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Preface

Semiconductor manufacturing is one of the most important segments of the
global manufacturing sector. Today semiconductor wafer fabrication facili-
ties, for short called wafer fabs in the rest of this monograph, can be found in
the USA, Europe, and Asia. Starting in the mid-1980s, the number of people
in academia that deal with modeling and analysis of wafer fab operations has
constantly increased. While in the beginning the number of academics work-
ing on these problems was quite small, today there are very active research
groups around the world. A growing number of academics have contributed to
the literature related to modeling and analysis of wafer fabs in such different
areas as simulation modeling, dispatching and shop-floor scheduling, queue-
ing models, production planning models, supply network planning models,
and design and implementation of information systems for decision support.
Furthermore, a wide range of other engineering models to support yield and
quality improvement have been developed (cf. Chien et al. [49]). The vast
academic interest in modeling and analysis of wafer fabs is caused by the
fact that wafer fabs are one of the most complex and challenging industrial
environments in use today.

The number of scholarly publications in this area has also increased sig-
nificantly over the years. However, there are only a few survey papers that
attempt to give a complete picture of various aspects of modeling and analy-
sis of wafer fabs. The most popular among these papers are those by Uzsoy et
al. [306, 307]. Except for the monographs by Atherton and Atherton [14] and
Ovacik and Uzsoy [223], there are no further books in this area. The book [14]
discusses modeling and analysis issues only briefly and from a different point
of view. The second related book deals mainly with certain decomposition
strategies based on disjunctive graphs and the shifting bottleneck heuristic
for scheduling the back-end stage of semiconductor manufacturing.

In this monograph, we are interested in covering a broader area, and we
attempt to take recent research trends into account. To our best knowledge,
there is no book on modeling and analysis in semiconductor manufacturing
that simultaneously considers production planning, production control, and
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vi Preface

the related information systems. In this book, after presenting basic con-
cepts in the semiconductor manufacturing process and in basic modeling and
analysis tools, we introduce production control schemes that are based on dis-
patching rules as they are predominately used in practice. Next, we discuss
recent scheduling approaches. We continue with a description of order release
strategies for wafer fabs. We then introduce different production planning ap-
proaches with a focus on capacity planning. In the second to last chapter, we
present research related to the important field of automated material handling
systems. Finally, we describe various aspects of decision support provided by
manufacturing execution systems and advanced planning systems.

Based on our experience and research interests, we mainly suggest heuris-
tics throughout the book. However, when practical, we also discuss methods
that lead to optimal solutions. It is an important feature of this book that we
consider discrete-event simulation in different situations as a modeling and
analysis tool [89].

We have been helped by many people in the course of preparing this
book. We would like to thank Cheryl Dwyer for carefully reading the entire
manuscript and for providing many helpful suggestions for improvements.
Ulrike Schmidt helped us by preparing parts of the figures and by checking
the references.We would also like to thank Stefan Voß who strongly supported
the inclusion of this book into the Springer Operations Research/Computer
Science Interfaces Series.

Finally, we want to give special thanks to our friends and colleagues Oliver
Rose, Stéphane Dauzère-Pérès, and Leon McGinnis. Many of the results in
this monograph represent joint work with these scientists, and their insights,
criticism, and support have been an important component of our research
efforts. Furthermore, we also thank Reha Uzsoy, Robert C. Leachmann,
Tae-Eog Lee, and Chen-Fu Chien among others for fruitful discussions that
led to insights into semiconductor manufacturing and helped us to struc-
ture our knowledge on semiconductor manufacturing and finally to write this
monograph.

Many people from the industry helped us with insights, datasets,
and challenging problems. We especially thank Hans Ehm and Andreas
Klemmt, Infineon Technologies AG; Volker Schmalfuß, X-Fab Semiconductor
Foundries AG; Karl Kempf, Intel Corporation; You-In Choung, Samsung;
Shekar Krishnaswamy, Applied Materials; and Detlef Pabst and Marcel
Stehli, GLOBALFOUNDRIES.

Finally, we would like to thank Neil Levine and Matthew Amboy from
Springer for their support and patience during our work on this monograph.

Hagen, Germany Lars Mönch
Tempe, AZ, USA John W. Fowler
Clemson, SC, USA Scott J. Mason
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Notation

The following symbols and notation will typically be used throughout the
book. We have reused some of them for several purposes due to the limited
supply of symbols from the alphabet and to be consistent with papers from
the literature. Their usage should be clear from the context. We also introduce
additional notation when needed throughout the book.

Notation Explanation
ACT Average cycle time
AL Average lateness
AT Average tardiness
AWT Average weighted tardiness
aux Auxiliary resource
B Maximum batch size
BS Base system
BP Base process
CDT Carrier delivery time
Cj Completion time of job j
Cmax Makespan
CP Control process
CS Control system
CT Cycle time
CT j Cycle time of job j
di Individual desirability function for objective i
d j Due date of job j
d jk Due date for process step k of job j
D Combined desirability function
DU [a,b] Discrete uniform distribution over the integer set {a, . . . ,b}
ε Small number or a random error ∼ N(0,σ 2)
f Number of incompatible job families
F Number of FOUPs in a MOJ scheduling problem
F( j) Family of job j
FF Flow factor
FJm Flexible job shop with m machine groups
h Planning horizon
i Machine index

xi



xii Notation

Notation Explanation
IS Information system
j Job index
Jm Job shop with m machines
JS Job processing system
k Process step index
κ Look-ahead parameter
L j Lateness of job j
Lmax Maximum lateness
λ (Arrival) rate
m Number of machines
Mj Set of machines that are possible for job j
MS Material flow system
n Number of jobs
n j Number of process steps of job j
NTJ Number of tardy jobs
N(μ ,σ 2) Normal distribution with mean μ and variance σ 2

O j Process flow of job j
O jk Operation k of job j
OS Operational system
p̄ Average processing time
p−batch Parallel batching
p j Processing time of job j
p jk Processing time of process step k of job j
Pm Parallel identical machines, where the number of machines is m
PP Planning process
PS Planning system
recrc Recirculation, i.e., reentrant flow
r j Ready time of job j
Rm Unrelated parallel machines, where the number of machines is m
IR+ The set of non-negative real numbers
s−batch Serial batching
s jk Setup time to process job k after job j
skl, ji Setup time to process step l of job k after step i of job j
t Current time
TC Total completion time
Tj Tardiness of job j
TP Throughput
TT Total tardiness
TWC Total weighted completion time
TWT Total weighted tardiness
τΔ Planning interval
τah Additional planning horizon
U(a,b) Continuous uniform distribution over the interval (a,b)
Uj Indicator variable that is 1 if job j is tardy
Var(CT) Variance of the cycle time
Var(L) Variance of the lateness
w j Weight of job j
WNTJ Weighted number of tardy jobs
x+ max(x,0)
zi Weight for the individual desirability function di

ZZ+ The set of non-negative integers



Chapter 1

Introduction

The purpose of this chapter is to provide an overview of the book. Therefore,
we start by discussing motivation for modeling and analysis of semiconduc-
tor manufacturing. Semiconductor manufacturing is an extreme environment
for production planning and control, scheduling, and simulation models. The
enormous size of the facilities and supply chains in the semiconductor in-
dustry, the permanent appearance of uncertainty, and rapid technological
changes lead to an environment that brings approaches developed for other
industries under stress (see Chien et al. [49] for a related discussion). The
capital intensive nature of the semiconductor industry requires manufacturing
systems to run consistently at high utilization levels, reentrant flows create
complex competition for limited resource capacity, and the ever-increasing
level of automation reduces the ability to rely solely on people for production
planning and control. Models that are successful in the semiconductor indus-
try will likely find reasonable applications in other areas. A second source of
academic interest in modeling and analysis of semiconductor manufacturing
is the insight that the semiconductor manufacturing environment initiates on
the formulation of some problems that had not been widely studied in other
industries (cf. Chien et al. [49]).

We obviously cannot give a complete account of modeling and analysis of
semiconductor manufacturing in a book of only a few hundred pages. Hence,
instead of attempting the impossible, we have chosen production planning and
control of wafer fabs from the perspective of our own interests and research
programs. In the second section of this chapter, we provide an outline of the
content of the book.

1.1 Motivation

In the last decade, the electronics industry has become one of the largest
industries in the world. At the heart of this industry is the manufacturing of
integrated circuits (ICs or chips) on thin silicon discs (wafers). The fabrication

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction

of ICs on silicon wafers is arguably the most complex manufacturing process
in existence [14, 110, 276, 306, 307]. This complexity is caused by many factors
including multiple products, routes with several hundred process steps, and a
large number of machines (tools). There are four basic steps in manufacturing
ICs (cf. Uzsoy et al. [306]):

• Wafer fabrication
• Sort (or probe)
• Assembly
• Test

In wafer fabrication, the layers of the ICs are fabricated onto raw silicon
wafers. Next, the completed wafers are sent to sort where electronic probes
perform an electrical test on each IC to determine basic functionality. Then,
the probed wafers are sent to assembly, where the wafers are cut into individ-
ual ICs and the functioning ones are put into a package that allows connection
with higher level devices such as PCs, cell phones, etc. Finally, the packaged
ICs are tested and labeled. Wafer fabrication is the most time-consuming
and the most costly step and is the primary focus of this monograph. It is
characterized by the following process conditions:

• Reentrant flow, i.e., a lot of wafers, called jobs to be consistent with the
scheduling literature, may visit the same machine several times

• A mix of different process types, for example, batch processes, i.e., several
jobs, can be processed simultaneously on the same machine vs. single wafer
processes

• Unrelated parallel machines that are often highly unreliable or require con-
siderable preventive maintenance to keep them reliable

• Sequence-dependent setup times that can in some cases take considerably
longer than the time to process a job

• Variety of products with a changing product mix
• Customer due dates that are very aggressive

In addition, the machines used for processing jobs are extremely expensive,
some as high as US$40 million, and thus are scarce resources. This is the main
reason for reentrant flow of the jobs through the wafer fabrication facility
(wafer fab). This type of flow causes problems related to production control
of wafer fabs that are different than production control problems in classical
job shops, for example, the occurrence of dynamic bottlenecks. The cost of
today’s fab, up to US$5 billion, leads to competition between production
jobs and prototype (or engineering) jobs for processing time on the machines.
Many companies do process development for the next generation of products
in the same fab that produces the current generation products in high volume.

In the past, sources of reducing costs in semiconductor manufacturing were
decreasing the size of the chips, increasing the wafer sizes, and improving
the yield, simultaneously with efforts to improve operational processes inside
the wafer fabs (cf. Schömig and Fowler [276]). While shrinking the size of
the chips will likely continue to significantly reduce costs of semiconductor
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manufacturing for the next several generations of products, the productivity
gains from increasing wafer sizes and improving yields will not likely continue
at historic levels. There will be wafer size increases, but the increased costs
of the larger wafers will offset some of the productivity gains. In the case
of yield, the gains will not be as large as in the past because yields are
already high, which leaves less room for improvement. Currently, it seems
that the improvement of operational processes creates the best opportunity to
realize the necessary cost reductions. Therefore, the development of efficient
planning and control strategies is highly desirable in the semiconductor wafer
fabrication domain. In the course of the development of new planning and
control algorithms, researchers and developers have to take into account the
new opportunities in advanced software and hardware technologies.

1.2 Outline of the Book

In this monograph, we consider these problems. We show that from our point
of view productivity improvements in the semiconductor industry will have
to come through the implementation of operations research and industrial
engineering tools and techniques and through application of state-of-the-art
computing technologies.

In Chap. 2, we provide a detailed process description of semiconductor
manufacturing. We use the notion of base system, base process, control sys-
tem, control process, planning system, planning process, and finally of the
information system. A manufacturing system consists of a base system that
contains all the resources, i.e., tools, secondary resources, and operators. The
corresponding base process is given by jobs that consume capacities of the
resources during processing. The resource allocation process of the jobs is
influenced by the production control process that is performed by using the
production control system. The production control system consists of the
computers and the software used to produce production control instructions,
i.e., software with dispatching and scheduling capabilities. The production
control process determines when and under which circumstances a certain
control algorithm is used to determine production control instructions. The
production planning system is given by a set of computers and software that
is used to determine production planning instructions. The production con-
trol system and production planning system combined with human decision
makers and the operational system form the information system. The pro-
duction planning system determines when certain planning actions have to
be performed. The main results of production planning are quantities and
points of time for releasing orders into the base system. In this book, we
are mainly interested in the design of the production control and production
planning system and also in the production control and planning process.
Less attention is paid to the design of the base system and process.

We introduce the notion of complex job shops (cf. [172, 223]). Complex
job shops are a specific class of job shops that are characterized by unre-
lated parallel machines, batch machines, reentrant process flows, and process
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variability. We describe the basic process steps of semiconductor manufactur-
ing and introduce a production planning and control hierarchy that includes
the enterprise level, the factory level, and finally the work center level from
a resource point of view.

Most enterprises consist of several factories that are geographically dis-
tributed. The following questions are interesting on the enterprise level:

• How do we maximize enterprise capacity?
• What are the effects of product mix?
• How do we minimize enterprise costs?

However, in this monograph, we mainly concentrate on the factory and the
work center level instead of the enterprise level. We are interested in the
following types of questions for the factory level:

• What is the best dispatching strategy?
• Is it beneficial to use a scheduling system?
• What is the impact of different lot sizes?
• What is the impact of different order/job release strategies?
• Is it worthwhile to integrate machine-related and automated material han-
dling system-related decisions?

A single factory consists of different work centers. The following issues will
be discussed for the work center level:

• Is it necessary to use different dispatching strategies for different types of
work centers?

• What is a good batching strategy?
• What is an effective way to manage reticles?
• How should cluster tools be scheduled?

A batch is a collection of jobs that are processed at the same time on the
same machine. Reticles are secondary resources that contain the informa-
tion for specific integrated chips. Finally, a cluster tool may perform several
consecutive process steps of a certain job.

From an operations management point of view, we differentiate between
planning at the highest level, order release, scheduling, and dispatching at
the lowest level. Each of these different functionalities is related to a certain
horizon. The decisions on the higher levels are generally made on a periodic,
but infrequent basis. Each decision typically has a huge financial impact. The
plans from the planning level are used to make order/job release decisions.
Finally, priorities are assigned to each job in order to process the jobs on
single machines.

In this book, we start by describing dispatching and end up with produc-
tion planning. The resulting planning and control hierarchy consists of the
following layers:

• Planning with a time horizon ranging from months to years
• Order release in a weekly or bi-weekly frequency
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• Scheduling each shift/day
• Dispatching in a minute-by-minute manner depending on the speed of the
material flow

Production plans are the output of the planning layer. These plans are then
used to release jobs. These job starts are an input of the scheduling layer.
A detailed description of activities at the machine level is the result of the
scheduling layer. A schedule can be used to establish priorities for operations.
These priorities are important for dispatching decisions.

In this monograph, of course, we cannot completely answer all questions.
However, the aim of this monograph is to provide tools and techniques from
operations research, industrial engineering, and computer science to model
and control wafer fabs effectively. We hope that readers of this book are
willing to accept the abstract modeling and operations research language.

Therefore, after a description of the base process and base system in
Chap. 2, we provide the necessary modeling and analysis tools in Chap. 3.
Models are used within the production planning and control process for rep-
resenting the base system and base process and for decision-making. They can
be part of the production control and also the production planning system.
We differentiate between dynamic and static, deterministic and stochastic,
and descriptive and prescriptive models. Dynamic models contain a time
dependency, while static models do not. Stochastic models include model at-
tributes that are specified by probability distributions, while model attributes
in deterministic models are not random. Descriptive models are used to de-
scribe how a system behaves. For the purpose of this book, descriptive models
usually are given by queueing models and simulation models of the base sys-
tem and process. Prescriptive models are generally used for the immediate
derivation of planning and control instructions. These models are used to
modify the future evolution of the system. Scheduling models are examples
for this class of models. Furthermore, we also describe statistical models for
the design of experiments (cf. Montgomery [208]). These models are impor-
tant for the performance assessment of new production planning and control
approaches and will be used in the subsequent chapters of the book.

We describe various decision methods including branch-and-bound tech-
niques, linear and mixed integer programming, stochastic programming, dy-
namic programming, metaheuristics, queueing theory, and discrete-event si-
mulation for the sake of completeness. These descriptions are simply meant
to equip the readers with the necessary tools to understand the models and
methods to solve specific problems in the remaining chapters of the mono-
graph.

We also deal with basic questions of performance assessment and therefore
introduce important performance measures used in this monograph. We de-
scribe simulation-based methods to assess the performance of the production
planning and the production control system within a dynamic and stochastic
environment due to Mönch [192].
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In Chap. 4, we deal with dispatching rules. A dispatching rule selects the
next job to be processed among the jobs that are waiting in front of a machine
group (cf. [29, 116]). Dispatching rules are generally myopic in time and space,
and it may be difficult to adapt them to different situations on the shop
floor. However, their decision logic is easy to understand, and they can be
implemented with less effort on the shop floor. We introduce several simple
dispatching rules that are in common use in the semiconductor industry like
earliest due date, critical ratio, and least slack (cf. Sarin et al. [274]). Simple
dispatching rules answer only the question of which job should be processed
on which machine next. In this monograph, we provide results of simulation
experiments with different commonly used dispatching rules.

Chapter 4 continues by combining these simple rules into composite rules.
We discuss several variants of the apparent tardiness cost rule (cf. Vepsalainen
and Morton [311]). A third decision is important for batching machines in
addition to assignment and sequencing decisions. In this situation, we have
to decide which jobs should form the batch. This decision is typically made
by batching rules, and we describe several of the most important of these
rules. Finally, we also introduce look-ahead rules (cf. [84, 85, 101]) that take
into account the situation of downstream work centers. Look-ahead rules are
important in manufacturing systems with sequence-dependent setups and
batching.

In contrast to dispatching, scheduling approaches consider a time horizon
for decision-making and not only a discrete set of points of time. We discuss
the use of scheduling techniques in semiconductor manufacturing in Chap. 5.
Scheduling is defined as the process of allocation of scarce resources over
time [34, 240]. The goal of scheduling is to optimize one or more objectives
in a decision-making process. The two major categories in scheduling are
deterministic and stochastic scheduling. Deterministic scheduling is charac-
terized by processing times, setup times, and job priorities that are known
in advance. They are not influenced by uncertainty. In contrast, stochastic
scheduling problems do not assume the existence of deterministic values for
processing times, setup times, or other quantities that are used within the
scheduling model. The deterministic values are replaced by corresponding
probability distributions. Deterministic scheduling problems can be further
differentiated into static problems where all jobs to be scheduled are available
at time t = 0. Dynamic scheduling problems relax this condition. In this
situation, jobs are ready at different points in time, i.e., t ≥ 0.

Simulation-based scheduling means that simulation is used to determine
schedules with a horizon ranging from several hours to a day. Dispatching
rules that are already part of the simulation engine are used to determine
what will be processed next on each machine. The assignment and the se-
quencing of jobs observed in the simulation are used to produce a control
instruction in the original production control system that is used to influ-
ence the base system. Simulation-based scheduling relies to a large extent
upon the capability to produce simulation models that represent the base
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system and the base process in a very detailed manner. Automated or semi-
automated simulation model generation abilities based on data in operational
systems like the manufacturing execution system (MES) are necessary in or-
der to run a simulation-based scheduling system. The selection of a final
schedule as production control instructions can be based on several criteria
(cf. Sivakumar [284] for a more detailed description of this approach). Usu-
ally, all stochastic effects, for example, machine breakdowns, are turned off
because of the short time horizon. Appropriate model initialization is a non-
trivial issue in simulation-based scheduling. Simulation-based scheduling is
somewhere between dispatching and more traditional scheduling.

According to the suggested planning and control hierarchy, we consider
single machine-related and work center-related scheduling problems. These
scheduling problems may be the result of decomposition techniques that di-
vide the overall, full factory scheduling problem into scheduling problems
for single machines or work centers. Hence, single machine or parallel ma-
chine scheduling problems are the building blocks of full factory scheduling
problems. On the other hand, this type of scheduling problem may arise inde-
pendently for the processing of jobs on bottleneck machines. Many schedul-
ing problems are known to be NP-hard (cf. Brucker [34]). Therefore, we often
resort to using efficient heuristics. In this monograph, we describe mainly dis-
patching rule-based techniques and approaches based on genetic algorithms.
We consider scheduling problems for single and parallel batch machines and
for parallel machines with sequence-dependent setup times.

Furthermore, we also consider cluster tools as special mini fabs. We discuss
modeling issues for cluster tools. The scheduling of jobs on cluster tools is
challenging because cluster tools consist of parallel chambers that do not
allow for a straightforward estimation of processing times of a job on these
machines. Simulations and neural networks are used to perform this task. We
discuss the scheduling of single and parallel cluster tools.

After the discussion of single and parallel machine scheduling models, we
consider full factory scheduling problems. Until recently, full factory schedu-
ling methods seemed to be too costly in comparison to dispatching methods.
However, with the recent dramatic increase in computer efficiency, full fab
scheduling methods have become more competitive. Because we can model
a wafer fab as a complex job shop, we also have to deal with scheduling
approaches for large-scale job shops.

We describe the shifting bottleneck heuristic by Adams et al. [1] as an
important representative of scheduling heuristics for complex job shops. The
main idea of the shifting bottleneck heuristic consists in using disjunctive
graphs to model the dependency of job processing on different machines.
Based on the calculation of longest paths within the disjunctive graphs,
the overall scheduling problem is decomposed into smaller, more tractable
scheduling problems for single or parallel machines. After the solution of these
subproblems, the structure of the graph has to be updated to incorporate the
scheduling decisions that were made.
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We then describe modifications of the shifting bottleneck heuristic sug-
gested by Mason et al. [172, 175]. These modifications take batching machines
and reentrant flows into account with the goal of minimizing weighted total
tardiness of the jobs. While subproblem solution techniques are often based
on dispatching rules, we also present more sophisticated approaches based
on genetic algorithms (cf. Mönch et al. [206]). We then describe simulation
experiments that allow for the application of the shifting bottleneck heuristic
in a rolling horizon manner in a dynamic environment (cf. Mönch et al. [202]).

Because of the reduction of solution complexity, distributed solution
heuristics for production control problems seem to provide some advantage.
Usually, it is difficult and time-consuming to collect in one place all the re-
quired data for centralized algorithms in real-world manufacturing systems.
From this point of view, distributed algorithms working on local data provide
a highly desirable approach. Therefore, we also discuss a distributed variant of
the shifting bottleneck heuristic (cf. Mönch and Driessel [193]). This heuristic
is based on a two-level hierarchical approach. The upper level determines ex-
pected start dates and completion dates for the jobs with respect to a certain
work area, i.e., a collection of work centers, in a first step. Then in a second
step, we use this information in order to apply the shifting bottleneck heuris-
tic for the jobs in each work area. The schedules for the single work areas can
be improved by using an iterative improvement technique. The distributed
shifting bottleneck heuristic requires less memory and can be distributed on
several computers.

We also describe an extension of the shifting bottleneck heuristic from
the single-objective case to the multiobjective case (cf. Pfund et al. [235])
via a desirability function approach. By using this approach, we can model
preferences for certain objectives by appropriate weight settings.

Dispatching and scheduling systems assume jobs have already been started
in the base system. In Chap. 6, we discuss order release approaches (cf. Fowler
et al. [87]). After a brief overview of the general push and pull philosophies, we
describe the starvation avoidance approach (cf. Glassey and Resende [100])
and the workload regulation approach (cf. Wein [318]). We then discuss the
use of CONWIP-like (cf. Spearman et al. [290]) order release strategies in
semiconductor manufacturing. We also present work that investigates the in-
teraction of order release schemes with the full factory scheduling approaches
presented in Chap. 5. The main results of a simulation study to find appro-
priate order release schemes are also discussed. An optimization formulation
is presented that supports order release decisions in wafer fabs.

One prerequisite for order release is (operational) capacity planning.
Therefore, we consider capacity planning approaches in semiconductor ma-
nufacturing in Chap. 7. The basic problem consists of allocating production
capacity to alternative products over time in the occurrence of forecasted
demands to optimize some performance measure of interest.

We describe simple (static) spreadsheet-type models for this production
planning problem (cf. Ozturk et al. [224]). Furthermore, we also discuss the
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use of simulation models that take the dynamics of the wafer fab into ac-
count better than the spreadsheet models do. Besides short-term capacity
planning schemes, we also discuss models used for medium- and long-term
capacity planning. Linear and stochastic programming are used to solve these
kind of problems. We discuss the problem of modeling load-dependent cycle
times. Therefore, we consider iterative simulation techniques due to Hung
and Leachman [120], provide a methodology to efficiently generate cycle time
throughput curves (cf. Fowler et al. [86]), and introduce clearing functions
due to Srinivasan et al. [292], Karmarkar [136], and Asmundsson et al. [12].

Agrawal and Heragu [3] indicate that semiconductor wafer fabs are highly
automated manufacturing systems. Compared to other industries, accurate
and up-to-date data are available. Therefore, we have a rather good star-
ting position for establishing more advanced production planning and control
approaches in wafer fabs. On the other hand, we also have to deal with the
operational information systems on the shop floor. We have to analyze the
current state of these systems. Furthermore, based on the presented metho-
dological framework in the monograph, we derive future needs for production
planning and control systems in Chap. 8.

An MES is an operational information system that is between the enter-
prise resource planning (ERP) systems and the base process. We describe
the core functionality of an MES, which consists of providing correct infor-
mation about the process flows, the machine set, the status of machines,
and also the status of jobs (cf. McClellan [178]). An MES also sometimes
supports the implementation of dispatching and scheduling algorithms and
decisions. Scheduling and dispatching heuristics have to use the data from
the base process that is contained in the MES. Furthermore, an MES is used
to provide maintenance and quality assessment functionality. These informa-
tion systems work together with higher level operational systems like ERP
systems and with different databases. Because most of the commercial MESs
have difficulties with the integration of more sophisticated dispatching and
scheduling approaches, we suggest the use of scheduling systems in a plug-
and-play manner via an object-oriented data layer. The data layer acts as
a mirror of the base process, and its objects are updated in an event-driven
manner (cf. Mönch et al. [190]).

Usually, an MES does not provide adequate dispatching and scheduling
functionality. Therefore, we discuss several extensions of MESs for this pur-
pose. These extensions are typically software systems on their own. We start
with dispatching systems that are quite common in the semiconductor in-
dustry (cf. Pfund et al. [234]). We describe the main architecture of such a
system and its interaction with both the MES and ERP systems. Scheduling
systems are also discussed.

Software agents allow for the implementation of distributed planning
and control algorithms. The agents are able to act autonomously; on the
other hand, their communication abilities ensure a cooperative behavior and
the fulfillment of global system goals. Furthermore, agent-based systems
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facilitate maintenance and further development tasks of the software [319,
324]. In this book, we present the design and the architecture of a multi-
agent-system for wafer fabs called FABMAS. The FABMAS system is aimed
at production control of wafer fabs. We differentiate between decision-making
agents and staff agents. Staff agents encapsulate scheduling logic. They sup-
port the decision-making agents in the course of their decision-making. The
suggested architecture is used to implement the distributed version of the
shifting bottleneck heuristic on a cluster of computers.

Manual material handling is typical for 200-mm wafer fabs. A 300-mm
wafer usually visits several hundred machines to perform hundreds of different
process steps. Modern 300-mmwafer fabs consist of several bays. To transport
wafers, front-opening unified pods (FOUPs) are used as wafer carriers. The
FOUPs have to be transported not only within a bay but also from one
bay to another. Material control systems (MCSs) are used to initiate and
coordinate concurrent movements of carriers within the automated material
handling system (AMHS). Therefore, material handling is a critical issue in
wafer fabs. An AMHS is an important tool to achieve the goal of reducing
cycle time and improving yield rates (cf. Agrawal and Heragu [3]). Running
and controlling an AMHS is challenging. Advanced software is required to
run an AMHS that performs all the material handling requirements. We
discuss the functionality of such MCSs for an AMHS and their interaction
with the MES.

Wafer fabs, i.e., the front-ends, are geographically distributed over North
America, Europe, and Asia, but most assembly and test sites, the back-end,
are in the Pacific Rim. Thus, production orders have to be coordinated be-
tween the front-end and back-end facilities, and the management and co-
ordination of the entire supply chain is an important issue. Supply chain
management functionality is usually provided by advanced planning systems
(APSs). We describe the main functionality of such systems. Furthermore, we
also discuss the interaction of an APS with ERP systems and with the MES.



Chapter 2

Semiconductor Manufacturing Process
Description

In this chapter, we provide a process description of semiconductor
manufacturing. Therefore, we describe the front-end and back-end areas
in some detail. We introduce the notion of base system, base process, control
system, control process, planning system, planning process, and finally of the
information system from systems theory. Then we discuss important wafer
fabrication operations including a description of the most important charac-
teristics of the semiconductor manufacturing process. We also introduce the
notion of complex job shops because this is the way wafer fabs are organized.
Finally, we discuss the production planning and control (PPC) hierarchy in
semiconductor manufacturing.

From an operations management point of view, we differentiate between
planning at the highest level, order release, scheduling, and finally dispat-
ching at the lowest level. Each of these different functionalities is related to a
certain horizon. Planning has a time horizon ranging from months to years.
Order release takes place in a weekly or biweekly frequency. Scheduling is
performed each shift or day. Finally, dispatching is carried out in a minute-
by-minute manner depending on the speed of the material flow. We develop
this PPC hierarchy because it forms the skeleton for the remainder of this
monograph.

2.1 Semiconductor Manufacturing Overview

A semiconductor chip is a highly miniaturized, integrated electronic circuit
consisting of thousands of components. Every semiconductor manufacturing
process starts with raw wafers, thin discs made of silicon or gallium arsenide.
Depending on the diameter of the wafer, up to several thousand identical
chips can be made on each wafer by building up the electronic circuits layer-
by-layer in a wafer fab. There are about 40 layers for the most advanced
technologies. Next, the wafers are sent to sort or probe, where electrical tests
identify the individual dies that are not likely to be good when packaged.

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 2,
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Historically, bad dies were physically marked so that they would not be put
in a package. Today, this has been replaced by producing an electronic map
to identify the bad dies. The probed wafers are sent to an assembly facility
where the dies with a reasonable quality are put into an appropriate package.
Finally, the packaged dies are sent to a test facility where they are tested in
order to ensure that only good products are sent to customers. Wafer fab and
sort are often called front-end, and assembly and test are often called back-
end. While front-end operations are often performed in highly industrialized
nations, back-end operations are typically carried out in countries where labor
rates are cheaper.

Considering the scale of integration, the type of chip, the type of package,
and customer specifications, the whole manufacturing process may require
up to 700 single process steps and up to 3 months to produce. The four main
stages of semiconductor manufacturing are shown in Fig. 2.1.

In the past, all that was necessary for a semiconductor company to make
money was to design a good product. However, over the last decade, in-
creased competition has required semiconductor companies to also be able to
manufacture their products in an efficient and cost-effective manner.

Several performance measures are commonly used to describe and assess
semiconductor manufacturing systems including machine utilization, produc-
tion yield, throughput, cycle time, and on-time delivery performance-related
measures. Machine utilization is extremely important because the machines
account for around 70% of the cost of a new wafer fab, which can be as
high as $5 billion US. In this context, cycle time is defined as the time
needed for a lot of wafers, called a job, to travel through the semiconductor

WaferFab

TestAssembly

Probe

DAP-3X
C

Figure 2.1: Stages of semiconductor manufacturing

manufacturing system including queue time, processing time, and transit
time. Each job contains a fixed number of wafers. A high on-time deliv-
ery performance is important to satisfy customers. We also refer to Sect. 3.3
where these performance measures are introduced in a more formal way.

The competitiveness of a semiconductor manufacturer often depends
on the ability to rapidly incorporate advanced technologies in electronic
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products, continuous improvement of manufacturing processes, and the
capability of meeting customer due dates. In a situation where prices as well
as the state of technology have settled at a certain level, the capability of
meeting due dates along with the reduction of cycle time has become the
most decisive factor in the fierce competition in the global market place.
Consequently, short and predictable cycle times are highly desirable.

Semiconductor companies have increasingly turned to data-intensive
modeling and analysis tools and techniques because of their potential to sig-
nificantly improve these performance measures, and hence the bottom line.
The semiconductor manufacturing modeling and analysis community has
been working over the last 20 years to modify general purpose manufacturing
modeling tools and techniques to handle the intricacies and complexity of
semiconductor manufacturing.

2.2 Front-End and Back-End Operations

In this section, we start by an overall framework for manufacturing systems.
Then, we discuss the base system and finally the base process of semiconduc-
tor manufacturing.

2.2.1 Overall Framework for Manufacturing Systems

Before we describe front-end and back-end operations in detail, we present a
framework that is used in the remainder of this monograph to discuss PPC
problems in semiconductor manufacturing.

We start in a general manner with systems. A system consists of a set
of interacting components. Each single component of a system has a state.
We introduce processes to deal with dynamic aspects of systems. A process is
defined as a mapping between a partially ordered set of events E and actions
A, i.e., exactly one action a ∈ A is assigned to each event e ∈ E. The partial
order of the elements of E might refer, for example, to the points of time
where the events happen, but it can also represent precedence constraints
among the events. Typically, we describe the system and at the same time
the corresponding processes. The actions of the processes are performed on
system components.

In this monograph, we study manufacturing systems. Manufacturing
systems are systems that have the purpose to produce goods. A manufac-
turing system consists of a base system (BS) and an information system
(IS). The BS is formed by system components that are used to transform
raw materials and intermediate products into final products. It contains a
job processing system (JS) and a material flow system (MS) as subsystems.
The JS consists of all the system components that allow for value-added
processing of working objects, i.e., jobs. The system components of the JS
offer capacity for processing. Resources, like machines, operators, and aux-
iliary resources, form the JS. On the other hand, all the facilities that are
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necessary to store, transport, and supply raw material, working objects, and
auxiliary, also called secondary resources, form the MS.

The base process (BP) is resonsible for the usage of system components
of the BS by working objects. Of course, we can differentiate between sub-
processes related to the JS and the MS, respectively. The BP is specified by
process flows, also called routes, and a given set of working objects. A process
flow in semiconductor manufacturing is a sequence of process steps. A set of
possible machines is assigned to each single process step within a process flow.
A recipe is an execution program at a certain machine that is associated with
a process step.

The IS is responsible for the control of the production of goods. It is
given by the planning system (PS), the control system (CS), and the op-
erational system (OS). The PS consists of a set of computers and software
that are used to determine production planning instructions mp. Production
planning results in quantities and points of time for releasing working ob-
jects into the BS. The production planning process (PP) determines when
and under which circumstances certain production planning actions have to
be performed. Similarly, the CS is given by a set of computers and software
that are used to determine production control instructions mc that influence
the BP. As a consequence, production control decisions only have impact on
working objects that are already part of the BP. The corresponding control
process (CP) determines when and in which situations a certain production
control algorithm is used to determine production control instructions.

Finally, the OS is responsible for immediate control of the BP. The OS
usually consists of hardware and software to represent the state of system
components of the BS and working objects of the BP. It acts as a mirror of
the BS and the BP. Usually, databases are used to implement the OS. The
PS, the CS, the OS, and the human decision makers form the IS.

The OS, the CS, and the PS interact by instructions and feedback. A more
detailed description of these interactions is provided in Sect. 2.3. The different
subsystems and subprocesses of a manufacturing system and the correspond-
ing manufacturing process are summarized in Fig. 2.2.

We will use the notation from Fig. 2.2 when we describe the manufac-
turing system and process for semiconductor manufacturing. In Sects. 2.2.2
and 2.2.3, we start with the BS and the BP, whereas the PS, the PP, the CS,
and the CP are discussed in Sect. 2.3.

2.2.2 Description of the Base System

In this monograph, we will mainly focus on modeling and analyzing of wafer
fab operations. These operations generally account for more than 75% of the
total cycle time and are also the largest component of cost. However, for the
sake of completeness, we will also briefly discuss back-end issues.
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Figure 2.2: Subsystems and subprocesses of a manufacturing system and process

We start by describing the BS for semiconductor manufacturing. The entire
enterprise may consist of several wafer fabs and back-end facilities, i.e., the
BS of an enterprise is a collection of such factories.

In a first step, we will discuss the JS of a single wafer fab. The JS of a
wafer fab consists of several work areas that are used for wafer processing
and sorting in a clean-room environment. Each work area is a collection
of work centers that are closely related logically or due to their location.
Work areas are also called bays when the relation among the work centers is
based on the location. A work center is a collection of machines that provide
similar processing capabilities. Work centers are also called tool groups in
semiconductor manufacturing. A single machine is a non-human resource
with a fixed location that is able to process jobs. It can have a buffer where
jobs are stored before, during, or after processing. For 200-mm wafer fabs,
these buffers are often assumed to be practically unlimited, whereas they
usually have a limited capacity in 300-mm wafer fabs. The following machine
states are possible according to SEMATECH [280]:

• Productive state: a period of time during which the machine is performing
its intended function

• Standby state: a period of time during which the machine is not operated,
although it is in a condition to perform its intended function, and the
chemicals and facilities are available

• Engineering state: a period of time during which a machine is in a condition
to perform its intended function but is operated for the purpose of con-
ducting engineering experiments
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• Scheduled downtime state: a period of time during which the machine is
not available to perform its intended function because of planned downtime
actions

• Unscheduled downtime state: a period of time during which the machine
is not available to perform its intended function because of unplanned
downtime actions

• Nonscheduled state: a period of time during which the machine is not
scheduled to be utilized in production including off-line training, unworked
shifts, weekends, and holidays

Some of the machines are able to process only one wafer or a job at a certain
point of time, whereas some types of machines process two jobs in an over-
lapping manner, i.e., the second job is already started after the first one
has been processed for a certain period of time. These machines are called
pipeline tools. Another example of specific machines that can be encountered
in wafer fabs are X-piece machines, in which X wafers of a job are loaded at a
time in the machines and where X is smaller than the total number of wafers
in a job, except for small jobs. Other types of machines can process entire
batches. A batch is defined in semiconductor manufacturing as a collection
of jobs that are processed at the same time on the same machine (cf. Mathi-
rajan and Sivakumar [176]). Besides batch-processing machines (for short,
batch machines in the remainder of this book), we also introduce cluster
tools that are typical for many modern wafer fabs.

Cluster tools are special integrated tools for wafer processing in semicon-
ductor manufacturing (cf. Lee [157]). They are used to maximize quality
performance at the cost of very complex behavior. Since wafers with different
types of process steps can circulate in a cluster tool simultaneously, it can be
regarded as a fully automated machine environment. Cluster tools work un-
der vacuum conditions inside the tool, which means very few particles could
possibly contaminate wafers. As a consequence, the clean-room quality out-
side the cluster tool is allowed to be lower than in traditional wafer fabs.
The basic components of a cluster tool are as follows:

• A vacuum mainframe with one or two wafer-handling robots
• Two (or more) load locks to pump to vacuum or vent to atmospheric
conditions

• Several processing chambers, where some of them can be dedicated to
identical processes and hence used in parallel

• Optional transfer chambers if there is more than one wafer-handling robot
• An equipment front-end module (EFEM), which is attached to the load
locks, with an atmospheric wafer-handling robot and several load ports

These basic components of a cluster tool are shown in Fig. 2.3. The processing
of wafers on cluster tools is included in the description of the semiconductor
BP later in Sect. 2.2.3.

In wafer fabs, we typically have dozens of different work centers and sev-
eral work areas. A more detailed description of the functionality of work
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centers and work areas is also included in the BP description in Sect. 2.2.3.
For each machine, there is a list of which products are allowed to be per-
formed on the machine because of quality considerations, i.e., we find ma-
chine dedications. They are mainly influenced by the fact that qualifying a
certain machine for a specific process is time-consuming and therefore expen-
sive (see Johnzén [133]). The machines of a work center are heterogeneous
because they tend to have a different age. A total of several hundred ma-
chines can be found in most wafer fabs. Machines are expensive, ranging in
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Figure 2.3: Basic components of a cluster tool

price from a couple of US$100 thousand to over US$40 million per machine.
Note that in a few cases there are borderless wafer fabs, i.e., facilities that
are in close geographical proximity (cf. Gan et al. [93]). In this situation, the
different wafer fabs can share some of their machines to produce ICs.
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Back-end facilities also consist of work areas and work centers, but the
number of machines is usually smaller than in wafer fabs. Furthermore,
the clean-room conditions that are required are less strict than those for
wafer fabs.

Operators as special human resources are necessary to run a wafer fab.
In all but the most highly automated wafer fabs, humans load and unload
wafers to machines, run the machines, and perform inspection steps. Often
highly qualified and experienced operators are assigned to supervise work
areas. In addition, there are generally several people responsible for the overall
performance of the work areas; these people may spend the majority of their
time outside the shop floor.

Typical auxiliary resources used in semiconductor manufacturing
are reticles. A reticle is a photo mask that is a carrier of an IC pattern.
They are used in the photolithography process. In back-end facilities, load
boards are applied to load and place chips into burn-in ovens to subject them
to thermal stress. The type of board required to test chips depends on the
packaging of the circuits. Both reticles and load boards are quite expensive,
and therefore their number is often limited. In a certain sense, operators
might also be considered as an auxiliary resource that is necessary to process
wafers on machines.

After the description of the JS, we discuss the MS of a wafer fab [82, 131].
In modern 300-mm wafer fabs, wafers and reticles are transported fully auto-
matically in carriers called FOUPs, using an AMHS. A FOUP is a container
that holds up to 25 wafer jobs of 300-mm wafers in an inert, nitrogen atmo-
sphere. Automated material handling is always a critical operation in wafer
fabs [3, 209]. In many 200-mm wafer fabs and in most back-end facilities,
material handling is usually carried out manually. Note that machines are
the main resources in the JS while vehicles take over this role in the MS.
Jobs compete for the scarce machine and vehicle capacities.

We now need to differentiate between interbay systems and intrabay sys-
tems. Interbay systems are used to store and transport wafers or reticles
between the various bays of a wafer fab. On the other hand, intrabay systems
have the purpose to move carriers for wafers and reticles within a bay. In 200-
mm wafer fabs automated interbay systems are common, but the transport
within a bay is done manually. The automated transport in 300-mm wafer
fabs also covers transport within a bay. This is caused by the increase in
area and weight of the wafers. Furthermore, because of more advanced soft-
ware and hardware solutions in 300-mm wafer fabs, a better integration and
control of the interaction between machines and automated transportation
systems is possible.

We start with the interbay situation. The interbay MS consists of
carriers for wafers and reticles, stockers, and the transportation system
itself. A stocker is an automated high-rack storage area where wafers and
reticles can be stored before and after being processed. A robot moves
the carrier into a shelf when it is inside the stocker. There are different
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possibilities for stocker placement within a wafer fab. Often a single stocker
is assigned to exactly one bay by locating it near the entrance of a bay. A
discussion of different AMHS layouts can be found in Agrawal and Heragu [3].
Each stocker may contain several input/output stations, called load ports.
Load ports are used for manual or automated load and unload operations of
carriers by fab-operating personnel or the automated transportation system,
respectively. If processing of wafers is done on different levels, i.e., floors,
of a wafer fab, then interlevel lift systems are used to transport carriers
between these multiple levels. The transport system transports carriers be-
tween different bays of a wafer fab. Overhead monorail-tracked vehicle-type
systems are in widespread use in industry. When an overhead transport is
not practical, then a floor running automated guided vehicle (AGV) system
is typical for interbay transportation as shown by Foster and Pillai [82].
Note that interbay transportation takes place from stocker to stocker or from
stocker to an interlevel lift system and vice versa.

In contrast, in the intrabay situation, the transportation is carried out
between stockers and machines or directly between machines of a bay. Floor-
based transport systems like AGVs and rail guided vehicles (RGVs) have been
used in industry. In many 300-mm wafer fabs, ceiling-based overhead hoist
vehicles (OHVs) are run instead of AGVs or RGVs. This type of transporta-
tion is called overhead hoist transportation (OHT). Stockers are equipped
with intrabay input/output ports to allow carriers to enter and exit the in-
trabay system. Stockers are usually far away from a specific machine where
a job is needed. This can lead to long delivery times and under track storage
(UTS) is proposed to avoid this disadvantage (Fischmann et al. [80]). UTSs
are single buffer storages that are mounted overhead but under the track
system. They are passive shelves that do not require floor space in the clean
room. OHVs can place carriers for temporary buffering in route to their
destinations. They provide additional queue positions for high throughput
machines (Foster and Pillai [82]). Load ports at the machines are the pri-
mary buffers besides stockers and UTSs. A single machine typically has three
to four ports. The intrabay vehicles deliver unprocessed FOUPs to the ports
and pick up finished wafers. A single OHV can transport a carrier directly
from machine load port to machine load port.

Operators are often elements of the nonautomated part of the MS. They
drive manual carts or personal guided vehicles (PGVs), especially in 200-mm
wafer fabs or in ramp-up situations where the automated transport system
is not running in 300-mm wafer fabs.

Two intrabay system configurations are in current use in industry.
We differentiate between a unified transport configuration and a non-unified
one. In the unified configuration, the track network for interbay and intrabay
is connected directly, i.e., no load and unload at stockers are necessary to
decouple the two transport loops. The track elevations of the interbay and
intrabay system have to be the same.
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In the second configuration, stockers are used to exchange the load of the
vehicles between interbay and intrabay segments. The track elevations of the
interbay and intrabay systems can be different. Within each bay, intrabay
vehicles are in place to transport carriers from the bay stocker to the storage
facilities of the bay. On the other hand, interbay vehicles transport carriers
to the destination bay stockers. We finish this brief description of the MS by
making the comment that often the MS is as complex and difficult to control
as the JS and a source of problems in many wafer fabs.

2.2.3 Description of the Base Process

We continue by describing the BP of a wafer fab. Many authors have discussed
the difficulties of the semiconductor manufacturing process (cf. Wein [318],
Uzsoy et al. [306], Atherton and Atherton [14], Ovacik and Uzsoy [223],
Sze [294], Sarin et al. [274], among others). Up to now, work areas are iden-
tified as an important component in the JS hierarchy. Now we describe the
basic process steps, i.e., the operations, that can be performed in different
work areas. The following process steps have to be performed in a wafer fab
after starting the raw wafer [14, 122]:

1. Oxidation/diffusion: A layer of material is grown or deposited on the sur-
face of a cleaned wafer. Oxidation aims at growing a dioxide layer on a
wafer. Diffusion is a high temperature process that disperses material on
the wafer surface. Diffusion furnaces and rapid thermal processing equip-
ment are in place at the oxidation/diffusion work area. The furnaces are
typical batch machines.

