes, others made of
transistors or silicon chips. They then become
instances of physical things with the finite propert-
ies of things of their kinds. None of them performs
exactly as intended merely as a matter of definition:
all of them have the potential for malfunction
and variable performance like aircraft, automo-
biles, television sets, and other physical devices.
Their memories are determined by specific phys-
ical properties, such as the size of their registers;
and, while they may be enhanced by the addi-
tion of more memory, none of them is infinite.

Symbol Systems

While (some conceptions of ) God might be
advanced as exemplifying a timeless and unchang-
ing thinking thing, the existence of entities of
that kind falls beyond the scope of empirical and
scientific inquiries. Indeed, within computer sci-
ence, the most widely accepted and broadly influ-
ential adaptation of Turing’s approach has been by
means of the physical symbol system conception Alan
Newell and Herbert Simon have advanced, where
symbol systems are physical machines – possibly
human – that process physical symbol structures
through time (Newell & Simon 1976). These
are special kinds of digital machines that qualify
as serial processing (or von Neumann) machines.
Thus, they implement Turing’s conception by
means of a physical machine hypothesis (h3),

(h3) Physical computers manipulating
symbols are intelligent (Newell and Simon);

where, as for Turing, the phrase “intelligent
thing” means the same as “thinking thing.”

There is an ambiguity about the words “sym-
bol systems” as systems that process symbols and
as the systems of symbols which they process,
where Newell and Simon focused more attention
on the systems of symbols that machines process
than they did upon the systems that process those
symbols. But there can be no doubt that they
took for granted that the systems that processed
those symbols were physical. It therefore becomes
important, from this point hence, to distinguish
between “Turing machines” as abstract entities
and “digital computers” as physical implemen-
tations of such machines, where digital com-
puters, but not Turing machines, possess finite
memories and potential to malfunction. Newell
and Simon focused upon computers as physical
machines, where they sought to clarify the
status of the “marks” that computers subject to
manipulation.

They interpreted them as sets of physical
patterns they called “symbols,” which can occur
in components of other patterns they called
“expressions” (or “symbol structures”). Relative
to sets of alpha-numerical (alphabetical and
numerical) characters (ASCII or EBCDIC, for
example), expressions are sequences of symbols
understood as sequences of characters. Their
“symbol systems” as physical machines that
manipulate symbols thus qualify as necessary
and sufficient for intelligence, as formulated by
hypothesis (h4):

(h4) (Being a) symbol system is both neces-
sary and sufficient for intelligence (Newell
and Simon);

which, even apart from the difference between
Turing machines as abstractions and symbol sys-
tems as physical things, turns out to be a much
stronger claim than (h2) or even (h3). Those
hypotheses do not imply that every thinking thing
has to be a digital computer or a Turing machine.
(h2) and (h3) are both consistent with the exist-
ence of thinking things that are not digital com-
puters or Turing machines. But (h4) does not
allow for the existence of thinking things that
are not digital machines.
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The Chinese Room

The progression of hypotheses from (h1) to (h2)
to (h3) and perhaps (h4) appears to provide sig-
nificant improvement on Descartes’s conception,
especially when combined with the Turing test,
since they not only clarify the nature of mind and
elucidate the relation of mind to body, but even
explain how the existence of other minds might
be known, a powerful combination of ontic and
epistemic theses that seems to support the pros-
pects for artificial intelligence. As soon as com-
puting machines were designed with performance
capabilities comparable to those of human beings,
it would be appropriate to ascribe to those in-
animate entities the mental properties of think-
ing things. Or so it seemed, when the philosopher
John Searle advanced a critique of the prospects
for AI that has come to be known as “the Chinese
Room” and cast it all in doubt (Searle 1980).

Searle proposed a thought experiment involv-
ing two persons, call them “C” and “D,” one (C)
fluent in Chinese, the other (D) not. Suppose C
were locked in an enclosed room into which
sequences of marks were sent on pieces of paper,
to which C might respond by sending out other
sequences of marks on other pieces of paper. If
the marks sent in were questions in Chinese and
the marks sent out were answers in Chinese,
then it would certainly look as though the occup-
ant of the room knew Chinese, as, indeed, by
hypothesis, he does. But suppose instead D were
locked in the same room with a table that allowed
him to look up sequences of marks to send out
in response to sequences of marks sent in. If he
were very proficient at this activity, his perform-
ance might be the equal of that of C, who knows
Chinese, even though D, by hypothesis, knows
no Chinese.

Searle’s argument was a devastating counter-
example to the Turing test, which takes for
granted that similarities in performance indicate
similarities in intelligence. In the Chinese Room
scenario, the same “inputs” yield the same
“outputs,” yet the processes or procedures that
produce them are not the same. This suggests
that a distinction has to be drawn between “sim-
ulations,” where systems simulate one another
when they yield the same outputs from the same

inputs, and “replications,” where systems replic-
ate one another when they yield the same out-
puts from the same inputs by means of the same
processes or procedures. In this language, Searle
shows that, even if the Turing test is sufficient
for comparisons of input/output behavior
(simulations), it is not sufficient for comparisons
of the processes or procedures that yield those
outputs (replications).

Weak AI

The force of Searle’s critique becomes apparent
in asking which scenario, C or D, is more like
the performance of a computer executing a pro-
gram, which might be implemented as an auto-
mated look-up table: in response to inputs in
the form of sequences of marks, a computer pro-
cesses them into outputs in the form of other
sequences of marks on the basis of its program.
So it appears appropriate to extend the compar-
ison to yet a third scenario, call it “E,” where a
suitably programmed computer takes the same
inputs and yields the same outputs. For just as
the performance of D might simulate the per-
formance of C, even though D knows no Chi-
nese, so the performance of E might simulate
the performance of D, even though E possesses
no mentality. Mere relations of simulation thus
appear too weak to establish that systems are
equal relative to their intelligence.

Searle also differentiated between what he
called “strong AI” and “weak AI,” where weak
AI maintains that computers are useful tools in
the study of the mind, especially in producing
useful models (or simulations), but strong AI
maintains that, when they are executing pro-
grams, computers properly qualify as minds (or
replications). Weak AI thus represents an
epistemic stance about the value of computer-
based models or simulations, while strong AI
represents an ontic stance about the kinds of
things that actually are instances of minds. Pre-
sumably, strong AI implies weak AI, since actual
instances of minds would be suitable subjects
in the study of mind. Practically no one objects
to weak AI, however, while strong AI remains
controversial on many grounds.
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That does not mean it lacks for passionate ad-
vocates. One of the most interesting introductions
to artificial intelligence has been co-authored by
Eugene Charniak and Drew McDermott (1985).
Already in their first chapter, the authors define
“artificial intelligence” as the study of mental
faculties through the use of computational
models. The tenability of this position, no doubt,
depends upon the implied premise that mental
faculties operate on the basis of computational
processes, which, indeed, they render explicit by
similarly postulating that what brains do “may
be thought of at some level as a kind of com-
putation” (Charniak & McDermott 1985: 6).
The crucial distinction between “weak” and
“strong” AI, however, depends upon whether
brains actually qualify as computers, not whether
they may be thought to be.

Strong AI

Charniak and McDermott also maintain “the
ultimate goal of research in AI is to build a
person or, more humbly, an animal.” Their gen-
eral conception is that the construction of these
artificial things must capture key properties of
their biological counterparts, at least with respect
to kinds of input, kinds of processing, and kinds
of output. Thus, the “inputs” they consider in-
clude vision (sights) and speech (sounds), which
are processed by means of internal modules for
learning, deduction, explanation, and planning,
which entail search and sort mechanisms. These
combine with speech and motor capabilities to
yield “outputs” in the form of speech (sounds)
and behavior (motions), sometimes called “ro-
botics.” The crucial issue thus becomes whether
these “robots” are behaving like human beings
as (mindless) simulations or instead embody
(mindful) replications.

Their attention focuses upon what goes on in
“the black box” between stimulus and response,
where those with minds depend upon and utilize
internal representations as states of such systems
that describe or otherwise represent various
aspects of the world. Indeed, some of these as-
pects could be internal to the system itself and
thus represent its own internal states as internal

representations of aspects of itself. But, while
self-awareness and self-consciousness are often
taken to be important kinds of intelligence or
mentality, they do not appear to be essential to
having intelligence or mentality in general as
opposed to having intelligence or mentality of
specific kinds. There may be various kinds of
mentality or intelligence – mathematical, verbal,
and artistic, for example – but presumably they
share certain core or common properties.

There would seem to be scant room for doubt
that, if artificial machines are going to qualify as
comparable to human beings relative to their
mental abilities, they must have the same or similar
capacities to use and manipulate internal repres-
entations, at least with respect to some specified
range – presumably, alpha-numeric – of tasks.
They must take the same or similar external inputs
(or “stimuli”), process them by means of the
same or similar “mental” mechanisms, and pro-
duce the same or similar external outputs (or
“responses”). While Charniak and McDermott
may aspire to build an artificial animal, the AI
community at large, no doubt, would settle for
building an artificial thinking thing, presuming
that it is possible to create one without the other.

Folk Psychology

There is an implied presumption that different
systems that are subject to comparison are oper-
ating under the same or similar causally relevant
background conditions. No one would suppose
that a computer with a blown motherboard
should yield the same outputs from the same
inputs as a comparable computer with no hard-
ware breakdown, even when they are loaded with
the same programs. Analogously, no one would
assume that a human being with a broken arm,
for example, should display the same behavior in
response to the same stimuli (say, a ball coming
straight toward him while seated in the bleachers
at a game) as another person without a broken
arm. But that does not mean that they are not
processing similar stimuli by means of similar
representations.

Human beings are complicated mechanisms,
whether or not they properly qualify as
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“machines” in the sense that matters to AI
Indeed, the full range of causally relevant factors
that make a difference to human behavior appears
to include motives, beliefs, ethics, abilities, cap-
abilities, and opportunities (Fetzer 1996). Dif-
ferent persons with the same or similar motives
and beliefs, for example, but who differ in their
morals, may be expected to display different
behavior under conditions where ethics makes a
difference, even though they may have similar
abilities and are not incapacitated from the exer-
cise of those abilities. As we all know, human
beings consume endless hours endeavoring to
explain and predict the behavior of others and
themselves, employing a framework of causally
relevant factors of this kind, which has come to
be known as “folk psychology.”

No doubt when appraised from the perspective
of, say, the conditions of adequacy for scientific
theories – such as clarity and precision of lan-
guage, scope of application for explanation and
prediction, degree of empirical support, and the
economy, simplicity, or elegance with which these
results are attained – folk psychology appears
to enjoy a high degree of empirical support by
virtue of its capacity to subsume a broad range
of cases within the scope of its principles. Some
of that apparent success, however, may be due
to the somewhat vague and imprecise character
of the language upon which it depends, where
there would appear to be opportunity for revi-
sion and refinement to enhance or confine its
scope of application. Yet some researchers argue
for its elimination altogether.

Eliminative Materialism

Paul Churchland, for example, maintains that
folk psychology is not only incomplete but also
inaccurate as a “misrepresentation” of our internal
states and mental activities. He goes so far as to
suggest that progress in neuroscience should lead,
not simply to the refinement of folk psychology,
but to its wholesale elimination (Churchland
1984: 43). The model Churchland embraces thus
follows the pattern of elimination of “phlogiston”
from the language of chemistry and of “witches”
from the language of psychology. He thus con-

tends that the categories of motives and beliefs,
among others, are destined for a similar fate
as neuroscience develops. Churchland admits
he cannot guarantee that this will occur, where
the history of science in this instance might
instead simply reflect some adjustment in folk-
psychological principles or dispensing with some
of its concepts.

The deeper problem that confronts eliminative
materialism, however, appears to be the same
problem confronting classic forms of reduction-
ism, namely, that without access to information
relating brain states to mind states, on the one
hand, and mind states to behavioral effects, on
the other, it would be impossible to derive pre-
dictive inferences from brain states to behavioral
effects. If those behavioral effects are manifesta-
tions of dispositions toward behavior under spe-
cific conditions, moreover, then it seems unlikely
that a “mature” neuroscience could accomplish
its goals if it lacked the capacity to relate brain
states to behavioral effects by way of dispositions,
because there would then be no foundation for
relating mind states to brain states and brain
states to human behavior.

In the case of jealousy (hostility, insincerity, and
so on) as causal factors that affect our behavior
in the folk-psychological scheme of things, if we
want to discover the brain states that underlie
these mind states as dispositions to act jealous
(to act hostile, and so forth) under specific condi-
tions, which include our other internal states, then
a rigorous science of human behavior might be
developed by searching for and discovering some
underlying brain states, where those dispositions
toward behavior were appropriately (presumably,
lawfully) related to those brain states. Sometimes
brain states can have effects upon human behavior
that are not mediated by mind states, as in the
case of brain damage or mental retardation. For
neurologically normal subjects, mind states are
able to establish connections between brain states
and their influence on behavior.

Processing Syntax

The predominant approach among philosophers
eager to exploit the resources provided by the
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computational conception, however, has been in
the direction of refining what it takes to have a
mind rather than the relationship between minds,
bodies, and behavior. While acknowledging these
connections are essential to the adequacy of any
account, they have focused primarily upon the
prospect that language and mentality might be
adequately characterized on the basis of purely
formal distinctions of the general kind required
by Turing machines – the physical shapes, sizes,
and relative locations of the marks they manip-
ulate – when interpreted as the alpha-numeric
characters that make up words, sentences, and
other combinations of sentences as elements of
a language.

Jerry Fodor, for example, has observed that
computational conceptions of language and men-
tality entail the thesis that “mental processes have
access only to formal (nonsemantic) properties
of the mental representations over which they
are defined” (Fodor 1980: 307). He elaborates
upon the relationship between the form (syntax)
and the content (semantics) of thoughts, main-
taining (a) that thoughts are distinct in content
only if they can be identified with distinct repres-
entations, but without offering an explanation
of how it is (b) that any specific thoughts can be
identified with any specific representations, a
problem for which he elsewhere offers a solution
known as “the language of thought.” But any
account maintaining that the same syntax always
has the same semantics or that the same semantics
always has the same syntax runs afoul of prob-
lems with ambiguity on the one hand, and with
synonymy on the other.

Nevertheless, the strongest versions of com-
putational conceptions tend to eschew concern
for semantics and focus instead on the centrality
of syntax. Stephen Stich has introduced the syn-
tactic theory of the mind (STM ) as having an
agnostic position on content, neither insisting
that syntactic state types (as repeatable patterns
of syntax) have no content nor insisting that
syntactic state tokens (specific instances of syn-
tactic state types) have no content: “It is simply
silent on the whole matter . . . [T]he STM is in
effect claiming that psychological theories have
no need to postulate content or other semantic
properties” (Stich 1983: 186). STM is thereby
committed to hypothesis (h5):

(h5) Physical computers processing syntax
possess minds (STM);

which may initially appear much stronger than
(h3). But Newell and Simon’s notion of
“symbol” is defined formally and their “symbol
systems” are also computing machines. Both
approaches run the risk of identifying “thinking
things” with mindless machines.

Semantic Engines

Systems of marks with rules for their manipula-
tion are examples of (what are known as) formal
systems, the study of which falls within the
domain of pure mathematics. When those formal
systems are subject to interpretations, especially
with respect to properties and objects within
the physical world, their study falls within the
domain of applied mathematics. A debate has
raged within computer science over whether
that discipline should model itself after pure
or applied mathematics (Colburn et al. 1993).
But whatever the merits of the sides to that dis-
pute, there can be scant room for doubt that
mere mark manipulation, even in the guise of
syntax processing, is not enough for thinking
things. Thoughts possess content as well as form,
where it is no stretch of the imagination to sug-
gest that, regarding thought, content dominates
form.

The STM, which makes syntax processing
sufficient for the possession of mentality, thus
appears to be far too strong, but a weaker ver-
sion might still be true. The ability to process
syntax might be necessary for mentality instead,
as indeed hypothesis (h3) implies, when Newell
and Simon’s “symbols” are properly understood
as marks subject to manipulation. Thus, a more
plausible version of (h5) should maintain instead
(h6):

(h6) (Conscious) minds are physical com-
puters processing syntax;

where syntax consists of marks and rules for their
manipulation that satisfy constraints that make
them meaningful. But since there are infinitely
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many possible interpretations of any finite
sequence of marks, some specific interpretation
(or class of interpretations) requires specifica-
tion as “the intended interpretation.” Marks can
only qualify as syntax relative to specific inter-
pretations in relation to which those marks
become meaningful.

From this point of view, a (properly function-
ing) computing machine can be qualified as an
automatic formal system when it is executing a
program, but becomes meaningful only when its
syntax satisfies the constraints of an intended inter-
pretation. Indeed, an automatic formal system
where “the semantics follows the syntax” has
been designated “a semantic engine” by Daniel
Dennett. This supports the contention some have
called the basic idea of cognitive science: that
intelligent beings are semantic engines, that is,
automatic formal systems under which they con-
sistently make sense (Haugeland 1981: 31). (h6)
thus requires qualification to incorporate the role
of interpretation as (h7):

(h7) Semantic engines are necessary and
sufficient for intelligence;

where, as in the case of Newell and Simon,
“intelligent things” are also “thinking things”
and “(conscious) minds,” understood as physical
computers processing syntax under an inter-
pretation. The problem is to “pair up” the syntax
and the semantics the right way.

The Language of Thought

Jerry Fodor (1975) has advanced an argument
hypothesizing the existence of an innate language,
which is species-specific and possessed by every
neurologically normal human being. He calls it
mentalese (or “the language of thought”). He
contends the only way to learn a language is to
learn the truth conditions for sentences that
occur in that language: “learning (a language) L
involves learning that ‘Px’ is true if and only if
x is G for all substitution instances. But notice
that learning that could be learning P (learning
what P means) only for an organism that already
understood G” (Fodor 1975: 80). Given the

unpalatable choice between an endless hierarchy of
successively richer and richer metalanguages for
specifying the meaning of lower-level languages
and a base language that is unlearned, Fodor
opts for the existence of an innate and inborn
language of thought.

The process of relating a learned language to
the language of thought turns human beings
into semantic engines, which may be rendered
by hypothesis (h8) as follows:

(h8) Human beings are semantic engines
with a language of thought (Fodor).

Fodor commits a mistake in his argument, how-
ever, by overlooking the possibility that the kind
of prior understanding which is presupposed by
language learning might be nonlinguistic. Chil-
dren learn to suck nipples, play with balls, and
draw with crayons long before they know that
what they are doing involves “nipples,” “balls,”
or “crayons.” Through a process of interaction
with things of those kinds, they acquire habits
of action and habits of mind concerning the
actual and potential behavior of things of those
kinds. Habits of action and habits of mind that
obtain for various kinds of things are concepts.
Once that nonlinguistic understanding has been
acquired, the acquisition of linguistic dispositions
to describe them appears to be relatively unprob-
lematical (Fetzer 1990).

One of the remarkable features of Fodor’s
conception is that the innate and inborn lan-
guage of thought possesses a semantic richness
such that this base language has to be sufficiently
complete to sustain correlations between any
natural language (French, German, Swahili, and
such) at any stage of historical development (past,
present, and future). This means that mentalese
not only has to supply a foundation for everyday
words, such as “nipple,” “ball,” and “crayon” in
English, for example, but also those for more
advanced notions, such as “jet propulsion,”
“polio vaccine,” and “color television,” since
otherwise the language of thought could not
fulfill its intended role. Among the less plausible
consequences of this conception turn out to be
that, since every human has the same innate lan-
guage, which has to be complete in each of its
instantiations, unsuccessful translations between
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than those of automated formal systems as an-
other case of abstract idealization. By comparison,
digital machines and human beings possess no
more than (limited) computational competence
(Fetzer 1992). The properties of formal systems
– such as incompleteness for systems richer than
first-order monadic logic, which Kurt Gödel
established – that might be supposed to impose
limits on mental processes and have attracted
interest by such scholars as J. R. Lucas (1961)
and Douglas Hofstadter (1979), appear to have
slight relevance to understanding the nature of
cognition. Formal systems are useful in model-
ing reasoning, but reasoning is a special case
of thinking. And if we want to understand the
nature of thinking, we have to study thinking
things rather than the properties of formal sys-
tems. Thinking things and formal systems are
not the same.

Mental Propensities

Roger Penrose has suggested that thinking may
be a quantum phenomenon and thereby qualify
as non-algorithmic (Penrose 1989: 437–9). The
importance of this prospect is that algorithms
are commonly understood as functions that map
single values within some domain onto single
values within some range. If mental processes
are algorithmic (functions), then they must be
deterministic, in the sense that the same mental-
state cause (completely specified) invariably brings
about the same mental-state effect or behavioral
response. Since quantum phenomena are not
deterministic, if mental phenomena are quantum
processes, they are not functions – not even par-
tial functions, for which, when single values
within a domain happen to be specified, there
exist single values in the corresponding range,
but where some of the values in the domain
and range of the relevant variables might not be
specified.

Systems for which the presence or the absence
of every property that makes a difference to an
outcome is completely specified are said to be
“closed,” while those for which the presence or
absence of some properties that make a differ-
ence to the outcome are unspecified are said to

different languages and the evolution of language
across time are both impossible, in principle,
which are difficult positions to defend.

Formal Systems

Fodor’s approach represents an extension of
the work of Noam Chomsky, who has long
championed the conception of an innate syntax,
both inborn and species-specific, to which Fodor
has added a semantics. Much of Chomsky’s
work has been predicated upon a distinction
between competence and performance, where
differences between the grammatical behavior of
different language users, which would otherwise
be the same, must be accounted for by circum-
stantial differences, say, in physiological states
or psychological context. In principle, every user
of language possesses what might be described
as (unlimited) computational competence, where
infinitely many sentences can be constructed from
a finite base by employing recursive procedures
of the kind that were studied by Church
and Turing in their classic work on effective
procedures.

Fodor and Zenon Pylyshyn (1988) adopt con-
ditions for the production of sentences by lan-
guage users implying that the semantic content
of syntactic wholes is a function of the semantic
content of their syntactic parts as their principle
of the compositionality of meaning and that mole-
cular representations are functions of other
molecular or atomic representations as a principle
of recursive generability. These conditions are
obvious counterparts of distinctions between
structurally atomic and structurally molecular
representations as a precondition for a language
of thought that is modeled on formal systems,
such as sentential calculus. The principles of those
formal systems, automated or not, may or may
not transfer from abstract to physical contexts,
not least because physical systems, including
digital machines, are limited in their capacities.

Turing machines with infinite tapes and infal-
lible performance are clearly abstract idealizations
compared to digital machines with finite memor-
ies that can malfunction. The physical properties
of persons and computers are decidedly different
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be “open.” The distinction between determin-
istic and (in this case) probabilistic causation is
that, for closed systems, for deterministic causal
processes, the same cause (or complete set of
conditions) invariably (or with universal strength
u) brings about the same effect, whereas for
probabilistic causal processes, the same cause vari-
ably (with probabilistic strength p) brings about
one or another effect within the same fixed class
of possible outcomes. A polonium218 atom, for
example, has a probability for decay during a
3.05 minute interval of 1/2.

The determination that a system, such as an
atom of polonium218, is or is not a closed system,
of course, poses difficult epistemic problems,
which are compounded in the case of human
beings, precisely because they are vastly more
complex causal systems. Moreover, probabilistic
systems have to be distinguished from (what are
called) chaotic systems, which are deterministic
systems with “acute sensitivity to initial condi-
tions,” where the slightest change to those con-
ditions can bring about previously unexpected
effects. A tiny difference in hundreds of thou-
sands of lines of code controlling a space probe,
for example, consisting of the occurrence of only
one wrong character, a single misplaced comma,
caused Mariner 1, the first United States inter-
planetary spacecraft, to veer off course and then
have to be destroyed.

The Frame Problem

Indeed, there appear to be at least three contexts
in which probabilistic causation may matter to
human behavior, namely: in processing sensory
data into patterns of neural activation; in trans-
itions between one pattern of activation and
another; and in producing sounds and other
movement as a behavioral response. Processes of
all three kinds might be governed by probabilistic
or by chaotic deterministic processes and there-
fore be more difficult to explain or predict, even
when the kind of system under consideration
happens to be known. The most important dif-
ferences between species appear to concern the
range and variety of sensory data they are cap-
able of processing, the speed and reliabilty with

which they can effect transitions between pat-
terns of activation, and the plasticity and strength
of their behavior responses.

Concerns about variation in such types of causa-
tion also arise within the context of the study of
mental models or representations of the world,
specifically, what has be known as the frame prob-
lem, which Charniak and McDermott describe
as the need to infer explicitly that one or more
states will not change across time, which forms a
“frame” within which other states may change
(1985: 418) While the frame problem has proven
amenable to many different characterizations – a
variety of which may be found, for example, in
Ford and Hayes 1991 – one important aspect of
the problem is the extent to which a knowledge
base permits the prediction and the explanation
of systems when those systems are not known to
be open or closed.

Indeed, from this point of view, the frame
problem even appears to instantiate the classic
problem of induction encountered in attempting
to predict the future based upon information
about the past, which was identified by David
Hume (1711–76), a celebrated Scottish philo-
sopher. Thus, Hume observed that there are
no deductive guarantees that the future will re-
semble the past, since it remains logically possible
that, no matter how uniformly the occurrence
of events of one kind have been associated with
events of another, they may not continue to be.
If the laws of nature persist through time, how-
ever, then, in the case of systems that are closed,
it should be possible to predict – invariably or
probabilistically – precisely how those systems
will behave over intervals of time, so long as the
complete initial conditions and laws of systems
of that kind are known.

Minds and Brains

Because connectionism appeals to patterns of
activation of neural nodes rather than to indi-
vidual nodes as features of brains that function
as representations and affect behavior, it appears
to improve upon computationally-based concep-
tions in several important respects, including per-
ceptual completions of familiar patterns by filling
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in missing portions, the recognition of novel
patterns even in relation to previously unfamiliar
instances, the phenomenon known as “graceful
degradation,” and related manifestations of men-
tality (Rumelhart et al. 1986: 18–31). Among
the most important differences is that connec-
tionist “brains” are capable of what is known
as parallel processing, which means that, unlike
(sequential) Turing machines, they are capable
of (concurrently) processing more than one
stream of data at the same time.

This difference, of course, extends to physical
computers, which can be arranged to process
data simultaneously, but each of them itself
remains a sequential processor. The advantages
of parallel processing are considerable, especially
from the point of view of evolution, where
detecting the smells and the sounds of predators
before encountering the sight of those predators,
for example, would afford adaptive advantages.
Moreover, learning generally can be understood
as a process of increasing or decreasing activa-
tion thresholds for specific patterns of nodes,
where classical and operant conditioning may
be accommodated as processes that establish
association between patterns of activation and
make their occurrence, under similar stimulus
conditions, more (or less) probable, where the
activation of some patterns tends to bring about
speech and other behavior.

Those who still want to defend computational
conceptions might hold that, even if their internal
representations are distributed, human beings are
semantic engines (h9):

(h9) Human beings are semantic engines
with distributed representations;

but the rationale for doing so becomes less and
less plausible and the mechanism – more and
more “independent but coordinated” serial pro-
cessors, for example – appears more and more ad
hoc. For reasons that arose in relation to eliminat-
ive materialism, however, no matter how suc-
cessful connectionism as a theory of the brain,
it cannot account for the relationship between
bodies and minds without a defensible conception
of the mind that should explain why symbol
systems and semantic engines are not thinking
things.

Semiotic Systems

The conception of minds as semiotic (or as
sign-using) systems advances an alternative to
computational accounts that appears to fit the
connectionist model of the brain like a hand in a
glove. It provides a noncomputational framework
for investigating the nature of mind, the relation
of mind to body, and the existence of other
minds. According to this approach, minds are
things for which something can stand for some-
thing else in some respect or other (Fetzer 1990,
1996). The semiotic relation, which was elabor-
ated by the American philosopher Charles S.
Peirce (1839–1914), is triadic (or three-placed),
involving a relation of causation between signs
and their users, a (crucial) relation of grounding
between signs and that for which they stand,
and an interpretant relation between signs, what
they stand for, and the users of signs.

There are three branches of the theory of semi-
otics, which include syntax as the study of the
relations between signs and how they can be
combined to create new signs, semantics as the
study of the relations between signs and that for
which they stand, and pragmatics as the study of
the relations between signs, what they stand for,
and sign users. Different kinds of minds can then
be classified on the basis of the kinds of signs they
are able to utilize – such as icons, which resemble
that for which they stand (similar in shapes, sizes,
and such); indices, which are causes or effects of
that for which they stand (ashes, fires, and
smoke); and symbols, which are merely habitually
associated with that for which they stand (words,
sentences, and things) – as iconic, indexical, and
symbolic varieties of mentality, respectively.

Meanings are identified with the totality of
possible and actual behavior that a sign user
might display in the presence of a sign as a func-
tion of context, which is the combination of
motives, beliefs, ethics, abilities, and capabilities
that sign-users bring to their encounters with
signs. And patterns of neural activation can func-
tion as internal signs, where (all and only) think-
ing things are semiotic systems, (h10):

(h10) Thinking things, including human
beings, are semiotic systems.
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This difference applies even when these systems
are processing marks by means of the same pro-
cedures. A computer processing a tax return can
yield the same outputs from the same inputs, yet
they mean nothing to that system as income,
deductions, or taxes due. A distinction must be
drawn between those marks that are meaningful
for use by a system and marks that are meaningful
for the users of that system. They can function as
signs for those users without having to function
as signs for those systems.

“Symbols” in this sense of semiotic systems
must therefore be clearly distinguished from
“symbols” in the sense of symbol systems, which
can be meaningless marks, lest one mistake
symbol systems in Newell and Simon’s sense for
(symbol-using) semiotic systems, as has John
McCarthy (McCarthy 1996: ch. 12). This re-
flects (what might be called) the static difference
between computer systems and thinking things.
Another is that digital machines are under the
control of programs as causal implementations
of algorithms, where “algorithms” in turn are
effective decision procedures. Effective decision
procedures are completely reliable in producing
solutions to problems within appropriate classes
of cases that are invariably correct and they do
in a finite number of steps. If these machines are
under the control of algorithms but minds are
not, then there is a dynamic difference that may
be more subtle but is not less important as well.

Indeed, there are many kinds of thinking –
from dreams and daydreams to memory and
perception as well as ordinary thought – that
do not satisfy the constraints imposed by effect-
ive decision procedures. They are not reliable
problem-solving processes and need not yield
definitive solutions to problems in a finite number
of steps. The causal links that affect transitions
between thoughts appear to be more dependent
upon our life histories and associated emotions
(our pragmatic contexts) than they do on syntax
and semantics per se. Even the same sign, such
as a red light at an intersection, can be taken as
an icon (because it resembles other red lights),
as an index (as a traffic control device that is
malfunctioning), or as a symbol (where drivers
should apply the breaks and come to a complete
halt) as a function of a sign user’s context at the
time. Anyone else in the same context would

This approach can explain what it is to be con-
scious relative to a class of signs, where a system
is conscious with respect to signs of that kind
when it has the ability to utilize signs of that
kind and is not inhibited from the exercise of
that ability. And it supports the conception of
cognition as an effect that is brought about
(possibly probabilistically) by interaction between
signs and sign-users when they are in suitable
causal proximity.

Critical Differences

Among the most important differences between
semiotic systems and computational accounts
becomes apparent at this point, because the se-
mantic dimension of mentality has been encom-
passed by the definition of systems of this kind.
Observe, for example, the difference between
symbol systems and semiotic systems in figures
9.1 and 9.2, where semiotic systems reflect a
grounding relationship that symbol systems lack.

Figure 9.1: Symbol systems

Figure 9.2: Semiotic systems
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(probabilistically) have interpreted that sign the
same way.

The Hermeneutic Critique

Whether or not the semiotic conception ulti-
mately prevails, current research makes it increas-
ingly apparent that an adequate account of
mentality will have to satisfy many of the con-
cerns raised by the hermeneutic critique advanced
by Hubert Dreyfus (1979). Dreyfus not only
objected to the atomicist conception of rep-
resentation that became the foundation for the
compositionality of meaning and recursive gener-
ability theses that Fodor and Pylyshyn embraced
but also emphasized the importance of the role
of bodies as vehicles of meaning, especially
through interactions with the world, very much
in the spirit of Peirce, which whom he shares
much in common. Thus, the very idea of creat-
ing artificial thinking things whose minds are
not inextricably intertwined with their bodies and
capable of interacting with the world across time
becomes increasingly implausible.

It has become clear that differences between
Turing machines, digital computers, and human
beings go considerably beyond those addressed
above, where the semiotic conception of con-
sciousness and cognition, for example, offers the
capacity to make a mistake as a general criterion
of mentality, where making a mistake involves
taking something to stand for something else,
but doing so wrongly, which is the right result.
From this point of view, there appear to be three
most important differences (see table 9.1). Even
apart from a specific theory of representation
intended to account for the meaning of the marks
machines can manipulate, it appears evident from
the table that these are three distinctly different

kinds of things, where thinking things are unlike
digital machines.

Ultimately, of course, the adequacy of a theory
of mind hinges upon the adequacy of the theory
of meaning it provides that relates brains, minds,
and behavior. The crucial consideration appears
to be that, whether bodies and minds are deter-
ministic, chaotic, or probabilistic systems, it must
provide a completely causal account of how the
signs that minds employ make a difference to
the behavior of those systems that is sufficient to
sustain an inference to the existence of mentality
as the best explanation for the data. One way in
which that may occur emerges from the differ-
ent ways in which sensations affect behavior,
where the dog barked at the bush when the wind
blew, because he mistook it for a stranger; where
Mary rushed to the door at the sound of the
knock, because she thought her friend had come;
or where Bob slowed down when the light turned
red, because he knew that he should apply the
breaks and bring the car to a complete halt.

Conventions and Communication

Because different users can use different signs
with the same meaning and the same signs with
different meaning, it is even possible for a sign
user to use signs in ways that, in their totality,
are not the same as those of any other user. This
implies that social conceptions of language,
according to which private languages are impos-
sible, are not well-founded from the perspective
of semiotic systems. A person who found himself
abandoned on a deserted island, for example,
might while away the time by constructing an
elaborate system of classification for its flora
and fauna. Even though that system of signs
might therefore have unique significance for that

Table 9.1: Three distinctly different kinds of things

(Abstract) (Physical) (Actual)
Turing machines Digital computers Human beings

Infinite capacities: Yes No No
Subject to malfunction: No Yes Yes
Capable of mistakes: No No Yes
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z1 – x

(“Sign”)
s

y – z2

s stands for x for z1

Does x = y?

s stands for y for z2

Other Minds

The adoption of an approach of this general
kind clarifies and illuminates distinctively mental
aspects of various sorts of causal processes. When
causal relations occur (when causes such as inputs
bring about effects such as outputs) and those
inputs and outputs do not serve as signs for a
system, they may then be classified as stimuli.
When effects are brought about by virtue of their
grounding (because they stand for those things
in those respects) for the systems that use them,
they may properly be classified as signs. And when
semiotic relations occur (when signs being used
by one user are interpreted by another) between
systems that use them, they may be further clas-
sified as signals. Sometimes the signals we send are
intentional (successful, and so on), sometimes
not. Every sign must be a stimulus and every
signal must also be a sign, but not vice versa.

Every human being, (other) animal, and in-
animate machine capable of using signs thereby
qualifies as a thinking thing on the semiotic con-
ception. This realization thus explains why dreams
and daydreams, memory and perception, and
ordinary thought are mental activities, while tooth
decay, prostate cancer, and free-fall, by com-
parison, are not. Whether or not the semiotic
conception emerges as the most adequate
among the alternative conceptions, it has become
apparent that an adequate account ought to be
one that is at least very much like it, especially
in accommodating crucial differences between
Turing machines, digital computers, and human
beings. It has become equally apparent, I surmise,
that minds are not machines. If thinking were
governed by mental algorithms, as such accounts
imply, then minds simply follow instructions
mechanically, like robots, and have no need for
insight, ingenuity, or invention. Perhaps we deny
that we are nothing but robots because our
mental activities involve so much more. Indeed,
some of the most distinctive aspects of thought
tend to separate minds from machines.

Simulations are clearly too weak and emula-
tions, which yield the same inputs from the same
outputs by means of the same processes and are
made of the same matter, are clearly too strong.
But the shoals are treacherous. David Chalmers,

Figure 9.3: Communication situations

individual user, that system of signs, presumably,
would still be learnable in the sense that there is
no reason why it could not be taught to others.
It would simply be the case it never had.

In communication situations, whether spoken,
written, or otherwise, different sign users tend
to succeed when they use signs the same way or
to the extent to which they mean the same things
by them. The question that arises is whether the
same sign s stands for the same thing x for differ-
ent sign users z1 and z2 under specific conditions
(see figure 9.3). When z1 and z2 speak different
languages, such as English and German, the suc-
cess of a translation can be difficult to ascertain.
But it can also be difficult when very similar
sounds are associated with meanings that may
not mean the same thing for every user.

There are circumstances under which we may
prefer for our signs to be confidential. Turing
himself, for example, spent time successfully
cracking the Enigma cipher during the Second
World War, enabling the British to understand
the German’s coded messages. Other circum-
stances, however, encourage the use of the same
signs in the same ways, such as in the case of a
community of members with common object-
ives and goals. Systems of public schools, for
example, are commonly financed with the pur-
pose, among others, of instilling the members of
the community with a common understanding
of the language they use, which promotes com-
munication and cooperation between them. Some
nations, such as the United States, have benefited
immeasurably from their standing as “melting
pots” where people from many countries come
together and are united by reliance upon English,
in the absence of which this country would no
doubt tend toward Balkanization.
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for example, has argued that, for some systems,
simulations are replications, on the presumption
that the same psychophysical laws will be operat-
ive. Thus, if the transition from an initial state S1

at time t1 yields a final state Sn at tn, where the
intermediate steps involved in the transition be-
tween them, say, S2 at t2 through Sn−1 at tn−1,
are the same, then properties that are lawfully
related to them, such as consciousness, must
come along with them, even when they are made
of different stuff (Chalmers 1996). But that will
be true only if the difference in matter does not
affect the operation of those laws themselves.
In cases where it does, replications may require
emulations.

Intelligent Machines

An approach of this kind can explain why symbol
systems and semantic engines are not thinking
things. Their properties account for the form of
thoughts but not their content, or else cannot
account for the transitions between thoughts
themselves. Turing machines, with which we
began, are not even physical things and cannot
sustain the existence of finite minds that can
malfunction and can make mistakes. The con-
nectionist conception of brains as (wet) neural
networks supplies a crucial foundation for re-
thinking the nature of the mind, but requires
supplementation by an account of the nature of
the mind that is noncomputational. An appropri-
ate conception of mental causation – including
the processes of perception, of thought trans-
ition, and of response behavior – should permit
those kinds of processes to be computational
but not require it. Computing is merely one
special kind of thinking.

Not the least of the benefits that are thereby
derived is an account of mentality that can be
reconciled with biology and evolution. Primitive
organisms must have had extremely elementary
semiotic abilities, such as sensitivity to light by
means of single cells with flagella to bring about
motion. If moving toward the light promotes
survival and reproduction, then that behavior
would have adaptive benefits for such simple
systems. Under the combined influence of genetic

mutation, natural selection, genetic drift, sexual
reproduction, sexual selection, group selection,
artificial selection and genetic engineering, of
course, biological evolution, including of our own
species, continues to this day, bringing about
more complex forms of semiotic systems with
abilities to use more signs of similar kinds and
other signs of various different kinds.

As manmade connectionist systems of (dry)
neural networks are developed, it should not be
too surprising if they reach a point where they
can be appropriately classified as artificial think-
ing things. Whether that point will ever come
depends upon advances in science and techno-
logy over which philosophers have no control.
While the conception of symbol systems and even
semantic engines appear to fall short of captur-
ing the character of thinking things, this does
not mean that they fail to capture the character
of intelligent machines. To the extent to which
machines properly qualify as “intelligent” when
they have the ability to process complex tasks
in a reliable fashion, the advent of intelligent
machines came long ago. The seductive concep-
tual temptation has been to confuse intelligent
machines with thinking things.

See also Chapter 1, COMPUTATION; Chapter 2,
COMPLEXITY; and especially Chapter 10,
COMPUTATIONALISM, CONNECTIONISM, AND THE

PHILOSOPHY OF MIND.
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Chapter 10

Computationalism,
Connectionism, and the

Philosophy of Mind
Brian P. McLaughlin

and (2) to explain how those abilities are exer-
cised via operations of the system. The tasks are
related. The explanation of how operations of
the system constitute exercises of our mental
abilities will justify the claim that our possession
of those abilities consists in our being at least
partly constituted by the system.

Computationalists hold that the functional
architecture of the computing system that
grounds our mental abilities resides in our
brains. There is, however, no consensus as to
what even the general character of that architec-
ture is. The symbols-system paradigm and the
connectionist paradigm are the two dominant
research paradigms within the computational
theory of mind. They differ primarily in what
kind of computer the mind is assumed to be,
and thus in the kinds of functional architectures
explored. The symbol-system paradigm pre-
supposes that the mind is a kind of automatic
formal system, while the connectionist paradigm
presupposes that it is a system of connectionist
networks. These paradigms will be discussed in
due course. First, however, further general dis-
cussion of the computational theory of mind is
in order.

Introduction

The central questions of the philosophy of mind
are the nature of mental phenomena, and how
mental phenomena fit into the causal structure
of reality. The computational theory of mind
aims to answer these questions. The central tenet
of the theory is that a mind is a computer. Ac-
cording to the theory, mental states and events
enter into causal relations via operations of the
computer. The main aim of the theory is to say
what kind of computer – what kind of computa-
tional mechanism – a mind is. The answer is still
unknown. Pursuing it is the main research pro-
gram of the theory.

In the most general sense, a computer is,
roughly, a system of structures functionally
organized in such a way as to be able to com-
pute. The structures, their functional organiza-
tion, and the basic modes of operation of the
system when it computes comprise the functional
architecture of the computer. The two tasks of
the computational theory of mind are: (1) to
identify the functional architecture of the com-
puting system that grounds our mental abilities
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1 The Computational Theory
of Mind

Cognitive functions

Having a mind consists in having mental abilities
such as, for example, the ability to think. Accord-
ing to the computational theory of mind, the
exercise of mental abilities consists in the com-
putation of certain functions – cognitive func-
tions. The theory is thus concerned with what
functions are cognitive functions and how they
are computed.

Functions are relations, but not every relation
is a function. A function is a one–one or many–
one relation. Functions have arguments and
values. The set of arguments of the function is
its domain and the set of values is its range. For
each argument in the domain, there is a unique
value in the range. Functions are thus extension-
ally characterized as sets of ordered pairs, the
first element of each ordered pair being an argu-
ment of the function, the second, the unique
value of the function for that argument. Addi-
tion, multiplication, and division, for example,
are mathematical functions that take order pairs
of numbers as arguments and have numbers as
values. A computable function is one that can be
computed. Not all functions are computable. A
function is computable if and only if there is an
algorithm for finding a value of the function for
any argument of the function. An algorithm is a
kind of procedure, a way of getting something
done; but not every procedure is an algorithm. An
algorithm is an effective procedure, a sure-fire
way of getting something done in a finite number
of steps. It is sure-fire in that if each step is
followed exactly, success is guaranteed. Each step
of an algorithm is, moreover, easy in the sense
that it requires no ingenuity or intelligence to
carry it out, and thus “a mere mechanism” could
execute it.

To compute is to compute a function, and to
compute a function is to execute an algorithm.
More than one algorithm can be used to com-
pute a function. For example, the multiplication
function – understood extensionally as a set of
ordered pairs – can be computed using either the
partial-product method taught in elementary

school or by a series of additions. In fact, for any
computable function, there will be infinitely many
algorithms for computing it. The reason is trivial:
we can always add intermediate steps to an algo-
rithm for computing the function that contribute
nothing to its computation.

How a function is computed will depend on
the functional architecture of the machine (the
computing system) that computes it, including
the representational code used in the machine.
Thus, for example, the algorithms for doing
addition in base 10 differ from those for doing
addition in binary notion, which uses only 1’s
and 0’s. Likewise, the algorithms for doing addi-
tion, multiplication, and division using Roman
numerals are different from those for computing
these functions in the Arabic numerals we were
taught in grade school.

These methods of calculating are algorithms
for manipulating numerals (symbols that repres-
ent numbers), as are the methods for calculation
using other kinds of numeral systems. However,
the symbols manipulated by an algorithm can be
symbols for anything that can be represented:
persons, places, things, etc. And since a symbol
can purport to represent something yet fail, an
algorithm can manipulate symbols that purport
to represent something yet fail.

Symbols have formal as well as semantic prop-
erties. The formal properties of symbols are in-
trinsic nonsemantic properties, such as shape or
syntactic structure. Symbolic algorithms operate
on symbols in virtue of certain of their formal
properties, rather than their semantic ones. Thus,
for example, the mathematical operations on
Arabic numerals are defined over the shapes of
the numerals, and likewise for the mathematical
operations on Roman numerals. The beauty of
symbolic algorithms is that they can involve the
manipulation of symbols in ways that makes sense
given what the symbols represent. Thus, while
the algorithms for adding Arabic numerals are
different from those for adding Roman num-
erals, the symbol transitions that occur during
the execution of the algorithms in question can
be systematically interpreted as adding the num-
bers represented.

Not all algorithms are symbol manipulation
algorithms. An algorithm for getting all of the
sides of a Rubik’s Cube to match in color, for
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example, involves the manipulation of the squares
of the Cube, not the manipulation of symbols
representing them (Cummins & Schwarz 1991).
The computational theory of mind is concerned
with the algorithms by which we compute cog-
nitive functions. As will become apparent in due
course, while the symbol-system paradigm appeals
to symbol manipulation algorithms to explain how
cognitive functions are computed, the connec-
tionist computational paradigm often appeals to
nonsymbolic algorithms to do so.

When we execute the partial-product algo-
rithm using pencil and paper, for instance, each
step of the process is guided by our intentions
and decisions; likewise, when we execute by hand
an algorithm for getting all of the sides of a
Rubik’s Cube to match in color. Computation-
alists maintain that the execution of basic cog-
nitive algorithms (ones not executed by means
of the execution of other cognitive algorithms)
can be described and explained without invok-
ing intelligent guidance for any step, and so
without having to invoke “homunculi” – little
intentional agents. This ultimate elimination of
homunculi is essential since computationalism
aims to reductively explain intentional abilities.
(See the discussion of homunculi in Sterelny
1990.)

To see how an algorithm can be executed com-
pletely mindlessly, consider electronic circuits that
function as truth-functional gates. For example,
an AND-gate has two input wires and one out-
put wire. When it receives current along both of
its input wires it closes, thereby sending current
along its output wire. When it receives current
from only one input wire or does not receive
current from either input wire, it remains open
and no current is sent along its output wire. This
circuit is called an “AND-gate” because using T
to represent current being sent current along a
wire and F to represent the absence of current
being sent along a wire, we can construct a ma-
chine table representing how this circuit works
that will exactly resemble the truth-table for con-
junction, the truth function expressed by central
uses of “and” in English. An AND-gate can thus
be interpreted as computing the truth-function
conjunction. Indeed for any truth table, no mat-
ter how complex, there is a formally equivalent
electronic circuit design, and the converse. The

electronic circuitry of such a device acts com-
pletely mindlessly.

The computational, algorithmic, and
implementational levels

David Marr (1982) perspicuously distinguished
three levels of analysis for addressing a computa-
tional problem. At the computational level of
analysis, one specifies what cognitive function is
being computed. At the algorithmic level, one
describes how the function is being computed,
the algorithm used to compute it. And at the
implementational level, one describes how the
steps of that algorithm are implemented, that is,
the underlying mechanism by whose operations
they are taken.

The three levels are relative to a computa-
tional problem. What is at the implementational
level relative to one computational problem can
be at either the computational or algorithmic
level relative to another. The reason is that the
implementation of a step of an algorithm might
itself be characterized as the computation of a
function, one executed by a different algorithm,
whose steps are themselves implemented some-
how; and each step of the latter algorithm might
itself be characterized as the computation of
a function, and so on, and so forth. Different
algorithms are executed at different scales in the
brain. It is an unanswered empirical question
whether all cognitive functions are executed by
algorithms involving elements at the same scale
(Churchland & Sjenowski 1993).

Marr (1982) suggested that computational
level analysis could be carried out largely inde-
pendently of algorithmic level analysis, and the
latter largely independently of implementational
analysis. Now it is certainly true that the com-
putational level underdetermines the algorithmic
level: infinitely many algorithms can compute the
same function. Moreover, the algorithmic level
in turn underdetermines the implementational
level: a given algorithm can be implemented in
infinitely many possible ways. Nonetheless, the
computationalist’s concern is not merely to dis-
cover what cognitive functions are computed,
but also to discover the algorithms used to com-
pute them. Since what algorithms a machine can
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execute will depend on its functional architec-
ture, attention to likely modes of implementation
can help in discovering those algorithms.

What algorithms a machine can execute
supervenes on the functional architecture of
the machine. (A-properties supervene on B-
properties just in case the two things cannot differ
in respect of A-properties without differing in
respect of B-properties.) Thus, there cannot be a
difference in what algorithms two machines can
compute without a difference in their functional
architectures. It follows that two machines with
exactly the same functional architecture can ex-
ecute exactly the same algorithms. Similarly, what
functions a machine can compute will supervene
on what algorithms it can execute, and so two
machines that can execute exactly the same algo-
rithms can compute exactly the same functions.
Since supervenience is transitive, what functions
a machine can compute will supervene on the
functional architecture of a machine. As indicated
above, however, functional architecture does not
supervene on computational power. Machines
with very different architectures can have exactly
the same computational power.

Turing machines and Turing
computability

In his early machine-state psychofunctionalism,
Hilary Putnam (1975) claimed that we are finite
state automata, by which he meant that we are
Turing machines with finite tapes. The idea that
our minds have the functional architecture of
a Turing machine with a finite tape is not to be
taken seriously. No computationalist thinks the
mind has a Turing machine architecture. One of
Putnam’s essential points, however, was that we
have the computational capacities of a Turing
machine with a finite tape, in that our cognitive
functions are computable by a Turing machine.
According to the computational theory of mind,
all cognitive functions can be computed by
algorithms – effective procedures. According to
the Church–Turing thesis, every function that
can be computed by an algorithm can be com-
puted by a Turing machine. If the Church–
Turing thesis is correct, then the computational
theory of mind is committed to the thesis that

every cognitive function is Turing-computable
(see Chapter 1, COMPUTATION).

Since not all functions are computable by a
Turing machine, a way to try to falsify the com-
putational theory of mind is by showing that
there are cognitive functions that are not so com-
putable. Whether there are such cognitive func-
tions is a subject of dispute, and so this remains
one line of attack on computationalism (Lucas
1961; Penrose 1989; van Gelder 1995; McCall
1999; Copeland 2000; see Lewis 1979 for a
response to Lucas; and see Chalmers 1996 for
responses to Penrose).

The Holy Grail of artificial
intelligence

Since the functional architecture of our minds
resides in our brains, Marvin Minsky has called
our minds “meat machines.” The Holy Grail of
the field of artificial intelligence (see Chapter 9,
THE PHILOSOPHY OF AI AND ITS CRITIQUE) is to
build something with mental abilities out of
something other than living tissue. In pursuit
of this Holy Grail, AI presupposes the com-
putational theory of mind. If the computational
theory of mind is correct, then it is at least logic-
ally possible for a mind essentially like ours to
be made of quite different stuff from ours. The
reason is that what is essential are the structures
and their functional organization, not the material
of which the elements of the structures are made.
If the computational theory is right, then it is at
least logically possible that the relevant structures
with the relevant functional organization can be
realized in something that is, for example, silicon
based, rather than carbon based.

AI has been impressively successful in design-
ing machines that can perform difficult tasks with-
out our supervision. Moreover, it has been at
the cutting edge of research into how cognitive
functions might be computed. Finding the Holy
Grail, however, remains an unrealized dream. We
have computers that play master’s-level chess and
teams of robots that play soccer, but there are
no artifacts that are even remotely plausible can-
didates for being the subjects of mental abilities.
And despite the optimism of some AI researchers,
there do not seem to be any in the works. It is
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important to note, then, that the computational
theory of mind is not committed to the success
of this AI project. It leaves it an open empirical
question whether the dream will ever be realized.
For all we know, it may be that given the laws of
nature and the initial conditions of the universe
it is physically impossible for a mind (one essen-
tially like ours) to be realized in something com-
posed entirely of (e.g.) silicon. Such a mind might
be impossible in the way that a 90-foot tall
human being is impossible. The computational
theory leaves this empirical issue open.

Nor is the computational theory of mind com-
mitted to Turing’s (1950) would-be test (see
Chapter 9) for determining whether something
is genuinely intelligent (as opposed to merely
appearing intelligent). The theory leaves open
that there is more to intelligence than matching
the dispositions to verbal or written behavior of
an intelligent human being. It is not committed
to the view that there is some pattern of dis-
positions to outward or peripheral behavior that
suffices for the possession of genuine intelligence
(Block 1981; Jackson 1993; McLaughlin &
O’Leary-Hawthorne 1994).

2 The Symbol-system Paradigm

Mind as an interpreted automatic
formal system

According to proponents of the symbol-system
paradigm, the mind is an interpreted automatic
formal system (Haugeland 1985). More precisely,
having mental abilities consists in being consti-
tuted, at least partly, by an interpreted auto-
matic formal system. A formal system is a system
for manipulating discrete items in virtue of their
formal properties; an automatic formal system is
one that does so automatically. Many games,
among them chess and checkers, are formal sys-
tems. Games that are formal systems share the
following features: they are finitely playable,
and are played by manipulating discrete items
according to the rules of the game. In chess for
instance, the discrete items are the chess pieces,
which are manipulated according to the rules
of chess. An automated formal system is one in

which discrete items are automatically manip-
ulated according to the rules – like a chess set
that plays chess by itself. An interpreted auto-
matic formal system is an automated formal
system in which the discrete items that are
manipulated include symbols or representations:
discrete items with semantic and formal prop-
erties. The rules by which they are manipulated
prescribe algorithmic operations on them. Thus,
this paradigm is sometimes called “the rules and
representations” paradigm.

Turing machines are interpreted automatic
formal systems. There are many computationally
equivalent machines that are automatic formal
systems with different functional architectures
from that of a Turing machine (see Chapter 1,
COMPUTATION). One such machine is a von
Neumann machine, so named after John von
Neumann. Virtually all commercial computers
are von Neumann machines. The functional archi-
tecture of such a machine includes a Central
Processing Unit (CPU), an arithmetic unit,
memory locations, and two kinds of memory
access. The CPU has access to memory loca-
tions and current active data structures and
determines what operations the computer is to
perform by consulting instructions (programs)
located in memory. A somewhat similar func-
tional architecture is implicit in some symbolic
models of mental abilities: online processing is
done using a short-term memory store that holds
information relevant to the process being carried
out; and online processing influences and is
influenced by long-term memory. Nevertheless,
it is universally accepted by computationalists
that the functional architecture of the mind is
not von Neumann architecture.

Higher-level programming languages such as
Basic, Pascal, FORTRAN, Cobol, Java, and C++,
and Lisp (List Processing) are (or describe) uni-
versal machines that are automatic formal systems.
Such languages are very useful since, as John
Haugeland (1985) has aptly noted, some ma-
chines are easy to build and some are easy to
program. So we build the machines that are easy
to build and use them to simulate the machines
that are easy to program. Higher-level program-
ming languages are thus simulated machines rel-
ative to the machine language of the computers
we actually build; they are thus virtual machines
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relative to the machine language of the computer.
(A complier is a program that translates the
higher-level language into the machine language
of the actual physical machine – in the case of
von Neumann machines, into instructions en-
coded into strings of 1’s and 0’s.). No one thinks
that any of these higher-level programming lan-
guages characterize the functional architecture
of the mind.

Production Systems are Turing-machine
equivalent higher-level programming languages
used in research in the symbolic paradigm. Pro-
duction Systems consist of rules specifying actions
to be performed when certain conditions are
met. While some computationalists think that at
least some cognitive modules may have a Pro-
duction System architecture, it is widely held by
researchers in the symbolic paradigm that we do
not yet know what the functional architecture of
the mind is. The fundamental research objective
of the symbolic paradigm is to determine what
kind of automatic formal system the mind is.

Mind as syntactic engine

Recall that while a symbolic algorithm is defined
over the formal properties of symbols (e.g., their
shapes or syntactic structures), symbolic algo-
rithms can govern symbol-to-symbol transitions
that make sense given the meanings of the sym-
bols. In proof theory, logical relations are treated
as moves in a formal game; the formal moves
preserve truth: they never take one from a truth
to a falsehood. An algorithm can preserve truth:
if one begins with a true symbol, the algorithm
will take one only to a true symbol. The symbol-
system paradigm is thus often said to presuppose
a proof-theoretic conception of mind. Moreover,
algorithms can be defined over the formal prop-
erties of symbols so as to preserve other sorts
of semantic properties of the symbols, so that
symbol transitions can implement reasoning pro-
cesses of all sorts, not only deductive reasoning,
but inductive reasoning, analogical reasoning,
decision-making, etc. Haugeland (1985) suggests
the following as the symbolist motto: “Take care
of the syntax (the formal operations), and the
semantics will take care of itself.” As Daniel
Dennett has aptly noted, the symbolic or rules

and representations paradigm presupposes that
the mind is “a syntactic engine.”

The language of thought

Jerry Fodor and Zenon Pylyshyn have articulated
a research program in the symbolic paradigm for
reductively explaining propositional attitudes and
mental processes involving them, a program that
invokes the hypothesis that there is “a language
of thought” (Fodor 1975; Pylyshyn 1986; Fodor
& Pylyshyn 1988). Propositional attitudes have
an intentional mode and a propositional content.
The intentional modes include belief, desire, hope,
wish, fear, intention, and the like. The proposi-
tional contents of propositional attitudes are
expressed using that-clauses. Thus, the belief that
that the cat is on the mat has the propositional
content that the cat is one the mat; and the hope
that it will not rain has the propositional content
that it will not rain. According to the language-
of-thought hypothesis, some mental symbols
are atomic, and some are molecular in that they
contain other mental symbols as constituents.
Moreover, the mental symbol system has a com-
positional semantics: the content or meaning of
a molecular symbol is a function of its syntactic
structure and the contents of its constituent atomic
symbols. The contents of propositional attitudes
are expressed by sentence-like mental symbols; the
contents of concepts, by word-like symbols. On
this view, to be in a state within a certain inten-
tional mode is to be disposed to compute in a
certain way with an amalgam of concepts with a
sentence-like syntactic structure – a mentalese
sentence. Thus, to believe that p is to be disposed
to compute in a certain way with a mentalese sen-
tence that means that p; to desire that p is to be
disposed to compute in a certain other way with
a mentalese sentence that means that p, and so on
for the other propositional attitudes. It is a topic
for empirical investigation what the grammar of
the language of thought is and what, exactly,
these ways of being disposed to compute are.

As Fodor and Pylyshyn (1988) point out, if
the mental symbol system includes a language of
thought in the above sense, then we can appeal
to it to explain, among other things, the system-
aticity and productivity of thought. They claim
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that thought is productive in that one can, ide-
ally, think an infinite number of thoughts; one is
prevented from doing so only by the fact that
one has a finite lifespan and finite memory re-
sources. And they claim that thought is system-
atic in that pairs of abilities to have thoughts in
the same intentional mode and with related con-
tents are counterfactually dependent, in that one
would have one member of the pair if one would
have the other. Thus, normally, an individual
that can think that Romeo loves Juliet can think
that Juliet loves Romeo; and, normally, an indi-
vidual that can hope the rock is next to the tree
can hope the tree is next to the rock.

Psychosemantics

The question naturally arises of course as to
how mental symbols – mental representations –
acquire their contents or meanings. The num-
erals of various numeral systems such as Arabic
numerals and Roman numerals derive their mean-
ings from the linguistic conventions of commu-
nities. The current along the input and output
wires of an electronic computer circuit derive
their meanings from our intentional stipulative
assignments; as do the keys of hand-calculators
and the displays on their screen. If intentionality
is to be explained by appeal to mental representa-
tions, then we need an account of their meaning
that makes no appeal to linguistic conventions or
semantic intentions, for these presuppose inten-
tionality (Fodor 1990).

Procedural semantics and inferential or con-
ceptual role semantics attempt to explain how
mental representations derive their meaning from
their participation in computational processes.
John Searle’s “Chinese Room” argument (see
Chapter 9 above) makes a case that the semantic
properties of symbols do not supervene on their
syntactic relations, and so that intentional phe-
nomena such as (e.g.) understanding Chinese
cannot be explained solely by appeal to computa-
tional relations (see e.g. Searle 1999). If he is
right about this failure of supervenience, then the
kinds of semantics in question cannot succeed.
Perhaps logical symbols – truth-functional sym-
bols (e.g., “and” and “or”) and symbols for the
universal and existential quantifiers (respectively,

“all” and “some”) – can be defined by patterns
of inferential relations. However, it seems that
most symbols (e.g., “cow” and “run”) cannot.

Semantic externalists claim that the meanings
of many mental symbols fail to supervene on
anything that goes on in our heads, since they
depend on environmental relations. Externalists
typically claim that a computational theory of
intentionality must thus be supplemented with
an externalist naturalistic account of meaning that
makes no appeal to intentional notions. There are
various programs for attempting to explain the
semantic properties of mental symbols in purely
naturalistic terms. However, the naturalistic rela-
tions appealed to (e.g., causal relations, coun-
terfactual dependencies, information-theoretic
relations, processes of natural selection), all appear
to leave the semantic properties of mental
representations underdetermined. Dual-aspect
semanticists hope to combine inferential or con-
ceptual role semantics with a naturalistic externalist
account to determine the semantic properties of
mental representations (Block 1986). This project,
however, faces the problem of specifying which
inferential relations are constitutive of the internal
component of meaning (Fodor & LePore 1992).
Moreover, it is uncertain whether any such com-
bination will yield determinate meanings for
mental symbols. Saul Kripke (1981) has argued
that since our inferential dispositions are in fact
finite (due to limitations in memory, our finite
lifespan, etc.), they will leave the meanings of
symbols radically indeterminate. Thus, suppose
that one is in fact disposed to perform only 500
million calculations with a symbol “+”. Even if
the output of each of these 500 million calcula-
tions can be systematically interpreted as a com-
putation of the plus function, one’s dispositions
to calculate will be compatible with the symbols
expressing instead the “quus function,” which
can be defined as follows: x quus y = x plus y, for
any y < 500,000,001, otherwise x quus y = 5.
Conceptual role theorists take this problem to
be one of how conceptual roles should be ideal-
ized. But no entirely satisfactory solution to the
Kripke’s problem has yet been proposed. Suffice
it to note that the problem of how mental rep-
resentations acquire their meanings is perhaps
the deepest problem that any reductive theory
of intentionality faces.



Brian P. McLaughlin

142

3 The Connectionist
Computational Paradigm

The functional architecture of our minds is some-
how realized in our brains. One of the few things
we know about the brain that seems to have a
bearing on mentality is that it is, inter alia, a
system of neural networks. Neural networks are
not well understood; indeed neurons themselves
are not well understood. There are somewhere
between 50 and 500 different kinds of cortical
neurons, and these different kinds of neurons
appear to perform specialized functions not yet
understood (Churchland & Sejnowski 1993).
Nonetheless, just as top-down considerations of
what cognitive functions are being computed can
guide research into how mental abilities are seated
in the brain, bottom-up considerations of the
workings of neural networks can guide research
into what algorithms are used to compute the
functions in question. They can serve as a guide
to discovering the functional architecture of the
mind.

While the operations of actual neural networks
are not well understood, the connectionist com-
putational paradigm explores functional archi-
tectures that are at least “neurally inspired.” Some
connectionist networks, called “artificial neural
networks,” are specifically designed to approx-
imate various kinds of real neural networks in
various respects: the units (or nodes) in artificial
neural networks are analogous to neurons, the
connections among units analogous to axons,
and the weights or strengths of the connections
analogous to synapses. These networks are extens-
ively employed in the growing field of computa-
tional neuroscience (see Churchland & Sejnowski
1993). The connectionist networks employed to
model the computation of cognitive functions
typically make no attempt at neural realism.
Nonetheless, they have at least “a neural flavor.”

Connectionist networks

A connectionist network is composed of inter-
connected units (or nodes). Individual units
do all the information processing: there is thus
no executive or CPU. There is, moreover, no

program stored in memory; the program is im-
plicit in the pattern of connectivity exhibited by
the units. Many units process information simul-
taneously, and so the network as a whole engages
in parallel distributed processing (PDP) (see
McClelland & Rumelhart et al. 1986; Rumelhart
& McClelland et al. 1986).

Units have states of activation. Depending on
the network architecture, a unit may have only
two states of activation, “on” and “off,” three
or more discrete states of activation, or continu-
ous levels of activation, bounded or unbounded.
Units process information by changing or re-
taining their state of activation in response to
activation signals from their sending units.

The connections among units can be of vari-
ous strengths or weights, which affect the extent
to which the activity output of a sending unit
influences the activation states of receiving units.
Connections can, moreover, be excitatory or
inhibitory. The connection from a unit Ui to a
unit Uj is excitatory if the activation output of
Ui tends to increase the level of activation of Uj,
and inhibitory if it tends to decrease it. The
causal influence exerted by a sending unit on a
receiving unit thus depends on two intrinsic prop-
erties of their connection: its weight and whether
it is excitatory or inhibitory. The notation “wij”
is used to stand for a real number that indexes
the connection from unit Ui to unit Uj by its
weight and kind. The number is positive when
the connection is excitatory, negative when it is
inhibitory. The weight of the connection is the
absolute value of wij. In many networks, the
extent and kind of causal influence a unit Ui

exerts on a unit Uj is indexed by the product of
wij and the activation value of Ui.

Whether a unit changes or retains its state
of activation is a function of three factors: the
totality of input to the unit, the unit’s current
activation state, and the unit’s bias (if any), which
may be positive or negative. A unit thus com-
putes an activation function that maps its total
network activity input (and external input if any),
its current activation state, and its bias (if any)
to an activation state. The total network activity
input to Uj is the sum of all of the causal influ-
ences from sending units: it is the sum of the
product of each activation value from a sending
unit and the real number indexing the weight



Computationalism, Connectionism

143

and kind of connection the sending unit bears
to Ui. While the output function of a unit can
be linear, it is typically a threshold function, and
thus nonlinear. If a unit has a negative bias, it
may send 0, the null signal, unless its activation
value exceeds a certain threshold. If it has a posit-
ive bias, it may send a certain non-0 activation
value unless its activation state value falls below
a certain threshold. In Hopfield networks, units
have a sigmoidal (S-shaped) response to net
input: their output only increases by a given
amount given an increase in net input; after that,
they increase no further. But units can also have
Gaussian (bell-shaped) output functions and
other sorts of nonlinear ones as well.

The input units of a network receive signals
directly from the environment of the network,
while the output units send signals directly to
the environment. Since input and output units
directly interact with the environment, they are
called “visible units.” So-called “hidden units”
only directly interact with other units.

Some networks, called “perceptrons,” have
only two layers of units: a layer of input units
and a layer of output units. Minsky and Pappert
(1969) showed perceptrons are limited in their
computational power: for example, they cannot
compute XOR (exclusive-or). The reason is that
the problem of determining the value of the
XOR function is a linearly inseparable problem
and perceptrons cannot solve any such problem.
Rumelhart et al. 1986 demonstrated, however,
that networks with three or more layers can
compute XOR and, more generally, can solve
decidable linearly inseparable problems.

Feedforward networks with one or more
layers of hidden units are called “multilayered”
networks. The Hamming net, for instance, is
a widely used feedforward network with three
layers of units, one of which is a layer of hidden
units. Feedforward networks are non-interactive:
activation flows from the input units through
each layer of hidden units to the output units.
In interactive networks, two units can mutually
influence each other, and thus a unit can be
related to another both as an input unit and as
an output unit. In interactive networks, two-way
connections between units are often symmetrical,
so that wij = wji. In competitive networks, units
form pools: the units in a pool are all mutually

inhibitory, while units outside of the pool bear
excitatory connections to one or more units in
the pool. In recurrent networks, there are con-
nection patterns that contain loops, so that a
unit is either related to itself as an input unit or
there is a series of connections from the unit
back to itself, so that the output of a unit at one
time can causally influence its activation state at
another. In auto-associative networks, each unit
is connected to every other unit, including itself.
These are only some of the many kinds of patterns
of connectivity that are possible.

The behavior of a network as a whole is a
consequence of the pattern of connectivity ex-
hibited by its units at a time and the global activa-
tion state of the network at that time. A vector
(ordered list) of real numbers is used to index
the global activation state. The activation value
of each unit in the network at that time is indexed
by one and only one element of the vector, and
so the number of elements in the vector will be
equal to the number of units in the network.
The set of all possible global activation states of
a network is its activation space, whose dimension-
ality is exactly equal to the number of units in
the network. A network with n units will thus
be indexed by an n-tuple of real numbers that
identifies a position in an n-dimensional vector
space. That position represents the global activa-
tion state of the network at a time. A temporal
series of global activation states will trace a path
through a vector space. Network information
processing is characterized as the evolution
through time of global patterns of activation.
Networks can be systematically interpreted as
performing mathematical operations on matrices
such as matrix multiplication (e.g., a computing
inner product).

Explicit representations in a connectionist
network can be either local or distributed. Local
representations are individual units, or individual
units at certain levels of activation. Distributed
representations are patterns of activity over a
group of units. The pattern of connectivity of a
network is sometimes characterized as implicitly
representing.

As a result of the pattern of connectivity
exhibited by its units, a network as a whole
can behave in rule-like ways to compute func-
tions. When a feedforward network computes a
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function, the arguments of the function are rep-
resented by different patterns of activity over the
input units, and the values of those arguments
for the function by patterns of activity over out-
put units. In computing the function, the net-
work acts as a look-up table. Input activation
patterns function like questions posed to the
network (for example, “To what category does
this belong?”), and output patterns function like
answers to the question (“To category C”).
Unlike in a symbolic look-up table, however,
the answers are not stored as data structures;
rather they are implicitly represented in the
pattern of connectivity. (Sometimes, however,
hidden units are explicit representations.) In
interactive units, the argument of a function
might be represented by an initial pattern of
activation over units in the network, and the
value of the function for that argument by a
pattern of activation over those same units, a
pattern the network “settles” or “relaxes” into
after information processing.

The “neural flavor” of connectionist networks
is by no means their only attraction for computa-
tionalists. Connectionist networks are good at
pattern recognition tasks: pattern matching, pat-
tern completion, and pattern association. They
degrade gracefully in their performance of a task
as a network is damaged (e.g., when a unit is lost)
and in the face of noisy or incomplete data. They
can learn. That is to say, with proper training,
they can improve their performance of various
tasks. Moreover, they are very efficient at solving
connected problems and at arriving at optimal
or near optimal solutions to best-match problems.
Of these attractions, more below.

Learning

The weights of the connections in a network are
not architecturally fixed. Learning consists in
changes in the weights. There are various learn-
ing rules that govern weight change. The Hebb
Rule is based on Donald Hebb’s (1949) hypo-
thesis that the connections between two neurons
might strengthen whenever they fire simultane-
ously. According to the Hebb rule, the weight of
a connection between units should be increased
or decreased in proportion to the products of

their simultaneous activations (Rumelhart et al.
1986). The Delta rule is an error correction rule
that changes the weights leading from units send-
ing signals to output units on the basis of the
discrepancy between the actual output and the
desired one. Backpropagation is a generalization
of the Delta rule, and is widely used in multi-
layered networks. The actual output activation
pattern for a given input activation pattern is
compared with the desired output. The differ-
ence between the two is then propagated back
into whatever connections were used to get the
actual output activation pattern. The connec-
tions among units that contributed to the actual
output are strengthened (increased in weight)
when the match is good, and are reduced in
strength (decreased in weight) when it is poor.
The weights are thus adjusted so as to reduce
the margin of error between the actual output
and the desired one. And in this way, the network
learns.

Network training can be supervised or un-
supervised. In supervised learning, the network
is provided explicit feedback from an external
source about what output is desired as a response
to a certain input. The Delta rule and back-
propagation are used in supervised learning. In
unsupervised learning, no such external feedback
is provided to the network; rather, the network
monitors its own performance through internal
feedback. There are a number of unsupervised
learning algorithms; the Kohonen algorithm is
one such (see Beale & Jackson 1990, ch. 5).

Pattern recognition

NETtalk offers a vivid example of the ability of
networks to learn to recognize patterns. Designed
by Terrence Sejnowski and C. R. Rosenberg
(1987), it is a network that learns to map letters
onto phonemes. NETtalk is a three-layered
feedforward network, whose input units repres-
ent letters (individual letters are represented by
patterns of activation over 29 input units and
there are 7 such groups of 29 input units) and
whose output units represent phonemes. The
network feeds into a synthesizer. After sufficient
training using backpropagation, when presented
strings of letters comprising the words of actual
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English text, the network drives the synthesizer
to sound like a robotic voice literally reading the
text.

Some studies have compared networks using
backpropagation with various members of the class
of “top-down inductive decision trees” (“deci-
sion trees” for short) in respect of accuracy in
pattern recognition and the ability to deal with
noisy, incomplete data gracefully, as well as in
other respects (see Sethi & Jain 1991). Decision
trees are production-rule systems, and thus sym-
bolic systems, that excel at pattern recognition
tasks (see Utgoff 1999). One comparative study
by Shavlik et al. (1991) included a comparison
between a decision tree system called “ID3” and
a network using backpropagation on both the
NETtalk A data set and the NETtalk full data
set. Shavlik et al. noted: “for the most part [both]
learning systems are similar with respect to accur-
ately classifying novel examples” (1991: 120).
They also compared ID3 and the network on
three kinds of noisy data: inaccurate feature values,
missing feature values, and insufficient number
of features. The network performed slightly
better than ID3 on inaccurate feature values and
missing feature values, but when trained on
insufficient numbers of feature values, “ID3 and
backpropagation degrade at roughly the same
rate as the number of features is reduced” (1991:
130). Several other comparative studies have
found that networks using backpropagation are
roughly comparable to various other members of
the family of decision trees as concerns accuracy
in pattern recognition and graceful degradation
in response to noisy, incomplete data. Decisions
trees are, however, much faster at learning than
networks using backpropagation (see Sethi &
Jain 1991; Marinov 1993; and McLaughlin &
Warfield 1994).

Connected problems, best-match
problems, and multiple soft constraint

satisfaction

Networks are especially efficient at solving con-
nected problems – problems that do not divide
into independently solvable subproblems, like the
traveling salesman problem. The goal is to find
the shortest route that a salesman can take to

visit each of a number of cities, while visiting each
city only once. Since which city the salesman
visits depends on which cities he has already
visited, the problem does not divide into inde-
pendently solvable subproblems. The traveling
salesman problem is decidable, and so can be
solved by a symbol system. But if, for instance,
there are 20 cities to visit, there is a minimum of
653,837,184,000 possible routes to take (Raggett
& Bains 1992). Thus, as the number of cities
increases there is an exponential increase in the
computational resources required to solve the
traveling salesman problem within a symbol sys-
tem (see Chapter 2, COMPLEXITY). A Hopfield
network is able to find a solution in a small
number of training cycles.

Networks are also especially efficient at finding
optimal or near optimal solutions to what Minsky
and Papert (1969) called “best-match problems”
– problems whose solution involves assessing the
satisfaction of multiple soft (i.e., non-mandatory)
constraints. Hinton (1977) developed the first
network approach to solving best-match prob-
lems. The following description of it paraphrases
the description provided in McClelland and
Rumelhart 1988. Units in the network have one
of two states of activation (“on” or “off ”), and
the network contains local representations, each
unit representing a different hypothesis. The
connections in the network implicitly represent
evidential relationships among the hypotheses.
Thus if a hypothesis H is evidence for another
hypothesis H ′, the connection from the unit
representing H to the unit representing H ′ is
positive; if H is evidence against H ′, the connec-
tion is negative. The stronger the confirming or
disconfirming relationship the one hypothesis
bears to the other, the stronger the connection
between the units that represent them. If one
hypothesis H entails another H ′, then the con-
nection between the unit representing H and
the unit representing H ′ will be such that the
second unit is on whenever the first is on. When
two hypotheses are incompatible, they are con-
nected in such a way that they cannot both be
on. Since the network contains input units that
receive signals from the environment, hypo-
theses can receive confirming or disconfirming
evidence directly from the environment. The fact
that different hypotheses have different a priori
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probabilities is captured by biasing the relevant
units. The overall goodness of fit of a particular
hypothesis to evidence is measured by the sum
of the individual constraints on the activation
value of the unit representing the hypothesis.
The activation values of units range between a
minimum and a maximum. The maximum value
means that the hypothesis should be accepted,
the minimum that it should be rejected, and
intermediate values correspond to intermediate
levels of certainty. The constraint satisfaction
problem is thus reduced to one of maximizing
this overall goodness of constraint fit.