2. Film deposition: Deposition is used to deposit films onto wafers. The
corresponding steps deposit dielectric or metal layers. There can be a
dozen or more such deposition layers in an advanced circuit. Deposition
can be executed by different processes, such as physical vapor deposition
(PVD) or chemical vapor deposition (CVD), epitaxy, or metalization.

3. Photolithography: Coating, exposure, developing, and process control are
the main steps of the photolithography process. In the first step, the wafer
is coated with a thin film of a photosensitive polymer, called photoresist
strip. Accurate and precise three-dimensional patterns are produced on
the silicon wafer’s surface when an IC pattern is transferred via a photo
mask, i.e., reticle, onto the photosensitive polymer, which replicates the
pattern in the underlying layer. Exposure tools, called steppers, transfer
the pattern onto the wafer by projecting light through the reticle to expose
the wafer using ultraviolet light. The exposed wafer is then developed
by removing polymerized sections of photoresist from the wafer. Every
wafer passes through the photolithography area up to 40 times because
the circuits are made up of layers. The photolithography work area is a
typical example of a bottleneck in a wafer fab because steppers are very
expensive machines.
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4. Etch: This step is responsible for removing material from the wafer surface.
The wafers are partially covered by photoresist strip after the photolithog-
raphy step. Areas on the wafer that are not covered are then removed from
the wafer. We differentiate between wet and dry etching. In the first case,
liquids are used, whereas gases are necessary for the latter case.

5. Ion implantation: Dopant ions are selectively deposited on the surface of
the wafer. Doping material is deposited where parts of the wafer have been
etched. Ion implanters are used for between four and eight applications for
most modern ICs.

6. Planarization: This step cleans and levels the wafer surface. It is called
chemical-mechanical polishing (CMP). A chemical slurry is applied to a
wafer and the surface is equalized. This results in the thickness of the
wafers being diminished before adding a new layer.

Before the wafers are entered into the oxidation/deposition/diffusion work
area, a cleaning step is performed. Several inspection and measurement steps
are necessary to control the processes within and between work areas. Inspec-
tion machines can be found in all work areas.

At certain process steps, it can happen that jobs, wafers, or dies are pro-
cessed in a way that they become damaged. In some situations, rework is
possible to repair the wafer. When rework is not allowed, the useless wafers
are called scrapped material. The yield is the percentage of dies that meet
their electrical specifications.

Wafer fabrication has a number of unusual facets that are described below.
In a typical wafer fab, there often are dozens of process flows. Products that
follow the same basic process flow are often said to be of the same technology.
Typically, the only differences among products in the same technology are the
photolithography reticles used. Individual products are often referred to as
devices. Depending on the number of different products, or product variety,
wafer fabs can be classified as low- or high-mix wafer fabs. In low-mix wafer
fabs, machines can be dedicated to products, whereas, in high-mix wafer fabs,
the same machine can be shared by many products of various technologies,
i.e., requiring different setup and processing times. Hence, production control
is more complex in high-mix fabs, and efficient production control is usually
more critical.

Each process flow contains 300–700 process steps on more than one hun-
dred machines. The economic necessity to reduce capital spending dictates
that such expensive machines be shared by all jobs requiring the particular
processing capabilities provided by the machine, even though they may be at
different stages of their manufacturing cycle. This results in a manufacturing
environment that is different in several ways from both traditional flow shops
as well as traditional job shops. A job shop is characterized by an individual
process flow of each single product using different machines, whereas a flow
shop is described by the fact that all products have a fixed machine sequence,
i.e., the jobs are processed on the same sequence of machines or work centers.
The main consequence of the reentrant flow nature is that wafers at different
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stages in their manufacturing cycle have to compete with each other for the
same machines.

A simplification of the typical reentrant flow of a wafer fab is shown in
Fig. 2.4 where the different work areas within a wafer fab are also summarized.
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Implantation
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Raw Wafer/
Wafer Start

ProcessedWafer
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Figure 2.4: Operations in a wafer fab

Furthermore, the nature and duration of the various process steps in a
process flow differ significantly. Some process steps require 15min or less to
process a job, while others may require over 12 h.

Many of these long operations involve batch processes. In reality, it is not
uncommon for one-third of the wafer fab operations to be batch operations.
Batch machines tend to off-load multiple jobs, 1 to 12, onto machines that
are capable of processing only one job at a time. This leads to the formation
of long queues in front of these serial machines and ultimately to a nonlinear
flow of products in the wafer fabs. The diffusion furnaces in wafer fabs are
an example of batch machines. Here, the jobs are assigned to incompatible
job families. While several jobs can be processed at the same time, jobs of
different families cannot be processed together due to the chemical nature of
the processes. The processing time of all jobs within a family is the same.

The combination of decreased line widths and more area per wafer in 300-
mm wafer fabs results in fewer wafers being needed to fill an IC order of
a customer. Each wafer fab will have only a limited number of FOUPs as
they are expensive. A large number of FOUPs have the potential to cause
the AMHS to become overloaded. In addition, some machines have the same
processing times regardless of the number of wafers in the batch. Thus, it
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is not reasonable to assign an individual FOUP to each order. Therefore,
300-mm manufacturers often have the need and the incentive to group orders
from different customers into one or more FOUPs to form production jobs.
We refer to this as the multiple orders per job problem (cf. Mönch et al. [207]).

Historically, equipment reliability has been a major source of uncertainty
in wafer fabs. The continual drive to reduce the size of ICs has led to the
adoption of machines that have innovative processing modes but have been
built by manufacturers without a long history of developing manufacturing
equipment. The failure of equipment or processes is often not a hard failure
in the sense that something obviously breaks or goes wrong but rather a soft
failure in which the equipment begins to produce out of the tolerance region.
Due to the nature of the product and process, one may not detect this fact
for some time. Therefore, many inspection steps are added to the process
flow. The large downtime of some wafer fabrication machines, for example,
ion implanters may be down 30–40% of the time, has significant impact on
the production control function. The probabilistic occurrence of long machine
failures results in large variability in the time a job spends in process. High
variability in cycle times prevents accurate prediction of production cycle
times, resulting in longer lead-time commitments.

Preventive maintenance operations are used to reduce the number and the
duration of machine failures. But at the same time, they reduce machine ca-
pacity. There is also a competition between production jobs and prototype
jobs for processing times on the machines. Many prototype/engineering jobs
are necessary because of the difficulty of the technological processes. Proto-
type jobs also consume machine capacities.

Often, certain jobs in a wafer fab are more important than others. Then
these jobs will be expedited to meet their due dates. They are called hot or
rocket jobs. Because of these hot jobs, the congestion of many wafer fabs is
further increased.

Time constraints between consecutive process steps are another important
restriction. For example, there is often a time restriction between operations
in the etch work area and oxidation/diffusion work area (cf. Scholl and Do-
maschke [275]). Time windows are installed by the process engineering de-
partment to respect the time constraints. This is important to prevent native
oxidation and contamination effects on the wafer surface. More than two con-
secutive process steps might be involved, and these time constraints might be
nested. Jobs with a violation of the recommended time windows often have
to be scrapped since rework is generally not allowed.

Sequence-dependent setup times occur in some work areas and are related
to changing temperature, gas pressure, metal composition, etc. It is not only
important which product is going to be processed next but also which was
the last product processed before the current one. For example, in the ion
implantation work area, dopants have to be changed frequently. The effort
to do this change depends on the predecessor dopant. If the setups are not
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treated correctly by the production control staff, the corresponding machines
can become bottlenecks.

Finally, some process steps require an auxiliary resource in order to process
the job. For example, reticles are required in photolithography to process
wafers on steppers. Therefore, the challenge is to ensure that the machine
and the auxiliary resource are available at the same time.

Next, we consider cluster tools as they cause specific processing
restrictions. Each wafer of a job has to undergo the same process steps
in the cluster tool. This sequence of process steps is usually referred to as a
recipe. A typical product flow in a cluster tool starts with loading jobs into
one of the load ports. After that, single wafers are consecutively transferred
from the load port to the load lock by an atmospheric robot. Then the load
lock will pump to achieve vacuum conditions. Next, the mainframe robot can
transfer the wafer to its destination chamber where it will be processed. The
next step depends on whether the wafer shall leave the system or is required
to be processed in another chamber according to its recipe. After the last
process step, the wafer will be guided through the load lock back to the load
port. With more than one load port occupied, the controller of the cluster
tool will always process jobs of the same recipe sequentially one after another
and jobs of different recipes in parallel. Usually, the mainframe robot is a
dual blade robot with the two blades either on the same side or opposite to
each other. Advantages compared to single blade robots are reduced wafer
transfer times and, with regard to multiple product flows, a reduced amount
of possible deadlocks as well.

Cluster tools can be seen as a collective term for a certain type of machine
with a wide range of varying configurations. The number of load ports varies
usually between two and four, an EFEM may not be given, and loading
stations are directly attached to the load locks. Some cluster tools have two
mainframes with a transport robot and transfer chambers to connect them.

Cluster tools can process a certain number of jobs in parallel, which is
determined by the number of given load ports at a certain tool. The logic
of job processing requires jobs of different recipes to be processed in parallel
and jobs of the same recipe to be processed sequentially one after another.
Through parallel job processing, resource conflicts arise that result from a
shared use of the handling robots, load locks, and process chambers. The
conflicts lead to a job processing time that will be increased compared to its
stand-alone processing time.

Another effect that needs to be considered is called pipelining, which im-
plies that two jobs of the same recipe need to be processed sequentially. The
recipe is such that each wafer needs to go through more than one process
chamber. If this is the case, the first wafer of the second job may already start
processing in the first chamber if the last wafer of the first job is finished and
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no wafer of this job will return to the chamber. Hence, there will be a certain
overlap time between the start of the second job and the completion of the
first job.

In summary, concluding the description of BS and BP, wafer fabs can
be considered as complex job shops [172, 223]. A job shop is called flexible
when the same processing capabilities are offered by more than one machine,
i.e., machines are run in parallel in the work centers. According to Mason
et al. [172], a flexible job shop is called complex when the following processing
conditions appear:

• Unequal release dates of the jobs
• Sequence-dependent setup times
• Prescribed due dates of the jobs
• Reentrant flows of the jobs
• Different types of processes, for example, single job vs. batch processing
• Frequent machine breakdowns and other types of disturbances

We do not describe the part of the BP that is related to the MS because it
is simpler and it will not be covered in detail in the remainder of this book.

Finally, we briefly consider sort operations to complete the description of
the BP of the front-end part of semiconductor manufacturing. The sort opera-
tions are performed within the inspection work area. Inspections for defects,
film composition, critical measurements, and wafer profiling are performed
on automatic inspection stations.

Next, we briefly discuss back-end operations. We differentiate between
assembly and final test operations that are performed in the corresponding
facilities (Hutcheson [122]):

1. Assembly: In the main assembly work area, typically dicing saw, die attach,
wire bonding, and optical inspection operations are performed. Packaging,
molding, lid sealing, and environmental testing are usually carried out in
work areas that need less strict clean-room conditions.

2. Final test: A series of electrical tests similar to those in wafer sort is
performed for the individual ICs to make sure that they meet complex
specifications. A heat-stress test of ICs is performed in burn-in ovens.
Before the ICs can be processed in the burn-in ovens, they have to be
inserted onto a load board. They are kept at a specific temperature for a
certain period of time. Then they are packed into tubes and delivered to
customers.

There are usually more product types being made in an assembly factory
than in a wafer fab, but each product type requires 10–30 steps instead of
300–700 in wafer fabs. One difficulty of these operations is the fact that a job
is often divided into subjobs with each subjob being sent to the next machine
when it completes an operation. Thus, one job may be being processed across
several machines at different steps at the same time.
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Another difficulty is that there is often a very significant amount of setup
required to change over from one product type to another. Yet another diffi-
culty is that a single type of wafer can become one of several different prod-
ucts based on tested levels of performance, for example, speed. This process
is called binning. Finally, batch machines are also often present in assembly
factories.

Test operations have several problems that are difficult to treat. First, the
sequence of test operations and the test times are not always fixed. These can
be changed based on recent product yields or maturity of a product. Second,
there are two major types of equipment used in test operations. These are
the test system itself, called the tester, and the loading mechanism, called
the handler. The tester may have a single or multiple test heads connected to
it. The interactions between the tester, the test heads, and the handler can
be quite complex. There can be significant sequence-dependent changeover
times. The burn-in operations are another example for batch processes in
semiconductor manufacturing. In contrast to the diffusion furnaces in wafer
fabs, the processing time associated with such a batch is determined by the
longest processing time of one of the jobs that form the batch.

In the remainder of this monograph, we will primarily restrict ourselves on
the PPC problems found in a single wafer fab. However, in a few situations,
we will also discuss PPC problems related to the back-end stage. When we
discuss planning approaches in Chap. 7, we consider also the case of simulta-
neous planning approaches for several wafer fabs or back-end facilities, i.e.,
we work also on the enterprise level.

2.3 Production Planning and Control Hierarchy

In this section, we discuss the PS and the CS of wafer fabs and also make
some comments on the PP and the CP (cf. Sect. 2.2.1 for this notation).
The resulting hierarchy forms the starting point for the remaining chapters
of this monograph and determines their sequence to a certain degree.

We start by describing the typical decisions that have to be made by the
PS and the CS. Planning is performed with a time horizon ranging from
months to years. Anticipated demand is an important input for any produc-
tion planning approach. Planning usually assumes that the time horizon is
divided into time buckets with a length of a week or a month. All the planning
decisions are related to these time buckets. The results of a typical planning
decision are the quantities that have to be released or completed within a cer-
tain bucket in such a way that certain performance measures are optimized
and the finite capacity of the manufacturing system at an aggregated level
is taken into account. Typically, the revenue is considered as a performance
measure on the planning level. Certain cycle time assumptions are also the
basis for planning decisions. In semiconductor manufacturing, we differentiate
between long-term capacity planning that is more strategic and master plan-
ning, also called supply network planning, that is more operational. While
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capacity planning usually determines the quantities and the product mix for
the next years on the enterprise level, master planning has a horizon of several
months and assigns quantities to time buckets and also to specific facilities
(cf. Vieira [313]).

The PP can be performed in a time- or event-driven manner. Hybrids
between these two extrema are also possible. In the time-driven situation,
plans are basically determined in a rolling horizon setting. Each planning
decision is made for h := τΔ + τah time buckets. But the planning decisions
will be implemented only for the next τΔ time buckets in the BS and the BP.
After τΔ time buckets, a new plan with time horizon h will be determined
taking the current state of the BS and the BP into account. The quantity
τΔ is called the planning interval, whereas τah is the additional planning
horizon. The event-driven approach initiates the determination of new plans
with time horizon h as a consequence of certain changes of the BS or events
within the BP.

Order release is at the interface between the planning and the control
level. It refines the decisions made on the planning level by disaggregating
the quantities in time and space. A typical order release decision results in
a set of jobs that have to be launched into a wafer fab at a certain point in
time. Weekly or biweekly order release schemes are very common in semicon-
ductor manufacturing. The order release scheme definitely affects the load
and consequently the cycle times in wafer fabs. Therefore, order release also
influences the planning decisions.

Scheduling is defined as the process of allocation of scarce resources over
time [34, 240]. The goal of scheduling is to optimize one or more objectives
in a decision-making process. Scheduling can be performed for jobs on single
machines, work centers, work areas, and finally for all machines of the shop
floor, i.e., for the BS. At the same time, scheduling decisions are also made
for the vehicles in the MS. The result is a schedule, i.e., an assignment for
each job to at least one time interval on the different resources, i.e., machines
or vehicles. Scheduling is usually done with a horizon of one shift or one day.
Scheduling is only performed for jobs that have been already released into the
BS. As in case of the PP, the CP is basically given by the used rescheduling
policy. Similar to the planning case, we can differentiate between time- and
event-driven rescheduling schemes (Vieira et al. [314]).

Dispatching is the activity to assign the next job to be processed from a
set of jobs awaiting service on an available machine in the JS or a free vehicle
in the MS [29, 116, 274]. To select the next job, each job is assigned a prio-
rity. These priorities can be determined using a schedule. When there is no
feasible schedule available, the priorities can be determined by dispatching
rules. The priority for each waiting job is calculated by taking different job
and resource attributes into account. Dispatching is on the lowest level in the
PPC hierarchy. It is performed in a minute-by-minute manner. We show the
described PPC hierarchy in Fig. 2.5.
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Dispatching : a large number of decisions, very small value of each decision

Scheduling : many decisions, small value of each decision

Order Release : a few decisions, large value of each decision

Planning: a very few decisions, very large
value of each decision
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Figure 2.5: Production planning and control hierarchy

In Fig. 2.5, we do not depict the interactions between the different levels
in detail. As described in Sect. 2.2, the automated parts of the PS and the CS
consist of software that is used to implement the decision-making algorithms
and hardware. For the sake of completeness, we will briefly mention the dif-
ferent application systems that are related to PPC decisions in semiconductor
manufacturing.

The OS is given by transactional systems like the ERP system or the
MES. They are used to gather data from the BS and BP. The ERP system
is sometimes also used to support planning decisions. Because of the known
shortfalls of ERP systems with respect to planning, often APS or other spe-
cialized software systems are in place to support planning decisions of man-
agers. The MES typically contains more fine-grained data. Hence, it can be
used to support production control decisions related to the JS. Besides the
MES, MCSs are used to control the AMHS and support MS-related decisions.
Again, because of the shortfalls of MESs, often more specialized software
solutions are applied in wafer fabs [234].



Chapter 3

Modeling and Analysis Tools

Modeling and analyzing problems from semiconductor manufacturing always
require a solid knowledge of appropriate decision methods. Models are used
within the production planning and control process for representing the BS
and BP and for decision-making. Decision methods usually come from the
areas of operations research (OR), artificial intelligence (AI), and computer
science (CS). They are important prerequisites to solving decision problems.

In this chapter, we begin with a brief discussion of general systems and
models. We will then describe several types of models that are used in the re-
mainder of this monograph. Models are important to identify appropriate de-
cision methods. We will discuss very briefly linear programming and mixed in-
teger programming (MIP), stochastic programming, branch-and-bound tech-
niques, dynamic programming, metaheuristics, queueing theory, and discrete-
event simulation. The main ingredients of discrete-event simulation models
of wafer fabs are presented in some detail.

After the development of a decision method, the question is raised of how
good is the method in various situations. Therefore, we also deal with ba-
sic questions of performance assessment. We start by introducing important
performance measures used in the remaining chapters of this monograph.
A simulation-based method to assess the performance of a production plan-
ning and control system within a dynamic and stochastic environment is
described. The content of this chapter cannot compensate for a deeper study
of more specialized textbooks in OR, AI, and CS. However, in order to be
as self-contained as possible, we summarize the main ideas of modeling and
decision-making in this chapter.

3.1 Systems and Models

In this section, we describe how systems can be represented by models.
Furthermore, we discuss different types of models.

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
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3.1.1 Representation of Systems by Models

In Chap. 2, we discussed which systems and processes are related to
semiconductor manufacturing. In this section, we generalize the notion
of systems slightly in order to introduce the notion of models.

A system S is given by a set of components V . The components and their
associations provide the structure of S. The behavior of a system is described
by the interaction of the system components. An interaction is given by an
information exchange or an exchange of material or energy. We call S open
when it interacts with its environment. When such an interaction does not
occur, the system is a closed one. An input–output system is a system that
totally hides the inside view on the system components. Input–output systems
are also called black-box systems (cf. Mesarović and Takahara [181]).

A real system is a certain part of the real world. The components of real
systems are physical. The BS of a wafer fab described in Chap. 2 is an example
of a real system. Often, we are interested only in certain aspects of a real
system, and then it makes sense to work with a representation of the original
system. These representations are called models.

Now, we will continue with a more abstract view of models. A model is
defined formally as a triplet

M := (SO,SM, f ), (3.1)

where we denote the original system by SO and the model system by SM. The
set of system components of SO is denoted by VO. The notation VM is used
for the system components of SM. The function

f : VO →VM (3.2)

is called the model mapping. We are interested in models that have a high
fidelity related to structure and behavior. Very often, it is not possible and
even not necessary to describe f explicitly. The described situation is shown
in Fig. 3.1.

There are goals that have to be achieved when creating a model. These
goals are used to identify the parts of the real world that have to be modeled
and interpreted in an appropriate way. The level of detail in modeling is de-
termined by the goals. Usually, a set of model parameters have to be selected
to describe the components of a model and their interactions. In doing so, it
is important to remember the famous words of George Box, “All models are
wrong, some are useful.” [31].

In case of a wafer fab, the type and number of machines, their characteris-
tics, the structure of the process flows, and the job release rate are parameters
of a model of the wafer fab.
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Figure 3.1: Relationship between original and model

3.1.2 Types of Models

There are different kinds of models (cf. Turban et al. [299]). Descriptive mo-
dels are used to depict the components of a system and their relationships.
They describe how a system behaves, but they do not explain the behavior
of a system or allow for prognoses of real activities.

Prescriptive models select one or more actions among a set of alternatives.
This decision is based on specified criteria. Optimization models are a typical
representation of prescriptive models. In the case of these models, optimality
criteria are used to select the best alternative. An optimization model con-
sists of objective functions to be optimized and constraints that have to be
satisfied. A solution of an optimization model is called feasible if it satisfies
all constraints.

We also differentiate between static and dynamic models. Static models
are related to a certain snapshot in time of a specific situation. Dynamic
models are time-dependent. They represent scenarios that change over time.
Dynamic models have the advantage that they represent the development of
the system over time.

Furthermore, in the rest of this monograph, we develop deterministic and
stochastic models. All model parameters are assumed to be known with
certainty in a deterministic model. In contrast, a stochastic model contains
certain model parameters that are described by probability distributions.
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Because of the efforts to build a model and to maintain it, the simplest
model that answers the question is the best. While it is generally true that
prescriptive, dynamic, and stochastic models are more complicated than de-
scriptive, static, and deterministic models, we prefer models with the latter
characteristics if they are sufficient to answer the given questions. For exam-
ple, a descriptive, static, and deterministic model implemented in a spread-
sheet is often good enough for rough cut capacity planning.

In the next section, we discuss various decision methods that can be used in
prescriptive models to select actions among alternatives. We also will describe
simulation models as a main ingredient for simulation-based decision-making.

3.2 Decision Methods and Descriptive Models

In this section, we discuss various optimal and heuristic approaches that will
be applied in the remaining chapters of this monograph to make decisions.
Furthermore, we present some descriptive models that are useful.

3.2.1 Optimal Approaches vs. Heuristics

A decision problem consists of a set of feasible actions or sequences of actions
where we have to select a particular action or sequence of actions that achieves
certain objectives in the best possible way according to specified criteria.
We call an action or a sequence of actions feasible when it fulfills all the
requirements. The formal representation of a decision problem is called a
decision model or an optimization model. In its simplest form, a decision
model contains a set of alternative feasible actions and an objective function
to assess them.

The notion of decision methods is closely related to decision models. De-
cision methods can be used to determine feasible or even optimal solutions
for a certain decision problem. We introduce several decision methods in the
remainder of this section in a rather generic way. Various concrete decision
problems related to semiconductor manufacturing will be discussed in the
remaining chapters of this monograph.

We are interested to find efficient algorithms to solve our decision problems
(cf. Kleinberg and Tardos [144]). We denote by G(n) an upper bound of the
running time of an algorithm, where we denote by n the size of the input of
the algorithm. The function G(n) grows on the order O(g(n)) if

lim
n→∞

G(n)
g(n)

= c (3.3)

holds, where c is a positive constant and g(n) is a given function. We are
interested in determining O(nk) algorithms, where k is a fixed non-negative
number. Algorithms of this class are called polynomial-time algorithms. If we
cannot find a polynomial-time algorithm, then it is useful to check whether
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it can be proved that the problem is NP-hard or not. Roughly speaking, NP-
hardness means that it is unlikely that an efficient algorithm exists that will be
guaranteed to solve the problem to optimality. Very often, this can be done by
showing that special cases of the problem can be transformed with polynomial
effort into a known NP-hard problem (see Garey and Johnson [94]).

We differentiate between optimal decision methods and heuristics. Heuris-
tics are used to determine good solutions for NP-hard problems, but do
not necessarily provide optimal solutions. Heuristics are approximation algo-
rithms that are used to solve NP-hard problems. The majority of the decision
problems discussed in this monograph are NP-hard. Therefore, we mainly fo-
cus on efficient heuristics. However, it is generally useful to know optimal
decision methods, because we can exploit them to assess the performance
of heuristics for small-size problem instances. On the other hand, often very
efficient heuristics can be derived from combining optimal decision methods
with heuristics.

In the remainder of this section, we discuss several optimal decision meth-
ods and heuristic algorithms that will later be used to tackle production
planning and control problems in semiconductor manufacturing.

3.2.2 Branch-and-Bound Algorithms

A branch-and-bound algorithm is an enumerative procedure for solving dis-
crete optimization problems optimally (see Brucker and Knust [35]). Let us
consider for the sake of simplicity the following maximization problem, which
can serve as a model problem.

(P) Find a feasible solution s∗ ∈ S with

f (s) ≤ f (s∗) (3.4)

for all s ∈ S, where we denote by S a finite set of feasible solutions and f is a
real-valued objective function. Note that we can focus on maximization prob-
lems without loss of generality because we can tackle minimization problems
by the same approach by simply maximizing − f .

The notion of subproblems is important for branch-and-bound schemes.
A subproblem is a subset S′ ⊆ S. We explain the three main ingredients of a
branch-and-bound scheme as follows:

• Branching: The problem S is replaced by a set of subproblems Si ⊆ S,
i = 1, . . . ,r with the property

⋃
Si = S. This decomposition process of sub-

problems is called branching. The branching procedure is recursive, i.e.,
each subset S′ can be decomposed in a similar way. We obtain a bran-
ching tree with root S and children Si. An example for a branching tree is
depicted in Fig. 3.2.

• Upper bounding: An upper bounding scheme is responsible for calculating
an upper bound UB(S′) for the objective function value of a subproblem S′.
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• Lower bounding: The objective function value of an arbitrary feasible so-
lution s ∈ S provides a lower bound L for problem (P). When for a subset
S′ the relation UB(S′) ≤ L holds, then S′ cannot provide a better solution
for problem (P). Therefore, we do not need to continue the branching pro-
cess from the corresponding node of the branching tree. The value of L
has to be as large as possible to avoid a large number of branching steps.
After some branching steps, we may reach a situation where a subproblem
S′′ contains only one feasible solution s. We obtain UB(S′′) = f (s). When
UB(S′′)> L is valid, we replace L by UB(S′′).

S

S2S1

S11 S12 S21 S22

Figure 3.2: Branching tree

Branch-and-bound algorithms are important to solve small-size discrete
optimization problems optimally. These known optimum values can be used
to assess the performance of heuristics. When the branching tree is truncated,
we obtain beam search heuristics (cf. Pinedo [240]). The truncation of the
branching tree helps to reduce the computational effort.

3.2.3 Mixed Integer Programming

We introduce MIP formulations as a generalization of linear programming
approaches [25, 214, 243]. A linear MIP model is an optimization model with
a linear objective function that contains real- and integer-valued decision
variables and linear constraints.

Each MIP model can be written in the following form:

Z(X) := min
(x,y)

{cx+ f y|(x,y) ∈ X} , (3.5)

where we denote by X the set of feasible solutions. The set of feasible solu-
tions is described by m linear constraints, by nonnegativity constraints for
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x,y, and by integer constraints for the decision variables y. Using a matrix
representation, we can write the set X in the following form:

X :=
{
(x,y) ∈ IRn

+×ZZp
+|Ax+By ≥ b

}
, (3.6)

where

• Z(X) is the optimal objective function value that is obtained by optimizing
cx+ f y over X .

• x denotes an n dimensional column vector that contains non-negative real-
valued entries xi, i = 1, . . . ,n. y is a p-dimensional column vector containing
integer-valued components yi,1 = 1, . . . , p.

• c ∈ IRn and f ∈ IRp are row vectors that are given by the coefficients of the
objective function (3.5).

• b ∈ IRm is the column vector of the right-hand side of the m constraints.
• A and B are IRm×n and IRm×p matrices, respectively.

Note that mixed binary optimization models are fairly common. In this case,
yi ∈ {0,1}, i = 1, . . . , p is valid. When B = 0 and f = 0 is true, then we have
a linear optimization model that can be solved efficiently by the simplex
algorithm (see Bertsimas and Tsitsiklis [25]). In the case of MIP models,
branch-and-bound techniques (cf. Sect. 3.2.2) will often be applied. The main
idea of these techniques for tackling MIPs consists of solving a set of linear
optimization problems instead of the MIP model. When A = 0 and c = 0
are valid, we call the resulting model an integer programming (IP) model.
Common software packages to solve MIPs are sophisticated and complex.
The software uses a subroutine that solves linear optimization problems in
the discussed branch-and-bound algorithms.

We will see in the remainder of this monograph that MIP formulations will
usually be used to solve small-size problem instances for scheduling problems
optimally (see Nemhauser and Wolsey [214]), whereas linear programming
(LP) formulations usually can be applied for planning problems where the
required level of detail is not as great.

3.2.4 Stochastic Programming

So far, we have assumed that c, f , A, B, and b in Eqs. (3.5) and (3.6) are
deterministic. This assumption is often not realistic in real-world applications.
In order to deal with these situations, we introduce stochastic programming
as a generalization of linear and MIP (cf. Birge and Louveaux [27]). We
assume that the decision model makes some decision in a first stage. Then
some random events occur that affect the outcome of the first-stage decision.
A recourse decision can be made in a second stage to compensate for any
undesirable effects that might have been experienced as a result of the first-
stage decision.

In the following, we assume for the sake of simplicity that we consider
for now only linear programs, i.e., B = 0 and f = 0 in Eqs. (3.5) and (3.6),
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respectively. We have to make first-stage decisions without full information
on some random events. Later, full information is received on the realization
of some random vector.

A two-stage stochastic linear program with fixed recourse can be written
in the form

Z(X) := min
x

{cx+Q(x)|x ∈ X} , (3.7)

where the set of feasible solutions is denoted by X . The set of feasible solutions
is determined by m linear constraints and by nonnegativity constraints for the
decision variables x. Using a matrix representation, we can write the set X in
the following form:

X :=
{

x ∈ IRn
+|Ax = b

}
, (3.8)

where

• Z(X) is the optimal objective function value that is obtained by optimizing
the expression cx+Q(x) over X .

• x denotes an n dimensional column vector that contains non-negative real-
valued entries xi, i = 1, . . . ,n.

• c∈ IRn is a row vector that is given by the coefficients of the first term in the
objective function (3.7). The function Q(x) is the expected second-stage
value function and will be discussed later in more detail.

• b ∈ IRm is the column vector of the right-hand side of the m constraints.
• A is an IRm×n matrix.

The expected second-stage value function Q(x) is the mathematical expec-
tation of the second-stage value function with respect to the random vec-
tor ξ , i.e.,

Q(x) := Eξ Q̃(x,ξ (ω)), (3.9)

where the second-stage objective function, also called the recourse function,
is defined as follows:

Q̃(x,ξ (ω)) := min
y

{q(ω)y|y ∈ Y} . (3.10)

Q̃(x,ξ (ω)) is the objective function value of a second linear program with the
set of feasible solutions

Y :=
{

y ∈ IRp
+|Wy = h(ω)−T(ω)x

}
. (3.11)

The quantity ω is a realization of a random variable on a probability space
Ω . For a given ω , the quantities q(ω), h(ω), and T (ω) are known, where
q(ω)∈ IRp is a row vector that corresponds to the coefficients in the objective
function (3.10), h(ω)∈ IRs is a column vector that is the part of the right-hand
side of the s constraints that do not depend on the first-stage decision variable
x, and finally T (ω) ∈ IRs×n is the so-called technology matrix. T (ω)x ∈ IRs is
the part of the right-hand side of the s constraints of the set of constraints
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(3.11) that depends on the first-stage decision x. Finally, W ∈ IRs×p is called
the recourse matrix. Putting together all the stochastic components of the
second-stage data, we obtain the random row vector

ξ (ω) :=
(
q(ω),h(ω)T ,T1(ω)T , . . . ,Tn(ω)T ) ∈ IRp+s+ns, (3.12)

used in expression (3.9). We denote by Ti(ω), i = 1, . . . ,n the ith column of the
matrix T (ω). Note that the second-stage decisions y typically are different
for different realizations ω .

The representation (3.7)–(3.11) demonstrates the flow of decision-making
in a two-stage stochastic program. It starts with taking first-stage decisions
x in the presence of uncertainty about future realizations of ξ . Then, in a
second stage, the current values of the components of the realization of ξ are
known, and the recourse decision y can be made. The first-stage decisions
are made in such a way that their future effects are taken into account by
considering the recourse function Q(x) that is the expected value of taking
decision x. Note also that stochastic MIPs are useful in some situations (see
Birge and Louveaux [27] for details on such optimization problems).

The following situation is important in real-world applications. We assume
that there are K possible scenarios. We consider the different scenarios as
realizations ω . Therefore, we have simply ω = 1, . . . ,K. The probability of
scenario ω is denoted by p(ω). In this case, we can calculate the second-
stage value function Q(x) easily. We obtain

Q(x) :=
K

∑
ω=1

p(ω)

(
p

∑
i=1

q(ω)iyωi

)

=
K

∑
ω=1

p

∑
i=1

p(ω)q(ω)iyωi, (3.13)

where we denote by yω a solution of the second-stage linear program for sce-
nario ω , i.e., we calculate the expected value of the recourse function over all
scenarios. As a result, we obtain a large linear program with a specific struc-
ture that can be solved efficiently by decomposition approaches (cf. Bertsimas
and Tsitsiklis [25] for more details on such methods).

3.2.5 Dynamic Programming

Dynamic programming is another general technique to find the optimal solu-
tion of some optimization problems [35, 144]. It can be applied when the opti-
mal solution can be determined recursively from optimal solutions of smaller
subproblems. This leads to recursive formulations where the recursions are or-
ganized into stages. A dynamic programming approach generally starts with
the smallest subproblems. In contrast to pure recursive algorithms, interme-
diate results are stored in order to avoid a repeated calculation of them.

Dynamic programming formulations are useful to obtain optimal solu-
tions for scheduling problems, especially for single machine scheduling prob-
lems. We will see some of these applications in Chap. 5. Because of the large
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computational effort and storage requirements of many optimal dynamic pro-
gramming approaches, dynamic programming is often used within decompo-
sition approaches. Based on some insights into the problem structure, the
entire problem is decomposed into subproblems. Dynamic programming can
be used to solve some of the subproblems.

We consider an example to illustrate this feature. A single machine
batch scheduling problem in semiconductor manufacturing consists of form-
ing batches and sequencing them. The problem can be decomposed into the
subproblem of sequencing the jobs and then forming batches based on the
sequence of the jobs. Dynamic programming can be used to solve the batch-
ing subproblem based on the fixed job sequence. This problem is much easier
than simultaneously sequencing and batching the jobs.

Dynamic programming formulations are also often used in stochastic de-
cision processes, especially for Markov decision processes (see Pinedo [240]).

3.2.6 Neighborhood Search Techniques and Genetic
Algorithms

Next, we consider different neighborhood search techniques and genetic al-
gorithms (GA) as examples for modern metaheuristics. A metaheuristic is a
set of generic, i.e., not problem-specific, principles and schemes used to con-
struct heuristics. Neighborhood search techniques operate on a single solution
of problem (P) defined in Sect. 3.2.2 and transfer it into a new solution, while
GAs maintain a population of solutions.

We start by introducing the notion of neighborhood structures. The
mapping

N : S → 2S (3.14)

is called a neighborhood structure, where we denote by 2S the set of all subsets
of S.

We introduce the notion of moves. A transformation that changes a solu-
tion s of (P) into a solution s′ is called a move. The definition of a neighbor-
hood is based on this notion of a move. We call a solution s′ of problem (P)
a neighbor of a solution s when s′ can be obtained from s by a single move.
The set of all neighbors of a given solution s forms the neighborhood of s.
The following notation for the neighborhood will be used:

N(s) := {s′|s′ neighbor of s}. (3.15)

The solution s is called the center point of the neighborhood N(s). The cardi-
nality of the set of neighbors of s is denoted by |N(s)|. Note that this definition
of a neighborhood is clearly covered by the notion of a neighborhood struc-
ture. We can enumerate the set of neighbors by

N(s) :=
{

n1(s), . . . ,n|N(s)|(s)
}
. (3.16)
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A single move

μ(s,n(s)) ∈ Nμ(s) (3.17)

can be assigned to each neighbor n(s) where we denote by Nμ(s) the set of
possible moves. It is obvious that a neighborhood can be described by the set
of moves as follows:

Nμ(s) :=
{

μ1 := μ(s,n1(s)), . . . ,μ|N(s)| := μ(s,n|N(s)|(s))
}
, (3.18)

because we consider discrete optimization problems. Often, swapping and in-
sertion moves are used to define neighborhoods. A swapping move exchanges
two different solution elements, for example, the position of two jobs in a
sequence. An insertion move removes a solution element and places it some-
where else in the solution. For example, we can remove a job from the second
position in a sequence and insert it after the job that is in the fourth position.

The simplest way to design a local search algorithm is a steepest ascent-
type iterative improvement algorithm for maximization problems. We start
from an initial solution s ∈ S. As long as solutions s′ ∈ N(s) with f (s) < f (s′)
exist, choose the best solution s′ ∈ N(s), set s := s′, and repeat this step.
This algorithm terminates with some solution s∗. Generally, s∗ is only a local
maximum with respect to N(s) because we accept only improvements of the
incumbent solution.

There are different possibilities to avoid this drawback. One possibility is to
restart the iterative improvement algorithm with different initial solutions. A
second possibility is to explicitly take deteriorations of the objective function
value into account during the iterations. When such non-improvement solu-
tions are accepted as the incumbent solution, then it is possible to visit the
same solution several times during the search process. Therefore, our neigh-
borhood search methods may have a cyclic behavior. Consequently, cycling
avoidance strategies have to be incorporated.

We discuss simulated annealing (SA) proposed by Kirkpatrick et al. [142]
as a neighborhood search strategy for problem (P) that avoids cycling by
selecting the current solution s′ in a randomized manner. It accepts this
random solution s′ in iteration i only with probability

P(s′|s) =
{

exp
(
− f (s)− f (s′)

ti

)
, if f (s)− f (s′)> 0

1, otherwise
. (3.19)

The numbers ti are positive with limi→∞ ti = 0. Often, the ti are of the form
ti+1 := qti, where 0 < q < 1 is valid. When f (s)− f (s′) ≤ 0, then the move
will be accepted. Because of the decreasing ti, the probability to accept a
non-improving move will be decreasing. Therefore, in later iterations, the
acceptance rate for non-improvement steps will be rather small. This leads
to a certain chance to get stuck in a local optimum, but the probability for
this is rather small. A cycling of the solutions during the search can also be
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avoided by the introduction of a tabu list. A tabu list contains in its simplest
form solutions that have already been visited recently during the search.
New neighbors are only accepted as an incumbent solution when they are
not included in the tabu list. This type of algorithm is called a tabu search
method. Usually, a solution is characterized by certain attributes that can
be stored in the tabu list instead of the full representation of the solution.
Typically, it is not possible to store all the visited solutions due to memory
restrictions and performance issues. Therefore, we consider a list that stores
only the last l visited solutions. When l is chosen big enough, then there is
only a small probability of cycling. There are various tabu search variants.
For a more detailed description of tabu search, the reader is referred to Glover
and Laguna [102].

Variable neighborhood search (VNS) is a local-search-based metaheuristic
(cf. Hansen and Mladenović [115, 188]). The main idea is to enrich a sim-
ple local-search method in order to enable it to escape local optima. This is
done by restarting the local search from a randomly chosen neighbor of the
incumbent solution. This restarting step is called shaking. It is performed us-
ing different neighborhood structures of increasing size. There are a couple of
different VNS variants. In the following, we will briefly discuss basic VNS. For
the remaining variants, we refer the reader to Hansen and Mladenović [115].

Therefore, we consider a set of neighborhood structures Nk,k = 1, . . . ,kmax

and an initial solution s ∈ S. We choose randomly a solution s′ from Nk(s).
Initially, we use k = 1. Based on s′ as an initial solution, we receive a local
optimum s′′ by local search. When

f (s′′)> f (s) (3.20)

is true, then we move there, i.e., we set s := s′′ and repeat the entire process
starting from N1. When there is no improvement obtained by s′′ compared
to the incumbent solution s, then we consider the next neighborhood Nk+1(s)
and repeat the shaking and the local-search step until a certain stopping
criterion is meet.

VNS has the advantage that, compared to many other metaheuristics, the
number of parameters to be selected is small. We only have to find a set of
neighborhood structures and apply them in an appropriate sequence.

A GA maintains a set of feasible solutions called the population. GAs are
motivated by principles of evolution and survival of the fittest [103, 183].
Variation operators, i.e crossover and mutation, and selection operators are
used to modify the elements of the population. GAs are often appropriate
for optimization problems that have the property that a combination of good
partial solutions frequently leads to a good solution with respect to the ob-
jective function. A solution s is typically encoded into a sequence of symbols
called a chromosome. The encoding scheme is called a representation. Each
chromosome has to be evaluated by a fitness function f . The fitness function
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is often based on the objective function for the optimization problem to be
solved. It is well known that the performance of a GA depends strongly on
the encoding scheme used (see Rothlauf [270]).

We start from an initial population of chromosomes. Each chromosome is
evaluated using a problem-specific fitness function. Next, parents are selected
based on their fitness. Offspring, called child chromosomes, are created from
a set of parent chromosomes applying crossover operators to the parents.
Crossover operators usually combine certain parts of the sequences that form
the two parent chromosomes into a new child. Mutation operators are used
to disorder the child chromosome with a certain probability. The child chro-
mosomes are added to the original population. Based on the fitness that is
associated with each chromosome, some chromosomes are removed based on
selection operators to make sure that the size of the population is the same
over all generations. The entire cycle of evaluation of the parents, offspring
generation, and selection of the new population is called a generation.

We will see in Chap. 5 that GAs are useful to solve scheduling problems
for single and parallel machines. But they can also be applied to solve plan-
ning problems for semiconductor supply networks or to find an appropriate
mix of dispatching rules to control wafer fabs as shown in Chaps. 7 and 4,
respectively.

Except for the description of stochastic programming methods in
Sect. 3.2.4, so far only decision methods for deterministic problems are
studied. Next, we introduce two additional methods that are related to
decision-making for stochastic problems, i.e., queueing theory and discrete-
event simulation.

3.2.7 Queueing Theory

The first method related to decision-making for stochastic problems is queue-
ing theory. A simple queueing system can be characterized as an input–output
system consisting of a waiting line, also called a queue, and a single server.
However, there are also queueing systems that are formed by service centers
and interconnecting queues. A service center consists of a number of servers
working in parallel. Customers from a calling population arrive from time to
time and join the queue. In some cases, the number of customers that can be
waiting in the queue or in the system is limited by the capacity of the system.
The customers in queue are eventually served, and after service, they leave
the system. A simple queueing system is shown in Fig. 3.3.

In manufacturing, the customers of the queueing system generally corre-
spond to jobs, and the servers are the machines. Often, the number of job
arrivals to and departures from the system are of interest. Based on this
information, the time that a job spends on average within the manufactur-
ing system can be estimated. This quantity is called the cycle time (CT).
Furthermore, the number of jobs within the manufacturing system that are
either undergoing processing or waiting in a queue for processing can also
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Queue Server

Customer in Service

Customers in queueCalling population

Figure 3.3: Components of a simple queueing system

be determined based on the arrival and departure information. This number
of jobs is called work-in-process (WIP). The arrival process of the calling
population is usually characterized in terms of inter-arrival times of succes-
sive customers. The queueing discipline determines which customer will be
selected for service when a server becomes available. Common queueing dis-
ciplines include the first-in-first-out (FIFO) or last-in-first-out (LIFO) rules.
Service time can be a constant or can have a random duration. Queueing
theory is a mathematical approach to analyze queueing systems.

WIP and CT usually vary over time. Because it is difficult to treat this time
dependency in analytic models, we are interested in time-averaged values. A
queueing system is called steady state when the probability that the system
is in a given state is not time-dependent. The steady-state values for WIP
and CT can be considered as time-averaged values as the time becomes very
large. Because we consider steady-state systems for a long time horizon, the
values of WIP and CT do not depend on the initial conditions of the system.
The following equation

WIP = λ CT (3.21)

holds for a manufacturing system that satisfies steady-state conditions (see
Little [165]). The quantity λ is the long-run input rate of the jobs to the
server. Equation (3.21) is called Little’s law. We consider a single server
system with exponentially distributed inter-arrival times with mean rate λ
and exponentially distributed service times with mean rate μ . It can be shown
that the steady-state probability that n jobs are in the system, denoted by
P(N = n), is given by

P(N = n) =

(

1− λ
μ

)(
λ
μ

)n

(3.22)
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for n = 0,1,2, . . . , where we denote by N the long-run number of jobs in this
system (cf. Curry and Feldmann [55]). We use pn :=P(N = n) for abbreviation.
The expected WIP of the system is the expected value of a random variable
that is distributed according to the discrete probability distribution (3.22).
We obtain

WIP = E(N) =
∞

∑
n=1

npn =
λ

μ −λ
. (3.23)

It is clear that λ < μ has to be fulfilled to ensure a steady state for this
system. Based on Little’s law, we can compute the long-run CT as

CT =
1

λ − μ
(3.24)

because exponentially distributed inter-arrival times with mean rate λ are
induced by a Poisson arrival process with mean rate λ .

When we relax the assumption of exponentially distributed inter-arrival
and service times, the following approximation formula is still valid for the
expected value of the time that a job spends in a queue. The corresponding
random variable is denoted by Tq. The service time is modeled by the random
variable Ts. We obtain for CTq := E(Tq)

CTq ≈
(

C2
a +C2

s

2

)(
u

1− u

)

E(Ts), (3.25)

where we denote by C2
a and C2

s the squared coefficient of variation of the inter-
arrival time and the squared coefficient of variation of service times, and we
set u= λ/μ for abbreviation. The squared coefficient of variation for a random
variable T is defined as C2(T ) := Var(T )/E(T )2. The approximation (3.25) is
called the Kingman diffusion approximation (see Hopp and Spearman [119]).

There is a notation introduced by Kendall [138] for queues. It is a five-
field notation, where two consecutive entries are separated by a slash. The
first entry specifies the inter-arrival time distribution, while the second entry
provides information regarding the service time distribution. The third entry
specifies the number of parallel servers. The maximum number of jobs allowed
in the queueing system at one time is given by the fourth entry. Finally,
the optional fifth entry describes the queueing discipline used. For examp-
le, M/M/1/∞/FIFO refers to a system with exponentially distributed inter-
arrival and service times, a single server, an infinite capacity queue, and FIFO
queueing discipline. When the fourth parameter is infinite, it is often omitted.
General inter-arrival or service times are denoted by the symbol G, while the
symbol M (Markovian) is used for exponentially distributed inter-arrival or
service times.