Of course, this approach to best-match prob-
lems may well not seem interestingly different
from a symbolic approach; indeed it might be
viewed as a way of implementing a symbolic
decision procedure on a network. The computa-
tionally relevant formal property of a symbol
can be a unit’s being activated, and symbols can
participate in probabilistic algorithmic processes.
There are other networks, however, that solve
best-match problems in strikingly different, and
striking efficient ways.

A problem that arises for procedures for
solving best-match problems is that of avoiding
local maxima of goodness of constraint fit. It
can be characterized as an energy minimization
problem (McClelland & Rumelhart 1988). The
analog of the goodness maximum is the energy
minimum, and the analogs of local goodness
maxima are local energy minima. The situation
is easy to visualize as an energy landscape. In an
energy landscape, the goodness maximum cor-
responds to the lowest valley in the landscape,
while local goodness minima correspond to local
valleys in the landscape. The problem of avoid-
ing local goodness maxima is thus the problem
of avoiding settling into a local valley, rather
than into the lowest valley in the energy land-
scape. John Hopfield (1982) observed that some
networks behave in such a way as to minimize a
measure over the whole network, one he aptly
called “energy.” The behavior of these networks
can be characterized as moving through an energy
landscape. The Boltzmann machine, developed
by Hinton and Sejnowski (1986) and named
after the physicist Ludwig Boltzmann, is such a
network. To handle the problem of local maxima
of goodness of constraint fit, the Boltzmann

machine employs a computational analog of the
metallurgical process of annealing. Annealing is
a process whereby metals are heated to a little
below their melting point and then cooled very
slowly so that all their atoms have time to settle
into a single orientation. The analog of heat in
the Boltzmann machine is random noise that is
introduced into network activity. The function
of the noise is to jar the network out of local
valleys, so that it can explore other parts of the
energy landscape to find the lowest valley, thereby
achieving the global maximum of fit. When the
network reaches a stable state, it has settled or
relaxed into a solution. Given sufficient time,
the Boltzmann machine can find the energy min-
imum for any best-match problem.

Networks and cognitive abilities

There are network models of certain aspects of
motor control and low-level perception. For
example, there is a network model for the vesti-
bular ocular reflex, which enables eyes to track
an object as the head moves (Churchland &
Sejnowski 1993). As concerns low-level visual
perception, the linear models color-constancy
algorithm, for instance, is characterized in con-
nectionist terms (Maloney & Wandell 1986).
Moreover, opponent processing theory, the lead-
ing neuro-computational theory of color experi-
ence, is easily understood in connectionist terms
(Hurvich 1981). According to the theory, there
are pairs of opponent channels that respond
differently to the outputs of our three types of
cones (L-cones, M-cones, and S-cones): the RED
channel and the GREEN channel, the BLUE
channel and the YELLOW channel, and the
BLACK channel and the WHITE channel. Activ-
ity in one channel inhibits activity in its oppon-
ent channel. The theory explains the fact that
nothing looks bluish-yellow as a result of the
fact that activity in the BLUE channel inhibits
activity in the YELLOW channel and conversely.
And the theory explains the appearance of unique
blue (blue that is not at all reddish or greenish)
as the result of the activation of the BLUE chan-
nel, the YELLOW channel being deactivated,
and the RED and GREEN channels being in
equilibrium. These channels can, of course, be



Computationalism, Connectionism

147

understood as pools of interconnected neuron-
like units.

Connectionist modeling has by no means been
restricted to motor control and low-level per-
ception. It has been extended to most areas
of cognition. Connectionist networks have been
appealed to as mechanisms for processes of
categorization in terms of resemblance to proto-
types (Churchland 1995). And there are, more-
over, connectionist models of various aspects of
language comprehension and production. For
example, Jeffrey Elman (1990) has explored how
recurrent nets can learn to become sensitive to
anaphoric relations. And Alan Prince and Paul
Smolensky’s (1993) optimality theory, for in-
stance, outlines how a multiple soft constraint
satisfaction might serve as a natural language
parser might work by employing multiple soft
constraint satisfaction. This sample represents
only a tiny fraction of connectionist cognitive
modeling. (For a recent very brief overview, see
McClelland 1999.)

4 How are Paradigms Related?

The relationship between the symbolic and
connectionist paradigms is a topic of heated
dispute. It will have to suffice here simply to list
some possibilities.

One possibility is that the functional architec-
ture of the mind is hybrid: some aspects of cog-
nition are symbolic and some are connectionist.
For example, perhaps motor control modules and
low-level perceptual modules have a connectionist
architecture, while linguistic modules and reason-
ing in central processing have a symbolic archi-
tecture. On this view, the mind is not a single
kind of computer, but has different kinds of com-
partments that are different kinds of computers.

Another possibility is that the functional
architecture of the mind is a symbolic architec-
ture, but this architecture is implemented by a
connectionist one. (Both Turing machines and
Production Systems, it should be mentioned,
have been implemented by connectionist net-
works.) Connectionism, it is often claimed, is con-
cerned with microcognition; and its advocates
often characterize the connectionist paradigm as

the subsymbolic paradigm. Some connectionists
have suggested that the relationship between the
symbolic paradigm and the connectionist (sub-
symbolic) paradigm is analogous to the relation-
ship that Newtonian physics bears to quantum
mechanics (Rumelhart et al. 1986). But pro-
ponents of the implementational view of connec-
tionism will claim that the more apt analogy is
the relationship chemistry bears to quantum
mechanics. Atoms are constituted by subatomic
particles, and chemical processes are implemented
by quantum mechanical ones (indeed all causal
processes are ultimately implemented by quan-
tum mechanical ones). Perhaps, analogously,
atomic symbols are constituted by patterns of
activation, and connectionist processes implement
symbolic algorithmic processes (McLaughlin
1993a).

Yet another possibility is that the functional
architecture of the mind is either thoroughly sym-
bolic or thoroughly connectionist. Proponents
of this view see the two paradigms as in a sort of
zero-sum competition. The leading objection
to the view that the functional architecture of
the mind is thoroughly connectionist is due to
Fodor and Pylyshyn (1988). They argue that a
connectionist architecture cannot explain the
systematicity of thought without implementing
a symbolic architecture. A large literature has
arisen in response to this objection. Some deny
that thought is systematic. Some concede that
thought is systematic, but maintain that it is not
the job of a theory of cognitive architecture to
explain systematicity (see McLaughlin 1993b for
a discussion). And some attempt to show how
a connectionist architecture could explain the
systematicity of thought without implementing
a symbolic one (see e.g. Smolensky 1991; for
a response, see Fodor & McLaughlin 1990;
McLaughlin 1997a; for a counter-response, see
Cummins 2000).

Another possibility still is that the functional
architecture of the mind somehow integrates
features of symbolic architectures and features
of connectionist architectures. Smolensky (1994,
1995) has sketched an architecture he calls “an
Integrated Connectionist Symbol architecture
(ICS)” that attempts to include features of both
connectionist and symbol architectures, and which
he claims will explain the systematicity and
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productivity of thought. But it remains a question
whether when developed sufficiently to explain
systematicity and productivity, it would collapse
into an implementation architecture for a sym-
bolic one (McLaughlin 1997a).

Of course, not all of these possibilities are
exclusive. It may be that some cognitive modules
are thoroughly connectionist, and that various
other modules are symbolic but implemented
by connectionist networks. There is, it should
be noted, a growing body of work in the field
of machine learning that attempts to develop
machines with a mixed architecture, including
symbolic and connectionist subcomponents. Of
course, this work in machine learning is not
concerned with either psychological or neuro-
logical realism (but rather with building better
machines). Nonetheless, it demonstrates the use-
fulness of such mixed architectures for computa-
tional purposes.

Suffice it to note that the functional architec-
ture of the mind remains an open question. What
the future will bring remains to be seen.
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Philosophical Ontology

Ontology as a branch of philosophy is the science
of what is, of the kinds and structures of objects,
properties, events, processes, and relations in
every area of reality. “Ontology” is often used
by philosophers as a synonym of “metaphysics”
(a label meaning literally: “what comes after the
Physics”), a term used by early students of Aris-
totle to refer to what Aristotle himself called
“first philosophy.” Sometimes “ontology” is used
in a broader sense, to refer to the study of what
might exist; “metaphysics” is then used for the
study of which of the various alternative possible
ontologies is in fact true of reality (Ingarden
1964). The term “ontology” (or ontologia) was
coined in 1613, independently, by two philo-
sophers, Rudolf Göckel (Goclenius) in his Lexicon
philosophicum and Jacob Lorhard (Lorhardus) in
his Theatrum philosophicum. Its first occurrence
in English as recorded by the Oxford English
Dictionary appears in Bailey’s dictionary of 1721,
which defines ontology as “an Account of being
in the Abstract.”

Ontology seeks to provide a definitive and
exhaustive classification of entities in all spheres
of being. The classification should be definitive
in the sense that it can serve as an answer to
such questions as: What classes of entities are
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needed for a complete description and explana-
tion of all the goings-on in the universe? Or:
What classes of entities are needed to give an
account of what makes true all truths? It
should be exhaustive in the sense that all types
of entities should be included in the classifica-
tion, including also the types of relations by
which entities are tied together to form larger
wholes.

Different schools of philosophy offer different
approaches to the provision of such classifica-
tions. One large division is that between what
we might call substantialists and fluxists, which
is to say between those who conceive ontology
as a substance- or thing- (or continuant-) based
discipline and those who favor an ontology
centered on events or processes (or occurrents).
Another large division is between what we might
call adequatists and reductionists. Adequatists
seek a taxonomy of the entities in reality at all
levels of aggregation, from the microphysical to
the cosmological, and including also the middle
world (the mesocosmos) of human-scale entities
in between. Reductionists see reality in terms of
some one privileged level of existents; they seek
to establish the “ultimate furniture of the uni-
verse” by decomposing reality into its simplest
constituents, or they seek to “reduce” in some
other way the apparent variety of types of en-
tities existing in reality.



Barry Smith

156

It is the work of adequatist philosophical
ontologists such as Aristotle, Ingarden (1964),
and Chisholm (1996) which will be of primary
importance for us here. Their taxonomies are in
many ways comparable to the taxonomies pro-
duced by sciences such as biology or chemistry,
though they are of course radically more general
than these. Adequatists transcend the dichotomy
between substantialism and fluxism, since they
accept categories of both continuants and
occurrents. They study the totality of those
objects, properties, processes, and relations that
make up the world on different levels of focus
and granularity, and whose different parts and
moments are studied by the different scientific
disciplines. Ontology, for the adequatist, is then
a descriptive enterprise. It is thus distinguished
from the special sciences not only in its radical
generality but also in its goal or focus: it seeks
not predication and explanation but rather
taxonomy and description.

Methods of Ontology

The methods of ontology – henceforth in philo-
sophical contexts always used in the adequatist
sense – are the methods of philosophy in general.
They include the development of theories of
wider or narrower scope and the testing and
refinement of such theories by measuring them
up, either against difficult counter-examples or
against the results of science. These methods
were familiar already to Aristotle himself.

In the course of the twentieth century a range
of new formal tools became available to ontolo-
gists for the development and testing of their
theories. Ontologists nowadays have a choice
of formal frameworks (deriving from algebra,
category theory, mereology, set theory, topo-
logy) in terms of which their theories can be
formulated. These new formal tools, along with
the language of formal logic, can in principle
allow philosophers to express intuitive ideas
and definitions in clear and rigorous fashion,
and, through the application of the methods
of formal semantics, they can allow also for the
testing of theories for logical consistency and
completeness.

Ontological Commitment

To create effective representations it is an advant-
age if one knows something about the things
and processes one is trying to represent. (We
might call this the Ontologist’s Credo.) The at-
tempt to satisfy this credo has led philosophers
to be maximally opportunistic in the sources they
have drawn upon in their ontological explorations
of reality and in their ontological theorizing.
These have ranged all the way from the prepara-
tion of commentaries on ancient texts to reflec-
tion on our linguistic usages when talking about
entities in domains of different types. Increasingly,
however, philosophers have turned to science,
embracing the assumption that one (perhaps the
only) generally reliable way to find out some-
thing about the things and processes within a
given domain is to see what scientists say. Some
philosophers have indeed thought that the way
to do ontology is exclusively through the invest-
igation of scientific theories.

With the work of Quine (1953) there arose in
this connection a new conception of the proper
method of ontology, according to which the
ontologist’s task is to establish what kinds of
entities scientists are committed to in their
theorizing. The ontologist studies the world by
drawing conclusions from the theories of the
natural sciences, which Quine takes to be our
best sources of knowledge as to what the world
is like. Such theories are extensions of the theor-
ies we develop and use informally in everyday
life, but they are developed with closer attention
to those special kinds of evidence that confer a
higher degree of probability on the claims made.
Quine – or at least the Quine of 1953 (I am
here leaving aside Quine’s views on such matters
as ontological relativity and the indeterminacy
of translation) – still takes ontology seriously.
His aim is to use science for ontological pur-
poses, which means: to find the ontology in
scientific theories. Ontology is then a network
of claims, derived from the natural sciences, about
what exists, coupled with the attempt to establish
what types of entities are most basic. Each nat-
ural science has, Quine holds, its own preferred
repertoire of types of objects to the existence
of which it is committed. Each such science
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embodies only a partial ontology. This is defined
by the vocabulary of the corresponding theory
and (most importantly for Quine) by its canon-
ical formalization in the language of first-order
logic. Note that ontology is for Quine himself
not the metalevel study of the ontological com-
mitments or presuppositions embodied in the
different natural-scientific theories. Ontology is
rather these commitments themselves. Quine
moves to the metalevel, making a semantic as-
cent to consider the statements in a theory, only
in setting out to establish those expressions which
definitively carry its commitments. Quine fixes
upon the language of first-order logic as the
medium of canonical representation not out of
dogmatic devotion to this particular form, but
rather because he holds that this is the only
really clear form of language. First-order logic is
itself just a regimentation of corresponding parts
of ordinary language, a regimentation from
which, in Quine’s eyes, logically problematic
features have been excised. It is then, Quine
argues, only the bound variables of a theory that
carry its definitive commitment to existence. It
is sentences like “There are horses,” “There are
numbers,” “There are electrons,” that do this
job. His so-called “criterion of ontological com-
mitment” is captured in the slogan: To be is to be
the value of a bound variable. This should not
be understood as signifying some reductivistic
conception of existence itself as a merely logico-
linguistic matter. Rather it is to be interpreted in
practical terms: to determine what the ontological
commitments of a scientific theory are, it is neces-
sary to determine the values of the quantified
variables used in its canonical formalization.

Quine’s approach is thus most properly
conceived not as a reduction of ontology to the
study of scientific language, but rather as a
continuation of ontology in the traditional sense.
When viewed in this light, however, it can be
seen to be in need of vital supplementation. For
the objects of scientific theories are discipline-
specific. This means that the relations between
objects belonging to different disciplinary do-
mains fall out of bounds for Quinean ontology.
Only something like a philosophical theory of how
different scientific theories (or their objects)
relate to each other can fulfill the task of provid-
ing an inventory of all the types of entities in

reality. Quine himself would resist this latter
conclusion. For him the best we can achieve in
ontology lies in the quantified statements of par-
ticular theories, theories supported by the best
evidence we can muster. We have no way to rise
above the particular theories we have; no way to
harmonize and unify their respective claims.

Internal vs. External Metaphysics

Quine is a realist philosopher. He believes in a
world beyond language and beliefs, a world which
the theories of natural science give us the power
to illuminate. There is, however, another tend-
ency in twentieth-century analytic philosophy, a
tendency often associated with Quine but in-
spired much rather by Kant and promulgated by
thinkers such as Carnap and Putnam. According
to these thinkers ontology is a metalevel dis-
cipline which concerns itself not with the world
itself but rather only with theories or languages
or systems of beliefs. Ontology as a first-level
science of reality – ontology as what these
philosophers call “external metaphysics” – is
impossible. The best we can achieve, they hold,
is internal metaphysics, which means precisely the
study of the ontological commitments of spe-
cific theories or systems of beliefs. Strawsonian
descriptive metaphysics is one example of such
internal metaphysics. Model-theoretic semantics,
too, is often implicitly understood in internal-
metaphysical terms – the idea being that we can-
not understand what a given language or theory
is really about, but we can build models with
more or less nice properties. What we can never
do is compare these models to some reality bey-
ond. Ontology in the traditional philosophical
sense thus comes to be replaced by the study of
how a given language or science conceptualizes
a given domain. It becomes a theory of the
ontological content of certain representations.
Traditional ontologists are seeking principles that
are true of reality. The practitioners of internal
metaphysics, in contrast, are seeking to elicit prin-
ciples from subjects or theories. The elicited prin-
ciples may or may not be true, but this, to the
practitioner of internal metaphysics, is of no con-
cern, since the significance of these principles
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lies elsewhere – for instance in yielding a cor-
rect account of the taxonomical system used by
speakers of a given language or by the scientists
working in a given discipline.

In a development that has hardly been noted
by philosophers, a conception of the job of the
ontologist close to that of Carnap and Putnam
has been advanced in recent years also in certain
extraphilosophical disciplines, as linguists, psy-
chologists, and anthropologists have sought to
elicit the ontological commitments (“ontologies,”
in the plural) of different cultures and groups.
Thus, they have sought to establish the ontology
underlying common-sense or folk theories of
various sorts by using the standard empirical
methods of the cognitive sciences (see for
example Keil 1979, Spelke 1990). Researchers
in psychology and anthropology have sought
to establish what individual human subjects, or
entire human cultures, are committed to, ontolo-
gically, in their everyday cognition, in much the
same way in which Quine-inspired philosophers
of science had attempted to elicit the ontolo-
gical commitments of the natural sciences.

It was still reasonable for Quine to identify
the study of ontology – the search for answers
to the question: what exists? – with the study of
the ontological commitments of natural scient-
ists. This is because it is a reasonable hypothesis
that all natural sciences are in large degree con-
sistent with each other. Moreover, the identifica-
tion of ontology with ontological commitments
continues to seem reasonable when one takes
into account not only the natural sciences but
also certain commonly shared commitments of
common sense – for example that tables and
chairs and people exist. For the common-sense
taxonomies of objects such as these are compat-
ible with those of scientific theory if only we are
careful to take into account the different granu-
larities at which each operates (Forguson 1989,
Omnès 1999, Smith & Brogaard 2001).

Crucially, however, the running together of
ontology and ontological commitments becomes
strikingly less defensible when the ontological
commitments of various specialist groups of
nonscientists are allowed into the mix. How, onto-
logically, are we to treat the commitments of
astrologists, or clairvoyants, or believers in lepre-
chauns? We shall return to this question below.

Ontology and Information Science

In a related development, also hardly noticed by
philosophers, the term “ontology” has gained
currency in recent years in the field of computer
and information science (Welty & Smith 2001).

The big task for the new “ontology” derives
from what we might call the Tower of Babel prob-
lem. Different groups of data- and knowledge-
base system designers have their own idiosyncratic
terms and concepts by means of which they build
frameworks for information representation. Dif-
ferent databases may use identical labels but with
different meanings; alternatively the same mean-
ing may be expressed via different names. As
ever more diverse groups are involved in sharing
and translating ever more diverse varieties of
information, the problems standing in the way
of putting this information together within a
single system increase geometrically. Methods
must be found to resolve the terminological and
conceptual incompatibilities which then inevit-
ably arise.

Initially, such incompatibilities were resolved
on a case-by-case basis. Gradually, however, it
was recognized that the provision, once and for
all, of a common reference ontology – a shared
taxonomy of entities – might provide significant
advantages over such case-by-case resolution, and
the term “ontology” came to be used by informa-
tion scientists to describe the construction of a
canonical description of this sort. An ontology
is in this context a dictionary of terms formu-
lated in a canonical syntax and with commonly
accepted definitions designed to yield a lexical
or taxonomical framework for knowledge rep-
resentation which can be shared by different
information-systems communities. More ambi-
tiously, an ontology is a formal theory within
which not only definitions but also a supporting
framework of axioms is included (perhaps the
axioms themselves provide implicit definitions of
the terms involved).

The methods used in the construction of
ontologies thus conceived are derived on the
one hand from earlier initiatives in database
management systems. But they also include
methods similar to those employed in philosophy
(as described in Hayes 1985), including the
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methods used by logicians when developing
formal semantic theories.

Upper-level Ontologies

The potential advantages of ontology thus con-
ceived for the purposes of information manage-
ment are obvious. Each group of data analysts
would need to perform the task of making its
terms and concepts compatible with those of
other such groups only once – by calibrating its
results in the terms of the single canonical back-
bone language. If all databases were calibrated
in terms of just one common ontology (a single
consistent, stable, and highly expressive set of
category labels), then the prospect would arise
of leveraging the thousands of person-years of
effort that have been invested in creating separate
database resources in such a way as to create, in
more or less automatic fashion, a single integrated
knowledge base of a scale hitherto unimagined,
thus fulfilling an ancient philosophical dream of
a Great Encyclopedia comprehending all know-
ledge within a single system.

The obstacles standing in the way of the con-
struction of a single shared ontology in the sense
described are unfortunately prodigious. Consider
the task of establishing a common ontology of
world history. This would require a neutral and
common framework for all descriptions of his-
torical facts, which would require in turn that all
legal and political systems, rights, beliefs, powers,
and so forth, be comprehended within a single,
perspicuous list of categories.

Added to this are the difficulties which arise
at the point of adoption. To be widely accepted
an ontology must be neutral as between different
data communities, and there is, as experience
has shown, a formidable trade-off between this
constraint of neutrality and the requirement that
an ontology be maximally wide-ranging and
expressively powerful – that it should contain
canonical definitions for the largest possible
number of terms. One solution to this trade-off
problem is the idea of a top-level ontology, which
would confine itself to the specification of such
highly general (domain-independent) categories
as: time, space, inherence, instantiation, identity,

measure, quantity, functional dependence, pro-
cess, event, attribute, boundary, and so on. (See
for example <http://suo.ieee.org>.) The top-level
ontology would then be designed to serve as
common neutral backbone, which would be sup-
plemented by the work of ontologists working
in more specialized domains on, for example,
ontologies of geography, or medicine, or ecology,
or law, or, still more specifically, ontologies of
built environments (Bittner 2001), or of surgical
deeds (Rossi Mori et al. 1997).

Uses of Ontology

The initial project of building one single onto-
logy, even one single top-level ontology, which
would be at the same time nontrivial and also
readily adopted by a broad population of differ-
ent information-systems communities, has how-
ever largely been abandoned. The reasons for
this can be summarized as follows. The task of
ontology-building proved much more difficult
than had initially been anticipated (the difficult-
ies being at least in part identical to those with
which philosophical ontologists have grappled
for some 2000 years). The information-systems
world itself, on the other hand, is very often
subject to the short time horizons of the com-
mercial environment. This means that the require-
ments placed on information systems change
at a rapid rate, so that already for this reason
work on the construction of corresponding
ontological translation modules has been unable
to keep pace.

Yet work in ontology in the information-
systems world continues to flourish, and the prin-
cipal reason for this lies in the fact that its focus
on classification (on analysis of object types) and
on constraints on allowable taxonomies has
proved useful in ways not foreseen by its initial
progenitors. The attempt to develop termino-
logical standards, which means the provision of
explicit specifications of the meanings of the terms
used in application domains such as medicine or
air-traffic control, loses nothing of its urgency
even when it is known in advance that the more
ambitious goal of a common universal ontology
is unlikely to be realized.
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Consider the following example, due to
Guarino. Financial statements may be prepared
under either the US GAAP or the IASC stand-
ards (the latter being applied in Europe and many
other countries). Cost items are often allocated
to different revenue and expenditure categories
under the two standards, depending on the tax
laws and accounting rules of the countries
involved. So far it has not been possible to de-
velop an algorithm for the automatic conversion
of income statements and balance sheets between
the two systems, since so much depends on highly
volatile case law and on the subjective inter-
pretation of accountants. Not even this relatively
simple problem has been satisfactorily resolved,
though this is prima facie precisely the sort of
topic where ontology could contribute some-
thing of great commercial impact.

If Ontek did not Exist, it would
be Necessary to Invent It

Perhaps the most impressive attempt to develop
an ontology – at least in terms of sheer size – is
the CYC project (http://www.cyc.com), which
grew out of an effort initiated by Doug Lenat
in the early 1980s to formalize common-sense
knowledge in the form of a massive database of
axioms covering all things, from governments to
mothers. The resultant ontology has been criti-
cized for what seems to be its lack of principle
in the ways in which new terms and theories
come to be added to the edifice of the theory.
CYC takes the form of a tangled hierarchy, with
a topmost node labeled Thing, beneath which
are a series of cross-cutting total partitions,
including: Represented Thing vs. Internal Machine
Thing, Individual Object vs. Collection, Intan-
gible vs. Tangible Object vs. Composite Tangible
and Intangible Object. Examples of Intangible
Objects (Intangible means: has no mass) are sets
and numbers. A person, in the CYC ontology, is
a Composite Object made up of a Tangible body
and an Intangible mind.

More important for our purposes here is the
work of the firm Ontek – short for “ontological
technology” – which since 1981 has been devel-
oping database programming and knowledge

representation technologies necessary to create
decision automation systems – “white collar
robots” – for large-scale industrial enterprises in
fields such as aerospace and defense. Realizing
that the ontology required to build such systems
would need to embrace in a principled way the
entire gamut of entities encompassed by these
businesses in a single, unified framework, Ontek
approached this problem by systematically ex-
ploiting the resources of ontology in the tradi-
tional (adequatist) philosophical sense. A team
of philosophers (including David W. Smith and
Peter Simons) collaborated with software engin-
eers in constructing the system PACIS (for
Platform for the Automated Construction of
Intelligent Systems), which is designed to
implement a comprehensive theory of entities,
ranging from the very concrete (aircraft, their
structures, and the processes involved in design-
ing and developing them), to the somewhat
abstract (business processes and organizations,
their structures, and the strategies involved in
creating them), to the exceedingly abstract for-
mal structures which bring all of these diverse
components together.

Ontek has thus realized in large degree the
project sketched by Hayes in his “Naïve Physics
Manifesto,” of building a massive formal theory
of (in Hayes’s case) common-sense physical real-
ity (in Ontek’s case this is extended to include
not only airplane wings and factories but also
associated planning and accounting procedures).
As Hayes insisted, if long-term progress in artifi-
cial intelligence is to be achieved it is necessary
to put away the toy worlds of classical AI re-
search and to concentrate instead on the task of
formalizing the ontological features of the world
itself, as this is encountered by adults engaged
in the serious business of living.

The Leipzig project in medical ontology (see
<http://ifomis.de>), too, is based on a realist
methodology close to that of Ontek, and some-
thing similar applies also to the work of Guarino
and his colleagues in Italy. Most prominent
information-systems ontologists in recent years,
however, have abandoned the Ontologist’s Credo
and have embraced instead a view of ontology as
an inwardly directed discipline (so that they have
in a sense adopted an epistemologized reading
of ontology analogous to that of Carnap and
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Putnam). They have come to hold that onto-
logy deals not with reality itself but rather with
“alternative possible worlds,” worlds which are
indeed defined by the information systems them-
selves. This means not only that only those en-
tities exist which are represented in the system
(Gruber 1995), but also that the entities in ques-
tion are allowed to possess only those properties
which the system itself can recognize. It is as if
Hamlet, whose hair (we shall suppose) is not
mentioned in Shakespeare’s play, would be not
merely neither bald nor nonbald, but would
somehow have no properties at all as far as hair is
concerned. (Compare Ingarden 1973 on the “loci
of indeterminacy” within the stratum of rep-
resented objects of a literary work.) What this
means, however, is that the objects represented
in the system (for example, people in a database)
are not real objects – the objects of flesh and
blood we find all around us. Rather, they are
denatured surrogates, possessing only a finite
number of properties (sex, date of birth, social
security number, marital status, employment
status, and the like), and being otherwise entirely
indeterminate with regard to those sorts of prop-
erties with which the system is not concerned.

Information-systems ontologies in the sense
of Gruber are, we see, not oriented around the
world of objects at all. Rather, they are focused
on our concepts or languages or mental models
(or, on a less charitable interpretation, the two
realms of objects and concepts are simply con-
fused). It is in this light that we are to interpret
passages such as the following:

an ontology is a description (like a formal
specification of a program) of the concepts
and relationships that can exist for an agent or
a community of agents. This definition is con-
sistent with the usage of ontology as set-of-
concept-definitions, but more general. And it
is certainly a different sense of the word than
its use in philosophy. (Gruber, n.d.)

Conceptualizations

The newly fashionable usage of “ontology” as
meaning just “conceptual model” is by now

firmly entrenched in many information-systems
circles. Gruber is to be given credit for having
crystallized the new sense of the term by relating
it to the technical definition of “conceptualiza-
tion” introduced by Genesereth and Nilsson in
their Logical Foundation of Artificial Intelligence
(1987). In his 1993 article Gruber defines an
ontology as “the specification of a conceptual-
ization.” Genesereth and Nilsson conceive con-
ceptualizations as extensional entities (they are
defined in terms of sets of relations), and their
work has been criticized on the grounds that
this extensional understanding makes concep-
tualizations too remote from natural language,
where intensional contexts predominate (see
Guarino, Introduction to 1998). For present
purposes, however, we can ignore these issues,
since we shall gain a sufficiently precise under-
standing of the nature of “ontology,” as Gruber
conceives it, if we rely simply on the account
of conceptualizations which he himself gives in
passages such as the following:

A conceptualization is an abstract, simplified
view of the world that we wish to represent
for some purpose. Every knowledge base,
knowledge-based system, or knowledge-level
agent is committed to some conceptualization,
explicitly or implicitly. (Gruber 1995)

The idea is as follows. As we engage with the
world from day to day we participate in rituals
and we tell stories. We use information systems,
databases, specialized languages, and scientific
instruments. We buy insurance, negotiate traffic,
invest in bond derivatives, make supplications to
the gods of our ancestors. Each of these ways of
behaving involves, we can say, a certain concep-
tualization. What this means is that it involves a
system of concepts in terms of which the corres-
ponding universe of discourse is divided up into
objects, processes, and relations in different sorts
of ways. Thus in a religious ritual setting we might
use concepts such as salvation and purification;
in a scientific setting we might use concepts such
as virus and nitrous oxide; in a story-telling set-
ting we might use concepts such as leprechaun
and dragon. Such conceptualizations are often
tacit; that is, they are often not thematized in
any systematic way. But tools can be developed
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to specify and to clarify the concepts involved and
to establish their logical structure, and in this
way we are able to render explicit the underlying
taxonomy. We get very close to the use of the
term “ontology” in Gruber’s sense if we define
an ontology as the result of such clarification –
as, precisely, the specification of a conceptualiza-
tion in the intuitive sense described in the above.

Ontology now concerns itself not with the
question of ontological realism, that is with the
question whether its conceptualizations are true
of some independently existing reality. Rather, it
is a strictly pragmatic enterprise. It starts with
conceptualizations, and goes from there to the
description of corresponding domains of objects
(also called “concepts” or “classes”), the latter
being conceived as nothing more than nodes in
or elements of data models devised with specific
practical purposes in mind.

In very many cases the domains addressed by
ontological engineers are themselves the pro-
ducts of administrative fiat. The neglect of truth
to independent reality as a measure of the cor-
rectness of an ontology is then of little import.
In such cases the ontologist is called upon merely
to achieve a certain degree of adequacy to the
specifications laid down by the client, striving as
best he can to do justice to the fact that what
the client says may fall short, for example, when
measured in terms of logical coherence. Truth
(or the lack of truth) can be a problem also in
non-administrative domains. Bad conceptualiza-
tions abound (rooted in error, myth-making,
hype, bad linguistics, or in the confusions of
ill-informed “experts” who are the targets of
knowledge-mining). Conceptualizations such as
these may deal only with created (pseudo-)
domains, and not with any transcendent reality
beyond. They call for a quite different approach
than is required in those areas – above all in the
areas addressed by the natural sciences – where
the striving for truth to independent reality is a
paramount constraint. Yet this difference in ques-
tion has hardly been noted by those working on
information-systems ontology – and this gives
us one clue as to why the project of a common
reference ontology applicable in domains of many
different types should thus far have failed.

Considered against this background the project
of developing a top-level ontology begins to seem

rather like the attempt to find some highest
common denominator that would be shared in
common by a plurality of true and false theories.
Attempts to construct such an ontology must
fail if they are made on the basis of a methodo-
logy which treats all application domains on an
equal footing. Instead, we must find ways to do
justice to the fact that the different conceptual-
izations which serve as inputs to ontology are
likely to be not only of wildly differing quality
but also mutually inconsistent.

What can Information Scientists
Learn from Philosophical

Ontologists?

As we have seen, some ontological engineers have
recognized that they can improve their models
by drawing on the results of the philosophical
work in ontology carried out over the last 2000
years. This does not in every case mean that
they are ready to abandon their pragmatic per-
spective. Rather, they see it as useful to employ
a wider repertoire of ontological theories and
frameworks and, like philosophers themselves,
they are willing to be maximally opportunistic
in their selection of resources for purposes of
ontology-construction. Guarino and Welty
(2000), for example, use standard philosophical
analyses of notions such as identity, part, set-
membership, and the like in order to expose
inconsistencies in standard upper-level ontologies
such as CYC, and they go on from there to
derive metalevel constraints which all ontologies
must satisfy if they are to avoid inconsistencies
of the sorts exposed.

Given what was said above, it appears fur-
ther that information ontologists may have
sound pragmatic reasons to take the philo-
sopher ontologist’s traditional concern for truth
more seriously still. For the very abandonment
of the focus on mere conceptualizations and
on conceptualization-generated object-surrogates
may itself have positive pragmatic consequences.

This applies even in the world of admin-
istrative systems, for example in relation to the
GAAP/IASC integration problem referred to
above. For ontologists are here working in a
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type of theoretical context where they must move
back and forth between distinct conceptualiza-
tions, and where they can find the means to
link the two together only by looking at their
common objects of reference in the real, flesh-
and-blood world of human agents and financial
transactions.

Where ontology is directed in this fashion,
not towards a variety of more or less coherent
surrogate models, but rather towards the real
world of flesh-and-blood objects in which we all
live, then this itself reduces the likelihood of
inconsistency and systematic error in the theor-
ies which result; and, conversely, it increases the
likelihood of our being able to build a single
workable system of ontology that will be at
the same time nontrivial. On the other hand,
however, the ontological project thus conceived
will take much longer to complete and it will
face considerable internal difficulties along the
way. Traditional ontology is a difficult busi-
ness. At the same time, however, it has the
potential to reap considerable rewards – not least
in terms of a greater stability and conceptual
coherence of the software artifacts constructed
on its basis.

To put the point another way: it is precisely
because good conceptualizations are transparent
to reality that they have a reasonable chance of
being integrated together in robust fashion into
a single unitary ontological system. If, however,
we are to allow the real world to play a significant
role in ensuring the unifiability of our separate
ontologies, then this will imply that those who
accept a conceptualization-based methodology
as a stepping stone towards the construction of
adequate ontologies must abandon the attitude
of tolerance towards both good and bad con-
ceptualizations. It is this very tolerance which
is fated to undermine the project of ontology
itself.

Of course to zero-in on good conceptualiza-
tions is no easy matter. There is no Geiger-
counter-like device which can be used for
automatically detecting truth. Rather, we have
to rely at any give stage on our best endeavors –
which means concentrating above all on the work
of natural scientists – and proceed in careful,
critical, and fallibilistic fashion from there, hop-
ing to move gradually closer to the truth via

an incremental process of theory construction,
criticism, testing, and amendment. As suggested
in Smith and Mark (2001), there may be reasons
to look beyond natural science, above all where
we are dealing with objects (such as societies,
institutions, and concrete and abstract artifacts)
existing at levels of granularity distinct from those
which readily lend themselves to natural-scientific
inquiry. Our best candidates for good conceptu-
alizations will, however, remain those of the nat-
ural sciences – so that we are, in a sense, brought
back to Quine, for whom the job of the ontolo-
gist coincides with the task of establishing the
ontological commitments of scientists, and of
scientists alone.

What Can Philosophers Learn
from Information-systems

Ontologists?

Developments in modal, temporal, and dynamic
logics as also in linear, substructural, and paracon-
sistent logics have demonstrated the degree to
which advances in computer science can yield
benefits in logic – benefits not only of a strictly
technical nature, but also sometimes of wider
philosophical significance. Something similar
can be true, I suggest, in relation to the devel-
opments in ontological engineering referred to
above. These developments can first of all help
to encourage existing tendencies in philosoph-
ical ontology (nowadays often grouped under the
heading “analytic metaphysics”) towards open-
ing up new domains of investigation, for example
the domain of social institutions (Mulligan 1987,
Searle 1995, Smith 2002), of patterns (Johansson
1998), of artifacts (Dipert 1993, Simons &
Dement 1996), of boundaries (Smith 2001), of
dependence and instantiation (Mertz 1996), of
holes (Casati & Varzi 1994), and parts (Simons
1987). Secondly, it can shed new light on the
many existing contributions to ontology, from
Aristotle to Goclenius and beyond (Burkhardt
& Smith 1991), whose significance was for a long
time neglected by philosophers in the shadow of
Kant and other enemies of metaphysics. Thirdly,
if philosophical ontology can properly be con-
ceived as a kind of generalized chemistry, then
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information systems can help to fill one important
gap in ontology as it has been practiced thus far,
which lies in the absence of any analog of chem-
ical experimentation. For one can, as C. S. Peirce
remarked (1933: 4.530), “make exact experi-
ments upon uniform diagrams.” The new tools
of ontological engineering might help us to real-
ize Peirce’s vision of a time when operations
upon diagrams will “take the place of the experi-
ments upon real things that one performs in
chemical and physical research.”

Finally, the lessons drawn from information-
systems ontology can support the efforts of those
philosophers who have concerned themselves
not only with the development of ontological
theories, but also – in a field sometimes called
“applied ontology” (Koepsell 1999, 2000) – with
the application of such theories in domains such
as law, or commerce, or medicine. The tools of
philosophical ontology have been applied to solve
practical problems, for example concerning the
nature of intellectual property or concerning
the classification of the human fetus at different
stages of its development. Collaboration with
information-systems ontologists can support such
ventures in a variety of ways, first of all because
the results achieved in specific application do-
mains can provide stimulation for philosophers,
but also – and not least importantly – because
information-systems ontology is itself an enorm-
ous new field of practical application that is
crying out to be explored by the methods of
rigorous philosophy.
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Chapter 12

Virtual Reality
Derek Stanovsky

Introduction

“Virtual reality” (or VR) is a strangely oxy-
moronic term. “Virtual,” with its sense of “not
actual” is jarringly juxtaposed with “reality” and
its opposing sense of “actual.” Undoubtedly the
term has gained such currency at least partly
because of this intriguing provocation. “Virtual
reality” is currently used to describe an increas-
ingly wide array of computer-generated or medi-
ated environments, experiences and activities
ranging from the near ubiquity of video games, to
emerging technologies such as tele-immersion,
to technologies still only dreamed of in science
fiction and only encountered in the novels of
William Gibson or Orson Scott Card, on the
Holodeck of television’s Star Trek, or at the
movies in The Matrix of the Wachowski brothers,
where existing VR technologies make possible a
narrative about imagined VR technologies. The
term “virtual reality” covers all of this vast, and
still rapidly expanding, terrain.

“Metaphysics” too is an expansive term (see
for example Chapter 11, ONTOLOGY, and Chapter
13, THE PHYSICS OF INFORMATION). Setting itself
the enormous task of investigating the funda-
mental nature of being, metaphysics inquires into
what principles may underlie and structure all of
reality. Some questions about virtual reality from
the perspective of metaphysics might be: What

sort of reality is virtual reality? Does the advent
of virtual reality mark an extension, revision,
expansion, or addition to reality? That is, is virtual
reality real? Or is virtual reality more virtual than
real and, thus, not a significant new metaphys-
ical problem itself ? How else might the links
between “reality” and “virtuality” be understood
and negotiated? Perhaps even more importantly,
do the possible metaphysical challenges presented
by virtual reality necessitate any changes in exist-
ing metaphysical views, or shed any light on other
metaphysical problems?

This chapter approaches some of these ques-
tions, focusing on three main issues within the
tremendously open field of inquiry laying at the
intersection of metaphysics with virtual reality.
First, the technology of virtual reality, along with
some of the issues arising from this technology,
will be situated and examined within the Western
philosophical tradition of metaphysics stretching
from ancient to modern and postmodern times.
Next, the issues raised by virtual reality for per-
sonal identity and the subject will be explored and
examined, beginning with Cartesian subjectivity
and moving through poststructuralist theories of
the subject and their various implications for vir-
tual reality. Finally, these metaphysical considera-
tions and speculations will be brought to bear
on the current economic realities of globalization
and the emerging information economy, which
have become inextricably bound up with both
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the metaphysics and politics of virtual reality as
it exists today.

Since metaphysics itself is one of the broadest
subjects, it seems odd to restrict the discussion
of virtual reality only to one of its narrower
senses. Therefore, virtual reality too will be con-
strued as broadly as possible, and not confined
to any one particular technological implementa-
tion, either existing or imagined. However, the
insights concerning virtual reality gleaned in this
manner should also find application in many
of its narrower and more restricted domains as
well. One final qualification: since metaphysics
inquires into the fundamental structures of reality,
and since it is unclear at this stage how virtual
reality is to be located within reality, it might
be more appropriate if the present inquiry into
the metaphysics of virtual reality were described
instead as an exercise in “virtual metaphysics.”
It may be that what virtual reality requires is
not so much a place within the history of West-
ern metaphysics as it does a metaphysics all of
its own.

Virtual Reality

Virtual reality has been described in a variety of
ways. In one of the earliest book-length treat-
ments of virtual reality, Howard Rheingold writes:
“One way to see VR is as a magical window
onto other worlds . . . Another way to see VR is
to recognize that in the closing decades of the
twentieth century, reality is disappearing behind
a screen” (Rheingold 1991: 19). This framing
of virtual reality is a useful one for our purposes
in that it helps to clarify and highlight one of
the central issues at stake. Does virtual reality
provide us with new ways to augment, enhance,
and experience reality, or does it undermine and
threaten that reality? Virtual reality is equally
prone to portrayals as either the bearer of bright
utopian possibilities or dark dystopian nightmares,
and both of these views have some basis to re-
commend them. Before exploring these issues
further, it will be helpful to describe and explain
the origins of virtual reality, what virtual reality
is currently, and what it may become in the
future.

Virtual reality emerged from an unlikely hybrid
of technologies developed for use by the military
and aerospace industries, Hollywood, and the
computer industry, and was created within con-
texts ranging from the cold war to science
fiction’s cyberpunk subculture. The earliest forms
of virtual reality were developed as flight simu-
lators used by the US military and NASA to train
pilots. This technology led to the head-mounted
displays and virtual cockpit environments used
by today’s fighter pilots to control actual aircraft.
Another source of VR lies in the entertainment
industry’s search for ever more realistic movie
experiences beginning with the early Cinerama,
stereo sound, and 3D movies, and leading to
further innovations in the production of realistic
images and audio. Add to this a whole host
of developments in computer technology. For
instance, computer-aided design programs, such
as AutoCAD, made it possible to use computers
to render and manipulate three-dimensional rep-
resentations of objects, and graphical computer
interfaces pioneered by Xerox and popularized
by Apple and Microsoft have all but replaced
text-based computer interfaces and transformed
the way people interact with computers. All of
these trends and technologies conspired to
create the technology that has come to be known
as “virtual reality” (for more on the genesis
and genealogy of VR see Rheingold 1991 and
Chesher 1994).

There is not, or at least not yet, any fixed set
of criteria clearly defining virtual reality. In his
book The Metaphysics of Virtual Reality, Michael
Heim identifies a series of “divergent concepts
currently guiding VR research” each of which
“have built camps that fervently disagree as to
what constitutes virtual reality” (Heim 1993:
110). The cluster of features considered in this
section concern computer-generated simulations
which are interactive, which may be capable of
being shared by multiple users, may provide fully
realistic sensory immersion, and which may allow
for forms of telepresence enabling users to com-
municate, act, and interact over great distances.
Although not all of these elements exist in every
version of virtual reality, taken together, these
features have come to characterize virtual reality.

At one end of the spectrum, technologies
allowing interactions with any representation or
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simulation generated by means of a computer
are capable of being described as virtual reality.
Thus, a video game simulation of Kung-Fu
fighting, or the icons representing “documents”
on a simulated computer “desktop” might both
be cases where computers create a virtual reality
with which people then interact in a variety of
ways. What makes these candidates for virtual
reality is not simply the fact that they are repres-
entations of reality. Paintings, photographs, tele-
vision, and film also represent reality. Computer
representations are different because people are
able to interact with them in ways that resemble
their interactions with the genuine articles. In
short, people can make the computer simulations
do things. This is something that does not hap-
pen with other forms of representation. This form
of virtual reality can already be provided by
existing computer technologies and is becoming
increasingly commonplace.

At the other end of the spectrum lie tech-
nologies aimed at fuller sensory immersion.
Head-mounted displays, datagloves, and other
equipment translate body, eye, and hand move-
ments into computer input and provide visual,
audio, and even tactile feedback to the user. This
type of virtual reality aims at being able to pro-
duce and reproduce every aspect of our sensory
world, with users interacting with virtual reality
in many of the same ways they interact with
reality, e.g. through looking, talking, listening,
touching, moving, etc. (even tasting and smell-
ing may find homes in virtual reality one day).
Virtual reality in this vein aims at creating simu-
lations that are not only perceptually real in how
they look and sound, but also haptically and
proprioceptively real in how they feel to users as
well. As Randal Walser, a developer of virtual-
reality systems, has written: “Print and radio tell;
stage and screen show,” while virtual reality
“embodies” (quoted in Rheingold 1991: 192). At
the imagined limit of such systems lie the virtual-
reality machines of science fiction, with Star Trek’s
Holodeck and the computer-generated world of
The Matrix producing virtual realities that are
perceptually and experientially indistinguishable
from reality. No such technology exists today,
but some elements of it are already possible.

In addition to the virtual reality of interactive
simulations, whether confined to two-dimensional

video screens, or realized through more ambi-
tiously realistic and robustly immersive technolo-
gies, there are other elements that may also play
a part in virtual reality. Perhaps the most import-
ant of these is provided by the capability of com-
puters to be networked so that multiple users
can share a virtual reality and experience and
interact with its simulations simultaneously. The
possibility for virtual reality to be a shared experi-
ence is one of the principal features by which
virtual reality can be distinguished from fantasy.
One of the tests of reality is that it be available
intersubjectively. Thus, what is unreal about
fantasy is not necessarily that the imagined experi-
ences do not exist; it is that they do not exist
for anyone else. Dreams are private experiences.
On the contrary, the shared availability of virtual
reality makes possible what William Gibson de-
scribes so vividly in his early cyberpunk novels of
a computer-generated “consensual hallucination”
(Gibson 1984: 51). The ability to share virtual
reality sets the stage for a wide variety of human
interactions to be transplanted into virtual reality,
and opens opportunities for whole new avenues
of human activity. Communication, art, politics,
romance, and even sex and violence are all hu-
man activities that have found new homes in
virtual reality. The possibility for the creation of
entirely new forms of human interactions and
practices that have no analog or precedence out-
side of virtual reality always remains open.

Another feature that may be encountered in
virtual reality is that of “telepresence” or presence
at distance, now frequently shortened simply to
“presence.” E-mail, video conferencing, distance
education, and even telephones, all enable types
of telepresence. In each of these cases, the tech-
nology allows users to communicate with distant
people as if they were in the physical presence of
each other. Such communication is so common-
place in so much of the world today, it hardly
seems strange anymore that it is possible to com-
municate with people who are thousands of miles
away. More sophisticated, realistic, and immersive
technologies both exist, and can be imagined,
that allow not only for written or spoken com-
munication over great distances, but also for
other types of interactions as well. For instance,
the military use of remotely controlled aircraft
and missiles, or the use of unmanned spacecraft
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for exploration where humans might see, move,
control, and use instruments to explore far-flung
destinations in the solar system are both examples
which allow human presence virtually. Other ex-
amples can be found in medicine, where surger-
ies are now performed via computer-controlled
instruments, and surgeons interface with a video
screen rather than a patient. These examples
illustrate ways in which human presence, action,
and interaction can be created virtually, and such
examples are becoming more, rather than less,
common.

Virtual reality not only creates new virtual
spaces to inhabit and explore, but creates the
possibility of virtual time as well. With the cre-
ation of computer-generated simulations came
a bifurcation of time such that one now needs
to distinguish between time in the simulated,
virtual world and time in the rest of the world.
Thus, only with the advent of the artificially
created worlds of virtual reality does the concept
of “real time” (RT) enter into general parlance.
Communications and interactions in virtual real-
ity (as opposed to IRL, “in real life”) may be
synchronous (as in video-conferencing and
chatrooms) and coincide closely with real time,
or asynchronous (as in e-mail exchanges) and
diverge widely and unpredictably from the pas-
sage of time in other virtual interactions or with
time outside the simulation. Time may even stop,
or go backwards, within virtual reality. For in-
stance, a simulation might be paused indefinitely,
or reset to some previous state to allow users to
experience a part of a simulation again. Time
may also vary simply as a result of the techno-
logy used. This might happen when faster ma-
chines are networked with computers operating
at lower MHz, or utilizing slower modems. In
such cases, this can mean that some objects are
rendered faster and changed and updated more
frequently than others, giving an oddly disjointed
sense of time, as objects in the same simulation
move at distinctly different rates of time. These
variations and complications in time emerge
alongside and with virtual reality.

Not all of these elements exist in every ver-
sion of virtual reality. However, taken together,
they provide the background against which cur-
rent virtual-reality systems are being invented and
reinvented. These same elements also trace the

horizon within which any metaphysics of virtual
reality must take place.

Virtual Metaphysics

It is possible to recapitulate a large portion of the
history of Western metaphysics from the vantage-
point offered by virtual reality. The debates over
rationalism, empiricism, realism, idealism, mater-
ialism, nominalism, phenomenology, possible
worlds, supervenience, space, and time, to name
just a few, can all find new purchase, as well as
some new twists, in this brave new world of
computer-generated virtual reality. This section
traces some of the most influential Western meta-
physical views concerning the distinction between
appearance and reality and explores their pos-
sible relevance to virtual reality. This discussion
by no means exhausts the metaphysical possib-
ilities of virtual reality. In addition to the many
strands of Western (henceforth this qualification
will be omitted) metaphysics left untouched,
there remain vast areas of metaphysical thought
that could also be fruitfully explored, including
long and rich traditions of African, Chinese,
Indian, and Latin American metaphysics.

Distinguishing between appearance and reality
is perhaps one of the most basic tasks of meta-
physics, and one of the oldest, dating back at
least to Thales and his pronouncement that de-
spite the dizzying variety in how things appear,
in reality “All is water.” This desire to penetrate
behind the appearances and arrive at the things
themselves is one of the most persistent threads
in metaphysics. Virtual reality presses at the very
limits of the metaphysical imagination and fur-
ther tangles and troubles long standing prob-
lems concerning how things seem versus how
they really are. For instance, puzzles concerning
mirrors and dreams and the ways in which they
can confound our understanding of reality have
a long history and haunt the writings of many
metaphysicians. Virtual reality complicates these
puzzles still further.

“But suppose the reflections on the mirror
remaining and the mirror itself not seen, we
would never doubt the solid reality of all that
appears” (III. 6 [13]). This passage from Plotinus
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comes wonderfully close to describing the cur-
rent possibilities of virtual reality. Virtual reality
may be very like the images in a mirror persist-
ing even after the mirror disappears. In the case
of mirrors, such a possibility remains only hypo-
thetical. Plotinus assumes that in most cases the
difference between reality and the reflection of
reality presented by a mirror is easy to discern.
After all, it is only Lewis Carroll’s Alice who peers
into a looking glass and takes what she sees to
be a room “just the same as our drawing-room,
only the things go the other way” (Carroll 1871:
141). Such a confusion seems amusingly child-
ish and naive. So confident is Plotinus in this
distinction between real objects and their unreal
mirror images that he uses it as an analogy in
support of his claim that reality lies with form
rather than matter. However, what is more strik-
ing is that Plotinus allows that under certain
circumstances (if the image in the mirror endured,
and if the mirror itself was not visible) these
reflections might fool us as well. Indeed, it is
our inability to distinguish image from reality
that lends interest to such spectacles as fun
houses, with their halls of mirrors, and the illu-
sions performed by magicians. In these cases,
we do make the same mistake as Alice. It is this
possibility of fundamentally conflating image, or
representation, with reality that lends mirrors
their metaphysical interest.

Virtual reality may present us with a new sort
of mirror; one with the potential to surpass even
the finest optical mirrors. If so, then virtual real-
ity may fatally complicate the usual mechanisms
used to distinguish image from reality, and
representation from what is represented. For
Plotinus, it is the limitations of the mirror image
that reveals its status as a reflection of reality. It
is only because images in a mirror are transient
(fleeting, temporary, failing to persist over time
or cohere with the rest of our perceptions) and
because the mirror itself does not remain invis-
ible (its boundaries glimpsed, or reflecting sur-
face flawed or otherwise directly perceptible) that
enables us to tell the difference between image
and reality. One of the inherent limitations of
any mirror is that it is necessarily confined to
optical representations. Reaching out to touch
an object in a mirror always reveals the decep-
tion. However, in immersive versions of virtual

reality, the image need not be limited to sight.
In virtual reality, the representation may pass
scrutiny from any angle using any sense. As for
transience, while the images in virtual reality may
disappear at any moment, they also may be just
as permanent and long-lived as any real object
or event. Moreover, mirrors can only reflect the
images of already existing things. Virtual reality
has no such constraint. Objects in virtual reality
may be copies of other things, but they also may
be their own unique, individual, authentic objects
existing nowhere else. This last point means that
the grounds for needing to distinguish image
from reality have changed. It is not simply that
the representations of virtual reality are false (not
genuine) like the reflections in a mirror. It is not
even analogous to Plato’s view of theater, which
was to be banned from his Republic because of
its distortions and misrepresentations of reality.
Instead, virtual reality may summon up a whole
new reality, existing without reference to an
external reality, and requiring its own internal
methods of distinguishing true from false, what
is genuine or authentic from what is spurious
or inauthentic.

Dreams too can provide occasions where
perception and reality become interestingly
entangled and may be one of the best, and most
familiar, comparisons for virtual reality. Dreams
possess many (although not all) of the elements
of virtual reality. Dreams are immersive, match-
ing in sensory clarity and distinctness even the
most optimistic science fiction accounts of
virtual reality. In his Meditations, Descartes fam-
ously entertains the possibility that there may
be no certain method for distinguishing dreams
from reality. He writes: “How often, asleep at
night, am I convinced of just such familiar events
– that I am here in my dressing gown, sitting
by the fire – when in fact I am lying undressed
in bed!” and finds such anecdotes sufficiently
persuasive to conclude that “I see plainly that
there are never any sure signs by means of which
being awake can be distinguished from being
asleep” (Descartes 1641: 77). Here, Descartes
seems to suggest that dreams and reality can
actually be confused, unlike Plotinus, who
viewed the confusion of images in a mirror with
reality as only a hypothetical possibility at best.
Descartes, however, is unwilling to allow this
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much uncertainty into his philosophical system
and so appends the following curious solution
to the dream problem in the last paragraph of
his last Meditation. “But when I distinctly see
where things come from and where and when
they come to me, and when I can connect my
perceptions of them with the whole of the rest
of my life without a break, then I am quite cer-
tain that when I encounter these things I am
not asleep but awake” (Descartes 1641: 122).
Along with clarity and distinctness, Descartes adds
coherence as a final criterion for certainty, in an
effort to resolve the doubts raised by the dream
problem. This is despite the fact that one of the
chief strengths of the dream problem, as he put
it forward, lay in the fact that dreams often could
be fit coherently into waking life.

Virtual reality also can pass these tests of clar-
ity, distinctness, and coherence. Beyond this, VR,
unlike a dream, is able to satisfy the requirement
of intersubjective availability that only “real”
reality is generally assumed to possess. That is,
whereas a dream can only be experienced by a
single person, virtual reality is available to any-
one. At this point, Descartes’s dream problem
takes on new life. Just as was true of the com-
parison with images in a mirror, the need to
distinguish virtual reality from nonvirtual reality
seems to dissolve. If virtual reality is not “real,”
it must be on some basis other than those con-
sidered so far. Distinguishing dream from real-
ity, for Descartes, just like distinguishing image
from reality for Plotinus, takes on importance
precisely because, without some reliable means
of discrimination, such confusions run the risk
of infecting an otherwise easily recognized real-
ity with instances of unreality. This would render
reality a concept of dubious usefulness, for it
could no longer clearly be distinguished from
its opposite, from the unreal, from appearance,
from image, or from dream. Descartes and
Plotinus both identify permanence and coher-
ence as criteria of the real and transience as the
mark of the merely apparent. However, such
solutions work even less well in the case of
virtual reality. At this point the name “virtual
reality” starts to become justified. Virtual reality
takes on an existence with a distinctly different
character from dreams, images, and other mere
representations.

Other metaphysical systems plot more subtle
and complex relationships between appearance
and reality. Kantian metaphysics occupies a pivotal
place in the history of metaphysics providing, as
it does, a continuation of important strands of
debate from antiquity, the culmination of sev-
eral disputes within the modern period, and the
origin of many contemporary discussions in the
field. Can the Kantian system help provide a
more sophisticated description of the status of
virtual reality?

Kant’s transcendental idealism revolves around
the view that things in themselves are unknowable
in principle and that human knowledge is only
of appearances. Just like Descartes, Kant holds
that we are epistemically acquainted with only
our own perceptions. However, unlike Descartes,
for Kant perceptual objects are nothing other
than these patterns of representation encountered
by the mind. Thus, Kant believes it is possible to
overcome the epistemological problems intro-
duced by the division between appearance and
reality. This is because, for Kant, the mind plays
an active, constitutive role in structuring reality.
Chief among these contributions are the intui-
tions of space and time. Space and time are not
themselves “things” that are directly perceptible,
and yet, it is impossible for human beings to
experience objects outside of space and time.
What this means, according to Kant, is that “Both
space and time . . . are to be found only in us”
(1781: A 373). In this way, Kant hopes to over-
come the epistemological divide between em-
piricism and rationalism by restricting knowledge
to objects of experience, while at the same time
granting an active role to the mind in structur-
ing that experience.

Given a Kantian view, the objects encoun-
tered in virtual reality may not pose any signific-
antly new metaphysical challenges. Since things
in themselves are never the direct objects of
human knowledge, the fact that experiences
in virtual reality fail to correspond to objects
outside the mind in any simple, straightforward
way is not necessarily a problem. Every object of
human knowledge, whether actual or virtual, is
nothing other than just such an organized col-
lection of perceptual representations. This means
that virtual reality can be admitted to the world
of empirical human experience on more or less
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equal footing with the more usual forms of
experience. Another way of stating this might
be that, for Kant, all experience is essentially
virtual. It is not epistemic contact with, or know-
ledge of, things as they exist apart from the mind
that ever characterizes any human experience.
What is known is only how those things appear
to the mind. Given this, the fact that virtual
reality exists for the mind (and can be made to
exist for more than one mind) is sufficient to
qualify those experiences as “real.” One may still
need to exercise some care in using and applying
the empirical knowledge gained by way of vir-
tual reality. Likewise, inferences based on that
knowledge must be confined to their appropri-
ate domain. However, this holds true for any
piece of empirical knowledge no matter how it
is acquired.

Kantian metaphysics may also help explain why
human interactions with computers have con-
jured up these strange new frontiers of virtual
space and virtual time. If it is true, as Kant con-
jectures, that the mind cannot experience things
outside of space and time, then any new experi-
ences will also have to be fit within these schemas.
Although the mind does not possess innate ideas
or any other particular content, it does provide
a formal structure that makes possible any ex-
perience of the world. Presumably, this remains
true of computer-generated worlds as well. Once
computer-mediated experiences become a tech-
nical possibility, the mind also structures, organ-
izes, and interprets these experiences within the
necessary framework. Thus, virtual reality may
be a predictable artifact of the mind’s ordering
of these computer-generated experiences. Virtual
space and virtual time may be the necessary
forms of apprehension of virtual reality, just as
space and time are necessary to the apprehension
of reality. In the case of virtual reality, the claim
that space and time are “found only in us” seems
much less contentious. Given these possibilities
and connections, virtual reality may turn out
to provide a laboratory for the exploration of
Kantian metaphysics.

At this point one may wish to retreat to the
relative safety of a more thoroughgoing materi-
alism, where what is real is only the circuits
and wires that actually produce virtual reality.
However, the cost of such a move comes at the

expense of the reality of all experience. It is not
just Descartes and Kant who find a need to
accord an increased status to ideas and percep-
tion. Even in Heidegger’s existentialist meta-
physics there is always not only the object, but
also the encounter of the object; and these two
moments remain distinct, and distinctly import-
ant. This experiential aspect of virtual reality is
something that invites a more phenomenolo-
gically oriented approach. It may be tempting
to see virtual reality as a vindication of Platonist
metaphysics, where the world of ideas is brought
to fruition and the less-than-perfect world of
bodies and matter can be left behind. Others
argue that rather than demonstrating the truth
of Platonic idealism, or marking the completion
of the Cartesian project of separating the mind
from the body, virtual reality instead illustrates
the inseparability of mind from body and the
importance of embodiment for all forms of
human experience and knowledge. After all, even
in the noncorporeal world of virtual reality,
virtual bodies had to be imported, re-created,
and imposed in order to allow for human
interaction with this new virtual world. This
tends to point to the necessity of embodiment
as a precondition for, rather than an impedi-
ment to, experience and knowledge (see Heidt
1999).

There are many other possible approaches
to the metaphysics of VR. For instance, Jean
Baudrillard’s theories of simulation and hyper-
reality seem readymade for virtual reality, point-
ing to a metaphysics where contemporary social
reality could be understood as having already
fallen prey to the order of simulation made
increasingly available by virtual reality. From
Baudrillard’s vantage-point, simulations, like
those of VR, mark the end of our ability to dis-
tinguish between appearance and reality, reduc-
ing everything to a depthless hyperreality (see
Baudrillard 1983). Another possibility would be
to follow Jacques Derrida’s critique of the meta-
physics of presence onto the terrain of virtual
reality where the absence of presence could be
marked in new, high-tech ways. However, rather
than pursuing additional examples, at this point
it is better to inquire into a different, although
closely related, set of metaphysical problems con-
cerning the identity of the self.
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Virtual Identity

In addition to raising questions about the nature
and status of external reality, virtual reality also
raises difficult questions concerning the nature
of the subject, or self. Despite the differences in
the metaphysical views discussed up to this point,
there is one area of general agreement. Whether
Platonist, Cartesian, or Kantian in orientation,
in all of these systems there is a shared notion of
a unified, and unifying, subject whose existence
provides a ground for knowledge, action, and
personal identity. Such a conception of the sub-
ject has been complicated in recent years. In
particular, poststructuralist accounts of a divided
and contingent subject have raised questions
about the adequacy of previous views. Virtual
reality also complicates assumptions concerning
a unified subject. The example discussed above
of images in a mirror can be used again to ap-
proach these questions surrounding the subject,
this time through the work of Jacques Lacan.

Lacan’s influential formulation of the “mirror
stage” pushes the notion of the knowing subject
to its limits. Inverting traditional Cartesian epi-
stemology, the subject, instead of being the first
and most surely known thing, becomes the first
misrecognized and misknown thing. This is an
even more radical mistake than that made by
Alice in her trip through the looking glass. At
least when Alice looked in the mirror and saw
a girl very much like herself, she still took it to
be a different little girl and not herself. For
Descartes, this would amount to a mistake in
the one thing he thought he could be certain of,
the cogito. Given Lacan’s view, “I think, there-
fore I am” becomes an occasion for error when
pronounced while looking into a mirror. In this
case, the I of thinking can differ from the I of
existing (the I of consciousness thinks, therefore
the I in the mirror exists). Lacan reworks the
slogan to read, “I think where I am not, there-
fore I am where I do not think” (Lacan 1977:
166). Such a formulation could never serve as
Descartes’s foundation for knowledge once this
division is introduced within the subject.

This divide within the subject is precisely what
is highlighted in Lacan’s discussion of the mirror
stage. Lacan writes: “We have only to understand

the mirror stage as an identification, in the full
sense that analysis gives to the term: namely, the
transformation that takes place in the subject
when he assumes an image” (Lacan 1977: 2).
The subject is thus produced by an identifica-
tion with an image, an image that is not the
subject and yet which is mistaken to be identical
with it. If identity is based on identifications,
and identification is always an identification with
something one is not, then one’s identity will
always be something that is at odds with itself.
Elsewhere, Lacan explicitly relies on an example
of a trick done with mirrors to illustrate the
situation of the human subject. Here, the illu-
sion of a vase filled with flowers is produced.
For Lacan, it is the illusion of the self that is
produced. (See figure 12.1.)

In the figure, the subject occupies the posi-
tion of the viewer (symbolized by a barred S to
re-emphasize this division which founds the sub-
ject), and the ego is represented by the virtual
image of the inverted vase seen in the mirror.
Lacan is proposing that a mistake worse than
that made by Alice with the looking glass is not
merely commonplace, but constitutive of human
subjectivity. The self, emerging over time as the
result of a series of identifications with others,
is, like the image of the vase in the mirror, not
actual but virtual.

Virtual reality compounds this dilemma. If in
reality the subject is already not where it thinks
itself to be, in virtual reality the situation becomes
even worse. Virtual reality provides an open field
for various and even multiple identities and iden-
tifications. In virtual environments, people are
not confined to any one stable unifying subject
position, but can adopt multiple identities (either
serially or simultaneously). From the graphical
avatars adopted to represent users in virtual en-
vironments, to the handles used in chatrooms,
to something as simple as multiple e-mail ac-
counts, all of these can be used to produce and
maintain virtual identities. Identity in virtual
reality becomes even more malleable than in real
life, and can be as genuine and constitutive of
the self as the latter. Sexual and racial identities
can be altered, edited, fabricated, or set aside
entirely. Identities can be ongoing, or adopted
only temporarily. Thus, virtual reality opens the
possibility not only of recreating space and time,
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Figure 12.1: The illusion of a vase/the illusion of the self (Lacan 1978)
Source: “Diagram on p. 145,” from The Four Fundamental Concepts of Psycho-analysis by Jacques Lacan, tr. Alan Sheridan.
Copyright © 1973 by Editions du Seuil. English tr. copyright © 1977 by Alan Sheridan. Used by permission of W. W. Norton
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but the self as well. The subject is produced
anew as it comes to occupy this new space. In
her influential book Life on the Screen, Sherry
Turkle argues that online identities make “the
Gallic abstractions” of French theorists like Lacan
“more concrete,” writing: “In my computer-
mediated worlds, the self is multiple, fluid, and
constituted in interaction with machine connec-
tions; it is made and transformed by language”
(Turkle 1995: 15). For Turkle, the divisions and
fragmentations that mark every identity take on
new prominence and find new uses in the virtual
reality of online society.

Economic Reality

The metaphysics of virtual reality may strike some
as the most esoteric of topics, far removed from
everyday life and practical human concerns. How-
ever, metaphysical views often have a surprising
reach and can make their influence felt in unsus-
pected ways. In the case of virtual reality, these
metaphysical attachments are currently in the

process of producing and reshaping vast areas
of our social reality. If virtual reality has yet to
supplant more traditional modes of human in-
teraction with the physical world, with each other,
and even with oneself, there is one arena in
which virtual reality has already made startling
and astonishingly swift inroads, and that is in
the realm of economics. From ATM machines
and electronic transfers to the dot-com boom
and bust, global capital has not been shy about
leaping into the virtual world of e-commerce.
Why has global capital been able to find a home
in this new virtual economic space with such
ease and rapidity? What does this colonization
of virtual reality portend for other noncommodity
possibilities of virtual reality?

Globalization is a process that has certainly
been facilitated by the information economy of
the digital age. Mark Poster has described this
situation as “Capitalism’s linguistic turn” as the
industrial economy segued into the information
economy (Poster 2001: 39). Capital has been
instrumental in producing and disseminating the
technologies that have made this process pos-
sible. The coining of the phrase “virtual reality”
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is most often attributed to Jaron Lanier, a devel-
oper and entrepreneur of virtual-reality systems,
to use as part of a marketing strategy for his
software company. The potential of e-mail as an
advertising medium was pioneered early on when,
in 1994, a pair of enterprising green-card attor-
neys became the first to use e-mail as a form of
direct marketing. Computer sales, driven by the
expansion of the internet, fueled the expansion
of the high-tech economy to such an extent that
the internet service provider America Online
could afford to buy media giant Time Warner.
Virtual reality has created new commodities,
which have quickly become new economic real-
ities. Capital has also tended to transplant and
reproduce already existing social and economic
inequalities into this new virtual world. For in-
stance, there has been much discussion of the
“digital divide” between those with access to
global information networks and those without.
This divide falls along the well-worn demarca-
tions of race and gender, but even more starkly,
along class lines. The divide between rich and
poor, both within and between nations, has been
mapped onto the very foundations of the informa-
tion age. These capitalist origins of virtual reality
should not be forgotten.

Capital organizes economic and social life
around the production and consumption of com-
modities. Marx writes that the commodity form
raises a whole host of “metaphysical subtleties
and theological niceties” (Marx 1867: 163).
Relationships between commodities become
“dazzling” in their variety and movements, while
the social relationships between producers and
consumers become obscured behind the appear-
ances of wages and prices (Marx 1867: 139).
For Marx, the value of a commodity only emerges
virtually. The value of one commodity finds ex-
pression only in the body of another commodity
through the relationship of exchange. Thus, the
value of a watch might be expressed in its ex-
change for a cellphone. This system of exchange
finds its culmination in money, a commodity
whose function is to provide a mirror for the
value of every other commodity. The particular
commodity serving as money changes over time,
from gold and silver to paper and plastic, as
money asymptotically approaches the perfect mir-
ror described by Plotinus, where only the image

remains and the mirror disappears. The current
electronic transfer of funds around the globe
comes close to realizing this goal (for a further
discussion of “digital gold” in the information
age, see Floridi 1999: 113ff ). It may be that
this spectral nature of money means that capital
is uniquely adapted for virtual reality. Money is
already the virtual expression of value.

For capital, the additional “metaphysical sub-
tleties” tacked on by virtual reality may scarcely
matter. The already virtual existence of money
has facilitated the migration of capital into vir-
tual reality with nothing lost in the transition.
The online virtual reality of the internet was once
home to a variety of small, but close-knit, virtual
communities. This has changed. Now the char-
acter and function of the internet more closely
resembles a virtual shopping mall as advertise-
ments appear everywhere and the identity of con-
sumer overtakes every other online identity. We
may currently be living through a process of
virtual primitive accumulation, or a kind of elec-
tronic enclosure movement, as the free associ-
ation and utopian possibilities offered by online
virtual reality are driven out by the commodi-
fication imposed by global capital. Capital, long
a kind of universal solvent for social relations, is
currently transforming the virtual social relations
of online life at a breathtaking pace. However,
this process does not occur without active resist-
ance (see Chesher 1994, and Dyer-Witheford
1999). It is here that the urgency of these other-
wise abstract metaphysical speculations can be
felt. The metaphysics of virtual reality provides
the horizon on which a host of new ethical and
political questions will take shape and within
which they must be answered.
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theory with an apparently consistent notion of
limits and the theory of physical computations
should be able to take advantage of that idea.
Failure to consider infinities adequately has led
many thinkers to regard finite Turing comput-
ability as some sort of necessary upper bound to
physical computation. This would be a mistake.
It is possible that there are physical hypercom-
puters far more powerful than classical Turing
machines (even if none exist in our universe).
(4) Philosophical efforts to analyze the mind–
brain relation in terms of programs and comput-
ers (e.g. functionalism) seem to have introduced
a kind of dualism between software and hard-
ware. The ontology of software is unnecessarily
vague. “Virtual” software objects are often de-
scribed as if they were nonphysical objects that
nevertheless participate in spatio-temporal-causal
processes. Hence the “virtual” can become a
strange category, neither concrete nor abstract.
(5) Sometimes, philosophers make false claims
about computers. One hears about continuous
“analog” computers even though all the quant-
ities involved are known to be discrete. Or one
is told that computers manipulate information
as if it were some kind of immaterial stuff (like
pneuma or ether). Finally, (6) theoretical efforts
to understand physical reality in computational
terms are often confused with attempts to devise
simulations of physical systems. However, physi-
cists who wonder whether the universe is a

1 Introduction

This chapter has two goals. The first is to analyze
physical concepts like space, time, and causality
in informational and computational terms (the
informational/computational nature of physics).
The other is to explain some key informational
and computational concepts in physical terms (the
physical nature of information/computation).
These two goals are philosophically interesting
for at least six reasons. (1) Philosophers have
always been interested in the logical structure of
physical reality, even metaphorically. The images
of the physical universe as an arrangement of
geometrical figures or a clock have been super-
seded by the image of the universe as a computer.
Metaphors apart, we shall see that, strictly speak-
ing, the universe is a computer if and only if its
physics is recursive. (2) Claims about the com-
putational powers of physical systems appear
in many philosophical arguments. Some argu-
ments in the philosophy of mind, for example,
depend on the computational powers of physical
systems like the human body and brain. (3) The
role of the transfinite in the philosophical con-
ception of computation requires clarification. If
an idealized Turing machine has infinitely many
squares on its tape, then it ought to be able to
have infinitely many 1s or to make infinitely many
moves. The calculus has long provided physical

Chapter 13

The Physics of Information
Eric Steinhart
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computer are not concerned with virtual reality
models or simulations, they are concerned with
the spatio-temporal-causal structure of the phys-
ical universe itself.

2 Programs and Theories

A program can be described as a recursive defini-
tion of some property P, consisting of at least
two parts: a basis clause, which states some ini-
tial fact about P, and a recursion clause, which
defines new facts about P in terms of old facts.
Properties that have recursive definitions are sim-
ply referred to as “recursive.” If P is recursive,
then the set of all objects that have P is also
described as recursive, and each object in that
set is said to be a recursive object. Many physical
things are recursive. For example, the property
is-a-chain can be defined recursively thus: (1) a
link O is a chain; (2) if X is a chain and O is a
link, then X attached to O is a chain. The defini-
tion generates a series of chains: O, OO, OOO,
etc., where each chain is a linear or one-dimen-
sional series of neighboring points (the links).
This recursive definition can be extended to gen-
erate discrete structures with more dimensions
D. A grid is a 2D arrangement of neighboring
points, i.e. a set of points and a recursive neighbor
relation that determines a distance relation. All
geometric facts about the grid are recursive. Here
is an informal recursive definition of the prop-
erty is-a-grid: (1) a set of four points occupying
the corners of a square is a grid G(0); (2) if G(n)
is a grid, then the set of points made by dividing

each square in G(n) into four equal squares is a
grid G(n + 1). Figure 13.1 shows the series of
grids G(0), G(1), G(2). The definition can be
further extended to generate a 3D lattice whose
points are at the corners of cubical cells. We can
then add a fourth dimension. If this is time, the
result is a 4D space-time structure in which all
the spatial and temporal facts (distances and
durations) are recursive.

A recursive definition associates each finite
whole number with some set of facts. The basis
clause associates 0 with some facts; the first ap-
plication of the recursion clause associates 1 with
some facts; the nth application associates n with
some facts, and so forth. The recursive definition
of is-a-chain, for example, associates 0 with O, 1
with OO, 2 with OOO, and so on. If R is some
recursive definition, let R(n) be the nth set of
facts generated by R. So, R(n) is the nth chain,
or the nth grid. A set of facts is a state of affairs.
A state of affairs is finitely recursive if and only if
there is some recursive definition R and some
finite whole number n such that the state of
affairs is the set of facts R(n).

To extend recursive definitions to the infinite
one needs to define a state of affairs at infinity.
The result is a definition by transfinite recursion.
If some finite recursive definition R associates
each finite number n with R(n), then one way
to extend R transfinitely is to add a limit clause
that associates infinity (∞) with the limit of R(n)
as n goes to infinity. R(∞) is then the limit of
R(n) as n increases without bound. For example:
recall Zeno’s paradox of the racecourse, in which
Achilles starts at 0 and runs to 1 by always going
halfway first. Achilles traverses the points 1/2,

Figure 13.1: A recursive series of discrete 2D spaces
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3/4, 7/8, and so on. The property is-a-Zeno-
point is defined by finite recursion like this: (1)
R(0) is the Zeno point 1/2; (2) if R(n) is the
Zeno point P/Q, then R(n + 1) is the Zeno
point P/Q + P/2Q. This definition generates
the series: 1/2, 3/4, 7/8, and so on. The theory
of infinite series from the calculus shows that
the limit of the series of Zeno points is 1. So we
add the limit clause (3) R(∞) is the limit of
R(n) as n goes to ∞. The result is a transfinite
recursive definition. If recursive definitions that
take limits are available, then much of the calcu-
lus is also available. However, it is not necessary
to restrict limit clauses to limits as defined in
calculus. We can also let R(∞) be the state of
affairs that contains all the facts in every R(n)
for which n is finite. R(∞) can be the union of
all the R(n) for n finite. We can thus define
recursive states of affairs transfinitely. For instance,
if the grid G(∞) is the union of all the G(n) for
n finite, then G(∞) is an infinitely subdivided
space. It is a grid such that between any two
points there is another. Generally, a state of
affairs is transfinitely recursive if and only if
there is some transfinite recursive definition R
such that the state of affairs is R(∞).