In addition to the single-stage queueing model described above, it is pos-
sible to analyze the performance of queueing networks. For a more detailed
introduction into queueing theory (including queueing networks) with appli-
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cations to manufacturing, we refer to text books like [55, 119]. A survey that
also includes a discussion of some limitations of classical queueing theory in
semiconductor manufacturing can be found in Shanthikumar et al. [281].

3.2.8 Discrete-Event Simulation Techniques

Discrete-event simulation is the second method that is able to deal with
stochastic decision problems. Queueing theory relies heavily on specific dis-
tributional assumptions of the underlying stochastic processes. In many real-
world situations in semiconductor manufacturing, these assumptions are not
fulfilled [281]. Therefore, we introduce discrete-event simulation as another
important tool for decision-making in manufacturing that takes the stochas-
tic and dynamics of the BS and the BP implicitly into account, but one that
is based on less restrictive assumptions than queueing theory.

Simulation models of wafer fabs are of specific interest in the remainder of
this monograph. Simulation is used to describe a process in a time-dependent
manner (cf. Law [150] and Banks et al. [21]). Depending on the time progress
or method, we differentiate between discrete-event and continuous simulation.
In the first case, the timing of future events is determined, and the simula-
tion jumps to the next future event. In some cases, we consider an equidistant
time progression. In continuous simulation, infinitesimal small time steps are
made. Continuous simulation is basically the numerical treatment of differ-
ential equations where difference equations are used to describe the changes
in system variables over discrete time steps.

In this monograph, we mainly refer to discrete-event simulation. This type
of simulation is based on the metaphor that entities flow through the sim-
ulation model and occupy scarce capacity that is offered by servers. There
is some competition of the entities for the servers, i.e., they have to wait
before they are served. In simulation models of wafer fabs, the servers are
represented by resources and the moving entities by jobs.

Next, we briefly describe the main ingredients of a simulation model for
wafer fabs. Depending on the goal of a simulation study, models of different
complexity can be used ranging from very detailed and close to the real wafer
fab to coarse and abstract. For industrial studies, very detailed models are
generally used. In academic studies, both detailed and simple models are
applied. A simulation model of a wafer fab can be considered as a model
system SM. Typical model components for complete wafer fab models are as
follows:

• Equipment, i.e., the set of machines
• Operators and secondary resources
• Components related to material handling
• Process flows

We start by describing the JS-related (see Sect. 2.2.1) modeling issues. Apart
from cluster tools, there is generally no need to model the internal behavior
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of a machine, i.e., to have a detailed mechanical model or a model of the
controllers that work inside a machine. Such models are used by equipment
manufacturers but do not often lead to additional insight while analyzing and
controlling a wafer fab. Thus, the model of the JS for wafer fabs can be kept
rather simple. The typical machine-related parameters are as follows:

• Name of the machine group
• Number of machines in the machine group
• Name of the machine
• Batch-size information
• Batch formation criterion
• Setup time
• Machine qualification and dedication requirements
• Preventive maintenance cycles
• Breakdown-repair cycles

A batch machine is able to process more than one job at the same time.
This number has to be specified as the number of jobs or wafers that can be
batched together, and it describes the capacity of the batch machine. The
batch formation criterion provides information on which jobs can be batched
together. Often, we have to deal with incompatible job families, i.e., only jobs
from one family can be batched together. Incompatible families are formed
due to the different chemical nature (or processing time) of the different
process steps on the batch machines. Sometimes, only jobs that refer to the
same process step can be used to form a batch.

The setup time is the time that is required to set up a machine before
processing. For a given setup state, it can be constant or depend upon the
current setup state. In the latter case, we have sequence-dependent setups,
and all setup times of a particular machine are listed in a setup time matrix.

Semiconductor manufacturing equipment is complex, and considerable ef-
fort is spent to keep the equipment running properly. Preventive mainte-
nance activities are included in most wafer fab level simulation models. Of-
ten, weekly, monthly, quarterly, and yearly schedules are included. Despite
efforts to prevent failures of the equipment, failures are still quite significant
for many types of equipment.

One or more machine breakdown-repair cycles may exist for a machine or
the entire machine group. Each cycle definition consists of a time-to-failure
(TTF) and a time-to-repair (TTR) probability distribution function. In some
cases, the time to failure is not counted continuously but only when the
machine is busy. In other cases, failures depend upon the number of jobs or
wafers processed and not upon the time-in-process state or the simulation
time in general. In these latter cases, the TTF has to be given in multiples
of the processing time. When there is more than one cycle for a machine, it
has to be specified how to deal with parallel failures. Often, the beginning of
a failure that happens when the machine is already down is postponed to the
end of the current failure. Another issue concerns parallel failures on different
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machines of a machine group. In particular, if the failures are used to model
maintenance actions, they will generally not be performed in parallel to avoid
unnecessary waiting times at the machine group buffer. The failure model
has to reflect this accordingly. Problems related to the modeling of machine
breakdowns in semiconductor manufacturing are described by Schömig and
Rose [277].

Next, we consider the representation of operators as human decision ma-
kers in simulation models of wafer fabs. In general, due to the lack of accurate
models, only simple models are applied for the humans participating in the
wafer production process. In particular, interaction of operators is not mo-
deled, i.e., the social or communication component of the human workforce
is ignored. In addition to the parameters given below, operator control has to
be implemented, i.e., what happens if more operators are required than are
available. Usually, dispatching rules are applied in this case. The following
information is required to model operators:

• Name of the operator group
• Number of operators in the group
• Skills of the operator or the operator group
• Staffing information
• Operator break cycles

The modeling of skills is important because most operators in a wafer fab
are certified to run one or two machines because of the complexity of the
equipment and the training costs. There are, however, a few operators who are
cross-trained for multiple types of equipment. Similar to machines, operators
have break cycles. There are regular breaks like lunches and random breaks
like going to the bathroom. In addition, it is sometimes modeled whether
operators are allowed to have breaks together or whether the breaks have to
be staggered. Staffing information is required when the number of operators
changes from shift to shift. It is also possible to model holidays. We refer to
Mosley et al. [210] for an example of modeling operators in simulation models
of wafer fabs. But often, operators are not included in simulation models of
wafer fabs. This coincides with the changing role of operators in most highly
automated wafer fabs (cf. the comments in Sects. 2.2.2 and 2.2.3).

Besides operators, sometimes, the detailed modeling of other auxiliary re-
sources is necessary, especially, when these resources are scarce. Reticles in
the photolithography area are an important example. The modeling of reticles
within a simulation model is described, for example, in [41, 201, 228].

The main components of the MS that have to be part of the simulation
model are as follows:

• Carriers
• Stockers and their assignment of bays or certain machines
• Transportation system

Note that often specialized simulation packages are used to model the JS
and the MS of wafer fabs. For example, the commercial simulation packages
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AutoSched AP and AutoMod are used to simulate wafer fabs. AutoSched AP
simulates the JS of a wafer fab, whereas AutoMod is responsible for the simu-
lation of the corresponding MS. The two simulation engines can be coupled
by the model communication software of Brooks automation. This approach
is used, for example, by Schulz et al. [278] and Pillai et al. [239] for 300-mm
full-factory simulations. More simulation studies related to the MS of wafer
fabs can be found, for example, in [130, 282, 316].

We continue by describing the representation of the BP within a simulation
model. A process flow is required for each product manufactured in a wafer
fab (see Sect. 2.2). It lists all process steps required to finish the product. In
general, process flows are deterministic, but, depending on the product, it
may contain alternative subprocess flows or rework loops. For each process
flow, the following parameters are supplied for each process step:

• Name of the process step
• Name of the machine or machine group where the process step has to take
place

• Operator requirements, i.e., the required qualification of the operators,
the number of operators, and whether they have to be present during the
whole period of loading, processing, or unloading or only during portions
of these operations

• Auxiliary resources required
• Processing time
• Load and unload times
• Required setup state of the machine
• Amount of scrapped material
• Rework loops
• Alternative flows

The processing time is given per process step and consists of several compo-
nents. Often, a machine can be loaded with more wafers than can be pro-
cessed; processing of these wafers takes place in several portions. Therefore,
the processing time often depends on the number of wafers or on the number
of jobs. As a consequence, the processing times of jobs of the same product
at a certain process step are not necessarily the same, for example, due to
scrapped wafers. Note that some machines, like steppers in the photolithog-
raphy work area or pipeline tools, require more sophisticated approaches to
determine the processing time (see Mönch et al. [201] for the stepper case
where the processing time depends on the product, on the mask level, and
also on the number of ICs on a single wafer in addition to the number of
wafers). The processing time for batches on diffusion furnaces in wafer fabs
depends on the family of the job. The processing time associated with a
batch on burn-in ovens at the back-end stage is determined by the longest
processing time of one of the jobs that form the batch.

Note that in the case of cluster tools, the situation is even more complicated
because the processing time depends on the sequence of processed jobs (see
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Sect. 2.2 for more details on cluster tools). In principle, we have to model
the internal behavior of a cluster tool to determine these processing times.
Therefore, usually only simple processing time models are used in simulation
models of full-size wafer fabs (see Shikalgar et al. [282]).

The load time tload and unload time tunload are defined as the time that is
required to move a job to or from a buffer or other material handling system
device before or after processing. Of course, tload and tunload have to add to
the processing time.

At certain process steps, sometimes jobs, wafers, or dies are processed in a
way that they become useless for further processing. In this case, a percentage
of units scrapped is provided to reflect this behavior. This percentage is called
the amount of scrapped material.

Rework is closely related to scrapped material. A percentage is given that
a rework loop has to be entered either for the whole job or for several wafers.
If a rework loop occurs, the whole job is processed, or a child job with re-
work wafers is built. The parent job may either wait until the rework loop
is successfully finished and rejoin with the child job, or it may proceed im-
mediately. At the end of the rework loop, a decision is made whether the
job is allowed to continue, whether the job has to repeat the rework loop, or
whether it is scrapped.

In some situations, several subflows are possible to produce different ICs
that come from the same technology, i.e., a process flow consists of a sequence
of subflows. For some positions in this sequence, several subflows are possible.
A certain percentage is given for each of the possible subflows in this situation.
At the end of the subflows, they merge again into a single process flow. It is
possible that the subflow consists of a single process step. In this case, the
term alternative process step is used. The concept of alternative process steps
is important to model heterogeneous machines correctly.

We consider a simulation model of small complexity suggested by re-
searchers from Intel Corporation and described by Spier and Kempf [291]
as an example of a simulation model that contains typical features of a wafer
fab with respect to BS and BP. It contains only three machine groups and
two process flows with six process steps. The process flow is organized in
two layers. Among the machine groups, there is a batch-processing machine
group and a machine group with sequence-dependent setup times. The model
mimics some important features of wafer fabs. We show the process flow in
Fig. 3.4. We call this simulation model the MiniFab model.

The processing times of the different process steps in minutes and the
maximum batch sizes in jobs are shown in Table 3.1.

Simulation studies with simulation models of full-size wafer fabs tend to
be very time-consuming. This is partially caused by modeling a lot of details
that are not always necessary. That is why some researchers and simulation
practitioners started to consider reduced simulation models [121, 231, 263,
265, 269]. The reduction is often achieved by modeling only process steps
that are related to bottleneck machines. The remaining process steps are
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Figure 3.4: Process flow of the MiniFab model

Table 3.1: Process flows and maximum batch sizes of the MiniFab model

Process step Machine group Processing time Maximum batch size

1 1 225 3
2 2 30 1
3 3 55 1
4 2 50 1
5 1 255 3
6 3 10 1

replaced by fixed time delays instead of modeling the processing of single
process steps on non-bottleneck machines. However, it is far away from being
trivial to find appropriate delays. Often, a large amount of simulation runs
with full-size simulation models are also required to assess the quality of a
reduced simulation model.

Each simulation model requires checking the logic of the model. This pro-
cess is called verification. At the same time, it is also necessary to compare
the results of the simulation model to reality. This step is called validation.
It is usually an iterative process [21, 150] that tends to be time-consuming in
the case of wafer fabs.

Therefore, reference simulation models are available for the research com-
munity to reduce the effort needed to create simulation models and to validate
and verify them. Such simulation models are available in the testbed hosted
at the modeling and analysis of semiconductor manufacturing (MASM) lab-
oratory as a result of the measurement and improvement of manufacturing
capacity (MIMAC) project (cf. Fowler and Robinson [83] for a description of
these models that are part of the MASM Lab testbed). The MIMAC 1 model
is also briefly described in Sect. 4.4.

It appears that, while simulation models are well established for single
wafer fabs, it is not true for semiconductor supply networks. Only some pre-
liminary work has been published for simulation modeling of an entire supply
network (cf. Duarte et al. [74] for some recent work).
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Usually, we use simulation when the analytic methods described in
Sects. 3.2.2–3.2.7 do not adequately represent the system being studied.
For example, in some situations, the objective function is nonlinear, some
of the restrictions cannot be modeled by a set of linear constraints, or the
optimization problem is simply too large to apply branch-and-bound tech-
niques. While discrete-event simulation offers some advantage with respect
to modeling capabilities, it takes considerable effort to build a simulation
model, mainly because of data gathering and modeling difficulties. The main
data needed to create a simulation model was described in this subsection.
Experience in statistics is necessary to perform a meaningful interpretation
of the simulation output.

We start by describing simulation techniques for the support of produc-
tion planning and control decisions. Discrete-event simulation can be used to
represent the BS and the BP. In this case, they are identified by the discrete-
event simulation model. We will see that this approach is useful to assess the
performance of planning and control algorithms in Sect. 3.3. In the simplest
form of this approach, simulation can be used to decide the rule for which job
should be processed next on an available machine. Therefore, discrete-event
simulation is a tool to assess the performance of dispatching rules.

When simulation is used as a decision-making tool and not for identifying
the BS and the BP, then either performance measure values as a result of
planning or control instructions for BS and BP are estimated by simulation, or
certain parameters that describe the behavior of the BS of interest are deter-
mined using simulation. Therefore, we differentiate between simulation-based
optimization, iterative simulation, and finally the determination of immedi-
ate control instructions, i.e., which job has to be processed next on a given
machine by simulation.

Simulation-based optimization starts from the idea that it is in some situa-
tions difficult to describe and evaluate an objective function (cf. Fu et al. [91]
and Fu [92] for a more detailed description of the main concepts). In this sit-
uation, the objective function can be implicitly represented by a correspond-
ing simulation model. Simulation-based optimization therefore also requires
an appropriate simulation model. Optimization is typically performed using
metaheuristics such as SA, GA, tabu search, or VNS. These methods tend to
be computationally expensive. Therefore, the level of detail for the simulation
model is important in simulation-based optimization applications. Stochastic
effects typically are not neglected. They have to be taken into account both
for the metaheuristic that is used for optimization and the simulation model
itself. The overall scheme for simulation-based optimization applications can
be described as follows.

Algorithm Simulation-Based Optimization

1. Start from a given initial solution.
2. Use the simulation model in order to estimate the objective function value

by multiple runs in a stochastic setting.
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3. Modify the incumbent solution by local changes using a certain meta-
heuristic.

4. Repeat the algorithm from step 2 onwards until a given stopping criterion
is met.

Simulation-based optimization can be used either on the entire BS and BP
level or for subsystems and subprocesses of it, respectively.

In contrast to simulation-based optimization, iterative simulation is used
to find appropriate values for certain parameters of a decision model for
planning or control problems. In production planning models, often the CT
is such a parameter. Then, the production planning or control problem is
solved using the current values for the parameters of interest. The resulting
solution provides input for the discrete-event simulation model. For example,
the quantity of jobs to be released is determined by a production planning
model, then the parameter of interest is estimated using simulation. The
current parameter value is updated using the simulation results. The updated
value is used again as an input of the production planning or control model.
The overall scheme can be summarized as follows.

Algorithm Iterative Simulation

1. Use an appropriate initial value ρcurr := ρinit for the unknown parameter ρ .
Solve the production planning or control problem using ρinit.

2. Perform a simulation using the solution of the production planning and
control problem as input for the simulation.

3. Determine the real parameter value ρsim as a result of the simulation.
4. Determine a new current parameter value ρcurr based on the actual values

for ρcurr and on ρsim using, for example, exponential smoothing.
5. Solve the production planning or control problem again using the updated

value for ρcurr.
6. Repeat the scheme starting in step 2 until a given termination criterion is

met.

Often, only a few iterations are necessary to achieve the desired maximum
difference between the parameter values in two consecutive iterations. Fur-
thermore, the initial value of the parameter of interest is often not a crucial
factor. Iterative simulation in a supply chain context is discussed, for exam-
ple, in Almeder et al. [7]. In this monograph, we will also see applications for
setting parameters of dispatching rules due to Vepsalainen and Morton [312]
in Chap. 4 and for production planning applications in Chap. 7.

Finally, discrete-event simulation can be used to determine immediate con-
trol instructions. Therefore, a simulation model that represents the current
state of the BS and the BP, including a certain set of dispatching rules to
decide which job has to be processed next, is necessary. An assignment of jobs
to machines and sequences of jobs on single machines are determined using
the dispatching rules. When different dispatching rules are used, multiple as-
signments and sequences are the result. Based on the preferences of a human
decision maker, one specific assignment and the corresponding sequences are
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chosen and then are used to make the decisions in the production control
system. This concept is also known as simulation-based scheduling and will
be discussed in more detail in Sect. 5.2.

3.2.9 Response Surface Methodology

Running simulation experiments is time-consuming, especially when simula-
tion is used to find an appropriate setting of several parameter values for the
BS and the BP with respect to a certain performance measure. An exhaus-
tive search by simulation is not possible from a computational burden point
of view. In this case, meta-models are an appropriate way to treat this kind
of optimization problem. To model this class of problems, we assume that
the performance measure value, called the response, can be expressed in the
following form:

y := f (ξ1, . . . ,ξk)+ ε, (3.26)

where the form of the true response function f is unknown and ε represents
the variability. The controllable input variables are denoted by ξi, i = 1, . . . ,k.
They represent the parameter values of the BS and BP that have to be varied.
The term ε is treated as a statistical error. We assume that it has a normal
distribution with mean zero and variance σ2, i.e., ε ∼ N(0,σ2). The variables
ξi are called natural variables. However, it is often more convenient to work
with dimensionless variables that are normalized, i.e., from [−1,1]. These
variables are called coded variables and can be achieved by some transforma-
tion of the natural variables. The true response function can be represented
in the form η := f (x1, . . . ,xk). Because f is unknown and often complicated,
we approximate it by a low-degree, usually first- or second-order polynomial.
Second-order meta-models are of the general form

y := β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
i +∑

j
∑
i�= j

βi jxix j + ε, (3.27)

where the unknown coefficients β0 and βi,βi j, i = 1, . . . ,k, j = 1, . . . ,k are called
the parameters of the model that have to be fitted from results of simulation
runs. Note that we obtain a first-order model out of the second-order model
(3.27) when we select βii = 0 and βi j = 0. While least square analysis is often
used to estimate the significant parameters for the meta-model, analysis of
variance techniques is used to determine which parameters are statistically
significant.

We assume that the discrete-event simulation model is a reasonable re-
presentation of the BS and the BP. If the meta-model is an adequate ap-
proximation of the corresponding simulation model, then the optimization of
this model will be approximately equivalent to the optimization of the BS
and BP. Therefore, after we have determined the second-order meta-model,
we can use it instead of the simulation model to optimize the response by
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determining appropriate values for the coded variables. By using standard op-
timization techniques, i.e., steepest descent for the first-order model and con-
jugate gradient methods for the second-order meta-model, the corresponding
optimization problems can be solved using standard optimization software.

For a more detailed introduction into the response surface methodology,
we refer to Myers et al. [212]. Some applications of meta-modeling techniques
in semiconductor manufacturing are shown by McAllister et al. [177]. Chapter
4 contains applications related to the design of blended dispatching rules in
semiconductor manufacturing.

3.2.10 Learning Approaches

Following Russell and Norvig [273], a basic learning system contains a per-
formance element and a learning element. The performance element decides
what actions are to be taken, whereas the learning element modifies the per-
formance element to allow it to make better decisions. The learning element
takes feedback from the environment into account during learning. A reason-
ing mechanism is responsible for the learning.

In a certain sense, the regression analysis described in Sect. 3.2.9 might be
considered to be learning a continuous function from examples of its input
and output. The resulting meta-model is the performance element, while least
square analysis is used as the reasoning mechanism.

Next, we continue with a discussion of neural networks as a widely used
learning approach. A neural network consists of a set of nodes, called neurons,
and the neurons are connected in different ways. Each neuron is used to
implement an activation function T :

yi := T

(
n

∑
j=1

wjiu j

)

. (3.28)

This function determines output values as a result on given input values.
Input values are denoted by u j, j = 1, . . . ,n. The output values are denoted by
yi, i = 1, . . . ,m. The quantities wji, j = 1, . . . ,n, i = 1, . . . ,m are the correspon-
ding weights. The neurons are organized in layers. Besides input and output
layers, a neural network also has internal layers. Input values are transformed
into output values using the weighted input values.

Applying neural networks to make a certain decision requires determining
appropriate input values to characterize the problem and to represent the
solution of the problem by the output values. Training data, i.e., a certain set
of problem instances with known high-quality solutions, also called examples,
is used to discover how the output values depend on the input values. It is
clear that the neural network as a meta-model is the performance element,
while the learning approach for the weights is the learning element.

The main advantage of neural networks is their ability to learn by adap-
ting the weights. Furthermore, neural networks are able to deal with noisy
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data. Nonlinear functions can be represented by neural networks. The basic
limitation of the neural network approach is that a new network has to be
constructed when the underlying situation has changed. This often requires
a large training effort. At the same time, training data is often not available
in case of a dynamic and stochastic BS and BP. In Chap. 5, we will mention
applications of neural networks in scheduling.

Inductive decision trees are another learning approach. A decision tree
takes, as input, a situation described by a set of attributes and returns the
predicted output value for the input. A decision tree makes decisions by
performing a sequence of tests. The tree consists of internal nodes and leaf
nodes. The leaf nodes represent the output value that is the result when
this leaf is reached. The internal nodes test the value of one of the properties.
The learning is performed by using a set of examples, i.e., a mapping between
situations and output values to determine the decision tree (see Russel and
Norvig [273]).

3.2.11 Summary of Decision Methods and Descriptive
Models

Finally, we would like to combine the different type of models presented in
Sect. 3.1.2 and the various methods from Sect. 3.2. The resulting scheme is
shown in Fig. 3.5. We can clearly see that while discrete-event simulation is
both descriptive and prescriptive at the same time, it is always dynamic. Only
dynamic programming and discrete-event simulation are deterministic and
stochastic. Queueing theory is descriptive and contains elements of both static
and dynamic models, but it is stochastic. The response surface methodology
is descriptive and can be also prescriptive.

It is not reasonable to assign the learning approaches discussed in
Sect. 3.2.10 to any of the model types from Sect. 3.1.2 because learning
models are often used to support the parameter selection process for decision
methods. Therefore, we avoid a specific assignment.

It is interesting to remark that, as already stated in Sect. 3.1.2, dynamic
and stochastic models are difficult to analyze. We can see from Fig. 3.5 that
only discrete-event simulation is able to deal with these kinds of models.
Based on this insight, we can conclude that discrete-event simulation is of
particular importance.

3.3 Performance Assessment

In this section, we present a performance assessment methodology. In addi-
tion, we discuss an architecture that allows for simulation-based performance
assessment of production planning and control approaches.
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Figure 3.5: Scheme for decision methods and descriptive models

3.3.1 Performance Assessment Methodology

When a new decision-making algorithm is proposed, in the beginning, its
performance is unknown. Therefore, it is necessary to assess its likely perfor-
mance before it can be applied in a wafer fab. There are, in principle, two
possibilities. The first one takes a snapshot of the state of the BS and the
BP and then determines the values of certain performance measures. This
type of performance assessment is described in some detail in Rardin and
Uzsoy [257]. The second one repeats running the decision-making algorithm
in a time-based or event-based manner taking the current state of the BS and
the BP into account. We refer to the first approach as a single instance-based
performance assessment, whereas the second one is called a rolling horizon-
type performance assessment scheme. Note that the single instance-based
approach is rather static, while the latter one is much more dynamic and
takes appropriate feedback of the BP and BS into account.

In a next step, we describe a performance assessment methodology that
can be applied in both situations. In this methodology, a fixed production
planning or control approach with unknown performance is considered. In
order to assess its performance, the following scheme is suggested:
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• Determination and specification of the appropriate performance measures
• Determination of production planning and control approaches used for
comparison with the new approach

• Description of different problem instances and simulation scenarios in the
first and second cases, respectively, and specification of designed experi-
ments

• Specification of the performance assessment strategy
• Description of the hardware and software environment for the performance
assessment

• Running the new planning and control approach for each problem instance
or, in a rolling horizon manner, by discrete-event simulation for each sim-
ulation scenario in the first and second cases, respectively, and discussion
and interpretation of the results

We start by describing the difference between direct and indirect performance
measures. This distinction corresponds to the planning and control setting
presented in Fig. 2.2. Direct performance measures consider quantities that
have direct influence on the performance of the manufacturing system related
to the BS and the BP. Throughput (TP), CT (cf. Sect. 3.2.7), and total
weighted tardiness (TWT) are examples of direct performance measures. TP
is defined as the number of completed jobs leaving a system within a certain
period of time. The TP rate is consequently the number of completed jobs per
unit of time. In the MS, the number of moves of the vehicles is a TP-related
measure. Closely related to TP is the makespan Cmax of a set of n jobs. It is
defined by the expression

Cmax = max
{

Cj| j = 1, . . . ,n
}
, (3.29)

where we denote by Cj the completion time of job j. The measure CT for job
j is defined as

CT j :=Cj − r j, (3.30)

where r j denotes the ready (release) time of j. The average CT (ACT) of n
jobs is given by

ACT :=
1
n

n

∑
j=1

(Cj − r j) . (3.31)

ACT is an important measure in semiconductor manufacturing because a
small ACT value may lead to large yield because the probability of contam-
ination on the shop floor is smaller in case of a small CT (see Atherton and
Atherton [14]). The carrier delivery time (CDT) is the counterpart of the
BS-related CT within the MS. In some situations, the variance of CT is of
interest. It is defined by

Var(CT) := E((CT−E(CT))2)≈ 1
n− 1

n

∑
j=1

(CT j −ACT)2. (3.32)



3.3 Performance Assessment 57

Closely related to CT is the measure total flow time or total completion time
(TC). It is defined as

TC :=
n

∑
j=1

Cj = nACT+
n

∑
j=1

r j, (3.33)

i.e., minimizing ACT is equivalent to minimizing TC. Its weighted counter-
part is the total weighted completion time:

TWC :=
n

∑
j=1

wjCj, (3.34)

where we denote by wj the weight of job j. On-time delivery performance-
related measures are also important because of possible customer satisfaction
and hence advantage in the fierce competitive market. The tardiness Tj of a
job j is given by

Tj := max(Cj − d j,0), (3.35)

whereas the performance measure TWT is defined by

TWT :=
n

∑
j=1

wjTj, (3.36)

where we denote by d j the due date of job j. The average weighted tardiness
(AWT) is defined as

AWT :=
1
n

TWT. (3.37)

When we have wj ≡ 1, then we are talking about total tardiness (TT). We
use the notation AT for the average tardiness.

Somewhat related to TT is the maximum lateness. This performance mea-
sure is defined as follows:

Lmax := max{Lj| j = 1, . . . ,n}, (3.38)

where we denote by Lj :=Cj − d j the lateness of j. Similar to Var(CT), the
variance of the lateness Var(L) is defined by

Var(L) := E((L−E(L))2)≈ 1
n− 1

n

∑
j=1

(Lj −AL)2, (3.39)

where the average lateness (AL) is given by AL := 1/n∑n
j=1 Lj.

Finally, in some situations, the number of tardy jobs (NTJ) is of interest.
This performance measure is defined as follows:

NTJ :=
n

∑
j=1

Uj, (3.40)
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where we have

Uj :=

{
1, if 0 <Cj − d j for job j
0, otherwise.

(3.41)

The weighted counterpart of NTJ, the weighted number of tardy jobs
(WNTJ)

WNTJ :=
n

∑
j=1

wjUj, (3.42)

is also considered. TT, TWT, Lmax, NTJ, and WNTJ are important measures
in terms of on-time delivery performance. In Table 3.2, more examples for
direct performance measures are shown.

Table 3.2: Examples for direct performance measures

Class Example

due date-oriented maximum lateness Lmax := max{Cj −d j| j = 1, . . .,n}
throughput-oriented TP of a certain work area
cycle time-oriented ACT of the jobs of a certain product family

load-oriented WIP

Note that in many practical situations, we have to deal with multiple
criteria that are sometimes in conflict to each other. The desirability function
approach in optimizing multiple criteria of interest was originally suggested
by Derringer and Suich [66]. The approach transforms each objective value
into a value between 0 and 1. Thus, each criterion yi is converted into an
individual desirability function di that varies over the range zero to one. If
yi is outside the acceptable range defined by the user, then di = 0. However,
if yi meets the goal, then di = 1. Let Ui be the maximum allowable value for
the response yi, and let Gi be the goal value for yi. We define di as follows:

di :=

⎧
⎨

⎩

1, if yi < Gi

((Ui − yi)/(Ui −Gi))
zi , if Gi ≤ yi ≤Ui,

0, otherwise
(3.43)

where zi > 0 is a real number known as the weight on the desirability function.
When zi = 1 for each objective i, the desirability function is linear. Choosing
zi > 1 places more emphasis on being close to the goal value, while setting
0 < zi < 1 decreases importance on proximity to the goal value. Once the
individual desirabilities have been calculated, the combined desirability D
that is to be maximized is computed as the geometric mean of the individual
desirabilities. We obtain for the case of m desirabilities:

D :=

(
m

∏
i=1

di

)1/m

. (3.44)
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We will see applications of the desirability function approach related to dis-
patching and scheduling in Chaps. 4 and 5, respectively.

In contrast to direct performance measures, indirect performance measures
are not directly related to the performance of the manufacturing system. They
are used to evaluate properties of certain production planning and control
algorithms. Consequently, they are related to the PS, PP, CS, and finally
the CP. Robustness and stability measures are examples for this class of
performance measures.

Performance measures related to robustness measure the change in the
objective value of a plan or schedule after plan or schedule revisions. Sta-
bility of a plan or schedule is defined as the deviation of the final plan or
schedule related to the original plan or schedule (cf. [106, 141, 233]). The
deviation of two schedules can be measured, for example, as the difference
of the completion times of jobs. Stability measures the difference of initial
and of executed plans and schedules under the influence of disruptions. More
indirect performance measures are shown in Table 3.3.

Table 3.3: Examples for indirect performance measures

Class Example

re-planning effort-oriented number of required re-planning activities
run time-oriented run time of a certain production planning algorithm

agility time needed to obtain the original WIP after the
breakdown of a major bottleneck machine

stability deviation of the final plan or schedule from the
original one

Next, we have to discuss production planning and control approaches for
comparison with the new approach. Decentralized and centralized produc-
tion control approaches can be distinguished. Hierarchical approaches are
somewhere between these approaches. Decentralized approaches work on lo-
cal data, and coordination and cooperation issues become important in order
to avoid the limitation of the myopic view of decentralized approaches. Dis-
patching rules in semiconductor manufacturing are an example of this type
of approach (cf. Chap. 4 for more details on dispatching rules). Centralized
approaches are given, for example, by LP, MIP, and by various kinds of neigh-
borhood search techniques.

Often, it makes sense to use exact procedures like branch-and-bound or
MIP described in Sect. 3.2 for small-size problem instances to ensure the cor-
rectness of implementations and to get a sense of the performance of the new
approach. For large-size problem instances, heuristics are used for compar-
ison. In some situations, it is possible to compare the performance of the
new approach with the approach that is used in the company by considering
problem instances or simulation models and the corresponding production
planning and control instructions from the company.
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We describe now the determination of problem instances and simulation
scenarios. We start with the generation of synthetic problem instances. In the
case of individual problem instances, we determine a set of factors that we ex-
pect to have an impact on the performance of the new algorithm. We consider
levels for each factor, i.e., we vary the values of the factors in a controlled way.
Often, the levels are selected as realizations of a random variable that follows
a prescribed probability distribution. In the case of full factorial experiments,
problem instances are generated for each factor combination. Usually, a cer-
tain number of stochastically independent problem instances are generated
for each factor combination. Methods from the theory of designed experiments
can be used to study the impact and the effect of different factors (cf. Mont-
gomery [208]). One of the primary approaches to designing an experiment is
to select the location of design points to optimize some criterion function; this
is often called optimal design of experiments (cf. Pukelsheim [249]). Typically,
this criterion is related to the variance/covariance matrix of the parameters
in the model. The most popular optimization criterion is D-optimality, which
seeks to minimize the volume of the joint confidence region of all the param-
eters in the model.

It is also possible to avoid the generation of problem instances by
taking problem instances directly from the BP. Alternatively, for certain
classes of problems, benchmark instances are publicly available (cf. the
OR-Library [220] for a collection of such problem instances available over
the web).

Performance assessment experiments for rolling horizon approaches are or-
ganized as different simulation scenarios. In contrast to the problem instance
case, usually the number of scenarios is fairly small. A single simulation sce-
nario is given by a set of independent parameters, a range of variation for the
parameters, and a set of dependent variables, i.e., basically the performance
measure values. Each scenario is represented by a specific simulation model.
By using designed experiments (see Montgomery [208]) and meta-modeling
techniques like response surface methodology (see Myers et al. [212] and
Sect. 3.2.9), it is possible to reduce the number of required simulation runs by
constructing an appropriate meta-model, often a regression model, and opti-
mizing the performance measure values using the simpler meta-model instead
of the simulation model. Furthermore, modern variance reduction techniques
can also help to decrease the number of necessary simulation runs (cf. McAl-
lister et al. [177]). Often, the simulation scenarios are based on data that is
collected in a wafer fab. But at the same time, the scenarios are often also
based on reference simulation models like the MASM Lab testbed (see also
the description in Sect. 3.2.8). The usage of such public benchmark models
offers some additional advantage as the results are now comparable because
they are company-independent.

The choice of the performance assessment strategy is important because
of the stochastic behavior of manufacturing systems. There are two main
possibilities to assess the performance of a system in simulation modeling.
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In the first case, the stationary behavior of a complex manufacturing sys-
tem is of interest. After the warm-up period, the performance indicators of
interest are measured. Long runs have to be performed. However, because
of the stationary behavior, a relatively small number of independent runs is
often enough (see Law [150]). The performance measure values are taken as
the average of the performance measure values for the single runs. Besides
average values that estimate the mean, confidence intervals are provided to
estimate the range of values, which is likely to include the unknown perfor-
mance measure value.

Looking at the transient behavior of a manufacturing system is the second
possibility. Transient behavior appears during the transition phase from one
system state to another. Product mix changes, ramp-up, and introduction of
new machines lead to transient behavior of the manufacturing system. Study-
ing a manufacturing system in the transition phase requires the measurement
of the performance measures of interest in a time-dependent manner. As op-
posed to the stationary case, a considerably larger number of simulation runs
is required in order to obtain statistically significant results for the perfor-
mance measures. The length of a single run is determined by the length of
the transition phase. The performance measure values are calculated as the
average of the performance measure values obtained at a single point of time.

A performance assessment strategy is basically given by the decision about
whether to investigate a stationary manufacturing system or a manufacturing
system in the transient phase from a given stationary to another stationary
behavior or not. Furthermore, the number of replications and the run length
are also part of the performance assessment strategy. In the case of single
problem instances, the maximum amount of computing time for each problem
instance or the number of replications of computations are also elements of
a performance assessment strategy.

In order to compare different production planning and control algorithms
from a run time behavior point of view, it is required to fix a hardware
and software environment for the performance assessment. It is furthermore
required to describe the used load balancing strategy of the computer network
in the case of distributed production planning and control algorithms. In the
final step of the performance assessment scheme, it is required to run the
experiments for all problem instances or all simulation scenarios. Then, the
results have to be analyzed and interpreted. Based on the results, often se-
veral refinements of the design of experiments are necessary.

We note that additional performance measures that are related to the
performance of the BS and the BP of wafer fabs can be found in Leachman
and Hodges [155].
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3.3.2 Architecture for Simulation-Based Performance
Assessment

We continue by describing a simulation-based architecture that allows for
simulation-based performance assessment of production planning and control
approaches. There are two principle possibilities to incorporate production
planning and control algorithms into a discrete-event simulation tool. In the
first possibility, the production planning and control algorithm basically uses
the information and data on the level of the simulation tool. As a result of this
strategy, proprietary source code is obtained that is difficult to understand
and to maintain. It is rather complicated to implement different production
planning and control approaches. However, for comparison purposes, the abi-
lity to plug in different production planning and control approaches is highly
desirable.

The second strategy is much more flexible. A blackboard-type data layer
(see Mönch et al. [202]) that acts as a mirror of the base process BP emu-
lated by the simulation model is used. The simulation tool is responsible
for an update of the corresponding objects of the data layer in the case of
the occurrence of well-defined events. When, for example, a job is released
to the shop floor, i.e., it is started in the simulation, then a corresponding
job object is created in the data layer. Other events of importance are, for
example, the start of a setup operation of a certain machine or the completion
of a certain process step, i.e., the job leaves a machine. In the latter case, the
state of the job object is changed in the data layer, whereas in the first
case, the state of the machine object is changed. Besides business objects like
machines, jobs, and products, the data layer contains objects that represent
the production planning instructions mp and production control instructions
mc. Furthermore, it contains objects that are used to store statistics. The
simulation engine implements the production control instructions mc in a
dispatching manner.

The data layer is located in the memory of the computer; hence, fast ac-
cess is possible. The incremental, event-driven update of the business objects
avoids time-consuming queries from databases. The object model of the data
layer is much easier to understand and to maintain than the proprietary data
structures of a certain simulation tool. When the BS is segmented into dif-
ferent work areas, a separate blackboard-type data layer can be assigned to
each segment of the manufacturing system. The architecture has to contain
a persistency mechanism that supports object state and performance mea-
sure tracing. Using object-oriented databases seems to be appropriate for
that purpose because of the highly nested objects from the data layer. The
objects of the data layer are stored in a periodic manner.

The built-in mechanism for job selection and machine load of the discrete-
event simulation tool acts as a dispatcher in a natural way. The dispatcher
uses sorted lists with jobs, so-called dispatching lists, calculated using pro-
duction control algorithms. When a machine becomes available in the simu-
lation, the next job to be processed is determined from the dispatching list
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of the machine. Furthermore, the simulation tool also specifies under what
circumstances the production control algorithm is applied to calculate new
dispatching lists. This feature is denoted as logic for calling of the production
control approach.

The architecture is completed by a demand forecast module and by a
demand generation module. While the first module is designated to the de-
termination of forecast using historical demand, the second one generates
concrete demand that is used as an important input for the planning algo-
rithms of the PS. The PS determines which quantities have to be released in
a certain point of time into the BS. This information is used by the CS to
calculate the mc. The architecture is shown in Fig. 3.6.

Simulation model/simulation engine

CS

Blackboard-type data layer

PS

Demand forecast module Demand generation module

OO-Database

Figure 3.6: Simulation-based architecture for performance assessment

Building production planning and control applications from scratch is not
very common because of available commercial and academic optimization and
scheduling libraries and of available editors for dispatching rules. Examples
are the ILOG solver and scheduler classes (cf. Le Pape [152]), class libraries
for GAs (cf. Pain and Reeves [227]), and the dispatching rule editor from the
simulation tool AutoSched AP. Therefore, an architecture for benchmarking
has to take this fact into account. Because most of the available class libraries
are written in the C++ programming language, the degree of freedom for
choosing an appropriate implementation language for the architecture is lim-
ited. The suggested architecture allows for a plug-in of different production
planning and control approaches.
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In the described architecture, we only model the JS. However, an exten-
sion of this architecture that also includes the MS of a wafer fab is described
by Driessel and Mönch [71]. In this situation, we have to use one simulation
model for the JS and a second one for the MS. Note that we will provide
certain examples for the usage of the simulation-based architecture for per-
formance assessment of scheduling and production planning approaches in
the remaining chapters of this monograph.



Chapter 4

Dispatching Approaches

In this chapter, we discuss dispatching approaches. Dispatching is on the
lowest level of the PPC hierarchy described in Chap. 2. We start with a tax-
onomy of dispatching rules. A dispatching rule assigns a certain index to
each job waiting in a queue to be processed on a machine or transported by
a vehicle. The job with either the largest or the smallest index is selected to
be processed or transported next. Typical attributes are the ready time, the
processing time, or the due date of a certain operation or of the job itself.
We describe simple dispatching rules that are characterized by an index that
is based only on a small number of attributes of a job or the BS and the BP.
We continue with the discussion of composite dispatching rules. Composite
dispatching rules have an index that is formed by combining indices of simple
dispatching rules.

Batching rules are an extension of dispatching rules. A batching rule helps
to make the batch formation decision, i.e., which jobs are part of the batch,
and also to decide which batch has to be processed next on an available
machine. Some dispatching and batching rules use only information related
to the jobs that wait in front of a machine or machine group, while other
rules may use information regarding machines different from this machine or
machine group. The second type of rules are called time-based look-ahead
rules.

More sophisticated approaches like rule-based systems and several other
approaches to find parameters in batching and dispatching rules are discussed.
We present methods to weight indices so that a rule simultaneously works
towards multiple objectives. Finally, we also describe an approach to discover
appropriate dispatching rules using GAs and discrete-event simulation.

4.1 Motivation and Taxonomy of Dispatching Rules

Dispatching is on the lowest level of the PPC hierarchy described in Chap. 2.
Dispatching rules are used to choose the next job that is processed or
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transported by a resource. When the resource is a machine, a dispatching rule
selects the next job to be processed among the jobs that are waiting in front
of a machine group [29, 116, 240]. When the resource is given by a vehicle, the
job is selected among the jobs that wait to be transported by the available
vehicle. Note that this is a resource-based point of view, i.e., the resulting
dispatching rules are resource-initiated. On the other hand, job-initiated dis-
patching rules are also possible. In this situation, jobs seek resources with
free capacity. This might be important when no job is queueing in front of
several available resources and a new job arrives. In this chapter, we focus on
resource-initiated dispatching rules because they are more important during
heavy material flow.

Dispatching rules are generally myopic in time and space, and it may be
difficult to know how and when to adapt them to different situations on the
shop floor. However, their decision logic is easy to understand, and they can
be implemented with less effort on the shop floor of a wafer fab. Dispatching
rules are still the main production control ingredients in many wafer fabs as
indicated by Pfund et al. [234] and Sarin et al. [274].

A dispatching rule ranks all the waiting jobs according to an index

I j(a1, . . . ,ak) := f (a1, . . . ,ak), (4.1)

where j denotes the job and ai, i = 1, . . . ,k are attributes that determine the
priority of j. They can be related to j or to properties of the BS or the BP.
The right-hand side of expression (4.1) is a function f : IRk → IR. Often, the
indication of all attributes will be suppressed, and only some of the attributes
appear on the left-hand side of the priority index. We always assume that the
job with either the largest or the smallest value of I j(a1, . . . ,ak) is selected as
the job that will be processed or transported next. Based on the number and
the nature of the attributes and the form of f , we can develop a taxonomy
of dispatching rules.

Simple rules use only one to three attributes to determine the value of the
priority index, i.e., k ≤ 3. Note that the value k ≤ 3 is somewhat arbitrary
as the division between simple and composite dispatching rules. The func-
tion f often has the form f (a1) := a1, f (a1) := 1/a1, f (a1,a2) := a1/a2, or
f (a1,a2) := a1−a2. Composite dispatching rules are based on more than three
attributes, i.e., k > 3. At the same time, the form of f is usually more compli-
cated in case of composite dispatching rules; exponentiation, summation, or
multiplication are often used. Composite dispatching rules combine several
simple dispatching rules together.

A second way of classifying dispatching rules is according to the
information on which they are based. A local dispatching rule uses only in-
formation that is related to the resource for which the jobs are in queue.
On the other hand, a global rule is based on information regarding other re-
sources. Somewhat related to global rules are look-ahead rules because they
take future job arrivals from upstream machine groups into account.
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A third way to classify dispatching rules is to make a distinction on whether
the value of the priority index is time-dependent or not. Dynamic rules are
time-dependent, i.e., the current time is an attribute in the priority index,
while static rules are not time-dependent.

Besides the types of dispatching rules above, more complex dispatching
rules can be constructed using truncation, conditioning, and multilevel ap-
proaches. Truncating a dispatching rule refers to the situation where jobs are
selected according to a certain dispatching rule, excepting the case where a
certain condition is not fulfilled any longer for the jobs. For example, a dis-
patching rule is used to choose the job to be processed next until at least one
job has waited no longer than a specified time. Conditioning implies changing
rules according to the BS and the BP state. One might switch back and forth,
for example, between two different dispatching rules based on some measure
of BS and BP congestion. Multilevel rules may be used to apply tie-breaking
or secondary criteria; for example, one might first select the jobs with a small
value according to a certain criterion and then use a second dispatching rule
to select the job to be processed next among this subgroup of jobs.

In this chapter, we differentiate between simple and composite dispatching
rules. We will discuss batching rules because of their practical relevance in
wafer fabs. Look-ahead rules are discussed, due to the fact that they are
important because of batching- and setup-related decisions.

Usually, discrete-event simulation is used to predict/assess the
performance of dispatching approaches in semiconductor manufacturing.
Each simulation tool owns a number of built-in dispatching rules. Often,
new dispatching rules can be added by means of customizing the simulation
tool. It is pointed out by Fowler et al. [87] that comprehensive testing of
previously developed flow control approaches in realistic settings is needed.
Finally, it is stated in [51, 307] that contradictory results with respect to
the performance of dispatching rules are common in complex job shops. It is
pointed out by Geiger et al. [96] that the only general conclusion from many
years of research on dispatching rules is that there is no dispatching rule that
outperforms consistently all the other rules under a variety of BS and BP
conditions and performance measures.

We will see in Chap. 5 that dispatching rules can also be used to make sche-
duling decisions in the list scheduling framework. For some specific situations,
even the application of simple dispatching rules within a list scheduling ap-
proach leads to the optimal solution. The main idea of this framework consists
in applying dispatching in a repeated manner. Hence, a solid knowledge of
dispatching rules is also beneficial for scheduling.

There is some relationship between dispatching and order release schemes.
We will see in Chap. 6 that many papers support the thesis that when order
release approaches become more effective, dispatching decisions will have a
diminishing effect on the BS performance.
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4.2 Simple Dispatching Rules

In this section, we differentiate between dispatching rules for selecting the
next job to be processed on an available machine and to find the next job to
be transported by an available vehicle.