A theory T can be described as a collection of
facts that entails further facts. Every recursive
definition is a theory. T is ultimate for some
physical system S whenever T entails all and only
the physical facts about S. A physical system S is
recursive if and only if there is some recursive
theory that is ultimate for S, i.e. there is some
program that generates all and only the facts
about S. If a physical system is finitely recursive
this means that there is some recursive definition
R and some finite number n such that R(n) is
ultimate for S; if it is transfinitely recursive this
means that there is some recursive definition R
and some transfinite number N such that R(N)
is ultimate for S; otherwise it is nonrecursive. It
is known that there are entities whose definitions
are nonrecursive. Nonrecursive systems typically
involve the real numbers or logical undecidabil-
ities. The three kinds: finitely recursive, trans-
finitely recursive, and nonrecursive are of course
logically exhaustive. Since our universe is a phys-
ical system, it necessarily falls under one of those
three kinds. Where our universe lies is an open
question.

3 Finite Digital Physics

The set of logically possible programs is infinite
and hence much larger than the set of programs
that can actually be written by human beings.
All programs have possible physical models. Since
some of the programs we write are realized by
artificial computers (which are physical parts of
our universe), some programs are at least ap-
proximately true of some parts of our universe.
Consider now that some states of affairs in our
universe are finitely recursive, and that our uni-
verse is a large state of affairs, but it may be
finite (Finkelstein 1995; Steinhart 1998). Finite
digital physics argues that there is some recursive
definition R and some finite number N, such that
R(N) entails all and only the physical facts about
our universe. The recursive definition R(N) is a
program P that runs for N steps. Each step defines
some change (some state-transition) of our uni-
verse. So finite digital physics suggests that there
is some finite P that is exactly instantiated by our
whole universe. P is the ultimate theory for our
universe. We certainly cannot run P on any part of
our universe; we may not be able to write P; what
finite digital physics argues for is that P exists.

A physically possible universe U is digital if
and only if it is finitely recursive. Since all finitely
recursive quantities are digital, if U is finitely
recursive then all its physical quantities are digital,
i.e. discrete (measured by an integer variable) and
with only finitely many values (finite upper and
lower bounds). Discrete quantities are contrasted
with dense quantities (measured by rational num-
bers) and continuous quantities (measured by
real numbers). Since almost all variables in the
classical (Newton–Maxwell) physical theory of
our universe are real number variables that refer
to continuous physical quantities, and since
almost all the equations in classical physics are
differential equations that refer to continuous
transformations of those quantities, it might be
argued that our universe is far too mathemat-
ically complex to be finitely recursive. However,
differential equations may be over-idealizations.
The Lotka–Volterra differential equations, for
example, describe the interactions of predator–
prey populations as if they were continuous,
yet animals come in discrete units. Moreover,
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classical physics has been replaced by quantum
physics, where quantities (charge, mass, length,
time) are quantized into discrete units (quanta).
Thus, analytic work on the foundations of quan-
tum physics motivates John Wheeler’s theory
(Zurek 1990) that physical reality emerges from
binary alternatives. Wheeler himself has referred
to this position by means of the slogan “Its from
Bits.” Zeilinger (1999) argues that the quantiza-
tion of information (as bits) entails the quantiza-
tion of all measurable physical quantities, and
that this is a fundamental feature of physical
systems. Whether all the fundamental physical
quantities of our universe are digital is an open
scientific question. Since it is a question about
the form of the ultimate scientific theory, it is
not clear whether there are experiments that can
empirically decide this question.

If U is digital, then space-time has finitely
many dimensions and it is finitely divided into
atomic (0-dimensional) point-instants (cells). A
digital space-time is a network of finitely many
cells, in which each cell has links to finitely many
spatial and temporal neighbors. Motion is not
continuous, time proceeds in clock ticks, and
space proceeds in steps. There is a maximal rate
of change (a speed of light), namely one step
per tick. Physical quantities in U are associated
with geometrical complexes of cells (e.g. the 0-
dimensional cells in U, the 1D links between
cells, the 2D areas bounded by links, the 3D
volumes bounded by areas, etc.). Each cell in a
digital universe is associated with at most finitely
many quantities, e.g. some digital mass. Links
between cells are associated with digital spins or
other forces; areas bounded by links are associ-
ated with digital charges.

Space and time in our universe could be finite
and discrete. Relativity theory permits space to
be finitely extended and, according to quantum
mechanics, space is finitely divided with a minimal
length (the Planck length, about 10−35 meters)
and time has a minimal duration (the Planck
time, about 10−43 seconds). Furthermore, theor-
ies of loop-quantum gravity predict that space is
a discrete “spin-network.”

Discrete space-times have mathematical fea-
tures that may make them unsuitable for use as
actual physical structures. First, discrete space-
times have different geometries than continuous

space-times. All distances in discrete space-times
are integers, but a square whose sides have unit
distance has a diagonal, and since the Pythag-
orean theorem shows that such diagonals are
irrational (non-integer) numbers, the theorem
cannot be true for discrete space-times. If we try
to avoid this problem by treating the lengths
of sides and the lengths of diagonals as funda-
mental lengths (of which we allow integer mul-
tiples), then we have two incommensurable
distances. Space is no longer uniform. Second:
discrete space-times have very limited internal
symmetries for physical rotations and reflections.
Square lattices allow only 90-degree rotations;
triangular or hexagonal lattices allow only 60-
degree rotations. Nevertheless, actual physics
seems to demand rotations of any degree. Finally:
it is difficult to translate continuous differential
equations into discrete difference equations. It is
not known whether these mathematical features
are genuine obstacles, or whether they are merely
inconveniences for scientists used to thinking of
space-time as continuous. The study of discrete
space-times is an active research area and it is
likely that lattice quantum field theories will solve
the problems associated with digital space-times.
Whether our universe has digital space-time re-
mains an open scientific question.

If U is digital, then the causal regularities in
U are finitely recursive. The laws of nature are
finitely recursive transformations of digital phys-
ical quantities and all the basic quantities stand
to one another in finitely recursive arithmetical
relations. Since all quantities are digital, an arith-
metic transformation is possible (is consistent with
the fact that U is digital) if and only if that
operation takes some finitely bounded integers
as inputs and produces some finitely bounded
integers as outputs. More precisely: all the pos-
sible laws of nature for U must be recursive func-
tions on the integers, and they must produce
outputs within the finite upper and lower bounds
on quantities in U. For example, suppose that U
consists of a space that is a 2D grid, like a chess-
board. Each cell on the board is associated with
some quantity of matter (some mass either 0 or
1). The assignment of masses to cells is a discrete
(binary) mass field. As time goes by (as the clock
ticks), the mass field changes according to some
causal operator. A causal operator for the mass
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field of U is digital if and only if it defines the
mass field at the next moment in terms of the
mass field at some previous moments. The causal
operator on a binary mass field is a Boolean
function of bits that takes 0s and 1s as inputs
and produces 0s and 1s as outputs. A dynamical
system is a physical system whose states (synchronic
distributions of quantities) and transitions
(diachronic transformations of quantities) are
recursively defined. It repeatedly applies a causal
operator to its initial state to produce its next
states. Such dynamical repetition or iteration is
recursive change. If U is a digital universe and
its causality is recursive and discrete, then U is a
discrete dynamical system. Discrete dynamical sys-
tems are an area of active physical research. Our
universe could be a discrete dynamical system,
in which case, all differential equations that relate
continuous rates of change are ultimately based
on finite difference equations involving digital
quantities in digital space-time. Whether our uni-
verse has digital causality is an open question.

There are many classes of digital universes.
Cellular automata (CAs) are the most familiar
digital universes. Conway’s Game of Life is a
popular cellular automaton (see Chapter 15,
ARTIFICIAL LIFE). Space, time, causality, and all
physical quantities in CAs are finite and discrete.
CAs are computational field theories: all quantities
and transformations are associated with space-
time cells. Causality in CAs is additionally con-
strained to be local: the quantities associated with
each cell are recursively defined in terms of the
quantities associated with the spatio-temporal
neighbors of that cell. CA theory has seen great
development (Toffoli & Margolus 1987), and
CAs have seen extensive physical application
(Chopard & Droz 1998). There are many gen-
eralizations of CAs: lattice gasses (Wolf-Gladrow
2000), lattice quantum CAs and lattice quantum
field theories are currently active research areas in
physics. Fredkin (1991) argues that our universe
is a finitely complex CA.

4 Transfinite Digital Physics

Our universe may be too complex to be only
finitely recursive. Hyperdigital physics argues that

our universe is transfinitely recursive. If a uni-
verse U is transfinitely recursive this means that
there is some recursive definition R and some
transfinite N such that R(N) is ultimate for U.
The class of hyperdigital universes is very large.
Hyperdigital physics permits physical infinities so
long as they do not introduce logical inconsist-
encies. While finite recursion subdivides space-
time finitely many times, transfinite recursion
subdivides space-time infinitely. An infinitely sub-
divided space-time seems to be consistent. If U
is finitely recursive, then each quantity in U is
measured by only finitely many digits; but if U is
transfinitely recursive, it can contain quantities
measured by infinitely long series of digits. It is
easy to define transformations on infinitely long
series of digits by defining them in terms of
endless repetitions of operations on single digits.
A quantity measured by an infinitely long series
of digits is infinitely precise. Infinitely precise
physical arithmetic seems to be consistent, that
is, it seems that physical quantities can become
arbitrarily large or small without introducing any
contradiction. Still, it is necessary to be extremely
careful whenever introducing infinities into phys-
ical systems. For if any quantity is actually infin-
itely large or small, then every quantity to which
it is arithmetically related must also be either
actually infinitely large or small. Infinities often
entail physical inconsistencies.

Since the transfinite includes the finite, if U
is any hyperdigital universe, then all the funda-
mental physical quantities in U are finitely or
transfinitely recursive. Say a physical quantity is
hyperdigital if and only if it is measured by some
infinitely long series of finite digits. Integers and
rational numbers (fractions) are hyperdigital. A
real number is hyperdigital (it is a recursive real
number) if and only if there is some recursive
rule for generating its series of digits. For exam-
ple: π is hyperdigital since there is a recursive
rule for generating each digit of the infinite
series 3.14159. . . . If U is hyperdigital, then
physical quantities (e.g. mass, charge, length,
time) can be infinitely precise. Arithmetical
operations in U, for example, can be infinitely
precise manipulations of fractions.

It is possible for space and time in hyperdigital
universes to be infinitely subdivided (infinite
extension raises subtle problems). One way to
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define an infinitely subdivided space recursively
is by endlessly many insertions of cells between
cells. Recall the construction of the finite grids
G(i) shown in Figure 13.1. We extend the con-
struction to the transfinite by adding a limit clause
for the infinitely subdivided grid G(∞). G(∞) is
the union of all the G(i) for finite i. G(∞) is a
dense 2D cellular space: between any 2 cells, there
is always another cell. The topology of G(∞) is
not the same as the topology of an infinitely
extended 2D lattice (e.g. an infinitely large chess
board). An infinitely extended 2D lattice is not
dense. Even though G(∞) is dense, each cell
(each point in G(∞)) still has exactly 8 neighbors.
Since every cell has 8 neighbors, it is possible to
run rules from finite 2D cellular automata (CAs)
on G(∞). If time is kept discrete, then Conway’s
Game of Life CA can run on G(∞). It is also
possible to recursively define dense time by always
inserting moments between moments on the
temporal dimension. It is easy to build lattice
gasses and other CAs on the dense grid. There is
a large class of digital universes on dense lattices.
These universes have infinitely complex dynamics.

One way to define an infinitely subdivided
time is to use acceleration: each change happens
twice as fast. For example: accelerating Turing
machines (ATMs) are infinitely complex dynam-
ical systems (Copeland 1998). An ATM consists
of a Turing machine read/write head running
over an actually infinitely long tape. An ATM
tape can have infinitely many 1s, unlike a clas-
sical TM tape. An ATM is able to accelerate. If
it performs an act at any speed, it can always
perform the next act twice as fast. ATMs can
perform supertasks (Koetsier & Allis 1997). An
ATM starts with some initial tape-state T0 at
time 0. It computes at Zeno points. It performs
the first computation in 1/2 seconds that prints
T1 at time 1/2; it performs a second computa-
tion in 1/4 seconds that prints T2 at 3/4; it
performs its nth computation in 1/2n seconds
to print Tn at time (2n − 1)/2n. At 1 second, the
ATM has computed infinitely many operations.
At the limit time 1, an ATM outputs the limit
of the tape-states sequence {T0, T1, T2, . . . },
if the series converges, or a blank tape-state if
it does not converge. Copeland shows that
ATMs are more powerful than classical Turing
machines. Programs for ATMs describe infinitely

complex structural features of concrete systems
and are true of universes with infinitely complex
space-times (such as infinitely subdivided space-
times) or infinitely complex causal regularities.

If U is hyperdigital, then its physical quantities,
space-time, and causal laws are all defined by
transfinite recursion. Consider a universe defined
as follows: (1) the space of U is an infinitely
subdivided 3D grid like G(∞); (2) the time is
infinitely subdivided so that U is made up of
infinitely many space-time point-instants (cells);
(3) infinitely precise physical quantities (rational
numbers or recursive real numbers) are associated
with geometrical complexes of cells (e.g. the 0-
dimensional cells in U, the 1D links between cells,
the 2D areas bounded by links of cells, the 3D
volumes bounded by areas of cells, etc.); (4) all the
physical laws in U are transfinitely recursive func-
tions on the rational numbers or recursive reals.
Dense space-times whose causal laws are ATM
transformations of infinitely long digit sequences
quantities are examples of hyperdigital universes.

5 The Physics of Computation

If our universe is digital, then it is possible that
some things in it are digital computers. Our
universe obviously contains classical physical
realizations of finite Turing machines (TMs).
Therefore, it is at least finitely recursive. Since
classical TMs have potentially infinitely long tapes,
and can operate for potentially infinitely long
periods of time, finite TMs are not really even as
powerful as Turing machines. So far, all efforts
to build computers more powerful than finite
TMs have failed. Quantum computers do not
exceed the limits of finite Turing machines
(Deutsch 1985). Some suggestions for making
hypercomputers involve accelerating the machin-
ery to the speed of light or the use of unusually
structured space-times. However, such sugges-
tions are matters for science fiction. Since an
ATM accelerates past any finite bound, it re-
quires infinitely much energy to perform any
infinite computation. If our universe is digital,
then all the things in it are too, including hu-
man bodies and brains. If it is hyperdigital then
it is possible that some things in it (some proper
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parts of it) are hyperdigital computers. How-
ever, hyperdigital computers run into the lower
limits imposed by quantum mechanics (e.g. the
Planck time or length) or into the upper limits
imposed by relativity theory (e.g. the speed of
light). An accelerating Turing machine does not
appear to be physically possible in our universe.

If our universe is nonrecursive, then it phys-
ically realizes properties that have neither finite
nor transfinite recursive definitions. Perhaps, it
physically instantiates the nonrecursive real num-
ber continuum. Analog computers are possible
in universes that instantiate the nonrecursive con-
tinuum. However, the continuum is not math-
ematically well understood (e.g. its cardinality
is undetermined; it has unmeasurable subsets;
it is supposed to be well-ordered but no well-
ordering is known; etc.). Attempts to define
analog computation in our universe (e.g. con-
tinuously varying electrical current) conflict with
the laws of quantum mechanics. If quantum
mechanics is a correct description of our uni-
verse, then is unlikely that there are any analog
computers in our universe. If today’s biology is
right, then real neural networks are not analog
machines. Perhaps our universe is nonrecursive
because its structure is logically undecidable. Just
as Gödel’s theorems prove (roughly) that there
are facts about an arithmetic structure S that are
not decidable within S, it may be that analogous
theorems tell us that there are facts about our
universe that are not decidable by any given axi-
omatic physical theory. The physical structure of
our universe may not be axiomatizable at all. It
may be deeply undecidable. Physical computation
in our universe, as far as we presently know, is
limited to finite Turing computability. Whatever
the upper bound on physical computation in
our universe, it seems clear that this bound is
contingent. While hypercomputers seem both
mathematically and physically possible, the in-
ternal limitations of our universe might actually
prevent it from containing any.

6 Conclusion

Philosophers have long defined possible worlds
as sets of propositions. Propositions are binary

alternatives, either true (1) or false (0). Wheeler’s
slogan “Its from Bits” implies that physical real-
ity (the “Its”) is generated from binary alternat-
ives (the “Bits”). Therefore, the “Its from Bits”
program naturally hooks up with the metaphysics
of possible worlds. If there are finitely many
propositions in some world, and if the logical
relations among them are recursive, then that
world is digital. If we want to link finite digital
physics to the metaphysics of possible worlds,
we need to define the propositions physically.
One way to do this is via Quine’s suggestion of
a Democritean world (Quine 1969: 147–52). It
has been argued that Quine’s theory of Demo-
critean physics leads to a Pythagorean vision of
physical reality as an entirely mathematical sys-
tem of numbers. If some universe is recursive,
then there is some (finitely or transfinitely) com-
putable system of numbers that is indiscernible
from it. A recursive universe is Pythagorean:
physical structures are identical with numerical
structures. The mystery of the link between the
material and the mathematical is thereby solved:
the material is reducible to the mathematical.

Since our brains and bodies are physical things,
they are finitely recursive, transfinitely recursive,
or nonrecursive. If human beings are somehow
more than physical, then their transcendence of
material reality is reflected by their computational
abilities. If physics is digital, then we transcend
it exactly insofar as we are hyperdigital or even
nonrecursive. If physics is hyperdigital, then we
transcend it exactly insofar as we are nonrecursive.
Perhaps discussions of free will or our math-
ematical capacities aim to find the degree by
which we surpass physical reality. It is possible
that we are parts of hyperdigital computers even
if we are only digital. The limits of our cognitive
powers may be the limits of the computers that
contain us, even if we are only parts of those
machines, and even if those machines infinitely
transcend physical computability. If physics is
recursive, then there is some recursive property
(a program) that is exactly instantiated by each
person’s body over the whole course of its life.
The history or fate of each person’s body is a
program. If such programs exist, they are multi-
ply realizable; so, if physics is recursive, and if all
possible recursive worlds exist, then our lives (and
all variations of them) are endlessly repeated
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within the system of digital or hyperdigital uni-
verses. One could hardly hope for a richer kind
of personal immortality. So far from eliminating
the soul, recursive physics may show that it has
entirely natural realizations.
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sciences, as it developed in a highly interdiscip-
linary approach, aimed at seeking common con-
cepts and methods in rather different disciplines.
In classical cybernetics, this ambition did not
produce the desired results and new approaches
had to be attempted in order to achieve them,
at least partially.

In this chapter, we shall focus our attention
in the first place on the specific topics and key
concepts of the original program in cybernetics
and their significance for some classical philo-
sophic problems (those related to ethics are dealt
with in Chapter 5, COMPUTER ETHICS, and Chap-
ter 6, COMPUTER-MEDIATED COMMUNICATION AND

HUMAN–COMPUTER INTERACTION). We shall then
examine the various limitations of cybernetics.
This will enable us to assess different, more
recent, research programs that are either ideally
related to cybernetics or that claim, more
strongly, to represent an actual reappraisal of it
on a completely new basis.

1 The Basic Idea behind Classical
Cybernetics

The original research program of classical cyber-
netics was strongly interdisciplinary. The research
fields within which cybernetics interacted can
be grouped under three headings: engineering/

Introduction

The term cybernetics was first used in 1947 by
Norbert Wiener with reference to the centri-
fugal governor that James Watt had fitted to his
steam engine, and above all to Clerk Maxwell,
who had subjected governors to a general math-
ematical treatment in 1868. Wiener used the word
“governor” in the sense of the Latin corruption
of the Greek term kubernetes, or “steersman.” As
a political metaphor, the idea of steersman was
already present in A. M. Ampère, who in 1843
had defined cybernetics as the “art of govern-
ment.” Wiener defined cybernetics as the study
of “control and communication in the animal
and the machine” (Wiener 1948). This definition
captures the original ambition of cybernetics
to appear as a unified theory of the behavior of
living organisms and machines, viewed as sys-
tems governed by the same physical laws.

The initial phase of cybernetics involved dis-
ciplines more or less directly related to the study
of such systems, like communication and con-
trol engineering, biology, psychology, logic, and
neurophysiology. Very soon, a number of at-
tempts were made to place the concept of con-
trol at the focus of analysis also in other fields,
such as economics, sociology, and anthropology.
The original ambition of “classical” cybernetics
thus seemed to involve also several human
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biology, philosophy/psychology, and logic/
neuroscience.

1.1 Cybernetics between engineering
and biology

The study of automatic control devices in ma-
chines attained full maturity around the middle
of the twentieth century. The essence of auto-
matic control resides in the capacity of a (usually
electromechanical) system S to attain a goal-state
G (the Greek word for goal is telos) set by a
human operator, without the latter having to
intervene any further to modify the behavior of
S as it attains G. In this case, one may also speak
of closed loop or feedback control. Engineers have
mathematically described different types of closed
loop, which have been used in both electronic
and control engineering. A typical example is
the positive feedback used in oscillators, or in
the so-called regenerative receivers in the early
radios, where part of the output signal is fed
back in such a way as to increase the input
signal. Of greater interest in this context is
negative feedback. The behavior of a negative
feedback system is governed by the continuous
comparison made between the current state C
and the state established as a reference para-
meter G, in such a way that the system uses this
error information to avoid ever wandering too
far from the latter. Watt’s governor is an exam-
ple of such a system: it maintains the speed of
rotation of the driving shaft of a steam engine
approximately constant in the face of load vari-
ations. It is thus capable of regulating itself
automatically (self-regulation) without the need
for any intervention by human operators once
the latter have set the reference parameter (in
this case G = the desired speed).

Devices like Watt’s governor are the genuine
and influential precursors of cybernetic machines.
Examples of such self-regulating systems were
known long before Watt’s governor, as far back
as the period of ancient Greece (Mayr 1970).
On the contrary, the clockwork automata of the
eighteenth century – such as the androids con-
structed by the Swiss watchmaker Pierre Jaquet-
Droz and his son Henri-Louis – although
astonishing in the realistic reproduction and the

tiny size of their movements, cannot be cor-
rectly listed among the ancestors of cybernetic
machines. These automata are merely “mechanic”
and lack the fundamental self-regulating capa-
city typical of feedback control systems.

The study of the different feedback control
mechanisms was common in Wiener’s times,
as was the analysis of self-regulation in living
organisms. In the latter case, the existence of
such systems, which may be compared to negat-
ive feedback devices, had already been described
in modern physiology, in particular by Claude
Bernard and Walter B. Cannon. Examples in-
clude systems that automatically maintain at a
constant level body temperature, breathing,
and blood pressure. In the late 1920s, Cannon
referred to these systems as homeostatic systems.

Wiener’s definition of cybernetics thus finds
its initial justification in the converging of two
research areas that, although having developed
separately within engineering and biology, in
Wiener’s times seemed to share an essential core
of common problems all strictly related to the
study of control and information transmission
processes, abstracted from mechanical or biolo-
gical implementations. In 1943 Wiener, together
with Arturo Rosenblueth, a physiologist and one
of Cannon’s pupils, and the engineer Julian
Bigelow, wrote a brief article, entitled “Behavior,
Purpose, and Teleology,” in which the unified
study of living organisms and machines, which
a few years later was to suggest the term “cyber-
netics,” was set out explicitly (Rosenblueth,
Wiener, & Bigelow 1943).

1.2 Cybernetics between philosophy
and psychology

In their 1943 article, Rosenblueth et al. actually
provided considerably more than a comparative
analysis of the self-regulating mechanisms in liv-
ing organisms and machines. They supported a
view that was immediately perceived as provocat-
ive by numerous philosophers and which gave
rise to a very lively debate. The three authors,
after summarizing the fundamental theoretical
issues involved in the study of the new control
devices, claimed that science could now reap-
praise the vocabulary of teleology, which included
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such terms as purpose, goal, end, and means.
According to them, teleological analyses had been
“discredited” from the scientific point of view
because of the Aristotelian notion of purpose as
final cause. The term “final cause” suggests that
the purpose is supposed to guide the behavior
directed towards its attainment, despite the fact
that, insofar as the purpose is a state to be at-
tained (end state), it is a future state. Compared
with the ordinary causal explanation, in which
the cause always precedes the effect, the teleolo-
gical explanation seems to give rise to a puzzle,
that of the reversal of causal order. The hypo-
thesis advanced by the founders of cybernetics
was that the vocabulary of teleology might be
revaluated by means of an objective or opera-
tional definition of its terms that allows the puzzle
introduced by the notion of final cause to be
avoided. In the definition they proposed, the
“purpose,” i.e. the final state G pursued by a
system S, either natural or artificial, is the state
that serves as a reference parameter for S, and
S’s teleological behavior is nothing else but S’s
behavior under negative feedback control. This
was a provocative idea since psychologists and
vitalist philosophers saw purposeful action as char-
acterizing only the world of living organisms,
and opposed the latter both to the world of
artificial or synthetic machines and to the phys-
ical world in general (see, for instance, McDougall
1911). In fact, the new feedback machines, by
interacting with the external environment, are
capable of automatically changing the way they
function in view of a given purpose. For philo-
sophers concerned with a materialistic solution
of the mind–body problem, cybernetics thus sug-
gests how certain behavior regularities, usually
classified as teleological to distinguish them from
causal regularities in physics, may be described
using purely physical laws and concepts.

As pointed out by the logical positivist philo-
sopher Herbert Feigl, a champion of the mater-
ialist thesis of the identity between types of
mental states and types of brain states, with the
advent of cybernetics the concept of teleological
machine was no longer a contradiction in terms
(Feigl 1967). In addition, according to Feigl,
cybernetics suggested the possibility of integrat-
ing the various levels of explanation, the mental
and the physical, in view of a future neurological,

and ultimately, physical microexplanation of the
teleological behavior itself. Cybernetics could
then provide further support for the Unitary
Science proposed by logical neopositivism, ac-
cording to which it was ultimately possible to
hypothesize the reduction to physics of the con-
cepts and methods of the other sciences.

Clearly, cybernetics was reproposing the idea
of the organism-machine of the old mechanist
tradition in a completely new context. The idea
had already been implicit in Descartes who, in
the Traité de l’homme (1664), had described
the functioning of the human body in terms of
hydraulic automatisms. Descartes had argued
for a fundamental distinction between human
beings and true automata, which represent the
nonhuman animals in the living world. How-
ever, La Mettrie, in his Homme machine (1748),
dropped Descartes’s dualism and claimed that man
himself is merely a machine with a particularly
complex organization. Mechanistic conceptions
of the living were proposed in the eighteenth
century also by other authors, such as George
Cabanis, while Thomas Huxley, referring back
to Descartes’s theory, claimed in the following
century that man was nothing but an automaton
possessing consciousness. The animal-automaton
theory was then revived, in the interpretations
of animal behavior, in terms of chains of reflexes
in psychology and philosophy, between the eight-
eenth and the nineteenth centuries (see Fearing
1930).

It is again the new idea of a cybernetic
machine capable of interacting with the environ-
ment that abated interest in the reflex-arch con-
cept rampant in conventional neurological and
psychological mechanisms. Indeed, instead of the
simple stimulus–response relationship typical of
the reflex arch, the interest was now focused on
a circular relationship, or loop, through which
the response could be fed back as the effect of
the stimulus itself. Behavioristic psychologists
like E. Thorndike and Clark L. Hull had already
pointed out this aspect. Thorndike had explicitly
formulated a trial-and-error learning Law of
Effect, in which it was precisely the effect that
reinforced the correct response among the many
possible responses attempted at random by the
organism during the learning phase. Between the
1920s and 1930s, Hull proposed an ambitious
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research program, which he himself defined as
a “robot approach,” which foreshadowed that
of cybernetics. The aim of the robot approach
was the construction of machines that actually
worked and hence could be viewed as mechanical
models of trial-and-error learning and learning
by conditioning. By constructing these models
(which were actually very simple electromechan-
ical devices), Hull set out to prove that it was
useless to employ vitalist entities/concepts to
attempt to account for mental life. Indeed, if a
machine behaves like an organism – in Hull’s
view – the behavior of an organism may be ac-
counted for by means of the same physical laws
as those used to explain the machine’s behavior.
The reductionism underlying this thesis explains
why Hull subscribed to the logical positivist
hypothesis of Unitary Science.

Kenneth Craik, the Cambridge psychologist
who, at the dawn of cybernetics, described
several models of adaptation and learning based
on different types of feedback, pointed out that
Hull’s position actually represented an innovation
of mechanistic tradition. Unlike the supporters
of mechanistic conceptions of life such as Cabanis
and others, based on the man-machine metaphor,
Hull had endeavored to construct learning
models that, insofar as they were not generic
metaphors but working implementations, allowed
the hypothesis of the mechanical nature of this
phenomenon to be tested (Craik 1943: 52). This
observation by Craik on the nature of models is
fundamental, as it sheds light on the simulative
methodology later developed by cybernetics
and the mental life sciences that followed his
teachings.

1.3 Cybernetics between logic and the
neurosciences

The interaction with logic and neurology is
another feature of classical cybernetics. The bio-
physicist Nicolas Rashevsky had already made a
mathematical analysis of several nervous func-
tions. However, it was the article published in
1943 by Warren McCulloch and Walter Pitts that
introduced logic into cybernetics (Anderson &
Rosenfeld 1988). The article proposed a “formal”
neuron, a simplified analog of a real neuron,

viewed as a threshold unit, that is, functioning
according to the “all-or-nothing law” (a neuron
fires or does not fire according to whether the
pulses it receives exceed a certain threshold or
not). Neurons of this type could be intercon-
nected to form networks, whose functioning
could then be explored according to the laws of
classic propositional logic. McCulloch and Pitts’
article forms the basis of the development of
artificial neural networks as well as computer sci-
ence. John von Neumann, for example, adopted
its symbolic notation in 1945 in his well-known
First Draft, in which he described the computer
architecture that was later named after him (all
ordinary PCs have a von Neumann architecture).

Neurology had already suggested to psycholo-
gists laws of learning based on the assumption
that the physical basis of learning is to be sought
in the presence, in the central nervous system, of
neurons whose reciprocal connections may be
strengthened or weakened according to the
stimuli received by the organism from the out-
side world. The tradition of connectionism, which
dates back to Thorndike, was revived in the 1940s
in the research carried out by Donald Hebb.
Unlike the preceding connectionism, Hebb’s
approach supported a new interpretation of the
nervous system containing reverberating neural
loops. The presence of such loops in the brain
tissue had been observed, among others, by the
neurologist R. Lorente de Nó. This new rep-
resentation of the nervous system now tended
to replace that of the quasi-linear connections
between stimulus and response, which were pre-
viously predominant. Within this new paradigm,
Hebb formulated the learning law named after
him, according to which a connection between
two neurons activated at short time intervals tends
to be strengthened (Hebb 1949).

After the official birth of cybernetics, neuro-
logical connectionism comes into contact with
the neural networks à la McCulloch and Pitts in
the work done by Frank Rosenblatt, the builder
of one of the best-known machines of the clas-
sical cybernetics era, the Perceptron. Constructed
at Cornell University in 1958, the Perceptron
displays an elementary form of learning, consist-
ing in learning to discriminate and classify visual
patterns, such as letter-shaped figures (Anderson
& Rosenfeld 1988). In its simplified version, the
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Perceptron consists of three layers: a first layer,
the analog of a retina, collects the input stimuli
and is composed of several units or neurons à la
McCulloch and Pitts, randomly connected to one
or more units of the second layer, the associ-
ation system. The units comprising the latter, or
association units, are then connected to a third
layer, the effector system, which comprises the
response units. The connections among the asso-
ciation units are modifiable: learning actually
occurs through the modification of their strength
or “weight.” In the first Perceptron experiment,
learning was based essentially on reinforcement
rules. Further experiments led to the formula-
tion of a supervised learning rule, used by the
Perceptron to modify the weighting of the con-
nection in the case of an incorrect response,
leaving it unchanged when it was correct. Other
neural networks have embodied quantitative
statements of the Hebb rule or its modifications.

Other learning models developed during the
classical cybernetics period were the mobile ro-
bots, such as those simulating an animal learn-
ing to go through a maze. Thomas Ross invented
the forerunner of this type of synthetic animal,
which was influenced by Hull’s robot approach.
In collaboration with the behavioristic psycholo-
gist Stevenson Smith, in 1935 Ross constructed
a “robot rat” at Washington University. Much
more interesting as models of simple learning
forms, as well as being more popular, are the
robots constructed by Walter Grey Walter at
the Burden Neurological Institute, in England,
the electronic “tortoises.” The simplest of these
could successfully avoid any obstacles in their
path; other, more complex ones, learned by con-
ditioning to react to different visual and audit-
ory stimuli (Walter 1953). The tortoises had a
very simple structure. They were composed of
only a small number of internal units, and Grey
Walter considered this to be confirmation of the
assumption that, in order to account for relat-
ively complex behavior by organisms, it is not so
much the number of neurons as the number of
their connections that accounts for the relatively
complex behavior of living organisms.

In the newborn field of cybernetics, again in
England, William Ross Ashby was perhaps the
first to investigate the physical bases of learn-
ing. As early as 1940, he described in terms of

equilibration the allegedly “teleological” processes
of the adaptation of organisms to the environ-
ment, anticipating the aforementioned claim of
Rosenblueth, Wiener, and Bigelow. According
to Ashby, trial-and-error adaptation “is in no
way special to living things, . . . it is an element-
ary and fundamental property of matter” (Ashby
1945: 13). In order to test this hypothesis, Ashby
constructed a machine that he described in his
book Design for a Brain (Ashby 1952), as the
“Homeostat,” with obvious reference to Cannon.
The Homeostat embodied a new and important
concept, that of “ultrastability,” in addition to
that of feedback control or “stability.” In Ashby’s
definition, a system is said to be “ultrastable”
when it is not only capable of self-correcting its
own behavior (as in the case of feedback control
systems), but is also capable of changing its own
internal organization in such a way as to select
the response that eliminates a disturbance from
the outside from among the random responses
that it attempts. In this way, a system such as
the Homeostat is capable of spontaneously re-
establishing its own state of equilibrium: it thus
displays a simple form of self-organization. The
notion of ultrastability was deemed more inter-
esting than that of simple stability based on
feedback control because it pointed the way to
simulating in an artifact some features of the
plasticity and variability of response typical of
animal behavior. For example, according to
Ashby, ultrastability could be considered on the
basis of Thorndike’s Law of Effect.

2 Limits of Classical Cybernetics
and New Developments

All these lines of research soon entered into
crisis and were drastically curtailed, when not
actually abandoned, between the 1960s and
1970s. This happened mainly because of the early
successes of a new discipline, which resumed the
ambition of cybernetics to strive for the unified
study of organisms and machines, although on
a completely different basis, namely Artificial
Intelligence (AI). Subsequently, several research
programs typical of cybernetics were resumed,
including an explicit attempt to reformulate a
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“new cybernetics.” In the present and the fol-
lowing section, we shall examine the concepts
and principal results characterizing these differ-
ent phenomena and their significance for the
philosophy of mind and epistemology.

2.1 Teleological machines and
computer programs

The claim that purpose may be defined opera-
tionally, by means of the negative feedback
notion, was challenged by many philosophers,
who argued that the latter does not really fulfill
all the conditions for appropriately considering
a behavior pattern as purposeful. In the first
instance, such a definition is always relative to
the external observer who attributes purposes to
the system, while it tells us nothing about the
purposes of the system. Furthermore, in any such
system it is the feedback signals from the object
or the state pursued as a goal existing in the
external environment that guides the system’s
purposeful behavior. In the case of non-existent
objects, which may nevertheless be the content
of beliefs or desires of the system, the cybernetic
approach seems to have nothing to say (see, for
example, Taylor 1966).

Pioneers of AI further criticized the incapa-
city of the artifacts proposed by cybernetics,
such as neural networks or systems with simple
self-organizing capability, to simulate cognitive
processes. They pointed out that, in order to
reproduce artificial teleological behavior in a
system, such as making inferences or problem-
solving, it was necessary to study selection and
action-planning procedures that, in the case of
an artificial system, could be realized by a com-
puter program (see Chapter 9, THE PHILOSOPHY

OF AI AND ITS CRITIQUE). Actually, early AI pro-
grams were considered teleological systems, al-
though in this case the purposes were represented
as symbol structures holding information about
the goals pursued. Other symbol structures were
used to organize the system’s behavior into com-
plex hierarchies, such as processes for creating
subgoals, selecting the methods for attempting
them, testing them, and so on. Two good ex-
amples are chess playing and theorem proving,
the task environments preferred by early AI. In

them, the problem-solver constructs an internal
representation of the problem space and works
out plans aimed at finding a solution, or the final
state or goal, within this space. In these cases, it
is not necessary for the teleological activity to
be guided by a final state that actually exists in
the external environment (see Pylyshyn 1984 for
further details).

As regards the simulation of cognitive pro-
cesses, the introduction of the concept of algo-
rithm, which underlies the concept of program,
represented an undisputed step forward and
led to the development of Cognitive Science.
Prompted by the notion of algorithm, or, more
precisely, of a Turing machine (see Chapter 1,
COMPUTATION), is a philosophic position critical
of reductionist materialism in the mind–body
problem. This is functionalism, which was intro-
duced in the philosophy of mind by Putnam in
his seminal article “Minds and Machines” (1960).
Putnam argued that mental states could be stud-
ied not by referring them directly to brain states,
but on the basis of their functional organization,
that is, of their reciprocal interactions and inter-
actions with the sensory inputs and behavioral
outputs (see Chapter 9).

2.2 Neural networks

The early success of AI in constructing computer
programs that could tackle significant cognitive
tasks further hindered research on neural net-
works, the descendants of the Perceptron. The
decline in research on neural networks became
generalized after the publication of Minsky &
Papert 1969, which demonstrated the effective
difficulties encountered by the Perceptrons in
discerning even very simple visual stimuli. Despite
these early failures, several researchers in differ-
ent countries, such as James Anderson, Eduardo
Caianiello, Stephen Grossberg, and Teuvo
Kohonen, continued to work on neural networks
(Anderson & Rosenfeld 1988). Rosenblatt’s work
was finally vindicated in the early 1980s by two
events, accompanied by the development of large
computers, allowing the hitherto impossible
simulation of complex neural networks. John
Hopfield demonstrated that symmetrical neural
networks necessarily evolve towards steady states,
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later called “attractors” in dynamical system theory
(see Chapter 3, SYSTEM: AN INTRODUCTION TO

SYSTEMS SCIENCE), and can function as associative
memories (Anderson & Rosenfeld 1988). David
Rumelhart and collaborators published a series
of papers based on a “parallel distributed process-
ing” (PDP) approach to information, showing
how a learning algorithm based on error correc-
tion, known as “back-propagation,” made it pos-
sible to overcome the main limitations of neural
networks reported by Minsky and Papert. These
limitations were actually found to apply only to
networks with a single associative-unit layer, such
as the simple Perceptron, but not to multilayer
nets, that is, networks with more than one layer
of associative units “hidden” between the input
layer and the output layer. Since the 1980s,
research on neural networks differing even more
substantially from the original Perceptrons has
flourished, and numerous models are currently
available both in neurology and psychology (see
Chapter 10, COMPUTATIONALISM, CONNECTIONISM,
AND THE PHILOSOPHY OF MIND). This research,
to the extent to which it proposes models with
an architecture closer to that of the real brain
than the algorithmic models proposed by AI and
Cognitive Science, seems to provide strong
arguments to reject functionalism. The debate has
resuscitated materialist-reductionist solutions of
the mind–body problem (e.g. Churchland 1986)
that are reminiscent of the kind of positions we
have seen above to be popular during the age of
classical cybernetics.

2.3 New robotics

The construction of mobile robots such as the
“tortoises” very soon came to a standstill owing
to the above-mentioned predominance in AI of
interest in the procedures of reasoning, plan-
ning, and problem-solving. A new kind of robot
was constructed based on the idea that an agent
must have an explicit symbolic representation,
or centralized model of the world, in order to
act in it successfully. The rather disappointing
results obtained in this sector in the 1970s
encouraged a different kind of approach that,
although connected to cybernetics, acknowledged
its limitations and tried to overcome them.

Rodney Brooks has pointed out the limits of
both AI robotics and cybernetic robotics clearly.
First, cybernetic robotics did not take into con-
sideration fully the possibility of decomposing
complete behavior into simpler modules with the
task of controlling actions that are more element-
ary. Secondly, cybernetic robotics either did not
recognize or else underestimated the potential
of digital computation and its greater flexibility
vis-à-vis analog computation. In conclusion, “the
mechanisms of cybernetics and the mechanisms
of computation were intimately interrelated in
deep and self-limiting ways” (Brooks 1995: 38).
The new architecture proposed by Brooks
appears as a radical alternative to the AI robotics
approach and at the same time represents an
attempt to identify a level of abstraction that
would allow the limitations of cybernetic robot-
ics to be overcome. Brooks’ “subsumption archi-
tecture” describes the agent as composed of
functionally distinct control levels, a possibility
ignored in cybernetic robotics. These control
levels then act on the environment without
being supervised by a centralized control and
action planning center, as is the case instead in
AI robotics. In the subsumption architecture,
the low-level control routines, operating via con-
tinuous feedback loops with the environment,
are connected to high-level routines that con-
trol a more complex behavior. For instance, the
robot Allen, the first member of this generation
of new robots or “creatures,” is capable of avoid-
ing different persons and obstacles in its path
(a low-level, essentially reactive task) while con-
tinuing to pursue a goal assigned to it (that is,
a higher level task). Brooks’ approach and that
of behavior-based robotics in general, are con-
strained by the fact that, in the end, it is not easy
to integrate an increasing number of element-
ary modules to obtain behaviors that are more
complex. Evolutionary robotics, based on genetic
algorithms, is an attempt to get round these dif-
ficulties. In general, these approaches to robotics
have several advantages, such as robustness and
the capability of real-time response. However,
the trade-off consists of limitations imposed on
planning and reasoning capabilities.

Behavior-based robotics and evolutionary ro-
botics have had the merit of attracting attention
to the importance of several aspects neglected
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by early AI and by radical functionalism, namely
developmental issues in cognition and the fact
that the intelligence of an agent cannot easily
be “disembodied,” since it is also the result of
the deep interaction between the agent and its
environment. This accounts for the importance
acquired by “situated” cognition and for the
revaluation of the role of perception and of the
body in general, as well as for the attention
devoted to what Steven Harnad has defined
the “grounding problem,” i.e. the problem of
grounding the meaning of symbols in an artifi-
cial system on reality (Clark 1997).

3 Self-organization and
Complexity

In the preceding section, we have discussed the
limits of the cybernetics program. In doing so,
we have identified several research programs that
were developed in opposition to this program,
as in the case of symbolic AI, or else could be
ideally linked to this program, such as the new
neural networks and the new robotics approaches.
The latter research programs are able to over-
come at least some of the limitations of early
cybernetics, and do so in open opposition to
symbolic AI. In the present section, we shall
look at other developments that, again in opposi-
tion to symbolic AI, are explicit projects for a
new cybernetics. Before doing so, however, some
further developments of the original cybernetics
program must be briefly sketched.

3.1 Cybernetics and the human
sciences

The value of Wiener’ cybernetics hypothesis was
confirmed by the development of control theory
and the spread of the new negative feedback
mechanisms, and by the discovery of automatic
regulatory processes in living organisms, com-
parable to those of negative feedback. This led
to several attempts to develop cybernetic models
of the functions of living organisms (McFarland
1971). Soon, however, a much more radical ap-
proach began to gain popularity: the basic ideas

of cybernetics, i.e. feedback and information con-
trol, could be applied also to the study of a very
wide range of all sorts of forms of interaction
among organisms or agents. In this way, cyber-
netics began to be used as a meeting ground for
specialists in widely differing disciplines, as is
shown by the Macy Foundation Conferences
held in New York between 1946 and 1953. The
involvement of neurologists and psychologists
proved inevitable from the outset. “He who stud-
ies the nervous system cannot forget the mind,
and he who studies the mind cannot forget the
nervous system,” said Wiener, so that “the
vocabulary of the engineers soon became con-
taminated with the terms of the neurophysiolo-
gists and the psychologists” (Wiener 1948: 18,
15). In addition to the presence of neurologists
(e.g. Rafael Lorente de Nó) and psychologists
(e.g. Kurt Lewin), those historic interdisciplinary
seminars were also attended by pioneers of com-
puter science and of information theory (e.g.
Claude Shannon), as well as by sociologists (e.g.
Paul Lazarsfeld), ecologists (e.g. George E.
Hutchinson), and social scientists (e.g. Gregory
Bateson). The negative-feedback principle soon
became a universal principle by means of which
to interpret the evolution towards an equilib-
rium state of a wide range of complex systems –
social, political, pedagogical, economic, industrial,
and ecological. Laws belonging to specific dis-
ciplines, such as Maupertuis’s principle in physics
or that of Le Châtelier in chemistry, as well as
different laws describing optimization phenom-
ena in economics and interspecies interaction in
biology, were to appear as examples of this
unique universal principle. Inevitably, parallel to,
and often mingled with, the work of the various
researchers, who were trying out new conceptual
synthesis tools on specific problems, there arose
a popular philosophy of cybernetics that some-
times ended up employing cybernetic concepts
metaphorically, going as far as to interpret the
notion of feedback as the “revealer of nature’s
secret.” It was Wiener himself who appealed
against the “excessive optimism” of all those who,
like Bateson and the anthropologist Margaret
Mead, believed it possible to apply the ideas of
cybernetics to anthropology, sociology, and eco-
nomics, overestimating “the possible homeostatic
elements in the community,” and ultimately
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turning them into the cornerstone of an approach
to complexity. More generally, while cybernetics
was to suggest an extension of the natural-science
method to the human sciences, in the hope of
repeating in the latter field the successful results
obtained in the former, to the excessive optim-
ism was actually added a “misunderstanding of
the nature of all scientific achievement” (Wiener
1948: 162). Cybernetics, which “is nothing if it
is not mathematical,” would end up by encour-
aging a fashion, already rampant according to
Wiener, consisting of the inappropriate use of
mathematics in the human sciences: “a flood
of superficial and ill-considered work” (Wiener
1964: 88).

3.2 Systems theory and second-order
cybernetics

Wiener’s call for caution did not prevent others
from transferring the fundamental concepts of
cybernetics to wider-ranging, different interdis-
ciplinary projects. The project for a “general sys-
tem theory,” initially proposed by the biologist
Ludwig von Bertalanffy, is a good example.
Bertalanffy, while emphasizing the interdiscip-
linary nature of the cybernetic approach, also
argued against what he believed to be its limits.
His approach was not based on a homeostatic
system that can be described in terms of feed-
back control, but on a system that exchanges
matter and energy with the environment, the
only system that may be defined as thermo-
dynamically open. Moreover, in its more general
definition, a system is a complex of elements in
dynamic interaction. Bertalanffy’s idea was that
the cybernetic model presupposes this more
general definition insofar as the feedback occurs
as a “secondary regulation.” It comes into play
in order to stabilize elements of the system that
are already part of the dynamic interaction
that characterizes the “primary regulation” of a
thermodynamically open system such as a living
organism, a social body, a biological species, an
industrial organization, and so on (Bertalanffy
1968). Ilya Prigogine has further developed this
approach in the study of systems far from equi-
librium, and by theories studying chaotic systems
and complex dynamic systems (see Chapter 3).

Other authors shift the emphasis away from
the notion of control, as introduced by Wiener,
on to the concepts of self-organization and auto-
nomy. These authors are closer to Ashby, who
had insisted on the centrality of these notions.
They focus their attention on a classic topic in
the philosophy of knowledge: the relationship
between the subject, or observer, and the object,
or what is observed. According to these “new
cyberneticians,” Wienerian cybernetics, although
acknowledging that the agent and its environ-
ment must be viewed as a single system, fails to
place sufficient emphasis on the autonomous or
“autopoietic” nature, to use the expression coined
by Humberto Maturana and Francisco Varela
(1987), of this interaction. In this view, reality
itself becomes an interactive object, as observer
and the observed exist in a perpetually unbroken
circular system. The new cyberneticians thus criti-
cize philosophic realism, which they claim was
not completely ruled out by Wienerian cyber-
netics, and in fact is a distinctive feature of
symbolic AI because of its representational view
of mind. These authors consider the activity of
knowing not as an act of duplicating or replicat-
ing, through internal (symbolic) representations,
what is supposed to be already in the outside
world, but as a process built up by the observer.
They want to break free from what they claim
to be the scientific-philosophic “dogma” par
excellence, that is, that the aim of science should
be to approach as closely as possible a fully
preconstituted reality alleged to exist as such,
independently of the observer.

The criticism of these epistemological claims
has its starting points in Heinz von Foerster’s
“second-order cybernetics” and Silvio Ceccato’s
“operational methodology” (Somenzi 1987).
Criticisms of this kind also give rise to a re-
appraisal of hermeneutic positions based on the
central role of interpretation and language in
knowledge. The outcome is twofold. On the
one hand, there is the “radical constructivism”
of Ernst von Glasersfeld, according to which it is
the subject S that constructs what S knows, and
S does so on the basis of S’s own experience –
the only “world” in which S is capable of living
(von Glasersfeld 1995). On the other hand, there
are more general worldviews (those suggested,
for instance, by Winograd & Flores 1986, and
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above all by Varela, Thompson, & Rosch 1991),
in which situated cognition and constructivism,
autopoiesis and the hermeneutics of Hans
Gadamer, the philosophy of Martin Heidegger
and Buddhist philosophy are occasionally gath-
ered together in a criticism of the alleged, West-
ern, “scientist” or “rationalist” tradition, variously
defined as “Cartesian” or “Leibnizian.” It is still
unclear whether these positions bring any ad-
vancement in our understanding of cybernetic-
related phenomena. On the other hand, many
important and legitimate requirements under-
lying these positions seem to be already fulfilled
by the very tradition that they are challenging,
whenever the latter is not caricatured or over-
simplified (see, for example, Vera & Simon 1993).
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Chapter 15

Artificial Life
Mark A. Bedau

Artificial life (also known as “ALife”) is a broad,
interdisciplinary endeavor that studies life and
life-like processes through simulation and syn-
thesis. The goals of this activity include modeling
and even creating life and life-like systems, as
well as developing practical applications using
intuitions and methods taken from living sys-
tems. Artificial life both illuminates traditional
philosophical questions and raises new philo-
sophical questions. Since both artificial life and
philosophy investigate the essential nature of
certain fundamental aspects of reality like life
and adaptation, artificial life offers philosophy a
new perspective on these phenomena. This chap-
ter provides an introduction to current research
in artificial life and explains its philosophical
implications.

The Roots of Artificial Life

The phrase “artificial life” was coined by Chris-
topher Langton. He envisioned a study of life as
it could be in any possible setting, and he organ-
ized the first conference that explicitly recog-
nized this field (Langton 1989). There has since
been a regular series of conferences on artificial
life and a number of academic journals have been
launched to publish work in this new field.

Artificial life has broad intellectual roots, and
shares many of its central concepts with other,
older disciplines: computer science, cybernetics,
biology, complex systems theory, and artificial
intelligence, both symbolic and connectionist (on
these topics see Chapter 3, SYSTEM: AN INTRO-
DUCTION TO SYSTEMS SCIENCE, Chapter 9, THE

PHILOSOPHY OF AI AND ITS CRITIQUE, and Chap-
ter 14, CYBERNETICS).

John von Neumann (1966) implemented the
first artificial-life model (without referring to
it as such), with his famous creation of a self-
reproducing, computation-universal entity, using
cellular automata. Von Neumann was trying to
understand some of the fundamental properties
of living systems, such as self-reproduction and
the evolution of complex adaptive structures. His
approach was to construct simple formal systems
that exhibited those properties. This constructive
and abstract methodology typifies contemporary
artificial life, and cellular automata are still widely
used in the field.

At about the same time, cybernetics (Wiener
1948) applied two new tools to the study of
living systems: information theory and the ana-
lysis of self-regulatory processes (homeostasis).
One of the characteristics of living systems is
their spontaneous self-regulation: their capacity
to maintain an internal equilibrium in the face
of changes in the external environment. This
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capacity is still a subject of investigation in artifi-
cial life. Information theory concerns the trans-
mission of signals independently of their physical
representation. The abstract and material-
independent approach of information theory
is characteristic of artificial life.

Biology’s contribution to artificial life includes
a wealth of information about the life forms
found on Earth. Artificial life seeks to under-
stand all forms of life that could exist anywhere
in the universe, and detailed information about
life on Earth is one good clue about this. Bio-
logy has also provided artificial life with models
that were originally devised to study a specific
biological phenomenon. For example, random
Boolean networks (discussed below), which were
originally devised by Stuart Kauffman as models
of gene regulation networks, are now a para-
digm of artificial-life research.

Physics and mathematics have also had a strong
influence on artificial life. One example is the
study of cellular automata as exemplars of com-
plex systems (Wolfram 1994). In addition, artifi-
cial life’s methodology of studying model systems
that are simple enough to have broad generality
and to permit quantitative analysis was pioneered
in statistical mechanics and dynamical systems.
For example, the Ising model consists of a lattice
of up and down “spins” that have simple local
interactions and that are randomly perturbed by
“thermal” fluctuations. This model is so abstract
that it contains almost none of the detailed
internal physical structure of such materials as a
cup of water or a bar of iron. Nevertheless, the
model provides a precise quantitative description
of how liquid water turns into water vapor or a
bar of iron loses its magnetization as temperature
rises.

Artificial life also has deep roots in artificial
intelligence (AI). Living and flourishing in a
changing and uncertain environment seems to
require at least rudimentary forms of intelligence.
Thus, the subject-matter of artificial life and AI
overlap. Their methodology is also similar, since
both study natural phenomena by building com-
putational models. The computational meth-
odology of artificial life is especially close to the
connectionist movement that has recently swept
through AI and cognitive science.

The Methodology of Artificial Life

The computer-model methodology of artificial
life has several virtues. The discipline of express-
ing a model in feasible computer code requires
precision and clarity. It also ensures that hypothes-
ized mechanisms are feasible. Computer models
also facilitate the level of abstraction required of
maximally general models of phenomena. The
bottom-up architecture of artificial-life models
creates an additional virtue. Allowing microlevel
entities continually to affect the context of their
own behavior introduces a realistic complexity
that is missing from analytically studied math-
ematical models. Analytically solvable mathemat-
ical models can reveal little about the global effects
that emerge from a web of simultaneous non-
linear interactions. The obvious way to study the
effects of these interactions is to build bottom-
up models and then empirically investigate their
emergent global behavior through computer
simulations.

There is an important difference between the
modeling strategies AI and ALife typically em-
ploy. Most traditional AI models are top-down-
specified serial systems involving a complicated,
centralized controller that makes decisions based
on access to all aspects of global state. The con-
troller’s decisions have the potential to affect
directly any aspect of the whole system. On the
other hand, many natural living systems exhibit-
ing complex autonomous behavior are parallel,
distributed networks of relatively simple low-level
“agents” that simultaneously interact with each
other. Each agent’s decisions are based on infor-
mation about only its own local situation, and
its decisions directly affect only its own local
situation. ALife’s models characteristically follow
nature’s example. The models themselves are
bottom-up-specified parallel systems of simple
agents interacting locally. The models are
repeatedly iterated and the resulting global
behavior is observed. Such lower-level models
are sometimes said to be “agent-based” or
“individual-based.” The whole system’s behavior
is represented only indirectly. It arises out of the
interactions of a collection of directly represented
parts (“agents” or “individuals”). Two ALife
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models illustrating this pattern are described in
this section below.

The parallel, distributed character of ALife
models is similar to the structure of the models
studied in the connectionist (parallel distributed
processing, neural network) movement. Both
involve bottom-up models in which a population
of autonomous agents follows simple local rules.
In fact, the agents in many artificial-life models
are themselves controlled by internal connectionist
nets. But there are at least three important dif-
ferences between typical artificial-life models and
the connectionist models that have attracted the
most attention, such as feedforward networks
that learn by the back-propagation algorithm.

• First, artificial life and connectionism depend
on different kinds of learning algorithms. Con-
nectionist models often employ supervised
learning algorithms like back-propagation.
These learning algorithms are typically turned
on when the network is learning and then
turned off when the acquired information is
applied. This distinction between training and
application phases is sometimes unnatural.
In addition, supervised learning algorithms
require an omniscient teacher, which is also
often unnatural. By contrast, the learning
algorithms employed in artificial-life models
usually avoid these criticisms. They are
typically unsupervised and in continual opera-
tion. Often the algorithm is simply natural
selection.

• Second, human intervention and interpreta-
tion play different roles in artificial life and
connectionism. Typical connectionist models
passively receive sensory information prepack-
aged by a human designer and produce out-
put that must be interpreted by a human
designer. In artificial-life models, on the other
hand, a microlevel agent’s sensory input comes
directly from the environment in which the
agent lives. In many cases, this environment
is itself part of the computer model. A
human designer originally creates the model,
of course, but the specific way it impinges
on the agents is typically the result of an un-
predictable collection of low-level interactions
in the model. In ALife models the microlevel

agents’ output is to perform actions in their
environment, and those actions have direct
consequences for the agents’ well-being. Thus
their output has an intrinsic meaning regard-
less of human interpretation.

• Third, artificial life and connectionism typic-
ally seek different kinds of dynamical beha-
vior. Much connectionist modeling aims to
produce behavior that settles into an equi-
librium. This is because both learning and
applying knowledge are conceived as fixed
and determinate goals. By contrast, artificial
life views much of the distinctive behavior
of living systems as a process of continual
creative evolution, so the aim of many ALife
models is an open-ended evolutionary dy-
namic that is forever far from equilibrium.

The biological world is often viewed as a
nested hierarchy of levels. These levels include
(among other things) chemicals, organelles, cells,
organs, organisms, and ecologies. Artificial-life
models usually explicitly represent one level with
the aim of generating the characteristic phenom-
ena of a higher level. One of the ambitious goals
of artificial life is the search for a single model
that generates the behavior of all these levels
from the explicit specification of only the lowest
level. So far, the field has had difficulty produc-
ing a model that generates even two levels of
emergent phenomena.

The most primitive phenomenon explored by
some artificial-life models is self-organization.
Such models study how structure can emerge
from unstructured ensembles of initial condi-
tions, such as models of chemical soups in which
fundamental structures such as self-maintaining
autocatalytic networks might be seen to emerge.
A host of models target the organismic level,
sometimes with significant interactions between
organisms. These models typically allow changes
in the organisms as part of the system’s dy-
namics (e.g., through a genetic mechanism). The
most common goal of research using these
models is to identify and elucidate structure that
emerges in the ensuing evolutionary process.
Some models fit in between the chemical level
and the organismic level, aiming to understand
development by modeling interacting cells. Other
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models are interorganismic, in the sense that
they aim explicitly to model interactions between
different types of organisms or agents. These
models often contain elements of game theory.

Many artificial-life models are designed not to
represent known biological systems but to gen-
erate wholly new and extremely simple instances
of life-like phenomena. The simplest example of
such a system is the so-called “Game of Life,”
devised by the mathematician John Conway in
the 1960s (Berlekamp et al. 1982). Conway’s
Game of Life can be thought of as a model at
the physical or chemical level, embodying an
extremely simple and unique form of “chem-
ical” interactions. However, the self-organization
exhibited in the Game of Life is not a repres-
entation of chemical self-organization in the
real world but a wholly new instance of this
phenomenon. The Game of Life is a two-state,
two-dimensional cellular automaton with a trivial
nearest-neighbor rule. Think of this “game” as
taking place on a two-dimensional rectangular
grid of cells, analogous to a huge checker-board.
Time advances in discrete steps, and a cell’s state
at a given time is determined by the states of its
8 neighboring cells according to the following
simple “birth–death” rule: a “dead” cell becomes
“alive” if and only if exactly 3 neighbors are just
“alive,” and a “living” cell “dies” if and only if
fewer than 2 or more than 3 neighbors are just
“alive.” From inspection of the birth–death rule,
nothing particular can be discerned regarding
how the whole system will behave. But when
the system is simulated, a rich variety of complic-
ated dynamics can be observed and a complex
zoo of structures can be identified and classified
(blinkers, gliders, glider guns, logic switching
circuits, etc.). It is even possible to construct a
universal Turing machine in the Game of Life,
by cunningly positioning the initial configura-
tion of living cells. In such constructions gliders
perform a role of passing signals. Analyzing the
computational potential of cellular automata on
the basis of glider interactions has become a
major research thrust.

An example of an organismic level artificial-
life system is Tierra (Ray 1992). This ALife
system consists of “organisms” that are actually
simple, self-replicating computer programs popu-
lating an environment consisting of computer

memory and consuming CPU time as a resource.
A Tierran genotype consists of a string of machine
code, and each Tierran creature is a token of a
Tierran genotype. A simulation starts when com-
puter memory is inoculated with a single self-
replicating program, the ancestor, which is then
left to self-replicate on its own. The ancestor
and its descendants repeatedly replicate, until the
available memory space is teeming with cre-
atures that all share the same ancestral genotype.
To create space in memory for new descendants,
older creatures are continually removed from the
system. Errors (mutations) sometimes occur when
a creature replicates, so the population of Tierra
creatures evolves by natural selection. If a muta-
tion allows a creature to replicate faster, that
genotype tends to take over the population. Over
time, the ecology of Tierran genotypes becomes
remarkably diverse. Quickly reproducing parasites
that exploit a host’s genetic code evolve, and
this prompts the evolution of new creatures that
resist the parasites. After millions of CPU cycles,
Tierra typically contains many kinds of creatures
exhibiting a variety of competitive and cooperat-
ive ecological relationships.

Computer simulation is crucial for the study
of complex adaptive systems. It plays the role that
observation and experiment play in more con-
ventional science. The complex self-organizing
behavior of the Game of Life would never have
been discovered without simulating thousands
of generations for millions of sites. Similarly, it
would have been impossible to discover the emer-
gence of complex ecological interactions in Tierra
without simulating many millions of generations.
Simulation of large-scale complex systems is the
single most crucial development that has enabled
the field of artificial life to flourish and distinguish
itself from precursors such as cybernetics.

Rather than merely producing computer
simulations, some artificial-life research aims to
implement systems in the real world. The pro-
ducts of this activity are physical devices such as
robots that exhibit characteristic life-like behavior.
Some of these implementations are motivated
by the concern to engineer practical devices that
have some of the useful features of living systems,
such as robustness, flexibility, and autonomy. But
some of this activity is primarily theoretical, mot-
ivated by the belief that the best way to confront
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the hard questions about how life occurs in the
physical world is to study real physical systems.
Again, there is an analogy with biological levels.
The “chemical” level is represented by work on
evolvable hardware, often using programmable
logic arrays, which attempts to use biologically
inspired adaptive processes to shape the config-
uration of microelectronic circuitry. The “organ-
ismic” level is represented by new directions
in biologically inspired robotics, such as using
evolutionary algorithms to automate the design
of robotic controllers. A swarm of robots com-
municating locally to achieve some collective goal
is an example at the “population” level. An “eco-
logical” level might be represented by the internet
along with its interactions with all its users on
computers distributed around the world.

Emergence

Both living systems and artificial-life models are
commonly said to exhibit emergent phenomena;
indeed, many consider emergence to be a defin-
ing feature of life. However, the notion of emer-
gence remains ill defined. In general, emergent
phenomena share two broad hallmarks: they are
constituted by and generated from underlying
phenomena, and yet they are also autonomous
from those underlying phenomena. There are
abundant examples of apparent emergent phe-
nomena, and most involve life or mind. Yet the
two hallmarks of emergence seem inconsistent
or metaphysically illegitimate: How can some-
thing be autonomous from underlying phenom-
ena if it is constituted by and generated from
them? This is the problem of emergence. A
solution would both dissolve the appearance of
illegitimate metaphysics and enfold emergence
in constructive scientific explanations of phenom-
ena involving life and mind.

One can distinguish emergent properties,
emergent entities, and emergent phenomena.
Being alive, for example, is an emergent property,
an organism is an emergent entity, and the life
history of an organism is an emergent phenom-
enon. An entity with an emergent property is an
emergent entity, and an emergent phenomenon
involves an emergent entity possessing an emer-

gent property. So the first step toward solving
the problem of emergence is to explain the notion
of an emergent property. There are three main
views of what an emergent property is.

According to the first view, emergent proper-
ties apply only to “wholes” or “totalities,” not
to their component “parts” considered in isola-
tion (e.g., Harré 1985, Baas 1994). For example,
the constituent molecules in a cup of water, con-
sidered individually, do not have properties like
fluidity or transparency, though these properties
do apply to the whole cup of water. The “wholes”
at one level of analysis are sometimes “parts” of
a larger “whole” at a higher level of analysis, so
a hierarchy can contain successive levels of this
sort of emergence. This view easily explains the
two hallmarks of emergence. Macrolevel emer-
gent phenomena are constituted from and gen-
erated by microlevel phenomena in the trivial
sense that wholes are constituted and generated
by their constituents; and emergent phenomena
are autonomous from underlying phenomena in
the straightforward sense that emergent proper-
ties do not apply to the underlying entities. This
notion of emergence is very broad, applies to a
large number of intuitive examples of emergent
phenomena, and corresponds to the compelling
picture of reality consisting of autonomous levels
of phenomena. Its breadth is its greatest weak-
ness, however, for it applies to all macroproperties
that are not possessed by microentities. Macro-
properties are usually classified into two kinds:
genuine emergent properties and mere “result-
ant” properties. Resultant properties are those
that can be predicted and explained from the
properties of the components. For example, a
circle consists of a collection of points, and the
individual points have no shape. So being a
circle is a property of a “whole” but not its
constituent “parts.” Thus being a circle is an
emergent property according to the first view.
However, if you know that all the points in a
geometrical figure are equidistant from a given
point, then you can conclude that the figure is a
circle. So being a circle is a resultant property.
To distinguish emergent from resultant proper-
ties one must turn to other views.

The second main view construes emergent
properties as supervenient properties with causal
powers that are irreducible to the causal powers
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of microlevel constituents (e.g., Kim 1999). On
this view, supervenience explains the sense in
which the underlying processes constitute and
generate the emergent phenomena, and irreduc-
ible causal powers explain the sense in which
they are autonomous from underlying phenom-
ena. These irreducible causal powers give emer-
gent properties a dramatic form of ontological
novelty that many people associate with the most
puzzling kinds of emergent phenomena, such
as consciousness. However, an irreducible but
supervenient causal power by definition cannot
be explained in terms of the aggregation of the
microlevel potentialities. No evident mechanism
explains these irreducible supervenient powers,
so they must be viewed as primitive or “brute”
facts of nature. In addition, this strong form of
emergence seems to be scientifically irrelevant.
Illustrations of it in recent scientific literature
almost universally focus on one isolated example:
Sperry’s explanation of consciousness from over
30 years ago (Sperry 1969). There is little if any
evidence that this form of emergence is empiric-
ally relevant in the sciences studying emergent
phenomena.

A third view of emergence is poised midway
between the first two. It refers to the resultant
aggregate global behavior of complex systems.
In this sense, a system’s macrostate is emergent
just in case it can be derived from the system’s
boundary conditions and its microlevel dynam-
ical process but only through the process of iter-
ating and aggregating all the microlevel effects
(e.g., Bedau 1997a). In this case, the microlevel
phenomena clearly constitute and generate the
macrolevel phenomena. At the same time, the
macrolevel phenomena are autonomous in that
the only way to recognize or predict them is by
empirically observing the macrolevel effect of
aggregating all the microlevel phenomena. In
effect, this view identifies emergent properties
with a special subset of resultant properties: those
that cannot be predicted or explained except by
empirically aggregating the interactions among
microlevel entities. This form of emergence is
common in complex systems found in nature.
Artificial life’s models also exhibit it, since their
bottom-up behavior consists of the continual
iteration of microlevel interactions. This view attri-
butes the unpredictability and unexplainability

of emergent phenomena to the complex con-
sequences of myriad, nonlinear, and context-
dependent local microlevel interactions. Emergent
phenomena can have causal powers on this view,
but only by means of aggregating microlevel
causal powers. There is nothing inconsistent or
metaphysically illegitimate about underlying pro-
cesses constituting and generating phenomena by
iteration and aggregation. Furthermore, this form
of emergence is prominent in scientific accounts
of exactly the natural phenomena like life and
mind that apparently involve emergence. How-
ever, this form of emergence sheds no light
on those mysterious emergent phenomena, like
consciousness, that science still cannot explain.
In addition, the autonomy of these kinds of
emergent phenomena seems to be merely epi-
stemological rather than ontological. Emergent
phenomena are epistemologically autonomous in
the sense that knowledge of the underlying phe-
nomena does not provide knowledge about the
emergent phenomena. However, metaphysically,
the emergent phenomena seem wholly depend-
ent on the constituent phenomena, since emer-
gent causal powers result from microlevel causal
powers. This will not satisfy those who think
emergent phenomena have a strong form of
ontological autonomy.

Artificial life can be expected to play an active
role in the future philosophical debate about
emergence and related notions like supervenience,
reduction, complexity, and hierarchy. Living sys-
tems are one of the primary sources of emergent
phenomena, and artificial life’s bottom-up models
generate impressive macrolevel phenomena wholly
out of microlevel interactions. Exploration and
modification of these models is a constructive
way to analyze the nature and causes of different
kinds of emergent phenomena.

Adaptationism

Adaptive evolutionary explanations are familiar
from high-school biology. It is a cliché to explain
the giraffe’s long neck as an adaptation for brows-
ing among the tops of trees, on the grounds
that natural selection favored longer-necked
giraffes over their shorter-necked cousins. But the
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scientific legitimacy of these adaptive explanations
is controversial, largely because of a classic paper
by Stephen Jay Gould and Richard Lewontin
(1979). Gould and Lewontin directly challenge
adaptationism: the thesis that the activity of
pursuing adaptive explanations of biological traits
is a legitimate part of empirical science. They
accept that adaptive explanations are appropriate
in some contexts, but they despair of identifying
those contexts in any principled and rigorous
way. Biology provides many alternatives to adapt-
ive explanations, such as explanations appealing
to allometry, genetic drift, developmental con-
straints, genetic linkage, epistasis, and pleiotropy.
But Gould and Lewontin complain that those
alternatives receive only lip-service. The pre-
supposition that a trait is an adaptation and
so deserves an adaptive explanation is treated
as untestable. The fundamental challenge for
adaptationism raised by Gould and Lewontin,
then, is to find some empirical method for test-
ing when an adaptive explanation is needed. This
problem is often especially acute in artificial life.
Those studying artificial models have the luxury
of being able to collect virtually complete data,
but this mass of information only compounds
the problem of identifying which evolutionary
changes are adaptations.

The canonical response to Gould and
Lewontin makes two claims. The first claim is
that specific adaptive hypotheses, hypotheses
about the specific nature of a character’s adapta-
tion, are testable. Second, although the general
hypothesis that a trait is an adaptation might
itself not be testable, it is a working hypothesis
and empirical science normally treats working
hypotheses as untestable. For example, Richard
Dawkins claims that “hypotheses about adapta-
tion have shown themselves in practice, over and
over again, to be easily testable, by ordinary,
mundane methods of science” (Dawkins 1983:
360ff ). Dawkins’s point is that specific adaptive
hypotheses have observable consequences that
can be checked. The canonical response reflects
and explains evolutionary biology’s emphasis on
formulating and testing specific adaptive hypo-
theses. But this response does not address the
fundamental challenge to adaptationism, for that
challenge is about the testability of general adapt-
ive hypotheses, hypotheses to the effect that a

trait is an adaptation. Different specific adaptive
hypotheses usually have different observable con-
sequences. A general adaptive hypothesis entails
that some specific adaptive hypothesis is true, but
it gives no indication which one is true. So the
general adaptive hypothesis makes no particular
empirical prediction. Dawkins admits that general
adaptive hypotheses cannot be tested. “It is true
that the one hypothesis that we shall never test
is the hypothesis of no adaptive function at all,
but only because that is the one hypothesis in
this whole area that really is untestable” (1983:
361). Dawkins can defend the appeal to adaptive
explanations when a specific adaptive hypothesis
has been corroborated. But in the absence of this
– which is the typical situation – Dawkins must
concede Gould’s and Lewontin’s fundamental
challenge.

Artificial life has been used to develop and
illustrate a new defense of adaptationism. It is
argued that it is possible to test general adaptive
hypotheses empirically, by recording and analyz-
ing so-called “evolutionary activity” information
collected from the evolving system (Bedau 1996,
Bedau & Brown 1999). The fundamental intui-
tion behind this method is that we can detect
whether an item (gene, gene complex, genotype,
etc.) is an adaptation by observing the extent to
which it persists in the face of selection pressures.
Whenever an item that is subject to heritable
variation is “active” or expressed, natural selection
has an opportunity to provide feedback about its
adaptive value, its costs and benefits. If it per-
sists and spreads through a population when it
is repeatedly active, and especially if it exhibits
significantly more activity than one would expect
to see if it had no adaptive value, then we have
positive evidence that the item is persisting
because of its adaptive value. This means that we
have positive evidence that it is an adaptation
and deserves an adaptive explanation, even if we
have no idea about its specific adaptive function.
Since natural selection is not instantaneous,
maladaptive items persist for a while before they
are driven out by natural selection. Adaptations
are distinguished by accruing much more activity
than would be expected in a nonadaptive item.
A general way to measure the activity expected
of nonadaptive items is to construct a “neutral
shadow” of the target system – that is, a system
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that is similar to the target in all relevant re-
spects except that none of the items in it have
any adaptive significance. The activity in the neut-
ral shadow is a no-adaptation null hypothesis
for the target system. If the target system shows
significantly more activity than the neutral
shadow, this excess activity must be due to nat-
ural selection and the target system must contain
adaptations. The evolutionary-activity method
responds directly to Gould and Lewontin. It pro-
vides an empirical method for determining when
evolution is creating adaptations. Rather than
just assuming that traits are adaptations, it puts
this assumption to the empirical test. Another
advantage of the activity method is that stat-
istics based on activity information can be used
to measure various aspects of the dynamics of
adaptive evolution, thus allowing the process of
adaptation in different systems to be classified
and quantitatively compared (Bedau et al. 1997,
Bedau et al. 1998). One weakness of the evolu-
tionary activity method is that practical problems
sometimes make activity data difficult to collect.
Another weakness is that genetic hitchhikers –
nonadaptive or maladaptive traits that persist
because of a genetic connection to an adaptive
trait – can accumulate more activity than expected
in a neutral shadow. Thus, a trait that is not an
adaptation can have significant excess activity if
it is connected to a trait that is an adaptation.
Significant excess activity in a cluster of traits
shows that there are adaptations in the cluster,
but it does not separate out the hitchhikers.

The adaptationist perspective on evolution
emphasizes natural selection’s role in creating
the complex adaptive structures found in living
systems. Artificial life has been the source of a
new and fundamental challenge to this whole
perspective. Stuart Kauffman (1993, 1995) has
used artificial-life models to show that many fea-
tures of metabolisms, genetic networks, immune
systems, and ecological communities should be
viewed not as the products of selection but largely
as the spontaneous, self-organized behaviors of
certain abstract complex systems. Kauffman also
argues that spontaneous self-organized structures
– what he calls “order for free” (Kauffman 1995)
– explain both life’s origin and its subsequent
ability to evolve. Kauffman can make sweeping
claims about order for free because the artificial-

life models he studies are abstract enough to apply
to a wide variety of contexts. Random Boolean
networks are one such class of models. These
consist of a finite collection of binary (ON, OFF)
variables with randomly chosen input and out-
put connections. The state of each variable at
each step in discrete time is governed by some
logical or Boolean function (AND, OR, etc.) of
the states of variables that provide input to it.
The network is started by randomly assigning
states to each variable, and then the connections
and functions in the network determine the suc-
cessive state of each variable. Since the network
is finite, it eventually reaches a state it has previ-
ously encountered, and from then on the network
will forever repeat the same cycle of states. Dif-
ferent network states can end up in the same
state cycle, so a state cycle is called an attractor.
Kauffman found that the number of variables in
the network, the number of connections between
the variables, and the character of the Boolean
functions determine many biologically crucial
properties of the networks. These properties
include the number and length of attractors, the
stability of attractors to perturbation and muta-
tion, etc. If the variables are highly connected,
then the network’s attractors contain so many
states that the time it takes to traverse the
attractor vastly exceeds the lifetime of the entire
universe. Furthermore, any perturbation or muta-
tion in the network causes a vast change in its
behavior. For all practical purposes, the network
behaves chaotically. The network acts differently
when each variable takes input from only a bio-
logically plausible number of other variables and
when the variables are governed by biologically
realistic Boolean functions. In this case, the net-
work has a tiny number of attractors, it main-
tains homeostatic stability when perturbed, and
mutations have limited consequences; in other
words it exhibits “order for free.” Furthermore,
these biologically realistic Boolean networks
explain a number of empirically observed features
of biological systems, such as how the number
of different cell types and cell replication times
vary as a function of the number of genes per
cell. Kauffman’s nonadaptationist explanations
of the origins of order are controversial, partly
because of the sweeping scope of his analysis.
But the suggestion that self-organization rather
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than natural selection can explain much of the
structure in living systems is plausible. The issue
is not whether self-organization explains struc-
ture, but how much.

The problem of adaptationism is as acute in
artificial life as it is in biology. Artificial life can
make a distinctive contribution to the debate,
for the evolutionary processes studied by artifi-
cial life provide many diverse examples of the
process of adaptation. Furthermore, the systems
can be analyzed with the kind of detail and rigor
that is simply impossible to achieve in the bio-
sphere, because the historical data are unavail-
able or impractical to examine. For analogous
reasons, we can expect artificial life to contribute
to our understanding of many other funda-
mental issues in the philosophy of biology, such
as the nature of functions, the nature of species,
whether and how selection operates at different
biological levels, the nature of the niche, and
the nature of the relationship between organisms
and their environment.

Evolutionary Progress

The evolution of life shows a remarkable growth
in complexity. Simple prokaryotic one-celled life
led to more complex eukaryotic single-celled
life, which then led to multicellular life, then to
large-bodied vertebrate creatures with complex
sensory processing capacities, and ultimately to
highly intelligent creatures that use language and
develop sophisticated technology. This illustra-
tion of evolution’s creative potential has led some
to propose a ladder-of-complexity hypothesis
according to which open-ended evolutionary
processes have an inherent, law-like tendency to
create creatures with increasingly complicated
adaptive structure. But the evolution of life is
equally consistent with the denial of the ladder
of complexity. The observed progression could
be a contingent result of evolution rather than a
reflection of any inherent tendency. The ladder-
of-complexity hypothesis is difficult to test
because we do not have a variety of different
histories of life to compare. A sample size of one
makes it difficult to distinguish inherent trends
from artifacts.

Stephen Jay Gould (1989) devised an ideal
way to address this issue, namely the thought
experiment of replaying the tape of life. Imagine
that the process of evolution left a record on
a tape. Gould’s thought experiment consists in
rewinding the evolutionary process backward
in time and then replaying it again forward in
time but allowing different accidents, different
contingencies to reshape the evolution of life.
The evolution of life is rife with contingencies.
Repeatedly replaying the tape of life with novel
contingencies could produce as large a sample
of evolutionary histories as desired. It would be
relatively straightforward to determine whether
a general pattern emerges when all the evolu-
tionary trajectories are compared.

There is substantial controversy about the
outcome of Gould’s thought experiment. Gould
himself suggests that “any replay of the tape
would lead evolution down a pathway radically
different from the road actually taken” (1989:
51). He concludes that the contingency of
evolution will debar general laws like the hypo-
thesized ladder of complexity. Daniel Dennett
(1995) draws exactly the opposite conclusion.
Dennett argues that certain complex features
like sophisticated sensory processing provide a
distinct adaptive advantage. Thus, natural selec-
tion will almost inevitably discover significantly
advantageous features that are accessible from
multiple evolutionary pathways. Examples of mul-
tiple independent evolutionary convergence, such
as flight and eyesight, illustrate this argument.
Dennett concludes that replaying life’s tape will
almost inevitably produce highly intelligent cre-
atures that use language and develop sophistic-
ated technology.

Artificial life can make a number of contribu-
tions to this debate. Experience in artificial life
has shown time and again that expectations about
the outcome of thought experiments like replay-
ing life’s tape are highly fallible. The only sure
way to determine what to expect is to create the
relevant model and observe the results of re-
peated simulation. In fact, artificial life is exactly
where this sort of modeling activity occurs. A
central goal of artificial life is to discover the
inherent trends in evolving systems by devising
a model of open-ended evolution, repeatedly
replaying life’s tape with different historical
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contingencies and searching for patterns that hold
across all the results. The best evidence in favor
of the ladder-of-complexity hypothesis would
come from showing that a tendency toward in-
creasing adaptive complexity is the norm in such
ALife models. However, no one has yet con-
ducted the experiment of replaying life’s tape,
because no one has yet been able to create a
system that exhibits continual open-ended evolu-
tion of adaptive complexity. Achieving this goal
is one of the key open problems in artificial life
(Bedau et al. 2000). All conjectures about the
ladder of complexity will remain unsettled until
one can actually replay the tape of life.

The Nature of Life

Philosophy traditionally addressed the nature of
life but most philosophers ignore the issue today,
perhaps because it seems too “scientific.” At the
same time, most biologists also ignore the issue,
perhaps because it seems too “philosophical.” The
advent of artificial life raises the question anew,
for two reasons. Modeling the fundamental fea-
tures of living systems presupposes an under-
standing of life, and new artificial-life systems
push the boundaries of what life could be.

There are three prominent views about the
nature of life: life as a cluster of properties, life
as metabolization, and life as evolution. The
cluster conception takes two forms, depending
on whether the properties in the cluster are taken
to be individually necessary and jointly sufficient
for life. Skeptics argue that life is characterized
merely by a loose cluster of properties typically
but not necessarily possessed by living entities.
This view treats something as alive if it possesses
a sufficient number of properties in the cluster,
but no precise number of properties is sufficient.
On this view, the diversity of living forms have
only a family resemblance. Viewing life as a loose
cluster of properties provides a natural explanation
of why life has vague boundaries and borderline
cases. Life is also sometimes characterized by a
list of properties intended to provide something
much closer to individually necessary and jointly
sufficient conditions. Ernst Mayr (1982) pro-
duced a comprehensive list of such properties:

1 Living systems have an enormously complex
and adaptive organization.

2 Organisms are composed of a chemically
unique set of macromolecules.

3 Living phenomena are predominantly qual-
itative, not quantitative.

4 Living systems consist of highly variable
groups of unique individuals.

5 Organisms engage in purposeful activities by
means of evolved genetic programs.

6 Classes of organisms have historical connec-
tions of common descent.

7 Organisms are the product of natural
selection.

8 Biological processes are especially unpre-
dictable.

Cluster conceptions of life account for the char-
acteristic hallmarks of life, although they do this
merely by fiat. Lists like Mayr’s raise rather than
answer the question why this striking collection
of features is present in an indefinite diversity of
natural phenomena. The main drawback of all
cluster conceptions is that they inevitably make
life seem rather arbitrary or mysterious. A clus-
ter conception cannot explain why any particu-
lar cluster of properties is a fundamental and
ubiquitous natural phenomenon.

Schrödinger illustrated the second view of life
when he proposed persistence in the face of the
second law of thermodynamics by means of the
process of metabolization as the defining feature
of life.

It is by avoiding the rapid decay into the inert
state of “equilibrium” that an organism appears
so enigmatic; . . . How does the living organism
avoid decay? The obvious answer is: By eating,
drinking, breathing and (in the case of plants)
assimilating. The technical term is metabolism.
(Schrödinger 1969: 75)

Living systems need some way to self-maintain
their complex internal structure. So metaboliza-
tion seems to be at least a necessary condition of
all physical forms of life. The view that life cent-
rally involves the process of metabolization also
nicely explains our intuition that a crystal is not
alive. There is a metabolic flux of molecules only
at the crystal’s edge, not inside it. One drawback
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of metabolization as an all-encompassing con-
ception of life is that many metabolizing entities
seem not to be alive and not to involve life in
any way. Standard examples include a candle
flame, a vortex, and a convection cell. A second
problem is whether metabolization can explain
the hallmarks of life (recall Mayr’s list). It is
doubtful whether metabolization can explain
those characteristics on Mayr’s list that depend
on evolution.

The third main conception of life focuses on
the evolutionary process of adaptation. The
central idea is that what is distinctive of life is
the way in which adaptive evolution automatic-
ally fashions new and intelligent strategies for
surviving and flourishing as local environments
change. As John Maynard Smith explains:

We shall regard as alive any population of
entities which has the properties of multiplica-
tion, heredity and variation. The justification
for this definition is as follows: any population
with these properties will evolve by natural
selection so as to become better adapted to its
environment. Given time, any degree of adapt-
ive complexity can be generated by natural
selection. (Maynard Smith 1975: 96ff)

The view of life as evolution has two forms.
Maynard Smith illustrates one form, according
to which living systems are the entities in an
evolving population. Recently, Bedau (1996,
1998) has argued that, in fact, an evolving sys-
tem itself should be viewed as alive in the primary
sense. One virtue of the conception of life as
evolution is that it explains why Mayr’s hall-
marks of life coexist in nature. We would expect
life to involve the operation of natural selection
producing complex adaptive organization in
historically connected organisms with evolved
genetic programs. The random variation and his-
torical contingency in the evolutionary process
explains why living phenomena are especially
qualitative and unpredictable and involve unique
and variable individuals with frozen accidents like
chemically unique macromolecules. This view can
also explain why metabolism is so important in
living systems, for a metabolism is a physically
necessary prerequisite in any system that can sus-
tain itself long enough to adapt and evolve. There

are two main objections to viewing life as evolu-
tion. The first is that it seems to be entirely
contingent that life forms were produced by an
evolutionary process. The Biblical story of Adam
and Eve shows that is easy to imagine life forms
in the absence of any evolutionary process. A sec-
ond objection calls attention to evolving systems
that seem devoid of life. Viruses and prions evolve
but are questionably alive, and cultural evolution
provides much starker counterexamples.

The advent of artificial life has revitalized
investigation into the nature of life. This is partly
because one can simulate or synthesize living
systems only if one has some idea what life
essentially is. Artificial life’s self-conscious aim to
discern the general nature of life as it could be
encourages liberal experimentation with novel
life-like organizations and processes. Thus, arti-
ficial life both fosters a broad perspective on life
and has the potential to create radically new forms
of life. In the final analysis, the nature of life will
be settled by whatever provides the best explana-
tion of the rich range of natural phenomena
that seem to characterize living systems. Better
understanding of how to explain these phenom-
ena will also help resolve a cluster of puzzles
about life. These puzzles include whether life
admits of degrees, how the notion of life applies
at different levels in the biological hierarchy,
whether life is essentially connected with mental
capacities, and the relationship between the
material embodiment of life and the dynamical
processes in those materials.

Strong Artificial Life

Artificial life naturally raises the question whether
artificial constructions could ever literally be alive.
Agreement about the nature of life would make
this question easier to answer. For example, if
the defining property of living systems were the
process of sustaining a complex internal organ-
ization through a metabolism, then the issue
would be whether an artificially created system
could literally exhibit this property (see Boden
1999 for discussion). But the debate over creat-
ing real but artificial life currently proceeds in
the absence of agreement about what life is.
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It is important to distinguish two questions
about creating artificial life. The first concerns
whether it is possible to create a physical device
such as a robot that is literally alive. Aside from
controversy about what life is, the challenge here
is less philosophical than scientific. It concerns
our ability to synthesize the appropriate materials
and processes. The philosophically controversial
question is whether the processes or entities
inside a computer that is running an artificial-life
model could ever literally be alive. This is the
issue of whether so-called “strong” artificial life is
possible. Strong ALife is contrasted with “weak”
ALife, the uncontroversial thesis that computer
models are useful for understanding living systems.

The strong ALife question is sometimes put
in terms of computer simulations: can a computer
simulation of a living system ever literally be alive?
This formulation prompts the response (e.g.,
Pattee 1989, Harnad 1994) that it is a simple
category mistake to confuse a simulation of some-
thing with a realization of it. A flight simula-
tion for an airplane, no matter how detailed and
realistic, does not really fly. A simulation of a
hurricane does not create real rain driven by real
gale-force winds. Similarly, a computer simula-
tion of a living system produces merely a symbolic
representation of the living system. The intrinsic
ontological status of this symbolic representa-
tion is nothing more than certain electronic states
inside the computer (e.g., patterns of high and
low voltages), and this constellation of electronic
states is no more alive than is a series of English
sentences describing an organism. It seems alive
only when it is given an appropriate interpreta-
tion. This interpretation might be fostered if the
description dynamically reflects how the living
system changes over time and if the simulation
produces a vivid life-like visualization, but it is
still only an interpretation.

A number of considerations can blunt this
charge of category mistake. It is important to
recognize that an artificial-life model that is
actually running on a computer consists of a real
physical process occurring in a real physical
medium consuming real physical resources. The
software specifying the model might be a static
abstract entity with the ontological nature of
a Platonic universal, but an actual simulation
of the model has the ontological status of any

physical process. Furthermore, as emphasized
earlier, artificial-life models are often intended
not as simulations or models of some real-world
living system but as novel examples of living
systems. Conway’s Game of Life (Berlekamp
et al. 1982), for example, is not a simulation or
model of any real biochemical system. Rather,
it is a simple system that exhibits spontaneous
macroscopic self-organization. Similarly, Ray’s
Tierra (Ray 1992) is not a simulation or model of
the ecology and evolution of some real biological
system. Instead, it is an instance of ecological
and evolutionary dynamics in a digital domain.
So, when the Game of Life and Tierra are actu-
ally running in computers, they are new physical
instances of self-organization and evolution. Pro-
cesses like self-organization and evolution are
multiply realizable and can be embodied in a wide
variety of different media, including the physical
media of suitably programmed computers. So,
to the extent that the essential properties of living
systems involve processes like self-organization
and evolution, suitably programmed computers
will actually be novel realizations of life. Models
that merely represent some phenomenon differ
from models that actually generate it. For ex-
ample, a two-dimensional model of a branching
process with random pruning can be viewed as a
description of the evolution of more or less com-
plex insects, if one dimension is taken to rep-
resent time and the other is taken to represent
complexity. But exactly the same branching pro-
cess can equally be viewed as a description of the
evolution of more or less tall humans. It can even
be viewed as a description of various nontemporal
and nonbiological processes, such as the pattern
of tributaries in a geography. In itself, the model
does not intrinsically involve any of these things.
By contrast, a glider in Conway’s Game of Life
is not an electronic pattern that is merely inter-
pretable as a self-sustaining dynamic collective.
It really is an electronic self-sustaining collective,
whether or not anyone notices it and regards it
as such. Likewise, the self-replicating machine-
language programs in Ray’s Tierra genuinely
evolve by natural selection and genuinely en-
gage in host/parasite relations. The nature of
ALife’s key problem of modeling the open-ended
evolution of adaptive complexity can be appreci-
ated in this light. It is easy to make a model that
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can be interpreted as exhibiting this phenom-
enon; the challenge is to make a model that
actually generates it.

The Turing test in artificial intelligence was
an attempt to settle whether computing could
be indistinguishable from thinking in the absence
of any agreement about the nature of thinking
itself. Thus the proposal to settle the strong ALife
debate with a “Turing test” for life often arises
in artificial life. Some (e.g., Sober 1992) warn
that the Turing test in AI is an insufficient test
for intelligence because it is possible in principle
for an unthinking device to pass the test. A typ-
ical example of such a hypothetical device is a
machine that stores an appropriate output for all
the different input that might be encountered.
The characteristic drawback of such devices is
that, even to exhibit modest capabilities, the
number of pieces of information they must store
is larger than the number of elementary particles
in the entire universe. Though possible in prin-
ciple, such a device is clearly impossible in prac-
tice. Artificial life’s computational methodology
demands models that actually produce the phe-
nomenon of interest. In this context, what is
possible in principle but impossible in practice
is irrelevant. So the experience in ALife prompts
one to ignore unfeasible counterexamples to
Turing tests. Harnad (1994) has advocated eco-
logical and evolutionary indistinguishability from
biological life as a Turing test for life. The motiva-
tion for this test for life is that it would be
arbitrary to deny life to anything that is indistin-
guishable ecologically and evolutionarily from
biological life. But this test is biased against life
forms that are isolated from the biosphere. Sys-
tems existing inside computers running artificial-
life models might exhibit all the ecological and
evolutionary richness found in the biosphere. Yet
they might not interact with biological life, so
they might fail Harnad’s test for life. Thus,
Harnad’s test begs the question against some
forms of artificial life.

The debate about strong artificial life is inter-
twined with philosophical questions about func-
tionalism and computation. A significant source
of support for strong ALife is the belief that
life concerns form more than matter. Although
certain carbon-based macromolecules play a cru-
cial role in the vital processes of all known living

entities, metabolization creates a continual flux
of molecules through living systems. Thus, life
seems more like a kind of a process than a kind
of material entity. This implies that life could be
realized in a variety of media, perhaps including
suitably programmed computer hardware. This
motivation for strong ALife prompts a function-
alist and computationalist view of life, analogous
to contemporary functionalism and computation-
alism with respect to mind. Sober (1992) points
out that many essential properties of organisms
involve their interaction with the environment.
Thus, the computational character of the pro-
cesses inside organisms would not alone sup-
port functionalism and computationalism about
life. But since many artificial-life models situate
artificial organisms in an artificial environment,
artificial life still promotes functionalism and
computationalism. Bedau (1997b) argues that
artificial life’s models generate macrolevel dy-
namics with a suppleness that is distinctive of
adaptive intelligence and that cannot be captured
by any fixed algorithm. The models are imple-
mented in a computer but adaptive processes like
natural selection continually change the micro-
level rules that govern the system. Thus, the
macrolevel processes that emerge are noncom-
putational. This perspective still supports func-
tionalism with respect to life, but a form of
functionalism divorced from computationalism.

Artificial-life models generate behavior that is
characteristic of living systems, so the practice of
artificial life will continually raise the question
whether a computer model of life could literally
be alive. By continually challenging the bound-
aries between life and nonlife, artificial life will
also spur novel perspectives on the issue. The
debate about strong ALife will also enliven and
inform many related issues in the philosophy
of mind and artificial intelligence, including
functionalism, computationalism, intelligence,
intentionality, and representationalism.

Philosophical Methodology

Artificial life also has implications for the meth-
odology of philosophy. Philosophy and artificial
life are natural partners. Both seek to understand



Mark A. Bedau

210

phenomena at a level of generality that is suffi-
ciently deep to ignore contingencies and reveal
essential natures. In addition, artificial life’s com-
putational methodology is a direct and natural
extension of philosophy’s traditional methodo-
logy of a priori thought experiments. In the
attempt to capture the simple essence of vital
processes, artificial-life models abstract away as
many details of natural living as possible. These
models are for exploring the consequences of
certain simple ideas or premises. They are
“thought experiments” explored with the help
of a computer. Like the traditional armchair
thought experiments employed in philosophy,
artificial-life simulations attempt to answer
“What if X?” questions. Artificial life’s thought
experiments are distinctive in that they can be
explored only by computer simulation; armchair
analysis is simply inconclusive. Synthesizing
thought experiments on a computer can bring
a new clarity and constructive evidence to bear
in philosophy (see Chapter 26, COMPUTATIONAL

MODELING AS A PHILOSOPHICAL METHODOLOGY).
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Chapter 16

Information and Content
Jonathan Cohen

Mental states differ from most other entities in
the world in having semantic or intentional prop-
erties: they have meanings, they are about other
things, they have satisfaction- or truth-conditions,
they have representational content. Mental states
are not the only entities that have intentional
properties – so do linguistic expressions, some
paintings, and so on; but many follow Grice
(1957) in supposing that we could understand
the intentional properties of these other entities as
derived from the intentional properties of mental
states (viz., the mental states of their producers).
Of course, accepting this supposition leaves
us with a puzzle about how the non-derivative
bearers of intentional properties (mental states)
could have these properties. In particular, inten-
tional properties seem to some to be especially
difficult to reconcile with a robust commitment
to ontological naturalism – the view that the
natural properties, events, and individuals are the
only properties, events, and individuals that exist.
Fodor puts this intuition nicely in this oft-quoted
passage:

I suppose that sooner or later the physicists
will complete the catalogue they’ve been com-
piling of the ultimate and irreducible pro-
perties of things. When they do, the likes of
spin, charm, and charge will perhaps appear
upon their list. But aboutness surely won’t;
intentionality simply doesn’t go that deep . . . If

aboutness is real, it must be really something
else. (Fodor 1987: 97)

Some philosophers have reacted to this clash
by giving up one of the two views generating
the tension. For example, Churchland (1981)
opts for intentional irrealism in order to save
ontological naturalism, while McDowell (1994)
abandons naturalism (in the sense under discus-
sion) in favor of a kind of intentional dualism as
a way of preserving intentional realism. (Termino-
logical caution: unfortunately, McDowell reserves
the term ‘naturalism’ for his own view, and refers
to the sort of naturalism under discussion here –
which he rejects – as ‘bald naturalism’.) How-
ever, others hope to find a way of reconciling
their naturalistic ontology with intentional real-
ism. In particular, many propose to locate inten-
tionality within the natural order by naturalizing
the intentional – by offering an account of inten-
tional features in naturalistically respectable terms.

Many philosophers pursuing this project think
that an appeal to information might satisfy their
needs – they believe that this notion is both
naturalistically acceptable and adequate to the
analysis of the intentional. In this chapter I shall
review several attempts to naturalize the inten-
tional in terms of information. In section 1 I’ll
lay down some conditions of adequacy on in-
formational theories of content that will be useful
in evaluating the theories presented later. Next,
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in section 2, I’ll consider Dretske’s influential
early formulation of an informational theory. I’ll
move on in sections 3–4 to discuss some elabora-
tions of the view that incorporate notions of
epistemic optimality and teleology. Finally, in
section 5 I’ll discuss another informational theory,
due to Fodor, that turns on his notion of asym-
metric dependence. (Please note that there is a
short glossary of technical terms at the end of
the chapter.)

1 Adequacy Conditions

It will be useful to structure the discussion around
a number of adequacy conditions that an accept-
able naturalistic theory of content must meet:

Naturalism: To vindicate the naturalism in whose
service it is deployed, an informational theory of
content must show how intentional properties
can be characterized in naturalistic terms. While
it is not obvious what terms should count as
acceptably naturalistic, proposed naturalistic ac-
counts of intentional properties should not pre-
suppose that intentional properties are compatible
with naturalism (on pain of begging the very
question such theories are intended to answer).
Consequently, the necessary and sufficient con-
ditions for having intentional features required
by a naturalistic theory of content must not them-
selves employ intentional idioms, nor should they
employ any other notions whose compatibility
with naturalism is in doubt. That is to say, the
naturalism constraint is intended to force ana-
lyses of intentional features to break out of the
circle of intentional features, and therefore pro-
posed analyses of these features in terms of others
of these features – satisfaction, truth, content,
believing that p, etc. – will count for present
purposes as unacceptably non-naturalistic. On the
other hand, the insistence on naturalism is not
intended to preclude abstract entities (e.g., laws,
properties, numbers) from appearing in the ana-
lysis of content.

Grain: Since at least Frege (1892), philosophers
of mind and language have made much of the
extremely fine grain of individuation for con-
tent. In particular, there can be distinct contents

that are equivalent in any of a number of senses
(e.g., logical, analytic, metaphysical, or nomic
equivalence). Many follow Frege in arguing for
this conclusion from the observation that it is
possible rationally to believe that p and dis-
believe that q, even when p and q are equivalent
in one of these ways; for example, even assum-
ing that it is metaphysically necessary that the
Morning Star is identical to the Evening Star, it
is possible rationally to believe that the Morning
Star is wet and simultaneously disbelieve that
the Evening Star is wet (you might be in such a
state if you didn’t know that the Morning Star
is identical to the Evening Star). A theory of
content, therefore, must make it possible to dis-
tinguish between contents that are logically, ana-
lytically, metaphysically, or nomically equivalent.

Misrepresentation: An acceptable theory of
intentional content must make it possible that
intentional contents can represent the world
erroneously – that they can represent the world as
being a certain way even when, in fact, the world
is not that way (the problem of formulating an
account that makes room for misrepresentation
is sometimes called “the problem of misrepres-
entation” or “the problem of error”).

2 Dretske and the Flow
of Information

One of the earliest systematic attempts to under-
stand intentional content in terms of informa-
tion occurs in Fred Dretske’s seminal Knowledge
and the Flow of Information (1981). (Dretske’s
was not, however, the first such proposal;
antecedents include Stampe 1975 and 1977, and
some suggestive remarks about natural meaning
from Peirce 1931 and Grice 1957.) (Dretske’s
account is also discussed in Chapter 17, KNOWL-
EDGE.) Dretske wants to understand the inten-
tional content of a signal (e.g., a mental state) in
terms of the information that that signal carries
under certain circumstances. He understands in-
formation in terms of objective conditional prob-
abilities between events (I shall ignore problems
concerning the interpretation of these probabil-
ities raised in Loewer 1983 and 1987): he writes
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(p. 65) that a signal r carries the information
that p just in case the conditional probability of
p, given r (and k, the knowledge of the receiver
of r), is 1 (but given k alone, less than 1).

But we cannot straightforwardly identify in-
formation carried with intentional content because
a signal will usually carry too much information.
For example, an acoustic signal carrying the in-
formation that the doorbell is ringing will typic-
ally also carry the information that the doorbell’s
button is being pressed. In contrast, it seems
that intentional content is more constrained: I
can have a belief that the doorbell is ringing with-
out having the belief that the doorbell’s button
is being pressed. Therefore, to give an account
of intentional content, Dretske needs to rule out
the sort of informational nesting found in the
example described. To do this, he stipulates that
the information that p is nested in the informa-
tion that q just in case q carries the information
that p (71), and then claims that a signal S has
the fact that p as its semantic content iff:

1. S carries the information that p, and
2. S carries no other information, q, such that

the information that p is nested (nomically
or analytically) in q. (p. 185)

Dretske emphasizes that his notion of in-
formation transmission – hence also his notion
of intentional content – presupposes a counter-
factual-supporting connection between the signal
and the information it carries. As a result, a signal
correlated with p will fail to carry the informa-
tion that p if the correlation is merely accidental
or statistical: my thermometer carries informa-
tion about the temperature of my room and not
yours, even if the two rooms are the same tem-
perature, because the state of my thermometer
supports counterfactuals about the temperature
of my room but not about the temperature of
your room (that is to say, it is a true generaliza-
tion that if the temperature of my room were
different, the state of my thermometer would be
different; in contrast, it is not generally true that
if the temperature of your room were different,
the state of my thermometer would be different).

The view of intentional content set out so far
is plausibly thought of as meeting the naturalism
requirement (putting aside worries about its

interpretation of probabilities raised by Loewer
– see above), but it faces challenges concerning
the desiderata of grain and misrepresentation.

First consider the problem of grain. While
Dretske’s requirement of counterfactual support
allows him to set aside merely correlated events in
determining the content of a signal, it will not
allow him to choose between properties whose
covariation is necessary. (I assume, following
Dretske, that our underlying theory of event indi-
viduation allows for a distinction between instan-
tiations of properties that necessarily covary.)
Suppose that a signal carries the information that
p, but that it is (nomically, metaphysically, ana-
lytically, or logically) necessary that p covaries
with a distinct property q; in any of these cases,
it will be nomically necessary that p covaries
with q. (A special case comes from Quine’s fam-
ous “gavagai” puzzle from Quine 1964.) Quine
argued that if a field linguist encountered the
term “gavagai” in an unfamiliar language and
noted that natives assented to the use of this
term when and only when rabbits were present,
there would be no fact of the matter which of
many incompatible English translations of the
term is correct. Live possibilities for the transla-
tion, according to Quine, include the following:
“rabbit,” “undetached rabbit part,” “instantane-
ous temporal stage of a rabbit,” “instance of the
universal rabbithood,” and “part of the scattered
mereological sum of all rabbits.” This provides
a special case of the problem under discussion
because it is necessary that the properties picked
out by these expressions covary. (See the discus-
sion of the “gavagai” puzzle in the context of
informational theories of content in Gates 1996.)
In this case, the signal will also carry the informa-
tion that q. Presumably the intentional content
that p can be distinct from the intentional con-
tent that q; so which is the intentional content
of the signal? Dretske is prepared to admit that a
signal cannot have one of these contents with-
out having the other (p. 264 n. 2).

This admission has struck many as counter-
intuitive; however, the problem is even more
serious than Dretske’s admission would suggest.
In fact, Dretske’s account has the result that (not
both, but) neither of the two pieces of informa-
tion considered can be the content of any signal.
In the case described, the information that p is
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nomically nested in the information that q, and
the information that q is nomically nested in the
information that p. But on Dretske’s account,
the intentional content of a signal cannot be a
fact that is nomically nested in some other piece
of information carried by that signal, so no signal
can have either the content p or the content q.
(It is left open that a signal could have the dis-
junctive content [p ∨ q].) This problem is obvi-
ously quite general, and so is a serious objection
against Dretske’s account.

Second, it seems that the account spelled out
so far cannot accommodate the possibility of mis-
representation. This is because, according to that
account, a signal S with the intentional content
p must carry the information that p, and this
requires that the conditional probability of p given
S is 1 – i.e., p must be true. (Cf. the discussion
of the so-called “disjunction problem” in Fodor
1990d: if both p and q can cause Ss, how can a
theory of content make it the case that q-caused
Ss have the erroneous content p rather than the
always veridical disjunctive content [p ∨ q]?) Thus,
on the theory we have considered so far, inten-
tional contents cannot misrepresent the world.

Dretske is aware of the problem of misrepres-
entation, and attempts to answer it by propos-
ing that only some of the tokenings of a signal
carry the information that determines that signal’s
content. In particular, he proposes that there is
a learning period for a signal, during which that
signal carries the information that p, and that
the signal’s intentional content is given only in
terms of the information it carries in its learn-
ing period. After the learning period, when the
intentional content of the signal has already
been fixed as p, tokenings of that signal can fail
to carry the information that p, and so can be
erroneous:

In the learning situation special care is taken to
see that incoming signals have an intensity, a
strength, sufficient unto delivering the required
piece of information to the learning subject
. . . But once we have meaning, once the sub-
ject has articulated a structure that is select-
ively sensitive to [the information that p] . . . ,
instances of this structure, tokens of this
type, can be triggered by signals that lack the
appropriate piece of information. (pp. 194–5)

Dretske’s answer to the problem of misrep-
resentation raises a number of problems of its
own. First, it has seemed to many implausible that
there is anything like a principled distinction
between the learning period and the nonlearn-
ing period for most signals. A second concern
is that, even if there is a learning period for
signals, this period must be characterized non-
intentionally if the naturalism constraint is to
be respected. This requirement precludes under-
standing the learning period for a signal simply
as the period leading up to that signal’s having
the intentional content p, and it is not obvious
that there is an alternative naturalistically accept-
able understanding in the offing. Third, relying
on the learning period to explain misrepresenta-
tion leaves Dretske without an account of how
unlearned (innate) signals could misrepresent.
Fourth, as Loewer 1997 notes, the account in
terms of a learning period is implausible for many
signals; for instance, it seems possible that a child
could learn that the linguistic symbol “aardvark”
has aardvarks (not pictures of aardvarks) as its
content, even if all tokens of “aardvark” in the
learning period carry information about pictures
of aardvarks rather than aardvarks.

3 Epistemic Optimality

Many are convinced by consideration of these
difficulties that content can’t be reconstructed
in terms of information alone. However, many
believe these problems can be solved by a hybrid
theory that appeals to both an informational
factor and some other (not strictly informational)
factor. The thought is that, so long as both the
informational and the non-informational factors
can be given naturalistic explications, they can
work together to provide a naturalistic account
of content that escapes the vulnerabilities of more
strict informational theories.

One family of theories of this sort appeals
to a notion of epistemic optimality to take up
the slack left by information. On these views, a
signal S has the content p iff there are epistemic-
ally optimal conditions Cp for p such that if Cp

obtained, then S would nomologically covary
with p.
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Proponents of such accounts, including Stampe
(1975, 1977), Dretske (1983), and Fodor
(1990b), hope that their appeal to epistemic
optimality might resolve the problem of mis-
representation; this thought is motivated by the
(reasonable) suggestion that misrepresentation
occurs when cognitive systems attempt to repres-
ent the world while operating in epistemically
suboptimal conditions. Thus, for example, tokens
of the linguistic symbol “aardvark” that are caused
by armadillos seen on dark nights have as their
content the property aardvark – rather than
armadillo on a dark night or aardvark or
armadillo on a dark night – because the symbol
“aardvark” would covary only with instances
of aardvark in epistemically optimal conditions
(epistemically optimal conditions for aardvark
presumably involve the lighting being up, the
subject’s attentively looking in the right direc-
tion, and so on).

It has also been suggested that appeals to
optimality could solve the problem of grain.
For even if p and q covary, we could say that
a symbol has p rather than q as its content if S
would nomologically covary with p but not q in
epistemically optimal conditions for p. However,
it is unclear that this appeal to epistemic optimal-
ity resolves the problem of grain. For one thing,
this solution will fail if the optimal conditions
for p (Cp) are identical to the optimal conditions
for q (Cq); for in this case, S would, once again,
nomologically covary with both p and q in Cp

(and Cq, of course), and so would not deter-
minately have the content p. A variant of this
worry arises when “p iff q” is necessary. For,
here again, S would covary with both p and q in
all possible conditions, a fortiori in Cp (assum-
ing condition Cp is possible; if not, then it would
not be true that S nomologically covaries with p
in Cp, so S could not have the content that p).

Moreover, the naturalistic credentials of
epistemic optimality theories are questionable as
well. This can be seen in two ways. First, it is
plausible that the epistemic optimality conditions
for a content p cannot be stated without advert-
ing to the content p itself, since what is epistem-
ically optimal seems to depend on what content
we’re hoping to reconstruct. For example, the
optimality conditions for the belief that there’s
an aardvark in the room preclude looking through

a microscope, but the optimality conditions for
the belief that there’s a paramecium in the room
require looking through a microscope. But, of
course, epistemic optimality versions of informa-
tional theories explain the content of signals in
terms of the optimality conditions for that con-
tent. Consequently, the understanding of a signal’s
having the content p provided by an epistemic
optimality theory must be stated in terms of the
content p, contrary to the naturalism require-
ment. Second, insofar as belief fixation is widely
thought to be a holistic enterprise, it is equally
plausible that the epistemic optimality condi-
tions for a content p cannot be stated without
adverting to contents other than p. For example,
my tokenings of the linguistic symbol “there are
aardvarks in the room” won’t nomologically
covary with the presence of aardvarks in the room
if I believe that aardvarks are not macroscopic-
ally observable. But if so, then an epistemic
optimality theory’s unpacking of what it is for a
signal to have the content that p must advert to
states that must be characterized by their con-
tents. And once again, this seems a clear violation
of the naturalism constraint.

4 Teleology

An alternative elaboration of the informational
approach to content, appealing to considerations
of teleology, rather than epistemic optimality, is
advocated by several philosophers (see Fodor
1984 and 1990b, Millikan 1984, 1986, and
1989, Dretske 1988, Papineau 1993). Here, too,
the hope is that the theory’s non-informational
factor – its appeal to teleology – will resolve the
problems of misrepresentation and grain that
plague stricter informational accounts. Roughly
put, the thought is that misrepresentation occurs
when a signal S covaries with the information
that q even though S’s teleological function is
to carry the information that p (p ≠ q). Sim-
ilarly for the problem of grain: we could say that
a symbol means p rather than q (even if p is
satisfied when and only when q is satisfied) if the
teleological function of the symbol is to carry the
information that p. (These formulations assume
– controversially – that teleological functions are
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assigned to individual signals, rather than the
whole cognitive systems sustaining the signal-
world covariations taken as basic by informational
theories. Unfortunately, I cannot examine the
alternative construal here for reasons of space.)

Proponents of teleological accounts need to
explain the notion of teleological function natur-
alistically. Of course, they cannot appeal to the
well-understood example of the teleological func-
tion of artifact symbols in this context (e.g., the
symbols on the face of a pressure gauge have the
teleological function of representing pressure),
since these instances of teleological function are
presumably constituted in terms of content: the
gauge has the function of measuring pressure
because that’s what its makers intended it to
do (for similar reasons, appeals to God’s inten-
tions to fix teleological functions are off limits to
would-be naturalists as well). Instead, these theor-
ists typically propose understanding teleological
function in terms of natural selection (see Wright
1973, Millikan 1984, Neander 1991). On this
view, a signal S of type S* has the teleological
function of carrying the information that p (in
an organism o) just in case earlier tokens of type
S* were selected (in o’s species) by natural selec-
tion because they carried the information that
p – that is, S has the function of carrying the
information that p in o just in case the carrying
of the information that p by earlier tokens of
type S* increased the fitness of o’s ancestors.

To be sure, questions remain about the natur-
alistic bona fides of the account just sketched –
for example, some object that this formulation
buys its naturalism at the price of an implausibly
robust conception of natural selection. More-
over, the success of this account depends on the
possibility of a naturalistic explanation of how
tokens are assigned to signal types. However, the
most important objections against teleological
accounts allege that they cannot accommodate
the desiderata of grain and misrepresentation.

The problem of grain for teleological theories
is almost invariably presented in connection with
the frog’s capacity to snap at flies. Consider an
internal state S in the frog that covaries with the
presence of flies and mediates his snapping beha-
vior. It may be that the frog’s environment E is
such that all the local small moving black objects
are flies, all the items of frog-food are flies, all

the flies-or-bee-bees are flies, and so on. Then
state S covaries not only with the presence of
flies, but also with the presence of small moving
black objects in E, frog-food in E, flies-or-bee-
bees in E, and so on. Indeed, state S carries
information about all of these; so which (if any)
is the content of S? According to teleological
theories, the information that p is the content of
S iff the carrying of the information that p by
other tokens of the same type increased the fitness
of the frog’s ancestors. But a token’s carrying
information about any of the candidates con-
sidered above would have an equal effect on the
fitness of ancestral frogs: snapping at flies, small
moving black objects in E, frog-food in E, and
flies-or-bee-bees in E would all get exactly the
same things into the frog’s belly so long as all
the small moving black objects (/frog-food/
flies-or-bee-bees) in E are flies. As Fodor puts
the point,

it’s equally OK with Darwin which way you
describe the intentional objects of y snaps, so
long as it’s reliable (say, nomologically neces-
sary; anyhow, counterfactual supporting) that
all the local flies-or-bee-bees are flies. The point
is, of course, that if all the local flies-or-bee-
bees are flies, then it is reliable that the frog
that snaps at one does neither better nor worse
selection-wise than the frog that snaps at the
other. (Fodor 1990d: 73)

This problem is even more pressing when the
covariation between candidate contents is not
merely nomologically necessary, but metaphysic-
ally necessary: it is extremely difficult to see how
natural selection could favor a signal with the
content aardvark there over one with the con-
tent undetached aardvark part there.

The problem of misrepresentation for tele-
ological theories is a consequence of the prob-
lem of grain. As we have seen, the teleologist’s
appeal to natural selection leaves it open that S
could mean fly-or-bee-bee rather than y. But if so,
then nothing could make it the case that bee-
bee-caused S-tokens are erroneous rather than
veridical. More generally, if this is right, it is
difficult to see what could make it the case that
any content-assignment by a teleological theory
is erroneous.
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5 Asymmetric Dependence

Fodor has proposed another informational ac-
count as a way of giving a semantics for expres-
sions in a language of thought (henceforth,
Mentalese). (Fodor has presented significantly
different versions of the theory over the years;
see Fodor 1987, 1990, 1990, 1994. For reasons
of space, I confine myself here to the formula-
tion in Fodor 1990e, his most complete state-
ment of the view.) The intuition behind this
view is that, while a Mentalese symbol can carry
information about a number of distinct proper-
ties, only one of them is its content – namely, its
content is that single property on which its carry-
ing information about all the other candidate
properties depends. For example, the intuition
runs, while my mental state can carry informa-
tion about both aardvark and armadillo on a
dark night, its content is aardvark because it
would not carry information about armadillo on
a dark night (or anything else) unless it carried
information about aardvark. This intuition is
fleshed out in Fodor 1990e in terms of a relation
of asymmetric dependence between laws, which
is itself specified in terms of a pair of subjunctive
conditionals: a law L 1 is said to depend asym-
metrically on a law L 2 just in case (i) if L 2 did
not hold, then L1 would not hold either, and
(ii) if L 1 did not hold, then L 2 would still hold.
(That said, Fodor sometimes suggests that the
asymmetric dependence relations are metaphys-
ically basic and not in need of cashing in terms
of subjunctive conditionals; see Fodor 1990e:
93, 95.)

Using this apparatus, Fodor writes (p. 121)
that a Mentalese expression S has property p as
its content if:

1. “ps cause Ss” is a law.
2. Some Ss are actually caused by ps.
3. For all q ≠ p, if qs qua qs actually cause Ss,

then qs causing Ss is asymmetrically depend-
ent on ps causing Ss.

This formulation deserves supplementation. (In
what follows I shall use capital letters to indicate
Mentalese expressions: AARDVARK is a Mentalese
expression that, we hope, has the property aard-

vark as its content.) First, Fodor understands
the laws appealed to in this account as ceteris
paribus generalizations – generalizations that are
true (and counterfactual-supporting) when other
things are held equal. As a result, the proposal
is not vulnerable to potential counterexamples
involving the failure of aardvarks to cause
AARDVARKs in dark rooms, for inattentive sub-
jects, and so on: these would be brushed aside
as cases where the relevant paria aren’t cetera,
and therefore as falling outside the intended scope
of the laws. Second, Fodor insists that the sub-
junctive conditionals in terms of which asym-
metric dependence is characterized should be read
synchronically rather than diachronically (p. 134
n. 18). That is, it might be that aardvark-
pictures played a diachronically ineliminable role
in the ontogeny of my thought (say, because I
was taught to token AARDVARK exclusively by a
process involving exposure to aardvark-pictures);
in this case, aardvarks wouldn’t cause AARDVARKs
in me were it not that aardvark-pictures had
first caused AARDVARKs in me. Still, according to
Fodor, the aardvark-picture to AARDVARK nomic
link is asymmetrically dependent on the aardvark
to AARDVARK nomic link because, he thinks, the
synchronic dependence goes in the opposite dir-
ection from the diachronic dependence: once the
capacity to token AARDVARK is in place, aardvark-
pictures wouldn’t cause AARDVARKs unless aard-
varks caused AARDVARKs.

Asymmetric dependence is designed to resolve
the problems of grain and misrepresentation.
Take the problem of grain first: why is it that
AARDVARK means aardvark rather than nocturnal
termite-consuming African burrowing mammal?
(For the purposes of illustration, assume it is
nomically necessary that these properties covary.)
Answer: even if every AARDVARK I token is caused
by something that is an instance of both propert-
ies, instances of nocturnal termite-consuming
African burrowing mammal would not cause
AARDVARKs unless instances of aardvark caused
AARDVARKs, while the reverse dependency does not
hold. Take the problem of misrepresentation
next: given that some AARDVARK tokens are caused
by armadillos on dark nights rather than aard-
varks, why do those tokens have the erroneous
content aardvark rather than the veridical con-
tent armadillo on a dark night (or the veridical
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disjunctive content aardvark or armadillo on a
dark night)? Once again, asymmetric depend-
ence supplies an answer: armadillos on dark nights
cause AARDVARKs only because the former are mis-
takenly identified as aardvarks, so the nomic link
between armadillo on dark night and AARDVARK

is asymmetrically dependent on the nomic link
between aardvark and AARDVARK (similarly, the
link between the disjunctive property and
AARDVARKs is asymmetrically dependent on the
link between aardvark and AARDVARKs).

Several objections have been leveled against
Fodor’s theory. Many of these take the form of
counterexamples designed to show that Fodor’s
conditions do not assign the correct content to
Mentalese expressions (Cummins 1989: ch. 5,
Godfrey-Smith 1989, Baker 1991, Boghossian
1991, Manfredi & Summerfield 1992, Adams &
Aizawa 1994). Fodor has responded to many of
these criticisms (see Fodor 1990e, the replies of
Loewer & Rey 1991, and Fodor 1994). Unfor-
tunately, these controversies are often extremely
difficult to assess because it is unclear how we
should understand the relevant subjunctive
conditionals. (The difficulty in assessing alleged
counterexamples to Fodor’s theory is even more
severe if asymmetric dependence is taken as meta-
physically basic – see above.)

A further complication is that Fodor intends
his theory to provide only sufficient, and not
necessary, conditions for a state’s having content.
As Fodor construes it, his task is only to show
how Mentalese expressions could have content –
not to show how Mentalese expressions do have
content. By reducing his aspirations in this way,
Fodor forestalls objections about whether his
conditions are necessary for a state’s having
content, and in particular about whether the
subjunctive conditionals he invokes are true:

It’s enough if I can make good the claim that
“X” would mean such and such if so and so
were to be the case. It’s not also incumbent
upon me to argue that since “X” does mean
such and such, so and so is the case. (Fodor
1990e: 96)

Whether or not the points considered so far
are damaging, the asymmetric dependence theory
faces other important obstacles.

First, it is unclear that Fodor’s account is
acceptably naturalistic. As noted, Fodor under-
stands the laws on which his account rests as
true, counterfactual-supporting, ceteris paribus
generalizations. However, it seems that the
ceteris paribus conditions governing the aardvark–
AARDVARK link cannot avoid adverting to con-
tent for two reasons (this mirrors an objection
discussed in section 3). For one thing, just
which cetera must remain paria to sustain the
token–world links the theory requires depends
on what that symbol’s content is: instances of
aardvark can’t cause AARDVARKs in me if I am
looking through a microscope, but instances
of paramecium can’t cause PARAMECIUMs in me
unless I am looking through a microscope. For
another, just which cetera must remain paria to
sustain the token–world links the theory requires
depends on what other contents the subject
believes: I won’t reliably token AARDVARK in the
presence of aardvarks if I believe that aardvarks
are not macroscopically observable. For both
these reasons, it seems that the ceteris paribus
clauses appearing in the laws required by the
theory ultimately must be cashed in terms of
content, and consequently that the theory can-
not be stated without adverting to content. If
so, then the view does not abide by the natural-
ism constraint.

Finally, while the asymmetric dependence
account is arguably successful in dispatching
many instances of the grain problem, it remains
helpless to mark distinctions in content between
properties whose covariation is metaphysically
necessary. Because it is metaphysically neces-
sary that instances of aardvark covary with
instances of undetached aardvark part, there is a
counterfactual-supporting generalization linking
instances of aardvark to AARDVARK tokens iff
there is a counterfactual-supporting generalization
linking instances of undetached aardvark part to
AARDVARK tokens. Moreover, since the covariation
between the two properties is metaphysically
necessary, this will be so in every metaphysically
possible world, so there can be no asymmetric
dependence between the two laws. (Presumably
Fodor would not respond by appealing to asym-
metric dependencies in metaphysically impos-
sible worlds, since those worlds will include many
where the dependency goes in the opposite
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direction from that required by the theory.)
Consequently, the theory predicts that AARDVARK

(i) has the content aardvark if and only if it
has the content undetached aardvark part, or
(ii) has the disjunctive content aardvark or
undetached aardvark part. (In Fodor 1994: ch.
3 he recognizes this problem, and suggests that
a theory of content can settle on a determinate
and nondisjunctive content for a Mentalese
expression by appeal to the inferential relations
of thoughts containing that expression. This solu-
tion is criticized in Gates 1996 and Ray 1997.)

6 Conclusion

Many contemporary philosophers believe that
informational theories are the most promising
proposals for reconciling naturalism with inten-
tional realism. However, it remains to be shown
that there is an informational theory of content
that satisfies the constraints of section 1 above.
Of course, this does not mean that no informa-
tional theory can succeed. It does mean that, so
far, appeals to information have not resolved the
problem of naturalizing content.

Glossary of Key Technical Terms

analytic necessity: a sentence is said to be ana-
lytically necessary if it is necessary in virtue of
its meaning. For example, many believe that
the sentence “bachelors are unmarried” is ana-
lytically necessary. Compare with metaphysical
and nomic necessity.

carry (information): a signal r carries the informa-
tion that p just in case the conditional probability
of p, given r (and k, the knowledge of the receiver
of r), is 1 (but given k alone, less than 1) (Dretske
1981: 65).

ceteris paribus: Latin for “other things equal.”
Ceteris paribus generalizations are nonstrict
generalizations – generalizations that hold when
other things are equal.

covariation (properties): properties P and Q covary
just in case P is instantiated if and only if Q is
instantiated.

counterfactual support: a generalization is said
to be counterfactual-supporting if it is not only
true of its instances, but also would be true
of relevant noninstances. For example, the
generalization “metals expand on heating” is
counterfactual-supporting because it not only
says something true about what happens to
heated metals, but also says something true about
what would happen to unheated metals were
they heated (contrary to actual fact). In contrast,
“everything in Nelson Goodman’s pocket on VE
Day was silver” is not counterfactual-supporting
because, even if all the things in Nelson
Goodman’s pocket on VE Day were in fact silver,
there are many nonsilver objects that might have
been in Nelson Goodman’s pocket on VE Day.
It is widely thought to be a requirement on
nomic generalizations (as opposed to mere accid-
entally true generalizations) that they support
counterfactuals.

holism of belief fixation: the claim that it is impos-
sible to fix, or come to, a given belief without
holding in place a number of other beliefs at
the same time. According to this view, an experi-
mental datum confirms (i.e. verifies, gives us
some reason to believe) a given statement only
in conjunction with one’s other theoretical com-
mitments, background assumptions about the
experiment, and assumptions about the logical
and mathematical apparatus connecting the
datum to these other beliefs.

intentional: about something. Things that are
about other things (e.g., mental states, words)
are said to have intentional properties. Not to
be confused with a different, ordinary usage of
“intentional” to mean on purpose.

Mentalese: language of thought. According to
Fodor (1975), thinking should be understood
as manipulation of Mentalese symbols with both
syntactic and semantic (intentional) properties.

metaphysical necessity: a proposition (or a sentence
expressing a proposition) is said to be metaphys-
ically necessary just in case it is necessary by
virtue of metaphysical truths. For example, if the
correct metaphysics of the constitution of water
says that water is H2O, then it is metaphysically
necessary that non-H2O stuff – even if clear,
potable, odorless, tasteless, etc. – is not water.
Compare with analytic and nomic necessity.
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naturalism: the view that the natural properties,
events, and individuals are the only properties,
events, and individuals that exist.

nesting: the information that p is nested in
the information that q just in case q carries the
information that p (Dretske 1981: 71). Specific-
ally, p is nomically nested in q just in case it is
nomically necessary (necessary by virtue of natural
laws) that p is nested in q. Similarly, p is analytic-
ally nested in q just in case the sentence “p is
nested in q” is analytically necessary (necessary
in virtue of its meaning).

nomic: law-governed.

nomic necessity: a proposition (or a sentence
expressing a proposition) is said to be nomically
necessary just in case it is necessary by virtue of
natural laws. For example, the proposition that
metals expand when heated is nomically neces-
sary. Compare with analytic and metaphysical
necessity.

subjunctive conditional: a conditional is a hypo-
thetical statement of the form “if p then q”; the
component p is called the antecedent of the
conditional, while component q is called the con-
sequent. Conditionals whose antecedents are in
the grammatical subjunctive mood neither pre-
suppose that their antecedents are true nor that
they are false; these are called subjunctive condi-
tionals. For example, “if I were to eat a bagel,
then I would be full” is a subjunctive conditional:
its antecedent is in the subjunctive mood, and it
presupposes neither that I do eat a bagel, nor
that I do not.
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Chapter 17

Knowledge
Fred Adams

can certainly believe it. And one cannot know
that the US Supreme Court stopped the state-
wide Florida hand recount, if one has no beliefs
about it whatsoever, though it can be true. So
truth and belief, though independent, are both
required for knowledge. Knowledge requires that
these two things, otherwise independent, come
together.

Nozick (1981) claims that knowledge tracks
the truth, such that the beliefs of a knower would
co-vary with the truth – when one applies the
right belief-forming methods. Figuratively, a
knower’s cognitive light of belief would illumin-
ate, were p true, and not illuminate, were p false.

Attention turns to methods. What sorts of
methods would provide the mechanisms to imple-
ment the sort of tracking of truth required by
knowledge on a theory like Nozick’s? For know-
ledge of empirical propositions, one would expect
to need empirical methods: perceptual observa-
tion, instrumentation, testimony, or perhaps an
entire empirical theory. Non-empirical truths of
logic or mathematics may require mathematical
intuition, reason (a form of cognitive computa-
tion), formal systems, and techniques of proof.

Justification is also a notion that is traditionally
associated with knowledge, for it is often thought
to be a necessary ingredient in getting beliefs to
track the truth in ways capable of generating
knowledge. There is a wide variety of theories of
justification, and each emphasizes different aspects

Introduction

In business and finance, “managing informa-
tion” and “managing knowledge” practically are
synonymous. Surfing internet search engines pro-
vides confirmation. What is it about knowledge
and information that makes the two suited to
one another? At the level of common sense, if
one possesses the information that p, one is in a
position to know that p, all else being equal. And
if one is uninformed, one is not in a position to
know that p. Similarly, if one knows that p, one
has more than a justified true belief (Gettier
1963) – justified beliefs can be true accidentally.
I see Ken and believe I do (someone I know
well). But my belief that it is Ken is accidentally
true and not knowledge because, although I see
Ken, I cannot distinguish Ken from his identical
twin Ben, who is standing right behind Ken.
Information that it is Ken may secure the needed
connection between belief and truth to take me
beyond a merely true (even justified) belief that
I see Ken. Whether this is true beyond the level
of common sense depends upon a deeper under-
standing of knowledge and information.

Let’s begin with knowledge. It is uncontro-
versial that knowledge requires truth and belief.
One cannot know that Bush got more votes in
Florida than Gore in the 2000 American Pres-
idential election, if it is not true, though one
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or factors relevant to knowing. Externalists stress
factors that are possibly outside the mind or
awareness of the believer. Internalists stress factors
of which a believer must be aware. Foundational-
ists attend to the origin, grounds, and structure
of support for beliefs that are not inferred from
other beliefs. Coherentists stress the interrela-
tion of beliefs and their relations of mutual con-
firmation. And reliabilists attend to the likelihood
that a set of cognitive mechanisms and their con-
ditions of operation tend to produce true beliefs
more often than false beliefs. Despite their dif-
ferences, all these theories agree that a belief ’s
being justified contributes to minimizing that a
belief is merely true, but not known. The exact
relation between a belief ’s being justified and its
being true continues to be difficult to specify with
precision, partly because there can be justified
false beliefs. Still, it is undeniable that epistemic
justification is prized because it either increases
the likelihood that one non-accidentally has a true
belief, or, having that, it satisfies an additional
cognitive requirement of knowing (coherence,
evidence, or rationality).

Some have argued that if justification is some-
thing other than information (Adams 1986) or
other than what, when added to true belief, guar-
antees that the belief is non-accidentally true
(Lewis 1996), then justification is neither neces-
sary nor sufficient for knowledge. Still, a theory of
knowledge that incorporates information might
tack one or other account of justified belief onto
its conditions of knowing. Alternatively, one
might attempt to substitute information for justi-
fied belief into one’s account of knowledge. In
what follows, we will consider an information-
theoretic attempt to do an “end run” around
giving a theory of justified belief.

Now let’s turn to information. To be of value
to a would-be knower, information must be an
objective, mind-independent commodity. In prin-
ciple, it should be possible for someone to be
the first person to learn that p. If S were the first
person brought to know that p by the informa-
tion that p, then the information that p would
appear to have objective properties. The follow-
ing examples suggest that this is so. Waves of
radiation traveling through space may contain
information about the Big Bang before anyone
detects it. Fingerprints on the gun may contain

information about who pulled the trigger before
one lifts the prints. Thus, information appears to
be mind-independent (and, thereby, language-
independent too).

Information must also be capable of having a
very special relationship to the truth. Since one
cannot know what is false, if information is going
to bring one to know that p, then information
must also be tied to the state of affairs that makes
p true. Otherwise, it is hard to see the value of
information over belief and truth itself. On at
least some accounts, information has this con-
nection to truth (Dretske 1981, Floridi forth-
coming b). One can be misinformed. One can
be informed that q, when one needs to know
that p, but one cannot be misinformed that p.
For something can only carry the information
that p, if p. Indeed, if we think of information
as being contained or carried in one event (set
of events) and as being about another event (set
of events), then the transmission of information
is the product of a correlation and dependency
between the two events (sets). To see this in more
detail, let’s consider Dretske’s (1981) attempt
to explicate an account of information that may
be useful in understanding knowledge.

We will first look at Dretske’s account and see
how he uses information to explicate knowledge.
We will also look at some interesting objections
to his account. This will give us a good idea of
the usefulness of information in understanding
what knowledge is. We will then consider some
interesting open questions about knowledge
and information. And we will close with a survey
of some current philosophical debates about
knowledge.

Dretske’s Adaptation of
Information Theory to Knowledge

To adapt information theory to a format friendly
to a theory of knowledge, several matters need
to be resolved. For example, to know that Bush
was elected president involves information being
generated by the event of his election. It also
involves transmission of that information to a
prospective knower S. S must detect physical
events that carry that transmitted information,
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and those events must cause or sustain S’s belief
that Bush was elected.

Let’s begin with generation of information.
An event’s occurrence generates information.
How much is generated is a function of how
likely was the event’s occurrence. The more likely
an event, the less information it generates – while
the less likely the event, the more information
it generates. Different ways of classifying events
may result in different amounts of information
generated. And there are many different ways
of trying to measure or quantify amounts of
information. Dretske follows the communication
industry standard (Weaver & Shannon 1949) of
measuring information in bits (binary digits), rep-
resenting the number of binary partitions neces-
sary to reduce a collection of equally probable
outcomes to one (e.g., beginning with 8, a three-
step reduction to 4, to 2, to 1 = 3 bits). The
amount of information generated at a source s
by the reduction of n equally likely possibilities to
one is represented: I(s) = log n (base 2). Here
I(s) represents the average amount of informa-
tion generated at a source by a reduction of
equally likely events. If the range of possible
events at the source s1, s2, . . . sn, are not all equally
likely, then the amount of information gener-
ated by the occurrence of si is: I(si) = log 1/p(si)
(where p = probability). So, for example, sup-
pose 10 persons apply for a job and nine are
from inside the company, one from outside. If s1

is the selection for the job of someone outside
the company, then I(s1) = log 1/.1 = 3.33 bits
of information. For contrast, selection of some-
one from inside the company, s2 would generate
1/0.9 = 0.15 bits of information.

Next, let’s consider information flow or trans-
mission. For information at a receiving point r
to be about a sending point s, there must be
dependence between the events at r upon those
at s. Suppose at s there are 8 candidates equally
likely to be selected. A selection of Susan gen-
erates 3 bits of information. Suppose at r there
are eight equally likely names that may be put
on the employment forms in the employment
office. A selection of “Susan” generates 3 bits
of information. But there would also be 3 bits
generated if, mistakenly, the name “Tony” were
placed on the employment forms. Clearly, though
this amount of information is the same it is not

the information that Susan was selected. We want
the information at r to be about the events that
transpired at s. Letting “Is(r)” represent this
information, Is(r) = [I(r) − noise]. Noise is the
amount of information generated at r that is
independent of what happens at s (not about s),
and when “Tony” is placed on the forms, but
Susan was selected, the noise = 3 bits. Thus, no
information about s arrives at r.

Now for our purposes, the import of these
formulae for calculating amounts of information
is not so much the absolute values of informa-
tion generated or transmitted by an event, but
the conditions necessary for transmission. For
most events it would be difficult or impossible
to determine the exact probabilities and ranges
of possibilities closed off by an event’s occur-
rence. What is important is whether one receives
at r as much information as is necessary to know
what happened at s (under a relevant specifica-
tion). For a signal or message to carry the
information that Bush was elected, it must carry
as much information as was generated by Bush’s
election. We know this is more information than
that a Republican ran for office, and more than
that someone was elected. Calculating exactly
how much information is generated by Bush’s
election is not as important as determining under
what conditions the information that does arrive
carries the information that Bush was elected.
This is what Dretske calls the informational con-
tent of a signal.

Informational content: A signal r carries the
information that s is F = The conditional prob-
ability of s’s being F, given r (and k), is 1 (but,
given k alone, less than 1).

k is a variable that takes into account how what
one already knows may influence the informa-
tional value of a signal. If one knew nothing, k
would go to zero. If I know that Vice President
Cheney is from Texas or Wyoming, and I learn
that he is not from Texas, I thereby have the
information that he is from Wyoming. If you
hear that he is not from Texas, but don’t already
know Wyoming is the only other possibility, you
do not thereby receive the information that he is
from Wyoming.

This account of the informational content of
a signal has important virtues. If a signal carries
the information that Bush was elected, then since
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the conditional probability that Bush was elected,
given the signal, is 1, then Bush was elected.
Hence, the account gives information a connec-
tion to truth. Clearly it will also be the case that
the signal carries as much information about s,
Is(r), as was generated by the fact that Bush
was elected. Noise about the fact that Bush was
elected is zero. Hence, the account gives us a
way to understand transmission or flow of
information of a specific propositional (factual)
content from source to receiver – not just
amounts of information.

Finally, we can give an information-theoretic
account of knowledge (ITK): K knows that s is
F = K’s belief that s is F is caused (or causally
sustained) by the information that s is F. Dretske
says that this is intended to account for percep-
tual knowledge only, that is, perceptually know-
ing of something s that it is F. Knowing, by my
current visual experiences of my computer, that
it is on, would count as perceptual knowledge.
And so would my knowing that the coast is clear,
by hearing three knocks, on a prearranged sig-
nal. However, here my knowledge also involves
knowing the prearranged signal. I know that the
coast is clear by hearing the three knocks. Clearly
there are other forms of knowledge and other
ways of knowing and other kinds of things that
can be known. Whether an ITK can be adapted
to all cases of empirical knowledge is an inter-
esting question still open. It is not the only
one.

Interesting Open Questions

Perhaps the first interesting and open question
for an ITK is: how many conditional probabil-
ities of 1 exist? If they are required for know-
ledge and the world does not provide them, then
skepticism rules the day. Knowledge, even if it
exists, may be scarce. Famously, Descartes may
have known he existed because the probability
that he did, given that he was conscious of doubt-
ing (thinking), was 1. But is the probability
zero that I might have a brain tumor causing me
to hallucinate typing this passage? Unless it is
zero, I am not receiving (by my experiences) the
information that I am typing this passage now,

and, according to ITK, do not know that I am.
Some people do hallucinate from tumors.

The possibility of the brain tumor may seem
extremely remote, because it would have to cause
such sophisticated hallucinations. But other pos-
sibilities are less remote. Do you know where
your car is? Is the probability that it is where
you parked it, given your memory impressions
of having parked it there, 1? Are cars stolen,
where you live? Or, do you know the money in
your pocket is not counterfeit? Is the probability
that it is counterfeit zero?

Suppose I see a person that I take to be Bill
Clinton. I believe it is Clinton because the per-
son looks like Clinton (I’ve seen him on televi-
sion many times). Do I know that it is Clinton?
I do only if the probability that someone in my
vicinity would look just like that (where the
“that” refers to the way he looks) and not be
Bill Clinton is zero. Or, to put it another way,
the probability that it is Clinton, given that it
looks like him, must be 1. Now suppose that I
get no confirmation – no follow-up information
or observation. But suppose that it was Clinton.
Do I know this? I do only if there are no “dead
ringers” for Clinton in my vicinity – no one who
might look like him from an angle or side view,
or even straight on. Is the world ever that stable,
when it comes to the way people look? If it is
not, I could never know it was Clinton from
such a chance meeting, because I would never
receive the information that it was Clinton. So it
is an open question whether the world is stable
enough to generate this type of information, and
if it is, how often – and about how many things:
Clinton, parked cars, legal currency?

One open question was whether the world
provides determinate information that p (con-
ditional probabilities of 1). Another is whether
we can know that it does. To know that the
world provides conditional probabilities of 1 is
to know that we have the information that p. To
know that we have the information that p is to
know that we know, on ITK. Now many would
maintain that we do not know that we have
knowledge, even if we do. And if that is correct,
then we do not know that we have conditional
probabilities of 1 in the evidence causing or sus-
taining our beliefs. So unless we know that we
have knowledge, we will not know that there are
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the conditional probabilities of 1 that know-
ledge requires. Thus, it also would be an open
question whether we know that there is know-
ledge. These skeptical challenges are faced by
this (or any) theory of knowledge. Here they
must be left as open questions. ITK tells us what
it takes to have knowledge, but not whether we
have it.

Next, on an ITK, since one’s belief that p
contains the information that p (Barwise & Perry
1983), should not one necessarily be able to
convey one’s knowledge that p to others? There
are reasons (Dretske 1982) to say no. Suppose
that Al repairs motorcycles for a living, and that
he would never mistake a BMW for a Harley
Davidson (only BMWs have horizontal pistons).
However, Al mistakenly believes both are Amer-
ican made. When Al is working on a Harley, will
he know that it is American made? Al knows
that it is a Harley by the label on the motorcycle
and the repair manual. The conditional probab-
ility that it is American made, given that it is a
Harley, is 1, and Al believes it is American made
because he believes it is a Harley. So Al’s belief
that the Harley he is repairing is American made
is caused and sustained by items carrying the
information that it is American made. But in
general, when Al thinks something is American
made, the probability that it is, given his belief,
is not 1 (for he thinks BMWs are American
made). Thus, Al’s beliefs of the form [motorcycle
x is American made] do not contain the informa-
tion that something is an American motorcycle.
Now, if Al is on the phone with someone and says
only that he is repairing an American motorcycle,
the hearer will not receive the information that
Al is working on an American motorcycle. For
Al would have said this even if he had been
working on a BMW.

Immediately following this discussion, we must
ask whether it implies that Al may know that the
motorcycle he is working on is American made,
but be unable to communicate that knowledge?
(This will depend on what the other person on
the phone knows about Al. For our purposes,
let’s suppose that the person on the phone knows
very little about Al or motorcycles.) Normally we
would expect that if someone knows something,
and sincerely asserts the truth that is known, then
one who hears the assertion and understands it

can thereby come to know the thing known by
the speaker. The above example calls this into
question. For, as we have supposed, the person
on the phone hears Al assert that he is working
on an American motorcycle, but does not receive
the information that Al is working on an Amer-
ican motorcycle. For Al need not be a reliable
conduit of information. Al’s utterance may con-
tain only the information that the motorcycle is
American made or German made (but not which).
Therefore, Al seems to know something that he
cannot transmit or pass on – at least if all that he
tells the hearer is “it is American made.”

It is another interesting and important
consequence of this type of ITK that logical,
mathematical, or analytic truths generate zero
information. Metaphysical necessities (water’s
being H2O or Tully’s being Cicero) also gener-
ate zero information. Since I(si) = log 1/p(si),
and since any of these things have a probability
of 1, their informational value is zero. Hence,
we have a feature that puzzled Frege, viz. both
that a = a, and that a = b generate no informa-
tion. Yet the latter seems informative, while the
former does not. Now it may seem strange indeed
to say that it takes no information to know these.
And it certainly seems strange to treat nomic
necessities (water’s expanding when freezing) in
the same way one treats mathematical or logical
truths.

Perhaps just as puzzling are nomological
impossibilities and logical falsehoods. Since
they have a probability of zero, the amount of
information carried by sentences about them is
infinite (or undefined). There are interesting ways
out of this conclusion (Floridi forthcoming a),
but we will not have space to pursue them here.

It is certainly an important and open question
whether an ITK can be developed to explain
how we know mathematical or logical truths,
since these truths generate no information. It is
possible that, while no information is generated
by these truths, because of their impossibility
of being false, they are known by means other
than receiving information. Several possible ways
this might go are available, but we will not
have time to pursue them here. It will have to
suffice to say that it might be possible to know
things about necessary truths by getting elements
of one’s beliefs and representational structures
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(mathematical and logical representations and
proofs) to mirror or be isomorphic to the ele-
ments of the domain to be known (Katz 1999).
Whether this is possible is still an important and
fascinating open question in philosophy of math-
ematics and theory of knowledge.

Current Philosophical Debates

Is an ITK able to withstand scrutiny? Let’s look
at some objections. Foley (1987) says that any
informational account that relies upon causation
of a belief by information will be susceptible to
well-known problems of causal deviance. Ironic-
ally, this is exactly one of the things an informa-
tional account was designed to avoid with the
notion of information, because an information
channel must screen off causal deviance. So
what is Foley’s example and does it work? Foley
focuses on Dretske’s example of three quick
knocks at the door causing a spy to believe that
the courier has arrived and carrying that informa-
tion, as well. Foley modifies the case so that
it involves a wayward causal chain, as follows.
The spy suddenly goes deaf. Then come three
knocks carrying the information about the
courier’s arrival. The knocks cause the spy’s part-
ner to trip, causing a box to fall on the spy’s
head, in turn jarring the spy’s brain in such a
way that he suddenly comes to believe that the
courier has arrived.

As we’ve seen, ITKs admit that a belief that p
can be knowledge, even if the belief that p does
not contain the information that p, as long as
it was caused by the information that p. This
invites the kind of example Foley gives. Still, it is
quite clear that an information-theoretic account
needs the proximate cause of the belief (or sus-
taining cause) to carry the information that p. In
Foley’s example, that is not the case. Even if the
three knocks contained the information that p
and for some strange reason the spy’s partner
would not have tripped unless the knocks did
contain that information, the rest of the story
doesn’t preserve information. The communica-
tion channel has been broken by the time the
box falls on the spy’s head and his brain is jarred.
The conditional probability that the courier has

arrived, given the knocks, is 1, but the condi-
tional probability that the courier has arrived,
given that the events in the jarred brain have
occurred, is not 1. This is because the spy’s brain,
since jarred sufficiently hard by the box, might
be in that state (seeming to hear three knocks)
even if the courier had not arrived and there
had not been three knocks at the door. Let me
explain.

For the purpose of addressing Foley’s example
and issues to follow, it is important to discuss the
matter of an information channel. An informa-
tion channel condition is any fixed condition
(other than conditions existing at the source s or
receiver r) which, by variation of its value, would
be able to introduce noise between source and
receiver. In order for the information that a is F
to flow from source s to receiver r, there must
be as much information about a’s being F arriv-
ing at r as is generated by its occurrence at s.
That will be possible only if the channel condi-
tions that permit information to flow remain
fixed. They must not themselves vary, thereby gen-
erating information or nonredundant informa-
tion. Provided that the channel conditions remain
fixed, they do not generate information in the
form of noise on the channel, with respect to the
information that a is F.

Let’s consider an example. Suppose Al has a
metal detector that emits a tone when metal is
within 10 inches of its detection surface. For its
tone to carry the information that there is metal
present, the detector depends on several channel
conditions. The power supply must be adequate
and charged. The magnetic field that detects the
metal must be in place. The wires that activate
the tone must be well functioning (no shorts
or breaks in the wire). And so on. Were any of
these conditions not to remain fixed (a short
circuit, say), the detector may emit a tone when
there is no metal being detected (even if there is
metal present). Therefore, the detector’s tone
will carry the information that there is metal
present only when all channel conditions are fixed.
In virtue of these fixed conditions, information
can flow from the source (detection of metal in
the magnetic field of the surface) to the receiver
(Al hears the emitted tone).

Notice that the tone carries information about
the presence of the metal, but it does not also
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carry information about the channel conditions
of the metal detector. We can use the tone to
tell us about the channel conditions, as we will
now see. But we cannot use it to tell us about its
channel conditions and about presence of metal
at the same time. If we know in advance that
there is metal (or is none), we may check to see
whether the detector emits a tone (or does not).
Thereby, we can use old information about what
we already know (there is/is not metal present)
to gain information about the channel condi-
tions of the detector. Now, because we already
know whether or not there is metal present, we
can test to see whether or not the detector is
working properly. We can then tell that it is
working properly and its channel conditions
indeed are fixed (or tell that it is broken because
its channel conditions are variable). But if we do
not already know in advance about the presence
of the metal, the tone carries no (new) informa-
tion about the channel conditions themselves.

This is not to say that channel conditions last
forever. Metal detectors break or wear out. But
the point is that for the detector to be a source
of information about the presence or absence of
metal, its channel conditions must be fixed. When
are they fixed? When they generate no (or no
new) information.

It is now easy to see that Foley’s example is
one where noise is introduced into the commun-
ication channel because the channel conditions of
the man’s jarred brain are not fixed. The internal
workings of such a brain introduce variability
and noise to the system. The same would be
true if there were a short in our metal detector
(when there was metal present). In neither case
(hearing a tone or seeming to hear three knocks)
would the relevant piece of information be carried
by the tone (or the auditory experience as of
three knocks).

Similar remarks apply to an example by
Plantinga. Suppose K suffers from a brain lesion
that causes K to believe a variety of mostly false
propositions. It also causes K to believe that he
has a brain lesion, but K has no evidence for
this belief. Nonetheless, referring to Dretske’s
ITK analysis above, Plantinga maintains that the
“probability on k & K is suffering from a brain
lesion is 1” (Plantinga 1993: 195). Notice that
this is not a case of perceptual knowledge. There

is no signal that K perceives and which carries the
information that he has a brain lesion. But even
setting this aside, it is clear that the brain lesion
is not a fixed-channel condition. It introduces
noise to K ’s cognitive system. Indeed, Plantinga
grants that the lesion causes K to believe mostly
false propositions (a sure sign of noise). There-
fore, despite Plantinga’s claim, it simply is false
that the conditional probability that K has a brain
lesion, given that K believes he has a lesion, is 1.
K ’s beliefs do not track the truth, as Nozick
would say. K’s suffering from a lesion guarantees
that he has a lesion, but not his belief that he has
a lesion, not even if his belief is caused by the
lesion (as for a tone from a metal detector with
a short caused by its detection of metal). There-
fore, the example fails.

However, Plantinga could fix the example
so that there is no noise on the channel. So we
should consider what ITKs should say to such a
case. Indeed, there is a case by Lehrer that will
do (1990: 163–4), his Truetemp case. Suppose
that quite without his being aware, Mr. Truetemp
has a high-tech, belief-producing thermometeric
chip implanted in his brain. The chip measures
the surrounding temperature and then directly
enters a belief that it is that temperature into
Truetemp’s belief box, if you will. Lehrer and
Plantinga would agree that Truetemp does not
know the temperature is 56 degrees Fahrenheit,
when it is 56 degrees Fahrenheit, and Truetemp
believes that it is. As before, there is no signal
that Truetemp perceives and which carries the
information. The information is mainlined into
Truetemp’s belief box, as it were. Suppose
Truetemp is cognitively unable to withhold belief
despite having no evidence that his beliefs are
correct.

Now, unlike in Plantinga’s example, there do
seem to be fixed-channel conditions at work here.
The thermometric-cognition mechanism is a fixed
condition (let’s suppose that it has been in place
for years). Since fixed, that it is working reliably
generates no (or no new) information. It takes
variation in the source (ambient temperature)
and faithfully delivers information about it to
the receiver (the belief box). It is an information-
delivery system no less faithful than the delivery
systems of our senses. The probability that
ambient temperature is 56 degrees Fahrenheit,
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given Truetemp’s belief that it is, is 1. The main
difference from our senses is that it skips the
step of causing a conscious sensation that then
causes a reliable belief about what is sensed. The
device in Truetemp skips the conscious sensory
step, but its delivery of information is, we are
presuming, as stable and faithful as any normal
sensory perception by standard perceivers under
standard conditions.

It would certainly be possible for an ITK to
bite the bullet and insist that this is a case of
knowledge, albeit a very unusual kind of case
indeed. All that Plantinga or Lehrer have to fight
this stand is a conflicting intuition and a con-
flicting theory. Since one probably should place
little stock in the conflict of intuition, in the end
all they may have is a conflicting theory. Which
theory is correct will have to be determined by
looking at overall consistency and explanatory
power. Saying that this is indeed a case of know-
ledge may be true and prove not to be so strange,
in the long run. It may come to grow on one.
Only time will tell.

As with other externalistic accounts of know-
ledge (Nozick 1981), ITK also rejects the fol-
lowing closure principle for knowledge: [(K(P)
& K(P → Q)) → K(Q)] (To be read: knowing
that p and knowing that p implies q, entails know-
ing that q.) Many find this rejection intolerable.
I will not here go into the arguments for or
against the rejection of this principle (De Rose
& Warfield 1999). However, some have pointed
out that theories such as ITK will also have to
accept a particularly nasty consequence of the
rejection of closure, a consequence that is even
more intolerable. Following an unpublished
example by Kripke, Lehrer (1990) offers the fol-
lowing example designed to show that one might
know P&Q, but not know Q (call this a failure
of conjunctive closure). Suppose that a Holly-
wood movie-set has brought fake barns into your
countryside. They have erected fake barns of
several colors, but not red ones. Indeed suppose
it is not possible to fake a red barn. Now if Al
believes that something is a red barn (P&Q), he
should know because the probability that it is a
red barn given that it looks like a red barn is 1.
But Al should not know that it is a barn (Q)
because the probability that it is a barn, given
that it looks like a barn, is not 1 (because the

fakes look like barns). So, it seems Al knows
P&Q but not Q – intolerable.

But is this nasty consequence really forced
upon an ITK theorist by this type of example?
It is not. First, note that this example has the
same structure as the case above where Al thinks
both BMWs and Harleys are American made.
Al knows that the motorcycle he is working on
is a Harley (P) and American made (Q). Does
he not know that it is American made (Q)? It
might be thought that he doesn’t because he
mistakenly believes some BMWs to be American
made. But since he confuses no Harleys with
BMWs, he does not believe the Harley is Amer-
ican made because he confuses Harleys with
BMWs. He believes it is American made in part
BECAUSE he believes it is a Harley. So ITK would
say that Al knows it is American because the
information that it is American is contained in
the information that it is a Harley and Al knows
he is working on a Harley.