4.2.1 JS-Related Dispatching Rules

The FIFO dispatching rule is a popular example of a simple dispatching rule.
The corresponding priority index is given by

I j := r j. (4.2)

The job with the smallest index is selected next. The FIFO rule is included
as a default rule in virtually all discrete-event simulation packages. Another
important example is given by the earliest due date (EDD) dispatching rule.
Its priority index is as follows:

I j := d j. (4.3)

EDD selects the job that has the smallest due date. The intention of the
EDD rule is to ensure a high on-time delivery performance. Similar to FIFO,
EDD is included in most simulation packages. A variant of the EDD rule is
the operational due date (ODD) dispatching rule, where the due date of the
job is simply replaced by a process step-specific due date d jk for each process
step k of job j. These local due dates for the process steps can be obtained
from the due dates of the corresponding job by:

d jk := d j −FF
n j

∑
h=k+1

p jh, (4.4)

where FF ≥ 1 is a constant that is called flow factor, p jh is the processing
time of operation h of j, and n j denotes the number of process steps of job j.

Another important rule is the shortest processing time (SPT) dispatching
rule. The corresponding index is

I j := 1/p j, (4.5)

where p j is the processing time of the current process step of job j. This
dispatching rule was originally proposed for operating systems where the goal
is to keep the number of jobs waiting for a processor as small as possible. It
is well known that the SPT rule leads to small CT values in certain types of
manufacturing systems because jobs with a small processing time will always
be selected first. The application of this rule, a truncation variant of it, and a
conditioning variant of SPT for wafer fabs is studied by Rose [267]. It turns
out that SPT-type rules do not regularly reduce the ACT value, i.e., for
some products this value increases, for some it decreases, and for most of
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the products there is no effect. This behavior is caused by the fact that the
coefficient of variation of the processing time of the operations is smaller than
one for most of the machine groups of a wafer fab, i.e., the processing times
of the operations are very similar. Hence, it is hard to predict changes in the
CT values in wafer fabs using SPT. Note that the longest processing time
(LPT) dispatching rule defined by the index

I j := p j (4.6)

is of course the opposite to the SPT dispatching rule, i.e., the job with the
largest processing time is selected first.

Jobs typically are classified in a wafer fab into regular jobs and hot jobs
(cf. Sect. 2.2.3). As a result of this classification, different weights can be
assigned to the jobs. The highest value first (HVF) dispatching rule selects a
job with the highest weight first. The corresponding index of job j is given by

I j := wj. (4.7)

When wj = 1 for all regular jobs, the FIFO dispatching rule is often used as
a tie breaker.

A generalization of the SPT rule that incorporates the weights wj of the
jobs is the weighted shortest processing time (WSPT) dispatching rule with
index:

I j := wj/p j. (4.8)

The shortest remaining processing time (SRPT) dispatching rule works
towards the selection of jobs that have only a small number of operations
to be completed. Its priority index is given by the expression

I j :=
n j

∑
k=l

p jk. (4.9)

Totally, n j − l + 1 process steps are necessary to complete job j, i.e., process
step l is the current one.

Next, we discuss an example of a dispatching rule that results in good
machine utilization and workload balance between the downstream machine
groups. It is the fewest lots in the next queue (FLNQ) dispatching rule. This
dispatching rule prioritizes jobs with the objective of balancing the workload
on different machines. This is accomplished by prioritizing jobs heading to the
next operation with the least number of jobs in its queue. The corresponding
priority index is given by

I j(t) := n( j), (4.10)

where we assume that k is the current process step of job j. Then we denote by
n( j) the number of jobs waiting in front of the machine group that corresponds
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to the next process step k+1 of j. FLNQ-type dispatching rules typically have
poor performance in on-time delivery measures like TWT or flow time-related
measures like ACT.

The least setup cost (LSC) dispatching rule selects the job to be pro-
cessed next whose operation requires the smallest setup time among the jobs
queueing in front of the machine group. The corresponding priority index is
given by

I j := sk j , (4.11)

where we denote by sk j the setup time that is needed to process j given that
job k was the most recent job processed on the machine. Therefore, the LSC
rule is a setup avoidance rule, i.e., when there are jobs that require the current
setup state on the machine, then these jobs are selected among the queued
jobs. This is a dispatching rule commonly used by many practitioners for
dispatching and scheduling problems with sequence-dependent setup times.
Whenever there is a job and a machine available, the LSC rule searches for
the machine/job combination that causes the least setup time and selects
this job to be processed on that machine. When a job is available and the
amount of setup between two or more available machines is the same, one
will be selected randomly. However, one could also use other tie breakers.
We will later see in Sect. 4.3.2 how this rule is used to construct composite
dispatching rules.

The flow control (FC) dispatching rule is somewhat similar to the FLNQ
rule. The FC dispatching rule calculates the number of remaining production
hours per machine for the next machine group in the product’s route. More
formally, the corresponding index is given by

I j :=
m

∑l∈J(M) pl
, (4.12)

where we again assume that k is the current process step of j. The quantity
m is the number of machines in the machine group M that corresponds to the
next process step k+1. Finally, we sum up the processing times pl of all jobs
queueing in front of this machine group. This job set is denoted by J(M).

While the dispatching rules discussed so far are general purpose rules, we
now discuss an important class of simple dispatching rules for wafer fabs.
As defined by Lu et al. [169], fluctuation smoothing policies are a subclass of
the least slack (LS) dispatching rule. Known as minimum slack (MS), these
dispatching rules give the highest priority to those jobs where the slack is the
smallest. The slack of job j that is in buffer bi is defined by

s( j) := β ( j)− γi, (4.13)

where β ( j) is the real number attribute of j that is associated with j when
it enters the wafer fab. Furthermore, the buffer bi is associated with the real
number γi. Of course, we set again
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I j := s( j) (4.14)

for the resulting index. We will see that different dispatching rules can be
obtained from expression (4.13) using particular choices for β ( j) and γi.
Among them, there are fluctuation smoothing policies. These policies are
used to reduce the mean and standard deviation of CT. This is important
because by reducing ACT, the product can get to market faster and can keep
up with the changing environments associated with semiconductor manufac-
turing. Also by reducing the Var(CT) value (see Sect. 3.3.1), companies can
predict the completion time of a product much more accurately.

The first fluctuation smoothing policy is a policy for reducing the Var(L)
value. It evaluates the slack of a job and lets the one with the least slack
process on the available machine first. In this situation, the slack is defined
by setting β ( j) := d j and γi := ξi, where ξi is an estimate for the remaining CT
of j at the process step that is associated with bi. Then the quantity d j−ξi−t,
where t is the current time, is a measure for the urgency of job j. Because
all the jobs queueing in buffer bi have the current time t as a common term,
it can be ignored, and consequently it is enough to consider d j − ξi as slack.
This rule is also known as the LS dispatching rule. In this situation, we use
the crude estimate ξi := ∑

n j
k=l p jk for the remaining processing time of job j in

the wafer fab to obtain the classical global LS rule. Note that the dispatching
rule based on index (4.14) attempts to make each job equally late or equally
early. The Var(L) value is small when all jobs are either equally too early
or too late. Therefore, the resulting dispatching rule is called the fluctuation
smoothing for variance of lateness (FSVL) policy (see Lu et al. [169]).

The second fluctuation smoothing policy is used to reduce the Var(CT)
value. Therefore, we call the resulting policy FSVCT. It also evaluates the
slack of a job and places the job with the least slack on the machine that is
associated with buffer bi next. The slack for this rule is defined by setting
β ( j) := r j and again γi := ξi. This is of course a CT-related measure. Hence,
FSVCT attempts to reduce the Var(CT) by a similar argumentation as for
the FSVL policy.

The third fluctuation smoothing policy is intended to reduce the ACT
value. The resulting dispatching rule is called fluctuation smoothing for mean
cycle time (FSMCT) policy. It is known from queueing theory (cf. the de-
scription in Sect. 3.2.7 and the Kingman approximation) that the delay of
jobs at a server is caused by the burstiness of the job arrivals and the varia-
tions in the service time. We cannot influence the service times. Because of
this, following Lu et al. [169], we are interested in simultaneously reducing
the burstiness of arrivals to all the buffers of the wafer fab. The resulting
policy is therefore appropriate for reducing the ACT value.

We start by describing how we reduce the burstiness in the arrivals to
buffer bk+1. The basic idea is to set periodic due dates for jobs to reach bk+1.
We denote by λ the mean release rate for the wafer fab. Hence, the mean
inter-arrival time between jobs is given by 1/λ . Therefore, we set n/λ as the



72 4 Dispatching Approaches

due date to reach bk+1 of the nth job that is released into the wafer fab. When
we are able to reduce the variance of lateness Var(L) for reaching bk+1, we
obtain an arrival stream at bk+1 that is almost deterministic and therefore
not bursty.

In order to reduce Var(L) for reaching bk+1, we consider bk+1 as the final
sink of the wafer fab and use FSVL with respect to this system. We define
by ξ k

i an estimate for the remaining partial CT to go from bi to bk+1. In this
situation, we define β ( j) := n/λ , where n is the nth job released into the wafer
fab and γi := ξ k

i . Of course, we have

ξ k
i = ξi − ξk+1, (4.15)

and therefore γi = ξi − ξk+1. But because we consider a fixed bk+1, the sum-
mand ξk+1 is common for all jobs at the buffers bi, i = 1, . . . ,k and can be
omitted. Therefore, we use

s( j) = n/λ − ξi. (4.16)

The expression (4.16) is so far only defined for jobs in buffers bi, i ≤ k. Because
we are interested in simultaneously reducing the burstiness of job arrivals at
all buffers, we extend expression (4.16) to all buffers.

However, it is important to come up with appropriate ξi values in
expression (4.16). It is discovered in Lu et al. [169] that iterative simula-
tion is quite effective to solve this problem. As described in Sect. 3.2.8, the

initial value ξ (0)
i ≡ 0 is used within the first simulation run. We obtain esti-

mates ξ̂i
(0)

from the first simulation run for the CT of the remaining process

steps that are associated with bi. The new setting ξ (1)
i := ξ̃i

(0)
is used in the

second simulation. This procedure is repeated in an iterative manner until the

difference between two consecutive ξ̂i
(s)

and ξ̂i
(s+1)

values is small. We refer
to Sect. 4.7.2 where more implementation details for a similar problem are
presented.

Finally, we refer to Sarin et al. [274] for a more complete description of
various simple dispatching rules used in wafer fabs.

4.2.2 MS-Related Dispatching Rules

In this section, we describe how the next job is selected to be transported
by a vehicle. As in the case of JS-related dispatching rules, we specify the
corresponding dispatching rules by priority indices. In MS-related dispatching
rules, we assume that a given set of transportation jobs is waiting to be
transported. For simplicity reasons, we assume that each transportation job
consists of one job that is to be processed within a wafer fab, usually a FOUP.
Performance measures of interest for AMHS are the number of carrier moves,
i.e., TP and CDT (see Sect. 3.3.1).
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The nearest job first (NJF) dispatching rule is an intuitive greedy heuristic
that is defined as follows. An empty vehicle is dispatched to the job whose
waiting point is the nearest to the current location of the empty vehicle c.
The following index is used to assess job j:

I j := d( j,c), (4.17)

where d( j,c) denotes the length of the shortest path between j and c. The job
with the smallest index will be selected. It is clear that NJF can lead to high
effective utilization of the AMHS, i.e., loaded travel. However, this rule does
not take into account the waiting time of jobs for an empty vehicle. Therefore,
there is the possibility that some jobs wait a long time for a transport, i.e.,
the variance of CDT is large. Another limitation of NJF is that this rule
becomes inefficient in situations when there are several vehicles available to
transport jobs, but they are being blocked by the first vehicle (cf. Liao and
Fu [161]).

The first limitation of the NJF dispatching rule is resolved by the longest
waiting time (LWT) dispatching rule. It dispatches an empty vehicle c to
the job with the LWT among the jobs that are ready for transportation.
The corresponding priority index is given by:

I j := wt j, (4.18)

where we denote by wt j the waiting time of job j for transportation. The
job with the largest index is selected next. It is clear that the LWT rule
is similar to the FIFO dispatching rule for the BS. Of course, the LWT
rule tends to reduce the variation of CDT at the expense of effective vehicle
utilization. The second limitation of the NJF rule is considered within the
design of the farthest job first (FJF) dispatching rule. Blocking effects can
be avoided by dispatching an empty vehicle to the farthest job away from
it. The corresponding index is given by expression (4.17). However, we select
the job with the largest value of the index in this situation.

The modified nearest job first (MNJF) dispatching is proposed by Liao and
Fu [161] to combine the advantage of the NJF and the LWT rule. The rule
works as follows. An empty vehicle is dispatched to the job with the longest
waiting time, when this time is longer than a threshold value τ. When the set
of those jobs is empty, the NJF dispatching rule is applied to determine the
job that is selected next. The MNJF rule is a truncation dispatching rule.

The results of simulation experiments provided in [161] show that NJF
performs well with respect to TP and average delivery time. But at the same
time, the variation in CDT is large when NJF is used. The performance of
the MNJF rule, however, is very close to that of NJF, but the CDT variation
is much smaller because of the truncation strategy.

Dispatching rules for AMHS that take hot jobs into account are proposed
by Liao and Wang [162]. These rules allow for an almost no-wait transport of
these high-priority jobs. Additional job-initiated dispatching rules for the MS
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are described by Lin et al. [163]. Note that in addition to location and waiting
time-related attributes, attributes that take the situation at the different
buffers associated with an AMHS into account can be used.

4.3 Composite Dispatching Rules

In this section, we discuss two classes of JS-related composite dispatching
rules and one MS-related composite dispatching rule.

4.3.1 Critical Ratio Dispatching Rules

We start with the critical ratio (CR) dispatching rule. It is defined as the ratio
of EDD- and SRPT-type rules. Its priority index is given by the following
expression:

I j(t) :=
d j − t

∑
n j
k=l p jk

, (4.19)

where l denotes the current process step of j. The job with the smallest CR
index is selected first because in this situation, d j − t is small relative to the
remaining processing time, i.e., the job is already late or has only a small
amount of slack. Note that the priority index given by expression (4.19) is
negative when t > d j. In this situation, the job is already late, as its due
date has passed. When 0 ≤ I j(t)≤ 1, then the job j will most likely be late.
Finally, an on-time job will have a critical ratio not smaller than one. A small
value for ∑

n j
k=l p jk often means that only a small number of process steps to be

performed are left. Of course, the numerator d j − t in expression (4.19) can

be replaced by d j −∑
n j
k=l p jk − t. However, this leads to the constant term 1 in

the priority index value of all jobs and can therefore be omitted. Sometimes,
the following dispatching rule

I j(t) =:

{
(d j − t)/∑

n j
k=l p jk, if t ≤ d j

1/((t − d j)∑
n j
k=l p jk), otherwise

(4.20)

is also referred to as the CR rule (see Rose [268]). This rule is an example of
a conditioning dispatching rule. When d j ≥ t, then a priority index similar to
index (4.19) is used, whereas in the case of d j < t, a large value for t −d j and

a large value for ∑
n j
k=l p jk, i.e., a job that is already late has to perform many

process steps, lead to a small value of the priority index.
Results of simulation experiments with CR-type dispatching rules can be

found in Rose [268]. This study shows that an appropriate due date setting has
a large impact on the performance of CR-type dispatching rules. It is shown
that in the case of rather tight due dates, CR-type rules do not perform well
with respect to on-time delivery performance and CT.
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4.3.2 ATC-Type Dispatching Rules

The apparent tardiness cost (ATC) dispatching rule is proposed by
Vepsalainen and Morton [311]. It attempts to reduce TWT values. It is a
composite dispatching rule that blends the WSPT and the LS dispatching
rules. Its priority index is given by

I j(t) :=
wj

p j
exp

{

− (d j − p j − t)+

κ p̄

}

, (4.21)

where p̄ is the average processing time of the jobs that are queueing in front
of the machine group, t is the time where the next machine becomes avail-
able, and finally κ is a scaling parameter that weighs the slack against the
WSPT priority index. We use the notation x+ := max(x,0) for abbreviation.
The κ parameter is called the look-ahead (or scaling) parameter. Note that
there is an implicit scaling parameter 1 on the WSPT term. It is well known
that the performance of ATC-type dispatching rules strongly depends on an
appropriate setting of the κ parameter.

As ATC-type rules are found to be sensitive to the κ value setting, ten
different κ values from 0.5 to 5 in increments of 0.5 are used by Mehta and
Uzsoy [180]. This approach is called grid search in Pfund et al. [236]. For a
particular situation, i.e., a certain number of jobs waiting for processing, the
ATC rule is used independently for each κ value, the TWT value is calculated
for all queueing jobs, and finally the κ value is chosen that provides the
smallest TWT value. The κ value chosen is then fixed for a given job set
within ATC-type dispatching rules.

Various rules for the selection of this parameter are discussed in
Pinedo [240]. The tightness of the due dates, the range of the due dates
of the jobs queueing in front of the machine group, and the number of jobs
per machine can be used to determine the look-ahead parameter. A heuristic
curve-fitting method is used to determine the equations for calculating proper
values of the look-ahead parameters. Neural networks are proposed by Kim
et al. [140] to find appropriate look-ahead parameters.

There are generalizations of the ATC dispatching rule with respect to
sequence-dependent setup times and unequal ready times of the jobs. We con-
sider first the case of sequence-dependent setup times. Because we often have
to deal with sequence-dependent setup times, an extension of the ATC dis-
patching rule to this situation is proposed by Lee and Pinedo [159]. This
dispatching rule combines the WSPT dispatching rule, the LS rule, and the
LSC rule into a single priority index. The corresponding priority index of job
j at time t when job l is processed is given by

I j(t, l) :=
wj

p j
exp

{

− (d j − p j − t)+

κ1 p̄

}

exp

{

− sl j

κ2s̄

}

, (4.22)
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where sl j denotes the setup time that is required to process job j immediately
after job l. The average setup time of the waiting jobs is denoted by s̄. This
dispatching rule is called ATC with setups (ATCS) for abbreviation. Different
expressions to determine appropriate values for κ1 and κ2 based on attribute
values of the waiting jobs are proposed by Lee and Pinedo [159]. Neural
networks are used for the same purpose in Park et al. [229]. Chen et al. [45]
develop a four-phase method to determine a set of scaling parameter values
that perform well over a wide range of problem instances, i.e. provide robust
performance. In the first phase, factor ranges that characterize the problem
instances in each machine group are calculated. In the second phase, a face-
centered cube design is used to decide the placement of design points in the
factor region. The third phase involves adding an explicit scaling factor for
the WSPT term and then using designed experiments to find good scaling
parameter values at each design point. In the last phase, the central point of
the area in which all of the good scaling parameters lie is identified with the
robust scaling parameter.

In the case of unequal ready times, it makes sense to wait for a future
job arrival in some situations. The resultant dispatching rule is called ATCR,
and the corresponding priority index is given by

I j(t) :=
wj

p j
exp

{

− (d j − p j − t)+

κ1 p̄

}

exp

{

− (r j − t)+

κ2 p̄

}

, (4.23)

where κ1 and κ2 denote the look-ahead parameters for the slack- and the
ready-time-related terms of the priority index, respectively. The slack-related
term can be motivated in a similar way as in the ATC priority index (4.21)
without ready times, while the ready-time-related term is responsible for
reducing the job priority when a job is not ready at t. Results of computational
experiments for an approach based on inductive decision trees to select the
two look-ahead parameters are presented by Zimmermann et al. [332].

The index (4.22) is extended by Pfund et al. [236] to the situation where
ready times of the jobs occur. The resulting priority index is called ATCSR.
It is given by

I j(t, l) :=
wj

p j
exp

{

− (d j − p j −max(r j , t))
+

κ1 p̄

}

exp

{

− sl j

κ2s̄
− (r j − t)+

κ3 p̄

}

. (4.24)

A grid search approach is used to determine appropriate (κ1,κ2,κ3) triples.
Furthermore, regression-based approaches are proposed for the same problem.
Note that it is also possible to use more sophisticated approaches to calculate
the slack of a job within priority indices of ATC-type rules.

Usually, ATC-type dispatching rules lead to small TWT values. How-
ever, there is some effort required to find appropriate look-ahead parameters.
The results of extensive simulation experiments with different composite dis-
patching rules in wafer fabs are presented by Bahaji and Kuhl [16].



4.3 Composite Dispatching Rules 77

4.3.3 Composite Dispatching Rules for the MS

Following Jeong and Randhawa [128], we present a dispatching rule for
vehicles that combines several attributes to achieve multiple performance
measures simultaneously. We assume that each machine has an input buffer
and an output buffer. The corresponding priority index is given as follows:

I j := α1D j +α2IQ j +α3OQ j, (4.25)

where D j is the unloaded travel distance of an idle vehicle to job j, IQ j is the
remaining space in the input buffer of a machine that is the destination of j,
and OQ j is the remaining space in the outgoing buffer of a machine that is
the source of j. The quantity D j is defined as follows:

D j :=

{
maxdk−d j

maxdk−mindk
, if maxdk �= mindk

1, otherwise
, (4.26)

where dk is the distance of the current location of the available vehicle to the
machine where job k is in the output buffer. The quantity IQ j is given by

IQ j := 1− niq
j /ciq

j , (4.27)

where niq
j is the number of jobs in the current input queue of the machine

that is the destination of j. The quantity ciq
j represents the capacity of the

incoming buffer for the machine to which job j, which is the first job in the
output buffer of a machine, is going to move. Finally, the quantity OQ j is
given by

OQ j := noq
j /coq

j , (4.28)

where we denote by noq
j the current number of jobs in the output buffer of

the machine that contains j, and coq
j is the capacity of this output buffer.

The first part of the rule prioritizes the job that is the closest to the newly
available empty vehicle, while the second part tends to prefer jobs that are
going to machines that have a low queue size in their input buffers. The third
part prefers jobs in the output buffers of machines that have a large queue
length of the outgoing buffer. Furthermore, the three parts of dispatching
rule (4.25) are weighted by using αi ≥ 0 and α1 +α2+α3 = 1. A large value of
the first part leads to a high utilization of the AMHS, whereas a large value
for the second part leads to a decreased value of carrier waiting time because
a destination machine whose input buffer is full is not able to accept another
job unless the queue is cleared. The third part reduces the probability of
machine blocking.

Note that JS- and MS-related dispatching rules are generally considered
separately. There are only a few papers that treat them simultaneously
(cf. Tyan et al. [300], for example).
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4.4 Simulation Results for Assessing Dispatching Rules

We describe the results of a simulation study due to Bullock et al. [37] using
the MIMAC 1 model [83] and the FIFO, EDD, SPT, ATCS, FSVL, FSVCT,
and the FSMCT dispatching rules. The ATCS dispatching rule is applied only
for the steppers. For the remaining machines, the FIFO dispatching rule is
used in this situation. The model contains two products, 83 machine groups,
and 32 operators. Reentrant flows and rework are contained in the model.
Other characteristics of the MIMAC 1 model are shown in Table 4.1.

Table 4.1: Characteristics of the MIMAC 1 model

Product Weight Wafers Release size Constant time Raw
per job (in jobs) until next release processing

(hours) time (days)

1 1 48 1 3.034 13.1
2 5 48 1 6.048 14.9

We consider the performance measures ACT, Var(CT), Var(L), TP, AT,
and finally TWT. The simulation time is three years. The first year is trun-
cated to eliminate the initialization bias. Because due dates are not included
in the MIMAC 1 model, we set due dates according to

d j := r j +
n j

∑
k=1

p jk. (4.29)

Ten independent replications of each simulation run are performed to ob-
tain statistically reasonable results. The results of simulation experiments
are shown in Table 4.2.

Table 4.2: Simulation results for different dispatching rules

Rule ACT Var(CT) TP AT Var(L) TWT
(days) (jobs) (days) (days)

FIFO 38.09 13.67 5,723 24.41 28.63 452,679.10
EDD 25.66 0.15 5,823 11.98 0.26 238,774.59
SPT 25.62 0.03 5,830 11.94 0.30 253,631.29
ATCS 29.34 3.65 5,813 15.66 11.14 189,516.95
FSVL 26.08 0.19 5,827 12.40 0.34 256,435.18
FSVCT 26.53 0.04 5,832 12.85 0.15 275,690.00
FSMCT 25.74 0.04 5,837 12.06 0.07 250,554.04



4.5 Batching Rules 79

It turns out that FIFO is outperformed by the remaining dispatching rules
with respect to all performance measures because it does not take into account
any of the attributes of the jobs except the ready time. The SPT rule performs
best with respect to CT and Var(CT). The different fluctuation smoothing
policies perform well with respect to Var(CT) and Var(L). As expected, the
ATCS dispatching rule outperforms the other rules with respect to TWT,
followed by the EDD rule. It is interesting to note that the ATCS rule does
not perform well with respect to AT. This can be explained by the fact that
this dispatching rule takes the weights of the jobs into account. Only the
FIFO rule performs worse.

Related simulation experiments for larger wafer fabs can be found in
Mittler and Schömig [186, 187]. The fluctuation smoothing policies especially
show a similar behavior in the case of large-scale models. Simulation results
for ATC-type dispatching rules in large-scale wafer fabs are presented by
Mönch and Zimmermann [200].

4.5 Batching Rules

In this section, we only consider the case of parallel batching, i.e., several
jobs can be processed at the same time on the same machine. We assume
that at most B jobs can be batched together, i.e., B is the maximum batch
size. We note that it is possible to make batch formation decisions based on
the number of wafers instead of the number of jobs, but in this monograph,
all decisions are based on the number of jobs. The set of jobs that can be
used to form a batch is called a family as described for diffusion furnaces in
Sect. 2.2.3. We assume that we have f incompatible job families.

Batching rules can be seen as a generalization of dispatching rules, i.e., we
have B = 1 in the case of pure dispatching rules. When a batch-processing
machine becomes available, the next batch has to be formed and then selected
to be processed on this machine. Therefore, batch formation is an additional
decision when compared to a pure dispatching rule. We assume in the begin-
ning that a large number of jobs are queueing in front of the batch machine
group.

One possible way to solve this problem consists of selecting a job among
the queueing jobs using one of the dispatching rules described in Sect. 4.2
or 4.3. Then at most B− 1 additional jobs are selected according to certain
criteria among the jobs that are queueing in front of the batch machine group.

The following algorithm is used to determine the batch to be processed
next, when only one priority index Ii j is used to assess all the jobs j of family i.
We assume that jobs with large Ii j are selected next to be processed within
a batch.

Batching algorithm (BA)

1. Sort all the job within each family i = 1, . . . , f in nonincreasing order with
respect to Ii j.
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2. Let us denote the length of the list that corresponds to family i by l(i).
Consider the first min(B, l(i)) jobs of each family to form batch B(i) of
family i. Denote the number of jobs within B(i) by |B(i)|.

3. Select the batch with the largest value

IB(i) :=
|B(i)|

B ∑
j∈B(i)

Ii j (4.30)

among the families i = 1, . . . , f to be processed next.

It is clear from expression (4.30) that we assess each batch by taking the sum
of the priority indices of the jobs that form the batch. The factor |B(i)|/B
makes sure that full batches are preferred compared to batches that contain
only a small number of jobs.

We consider two examples for this approach. We may use the EDD
dispatching rule to determine the most important jobs within each family.
We have to modify priority index (4.3) to Ii j :=−di j, where we denote by di j

the due date of job j of family i to align with the algorithm BA. Similarly, we
can use the ATC dispatching rule with priority index (4.21). The resulting
batching rule is called the batched ATC (BATC) rule.

Next, we study the case where not enough jobs are available to form a
full batch. In this situation, a decision has to be made whether to start the
batch that is not full or to wait until enough jobs are available. We start with
the single product case. Let L be the number of jobs in the queue in front of
the batch machine group. The resulting decision rule can be formulated as
follows.
Algorithm Minimum Batch Size (MBS)

1. Anytime there are at least S jobs in the queue with S ≤ B, then a batch
can be processed. The quantity S is called the minimum batch size.

2. When there are fewer than S jobs in the queue and a machine is available,
the machine will remain idle.

Two special cases of the MBS rule are important, namely MBSG where S = 1,
called the greedy batch policy, and thereby loading the machine every time
a new job appears; and MBSF where S = B, called the full batch policy, and
consequently not loading the machine until it can be loaded at full capacity.

The algorithm MBS has one advantage that makes it appealing to the
fab manager. It is extremely easy to implement on the shop floor. This is
because MBS requires minimal computation and real-time information to
make a decision. The MBS rule is considered as a theoretical standard that
is used to assess the performance of other batching policies. This is discussed
by Deb and Serfozo [62] who showed that with Poisson arrivals, the MBS
rule is the optimal policy among those that only consider the current status
of the BS.

However, MBS also has several disadvantages. The first drawback of
MBS is how to determine an appropriate minimum batch size prior to, and
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during, implementation. Although Gurnani et al. [111] introduce an algo-
rithm for computing the critical number S, the calculation of this value in
practice is often quite difficult considering that product mix and production
rates typically change according to business forecasts. As a result, the opti-
mal MBS will change as production changes. Another drawback of the MBS
algorithm is that it fails to consider the current state of the BS as well as
the impact of its dispatching decisions on the entire system. Thus, the MBS
batching decision may result in wasted capacity if the MBS chosen is less
than the capacity of the machine or if additional idle time is necessary to
form a batch. Ultimately, MBS provides local decisions.

Of course, it is possible to combine BA and MBS. This offers possibilities
to extend MBS to the multiproduct situation. In this case, we apply MBS to
the families where |B(i)| < B. Then, we apply the index (4.30) to assess the
batches formed for the families that can offer a batch to be processed next.

It is a weakness of the algorithms BA, MBS, and the resulting hybrids
that they consider only jobs that are available at the time when the batch
has to be formed. But it is intuitively clear that it is reasonable to exploit
knowledge of the expected state of the BS. Therefore, it sometimes makes
sense to start a non-full batch or to decide to wait for jobs that arrive in the
future to increase the fullness of batches. We will study the corresponding
look-ahead rules in Sect. 4.6.

4.6 Look-Ahead Rules

Look-ahead rules are dispatching or batching rules that take information
related to future job arrivals into account. Such information is important in
the case of sequence-dependent setup times and in the case of batch process-
ing. This kind of real-time information is available from the MES in most
wafer fabs. In the first case, information with respect to future job arrivals
might avoid expensive setup changes by waiting for a job that requires the
same setup state, but it is not available now. In the latter case, in some situ-
ations, it is reasonable to wait for future job arrivals to increase the fullness
of a certain batch. In the remainder of this section, we discuss a rule that dy-
namically selects the batch size and a rule that makes decisions based on the
next arrival of jobs. Additional look-ahead research is also briefly discussed.
Finally, we describe batching rules that are generalizations of the algorithm
BA using ATC-type heuristics.

4.6.1 Dynamic Batching Heuristic

One possibility for improving the MBS rule is to make more intelligent
decisions on batching and possibly wasting less capacity. This can be ac-
complished by using real-time information to gain knowledge about future
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states of the BS. As a result, Glassey and Weng [101] introduce the dynamic
batching heuristic (DBH), a heuristic that incorporates real-time data into
the decision process.

DBH dynamically determines the batch size of the batch to be formed and
processed next based on the BS status at time t0 and whether idle time to
wait for additional jobs should be inserted to minimize total overall delay
at the batch machine. It is shown in [101] that the look-ahead procedure of
DBH is beneficial with respect to average delay at the batch machine, i.e.,
the average waiting time of the jobs in queue.

In order to sketch the main idea of DBH, we introduce the following
additional notation:

t0 : time epoch that the batch machine is idle and the number of jobs in
the queue is positive

t j : arriving epoch of the next jth job after t0
q : number of jobs in queue at t0
T : processing time
L : look-ahead number, where we assume that the next L arrival epochs

are known with certainty at t0

DBH is proposed for a single batch machine and a single product. The DBH
formulation is based on the following two insights:

1. The time of loading the batch-processing machine is either the time that
it becomes idle and there are jobs waiting or, if it has been idle, at the
time when some job arrives.

2. The batch machine starts service right away, when q≥ B. Waiting will only
result in more delay under such circumstances.

Since it becomes difficult to predict the later arrivals in a long planning
horizon, the DBH is proposed for operating the batch machine in a planning
horizon that is equal to the processing time T of the product. This situation
is shown in Fig. 4.1. The overall heuristic can be summarized as follows.
Algorithm DBH

1. If the batch machine becomes idle, we have to differentiate two cases.
In the first case, i.e., when jobs are in the queue, go to step 2. Otherwise,
if the queue is empty, go to step 3.

2. Let t0 be the time epoch that the batch machine becomes idle. Start the
decision heuristic described below.

3. Wait until a job arrives. Let t0 be its arrival epoch. Start the decision
heuristic described below.

We now describe the decision heuristic used in the DBH algorithm.We assume
q < B because otherwise we will always start processing a full batch. When
the q jobs available at time t0 are processed immediately at time t0, the other
jobs arriving at t j, where t j < t0 +T , will stay in queue at least T + t0 − t j.
On the other hand, when we wait for j job arrivals and then load q+ j jobs
at time epoch t j, then each queued job has to wait t j−t0 time units. Therefore,
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Figure 4.1: Arrival of jobs in the queue of a batch machine over time

the total delay will increase by (t j − t0)q. The job that arrives at t j will be
processed immediately. Therefore, the delay will be decreased by (T + t0− t j) j
because the j jobs that arrived after t0 will be processed and not have to wait
longer. Therefore, the determined net saving is

Net(t j) = (T + t0 − t j) j− (t j − t0)q. (4.31)

When Net(t j)> 0, then the delay can be reduced by waiting until t j to start
the batch. In contrast, when Net(t j) < 0, then the corresponding delay is
increased. In case of Net(t j) = 0, there is no gain or loss. Therefore, it is
reasonable to wait until ti, where i is given by

i = argmax
j

{
(T + t0 − t j) j− (t j − t0)q| 0 ≤ j ≤ jmax

}
. (4.32)

We have

j∗ := argmax
j
{t j|t j ≤ t0 +T}, (4.33)

i.e., j∗ denotes the maximum number of arrivals within T , and we define
jmax := min{ j∗,B− q,L}. Therefore, t jmax is the last possible loading epoch.
It is determined by the look-ahead number L and T . Of course, the setting
L ≤ B− 1 makes sense because of the maximum batch size of B and 1 ≤ q.

Although DBH performs better than MBS in all situations, it requires
much more computation than MBS and also requires real-time information
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to make dispatching decisions. Likewise, the number of jobs to look ahead is
necessary before DBH can be implemented. It is also inflexible with respect
to the planning horizon length.

4.6.2 Next Arrival Control Heuristic

Half of the potential benefit in using DBH is gained by looking ahead only to
the next arrival (see Glassey and Weng [101]). This is the starting point for
the next arrival control heuristic (NACH) proposed in [84]. Fowler et al. [84]
note also that the further ahead one looks, the greater the potential impact of
the decision on arrivals that occur outside of the time horizon of T time units
as suggested by Glassey and Weng [101]. An extension of the original NACH
approach for parallel batch machines and multiple products is provided by
Fowler et al. [85].

In this monograph, we describe NACH in a slightly generalized context,
where the status of critical machines in subsequent downstream processing
is taken into account during batch processing decision-making [287]. We de-
scribe a methodology that is intended to balance the time a job spends waiting
for batching with the time spent in setup at downstream machines. The re-
sulting heuristic is called NACH-setup. We will use the following notation to
describe NACH-setup:

q j : number of jobs in queue for product j
N : total number of products
Tj : processing time of a batch of product j
S j : downstream setup required by product j given the current

status of the BS
Wj : weighted processing time for a batch of product j

TN j : time until the next arrival of a job of product j
t1 j : time of the next arrival of a job of product j

The NACH-setup logic consists of two cases. The first case, a push decision,
occurs when a batch machine is idle and a job arrives. At this point, a trade-
off similar to the one employed by DBH is made to determine if the machine
should begin processing this product now or wait for the next arrival. The
second case, a pull decision, occurs when a machine has just finished pro-
cessing and must choose whether or not to pull jobs and immediately begin
processing again. If the decision is to pull jobs, the type of product to process
must be determined.

We start by describing the push decision logic. It is similar to DBH with
L = 1. A batch loading decision is said to occur at epoch t0. If there are jobs
in queue, t0 corresponds to the time epoch that the machine becomes idle.
Otherwise, t0 corresponds to the arrival epoch of the next job. The potential
times the next load begins is specified by the number of future arrivals that
will occur before the next load begins.

If B ≤ q at time t0, then a full load is available, i.e., waiting will only result
in an increased delay. Therefore, a full load will be dispatched to the machine.
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However, if 0 < q < B, a decision must be made whether to load the machine
immediately or to wait for the next arrival. The decision of whether or not
to wait is determined by calculating the net decrease in delay, if any, caused
by waiting similar to the case of DBH. We obtain for the corresponding net
change in the delay for product j:

Δ1 j := (Tj + S j + t0 − t1 j)− (t1 j − t0)q j. (4.34)

Note that the main difference between expression (4.31) and (4.34) is the
additional setup time in the first term of expression (4.34). When Δ1 j > 0,
then the delay is reduced by waiting until t1 j to start the batch. We note that
in the case of the push logic, we have to consider only the arriving product
type in determining whether to make a batch or not. Let this product type
be denoted by j. The push decision can be formalized as follows.
Algorithm Push Decision (Push)

1. Increase the inventory of this product by one. Determine the number of
idle batch machines. Denote this value by midle. If midle = 0, then stop, i.e.,
no push decision is made at this point of time. If midle > 1, then go to step
4. If there is a full load of this product, then also go to step 4.

2. Determine the time of the next arrival of this product, i.e., find t1 j. Let t0
be the current time. If t1 j > t0 +Tj, then set t1 j := t0 +Tj.

3. Calculate Δ1 j for the product that enters the queue to determine whether
it is worth waiting for the next arrival of this product before making a
batch. If Δ1 j > 0, then stop, i.e., no push decision is made at this point of
time.

4. Start a batch of this product now on an idle batch machine. Decrease the
inventory of this product by the size of this batch.

The more complex issue, the influence of one product on another, is embedded
into the pull decision logic. Therefore, we continue by describing the pull
decision logic. A pull decision is necessary when a specific batch machine
becomes idle immediately after completing its previous batch. Again, the
benefit to wait can be expressed as Δ1 j using expression (4.34). If we have
Δ1 j > 0 for all j, then the batch machine has to wait. The pull decision can
be summarized as follows.
Algorithm Pull Decision (Pull)

1. If no jobs are waiting, then stop, i.e., no pull decision is required.
Determine the number of idle batch machines, including this batch
machine. Denote this number by midle. Determine the time of the next
batch machine completion. This time is denoted by tC. Set tC := ∞ if no
batch machines are busy. Set the selected product indicator jprod to 0.

2. If there is no full load for any product, then go to step 3.
Determine the product among those that have a full load that will cause
the weighted shortest processing time. Set jprod to that product number
and go to step 6.
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3. Determine the next arrival time t1 j for all j. If midle > 1 or tc < t1 j, then
calculate the delay due to processing j (see Eq. (4.37)). Set jprod to that
product number of the product with the corresponding minimum value
and go to step 6.

4. Calculate Δ1 j for each j to determine whether it is worth waiting for the
next arrival of that product to appear before making a batch.
If it is worth waiting until the next arrival appears for all products, i.e., if
Δ1 j > 0 for all products, then stop. In this case, no pull decision has to be
made.
On the other hand, if it is not worth waiting until the next arrival for
any of the products, i.e., Δ1 j ≤ 0, set jprod to the product number of that
product that causes no setup time. If no products exist without setup time,
set jprod to the product number of the product with the weighted shortest
processing time and go to step 6.

5. For each product for which it is worth waiting for the next arrival, i.e.,
Δ1 j > 0, determine the total waiting time incurred by all products by
waiting for the next arrival of this product.
For each product for which it is not worth waiting for the next arrival,
determine the total waiting time incurred by all products when a batch of
this product is started now.
Determine the minimum of the above and set jprod to the product number
of the corresponding product.
If the minimum is for a product for which it is worth waiting, then stop.
In this case, no pull decision is required.

6. Start a batch of product jprod on the batch machine that just completed.
Decrease the inventory of that product by the size of the batch.

If it is determined that all products should start processing now, the algo-
rithm Pull chooses the batch that requires no setup downstream. If no such
batch can be formed, the algorithm selects a batch with the weighted short-
est processing time. It has been shown that using a WSPT scheme leads to
schedules with a minimum mean flow time (cf. Pinedo [240]). The weighted
value for each product, Wj, is defined as follows:

Wj := (Tj + S j)
N

∑
i=1,i�= j

qi, j = 1,2, . . . ,N. (4.35)

The quantity Wj represents the total delay incurred by all of the other
products at the batch machine by starting j immediately. The product with
the minimum value is selected in step 2 and step 4.

If it is found in step 5 that some products should wait and some should
begin processing, the total delay over all products as a result of waiting, DW j,
or processing, DP j, is computed as follows:
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DW j := TN j

N

∑
i=1

qi +
N

∑
i=1,i�= j

(
(Tj + S j)qi +(Tj + S j +TN j −TNi)

+
)
, j ∈ S1, (4.36)

DP j := (Tj + S j)
N

∑
i=1,i�= j

qi +
N

∑
i=1

(Tj + S j −TNi)
+, j ∈ S2. (4.37)

Recall that we set x+ := max(x,0) for abbreviation. S1 is the set of products
for which it is determined to wait, and S2 is the set of products for which it is
determined to begin processing. The minimum of these values is selected, and
the appropriate action is taken. The first term of the right side of Eq. (4.36)
determines the additional waiting time incurred by those jobs already in the
queue until the next arrival of j. The second term calculates the additional
waiting time for all other products if j begins processing at the time of its
next arrival. The (Tj + S j)qi portion is the delay for those products already
in queue, and the (Tj + S j +TN j −TNi)

+ portion is the delay (if any) for the
next arrival of the other products. The first term of the right side of Eq.
(4.37) represents the additional waiting time gained by those jobs already in
the queue, while the second term corresponds to the additional waiting time
gained by the next arrival of each product. The resultant heuristic is called
NACH-setup for abbreviation. This heuristic is very similar to the multi-
product NACH procedure proposed by Fowler et al. [85]; however, NACH
does not take setups into account.

To assess the performance of the NACH-setup heuristic, simulation
experiments are performed using the simulation engine Factory Explorer.
The first model is a three-machine system with multiple products. This sys-
tem is used to compare MBSG, MBSF, NACH, and NACH-setup in a simple
controllable environment. The three-machine system is comprised of a serial
machine, a batch machine, and another serial machine with setups. The first
machine (machine 1) is a dummy machine with infinite capacity used only
to get products into the system. The batch machine (machine 2) and the
next serial machine (machine 3) have limited capacity, only one machine
each, and parameters typical of machines used in semiconductor manufactur-
ing. The different products have identical process flows, which are shown in
Fig. 4.2.

We continue by describing the design of experiments used. Five factors
are included in the design of experiments for the simple system. The factors
are listed below:

• Number of products
• Product mix
• Traffic intensity at the batch step (machine 2)
• Traffic intensity at the setup step (machine 3)
• Dispatching policy at the batch machine
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Figure 4.2: Three-machine system with two or four products

The input rate to the system is varied depending upon product mix and
batch step traffic intensity, and exponential inter-arrival times are assumed.
The processing time at machine 3, the machine with setup, is also varied
depending upon product mix, input rate, and traffic intensity at the setup
machine. The remainder of the system parameters for this experiment were
as follows:

• Number of wafers per job: 48 wafers
• Processing time at machine 1: 2.5 h (deterministic)
• Processing time at machine 2: 2.5 h (deterministic)
• Capacity of machine 2: B = 6 jobs
• Setup time between products: s = 0.75h

Altering the input rate to the system controls the traffic intensity at the batch
step. Changing the processing time required for each product at the setup step
controls the traffic intensity at the setup step. Notice that the experimental
range of these values is small, i.e., 0.720–0.734. This is done to examine a
range of high utilization at the setup step while avoiding an unstable system.
The full experimental design is shown in Table 4.3.

Each data point is replicated three times, each with a run length of 8,640h
and statistics cleared after 1,720h to take into account for initialization bias.
The traffic intensity at the setup step was calculated disregarding any poten-
tial setup. Figure 4.3 shows the variation in CT over the six traffic intensity
levels at the setup step for the two-product, equal-mix case.

We observe that NACH-setup outperforms all the other policies, except at
setup step traffic intensity level 1. At this point, the setup step is not limit-
ing the flow, thus dispatching based on downstream setup will likely not be
beneficial. This is supported by the fact that, as the traffic intensity level at
the setup step increases, the performance of NACH-setup compared to the
other policies is superior.
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Table 4.3: Design of experiments

Factor Level Count

Number of products 2, 4 2
Product mix Equal (50%,50%), (25%,25%,25%,25%) 2

Dominant (70%,30%), (40%,40%,10%,10%)
Traffic intensity 0.5, 0.8 2
at batch step

Traffic intensity 0.720, 0.723, 0.726 6
at setup step 0.729, 0.731, 0.734

Dispatching policy MBSG, MBSF, NACH, NACH-setup 4
Total factor combinations 192
Number of replications 3

Number of simulation runs 576

In Table 4.4, the CT values for the two-product, dominant mix case are
shown. With one product dominant over the other, the behavior of the
manufacturing system is similar to a system with one product. As expected,
because of the dominant-product mix, NACH performs best until traffic in-
tensity level 4. Once this situation is reached, the gain in CT because of the
reduced setup downstream becomes critical as the setup step begins to limit
the flow of jobs through the system. In the four-product, equal-mix case,
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Figure 4.3: CT at the setup step, two products, equal mix

NACH-setup outperforms all the other policies, and, as expected because of
the additional setup due to the larger number of products, the difference
between them is more substantial. MSBF outperforms NACH because the
additional setup time favors larger batches. As in the two-product situation,
the differences in CT between the policies are reduced in the four-product,
dominant-product mix scenario, and it does not become apparent until traffic
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intensity level 4. The detailed results for the four-product case can be found
in [287]. Additional experiments using the MIMAC 1 model are also described
in [287]. In case of a high input rate, no statistically significant difference be-
tween the four policies can be found. There is no significant difference between
MBSG, NACH, and NACH-setup in the low- and medium-input rate cases.
However, all three policies are superior to MBSF. In addition, NACH-setup
performs well for all three input rates, while the relative performance of the
others changes with respect to the different input levels.

Table 4.4: Simulation results for two products, dominant mix

Traffic intensity MBSG MBSF NACH NACH-setup
level

1 - 0.720 14.425 12.025 11.050 13.125
2 - 0.723 18.100 12.400 11.500 13.350
3 - 0.726 28.875 12.975 12.375 13.550
4 - 0.729 63.900 34.675 13.700 14.475
5 - 0.731 87.700 53.025 16.375 15.750
6 - 0.734 133.300 75.250 28.225 17.700
Average 57.717 33.558 15.538 14.658

4.6.3 Additional Look-Ahead Research

Weng and Leachman [320] address the same problem as Glassey and
Weng [101] and Fowler et al. [84]. However, their minimum cost rate (MCR)
heuristic has some noticeable differences from DBH and NACH. MCR seeks
to minimize the holding cost per unit time, which is like minimizing the
weighted (by cost) number of jobs in queue. Robinson et al. [260] present
a heuristic that is essentially a combination of NACH and MCR. The cost
rate function used in MCR is incorporated into the rolling horizon scheme
used in NACH. We refer to Robinson et al. [261] for a review and a compar-
ison of various real-time control strategies for batch machines in wafer fabs
until 2000.

Instead of calculating a threshold number of jobs in queue, Cigolini
et al. [52] determine dynamically the length of the time window in a more
recent paper. The resulting look-ahead heuristic is called wait no longer than
time (WNLTT).

Ham and Fowler [114] propose an extension of NACH. The heuristic, called
NACH+, is based on the idea that the incoming inventory into the batch
operations is controlled such that unnecessary waiting time does not happen.
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4.6.4 BATC-Type Rules

We continue with an extension of the algorithm BA described in Sect. 4.5.
Again, we assume that a batch-processing machine is available for process-
ing, and we have to determine the next batch to be processed. In contrast
to the algorithm BA, the present extension takes ready times of the jobs
into account. This kind of ready time information is typically provided by
the MES.

For this purpose, we consider a time window (t, t + Δ t), where t is the
current time. We define the set

J(i, t,Δ t) :=
{

i j|ri j ≤ t +Δ t
}
, (4.38)

where we represent job j of family i by i j. We sort the elements of J(i, t,Δ t)
with respect to the index

Ii j(t) :=
wi j

pi
exp

{

− (di j − pi− t +(ri j − t)+)+

κ p̄

}

(4.39)

in nonincreasing order, where pi is the processing time of the jobs of family i
and ri j is the ready time of job j of family i. Note that index (4.39) is similar
to index (4.24) when no setup times occur. In the next step, we select the
first thresh jobs from this list and form all the possible batches. We assess
each of these potential batches by using the batch index

Ibi(t) :=
wbi

pi
exp

{

− (dbi − pi− t +(rbi − t)+)+

κ p̄

}
nbi

B
, (4.40)

where wbi is the average weight of the nbi jobs that form the batch bi of family
i, rbi is the maximum ready time among the jobs that form the batch, and
finally dbi is the minimum due date. We summarize the algorithm as follows.
Algorithm Dynamic Batching Dispatching Heuristic (DBDH)

1. Determine the sets J(i, t,Δ t) for family i = 1, . . . , f . The quantity t is the
time where a batching machine is available for processing.

2. Sort all the jobs within each family i = 1, . . . , f in nonincreasing order with
respect to Ii j(t) given by expression (4.39).

3. The length of the list that corresponds to family i is denoted by l(i).
Consider the first min{thresh, l(i)} jobs to form potential batches. Assess
each of these batches using index Ibi(t).

4. Select the batch with the largest Ibi(t) value among the families i = 1, . . . , f
to be processed next.

Note that Δ t and thresh are parameters of DBDH that have to be selected
carefully. Large values of thresh might lead to a huge computational burden,
whereas large values for Δ t might decrease the quality of the future job arrival
information represented by ri j .
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We continue with the presentation of the results of some computational
experiments. The MIMAC 1 model [83] is used in a slightly modified version.
This simulation model consists of two different process flows with more than
200 process steps and over 80 different machine groups.

There are 16 batch machine groups among the machine groups of the
MIMAC 1 model. Machine group OXIDE 1 is the bottleneck of the wafer
fab. Table 4.5 provides information on this particular batch machine group.
In Table 4.5, we denote by Bmin the minimum batch size in jobs and by Bmax

the maximum batch size in jobs. The processing time of the different job
families is between 135min and 1,410min. The utilization is determined by
simulation experiments with the FIFO dispatching rule.

Table 4.5: Bottleneck batching machine group information

Machine group Number of machines Bmin Bmax Utilization (%)

OXIDE 1 3 2 6 84.19

We use a slack-based dispatching rule for the non-batching machines
(cf. Sect. 4.2.1). The rule selects the job with the smallest slack for the pro-
cess step. For the calculation of the slack of the jobs waiting in front of a
certain machine group, we simply multiply the processing time by a flow fac-
tor. For that purpose, we calculate the difference between the due date of
the job and the current time as used in the LS index (4.13). Based on this
information, we assign a flow factor to each job. This scheme allows us to
determine local due dates for each single process step, i.e., future job arrival
information is available at the batch machines. We repeat the calculation of
the flow factors every 15min.

In our experiments, we consider a moderate workload in the system.
Machine TTF and TTR (see Sect. 3.2.8) are exponentially distributed.
The model is initialized using a WIP distribution of the wafer fab. The length
of a single simulation run is 100 days in our experiments. We take five in-
dependent replications of each simulation run in order to obtain statistically
meaningful results.

We continue by presenting the design of experiments used. The main
performance measures are TWT, CT, and TP. Therefore, we set due dates
according to the following expression:

d j := r j +FF
n j

∑
k=1

p jk, (4.41)
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where FF is the flow factor. Furthermore, we define weights of the jobs
according to the following two discrete distributions:

D1 :=

⎧
⎨

⎩

wj = 1, p1 = 0.5
wj = 5, p2 = 0.35

wj = 10, p3 = 0.15
(4.42)

and

D2 :=

⎧
⎨

⎩

wj = 1, p1 = 0.5
wj = 2, p2 = 0.45.

wj = 10, p3 = 0.05
(4.43)

D1 mimics the situation where a large number of jobs have a large weight,
whereas a large number of jobs have a medium weight in D2 and only a very
small portion of the jobs have a large weight in this situation. We summarize
the design of experiments in Table 4.6. We denote by p̄ the average processing
time of the jobs on the batch machines.

Table 4.6: Design of experiments

Factor Level Count

FF 1 2 for all the jobs, 2
2 2 for 50% of the jobs
1.5 for 50% of the jobs

w j 1 ∼ D1 2
2 ∼ D2

Δt 1 0.25p̄ 2
2 0.5p̄

Overall number of experiments 8

The look-ahead parameter κ in DBDH is selected from the grid
{0.1,0.2, . . . ,6.5}. The κ value that leads to the smallest TWT value is finally
used whenever DBDH makes a decision. Within the experiments, thresh = 15
is chosen.

The corresponding results of the DBDH-based batching strategy are shown
in Table 4.7. We use a batching scheme based on the FIFO dispatching rule
as a reference. Note that when the FIFO dispatching rule is used for batching,
Δ t does not have any impact on the decision-making. Therefore, we have to
conduct only four simulation experiments in this situation. Consequently, we
have to perform a total of 12 different simulation experiments.

We use the notation (level of factor 1—level of factor 2—level of factor 3) in
order to indicate the considered factor combinations for DBDH. All the results
in Table 4.7 are the ratios of the performance measure values of DBDH and
FIFO for the same values of the levels of the first, the second, and finally the
third factor. Low values are good for TWT and CT, while we are interested
in high values for TP.
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Table 4.7: Computational results for DBDH

Factor combination TWT CT TP

1-1-1 0.1031 0.9685 1.0099
1-1-2 0.1191 0.9725 1.0089
1-2-1 0.0918 0.9677 1.0135
1-2-2 0.1475 0.9732 1.0056
2-1-1 0.2913 0.9631 1.0081
2-1-2 0.3035 0.9703 1.0082
2-2-1 0.4230 0.9588 1.0089
2-2-2 0.4363 0.9643 1.0085

From the results shown in Table 4.7, we can see that the algorithm DBDH
outperforms the FIFO rule at all factor settings for all performance measures.
The TWT values are sensitive to the choice of Δ t. In our experimental design,
smaller values for Δ t lead to slightly better results. Choosing a larger Δ t value
causes fuller utilized batches and a larger queue size. The machines have to
wait longer for jobs that arrive during the given time window. Therefore, this
leads to fuller batches. Hence, a careful selection of the Δ t values is important
for the performance of DBDH.

More computational results can be found in Mönch and Habenicht [194].
It is also shown, by comparison with the algorithm BA, that taking future
job arrival information into account can lead to TWT reductions.

4.7 More Sophisticated Approaches

In this section, we discuss rule-based systems, the selection of parameters of
dispatching rules using iterative simulation, the construction of appropriate
blended dispatching rules, and finally the automated discovery of dispatching
rules.

4.7.1 Rule-Based Systems

A rule-based system determines a priority value for each job or batch based
on hierarchically structured rule-based criteria systems. In a certain sense, a
rule-based dispatch system is a combination of composite, truncation, condi-
tioning, and finally multilevel dispatching rules. Powerful rule-based systems
are in use in wafer fabs (see Appleton-Day and Shao [9]).

The main ingredient of a rule-based system is a composite dispatching
rule, given by the following priority index for each job j:

I j :=
C

∑
k=1

wkck, (4.44)
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where C is the number of first-order criteria, ck is the value of the kth
first-order criterion, and wk ≥ 0 with ∑C

k=1 wk = 1 are weights to balance
the importance of the different first-order criteria. Each ck can be further
refined by appropriate subcriteria, i.e., we consider second-order criteria
ckl , l = 1, . . . , lk, where we denote by lk the number of second-order criteria for
the first-order criterion ck. Higher-order criteria can be taken into account
by following this approach in a recursive manner. The resulting criteria hier-
archy is a tree. A set of IF-THEN rules is used to evaluate each leaf of this
tree based on certain BS- and BP-related data with a certain attribute value.
Typical attribute values are LOW, MEDIUM, LARGE, and HUGE. An at-
tribute value is assigned to each (l+1)-order criterion based on the attribute
value combination of its l-order subcriteria. By proceeding in a recursive man-
ner, a positive real number can be assigned to each first-order criterion that
is necessary to compute the left-hand side I j in expression (4.44).

Following Thiel et al. [296, 297], we introduce the following example for a
rule-based system. The rule-based system consists of the following first-order
criteria:

1. On-time delivery performance-related criterion, called on-time urgency cri-
terion

2. Setup-related criterion
3. Load-related criterion

Note that the second criterion deals with setup avoidance issues, while the
third one is related to batch formation issues. It is obvious that the second
and third criterion are TP-related and therefore in potential conflict with the
first criterion.

We show the second- and third-order subcriteria for the on-time urgency
in Fig. 4.4. The first second-order criterion measures the slack related to the
current process step of the job while the second second-order criterion is
concerned with the importance of the due date and is comprised of three
third-order criteria. The first third-order criterion considers the progress of
processing a job measured in the number of completed process steps. This
subcriterion is motivated by the fact that a potential due date violation is
less important when the number of already completed process steps is small.
The second third-order criterion takes into account whether the job is a reg-
ular or a hot job, whereas the third second-order criterion measures the im-
portance of meeting the due date of the job with respect to the type of
the customer associated with this job. Specifically, the progress of a job is
measured by

prog( j) := l j/n j, (4.45)

where l j is the current process step of j, and n j denotes the number of all
process steps of job j. We show the IF-THEN rules with respect to the
progress of the job-related subcriterion:

IF prog( j)< 1/3 THEN c121 = “LOW”
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On-time Urgency

Delay related to Due Date Importance of the Due Date

Progress of the Job Importance of the CustomerJob Type

First-
order

Second-
order

Third-
order

Figure 4.4: Criteria hierarchy related to On-time urgency

IF 1/3 ≤ prog( j)≤ 2/3 THEN c121 = “MEDIUM”
IF 2/3 < prog( j) THEN c121 = “LARGE”

It is obvious that the values 1/3 and 2/3 are prescribed values that can
be modified to model user preferences. Because these values are arbitrary,
extensive simulation-based assessment of rule-based dispatching systems is
necessary.

4.7.2 Determining Parameters of Dispatching Rules
Based on Iterative Simulation

We continue by studying global dispatching rules that take waiting times into
account. The waiting times for process steps that have to be performed in the
future are unknown. The waiting times depend, for example, on the product
mix, on the load of the wafer fab, and on the control strategy used.

Global variants of the ATC dispatching rule are discussed by Vepsalainen
and Morton [312]. A solution is proposed that is based on iterative simulation
(cf. the discussion in Sect. 3.2.8). The method is called lead time iteration.
Based on a crude initial waiting time estimate, successive adjustments of the
waiting time are performed by using the measured waiting time from the
current simulation run. This method is also used by Ovacik and Uzsoy [223]
in order to determine appropriate internal due dates for an ODD-type dis-
patching rule in the test area of a back-end facility. A lead time iteration
scheme is used to estimate waiting time used in the FSMCT dispatching rule
in [169] (cf. the discussion in Sect. 4.2.1). We consider a global ATCS rule as
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proposed by Vepsalainen and Morton [312]. The index has to be calculated
as follows:

I ji(t, lk) :=
wj

p ji
exp

⎧
⎪⎨

⎪⎩
−
(

d j − p ji − t −∑
n j
g=i+1(wt jg + p jg)

)+

κ1 p̄
− skl, ji

κ2s̄

⎫
⎪⎬

⎪⎭
, (4.46)

where we assume that i is the current process step of job j. The average of
the sum of the processing times of the remaining process steps for each job
is denoted by p̄. The waiting time associated with process step k of job j is
denoted by wt jk. The quantity skl, ji is the setup time that is necessary when
process step l of job k is processed before ji. Again, κ1 and κ2 are scaling
parameters. The resulting dispatching rule is called global ATCS (GATCS).
Appropriate values for wt jk are unknown in the beginning because they are a
result of the dispatching strategy used. Therefore, we use iterative simulation
to determine them. The resulting procedure can be formulated as follows.
Algorithm Lead Time Iteration Procedure (LTIP)

1. Set l = 1. Start by an initial waiting time setting using

wt(l)jk := (FF− 1)p jk, k = i+ 1, . . . ,n j, (4.47)

where we denote by FF ≥ 1 the flow factor. Initial values for FF can be
obtained from a simulation run using the FIFO dispatching rule.

2. Dispatch the wafer fab using the GATCS dispatching rule and the waiting
time estimates for the current iteration.

3. Calculate the actual waiting time q(l)jk of each process step jk from
simulation run l. In this situation, the waiting time is defined as the time
between the completion of process step j,k−1 and the start time of process
step jk, i.e., the transportation time is included.

4. Update the waiting time estimates as follows:

wt(l+1)
jk := (1−α)wt(l)jk +αq(l)jk , k = i+ 1, . . . ,n j, (4.48)

where 0 ≤ α ≤ 1 denotes a fixed smoothing factor.

5. Terminate the procedure if the stopping condition max jk |wt(l+1)
jk −w(l)

jk |< ε
is valid; otherwise, update l := l + 1 and go to step 2. The quantity ε is a
small prescribed value.

Usually, four to eight iterations are enough to fulfill the LTIP stopping
condition for reasonable values of ε. The update scheme for the waiting times
in step 4 is an exponential smoothing-type approach. It takes the current mea-
sured waiting time from the simulation run and the estimated waiting time
from the previous iteration into account. Typical α values are 0.7 and 0.9
(see Mönch and Zimmermann [197]). Note that it is also possible to use a
more sophisticated update scheme based on double exponential smoothing.
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The architecture described in Sect. 3.3.2 is used to implement LTIP.
The object-oriented database is used to store the waiting time for each single
process step in each iteration. It makes the waiting times persistent because
they are required in future iterations.

LTIP allows for large TWT reductions compared to a FIFO dispatching
strategy. At the same time, CT decreases and TP increases. Detailed com-
putational results for the MIMAC 1 model can be found in [197]. LTIP is
a simple but powerful technique to improve the performance of dispatching
rules.

4.7.3 Construction of Blended Dispatching Rules

We consider a blended dispatching rule for the case of l different performance
measures. Each performance measure a of interest is represented by a priority
index Ia

jis(t) ∈ [0,1] for processing job j of product i at stage s at time t.
We obtain for the weighted priority for job j of product i on stage s at time t:

Pt
jis :=

l

∑
a=1

waIa
jis(t), (4.49)

where wa ≥ 0 is the weight of performance measure a and ∑l
a=1 wa = 1 is

valid. Furthermore, it can be achieved by an appropriate transformation of
the priority indices of the jobs that the sum of all priority index values for all
the jobs of all products queued at machine group m sum up to one as shown
in the following expression:

p

∑
i=1

∑
s∈Ji(m)

nsi

∑
j=1

Ia
jis(t) = 1, (4.50)

where p is the number of different products, nsi is the number of jobs of
product i at stage s, and finally Ji(m) is the set of all stages in the process
flow of product i that require machine group m.

We have to determine appropriate values for the weights. Therefore, we
express the values of each performance measure as a mapping of the weights.
To do this, we look for a mapping:

Pa : (w1, . . . ,wl)→ IR (4.51)

for each performance measure a. Pa(w1, . . . ,wl) is called the response for the
weight setting w1, . . . ,wl . The same combined dispatching weights and rules
are used at all machine groups. However, due to the different processing
natures of non-batching and batching machines, two varying yet similar ap-
proaches are used. For a non-batching machine, the combined criterion is
calculated for each job queued in front of machine group m. In the case of a
batching machine, the only difference is that jobs are grouped together into
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batches based on similar batching requirements, i.e., the same incompatible
job family. The combined criterion for the different jobs that form the batch
is aggregated into a single index value by adding the weighted criterion for
each job in the batch similar to algorithm BA in Sect. 4.5.

Next, we describe how the response for each objective is determined by
designed experiments using discrete-event simulation. Model parameters are
estimated most effectively when proper experimental designs are used to col-
lect the data (see Montgomery [208]). There are many experimental designs to
choose from including factorial, central composite, and D-optimal. However,
there are several assumptions that need to be made about the design and
the data for the experimental methods to be effective. One critical assump-
tion is the independence of the experimental variables. Least square methods
cause erroneous results in the model parameter estimates if this assumption
is violated.

In the situation discussed in this section, the experimental variables, i.e.,
the different wa, are not independent. The weights identify the proportional
contribution of each dispatching rule index in the overall blended priority
index. The response variables are a function of the proportions of the dif-
ferent weights. The actual value of a weight is not important, but, rather,
it is the relative size when compared with another weight that is important.
For example, in case of four criteria, the weights 0.05, 0.05, 0.15, and 0.25
are possible, or they can be 200, 200, 600, and 1,000. The same results are
obtained for each of the two weight sets because the ratios of the weights
when compared to each other are the same for each set. Both sets of weights
can be normalized to 0.1, 0.1, 0.3, and 0.5, i.e., their weight sum is one.

Due to the lack of independence of the weights, standard experimental
design strategies have to be abandoned and a mixture design chosen that
will accommodate this lack of independence. Mixture experiments address
the issue where the components of the experiment have to add to 100%.
There are several mixture designs to choose from depending on the degree
of the polynomial that the experimenter is anticipating to best fit the pro-
cess. For mixture experiments, the experimental design region is a simplex
that is a regularly sided figure with q vertices in q−1 dimensions (see Mont-
gomery [208]). Let us consider the simplex centroid design with q factors in
more detail. This design consists of 2q − 1 design points. This is the number
of vectors with q components where k components have the value 1/k for
1 ≤ k ≤ q and the remaining components are 0. An example with three dif-
ferent criteria is given in Table 4.8. Note that in Table 4.8 in addition to the
23 − 1 regular design points, three augmented points are added to give more
degrees of freedom for error lack of fit and model significance analysis.

Based on the mixture design, a response surface is constructed for each
single criterion as described in Sect. 3.2.9. Note that each design point cor-
responds to a blended dispatching rule with a certain weight setting. Simu-
lation experiments with simulation models of wafer fabs have to be carried
out to find the response values. Different analyses of variance have to be
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Table 4.8: Simplex centroid design for a mixture experiment

Run number w1 w2 w3

1 1 0 0
2 0 1 0
3 0 0 1
4 1/2 1/2 0
5 0 1/2 1/2
6 1/2 0 1/2
7 1/3 1/3 1/3
8 2/3 1/6 1/6
9 1/6 2/3 1/6
10 1/6 1/6 2/3

performed for the different responses to determine statistically significant
factors. An individual optimum can be determined for each single Pa. How-
ever, a global optimum is desired. Therefore, a multiple response optimization
using the desirability function approach (cf. Sect. 3.3.1) is performed. The in-
dividual meta-models are transferred to a desirability function with values
between zero and one, where one is the most desirable. The corresponding
desirability function for criterion a is denoted by da. Finally, the desirabil-
ity functions are transformed into a combined objective function using the
geometric mean of the individual desirabilities as described in Sect. 3.3.1.
Optimization of the combined objective function can be accomplished us-
ing different pattern search algorithms such as the algorithm of Hooke and
Jeeves [118].

In Dabbas et al. [56, 57, 58], the above approach is used to determine a
combined criterion for four objectives that are similar to AT, Var(L), ACT,
and finally Var(CT), defined in Sect. 3.3.1. The dispatching rules used are the
CR dispatching rule, the throughput (TP) dispatching rule, the line balance
(LB) rule, and finally the FC rule.

The CR dispatching rule works, as discussed in Sect. 4.3.1. The TP rule
works as follows. The SPT rule is applied to non-batching machines, while
for batching machines, the loads with the highest number of wafers per hour
get the highest priority because in this situation, the batch fullness can be
increased. A more global dispatching rule is the LB rule. Using LB, products
at stages with higher deviations from their WIP goal get higher priority.
WIP goals determine the average WIP required at each stage of a process
flow such that output requirements are met. WIP goals tie the required TP
rate of product i to the CT at stage j using Little’s law (cf. Sect. 3.2.7):

WIP(Li j) = λi jCTi j, (4.52)

where WIP(Li j) is the WIP goal for product i at stage j, λi j is the correspon-
ding TP rate, and CTi j is the CT value, i.e., the sum of waiting time and
processing time. The quantity λi j can be calculated by dividing the required
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daily output for i by the number of process steps to determine the daily
output of i at stage j because then the line is balanced. The goal CT values
CTi j can be derived from simulation studies.

Finally, the FC dispatching rule prioritizes jobs with the objective to
balance the workload on the different machines. This rule is described in
more detail in Sect. 4.2.1.

The reason for selecting the above dispatching rules is that they each
target a different performance measure of interest. CR identifies the quality
of dispatching from a point of view of on-time delivery, i.e., AT. The TP rule
improves the quality of dispatching from a CT point of view. Its objective is
to maximize TP at machines regardless of due date priorities. The LB rule
has the objective of minimizing the WIP variation vs. a pre-set goal in an
effort to linearize output, while FC takes the workload balancing perspective.

The blended dispatching approach was compared to single dispatching
criteria like CR, SPT, or FLNQ in [56, 57] using full wafer fab simulation mo-
dels. The simulation results indicate that CT, Var(L), and on-time delivery-
related performance measures are improved to a large extent. The blended
approach shows a behavior similar to the CR dispatching rule with respect to
Var(CT), but it outperforms the two remaining dispatching rules. It is also
demonstrated by the simulation experiments that the resultant WIP profile
is more stable and has a lower average value when using the blended dis-
patching approach. Lower WIP translates to lower ACT values, whereas less
variability in the profile translates to lower Var(CT) values and consequently
better overall performance measure values.

4.7.4 Automated Discovery of Dispatching Rules

So far, we assume that we manually select dispatching rules out of a given
set of rules. Then simulation experiments have to be carried out to assess
the performance of the rules, and finally, an appropriate rule is selected. This
approach is in a certain sense rigid. That is why we allow for the selection
of appropriate weights to construct blended dispatching rules in Sect. 4.7.3.
This approach is less rigid; however, only the weights can be changed and
not the structure of the rules.

In this section, we describe work that is related to an automated discovery
of dispatching rules. A dispatching rule is represented by an index that as-
sesses all jobs awaiting processing at a given machine at time t when the
resource is available (cf. Sect. 4.1 for details). The index takes several at-
tribute values into account. The priority index might be considered as a
logical expression. Selecting a dispatching rule means specifying the priority
index.

We discuss an approach to construct new dispatching rules based on a
given set of primitives. These primitives belong to two subsets (see Geiger
et al. [96]):
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• A set of relational and conditional functions denoted by F .
• A set of terminals T that is problem-specific and consists of a set of variables
and numerical constants. Terminals cannot be broken down into smaller
units.

The set of relational and conditional functions is given by unary and binary
operators and functions. Examples for unary operators are the four basic
arithmetic operators +, −, /, ∗, whereas EXP, ABS, MAX, MIN are examples
of functions. Furthermore, the conditional function IF3 is often important.
It is the ternary version of the IF-THEN-ELSE expression used in program-
ming languages, i.e., if a ≥ 0 then b else c, where a, b, and c are expressions.
The precedence relationship of the functions is given. It is preserved and can-
not be redefined. More examples of functions F to construct dispatching rules
can be found in [96, 295].

We continue with examples for terminals. The following terminals are used,
and most of them refer to a given job j:

• PT: The processing time p j is modeled using this terminal.
• DD: This terminal is used to refer to d j.
• W: The weight wj is expressed by this terminal.
• CurT: This is the current time t where the dispatching decision is made.
• Con: A constant value, i.e., a number z ∈ IR, is denoted by this terminal.
• AvgPT: This terminal denotes the average processing time of all jobs wait-
ing for processing. It represents the quantity p̄.

It becomes clear that the terminals model the attribute values within the
priority indices. More examples for terminals used to construct dispatching
rules can be found in [95, 96, 237].

The logical expression of the priority index is first transformed into an
intermediate representation using prefix notation. In prefix notation, the
function is written before the arguments it operates on (see Preiss [248]).
Compared to the logical expression, the prefix notation has the advantage
that an expression tree can be derived from it automatically by parsing the
expression in prefix notation from left to right. Terminals are the leaves of an
expression tree, i.e., variables or constants in the logical expression for a cer-
tain priority index. Each single function in a logical expression is represented
by a node of the expression tree. When a symbol s ∈ F is detected during
the parsing process, then a node is created in the expression tree. When a
terminal τ ∈ T is found, then a leaf is added to the tree. When a subtree
cannot have more leaves, then a new subtree is started when the next symbol
τ is detected.

On the other hand, each expression tree can be transformed automatically
into an expression in prefix notation by traversing the tree recursively using
the following procedure.
Algorithm Traverse Expression Tree

1. When a visited node is a terminal, then it is written at the end of the
partial expression in prefix notation.



4.7 More Sophisticated Approaches 103

2. When a nonterminal symbol is found, then a left parenthesis is written.
The symbol is written into the expression after the left parenthesis.

3. The left subtree is traversed using step 1 and step 2.
4. The right subtree is traversed, if any, using step 1 and step 2, and finally,

a right parenthesis is written.

Let us consider the ATC dispatching rule given by index (4.21) to illus-
trate these rather abstract concepts. In this example, the index can be rep-
resented as:

(∗(/W PT)(EXP(−(/(MAX(−(DD (−PT CurT))0)(∗Const AvgPT))) (4.53)

using the notation for functions and terminals introduced. The resulting tree
is shown in Fig. 4.5.

*

W

/ EXP

/

MAX *

-

-

PT

0 Const AvgPT

CurTPT

DD

-

Figure 4.5: Tree representation of the ATC dispatching rule

The basic learning system model described in Sect. 3.2.10 is used to
discover new dispatching rules. The corresponding learning element is realized
using genetic programming (GP). The performance element is the constructed
dispatching rule. Feedback is available from discrete-event simulation. GP is
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a special kind of a GA. It uses tree structures of variable lengths to repre-
sent solution candidates and can be used to automatically discover logical
expressions or even computer programs.

GP starts from a candidate set of dispatching rules called a population
(cf. Sect. 3.2.6). These rules are either generated randomly or based on heuris-
tics. The quality of each dispatching rule is assessed using discrete-event sim-
ulation and a set of performance measures of interest. The BS and the BP
are represented by an appropriate simulation model. Each dispatching rule
from the candidate set is equipped after the performance assessment with a
set of values for the performance measures.

The reasoning mechanism consists of a selection component and a
component that generates new dispatching rules. The selection component
uses the performance measure values for each rule of the candidate set to
choose a set of high-performing dispatching rules that form the basis for
generating a new candidate set. The entire cycle is repeated until a certain
stopping criterion is fulfilled.

New dispatching rules will be generated using crossover and mutation
operators as in common GAs. The crossover operator works as follows. Two
trees are randomly selected from the current set of candidate rules. A subtree
is identified in each parent rule randomly. These subtrees are swapped in the
next step between the two parent rules. It is clear that because of the entire
subtrees used, only feasible offspring are produced. The mutation operator
starts by randomly selecting a subtree from a parent rule, then this subtree
is replaced by a randomly generated subtree using the sets F and T .

Experiments with the described discovery approach using simulation
models of large-scale wafer fabs are described by Pickardt et al. [237]. The dis-
covered rules clearly outperform ATCS-type dispatching rules. The basic
discovery approach is extended to automatically learn batching rules for single
machine scheduling by Geiger and Uzsoy [95]. Overall, it seems that discover-
ing dispatching rules automatically is a promising direction of future research.



Chapter 5

Deterministic Scheduling Approaches

In this chapter, we describe deterministic scheduling approaches for
equipment (i.e., single machines), work centers, and full wafer fab situations.
We start with simulation-based scheduling approaches that are somewhere
between dispatching and scheduling. Then, we continue by presenting sche-
duling approaches for single machines. We especially focus on the case of a
single batch machine with incompatible job families and the TWT objective.
Furthermore, we study the problem of scheduling jobs on a single cluster tool
with Cmax objective. Then, we present scheduling approaches for work centers,
i.e., for parallel machines. We first study scheduling problems for parallel
machines with sequence-dependent setup times and then cover parallel batch
machines with incompatible job families and ready times of the jobs. After
that, we present work that deals with the treatment of secondary resources.
Then, we discuss multiple orders per job (MOJ) scheduling problems. We
extend these work center approaches to the full wafer fab situation using
the concept of disjunctive graphs. We discuss a modified shifting bottleneck
heuristic for wafer fabs, and we also describe a distributed variant of the shif-
ting bottleneck heuristic. Next, we extend the shifting bottleneck heuristic
to multicriteria situations. We study the performance of these approaches in
a rolling horizon setting using simulation models of wafer fabs.

5.1 Motivation and Definitions

Scheduling is defined as the process of allocation of scarce resources over time
(Brucker [34]). The goal of scheduling is to optimize one or more objectives
in a decision-making process. As already discussed in Sect. 2.3, scheduling is
between order release and dispatching in the PPC hierarchy and therefore an
important part of the production control layer.

The two major categories in scheduling are deterministic and stochastic
scheduling (cf. Pinedo [240]). Deterministic scheduling is characterized by
processing times, setup times, due dates, ready times, and weights that are
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known in advance. They are assumed not to be influenced by uncertainty.
In contrast, stochastic scheduling problems do not assume the existence of
deterministic values for processing times, set-up times, or other quantities
that are used within the scheduling model. The deterministic values are re-
placed by corresponding probability distributions. While stochastic schedul-
ing is academically quite interesting, we focus on deterministic scheduling
approaches in this monograph.

Deterministic scheduling problems can be further differentiated into static
problems where all jobs to be scheduled are available at time t = 0 and
dynamic scheduling problems that relax this condition. Jobs are ready at
different points in time t in the dynamic situation.

In order to classify deterministic scheduling problems, the α|β |γ notation
scheme from the scheduling literature [107, 240] is used within this mono-
graph. The α field describes the machine environment (e.g., single machine
or parallel machines), the β field is used for specification of the process re-
strictions (e.g., ready times or sequence-dependent setup times), and the γ
field denotes the performance measure(s) of interest (e.g., Cmax or TWT).

The machine environment covered by the α field is determined by the
hierarchy provided by the BS (see Sect. 2.2.1). The building blocks of the
machinery of a wafer fab are work centers (cf. Sect. 2.2.2). Single machines
are the atomic units of a work center. For a single machine, the α field is
given by the symbol 1. Single machine scheduling problems are interesting in
their own right because they can form subproblems in decomposition schemes
for parallel machine or job shop scheduling problems. Often, the machines of
a single work center can be modeled as parallel machines. Identical parallel
machines will be denoted by Pm, where m specifies the number of machines
in the machine group. Because of the different ages of the machines, we often
have to deal with unrelated parallel machines, i.e., the situation where the
processing time depends on both the job and the machine. For this, we will
use the notation Rm. As described in Sect. 2.2.2, each work area consists of
several work centers. Therefore, the processing of jobs in a work area can be
organized in a flexible flow shop or a flexible job shop manner, and we use the
notation FFm and FJm, respectively. A simple job shop, i.e., one machine of
each type at each work center, will be denoted by Jm. A wafer fab consists of
several work areas. Therefore, we can treat wafer fabs from a scheduling point
of view as a complex flexible job shop. A complex job shop as introduced in
Sect. 2.2.3 is a job shop that has additional process restrictions that mimic
complexities inherent in wafer fabs.

We continue with a discussion of the β field. Important process restrictions
are sequence-dependent setup times (s jk) and batching. A batch is defined as
a group of jobs that have to be processed jointly (cf. Brucker et al. [36]). The
completion time of a batch is determined as the completion time of the last
job in the batch. A batch scheduling problem consists in grouping the jobs
on each machine into batches and in scheduling these batches. Two types of
scheduling problems related to batching are considered. The first type is called
a serial batching problem (s-batch). In this situation, the processing time of



5.1 Motivation and Definitions 107

a batch is the sum of the processing times of all jobs that form the batch. We
differentiate between batching with job availability and batching with batch
availability for s-batching. Each job of the batch can be further processed
(at the next work center) after its completion time in the first situation. In
the case of batch availability, the jobs of the batch can be further processed
only when all jobs have completed the batching operation. The second type is
parallel batching, for short p-batching (p-batch). In this case, the processing
time of the batch is given by the maximum processing time of jobs contained
in the batch (cf. Potts and Kovalyov [247] and Mathirajan and Sivakumar
[176] for recent surveys related to batching in general and to batching for
semiconductor manufacturing, respectively). On the entire wafer fab level,
we have to take the reentrant process flows (recrc) into account when ma-
king scheduling decisions. Furthermore, in some cases, machine dedications
(Mj), also called machine eligibility restrictions, and auxiliary resources (aux)
should be modeled. Time constraints (tc) for the process steps also occur as
specific process restrictions.

Cluster tools also lead to specific process restrictions. For cluster tools,
there exist two types of scheduling problems:

• The scheduling of the wafer movements inside a cluster tool, which is similar
to job shop scheduling with transportation and blocking

• The sequencing of the jobs waiting to be processed in front of a cluster tool,
which leads to a machine scheduling problem with sequence-dependent pro-
cessing times caused by different load port recipe combinations for cluster
tools

We call the scheduling in the first situation internal scheduling and the one in
the latter situation external scheduling. The sequence-dependent processing
times are denoted by lrc.

As already described in Sect. 2.2.3, 300-mm manufacturers often have the
need and the incentive to group small orders from different customers into
one or more FOUPs to form production jobs. These jobs have to be sche-
duled on the various types of machine groups in the wafer fab and processed
together. This class of integrated job formation and scheduling problems are
called MOJ scheduling problems.

We start our discussion of the γ field by describing performance measures
for the entire wafer fab. The most important among them are TP, CT, and
various on-time delivery performance measures. The following measures can
be derived for scheduling problems. Large values for TP are a result of mini-
mizing makespan. Minimizing the total flow time measure and its weighted
counterpart leads to small values for CT. Typical on-time delivery measures
are Lmax, NTJ, WNTJ, or TWT (cf. Sect. 3.3.1). Performance measures for
work areas or even work centers are derived starting from top-level wafer fab-
wide performance measures. We summarize the three discussed dimensions
for deterministic scheduling problems found in semiconductor manufacturing
in Fig. 5.1.
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Figure 5.1: Deterministic scheduling in wafer fabs

In today’s semiconductor manufacturing, dispatching is typically used in
wafer fabs (see Pfund et al. [234]). Scheduling solutions are not very popu-
lar. However, with the recent increases in computing efficiency, scheduling
methods have become more attractive. Because of the NP-hardness of most
of the scheduling problems found in wafer fabs, we typically use heuristics
to solve them. Therefore, a large portion of work presented in this chapter is
devoted to efficient heuristics. Most of them decompose the overall scheduling
problem into smaller, more tractable subproblems.

5.2 Simulation-Based Scheduling

Simulation-based scheduling means that simulation is used as a decision-
making tool to determine schedules with a horizon ranging from several hours
to a day (see Sect. 3.2.8). Dispatching rules that are already part of the sim-
ulation engine are used to allocate jobs to machines. This approach is con-
ceptually similar to list scheduling that is frequently considered in scheduling
as a straightforward way to determine schedules (see Pinedo [240]). When
a machine becomes available in the simulation, all jobs that are waiting for
processing are sorted according to the index of a certain dispatching rule (see
Chap. 4). Then the job with the highest or the smallest value for this index
is selected to start with processing on this machine. Based on this scheme,



5.2 Simulation-Based Scheduling 109

the assignment and the sequencing of jobs observed in the simulation are
used to produce a control instruction mc in the original CS that is used to
influence the BS. Major parts of a simulation-based scheduling system are
the following:

1. A simulation engine that contains several dispatching rules for next job
selection within an appropriate (up-to-date) simulation model

2. A graphical user interface (GUI) that produces Gantt charts based on the
results of a simulation run taken from the event files

3. An interface to the operational systems on the shop floor that develops a
dispatch list from the Gantt chart

Simulation-based scheduling relies to a large extent upon the capability to
produce simulation models that represent the BP and the BS in a very de-
tailed manner. A snapshot of the BS and BP (WIP and machine status) is
taken before the determination of schedules, and a dynamic model is cre-
ated based on this snapshot. Clearly, automated or at least semi-automated
simulation model generation abilities based on data in the OS like the MES
are necessary in order to run a simulation-based scheduling system. Usually,
all stochastic effects like machine breakdowns are turned off because of the
small time horizon. An appropriate model initialization is a nontrivial issue
in simulation-based scheduling because estimating the near-time transient
performance of the system as it evolves from its current state is challenging
(see Davis [60]).

Simulation-based scheduling in its simplest form uses a set of different
dispatching rules. Each of the resulting schedules is evaluated by a single
performance measure like TP or TWT, and the schedule with the largest
or smallest performance measure value, respectively, is selected as a control
instruction for the BP. In some situations, even an additional manual inspec-
tion of the schedules by the production control staff is possible to check the
fulfillment of soft constraints and to include human experience in the sched-
ule selection. Job swaps are possible to manually adjust the schedules. This
is a typical Leitstand or MES functionality (see Adelsberger and Kanet [2]).

The selection of a final schedule as a set of production control instructions
can also be based on several performance measures. This approach is taken
by Sivakumar [284]. This approach is reasonable because it is known that
different performance measures can be in conflict and determining a trade-off
between them is necessary. We consider the case of l different performance
measures. Each performance measure a of interest is represented by a priority
Xt

a jm ∈ [0,1] for processing job j on machine m at time t. We obtain for the
weighted priority of job j on machine m at time t:

Pt
jm :=

l

∑
a=1

waXt
a jm, (5.1)
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where wa ≥ 0 is the weight of performance measure a and ∑l
a=1 wa = 1 is valid.

The weights are selected in [284] based on the importance of the different
performance measures, which of course is subjective.

The selection of the wa can be based on the desirability function approach
described in Sect. 4.7.3 to construct blended dispatching rules. In an off-line
phase, designed experiments with different weight vectors (w1, . . . ,wl) are nec-
essary to find an appropriate meta-model. Based on this meta-model, the
desirability function can be optimized and appropriate weights obtained.

There are several simulation-based scheduling systems described in the
semiconductor manufacturing literature, most of them applied in the back-
end stage. Among them we refer to [213, 246, 284, 285]. The combination of
simulation-based scheduling with simulation-based optimization is shown in
Werner et al. [321] and Weigert et al. [317]. In these cases, instead of using
only a single simulation run, after the generation of an initial schedule based
on simulation and dispatching rules, a multiphase algorithm is applied to
improve the schedule using metaheuristics and simulation.

5.3 Equipment Scheduling

In this section, we discuss scheduling problems for single machines and paral-
lel machines in a single work center. Parallel machines are the building blocks
of wafer fabs. Therefore, we may apply scheduling approaches to schedule
jobs in front of a single work center. Scheduling problems for work centers
appear rather naturally as a result of decomposition heuristics for flexible job
shops. Therefore, it makes sense to deal with scheduling algorithms for single
machines and also for work centers.

5.3.1 Scheduling Jobs on a Single Batch Machine

We model diffusion and oxidation operations as batch-processing machines
with incompatible job families. The performance measure to be minimized
is TWT. The batch problem for a single machine is more complex than the
single machine problem 1||∑wjTj that is NP-hard by Lawler [151]; therefore,
we propose heuristic approaches that lead to good solutions.

The assumptions involved in scheduling a single batch machine with in-
compatible jobs families to minimize TWT include:

1. Jobs of the same family have the same processing times.
2. All the jobs are available at time t = 0.
3. Once a machine is started, it cannot be interrupted, i.e., no preemption is

allowed.

The following notation is used throughout this section:

1. Jobs fall into different incompatible families that cannot be processed
together. There exist f such families. The family of a batch Bs is given
by F(Bs) ∈ {1, . . . , f}.
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2. There are ni jobs of family i to be scheduled. We have ∑ f
i=1 ni = n, i.e.,

there are n jobs that have to be scheduled.
3. Job j of family i is represented as i j.
4. The priority weight for job j of family i is represented as wi j .
5. The due date of job i of family j is represented as di j.
6. The processing time of jobs in family i is represented as pi.
7. The batch machine capacity is B jobs. The number of jobs within a batch

Bs is denoted by |Bs|. Clearly |Bs| ≤ B holds.
8. Batch k of family i is represented by Bki.
9. The completion time of job j of family i is denoted by Ci j.
10. The weighted tardiness of job i j is represented as wi jTj = wi j(Ci j − di j)

+,
where we use the notation x+ := max(x,0).

Using the α|β |γ notation, this problem can be represented as:

1|p-batch, incompatible|TWT, (5.2)

where p-batch refers to parallel batching and incompatible to the case of in-
compatible job families. Note that research for problem (5.2) was initiated
by the study of the scheduling problem 1|p-batch, incompatible|T T by Mehta
and Uzsoy [180].

We start by proving some simple structural properties of optimal sche-
dules. The first property is due to Uzsoy [303].

Proposition 5.1 There exists an optimal schedule for problem (5.2) that
does not contain partially full batches except possibly the last batch of each
family to be processed in the schedule.

In a next step, we prove that in an optimal schedule there are precedence
relationships between the jobs of the same family that can be characterized
by job attributes.

Proposition 5.2 There is an optimal schedule for problem (5.2), where job
i j appears before job ik, if the following two conditions are both satisfied:

wi j ≥ wik, (5.3)

di j ≤ dik. (5.4)

Furthermore, if jobs i j and ik are both tardy in a schedule S and in a schedule
S′ that is obtained from S by exchanging i j and ik, then the two jobs have to
be scheduled by nonincreasing weight order in S.

Proof. The proof is similar to the proof of Proposition 2 in [180]. We consider
an optimal schedule S1 of the form described in Proposition 5.1 and assume
that conditions (5.3) and (5.4) are fulfilled. Let job i j be scheduled in batch
Bsi and job ik in batch Bti that is processed before Bsi. Now we consider a
schedule S2 where the jobs i j and ik are swapped and the remaining jobs
are the same. We denote the completion time of Bsi in S1 by Cs and the



112 5 Deterministic Scheduling Approaches

corresponding completion time of Bti by Ct . Because all jobs of one family
have the same processing time, Cs and Ct will be the same in S2 and no job
different from i j and ik will be affected by the swap operation. We define

ΔWT(S1) := wi j(Cs − di j)
+ +wik(Ct − dik)

+, (5.5)

ΔWT(S2) := wik(Cs − dik)
+ +wi j(Ct − di j)

+, (5.6)

where the two quantities are the weighted tardiness values of the two jobs be-
fore and after the swap, respectively. We will show that ΔWT(S2)≤ ΔWT(S1),
i.e., the tardiness of S2 is not greater than the tardiness of S1. We use the
identity

(x+ y)+− x+ = y−min{y,(−x)+} (5.7)

that holds for all x,y ∈ IR and y ≥ 0. We set ε :=Cs−Ct > 0 and can estimate

ΔWT(S1)−ΔWT(S2)

= wik
[
(Ct − dik)

+− (Ct + ε − dik)
+
]−wi j

[
(Ct − di j)

+− (Ct + ε − di j)
+
]

= wi j
[
ε −min

{
ε,(di j −Ct)

+
}]−wik

[
ε −min

{
ε,(dik −Ct)

+
}]

≥ wik
{[

ε −min
{

ε,(di j −Ct)
+
}]− [ε −min

{
ε,(dik −Ct)

+
}]}≥ 0

because of wik ≤wi j , dik ≥ di j, and ε > 0. The schedule S1 is optimal. Therefore,
we have ΔWT(S1)=ΔWT(S2), and we can swap the two jobs without changing
the TWT value of the schedule before and after the swap.

Next, we assume that both i j and ik are tardy in S and S′ and that i j is
scheduled before ik. Let again job i j be scheduled in batch Bsi and job ik in
batch Bti that is processed after Bsi in S. In this case, we obtain

ΔWT(S)−ΔWT(S′) = wi j(Cs − di j)+wik(Ct − dik)−wik(Cs − dik)−wi j(Ct − di j)

= (wik −wi j)(Ct −Cs) .

Because Ct >Cs, ΔWT(S)≥ ΔWT(S′) is only valid when

wik ≥ wi j (5.8)

holds. Therefore, changing the order of job i j and job ik is only beneficial
from a TWT point of view when ik has a larger weight than i j. �

Proposition 5.2 shows that it may be beneficial to change the content of
batches of the same family. This property can be used to design efficient neigh-
borhood search approaches. Further swapping rules for jobs across batches
of the same family similar to inequality (5.8) in Proposition 5.2 can be found
in Devpura et al. [67].