The Kripke example is no different. If Al
believes “this is a barn” (while standing before a
red barn illuminated by white light), does he
not know that it is a barn? ITKs submit that he
does because he is receiving the information that
it is a barn (contained in the information that it
is a red barn). This information is contained in
his visual percept. Nothing anywhere near Al
looks like a red barn, unless it is both red and a
barn. So his percept carries the information that
it is a red barn and this, in part, causes his belief
that it is a barn (and his belief that it is red).
Thus, this particular example is not a case where
conjunctive closure of knowledge fails.

Of course, whether it is possible for conjunctive
closure of knowledge to fail may still be open.
Such failure is certainly consistent with ITKs
rejection of closure, generally. There may well
be cases of the following sort. One might believe
that something is a red barn because of one
piece of evidence and continue to believe it is a
barn by another piece of evidence. The first piece
of evidence might contain the information that
this thing looks red and looks to be a barn. The
latter piece of evidence may contain only the
information that it looks to be a barn. The first
contains the information that it is a barn. The
latter carries only the information that it is a
barn or a fake (but not which). So conjunctive
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closure might fail under this type of condition,
but not under the type of conditions given in the
examples by Kripke or Lehrer. Therefore, ITKs
are not forced to accept the particularly nasty
consequences of denial of closure charged by
Kripke and Lehrer.

Interestingly, if it is true that Al knows the
structure is both red and a barn (and that the
motorcycle is both a Harley and American), then
such cases would demonstrate the falsity of theo-
ries like Lehrer’s (1990: 184). For Lehrer argues
convincingly that his theory has as a consequence
that Al does not know it is a red barn or that it is
a barn. If Al knows both, as I believe to be the
case, then Lehrer’s account of knowledge would
be false. As philosophers are fond of saying, one
person uses modus ponens where another uses
modus tollens.
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Chapter 18

The Philosophy
of Computer Languages

Graham White

1 Introduction:
Two Semantic Projects

Consider a theory whose aim is to say, for a
given language, what each of its expressions
means. Call it a semantics of that language.
What might be required of such a theory before
it was allowed that it accomplished its aim or
did so in an optimal way? (Travis 1986)

This is a question which belongs to a well-
established philosophical program: the Davidson–
Dummett program of using a formal semantics
– a “theory of meaning,” as these philosophers
call it – in order to attack philosophical questions
about the relation between language and reality,
or between mind and language (see, for example,
Wiggins 1997).

There is also, among theoretical computer sci-
entists, a similar area of study: it is usually called
“the semantics of computer languages,” or often
simply “semantics.” Its aim is, likewise, to develop
a formal account of the meaning of a given com-
puter language, and to use that account to answer
interesting questions.

These questions might be severely practical –
one might, for example, want to formally verify,
using such a semantics, that the language in ques-

tion did what it was claimed to do. However,
one might also want to answer more general
questions: one might want to design a computer
language, and an intended semantics for that
language is often a good place to start. Or one
might want to classify existing computer lan-
guages: it is clear that some of them are more
similar to each other than to others, and that
some languages are merely notational variants of
each other, but how do we put such observa-
tions on a more formal footing? And, finally,
we might be tempted to say something about
the nature of computation on the basis of the
semantics of the languages in which we express
computations.

I would claim that the semantics of computer
language has considerable philosophical interest:
it has a different motivation to the usual philo-
sophical approach to computation via Turing
machines, and, correspondingly, it yields differ-
ent insights. One of the main difference is that
the semantics of programming languages is con-
cerned with the languages in which people actu-
ally program, and, particularly, with the languages
which have been found to be good to program
in; it is thus inescapably connected with the prac-
tice of programming. It is emphatically not a
discipline which is developed out of some a priori
notion of computation. And, in fact, it has
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connections with areas of philosophy which may
seem surprising; Quine’s concept of referential
transparency, for example, is an important part
of the programming-language enterprise. Some
of this material is quite technical, and is also gen-
erally unfamiliar to philosophers (even to those
who know the usual technical repertoire of philo-
sophical logic). I have segregated many of the
more technical details into sections of their own,
which can, at first reading, be omitted.

2 History

The semantics of programming languages grew
up in a particular historical context, and it is
worth spending some time describing it: it was
developed by a group of philosophically literate
mathematicians and computer scientists, and the
philosophical influences are quite evident. They
are also little known: the history of computing
has tended to focus very much on the very early
days, and, at that, mostly on the history of hard-
ware, so that the history of these topics is doubly
neglected.

2.1 The first programming languages

In the early days of computers, programming
was done by directly writing machine instructions:
this was difficult and error-prone. Programming
languages were invented to allow programmers
to write in a more comprehensible form:
Fortran dates from 1954, and made it possible
to write programs in a notation very like that of
standard mathematics (Backus 1981). Although
the Fortran designers paid very little attention to
theory – Backus, the leader of the project, says
“we simply made up the language as we went
along” (1981: 30) – both syntax and semantics
soon became important factors in the design of
programming languages. Algol was designed over
the period 1958–60 (Naur 1981; Perlis 1981),
Lisp from 1958 to 1962 (McCarthy 1981), and
many of the difficulties of developing these lan-
guages were due to two factors: it was difficult to
define the syntax of a language at all precisely,
and the semantics of these languages seemed

utterly mysterious. The latter was an extremely
serious problem: without some sort of semantics,
it was hard to say what counted as a correct
implementation of these languages. Although
Lisp eventually achieved a precise semantics, it
was designed by starting from the implementa-
tion and then attempting to find mathematical
structure in the resulting language: several of
the Lisp primitives were called after hardware
features of the machine that it was originally
implemented on (McCarthy 1981: 175), whereas
its original semantics was “ramshackle” (Landin
2000). Nevertheless, it was also possible to see
that the rewards for a precise syntax – or, more
ambitiously, a precise semantics – were extremely
high: Algol “proved to be an object of stunning
beauty” (Perlis 1981: 88).

2.2 Algol-like languages

What, then, do these programming languages
look like? We will describe a generic language,
quite similar to Algol; since Algol has had an
enormous influence on language design its fea-
tures can be found in many others. These lan-
guages have some similarity to formal languages
like first-order logic: like these languages, they
have variables, to which values can be assigned,
and they have both predicates and functions.
And many of the basic operations of program-
ming can be viewed as the assignment of values
to variables, so one might think that these opera-
tions, too, could be viewed in this way.

However, programming languages also have
features which are strikingly different from the
sort of logical languages familiar to philosophers.
In large part, these other features come from
a need to control the structure of programs:
programs are extraordinary large entities, and
programmers can only keep control of this com-
plexity by making programs out of smaller com-
ponents, which can be individually constructed
and tested and, if possible, reused in many dif-
ferent programs. Programs, then, tend to be
made of hierarchically nested components; there
are various names for these components, but we
can – following Algol usage – call them blocks.

Furthermore, unlike the logical languages
which philosophers are familiar with – namely,
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variants of untyped first-order logic – modern
programming languages are typed: variables, and
the values that they take on, have types. This is
partly for practical reasons: many programming
errors can be detected automatically, simply by
checking the types of the entities involved. But
there are also rather deeper reasons: program-
ming does not fit very well into a set-theoretic
view of things, since sets – even finite sets – are
collections without any extra structure, and, how-
ever we may choose to store data in a computer,
we always do so in some structured way (the
data may be ordered, or arranged on the leaves
of a tree, or the items may be mapped to integers,
and so on).

There is a final difference, which is extremely
far-reaching. Most programming languages allow
programs to perform actions that change the
values of variables, or which have other irreversible
effects (input or output, for example); we say that
these actions have side-effects. These features
add further complications to the task of giving
semantics to these programming languages.

2.3 The development of semantics

The first steps towards the semantics of these
languages were taken, in the 1960s, by a group
– Peter Landin, Dana Scott, and others –
associated with Christopher Strachey (Scott
1977; Landin 2000). They provided what is
called a denotational semantics: that is, rather
than describe the operations that pieces of code
perform, they associated mathematical objects –
denotations, or semantic values – to the syn-
tactic entities of a programming language. Values
are assigned to entities on all scales: the variables
(and constants) of the language get values, of
course, but so do assignment statements – the
parts of programs which give values to variables
– as do blocks and subroutines and, finally, the
entire program. This requirement – that pro-
grams should have semantic values on all scales
– is part of the basic program of denotational
semantics: it is motivated by the view that pro-
gramming constructs which have well-defined
semantic values will be easy to reason about, and
it has, over the years, shown itself to be quite
justified.

This requirement means that the semantic
values assigned to these entities must belong to a
quite intricate system. To see this, consider a par-
ticular case of programming entities: namely, those
that are sometimes called subroutines. These are
pieces of code that have parameters: they are
invoked with particular values of their parameters,
and they then perform various actions on them.
A subroutine, then, can be thought of as a sort of
function: its arguments are the semantic values
of its parameters, and its value is the semantic
value of the expression that it returns. So the
semantic value of a subroutine must be a function
type: it maps its argument types to its return type.

But now consider a subroutine which takes
a subroutine as a parameter. Such things occur
frequently in the normal practice of program-
ming: for example, we might want to write a
subroutine which constructed a button in a user
interface. Buttons can perform various actions,
and – because we are writing a subroutine which
we can use for constructing all sorts of buttons –
we want to be able to give the code for the action
to the button code as a parameter. The “code
for the action,” of course, is itself a subroutine:
so the code for the button is a subroutine which
has a subroutine as one of its parameters. The
need for “higher-order” entities of this sort seems
to be natural and pervasive in programming: our
example is from user-interface programming,
but there is a differently motivated example in
Abelson et al. 1996: 21–31.

A subroutine with a subroutine as argument,
then, can be considered as a piece of code which
takes the subroutine and returns a value: so its
semantic value will map the semantic value of
its subroutine parameter to the semantic value
of its result. The semantic value of subroutine-
calling code, then, is a function which takes
another function as an argument: in technical
terms, it is a functional.

We must also remember that the functions
corresponding to subroutines cannot, in general,
be everywhere defined. We know, from the the-
ory of recursive functions, that any reasonably
expressive programming language must have
programming constructs – looping, recursion,
or both – which cannot be guaranteed to give
a result in all cases. This must be accommodated
in the semantic values of such subroutines.
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2.3.1 Technical interlude: semantic
values in detail

The initial stages of this accommodation are quite
easy to see: we can deal with partial functions
from, let us say, the integers to the integers by
regarding them as functions from int – the usual
integers – to int� – the integers together with
an extra element, �, which is the value of the
function when the computation fails to termin-
ate. But now a subroutine which takes such a
subroutine as argument must itself have a type
which is not merely the type of functions (int →
int) → int, but rather the type of functions (int
→ int�) → int� (which is, one should point
out, much more complex than ((int → int) →
int)�). The moral is clear: although we only have
to add a single extra element to our base types,
the changes required at higher types become
progressively more complex.

Recursion, also, needs a suitable treatment.
Consider a recursively defined subroutine, for
example:

function f(x:int): int
begin

if (x = 0) then f := 1 else
(f := x * f(x − 1))

end

We can regard this as saying that the subroutine
f is a fixed point of a certain operation, namely
the operation which takes a subroutine F as
input and returns, as output, the subroutine G,
defined by

function G(x:int): int
begin

if (x = 0) then G :=1 else
(G := x * F(x − 1))

end

So the semantic value of f must be fixed under
the semantic counterpart of the operation F �
G; and thus, to handle recursion, the appro-
priate semantic domains must be closed under
certain fixed-point operations. Finally, the need
to accommodate assignment statements brings
another complication. Consider the following
subroutine:

function f(x: int): int
begin

y := x;
f := y + 1

end

which first assigns the value of its argument to a
global variable y, and then returns y + 1. Con-
sider also the simpler subroutine

function g(x: int): int
begin

g := x + 1;
end

f and g yield the same values for the same
arguments, but they are not substitutable, one
for the other: g changes the values of a global
variable, which f does not. (We say that f has
side-effects.)

Accommodating this sort of behavior, and
still preserving the compositional nature of our
semantics, makes the type system for our semantic
values somewhat complex and intricate – see
Tennent 1994: 250ff for details.

The development of semantics, then, is a pro-
cess of progressive elaboration of semantic values.
We might think of it like this: originally, we
have a straightforward conception of what the
values of programming entities are: variables stand
for their values, subroutines stand for functions
from parameters to return values, and so on. We
may call this original conception the intended
semantics. However, it proves impossible to pre-
serve substitutivity with this intended semantics,
so we have to progressively elaborate the semantic
values that we assign to programs and their parts;
in the process, these semantic values become
further and further removed from the original,
intended semantics.

The divergences are caused by phenomena
that can be viewed, when measured against the
intended values, as a lack of referential trans-
parency. The intended values of subroutines such
as these ought to be given by the maps, from
arguments to return values, that they induce,
but, as we have seen, subroutines with the same
intended values might not be intersubstitutable:
and such a failure of substitutivity is, in Quinean
terms, described as referential opacity.
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3 The Uses of Semantics

A working semantics on these lines can, indeed,
be achieved (Stoy 1977; Tennent 1994), and
such semantic accounts of programming language
have been widely used.

However, the uses are not as direct as one
might imagine. It is rarely expedient, for exam-
ple, to establish correctness for a particular pro-
gram by examining the semantic values of it and
its components: these semantic values are usu-
ally extremely complex. They must necessarily
be complex: since it is possible to decide whether
a given program terminates or not, purely on
the basis of its semantic value, there must be
facts about the semantic values of programs that
are as difficult to establish as the halting prob-
lem (i.e. undecidable).

On the other hand, semantics has a large
number of metatheoretical uses. One can, for
example, establish equivalences between pro-
grams, and, more generally, one can develop,
and semantically justify, logics (the so-called
Floyd–Hoare logics) for reasoning about pro-
grams (Tennent 1994: 196ff; Jones 1992); and,
unlike direct reasoning with semantic values, these
logics are, for typical problems, easy to work
with.

There is another, less formal but very per-
vasive, use of semantics. The practice of pro-
gramming involves a great deal of substitution:
replacement of one subroutine by another (or
one object by another, one library by another,
and so on). We like to have languages in which
substitutions like this are easy to justify: if we
can be sure that, if two items “behave the same”
(in some suitably informal sense) they can safely
be substituted for each other. In the develop-
ment of semantics, it very soon became apparent
that the semantic properties of languages were
decisive for this question: that certain semantic
properties made substitution behave well.

3.0.1 Technical interlude: an issue in
programming-language design

Here is an example of the sort of guidance that
semantics can give in language design. Suppose

we define a subroutine – call it S, and that we
later invoke it. Suppose also that, in the code
defining S, there is a global variable x. Suppose,
finally, that we change the definition of x be-
tween the time that S is defined and the time
that it is invoked. Which value do we use for x?
There are two obvious choices:

1. the value it had when S was defined: this is
called lexical binding, and

2. the value it had when S was invoked: this is
called dynamic binding.

It turns out (Stoy 1977: 46ff) that lexical bind-
ing gives a language much better substitution
properties, and, in fact, languages with dynamic
binding – the typesetting language TeX, for
example – are terribly difficult to program with.
More generally, it seems to be the case that, if a
language has clean, elegant semantic properties,
then it will be easy to program in.

3.1 Identity of programs

We use semantics, then, to conclude facts about
the behavior of programs on the basis of math-
ematical properties of their semantic values. We
could, for example, observe that, if the semantic
values of programs P and Q were different, then
the programs themselves must be different.

This is more subtle than it might seem. What
do we mean by identity and difference between
programs? A trivial answer would be that it
simply consisted in the identity or difference of
their source code: but this is rarely of any inter-
est. Programs can vary a good deal, in a merely
notational way, and still remain “essentially the
same” (whatever that might mean).

A better criterion for the identity of programs
is that of observational equivalence; philosoph-
ically, it can be regarded as a sort of functionalism
(see Lycan 1995, Block 1995). One definition is
as follows: Two programs, P and Q , are observa-
tionally equivalent if and only if, whenever the
inputs of P and Q are the same, then so are their
outputs.

We can define this also for constituents of
programs (subroutines, statements, blocks, and
the like: these are generically called program
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phrases). We define equivalence by observing what
happens when phrases are substituted for each
other in programs (here a program with a phrase
deleted is called a program context):

Two program phrases, f and g, are observa-
tionally equivalent if and only if, for any pro-
gram context P (·), the two programs P ( f )
and P(g) are observationally equivalent.

Observational equivalence is an extremely
versatile property. If we think of anything which
might be (in the nontechnical sense) an “observa-
tion” of the behavior of a program – stimulating
it with certain input, checking the output, and
so on – we can automate this observation by
writing another program to perform it. This other
program will provide a program context with
which we can test the program that we are inter-
ested in: and thus our definition of observational
equivalence can be regarded as an automated
version of the everyday concept of observation.

However, observational equivalence is a diffi-
cult property to establish, since it talks about
what happens when a program fragment is sub-
stituted into any program context at all, and in
most cases we have no grasp of this totality of
program concepts.

If our semantics respects observational equi-
valence, then we call it fully abstract:

A semantic valuation υ(·) is fully abstract if,
whenever program phrases f and g are obser-
vationally equivalent, υ(f ) and υ( g) are the
same.

Full abstraction is, of course, an important con-
cept, because we are interested in observational
equivalence. But its interest is rather wider than
that: a fully abstract semantics will, in some way,
reflect the essential structure of programs, ab-
stracting away from notational or implementa-
tional details (Tennent 1994: 242). Of course,
we can – rather fraudulently – define fully abstract
semantics by starting with a non-fully abstract
semantics and imposing equivalence relations on
it; but unless we have independent access to the
model thus constructed, it would do us no good.
In the case when we can find a fully abstract
model, and characterize it in some meaningful

way – for example, in terms of games (Abramsky
et al. 1994; Hyland & Ong 2000) – we have a
mathematical object which tells us a great deal
about the deep structure of a particular program-
ming language.

3.2 Functional programming

We have been describing an approach to the
theory of programming languages which simply
seeks to analyze the usual languages that people
program in. We might, though, take a different
approach to language design: we might want
the theory to be more prescriptive, and design
programming languages so that they had a good,
perspicuous, metatheory.

One of the features which give languages a
good metatheory is referential transparency: the
property that terms of the language, which stand
for the same entities, can always be substituted
for each other. Languages with side-effects – such
as statements that change the values of variables
– do not have referential transparency. A term of
such a language might stand for, let us say, a
number, but might also, in the course of evalu-
ating that number, change the values of a par-
ticular variable; another term might evaluate to
the same number, and might change the values
of other variables; and it is easy to see that these
two terms, even though they evaluated to the
same numbers, could not be substituted for each
other.

So we might consider designing a program-
ming language in which we could not change the
values of variables. What would such a language
look like? There could be variables, and we could
have definitions that assigned values to variables:
however, once we have let a variable have a cer-
tain value, we could not subsequently change
it. We could also have subroutines: subroutines
would take parameters and return values. Because
we have no assignment statements, the result
returned by a subroutine on particular arguments
depends only on the values of its arguments: the
same subroutine, evaluated on the same argu-
ment, always yields the same result. Subroutines,
then, are extensional: they give the same results
on arguments with the same referents, and in this
respect they behave like mathematical functions.
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Following Quine, it is usual to refer to languages
with this property as referentially transparent.

As we have seen, programming needs higher-
order constructs. These languages are no excep-
tion: we can let higher-order entities (in this
case, functions and higher-order functionals) be
the values of variables, we can pass them as para-
meters to subroutines, and so on. Following
Quine’s slogan “to be is to be the value of a
variable” – a slogan explicitly used by the pioneers
of programming-language semantics – we can,
and do, give a rough ontology to our language:
the entities that can be the values of variables,
that are passed to and returned by subroutines,
are usually known as “first-class citizens,” and
they will figure largely in any account of the
semantics of the language. These languages –
known as functional languages – generally have
a large array of such higher-order constructs.
Lisp is such a language, but is semantically some-
what impure: modern, more principled versions
are untyped languages such as Scheme, and typed
languages such as ML.

3.2.1 Technical interlude:
the lambda calculus

There is an alternative description of these
languages. Consider a subroutine, such as the
following:

begin function f(x, y):
return 3 * x + 2 * y

end

This is the subroutine which takes two para-
meters, x and y, and returns 3x + 2y. We can give
an alternative description of this – in more math-
ematical notation – as a term in the λ-calculus:

λx.λy.(3x + 2y)

This rough analogy can be made precise: we can
set up a correspondence between functional pro-
grams and λ-calculus terms, which is composi-
tional and extensional, in such a way that we can
obtain a semantics for our programs from a
semantics for the λ-calculus.

We can go on from here. It is known that
terms in a suitable λ-calculus can be used to
encode proofs in higher-order intuitionistic logic
(Lambek & Scott 1986); this is called the Curry–
Howard correspondence. This suggests that func-
tional programs can also be considered to be
proofs in that logic: and such in fact is the case.
The correspondence between programs and
proofs is illuminating in its own right. Consider
a subroutine which takes a parameter – say x –
and which computes, for example, 3x + 2. This
corresponds to the lambda-term

λx :int.3x + 2,

which corresponds to a proof of the proposition

∀x :int∃y :int

but not, of course, just any proof: it is the proof
which takes the integer x introduced by ∀, com-
putes 3x + 2, and then uses that integer as a
premise in ∃-introduction.

4 Conclusions

We have surveyed a rather large area of theoret-
ical computer science; we now have to consider
its philosophical relevance. There are, of course,
several points of direct relevance: programming-
language semantics tells us a great deal about
the processes of abstraction involved in program-
ming computers, and also about the nature of
algorithms (for which Moschovakis 2001 is a
good comparison). However, there are less direct
points of interest. The overall goal of program-
ming semantics is quite similar to the philosoph-
ical project of developing a theory of meaning:
however, the methods and results are strikingly
difficult. To a large extent this is because the
philosophical project has been developed in
isolation, with unsophisticated technical tools,
and with the aid of a very small number of
examples, none of them either large or com-
plex. The practical necessities of producing a
useful body of theory have made it impossible
for programming-language semantics to indulge
in any of these luxuries. So, the comparative use
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of programming-language semantics is, perhaps,
more interesting than its direct use.

4.1 What aren’t we interested in

Programming-language semantics was developed
in order to address certain specific needs, and
one must understand the biases resulting from
those needs to be able to understand the theory
and its place in the world.

We know the mechanism The first is obvious:
we know all about the mechanisms of computers,
because, after all, we made them. This contrasts
very strongly with the situation in the philosophy
of language and in linguistics, where we have very
little information about underlying neurophysio-
logical mechanisms.

We design the systems We also design computers,
their operating systems, and the programming lan-
guages that we use on them. Many of the choices
that we make when we do this are reflections of
our needs, rather than of the nature of computa-
tion as such; for example, operating systems are
extremely modular, and most programming lan-
guages have a great deal of support for modular-
ity, simply because modularity makes computers
much easier to program. Modularity does not
seem to be entailed by the nature of computation
as such. By contrast, Fodor’s work (Fodor 1983)
deploys much more transcendental premises: he is
attempting to establish that any minds such as
ours must be modular, whatever their mechan-
isms and however those mechanisms might have
arisen. The semantics of programming languages
can, of course, neither prove nor disprove the
validity of a program like Fodor’s – though, of
course, it might provide illuminating results on the
nature of modularity and on its formal analysis.

Reference is not problematic If we are using
computers to solve a problem in the real world,
we generally know what the expressions of our
programming language stand for: we have, if we
are sensible, set things up that way.

Foundationalism is not interesting We may, in
principle, know the physical processes that the

expressions of our programming languages result
in, when they are suitably compiled and run.
However, we are very rarely interested: looking
at computers on that sort of level would sub-
merge the interesting features in an ocean of
low-level detail. We would be unable to dis-
tinguish, on that level, between operations which
were performed by the operating system and
those which were performed by programs; of
the programs running on a real computer, by far
the majority would be concerned with trivial
housekeeping tasks, rather than anything we were
interested in: of the instructions which execute
in an interesting program, by far the majority
of them would be concerned with rather dull
tasks such as redrawing windows on the screen,
interacting with the operating system, and so
on. On the level of machine-level instructions,
none of these processes would be distinguishable
from each other in any tractable way.

4.2 What are we interested in?

So what are the interesting problems?

Making languages different There is a huge
number of different programming languages,
and there are also genuine differences between
them. If we were to analyze these languages using
the methods of recursive function theory, or
by representing programs written in them as
Turing-machine programs, we would find (since
programming languages are generally Turing
complete) that they were indistinguishable from
each other. So we want a theory that is finely
grained enough to be able to represent the
genuine differences between languages. On the
other hand, we do not want to differentiate lan-
guages that are merely typographical variants of
each other, or which differ simply by trivial defini-
tional extensions: we want, that is, a theory that
is sensitive to genuine differences between lan-
guages, and only to those. We would also like to
go on and construct a taxonomy of languages:
that is, we would like to arrange languages in
some sort of formal scheme in which we could
describe how to get from one language to
another by regularly varying theoretical para-
meters of some sort.
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Attaining abstraction There is a common
theme running through all of these considera-
tions. When we are designing, or using, a high-
level programming language, we are concerned
about attaining a sufficient degree of abstraction.
Low-level, detailed, grounded descriptions of our
systems are unproblematic, but we do not want
these: we want to be able to forget about such
merely implementational details in order to pro-
gram, and reason about programs, at the level
we are interested in. In order to do this, we need
to be able to design languages to do it; and in
order to do that, we need some sort of theoret-
ical conception of what these languages should
look like. Thus, our semantics should give us a
view of computational processes which is equally
as abstract as the languages that we want to
design. Abstraction, then, is an achievement.

This contrasts sharply with the traditional task
of the philosophy of language. Here we start
with a high-level view – a speaker’s intuitions
about language – and we attempt to find a suit-
ably grounded account of this high-level view
(Dummett 1991: 13). Attaining the abstract view
is not a problem: grounding it is. In the semantics
of computation, on the other hand, we already
have a grounded view of our subject-matter: it is
the construction of a suitably abstract view that
is the major difficulty.

4.3 The technical tools

The technical tools used also differ strongly from
those current in the philosophy of language com-
munity. Programming-language semanticists use
higher-order logic and the mathematical theory
of categories: linguistic philosophers use first-
order logic and set theory. This is a fairly pro-
found difference in mathematical cultures, but
it also has to do with the difference between the
problems that these communities are addressing.

Intuitionistic logic Semantics uses intuitionist
logic a great deal: we have seen, above, that the
semantics of functional programming looks very
like the proof theory of higher-order intuitionist
logic, because programs correspond to proofs
of certain propositions. For this, we must use
intuitionist, rather than classical, logic: because

we want to make programs correspond to proofs,
there must be a large number of essentially dif-
ferent proofs of the same proposition. We can
rephrase this in terms of equivalence of proofs:
we should be able to define a notion of proof
equivalence which disregards merely notational
variation, but which is not so coarse that the set
of equivalence classes becomes trivial. It turns
out that, for technical reasons, we can do this
for intuitionist logic, but not for classical logic
(Girard 1991).

However, this use of intuitionist logic is less
ideological than it might seem. We are using it
because we need a finely-grained proof theory,
and it would be perfectly possible for an ideo-
logically classical logician to use intuitionist logic
for these purposes, only because, for computa-
tional purposes, one needed a fine-grained proof
theory.

In a similar way, we use higher-order
logic: higher-order constructions are pervasive
in programming, and it is appropriate to have a
metatheory which reflects that. However, this
preference, again, is not straightforwardly ideo-
logical: these higher-order entities are, after all,
algorithms, and carry no taint of the infinite.
Correspondingly, there are constructive models
of set theory in which sets are modeled by equi-
valence relations on subsets of the integers: we
can, in such models, carry out all of the construc-
tions needed to develop programming-language
semantics, although we cannot quite accommod-
ate all of traditional higher-order logic (Robinson
1989; Hyland 1982). There is very little that a
constructivist can find about such models to
object to.

Category theory is also part of the semantic
toolkit (see Tennent 1994: 290ff for some ex-
amples). But this is hardly any surprise: category
theory has found wide application in areas
of mathematics – algebraic topology, algebraic
geometry, and proof theory – where one wants
to disregard “implementational” (or merely nota-
tional) detail, and concentrate on the essential
features of a situation.

This can be rephrased in more traditional
philosophical terms as follows. There is a well-
known example, due to Benacerraf (1965), which
is (slightly rephrased) as follows: consider two
mathematicians (A and B) who both talk about
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ordered pairs, except that A encodes the ordered
pair <x, y> as {x, {x, y}}, whereas B encodes it as
{y, {x, y}}. Now – though A and B clearly each
have accounts of ordered pairs which are math-
ematically adequate – they do not seem to be
talking about the same objects (and, in fact, they
can be made to disagree by asking them stupid
questions of the form (“is x a member of <x,
y>?”)). One approach to this would be to invoke
a difference between specification and imple-
mentation, and to say that A and B were simply
using different implementations of a single speci-
fication. Of course, to do that we need to have
some way of making these specifications explicit:
and category theory gives us that. We can, given
two sets X and Y, specify their Cartesian product
X × Y (the set of ordered pairs with members in
each set) in terms of the two maps X × Y → X
and X × Y → Y, and of the properties of these
two maps. And this characterization turns out
to characterize the construction exactly, without
involving any purely implementational decisions.

We can think of category theory as ruling out
the stupid questions which differentiated between
A’s and B’s mathematics: that is, of giving us a
distinction between observable and unobservable
properties of mathematical constructions. The
observable properties are those which can be ex-
pressed in terms of mappings (“morphisms,” in
category-theoretic terms) between mathematical
objects, and in terms of identities between those
morphisms; the unobservable ones need identities
between objects (Bénabou 1985). It is no surprise,
then, that programming-language semantics,
which is intimately tied to the observable prop-
erties of computer programs, also uses category
theory to express that notion of observability.

4.4 Theories of meaning

Finally, we should compare these semantic the-
ories with the philosophical project of a theory
of meaning. We should recall that the goal of
Davidson’s program was to develop an axiomatic
theory which would yield, for each sentence of a
natural language, a suitable instance of the
schema (Dummett 1991: 63)

S is true if and only if A.

Truth is not particularly salient in the semantics
of programming languages, but we do have an
important central notion: that of observational
equivalence. So, if we do have a fully abstract
semantics, then it can (after suitable manipulation
to express it in philosopher-friendly terms) be
construed as a sort of counterpart of a theory of
meaning: it is a mathematical theory from which
we can derive a great number of conclusions about
observational equivalence of computer languages.
And there are such fully abstract semantics.

However, there are one or two caveats to be
made. There is a presumption that, when one
had achieved a theory of meaning, one could
simply examine to see what its “central notion”
was (Dummett 1991: 34). But these semantic
theories are possibly a little more recalcitrant:
they assign mathematical objects – semantic values
– to program phrases, but these mathematical
objects do not wear their meanings on their
sleeve: there is still room for considerable argu-
ment about what they mean. We may, it is true,
present mathematical objects using vocabulary
which is sufficiently tendentious to make one
think that they have a clear and obvious mean-
ing: but this would be merely tendentious, hav-
ing to do with a particular presentation of those
objects.

The other caveat is this. The semantics of pro-
gramming languages has paid particular attention
to the question of full abstraction: this concept
has been somewhat neglected in the philosophy
of language, where the problems have seemed
to be those of finding rich enough semantic
values to hold all of the components of meaning
that we want. However, full abstraction ought
to play a role in the philosophy of language as
well: as Quine said, there should be no iden-
tity without identity (Quine 1969: 23), and the
semantic values that we assign to sentence frag-
ments should, in some way, respect the identities
of the meanings that we are trying to model.
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Chapter 19

Hypertext
Thierry Bardini

Introduction: Defining Hypertext

Defining hypertext can be confusing. Kathleen
Gygi (1990: 282) categorized available defini-
tions into two types, “broad-spectrum” (Group
I) and the “more clinical variety” (Group II).
She found Group I definitions in the popular
press and in advertising and marketing literature,
and Group II definitions in technical journals
and research efforts at developing computer-
supported hypertext systems. She gave the fol-
lowing examples:

Group I
• Hypertext works by association rather than

indexing.
• Hypertext is a format for nonsequential rep-

resentation of ideas.
• Hypertext is the abolition of the traditional,

linear approach to information display and
processing.

• Hypertext is nonlinear and dynamic.
• In hypertext, content is not bound by struc-

ture and organization.

Group II
• Hypermedia is a style of building systems

for information representation and manage-
ment around a network of nodes connected
together by typed links.

• Hypertext is: (1) a form of electronic docu-
ment; (2) an approach to information man-
agement in which data is stored in a network
of nodes and links. It is viewed through inter-
active browsers and manipulated through a
structure editor.

• Hypertext connotes a technique for organiz-
ing textual information in a complex, non-
linear way to facilitate the rapid exploration
of large bodies of knowledge. Conceptually,
a hypertext database may be thought of as a
directed graph, where each node of the graph
is a (usually short) chunk of text, and where
the edges of the graph connect each text
chunk to other related text chunks. An inter-
face is provided to permit the user to view
the text in such a database, traversing links
as desired to explore new areas of interest as
they arise, check background information, and
so forth.

• Windows on the screen are associated with
objects in a database, and links are provided
between these objects, both graphically (as
labeled tokens) and in the database (as
pointers).

More recently, Luciano Floridi (1999)
has synthesized these Group II definitions to
put the emphasis on the three necessary ele-
ments that make a hypertext. He described
them as:
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1 a discrete set of semantic units (nodes).
. . . These units, defined by Roland Barthes
as lexia . . . , can be
1.1 alphanumeric documents (pure hypertext)
1.2 multimedia documents (hypermedia)
1.3 functional units . . . , in which case we

have the multifunctional hypertext or
hypermedia

2 a set of associations – links or hyperlinks
embedded in nodes by means of special for-
matted areas, known as source and destina-
tion anchors – connecting the nodes. These
are stable, active cross-references which allow
the reader to move immediately to other parts
of a hypertext

3 an interactive and dynamic interface.

The emphasis on this third and crucial com-
ponent is worth noting since it is its presence
that dispels two of the six fallacies that Floridi
associates with hypertext: the literary fallacy
according to which “hypertext began primarily
as a narrative technique and hence it is essen-
tially a new form of literary style” and the expres-
sionist fallacy that holds that “hypertext has arisen
as and should be considered primarily a writing-
pushed phenomenon” (ibid.). Both fallacies,
however, are quite common and in fact define a
whole subfield of hypertext theory. George P.
Landow might be the most famous represent-
ative of such a theoretical insight on hypertext,
that focuses on the first two elements of Floridi’s
standard model . . . and risks forgetting the third:
“Hypertext . . . denotes text composed of blocks
of text – what Barthes terms a lexia – and the
electronic links that join them” (Landow 1992:
4). In fact, Landow even claimed that

The many parallels between computer hyper-
text and critical theory have many points of
interest, the most important of which, perhaps,
lies in the fact that critical theory promises to
theorize hypertext and hypertext promises to
embody and thereby test aspects of theory,
particularly those concerning textuality, narrat-
ive, and the roles and functions of reader and
writer. (ibid.: 3)

Thus, for Landow, the proviso that the links
may be “electronic” does not change the basic

fact that we are still talking about text, authors,
and readers, writing and reading, when we talk
about hypertext. It is quite a different position
that we will argue for in this chapter, where we
will wonder how exactly a set of electronic links
between lexia can actually embody anything.

One should also note that Floridi’s standard
definition of hypertext takes for granted the
equation of interface with electronic interface: the
proviso that the interface should be both inter-
active and dynamic makes it almost necessarily
electronic, unless one holds a very loose notion
of interactivity. Floridi’s insistence that hypertext
is not uniquely a computer-based concept is
correct (the electronic fallacy), but his very own
standard definition somehow implies that hyper-
text has been recently redefined to be quasi-
uniquely a computer-based implementation.

This chapter starts from this premise, that we
should consider as an historical fact. Actually,
the first section will describe how the develop-
ment of computer-implemented hypertext since
the early 1960s has stemmed from a dual origin
that somehow reconciles the literary and the com-
puterized nature of the field. From then, we will
proceed with a general discussion on the ques-
tion of the hypertextual interface, only to get
back later to some elements of literary and, bet-
ter yet, dramatic theory, applied to computer-
based hypertext.

Association vs. Connection: The
Dual Origins of Hypertext

The standard definition of hypertext is indeed
the result of an historical process, in which the
organization of its three basic components – a
discrete set of lexias, a set of links, and an inter-
face – have been progressively stabilized through
negotiations among actors in the field.

The term “hypertext” is usually credited to
Ted Nelson, who coined it in 1962 with the
idea of hyperspace in his mind. According to
him, his influence was mainly found in the
vocabulary of mathematics, where the prefix hyper
means “extended and generalized” (Nelson, per-
sonal interview, 3/17/93). To Nelson, hypertext
was a necessary tool for his work as an author,
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a tool that “allows you to see alternative ver-
sions on the same screen on parallel windows
and mark side by side what the differences are”
(ibid.). From then on, hyperspace slowly became
cyberspace.

At the same time that Ted Nelson coined the
term hypertext, Douglas Engelbart was beginning
to implement his framework for the Augmenta-
tion of Human Intellect at Stanford Research
Institute (SRI, in Menlo Park, CA). Altough his
framework itself did not explicitly mention hyper-
text, the core of Engelbart’s vision was based on
a very similar premise, “this extremely flexible
way in which computers can represent modules
of symbols and can tie them together with any
structuring relationship we can conceive of”
(Engelbart, personal interview, 12/15/92). The
introduction of an hypertext-like capability in
Engelbart’s framework responded, however, to
a very different motivation than Nelson’s. It was
based on the premise that computers should be
able to perform as a powerful auxiliary to human
communication and collaboration if they were
to manipulate the symbolic language that human
beings manipulate.

For Engelbart, what seemed promising about
computers was that the processes that match
human and machine to the outside world and to
each other could be found in natural language,
understood in both its physiological and social
dimensions; a language available to all. Of all
the tools humans use, language clearly seemed
the metatool, the one that made all the others
possible. What Engelbart meant by “language”
was “the way in which the individual parcels
out the picture of his world into the concepts
that his mind uses to model the world, and the
symbols that he attaches to those concepts and
uses in consciously manipulating the concepts”
(Engelbart 1962: 9). He thus conceived language
as operating at two levels: concept structuring
but also symbol structuring, in order to model
and at the same time to represent “a picture of
the world.” As Engelbart himself pointed out,
this understanding of what language is and does
derives from the work of Benjamin Lee Whorf,
and it both mirrors and extends the famous Sapir–
Whorf Hypothesis: “Both the language used by
a culture, and the capability for effective intel-
lectual activity, are directly affected during the

evolution by the means by which individuals
control the external manipulation of symbols”
(ibid.: 24).

Engelbart thus postulated a dialectical rela-
tionship between the two sublevels of natural
language, a relationship in which the symbolic
representation of concepts can affect the way
these concepts structure the world. The com-
puter could become an open medium that could
be used to “make sense of the world,” to map
the structure of the world as information flows
in order to exploit the potential of natural lan-
guage to reconfigure our concepts and change
our world. The key to this reconfiguration lay
not in any single concept itself, but in their
being already configured – already given in
nonlinear relationships that could be identified,
mapped, and changed. When one stretches
the notion of technology to include the way
humans use language – as Engelbart realized very
early, according to his own account – it becomes
clearer how it was the influence of Whorf that
was central to the development of hypertext.

Because of how he conceived of the way that
natural language could function in the human–
computer interface, Douglas Engelbart, along
with Ted Nelson, often is credited for pioneer-
ing work in the field of hypertext or hypermedia.
Many, however, trace the genealogy of hyper-
text not to Engelbart’s extension of the Sapir–
Whorf Hypothesis, but to the work of Vannevar
Bush.

In a famous article entitled “As We May
Think,” Vannevar Bush proposed a new kind of
electro-optical device, the memex, “a enlarged
intimate supplement of an individual’s memory.”
The result of “utopian fiction and speculative
engineering,” the memex was an imaginary
machine that existed entirely on paper and that
never was constructed (Nyce & Kahn 1991: 45).
Bush conceived his memex on the basis of
analogies between brain and machine, between
electricity and information:

The human mind operates by association. With
one item in its grasp, it snaps instantly to the
next that is suggested by the association of
thoughts, in accordance with some intricate
web of trails carried by the cells of the brain
. . . Man cannot hope fully to duplicate this
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mental process artificially, but he certainly ought
to be able to learn from it. (Bush 1945: 101)

Nyce and Kahn (1991: 60) argue that since
Bush’s work, “whether access and use of the
records should be based on abstract general prin-
ciples or on personal, i.e., individual associations
has been the major issue separating information
retrieval systems from hypertext.” Hypertext sys-
tems in this formulation thus rely on the indi-
vidual process of “association” as envisioned by
Bush, rather than on “abstract general prin-
ciples,” and “for Bush, and later for Nelson and
others engaged in hypertext research, memex
represented a very personal tool” (ibid.). The
term “hypertext” wasn’t coined until the early
1960s, however, and Bush himself never used
the term to describe his work. The reigning term
at the time for what Bush was proposing was
indeed “information retrieval.” It seems difficult
to dispute, therefore, that the memex was not
conceived as a medium, only as a personal “tool”
for information retrieval. Personal access to
information was emphasized over communica-
tion. The later research of Ted Nelson on
hypertext is indeed very representative of that
emphasis.

It is problematic, however, to grant Bush the
status of the “unique forefather” of computerized
hypertext systems. For the development of
hypertext, the important distinction is not
between personal access to information and com-
munication, but between different conceptions
of what communication could mean, and there
were in fact two different approaches to com-
munication at the origin of current hypertext
and hypermedia systems. The first is represented
by Ted Nelson and his Xanadu Project, which
was aiming at facilitating individual literary cre-
ativity. The second is represented by Douglas
Engelbart and his NLS, as his oN-Line System
was called, which was conceived as a way to
support group collaboration. The difference in
objectives signals the difference in means that
characterized the two approaches. The first
revolved around the “association” of ideas on the
model of how the individual mind is supposed
to work. The second revolved around the inter-
subjective “connection” of words in the systems
of natural languages.

What actually differentiates hypertext systems
from a information-retrieval systems is not the
process of “association,” the term Bush proposed
as analogous to the way the individual mind
works. Instead, what constitutes a hypertext sys-
tem is the presence of links between lexias on
a human–computer interface. And a process of
association analogous to the way the individual
mind works is not the only way of establishing
such links. The most important ones already are
established in natural language. Bush himself
stated that “The process of tying two items
together is the important thing” (Bush 1945:
103). Thus, what actually defines hypertext is
the existence of links organizing the information
in such paths, regardless of the process by which
these links were created.

To put it another way, “association” is only
one kind of “connection,” and is in fact the least
desirable kind, where communication is the goal,
precisely because it is the way an individual mind
works. This distinction too was pointed out by
Benjamin Lee Whorf:

Connection is important from a linguistic
standpoint because it is bound up with the
communication of ideas. One of the necessary
criteria of a connection is that it be intelligible
to others, and therefore the individuality of
the subject cannot enter to the extent that
it does in free association, while a corres-
ponding greater part is played by the stock
of conceptions common to people. (Whorf
1927: 36)

Associations can be individual and open-ended.
“A common stock of conceptions,” by contrast,
tends to be limited, and often is structured, even
hierarchical, and susceptible to rearrangement.
Ted Nelson, who like Engelbart was very famil-
iar with Whorf ’s writings, stressed that the main
difference between his views and Engelbart’s
view indeed concerned the role of structure and
hierarchy: “To me hierarchy is a special case. I
don’t say that hierarchies are always invalid, it’s
just that because they’re so convenient they’ve
been used too much. And they represent many
things very badly” (Nelson, interview, 1993).
For Engelbart, with his concern for communica-
tion, the opposite was the case.
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The Language Machine
and the Body

A common ground to all hypertext systems,
regardless of their emphasis on hierarchy, is the
issue of electronic display/access to linked lexias,
often dubbed nonlinear (e.g. Landow 1992: 101–
19). But the emphasis on the notion of linearity,
again, often reflects back to the model of the
text, and might miss the essential third compon-
ent of the standard model of hypertext, inter-
face. In this sense the interface is indeed the
crucial element of an hypertext system, because
it is at the interface that the linked lexias are
displayed/accessed. Now, what exactly does
interface mean?

The point of contact between human and
computer, the boundary that separates and joins
them, usually has been located only via metaphor.
To say that “the mind is a meat machine,” or,
more accurately, that “the mind is a computer,”
is to use a metaphor: the statement relies on an
analogy that “invites the listener to find within
the metaphor those aspects that apply, leaving
the rest as the false residual, necessary to the
essence of the metaphor” (Newell 1991: 160).
With the artificial intelligence mind-as-computer
metaphor (see Chapter 9, THE PHILOSOPHY OF

AI AND ITS CRITIQUE), the greatest source of this
false residual lies in the human’s direct percep-
tion of the computer. Physically, materially, minds
and machines or computers are fundamentally
different things, however much there may be re-
semblances that permit metaphorical comparisons.

When one considers the mind-as-computer
metaphor as a means to make sense of the
“boundary,” the obvious conclusion is that the
compared materiality of human beings and
computers is the false residual of the mind-as-
computer metaphor. One should conclude that
there is no “natural” way to locate the bound-
ary that distinguishes and joins them. There is
no ontological connection, that is, between our
materiality – our bodies – and the material mani-
festation of the computer. But the ultimate goal
of the project to create artificial intelligence was to
achieve the material realization of the metaphor
of the computer as a “colleague,” and therefore as
a mind, a machine that can pass the Turing Test.

The greatest philosophical achievement of the
AI research program might very well be that
it provides an invaluable source of insight into
the effect of the formal, conventional nature of
language on efforts to think about the nature of
the boundary between humans and machines.
There is yet another metaphor to describe the tra-
ditional research program in AI: “The computer
is the physical embodiment of the symbolic cal-
culations envisaged by Hobbes and Leibniz. As
such, it is really not a thinking machine but a
language machine” (Winograd 1991: 216). When
the AI project is understood in this way, the
computer-as-mind metaphor points to the level
of information-processing and symbolic mani-
pulation, not to the more general concept of
“thinking.”

The metaphor of the computer as a language
machine makes sense of the boundary metaphor
by locating the boundary more accurately, within
the realm of “verbal agreement.” One can still ask
whether this claim does not also beg the ques-
tion of material differences in the manner of the
Turing test, however. There is more to natural
language than the processing of symbols, more
than conventional “rules and propositions” that
lead to “verbal agreement.” If the notion of
“symbol system” is indeed “inherently linguistic”
(ibid.), everyday natural human language, on the
other hand, cannot simply be reduced to the
conventional manipulation of symbols.

Hubert L. Dreyfus has stated this objection
regularly since 1972: there are things that com-
puters (still) can’t do because they function in a
binary logic at odds with human reasoning, and
binary translations into machine logic of symbols
are far from enough to mimic human thinking.
AI has been at the same time overly ambitious
in its claim to model human intelligence and
insufficiently ambitious in trying to understand
the linguistic phenomenon and the path it opens
to the body. Engelbart, following Whorf, how-
ever, was able to see the ways in which the ana-
logous character of natural language, thought,
and the human body meant that as a “language
machine,” the computer could serve as a genuine
boundary-spanning object. In this perspective,
the materiality of humans and computers takes on
a different meaning than that of a “false residual”
in a metaphor: both language and technology
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are inherently tied to the body on the human
side of the interface and to circuits on the elec-
tronic side.

The Computer as a Medium and
the Question of the Interface

The introduction of visual metaphors has certainly
been the most important aspect of the efforts
to design adequate user interfaces, understood
here as adequate patterns of interaction between
the user and the computer. The opening of the
graphic dimension of the computer as a com-
munication medium is often thought to be one of
the major contributions of Alan Kay and his team
at Xerox Palo Alto Research Center (PARC) in
the 1970s. A major contribution of this outstand-
ing set of computer scientists is the “desktop
metaphor,” the leading metaphor for the per-
sonal computing interface, as a visual space popu-
lated with iconic representations and organized
in “windows.” Let us see now how the notion
of the hypertextual interface unfolds in more spe-
cific models of the features of this symbolic space.

In her remarkable Computer as Theater, Brenda
Laurel (1991: 12–14), narrates how she and the
participants of a seminar at the Atari Company
(where she was then working) attempted to
define the user interface. They rapidly dismissed
the simplest model of the interface represented
as the space between the person (user) and the
computer, that “encompasses what appears on the
screen, hardware input/output devices, and their
drivers.” They dismissed “this over-simplistic
model” because of its lack of consideration for
the “person’s ‘mental model’ of the computer
and the computer’s ‘understanding’ of the per-
son [which] are just as much a part of the inter-
face as its physical and sensory manifestations”
(ibid.: 12–13).

Once this “precognitive-science” model of the
interface is dismissed, the “conceptual interface”
is part of the interface. They called the main
problem that they encountered then with this
updated model of the interface the “horrible re-
cursion”: “If you are going to admit that what
the two parties ‘think’ about each other is part
of what is going on, you will have to agree that

what the two parties think about what the other
is thinking about them must perforce be included
in the model” (ibid.: 14).

Facing this “nightmare,” the seminar turned
its attention to “more manageable concepts.”
They settled on a simpler concept of the user
interface: “the interface is that which joins hu-
man and computer, conforming to the needs of
each.” Laurel concluded that this viewpoint
“avoids the central issue of what this all means
in terms of reality and representation,” and that
“when we have such trouble defining a concept,
it usually means that we are barking up the wrong
tree” (ibid.) But it could also merely require a
translation of a more complex process of “suspen-
sion,” or more precisely, of Hegelian Aufhebung
that “combines the idea of suspension, with its
connotation of temporary cessation; transcend-
ence, which suggests a going beyond; and a kind
of preservation” (Ashmore 1989: 111). There is
even a sign of such a process when Brenda Laurel
says that “you can demonstrate Zeno’s paradox
on the user’s side of the barrier until you’re blue
in the face, but it’s only when you traverse it
that things get real.”

Who is that “you”? It applies to the user as
well as to the designer of the interface: the prob-
lem is to enable both of them to act within a
representation (Laurel 1991: 21). The problem
in defining the user interface arose in Laurel’s
narrative with the cognitive-science assumption
that representations are part of an interface: the
user’s representation of the computer, on one
hand, and the “computer’s understanding of the
person” on the other. What do you think the
computer understands of the person? Not much
in itself, unless “you” anthropomorphize the
computer. You understand a lot more, still, if
you understand that the computer can represent
the designer. In other words, the computer might
be able to learn about the user from the repres-
entation of the user that the designer of the
interface embodies in his/her design.

Following Laurel, we thus realize that the
interface is the representational space where user
and designer meet, act, and communicate. The
anthropomorphization of the computer translates
the user’s desire for the computer’s responsive-
ness and capacity to perform action, two major
anthropomorphic qualities of the interface, which
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“comprise the metaphor of agency” (Laurel
1990: 358). In her defense of anthropomorph-
ism, she stressed later (p. 143) that the quest
for these qualities does not lead necessarily to
the personification of the computer, but to its
invisibility. This invisibility must be the result of
a negotiation between user and designer over
the competence of the interface agents. The first
step in this direction is to realize that human
and nonhuman agents in the interface, like char-
acters in a play, cannot be separated from the
plot itself.

Characters such as desktop icons or interface
agents in general similarly define, and are defined
by, the theatrical frame of the interface as a whole.
The efficacy of the computer interface depends on
developing convincing “characters” in the “nar-
rative” of the user interface. If their negotiation
is successful, user and designer reach a consensus
on the competence of the agent to perform a
task, and the medium disappears in the process:
user and designer agree on the “truth” of the
representation embodied in the agent, and, con-
sequently, his/hers/its action appears as “real.”
The object of the negotiation is the plot, and in
the present case, the alternative representations
of the user and the designer of the task to be
performed with the help of the computer.

Being the result of a consensus between
designer and user, the interface agent combines
the two orthogonal dimensions of a representa-
tion, delegation and inscription. Delegation is
the process by which the agent is granted the
right to represent action in the interface, and
inscription is the process that enables the agent
to perform the action being represented. These
two processes conjointly define the competence
of the agent as the embodiment of the dialogical
consensus reached by users and designers. Michel
Serres enables us to shade a new light on this
process when he states that “To hold a dialogue
is to suppose a third man and to seek to exclude
him” (1982: 66–7, emphasis in original). Follow-
ing Serres it is not the medium that disappears
in the successful negotiation of the competence
of the interface agents, but the “third man,” the
source of noise. In the case of a successful nego-
tiation between users and designers, the interface
agents are under control, they will not create noise
but docilely perform what they are expected to.

In this sense, the degree of interactivity of the
interface can be seen as the relative opportunity
for both user and designer to take part in the
two dimensions of the representation process.
The joint construction of the plot is the consen-
sus reached on a set of agents whose competences
are negotiated between user and designer. Set-
ting the negotiation at the level of the entire set
of agents allows one to focus on the represent-
ativeness of the interface as a whole, that is, as a
socially constructed narrative between user and
designer.

The Designer as the Third Man

There were three main shifts in our (occidental)
conception of the dialogue. The origin-point is
of course the Platonic dialogue. The first shift
occurred at the dawn of experimental science,
and has been beautifully described and explained
by Shapin and Shaffer (1985) as the “virtual
witnessing.” Dialogue then occurs between the
scientist and the world, and is inscribed for the
readers in the text: it is therefore, (1) a dialogue
between the scientist (author) and the world
(nature) by means of experiments, virtually wit-
nessed by the readers (other scientists, peers).

The second shift in our conception of dia-
logue occurred with Cybernetics, the science of
communication and control, and more precisely
with its theory of information. An alternative
dialogue emerged, a dialogue where, according
to Serres (1982: 66), authors and readers could
trade places, and unite against the noise, “the set
of these phenomena of interference that become
obstacles to communication.” In this third con-
ception of the dialogue, the first candidate for
exclusion was the World: “in order for dialogue
to be possible, one must close one’s eyes and
cover one’s ears to the song and the beauty of the
sirens” (ibid.: 70). The dialogue hence becomes
(2) a dialogue between the author and his or her
readers, excluding the world, that is, the object of
his or her representative practice.

Here comes up against reflexive problem: when
(1) is deconstructed by means of (2) one faces
the specter of the infinite regress (Ashmore
1989), since in principle there could always be a
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possible deconstruction of (2) itself by the same
process that deconstructed (1) in the first place.
The trick is here, of course, all included in “∞,”
the sign standing for the “infinite” and/or its
alternative expression “in principle . . . always . . .
possible.” In practice now, this iteration of the
same basic operation takes time. Or, as Rotman
(1993: 147, emphasis in original) puts it, “the
response to ‘infinity’ developed here can be sum-
marized as hinging on the issue of embodiment.”
If there is a dialogue then, it takes place between
the readers and the World. The limit of the
embodiment of the author is the first interface
in the set-up that unites author and reader in
the same fiction, because and against the virtual-
ity of the physics (not the metaphysics) of their
ever-allusive co-presence. The third shift in our
conception of dialogue, maybe yet to come,
would lead us then to (3) a dialogue between the
readers and the World, partly witnessed and then
wholly imagined by the author, in the practice
that Malcolm Ashmore called “wrighting.” For
Ashmore, “celebratory practical reflexive inquiry
is wrighting beyond the tu quoque.” This celebra-
tion, indeed, “is not a matter of authorial pre-
sentation . . . not a matter of being correct . . . not
a matter of meta-analysis . . . not a matter of solv-
ing a problem” (ibid.: 110).

This scheme can be applied to the idea of
a dialogue between designer (author) and users
(readers) mediated by the hyper(textual) interface.
Each of the three conceptions of the dialogue
previously introduced corresponds to a specific
way to characterize the interaction taking place
at the interface. The first conception considers the
user as an agent engaged in a human–computer
interaction, the second conception considers the
user as a subject in a computer mediated com-
municative act against the noise of the world,
and the third conception considers the user as a
person engaged in his or her own dialogue with
the world. In this third conception of the inter-
face as the space of the dialogue between the
user and the world, the designer becomes a wit-
ness who imagines a space for this dialogue, and
enables both the world and the user to act within
this space: the designer wrights the interface.

In this respect, the fundamental question of
interface design becomes: “how to wright in
order to enable the user to act as a person in his

or her dialogue with the world?” Observe that
it is through this dialogue that the user engages
in the “always unfinished business of human
becoming,” and therefore that his or her “ability
to act as a person” should be considered both as
a process and the result of this process. Under-
stood as such, wrighting the interface refers to a
process of personalization. The designer can thus
be conceived as the agent enabling this person-
alization: his or her action personalizes the inter-
face, that is, it creates the conditions for the user
to become a person, to act as such. As we will see,
this conception could help us understand a crucial
problem in the evolution of the user interface
from today’s direct manipulation interfaces to
the possible intelligent user interfaces of tomor-
row, and, of more concern to our topic, to the
hypertextual interface.

The Distribution of Intelligence
at the Interface and the Future

of the Person

An important debate in today’s negotiations
about the future of the computer still concerns
the question of the distribution of intelligence
at the interface, what most analyses have trans-
lated into the question of the personification of
the computer. But today’s personification of the
computer still requires a “momentary suspension
of disbelief” (Laurel 1991: 113). Why should the
users temporarily suspend their disbelief ? In the
case of theater or fiction, Coleridge argued that
it is for the sake of experiencing other emotional
responses, in Aristotelian terms catharsis, the
pleasurable release of emotion. After Coleridge,
Laurel (ibid.: 120–2) argues that the same process
should occur in interacting with a computer,
where catharsis stems from achieving a given task.

When a play fails, when the spectators do not
feel the release of emotion associated with the
characters’ experiences, they usually blame the
director or the actors. When the interface fails,
most of the users of current personal computers
blame themselves. This might be the clearest mar-
keting success of the personal computing indus-
try, but it is still an obstacle to the diffusion of
its products. Proponents of the personification
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of the computer, however, hold that it should not
be the case. In the best tradition of the Artificial
Intelligence program, they ask the users to grant
a momentary suspension of disbelief to the inter-
face agent in the narrative space of the interface,
and, at the same time, to consider the agent as a
person enabling them to carry out a task in the
“real, situated space” of their work practices. Both
spaces merge in the “personal space” of the user,
and this merger creates a fundamental problem
for the request to suspend disbelief: it is the
source of breakdowns.

This fundamental problem sometimes leads the
proponents of the personification of the computer
to make ambiguous claims. On the one hand, the
personification of the computer, via the interface
agent, is supposed to lead to its disappearance:
the medium is supposed to vanish, be “ready at
hand,” and be an extension of the body. On the
other hand, the personification of the agent
makes it a part of the “world of people and
information” and creates identification for the
user: in this second sense, the medium becomes
“present at hand.” It draws attention to itself.
Hence, the interface agent is necessarily a source
of breakdowns, of never-ending shifts of the
attention of the user. Thus, the personification
of the interface does not solve the problem of
breakdowns; rather, it welds an essential source
of breakdowns into the interface. The necessity
of the user’s “suspension of disbelief” becomes
reiterated with each breakdown. Because of its
hybrid nature as a symbolic and material space,
the user interface is a space of breakdowns, and
the personification of the computer cannot pre-
vent such breakdowns by design: it still requires
learning and adaptation on the part of the user.
Let us see now what an alternative notion of
“personalization” could bring to this question.

So far, we have mostly limited ourselves to a
narrative conception of the interface. We have
seen the drawbacks of current alternatives to
reshape the interface, and insisted on the limits
of a metaphorical conception. It is now time to
complete our review of the question of the future
of the interface by insisting on a phenomenolo-
gical perspective on the “person.”

Like Jaron Lanier (1995), “I have long
believed that the most important question about
information technology is ‘How does it effect

our definition of what a person is?’ ” According
to Alfred North Whitehead, the process of per-
sonalization is the temporal and continuous pro-
cess which constitutes the unity of the subject.
The continuous character of the process must
be emphasized because for Whitehead, “a nexus
enjoys ‘personal order’ when (a) it is a ‘society,’
and (b) when the genetic relatedness of its mem-
bers orders these members ‘serially’” (1929: 34).
This “genetic relatedness” is the engine of the
process.

Whitehead’s conceptions had a profound
impact on Gregory Bateson’s conceptualization
of an “ecology of mind,” his framework for the
exploration of the “natural history of the rela-
tionships between explicit, implicit and embodied
ideas in the world of living things.” Whitehead’s
influence is especially apparent in Bateson’s notion
of “socialization,” a keystone in his early work
in anthropology. Bateson holds that “socialization
(by definition) requires interaction, usually of
two or more organisms” and that its goal is “sup-
posedly” this “set of appearances” that we call a
“person,” since a “person” is necessarily a soci-
alized individual (Bateson 1975: 75). Bateson
made this point clearer in a footnote where he
notes that “the ‘person’ after all, is the mask. It
is what is perceivable of a human organism. It is
a unilateral view of the interface between one
organism and another” (ibid.).

In this respect, Bateson’s notion of the
“person” actually dates back to the original Latin
notion of persona, in the sense of the mask of
tragedy, whose meaning was reconstructed by
the Latin etymologists as pers/sonare, the mask
through (per) which sounds (sonare) the actor’s
voice (Mauss, [1938]: 350); but it is also the
mask of wax cast on the face of the dead ancestor
(imago), the prosopon of the Greek tradition,
which also meant the mask of the ancestor or his
statue kept in the wings of the family house
(ibid.: 352). Marcel Mauss thus insisted on the
original double meaning of the persona, that both
hides and reveals the true nature of the individual,
in respect to his origins, his genetic relatedness
to his ancestors, and his singularity as an actual
entity.

Hence, personalization and socialization are
the two sides of the same process of human
becoming. Personalization puts the emphasis on
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the appearance of the unity of the subject, while
socialization stresses the relatedness of members
in their expression of a common form. The are
both basically grounded in two dynamics: (1) a
continuous dynamic of genetic relatedness stem-
ming from an origin, and (2) a dynamic of feeling
which constitutes a common sense for this origin.

Bertrand Russell, Whitehead’s former pupil
and collaborator, held that there were two ways
to define a person: (1) in derivation of memory,
since “each person’s experience is private to him-
self, and when one experience consists of recol-
lecting another, the two are said to belong to
the same ‘person’”; and (2) in derivation of the
body, since “we can then define a ‘person’ as
the series of mental occurrences connected with
a given body” (Russell 1935: 140). These two
derivations are the two projections which anchor
Rotman’s tripartite scheme: the Agent is active
is the field of memory, the Subject is active in a
field of mental occurrences connected to a given
body, and the Person transcends and unites both
in the field of “consciousness.” “Consciousness”
is an afterthought: it is the result of an articula-
tion of the two previous elementary processes,
experience and order, it is the name human
beings give to the realization of their dual nature
as persons. Now, how on earth could hypertext
affect this process of human becoming?

Hypertext, Cybernetics, and
Space-time

In an essay written in 1939 and entitled “The
Relation of Habitual Thought and Behavior to
Language,” Benjamin Lee Whorf introduces his
inquiry as follows:

That portion of the whole investigation here
to be reported may be summed up in two
questions: (1) Are our own concepts of time,
space, and matter given in substantially the
same form by experience to all men, or are
they in part conditioned by the structure of
particular languages? (2) Are there traceable
affinities between (a) cultural and behavioral
norms and (b) large-scale linguistic patterns?
(Whorf 1941)

The answers Whorf gave to these questions are
considerably more nuanced than the bold formu-
lations, such as “language is culture,” that some-
times are attributed to him: “I should be the last
to pretend that there is anything so definite as a
‘correlation’ between culture and language . . .
We have plenty of evidence that this is not the
case” (ibid.). Whorf ’s answer to the question of
whether our concepts of time, space, and matter
are universal and unconditioned or “in part con-
ditioned by the structure of particular languages”
was that both propositions are true: space may
indeed be perceived in a similar fashion by every
individual, and therefore be common to all
human beings as a result of the basic conditions
of human physiology; while at the same time the
concept of space is also a linguistic construction
and therefore varies with the different human
groups singularized by their language.

Thus, for Whorf, the connections between lan-
guage, cultural norms, and behavior are to be
found at the level of observation and representa-
tion, not the level of perception. However uncon-
scious the part that language plays in this process
may be, Whorf postulated that it always plays
a central role in constituting the “real world”
through the process of sharing meaning: “Con-
cepts of time and matter are not given in sub-
stantially the same form by experience to all men
but depend upon the nature of language or lan-
guages through the use of which they have been
developed” (ibid.: 159).

The relativity of time and space, of course,
was not a notion limited to Whorf ’s work on
comparative linguistics. It was fundamental to
cybernetics too (see Chapter 14, CYBERNETICS).
Norbert Wiener likewise insisted on alternative
conceptions of time, although not exactly in the
perspective presented here by Whorf. He wrote
(1948: 37) that “it is thus not too much to say
that not only the Newtonian astronomy but even
the Newtonian physics has become a picture of
the average result of a statistical situation, and
hence an account of an evolutionary process.”
This point is crucial to cybernetics because it
eventually justified the functional analogy be-
tween living organisms and machines, and hence
between brains and computers. Wiener reinforced
this idea when he stated that “the great contribu-
tion of Heisenberg to physics was the replacement
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of this still quasi-Newtonian world of Gibbs by
one in which time series can in no way be reduced
to an assembly of determinate threads of devel-
opment in time” (ibid.: 92).

The relativist revolution in how time and
space are conceived helped make possible insights
such as Whorf ’s, most notably via the “gen-
eral semantics” program epitomized by Alfred
Korzybski’s writings. Korzybski established a
connection between the changing worldview in
physics and an overall framework for social sci-
ences that granted a new epistemological status
to meaning and language. In fact, Whorf ’s
“Relation of Habitual Thought and Behavior to
Language” actually appeared in ETC: A Review
of General Semantics, the General Semantics
International Society’s journal. For Korzybski
(1926), “mankind” is not bound by time, but
instead a “time-binding” class of life that has sur-
vived in evolution by its ability to learn from past
experiences and to pass this knowledge on from
generation to generation through language. For
Korzybski and his followers, it was necessary to
change the linguistic conception of the relation-
ship between the “word” and the “thing-in-the-
world.” Korzybski (1933) best expressed this new
perspective in his famous analogy between maps
and language: “a map is not the territory” to
which it corresponds, “words are not the things
they represent.” This central premise led him to
question the fundamental basis of the Newtonian
worldview and the Aristotelian system of logic,
and to propose, instead, a “relativist” reformula-
tion of the law of identity: “identity is a relative
matter: relative to the history of the things con-
sidered, relative to the environment the thing is
in, relative to our own practical purposes, relat-
ive to the frame of reference from which it is
viewed” (Reiser 1989: 85–6).

As in the shifting worldview in physics, the
extension of the Aristotelian logic and its applica-
tion to language in the General Semantics pro-
gram relied heavily on a quasi-statistical approach,
or more accurately, on a theory of classes, since
words were not considered any more as “ident-
ical” with what they represented, but rather as a
class of things that they could represent. The
social scientists of the cybernetics group were of
course aware of this line of thought. The con-
nection between Korsybski’s ideas and the social

science side of cybernetics appears in the synthesis
provided by Gregory Bateson’s writings. The core
of this synthesis revisited Korzybski’s notion of
the connection between “map” and “territory,”
and applied it at a basic level:

The bridge between map and territory is dif-
ference. It is only news of difference that can
get from the territory to the map, and this fact
is the basic epistemological statement about
the relationship between all reality out there
and all perception in here: that the bridge must
always be in the form of difference. (Bateson
1979: 240)

Bateson also redefined the basic cybernetic
notion of “information” as “any difference that
makes a difference” (1979: 228). Defined in these
terms, for Whorf, what matters is not simply
that language determines our concepts and that
the relational network of our concepts (links,
connections) determines our view of the world.
What matters is the difference between percep-
tion on the physiological level and mental con-
cepts on the level of language, a difference that
itself has different implications, depending on
which side of it is emphasized. For Korzybski,
what matters is the difference between the map
and the territory – not the map by itself, or the
territory. Difference is thus by definition the site
of an interface. In the formulations of Whorf,
Korzybski, and Bateson, the interface is this dif-
ference that makes a difference, at the boundary
between the physical and the conceptual realms.

Conclusion

The computer will be “personal” when it allows
its users to act as persons, to experience the
world as both embodied subject and ideal agent,
united in actual socialized and enduring persons.
This could happen if and only if the computer
could affect, in terms of signification, the way
humans express their genetic relatedness through
their “mutual prehensions” of each other. These
prehensions are the inscribing and incorporating
practices which characterize the human experi-
ence in the fields of virtual and actual entities.
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However, the computer “memory” is organized
quite differently from the human memory:
computer “time” is discreet, and corresponds to
an event-oriented worldview, anchored in the
renewed notion of probabilistic time brought in
by the relativist tradition. This worldview seems
at first to contradict the requisite of continuity.
Computer events are addresses without a fixed
seriality: there are the discreet traces of previous
interactions, and because of that they refer only
to virtual entities. The fact that a human being
could imagine a continuous temporality in his
hermeneutical relation to the computer does not
change the fact that the computer does not share
it as an embodiment relation: this continuity is
only an interpretation of the human user and of
his interaction with the computer.

Could this interpretation be embodied in
the computer in the same the way that it is in
human beings? A starting-point would be the
ability of the computer to allow humans to make
full use of their body, to act inside the space
that the interface presents and represents, to feel
and experience tomorrow’s worlds as bodies and
minds, through the symbolic and material space
that an interface affords for exploration, play,
and work. The social and cultural construction
of the personal computer user, so far, has led to
an overwhelming hegemony of the visual sense
and symbolic coding, following in that a larger
trend in modernity. Whether the computer could
be interpreted as a person or as slave, whether it
could be metaphorically considered as a con-
scious entity or not, is finally of little interest in
regard to what the computer does. Nothing pre-
vents a priori the computer from participating
in the ongoing evolution of human beings, in
the way that human tools have done for a long
time. Conscious efforts to design personal com-
puters should take this into account and strive
for a harmonious human experience, in its full-
est expression. So far, the personal interface has
remained a marking interface. Typing and click-
ing is marking, indexing, punching a hole. But
this despairing notion might hide the great poten-
tial of the hypertextual interface: a system that
could allow human action in cybernetic space-
time, through the linked events of human becom-
ing, in language and gestures, in thought and
reality.
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Chapter 20

Logic
G. Aldo Antonelli

Origins of the Modern
Conception of Logic

Logic is an ancient discipline that, ever since its
inception some 2500 years ago, has been con-
cerned with the analysis of patterns of valid
reasoning. Aristotle first developed the theory of
the syllogism (a valid argument form involving
predicates and quantifiers), and later the Stoics
singled out patterns of propositional argumenta-
tion (involving sentential connectives). The study
of logic flourished in ancient times and during the
middle ages, when logic was regarded, together
with grammar and rhetoric (the other two dis-
ciplines of the trivium), as the foundation of
humanistic education.

Throughout its history, logic has always had a
prescriptive as well as a descriptive component.
As a descriptive discipline, logic aims to capture
the arguments accepted as valid in everyday lin-
guistic practice. But this aspect, although present
throughout the history of the field, has since the
inception of the modern conception of logic,
some 100 or 150 years ago, taken up a position
more in the background, and in fact some have
argued that it is no longer part of logic pro-
per, but belongs to other disciplines (linguistics,
psychology, or what have you). Nowadays logic
is, first and foremost, a prescriptive discipline,

concerned with the identification and justification
of valid inference forms.

The articulation of logic as a prescriptive dis-
cipline is, ideally, a two-fold task. The first task
requires the identification of a class of valid argu-
ments. The class thus identified must have cer-
tain features: not just any class of arguments
will do. For instance, it is reasonable to require
that the class of valid argument be closed under
the relation “having the same logical form as,”
in that if an argument is classified as valid, then
so is any other argument of the same logical
form. It is clear, then, that such an identification
presupposes, and rests on, a notion of logical
form.

The question of what constitutes a good
theory of logical form exceeds the boundary of
the present contribution, and hence we will not
be concerned with it. We shall limit ourselves to
the observation that one can achieve the desired
closure conditions by requiring that the class
of valid arguments be generated in some uni-
form way from some restricted set of principles.
For instance, Aristotle’s theory of the syllogism
accomplishes this in a characteristically elegant
fashion: subject–predicate propositions are clas-
sified on the basis of their forms into a small
number of classes, and syllogisms are then gen-
erated by allowing the two premises and the
conclusion to take all possible forms.
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The second task, however, is much harder.
Once a class of arguments is identified, one natur-
ally wants to know what it is that makes these
arguments valid. In other words, in order to
accomplish this second task, one needs a general
theory of logical consequence, and such a theory
was not only unavailable to the ancients, it would
not be available until the appearance of mod-
ern symbolic logic in the late 1800s, when an
effort was undertaken to formalize and represent
mathematical reasoning, and it would not be
completely developed until the middle of the
twentieth century.

It is only with the development of the first gen-
eral accounts of the notion of logical consequence
that modern symbolic logic was born. Modern
symbolic logic is only a little over 100 years old,
dating back to the end of the nineteenth century,
and in particular to Gottlob Frege’s Begriffsschrift
(1879) and Richard Dedekind’s Was sind und
was sollen die Zahlen? (1888). With these two
works we have the beginning of a rigorous
account of logical consequence, an account that
will be perfected by Alfred Tarski in the early
1930s.

This chapter focuses on the development of
modern symbolic logic from the point of view
of the notion of logical consequence. After pre-
senting a streamlined account of what is regarded
as the crowning achievement of modern symbolic
logic, i.e., the systematization of first-order
logic, we consider consequence relations from an
abstract point of view. In the next section we look
at consequence relations that are of particular
conceptual interest, in that they aim to capture
patterns of defeasible reasoning in which con-
clusions are drawn tentatively, subject to being
retracted in the light of additional evidence. Fin-
ally, we look at nonmonotonic logics devised to
capture such defeasible inference.

First-order Logic

First-order logic (henceforth: FOL) was origin-
ally developed (through the work of Frege,
Dedekind, Russell & Whitehead, Hilbert, Gödel,
and Tarski) for the representation of mathemat-
ical reasoning. As such, FOL turned out to be

nothing but a stunning success. Its mathematical
properties provide a crucial benchmark for the
assessment of alternative logical frameworks. We
are not going, in this chapter, to provide an
introduction to the nuts and bolts of FOL: the
interested reader can consult any one of the many
excellent introductory texts that are available,
such as, for example, Enderton 1972.

FOL provides an implementation of the
so-called “no-counterexample” consequence rela-
tion: a sentence φ is a consequence of a set Γ of
sentences if and only if one cannot reintepret
the language in which Γ and φ are formulated in
such a way as to make all sentences in Γ true and
φ false. An inference from premises ψ1, . . . , ψk

to a conclusion φ is valid if φ is a consequence
of {ψ1, . . . , ψk}, i.e., if the inference has no
counterexample.

For this to be a rigorous account of logical
consequence, the underlying notion of interpreta-
tion needs to be made precise. This was accom-
plished by Alfred Tarski in 1935, who defined the
notion of truth on an interpretation (see Tarski
1956 for a collection of his technical papers). In
so doing, Tarski overcame both a technical and
a philosophical problem. The technical problem
has to do with the fact that in FOL quantified
sentences are obtained from components that are
not, in turn, sentences, so that a direct recursive
definition of truth for sentences breaks down
at the quantifier case. In order to overcome this
problem Tarski introduced the auxiliary notion
of satisfaction. The philosophical obstacle had
to do with the fact that the notion of truth
was considered suspiciously metaphysical among
logicians trained in the environment of the
Vienna Circle. This was a factor, for instance, in
Gödel’s reluctance to formulate his famous
undecidability results in terms of truth.

Tarski’s analysis yielded a mathematically
precise definition for the “no-counterexample”
consequence relation 3 of FOL: we say that φ is
a consequence of a set Γ of sentences, written
Γ 3 φ, if and only if φ is true on every inter-
pretation on which every sentence in Γ is true.
At first glance, there would appear to be some-
thing intrinsically infinitary about 3. Regardless
of whether Γ is finite or infinite, to check whether
Γ 3 φ one has to “survey” infinitely many pos-
sible interpretations, and check whether any one
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of them is a counterexample to the entailment
claim, i.e., whether any one of them is such that
all sentences in Γ are true on it while φ is false.

However, surprisingly, in FOL the infinitary
nature of 3 is only apparent. As Gödel showed
in 1929, the relation 3, although defined by
universally quantifying over all possible inter-
pretations, can be analyzed in terms of the exist-
ence of finite objects of a certain kind, viz., formal
proofs. A formal proof is a finite sequence of
sentences, each one of which is either an axiom,
or an assumption, or is obtained from previous
ones by means of one of a finite number of
inference rules, such as modus ponens. Many dif-
ferent axiomatizations of FOL exist, and a par-
ticularly simple and elegant one can be found in
Enderton 1972. If a sentence φ occurs as the last
line of a proof, then we say that the proof is a
proof of φ; and we say that φ is provable from Γ,
written Γ 2 φ, if and only if there is a proof of φ
all of whose assumptions are drawn from Γ.