We continue by presenting a MIP formulation for problem (5.2). Because
of Proposition 5.1, we know the number of batches in an optimal schedule.
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Denote this number by nb. We use the following indices in the MIP formula-
tion:

b = 1, . . . ,nb : batch index
s = 1, . . . , f : family index
j = 1, . . . ,n : job index

The following parameters will be used within the model:

B : maximum batch size
d j : due date of job j

e js :

{
1, if job j belongs to family s
0, otherwise

M : large number
ps : processing time of family s
wj : weight of job j

The following decision variables are necessary:

Cb : completion time of the bth batch

Xjb :

{
1, if job j is assigned to the bth batch
0, otherwise

Ybs :

{
1, if batch b belongs to family s
0, otherwise

Tj : tardiness of job j

The scheduling problem (5.2) may be formulated as follows:

min
n

∑
j=1

wjTj (5.9)

subject to

nb

∑
b=1

Xjb = 1, j = 1, . . . ,n, (5.10)

n

∑
j=1

Xjb ≤ B, b = 1, . . . ,nb, (5.11)

f

∑
s=1

Ybs = 1, b = 1, . . . ,nb, (5.12)

e jsXjb ≤ Ybs, j = 1, . . . ,n, b = 1, . . . ,nb, (5.13)

psY1s ≤C1, s = 1, . . . , f , (5.14)

Cb−1 +
f

∑
s=1

psYbs ≤Cb, b = 2, . . . ,nb, (5.15)

(Cb − d j)−M(1−Xjb)≤ Tj, j = 1, . . . ,n, b = 1, . . . ,nb, (5.16)

Cb,Tj ≥ 0,Xjb,Ybs ∈ {0,1}, j = 1, . . . ,n, b = 1, . . . ,nb, s = 1, . . . , f . (5.17)

The objective (5.9) intends to minimize the TWT value. Constraints (5.10)
ensure that each job is assigned to a batch and constraints (5.11) do not allow
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more than B jobs to be assigned to the same batch. With constraints (5.12),
we make sure that each batch belongs to a single job family, and constraints
(5.13) ensure that the families of the jobs assigned to a batch match the
family of the batch. Using constraints (5.14), the completion time of the
first batch on the machine is computed, whereas constraints (5.15) ensure
the correct completion times for all subsequent batches. Finally, constraints
(5.16) express the tardiness for each job, and in Eq. (5.17), the nonnegativity
and binary constraints are denoted. A similar formulation for minimizing Cmax

can be found in Klemmt et al. [145].
Note that the MIP formulation (5.9)–(5.17) is able to solve problem in-

stances up to 20 jobs and two families optimally within 2 h of computing
time using CPLEX 10.0. Therefore, we can use the MIP to assess the solu-
tion quality of heuristics for small-size problem instances and to test whether
the implementation of the heuristics is correct or not.

Because of the NP-hardness of the problem, we decompose the problem
into two phases. We form batches in the first phase. After this, we sequence
these batches in the second phase. We use the ATC index

Ii j(t) :=
wi j

pi
exp

{

− (di j − pi − t)+

κ p̄

}

(5.18)

introduced in Chap. 4 to sequence the jobs. Note that the processing time pi

depends on the family in expression (5.18). When a batch Bs of family i is
formed, it can be assessed using the BATC index from Chap. 4. Therefore,
we have

IBs(t) := ∑
i j∈Bs

Ii j(t), (5.19)

i.e., we sum up the ATC indices of the jobs that form the batch. For forming
and some initial sequencing of the batches, we use the following algorithm.
Algorithm ATC-BATC

1. Sort the jobs within each family according to the ATC dispatching rule,
i.e., according to nonincreasing Ii j(0) values.

2. For each family, starting from the first job of each sequence obtained in step
1, form full batches as long as this is possible. Let ki :=

⌈ ni
B

⌉
be the number

of batches that are formed of family i. Set li = 0, i = 1, . . . , f . Initialize t = 0.
3. Let the current partial schedule contain li batches of family i. Denote

the set of unscheduled batches by Φ(l1, . . . , l f ). Note that Φ(l1, . . . , l f )
contains ki − li batches of family i. Calculate the IBs(t) index for each
Bs ∈ Φ(l1, . . . , l f ). Schedule the batch Bs with the highest BATC index.
Let Bs be a batch of family s. Update ls := ls + 1 and t := t + ps.

4. When all batches are scheduled, then stop. Otherwise, go to step 3.

The κ values used in the indices (5.18) and (5.19) are determined by a grid
search approach, i.e., we use κ = 0.1h, h = 1, . . . ,50 to determine schedules
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by the ATC-BATC algorithm. Then we pick the schedule that leads to the
smallest TWT value. We denote the corresponding κ value by κbest. For a fixed
κ , we use for abbreviation the notation ATC-BATC(κ). Note that a similar
heuristic can be based on the EDD dispatching rule (see Perez et al. [232]).
In that heuristic, jobs are sequenced in nondecreasing due date order. Then,
batches are formed per family starting with the jobs with the smallest due
date. After the batch formation, we sequence the batches by taking the batch
that contains the job that has the smallest due date. The resulting scheme is
called EDD-EDD. However, ATC-BATC outperforms this heuristic.

The initial sequencing of batches obtained by ATC-BATC can be further
improved by dynamic programming and a decomposition heuristic. We con-
tinue with describing the two heuristics in detail.

We start with the dynamic programming formulation that minimizes
TWT given a set of formed batches. Let N := ∑ f

i=1

⌈ ni
B

⌉
be the number of

batches formed by the ATC-BATC rule. The set of all the N batches is de-
noted by Φ. Let f (J) denote the minimum TWT value of a partial schedule
containing the batches of the set J ⊆ Φ. We describe the boundary condition,
the optimal value that is the TWT value for the optimal sequence, and the
recursion relation. The boundary condition is used to initialize the recursion
relation. We obtain the following:

Boundary condition: f ( /0) := 0,
Optimal value: f (Φ),
Recursive relation:

f (J) := min
Bs∈J

{

f (J −{Bs})+ ∑
k∈Bs

wk

(

∑
Br∈J

pF(Br)− dk

)+}

. (5.20)

We use the abbreviation DP for this dynamic programming procedure. The
idea behind the DP is straightforward. The optimal sequence for a subset of
batches is determined in each iteration assuming that this subset goes first.
This is carried out for each subset of batches of size l. Using the recursive
relation, this is extended to each subset of size l+1. Each of the l+1 batches
is a candidate to be appended. It is not necessary to know the sequence of the
batches for the subsets of size l; knowing the contribution of the l batches to
the objective is enough. The optimal sequence of batches can be determined
by a simple backtracking procedure after f (Φ) is determined. Because the DP
considers all subsets of Φ, it requires an amount of computation time that is
O(2N). Hence, the DP is appropriate only for a small number of batches.

Note that a similar dynamic programming formulation is presented for the
problem 1|p-batch, incompatible|TT in [180]. However, because of more struc-
tural insights into this problem with TT objective, the number of possible
batches to be considered at a partial schedule is smaller.

Because of the large computational burden of the DP, we also consider a
heuristic that decomposes the sequencing problem for batches into a series
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of smaller sequencing problems that can be solved optimally. This type of
heuristic was proposed by Chambers et al. [43] for the non-batching case and
later applied by Mehta and Uzsoy [180] for solving 1|p-batch, incompatible|T T .
The procedure can be described as follows.
Algorithm Decomposition Heuristic (DH)

1. Determine an initial sequence of batches using ATC-BATC(κbest). Denote
this schedule by S. Set the values of the parameters λ , α, and iter. The
parameter λ is the number of batches that are sequenced optimally. The
first α batches for the resulting optimal sequence are fixed, and finally, iter
is the total number of iterations.

2. Let B[i] denote the batch in the ith position of S. Furthermore, let

N := ∑ f
j=1

⌈ n j
B

⌉
be the number of batches to be scheduled. We initialize

k := min(λ ,N). Set S̃ = /0, where S̃ represents the final schedule to be con-
structed. Initialize j = 0 and î = 1. Finally, let P := {B[1], . . . ,B[k]} be the
set of batches of the initial subproblem.

3. Determine an optimal sequence of the batches of P by using complete
enumeration. Denote the batch in the ith position of this sequence by β[i].

4. We define y := min(|P|,α). Fix the batches β[1], . . . ,β[y] in positions j +
1, . . . , j + y in S̃. Update j := j + y. Set P := (P−{β[1], . . . ,β[y]

}
)
⋃{B[ j+1],

. . . ,B[x]}, where x := min( j+α,N).
5. When j < N, then go to step 3; otherwise, go to step 6.
6. When î < iter and the TWT value of S̃ is smaller than the TWT value of

S, then set S := S̃ and go to step 2 and update î = î+ 1; otherwise, stop.
The last found schedule is the resulting one.

We use the notation DH(λ ,α, iter) for this heuristic. Usually, we use the set-
ting λ = 5, α = 2, and finally iter = 15. In this case, 5! schedules have to be
evaluated within each step of DH, which is feasible from a computational
point of view. So far, we change entire sequences. But in the spirit of Propo-
sition 5.2, it may also be beneficial to swap jobs across batches of the same
job family.

We continue by presenting some results of computational experiments.
The experiments are performed with respect to a different number of jobs
per family and a different maximum batch size. The processing times of the
jobs for each family are given in Table 5.1. Note that this setting mimics the
situation in wafer fabs, where process steps on batch machines tend to be long,
but at the same time, because jobs on different stages compete for processing,
short processing times are possible. We expect that the performance of the
heuristics also depends on the due date setting. Therefore, we select due dates
according to the following distribution:

di j ∼U

(

μ
(

1− R
2

)

,μ
(

1+
R
2

))

, (5.21)
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where R is called the range parameter. The quantity μ within the distribution
in expression (5.21) is given by μ = (1− T )Ĉmax, where T is the expected

percentage of tardy jobs and Ĉmax is an estimator for Cmax given by Ĉmax :=
nE(P)

B . We denote by E(P) the expected processing time. A larger value of T
leads to a smaller mean due date and hence to a larger TWT value, and the
larger the value of R, the larger the range and variance of the due dates. In
total, we consider 320 problem instances.

Table 5.1: Design of experiments for problem (5.2)

Factor Level Count

f 4 1
ni 30, 40, 50, 60 4
B 4, 8 2

2 with a probability of 0.2
4 with a probability of 0.2

pi 10 with a probability of 0.3 1
16 with a probability of 0.2
20 with a probability of 0.1

wi j ∼U(0,1) 1

di j ∼U
(
μ
(
1− R

2 ),μ(1+
R
2

))

T = 0.3,0.6, R = 0.5,2.5 4
Total factor combinations 32

Number of problem instances per combination 10
Total number of problem instances 320

The problem instances are solved using ATC-BATC, ATC-BATC-DH,
ATC-BATC-DP, EDD-EDD, and finally EDD-EDD-DH. The first two entries
in the notation triplet refer to the scheme that is used to form the batches
and determine an initial sequence, whereas the third entry is related to the
scheme to improve the initial schedule. Among the different heuristics, we use
schedules obtained by ATC-BATC-DH as a reference, because ATC-BATC-
DH outperforms the remaining heuristics with respect to the combination of
solution quality and computational efforts.

In Table 5.2, we present some computational results. We show the TWT
values obtained by the heuristics relative to the TWT values of the ATC-
BATC-DH heuristic. Instead of comparing all problem instances individually,
the instances are grouped according to factor levels such as the number of
jobs per family and maximum batch size. For example, results for a maximum
batch size of 4 imply that all other factors have been varied, but B has been
kept constant at 4. Due to the fact that sometimes the TWT value is zero, we
sum up the TWT values of all the instances for that factor level and divide
by the sum of the TWT values obtained by ATC-BATC-DH. In the case
where the batches are formed and also sequenced with the EDD dispatching
rule, i.e., the EDD-EDD heuristic, the performance is 51% worse than that
of the ATC-BATC-DH heuristic across all the problem instances. When the
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Table 5.2: Computational results for problem (5.2)

Compare EDD-EDD ATC-BATC EDD-EDD-DH ATC-BATC-DP

ni

30 1.5035 1.3640 1.1234 0.9912
40 1.5402 1.4332 1.1033 0.9945
50 1.5169 1.4107 1.0923 0.9837
60 1.4784 1.3826 1.0877 0.9777

B

4 1.4995 1.4133 1.0805 0.9778
8 1.5175 1.3681 1.1300 0.9976

% of tardy jobs

T = 30% 1.4149 1.2838 1.0968 0.9896
T = 60% 1.5359 1.4375 1.0965 0.9824

Due date range

R = 0.5 1.5520 1.4397 1.1275 0.9733
R = 2.5 1.4405 1.3416 1.0537 0.9994

Overall 1.5053 1.3987 1.0966 0.9842

heuristic EDD-EDD-DH is used, the overall result obtained is just 10% worse
than that of the ATC-BATC-DH. On the other hand, if the method to form
batches is a little more sophisticated than just arranging jobs by due dates
(i.e., using the ATC rule, but the final sequence is also obtained by the
BATC approach), the result is 40% worse than that of ATC-BATC-DH. The
ATC-BATC-DH performance is similar to that of ATC-BATC-DP. In fact,
ATC-BATC-DP performs only slightly more than 1% better than the ATC-
BATC-DH on average. In general, the heuristics using the EDD dispatching
rule to form batches improve compared to ATC-BATC-DH when ni increases.
However, the performance decreases as B increases. On the other hand, those
heuristics forming batches with the ATC rule perform about the same when
ni increases and have mixed performance when B increases. Increasing T does
not affect the results much for any of the heuristics except for the EDD-EDD
and ATC-BATC heuristics. In general, as expected, all the heuristics perform
better when R is large.

Additional computational results for a different number of families can
be found in [232]. Note that for f = 5 families and 60 jobs per family, the
DP heuristic is very time-consuming and cannot be used any longer to im-
prove the initial schedule. A discussion of different scheduling problems with
batch machines in semiconductor manufacturing is contained in the survey
by Mathirajan and Sivakumar [176].

5.3.2 Scheduling Jobs on a Single Cluster Tool

The external scheduling of cluster tools, i.e., the job sequencing for this type
of equipment, is challenging because the CT of wafers—and therefore also the
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processing time of the jobs in a cluster tool—depends on the wafer recipes
used, cluster tool control and architecture, wafer waiting times, and the se-
quencing of the jobs (see Dümmler [75]). The following assumptions are made
for the scheduling of jobs on a single cluster tool:

1. There are n jobs to be scheduled.
2. All jobs are available at time t = 0.
3. The cluster tool has two load locks.
4. Once a cluster tool chamber is started, it cannot be interrupted, i.e., no

preemption is allowed.

It is well known that TP maximization can be achieved by Cmax minimiza-
tion. Therefore, we consider the performance measure Cmax. Using the α|β |γ
notation, the scheduling problem can be described as

1|lrc|Cmax. (5.22)

Problem (5.22) is NP-hard because the Hamiltonian cycle problem can be
reduced to it (see Bianco et al. [26]). This scheduling problem is rarely dis-
cussed in the literature except by Oechsner and Rose [218, 219]. Bianco et al.
[26] propose several dominance criteria and lower bounding schemes for the
more general problem 1|r j, lrc|Cmax.

Dümmler [75] considers two main approaches to deal with this complex
environment. In the first approach, a detailed deterministic simulation model
of the cluster tool is used to evaluate the wafer CT values for job sequences
in the scheduling algorithm. A cluster tool simulation engine is described by
Dümmler [76]. In a second approach, wafer cycle time approximations are
used to construct partial schedules and the detailed model of the cluster tool
is only used to determine the Cmax value of the final schedules. However, the
CT approximations are also found using the simulation model of the cluster
tool doing preprocessing before the scheduling decisions are made. In this
monograph, we describe only the second approach in detail.

In the following, we present a beam search algorithm proposed by Oechs-
ner and Rose [218, 219] to solve problem (5.22). To introduce the beam search
algorithm, we first have to model the scheduling problem by a branching tree
as introduced in Sect. 3.2.2. Each node of the tree represents a partial sched-
ule. The root is the sequence with no job scheduled on a distinct position, i.e.,
(*,*,*,*), with * being a placeholder for a position in the sequence. Each child
is a partial schedule with one job scheduled in the first position of the se-
quence, and for each child this job is different, i.e., we have (1,*,*,*), (2,*,*,*),
etc. At each consecutive level, one more job is put into the sequence, until full
sequences/schedules are reached. These are the leaves of the branching tree.
This means that on level i, one of the jobs still to be scheduled is selected for
position i of the schedule. With a finite set of jobs, the number of children per
node decreases by one on each level, since fewer jobs remain to be scheduled.
We show an example of such a partial branching tree including four jobs in
Fig. 5.2.
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*,*,*,*

4,*,*,*1,*,*,*

1,2,*,* 1,4,*,*

2,*,*,* 3,*,*,*

1,3,*,*

Figure 5.2: Partial branching tree with four different jobs [219]

When we have to schedule jobs belonging to a small number of job types,
then the initial number of children per node is given by the number of job
types because only the job type is important for the Cmax objective. On the
other hand, the number of nodes decreases only if all jobs of one job type
are scheduled. Each different job type has a specific recipe. A wafer recipe
determines the internal flow of the wafers within the cluster tool, i.e., the
sequence of chambers to be visited (see the description in Sect. 2.2.3).

Beam search is a heuristic variant of the branch-and-bound approach (see
Sect. 3.2.2). Consider a scheduling problem represented as a tree as shown in
Fig. 5.2. For a large set of jobs, this branching tree becomes large because
of the large number of children of each node on higher levels. Branch-and-
bound aims to eliminate some of the children of a node by evaluating each
node and comparing the resulting value with a lower bound. If this value
is larger, the node and all of its children are discarded. Thus, fewer nodes
have to be considered on the next level. However, it is common for many
nodes to remain that need to be evaluated. While a branch-and-bound algo-
rithm determines optimal solutions, it can be very time-consuming when the
discrete optimization problem is NP-hard. Since problem (5.22) is NP-hard,
branch-and-bound is not possible when schedules have to be obtained within
a reasonable amount of time.

The aim of a beam search algorithm is to limit the number of nodes that
have to be evaluated on each level of the branching tree. With each step,
a certain set of nodes is selected based on an evaluation function, and the
remaining nodes are discarded. Only the non-discarded nodes are expanded,
keeping the size of the branching tree relatively small. The number of these
nodes is called the beam width β of the search. When the branching tree
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has been expanded fully, this means that on each level except the first, there
are at most β nodes. This results in the same number of job sequences that
have to be simulated at each level. Thus, the algorithm is faster than branch-
and-bound, but the optimality of the resulting schedule can no longer be
guaranteed. However, if the selection process for the nodes is appropriate, a
near optimal (and sometimes the optimal) solution can still be obtained. On
the other hand, if the evaluation is too time-consuming, the speed advantage
will be lost.

We continue by describing an appropriate evaluation function used to
prune the partial branching tree. To evaluate a certain node of the branching
tree, we have to decide how well it fits with the last scheduled job of the
partial schedule.

Because we have only two load locks, not every job that is in the partial
schedule is of interest when we insert a job after the last job in the partial
schedule at time t. For most jobs of the partial schedule, the inequality Cj < t
is valid, and these jobs are therefore not of interest at time t. We only need
to look at the jobs that are being serviced in the cluster tool at t, because
only those jobs will have an effect on the Cj of the other jobs. The situation
is shown in Fig. 5.3 adopted from [219].

Jobs already
scheduled

Load lock A Load lock B

Time

Only this job
has an effect

Job to be
scheduled next

Figure 5.3: Example for including a new job into the partial schedule

We now describe two evaluation functions for the comparison of job com-
binations. For the first function, the slowdown factor of all possible two-job
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combinations is computed. The slowdown factor of two jobs i and j is defined
as follows:

sdf(i, j) :=
CT(i, j)
CT(i)

, (5.23)

where CT(i, j) is the mean CT of a wafer of job i when it is serviced at the
same time as job j. CT(i) is the mean cycle time of a wafer of job i with
only this job being processed in the cluster tool. Since sdf(i, j) is much higher
if two jobs i and j do not fit together well, i.e., when they compete for a
resource, it is a good indicator for evaluating job combinations.

The corresponding CT(i) values are obtained by short off-line simulations
completed before starting the scheduling process and the computed sdf values
are stored for fast access by the beam search algorithm.

The resulting algorithm can be summarized as follows where we assume
for simplicity reasons that the jobs belong to different job types and that
β < n holds.
Algorithm Beam Search with Two-Job Slowdown

1. Create the root of the branching tree BT . Initialize the level l by l = 1.
Denote by Φk the set of unscheduled jobs associated with node k at the
first level and set initially Φk := {1, . . . ,n}, k = 1, . . . ,n.

2. Form a partial schedule for each node by setting j[1] := k for k = 1, . . . ,n.
Assign the resulting partial schedules to the nodes of level l = 1. Set l :=
l+ 1 and update the corresponding Φk accordingly.

3. For each node at level l, consider the job j[l], i.e., the last job of the partial
schedule. If for the corresponding set Φk �= /0, consider all the pairs of
the form ( j[l], j[l+1]), where j[l+1] ∈ Φk, and sort them by nondecreasing
sdf( j[l], j[l+1]) values; otherwise, go to step 4. Use the first min(∑ |Φk|,β )
pairs for all nodes of level l to further expand the corresponding nodes of
BT . Set l := l + 1 and update the corresponding Φk accordingly. Repeat
this step.

4. Simulate the schedules associated with each leaf using the cluster tool
simulator to determine Cmax and select the schedule with the smallest Cmax

value.

We abbreviate this algorithm BS-SLD-2. Note that step 4 is necessary be-
cause BS-SLD-2 improves the schedules just locally as only pairs of jobs are
considered. It is also clear that BS-SLD-2 tends to be computationally ex-
pensive when β becomes large.

We refine BS-SLD-2 by taking more than two jobs into account and call it
BS-SLD-3. We assume that at least two jobs are part of the partial schedule
and call the last two jobs j−1 and j, respectively, according to their position
in the partial schedule. We consider the case that the two jobs are interleaved
and that job j is the last job scheduled, but has a small CT value compared
to the CT value of job j− 1. This means that Cj−1 >Cj is valid. Of course,
the job to be scheduled next has to be compatible with job j−1 and not with
job j.
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In this case, we try to find a job j∗ such that sld( j − 1, j∗) is as small as
possible. To decide which method to use, we look at the CT values of job
j− 1 and job j. If

CT( j− 1)≥ thresh CT( j), (5.24)

there is a high probability that Cj < Cj−1 holds, and we choose the refined
method that considers j− 1 instead of j. When condition (5.24) is not true,
we use the method from BS-SLD-2 that computes the sdf value for the last
job scheduled. Therefore, we have to change step 3 of BS-SLD-2. The setting
thresh= 4 is chosen based on extensive experimentation and might be changed
for different problem instances.

Computational results are presented in [218, 219]. The two heuristics pro-
vide solutions with a Cmax value close to the optimal or best-known Cmax.
However, in case of larger values for n, their performance degrades. As ex-
pected, BS-SLD-3 outperforms BS-SLD-2, but the difference is small.

An alternative evaluation function is described in [219]. The method is
based on recipe comparison. The basic idea is to select only job pairs with
a large number of alternative chambers for each process step to avoid situ-
ations where wafers of the two jobs compete for scarce resources. BS-SLD-3
is outperformed by the BS-type algorithm that uses the latter evaluation
function.

We also note that Dümmler [75, 76] suggests a GA to tackle a generali-
zation of the problem discussed in this section, namely Pm|lrc|Cmax. The GA
simultaneously assigns the jobs to cluster tools and sequences them. All the
chromosomes of an iteration are assessed using the cluster tool simulation
engine.

5.3.3 Scheduling Jobs on Parallel Machines
with Sequence-Dependent Setup Times

We consider parallel machine scheduling problems with sequence-dependent
setups in this section as can be found in the ion implantation work area in a
wafer fab (cf. Sect. 2.2.3). A job will enter the ion implantation work center
when it completes its previous process step. Each implant process step needs
a potentially different processing time and carries two types of information:
product type and the specie being implanted. The setup time between dif-
ferent product types is often neglected because it is considerably less than
the setup time between different species. Boron, difluoroborane, phospho-
rous, and arsenic are typical species. When the product with a certain specie
is completed on the machine, a setup is required if the next job processed in
the same machine has a different specie.

The following assumptions are made for this scheduling problem:

1. All the jobs j are available at time r j ≥ 0.
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2. Once a machine is started, it cannot be interrupted, i.e., no preemption is
allowed.

3. The parallel machines are identical.
4. There are sequence-dependent setup times.

Using the α|β |γ notation, the considered class of scheduling problems can be
described as follows:

Pm|r j,s jk|PMi, i = 1,2,3, (5.25)

where s jk represents the setup time that occurs when job k is processed next
and the current setup state is appropriate for job j. We use the three perfor-
mance measures PM1 := Cmax, PM2 := TWC, and PM3 := TWT. These three
performance measures represent the indices used for the performance of most
manufacturing systems, as discussed in Sect. 3.3.1. Each of the three schedul-
ing problems from Eq. (5.25) is NP-hard, even if s jk = 0 is assumed (see
Brucker [34]). Therefore, we have to look for efficient heuristics.

We start by presenting a MIP formulation for problem (5.25) with Cmax

objective. We use the following indices in the MIP formulation:

j = 0, . . . ,n : job index.

Note that job j = 0 is a dummy job that is used on each machine. We have
p0 = r0 = 0 and s0 j = 0, j = 1, . . . ,n. The following parameters will be used
within the model:

r j : ready time of job j
p j : processing time of job j
s jk : sequence-dependent setup time when processing job k immediately after

job j
M : large number

The following decision variables are necessary:

Xi j :

{
1, if job i immediately precedes job j on the same machine
0, otherwise

Cj : completion time of job j on machine i
Cmax : makespan

The scheduling problem can be formulated as follows:

min Cmax (5.26)

subject to:
n

∑
i=0

Xi j = 1, j = 1, . . . ,n, (5.27)

∑
j �=i

Xi j ≤ 1, i = 1, . . . ,n, (5.28)
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n

∑
k=1

X0k ≤ m, (5.29)

Xi j ≤
n

∑
k=0

k �=i,k �= j

Xki, i = 1, . . . ,n, j = 1, . . . ,n, i �= j, (5.30)

Cj + s jk + pk ≤Ck +M(1−Xjk), j = 0, . . . ,n, k = 1, . . . ,n, j �= k,
(5.31)

C0 = 0, (5.32)

Cj ≥ r j +
n

∑
k=0

(
p j + sk j +(rk + pk − r j

)+
)Xk j, j = 1, . . . ,n, (5.33)

Cj ≤Cmax, j = 1, . . . ,n, (5.34)

Xi j ∈ {0,1}, i = 0, . . . ,n, j = 1, . . . ,n, i �= j. (5.35)

The objective is to minimize the makespan. Constraints (5.27) make sure that
each job is assigned to exactly one machine and has exactly one predecessor.
The dummy job 0 is used within X0k,k ∈ {1, . . . ,n}. We have r0 = p0 = 0 and
s0 j = 0, j = 1, . . . ,n. Constraints (5.28) ensure that each job except the dummy
job has at most one successor. The number of successors of the dummy jobs is
at most m because of constraint (5.29). When a given job i is processed on a
machine, then a predecessor has to exist on the same machine. This is modeled
by constraints (5.30). When a job k is assigned to a machine immediately
after job j, i.e., when Xjk = 1, its completion time has to be greater than the
sum of the completion time of job j, the setup time between j and k, and the
processing time of k. This is expressed by constraints (5.31). In case of Xjk = 0,
constraints (5.31) are also fulfilled because of the big M. Constraint (5.32) sets
the completion time of the dummy job to zero. Constraints (5.33) indicate
that the completion time of a job is always larger than its ready time plus the
processing time and the setup time. The makespan is not smaller than any
of the completion times of the jobs. This is modeled by constraints (5.34).
Finally, constraints (5.35) model the fact that the main decision variables Xi j

only take binary values. The MIP formulation (5.26)–(5.34) has been used to
solve problem instances up to m = 2 and n = 18 optimally. Therefore, we can
use the formulation to assess whether heuristics are correctly implemented
or not. Note that similar formulations can be derived for the two remaining
performance measures.

Next, we describe some appropriate heuristics. A GA (cf. the description
in Sect. 3.2.6) is used for this parallel machine scheduling problem for several
reasons. First, a GA is not only flexible in dealing with additional processing
restrictions of problems such as wj, d j, r j, or p j of the jobs, but can also
easily handle different objectives without changing the complete evaluation
algorithm or technique. We will see that the GAs for the different scheduling
problems from expression (5.25) are very similar. Second, a GA can pro-
vide feasible solutions in each generation while the feasible solutions of MIP
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formulations are greatly dependent on the nature of the problems. Third, a
GA produces a population of solutions. Knowing a set of feasible solutions is
desirable because this offers flexibility in case of machine breakdowns when
the schedule will be implemented in the BS.

A GA hybridized with dispatching rules is used to solve problem (5.25).
The GA is used to assign jobs to individual machines, and each machine
is scheduled according to a single machine dispatching rule that will be de-
scribed later. The sequencing of the jobs assigned to an individual machine
is necessary because we have to evaluate each chromosome using one of the
performance measures PMi, i = 1,2,3. After all the single machine schedules
are determined, the schedule of parallel machines is completed, and the per-
formance measure is returned by the GA and is used in creating the solutions
in the next generation. We will use the abbreviation HGA for the hybridized
GA throughout the rest of this section. The main architecture of the HGA is
shown in Fig. 5.4.

GA Assignment of jobs to machines

Calculate the objective
value

Evaluation of complete schedule by taking the maximum or
the sum of the single machine objective values

Sequence of jobs on
machine m

Apply the dispatching
rule for single

machine

Sequence of jobs on
machine 1

Apply the dispatching
rule for single

machine

Calculate the objective
value

Figure 5.4: Hybridization of a GA to solve parallel machine scheduling problems
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The following steps describe how the HGA approach works, i.e., we discuss
the encoding scheme, the initialization scheme, selection, crossover, mutation
operations, and finally the evaluation and termination scheme.

1. Encoding: We use a job-based representation. In the case of n different
jobs, the following representation is used for machine assignment:

c := (m1,m2, . . . ,mn−1,mn), (5.36)

where we denote by m j the machine that is used for processing job j.
For example, c := (1,10,4,4,4,4) means that job 1 will be processed on
machine 1, job 2 on machine 10, and the remaining jobs on machine 4. We
call each of these representations a single chromosome. HGA maintains a
population of these chromosomes.

2. Initialization: Each chromosome, represented by the array in expression
(5.36), is initialized by randomly assigning an equally likely integer from
the set {1, . . . ,m} to each of the n jobs.

3. Parents selection: Selection is an operation to select chromosomes accor-
ding to their performance, for the purpose of generating new offspring.
For selection, the roulette wheel technique is used (see Goldberg [103] and
Michalewicz [183]). The probability of selection of a certain chromosome
is proportional to its fitness. Hence, the chromosomes with better perfor-
mance are given a better chance to survive in the next generation. The
fitness is calculated using linear scaling. The fitness function of the HGA
is provided by one of the expressions 1/PMi, i = 1,2,3.

4. Crossover: A one-point crossover (cf. Goldberg [103] or Michalewicz
[183]) is utilized in which two parent chromosomes are selected ran-
domly according to a predefined crossover probability pc from the set
obtained in step 3. Furthermore, a crossover point is also randomly
chosen to divide each of the two parents. We denote the first chromo-
some by c1 := (m11,m12, . . . ,m1,n−1,m1n) and the second chromosome by
c2 := (m21,m22, . . . ,m2,n−1,m2n). After performing a one-point crossover
with a crossover point at position s, we obtain the two resulting chromo-
somes given by c3 := (m21, . . . ,m1s, . . . ,m1n) and c4 := (m11, . . . ,m2s, . . . ,m2n).

5. Mutation: According to a pre-defined mutation probability pm for each
gene of the resulting offspring, it is decided whether or not to change the
machine assignment. A selected gene is randomly changed to a different
machine number by a flip operator. For example, the operator might select
entry two in the array (2,1,3,3,1,2) and 2 as the randomly generated
number to be inserted. Thus, the new string will be (2,2,3,3,1,2). The pm

value is typically one percent of the size of the array (see Levine [160]),
because a change of the entry in an array often means a dramatic change
of searching direction. A proper value of pm helps the algorithm maintain
diversity while searching. On the other hand, an improper pm value will
either damage the strings if it is too large or lead to premature convergence
if it is too small.
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6. Elitism: A steady state genetic algorithm with overlapping populations is
used. The worst elements of the preceding population are replaced. This
is called an elitist strategy. Rudolph [272] proved that this strategy helps
the algorithms converge to the optimum. The number of replaced elements
depends on the given replacement probability.

7. Evaluation: The three objectives Cmax, TWC, and TWT are evaluated
separately.

8. Termination: The HGA is controlled by a prescribed number of evalua-
tions, which is equal to the population size times the number of genera-
tions.

The HGA requires the calculation of the objective function for each element
of the population. Therefore, a sequence of the jobs has to be determined for
each single machine. Dispatching rules are used to determine a sequence of
the jobs. The FIFO, EDD, SPT, WSPT, LPT, and finally the HVF (highest
weight) dispatching rules with priority index (4.7) (cf. Sect. 4.2) are outper-
formed by two dispatching rules that take sequence-dependent setup times
into account.

The first dispatching rule among them is the setup avoidance dispatching
rule LSC with priority index (4.11) (cf. Sect. 4.2). A tie between jobs for a
given machine will be broken according to one of six secondary dispatching
rules mentioned above. In the case of FIFO with multiple jobs ready at the
same time, EDD will be used to break the tie.

The second rule is the ATCS dispatching rule. It was proposed by Lee and
Pinedo [159] to find schedules with a small TWT value for the scheduling
problem 1|s jk|TWT. The index of job j at time t when job l has completed
its processing on the machine is calculated by

Il j(t) :=
wj

p j
exp

{

− (d j − p j − t)+

κ1 p̄

}

exp

{

− sl j

κ2s̄

}

, (5.37)

as introduced in Sect. 4.3.2. The resulting schedules will potentially be im-
proved by using a swapping technique. We consider swaps between pairwise
adjacent jobs. Because we use only one pass, we use the notation one pass
adjacent (ADJ) swap. To have a fair comparison with the LSC dispatching
rule, ADJ is also applied to LSC. We also combine the LSC dispatching rule
with the SPT rule as a secondary dispatching rule.

The algorithm HGA can be summarized as follows.
Algorithm HGA

1. Create an initial population as described above. Calculate the fitness values
of all chromosomes of the initial population by solving the resultant single
machine scheduling problems using the LSC and ATCS dispatching rules,
respectively. Improve these single machine schedules by ADJ. Set iter = 1.

2. Select appropriate parent chromosomes to find a new population.
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3. Perform crossover and mutation operations applied to the chromosomes
chosen in step 2 to produce offspring.

4. Calculate the fitness values of all chromosomes of the population by sol-
ving the resultant single machine scheduling problems using the LSC and
ATCS dispatching rules. Improve these single machine schedules by ADJ.
Update the current best chromosome.

5. Select a new generation based on the results in steps 3 and 4, i.e., re-
place only a certain part of the chromosomes of the current population by
offspring. Set iter = iter+ 1.

6. When iter > itermax then stop; otherwise, go to step 2.

A population size of 8, pm = 0.01, and pc = 0.6 is selected for HGA. The
number of generations was 300. We run HGA ten times with different seeds
to obtain statistically significant results. A grid search was used to select
appropriate values for the scaling parameters (κ1,κ2) in index (5.37).

Next, we describe the design of experiments used. We expect that the
performance of HGA depends on the range of the weights, the range of the
due dates, the range of the ready times, and the ratios of average processing
times to average setup times. A total of 36 cases with 30 random problem in-
stances for each factor combination are generated, resulting in 1,080 problem
instances. The setup time between jobs of different species is a U(3k,7k)-
distributed random variable where k = 2,6,10 to model three setup levels,
respectively. The ratio represents the impact of the magnitude of the setup
time to the total processing times. The processing times are random variables
with a probability distribution U(−9,9) plus 50, 30, and 10 for each of the
three levels. This results in ratios of average processing times to average setup
times equal to 5, 1, and 1/5, respectively. The resulting design of experiments
is summarized in Table 5.3.

Table 5.3: Design of experiments for problem (5.25)

Factor Level Count

w j Narrow ∼U(1,10) 2
Wide ∼U(1,20)

r j High load: r j ≡ 0 3
Moderate load: 50% r j ≡ 0 and 50% r j ∼U(0,720)

Low load: r j ∼U(0,720)
d j Narrow: r j + z j ∑n

j=1 p j , where z j ∼U(−1,2) 2
Wide: r j + z j ∑n

j=1 p j, where z j ∼U(−2,4)
p̄/s̄ High: 50/10 with p−50 ∼U(−9,9), s/2 ∼U(3,7) 3

Moderate: 30/30 with p−30 ∼U(−9,9), s/6 ∼U(3,7)
Low: 10/50 with p−10 ∼U(−9,9), s/10 ∼U(3,7)

Total factor combinations 36
Number of problem instances per combination 30

Total number of problem instances 1,080
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Because we know that ATC-type dispatching rules do not perform well
for wide due dates and widespread ready times (cf. Balasubramanian et al.
[18]), HGA is hybridized with LSC in this situation. This setting is also used
for the Cmax objective. In the remaining cases, HGA is hybridized with the
ATCS dispatching rule.

The relative distance (RD) percentage is used to evaluate each heuristic,
and it represents how far the performance of the current method is away
from the best performance of all heuristics under consideration. ARD is the
average RD from all instances of each factor combination. A low ARD value
indicates better overall performance, and a heuristic with ARD of 0% is the
best rule for all the problem instances considered. We obtain

RD(H) := (PM(H)−BP)/BP, (5.38)

where PM(H) is the performance measure value of heuristic H and BP is the
best-known performance measure value over all studied heuristics, i.e., the
list scheduling approaches including all the dispatching rules and the HGA.
The corresponding computational results are shown in Table 5.4.

Table 5.4: Computational results for problem (5.25)

Compare Cmax TWC TWT
HGA ATCS LSC HGA ATCS LSC HGA ATCS LSC

d j

Narrow 1.0 14.5 1.3 0.0 19.9 13.4 1.0 160.5 57.1
Wide 0.9 14.4 1.3 0.0 20.6 13.1 0.2 113.2 41.2

r j

High load 2.7 12.2 0.2 0.0 28.7 22.5 1.4 38.4 20.7
Moderate load 0.0 9.8 1.5 0.0 18.9 11.4 0.4 106.5 45.1

Low load 0.2 21.4 2.1 0.0 13.0 5.9 0.0 265.5 81.6
p̄/s̄

5 0.2 6.8 0.5 0.0 8.4 18.9 0.0 15.9 32.9
1 0.8 19.3 1.4 0.0 18.6 10.9 0.4 61.7 16.4

1/5 1.9 17.2 1.9 0.0 33.7 10.0 1.4 332.9 98.1

We show the RD values. Instead of comparing all problem instances indi-
vidually, the instances are grouped according to factor levels. For the perfor-
mance measures of TWC and TWT, the HGA produces the best solutions
across all the problem instances. For the problems of minimizing Cmax, HGA
performs slightly worse than LSC when all the jobs are ready at the begin-
ning. These results indicate that as the setup times become more important
in the total processing time and the jobs are all ready at the beginning, LSC
takes advantage of grouping the jobs with the least setup times together to
reduce the Cmax value while the HGA suffers from being trapped in a local
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minimum. For the objective of TWC, the smaller the percentage of jobs that
are ready at the beginning, the less improvement HGA has in comparison
with ATCS and LSC. The HGA performs extremely well for problem instan-
ces with a low processing time and setup time ratio and moderate and low
load levels when the goal is to minimize TWT. The improvement of at least
100% indicates that HGA is very practical since jobs will arrive at the work
center continuously in many real-world cases. More computational results can
be found in [88].

Note that the GA approach taken in HGA is generalized to a four-phase
scheduling framework for parallel machines proposed by Mönch [190]. This
framework is applied to scheduling jobs on photolithography steppers in [189].
The framework is implemented based on the object-oriented C++ framework
GAlib (cf. Wall [315]) that supports the chromosome representations, the
genetic operators used, and the scheme of the GA. Furthermore, a multi-
population GA to solve multiobjective scheduling problems for parallel ma-
chines is proposed by Cochran et al. [53]. This approach avoids the separate
consideration of PMi, i = 1,2,3.

5.3.4 Scheduling Jobs with Ready Times on Parallel
Batch Machines

In this section, we extend the single machine batch scheduling problem dis-
cussed in Sect. 5.3.1 to a more real-world-like setting. We model diffusion and
oxidation operations as scheduling problems for parallel batch-processing ma-
chines with incompatible job families. The performance measure to be mini-
mized is TWT.

The assumptions involved in the scheduling of parallel batch-processing
machines with incompatible jobs families and unequal ready times of the
jobs to minimize TWT include:

1. Jobs of the same family have the same processing times on all machines.
2. The batch-processing machines are unrelated. That means that the ma-

chines have a machine-specific maximum batch size.
3. Once a machine is started, it cannot be interrupted, i.e., no preemption is

allowed.
4. We assume unequal ready times of the jobs.
5. Dedications/qualifications are used on the batch machines, i.e., only a

certain set of incompatible job families is allowed on each machine, mainly
because of quality concerns.

We use the same notation as in Sect. 5.3.1. The only additional notation
is with respect to ready times, unrelated parallel machines, and machine
dedications:

1. The ready time of job j of family i is represented as ri j . When the family
information is not important, we use the notation r j to refer to the ready
time of job j of the n jobs.
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2. The maximum batch size at machine i = 1, . . . ,m is represented as B(i).
Clearly, we have |Bs| ≤B(i) for each batch Bs that is processed on machine i.

3. The family dedication of machine i is denoted by Di. We have Di ⊆
{1, . . . , f}. Because each job belongs to a family, we can derive from Di

the set of jobs that are allowed to be processed on machine i and also a
set of machines that can process a certain job j. The latter set is denoted
by Mj to conform with the notation introduced in Sect. 5.1.

Using the α|β |γ notation, the scheduling problem can be represented as

Rm|r j,p-batch, incompatible,Mj |TWT, (5.39)

where Mj refers to dedications for job j. Note that because of the unequal
ready times of the jobs, it is sometimes advantageous to form non-full batches,
while in other situations it is a better strategy to wait for future job arrivals
to increase the fullness of the batch.

We start by presenting a MIP for problem (5.39). This formulation is si-
milar to the MIP (5.9)–(5.17). The following index sets will be used:

b = 1, . . . ,bi : index for batches on machine i,
s = 1, . . . , f : family index
j = 1, . . . ,n : job index
i = 1, . . . ,m : machine index

Ji, i = 1, . . . ,m : set of all jobs that are allowed on machine i
Mj, j = 1, . . . ,n : set of all machines that are allowed to process job j

The following parameters will be used within the model:

B(i) : maximum batch size on machine i
d j : due date of job j

e js :

{
1, if job j belongs to family s
0, otherwise

M : large number
ps : processing time of family s
wj : weight of job j
r j : ready time of job j
Di : set of all families that can be processed on machine i

The following decision variables are necessary:

Sbi : starting time of the bth batch on machine i
Cj : completion time of job j

Xjbi :

{
1, if job j is assigned to the bth batch on machine i
0, otherwise
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Ybis :

{
1, if batch b on machine i belongs to family s
0, otherwise

Tj : tardiness of job j

The scheduling problem (5.39) may be formulated as follows:

min
n

∑
j=1

wjTj (5.40)

subject to

∑
i∈Mj

bi

∑
b=1

Xjbi = 1, j = 1, . . . ,n, (5.41)

∑
j∈Ji

Xjbi ≤ B(i),b = 1, . . . ,bi, i = 1, . . . ,m, (5.42)

∑
s∈Di

Ybis = 1,b = 1, . . . ,bi, i = 1, . . . ,m, (5.43)

e jsXjbi ≤ Ybis, j = 1, . . . ,n, i ∈ Mj,b = 1, . . . ,bi, (5.44)

Xjbir j ≤ Sbi, j = 1, . . . ,n, i ∈ Mj,b = 1, . . . ,bi, (5.45)

Sbi + ∑
s∈Di

pse jsXjbi ≤ Sb+1,i, j = 1, . . . ,n, i ∈ Mj ,b = 1, . . . ,bi − 1, (5.46)

Sbi + ∑
s∈Di

pse js ≤Cj +M(1−Xjbi),

j = 1, . . . ,n, i ∈ Mj, b = 1, . . . ,bi, (5.47)

Cj − d j ≤ Tj, j = 1, . . . ,n, (5.48)

Cj,Tj,Sbi ≥ 0,Xjbi,Ybis ∈ {0,1}, j = 1, . . . ,n,b = 1, . . . ,bi, i = 1, . . . ,m. (5.49)

The objective (5.40) intends to minimize the TWT value. Constraints
(5.41) ensure that each job is assigned to only one batch, and constraints
(5.42) do not allow more than B(i) jobs to be assigned to the same batch on
machine i. With constraints (5.43), we make sure that each batch belongs
to a single job family, and constraints (5.44) ensure that the families of the
jobs assigned to a batch match the family of the batch. Using constraints
(5.45), the start time of batch b is related to the ready times of the jobs that
form batch b, whereas constraints (5.46) ensure the correct start times for all
subsequent batches. Constraints (5.47) make sure that the completion time
of each job is not smaller than the sum of the start time of its batch and the
processing time of the batch. Finally, constraints (5.48) express the tardiness
for each job, and expression (5.49) represents nonnegativity and binary con-
straints. The MIP (5.40)–(5.49) has been solved to optimality for m = 2 and
up to n= 18 in reasonable time. Hence, we have to look for efficient heuristics.

Time window decomposition approaches can be used to solve scheduling
problems where not all ri j = 0. This approach was originally proposed for
the problem Pm|r j,s jk|Lmax by Ovacik and Uzsoy [222]. We consider at time t
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only those jobs that already wait or will be ready within a given time window
Δ t for processing on the machines of a work center. The set of jobs can be
described as follows:

J(i, t,Δ t) :=
{

i j|ri j ≤ t +Δ t
}
. (5.50)

Because |J(i, t,Δ t)| can be large, we might reduce the set of jobs by using ap-
propriate dispatching rules and consider only thresh jobs with a high priority
index value in a second step. We consider the reduced job set

J̃(i, t,Δ t, thresh) := {i j|i j ∈ J(i, t,Δ t) and pos(i j)≤ thresh} , (5.51)

where we use the ATC index (5.18) for evaluating the jobs of J(i, t,Δ t) and
we denote by pos(i j) the position of job i j with respect to this index. We
consider all job combinations on the set J̃(i, t,Δ t, thresh) to form a batch for
machine k. We set c := |J̃(i, t,Δ t, thresh)| for abbreviation. If c ≥ B(k), then we
have to consider

(
c

B(k)

)

+

(
c

B(k)− 1

)

+ . . .+

(
c
1

)

(5.52)

different batches for the next batch to be formed. Obviously, the computa-
tional effort for evaluating all the job combinations depends strongly on the
choice of the parameters Δ t and thresh. We will use the following index to
assess a certain batch Bs of family i on machine k:

IBs(t) :=
|Bs|
∑
j=1

(
wi j

pi

)

exp

(

− (di j − pi− t +(rBs − t)+)+

κ p

) |Bs|
B(k)

, (5.53)

where rBs :=maxi j∈Bs(ri j) is the maximum ready time of the jobs in the batch.
This index is proposed by Mönch et al. [203]. It is called the BATC-II index.
Note that the |Bs|/B(k) part of the index in Eq. (5.53) is related to the fullness
of batches on machine k. The batch with the highest BATC-II index will be
selected next for processing on machine k, so fuller batches are preferable.
Finally, we move the time window into the future in a rolling horizon manner.

The time window decomposition heuristic (TWDH) can be described in a
more algorithmic manner as follows.
Algorithm BATC-II-TWDH

1. Denote the set of all jobs by Jn. Initialize i := 1 to iterate over all families.
2. Determine the next available machine k with availability time ta(k) and

initialize t := ta(k).
3. Determine the job i j ∈ Jn with minimal ri j. When t < ri j, then set t := ri j .
4. Consider a time window of length Δ t with left endpoint t. Determine the

sets J(i, t,Δ t) and J̃(i, t,Δ t, thresh).
5. Consider all feasible combinations of jobs to form batches based on jobs

from the set J̃(i, t,Δ t, thresh). Find the batch Bs with largest index (5.53)
among the batches formed in this step.
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6. Update i := i+ 1. When i > f , then go to step 7; otherwise, set t := ta(k)
and go to step 3.

7. Select the batch with the largest index found in step 5. This batch is chosen
to be selected on machine k. Let Bs be the chosen batch and i the family of
this batch. Update Jn := Jn−{i j|i j ∈Bs} and set ta(k) :=max{ta(k),rBs}+ pi.

8. When |Jn|> 0, then set i := 1 and go to step 2, otherwise stop.

Note that BATC-II-TWDH is used for several κ values within the indices
(5.18) and (5.53) from a grid over the interval (0.0,6.5]. Neural networks and
inductive decision trees from machine learning (cf. Sect. 3.2.10) are proposed
by Mönch et al. [205] to automate this step for BATC-II-TWDH. In Klemmt
et al. [146], a MIP approach is used to carry out steps 3–7 of BATC-II-
TWDH, i.e., solving a problem instance for problem (5.39) leads to solving a
sequence of MIPs.

BATC-II-TWDH can be used to find good initial solutions for neighbor-
hood search approaches. We continue by describing a VNS-type heuristic for
problem (5.39). VNS is a neighborhood search-based metaheuristic (cf. the
description in Sect. 3.2.6).

The VNS algorithm designed for the batching problem operates on the
final solution representation, i.e., each job is assigned to a batch and each
batch is assigned to a certain position on a machine. The proposed VNS
algorithm can be summarized as follows.
Algorithm VNS for Batch Scheduling
Initialization

1. Define K different neighborhood structures Nk.
2. Generate an initial solution x using BATC-II-TWDH.
3. Set k = 1.

Loop

1. Repeat until stopping criterion is met.
2. Shaking: Choose randomly x′ ∈ Nk(x), where Nk(x) is a neighborhood of

x that is based on the neighborhood structure Nk (see the description in
Sect. 3.2.6).

3. Local search: Improve x′ by the batch local search (BLS) method (de-
scribed below).

4. Acceptance decision: If x′ is better than x, then x := x′ and k := 1; otherwise,
set k := (k mod K)+ 1.

The proposed BLS algorithm used for the VNS scheme consists of two differ-
ent phases. During the first phase, the workload of the machines is balanced. If
the last batch of the machine with the maximum completion time starts later
than the completion time of another machine that is suitable for that batch,
the batch is moved to that machine. This step is repeated until no batch
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can be moved. During the second phase of the local search, jobs and entire
batches are exchanged. The BLS algorithm can be summarized as follows.
Algorithm BLS

1. Phase 1: Balance the workload across machines.
2. Phase 2: Apply the following steps iteratively as long as improvements are

obtained:

(a) Job insert: Remove a job from a batch and insert it into another
batch.

(b) Job swap: Swap two jobs of different batches from the same family.
(c) Batch swap: Swap two batches of the same family.

The design of the neighborhood structure for the shaking step of the VNS
considers manipulations of whole batches across different machines. We define
five classes of neighborhood structures:

• splitBatch(l): Randomly select a batch and split it into two batches. One
remains in the current position, the other one is inserted into the sequence
on a different machine. Repeat this step l times.

• moveBatch(l): Randomly select a batch from a machine and remove it. Insert
it in a random position on a randomly selected machine. Repeat this step
l times.

• moveSeq(l): Randomly select a position on a machine. Remove a sequence
of at most l (l or all remaining batches) and insert this partial sequence on
another machine at a randomly selected position.

• swapBatch(l): Randomly select two batches from different machines that
are both capable of handling those batches and exchange their positions.
Repeat this step l times.

• swapSeq(l): Randomly select two positions on different machines and ex-
change the batch sequences starting from that position of at most length l
(l or all remaining batches).

Note that in each of these neighborhoods only splits, moves, and swaps are
considered that result in a feasible solution, i.e., restrictions of job families
and batch sizes are considered. The neighborhoods are applied in the order
given above. They are parameterized with different l values. We use K = 15
and l = 2,3,5.

We expect that the solution quality depends on the number of incompa-
tible job families, the number of jobs, the number of machines, and the release
and due date settings. The ready times of the jobs are taken as instances
of a U(0,Ĉmax)-distributed random variable, where the quantity Ĉmax is an
estimate of the makespan and is determined as follows:

Ĉmax := np̄/

(

0.75 u
m

∑
k=1

B(k)

)

. (5.54)
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The quantity p̄ denotes the average processing time and u the utilization of
the machines. The factor 0.75 mimics the average fullness of a batch. The
corresponding design of experiments is summarized in Table 5.5.

Table 5.5: Design of experiments for problem (5.39)

Factor Level Count

f 4, 6, 8 3
m 3, 4, 5 3
ni 20, 30, 40 3

B(k) B(1) = 3, B(2) = 4, B(3) = 6, B(4) = 4, B(5) = 2 1
pi 2 with p = 0.2, 4 with p = 0.2, 10 with p = 0.3, 1

16 with p = 0.2, 20 with p = 0.1
wi j 0.3 with p = 0.75, 0.6 with p = 0.2, 1 with p = 0.05 1

ri j ∼U(0,Ĉmax) 1
di j ∼U (ri j −4p̄, ri j +4p̄) 1
Di D1 = {1, . . . ,6}, D2 = {1,3,7,8}, D3 = {1,4,6,7}, 1

D4 = {1,4,5,8}, D5 = {1,3,4}
u 0.7, 0.8, 0.9 3

Total factor combinations 81
Number of problem instances per combination 2

Total number of problem instances 162

We compare the performance of the BATC-II-TWDH with the perfor-
mance of the VNS scheme. The corresponding computational results are
shown in Table 5.6. The results in the third row correspond to BATC-II-
TWDH. We use a time window of size Δ t = p̄/4. It can be shown that a
too small or a too large time window is not beneficial. A similar behavior
is observed for the algorithm NACH (cf. Sect. 4.6.2). The computing time
for the VNS scheme is 60 s. For each problem instance, three replications
with different seeds are performed, and the average TWT value is used for
comparison. We show the TWT values for the VNS approach relative to the
TWT values found by BATC-II-TWDH. All problem instances are grouped
according to different factor levels. For example, m = 3 means in Table 5.6
that the average TWT value for all problem instances is taken, where m = 3
is valid. We can see that a larger number of machines and incompatible job
families makes the scheduling problem harder to solve. We see from Table 5.6
that VNS clearly outperforms BATC-II-TWDH.

More computational results for problem (5.39) can be found in [146].
GAs similar to HGA from Sect. 5.3.3 are discussed for problem Pm|p-batch,
incompatible|TWT by Balasubramanian et al. [18] and for Pm|r j,p-batch,
incompatible|TWT by Mönch et al. [203]. Either jobs are assigned to ma-
chines via the GA or batches are formed first by BATC-type dispatching rules
and then these batches are assigned to the machines by the corresponding
GA. The second approach from [203] is extended to the following bicriteria
problem Pm|r j,p-batch, incompatible|TWT,Cmax by Reichelt and Mönch [259].
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Table 5.6: Computational results for problem (5.39)

Compare m ni f
3 4 5 20 30 40 4 6 8

TWDH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VNS 0.89 0.92 0.93 0.92 0.91 0.93 0.91 0.89 0.94

A different GA for Pm|r j ,p-batch, incompatible|TWT is proposed by Chiang
et al. [48] for the problem studied in [203].

5.3.5 Scheduling Problems for Parallel Machines
with Auxiliary Resources

Auxiliary resources in wafer fabs are typically related to steppers in the photo-
lithography work area (cf. Sect. 2.2.2). As ICs are built by repeatedly con-
structing layers with desired properties on the surface of the wafers, stepper
processing depends on both the layer of the wafer that is associated with
the current process step of the job and the correct reticle being available
at the same time. The auxiliary resource problem arises because every layer
of each product can require its own unique reticle, as reticle requirements
are typically both product- and layer-dependent. Considering the fact that a
reticle must be on the machine for the duration of processing, the relatively
small number of reticles present in a wafer fab further complicates the parallel
machine scheduling problem associated with steppers.

In this section, we start by discussing a simplified model problem. The
assumptions for scheduling jobs on steppers within this model problem are
the following:

1. The parallel machines are identical.
2. Once a machine is started, it cannot be interrupted, i.e., no preemption is

allowed.
3. We assume unequal ready times of the jobs.
4. An appropriate reticle is necessary to process a job on a machine.

We consider a TWC objective. Note that this measure takes different weights
of the jobs into account. In the context of stepper scheduling, it might be
preferable to schedule jobs next with many already completed layers. There-
fore, individual job weights can be derived based on this information. On the
other hand, a small TWC value leads to a small CT value of the jobs. Using
the α|β |γ notation, the scheduling problem can be represented as

Pm|r j,aux|TWC. (5.55)
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Problem (5.55) is NP-hard because the problem 1|r j|TC is NP-hard (see
Brucker [34]). Hence, we have to look for efficient heuristics.

In the following, we present a MIP formulation for problem (5.55) that is
due to Cakici and Mason [42]. It is similar to the formulation given for pro-
blem (5.25). We use the following indices and index sets in the corresponding
MIP model:

i = 1, . . . ,m : machine index
j = 0, . . . ,n : job index
l ∈ L : set of layers
Jl : set of jobs that require layer l ∈ L for processing

Note that the job j = 0 is a dummy job that is used on each machine.
We have p0 = r0 = 0. The following parameters will be used within the model:

r j : ready time of job j
p j : processing time of job j
w j : weight of job j
M : large number

The following decision variables are used within the MIP:

Xi j :

{
1, if job i immediately precedes job j on the same machine
0, otherwise

Cj : completion time of job j

ei j :

⎧
⎨

⎩

1, if job i ∈ Jl is completed before job j ∈ Jl , i �= j starts its
processing

0, otherwise

The scheduling problem can be formulated as follows:

min
n

∑
j=1

wjCj (5.56)

subject to:

n

∑
i=0

Xi j = 1, j = 1, . . . ,n, (5.57)

∑
j �=i

Xi j ≤ 1, i = 1, . . . ,n, (5.58)

n

∑
k=1

X0k ≤ m, (5.59)

Xi j ≤
n

∑
k=0

k �=i,k �= j

Xki, i = 1, . . . ,n, j = 1, . . . ,n, i �= j, (5.60)

Cj + pk ≤Ck +M(1−Xjk), j = 0, . . . ,n, k = 1, . . . ,n, j �= k, (5.61)
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C0 = 0, (5.62)

Cj ≥ r j +
n

∑
k=0

(p j +(rk + pk − r j)
+)Xk j, j = 1, . . . ,n, (5.63)

Cj + pke jk ≤Ck +M(1− e jk),

j = 1, . . . ,n, k = 1, . . . ,n, j,k ∈ Jl , l ∈ L, j �= k, (5.64)

1 ≤ ei j + e ji, i = 1, . . . ,n, j = 1, . . . ,n, i, j ∈ Jl , l ∈ L, i �= j,
(5.65)

Xi j ∈ {0,1}, i = 0, . . . ,n, j = 1, . . . ,n, i �= j, (5.66)

ei j ∈ {0,1}, i = 1, . . . ,n, j = 1, . . . ,n, i, j ∈ Jl , l ∈ L, i �= j. (5.67)

The objective is to minimize the TWC performance measure. Constraints
(5.57) ensure that each job is assigned to exactly one machine and has exact-
ly one predecessor. The dummy job 0 is used within X0k,k ∈ {1, . . . ,n}. Con-
straints (5.58) model that each job except for the dummy job has at maximum
one successor. The number of successors of the dummy jobs is at most m be-
cause of constraint (5.59). When a given job i is processed on a machine,
then a predecessor must exist on the same machine. This is modeled by con-
straints (5.60). When a job k is assigned to a machine immediately after job
j, i.e., when Xjk = 1, its completion time has to be greater than the sum of
the completion time of j and the processing time of k. This is expressed by
constraints (5.61). In case of Xjk = 0, constraints (5.61) are also fulfilled be-
cause of the big M. Constraint (5.62) sets the completion time of the dummy
job to zero. Constraints (5.63) ensure that the completion time of a job is
always larger than the sum of its ready time and processing time. Constraints
(5.64) and (5.65) ensure that if two jobs require the same reticle, one of the
jobs has to complete its processing before the other job starts its processing.
Finally, constraints (5.66) and constraints (5.67) model the fact that the main
decision variables Xi j and ei j only take on binary values.

The MIP formulation (5.56)–(5.67) has been used to solve problem in-
stances up to m = 2 and n = 15 and up two six layers within reasonable time
optimally. Therefore, again we can use the MIP formulation (5.56)–(5.67) to
assess whether heuristics are correctly implemented and to get some insights
into the potential performance of the proposed heuristics.

Next, we describe a heuristic for problem (5.55) that is proposed in [42].
The heuristic consists of two phases. In the first phase, the heuristic de-
termines a feasible solution using dispatching rules within a list scheduling
approach that takes the auxiliary resources into account. Then, in a second
step, this solution is improved by tabu search. The algorithm of the first
phase is summarized as follows.
Algorithm Construction Heuristic (CH)

1. Determine the current values of t and ϕ , where t is the current time and
ϕ represents a machine that becomes idle at time t. The quantity Φ is the
set of unscheduled jobs, and Θ is the set of candidate jobs. Initially, set
t = 0, ϕ = 1, Φ := {1, . . . ,n}, and finally Θ := Φ.

2. For each j ∈ Θ determine the index
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I j(t) :=

{
0, if t < r j

w j/p j, otherwise
. (5.68)

If for all j ∈ Θ the condition t < r j is valid, then use the index

I j(t) := wj/(p j + r j − t) (5.69)

instead of index (5.68). The job k with the highest index value will be
chosen as a candidate to be assigned to machine ϕ .

3. When k can be feasibly assigned to ϕ at max(t,rk), i.e., when an appropriate
reticle is available, then go to step 4; otherwise, go to step 5.

4. Assign k to ϕ at time max(t,rk). Update Φ := Φ−{k} and go to step 6.
5. Update Θ := Θ−{k}. When Θ = /0 holds, then go to step 6; otherwise, go

to step 2.
6. The value of t has to be updated to the smallest future point of time in

which a feasible assignment of a job to a machine is possible, i.e., when a
new job is ready for processing or when a machine becomes available. Set
Θ := Φ. If Θ �= /0, go to step 2; otherwise, stop.

Note that the indices (5.68) and (5.69) are influenced by the fact that the
WSPT dispatching rule is optimal for the scheduling problem 1||TWC (cf.
Pinedo [240]). The algorithm of the second phase is a tabu search variant. A
neighborhood of a feasible solution x of problem (5.55) consists of all pairwise
job swaps. After a swap of two jobs, a feasible schedule is obtained by a
placement heuristic [42]. The resultant two-phase heuristic is called CH+TS.

Next, we discuss the results from computational experiments. A variety of
problem instances are examined to evaluate the efficacy of CH and CH+TS.
First, two different levels are considered for the number of layer types, sam-
pling from a discrete uniform distribution DU[1,v] with v ∈ {3,6}. Experi-
ments are also performed for both two and three machines operating in pa-
rallel. For each job, an integer processing time is generated from DU[45,75].
One-half of the job ready times are generated from DU[1,360], while the se-
cond half of the jobs have r j = 0. Further, job weights are selected according
to DU[1,20]. The design of experiments is summarized in Table 5.6.

Table 5.6: Design of experiments for problem (5.55)

Factor Level Count

m 2, 3 2
n 10, 15 2
p j ∼ DU[45,75] 1
w j ∼ DU[1,20] 1
r j 50% ∼ DU[1,360] and 50% r j ≡ 0 1
l ∼ DU[1,ν ], ν ∈ {2,3} 2

Total factor combinations 8
Number of problem instances per combination 10

Total number of problem instances 80
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We compare the TWC values obtained by CH and CH+TS, respectively
with the optimal TWC results from the MIP formulation (5.56)–(5.67) by
presenting the ratios in Table 5.7.

Table 5.7: Computational results for problem (5.55)

Compare CH CH+TS

m
2 1.012 1.007
3 1.022 1.008

n

10 1.014 1.004
15 1.021 1.012

l

1–3 1.021 1.011
1–6 1.014 1.005

Overall 1.017 1.008

We see from Table 5.7 that CH and CH+TS perform well. CH+TS was
able to determine the optimal solution for 76 problem instances. CH+TS
slightly outperforms CH.

A couple of real-world conditions are not included in problem (5.55). The
only additional constraint compared to other parallel machine scheduling
problems is the limited number of reticles. In real-world situations, however,
many more constraints appear. For example, the steppers often have to be
modeled as unrelated parallel machines due to their different generations.
Steppers generally have a local reticle stocker that can hold only a certain
small number of reticles. Unfortunately, wafer fabs processing a wide variety
of products may need to have a large number of different reticles available for
use at any given time. Therefore, central stockers located near the stepper
work center are sized with sufficient capacity to manage all reticles required
in the facility. Because the pattern on each reticle is important in the manu-
facturing process, moving reticles from one place to another in a wafer fab is
not trivial. Loading a reticle onto a machine, called a machine setup, must be
done very carefully. In some wafer fabs, every time a reticle is moved, it must
be inspected either to ensure that the original pattern is intact or to be sure
that there are no unwanted particles of dust or vapor on the surface. There-
fore, jobs that require the same reticle are often processed in a consecutive
manner on the same machine to avoid frequent reticle changes.

Send-ahead wafers for steppers are also common to perform quality mea-
surements with a single wafer. In this situation, a single wafer out of a cer-
tain job is processed instead of the entire job. Because of the required reticle
change, a small number of send-ahead wafers is desirable. In order to process
a job on a stepper, the job has to be ready, the stepper has to be idle, and
finally, the reticle has to be inspected and set up on the idle stepper. In the



5.3 Equipment Scheduling 143

remainder of this section, we will briefly discuss approaches from the litera-
ture that address some of these constraints.

Akçali and Uzsoy [4] studied the shift-scheduling problem of a photolitho-
graphy station and created a policy that efficiently distributes the workload
across all machines for an entire shift. In their capacity allocation routine
(CAR), all waiting jobs are categorized based on the process step they await,
and all machines are categorized based on how much work has already been
allocated to them. With this information, the CAR incorporates operational
and auxiliary resource constraints and uses a greedy heuristic to assign the
largest group of waiting jobs to the machine with the highest amount of
available capacity and preferably, the required reticle. In the second step, a
sequencing problem for jobs on each machine is solved to create a detailed
schedule for an entire shift. A similar approach is discussed by Klemmt et al.
[147].

A network flow model is proposed by Dı̀az et al. [68] to efficiently load
reticles onto machines based on the jobs that are soon available to be pro-
cessed. The current location of all reticles and information of jobs that are
waiting for processing or that will be ready for processing soon are used as
inputs for the model. The objective is to minimize the number of setups and
inspections over the next shift.

The assignments of reticles can be used to determine schedules by list
scheduling using the following variant of the ATCS dispatching rule:

Il j(t) :=
wj

p j
exp

(

− (d j − p j − t)+

κ1 p̄

)

exp

(

− sl j

κ2s̄
− max(r j − t,al j,0)

κ3 p̄

)

, (5.70)

where we denote by al j the time that is required to make the reticle for
job j ready on a machine that has just finished processing job l and κ3 is
a third look-ahead parameter. Index (5.70) has the advantage compared to
index (5.68) that the availability of the reticle and the required setups are
more directly taken into account. Computational results using a simulation
environment similar to that described in Sect. 3.3.2 can be found in [68].

Operational problems related to send-ahead wafers are discussed by Akçali
et al. [5]. In this paper, the main performance measure is CT. A GA for
scheduling steppers that takes send-ahead wafers and reticle constraints into
account is described by Mönch [189]. A combined objective function is taken
that considers TP, TWT, and the number of send-ahead wafers.

Finally, we discuss a different example from the back-end area provided
by Kempf et al. [137]. A single burn-in oven is considered. The auxiliary
resources are given by load boards (cf. Sect. 2.2.2). A burn-in oven is a batch-
processing machine. The oven capacity is given by the number of boards that
an oven can carry. The size s of a single job is given by the number of boards
that are required to process the job. Because the board type required by
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a job depends on the packaging of the circuits, different jobs may require
different load boards. Only a limited number of boards are available for each
board type. The concept of incompatible job families as already described
for scheduling problems (5.2) and (5.39) can be used to model the fact that
certain jobs have to be kept in the oven for the same amount of time. Only
jobs of the same family can be batched together. Jobs of the same family
may use different types of boards. Using the α|β |γ notation, the scheduling
problem can be modeled as

1|p-batch, incompatible,s,aux|TC, (5.71)

where s refers to different sizes of the jobs. Because this problem is NP-
hard [137], heuristics are suggested that also take the load board constraint
into account. Because of the capacity constraints of the oven, the heuristics
are inspired either by full-load strategies or by first-fit decreasing (FFD)
heuristics for bin packing (see Dowsland and Dowsland [70]). Furthermore,
a heuristic that is based on a relaxation of an IP formulation for problem
(5.71) is also discussed.

5.3.6 Multiple Orders per Job Scheduling Problems

In this section, we discuss another class of scheduling problems that can be
found in 300-mm wafer fabs. A FOUP is the standard unit of job transfer
between machines in a wafer fab. FOUPs are expensive. More importantly, a
large number of FOUPs can cause a congested AMHS. Therefore, the number
of FOUPs is limited and is often a restriction. Because of the combination of
decreased line width and increased area per wafer, fewer wafers are required to
fill the orders for ICs than was the case before. Therefore, there is quite often a
need to group orders of different customers into one FOUP (cf. the description
in Sect. 2.2.3). We call the resulting entity a job to conform with scheduling
literature. The jobs have to be scheduled on the different machines within a
wafer fab when such a grouping decision for orders is made. Consequently,
the resulting class of problems are called MOJ scheduling problems.

We consider a set of orders O := {1, . . . ,N}. Each order o ∈ O has a size
so, measured in number of wafers, and a weight wo that is used to model
the importance of order o. Let K denote the capacity of a FOUP measured
in wafers. For simplicity, we assume that so ≤ K for all o ∈ O. There are F
FOUPs available.

The assumptions for scheduling MOJ on a single machine are as follows:

1. All the orders are available at time t = 0.
2. The orders are of the same product type, i.e., all the orders can be grouped

together.
3. Once a machine is started, it cannot be interrupted, i.e., no preemption is

allowed.
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4. All the orders in a job are processed together. The completion time of the
job determines the completion time of all the orders that form the job.

5. There are two different processing modes. In the lot processing mode, the
job processing time is just the wafer processing time ρ . The processing
time of job j is given as p j = ρ ∑o∈ j so in the single item processing mode.

Using the α|β |γ notation, the two scheduling problems can be represented as
follows. In the lot processing case, we obtain

1|moj(lot)|TWC, (5.72)

where we have TWC := ∑o∈O woCo. We denote by Co the completion time
of o. The corresponding scheduling problem in the single item case can be
represented as

1|moj(item)|TWC. (5.73)

It is proved by Mason and Chen [171] that problems (5.72) and (5.73) are
NP-hard. Hence, we have to look for efficient heuristics.

We present a MIP formulation from Mason et al. [174] that covers both
problems (5.72) and (5.73). We use the following indices and index sets in
the corresponding MIP model:

j = 1, . . . ,F : job index
o = 1, . . . ,N : order index

O : set of all orders

The following parameters will be used within the model:

p j : processing time of job j in the lot processing case
wo : weight of order o
so : size of order o
K : capacity of the FOUP
M : large number

The following decision variables are used within the MIP:

Xo j :

{
1, if order o is assigned to job j
0, otherwise

Cj : completion time of job j
p j : processing time of job j in the single item processing case
δo : completion time of order o

Note that we have p j = ρ in the lot processing case and p j = ρ ∑o∈O soXo j

in the single item case. Therefore, depending on the MOJ environment, p j is
a parameter or a decision variable. Furthermore, without loss of generality,
we assume that there is a given sequence of the FOUPs. Now the scheduling
problems (5.72) and (5.73) can be formulated as follows:

min ∑
o∈O

woδo (5.74)
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subject to:

F

∑
j=1

Xo j = 1, o = 1, . . . ,N, (5.75)

∑
o∈O

soXo j ≤ K, j = 1, . . . ,F, (5.76)

Cj −M(1−Xo j)≤ δo, j = 1, . . . ,F, o = 1, . . . ,N, (5.77)

p j ≤Cj, j = 1, . . . ,F, (5.78)

Cj + p j+1 ≤Cj+1, j = 1, . . . ,F − 1, (5.79)

δo ≥ 0, Cj ≥ 0, Xo j ∈ {0,1}, j = 1, . . . ,F, o = 1, . . . ,N. (5.80)

The objective is to minimize the TWC performance measure. Constraints
(5.75) model that each order is assigned to exactly one job. The capacity res-
trictions for each FOUP are represented by constraints (5.76). The completion
time of o is calculated using constraints (5.77). Constraints (5.78) ensure that
each job spends at least its processing time in the system. Constraints (5.79)
are used to properly sequence the jobs according to their indices. Finally,
constraints (5.80) model the fact that the main decision variables Xo j take
only binary values and the completion times of orders and jobs are non-
negative. The model is completed by adding constraints

p j = ρ ∑
o∈O

soXo j (5.81)

to the model in the single item case. We set p j = ρ in the lot processing case.
Note that problem instances up to 20 orders have been solved to optimality in
reasonable time using the MIP model (5.74)–(5.81). Therefore, we continue
with the discussion of heuristics to solve large-size problem instances.

We describe a heuristic that is influenced by bin packing algorithms
(cf. Dowsland and Dowsland [70] for bin packing-related information). The
heuristic consists of a first phase where orders are sequenced by a dispatching
rule. Then, the jobs are formed based on a bin packing-type heuristic. The
heuristic for the lot processing case can be summarized as follows.
Algorithm MOJ Lot Processing

1. Sort the orders from O with respect to nonincreasing values of the weighted
smallest size (WSS) index

Io := wo/so. (5.82)

2. Let Φ be the set of orders that are not assigned to a job. Set initially
Φ := {1, . . . ,N}. Sort Φ according to the order sequence obtained in step
1. The current job is denoted by jcurr. Set initially jcurr := 1.
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3. Form jcurr by going through Φ starting with the order with the largest
WSS index and taking the capacity constraints of the job into account.
Update Φ when an order is placed in jcurr.

4. If jcurr = F or Φ = /0, then stop; otherwise, set jcurr := jcurr +1. Go to step 3.

Note that using the WSS rule in step 1 is motivated by the fact that the
WSPT dispatching rule leads to an optimal schedule for 1||TWC. The FFD
heuristic is used for the job formation phase. The job formation part of the
algorithm tries to form jobs that use all of the available capacity of the
FOUPs. Because of the WSS sorting, the jobs formed early in the process
contain more orders with small so, and therefore they are often more fully
loaded. Solutions of problem (5.72) with small TWC value tend to use a small
number of FOUPs.

We now describe a different algorithm for problem (5.73) because the pro-
cessing times of the jobs are determined by the actual schedule.
Algorithm MOJ Single Item Processing

1. Sort the orders from O with respect to nonincreasing values of the WSS
index.

2. Let Φ be the set of orders that are not assigned to a job. Set initially
Φ := {1, . . . ,N}. Sort Φ according to the order sequence obtained in step
1. Set initially Fcurr := F . Let jcurr be the current job. Initialize it with
jcurr := F.

3. Determine the sum of the sizes of the jobs from Φ. Divide this sum by
Fcurr. This gives the expected average job size for each remaining job.

4. Start assigning orders from Φ to jcurr starting with the order with smallest
WSS index taking the job capacity and the expected average job size from
step 3 into account. Update Φ when an order is inserted into jcurr. Then,
update Fcurr.

5. When jcurr = 1 or Φ = /0, then stop; otherwise, set jcurr := jcurr − 1 and go
to step 3.

The job formation part of the algorithm tries to balance the sizes of the
formed jobs. The job size is calculated as the sum of the sizes of the orders
that form the job. Later jobs are being more fully loaded than earlier jobs
in order to avoid unnecessary delay times in solutions that have small TWC
values. Therefore, we start the job formation with job jF and assign orders
with small WSS index to the later jobs. Solutions of problem (5.73) with
small TWC value tend to use as many FOUPs as possible.

The two algorithms decompose the scheduling problems into an order-
sequencing subproblem and a job-formation subproblem and solves them
in this sequence. Now we take the opposite perspective and decompose the
scheduling problems into a job-formation problem and a job-sequencing prob-
lem. Based on Proposition 5.3, it turns out that the second subproblem can
be solved in a straightforward manner.
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Proposition 5.3 When the jobs are formed in the lot processing environ-
ment, then an optimal solution of the job-sequencing subproblem can be ob-
tained by simply sequencing the jobs in nonincreasing order with respect to

∑o∈ j wo. Moreover, when the job formation decision is made in the item pro-
cessing mode, then the optimal job sequence can be determined by sorting the
jobs with respect to nonincreasing values of ∑o∈ j wo/∑o∈ j so.

Proof. The proof is based on the fact that the WSPT dispatching rule leads
to an optimal schedule for 1||TWC. In the lot processing case, all jobs have the
same processing time. Hence, instead of considering the WSPT index given by
expression (4.8), it is enough to sort the jobs with respect to ∑o∈ j wo. Further-
more, we have p j = ρ ∑o∈ j so in the single item processing mode. Therefore,
it is sufficient to sort the jobs using ∑o∈ j wo/∑o∈ j so. �

Grouping GAs (GGAs) (see Falkenauer [78]) are proposed by Sobeyko
and Mönch [286] to tackle the job formation phase. A GGA uses an encoding
scheme based on genes that represent the groups because groups are the
meaningful building blocks of a solution. This means for problem (5.72) and
problem (5.73) that jobs are the groups to be formed.

We expect that the performance of the algorithms depend on the size of the
orders and the FOUP capacity. Therefore, we consider 40 small-size problem
instances for both the lot processing and the single item processing mode.
The corresponding design of experiments can be found in Table 5.8.

Table 5.8: Design of experiments for problem (5.72) and (5.73)

Factor Level Count

N 10 1
ρ 10 1
wo ∼ DU[1,15] 1

so ∼ DU[ ν−1
2 , 3ν+1

2 ], ν ∈ {3,5} 2
K 12β +1, where β ∈ {1,2} 2
F �Nν/(12β )�+1 1

Total factor combinations 4
Number of problem instances per combination 10

Total number of problem instances 40

We assess the performance of the two heuristics by solving the problem
instances to optimality using the MIP formulation (5.74)–(5.81). The ratio
R(H) := TWC(H)/TWC(MIP) is considered, where we denote by TWC(H)
the TWC value for a problem instance using one of the heuristics and by
TWC(MIP) the corresponding TWC value obtained by the MIP formulation.
It turns out that in the lot processing mode, we obtain R(H) values between
1.005 and 1.020, whereas the corresponding values are between 1.010 and
1.020 in the single item processing mode. Note that the GGA from [286]
almost always finds the optimal solution for problem instances with N = 10.
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The methods for this single machine MOJ scheduling problem without
ready times of the orders were extended to single machine MOJ scheduling
problems with ready times by Qu and Mason [254], to parallel machine situ-
ations by Jia and Mason [129], to flow shops by Laub et al. [149], and finally
to job shops by Jampani and Mason [126] and by Jampani et al. [127].

5.4 Full Factory Scheduling

In this section, we consider scheduling approaches for full wafer fabs, which
can be modeled from a scheduling point of view as complex job shops (cf.
Sect. 2.2.3). We discuss the disjunctive graph representation of complex job
shop scheduling problems. The shifting bottleneck heuristic (SBH) is intro-
duced and subproblem solution procedures (SSPs) are discussed. Moreover,
a distributed variant of this scheduling heuristic is described. Rolling horizon
approaches and their simulation-based performance assessment are discussed.
Finally, a multicriteria extension is presented.

5.4.1 Motivation and Problem Statement

The assumption for scheduling jobs in complex job shops are:

1. The job shop consists of groups of unrelated parallel machines.
2. Once a machine is started, it cannot be interrupted, i.e., no preemption is

allowed.
3. The jobs j have unequal ready times.
4. Each job j has a process flow O( j) := {O j1, . . . ,O jn j}, where we denote by

O jk the kth operation of j. Totally, we have n j operations.
5. Some of the machines have sequence-dependent setup times.
6. There are batch machines in the job shop. Only jobs of the same job family

can be batched together.
7. Reentrant process flows are considered.

Using the α|β |γ notation scheme, the scheduling problem to be solved can
be described as follows:

FJm|p-batch, incompatible,s jk,r j , recrc|TWT. (5.83)

We use the completion timeCj of job j with respect to the entire wafer fab and
the corresponding due date d j to calculate the TWT value. The scheduling
problem (5.83) is NP-hard because the single machine scheduling problem
1||TWT that is known to be NP-hard (see Lawler [151]) is a special case of it.
Hence, we have to look for efficient heuristics. In the following, we will study
mainly decomposition heuristics. These heuristics are based on the concept
of disjunctive graphs (cf. Brucker and Knust [35]) that will be described in
Sect. 5.4.2.
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Until recently, full factory scheduling methods seemed to be too compu-
tationally costly in comparison to dispatching methods. However, with the
recent dramatic increase in computer efficiency, full fab scheduling methods
have become more competitive.

Decomposition heuristics for complex job shops have been studied very
intensively over the last ten years starting with the pioneering work of Uzsoy
et al. [305] for a test facility. A good documentation of attempts to solve the
problem

FJm|p-batch,s jk,r j, recrc|Lmax (5.84)

for test facilities can be found in Ovacik and Uzsoy [223]. Decomposition ap-
proaches for problem (5.83) were studied for the first time by Mason et al.
[172]. In this section, we will mainly discuss this approach and some exten-
sions of it. We will also show how a simulation-based performance assessment
can be carried out for this type of full factory scheduling approach.

5.4.2 Disjunctive Graph Representation for Job Shop
Problems

Job shop scheduling problems can be represented by disjunctive graphs (cf.
[1, 35, 223]). Many papers have discussed the use of disjunctive graphs for the
scheduling problem Jm||Cmax. Therefore, we start describing the basic prop-
erties for disjunctive graphs with respect to this problem, but later we will
add several extensions needed to adequately model wafer fabs. A disjunctive
graph is given by the triple

G = (V,Ec,Ed). (5.85)

We denote by V the set of nodes of the graph. Ec is used for the set of
conjunctive arcs, whereas Ed denotes the set of disjunctive arcs. We set E :=
Ec ∪Ed. Furthermore, we define an incidence mapping

ω : E →V ×V. (5.86)

A node v ∈ V represents an operation of a job on a machine. We use the
notation 〈i, j〉 for a v ∈ V that represents an operation of job j on one of
the machines of machine group i. We may have several operations of a job
on machines of one machine group due to reentrant flows of the jobs within
a wafer fab. In this case, we use the notation 〈i, ja〉,〈i, jb〉, . . . to distinguish
between these operations. Furthermore, the node set contains an artificial
starting node s and an artificial end node e. We need also an end node Vj, j =
1, . . . ,n for each job. The quantity n is the number of considered jobs. The
end nodes represent the due dates d j of each job j.

Conjunctive arcs are defined as directed arcs (u,v) from u ∈ V to v ∈ V .
They indicate a direct precedence relationship between these nodes. This
relationship is either based on the process flow of the job or on a scheduling
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decision. In the first case, u and v belong typically to different machine groups.
In the latter case, u and v are associated with the same machine group.

Disjunctive arcs are defined as undirected arcs e := {u,v} between nodes
u,v ∈ V associated with operations that are performed on machines of the
same machine group. A disjunctive arc e represents the following situations:

1. There is no directed arc between u and v.
2. Alternatively, there exists either the directed arc (u,v) or the directed arc

(v,u).

In the first situation, the operations that are associated with u and v are
not performed in a consecutive manner on the same machine. There is such
a consecutive processing in the second situation. Therefore, disjunctive arcs
are used to model scheduling decisions to be made. Some of the disjunctive
arcs will be eliminated, and some of them will be changed into conjunctive
arcs in the course of the scheduling algorithms. Figure 5.5 shows a disjunctive
graph for a job shop that consists of four machines {1,2,3,4} and three jobs
{1,2,3}. Dashed arcs are used to represent disjunctive arcs. A schedule can
be determined by eliminating disjunctive arcs. That means that we have to
solve a scheduling problem for each machine group. Then, we replace the
disjunctive arcs that are associated with scheduling decisions for each single
machine of the machine group by a conjunctive arc chain, and we remove the
other arcs.

1,1 2,1 3,1

s 2,2 1,2 3,2 4,2 V2

V1

e

1,3 2,3 4,3 V3

Figure 5.5: Disjunctive graph representation for four jobs on three machines

Such a chain is assigned to each of the machines of the machine groups.
An arc chain connects nodes in such a way that the direct precedence re-
lationship among the operations due to the schedule is translated into the
graph. Of course, we have to make sure that the resulting graph does not
contain any cycle, because otherwise the schedule is not feasible. We show
an example of a partial schedule based on the example used for Fig. 5.5 in
Fig. 5.6. The schedule for machine 2 is implemented within G. The operation
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that corresponds to 〈2,1〉 is sequenced before the operation that is associated
with 〈2,3〉. Similarly, the operation associated with 〈2,3〉 is sequenced before
the operation belonging to 〈2,2〉.

1,1 2,1 3,1

s 2,2 1,2 3,2 4,2 e

1,3 2,3 4,3 V3

V2

V1

Figure 5.6: Representation of a partial schedule

We complete the description of the main concepts of disjunctive graphs by
assigning weights to the arcs. These weights are necessary to represent the
time delay caused by the processing of previous operations of the different
jobs. We denote the weight of an arc (u,v) as p(u,v). We differentiate between
several cases:

• Each conjunctive arc (u,v) with u �= s and u �=Vj gets the processing time of
the operation that is associated with the node u. Because u is nonartificial,
this setting is well defined.

• The ready time of the job that is associated with node u is assigned to arcs
of the form (s,u).

• The weight 0 is assigned to arcs of the form (Vj,e).
• Because undirected arcs do not cause any time delay, a weight with value
0 is assigned to them.

Note that all the conjunctive arcs of the form (u,v) with nodes u �= s have the
same weight. Therefore, we simplify the notation and call the corresponding
weight p(u).

After introducing weights for the arcs of G we can see the main advantage
of modeling job shop scheduling problems by disjunctive graphs. G allows us
to evaluate the influence of single scheduling decisions on the entire job shop.
In order to do so, we have to determine ready times and due dates for the
individual operations of the jobs on the machines of the machine groups by
performing longest path calculations. A path in G is defined as a sequence of
directed arcs e1, . . . ,ek such that a sequence of nodes v0, . . . ,vk exists, such that
ω(e j) = (v j−1,v j). The length of a path is given as the sum of the weights of
the arcs that form the path. Shortest and also longest paths can be efficiently
calculated using Dijkstra’s algorithm (cf. Brucker and Knust [35]). This type
of calculation is also used in the critical path method in project scheduling.
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The ready time of an operation associated with node u is denoted by r(u).
It is the minimum release time of the operation associated with u when we
assume that all operations associated with nodes that precede u are started
at the ready times that corresponds to these nodes. This is the longest path
from s to u. The following recursion is used to set the ready times for a node
v ∈V −{s}:
Initial condition:

r(s) := 0, (5.87)

Recursive relation:

r(v) := max{r(u)+ p(u,v)|v ∈V,(u,v) ∈ Ec} (5.88)

if the operation that is associated with v has to be performed on a machine of
an unscheduled machine group. If u is scheduled on a machine with availability
time ra, then we have to set

r(v) := max{ra,r(v)} . (5.89)

Based on the ready times, we are able to introduce completion times. The
completion time c(u) of an node u ∈V −{e,s} is defined by

c(u) := r(u)+ p(u). (5.90)

For e, we define furthermore

c(e) := r(e). (5.91)

The due date of the operation that is associated with node u ∈V −{e,s} can
be determined by the following recursion:

Initial condition:

d(e) := r(e), (5.92)

Recursive relation:

d(u) := min{d(v)− p(v)|v ∈V,(u,v) ∈ Ec} . (5.93)

By solving the recursion (5.92), (5.93), it can be shown that d(u)− p(u) for
u ∈ V −{s,e} is the difference between c(e) and the length of the longest
path from u to e. The length of the longest path represents the sum of the
processing times and the waiting times of the remaining operations of the
job that is associated with u. Therefore, d(u)− p(u) can be considered as the
latest time when the operation associated with node u has to start to avoid
an increased value of Cmax of the jobs.

Sophisticated production conditions like parallel machines, sequence-
dependent setup times, batch machines, and reentrant flows are important
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in complex job shops. Therefore, we describe how these characteristics can
be modeled by extensions of the disjunctive graph G for Jm||Cmax following
[172, 225].

Parallel machines are included in a natural way in G. Only those nodes
are connected after a scheduling decision that represent jobs to be processed
on a specific machine. We obtain arc chains as already described by the
implementation of scheduling decisions within G.

Sequence-dependent setup times can be incorporated into G only after the
scheduling decisions for the jobs on a machine group are made. Therefore, we
increase the weight of the corresponding arc by the setup time. The initial
setup of a machine is included into the weights of the outgoing arcs of the
node that corresponds to the first scheduled operation on the machine.

An appropriate modeling of batch machines is more sophisticated [172,
223]. A scheduling decision for a batch machine includes three types of deci-
sions (cf. the description in Sect. 5.3):

1. Batching decisions: which jobs should form a certain batch
2. Assignment decisions: which batch should be assigned to a certain ma-

chine
3. Sequencing decisions: in which sequence should batches be processed on

a given machine

After solving the scheduling problem for machine groups that contain batch
machines, artificial batch nodes are added to G for the formed batches. The
predecessors of the artificial batch nodes are those nodes that represent the
jobs that form the batch. They are called batched nodes. We denote the
set of all batched nodes by Vb. For each v ∈ Vb, the corresponding artificial
batch node is denoted by vb. The weight 0 is used for the incoming arcs
of an artificial batch node because the processing time is represented by the
outgoing arcs. The outgoing arcs of the artificial batch node connect the batch
node with the successor nodes according to the process flows of the jobs that
form the batch. Because we consider batching with incompatible families, all
jobs within a batch have the same processing time. Therefore, it is reasonable
that the weight of each outgoing arc of an artificial batch node is set to be
the processing time of the batch.

In Fig. 5.7, we depict a disjunctive graph where machine 2 is a batch ma-
chine. The jobs represented by node 〈2,2〉 and node 〈2,3〉 form a batch.
Rectangles with rounded angles are used to represent batches. Furthermore,
we consider a second batch consisting only of one job that corresponds to
node 〈2,1〉. The second batch is sequenced immediately after the first batch.

The ready time determination scheme is also valid in graphs with artifi-
cial batch nodes. The due date determination scheme (5.92), (5.93) can be
also applied to calculate the due dates of artificial batch nodes because the
weights of the outgoing arcs are defined as in the non-batching case. However,
the recursion equation (5.93) has to be modified for predecessors of batched
nodes. We obtain
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Figure 5.7: Representation of the batches {〈2,2〉, 〈2,3〉} and {〈2,1〉} in G

d̃(u) := min{d(v)− p(v)|v ∈V −Vb,(u,v) ∈ Ec} . (5.94)

We can derive d(u) based on d̃(u) as follows:

d(u) := min
{

d̃(u),min{d(v)− p(vb)|v ∈Vb,(u,v) ∈ Ec,}
}
. (5.95)

This modification is necessary because p(v) = 0 for v ∈Vb. Hence, Eq. (5.94)
is not reasonable in this situation.

Finally, we have to consider the modeling of reentrant process flows. They
are modeled in such a way that the corresponding nodes are not connected
by disjunctive arcs. In this situation, the nodes are already connected by
conjunctive arcs according to the process flow of the job.

As in the case of batch machines, new process restrictions can often be
modeled by introducing additional nodes and arcs into G. For example, the
integrated scheduling of manufacturing and transportation operations for
complex job shops with AMHS is tackled in such a way for job shops by
Knust [148] and by Driessel and Mönch [73] for complex job shops.

The disjunctive graph model can be used to find MIP formulations for job
shop scheduling problems. We illustrate this modeling approach by means of
the problem Jm||Cmax (see Brucker and Knust [35]). The following parameters
will be used within the model:

pi j : processing time of the operation that is associated with node 〈i, j〉
M : large number

The following decision variables are used within the MIP:

Si j : starting time of the operation that is associated with node 〈i, j〉
y〈i, j〉,〈i,l〉 :

{
1, if the operation associated with 〈i, j〉 is scheduled before 〈i, l〉
0, otherwise

Cmax : makespan of the schedule
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Let N be the set of nodes that are associated with operations. By defining
set A as the pairs of operations constrained by process flow relations and Ei

the set of operations to be performed on machine i, the scheduling problem
Jm||Cmax can be formulated as follows:

min Cmax (5.96)

subject to:

Si j + pi j ≤ Sk j, (〈i, j〉,〈k, j〉) ∈ A, (5.97)

Si j + pi j ≤Cmax, 〈i, j〉 ∈ N, (5.98)

Si j + pi j −M
(
1− y〈i, j〉,〈i,l〉

)≤ Sil , 〈i, j〉,〈i, l〉 ∈ Ei, i = 1, . . . ,m, (5.99)

Sil + pil −My〈i, j〉,〈i,l〉 ≤ Si j, 〈i, j〉,〈i, l〉 ∈ Ei, i = 1, . . . ,m, (5.100)

0 ≤ Si j, 〈i, j〉 ∈ N, (5.101)

y〈i, j〉,〈i,l〉 ∈ {0,1}, 〈i, j〉,〈i, l〉 ∈ Ei, i = 1, . . . ,m. (5.102)

The objective (5.96) is to minimize the Cmax performance measure. Con-
straints (5.97) model the fact that an operation cannot be started earlier than
the sum of the start time of the predecessor operation and the corresponding
processing time of this operation. Note that these constraints represent the
conjunctive arcs. Constraints (5.98) ensure that Cmax is equal to the largest
completion time of the jobs. Constraints (5.99) and (5.100) model the fact
that only one of the disjunctive arcs can be selected for two operations that
have to be processed on the same machine. Finally, the constraints (5.101)
lead to non-negative start times of the operations, while constraints (5.102)
enforce binary values for the y〈i, j〉,〈i,l〉.