Gödel’s famous completeness theorem of 1929
states that the two relations 3 and 2 are exten-
sionally equivalent: for any φ and Γ, Γ 3 φ if and
only if Γ 2 φ. This is a remarkable feature of
FOL, which has a number of consequences. One
of the deepest consequences follows from the
fact that proofs are finite objects, and hence that
Γ 2 φ if and only if there is a finite subset Γ0

of Γ such that Γ0 2 φ. This, together with the
completeness theorem, gives us the compactness
theorem: Γ 3 φ if and only if there is a finite
subset Γ0 of Γ such that Γ0 3 φ. There are many
interesting equivalent formulations of the theo-
rem, but the following is perhaps the most often
cited. Say that a set of sentences is consistent if
they can all be made simultaneously true on some
interpretation; then the compactness theorem says
that a set Γ is consistent if and only if each of its
finite subsets is by itself consistent.

Another important consequence of Gödel’s
completeness theorem is the following form of
the Löwenheim–Skolem theorem: if all the sen-
tences in Γ can be made simultaneously true in
some interpretation, then they can also be made
simultaneously true in some (other) interpreta-
tion whose universe is no larger than the set �
of the natural numbers.

Together, the compactness and the
Löwenheim–Skolem theorem are the beginning

of one of the most successful branches of mod-
ern symbolic logic: model theory. Compactness
and the Löwenheim–Skolem theorem character-
ize FOL; as shown by Per Lindström in 1969,
any logical system (meeting certain “regularity”
conditions) for which both compactness and
Löwenheim–Skolem hold, is no more expressive
than FOL (see Ebbinghaus et al. 1994: ch. 13
for an accessible treatment).

Another important consequence of Gödel’s
completeness theorem has to do with the ques-
tion of whether and to what extent one can
devise an effective procedure to determine if a
sentence φ is valid, or, more generally, whether
Γ 3 φ for given Γ and φ. First, some terminology.
We say that a set Γ of sentences is decidable if
there is an effective procedure, i.e., a mechanic-
ally executable set of instructions, that deter-
mines, for each sentence φ, whether φ belongs
to Γ or not. Notice that such a procedure gives
both a positive and a negative test for member-
ship of a sentence φ in Γ. A set of sentences is
semidecidable if there is an effective procedure
that determines if a sentence φ is a member of Γ,
but might not provide an answer if φ is not a
member of Γ. In other words, Γ is semidecidable
if there is a positive, but not necessarily a negat-
ive test for membership in Γ. Equivalently, Γ is
semidecidable if it can be given an effective list-
ing, i.e., if it can be mechanically generated.
These notions can be generalized to relations
among sentences of any number of arguments.
For instance, it is an important feature of the
axiomatizations of FOL, such as that of Enderton
1972, that both the set of axioms and the rela-
tion that holds among φ1, . . . , φk and ψ when ψ
can be inferred from φ1, . . . , φk by one of the
rules, are decidable. As a result, the relation that
holds among φ1, . . . , φk and φ whenever φ1, . . . ,
φk is a proof of φ is also decidable. (See Chap-
ter 2, COMPUTATION, for further details on these
notions.)

The import of Gödel’s completeness theorem
is that if the set Γ is decidable (or even only
semidecidable), then the set of all sentences φ
such that Γ 3 φ is semidecidable. Indeed, one
can obtain an effective listing for such a set by
systematically generating all proofs from Γ. The
question arises of whether, beside this positive
test, there might not also be a negative test for a
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sentence φ being a consequence of Γ. This
“decision problem” (Entscheidungsproblem) was
originally proposed by David Hilbert in 1900,
and it was solved in 1936 independently by
Alonzo Church and Alan Turing. The Church–
Turing theorem states that, in general, it is not
decidable whether Γ 3 φ, or even if φ is valid. (It
is important to know that for many, even quite
expressive, fragments of first-order logic the
decision problem is solvable; see Börger et al.
1997 for details.) We should also notice the fol-
lowing fact that will be relevant later in our dis-
cussion: say that a sentence φ is consistent if {φ}
is consistent, i.e., if its negation ¬φ is not valid.
Then the set of all sentences φ such that φ is
consistent is not even semidecidable, for a positive
test for such a set would yield a negative test for
the set of all valid sentences, which would thus be
decidable, against the Church–Turing theorem.

Consequence relations

In the previous section, we defined a consequence
relation 3 by saying that Γ 3 φ if and only if φ is
true on every interpretation on which every
sentence in Γ is true. In general, it is possible to
consider what abstract properties a relation of
consequence between sets of sentences and
single sentences could have. Let 1 be any such
relation. Consider the following properties, all of
which are satisfied by the consequence relation 3
of FOL:

Supraclassicality: if Γ 3 φ then Γ 1 φ.
Reflexivity: if φ ∈ Γ then Γ 1 φ;
Cut: If Γ 1 φ and Γ, φ 1 ψ then Γ 1 ψ;
Monotony: If Γ 1 φ and Γ ⊆ ∆ then ∆ 1 φ.

The first property is supraclassicality, which
states that if φ follows from Γ in FOL, then
it also follows according to 1; i.e., 1 extends 3
(the relation 3 is trivially supraclassical). Of the
remaining conditions, the most straightforward
is reflexivity: it says that if φ belongs to the set Γ,
then φ is a consequence of Γ. This is a very
minimal requirement on a relation of logical con-
sequence. We certainly would like all sentences
in Γ to be inferable from Γ. It’s not clear in what

sense a relation that fails to satisfy this require-
ment can be called a consequence relation.

Cut, a form of transitivity, is another crucial
feature of consequence relations. Cut is a con-
servativity principle: if φ is a consequence of Γ,
then ψ is a consequence of Γ together with φ
only if it is already a consequence of Γ alone. In
other words, by adjoining to Γ something which
is already a consequence of Γ does not lead to
any increase in inferential power. Cut is best
regarded as the statement that the “length” of a
proof does not affect the degree to which the
assumptions support the conclusion. Where φ is
already a consequence of Γ, if ψ can be inferred
from Γ together with φ, then ψ can also be
obtained via a longer “proof” that proceeds indir-
ectly by first inferring φ. It is immediate to check
that FOL satisfies Cut.

It is worth noting that many forms of prob-
abilistic reasoning fail to satisfy Cut, precisely
because the degree to which the premises sup-
port the conclusion is inversely correlated to the
length of the proof. To see this, we adapt a well-
known example. Let Ax abbreviate “x was born
in Pennsylvania Dutch country,” Bx abbreviate “x
is a native speaker of German,” and Cx abbreviate
“x was born in Germany.” Further, let Γ com-
prise the statements “Most A’s are B’s,” “Most
B’s are C’s,” and Ax. Then Γ supports Bx, and Γ
together with Bx supports Cx, but Γ by itself
does not support Cx. Statements of the form
“Most A’s are B’s” are interpreted probabilistic-
ally, as saying that the conditional probability of
B given A is, say, greater that 50 percent; like-
wise, we say that Γ supports a statement φ if Γ
assigns φ a probability p > 50 percent.

Since Γ contains “Most A’s are B’s” and Ax,
it supports Bx (in the sense that the probability
of Bx is greater that 50 percent); similarly, Γ
together with Bx supports Cx; but Γ by itself
cannot support Cx. Indeed, the probability of
someone who was born in Pennsylvania Dutch
country being born in Germany is arbitrarily close
to zero. Examples of inductive reasoning such as
the one just given cast some doubt on the possib-
ility of coming up with a well-behaved relation
of probabilistic consequence (see Chapter 21,
PROBABILITY IN ARTIFICIAL INTELLIGENCE).

Special considerations apply to monotony.
Monotony states that if φ is a consequence of Γ
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then it is also a consequence of any set contain-
ing Γ (as a subset). The import of monotony is
that one cannot preempt conclusions by adding
new premises to the inference. It is clear why
FOL satisifies monotony: semantically, if φ is true
on every interpretation on which all sentences of
Γ are true, then φ is also true on every interpreta-
tion on which all sentences in a larger set ∆ are
true (similarly, proof-theoretically, if there is a
proof of φ all of whose assumptions are drawn
from Γ, then there is also a proof of φ – indeed,
the same proof – all of whose assumptions are
drawn from ∆).

Many consider this feature of FOL as in-
adequate to capture a whole class of inferences
typical of everyday (as opposed to mathematical
or formal) reasoning, and therefore question
the descriptive adequacy of FOL, when it comes
to representing commonsense inferences. In
everyday life, we quite often reach conclusions
tentatively, only to retract them in the light of
further information. For instance, when told that
Stellaluna is a mammal, we infer that she does
not fly, because mammals, by and large, don’t
fly. But the conclusion that Stellaluna doesn’t fly
can be retracted when we learn that Stellaluna is
a bat, because bats are a specific kind of mammals,
and they do fly. So we infer that Stellaluna does
fly after all. This process can be further iterated.
We can learn, for instance, that Stellaluna is a
baby bat, and that therefore she does not know
how to fly yet. Such complex patterns of defeasible
reasoning are beyond the reach of FOL, which
is, by its very nature, monotonic.

For these and similar reasons, people have
striven, over the last 20 years or so, to devise
nonmonotonic formalisms capable of represent-
ing defeasible inference. We will take a closer
look at these formalisms below, but for now we
want to consider the issue from a more abstract
point of view.

When one gives up monotony in favor of
descriptive adequacy, the question arises of what
formal properties of the consequence relation to
put in its place. Two such properties have been
considered in the literature, for an arbitrary con-
sequence relation 1:

Cautious Monotony: If Γ 1 φ and Γ 1 ψ, then Γ,
φ 1 ψ.

Rational Monotony: If Γ 6 ¬ φ and Γ 1 ψ, then
Γ, φ 1 ψ.

Both Cautious Monotony and the stronger prin-
ciple of Rational Monotony are special cases of
Monotony, and are therefore not in the fore-
ground as long as we restrict ourselves to the
classical consequence relation 3 of FOL.

Although superficially similar, these principles
are quite different. Cautious Monotony is the
converse of Cut: it states that adding a con-
sequence φ back into the premise-set Γ does not
lead to any decrease in inferential power. Cautious
Monotony tells us that inference is a cumulative
enterprise: we can keep drawing consequences
that can in turn be used as additional premises,
without affecting the set of conclusions. Together
with Cut, Cautious Monotony says that if φ is a
consequence of Γ then for any proposition ψ, ψ
is a consequence of Γ if and only if it is a con-
sequence of Γ together with φ. It has been often
pointed out by Dov Gabbay that Reflexivity, Cut
and Cautious Monotony are critical properties
for any well-behaved nonmonotonic consequence
relation (see Gabbay et al. 1994, Stalnaker 1994).

The status of Rational Monotony is much more
problematic. As we observed, Rational Monotony
can be regarded as a strengthening of Cautious
Monotony, and like the latter it is a special case
of Monotony. However, there are reason to think
that Rational Monotony might not be a correct
feature of a nonmonotonic consequence rela-
tion. A counterexample due to Stalnaker (1994:
19) involves three composers: Verdi, Bizet, and
Satie. Suppose that we initially accept (correctly
but defeasibly) that Verdi is Italian, while
Bizet and Satie are French. Suppose now that
we are told by a reliable source of information
that Verdi and Bizet are compatriots. This leads
us no longer to endorse the propositions that
Verdi is Italian (because he could be French),
and that Bizet is French (because he could be
Italian); but we would still draw the defeasible
consequence that Satie is French, since nothing
that we have learned conflicts with it. By letting
I(v), F(b), and F(s) represent our initial beliefs
about the nationality of the three composers,
and C(v, b) represent that Verdi and Bizet are
compatriots, the situation could be represented
as follows:
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C(v, b) 1 F(s).

Now consider the proposition C(v, s) that Verdi
and Satie are compatriots. Before learning that
C(v, b) we would be inclined to reject the pro-
position C(v, s) because we endorse and I(v) and
F(s), but after learning that Verdi and Bizet are
compatriots, we can no longer endorse I(v), and
therefore no longer reject C(v, s). The situation
then is as follows:

C(v, b) 6 ¬ C(v, s).

However, if we added C(v, s) to our stock of
beliefs, we would lose the inference to F(s): in
the context of C(v, b), the proposition C(v, s) is
equivalent to the statement that all three com-
posers have the same nationality, and this leads us
to suspend our assent to the proposition F(s). In
other words, and contrary to Rational Monotony:

C(v, b), C(v, s) 6 F(s).

The previous discussion gives a rather clear
picture of the desirable features a nonmonotonic
consequence relation. Such a relation should
satisfy Supraclassicality, Reflexivity, Cut, and
Cautious Monotony.

Varieties of Defeasible Reasoning

A separate issue from the formal properties of a
nonmonotonic consequence relation, although
one that is strictly intertwined with it, is the
issue of how conflicts between potential defeasible
conclusions are to be handled.

There are two different kinds of conflicts that
can arise within a given nonmonotonic frame-
work: (i) conflicts between defeasible conclusions
and “hard facts”; and (ii) conflicts between one
potential defeasible conclusion and another (many
formalisms, for instance, provide some form of
defeasible inference rules, and such rules might
have conflicting conclusions). When a conflict
(of either kind) arises, steps have to be taken to
preserve or restore consistency.

All defeasible formalisms handle conflicts of
the first kind in the same way: indeed, it is the

very essence of defeasible reasoning that conclu-
sions can be retracted when new facts are learned.
But conflicts of the second kind can be handled
in two different ways: one can draw inferences
either in a “cautious” or “bold” fashion (also
known as “skeptical” or, respectively, “credu-
lous”). These two options correspond to widely
different ways to construe a given body of defeas-
ible knowledge, and yield different results as to
what defeasible conclusions are warranted on the
basis of such a knowledge base.

The difference between these basic attitudes
comes to this. In the presence of potentially con-
flicting defeasible inferences (and in the absence
of further considerations such as specificity – see
below), the credulous reasoner always commits
to as many defeasible conclusions as possible,
subject to a consistency requirement, whereas the
skeptical reasoner withholds assent from potenti-
ally conflicted defeasible conclusions.

A famous example from the literature, the
so-called “Nixon diamond,” will help make the
distinction clear. Suppose our knowledge base
contains (defeasible) information to the effect
that a given individual, Nixon, is both a Quaker
and a Republican. Quakers, by and large, are
pacifists, whereas Republicans by and large are
not. The question is, what defeasible conclusions
are warranted on the basis of this body of know-
ledge, and in particular whether we should infer
that Nixon is a pacifist or that he is not pacifist.
Figure 20.1 provides a schematic representation
of this state of affairs in the form of a (defeasible)
network.

The credulous reasoner has no reason to prefer
either conclusion (“Nixon is a pacifist”; “Nixon
is not a pacifist”) to the other one, but will de-
finitely commit to one or the other. The skeptical
reasoner recognizes that this is a conflict not
between hard facts and defeasible inferences, but
between two different defeasible inferences. Since
the two possible inferences in some sense “can-
cel out,” the skeptical reasoner will refrain from
drawing either one.

Whereas many of the early formulations of
defeasible reasoning have been credulous, skept-
icism has gradually emerged as a viable altern-
ative, which can, at times, be better behaved.
Arguments have been given in favor of both
skeptical and credulous inference. Some have
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equate to represent defeasible reasoning was for
the first time accompanied by several proposals
of formal frameworks within which one could at
least begin to talk about defeasible inferences in
a precise way, with the long-term goal of provid-
ing for defeasible reasoning an account that could
at least approximate the degree of success achieved
by FOL in the formalization of mathematical
reasoning. The publication of a monographic
issue of the Artificial Intelligence Journal in 1980
can be regarded as the “coming of age” of defeas-
ible formalisms.

The development of nonmonotonic (or
defeasible) logics has been guided all along by a
rich supply of examples. One of the early sources
of motivation for the development of non-
monotonic logic comes from database theory.
Consider for instance the closed world assump-
tion: suppose that you need to travel from
Oshkosh to Minsk, so you consult your travel
agent, who, not surprisingly, tells you that there
are no direct flights. How does the travel agent
know? In a sense, he doesn’t: his database does
not list any direct flights between Oshkosh and
Minsk, and he assumes that the database is com-
plete. In other words, what we have in this
example is an attempt to minimize the extension
of a given predicate (“flight-between” in this
case). Moreover, such a minimization needs to
take place not with respect to what the database
explicitly contains but with respect to what it
implies.

The idea of minimization is at the basis of
one of the earliest nonmonotonic formalisms,
McCarthy’s circumscription. Circumscription
makes explicit the intuition that, all other things
being equal, extensions of predicates should be
minimal. Again, consider principles such as “all
normal birds fly.” Here we are trying to minimize
the extension of the abnormality predicate, and
assume that a given bird is normal unless we have
positive information to the contrary. Formally,
this can be represented using second-order logic.
In second-order logic, in contrast to FOL, one
is allowed to explicitly quantify over predicates,
forming sentences such as ∃P∀xPx (“there is a
universal predicate”) or ∀P(Pa ↔ Pb) (“a and
b are indiscernible”). In circumscription, given
predicates P and Q , we abbreviate ∀x(Px → Qx)
as P ≤ Q, and P ≤ Q ∧ Q 8 P as P < Q. If A(P)

Figure 20.1: The Nixon diamond

argued that credulity seems to better capture a
certain class of intuitions, while others have
objected that although a certain degree of “jump-
ing to conclusions” is by definition built into
any nonmonotonic formalism, such jumping to
conclusions needs to be regimented, and that
skepticism provides precisely the required regi-
mentation. (A further issue in the skeptical/
credulous debate is the question of whether so-
called “floating conclusions” should be allowed;
see Horty 2002 for a review of the literature and
a substantial argument that they should not.)

Nonmonotonic Logics

As we have mentioned, over the last twenty years
or so, a number of so-called “nonmonotonic”
logical frameworks have emerged, expressly
devised for the purpose of representing defeasible
reasoning. The development of such frameworks
represents one of the most significant develop-
ments both in logic and artificial intelligence,
and has wide-ranging consequences for our philo-
sophical understanding of argumentation and
inference.

Pioneering work in the field of nonmonotonic
logics was carried out beginning in the late 1970s
by (among others) J. McCarthy, D. McDermott,
& J. Doyle, and R. Reiter (see Ginsberg 1987
for a collection of early papers in the field). With
these efforts, the realization (which was hardly
new) that ordinary first-order logic was inad-
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Figure 20.2: An Inheritance network; links of the form A → B represent the fact that typical A’s are B’s,
and links A /→ B represent the fact that typical A’s are not B’s

is a formula containing occurrences of a predic-
ate P, then the circumscription of P in A is the
second-order sentence A*(P):

A(P) ∧ 5∃Q [A(Q) ∧ Q < P].

A*(P) says that P satisfies A, and that no smaller
predicate does. Let Px be the predicate “x is
abnormal,” and let A(P) be the sentence “All
normal birds fly.” Then the sentence “Tweety is
a bird,” together with A*(P) implies “Tweety
flies,” for the circumscription axiom forces the
extension of P to be empty, so that “Tweety is
normal” is automatically true. In terms of con-
sequence relations, circumscription allows us to
define, for each predicate P, a nonmonotonic
relation A(P) 1 φ that holds precisely when A*(P)
3 φ. (This basic form of circumscription has been
generalized, for in practice one needs to minimize
the extension of a predicate, while allowing the
extension of certain other predicates to vary.)
From the point of view of applications, however,
circumscription has a major shortcoming, namely
the absence of a complete inference procedure,
due to the fact that, in general, second-order logic
lacks such a procedure. The price one pays for
the greater expressive power of second-order logic
is that there are no complete axiomatizations, as
we have for FOL.

Another nonmonotonic formalism inspired by
the intuition of minimization of abnormalities is
nonmonotonic inheritance. Whenever we have a

taxonomically organized body of knowledge, we
presuppose that subclasses inherit properties from
their superclasses: dogs have lungs because they
are mammals, and mammals have lungs. How-
ever, there can be exceptions, which can interact
in complex ways. To use an example already in-
troduced, mammals, by and large, don’t fly; since
bats are mammals, in the absence of any informa-
tion to the contrary, we are justified in inferring
that bats do not fly. But then we learn that bats
are exceptional mammals, in that they do fly: the
conclusion that they don’t fly is retracted, and
the conclusion that they fly is drawn instead.
Things can be more complicated still, for in turn,
as we have seen, baby bats are exceptional bats,
in that they do not fly (does that make them
unexceptional mammals?). Here we have poten-
tially conflicting inferences. When we infer that
Stellaluna, being a baby bat, does not fly, we are
resolving all these potential conflicts based on a
specificity principle: more specific information over-
rides more generic information. Nonmonotonic
inheritance networks were developed for the
purpose of capturing taxonomic examples such
as the above. Such networks are collections of
nodes and directed (“is a”) links representing
taxonomic information. When exceptions are
allowed, the network is interpreted defeasibly.
Figure 20.2 gives a network representing this
state of affairs. In such a network, if there is a
link of the form A → B, then information about
A’s is more specific than information about B’s,
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and hence should override it. Research on non-
monotonic inheritance focuses on the different
ways in which one can make this idea precise.

The main issue in defeasible inheritance is to
characterize the set of assertions that are sup-
ported by a given network. It is of course not
enough to devise a representational formalism,
one also needs to specify how the formalism is
to be interpreted, and this is precisely the focus
of much work in nonmonotonic inheritance. Such
a characterization is accomplished through the
notion of extension of a given network. There
are two competing characterizations of exten-
sion for this kind of networks, one that follows
the credulous strategy and one that follows the
skeptical one. Both proceed by first defining
the degree of a path through the network as the
length of the longest sequence of links connect-
ing its endpoints, and then building extensions
by considering paths in ascending order of their
degrees. We are not going to review the details,
since many of the same issues arise in connec-
tion with default logic (which is treated to greater
length below), but Horty 1994 provides an ex-
tensive survey. It is worth mentioning that since
the notion of degree makes sense only in the
case of acyclic networks, special issues arise when
networks contain cycles (see Antonelli 1997 for
a treatment of inheritance on cyclic networks).

Although the language of nonmonotonic net-
works is expressively limited by design (in that
only links of the form “is a” can be represented
in a natural fashion), such networks represent an
extremely useful setting in which to test and
hone one’s intuitions and methods for handling
defeasible information, which are then extended
to more expressive formalisms. Among the latter
is Reiter’s “Default Logic,” which is perhaps the
most flexible among nonmonotonic frameworks.
In Default Logic, the main representational tool
is that of a default rule, or simply a default. A
default is a defeasible inference rule of the form

η θ
ξ
 : 

,

(where η, θ, ξ are sentences in a given language,
respectively called the prerequisite, the justifica-
tion, and the conclusion of the default). The
interpretation of the default is that if η is known,

and there is no evidence that θ might be false,
then the rule allows the inference of ξ. As is
clear, application of the rule requires that a con-
sistency condition be satisfied, and rules can inter-
act in complex ways. In particular it is possible
that application of a rule might cause the con-
sistency condition to fail (as when θ is ¬ξ).
Reiter’s default logic uses the notion of an exten-
sion to make precise the idea that the consist-
ency condition has to be met both before and
after the rule is applied. Given a set Γ of defaults,
an extension for Γ is, roughly, a set of defaults
whose consistency condition is met both before
and after their being triggered; an extension
therefore represents a set of inferences that can
be reasonably and consistently drawn using
defaults from Γ. More in particular (and in typical
circular fashion), an extension for Γ is a maximal
subset ∆ of Γ the conclusions of whose defaults
both imply all the prerequisites of defaults in ∆
and are consistent with all the justifications of
defaults in ∆.

This definition can be made precise as follows.
By a default theory we mean a pair (W, ∆), where
∆ is a (finite) set of defaults, and W is a set of
sentences (a world description). The idea is that
W represents the strict or background informa-
tion, whereas ∆ specifies the defeasible informa-
tion. Given a pair (T1, T2) of sets of sentences, a
default such as the equation above is triggered
by (T1, T2) if and only if T1 3 η and T2 7 ¬θ (i.e.,
θ is consistent with T2). Notice how this defini-
tion is built “on top” of 3: we could, conceiv-
ably, employ a different relation here. Finally we
say that a set of sentences E is an extension for a
default theory (W; ∆) if and only if

E = E0 � E1 � . . . � En � . . . ,

where: E0 = W, and

  

E E

E E

n n

n

+ =1   {  : 
 : 

, )}

� ξ
η

ξ
∈

θ
∆

is triggered by (

(notice the occurrence of the limit E in the defini-
tion of En+1). There is an alternative characteriza-
tion of extensions: given a default theory, let
� be an operator defined on sets of sentences
such that for any set S of sentences, �(S) is the
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smallest set containing W, deductively closed (i.e.,
such that if �(S) 3 φ then φ ∈ �(S)), and such
that if a default with consequent ξ is triggered
by (S, S) then ξ ∈ �(S). Then one can show
that E is an extension for (W, ∆) if and only if E
is a fixed point of �, i.e., if �(E) = E.

For any given default theory, extensions need
not exist, and even when they exist, they need not
be unique. Let us consider a couple of examples
of these phenomena. Our first example is a de-
fault theory that has no extension: let W contain
the sentence η, and let ∆ comprise the single
default

  

η θ
θ

 : 
.

5

If E were an extension, then the default above
would have to be either triggered or not triggered
by it, and either case is impossible.

Let us now consider an example of a default
theory with multiple extensions. Like before, let
W contain the sentence η, and suppose ∆ com-
prises the two defaults

  

η θ : 
5ξ

, and
  

η
θ

 : ξ
5

.

This theory has exactly two extensions, one in
which the first default is triggered and one in
which the second one is. It is easy to see that at
least a default has to be triggered in any exten-
sion, and that both defaults cannot be triggered
by the same extension.

These examples are enough to bring out a
number of features. First, it should be noted
that neither one of the two characterizations of
default logic given above gives us a way to “con-
struct” extension by means of anything resemb-
ling an iterative process. Essentially, one has to
“guess” a set of sentences E, and then verify that
it satisfies the definition of an extension.

Further, the fact that default theories can have
zero, one, or more extensions raises the issue of
what inferences one is warranted in drawing from
a given default theory. The problem can be pre-
sented as follows: given a default theory (W; ∆),
what sentences φ can be regarded as defeasible
consequences of the theory? On the face of it,
there are several options available.

One option is to take the union of the exten-
sions of the theory, and consider φ a consequence
of a default theory (W, ∆) if and only if φ ∈ E,
for some extension E. But this option is im-
mediately ruled out, in that it leads to endorsing
contradictory conclusion, as in the second ex-
ample above. It is widely believed that any viable
notion of defeasible consequence for default logic
must have the property that the set {φ : (W, ∆)
1 φ} must be consistent whenever W is. Once
this option is ruled out, only two alternatives are
left.

The first alternative, known as the “credulous”
or “bold” strategy, is to pick an extension E for
the theory, and say that φ is a defeasible con-
sequence if and only if φ ∈ E. The second altern-
ative, known as the “skeptical” or “cautious”
strategy, is to endorse a conclusion φ if and only
if φ is contained in every extension of the theory.

Both the credulous and the skeptical strategy
have problems. The problem with the credulous
strategy is that the choice of E is arbitrary: with
the notion of extension introduced by Reiter,
extensions are orthogonal: of any two distinct ex-
tensions, neither one contains the other. Hence,
there seems to be no principled way to pick an
extension over any other one. This has led a num-
ber of researcher to endorse the skeptical strategy
as a viable approach to the problem of defeas-
ible consequence. But as shown by Makinson,
skeptical consequence, as based on Reiter’s notion
of extension, fails to be cautiously monotonic.
To see this, consider the default theory (W, ∆),
where W is empty, and ∆ comprises the two
defaults:

: θ
θ

, and
  

θ η θ
θ

   : ∨ 5
5

.

This theory has only one extension, coinciding
with the deductive closure of {θ}. hence, if we
put (W, ∆) 1 φ if and only if φ belongs to every
extension of (W, ∆), we have (W, ∆) 1 θ, as well
as (W, ∆) 1 θ ∨ η (by the deductive closure of
extensions). Now consider the theory with ∆ as
before, but with W containing the sentence θ ∨
η. This theory has two extensions: one the same
as before, but also another one coinciding with
the deductive closure of {¬θ}, and hence not
containing θ. It follows that the intersection of
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the extensions no longer contains θ, so that ({θ
∨ η}, ∆) 6 θ, against cautious monotony. (Notice
that the same example establishes a counter-
example for Cut for the credulous strategy, when
we pick the extension of ({θ ∨ η}, ∆) that con-
tains ¬θ.)

It is clear that the issue of how to define a
nonmonotonic consequence relation for default
logic is intertwined with the way that conflicts
are handled. The problem of course is that in
this case neither the skeptical nor the credulous
strategy yields an adequate relation of defeas-
ible consequence. In Antonelli 1999 a notion of
general extension for default logic is introduced,
showing that this notion yields a well-behaved
relation of defeasible consequence that satisfies
all four requirements of Supraclassicality, Reflex-
ivity, Cut, and Cautious Monotony.

A different set of issues arises in connection
with the behavior of default logic from the point
of view of computation. As we have seen for a
given semidecidable set Γ of sentences, the set
of all Γ that are a consequence of Γ in FOL is
itself semidecidable. In the case of default logic,
to formulate the corresponding problem one
extends (in the obvious way) the notion of
(semi)decidability given above to sets of defaults.
The problem, then, is to decide, given a default
theory (W, ∆) and a sentence φ whether (W, ∆)
1 φ, where 1 is defined, say, skeptically (it doesn’t
really make a difference computationally whether
1 is defined skeptically or credulously). Such a
problem is not even semidecidable, the essential
reason being that in general, in order to deter-
mine whether a default is triggered by a pair of
sets of sentences, one has to perform a consist-
ency check. But the consistency checks are not the
only source of complexity in default logic. For
instance, we could restrict our language to con-
junctions of atomic sentences and their negations
(making consistency checks feasible). Even so,
the problem of determining whether a given
default theory has an extension would still be
highly intractable (NP-complete, to be precise,
as shown by Kautz & Selman 1991), seemingly
because the problem requires checking all pos-
sible sequences of firings of defaults (see Chap-
ter 2, COMPLEXITY, for these and related notions).

Default logic is intimately connected with cer-
tain modal approaches to nonmonotonic reason-

ing, which belong to the family of autoepistemic
logics. Modal logics in general have proved to be
one of the most flexible tools for modeling all
sorts of dynamic processes and their complex
interactions. Beside the applications in knowledge
representation, which we are going to treat
below, there are modal frameworks, known as
dynamic logics, that play a crucial role, for in-
stance, in the modeling of serial or parallel com-
putation. The basic idea of modal logic is that
the language is interpreted with respect to a give
set of states, and that sentences are evaluated
relative to one of these states. What these states
are taken to represent depends on the particular
application under consideration (they could be
epistemic states, or states in the evolution of a
dynamical system, etc.), but the important thing
is that there are transitions (of one or more dif-
ferent kinds) between states. In the case of one
transition that is both transitive (i.e., such that if
a → b and b → c then a → c) and euclidean (if a
→ b and a → c then b → c), the resulting modal
system is referred to as K45. Associated with
each kind of state transition there is a corres-
ponding modality in the language, usually rep-
resented as a box �. A sentence of the form �A
is true at a state s if and only if A is true at every
state s ′ reachable from s by the kind of transition
associated with � (see Chellas 1980 for a com-
prehensive introduction to modal logic).

In autoepistemic logic, the states involved are
epistemic states of the agent (or agents). The
intuition underlying autoepistemic logic is that
we can sometimes draw inferences concerning the
state of the world using information concerning
our own knowledge or ignorance. For instance,
I can conclude that I do not have a sister given
that if I did I would probably know about it, and
nothing to that effect is present in my “know-
ledge base.” But such a conclusion is defeasible,
since there is always the possibility of learning
new facts.

In order to make these intuitions precise, con-
sider a modal language in which the necessity
operator � is interpreted as “it is known that.”
As in default logic or defeasible inheritance, the
central notion in autoepistemic logic is that of
an extension of a theory S, i.e., a consistent and
self-supporting sets of beliefs that can reasonably
be entertained on the basis of S. Given a set S of
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sentences, let S0 be the subset of S composed of
those sentences containing no occurrences of �;
further, let the introspective closure S i

0 of S0 be
the set

{�φ : φ ∈S0},

and the negative introspective closure S n
0 of S0 the

set

{5�φ : φ ∉S0}.

The set S i
0 is called the introspective closure

because it explicitly contains positive information
about the agent’s epistemic status: S i

0 expresses
what is known (similarly, S n

0 contains negative
information about the agent’s epistemic status,
stating explicitly what is not known). With these
notions in place, we define an extension for S to
be a set T of sentences such that:

T = {φ : φ follows from S � T i
0 � T n

0 in
K45}.

Autoepistemic logic provides a rich language,
with interesting mathematical properties and con-
nections to other nonmonotonic formalisms. It is
faithfully intertranslatable with Reiter’s version
of default logic, and provides a defeasible frame-
work with well-understood modal properties.

Conclusion

There are three major issues connected with
the development of logical frameworks that can
adequately represent defeasible reasoning: (i)
material adequacy; (ii) formal properties; and
(iii) complexity. Material adequacy concerns the
question of how broad a range of examples is
captured by the framework, and the extent to
which the framework can do justice to our intui-
tions on the subject (at least the most entrenched
ones). The question of formal properties has
to do with the degree to which the framework
allows for a relation of logical consequence
that satisfies the above-mentioned conditions of
Supraclassicality, Reflexivity, Cut, and Cautious
Monotony. The third set of issues has to do

with computational complexity of the most basic
questions concerning the framework.

There is a potential tension between (i) and
(ii): the desire to capture a broad range of intui-
tions can lead to ad hoc solutions that can some-
times undermine the desirable formal properties
of the framework. In general, the development
of nonmonotonic logics and related formalisms
has been driven, since its inception, by considera-
tion (i) and has relied on a rich and well-chosen
array of examples. Of course, there is some ques-
tion as to whether any single framework can
aspire to be universal in this respect.

More recently, researchers have started pay-
ing attention to consideration (ii), looking at
the extent to which nonmonotonic logics have
generated well-behaved relations of logical con-
sequence. As Makinson (1994) points out, prac-
titioners of the field have encountered mixed
success. In particular, one abstract property, Cau-
tious Monotony, appears at the same time to be
crucial and elusive for many of the frameworks
to be found in the literature. This is a fact that is
perhaps to be traced back, at least in part, to the
above-mentioned tension between the require-
ment of material adequacy and the need to gen-
erate a well-behaved consequence relation.

The complexity issue appears to be the most
difficult among the ones that have been singled
out. Nonmonotonic logics appear to be stub-
bornly intractable with respect to the correspond-
ing problem for classical logic. This is clear in
the case of default logic, given the ubiquitous
consistency checks. But beside consistency checks,
there are other, often overlooked, sources of com-
plexity that are purely combinatorial. Other forms
of nonmonotonic reasoning, beside default logic,
are far from immune from these combinatorial
roots of intractability. Although some import-
ant work has been done trying to make various
nonmonotonic formalisms more tractable, this is
perhaps the problem on which progress has been
slowest in coming.
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Chapter 21

Probability in Artificial
Intelligence

Donald Gillies

Introduction

The first two sections of this chapter provide an
account of how the development of artificial intel-
ligence (AI) led to some remarkable innovations
in probability theory – most notably to the new
theory of Bayesian networks. The final section
presents some discussion of the philosophical
problems posed by these new ideas. As we shall
see, they have a considerable impact on quite a
number of traditional questions in the philosophy
of science.

The Breakthrough with Expert
Systems in the 1970s

Research in AI began in the 1950s and many
important ideas were developed by the pioneers
(see Chapter 9, THE PHILOSOPHY OF AI AND ITS

CRITIQUE). Then in the 1970s a breakthrough
was produced by the creation of expert systems.
The lead here was taken by the Stanford heur-
istic programming group, particularly Buchanan,
Feigenbaum, and Shortliffe. What they discovered
was that the key to success was to extract from
an expert the knowledge he or she used to carry

out a specialized task, and then code this know-
ledge into the computer. In this way they were
able to produce “expert systems” which per-
formed specific tasks at the level of human
experts. One of the most important of these early
expert systems (MYCIN) was concerned with
the diagnosis of blood infections. This system
will now be briefly described, and it will then be
shown that its implementation led to the prob-
lem of how to introduce probability into AI.

MYCIN was developed in the 1970s by
Edward Shortliffe and his colleagues in collabora-
tion with the infectious diseases group at the
Stanford medical school. The medical knowledge
in the area was codified into rules of the form:
IF such and such symptoms are observed, THEN
likely conclusion is such and such. MYCIN’s
knowledge base comprised over 400 such rules
which were obtained from medical experts. An
example of such a rule will be given in a moment,
but first it would be as well to present some
evidence of MYCIN’s success.

To test MYCIN’s effectiveness a compar-
ison was made in 1979 of its performance with
that of 9 human doctors. The program’s final
conclusions on 10 real cases were compared
with those of the human doctors, including the
actual therapy administered. Eight other experts
were then asked to rate the 10 therapy recom-
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mendations and award a mark, without knowing
which, if any, came from a computer. They were
requested to give 1 for a therapy which they
regarded as acceptable and 0 for an unacceptable
therapy. Since there were 8 experts and 10 cases,
the maximum possible mark was 80. The results
were as follows (cf. Jackson 1986: 106):

MYCIN 52 Actual therapy 46
Faculty-1 50 Faculty-4 44
Faculty-2 48 Resident 36
Inf dis fellow 48 Faculty-5 34
Faculty-3 46 Student 24

So MYCIN came first in the exam, though the
difference between it and the top human experts
was not significant.

Let us now examine one of MYCIN’s rules.
The following rule is given by Shortliffe and
Buchanan in their 1975, p. 357.

If : (1) the stain of the organism is gram
positive (S1), and
(2) the morphology of the organism is
coccus (S2), and
(3) the growth conformation of the
organism is chains (S3)

Then: there is suggestive evidence (0.7) that
the identity of the organism is streptococcus
(H1).

In symbols this could be written: If S1 & S2 &
S3, then there is suggestive evidence p that H1,
where p = 0.7. Here S1, S2, S3 are the observa-
tions/symptoms, which support hypothesis H1

to a particular degree. These rules were obtained
from the medical experts. The numbers they
contain such as 0.7 look like probabilities, and
they too were obtained from the experts. The
expert was in fact asked: “On a scale of 1 to 10,
how much certainty do you affix to this conclu-
sion?” The answer was then divided by 10.

It looks as if Shortliffe and Buchanan are using
probability in the subjective sense to measure
the degree of personal belief held by an expert.
This at once raises the question of why subject-
ive probabilities (see the appendix to this chapter)
obtained from experts are preferred to object-
ive probabilities (see appendix) obtained from
data. Shortliffe and Buchanan do consider this

question, and they answer (1975: 352–5) that
in typical medical applications there is not enough
data to obtain the requisite objective probabil-
ities. This in turn is because of the inadequacy of
hospital records, and the changes which are con-
tinually occurring in disease categories. It is inter-
esting to note that only three years previously,
another group working on computer diagnosis
had reached exactly the opposite conclusion. This
research group, working in Leeds, was headed
by de Dombal. Their results are contained in de
Dombal et al. 1972, and Leaper et al. 1972.
They will now be briefly summarised.

De Dombal’s group created a computer diag-
nosis system for acute abdominal pain based on
Bayesian reasoning (see appendix), but using
objective probabilities obtained from a sample
of 600 patients. In a test involving 472 patients,
this system was correct in 91.1 percent of cases,
while the clinical team was correct in 79.7 per-
cent of cases. The system was then changed by
using instead of these objective probabilities,
subjective probabilities obtained from the clini-
cians. Its performance for the same 472 patients,
but using these subjective probabilities, dropped
from 91.1 to 82.2 percent. Moreover the per-
formance of the computer system with subject-
ive probabilities was actually worse than that
of the clinicians in the case of diseases which
occurred relatively rarely. The conclusion seemed
inescapable that human doctors are bad at estim-
ating probabilities, especially in the case of dis-
eases which occur infrequently, and that therefore
the use of objective probabilities obtained from
data is preferable.

Despite the strong evidence for this con-
clusion, it was ignored for the next 20 years,
and nearly every researcher in the field made
use of subjective probabilities. There are two
possible reasons for this. First of all it may, in
many cases, have been difficult to obtain object-
ive probabilities from data. Secondly the general
methodology of expert systems research, since it
involved obtaining knowledge from the experts,
may have encouraged the idea of obtaining prob-
abilities as the degrees of belief of these experts.
I will discuss further the question of objective
versus subjective probabilities in the final sec-
tion of this chapter, which deals with the related
philosophical problems. Let us now return to a
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consideration of MYCIN, and the sample rule
given earlier.

So far we have rather assumed that the number
0.7 in the rule from MYCIN is an ordinary prob-
ability, but this is not the case, as Shortliffe and
Buchanan make clear in the following passage
(1975: 358):

this rule at first seems to say P(H1 | S1 & S2

& S3) = 0.7, . . . . Questioning of the expert
gradually reveals, however, that despite the
apparent similarity to a statement regarding
a conditional probability, the number 0.7 dif-
fers significantly from a probability. The expert
may well agree that P(H1 | S1 & S2 & S3) =
0.7, but he becomes uneasy when he attempts
to follow the logical conclusion that therefore
P(not.H1 | S1 & S2 & S3) = 0.3. The three
observations are evidence (to degree 0.7) in
favor of the conclusion that the organism is a
streptococcus and should not be construed as
evidence (to degree 0.3) against streptococcus.

Shortliffe and Buchanan used this observation to
motivate the introduction of a nonprobabilistic
model of evidential strength. Their measure of
evidential strength was called a certainty factor,
and certainty factors neither obeyed the standard
axioms of probability theory, the Kolmogorov
axioms (see appendix), nor combined like
probabilities.

Certainty factors were criticized by those who
favored a probabilistic approach – cf. Adams 1976
and Heckerman 1986 – and in fact the next
expert system we will consider (PROSPECTOR)
did move more in the direction of standard
probability.

PROSPECTOR, an expert system for mineral
exploration, was developed in the second half of
the 1970s at the Stanford Research Institute. A
good general account of the system is given by
Gaschnig in his 1982. PROSPECTOR’s most
important innovation was to represent know-
ledge by an inference network (or net). This is
motivated by Duda et al in their 1976 as follows
(p. 1076):

A collection of rules about some specific sub-
ject area invariably uses the same pieces of evid-
ence to imply several different hypotheses. It
also frequently happens that several alternative

Figure 21.1: Part of PROSPECTOR’s inference
network. H1 = There are massive sulfide deposits.
H2 = There are clay minerals. H3 = There is a
reduction process. E1 = Barite is overlying sulfide.
E2 = Galena, sphalerite, or chalcopyrite fill cracks
in rhyolite or dacite. E3 = There are bleached
rocks.

pieces of evidence imply the same hypothesis.
Furthermore, there are often chains of evid-
ences and hypotheses. For these reasons it is
natural to represent a collection of rules as a
graph structure or inference net.

A part of PROSPECTOR’s inference network
is shown in figure 21.1. Evidence E1 is taken as
supporting hypothesis H1, and this is indicated
by the arrow joining them in the inference net-
work. Similarly E2 supports hypothesis H1, while
E3 supports H3 which supports H2 which sup-
ports H1. Note how these rather complicated rela-
tions are simply and elegantly represented by the
arrows of the network. Each inference arrow has
a strength associated with it, and this is obtained
from the expert as in the case of MYCIN.

PROSPECTOR, however, differs from MYCIN
in using subjective Bayesianism (see appendix)
rather than certainty factors. This subjective
Bayesianism is not entirely pure, since, as in the
case of MYCIN, it is combined with the use of
fuzzy logic formulae (see appendix). This use
of fuzzy logic tended to disappear in further
developments.

In PROSPECTOR, Bayesianism is formulated
using odds rather than probabilities. The odds
on a hypothesis H[O(H )] are defined as follows:



Probability in Artificial Intelligence

279

O(H ) = P(H )/P(¬H )

Writing down Bayes theorem (see appendix) first
for H and then for ¬H, we get

P(H | E) = P(E | H)P(H)/P(E)

P(¬H | E) = P(E | ¬H)P(¬H)/P(E)

So dividing gives

O(H | E) = λ(E)O(H) (21.1)

where λ(E) is the likelihood ratio P(E | H)/P(E
| ¬H). (21.1) is the odds and likelihood form of
Bayes theorem, and it is used in PROSPECTOR
to change the prior odds on H to the posterior
odds given evidence E.

Let us now consider the problems which arise
if we have several different pieces of evidence E1,
E2, . . . , En say. We might in practice have to
update using any subset of these pieces of evid-
ence Ei, Ej, . . . , Ek say, where (i, j, . . . k) is any
subset of (1, 2, . . . , n). If we use (21.1), this
would involve having values of λ(Ei & Ej &
. . . & Ek) for all subsets of (1, 2, . . . n). When
we remember that, on this approach the values
of λ are obtained from the domain experts, we
can see that obtaining the requisite values of
λ is scarcely possible. Clearly some simplifying
assumptions are necessary to produce a workable
system, and the designers of PROSPECTOR
therefore made the following two conditional
independence (see appendix) assumptions:

P(E1, . . . , En | H ) = P(E1 | H) . . . P(En | H )
(21.2)

P(E1, . . . , En | ¬H) = P(E1 | ¬H) . . .
P(En | ¬H ) (21.3)

Given these assumptions, the whole problem of
updating with many pieces of evidence becomes
simple, and, in fact,

O(H | E1 & . . . & En) = λ1, λ2 . . . λn O(H)
where λi = λ(Ei)

The only remaining problem was whether the
conditional independence assumptions (21.2) and

(21.3) are plausible. The search for a justifica-
tion of these assumptions led, as we shall see in
the next section, to the modification of the con-
cept of inference network, and the emergence of
the concept of Bayesian network.

The Emergence of Bayesian
Networks in the 1980s

The concept of Bayesian networks was intro-
duced and developed by Pearl in a series of
papers: Pearl 1982, 1985a, 1985b, 1986, Kim &
Pearl 1983, and a book: Pearl 1988. An import-
ant extension of the theory was carried out by
Lauritzen and Spiegelhalter (1988), while Nea-
politan’s 1990 book gave a clear account of these
new ideas and helped to promote the use of
Bayesian networks in the AI community. In what
follows, I will comment on a few salient features
of Bayesian networks which will be important
when we consider their philosophical implica-
tions in the next section.

The actual term Bayesian (or Bayes) network
was introduced in Pearl’s 1985b, where it is
defined as follows (1985b: 330):

Bayes Networks are directed acyclic graphs in
which the nodes represent propositions (or
variables), the arcs signify the existence of dir-
ect causal influences between the linked pro-
positions, and the strengths of these influences
are quantified by conditional probabilities.

This verbal account is illustrated by a diagram
which is reproduced in figure 21.2.

If we compare the network of figure 21.2
with that of figure 21.1, two differences should
be noted immediately. First of all, the arrows in
the inference network of figure 21.1 represent a
relation of support holding between e.g. E3 and
H3, while the arrows in the Bayesian network of
figure 21.2 represent causal influences, so that,
e.g. the arrow joining X1 to X2 means that X1

causes X2. Secondly, corresponding to the first
difference, we can say that, in a certain sense, the
arrows of a Bayesian network run in the opposite
direction to those of an inference network. Pearl
puts this point as follows (1986: 253–4):
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Figure 21.2: A Bayes network

in many expert systems (e.g. MYCIN), . . . rules
point from evidence to hypothesis (e.g. if
symptom, the disease), thus denoting a flow of
mental inference. By contrast, the arrows in
Bayes’ networks point from causes to effects or
from conditions to consequence, thus denot-
ing a flow of constraints in the physical world.

This reversal of arrows from inference networks
to Bayesian networks is illustrated in figure 21.3,
which shows one pair of nodes taken from the
portion of PROSPECTOR’s inference network
shown in figure 21.1.

In figure 21.3, E3 = There are bleached rocks,
while H3 = There is a reduction process. From
the point of view of an inference network (a),
we regard the evidence of bleached rocks as
supporting the hypothesis that there is a reduc-
tion process, while, from the point of view of
a Bayesian network (b), we regard there being
a reduction process as the cause of there being
bleached rocks. In his 1993, Pearl gives an
account of his discovery of Bayesian networks,

Figure 21.3: A set of nodes from figure 21.1

Figure 21.4: Pearl’s (1982) tree example

and says that one factor that led him to the idea
was his consideration of the concept of influence
diagrams introduced by Howard and Matheson
(1984). Pearl decided to limit the influences
specifically to causal influences.

But what is the advantage of this reversal
of arrows and introduction of causal links? To
answer this question, we must return to the ques-
tion of the conditional independence assump-
tions which are needed in order to make Bayesian
updating (see appendix) feasible. Before doing
do, however, I would like to make one further
point about Bayesian networks. If, in such a net-
work, an arrow runs from node A to node B,
then A is said to be a parent of B, and B a child
of A. If a node has no parents, it is called a root,
so that in figure 21.2, X1 is a root. In a Bayesian
network, it is possible for a child to have several
parents. Thus in figure 21.2, X5 has parents X2

and X3. If, however, every child has at most one
parent, the network is called a tree. Pearl started
his investigation of networks with trees since they
are mathematically simpler. Let us similarly begin
our account of the conditional independence
assumptions in the case of trees by considering
Pearl’s first paper on the subject, his 1982. This
paper is particularly helpful in showing how the
method of Bayesian networks developed from
PROSPECTOR’s method of inference networks.

In his 1982, Pearl considers the example of
a tree illustrated in figure 21.4. Here A, B, C,
. . . are variables standing for hypotheses or
observations. A takes the values A1, A2, . . . , and
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similarly for the other variables. Pearl now intro-
duces the conditional independence assumptions
which he is going to make as follows (1982: 134):

let Dd(B) stand for the data obtained from
the tree rooted at B, and Du(B) for the data
obtained from the network above B. The
presence of only one link connecting Du(B)
and (B) implies:

P(Bj | Ai, Du(B)) = P(Bj | Ai) . . .

In other words, a node is conditionally inde-
pendent given its parent of the rest of the net-
work except its descendents. If we here substitute
“parents” for “parent,” we get a statement of
the conditional independence assumptions which
define a Bayesian network.

In fact Bayes’s theorem, together with the
above conditional independence assumptions,
yields the product rule:

P(Bi | Du(B), Dd(B))
= αP(Dd(B) | Bi) · P(Bi | Du(B)) (21.4)

where α is a normalization constant. Pearl now
makes a most interesting comparison between
(21.4) and the updating formula of PROSPEC-
TOR given as (21.1) above.

O(H | E) = λ(E)O(H) (21.1)

Since Du(B), Dd(B) represents the total data,
or evidence E bearing on our hypothesis Bi,
P(Bi | Du(B), Dd(B)) corresponds to O(H | E).
P(Dd(B) | Bi) has the form of a likelihood (see
appendix) as does λ(E); while P(Bi | Du(B)) cor-
responds to the prior probability of traditional
Bayesianism in the following sense (Pearl 1982:
134):

the multiplicative role of the prior probability
. . . is taken over by the conditional probabil-
ity of a variable based only on the evidence
gathered by the network above it, excluding
the data collected from below. . . . The root
is the only node which requires a prior prob-
ability estimation, since it has no network
above. Du(B) should be interpreted as the
available background knowledge which remains

unexplicated by the network below. This
interpretation renders P(Bi | Du(B)) identical
to the classical notion of subjective prior
probability.

These analogies can be further emphasized by
the notation

λ(Bi) = defP(Dd(B) | Bi)

π(Bi) = defP(Bi | Du(B))

which allows one to write (21.4) in the form

P(Bi | E) = λα(Bi)π(Bi). (21.5)

The analogy between (21.1) and (21.5) is clear.
On the basis of (21.5), Pearl develops an

algorithm which allows Bayesian updating to take
place. If one of the variables which represents
an observation is set to a particular value, the
changes brought about by this new information
in all the probabilities throughout the tree can
be computed in an efficient manner. In sub-
sequent work he extends this updating algorithm
to more complicated networks. Kim & Pearl
1983 generalizes from trees to Bayesian networks
which are singly connected, i.e. there exists only
one (undirected) path between any pair of nodes.
Pearl in his 1986 tackled the further extension
to Bayesian networks which are multiply con-
nected. This problem was also investigated by
Lauritzen & Spiegelhalter who in their 1988
solved it using the idea of reducing a multiply
connected network to a tree of cliques. Their
algorithm has been generally adopted by the AI
community.

Let us now turn from these powerful math-
ematical developments to the consideration of a
conceptual point. It will have been noted that
two rather different definitions of Bayesian net-
work have been given. The first definition is in
terms of causes. Thus in figure 21.2 the arrows
are taken as denoting a causal link between the
two nodes which they join. The second defini-
tion is by contrast purely probabilistic. In figure
21.2 the variables X1, X2, . . . X6 are taken to be
random variables with a joint probability distri-
bution (see appendix), and the network becomes
a Bayesian network if the relevant conditional
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independence assumptions are satisfied. I will
henceforth use the term “Bayesian network” for
networks defined purely probabilistically in the
manner just explained, and call the networks
defined in terms of causes: “causal networks.”
Pearl tends, however, to use the terms “Bayesian
network” and “causal network” interchangeably,
because he believes the two notions to be closely
connected. More specifically, his idea is that if in
a network the parents of every node represent
the direct causes of that node, then the relevant
conditional independence assumptions will auto-
matically be satisfied. As he says (1993: 52):

Causal utterances such as “X is a direct cause
of Y” were given a probabilistic interpreta-
tion as distinctive patterns of conditional inde-
pendence relationships that can be verified
empirically.

A suggested link between causality and conditional
independence in fact goes back to Reichenbach
1956. Reichenbach considers two events, B and
C say, which are correlated. For example, in a
traveling troupe of actors, B = the leading lady
has a stomach upset, and C = the leading man
has a stomach upset. We can explain such correla-
tions, according to Reichenbach, by finding a
common cause, namely that the leading lady
and the leading man always have dinner together.
The common stomach upsets occur when the
food in the local restaurant has gone off. Denote
“dining together” by A. We then have the causal
graph shown in figure 21.5.

Reichenbach then claimed that, conditional
on A, B, and C were no longer correlated but
independent, i.e. P(B&C | A) = P(B | A)P(C
| A). He also expressed this idea by saying that a
common cause A screens one of its effects B off

from the other C. Reichenbach’s causal fork is
just a simple case of a Bayesian network. We can
indeed apply his term “screening off” to Bayesian
networks by saying that in such networks, the
parents of a node screen it off from all the other
nodes in the network except its descendents.

We are now in a position to summarize the
ingenious way in which Bayesian networks solved
the problem of handling uncertainty in expert
systems. In most of the domains considered, e.g.
medical diagnosis, a domain expert is very fam-
iliar with the various causal factors operating. It
should therefore be an easy matter to get him or
her to provide a causal network. By the addition
of probabilities this can be turned into a Bayesian
network. In earlier systems such as MYCIN
or PROSPECTOR, conditional independence
assumptions were made for the purely ad hoc
and pragmatic reason of allowing the updating
to become possible. For Bayesian networks, how-
ever, the causal information obtained from the
expert provides a justification for making a set
of conditional independence assumptions in the
manner first suggested by Reichenbach. Moreover
as Pearl, Lauritzen, and Spiegelhalter have shown,
this set of conditional independence assumptions
is sufficient to allow Bayesian updating to become
computationally feasible. Everything fits together
in a most satisfying manner. There is only one
weak link in the chain. It turns out, as we shall
see in the next section, that it is possible to have
a bona fide causal network in which the requisite
conditional independence assumptions are not
satisfied.

Philosophical Problems Connected
with Probability in AI

The preceding sections have outlined some re-
markable developments in AI. Let us now turn
to a consideration of the philosophical implica-
tions of these developments. In fact they have a
profound impact on at least three central prob-
lems in the philosophy of science. The first of
these is the Bayesianism versus non-Bayesianism
debate. This has continued among philosophers
of science for the last 50 years with no signs of
abating. In the 1950s the major contenders wereFigure 21.5: Dining together
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Carnap (in favor of Bayesianism) versus Popper
(against Bayesianism). In the late 1980s and
1990s, we have had Howson & Urbach (1989) in
favor of Bayesianism, and Miller (1994) against,
while the most recent developments in the debate
as seen by leading experts in the area are to
be found in Corfield & Williamson 2001. The
new results in AI are clearly relevant to this
controversy, and indeed would seem to favor the
Bayesian camp, though, as we shall see, this sup-
port is more qualified than it might at first appear.

Secondly, and closely connected, there is the
problem of the interpretation of probability. Here
the main division is between those who favor an
objective interpretation, such as frequency or
propensity, and those who favor a subjective, or
degree of belief, interpretation. Of course pluralist
positions are also possible in which different inter-
pretations are considered appropriate in different
contexts. One such pluralist position is defended
in Gillies 2000, chs. 8 and 9. Once again the
developments in AI just described are clearly rel-
evant to this issue, and indeed would seem to
favor the subjective interpretation of probability.

Thirdly there is the problem of the relation
of causality and probability. Of course the prob-
lem of causality is one of the oldest and most
central questions in Western philosophy. Aristotle,
Hume, and Kant all made fundamental contri-
butions to the analysis of causality. In the last 50
years, however, the debate has taken a new turn
through the emergence of a notion of indeter-
minate causality (see appendix), and the corres-
ponding investigation of the relations between
causality and probability. Many leading philo-
sophers of science, including Cartwright, Fetzer,
Popper, Reichenbach, Salmon, and Suppes, have
written on this issue, and a good recent survey of
these philosophical developments is to be found
in Salmon 1998. Now clearly the new theory of
Bayesian networks, involving as it does a novel
combination of causality and probability, is highly
relevant to this debate. These implications of AI
for the philosophy of science are so important
that considerations of AI are bound to play a role
of increasing importance in philosophy of science
in the coming years. In this short chapter, there
is room only for a few preliminary observations,
and I will confine myself to discussing just the
first two of the above problems.

Let us start therefore with the long-running
controversy about Bayesianism. As so often hap-
pens in such controversies, it turns out that the
definition of Bayesianism is not entirely clear,
and I believe that the controversy involves two
rather different issues. The first of these issues
is the question of whether we should use the
standard mathematical calculus of probability in
handling uncertainty, or whether some other cal-
culus might be appropriate. Here, of course, the
Bayesians favor the use of the standard calculus.
As an example of a non-Bayesian position we
can take the view of Popper (see his 1934, and,
for a discussion, Gillies 1998a) that the corrob-
oration of universal laws of science [C (H, E)] is
not a probability function, i.e. does not satisfy
the standard axioms of probability. In symbols
the claim is that C(H, E) ≠ P(H | E).

As we have seen, this debate occurred also in
the AI context. MYCIN used a nonprobabilistic
measure of evidential strength, and several other
nonprobabilistic approaches were proposed and
developed by AI workers. (For some details, see
Ng & Abramson 1990.) However, the develop-
ment of AI has given a relatively unequivocal
verdict. Probabilistic measures have proved much
more successful in practice than nonprobabilistic
measures, and the latter have tended to disappear.
AI has thus supported Bayesianism in this first
sense. It should be added, however, that this
does not give a decisive verdict against Popper’s
ideas on corroboration. Popper was considering
the corroboration of hypotheses which were uni-
versal scientific laws. Most AI systems, however,
have as hypotheses singular statements, such as
“this patient’s infection is caused by streptococci”
or “that mountain range contains massive sul-
fide deposits.” It is possible that Bayesianism is
appropriate for singular statements, while a non-
Bayesian approach is appropriate for universal
hypotheses (see Gillies 1998a: 154–5 for argu-
ments in favor of this position).

Let us now turn to the second and rather dif-
ferent issue involved in the Bayesian controversy.
It can be most easily approached by considering
the form that the debate has taken within stat-
istics. Classical statisticians such as Neyman were
strongly opposed to Bayesianism. Yet Neyman
never used any formal system other than the
standard mathematical theory of probability.
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Neyman was clearly not an anti-Bayesian in the
sense we have just considered. In what sense,
then, was he against Bayesianism? The answer is
not immediately clear, since, because he accepted
standard probability theory, Neyman a fortiori
accepted Bayes’ theorem. The answer to this con-
undrum is that the second issue in the Bayesian
controversy is really about the interpretation of
probability. Neyman, following von Mises, re-
garded the objective interpretation of probabil-
ity as the only valid one (cf. Gillies 1998b: 6–9).
This meant that some applications of Bayes’s
theorem were illegitimate in his eyes because
they necessitated giving a degree of belief inter-
pretation to some of the probabilities used. This
applied particularly to the case of giving an a
priori distribution to a fixed, but unknown,
parameter θ. Since θ is fixed and does not vary
randomly, it does not make sense to assign it an
objective probability distribution, but, since it
makes perfect sense for someone to have differ-
ent degrees of belief in different possible values
of θ, θ can easily be given a subjective probabil-
ity distribution. Many Bayesian analyses involve
giving a priori distributions to parameters
such as θ, and so become illegitimate to a strict
objectivist such as Neyman. To sum up: the sec-
ond issue involved in the Bayesian controversy is
really the same as our second general philosoph-
ical question concerning the interpretation of
probability.

What have the AI developments given above
shown as regards this controversy? It is immedi-
ately clear that they have lent support to the
subjective interpretation of probability. Pearl has
always argued for a subjective degree of belief
interpretation of the probabilities in Bayesian net-
works, and this remains true of his latest, highly
interesting, paper on the foundations of the
subject (Pearl 2001). In this paper he describes
himself as “only a half-Bayesian.” However, his
departure from standard Bayesianism arises be-
cause he thinks that prior probability distributions
are inadequate to express background knowledge,
and that one needs also to use causal judgments
which cannot be expressed in probabilistic terms.
As far as the interpretation of probability is
concerned he remains faithful to the subjective,
degree-of-belief, view which he says he adopted
in 1971 after reading Savage.

Lauritzen and Spiegelhalter were also work-
ing in the tradition of subjective Bayesianism, but
they seem less definitely committed to this view
than Pearl. This is what they say (1988: 159):

Our interpretation of probabilities is that of a
subjectivist Bayesian . . . This seems a conveni-
ent and appropriate view in an area concerned
with the rational structuring and manipulation
of opinion, and the subjectivist objectives of a
coherent system of probabilities representing
belief in verifiable propositions, successively
updated on the basis of available evidence, ap-
pears to fit remarkably the objectives of expert
systems research. However, many of the tech-
niques presented here are appropriate in dis-
ciplines where graphical structures are used and
a frequentist interpretation is more appropriate,
such as complex pedigree analysis in genetics.

So Lauritzen and Spiegelhalter think that in some
cases at least the probabilities in Bayesian net-
works might be given an objective interpretation.
Neapolitan (1990) is also favorable to objective
probabilities in Bayesian networks. So although
Bayesian networks were created within the tradi-
tion of subjective Bayesianism, it might nonethe-
less be possible to interpret the probabilities they
contain objectively. Arguably this is likely to be
a good strategy in many cases.

A first argument in favor of an objective
interpretation is an appeal to the results, given
earlier, of de Dombal’s group at Leeds. Their
test showed that a diagnostic computer system
performed far better when using objective prob-
abilities derived from data than when it used sub-
jective probabilities obtained from the clinicians.

These results are very striking, but the issue
is not simply one of a choice between different
ways of interpreting probabilities. It should now
be pointed out that this choice carries with it
methodological implications. If we are inter-
preting the probabilities as objective, then any
proposed value of a probability must be seen as
a conjecture which could be right or wrong, and
may therefore need testing. Thus objective prob-
abilities lead to a Popperian methodology of con-
jectures and refutations in which testing plays a
central role. This is indeed the methodology of
classical statistics.
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Let us next contrast this with the use of
subjective probabilities. Any such probability
expresses the degree of belief of an individual at
a particular moment. Further evidence does not
refute the claim that that individual held that
degree of belief at that time. It may however
lead the individual to change his or her degree
of belief in the light of the new evidence. In the
Bayesian approach, the belief change takes place
through Bayesian conditionalization or updating
(see appendix), i.e. through the change from a
prior probability P(H) to a posterior probability
P(H | E). To sum up then. The use of objective
probabilities goes with the Popperian methodo-
logy of statistical testing; while the use of sub-
jective probabilities goes with the methodology
of Bayesian conditionalization. There have been
examples which show that the use of a testing
methodology can be advantageous in the con-
struction of Bayesian networks.

One such example (see Sucar 1991, and Sucar,
Gillies, & Gillies 1993) concerned a medical
instrument called an “endoscope.” This allowed a
doctor to put into the colon of a patient a small
camera which transmitted an image of the interior
of the colon to a television screen. In this image
an expert could recognize various things in the
interior of the colon. Let us take two such things
as examples. One is called the “lumen,” which is
the opening of the colon. Despite its name, it
generally appeared as a large dark region; but
sometimes it was smaller and surrounded by con-
centric rings. Another is called a “diverticulum”
and is a small malformation in the wall of the
colon, which can cause some illnesses. A divertic-
ulum generally appeared as a dark region, smaller
than the lumen, and often circular. It was a prob-
lem then to program a computer to recognize
from the image the lumen or a diverticulum. This
is a typical problem of computer vision. To solve
it, an attempt was made to construct a Bayesian
network with the help of an expert in medical
endoscopy.

Figure 21.6 shows only a small part of this
network, but it is sufficient to illustrate the points
which are to be made. L stands for the lumen which
causes a large dark region (LDR) to appear on the
screen. This in turn produces values for the vari-
ables S (size of the region), and M and V (mean
and variance of the light intensity of the region).

Figure 21.6: Endoscopic Bayesian network

In every Bayesian network certain assumptions
of independence or conditional independence are
made. In this case, S, M, V must be condition-
ally independent of L and mutually condition-
ally independent, given LDR. Using a Popperian
testing methodology, these assumptions were
considered as conjectures which needed to be
checked by statistical tests. These tests showed,
however, that the conditional independence
assumptions were not satisfied. In fact it turned
out that, given LDR, M and V were strongly
correlated rather than independent.

The response to this situation was to elimin-
ate one of the two parameters M and V on the
grounds that, since they were correlated, only one
could give almost as much information as both.
The results of this elimination were tested using
a random sample of more than 130 images of
the colon. It turned out that the elimination of
one of the parameters gave better results than
those obtained using all three parameters. For
example, using all three parameters (S, M, V ),
the system recognized the lumen correctly in 89
percent of cases, while, if it was modified by
eliminating M, and using only (S, V ) it recog-
nized the lumen correctly in 97 percent of cases
(for further details, see Sucar, Gillies, & Gillies
1993: 206). At first sight this seems a paradox,
because these better results were obtained using
less information. The explanation is simple, how-
ever. Undoubtedly there is more information in
all three parameters (S, M, V ) than in only two
(S, V ). But the greater amount of information
in the three parameters was used with mathem-
atical assumptions of conditional independence
which were not correct. The lesser amount of
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information in the two parameters S, V was, by
contrast, used with true mathematical assump-
tions. So less information in a correct model
worked better than more information in a mis-
taken model. Moreover, since the modified
Bayesian network was simpler, the calculations
using it were carried out more quickly. So, to
conclude, the modified Bayesian network was
more efficient, and gave better results. This shows
the value of using objective probabilities, and a
Popperian methodology of statistical testing.

The example also shows that it is possible to
obtain a causal network from an expert for which
the assumptions of conditional independence are
not satisfied. Thus, although causal networks are
useful heuristic guides for the construction of
Bayesian networks, they are not infallible guides.
This raises the third of the philosophical ques-
tions mentioned above, namely the question of
how causality is related to probability. However,
space unfortunately does not permit a discussion
of this question here.

I conclude by briefly mentioning some fur-
ther investigations into the use of probability
in AI, which raise important philosophical ques-
tions. This chapter has focused on the so-called
symbolic approach to AI, but there is in addition
the approach using neural networks which also
makes extensive use of probability. An account
of some of the problems here is to be found in
Williams 2001. Another area of AI involving
probability is machine learning, that is to say,
the attempt to program computers to induce
laws from data. An account of how new results
in machine learning impinge upon longstanding
philosophical discussions of induction is to be
found in Gillies 1996.

Appendix

In the chapter some technical terms from logic,
probability, and causality are used. The meaning
of these terms is explained in what follows. The
terms defined are underlined, and the text con-
tains a reference to this appendix when the term
is first introduced.

Logic is concerned with propositions such as
A = Jones is bald. The negation of a proposi-
tion, e.g. Jones is not bald, is written as not.A,

or ¬A. In standard or classical logic, it is
assumed that either A is true or ¬A is true, but
not both. For vague predicates such as bald, this
“two-valued” assumption is obviously not wholly
accurate. As Jones gradually loses hair, it may be
difficult to say at a certain stage whether he is bald
or not bald. Fuzzy logic attempts to deal with
this problem by allowing us to say that Jones is
bald to some degree, where these degrees run
from 1 (= completely hairy) to 0 (= completely
bald).

Probability theory originated from the study
of games of chance, and these still afford a good
illustration of some of the basic concepts of the
theory. If we roll a fair die, the probability of
getting 5 is 1/6. This is written P(5) = 1/6. A
conditional probability is the probability of a
result given that something else has happened.
For example, the probability of 5 given that the
result was odd, is no longer 1/6, but 1/3; while
the probability of 5 given that the result was
even, is no longer 1/6, but 0. A conditional
probability is written P(A | B). So we have
P(5 | odd) = 1/3, and P(5 | even) = 0. A related
concept is independence. Two events A and B
are said to be independent if the conditional
probability of A given B is the same as the prob-
ability of A, or, in symbols, if P(A | B) = P(A).
Successive rolls of a die are normally assumed to
be independent, that is to say, the probability
of getting a 5 is always the same, namely 1/6,
regardless of what results have appeared so far.
An important concept for probability in AI is
conditional independence. A and B are said to be
conditionally independent given C, if P(A | B
& C) = P(A | C).

Probability theory of course is not just applied
to games of chance. Another typical problem is
sampling from a particular population. Suppose
we select a man at random from a population of
men, and measure his height. If we write the
result as X, X is said to be a random variable,
because the value of X varies randomly from
one individual to another. These values are, how-
ever, distributed in a particular fashion. So X is
said to have a probability distribution. In the
example of male heights, this will be the familiar
bell-shaped curve, or normal distribution. A set
of random variables is said to have a joint prob-
ability distribution.
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Probabilities satisfy a standard set of axioms,
known as the Kolmogorov axioms, after the
mathematician Kolmogorov who first produced
the formulation of these axioms which has come
to be generally accepted by mathematicians. A
number of basic results follow from these axioms,
for example P(A) + P(¬A) = 1. One of the
most famous theorems to follow from the
axioms is Bayes Theorem. We will consider a
particular case of this theorem dealing with a
hypothesis H, and some evidence E. Bayes
Theorem states that

P(H | E) = P(E | H)P(H)/P (E)

The components of this formula have the fol-
lowing names:

P(H) is called the prior or a priori probability of
H

P(E) is called the prior or a priori probability of
E

P(E | H) is called the likelihood
P(H | E) is called the posterior or a posteriori

probability of H.

The use of the formula to go from P(H) to
P(H | E) is known as Bayesian conditionalization,
or Bayesian reasoning or Bayesian updating.
Bayesianism is, roughly speaking, the view that
the problem of relating hypotheses to evidence
can be solved by Bayesian reasoning.

There are a number of different interpreta-
tions of probability, and these can be classified
as subjective and objective. An objective prob-
ability is one which is supposed to be a feature
of the objective world, such as mass or electrical
charge. A well-known objective interpretation of
probability is the frequency interpretation. For
example, to say that the probability of 5 is 1/6
on this interpretation is taken to mean that, in a
long series of rolls of the die, the result 5 will
appear with a frequency of approximately 1/6.
Those who adopt this interpretation estimate
their probabilities from frequency data.

A subjective probability, by contrast, is taken
to be the measure of the degree of belief
of a particular individual that some event will
occur. For example, if I say that my subjective
probability that it will rain in London tomorrow

is 2/3, this means that I believe to degree
2/3 that it will rain in London tomorrow. A
woman’s degree of belief can be measured by
the rate at which she is prepared to bet, or her
betting quotient. It can be shown that, starting
from this way of measuring belief, the standard
axioms of probability can be derived.

An application of the subjective theory of prob-
ability to Bayesianism produces what is known
as subjective Bayesianism. Here P(H) is taken to
represent the prior degree of belief of Mr. R,
say, that H is true, while P (H | E) represents his
posterior degree of belief in H after he has come
to know evidence E. A rational man on this
approach changes his degree of belief in the light of
new evidence E from P(H) to P(H | E), where
the value of P(H | E) is calculated using Bayes
Theorem. These basic concepts of probability
have been treated here very briefly, and a much
fuller account is to be found in Gillies 2000.

Turning finally to causality, the traditional view
of causality, to be found in e.g. Kant, was that,
if A causes B, then B follows necessarily from A.
An example would be: decapitation causes death.
In the twentieth century, however, a weaker
notion of causality has developed which could
be called indeterminate causality. A familiar
example would be: smoking causes lung cancer.
This is held to be true even though many people
smoke all their lives and never contract lung
cancer. The sense of causality here is something
like: smoking is an important factor in pro-
ducing lung cancer; or perhaps: smokers have
a higher probability of contracting lung cancer
than nonsmokers. This notion of indeterminate
causality naturally raises the question of how
causality is related to probability.
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Chapter 22

Game Theory: Nash Equilibrium
Cristina Bicchieri

Game theory aims to understand situations
in which decision-makers interact. Chess is an
example, as are firms competing for business,
politicians competing for votes, jury members
deciding on a verdict, animals fighting over prey,
bidders competing in auctions, threats and pun-
ishments in long-term relationships, and so on.
What all these situations have in common is that
the outcome of the interaction depends on what
the parties jointly do. Decision-makers may be
people, organizations, animals, robots, or even
genes. Game theory is a vast field, and some of
its branches have seen a rapid development in
the last few years, especially evolutionary game
theory and experimental game theory, two areas
where some of the most exciting research is
being developed. For reasons of space, this chap-
ter is limited to an assessment of the fundamen-
tal concept of noncooperative game theory, that
of a Nash equilibrium. If we take Nash equilib-
rium to be a predictive tool, we run into prob-
lems both at the normative and descriptive levels.
Many theorists have expressed misgivings about
players’ ability to infer an equilibrium from
rationality principles alone, as well as their will-
ingness to play equilibrium strategies in real life.
Evolutionary game theory and experimental game
theory have tried to respond to the normative
and descriptive challenges, respectively. Though
in what follows I shall focus solely on the
normative challenges, it is to be hoped that the

curious reader will find them interesting enough
to feel stimulated to go much further.

Strategic Interaction

In a strategic interaction, the outcome of an
action depends, among other things, upon the
actions of other agents. Other agents have plans,
preferences, and beliefs and, unless one is cer-
tain of which action will be chosen by another
agent, one will have to form beliefs about other
agents’ possible choices, and even beliefs about
the expectations that may guide another agent
in choosing a particular action. Whereas rational
choice is relatively straightforward in individual
decision-making, it becomes more complicated
in a strategic decision context.

A game is just the abstract, formal description
of a strategic interaction. Any strategic inter-
action involves two or more decision-makers
(players), each with two or more ways of acting
(strategies), such that the outcome depends on
the strategy choices of all the players. Each player
has well-defined preferences among all the
possible outcomes, enabling corresponding von
Neumann–Morgenstern utilities (payoffs) to be
assigned.1 A game makes explicit the rules gov-
erning players’ interaction, the players’ feasible
strategies, and their preferences over outcomes.
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A possible representation of a game is in
normal form. A normal-form game is completely
defined by three elements: a list of players
i = 1, . . . , n; for each player i, a finite set of
pure strategies Si; a payoff function ui that gives
player i’s payoff ui(s) for each n-tuple of strat-
egies (s1, . . . , sn), where

ui: X S R
j

n

j=
→

1
.

All players other than some given player i are
customarily denoted as “− i”. A player may
choose to play a pure strategy, or instead he may
choose to randomize over his pure strategies; a
probability distribution over pure strategies is
called a mixed strategy and is denoted by σi. The
pure strategies over which a player randomizes
are called the support of the resulting mixed strat-
egy. Each player’s randomization is assumed to
be statistically independent of that of his oppon-
ents, and the payoffs to a mixed strategy are
the expected values of the corresponding pure
strategy payoffs.

The 2 × 2 matrix in figure 22.1 depicts a two-
player normal-form game: each player picks a
strategy independently, and the outcome, rep-
resented in terms of players’ payoffs, is the joint
product of these two strategies. The game in
figure 22.1 is one of complete information, in
that the players are assumed to know the rules
of the game (which include players’ strategies)
and other players’ payoffs. If players are allowed
to enter into binding agreements before the game
is played, we say that the game is cooperative.
Noncooperative games instead make no allowance
for the existence of an enforcement mechanism
that would make the terms of the agreement
binding on the players.

Nash Equilibrium

Expected utility maximization has always been a
building-block of game theory, but for many
decades game theorists have paid little attention
to the link between rational choice and strategic
interaction, or how the outcome of strategic
interaction can be derived from rational choices.
In a well-known passage of their book, Theory of
Games and Economic Behavior, von Neumann
and Morgenstern said that rational players who
know (i) all there is to know about the structure
of the game they are playing, (ii) all there is to
know about the beliefs and motives of the other
players, (iii) that every player is rational, (iv) that
every player knows (i) to (iii), (v) that every
players knows (i) to (iv), and so on, will be able
to infer the optimal strategy for every player. In
that case, each player will behave rationally by
maximizing his expected utility conditional on
what he expects the others to do.

The above-quoted passage is important,
because it states what could be rightly called the
“central dogma” of game theory: that rational
players will always jointly maximize their expected
utilities, or play a Nash equilibrium. Nash equi-
librium (Nash 1951) is the standard solution
concept for noncooperative games. Informally, a
Nash equilibrium specifies players’ actions and
beliefs such that (i) each player’s action is optimal
given his beliefs about other players’ choices; (ii)
players’ beliefs are correct. Thus an outcome that
is not a Nash equilibrium requires either that a
player chooses a suboptimal strategy, or that some
players “misperceive” the situation.

More formally, a Nash equilibrium is a vector
of strategies (σ1*, . . . , σ*n), one for each of the n
players in the game, such that each σ*i is optimal
given (or is a best reply to) σ*−i. Note that
optimality is only conditional on a fixed σ−i, not
on all possible σ−i. A strategy that is a best reply
to a given combination of the opponents’ strat-
egies may fare poorly vis-à-vis another strategy
combination.

A common interpretation of Nash equilib-
rium is that of a self-enforcing agreement. Were
players to agree in pre-play negotiation to play a
particular strategy combination, they would have
an incentive to stick to the agreement only inFigure 22.1: A two-player normal-form game
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7), any of his strategies (pure or mixed) would
be a best reply to 2’s choice and conversely, were
2 to know that 1 randomizes with probabilities
(4/9, 5/9), any of her strategies, pure or mixed,
would be a best reply. Paradoxically, if players
agree to play a mixed-strategy equilibrium, they
have no incentive to play their part in the equi-
librium. A mixed-strategy equilibrium is a self-
enforcing agreement only in the weak sense that
– given the other players’ equilibrium behavior –
each player is indifferent between all the strategies
(and lotteries over these strategies) in the support
of her equilibrium mixed strategy.

There are, however, more serious questions
raised by the Nash equilibrium concept. Ken
Binmore (1987, 1988) has argued that there are
two possible interpretations of Nash equilibrium.
According to the evolutive interpretation, a Nash
equilibrium is an observed regularity. Players
know the equilibrium, and test the rationality of
their behavior given this knowledge acquired
from experience. The players (and the game
theorist) can accordingly predict that a given
equilibrium will be played, since they are accus-
tomed to coordinate upon that equilibrium and
expect (correctly) others to do the same. Accord-
ing to the more commonly adopted eductive
interpretation instead, a game is a unique event.
In this case it makes sense to ask whether players
can deduce what others will do from the informa-
tion available to them. The players (and the game
theorist) can predict that an equilibrium will be
played just in case they have enough informa-
tion to infer players’ choices. The standard as-
sumptions game theorists make about players’
rationality and knowledge should in principle be
sufficient to guarantee that an equilibrium will
obtain. The following assumptions are standard:

CK1. The structure of the game, including
players’ strategy sets and payoff functions,
is common knowledge among players.
CK2. The players are rational (i.e., they are
expected-utility maximizers) and this is
common knowledge.

The concept of common knowledge was intro-
duced by Lewis (1969), and later formalized by
Aumann (1976). Simply stated, common know-
ledge of p among a group G means that each

Figure 22.2: A mixed-strategy Nash equilibrium

case the agreed-upon combination is a Nash equi-
librium. In the case of a strict Nash equilibrium,
any deviation from the equilibrium strategy nets
a player an inferior payoff. If the equilibrium
is not strict, however, a deviation from equilib-
rium play may earn a player the same payoff as
the equilibrium strategy. In the latter case, the
incentive to follow the Nash equilibrium is less
strong. The lack of a strong incentive to play
one’s part in a Nash equilibrium is particularly
obvious in the case of mixed-strategy equilibria.
Consider the game in figure 22.2.

This game has no Nash equilibrium in pure
strategies but Nash proved that – provided cer-
tain restrictions are imposed on strategy sets and
payoff functions – a game has at least an equilib-
rium in mixed strategies. Nash’s result general-
izes von Neumann’s theorem (1928) that every
game with finitely many strategies has an equi-
librium in mixed strategies.

Suppose 1 plays (4/9 a, 5/9 b). Then if 2
chooses c, her expected utility is 4(4/9) + 7(5/
9) = 17/3. If 2 chooses d, she nets 9(4/9) +
3(5/9) = 17/3. So if 1 randomizes between a
and b with probabilities (4/9, 5/9), 2 is indif-
ferent between c, d, or a lottery in which she
chooses c with probability p and d with prob-
ability (1 − p). Suppose 2 chooses (4/7 c, 3/7
d). In this case 1 nets 48/7 if he plays a, and
48/7 if he plays b. Hence 1 is indifferent
between a, b, and any lottery (ap, b(1 − p)). The
combination (4/9 a, 5/9 b), (4/7 c, 3/7 d)
is a mixed-strategy Nash equilibrium.

In a mixed-strategy equilibrium, the equilib-
rium strategy of each player makes the other
indifferent between the strategies on which he is
randomizing. For example, if 1 were to know
that 2 randomizes with probabilities (4/7, 3/
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will be attained. Bernheim (1984) and Pearce
(1984) have argued that assuming players’ ration-
ality (and common knowledge thereof) can only
guarantee that a strategy will be rationalizable,
in the sense of being supported by internally
consistent beliefs about other players’ choices
and beliefs. But a combination of rationalizable
strategies may not constitute a Nash equilibrium.
In the game depicted in figure 22.3, all six com-
binations of strategies are rationalizable, yet only
one of them is an equilibrium. The fact that a
Nash equilibrium is always a combination of
rationalizable strategies is of no help in predict-
ing it will be played.

Note that there are strategies that are not
rationalizable, in the sense of not being sup-
ported by coherent beliefs. Consider the game
in figure 22.1. Suppose, again, that player 1 is
deciding what to do. A quick assessment of the
game will tell him that, whatever player 2 does,
he is better off by choosing strategy D. And he
must also be able to see that player 2, if rational,
will never choose strategy C, since she, too, will
always do better by playing D. In this case, CK1
and CK2 will lead the players to accurately pre-
dict the outcome of the game.

In a Nash equilibrium, the optimality of a
strategy is only conditional on a fixed strategy
combination σ−i, not on all possible combina-
tions σ−i. In the game of figure 22.1 instead,
the Nash equilibrium strategies (D, D) are also
optimal with respect to any strategy choice of
the opponent. Whatever player 1 does, player 2
is better off by choosing D, and the same is true
of player 1. We say that a strategy si is strictly
dominated by another strategy ti if, for every
choice of strategies of the other players, i’s pay-
off from choosing ti is strictly greater than his
payoff from choosing si. In our example, C is
strictly dominated by D for both players. A strictly
dominated strategy is never rationalizable, since
the belief that a player plays it is inconsistent
with common knowledge of rationality. We say
that si is weakly dominated by ti if, for every choice
of strategies of the other players, i’s payoff from
choosing ti is at least as great as i’s payoff from
choosing si. Note that weakly dominated strat-
egies are rationalizable, since there always exists
an opponents’ strategy combination to which a
player’s weakly dominated strategy is a best reply.

Figure 22.3: Unique Nash equilibrium in pure
strategies

member of G knows p, and each knows that
each knows p, and so on ad infinitum. Com-
mon knowledge of rationality, preferences, and
strategies may facilitate the task of predicting an
opponent’s strategy but, as I have argued else-
where (Bicchieri 1993), it does not guarantee
that the resulting prediction will be correct.

Consider a game that has a unique Nash equi-
librium in pure strategies (figure 22.3). Can the
players infer what other players will do from CK1
and CK2?

Here player 1 has two pure strategies, A and
B, and player 2 has three pure strategies, a, b,
and c. There is a unique Nash equilibrium in
pure strategies, (B,a), but it is not evident that
players can infer that it will be played by reason-
ing from CK1 and CK2. As an example of how
players may reach a conclusion on how to play,
consider the following argument by player 1. “If
player 2 believes that I will play A, then it is
optimal for her to pick c. And why would she
think I play A? Well, she must believe that I
expect her to play b, to which A is a best reply.
And why would I expect her to play b? I would
(she will think), if I were to believe she expects
me to play B . . .” It is easy to verify that such a
chain of reasoning can justify the choice of any
strategy for both players.

The concept of Nash equilibrium embodies a
notion of individual rationality, since each play-
er’s equilibrium strategy is a best reply to the
opponents’ strategies, but unfortunately it does
not specify how players come to form the beliefs
about each other’s strategies that support equi-
librium play. Beliefs, that is, can be internally
consistent but fail to achieve the interpersonal
consistency that guarantees that an equilibrium
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question is not whether players are fully rational
or believe each other to be. Rather, we want to
know how far they can go in inferring a Nash
solution from CK1 and CK2. As we have seen,
in most cases the answer is “not far.”

Predictability is hampered by another common
problem encountered in game theory: Multiple
Nash equilibria. Suppose two players have to
divide $100 among themselves. They must re-
strict their proposals to integers, and each has to
independently propose a way to split. If the total
proposed by both is equal to or less than $100,
each gets what she proposed, otherwise they get
nothing. This game has 101 Nash equilibria. Is
there a way to predict which one will be chosen?
Alternatively, is there a way a player can infer
what the other will do, and thus adjust her pro-
posal accordingly? In real life, many people would
go for the 50/50 split. It is simple, and seems
equitable. In Schelling’s words, it is a focal point
(Schelling 1960). A focal point equilibrium has
some property that makes it salient: A solution
may be salient because of historical precedent,
or because it embodies cultural norms we share
(Lewis 1969). Unfortunately, mere salience is
not enough to provide a player with a reason for
choice. In our example, only if it is common
knowledge that the 50/50 split is the salient
outcome it becomes rational to propose $50.
Game theory, however, filters out any social or
cultural information regarding strategies, leav-
ing players with the task of coordinating their
actions on the sole basis of common knowledge
of rationality (and of the structure of the game).

Consider now another game that many readers
would intuitively know how to solve: figure 22.5.
The game of figure 22.5 has two Nash equilibria
in pure strategies: (a, c) and (b, d), but in the

Figure 22.4: Iterated dominance

When a game has a unique Nash equilibrium,
we can predict that it will be played if we are
able to show that players, armed with common
knowledge of rationality and of the structure of
the game, will infer the Nash solution. If players
have dominated strategies, CK2 entails that they
will eliminate them, and this is common know-
ledge (we assume that the consequences of CK1
and CK2 are common knowledge, too). Often
after we have eliminated strictly dominated strat-
egies for one player, we may find that there are
now strictly dominated strategies for another
player, which will be eliminated as well. This
process of successive elimination can continue
until there are no more strictly dominated strat-
egies left. If a unique strategy remains for each
player, we say the game has been solved by iter-
ated dominance. It is easy to prove that a strat-
egy profile thus obtained is a Nash equilibrium
(Bicchieri 1993).

Consider for example the game in figure 22.4.
R is a strictly dominated strategy for player 2,
and since rationality is common knowledge, 2 is
expected to eliminate R as a possible choice.
Player 1 will now expect L to be played, in which
case U dominates D. (U, L) is the solution to
the game, and it is inferrable from CK1 and
CK2. Note that assuming common knowledge
of rationality (or at least some level of mutual
knowledge of rationality) is crucial to obtaining
the (U, L) solution. If there were some doubt
about a player’s rationality, the solution would
unravel. For example, if 1 were to think there is
a 0.01 chance that R is chosen, then he would
be better off by choosing D. In real life this is
likely to occur. That is, in real life a player may
“play safe” and prudently choose D, but we are
now discussing a completely different point. The Figure 22.5: Focal-point equilibrium
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(b, d) equilibrium each player plays a weakly
dominated strategy. (a, c) is a Pareto-dominant
equilibrium point, since it gives both players a
higher payoff than any other equilibrium in the
game. For this very reason, it should be a nat-
ural focal point for both players. Should we
confidently predict that (a, c) will be the solu-
tion of the game? We have seen that focal points
must be common knowledge among the players
before it becomes rational for them to play
the focal-point equilibrium. If no such common
knowledge is present, rationality alone is not a
reliable guide. Could elimination of weakly dom-
inated strategies do the trick? We know that when
a player has a strictly dominated strategy, ration-
ality dictates eliminating it, hence predicting
behavior is a (relatively) simple matter. The case
of weakly dominated strategies is not that
straightforward. For one, a weakly dominated
strategy is still a best reply to some opponent’s
strategy. Putting it differently, weak dominance
means that there is at least one choice on the
part of an opponent that makes one indifferent
between the weakly dominated strategy and some
other strategy. In our example, were player 2 to
believe that 1 plays b, she would be indifferent
between c and d, since both c and d are best
replies to b; and conversely, were player 1 to
expect 2 to play d, he would be indifferent
between a and b, since both strategies are best
replies to d.

One possible solution is to introduce a rule
according to which also weakly dominated strat-
egies should be eliminated by a rational player.
Eliminating weakly dominated strategies is an
example of an “eductive” procedure. When ask-
ing how the players’ deductive processes might
unfold, one must specify some basic principles
of rationality, and then examine which choices
are consistent with common knowledge of the
specified principles. Such choices may or may
not result in an equilibrium, but at least the link
between rational choice and equilibrium (when
there is such link) is made clear. The advantage
of this approach is that it is possible to refine
our predictions about how players might choose
without assuming that they will coordinate on a
particular equilibrium. Principles such as iterated
strict dominance and rationalizability are ex-
amples of how it is possible to restrict the set of

predictions using rationality arguments alone. In
most cases, however, the set of possible outcomes
is still too large.

A very different approach to the problem of
indeterminacy is to start by considering the set
of Nash equilibria, and ask whether some of them
should be eliminated because they are in some
sense “unreasonable.” This is the approach taken
by the refinement program (Kohlberg 1990, van
Damme 1991).

Normal-form Refinements

Consider again the game in figure 22.5. How
reasonable is the equilibrium (b, d)? Under what
circumstances would players agree to play it, and
then stand by the agreement? The equilibrium
strategies (b, d) are weakly dominated but – as
I have already argued – common knowledge of
rationality does not force players to eliminate
them. Prudence, however, may suggest that one
should never be too sure of the opponents’
choices. Even if players have agreed to play a
given equilibrium, some uncertainty remains.
If so, we should try to model this uncertainty
in the game. Selten’s insight was to treat perfect
rationality as a limit case (Selten 1965). His
“trembling hand” metaphor presupposes that
deciding and acting are two separate processes,
in that even if one decides to take a particular
action, one may end up doing something else by
mistake. An equilibrium strategy should be opti-
mal not only against the opponents’ strategies,
but also against some very small probability ε >
0 that the opponents make “mistakes.” Such an
equilibrium is trembling-hand perfect. Is the equi-
librium (b, d) perfect? If so, b must be optimal
against c being played with probability ε and d
being played with probability 1 − ε for some
small ε > 0. But in this case the payoff to a is 2ε,
whereas the payoff to b is ε. Hence for all ε > 0,
a is a better strategy choice. The equilibrium (b,
d) is not perfect, but (a, c) is. A prudent player
therefore would discard (b, d). In this simple
game, checking perfection is easy, since only one
mistake is possible. With many strategies, there
are many more possible mistakes to take into
account. Similarly, with many players we may
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need to worry about who is likely to make a
mistake.

Note that the starting-point of this approach
is the set of Nash equilibria of the game. It is
assumed that players can calculate them, and
agree to play one. The goal now is to rule out
all those Nash equilibria that are not reasonable
agreements. In principle, an equilibrium that is
reasonable under a given criterion of reasonable-
ness might cease to be such under another, more
restrictive criterion. Specifying why an equilib-
rium might be unacceptable is made easier by
taking into account what would happen if one or
more players were to “deviate” from the agreed-
upon solution. The reason is intuitive: a player
should not agree to play his part in an equilib-
rium if – were the unexpected to happen – he
would have been better off by playing another
strategy. Therefore we may say that a crucial
property required of an equilibrium is that it is
stable to players’ deviating from it. To reason
about “deviations” from equilibrium it is helpful
to have a richer description of the game. This is
the reason why most of the refinement literature
refers to games in extensive form, where the
order in which players move and the informa-
tion they have when making a choice are made
explicit.

Games in Extensive Form

The extensive form of a game specifies the fol-
lowing information: a finite set of players i = 1,
. . . n, one of which might be nature (N); the
order of moves; the players’ choices at each move
and what each player knows when she has to
choose; the players’ payoffs as a function of their
moves; finally, moves by nature correspond to
probability distributions over exogenous events.
The order of play is represented by a game tree
T, which is a finite set of partially ordered nodes
t ∈ T that satisfy a precedence relation denoted
by “ ”. A subgame is a collection of branches
of a game such that they start from the same
node and the branches and the node together
form a game tree by itself. In figure 22.6a, for
example, player 2’s decision node as well as her
moves form a subgame of the original game.

Whereas normal-form games are represented
by matrices, extensive-form games are represented
by trees. A matrix description shows the out-
comes, represented in terms of players’ payoffs,
for every possible combination of strategies the
players might choose. A tree representation is
sequential, because it shows the order in which
actions are taken by the players. It is quite nat-
ural to think of sequential-move games as being
ones in which players choose their strategies one
after the other, and of simultaneous-move games
as ones in which players choose their strategies
at the same time. What is important, however, is
not the temporal order of events per se, but
whether players know about other players’ ac-
tions when they have to choose their own. In the
normal-form representation, players’ information
about other players’ choices is not represented.
This is the reason why a normal-form game could
represent any one of several extensive-form
games. When the order of play is irrelevant to a
game’s outcome, then restricting oneself to the
normal form is justifiable. When the order of
play is relevant, however, the extensive form must
be specified.

In an extensive-form game, the information a
player has when she is choosing an action is
explicitly represented using information sets, which
partition the nodes of the tree. If an information
set contains more than one node, the player who
has to make a choice at that information set will
be uncertain as to which node she is at. Not
knowing at which node one is means that the
player does not know which action was chosen
by the preceding player. If a game contains in-
formation sets that are not singletons, the game
is one of imperfect information. It may also be
the case that a player does not remember what
she previously did. In this case, the game is one
of imperfect recall. All the games we consider
here, however, will be ones of perfect recall, in
that players will be assumed to remember what
they did and knew previously.

A strategy for player i is a complete plan of
action that specifies an action at every node at
which it is i’s turn to move. Note that a strategy
specifies actions even at nodes that will never be
reached if that strategy is played. Consider the
game in figure 22.6a. It is a finite game of per-
fect information in which player 1 moves first. If
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Figure 22.6a: Extensive-form game

he chooses D at his first node, the game ends
and player 1 nets a payoff of 1, whereas player 2
gets 0. But choosing D at the first node is only
part of a strategy for player 1. For example, it
can be part of a strategy that recommends “play
D at your first node, and x at your last node”.
Another strategy may instead recommend play-
ing D at his first node, and y at his last decision
node. Though it may seem surprising that a strat-
egy specifies actions even at nodes that will not
be reached if that strategy is played, we must
remember that a strategy is a full contingent plan
of action. For example, the strategy Dx recom-
mends playing D at the first node, thus effect-
ively ending the game. It is important, however,
to be able to have a plan of action in case D is
not played. Player 1 may, after all, make a mistake
and, because of 2’s response, find himself called
to play at his very last node. In that case, having
a plan helps. Note that a strategy cannot be
changed during the course of the game. Though
a player may conjecture about several scenarios
of moves and countermoves before playing the
game, at the end of deliberation a strategy must
be chosen and followed through the game.

The game in figure 22.6a has two Nash
equilibria in pure strategies: (Dx, d) and (Dy,
d). This is easy to verify by looking at figure
22.6b, the normal-form representation of the
game. Is there a way to solve the indeterminacy?

Representing the sequential version of the
game as one of perfect information (figure 22.6a)
helps to solve it. Suppose player 1 were to reach
his last node. Since he is by assumption rational,
he will choose x, which guarantees him a payoff
of 4. Knowing (by assumption) that 1 is rational,
player 2 – if she were to reach her decision node
– would play d, since by playing a she would net
a lower payoff. Finally, since (by assumption)
player 1 knows that 2 is rational and that she
knows that 1 is rational, he will choose D at his
first decision node. The equilibrium (Dy, d)
should therefore be ruled out, since it recom-
mends an irrational move at the last node. In
the normal form, both equilibria survive. The
reason is simple: Nash equilibrium does not con-
strain behavior out of equilibrium. In our exam-
ple, if 1 plans to choose D and 2 plans to choose
d, it does not matter what player 1 would do at
his last node, since that node will never be
reached.

The sequential procedure we have used to
conclude that only (Dx, d) is a reasonable solu-
tion is known as backward induction (Zermelo
1913). In finite games of perfect information
with no ties in payoffs, backward induction always
identifies a unique equilibrium. The premise of
the backward-induction argument is that mutual
rationality and the structure of the game are com-
mon knowledge among the players (CK1 and

Figure 22.6b: Normal-form game
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CK2). It has been argued by Binmore (1987),
Bicchieri (1989, 1993), and Reny (1992) that
under certain conditions common knowledge of
rationality leads to inconsistencies. For example,
if player 2 were to reach her decision node, would
she keep thinking that player 1 is rational? How
would she explain 1’s move? If 1’s move is in-
consistent with CK2, player 2 will be unable to
predict future play; as a corollary, what constitutes
an optimal choice at her node remains undefined.
As a consequence of the above criticisms, the
usual premises of backward-induction arguments
have come to be questioned (Pettit & Sugden
1989; Basu 1990; Bonanno 1991).

Extensive-form Refinements

The goal of the refinement program, however,
has not been the formalization of players’
reasoning. The arguments proposed have been
informal, their purpose being the elimination
of implausible equilibria. In the normal form,
Selten’s trembling-hand perfection requires
players to check how a strategy will perform were
another player to take an action that has zero
probability in equilibrium. In the extensive-form
representation, players ask what would happen
off-equilibrium, at points in the game tree that
will never be reached if the equilibrium is played.
In both cases, the starting-point is an equilibrium,
which is checked for stability against possible
deviations.

By its nature, the Nash equilibrium concept
does not restrict action choices off the equilib-
rium path, because those choices do not affect
the payoff of the player who moves there. For
example, the equilibrium (Dy, d) in the game of
figure 22.6 lets player 1 make an irrational choice
at the last node, since that choice is not going
to affect his payoff (which is determined by his
choosing D at the beginning of the game). How-
ever, the strategy of a player at an off-equilibrium
information set can affect what other players
choose in equilibrium. Suppose the players con-
sider agreeing to play (Dy, d). In order to choose
D, player 1 must decide what would happen
were he to play A instead. To decide whether D
is a rational move, 1 has to think about player

2’s choice at an off-equilibrium node. His con-
clusion about 2’s choice will affect his own
choice. But player 2’s choice will depend upon
how she interprets 1’s off-equilibrium move.
Player 1, in turn, must be able to anticipate 2’s
interpretation of his deviating from the equilib-
rium path. For example, if 2 were to interpret
the deviation as a mistake, would she still play
her part in the equilibrium (Dy, d), and choose
d? If she expects y to be played at the last node,
a is a best reply. But, at his last node, why would
rational player 1 choose y? Is the agreement to
play (Dy, d) reasonable?

The earliest refinement proposed to rule out
implausible equilibria in extensive games of
perfect information is subgame perfection (Selten
1965). A Nash equilibrium is subgame perfect
if its component strategies – when restricted
to any subgame – remain a Nash equilibrium of
the subgame. The equilibrium (Dy, d) is not
subgame perfect: in the subgame starting at the
last node, y is a dominated strategy. Note that
the backward induction equilibrium is always
subgame perfect. Subgame perfection, however,
only applies (nontrivially) to games that have
proper subgames. Any Nash equilibrium of a
game without proper subgames is trivially sub-
game perfect (since the whole game can be con-
sidered a subgame), but in this case the criterion
does not help in resolving the indeterminacy. In
figure 22.7, for example, both (c, L) and (a, R)
are (trivially) subgame-perfect equilibria.

The game of figure 22.7 is a case in which we
would still like to eliminate equilibria that require
players to behave suboptimally in parts of the
game that are reached with zero probability if a
given equilibrium is played, but cannot be con-
sidered subgames. Kreps and Wilson’s (1982b)
sequential equilibrium is an answer to this prob-
lem. A sequential equilibrium is a combination
of strategies and beliefs such that each player has
a belief (a probability assessment) over the nodes
at each of his information sets. At any informa-
tion set x where i has to play – given player i’s
beliefs at x and the equilibrium strategies of the
other players – i’s strategy for the rest of the
game must still maximize his expected payoff.
As players move through the game tree, they
rationally update their beliefs using Bayes’s rule
(for more on this, see Chapter 21, PROBABILITY
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probability (1 − p − q) very close to one, but can
play b by mistake with higher probability (p =
2/100) than playing a by mistake (q = 1/100).
If this is what 2 believes, she should choose
L. Given her beliefs, L has an expected utility
of 0.04, whereas R has an expected utility
of 0.01. Both equilibria therefore survive some
perturbations.

Note, however, that strategy b is strictly dom-
inated by c for player 1, therefore it is highly
unlikely that 1 would play b. This example is
meant to stress the importance of restricting off-
equilibrium beliefs. Such beliefs, too, should be
rationally justified. The equilibrium (c, L) must
be eliminated because it is supported by the
belief that a dominated strategy will be played
off-equilibrium, and this belief is inconsistent with
common knowledge of rationality.

The need to add a condition of plausibility
for off-equilibrium beliefs motivated the forward
induction refinement (Kohlberg & Mertens
1986). Off-equilibrium beliefs, for example,
should be consistent with common knowledge
of rationality and any inference one may draw
from it. A deviation from equilibrium should
therefore be interpreted, whenever possible, as a
rational move. In our example, player 1’s devi-
ation from the equilibrium (c, L) should not be
interpreted as a mistake, but rather as a signal
that he intends to play a (and get a higher pay-
off ). In this case player 2 would respond with R.
The conclusion is that equilibrium (c, L) is not
robust to deviations, and should be eliminated.

As I mentioned at the outset, the refinement
program attempts to establish stability criteria
for Nash equilibrium. It presupposes that players
will choose to play a Nash equilibrium after
having eliminated several alternative equilibria
on the ground that they are unreasonable. What
counts as a reasonable equilibrium, however,
depends upon how off-equilibrium behavior is
interpreted. This, in turn, hinges on players out-
of-equilibrium beliefs. So far we have developed
no comprehensive theory of out-of-equilibrium
behavior that indicates, for example, when a devi-
ation should be interpreted as a signal and when
as a mistake. Such theory would supply substant-
ive (as opposed to merely formal) rationality
criteria for players’ beliefs, and would thus expand
the traditional notion of practical rationality to

Figure 22.7: Subgame-perfect, sequential, and
perfect equilibria

IN ARTIFICIAL INTELLIGENCE). The problem with
the notion of sequential equilibrium is that –
provided beliefs are revised according to Bayes’s
rule – no further restriction is imposed upon
them. The consequence is that far too many
Nash equilibria are still considered admissible or
“reasonable.” At player 2’s information set, if
for some reason she assigns a higher probability
to node y than y ′, then her optimal choice is L.
If instead she judges y and y ′ to be equiprobable,
she will choose R. Thus both (c, L) and (a, R)
survive as sequential equilibria, since each is sup-
ported by some acceptable belief.

Another common refinement is Selten’s perfect
equilibrium (Selten 1975). In this case players
are explicitly assumed to interpret deviations from
equilibrium play as “mistakes,” and respond ac-
cordingly. A perfect equilibrium must be robust
to small perturbations of players’ equilibrium
strategies. Selten’s notion, however – by not
imposing restrictions upon players’ beliefs – lays
itself open to the same criticism addressed to
Kreps and Wilson’s refinement. If there are sev-
eral possible “mistakes” a player can make, and
beliefs are unrestricted, some equilibria cannot
be ruled out simply because they are supported
by beliefs that make some mistakes more likely
than others. Suppose that in our example player
2 believes that player 1 intends to play c with
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include an epistemic component. This theoret-
ical inadequacy undermines the eductive goal of
inferring (and predicting) equilibrium play from
rationality principles alone.

Selection by Evolution

A Nash equilibrium need not be interpreted as
a unique event. If we think of it as an observed
regularity, we want to know by what process
such equilibrium is reached and what accounts
for its stability. When multiple equilibria are pos-
sible, we want to know why players converged
to one in particular and then stayed there. An
alternative way of dealing with multiple equilibria
is to suppose that the selection process is made
by nature.

Evolutionary theories are inspired by popula-
tion biology (e.g. Maynard Smith & Price 1973).
These theories dispense with the notion of the
decision-maker, as well as with best responses/
optimization, and use in their place a natural
selection, “survival-of-the-fittest” process together
with mutations to model the frequencies with
which various strategies are represented in the
population over time. In a typical evolutionary
model, players are preprogrammed for certain
strategies, and are randomly matched with other
players in pair-wise repeated encounters. The
relative frequency of a strategy in a population is
simply the proportion of players in that popula-
tion who adopt it. The theory focuses on how
the strategy profiles of populations of such agents
evolve over time, given that the outcomes of
current games determine the frequency of dif-
ferent strategies in the future.

As an example, consider the symmetric game
in figure 22.8 and suppose that there are only two
possible behavioral types: “hawk” and “dove.”2

A hawk always fights and escalates contests
until it wins or is badly hurt. A dove sticks to
displays and retreats if the opponent escalates
the conflict; if it fights with another dove, they
will settle the contest after a long time. Payoffs
are expected changes in fitness due to the out-
come of the game. Fitness here means just
reproductive success (e.g., the expected number
of offspring per time unit).

Figure 22.8: Hawk and dove game

Suppose injury has a payoff in terms of loss of
fitness equal to C, and victory corresponds to a
gain in fitness B. If hawk meets hawk, or dove
meets dove, each has a 50 percent chance of
victory. If a dove meets another dove, the winner
gets B and the loser gets nothing, so the average
increase in fitness for a dove meeting another
dove is B/2. A dove meeting a hawk retreats,
so her fitness is unchanged, whereas the hawk
gets a gain in fitness B. If a hawk meets another
hawk, they escalate until one wins. The winner
has a fitness gain B, the loser a fitness loss C. So
the average increase in fitness is (B − C)/2. The
latter payoff is negative, since we assume the
cost of injury is greater than the gain in fitness
obtained by winning the contest. We assume
that players will be randomly paired in repeated
encounters, and in each encounter they will play
the stage game of figure 22.8.

If the population were to consist predomin-
antly of hawks, selection would favor the few
doves, since hawks would meet mostly hawks
and end up fighting with an average loss in fitness
of (B − C)/2, and 0 > (B − C/2). In a popula-
tion dominated by doves, hawks would spread,
since every time they meet a dove (which would
be most of the time) they would have a fitness
gain of B, whereas doves on average would only
get B/2.

Maynard Smith interpreted evolutionary games
as something that goes on at the phenotypic
level. The fitness of a phenotype depends on its
frequency in the population. A strategy is a pheno-
type, and a player is just an instance of such a
behavioral phenotype. In our example, we have
only two behavioral phenotypes: “hawk” and
“dove.” Evolutionary game theory wants to know
how strategies do on average when games are
played repeatedly between individuals who are
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randomly drawn from a large population. The
average payoff to a strategy depends on the com-
position of the population, so a strategy may do
very well (in terms of fitness) in an environment
and poorly in another. If the frequency of hawks
in the population is q and that of doves corres-
pondingly (1 − q), the average increase in fitness
for the hawks will be q(B − C)/2 + (1 − q)B,
and (1 − q)B/2 for the doves. The average pay-
off of a strategy in a given environment deter-
mines its future frequency in the population.
Strategies that, on average, earn high payoffs in
the current environment are assumed to increase
in frequency, and strategies that, on average, earn
lower payoffs are assumed to decrease in fre-
quency. If the average payoffs of the different
strategies are the same, then the composition of
the population is stable. In our example, the
average increase in fitness for the hawks will be
equal to that for the doves when the frequency
of hawks in the population is q = B/C. At that
frequency, the proportion of hawks and doves is
stable. If the frequency of hawks is less that B/
C, then they do better than doves, and will con-
sequently spread; if their frequency is larger than
B/C, they will do worse than doves and will
shrink.

Note that if C > B, then (B − C)/2 < 0, so
the game in figure 22.8 has two pure-strategy
Nash equilibria: (H, D) and (D, H). There is
also a mixed-strategy equilibrium in which Hawk
is played with probability q = B/C and Dove is
played with probability (1 − q) = C − B/C. If
the game of figure 22.8 were played by rational
agents who chose which behavior to display, we
would be at a loss in predicting their choices.
From CK1 and CK2 the players cannot infer that
a particular equilibrium will be played; moreover,
since there are no dominated strategies, all pos-
sible outcomes are rationalizable. In the hawk/
dove example, however, players are not rational
and do not choose their strategies. So if an equi-
librium is attained it must be the outcome of
some process very different from rational delib-
eration. The process at work is natural selection:
high-performing strategies increase in frequency
whereas low-performing strategies’ frequency
diminishes and eventually goes to zero.

We have seen that in a population composed
mostly of doves, hawks will thrive, and the

opposite would occur in a population composed
mainly of hawks. So for example if “hawks” domin-
ate the population, a mutant displaying “dove”
behavior can invade the population, since indi-
viduals bearing the “dove” trait will do better
than hawks. The main solution concept used in
evolutionary game theory is the evolutionarily
stable strategy (ESS) introduced by Maynard
Smith and Price (1973). A strategy or behavioral
trait is evolutionarily stable if, once it dominates
in the population, it does strictly better than any
mutant strategy, hence it cannot be invaded. To
formalize this concept, let me first make a brief
digression. In a symmetric game like hawk/dove,
we have a finite set of pure strategies S and a
corresponding set ∆ of mixed strategies. A popu-
lation state is equivalent to a mixed-strategy
x ∈ ∆. Note that the evolutionary model gives a
natural interpretation to mixed strategies as the
proportions of certain strategies (or traits) in a
population. A state in which each individual plays
a pure strategy and the proportion of different
strategies correspond to x is called a polymorphic
state. Alternatively, we may interpret the popu-
lation state x as monomorphic, in the sense that
each player plays the mixed-strategy x. In a two-
player game, being matched against a randomly
drawn individual in population state x is equi-
valent to being matched against an individual
who plays the mixed strategy x. Hence the aver-
age payoff of playing strategy y in population
state x is equal to the expected payoff to y when
played against the mixed strategy x, i.e. u(y, x).
The population average in this case is equal to
the expected payoff of the mixed strategy x when
matched against itself, i.e. u(x, x).

In a symmetric, two-player game, x is an ESS
if and only if, for all y ∈ ∆ such that y ≠ x,

(1) u(x, x) > u(y, x)

or

(2) u(x, x) = u(y, x), and u(x, y) > u(y, y).

Condition (1) tells us that strategy x is a unique
best reply against itself. If the bulk of the popu-
lation consists of type x and a small number of
mutants of type y enters the population, if x
does better against x than y does against x, y will
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be less fit and disappear. However, if x is a mixed
strategy, we know (1) does not hold. In this
case, for x to be an ESS, (2) must hold. If both
x and y perform equally well against x, then y
will be less fit than x if x does better against y
that y does against y.

In the hawk/dove game, neither of the two
pure behavioral types is evolutionarily stable, since
each can be invaded by the other. We know,
however, that a population in which there is a
proportion q = B/C of hawks and (1 − q) = C −
B/C of doves is stable. This means that the type
of behavior that consists in escalating fights with
probability q = B/C cannot be invaded by any
other type, hence it is an ESS. To show that the
mixed strategy x = (B/C, C − B/C) is an ESS,
we have to show that condition (2) is satisfied.
Indeed, u(x, y) − u(y, y) = 1/2C(B − Cq)2 is
greater than zero for all q ≠ B/C.

An ESS is a strategy that, when it dominates
the population, is a best reply against itself. There-
fore an evolutionarily stable strategy such as (B/
C, C − B/C) is a Nash equilibrium. Though every
ESS is a Nash equilibrium, the reverse does not
hold; in our stage game, there are three Nash
equilibria, but only the mixed-strategy equilib-
rium (B/C, C − B/C) is an ESS. However, when
a strategy is a unique best reply to itself, it is
both an ESS and a strict Nash equilibrium. In
this special case the reverse also holds: every strict
Nash equilibrium is an ESS. In a strict equilib-
rium, there exists no other strategy which is an
alternative best reply to the equilibrium strategy,
and this guarantees non-invadability. As an
example, consider the game in figure 22.5. There
are two pure-strategy Nash equilibria, (a, c) and
(b, d), but only (a, c) is strict. It is easy to verify
that (a, c) consists of ESS satisfying condition
(1).

The prior examples show how evolution
can at least partially solve the problem of equilib-
rium selection without imposing heroic cognit-
ive requirements on players. An ESS is, in fact,
not just a Nash equilibrium but also a perfect
and proper equilibrium (van Damme 1987).
Furthermore, an evolutionary account of how a
Nash equilibrium is achieved provides an explana-
tion of the dynamics of the selection process,
something which the refinement program can-
not do.

In the hawk/dove example, we have assumed
that the success of a strategy depends on the
outcome of pairwise random matches. It is often
the case that a strategy’s success depends not
on the strategy played by a particular opponent,
but on the population-wide frequencies of strat-
egies. When examining behavior in a population
game, we adopt the concept of an evolutionarily
stable state (also ESS) (Hofbauer & Sigmund
1998).

Suppose the game has N pure strategies, with
an N × N symmetric expected payoff matrix
A = (aij). There is an infinite number of players,
and each player initially commits to playing
exactly one of the N pure strategies. Let p be the
N × 1vector denoting the population-wide pro-
portion of each of the N strategies (player types)
in the population at a given time. Let

f p a p A pi ij j i
j

( )   = =∑

denote the fitness of strategy i and let

f p Api
i

( )  ∑ =

denote the population-wide payoff. The
population-wide weighted average fitness value
is pT Ap. We say that P is an evolutionarily stable
state if for any p ≠ P in the neighborhood of P,
we have:

P T Ap > pT Ap

This captures the idea that the population-wide
payoff under P is higher (locally) than for any
other vector p.3

The definitions of evolutionarily stable strat-
egies or states are static. To describe the dynamic
process that leads to a certain distribution of
strategies in a population, we have models of
the selection dynamics that express the growth
rate of a strategy i in population state p as a
function of i’s average payoff in p relative to the
average payoff to other strategies in p. ESS do
not refer to a specific dynamic, but biologists
and evolutionary game theorists frequently use
deterministic replicator dynamics (Taylor &
Jonker 1978) of the form:
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p t A p t
p t Ap ti

i i
T

(   )  
( ) ( )
( ) ( )

,+ =1

where p(t) denotes the population-wide propor-
tions at time t, the denominator is a measure of
average strategy fitness in the population at t,
and the numerator measures the fitness of strat-
egy i at time t. Strategies with above-average
fitness see their proportions increase, and those
with below average fitness see their proportions
decrease. Note that (*) is a deterministic system
which allows some strategies to become extinct,
in the sense that pi(t) = 0 for some i, t. To
prevent extinction, mutations are added, but
a discussion of how to modify (*) to include
mutations and how to interpret the latter would
take us too far from the present topic. For an
analysis of stochastic models, see Foster and
Young (1990).

ESS are asymptotically stable fixed points of
this replicator dynamic, though the converse need
not be true (see e.g. Samuelson 1997). A similar
relationship holds between the replicator dynamic
and Nash equilibria: if P is a Nash equilibrium of
the symmetric N × N game with expected pay-
off matrix A, then P is a stationary state of the
replicator dynamic.

In evolutionary theory replication, variation
and heredity are the basic assumptions. Any en-
tity capable of replicating itself with differential
success will be subject to an evolutionary process.
Differential success, in turn, is related to heredit-
ary variations. In biology, replicators are genes
and in genetic evolution, variation is provided
by random mutations and recombinations of gene
sequences. Behavioral patterns can be replicators,
too, in the sense that behavioral trait x is replic-
ated when a gene x that predisposes its carriers
to behave according to this pattern replicates
itself. This means that bearers of gene x will
behave in ways that make them reproductively
successful, so that in the next generation there
will be more copies of x. To the extent that
behavior x promotes the replication of its pre-
disposing gene, we are correct in saying that the
behavior is replicating itself. Individuals are just
bearers of such genetic material, hence they are
born with fixed behavioral traits. Variation of
competing strategies is provided by random
mutations and recombinations of gene sequences.

When we think of strategies, however, we usu-
ally refer to behaviors that are not genetically
inherited. In economic and political applications
of game theory, actors can be firms, political
parties, nations. Even when actors are indivi-
duals, their strategies have a strong cultural com-
ponent. Evolutionary models can still be applied
to explain how Nash equilibria are attained and
whether they are stable, but selection mechanisms
in this case work through processes of cultural
transmission such as learning and imitation.
Learning and imitation are subject to mistakes,
and new strategies may enter the population
either by random mistake or by purposeful
innovation. Payoffs in this case cannot represent
fitness changes, but if we give them a utility
interpretation, we must provide for interpersonal
comparisons of utilities. Indeed, to imitate a more
successful individual, one must be able to com-
pare one’s payoffs with the payoffs of others,
but traditional von Neumann–Morgenstern util-
ities do not allow for such comparisons.

Evolutionary games provide us with a way of
explaining how agents that may or may not be
rational and – if so – subject to severe information
and calculation restrictions, achieve and sustain
a Nash equilibrium. When there exist evolution-
arily stable strategies (or states), we know which
equilibrium will obtain, without the need to
postulate refinements in the way players inter-
pret off-equilibrium moves. Yet we need to know
much more about processes of cultural transmis-
sion, and to develop adequate ways to represent
payoffs, so that the promise of evolutionary games
is actually fulfilled.

Notes

1 In a game, a player’s action may have one of
several possible consequences, depending on the
other players’ choices. It is usually assumed that
the probabilities with which the consequences
occur are objective and known to the decision-
maker. Suppose action a has two possible
consequences, x and x ′, which occur with prob-
ability p and (1 − p), respectively. Choosing
action a is like choosing a lottery that gives
prize x with probability p, and prize x ′ with
probability (1 − p). Agents are assumed to have



Game Theory: Nash Equilibrium

303

preferences over such lotteries. If preferences
are complete, transitive, and satisfy a number of
other conditions (von Neumann & Morgenstern
1944), they can be represented by the expecta-
tion of a real-valued utility function U: C → R
(unique up to a positive linear transformation)
such that, for any two lotteries a and b, a b
iff Σx∈a p(x)U(x) > Σy∈bp(y)U(y). A rational agent
will choose an action (lottery) a* that maxim-
izes the expected value of a von Neumann–
Morgenstern utility function.

2 A two-player game is symmetric if (a) S1 and S2

have the same, finite number of elements, and
(b) the payoff matrix is symmetric, i.e. for all i
and j ∈S, u1(i, j ) = u2(j, i).

3 By contrast, P is a symmetric Nash equilibrium
if P T AP ≥ pT AP for all feasible p.
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Chapter 23

Computing in the Philosophy
of Science
Paul Thagard

1 Introduction

What do philosophers do? Twenty or thirty years
ago, one might have been told “analyze con-
cepts” or “evaluate arguments.” The answer
“write computer programs” would have inspired
a blank stare and computational philosophy of
science might have sounded like the most self-
contradictory enterprise in philosophy since busi-
ness ethics (Thagard 1988). But computer use
has since become much more common in philo-
sophy, and computational modeling can be seen
as a useful addition to philosophical method,
not as the abandonment of it (see Chapter 26,
COMPUTATIONAL MODELING AS A PHILOSOPHICAL

METHODOLOGY).
If philosophy consisted primarily of conceptual

analysis, or mental self-examination, or investiga-
tion of a priori truths, then computer modeling
would indeed be alien to the enterprise. However,
one may argue in favor of a different picture of
philosophy, as primarily concerned with produc-
ing and evaluating theories, for example theories
of knowledge (epistemology), reality (meta-
physics), and right and wrong (ethics). One of
the main functions of a theory of knowledge is
to explain how knowledge grows. This requires
describing both the structure of knowledge and

the inferential procedures by which knowledge
can be increased. Although epistemologists often
focus on mundane knowledge, the most impress-
ive knowledge gained by human beings comes
through the operation of science: experimenta-
tion, systematic observation, and theorizing
concerning the experimental and observational
results. In attempting to understand the struc-
ture and development of scientific knowledge,
philosophers of science have traditionally em-
ployed a number of approaches, such as logical
analysis and historical case studies. Computational
modeling provides an additional method that
has already advanced understanding of such
traditional problems as theory evaluation and
scientific discovery.

This chapter concerns how computational
models are making substantial contributions to
the philosophy of science. It reviews the progress
made by three distinct computational approaches:
cognitive modeling, engineering artificial intelli-
gence, and theory of computation. The aim of
cognitive modeling is to simulate aspects of
human thinking; for philosophy of science, this
becomes the aim to simulate the thinking that
scientists use in the construction and evaluation of
hypotheses. Much artificial intelligence research,
however, is not concerned with modeling human
thinking, but with constructing algorithms that
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perform well on difficult tasks independently of
whether the algorithms imitate human thinking.
Similarly, the engineering AI approach to philo-
sophy of science seeks to develop computational
models of discovery and evaluation independently
of questions of human psychology. Computa-
tional philosophy of science has thus developed
two approaches that reflect the two trends in AI
research, one concerned with modeling human
performance and the other with machine intelli-
gence. A third approach uses abstract mathemat-
ical analysis and applies the theory of computation
to problems in the philosophy of science.

2 Cognitive Modeling

Cognitive science is the interdisciplinary study
of mind, embracing philosophy, psychology, arti-
ficial intelligence, neuroscience, linguistics, and
anthropology. From its modern origins in the
1950s, cognitive science has primarily worked
with the computational-representational under-
standing of mind: we can understand human
thinking by postulating mental representations
akin to computational data structures and mental
procedures akin to algorithms (Thagard 1996).
The cognitive-modeling approach in computa-
tional philosophy of science views topics such as
discovery and evaluation as open to investigation
using the same techniques employed in cognitive
science. To understand how scientists discover
and evaluate hypotheses, we can develop com-
puter models that employ data structures and
algorithms intended to be analogous to human
mental representations and procedures. This
approach can be viewed as part of naturalistic
epistemology, which sees the study of know-
ledge as closely tied to human psychology, not
as an abstract logical exercise.

2.1 Discovery

In the 1960s and 1970s, philosophers of science
discussed whether there is a “logic of discovery”
and whether discovery (as opposed to evalu-
ation) is a legitimate topic of philosophical (as
opposed to psychological) investigation. In the

1980s, these debates were superseded by com-
putational research on discovery that showed how
actual cases of scientific discovery can be modeled
algorithmically. Although the models that have
been produced to date clearly fall well short of
simulating all the thought processes of creat-
ive scientists, they provide substantial insights
into how scientific thinking can be viewed
computationally.

Because of the enormous number of possible
solutions for any scientific problem, the algo-
rithms involved in scientific discovery cannot
guarantee that optimal discoveries will be made
from input provided. Instead, computer models
of discovery employ heuristics, approximate
methods for attempting to cut through data
complexity and find patterns. The pioneering step
in this direction was the BACON project of
Pat Langley, Herbert Simon, and their colleagues
(Langley et al. 1987). BACON is a program
that uses heuristics to discover mathematical laws
from quantitative data, for example discovering
Kepler’s third law of planetary motion. Although
BACON has been criticized for assuming an
oversimple account of human thinking, Qin and
Simon (1990) found that human subjects could
generate laws from numerical data in ways quite
similar to BACON.

Scientific discovery produces qualitative as well
as quantitative laws. Kulkarni and Simon (1988)
produced a computational model of Krebs’
discovery of the urea cycle. Their program,
KEKADA, reacts to anomalies, formulates
explanations, and carries out simulated experi-
ments in much the way described in Hans Krebs’
laboratory notebooks.

Not all scientific discoveries are as data-driven
as the ones discussed so far. They often involve
the generation of new concepts and hypotheses
that are intended to refer to non-observable
entities. Thagard (1988) developed computa-
tional models of conceptual combination, in
which new theoretical concepts such as sound
wave are generated, and of abduction, in which
new hypotheses are generated to explain puzzling
phenomena. Magnani (2001) has also discussed
how abductive inference can produce discoveries
in science and mathematics. Darden (1990, 1998)
has investigated computationally how theories
that have empirical problems can be repaired.
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One of the most important cognitive mech-
anisms for discovery is analogy, since scientists
often make discoveries by adapting previous
knowledge to a new problem. Analogy played a
role in some of the most important discoveries
ever made, such as Darwin’s theory of evolution
and Maxwell’s theory of electromagnetism.
During the 1980s, the study of analogy went
well beyond previous philosophical accounts
through the development of powerful com-
putational models of how analogs are retrieved
from memory and mapped to current problems
to provide solutions. Falkenhainer, Forbus, and
Gentner (1989) produced SME, the Structure
Mapping Engine, and this program was used to
model analogical explanations of evaporation
and osmosis (Falkenhainer 1990). Holyoak and
Thagard (1989) used different computational
methods to produce ACME, the Analogical Con-
straint Mapping Engine, which was generalized
into a theory of analogical thinking that applies
to scientific as well as everyday thinking (Holyoak
& Thagard 1995).

The above research projects illustrate how
thought processes, such as those involved in
numerical law generation, theoretical concept
formation, abduction, and analogy, can be under-
stood computationally. Examples of nonpsycho-
logical investigations of scientific discovery are
described in the sections on engineering AI and
theory of computation.

2.2 Evaluation

How scientific hypotheses are evaluated has been
a central problem in philosophy of science since
the nineteenth-century debates between John
Stuart Mill and William Whewell. Work in the
logical positivist tradition has centered on the
concept of confirmation, asking what it is for
hypotheses to be confirmed by observations. More
recently, various philosophers of science have
taken a Bayesian approach to hypothesis evalu-
ation, using probability theory to analyze scientific
reasoning. In contrast, it is possible to develop
an approach to hypothesis evaluation that
combines philosophical ideas about explanatory
coherence with a connectionist (neural network)
computational model (Thagard 1992, 2000).

Coherence theories of knowledge, ethics, and
even truth have been popular among philo-
sophers, but the notion of coherence is usually
left rather vague. Hence coherence theories do
not appear sufficiently rigorous when compared
to theories couched more formally using deduct-
ive logic or probability theory. But connectionist
models show how coherence ideas can be pre-
cisely and efficiently implemented. Since the mid-
1980s, connectionist (neural network, PDP)
models have been very influential in cognitive
science. Only loosely analogous to the operation
of the brain, such models have numerous units
that are roughly like neurons, connected to each
other by excitatory and inhibitory links of vary-
ing strengths. Each unit has an activation value
that is affected by the activations of the units to
which it is linked, and learning algorithms are
available for adjusting the strengths on links in
response to experience.

In ECHO, a connectionist computational
model of explanatory coherence developed in
Thagard (1992), units are used to represent
propositions that can be hypotheses or descrip-
tions of evidence, and links between units to
represent coherence relations. For example, if a
hypothesis explains a piece of evidence, then
ECHO places an excitatory link between the unit
representing the hypothesis and the unit repres-
enting the evidence. If two hypotheses are con-
tradictory or competing, then ECHO places an
inhibitory link between the units representing
the two hypotheses. Repeatedly adjusting the
activations of the units based on their links with
other units results in a resting state in which
some units are on (hypotheses accepted) and
other units are off (hypotheses rejected). ECHO
has been used to model many important cases in
the history of science (Nowak & Thagard 1992a,
1992b; Thagard 1991, 1992, 1999). Eliasmith
and Thagard (1997) argued that ECHO pro-
vides a better account of hypothesis evaluation
than available Bayesian accounts, and challenged
proponents of Bayesian models to produce
simulations of theory choice that are as detailed
and historically accurate as existing ECHO simu-
lations. ECHO has also been used in a com-
putational model of scientific consensus in which
a group of scientists reach agreement about
what theory to adopt by exchanging information
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about data, hypotheses, and explanations (Thagard
1999).

A different connectionist account of inference
to best explanation is given by Churchland
(1989). He conjectures that abductive discovery
and inference to the best explanation can both
be understood in terms of prototype activation
in distributed connectionist models, i.e. ones in
which concepts and hypotheses are not repres-
ented by individual units but by patterns of
activation across multiple units. There is con-
siderable psychological evidence that distributed
representations and prototypes are important in
human cognition, but no one has yet produced
a running computational model of hypothesis
evaluation using these ideas. Nonconnectionist
models of hypothesis evaluation, including pro-
babilistic ones, are discussed in the next section.

3 Engineering AI

The cognitive-modeling approach to computa-
tional philosophy of science allies philosophy of
science with cognitive science and naturalistic
epistemology, and it can be very fruitful, as the
previous section shows. However, much valu-
able work in AI and philosophy has been done
that makes no claims to psychological plausibil-
ity. One can set out to build a scientist without
trying to reverse-engineer a human scientist. The
engineering AI approach to computational philo-
sophy of science is allied, not with naturalistic,
psychologistic epistemology, but with what has
been called “android epistemology,” the epi-
stemology of machines that may or may not
be built like humans (Ford, Glymour, & Hayes
1995). This approach is particularly useful when
it exploits such differences between digital com-
puters and humans as the capacity for very fast
searches to perform tasks that human scientists
cannot do very well.

3.1 Discovery

One goal of engineering AI is to produce pro-
grams that can make discoveries that have eluded
humans. Bruce Buchanan, who was originally

trained as a philosopher before moving into AI
research, reviewed over a dozen AI programs
that formulate hypotheses to explain empirical
data (Buchanan 1983). One of the earliest and
most impressive programs was DENDRAL,
which performed chemical analysis. Given
spectroscopic data from an unknown organic
chemical sample, it determined the molecular
structure of the sample (Lindsay et al. 1980).
The program META-DENDRAL pushed the
discovery task one step farther back: given a col-
lection of analytic data from a mass spectrometer,
it discovered rules explaining the fragmentation
behavior of chemical samples. Buchanan has
continued to work on computational models of
hypothesis formation in science (Buchanan &
Philips 2001).

Ideally, discovery programs should be capable
of advancing science by producing novel results.
One of the most successful in this regard is a
program for chemical discovery, MECHEM,
which automates the task of finding mechan-
ism for chemical reactions. Given experimental
evidence about a reaction, the program searches
for the simplest mechanism consistent with theory
and experiment (Valdés-Pérez 1994, 1995).
Valdés-Pérez has also written programs that
have contributed to discoveries in biology and
physics. Kocabas and Langley (2000) have
developed a computational aid for generating
process explanations in nuclear astrophysics.

In order to model biologists’ discoveries
concerning gene regulation in bacteria, Karp
(1990) wrote a pair of programs, GENSIM
and HYPGENE. GENSIM was used to repres-
ent a theory of bacterial gene regulation, and
HYPGENE formulates hypotheses that improve
the predictive power of GENSIM theories given
experimental data. More recently, Karp has
shifted from modeling historical discoveries to
the attempt to write programs that make original
discoveries from large scientific databases, such
as ones containing information about enzymes,
proteins, and metabolic pathways (Karp &
Mavrovouniotis 1994). A 1997 special issue of
the journal Artificial Intelligence (vol. 91) con-
tains several examples of recent work on com-
putational discovery.

Cheeseman (1990) used a program that
applied Bayesian probability theory to discover
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previously unsuspected fine structure in the
infrared spectra of stars. Machine learning tech-
niques are also relevant to social science research,
particularly the problem of inferring causal models
from social data. The TETRAD program looks
at statistical data in fields such as industrial
development and voting behavior and builds
causal models in the form of a directed graph
of hypothetical causal relationships (Glymour,
Scheines, Spirtes, & Kelly 1987; Spirtes, Glymour,
& Scheines 1993).

One of the fastest-growing areas of artificial
intelligence is “data mining,” in which machine
learning techniques are used to discover regu-
larities in large computer data bases such as the
terabytes of image data collected by astronom-
ical surveys (Fayyad, Piatetsky-Shapiro, & Smyth
1996). Data mining is being applied with com-
mercial success by companies that wish to learn
more about their operations, and similar machine
learning techniques may have applications to large
scientific data bases such as those being produced
by the human genome project.

3.2 Evaluation

The topic of how scientific theories can be evalu-
ated can also be discussed from a computational
perspective. Many philosophers of science (e.g.
Howson & Urbach 1989) adopt a Bayesian
approach to questions of hypothesis evaluation,
attempting to use probability theory to describe
and prescribe how scientific theories are assessed.
But computational investigations of probabilistic
reasoning must deal with important problems
involving tractability that are usually ignored by
philosophers. A full-blown probabilistic approach
to a problem of scientific inference would need
to establish a full joint distribution of probabilit-
ies for all propositions representing hypotheses
and evidence, which would require 2n probabilit-
ies for n hypotheses, quickly exhausting the stor-
age and processing capacities of any computer.
Ingenious methods have been developed by com-
puter scientists to avoid this problem by using
causal networks to restrict the number of prob-
abilities required and to simplify the processing
involved (Pearl 1988, Neapolitain 1990). Sur-
prisingly, such methods have not been explored

by probabilistic philosophers of science, who have
tended to ignore the substantial problem of the
intractability of Bayesian algorithms.

Theory evaluation in the context of medical
reasoning has been investigated by a group of
artificial intelligence researchers at Ohio State
University (Josephson & Josephson 1994). They
developed a knowledge-based system called RED
that uses data concerning a patient’s blood sam-
ple to infer what red-cell antibodies are present
in the patient. RED performs an automated ver-
sion of inference to the best explanation, using
heuristics to form a composite hypothesis con-
cerning what antibodies are present in a sample.
Interestingly, Johnson and Chen (1996) com-
pared the performance of RED with the per-
formance of the explanatory coherence program
ECHO on a set of 48 cases interpreted by clin-
ical experts. Whereas RED produced the experts’
judgments in 58 percent of the cases, ECHO
was successful in 73 percent of the cases. Hence,
although the engineering AI approach to scient-
ific discovery has some evident advantages over
the cognitive-modeling approach in dealing with
some problems, such as mining hypotheses from
large data bases, the cognitive-modeling approach
exemplified by ECHO has not yet been surpassed
by a probabilistic or other program that ignores
human performance.

4 Theory of Computation

Both the cognitive-modeling and engineering AI
approaches to philosophy of science involve writ-
ing and experimenting with running computer
programs. But it is also possible to take a more
theoretical approach to computational issues
in the philosophy of science, exploiting results in
the theory of computation to reach conclusions
about processes of discovery and evaluation.

4.1 Discovery

Scientific discovery can be viewed as a problem
in formal-learning theory, in which the goal is
to identify a language given a string of inputs
(Gold 1968). Analogously, a scientist can be
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thought of as a function that takes as input a
sequence of formulas representing observations
of the environment and produces as output a set
of formulas that represent the structure of the
world (Jain, Osherson, Royer, & Sharma 1999;
Kelly & Glymour 1989; Martin & Osherson
1998; Osherson & Weinstein 1989). Although
formal-learning theory has produced some
interesting theorems, they are limited in their
relevance to the philosophy of science in several
respects. Formal-learning theory assumes a fixed
language and therefore ignores the conceptual
and terminological creativity that is important
to scientific development. In addition, formal-
learning theory tends to view hypotheses pro-
duced as a function of input data, rather than as
a much more complex function of the data and
the background concepts and theories possessed
by a scientist. Formal-learning theory also over-
emphasizes the goal of science to produce true
descriptions, neglecting the important role of
explanatory theories and hypothetical entities in
scientific progress.

Nevertheless, ongoing work in formal-
learning theory may shed light on more realistic
kinds of scientific discovery. Schulte (2000) has
provided a formal account of a problem in
physics that starts with observed reactions and
infers conservation principles that govern all reac-
tions among elementary particles. He shows that
there is a reliable inference procedure that is
guaranteed to arrive at an empirically adequate
set of conservation principles as more and more
evidence is obtained. Kelly (1996) also discusses
more realistic methods for modeling science,
which are reviewed in the next section.

4.2 Evaluation

The theory of computational complexity has
provided some interesting results concerning
hypothesis evaluation. Suppose you have n hypo-
theses and you wish to evaluate all the ways in
which combinations of them can be accepted
and rejected: you then have to consider 2n pos-
sibilities, an impossibly large number for even
not very large n. Bylander et al. (1991) gave a
formal definition of an abduction problem con-
sisting of a set of data to be explained and a set

of hypotheses to explain them. They then showed
that the problem of picking the best explanation
is NP-hard, i.e. it belongs to a class of problems
that are generally agreed by computational theor-
ists to be intractable in that the amount of time
to compute them increases exponentially as the
problems grow in size (see Chapter 2, COMPLEX-
ITY). Similarly, Thagard and Verbeurgt (1998)
and Thagard (2000) generalized explanatory
coherence into a mathematical coherence prob-
lem that is NP-hard. What these results show is
that theory evaluation, whether it is conceived
in terms of Bayesian probabilities, heuristic as-
sembly of hypotheses, or explanatory coherence,
must be handled by computational approxima-
tion, not through exhaustive algorithms. So far,
the theoretical results concerning coherence and
scientific evaluation have been largely negative,
but they serve to outline the limits within which
computational modeling must work.

Kelly (1996, 2001) has approached the prob-
lem of evaluation from a different epistemological
and formal perspective. In contrast to the view
that scientific inference adopts theories on the
basis of their coherence with data and each other,
he suggests that philosophy of science should
aim to specify reliable procedures that are guar-
anteed to converge to correct outputs. For Kelly,
it is not enough to be able to say when one
theory is better than another; rather, a formal
specification of scientific methods should pro-
vide algorithms that come with a guarantee that
they will converge on the right answers, as in
Schulte’s (2000) method of inferring con-
servation laws. Although Kelly has proved some
interesting theorems concerning the conditions
under which such guarantees might be available,
it is not clear whether scientific inference in gen-
eral is open to this kind of analysis. Inference
from numerical data to mathematical laws that
describe them may use methods that can be
proven to be reliable, but inference to theories
that postulate such theoretical entities as quarks,
genes, and mental representations seems inescap-
ably risky. There is good empirical evidence,
particularly in the enormously successful techno-
logical applications of theories in the natural
sciences, that scientific method does sometimes
converge on an approximation to truth. But it
is unlikely that guarantees of reliability and
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convergence to the truth will turn out to be
available for complex, theory-oriented kinds of
scientific inquiry.

5 What Computing Adds to
Philosophy of Science

More than twenty years ago, Aaron Sloman
(1978) published an audacious book, The Com-
puter Revolution in Philosophy, which predicted
that within a few years any philosopher not
familiar with the main developments of artificial
intelligence could fairly be accused of profes-
sional incompetence. Since then, computational
ideas have had a substantial impact on the phi-
losophy of mind, but a much smaller impact on
epistemology and philosophy of science. Why?
One possible reason is the kind of training that
most philosophers have, which includes little
preparation for actually doing computational
work. Philosophers of mind have often been able
to learn enough about artificial intelligence to
discuss it, but for epistemology and philosophy
of science it is much more useful to perform
computations rather than just to talk about them.
Thus this chapter can end with a summary of
what is gained by adding computational modeling
to the philosophical tool kit.

Bringing artificial intelligence into philosophy
of science introduces new conceptual resources for
dealing with the structure and growth of scientific
knowledge. Instead of being restricted to the usual
representational schemes based on formal logic
and ordinary language, computational approaches
to the structure of scientific knowledge can in-
clude many useful representations such as proto-
typical concepts, concept hierarchies, production
rules, causal networks, mental images, dynamic
models, and so on. Philosophers concerned with
the growth of scientific knowledge from a com-
putational perspective can go beyond the narrow
resources of inductive logic to consider algorithms
for generating numerical laws, discovering causal
networks, forming concepts and hypotheses, and
evaluating competing explanatory theories.

AI not only provides new conceptual resources
to philosophy of science, it also brings a new
methodology involving the construction and test-

ing of computational models. This methodology
typically has numerous advantages over pencil-
and-paper constructions. First, it requires con-
siderable precision, in that to produce a running
program the structures and algorithms postulated
as part of scientific cognition need to be explicitly
and carefully specified. Second, getting a program
to run provides a test of the feasibility of its
assumptions about the structure and processes
of scientific development. Contrary to the pop-
ular view that clever programmers can get a
program to do whatever they want, producing a
program that mimics aspects of scientific cogni-
tion is often very challenging, and production of
a program provides a minimal test of computa-
tional feasibility. Moreover, the program can then
be used for testing the underlying theoretical
ideas by examining how well the program works
on numerous examples of different kinds. Com-
parative evaluation becomes possible when dif-
ferent programs accomplish a task in different
ways: running the programs on the same data
allows evaluation of their computational models
and background theoretical ideas. Third, if the
program is intended as part of a cognitive model,
it can be assessed in terms of how well it models
human thinking.

The assessment of cognitive models can
address questions such as the following:

Genuineness: is the model a genuine instantia-
tion of the theoretical ideas about the structure
and growth of scientific knowledge, and is the
program a genuine implementation of the model?
Breadth of application: does the model apply to
lots of different examples, not just a few that
have been cooked up to make the program work?
Scaling: does the model scale up to examples
that are considerably larger and more complex
than the ones to which it has been applied?
Qualitative fit: does the computational model
perform the same kinds of tasks that people do
in approximately the same way?
Quantitative fit: can the computational model
simulate quantitative aspects of psychological
experiments, e.g. ease of recall and mapping in
analogy problems?
Compatibility: does the computational model
simulate representations and processes that are
compatible with those found in theoretical
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accounts and computational models of other
kinds of cognition?

Computational models of the thought pro-
cesses of scientists that satisfy these criteria have
the potential to increase our understanding of
the scientific mind enormously. Engineering AI
need not address questions of qualitative and
quantitative fit with the results of psychological
experiments, but should employ the other four
standards of assessment.

There are numerous issues connecting com-
putation and the philosophy of science that have
not been touched on in this review. Computer
science can itself be a subject of philosophical
investigation, and some work has been done
discussing epistemological issues that arise in
computer research (see e.g. Colburn 2000; Fetzer
1998; Floridi 1999; Thagard 1993). In particu-
lar, the philosophy of artificial intelligence and
cognitive science are fertile areas of philosophy
of science. Computer modeling can also be
useful in developing fields of interest to both
philosophy and science, such as artificial life (see
Chapter 15, ARTIFICIAL LIFE, and Chapter 26,
COMPUTATIONAL MODELING AS A PHILOSOPHICAL

METHODOLOGY). The focus of this chapter has
been more narrow, on how computational
models can contribute to philosophy of science.

By way of conclusion, here is a list of some
open problems that seem amenable to computa-
tional/philosophical investigation:

In scientific discovery, how are new questions
generated? Formulating a useful question such
as “How might species evolve?” or “Why do the
planets revolve around the sun?” is often a pre-
requisite to more data-driven and focused pro-
cesses of scientific discovery, but no computational
account of scientific question generation has yet
been given.

What is the role of emotions in scientific think-
ing? Scientists often generate questions in part
through emotional stimuli such as curiosity and
surprise, but no computer simulations of scientific
thinking have yet taken emotions into account.
Emotions are also outputs from scientific evalu-
ation, as when scientists praise a theory as elegant
or beautiful or exciting. Thagard 2002 discusses
emotions and inputs and outputs in scientific
discovery and evaluation.

What role does visual imagery play in the struc-
ture and growth of scientific knowledge? Although
various philosophers, historians, and psycholo-
gists have documented the importance of visual
representations in scientific thought, existing
computational techniques have not been well-
suited for providing detailed models of the cog-
nitive role of pictorial mental images (see e.g.
Shelley 1996). Computational models of high-
level visual cognition are beginning to be devel-
oped (e.g. Davies & Goel 2000; Croft & Thagard
2002), but they have not yet been applied to
scientific discovery and evaluation.

Perhaps problems such as these will, like other
issues concerning discovery and evaluation, yield
to computational approaches that involve cog-
nitive modeling, engineering AI, and the theory
of computation.
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Chapter 24

Methodology of
Computer Science

Timothy Colburn

Introduction

Science and philosophy are often distinguished
by pointing out that science seeks explanation
while philosophy seeks justification. To ask what
accounts for the neuronal firing of synapses in the
brain, for example, is a scientific question, while
to ask what would constitute adequate grounds
for believing that an artificially constructed neural
network is conscious is a philosophical one. So
philosophy has been characterized as the critical
evaluation of beliefs through the analysis of con-
cepts in a given area of inquiry. Of course, sci-
ence is also concerned with critically evaluating
beliefs and analyzing concepts. However, philo-
sophy is a non-empirical, or a priori, discipline,
in distinct contrast with science.

Computer science would seem to be distin-
guished from philosophy just as any other science.
But computer science is unique among the sci-
ences in the types of models it creates. In seek-
ing explanations, science often constructs models
to test hypotheses for explaining phenomena.
These models, in the form of experimental appar-
atus, are of course physical objects. The models
built and manipulated in computer science,
however, are not physical at all. Computer science

is a science concerned with the study of com-
putational processes. A computational process is
distinguished from, say, a chemical or electrical
process, in that it is studied “in ways that ignore
its physical nature” (Hailperin et al. 1999: 3).
For example, the process by which a card player
arranges cards in her hand, and the process by
which a computer sorts names in a customer list,
though they share nothing in common physic-
ally, may nevertheless embody the same com-
putational process. They may, for example, both
proceed by scanning the items to be arranged one
by one, determining the proper place of each
scanned item relative to the items already scanned,
and inserting it into that place, perhaps necessit-
ating the moving of previously scanned items to
make room. This process (known as an insertion
sort in computer science terms) can be precisely
described in a formal language without talking
about playing cards or semiconducting elements.
When so described, one has a computational
model of the process in the form of a computer
program. This model can be tested, in a way
analogous to how a hypothesis is tested in the
natural sciences, by executing the program and
observing its behavior. It can also be reasoned
about abstractly, so that questions can be an-
swered about it, such as whether there are other
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processes which will have the same effect but
achieve it more efficiently. Building computational
models and answering these kinds of questions
form a large part of what computer scientists do.

The explosive growth in the number of com-
puter applications in the last several decades has
shown that there is no limit to how many real-
world processes are amenable to modeling by
computer. Not only have traditional activities,
like record-keeping, investing, publishing, and
banking, been simply converted to control by
computational models, but whole new kinds of
activity have been created that would not be
possible without such models. These are the by-
now-familiar “virtual” activities described in the
language of cyberspace: e-mail, chatrooms, web
surfing, online shopping, internet gaming, and
so on.

The role of philosophy in that subfield of
computer science known as artificial intelligence
(AI) has long been recognized, given the roles
of knowledge and reasoning in AI. And the
reverse, the role of AI in philosophy, has even
been highlighted by some, albeit controversially.
(See Chapter 9, THE PHILOSOPHY OF AI AND ITS

CRITIQUE, and Chapter 10, COMPUTATIONALISM,
CONNECTIONISM, AND THE PHILOSOPHY OF MIND.)
But apart from considerations arising from the
modeling of knowledge and reason, computer
science is ripe for the good old-fashioned ana-
lysis that philosophy can provide for any science.
Thus, a perfectly reasonable role of philosophy
is to attempt to place computer science within
the broad spectrum of inquiry that constitutes
science. The concern here is to deal with the
inevitable identity crises that crop up in the self-
image of any adolescent, which computer science
certainly is. Philosophy should address questions
like: What is the relation between mathematics
and computer science? Is there a sense in which
computer science is experimental science? Is a
computer programmer merely a data wizard, or
can she also engage in information modeling?
What is the nature of abstraction in computer
science? What are the ontological implications
of computer science concepts? From the point
of view of computer science methodology, the
most probing of these questions concerns the
relation between mathematics and computer

science and the nature of abstraction in com-
puter science. The remainder of this chapter turns
its attention to these issues.

Computer Science and
Mathematics

Philosophical contributions to the foundations of
scientific disciplines often center around “pivotal
questions” regarding reductionist attempts. In
the philosophy of biology, for example, the ques-
tion is whether the science of the organic can
be reduced to the science of the inorganic (the
reduction of biological to physical laws). In math-
ematics, logicism claims that all of mathematics
can be reduced to logic. For science in general,
logical positivism advocated the reduction of
theoretical vocabulary to observational vocabu-
lary. An early “pivotal question” in the philosophy
of computer science is whether computer science
can be reduced to a branch of mathematics. How
a computer scientist answers this question can
greatly influence his or her methodology.

The range of perspectives from which the
reductionist issue can be addressed is wide. Con-
sider the following view, expressed by C. A. R.
Hoare: “Computer programs are mathematical
expressions. They describe, with unprecedented
precision and in the most minute detail, the
behavior, intended or unintended, of the com-
puter on which they are executed” (Hoare 1986:
115). And this alternative, offered by C. Floyd:
“Programs are tools or working environments
for people. [They] are designed in processes of
learning and communication so as to fit human
needs” (Floyd 1987: 196). The view expressed
by Hoare is unequivocal: computer programs are
mathematical expressions. The quote by Floyd
is less precise, but expresses a view on the func-
tion of programs for humans in decidedly non-
mathematical terms. While these views do not
necessarily contradict one another, they can most
definitely signal contrasting interpretations as to
how computer programs ought to be designed,
built, and used.

While these quotations express views on the
function and status of computer programs, the
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differences of opinion extend to the broader
notion of computing as a science, in which the
task of actually creating a program is but one
aspect. Of related concern, for example, are the
activities of program specification and verification.
A program specification is a detailed description
of a program’s input and output, ignoring the
details of how the program actually accomplishes
its task. Program verification is the process of
determining whether a program actually conforms
to its specification. These activities are just as
germane to the software process as writing the
program itself, and there is no agreement on
whether or not program specifications should be
mathematical entities and whether or not pro-
gram verification can be a purely mathematical
activity.

There is agreement, however, on the possibil-
ity of mathematically reasoning about programs
as the abstract representations of algorithms, as
opposed to programs as the causal manipula-
tions of bits. For example, given a program P
consisting of the statements S1; . . . ; Sn, it is pos-
sible to construct statements like “Let S1, S2, . . . ,
and Sn be an abstract representation of program
P. Then P has property R,” where R describes
some aspect of the execution of P in the abstract
sense. For example, R might describe limits on
the time it would take P to run, or the amount
of memory P would require to execute. By giv-
ing precise interpretations to the Si in a pertinent
language and appropriately choosing R, it may
be possible that the statement above is a theorem
in a formal language. This is in fact the approach
taken by modern researchers in computer sci-
ence who are concerned with reasoning about
algorithms and data structures.

While this is a justification of how reasoning
about programs can be regarded as mathemat-
ical, it is yet a much broader claim to say that
computer science is, or ought to aspire to be, a
branch of mathematics. For there are still the
issues of whether the specification, generation,
or maintenance of programs (apart from reason-
ing about completed ones) is or ought to be like
a mathematical activity. The issue which motiv-
ates and underlies much of the tension in philo-
sophical discussion of computer science is formal
verification, or mathematically reasoning about a
program’s outcome.

The Formal Verification Debate

The use of formal verification in computer sci-
ence has generated debate since the appearance
of a paper on verification and social processes by
R. DeMillo, R. Lipton, and A. Perlis in 1979.
But it was not until 1988 that these questions
drew the attention of a “pure” philosopher, when
J. Fetzer resurrected the program verification/
social process debate of a decade earlier and
subjected it to genuine philosophical analysis.
Before this time, debate on the issues was evid-
enced mainly by differences in visionary accounts
of how the young discipline of computer science
ought to proceed, given not by philosophers but
by computer science practitioners and teachers.

One of the early proponents of formal program
verification was John McCarthy, who is also given
credit for coining the term “artificial intelligence”
in the 1950s. McCarthy was originally motivated
by a theory of computation that would allow,
among other advantages, the automatic transla-
tion from one linguistic paradigm to another. One
can, in fact, look back now after nearly 30 years
and confirm that automatic program translation,
with the help of precise language specification, has
been accomplished in the case of language com-
pilers. These are programming tools that translate
programs written in familiar human languages
like Basic, C++, and Java, into the machine lan-
guage of computers, which is composed only of
zeroes and ones. However, as every language
reference manual’s warranty disclaimer demon-
strates, no automatic compiler in all cases cor-
rectly translates programs into machine language.
Thus, there is the distinction between (1) using
mathematical methods during language transla-
tion to produce highly reliable machine language
code, and (2) using mathematical methods to
prove that a source program would behave, in
an abstract sense, exactly as its specification im-
plies. McCarthy, seeing no obstacle to (2), wrote:

It should be possible almost to eliminate
debugging. Debugging is the testing of a pro-
gram on cases one hopes are typical, until it
seems to work. This hope is frequently vain.
Instead of debugging a program, one should
prove that it meets its specifications, and this
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proof should be checked by a computer pro-
gram. (McCarthy 1962: 22)

While McCarthy was one of the first to express
this opinion, it came to be shared by others,
who strove to describe what such a proof would
be like. P. Naur recognized that one way to talk
about a program both as a static, textual entity
and as a dynamic, executing entity, was to con-
ceive of the program as executing, but from time
to time to conceptually “halt” it and make state-
ments about the state of its abstract machine at
the time of halting (Naur 1966). By making a
number of these “snapshots” of a conceptually
executing program, and by providing justifica-
tions for each on the basis of the previous one, a
proof about the state of the abstract machine
upon termination could be constructed.

Though this idea held much promise for
believers in the mathematical paradigm (i.e.,
that computer science is a branch of formal
mathematics), it came under attack in the above-
mentioned essay by DeMillo, Lipton, and Perlis.
They argued that mechanically produced pro-
gram verifications, which are long chains of
dense logical formulas, are not what constitute
mathematical proofs. In coming to be accepted,
a mathematical proof undergoes social processes
in its communication and peer scrutiny, pro-
cesses that cannot be applied to unfathomable
pages of logic. While DeMillo, Lipton, and Perlis
did not subscribe to the mathematical paradigm,
they also did not deny that programming is like
mathematics. An analogy can be drawn between
mathematics and programming, but “the same
social processes that work in mathematical proofs
doom verifications” (DeMillo et al. 1979: 275).
Social processes, they argued, are critical:

No matter how high the payoff, no one will
ever be able to force himself to read the
incredibly long, tedious verifications of real-
life systems, and unless they can be read,
understood, and refined, the verifications are
worthless. (DeMillo et al. 1979: 276)

Although Fetzer was also a critic of the
mathematical paradigm for computer science,
it was for different reasons. He argued that
the presence or absence of social processes is

germane to neither the truth of mathematical
theorems nor program verifications:

Indeed, while social processes are crucial in
determining what theorems the mathematical
community takes to be true and what proofs it
takes to be valid, they do not thereby make
them true or valid. The absence of similar
social processes in determining which programs
are correct, accordingly, does not affect which
programs are correct. (Fetzer 1988: 1049)

DeMillo, Lipton, and Perlis hit upon, for exam-
ple, the boredom, tedium, and lack of glamor
involved in reviewing proofs produced by
mechanical verifiers. But for Fetzer, if this is all
there is to their criticism of formal verification, it
is not substantial. As Fetzer pointed out, social
processes are characterized by transitory patterns
of human behavior which, one could imagine,
in different circumstances would reserve for pro-
gram verification the same sort of excitement
and collegial collaboration that marks the best
mathematical research. Thus DeMillo, Lipton,
and Perlis have identified a difference in practice
between mathematical research and formal pro-
gram verification, but not in principle.

Fetzer believes that formal program verification
cannot fulfill the role that some of its advocates
would assign to it within software engineering,
but he attacks it from a nonsocial, more strictly
philosophical perspective. This has to do with
the relationship between mathematical models
and the causal systems they are intended to de-
scribe. Close scrutiny of this relationship reveals,
for Fetzer, the relative, rather than absolute,
nature of the program correctness guarantee that
formal verification can provide. It is only pos-
sible to prove formally something about a formal
model, that is, a formal program model rendered
in formal text. It is not possible to prove formally
something about a causal model, that is, an actual,
executing program represented in a physical, elec-
tronic substrate of bistable processor and memory
elements. “[I]t should be apparent that the very
idea of the mathematical paradigm for computer
science trades on ambiguity” (Fetzer 1991: 209).

Strong claims of formal verificationists are
victim to this ambiguity because they ignore
several distinctions: between programs running
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on abstract machines with no physical counter-
part and programs running on abstract machines
with a physical counterpart; between “programs-
as-texts” and “programs-as-causes”; and between
pure and applied mathematics. Recognizing these
distinctions, for Fetzer, reveals that the claim
that it is possible to reason in a purely a priori
manner about the behavior of a program is true
if the behavior is merely abstract; false, and dan-
gerously misleading otherwise. This guarantees
the indispensability of empirical methods in the
software development process, for example, the
use of program testing in an effort to eliminate
program bugs.

Abstraction in Computer Science

Computer scientists are often thought to labor
exclusively in a world of bits, logic circuits, and
microprocessors. Indeed, the foundational con-
cepts of computer science are described in the
language of binary arithmetic and logic gates,
but it is a fascinating aspect of the discipline that
the levels of abstraction that one can lay upon
this foundational layer are limitless, and make
possible to model familiar objects and processes
of everyday life entirely within a digital world.
When digital models are sufficiently realistic,
the environments they inhabit are called virtual
worlds. So today, of course, there are virtual
libraries, virtual shopping malls, virtual commu-
nities, and even virtual persons, like the digital
version of actor Alan Alda created in an episode
of PBS’s Scientific American Frontiers.

Complex virtual worlds such as these are made
possible by computer scientists’ ability to dis-
tance themselves from the mundane and tedious
level of bits and processors through tools of
abstraction. To abstract is to describe something
at a more general level than the level of detail
seen from another point of view. For example,
an architect may describe a house by specifying
the height of the basement foundation, the loca-
tion of load-bearing walls and partitions, the R-
factor of the insulation, the size of the window
and door rough openings, and so on. A realtor,
however, may describe the same house as having
a certain number of square feet, a certain number

of bedrooms, whether the bathrooms are full or
half, and so on. The realtor’s description leaves
out architectural detail but describes the same
entity at a more general level, and so it is an
abstraction of the architect’s description. But
abstraction is relative. For example, the archi-
tect’s description is itself an abstraction when
compared to a metallurgist’s description of the
nails, screws, and other fasteners making up the
house, and the botanist’s description of the vari-
ous cellular properties of the wood it contains.

The computer scientist’s world is a world of
nothing but abstractions. It would not be possible
to create the complex virtual worlds described
above if the only things computer scientists could
talk about were bits, bytes, and microcircuits.
One can give an accurate idea of what computer
scientists do by describing the abstraction tools
they use. Now to characterize computer science
as involved with abstractions seems to claim for
it a place alongside mathematics as a purely for-
mal endeavor. But the general trends in all pro-
gramming are toward higher-quality software by
abstracting away from the lower-level concepts
in computer science and toward the objects and
information that make up the real world. This is
a kind of abstraction that is fundamentally dif-
ferent from that which takes place in mathematics.
Understanding the difference is crucial in avoid-
ing the persistent misconception by some that
computer science is just a branch of pure math-
ematics. Both mathematics and computer sci-
ence are marked by the introduction of abstract
objects into the realm of discourse, but they differ
fundamentally in the nature of these objects. The
difference has to do with the abstraction of form
versus the abstraction of content.

Traditionally, mathematics, as a formal science,
has been contrasted with the factual sciences such
as physics or biology. As natural sciences, the
latter are not concerned with abstraction beyond
that offered by mathematics as an analytical tool.
The literature is full of strict bifurcations between
the nature of formal and factual science in terms
of the meanings of the statements involved
in them. R. Carnap, for example, employs the
analytic/synthetic distinction in claiming that the
formal sciences contain only analytic statements.
Since analytic statements are true only by virtue
of the transformation rules of the language in
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which they are made, Carnap is led to the view
that “[t]he formal sciences do not have any objects
at all; they are systems of auxiliary statements
without objects and without content” (Carnap
1953: 128). Thus, according to Carnap the ab-
straction involved in mathematics is one totally
away from content and toward the pure form of
linguistic transformations.

Not all philosophers of mathematics agree
with Carnap that mathematics has only lin-
guistic utility for scientists, but there is agreement
on the nature of mathematical abstraction being
to remove the meanings of specific terms. M.
Cohen and E. Nagel, for example, present a set
of axioms for plane geometry; remove all refer-
ences to points, lines, and planes; and replace
them with symbols used merely as variables. They
then proceed to demonstrate a number of theo-
rems as consequences of these new axioms, show-
ing that pure deduction in mathematics proceeds
with terms that have no observational or sensory
meaning. An axiom system may just happen to
describe physical reality, but that is for experi-
mentation in science to decide. Thus, again, a
mathematical or deductive system is abstract by
virtue of a complete stepping away from the con-
tent of scientific terms:

Every [deductive] system is of necessity ab-
stract: it is the structure of certain selected rela-
tions, and must consequently omit the structure
of other relations. Thus the systems studied in
physics do not include the systems explored in
biology. Furthermore, as previously shown, a
system is deductive not in virtue of the special
meanings of its terms, but in virtue of the
universal relations between them. The specific
quality of the things which the terms denote
do not, as such, play any part in the system.
Thus the theory of heat takes no account
of the unique sensory qualities which heat
phenomena display. A deductive system is
therefore doubly abstract: it abstracts from the
specific qualities of a subject matter, and it
selects some relations and neglects others.
(Cohen & Nagel 1953: 138–9)

As a final example, consider C. Hempel’s
assessment of the nature of mathematics while
arguing for the thesis of logicism, or the view
that mathematics is a branch of logic:

The propositions of mathematics have, there-
fore, the same unquestionable certainty which
is typical of such propositions as “All bachelors
are unmarried,” but they also share the com-
plete lack of empirical content which is associ-
ated with that certainty: The propositions of
mathematics are devoid of all factual content;
they convey no information whatever on any
empirical subject matter. (Hempel 1953: 159)

In each of these accounts of mathematics, all
concern for the content or subject-matter of
specific terms is abandoned in favor of the form of
the deductive system. So the abstraction involved
results in essentially the elimination of content.
In computer science, content is not totally
abstracted away in this sense. Rather, abstraction
in computer science consists in the enlargement
of content. For computer scientists, this allows
programs and machines to be reasoned about,
analyzed, and ultimately efficiently implemented
in physical systems. For computer users, this
allows useful objects, such as documents, shop-
ping malls, and chatrooms, to exist virtually in a
purely electronic space.

Understanding abstraction in computer sci-
ence requires understanding some of the history
of software engineering and hardware develop-
ment, for it tells a story of an increasing distance
between programmers and the machine-oriented
entities that provide the foundation of their work.
This increasing distance corresponds to a con-
comitant increase in the reliance on abstract
views of the entities with which the discipline is
fundamentally concerned. These entities include
machine instructions, machine-oriented processes,
and machine-oriented data types. The remainder
of this chapter will explain the role of abstrac-
tion with regard to these kinds of entities.

Language abstraction. At the grossest physical
level, a computer process is a series of changes
in the state of a machine, where each state is
described by the presence or absence of elec-
trical charges in memory and processor elements.
But programmers need not be directly concerned
with machine states so described, because they
can make use of software development tools
that allow them to think in other terms. For
example, with the move from assembly to high-
level language, computer scientists can abandon
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ReadMatrix(A,n,m)
ReadMatrix(B,m,p)
MultiplyMatrices(A,B,C,n,m,p)

for i ← 1 to n do
for j ← 1 to m do

read(A[i,j])
for j ← 1 to m do

for k ← 1 to p do
read(B[j,k])

for i ← 1 to n do
for k ← 1 to p do begin

C[i,k] ← 0
for j ← 1 to m do

C[i,k] ← C[i,k] + A[i,j] * B[j,k]
end

Figure 24.2: Multiplying matrices with procedural
abstraction

talk about particular machine-oriented entities
like instructions, registers, and word integers in
favor of more abstract statements and variables.
High-level language programs allow machine
processes to be described without reference to
any particular machine. Thus, specific language
content has not been eliminated, as in mathemat-
ical or deductive systems, but replaced by abstract
descriptions with more expressive power.

Procedural Abstraction. Abstraction of lan-
guage is but one example of what can be con-
sidered the attempt to enlarge the content of
what is programmed about. Consider also the
practice of procedural abstraction that arose with
the introduction of high-level languages. Along
with the ability to speak about abstract entities
like statements and variables, high-level languages
introduced the idea of modularity, according to
which arbitrary blocks of statements gathered
into procedures could assume the status of state-
ments themselves. For example, consider the
high-level language statements given in figure
24.1. It would take a studied eye to recognize
that these statements describe a process of filling
an n × m matrix A and an m × p matrix B with
numbers and multiplying them, putting the
result in an n × p matrix C such that Ci,k = Σm

j=1

Ai,jBj,k. But by abstracting out the three major
operations in this process and giving them pro-
cedure names, the program can be written at a
higher, and more readable, level as in figure 24.2.
These three statements convey the same informa-
tion about the overall process, but with less
machine detail. No mention is made, say, of the
order in which matrix elements are filled, or
indeed of matrix subscripts at all. From the point

Figure 24.1: Multiplying matrices

of view of the higher-level process, these details
are irrelevant; all that is really necessary to invoke
the process is the names of the input and output
matrices and their dimensions, given as para-
meters to the lower-level procedures. Of course,
the details of how the lower-level procedures
perform their actions must be given in their
definitions, but the point is that these defini-
tions can be strictly separated from the processes
that call upon them. What remains, then, is the
total abstraction of a procedure’s use from its
definition. Whereas the language example had
the abstraction of the content of computer in-
structions, here there is the abstraction of the
content of whole computational procedures. And
again, the abstraction step does not eliminate
content in favor of form as in mathematics; it
renders the content more expressive.

Data Abstraction. As a last example, consider
the programmer’s practice of data abstraction.
Machine-oriented data types, such as integers,
arrays, floating point numbers, and characters,
are, of course, themselves abstractions placed on
the physical states of memory elements inter-
preted as binary numbers. They are, however,
intimately tied to particular machine architectures
in that there are machine instructions specifically
designed to operate on them. (For example,
integer instructions on one machine may operate
on 32 bits while similar operations on another
machine may operate on 64 bits.) They are also
built into the terminology of all useful high-
level languages. But this terminology turns out
to be extremely impoverished if the kinds of
things in the world being programmed about
include, as most current software applications
do, objects like customers, recipes, flight plans,
or chat rooms.

The practice of data abstraction is the speci-
fication of objects such as these and all opera-
tions that can be performed on them, without
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reference to the details of their implementation
in terms of other data types. Such objects, called
abstract data types (ADTs), once they become
implemented, assume their place among integers,
arrays, and so on as legitimate objects in the
computational world, with their representation
details, which are necessarily more machine-
oriented, being invisible to their users. The result
is that programs that are about customers, recipes,
flight plans, and so on are written in terms that
are natural to these contexts, and not in the
inflexible terms of the underlying machine. The
programs are therefore easier to write, read, and
modify. The specification and construction of
abstract data types are primary topics in under-
graduate computer science curricula, as evidenced
by the many textbooks devoted to these topics.
But this again is a type of abstraction that does
not eliminate empirical content, as in mathem-
atics, but rather enlarges the content of terms
by bringing them to bear directly on things in
a non-machine-oriented world.

Conclusion

Computer science will always be built on a sci-
entific and engineering foundation requiring spe-
cialists with the most acutely analytic, creative,
and technological minds. But the modeling and
abstraction abilities that this foundation provides
opens the field to virtually anyone willing to learn
its languages. As computer science grows as a
discipline, its methodology will be less depend-
ent on the specialists maintaining the founda-
tion and more dependent on those able to
develop, implement, and use high-level languages
for describing computational processes. What is
meant by a “computational process” has diverged
so much from the notion of a machine process
that a currently popular language paradigm,
namely object-oriented design and programming,
de-emphasizes traditional algorithmic forms of
program control in favor of the notions of classes,
objects, and methods. (See, for example, the
current widespread interest in Java.)

As programming languages evolve, it will
be necessary for software developers to be con-
versant in the analytical tools of philosophers

as they analyze their domains for logics, rules,
classifications, hierarchies, and other convenient
abstractions. Much of the computational model-
ing process will be characterized by activity more
akin to logic and ontology than programming
per se. (See the chapters in this volume by Smith,
Antonelli, Gillies, and Bicchieri on ontology, logic,
and probability.) Now more than ever, there is
room for much philosophical research in the
development of future computational modeling
languages. One might even venture the predic-
tion that philosophy will come to be an influen-
tial tool in the analysis and practice of computer
science methodology.
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Chapter 25

Philosophy of
Information Technology

Carl Mitcham

of information technology, like the philosophy
of computer science, is properly initiated by the
effort to define that on which it seeks to reflect.
Once preliminary definitions are negotiated,
philosophies of x, often against a historico-
philosophical background, recapitulate in differ-
entially weighted forms the main branches of
philosophy tout court – metaphysics, epistemo-
logy, and ethics – with particular emphases
reflecting both the unique philosophical chal-
lenges of x and the context of presentation. In
the present case, for example, although ethical
and political issues play a prominent role in the
philosophy of information technology, they are
treated lightly here because of the more ex-
tensive coverage provided by Chapters 5 and 6
(COMPUTER ETHICS and COMPUTER-MEDIATED

COMMUNICATION AND HUMAN–COMPUTER INTER-
ACTION). Here the stress is on theoretical issues
concerning especially metaphysical assessments of
information technology.

What Is Information Technology?

Information technology – or such closely related
terms as “information systems” and “media
technology” – is commonly described as that

Philosophy of information technology may be
seen as a special case of the philosophy of techno-
logy. Philosophical reflection on technology aims
in general to comprehend the nature and mean-
ing of the making and using, especially of things
made and used. Such reflection nevertheless
exhibits a tension between two major traditions:
one arising within engineering, another in the
humanities (Mitcham 1994). For the former or
expansionist view, technology is deeply and com-
prehensively human, and thus properly extended
into all areas of life; according to the latter or
limitationist perspective, technology is a restricted
and properly circumscribed dimension of the
human. This distinction and corresponding ten-
sions may also be seen at play in the philosophy
of information technology (IT), between those
who would critically celebrate and extend IT and
those who would cautiously subordinate and
delimit it. Diverse metaphysical, epistemological,
and ethical arguments are marshaled to defend
one position over the other, as well as to build
bridges between these two philosophical poles.

Philosophies of x commonly begin with
attempts to define x. Philosophy of science, for
instance, logically opens with the demarcation
problem, by considering various proposals for
distinguishing science from other forms of
knowledge or human activity. The philosophy
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technology constituted by the merging of data-
processing and telecommunications (with diverse
input devices, processing programs, commun-
ications systems, storage formats, and output
displays). It arose from earlier forms of electronic
communications technology (telegraph, tele-
phone, phonograph, radio, motion pictures,
television) by way of computers and cybernetics
(see Chapter 14), an earlier term that still casts
its shadow over IT, as in such coinages as
“cyberspace” and other cognates. It may never-
theless be useful to begin by attempting to
rethink what is perhaps too facile in such a
description.

The terms “information” and “technology”
are both subject to narrow and broad, not to say
engineering and humanities, definitions. Devel-
oped by Claude Shannon (Shannon & Weaver
1949), the technical concept of information is
defined as the probability of a signal being trans-
mitted from device A to device B, which can be
mathematically quantified (see Chapters 4 and
13, treating INFORMATION and THE PHYSICS OF

INFORMATION, respectively). The theory of infor-
mation opened up by this distinct conceptual
analysis has become the basis for constructing
and analyzing digital computational devices and
a whole range of information (also called com-
munication) technologies, from telephones to
televisions and the internet.

In contrast to information (and information
technologies) in the technical sense is the con-
cept of information in a broader or semantic
sense. Semantic information is not a two-term
relation – that is, a signal being transmitted from
A to B – but a three-term relation: a signal trans-
mitted from one device to another, which is then
understood as saying something to a person C.
Although information technologies in the tech-
nical sense readily become information techno-
logies in the semantic sense, there is no precise
relation between technical and semantic informa-
tion. Independent of its probability as a signal,
some particular transmission may possess any
number of different semantic meanings. A signal
in the form of two short clicks or light flashes
(Morse Code for the letter “i”), could be a self-
referential pronoun, part of the word “in,” a
notation in Latin numerals of the number one –
or any number of other possibilities. Absent the

context, a signal is not a message. Kenneth Sayre
(1976) and Fred I. Dretske (1981) are neverthe-
less two important attempts to develop semantic
theories of information grounded in the tech-
nical concept of information (see Chapter 17,
KNOWLEDGE).

“Technology” too is a term with narrow and
broad definitions. In the narrow or engineering
sense, technology is constituted by the system-
atic study and practice of the making and using
of artifacts (cf. the curricula of technological
universities), and to some extent by the physical
artifacts themselves (from hammers to cars and
computers). Indeed, a distinction is often drawn
between premodern techne or technics and mod-
ern technology. For thousands of years human
making and using proceeded by intuitive, trial-
and-error methods, remained mostly small-scale
and dwarfed by natural phenomena. With the
rise of modern methods for making and using,
these activities became systematically pursued
(often on the basis of scientific theories) and
their products began to rival natural phenomena
in scale and scope. In a broader humanities
parlance, technology covers both intuitive, small-
scale and scientific, large-scale making and using
in all its modes – as knowledge, as artifact, as
activity, and even as volition.

Given these narrow and broad definitions
for each element in the compound term, one
may postulate a two by two matrix and imagine
four different information technology exemplars
(figure 25.1). In what follows, a significant sample
from among these possible information technolo-
gies will be analyzed in order to illustrate diverse
facets of a potentially comprehensive philosophy
of information technology.

Information Technology in
Historico-philosophical

Perspective

Philosophy is not coeval with human thought,
but emerges from and against prephilosophical
reflection that it nevertheless continues or mir-
rors. Prior to the rise of philosophy, mythological
and poetic narratives often expressed the ambiv-
alence of the human experience of tool making
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Technical sense of
information

Semantic sense of
information

Premodern technology

Alphabetic writing

Books and related texts

Scientific technology

Electronic and source code
signal transmission

Works of high
representational electronic
communications media
(movies, TV programs,
hypertexts, etc.)

(Phaedrus 274d ff.). Socrates himself comments
on the silence of written words, and Plato fam-
ously remarked on the limitations of writing
even in his own works (Letter VII, 341b–e and
344c–d). The Politicus (300c ff.), however, con-
cludes with a modest defense of written laws,
and the Ion presents the poet as one inspired by
the gods.

Aristotle, in an analysis that echoes Plato’s
assessment in The Republic of artifice and poetry
as thrice-removed from being itself, notes the
inability of techne to effect a substantial unity of
form and matter. “If a bed were to sprout,” says
Aristotle, “not a bed would come up but a tree”
(Physics II, i, 193a12–16). In a parallel analysis
of the relation between experiences, spoken
words, and writing at the beginning of On Inter-
pretation, Aristotle places the written word at
two removes from experience and three removes
from the things experienced, thus implying a
dilution of contact with reality as one moves
from the information technology of speech to
that of writing. Spoken words refer to experi-
ence; written words to spoken words.

In contrast to Aristotle’s characterization of
words in strictly human terms, Christianity re-
affirms the divine character of the transcendent
word incarnate (John 1) and of the transmission
of the gospel through that preaching which rep-
resents the word (Romans 10:17). Indeed, ac-
cording to Augustine, Christian preaching unites
truth and language with an efficacy that the
Platonists could not imagine (De vera religione i,
1 ff.). This is an argument that has been revived
in Catherine Pickstock’s theological interpretation
of that information technology known as liturgy
(Pickstock 1998). At the same time, the meaning
of the words of revelation in Scripture is not

Figure 25.1: Information technology exemplars

and using. Stories of the conflict between Cain
(builder of cities) and Abel (pastoral shepherd),
of Prometheus (who stole fire for humans from
the gods), of Hephaestus (the deformed god of
the forge), and of Icarus (the inventor who went
too far) all attest to the problematic character of
human engagement with what has come to be
called technology. The story of the Tower of
Babel (Genesis 11) even suggests the destructive
linguistic repercussions of an excessive pursuit of
technological prowess.

By contrast, when the prophet Ezekiel learns
in the desert to infuse dry bones (alphabetic con-
sonants) with the breath of the spirit (unwritten
vowels), it is as if God were speaking directly
through him (Ezekiel 37). Indeed, God himself
creates through speech or logos (Genesis 1), and
writes the law both in stone and in the hearts of
a people. Thus, information technologies in their
earliest forms – speech and writing – manifest at
least two fundamental experiences of the human
condition: sin or hubris and transcendence, the
demonic and the divine.

Greek philosophical reflection on techne like-
wise noted the two-fold tendency of human skill
in the making and using of artifacts to be pur-
sued in isolation from the good and to particip-
ate in the divine. This is as true of information
technai, such as oratory and writing, as it is of
the mechanical and military arts. In Plato’s
Gorgias, for instance, Socrates challenges the
sophist to reintegrate the techniques of rhetoric
with the pursuit of truth, to eschew the tricks of
gaining power divorced from knowledge of the
good. In the Phaedrus, Socrates tells the story of
how King Thamus rejected the Egyptian god
Theuth’s invention of writing on the grounds that
it would replace real with merely virtual memory
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always obvious, thus requiring the development
of principles of interpretation (see Augustine’s
De doctrina christiana). Faith in the Scriptures as
the word of God solves, as it were, the technical
question concerning the extent to which the
signal has been accurately transmitted from A
to B (God to humans), but not the semantic
question of what this signal means (to whom it
speaks and about what). The meaning of rev-
elation requires a science of interpretation or
hermeneutics if its information (from the Latin
informare, to give form) is truly to convert those
who receive it.

This dedication to the development of tech-
niques of interpretation led to a unique medieval
flowering of logical, rhetorical, and hermeneutic
prowess. Reflecting the effulgence of poetic
exegesis of sacred texts, Thomas Aquinas defends
the metaphorical “hiding of truth in figures” as
fitting to the word of God, and argues the power
of Scripture to signify by way of multiple refer-
ences: historical or literal, allegorical, tropolo-
gical or moral, and anagogical or eschatological
(Summa theologiae I, q.1, art.9–10). What is
equally remarkable is that – no doubt stimulated
by the literal and spiritual interpretations of rev-
elation as granting the world a certain autonomy
and calling upon human beings to exercise posit-
ive mastery over it – the flowering of semantic
studies was paralleled by an equally unpreced-
ented blossoming of physical technologies.
Examples include the waterwheel and windmill,
the moldboard plow, the horse collar, the lateen
sail, and the mechanical clock.

The modern world opens, paradoxically, by
pitting the second form of technological progress
(physical inventions) against the first (poetic creat-
ivity). Metaphorical words are to be rejected in
the pursuit of real things and ever more power-
ful technologies (see especially the arguments of
Francis Bacon and René Descartes). The histor-
ical result was to turn exegesis into criticism and
semantic analysis into a drive for conceptual
clarity, in a reform of the techniques of commun-
ication that became most manifest in the new
rhetoric of modern natural science – as well as in
the invention of a whole new information tech-
nology known as moveable type.

The invention of the printing press and the
consequent democratization of reading can be

associated with a manifold of social transforma-
tions: religious, political, economic, and cultural.
The philosophical influences of such changes have
been legion. To cite but one example, as the
world was increasingly filled with texts, and texts
themselves were severed from stable lifeworlds
of interpreters, philosophy became increasingly
linguistic philosophy, in two forms. In contin-
ental Europe, hermeneutics was redefined by
Friedrich Schleiermacher as the interpretation
of all (not just sacred) texts, by Wilhelm Dilthey
as the foundation of the Geistwissenschaften or
humanistic sciences, and by Martin Heidegger
as the essence of Dasein or human being. In this
same milieu, Ferdinand de Saussure invented the
science of linguistics, focusing neither on effi-
cient signal transmission nor on multiple levels
of external reference but on language as a sys-
tem of words that mutually define one another
through their internal relations. In the Anglo-
American world, especially under the influence
of Ludwig Wittgenstein, philosophy became lin-
guistic philosophy, which takes the meaning of
words to be constituted by their uses, thus call-
ing attention to multiple contexts of use, what
Wittgenstein called ways of life. Indeed, in some
forms the resultant philosophy of language turns
into a kind of behaviorism or is able to make
common cause with pragmatism.

In another instance, theories were posited
about the relation between changes in informa-
tion technologies and cultural orders. The con-
trast between orality and literacy has been
elaborated by a series of scholars – from Albert
Lord and Milman Parry to Marshall McLuhan,
Walter Ong, and Ivan Illich – who have posited
complementary theories about relations between
information technology transformations and
cultures. With McLuhan, for example, there is
a turn not just from technical signal to semantic
message, but an attempt to look at the whole
new electronic signal transmitting and receiving
technology (never mind any specific semantic
content) as itself a message. In his own con-
densed formulation: the medium (or particular
form of information technology) is the message
(McLuhan 1964).

Stimulated especially by McLuhan, reviews of
the historical influences between philosophy and
IT begin to mesh into a philosophy of history
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that privileges IT experience the way G. W. F.
Hegel privileged politics and ideas. Here Paul
Levinson’s “natural history of information tech-
nology” (1997) is a worthy illustration.

Information Technology and
Metaphysics

Although the historico-philosophical background
points to an emergence, in conjunction with
information technology, of new cultural constel-
lations in human affairs, pointing alone is insuf-
ficient to constitute philosophy. Popular attempts
to think the new IT lifeworld have emphasized
economics and politics, in which issues are
decided about e-banking and e-commerce on the
basis of market forces and political power. The
ethics of information technology, as an initiation
into philosophical reflection – that is, into
thought in which issues are assessed on the basis
of argument and insight rather than money and
votes – has highlighted issues of privacy, equity,
and accountability. Yet given that the funda-
mental question for ethics concerns how to act
in accord with what really is, there are reasons
to inquire into the kind of reality disclosed by
IT – that is, to raise metaphysical (beyond the
physical or empirical) and ontological (from ontos,
the Greek word for “being”) questions.

What are the fundamental structures of the
IT phenomenon? What is real and what is
appearance with regard to IT? Richard Coyne
(1995), for instance, argues that it is illusory to
view IT as simply a novel instrument available
for the effective realization of traditional projects
for conserving and manipulating data. Albert
Borgmann (1999) insightfully distinguishes
between information about reality (science),
information for reality (engineering design), and
information as reality (the high-definition rep-
resentations and creations emerging from IT) –
and further the increasing prominence, glamor,
and malleability of information as reality is hav-
ing the effect of diminishing human engagement
with more fundamental realities. With regard to
the kinds of metaphysical issues raised by Coyne,
Borgmann, and others, it is useful to distinguish
again expansionist and limitationist approaches

to the nature and meaning for information
technology.

The expansionist approach has its roots in tech-
nical thinking about IT, first in terms of physical
entities. At least since Norbert Wiener (1948)
effectively posited that, along with matter and
energy, information is a fundamental constituent
of reality, questions have been raised about the
metaphysical status of information. Building on
Wiener’s own analysis, distinctions may be drawn
between three fundamentally different kinds of
technology: those which transform matter (ham-
mers and assembly lines), those which produce
and transform energy (power plants and motors),
and those which transform information (com-
munication systems and computers).

A related phenomenology of human engage-
ment would observe how the being of IT differs
from tools and machines. Unlike tools (which
do not function without human energy input
and guidance) or machines (which derive energy
from nonhuman sources but still require human
guidance), information technologies are in dis-
tinctive ways independent of the human with
regard to energy and immediate guidance; they
are self-regulating (cybernetic). In this sense,
steam engines with mechanical governors on
them or thermostatically controlled heating
systems are examples of information machines.
Insofar as the operation of more electronically
advanced IT is subject to human guidance,
guidance ceases to be direct or mechanical and
is mediated by humanly constructed programs
(electronically coded plans). What is the onto-
logical status of programs? What are their rela-
tions to intentions? Indeed, in IT, operation and
use appear to have become distinguishable. IT is
a new species of artifact, a hybrid that is part
machine running on its own and part utility struc-
ture like a road waiting to be driven on – hence
the term “new media” (as both means and envir-
onment). The static availability of such struc-
tures is contingent on their semi-autonomous
dynamic functioning.

Second, in terms of the cognitive capabilities
of IT, transempirical questions arise about the
extent to which computers (as pervasive elements
in IT) imitate human cognitive processes. Do
computers think? What kind of intelligence is
artificial intelligence (AI)? Are the different kinds
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of AI – algorithmic, heuristic, connectionist,
embodied, etc. – different forms of intelligence?
Such ontological questions now blend into
others, concerning the extent to which high-tech
artifacts are different from living organisms. Bio-
technology has breached Aristotle’s distinction
between natural tree and artificial bed, growth
and construction, the born and the made. Soon
computer programs may also be able not just to
mimic patterns of growth on the screen (arti-
ficial life, see Chapter 15), but autonomous,
artificial agents that are able to reproduce them-
selves. At the nano-scale, robotic design will
hardly be distinct from genetic engineering. Will
any differences in being remain?

From the technical perspective, information is
ubiquitous in both the organic and the artificial
worlds. The wall between the two is vanishing,
although, insofar as the technical concept of
information becomes a category of explanation in
biology, it has also been argued to have distinct
ideological roots (see Kay 2000 on this point).
The cyborg (cybernetic organism) is a living
machine, not a goddess (Haraway 1991). Within
such a reality, the ethical imperative becomes ex-
perimenting with ourselves, what Coyne (1995)
calls a pragmatic interaction with advancing
IT. This is an attitude widely present among
leading IT designers such as Mark Weiser at
the famous Xerox Palo Alto Research Center
(PARC), the ethos of which is commonly celeb-
rated in Wired magazine. It has also have been
given philosophical articulation by media philo-
sopher Wolfgang Schirmacher. For Schirmacher
(1994), IT is a kind of artificial nature, a post-
technology in which we are free (and obligated,
if we would act in harmony with the new way of
being in the world) to live without predetermina-
tions, playfully and aesthetically.

The limitationist approach originates in a dif-
ferent, more skeptical stance. Issues are no doubt
oversimplified by characterizing one approach as
pro-IT and another as con-IT – although such a
contrast captures some measure of real differ-
ence (but see Gordon Graham, 1999, for a down-
to-earth philosophical utilization of this contrast
using the terms technophiles and neoluddites).
Perhaps a better contrast would be that of Hegel
versus Socrates: the comprehensive critical affir-
mation as opposed to the argumentative gadfly.

From the Hegelian perspective there is some-
thing both adolescent and irresponsible about
an ongoing Socratic negativity that refuses to
take responsibility for world creation. Indeed,
Socratic negativity easily becomes a philosophic-
ally clichéd substitute for true thinking. From
the Socratic perspective, however, the expansion-
ist approach comes on the scene as a court philo-
sophy, especially insofar as it flatters the king
and counsels expanding an already popular and
widely affirmed domain of influence. In a state
already dominated by information technology,
the Socratic tradition thus finds expression in
repeatedly questioning the nature and meaning
of IT – a questioning that must ultimately go
metaphysical.

At a first level, however, the questioning of
IT will be, as already suggested, ethical. For in-
stance, does IT not threaten privacy? Even more
profoundly, does the IT mediation of human
action in complex software programs, which are
created by multiple technicians and are not even
in principle able to be fully tested (Zimmerli
1986), not challenge the very notion of moral
accountability? At a second level are political
questions: Is the internet structured so as to
promote social justice through equity of access?
Is it compatible with democracy? Furthermore,
IT exists on the back of a substantial industrial
base, whose environmental sustainability is at
least debatable. Insofar as IT depends on an
unsustainable base, might not its own justice and
goodness be compromised? At still a third level
are psychological questions, blending into epi-
stemological ones. Does the exponential growth
of information availability not challenge the
human ability to make sense of it? Information
overload or information anxiety (see Wurman
2001) is one of the most widely cited para-
doxes of IT life. Finally, at a fourth level are
psychological-anthropological questions about
the social implications of the new “mode of
information” (Poster 1990), what it means to
live a “virtual life” (Brook & Boal 1995) and
“life on the screen” (Turkle 1995).

The third and fourth dimensions of limitation-
ist, Socratic questioning – that is, the epistemo-
logical and anthropological levels – hint at the
metaphysical. Information technology may hide
reality from us in a much more fundamental way
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than simply by means of information overload.
It may deform our being at deeper levels than
the psychological. To develop this possibility it
is useful to refer at some length to Martin
Heidegger, the most influential exponent of this
position.

According to Heidegger’s highly influential
argument in “The Question Concerning Tech-
nology” (1977 [1954]), technology is constituted
not so much by machines or even instrumental
means in general as by its disclosure of reality,
its unhiding, its truth. Premodern technology in
the form of poiesis functioned as a bringing or
leading forth that worked with nature, and as
such revealed Being as alive with its own bringing
forth, the way a seed blossoms into a flower or
an acorn grows into an oak tree. Modern tech-
nology, by contrast, is not so much a bringing
forth as a challenging-forth that reveals the world
as Bestand or manipulatable resource.

In reading Heidegger it is crucial to recognize
that he felt it necessary to couch his insights in a
special vocabulary (“bringing forth,” “challenging
forth,” “Bestand”), because of the way ordinary
concepts are sedimented with assumptions that
themselves help conceal the dimensions of real-
ity to which he invites attention. In Heidegger’s
own words:

The revealing that rules throughout modern
technology has the character of a setting-upon,
in the sense of a challenging-forth. That chal-
lenging happens in that the energy concealed
in nature is unlocked, what is unlocked is trans-
formed, what is transformed is stored up, what
is stored up is, in turn, distributed, and what
is distributed is switched about ever anew.
Unlocking, transforming, storing, distributing,
and switching about are ways of revealing.
(Heidegger 1977 [1954]: 297–8)

To this distinctive way of revealing Heidegger
also gives a special name: Gestell or enframing.

Although Heidegger seems to be thinking here
of electric power generation, the same description
would in many ways be applicable to information
technology. There is a challenging that happens
when digitally concealed information is unlocked
(from, say, a computer disk), transformed (by
some software program), stored up (on a hard

drive), distributed (by internet), and switched
about (forwarded, reprocessed, data mined, etc.).
Indeed, in another text Heidegger makes the
reference to IT explicit, although under the name
of cybernetics. “Cybernetics,” he writes, “trans-
forms language into an exchange of news. The
arts become regulated-regulating instruments of
information” (Heidegger 1977 [1966]: 376).
Modern information technology thus does to lan-
guage what modern non-information technology
does to the material world: turns it into Bestand,
that is, a resource for human manipulation.

What is wrong with this? The basic answer
is that modern technology, including modern
information technology, conceals as well as it
reveals. Insofar as we persist in emphasizing the
revealing and ignore the concealing, concealing
will actually dominate. We will not be fully aware
of what is going on. To develop this point re-
quires a brief elaboration of Heidegger’s theory
of hermeneutics. In his version of hermeneutics,
which argues interpretation (more than rational-
ity) as the defining characteristic of the human,
Heidegger makes two basic claims.

 The first is that no revealing (the acquisition
of information in the semantic sense) is ever sim-
ple; it always involves the process of interpreta-
tion. Interpretation itself proceeds in texts, in
perception, in thinking, and in life by means of a
dialectic between part and whole, what is called
the hermeneutic circle. The part is only revealed
in terms of the whole, and the whole in terms of
the parts. As a result, Heideggerian hermeneutics
postulates a pregivenness in all revealing or, as
he also likes to say, unconcealing. Our minds
and our lives open not as with a tabula rasa, but
with an immanent reality (both part and whole)
waiting to be brought forth into the light of
appearances. Understanding proceeds by means
of a process of moving from part to whole and
vice versa, repeatedly to make the implicit expli-
cit, to reveal the concealed, analogous especially
to the ways that premodern technology also
worked to till the fields and to fashion hand-
crafted artifacts. The upshot is that not only is
all information subject to interpretation, but that
all information technology is part of a larger
lifeworld and cannot be understood apart from
such an implicit whole. To think otherwise is a
metaphysical mistake.
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The second claim is that any unconcealing is
at one and the very same time a concealing. This
second claim has even more profound implica-
tions for information technology, which through
its expanding realms makes information more
and more omnipresent. Information technology
appears to reveal with a vengeance. According
to Heidegger, however, this is ultimately an
illusion – and dangerous to what it means to be
human. The problem is not just one of sensory
or information overload, but of information as
a concealing of Being itself, the fundamental
nature of reality, of the distinctly human relation
to such reality.

For Heidegger the rise of modern technology,
and its culmination in cybernetics or informa-
tion technology, is the culmination of a historico-
philosophical trajectory of thinking that began
with the Greeks. With Plato and Aristotle, Being
was first revealed, however tentatively and min-
imally, as a presence that could be re-presented
in thought or rationalized. Over the course of
its 2,500-year history, philosophy has success-
ively spun off the various scientific disciplines
as specialized ways to re-present the world: in
mathematics, in logic, in astronomy, in physics,
in chemistry, in biology, in cosmology, and now
in the interdisciplinary fields of molecular bio-
logy, cognitive science, and more. This con-
tinuing development is the end of philosophy
in two senses: its perfection and its termination.
The very success of scientific revealing grew
out of a specialization of thinking as philo-
sophy that entailed leaving behind or concealing
thinking in a more fundamental sense, some-
thing that Heidegger refers to as Lichtung,
translated variously as “lighting” or “opening.”
“Perhaps there is a thinking,” Heidegger writes,
“which is more sober-minded than the incessant
frenzy of rationalization and the intoxicating
quality of cybernetics” (Heidegger 1977 [1966]:
391).

In another text, Heidegger describes this “new
task of thinking” at “the end of philosophy” by
means of a comparison between what he calls
calculative and meditative thinking. “Calculative
thinking never stops, never collects itself.
Calculative thinking is not meditative thinking,
not thinking which contemplates the meaning
which reigns in everything that is” (Heidegger

1966 [1955]L 46). Meditative thinking, pre-
modern and even preclassical Greek philosophical
thinking, which was once in touch with the root
of human existence, and out of which by means
of a narrowing and intensified calculative think-
ing has emerged, has been replaced by calculative
thinking in the form of “all that with which
modern techniques of communication stimulate,
assail, and drive human beings” (Heidegger 1966
[1955]: 48). Technology, especially information
technology, conceals this meditative thinking,
which Heidegger terms Gelassenheit, releasement
or detachment. “Releasement toward things and
openness to the mystery . . . promise us a new
ground and foundation upon which we can stand
and endure the world of technology without
being imperiled by it” (Heidegger 1966 [1955]:
55). The fundamental threat in information tech-
nology is thus a threat to the human being’s
“essential nature” and the “issue of keeping
meditative thinking alive” (ibid.: 56).

Current Research and Open Issues

What is most remarkable is the fact that
Heidegger’s radical critique of technology in
general and information technology in par-
ticular has been subject to significant practical
appropriations by IT users and designers, thus
building bridges between the engineering and
humanities, the expansionist and limitationist,
traditions in the philosophy of information tech-
nology. Raphael Capurro (1986), for instance,
brings Heidegger to bear on the field of library
and information science. Hubert Dreyfus (2001)
examines the Internet from a philosophical per-
spective indebted to Heidegger. With slightly
more expansion, one may also reference two
other leading examples: Terry Winograd and
Fernado Flores, and Richard Coyne. At the
same time serious challenges have been raised by
Mark Poster to the adequacy of a Heideggerian
approach to IT.

In the mid-1980s, computer scientists
Winograd and Flores argued at length that
Heideggerian analyses could disclose the reasons
behind the failures of information technologies
to function as well in the office as computer
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scientists predicted. In Winograd and Flores
(1987) they argue that Heideggerian insights
can thus be a stimulus for redesigning computer
systems.

A decade later architectural theorist Coyne
(1995) goes even further, arguing that not just
Heidegger but the post-Heideggerian thought
of Jacques Derrida provides a philosophical ac-
count of what is going on among leading-edge
information technology designers. Building on
Heidegger’s notion that all revealing involves a
simultaneous concealing, Derrida proposes to
deconstruct specific concepts, methods, and dis-
ciplinary formations precisely to bring to light
their hidden aspects, that on which they depend
without knowing or acknowledging it. For Coyne
this opens the way for and justifies the turn from
a commitment to rational method in informa-
tion technology design to the renewed reliance
on metaphor.

Heidegger and Derrida thus revalidate the
creative significance of metaphor – of thinking of
a computer operating system as “windows,” of a
screen “desktop” with “icons,” even of the mind
as a computer. It is precisely a play with such
“irrational” connections that facilitates advances
in information technology design. With Aquinas,
Coyne seeks to defend the metaphorical “hiding
of truth in figures” as functional not just in
theology but also in technology. Whether either
Aquinas or Heidegger would counsel such ap-
propriation of their philosophies of information
technology is, of course, seriously in doubt.

As if to reinforce such doubt about such
creative appropriations, Poster argues at length
that Heidegger “captures the revealing of mod-
ern technology only, not postmodern techno-
logy.” Indeed, “some information technologies,
in their complex assemblages, partake not only
of [Gestell] but also of forms of revealing that
do not conceal but solicit participants to a rela-
tion to Being as freedom” (Poster 2001: 32–3).
For Poster a more adequate approach to the
philosophical understanding of IT is through
Felix Guattari’s image of the rhizome and a
phenomenology of the enunciative properties of
specific technologies. A potentially comprehens-
ive philosophy of IT thus remains, not unlike all
philosophy, suspended in and energized by its
fundamental alternatives.

References

Borgmann, A. 1999. Holding On To Reality: The
Nature of Information at the Turn of the Millen-
nium. Chicago: University of Chicago Press.
[Distinguishes natural information (about reality),
cultural information (for constructing reality), and
technological information (information becom-
ing a reality in its own right). Seeks to establish
guidelines for assessing and limiting information
as reality.]

Brook, J. and Boal, I. A. 1995. Resisting the Virtual
Life: The Culture and Politics of Information. San
Francisco: City Lights. [Twenty-one critical essays
on IT inequities, impacts on the body, the degrad-
ing of the workplace, and cultural deformations.]

Capurro, R. 1986. Hermeneutik der Fachinforma-
tion. Freiburg: Alber. [For a short English
paper that reviews the thesis of this book, see
R. Capurro, “Hermeneutics and the phenom-
enon of information,” Research in Philosophy and
Technology 19: 79–85.]

Coyne, R. 1995. Designing Information Technology
in the Postmodern Age: From Method to Meta-
phor. Cambridge, MA: MIT Press. [Advances in
information technology are examined from the
diverse philosophical perspectives of analytic
philosophy, pragmatism, phenomenology, crit-
ical theory, and hermeneutics, in order to reveal
their different implications for the design and
development of new electronic communications
media.]

Dretske, F. 1983. Knowledge and the Flow of
Information. Cambridge, MA: MIT Press. [The
most well-developed theory of perception and
empirical knowledge based on mathematical
information theory.]

Dreyfus, H. L. 2001. On the Internet. New York:
Routledge. [A phenomenologically influenced but
interdisciplinary critique.]

Graham, G. 1999. The Internet: A Philosophical
Inquiry. New York: Routledge. [Questions and
criticizes both neoluddite and technophile claims
about the dangers and implications of the internet.]

Haraway, D. 1991. Simians, Cyborgs, and Women:
The Reinvention of Nature. New York: Routledge.
[See especially the “Manifesto for Cyborgs”
included in this book.]

Heidegger, M. 1966 [1955]. Discourse on Thinking,
tr. J. M. Anderson and E. H. Freund. New York:
Harper and Row. [This includes translation of
Heidegger’s essay, “Gelassenheit.”]



Carl Mitcham

336

——. 1977 [1954]. “The question concerning tech-
nology,” tr. W. Lovitt. In M. Heidegger, Basic
Writings. New York: Harper and Row, pp. 287–
317. [Heidegger’s most important critique of
technology.]

——. 1977 [1966]. “The end of philosophy
and the task of thinking,” tr. J. Stambaugh. In
M. Heidegger, Basic Writings. New York: Harper
and Row, pp. 373–92. [A brief statement
of Heidegger’s philosophy of the history of
philosophy.]

Kay, L. E. 2000. Who Wrote the Book of Life: A
History of the Genetic Code. Stanford: Stanford
University Press. [A critical assessment of informa-
tion as a metaphor in biology.]

Levinson, P. 1997. The Soft Edge: A Natural History
and Future of the Information Revolution. New
York: Routledge. [A new information medium
(such as computers) does not so much replace
an old medium (such as the telephone) as
complement it.]

McLuhan, M. 1964. Understanding Media: The
Extensions of Man. New York: McGraw-Hill. [It
is not the information content of a medium (such
as speech or television) that is most influential
on a culture, but the character or structure of
the medium itself. Electronic media are structur-
ally distinct from, say, books. “The medium is
the message.”]

Mitcham, C. 1994. Thinking through Technology:
The Path between Engineering and Philosophy.
Chicago: University of Chicago Press. [A general
introduction to the philosophy of technology that
distinguishes two major traditions: engineering
and humanities philosophy of technology. The
former argues for the expansion, the latter for
the delimitation of technology as object, know-
ledge, activity, and volition.]

Pickstock, C. 1998. After Writing: On the Litur-
gical Consummation of Philosophy. Oxford, UK:
Blackwell. [A critique of Derrida and defense
of information as subordinate to the context
created by linguistic and bodily performance in a
historical tradition.]

Poster, Mark. 1990. The Mode of Information:
Poststructuralism and Social Context. Chicago:
University of Chicago Press. [Argues that four
new modes of information – TV ads, data bases,
electronic writing, and computer science – create
a world in which humans are socially constituted
differently than in pre-electronic IT history.]

Poster, Mark. 2001. What’s the Matter with the
Internet. Minneapolis, MI: University of Minne-
sota Press. [A critique of applying Heidegger’s
analysis of technology to information technology,
with special reference to postmodern thinkers such
as Felix Guattari.]

Sayre, K. M. 1976. Cybernetics and the Philosophy of
Mind. London: Routledge & Kegan Paul. [Argues
a naturalist theory of mind based on mathematical
information theory.]

Schirmacher, W. 1994. “Media and postmodern
technology.” In G. Bender and T. Druckrey, eds.,
Culture on the Brink: Ideologies of Technologies.
Seattle: Bay Press. [The other contributions to
this book are useful as well.]

Shannon, C. and Weaver, W. 1949. The Mathemat-
ical Theory of Communication. Urbana: University
of Illinois Press. [Contains two classic papers:
Shannon’s, from the Bell System Technical Journal
(1948); and Weaver’s, from Scientific American
(1949).]

Turkle, Sherry. 1995. Life on the Screen: Identity
in the Age of the Internet. New York: Simon &
Schuster. [A psychologist’s analysis of emerging
forms of self-definition unique to the internet
experience.]

Wiener, N. 1948. Cybernetics: Or, Control and Com-
munication in the Animal and the Machine. Cam-
bridge, MA: MIT Press. [The classic statement
of the engineering theory of cybernetics. In other
works Wiener also examined the social and ethical
implications of his theories.]

Winograd, T. and Flores, F. 1987. Understanding
Computers and Cognition: A New Foundation
for Design. Reading, MA: Addison-Wesley. [A
Heideggerian analysis by two computer scientists.]

Wurman, R. S. 2001. Information Anxiety 2.
Indianapolis, IN: Que. [This is the second
edition of a widely cited critique of information
overload by a well-known architect and student
of the work of Louis Kahn.]

Zimmerli, W. 1986. “Who is to blame for data
pollution?” In C. Mitcham and A. Huning, eds.,
Philosophy and Technology II: Information Tech-
nology and Computers in Theory and Practice.
Boston: Reidel. [One of 20 original papers from a
conference, introduced by an overview of “In-
formation technology and computers as themes
in the philosophy of technology,” and followed by
an annotated bibliography on philosophical stud-
ies of information technology and computers.]



Computational Modeling

337

Chapter 26

Computational Modeling
as a Philosophical

Methodology
Patrick Grim

Since the sixties, computational modeling has
become increasingly important in both the phys-
ical and the social sciences, particularly in physics,
theoretical biology, sociology, and economics.
Since the eighties, philosophers too have begun
to apply computational modeling to questions in
logic, epistemology, philosophy of science, philo-
sophy of mind, philosophy of language, philo-
sophy of biology, ethics, and social and political
philosophy. This chapter analyzes a selection of
interesting examples in some of these areas.

Computer Models in the Sciences
and Philosophy: Benefits and

Limitations

What qualifies as a computer model or a com-
puter simulation has itself been subject to philo-
sophical scrutiny, but without clear consensus.
In a classic statement, T. Naylor (1966) defines
computer simulation as

a numerical technique for conducting experi-
ments on a digital computer which involves
certain types of mathematical and logical

models that describe the behavior of . . .
systems over extended periods of time. (p. 3)

On the other hand, Fritz Rohrlich (1991) and
Paul Humphreys (1991), among others, em-
phasize the importance of tractability as a
motivation for computer modeling. Humphreys
builds that feature into his working definition:

A computer simulation is any computer-
implemented method for exploring the prop-
erties of mathematical models where analytic
methods are unavailable. (1991: 501)

Most authors have not attempted strict definition,
conceding that the notion of a “model” is vague
and may even have several distinct senses (Fetzer
1999). Still, several important features of mod-
els are repeatedly emphasized in the literature:
(1) models occupy a conceptual role somewhere
between empirical data and traditional theory;
(2) modeling represents a wide variety of tech-
niques, rather than a single tool; and (3) model
construction itself is part of the “art” of science
(see especially Rohrlich 1991). There is also
general agreement on reasons for welcoming
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computer modeling in particular: (1) increased
mathematical tractability, particularly in under-
standing complex and dynamic processes over
time; (2) a methodologically important vividness
or graphic immediacy that is often characteristic
of computer models; and (3) the possibility of
computational “experiment.” This last feature is
clear to anyone who has worked with computer
models, and is noted in almost every outline of
computational modeling since Naylor (1966),
quoted above.

A number of authors portray computer experi-
mentation in general as a technological extension
of an ancient tradition of thought experiment.
It is this “experimental” aspect of computational
modeling that has been seen as a particularly
important addition to philosophical methodo-
logy. Kyburg (1998: 37) speaks of a “kind of
philosophical laboratory or testing ground.”
Grim, Mar, and St. Denis (1998: 10) speak of
“an important new environment for philosoph-
ical research,” and Bynum and Moor (1998: 6)
speak of computing as “a medium in which to
model philosophical theories and positions”:

Computing and related concepts significantly
enhance philosophy by providing a kind of
intellectual clay that philosophers can mold and
shape and study. Through computing, abstract
ideas – which philosophers like to manipulate
– can be instantiated and investigated. There
is nothing wrong with good armchair reflection
. . . But armchair reflection has its limitations.
(1998: 2–3)

The exploration of abstract philosophical ideas
by means of computer models offers a number
of major benefits. One benefit is an astounding
increase in manageable complexity. Although
philosophers have long appealed to thought
experiments, practical necessity has limited these
to our individual human powers of calculation.
As Bynum and Moor note, “armchair recursion
doesn’t recur very many times.” With computer
models, on the other hand, the computational
ceiling is lifted on philosophical imagination.
Complex interactions that previously could only
be vaguely guessed at can now be calculated with
ease, and consequences of such interactions can
be revealed with a depth previously impossible.

The development of complex systems over time
could hardly have been envisaged at all before
the computer, but has now become a topic of
philoso-phical thought experiment in a wide
range of areas.

Another benefit of computer modeling is that
its methodological demands work as a counter-
force against philosophical vices of imprecision,
vagueness, and obscurity. The environment of
computer modeling enforces “unflinchingly and
without compromise, the central philosophical
desideratum of clarity: one is forced to construct
theory in the form of fully explicit models, so
detailed and complete that they can be pro-
grammed ” (Grim, Mar, & St. Denis 1998: 10).
John Pollock has emphasized that one constraint
imposed by computer modeling is simply that
the theory at issue must actually work the way it
is supposed to. “As mundane as this constraint
may seem, I am convinced that most epistemo-
logical theories fail to satisfy it.” The fact that
computer modeling imposes demands of preci-
sion and detail “can have a very therapeutic effect
on a profession that is overly fond of hand-
waving” (Pollock 1998: 34).

Another benefit of a computational environ-
ment is the prospect of exploring possible vari-
ations on theory. With a computer model in place,
variations on the model are generally easy. One
can explore consequences of epistemological,
biological, or social theories in slightly different
environments or with slightly different para-
meters. The result is that the theory with which
one begins may be replaced by a variation that
appears more promising in action.

As has always been true of the interplay
between technology and pure science, it is also
possible for the application of philosophical ideas
in computational models at the bottom to sug-
gest new and intriguing philosophical ideas at
the top. It was computer work in graphing the
semantics of infinite-valued paradox, for example,
that suggested the proof for a theorem on formal
undefinability of chaos (Grim, Mar, & St. Denis
1998). Models developed in order to tackle old
problems may open up new territory for philo-
sophical exploration as well. A central question
in Hobbes is how cooperation can emerge in a
society of self-serving egoists. Game-theoretic
attempts to answer that question have been
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developed and expanded in computer models
(see Chapter 22, GAME THEORY). Those models
have in turn raised further questions regarding
evolution and ethics, rationality and justice, and
the unpredictability of social behavior in even our
simplest models (Axelrod 1984, Danielson 1992,
Skyrms 1996, Grim, Mar, & St. Denis 1998).

Some benefits of computational modeling are
evident even in aspects for which it is occasionally
criticized. Formal models in general and philo-
sophical computer models in particular are bound
to be abstract. The high level of abstraction,
however, can be seen not as a weakness but as
an indication of potential power and promise.
Distinct phenomena that appear in quite dif-
ferent contexts – biology and economics, for
example, or logic and physics – may nonetheless
have a similar structure or exhibit a similar dy-
namics. The search for patterns that hold across
different disciplines has characterized new fields
such as chaos theory and artificial life (see Chap-
ter 15), and promises to be an area in which
philosophical computer modeling could flourish
as well. As Bedau (1998: 135) remarks,

By abstracting away from the details of chaotic
systems (such as ecologies, turbulent fluid flow,
and economic markets), chaos science seeks
fundamental properties that unify and explain
a diverse range of chaotic systems. Similarly,
by abstracting away from the details of life-like
systems (such as ecologies, immune systems,
and autonomously evolving social groups) and
synthesizing these processes in artificial media,
typically computers, the field of artificial life
seeks to understand the essential processes
shared by broad classes of life-like systems.

One promise of philosophical computer modeling
is highly abstract crossdisciplinary work of pre-
cisely this type.

Models in the physical and particularly the
social sciences are also sometimes met with the
objection that they are mere models: that
the phenomena being modeled are complex in
ways to which a simple model could not pos-
sibly do justice. The same is to be expected as an
occasional response to philosophical computer
modeling. In reply, it must simply be admitted
that all models have major limitations built in.

That is part of what makes them models. Models,
like abstract laws, prove useful in both explana-
tion and exploration precisely because they are
simpler than the full phenomenon, and thus easier
to handle and track. We need simple models
because we need a simpler way of understanding
complex phenomena, and because we need to
separate what is important in what happens from
the distracting but unimportant details.

One can then argue that neither the abstract
level nor the simplicity of models requires fur-
ther defense. With computational modeling as
with any methodology, however, there are some
real intellectual dangers. New methodologies
always offer new ways of approaching particular
kinds of questions. There is thus always a tempta-
tion to phrase questions in only those ways that
the new method can handle, or to ask only those
questions that the new method can easily address.
We may end up considering only those versions
of a theory that can be readily modeled, for
example, or attending only to those types of
theory that can be modeled at all. The only
known cure for such a danger is to be aware of
it. Although we do not want to ignore promis-
ing new techniques, we must be aware that they
will inevitably come with limitations. For any
promising new tool, there will always be further
questions, equally deep and serious, for which it
may not be the best approach.

Computational models carry a more specific
danger as well. As models increase in sophistica-
tion in a particular tradition of model-building,
they are inevitably built out of their simpler pre-
decessors. Computational models often incorpor-
ate earlier passages of code wholesale. Thus, if early
models in a tradition carry an inessential feature
or an unexamined assumption, that feature or
assumption is likely to remain, unquestioned and
uncriticized, throughout later work as well. One
of the earliest models to be applied to questions
in economics, for example, was built using a
quite particular balance of potential gains and
losses: the gains and losses characteristic of the
Prisoner’s Dilemma, discussed further below.
There is now extensive research in theoretical bio-
logy, evolutionary psychology, and philosophy
using the descendants of that original model.
But it is almost never asked whether the particu-
lar gains and losses built into the model reflect
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realistic assumptions for the specific applications
at issue.

It must finally be admitted that individual
models can certainly fail. Within both philosophy
and the sciences a simple model may turn out to
be too simple, or may be simple in the wrong
ways. It may abstract not from accidental fea-
tures but from fundamentally essential aspects of
what is being modeled. The possibility always
remains that a model captures too few aspects of
the phenomenon, or the wrong ones. That models
can go wrong in these ways is grounds for criti-
cism of individual models, of course, but it con-
stitutes no objection against a methodology of
model-building in general. When a model falls
short it quite generally suggests a better model.

The following sections emphasize several areas
of current exploration in philosophical computer
modeling. Evident in much of this work is a
strong interdisciplinary or cross-disciplinary tend-
ency. Modeling techniques developed primarily
within physics have been applied within logic
(Grim, Mar, & St. Denis 1998); techniques
developed within computer science have been
brought together with traditions in economics
and sociology and applied to questions of ethics
and social-political philosophy (Skyrms 1996,
Danielson 1992, Grim, Mar, & St. Denis 1998).
The comments of Clark Glymour and his collab-
orators with regard to “android epistemology”
can be applied to philosophical computer model-
ing more generally:

The force of this idea can be seen in the way
in which it violates all kinds of traditional
disciplinary boundaries in science, bringing
together engineering and the life sciences,
placing mathematical linguistics in the heart
of electrical engineering and requiring moral
philosophers to understand computation the-
ory. University deans, forced to work within
the old hierarchies, weep with frustration, and
the work often has to be done in new “inter-
disciplinary” – and often undisciplined –
research centers and institutes which escape
the old categories. We live in interesting times.
(Ford, Glymour, & Hayes 1995: xii)

The rest of this chapter is devoted to some key
examples of philosophical modeling being done
in these interesting times.

Logic

At a fundamental level, computers are logical
machines: their basic operations can be outlined
in terms of standard logical connectives. This
immediately suggests the possibility of turning
to computers as tools for extending work in tra-
ditional logic. One might expect intensive work
on theorem-proving programs, for example, and
indeed research of this type has an impressive
history (see especially the bibliography on logic
and automated theorem proving at <www.cs.
cmu.edu/afs/cs/project/pal/bibs/Logictext.
bib>). What is interesting, however, is that com-
puters have also played a key role in the devel-
opment of nontraditional logical models.

Suppose we start from a set of premises P1, and
add a few more to create a larger set of premises
P2. In traditional logic, anything we could have
deduced from premises P1 will also be deducible
from the inclusive set P2: classical logics are
monotonic. Much of everyday reasoning, however,
seems to be nonmonotonic. If I am told that
Tweety is a bird, I conclude that Tweety can fly.
If given more information – that Tweety is a
bird and a penguin, for example – I may with-
draw that commitment. The need to handle
“defeasible” or nonmonotonic reasoning of this
kind quickly became evident in attempts at
modeling patterns of reasoning in artificial intel-
ligence, and the development of rival approaches
is active and ongoing (Pollock 1998, Kyburg
1998, Gabbay, Hogger, & Robinson 1994).

The fact that computer models can offer vivid
images of abstract phenomena is exploited for
logical purposes in Grim, Mar, and St. Denis
1998. Here simple considerations from truth-
table semantics are extended to construct “value
solids,” which portray in spatial terms the com-
binatory operation of connectives within particu-
lar systems (figure 26.1). Spatial representation
of logical properties can make formal relations
immediately apparent: in figure 26.1, for example,
the duality of conjunction and disjunction is
reflected in the fact that the value solid for
“and” could be inverted and inserted into that for
“or.” Modeling of this sort has also produced
some surprises, such as the persistent reappear-
ance of the fractal Sierpinski gasket in a range of



Computational Modeling

341

Figure 26.1: Value solids for AND (left) and OR (right)

value solids and the possibility of generating value
solids by cellular-automata-like rules.

The fact that computer models can capture
complex dynamics is used by Grim (1993) and
Grim, Mar, and St. Denis (1998) in work on self-
reference and paradox in infinite-valued logics.
Informally presented, the Liar sentence (“This
sentence is false”) seems to produce an alternation
between truth and falsity: “if it’s true, since it says
it’s false, it must be false . . . but if it’s false, and it
says it’s false, it must be true . . .” That dynamics
is modeled in the first frame of figure 26.2.
The authors consider relatives of the Liar within
infinite-valued logics, such as the Chaotic Liar –
“this sentence is as true as you think it is false”
– which has a dynamics fully chaotic in the math-
ematical sense, illustrated for slight differences
in initial estimated value in the second frame of
figure 26.2.

Computer-modeling prospects for new ap-
proaches to logic are developed in a different way
in John Barwise and Jon Etchemendy’s Hyperproof
(1994). In previous work, Barwise and Etche-
mendy had developed Tarski’s World as a visual
aid for teaching quantificational logic, with
Turing’s World as a similarly visual introduction
to Turing machines. Sensitized from that experi-
ence to the power and ubiquity of visualization
in reasoning, Barwise and Etchemendy’s goal in
Hyperproof is to expand logic beyond its current
ties to sentential syntax to a formalization of
information-processing that can exploit various
forms of representation, diagrammatic as well as

sentential (figure 26.3). Their purposes go far
beyond the pedagogical. Traditional logic, as they
portray it, has concentrated on only a “narrow
slice” of a broader realm of valid information-
extraction. “In the long run, logic must come to
grips with how people use a multitude of rep-
resentations in rigorous ways. This will force us
to extend and enrich the traditional notions of
syntax, semantics, logical consequence and proof
. . . In the process, what seemed like a finished
success story in philosophical and mathematical
analysis will be refashioned in exciting new ways”
(Barwise & Etchemendy 1998: 112).

Epistemology

One of the goals of epistemology is to under-
stand how we come to know. It is related forms
of engineering – epistemology “from the design
stance,” “epistemological engineering,” or
“android epistemology” – that have produced
exciting research programs in philosophical com-
puter modeling. It is clear that all of these will
overlap with the tasks of artificial intelligence
more generally (see Chapter 9, THE PHILOSOPHY

OF AI AND ITS CRITIQUE). Here as elsewhere in
computer modeling, interdisciplinary collabora-
tion is the rule rather than the exception.

John Pollock’s OSCAR Project takes as its
objective “the construction of a general theory
of rationality and its computer-implementation
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Figure 26.2: Dynamics of the Liar and the Chaotic Liar over progressive iterations. The Chaotic Liar is
shown for small differences in initial values.
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in an artificial rational agent” (Pollock 1998: 17).
The general epistemic task is taken to be that of
systematically updating a set of beliefs towards
those which are warranted, and OSCAR is
designed to exploit techniques of both defeasible
and deductive logic toward that end. Pollock places
particular emphasis on control of an epistemic
system in terms of interests and goals. In epi-
stemology, as elsewhere in philosophy,  one of the
benefits of computer modeling is the necessity
of making assumptions explicit in a way that also
exposes them to fruitful criticism. The fact that
the program avoids Bayesian probability theory
is taken as a point in favor of OSCAR’s rational-
ity by Pollock, but forms the basis for a number
of criticisms in Kyburg (1998). The project is
described in Pollock (1989) and (1995), and a
current version of OSCAR is downloadable from
<www.u.arizona.edu/~pollock/>.

Paul Thagard has used computational
modeling in pursuing a wide range of issues in
philosophy of science and epistemology more
generally (see Chapter 23, COMPUTING IN THE

PHILOSOPHY OF SCIENCE). ECHO was developed
as a connectionist computational model of
explanatory coherence, and Thagard has applied
it to a number of examples from the history of
science and in critique of other approaches
(Thagard 1992, Eliasmith & Thagard 1997). He
has also attempted to model major aspects of
analogical thinking using the programs ARCS
and ACME (Holyoak & Thagard, 1997). The
deeply interdisciplinary character of much of
his research is particularly clear in the work on
induction (Holland, Holyoak, Nisbett, &
Thagard 1987), in which Thagard works with
two psychologists and a computer scientist in
attempting to construct a computational model
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Figure 26.3: A diagrammatic proof from Barwise and Etchemendy’s Hyperproof

of scientific reasoning which avoids traditional
philosophical problems.

The TETRAD project should also be men-
tioned as a rigorous computational attempt to
treat epistemological issues regarding causal
inference and probability with an eye to issues in
experimental methodology (Spirtes, Glymour, &
Scheines 2001). A very different computational
approach explores the complex epistemological
dynamics of competing information. Some of the
information received by an epistemic agent is
about the accuracy or reliability of information
sources. In simple models, this can both pro-
duce a variety of epistemic chaos and suggest
maps for the management of epistemic chaos
(Grim, Mar, & St. Denis 1998).

Philosophy of Mind, Philosophy
of Language, and Philosophy

of Biology

It could be argued that the entire field of AI
qualifies as computational modeling in philo-
sophy of mind. Traditional debates regarding

innatism and empiricism, the character and limits
of the human mind, and even freedom and con-
sciousness are now debated with illustrations
drawn from competing computational architec-
tures. Work by John Searle, Daniel Dennett, Jerry
Fodor, and David Chalmers features prominently
in the philosophical debate, if not so prominently
in the details of computational modeling. Re-
search by the Churchlands is noteworthy for
framing contemporary debates in terms of cur-
rent resources in neurophysiology and computer
science, with an emphasis on neural networks
as models for both the power and the peculiar
inscrutability of the workings of the human mind
(P. S. Churchland & Sejnowski 1993, P. M.
Churchland 1995). A variety of attempts to
approach issues in philosophy of mind using the
tools of dynamical systems theory are represented
in Robert Port and Timothy van Gelder (1997).

Some attempts have recently been made to
apply tools of computational modeling to issues
in the philosophy of language. Structural mapping
approaches to analogy and ambiguity appear in
Holyoak and Thagard 1997. They form the core
of a program designed to generate and interpret
metaphors in Steinhart and Kittay 1994 and
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Steinhart 1995. Computer modeling can also be
expected to play an important role in the inevit-
able conflict between Chomskian models of lin-
guistic representation and language learning and
alternative connectionist proposals (McClelland,
St. John, & Taraban 1992). A game-theoretic
attempt to understand linguistic convention
initiated in Lewis’s Convention (1969) is further
developed with the tools of replicator dynamics
in Skyrms’s Evolution of the Social Contract
(1996). In this same tradition, simple computa-
tional environments which show emergence of
coordinated signaling behavior are offered as
models for a theory of meaning as use in Grim,
Kokalis, Tafti, & Kilb 2000 and 2002, and Grim,
St. Denis, & Kokalis 2003.

Much as AI can be seen as a computational
version of philosophy of mind, Artificial Life
(ALife) can be seen as a computational version
of philosophy of biology (see Chapter 15). Mark
Bedau uses ALife to illustrate both his theory
of life as supple adaptation (1996) and his con-
sideration of emergent phenomena in biology
(1997). In time, it seems inevitable that tools
from AI and ALife will be brought together to
answer questions in philosophy of mind and
philosophy of biology. Some simple mathematical
models in this direction are offered in Peter
Godfrey-Smith 1996.

Ethics, Social and Political
Philosophy

Computational modeling and ethics might seem
an unlikely combination, but these are linked
in an intriguing interdisciplinary history. Game
theory (see Chapter 22) was developed by von
Neumann and Morgenstern (1944) as an attempt
at a mathematical theory applicable to economics
and political strategy. The Prisoner’s Dilemma,
a two-person game that seems to capture a basic
tension between individual and collective advant-
age, quickly became a paradigm for work in
aspects of economics, theoretical sociology, and
eventually theoretical biology. Played in terms
of “cooperations” and “defections” on each side,
the Prisoner’s Dilemma has been referred to as
the e. coli of social psychology.

In 1980, political scientist Robert Axelrod
invited experts in game theory from various fields
to submit programs for a Computer Prisoner’s
Dilemma Tournament (Axelrod 1984). Sub-
mitted strategies played 200 games against all
other strategies, themselves, and a strategy that
chose responses at random. The winner of that
tournament was a strategy called “Tit for Tat”
(TFT). Cooperate with TFT and it will co-
operate with you on the next round. Defect
against TFT and it will defect against you. The
fact that such a cooperative strategy triumphed
in the first tournament was a surprise. Its con-
tinued success in later tournaments, where its
reputation clearly made it the strategy to beat,
was a further surprise. Axelrod and Hamilton
(1981) replaced the tournament competition
with an “ecological model,” which employs the
replicator dynamics of theoretical biology: more
successful strategies “breed” to occupy a larger
percentage of the population. Here too TFT
triumphs. The affinity of these results with the
Hobbesian question of how social cooperation
can grow in a community of self-serving egoists
is striking, and the contemporary models inevit-
ably drew the attention of philosophers. Could
the triumph of something that looked like altru-
ism in this formal model be telling us something
about the dynamics or nature of social coopera-
tion and ethics? Brian Skyrms has pursued this
cluster of philosophical questions using the tools
of computer modeling, adding also techniques
drawn from dynamical systems or chaos theory.
“Using these tools of evolutionary dynamics, we
can now study aspects of the social contract from
a fresh perspective” (1996: p. x). In Evolution
and the Social Contract, Skyrms shows that an
evolutionary model using replicator dynamics goes
beyond rational decision theory in producing
particular principles of fair division and a “law of
mutual aid.” The potentially chaotic dynamics
of a bargaining game is illustrated in figure 26.4.

Grim, Mar, & St. Denis (1998) emphasize
spatialized models of emerging cooperation.
Figure 26.5, for example, shows a spatialized
conquest by TFT in a field of 8 simple strategies.
Nowak and Sigmund (1992) showed that a
greater level of cooperation (“generous TFT,”
which forgives defection against it in 1/3 of
all cases) triumphs in versions of Axelrod and
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Hamilton’s model that are arguably more real-
istic in incorporating stochastic or probabilistic
imperfections. Grim, Mar and St. Denis show that
spatialization of such models results in an even
higher level of cooperation. They also consider a
version of the spatialized model with “fuzzy”
values of intermediate cooperation and defec-
tion, show a formal undecidability result for the
Spatialized Prisoner’s Dilemma, and take some
first steps toward applying the model to ques-
tions of racial discrimination.

Peter Danielson characterizes his work in this
tradition as “artificial morality,” intended to com-
bine game theory and artificial intelligence in the
development of “instrumental contractarianism”
as an ethical theory. Building on the work of
David Gauthier’s Morals by Agreement (1986)
and constructing a range of PROLOG models,
Danielson’s attempt is to show at least that it
can be rational to be moral. Danielson seems
more willing than other researchers in the area,
however, to use modeling as an argument for
something more: for a version of ethical natural-
ism in which morality simply is that strategy that
proves successful. In some forms of such a view,
such as Michael Ruse’s Darwinian naturalism,
the conclusion is that morality is something other
than what we have thought it to be: “Morality
is no more than a collective illusion fobbed off
on us by our genes for reproductive ends” (Ruse

1991: 506). The use of computational models
to demonstrate naturalistic conclusions of this
sort is contested in Grim, Mar, and St. Denis
1998. They offer as a counterexample the suc-
cess of certain discriminatory strategies, which
play TFT with others of their own color but
always defect against outsiders. Strategic success
cannot simply be identified with morality, they
argue, since discriminatory strategies are clearly
successful in such models, but it is clear that
analogous racial discrimination is morally wrong.
How social strategies may develop or propagate
is one question; whether they should be judged
as genuinely ethical is another.

Powerful new tools are now available for
further research in this general tradition. TIERRA
and the later AVIDA are ALife platforms that
may be customized to pursue questions in both
philosophy of biology and social and political
philosophy. TIERRA is available by anonymous
ftp from <ftp://alife.santafe.edu>. A good intro-
duction to AVIDA, packaged with the software,
is Adami, Introduction to Artificial Life (1998).
SWARM is a powerful general platform for agent-
based modeling, developed by members of the
Santa Fe Institute as a way of offering researchers
in various fields a powerful “lingua franca” for
computational experimentation. The program
can be downloaded at <www.swarm.org>. A
good introduction to this platform is Luna and

Figure 26.4: A chaotic attractor in game-theoretical dynamics (from Skyrms 1997)
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Figure 26.5: Progressive conquest by Tit for Tat, shown in black, in an array of 8 simple strategies.
TFT eventually conquers the entire field.

Stefansson (2000), which offers a SWARM in-
stantiation for the Spatialized Prisoner’s Dilemma
as one of its opening examples.

Conclusion

Computational modeling offers not a single sys-
tematized method but an enormous toolbox of
potential models and techniques. A number of
basic modeling tools – the tools of dynamical
systems, neural nets, and cellular automata, for
example – have found application across the
physical and social sciences. The result has

been active model-borrowing between different
research programs and a flourishing interdiscip-
linary awareness. The application of computa-
tional modeling to philosophical questions has
just begun, and first returns are promising in a
number of areas.

It must be recognized that novel techniques
carry some intellectual risks. Powerful new
methods inevitably draw attention to those ques-
tions, or those forms of questions, for which the
methods hold out the most promise. In philo-
sophy as elsewhere it must be remembered that
the new techniques should take their place among
a range of traditional tools for approaching a
range of perennial questions. It is also important
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to beware of fixing on a few simple models too
early. Continuing development of new variations
is important in order to avoid narrow assump-
tions and to facilitate wide exploration.

Progress in philosophical computer modeling
is already proceeding so swiftly that any over-
view is bound to be partial and incomplete. In
this chapter, the attempt has been to emphasize
the general promise of such an approach by high-
lighting a few examples of intriguing and note-
worthy current work.
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