An extension of this MIP to problem (5.83) can be found in Mason et al.
[175]. In documented computational experiments, only problem instances up
to eight jobs have been tackled using the resulting MIP. This is another
indication for the need to design appropriate heuristics.

5.4.3 Decomposition Approach

The disjunctive graph modeling approach introduced in Sect. 5.4.2 forms the
base for heuristics based on decomposition or on neighborhood search ap-
proaches for Jm||Cmax (cf. Brucker and Knust [35] for a description of such
techniques). Tabu search approaches are very competitive for Jm||Cmax (see
Nowicki and Smutnicki [215]) mainly because neighborhood structures can
be designed that allow for fast evaluation of the Cmax objective; however, this
is not true for complex job shops with the TWT objective. Therefore, we
describe decomposition heuristics based on the SBH proposed originally by
Adams et al. [1] for Jm||Cmax.

The SBH decomposes the overall scheduling problem into a series of smaller
scheduling problems: one for each machine group. The resulting scheduling
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problems are typically smaller. The corresponding scheduling decisions lead
to new conjunctive arcs within G. We have to deal with the following two
problems:

1. Subproblem identification step: In this step, we have to identify appro-
priate constraints for the subproblems to model the interaction between
the subproblems.

2. Composition step: We have to determine an appropriate sequence to solve
the subproblems identified in the first step. Furthermore, the solutions of
the subproblems have to be combined to obtain a solution of the overall
scheduling problem.

We start by describing the resulting subproblems. Ready times and due dates
for the jobs to be processed on individual machine groups can be determined
by using the two basic recursion schemes (5.87), (5.88) and (5.92), (5.93). We
use this data to formulate subproblems. Because of the production restrictions
in wafer fabs (cf. Sects. 2.2.2 and 2.2.3), we have to solve problems of type

Pm|p-batch, incompatible,s jk,r j |TWT. (5.103)

It is well known that the subproblem formulation based on ready times and
due dates is not sufficient to determine schedules that can be combined to
form feasible schedules for the overall scheduling problem (see Dauzère-Pérès
and Lassere [59]). This is caused by the fact that scheduling decisions on
other machines require a certain amount of time to elapse between the start
times of operations on a given machine. Therefore, the resulting constraints
are called delayed precedence constraints.

To illustrate this concept, we consider a disjunctive graph for three jobs
that have to be processed on two machines similar to Ovacik and Uzsoy [223].
The data of this problem instance are shown in Table 5.10.

Table 5.10: Problem instance for a disjunctive graph with cycle

Job Process flow (machines) Processing time

1 1 p11 = 5
2 1–2 p12 = 1, p22 = 1
3 2–1 p13 = 1, p23 = 1

Figure 5.8 depicts the disjunctive graph where machine 2 is scheduled. The
operation that is associated with node 〈2,3〉 is processed after the operation
that belongs to node 〈2,2〉. Using longest path calculations, we determine that
r11 = 0, r12 = 0, and finally r13 = 3. Taking only these ready times into account,
it is clear that it is possible to schedule the operations associated with the
nodes 〈1,1〉, 〈1,3〉, and 〈1,2〉 in this sequence on machine 1. The corresponding
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start times of the operations are 0, 5, and 6. The disjunctive graph now
contains a cycle that consists of the nodes 〈1,2〉, 〈2,2〉, 〈2,3〉, and finally
〈1,3〉.

1,1 V

s 1,2 2,2 V e

2,3 1,3 V3

2

2

0

5

0 1 1

10

1 1

Figure 5.8: Disjunctive graph for three jobs and two machines

We can see from Fig. 5.9 that there is a path from 〈1,2〉, 〈2,2〉 and 〈2,3〉 to
〈1,3〉. Therefore, we conclude that the operation associated with 〈1,2〉 has to
be performed before the operation that corresponds to 〈1,3〉. This precedence
relation is a consequence of the scheduling decision for machine 2. When we
formulate the subproblem for machine 1, we take only precedence relations
into account that are followed from the process flows of the jobs. Because we
do not respect the precedence relation between 〈1,2〉 and 〈1,3〉, we determine
a schedule that is not feasible. The operation associated with 〈1,3〉 can only
start when the operations that belong to 〈1,2〉, 〈2,2〉, and 〈2,3〉 are completed.
It follows that the earliest start time for the operation associated with 〈1,3〉
is two time units after the completion time of the operation corresponding
to 〈1,2〉.

We denote the precedence relations among the operations of the jobs that
have to be taken into account during scheduling decisions by prec. We have
to respect such delayed precedence relations to make sure that no cycles are
created in the disjunctive graph during the implementation of subproblem-
related schedules within the disjunctive graph. We have to replace the sub-
problem (5.103) by

Pm|p-batch, incompatible,s jk,r j,prec|TWT. (5.104)

Delayed precedence relations are determined by a topological sorting of the
nodes of G using an efficient depth-first search. We refer to Sect. 5.4.4 for
details on this approach and its implementation. The algorithm of Pabst
[225] is used within our SBH implementation.
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Figure 5.9: Disjunctive graph containing a cycle

The performance of decomposition approaches is influenced by the se-
quence in which the subproblems are solved and also by the solution ap-
proaches called SSPs for the scheduling problem found in Eq. (5.104).

Now we are able to present the SBH and its modification for scheduling
entire wafer fabs. The SBH can be formulated as follows [1, 172, 223].
Algorithm SBH

1. We denote by M the set of machine groups that have to be scheduled.
Furthermore, we choose the notation M0 for the set of machine groups that
are already scheduled. Initially, set M0 := /0. Generate an initial disjunctive
graph G based on the process flows of the jobs. Determine ready times and
due dates for all operations associated with nodes in G based on longest
path calculations using the two recursions (5.87), (5.88) and (5.92), (5.93).

2. Identify and solve subproblems for each machine group i ∈ M−M0 taking
delayed precedence constraints into account.

3. Determine the most critical machine group k ∈ M−M0 with respect to a
certain criticality measure.

4. Implement the schedule determined in step 2 for the machine group k ∈
M−M0 into the disjunctive graph, i.e., update G. Set M0 := M0 ∪{k}.

5. (Optional) Reoptimize the determined schedule for each machine group
m ∈ M0 −{k} by considering the newly added disjunctive arcs from step
4 for machine group k.

6. The algorithm terminates if M = M0. Otherwise, determine ready times
and due dates for operations based on the nodes of G and go to step 2.

Note that the criticality measure used in step 3 determines in which sequence
the machine group schedules are incorporated within G. For determining the
most critical machine group, different approaches are possible. One option is
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to consider the machine group that is associated with the subproblem that
has the largest TWT value within an iteration of the SBH as the most critical
machine group.

While this simple approach is intuitively appealing, it turns out that more
sophisticated methods are more effective. It is suggested by Pinedo and Chao
[241] to use the change of the completion times after the implementation
of the schedule for a machine group relative to the graph in the previous
iteration as a measure for machine criticality. The criticality measure CM for
machine group i is given by

CM(i) :=
n

∑
j=1

wj(C
′′
j −C′

j)exp
{−(d j −C′′

j )
+/K

}
, (5.105)

where C′
j denotes the completion time of job j determined during the previ-

ous iteration of the heuristic. C′′
j is the new completion time of j, assuming

that the schedule proposed in the current iteration for machine group i is
implemented within G. Finally, K is a scaling parameter. Obviously, it holds
C′

j ≤C′′
j , as the inclusion of additional precedence constraints never decreases

the completion times of the jobs. Therefore, CM(i) is a measure of how much
the proposed schedule for machine group i will potentially increase the TWT
value of all jobs in the job shop.

Furthermore, it is possible to exploit more global information like, for
example, knowledge of planned and dynamic bottlenecks during decision-
making (see Uzsoy and Wang [304]). Various criticality measures like the
total machine load (TML) and the average remaining operations to comple-
tion (AROC) are studied in Aytuk et al. [15]. A blended index based on
these criticality indices to determine the most critical machine group within
each iteration of the SBH is proposed by Mönch and Zimmermann [198].
Finally, GAs (see Dorndorf and Pesch [69]) and inductive decision trees (see
Osisek and Aytuk [221]) have been used to find an appropriate sequence in
which the solutions of subproblems are implemented within G; however, these
techniques tend to cause a very large computational burden.

Next, we describe the reoptimization carried out in step 5 in more detail.
The reoptimization procedure reschedules the machine groups scheduled ear-
lier taking G into account. G is the disjunctive graph that already contains
the schedule of the last bottleneck machine group. Then, based on the TWT
value of the new and the old schedule, it is decided whether the old schedule
for a machine group is replaced by the new one. Even a small number of
reoptimization steps increases the quality of the schedules considerably. The
reoptimization algorithm can be described in a more formal way as follows.
Algorithm SBH Reoptimization

1. Set r := 0, where r is the number of the completed reoptimization steps.
Let rmax be the maximum number of reoptimization steps. Calculate the
TWT value that is associated with G. Assume that M0 machine groups
are already scheduled. Let k be the machine group that is scheduled
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in the current iteration of the SBH. Set imp := true where imp states
whether an improvement with respect to TWT was found or not within
one reoptimization step.

2. Repeat steps 3 to 9 until rmax is reached or imp = false.
3. Set imp := false.
4. For all i ∈ M0 −{k}, repeat the following steps.
5. Store the schedule for machine group i and remove the schedule for i from

G, i.e., insert disjunctive arcs for the corresponding conjunctive arcs.
6. Determine ready times and due dates for all operations associated with

nodes in G based on longest path calculations using the two recursions
(5.87), (5.88) and (5.92), (5.93). Identify and solve the subproblem for
machine group i taking delayed precedence constraints into account.

7. Implement the schedule determined in step 6 within G. Determine ready
times for all operations associated with nodes in G. Calculate completion
times based on these ready times and determine the TWT value that
corresponds to G.

8. If the new TWT value is smaller than the old one, then update the smal-
lest TWT value found so far. In this case, update imp := true; otherwise,
replace the new schedule for machine group i by the old one stored in
step 5. Go to step 4.

9. Update r := r+ 1 and go to step 2.

Usually, two or three reoptimization steps are sufficient. The machine groups
can be considered in the order in which they are introduced into the solution.
There are SBH variants possible where reoptimization is only carried out af-
ter Step 6 in the SBH algorithm, i.e., when all machine groups are scheduled
(cf. Ovacik and Uzsoy [223] for refined reoptimization strategies). Real op-
tions analysis is proposed by Yeung and Mason [327] to value reoptimization
options in the SBH.

So far we assumed that G contains all the operations that have to be
performed on all the machine groups. Because this might cause a large com-
putational burden, several attempts were made to reduce the number of nodes
in the scheduling graph by considering only specific heavily loaded machine
groups explicitly. This results in reduced process flows that contain only
operations that belong to these heavily loaded machine groups. The lightly
loaded machine groups are represented by an infinite capacity resource that is
scheduled using a due-date-oriented dispatching rule like EDD. Experiments
with this approach for job shops that also include machine breakdowns are
presented by Upasani and Uzsoy [301] and by Upasani et al. [302].

5.4.4 Subproblem Solution Procedures

We next describe in more detail how we can ensure that the delayed prece-
dence relations are respected at the SSP level. The following availability con-
dition from Pabst [225] for each operation associated with a node at the time
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of its positioning in the schedule is necessary and sufficient for the avoidance
of cycles in G: Either all operations that are associated with predecessors of
the node are already scheduled or every operation associated with an unsche-
duled predecessor will not be scheduled on the same machine as the operation
that belongs to the considered node. This statement can be proven by induc-
tion over the number of scheduled machine groups (see Pabst [225]).

For the design of appropriate SSPs, the following statement is important.
If the previous availability condition holds for all nodes at the scheduling
time of the associated operations, then for each node of an SSP it holds that
either all direct predecessors are already scheduled or every operation asso-
ciated with an unscheduled predecessor will not be scheduled later on the
same machine like the operation associated with the considered node.

Moreover, as proved by Pabst [225], the next condition is necessary to avoid
errors in the calculation of the availability times of the nodes and sufficient for
the avoidance of cycles in G. For each node at the time of the positioning of the
associated operation in the schedule, it holds that operations associated with
direct predecessors are already scheduled and completed. Following Pabst
[225], we define a direct precedence relation between two nodes belonging to
the same subproblem if each path connecting the related nodes passes only
nodes that belong to other subproblems.

In order to provide the required information for the solution of the sub-
problems, it is necessary to use an algorithm that determines all direct pre-
decessors for a given set of jobs. A coupling with the calculation of the ready
times of the operations of the jobs is useful. The depth-first search algorithm
already mentioned in Sect. 5.4.3 is used.

SSPs are often provided by list scheduling algorithms that allow for taking
the delayed precedence constraints into account. We briefly sketch an SSP for
problem (5.104). Because the algorithm is a generalization of the BATC-II-
TWDH algorithm described in Sect. 5.3.4, we describe only the main differ-
ences that are caused by the delayed precedence relations. Steps 1–4 are the
same with the exception that the jobs to be scheduled on the machine group
are determined using G. In step 5, only such job combinations are consid-
ered that do not contain jobs that are related by a precedence constraint
to each other. Furthermore, only jobs with predecessors that are already in-
cluded in a batch are considered. We denote the time, where all predecessors
are scheduled and completed with rsucc,i for batch Bs of family i selected in
step 7. In contrast to BATC-II-TWDH, in the presence of the delayed prece-
dence relations, we have to advance the availability time of the machine k to
ta(k) := max(ta(k),rBs ,rsucc,i)+ pi+ sBs , where sBs is the setup time that occurs
before processing of batch Bs. We denote this SSP by SSP(BATC-II-TWDH).
Note that this SSP can also be used to solve the scheduling problem

Pm|r j,prec|TWT. (5.106)
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In this case, we set thresh := ∞, Δ t can be large, and the assessment of job
combinations is obsolete.

An SSP based on GAs is studied by Mönch et al. [206]. Note that
SSP(BATC-II-TWDH) is outperformed by the GA-based SSP in many si-
tuations. Furthermore, an SSP based on list scheduling approaches using
variants of the ATCS dispatching rule (cf. Sect. 4.3) and VNS for the prob-
lem

Pm|r j,s jk,prec|TWT (5.107)

is proposed by Driessel and Mönch [72]. Note that in principle, a time window
approach as for SSP(BATC-II-TWDH) also can be used to solve this problem.

5.4.5 Simulation-Based Performance Assessment

Several assessment efforts for static problem instances are described in the
literature (cf. [64, 65, 223, 242] among others). But because we apply a de-
terministic scheduling approach to a stochastic BS and BP, there is a need
to use the SBH in a rolling horizon setting. This approach allows one to take
current information of the BS and the BP into account.

We use the software architecture described in Sect. 3.3.2 to carry out ex-
periments in this section. The center point of this architecture is a data layer
in the memory of the computer that contains all the information to construct
the disjunctive graph and make the scheduling decisions. The data layer is
between a simulation model that emulates the manufacturing process of in-
terest and the scheduling application for the SBH. It acts as a mirror of
the manufacturing process. It contains job information, process flows, and
machines.

Calculated schedules are submitted to the simulation engine AutoSched
AP in order to use the information of the schedules in a dispatching-based
manner. The architecture allows for rolling horizon-type scheduling as well
as for event-driven rescheduling activities. The different products are repre-
sented by separate ASCII files of the simulation model. An object-oriented
database is used to store results and the disjunctive graph in order to reduce
initialization efforts. The architecture is depicted in Fig. 5.10. Note that in
contrast to the situation in Fig. 3.6, there is no need for a forecast module,
a demand generation module, or a PS. The most important part of the CS
is the SBH. The dispatcher is given by a dispatching rule that is used to
select the next job to be processed on a machine with respect to the schedule
determined by the SBH.

Next, we describe the design of experiments. We consider the full MIMAC
1 model (see Fowler and Robinson [83]). It contains over 200 machines that
are organized into over 80 machine groups (cf. also Sect. 4.4). The model
contains two technologies with 210 and 245 steps, respectively. We denote
these two technologies by P1 and P2. In order to generate random process
flows, process flows P1 and P2 are divided into 16 subprocess flows. The
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Figure 5.10: Simulation architecture for a performance assessment of the SBH

segmentation into subprocess flows takes the layer structure of wafers into
account, i.e., performing the process steps of one subprocess flow leads to
the manufacturing of a certain number of layers. We cover approximately the
same number of layers within the corresponding segments of process flows P1
and P2. For each segment of the new process flows, we randomly choose one
subprocess flow either from P1 or from P2. Following this approach, we are
able to create a large number of different process flows. We consider 2, 4, 8,
and 16 different products in our simulation experiments. Jobs representing
different products form different families and cannot be batched together.
Therefore, they influence the dynamics of the wafer fab to a large extent. We
set the due date of job j by

d j := r j +FF
n j

∑
k=1

p jk, (5.108)

where the abbreviation FF is used for the flow factor. The allocated amount of
waiting time that can be spent by job j is therefore given by (FF−1)∑

n j
k=1 p jk.

We use FF = 1.4, i.e., tight due dates, in our simulation experiments. The
weights of the jobs are selected according to the discrete distribution

D :=

⎧
⎨

⎩

wj = 1, p1 = 0.5
wj = 5, p2 = 0.35.

wj = 10, p3 = 0.15
(5.109)
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Furthermore, we use a high load of the wafer fab. To reduce the simulation
time, we start each simulation with a WIP distribution of the jobs. We per-
form deterministic simulation runs for 50 days. We apply the SBH every
2 h with a scheduling horizon of 2 h, i.e., we have τΔ = 2h and τah = 0h (cf.
Sect. 2.3 for this notation). The current state of the BS and BP is taken into
account every 2 h for determining a new schedule.

We are interested in the TP, the CT, and the AWT value. We use AWT
instead of TWT because AWT takes also the number of completed jobs into
account. Therefore, AWT is a fairer measure for comparison in situations
where the TP value, expressed as the number of completed jobs, is different
for the SBH and a FIFO-based dispatching scheme. In order to avoid difficul-
ties with absolute values, we use relative values denoted by REL. The value
for REL is defined as the ratio of the performance measure value obtained
by the SBH or the HVF-EDD dispatching rule and the corresponding per-
formance measure value for the wafer fab that is controlled using the FIFO
dispatching rule. The HVF-EDD dispatching rule uses first HVF (highest
weight) (cf. Sect. 4.2.1) and breaks ties by applying EDD. This dispatching
rule is an example of a multilevel rule (cf. Sect. 4.1). It is selected for com-
parison with the SBH because it outperforms several dispatching rules in the
present situation (cf. Mönch and Zimmermann [200] for those dispatching
rules). The simulation results are presented in Table 5.11.

Table 5.11: Computational results for the SBH and HVF-EDD

Number of Rel(AWT) Rel(AWT) Rel(TP) Rel(TP) Rel(CT) Rel(CT)
products SBH HVF-EDD SBH HVF-EDD SBH HVF-EDD

2 0.4588 0.4734 0.9384 0.9788 0.9994 0.9165
4 0.2499 0.1373 0.9973 0.9892 0.9185 0.8297
8 0.1673 0.2113 1.0567 0.9845 0.8412 0.8004
16 0.2276 0.7131 1.0068 0.9002 0.9625 1.0168

We can conclude from Table 5.11 that we obtain decreasing AWT values
for an increasing number of products compared to the FIFO strategy. At the
same time, we can observe that the relative CT value is decreased with an
increasing number of products in some situations. We find some TP losses for
two and four products. TP reductions are the price for AWT reductions in
the case of large-scale wafer fabs, at least for a small number of products. The
SBH clearly outperforms the HVF-EDD dispatching rule in many situations
with respect to the three measures.

Many more computational results can be found for a small number of
products in Mönch et al. [206] for the TWT measure, in Sourirajan and
Uzsoy [288] for the Lmax measure, and for the multiproduct case with TWT
as performance measure in Mönch and Zimmermann [200].
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We have to deal with the question of how to take the feedback from the BS
and from the BP into account in a rolling horizon setting. In our experiments,
we periodically determine a schedule from scratch. Dispatching rules are used
to implement this schedule, i.e., when a machine becomes free, the job or
batch is selected based on priorities obtained from the schedule rather than
implementing the schedule rigidly. A similar approach is taken by Barua
et al. [23].

It is also possible to repair an existing schedule when machine break-
downs occur. A repair can also be performed periodically. Different reschedul-
ing strategies for a SBH for scheduling wafer fabs are proposed by Mason
et al. [173].

5.4.6 Distributed Shifting Bottleneck Heuristic

Even computationally efficient implementations of the SBH (see Blazewicz
et al. [30]) for complex job shops are time-consuming for moderate schedul-
ing horizons. In the situation of a larger scheduling horizon, for example,
h = 2 days, the number of nodes of G to be considered grows tremendously;
hence, the solution of the scheduling problem requires very large computa-
tional efforts in terms of memory and computation time. On the other hand,
considering a very small scheduling horizon leads to the problem of a proper
internal due date setting that is often difficult and can lead to performance
deterioration.

A conceptual framework for solving scheduling problems via decomposi-
tion into subproblems that are larger than the machine groups in the original
shifting bottleneck approach is described by Brandimarte et al. [32]. But a
concrete decomposition and solution scheme and results of computational
experiments are not presented. Based on an appropriate physical decomposi-
tion of the BS into work areas (cf. the description in Sect. 2.2.2), we present a
two-level hierarchical approach following Mönch and Driessel [193]. We use a

simple job planning approach in order to assign internal ready times r(k)j and

internal due dates d(k)
j to each job j for each work area k on the top level.

Based on these internal ready times and due dates, we apply the SBH to each
work area in order to come up with detailed schedules for the jobs within the
work areas on the base level. The overall scheme is called distributed SBH
(DSBH).

For describing the DSBH, we start at the top level. This level is based on an
aggregated model. As proposed by Habenicht and Mönch [112], we aggregate
consecutive process steps of a process flow into macro operations. We denote
the macro operation l of job j by mo jl . Assume, that mo jl is formed by the
s+ 1 consecutive process steps O jr,O j,r+1, . . . ,O j,r+s, where the rth process
step is the generating one. In an analogous way to the processing time for a
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process step, we define the processing time of the macro operation mo jl by

p(mo jl) := p jr + p j,r+1 + . . .+ p j,r+s. (5.110)

Each macro operation is related to a specific work area. We assume that
we can determine a unique process step among the macro operation forming
process steps that has to be performed on a machine group with a high
utilization. Hence, the behavior of a macro operation is basically influenced
by the machine group of this process step. We consider aggregated capacities
for the machines of a certain machine group that take batching characteristics
and machine breakdowns into account. We assign start dates and due dates
to each single macro operation based on an infinite capacity approach (ICA).
The ICA algorithm can be summarized as follows.
Algorithm ICA

1. Adjust d j for each job j in such a way that ∑ p(mo jl) ≤ d j − t is valid,
where we denote by t the current time.

2. Determine the quantity h j := (d j − t)/∑ p(mo jl) at time t. If h j ≥ 1, the
remaining time until d j is distributed equally among the remaining macro
operations of job j. The sum of the possible waiting times for the oper-
ations that form the macro operation mo jl is (h j − 1)p(mo jl) to meet the
due date d j.

3. Calculate ready times r(mo jl) for operation mo jl in a recursive manner
via the expression r(mo j,l+1) := r(mo jl) + h j p(mo jl) for l ≥ l0 + 1, where
we assume that the macro operation mo jl0 is the current one with a given
r(mo jl0).

4. The due date d(mo j,l−1) of macro operation mo j,l−1 is given by r(mo jl) for
l ≥ l0 + 1.

We apply the ICA approach in a rolling horizon manner every pmaxτΔ time
units taking the current state of the BS and the BP into account. We call τΔ
the scheduling interval of the base level, and pmax is a positive integer. ICA

provides the internal ready times r(k)j and due dates d(k)
j with respect to work

area k.
The naive DSBH (NDSBH) uses the internal ready times and due dates

determined by ICA to calculate detailed schedules for the jobs that have to
be processed on the machine groups of a single work area within a certain
scheduling horizon. The heuristic can be summarized as follows.
Algorithm NDSBH

1. Determine r(k)j and d(k)
j of the jobs for each work area k using ICA.

2. Determine schedules for each single work area by using the algorithm SBH

for r(k)j and d(k)
j from step 1.

In the case that more than one consecutive macro operation is expected to
be performed within the scheduling horizon h, we have to consider the due
date of the last macro operation as the due date for the calculation of the
TWT.



168 5 Deterministic Scheduling Approaches

Furthermore, we have to modify the disjunctive graph G to make sure that
the reentrant behavior of the process flows is correctly modeled. Therefore,
we add additional disjunctive arcs between nodes that represent operations
of the same job belonging to consecutive macro operations. The approach is
similar to the treatment of reentrant flows in the SBH. The main differences
are the multiple internal ready times and multiple internal due dates with
respect to work area k. We show the resulting G for two jobs in Fig. 5.11.
Job 1 contains one macro operation, represented by the nodes 〈1,1〉, 〈2,1〉,
and 〈3,1〉. Job 2 has two macro operations: one consists of the operations
that belong to the nodes 〈1,2a〉, 〈2,2a〉, and 〈3,2a〉, whereas the second one
is given by 〈1,2b〉, 〈2,2b〉, and finally 〈3,2b〉. Additional conjunctive arcs are
included between nodes 〈1,2a〉 and 〈1,2b〉, 〈2,2a〉 and 〈2,2b〉, and 〈3,2a〉 and
〈3,2b〉. Note that the artificial end nodes Vj contain the d(k)

j of the related
macro operations. The ready times of the operations associated with node
〈1,1〉, 〈1,2a〉, and 〈1,2b〉 are also derived from the top level of the hierarchy
via the ICA approach.

1,1 2,1 3,1 V1

V2a

V2b

s 1,2a 2,2a 3,2a e

1,2b 2,2b 3,2b

Figure 5.11: Modified graph for macro operations

NDSBH has the drawback that a complete decoupling of the work areas can
take place that might result in suboptimal or even infeasible schedules with
respect to the overall scheduling problem for the entire job shop. On the other
hand, if ICA of the top level determines accurate start dates and end dates
with respect to available capacity, it might be sufficient to consider NDSBH.

A second approach considers modified start dates and end dates iteratively.
By using this approach, we obtain better schedules for the overall scheduling
problem in a step-by-step manner. The suggested procedure is called iterative
DSBH (IDSBH). The basic steps can be summarized as follows.
Algorithm IDSBH

1. Let MB denote the set of all work areas. Denote by MB0 the set of work
areas for which a schedule is already calculated. Initially, set MB0 := /0.
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Determine initial ready dates r(k)j and due dates d(k)
j of the jobs with respect

to each work area k using ICA.
2. Determine schedules for all work areas MB−MB0 by using the SBH and

the current r(k)j and d(k)
j calculated in step 1.

3. Determine the most critical work area from MB−MB0 by calculating the
TWT value of the jobs with respect to the corresponding work area. Denote
the most critical work area by k. Update MB0 := MB0 ∪{k}.

4. Use the schedule for k in order to determine modified ready times r̃(k)j and

end due dates d̃(k)
j for the remaining work areas, i.e., for macro operations

of jobs in work areas MB−MB0, based on the start and completion times of
the jobs in k. Send the modified start dates and end dates to the remaining
work areas. Update the current ready times and due dates.

5. Determine schedules for the work areas m ∈ MB−MB0 that take the new
ready times and due dates into account.

6. If MB = MB0, then stop. Otherwise, go to step 3.

IDSBH eliminates most of the drawbacks of NDSBH. However, if the sche-
duling horizon is large, scheduling decisions based on modified start dates
and end dates might negatively affect the previous scheduling decisions for
critical work areas, especially because of multiple macro operations of jobs
within one work area. Hence, an adaptation of the schedules, similar to the
reoptimization cycles of the shifting bottleneck heuristic is necessary, and this
tends to be computationally expensive. A truncated variant of IDSBH may
perform only a certain number of iterations instead of doing all iterations in
order to reduce the computational burden.

Results of extensive simulation experiments with a similar setting as de-
scribed in Sect. 5.4.5 can be found in [193]. It turns out that IDSBH out-
performs NDSBH with respect to TWT and that CT and TP are similar.
The SBH as described in Sect. 5.4.3 performs only slightly better. It is also
shown by Mönch et al. [204] that the DSBH-type algorithms lead to smaller
computational burden when different computers are used to solve the work-
area-related scheduling problems after the decoupling by ICA.

5.4.7 Multicriteria Approach to Solve Large-Scale Job
Shop Scheduling Problems

In this section, we extend problem (5.83) to the case of more than one perfor-
mance measure. This approach is reasonable because usually several perfor-
mance measures are of interest in wafer fabs. It is demonstrated by Demirkol
and Uzsoy [63] that solving problem (5.84) leads to schedules that perform
well even for performance measures other than Lmax. Multicriteria approaches
are not often studied for complex job shop scheduling problems, with the no-
table exception of Pfund et al. [235].
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In the following, we assume a scheduling problem with performance mea-
sures γ1 and γ2 to be minimized. Let S be a feasible schedule and let γ1(S)
and γ2(S) be the objective function values for S with respect to the two mea-
sures. While our discussion is on bicriteria problems, the ideas can be easily
extended to problems with more criteria.

Sometimes the decision maker has a priori information regarding the na-
ture of optimization to be performed. For instance, criteria γ1 may be of
primary importance and γ2 of secondary interest. In other words, a solution
best in γ2 may be desired among all solutions that are best in γ1. This is called
hierarchical or lexicographic optimization. In other cases, the decision maker
may have a composite linear function of the form F(γ1,γ2) := αγ1 +(1−α)γ2,
0 ≤ α ≤ 1 in mind that needs to be minimized. The weighted sum translates
multiple objectives into a single objective value for a proposed schedule.

S is called Pareto optimal or nondominated if there exists no other sche-
dule S′ such that γ1(S′) ≤ γ1(S) and γ2(S′) ≤ γ2(S) where at least one of the
two inequalities is strict. If all Pareto optimal solutions are known, the deci-
sion maker can choose the schedule that is most preferred from this set. This
approach is called an a posteriori approach and is generally the most diffi-
cult and the most computationally expensive. For a comprehensive survey on
multicriteria scheduling, we refer the reader to T’kindt and Billaut [298].

We consider a multicriteria scheduling problem in which we combine Cmax,
TC, and TWT into a single aggregation function. Our aggregation function,
however, is different from the linear combination of objectives described ear-
lier. We use, instead, a desirability function (cf. the description in Sect. 3.3.1)
to aggregate the objectives. We assume the decision maker has a prefixed
goal/target value and an upper/worst-case value for every criterion. We also
assume the decision maker, just as in the linear combination case, is aware of
the priorities on the objectives. We use the desirability function approach al-
ready discussed in Sect. 3.3.1. We use m = 3, as we represent the desirabilities
of Cmax, TC, and TWT as d1, d2, and d3, respectively. Each desirability value
di in our experiments will have goal value Gi and maximum (upper) limit Ui.

It is important to link the properties of a solution that is optimal with
respect to a desirability function and its connection to the classical multicri-
teria idea of a Pareto optimal or nondominated solution. From the definition
and discussion of the desirability function, it is clear that the optimal solution
depends upon the Gi values and Ui values assumed for each criterion i. We
have listed below two specific cases with regard to this. While these cases
highlight situations where optimality with respect to the desirability func-
tion and Pareto optimality may not always match with each other, they also
show that these differences are more due to the framing of the problem with
respect to upper and lower limits than any inherent issues in the desirability
approach.

1. The way the desirability function is structured, any solutions that are
over the prespecified upper limit for a minimization problem for any of
the criteria are assigned a value of 0. If the upper limit is fairly strict,
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i.e., aggressive, this can exclude nondominated solutions that are at the
ends of the efficient frontier. But in practice, this simply means that these
solutions are not acceptable because they perform poorly for at least one
of the criteria. Thus a nondominated solution may not be optimal from a
desirability point of view as certain constraints on individual criteria have
to be met.

2. We consider now the set of feasible solutions S̄ with non-zero desirability
values. Thus, for each solution in S̄, the criteria values will be strictly
less than the upper limits. Let x∗ be a dominated solution in S̄. Let NDx∗
be the set of nondominated solutions that dominate x∗. Also, let x(i)∗
represent the value of criterion i for solution x∗ and Gi represent the goal
value for criterion i. Then, for a given set of desirability weights, x∗ is an
optimal solution with respect to the desirability function D if there exists
no criterion i and no x∗∗ in NDx∗ such that x(i)∗∗ ≤Gi ≤ x(i)∗. This situation
arises because D does not distinguish between solutions that are below Gi

for criterion i because it assigns them a value of 1 even though there are
differences in criteria values. This reflects the idea that a satisfaction level
for that criterion has been met. We note that while x∗ is optimal for the
desirability function despite being dominated, there exists a solution(s) in
NDx which is (are) nondominated and also alternately optimal. Also, as a
special case, if we were to set Gi to 0 or to a really low value, x∗ would no
longer be optimal for the desirability function. This leads to our decision
for the choice of Gi values in our approach.

The assumptions of the discussed scheduling problem are the same as in
Sect. 5.4.1. However, in contrast to the problem discussed there, we have to
deal with three different criteria. Using the α|β |γ notation, the multicriteria
scheduling problem to be solved can be represented as

FJm|p-batch, incompatible,s jk,r j, recrc|Cmax,TC,TWT. (5.111)

Note that the problem (5.111) is NP-hard because when any of the three
performance measures are considered separately, the resultant scheduling pro-
blem is NP-hard. Therefore, we will use an appropriate modification of the
algorithm SBH described in Sect. 5.4.3. At step 2 and step 3 of algorithm SBH,
we propose to use the desirability function approach. SSPs are identified and
solved in step 2, while the most critical machine group is determined in step
3 using a machine criticality measure (MCM). We will use the abbreviation
SSP level and MCM level in the remainder of this section.

At the SSP level, we use the ATCSR dispatching rule (see Sect. 4.3.2 for
the corresponding index) to determine schedules for the SSPs. The priority
index of the ATCSR dispatching rule for job j is given by

I j(t, l) :=
wj

p j
exp

(

− (d j − p j −max(r j , t))+

κ1 p̄

)

exp

(

− sl j

κ2s̄
− (r j − t)+

κ3 p̄

)

, (5.112)
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where s̄ is the average setup time and κ2 and κ3 are look-ahead parameters for
the setup and ready time terms, respectively. The three look-ahead parame-
ters serve as scaling parameters. Varying the look-ahead parameters κi and
therefore varying the relative importance of the terms in index (5.112) can
provide high-quality schedules for the subproblems. It can be easily shown
by experimentation that the solutions that will be picked at the SSP level
using the desirability function will be the nondominated solutions among the
schedules that are generated by varying the look-ahead parameters of the
ATCSR dispatching rule. Using ATCSR-based list scheduling in this manner
for multicriteria purposes is based on work by Balasubramanian et al. [19]
that empirically explores the performance of a composite dispatching rule
similar to the ATCSR rule for single machine bicriteria scheduling.

At the SSP level, the look-ahead parameters are varied using a grid search
approach in order to generate a wide range of schedules for subsequent con-
sideration by D for the three objectives of interest. We use five different values
for each scaling parameter and thus test 125 different combinations. Parame-
ter κ1 is incremented from 0.1 to 2.1 in steps of 0.4; κ2 is incremented from
0.1 to 1.1 in steps of 0.2, while κ3 is incremented from 0.001 to 0.011 in steps
of 0.002. A schedule is determined for each combination of the different look-
ahead values, i.e., for each triple (κ1,κ2,κ3) from the grid. The values for Ui

and Gi are thus set to the worst or best value, respectively, observed for each
objective over the different schedules considered at the SSP level. Clearly,
the values for Ui and Gi can be fixed, predetermined values, as knowledge of
a particular machine group and its performance may be known a priori in a
real-world setting, thereby making it easier to decide upon appropriate values
for Ui and Gi. In a next step, using these values for Ui and Gi, we calculate
the combined desirability D for each schedule from the grid.

Considering the fact that D is the geometric mean of all di, we mandate
that the schedule with the highest D value over all schedules from the grid
will not result in a di of zero. Clearly, the schedule that performs worst for
one objective may not necessarily perform poorly for the other objectives
of interest. Therefore, we assign a desirability value of 0.0001. Letting any
di = 0 for a schedule causes the D value of this schedule to equal 0, which
disqualifies this schedule for selection even when its performance for other
objectives may be quite good.

We will use the TWT value of an SSP associated with a machine group
as the MCM because it turns out that a criticality measure based on index
(5.105) does not lend itself easily to the inclusion of multiple objectives using
the desirability approach. This is mainly because the index contains comple-
tion time differences. Furthermore, the value of the scaling parameter K can
dramatically affect which machine group will be selected as the most critical
one. We call this approach for determining the most critical machine group
MCM-TWT.

Before the desirability function can be used at the MCM level, the Ui and
Gi values for each of the three objectives of interest must be determined.
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We employ a procedure similar to the one used at the SSP level. The only
difference is that at the MCM level, we are interested in identifying and
scheduling the machine group with the lowest D value. Since the D value
aggregates three different criteria, a low desirability value for a given machine
group indicates that it is the most critical with respect to all the criteria under
consideration and therefore should be scheduled first.

We consider two different approaches for identifying the critical machine
group at the MCM level. First, the impact of each schedule for a machine
group on Cmax, TC, and TWT of the entire complex job shop is assessed when
identifying the critical machine group by inserting the schedule of the ma-
chine group into G. This approach is abbreviated as global MCM (GMCM).
Alternatively, the critical machine group can be identified using only SSP-
level performance metrics, i.e., we do not consider the impact of the machine
group on the rest of the complex job shop. This approach is called local
MCM (LMCM). The goal in the proposition of these two approaches is to
test whether a difference is noticeable in the global and local approaches. In
a practical setting, if the SBH procedure were to be used for scheduling, the
computation time for the LMCM approach for large problem sizes would be
less than the time for the GMCM approach. But intuitively, it seems that the
GMCM approach reflects the critical machine group more accurately, since
it takes into account conflicts between jobs in the entire wafer fab.

Next, we discuss some computational results for the MiniFab model, de-
scribed in Sect. 3.2.8 and shown in Fig. 3.4. In contrast to Sect. 5.4.5, we
consider only static problem instances of the MiniFab model. Each of the
problem instances contains 20 jobs. Two products are taken into account,
and there are ten jobs of each product. The weights of the jobs are selected
as wj ∼ DU[1,100], and the ready times are zero. The due dates of the jobs j
are chosen according to

d j := FF j

n j

∑
k=1

p jk, (5.113)

where FF j is the FF value for job j. The FF values are generated according
to U (FFmin,FFmin +FFmax/2), where FFmin := min j FF j and FFmax := max j FF j

and the FF j are determined by solving a single problem instance using FIFO
dispatching at all machine groups.

We generate 20 different problem instances based on the MiniFab model,
each with its own unique FF j and wj values. We focus on optimizing Cmax

and TWT, disregarding TC in an attempt to illustrate the difference between
the performance of the different approaches. The impact of using desirability
functions at the MCM level is small, because the MiniFab model contains only
three machine groups. However, using desirability functions at the SSP level
produces significantly better results for the MiniFab model-based problem
instances. As the SSP-level results are independent of the approach used at
the MCM level, the approaches to be compared reduce to using SSPs for pure
TWT minimization as described in Sect. 5.4.4 and for SSPs that are based
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on the ATCSR dispatching rule and grid search to find schedules with large
values for D. The former SSP is called SSP-TWT, while the latter one is
called SSP-Des for abbreviation.

We compare the results obtained by SBH with results taken from using
a deterministic forward simulation with EDD and CR dispatching rules (cf.
Sects. 4.2 and 4.3 for a definition of the corresponding priority indices). We
show objective space plots for two representative problem instances based on
the MiniFab model in Figs. 5.12 and 5.13.
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Figure 5.12: Solutions in the objective space: trade-off situation

The numbers adjacent to each point indicate the weight z3 of the TWT
criterion in D. Therefore, all solution points that have been labeled by a
fraction between 0 and 1 are those obtained by using the different weight
combinations at the SSP level. The weight of Cmax is given by 1 − z3. In
Fig. 5.12, it is possible to see the trade-off between TWT and Cmax. While
the SSP-TWT solution produces the smallest TWT value, itsCmax value is not
small. The solutions generated by the different weight combinations generate
a variety of solutions, which produce slightly worse TWT values, but the
solutions are still significantly better than solutions obtained by the CR or
EDD rules, and they improve on Cmax. Figure 5.13 shows a graph where using
the desirability approach generates a solution better in both TWT and Cmax

than the solution found by SSP-TWT.
These two different problem instances shown in Figs. 5.12 and 5.13 roughly

classify the nature of solutions for all 20 of the problem instances, i.e., either
a trade-off exists between the two objective values or SSP-Des generates a
solution better in both objective values.

More results of computational experiments also using the SBH in a rolling
horizon setting for the MIMAC 1 model can be found in [235] taking a design
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Figure 5.13: SSP-Des solution is better in both objective values

of experiments similar to those in Sect. 5.4.5. The three different performance
measures for problem (5.83) are considered. Experimental results suggest that
SSP-Des on the SSP level and MCM-TWT on the MCM level is the setting
that performs well most often for a wide range of decision-maker priorities,
followed closely by the combinations SSP-Des/LMCM and SSP-Des/GMCM.
An important conclusion is that the use of the desirability function approach
on the SSP level consistently produces superior results.



Chapter 6

Order Release Approaches

In this chapter, we provide an overview of order release approaches for
semiconductor manufacturing. Order release is between production planning
and scheduling in the PPC hierarchy. The fundamental concepts of push-
based order release and pull-based order release are presented, along with a
comparison of these two key methods and their implementation in a variety of
production environments. Next, we present two seminal wafer fab-specific or-
der release approaches, namely starvation avoidance by Glassey and Resende
[100] and workload regulation by Wein [318].

After discussing subsequent order release methods that followed these first
two key approaches, we demonstrate the interaction between order release
and scheduling. A DSBH-type heuristic (cf. Sect. 5.4.6) is used to compare
three different order release methods from the literature under a variety of
wafer fab operating conditions.

Next, we present the findings of a large-scale order release study that was
conducted at a large, global semiconductor manufacturer in order to answer
important questions relating to both the timing and quantity of order release
into their wafer fab.

Finally, we present a MIP model for optimizing order release into wafer fabs
that seeks to improve the utilization of machines in the constraint machine
group. This optimization model determines both the timing and quantity of
order releases into a wafer fab on a weekly basis.

6.1 Push Versus Pull Approaches

In this section, we start by discussing push and pull approaches for order
release. Moreover, we compare these two important classes of order release
schemes.

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
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6.1.1 Push Approaches for Order Release

From the early years of material requirements planning (MRP) in the 1960s
through the early to mid-1980s, many followers of MRP/MRP II methods
simply released all orders for which material and planning were available
according to the calculated order release date (see Wight [322]). This push
approach amounted to material planners starting into their respective systems
what they hoped to get out without any recognition or understanding of the
BS capacity and/or potential BS congestion. Such push approaches quite
often led to large WIP levels and high CT values in the presence of capaci-
ty constraints. It is not surprising therefore that dispatching rules were the
primary means of production control and the subject of much research in the
1970s and 1980s as there was much WIP to control and dispatch.

Faced with excessive amounts of WIP, many companies responded by
limiting the daily release of material to some fixed levels that were based on
production goals. However, this release-limiting approach did not properly
comprehend BS capacity and congestion, i.e., it was still a push philosophy.
Typically, the release-limiting policies only marginally improved WIP levels
as compared to the earlier order release methods, as companies initially over-
estimated their own production capacity. However, as these same companies
worked to better understand their own capacity and potential congestion is-
sues, they achieved greater WIP management success because they gradually
began to adjust order release rates to appropriate levels.

6.1.2 Pull Approaches for Order Release

A new collection of order release strategies based on the concept of pulling
work into a BS that was ready for it versus pushing work into the same BS,
regardless of its ability to accept the work, began to emerge in the early 1980s
due to the following:

1. Internal recognition that current release practices lacked intelligence
2. The appearance of Japanese management concepts like just-in-time (JIT)
3. The development of bottleneck-based methods like the optimized produc-

tion technique (OPT) (cf. Jacobs [125])

Initially, some industries attempted to adopt JIT philosophies to reduce WIP
by implementing Kanban cards—a signaling mechanism between different
points in the manufacturing process that visually indicates when a new order
can be released into the BS or when an existing WIP job can be moved to
a subsequent/downstream process step—or some other limited or fixed WIP
approach.

Concurrent with the growth of interest in JIT and Kanban strate-
gies, bottleneck resource scheduling philosophies gained prominence. These
methodologies revolved around first identifying bottleneck machines and/or
processes and then using the identified bottlenecks as central points of
focus for production control strategies. Both OPT and Goldratt’s theory
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of constraints [104] are representative. The drum-buffer-rope approach to
production control by Goldratt and Fox [105] suggests that:

1. The slowest paced (bottleneck) process provides the pace of a system or
production line (drum).

2. The bottleneck should be tied to the entry points of the system (ropes).
3. The bottleneck should be always provided with a time-phased inventory

of work (buffer) that guards it from being idle.

In the 1990s and early 2000s, considerable interest grew in the CONWIP
methodology (see Spearman et al. [290]) for limiting the inventory levels of a
manufacturing system. Although conceptually similar to early input/output
control ideas from the 1970s, CONWIP focuses on WIP control rather than
TP control and can also be viewed as a generalization of Kanban. CONWIP
is a simple, robust control philosophy based on a fundamental understanding
of the relationship between the WIP in a BS and its TP. This relationship
is visually captured in a production system characteristic curve that can be
either developed through a simulation study or approximated analytically.
An example for a characteristic curve is shown in Fig. 6.1.

In
ve

nt
or

y

TP

Figure 6.1: Example of manufacturing system characteristic curve

Once the characteristic curve is developed, one selects a target WIP level
for a desired TP rate of the BS. Then, efforts are made to keep WIP at or
below this target level in the BS and measure the resulting TP to validate
the previously developed characteristic curve. WIP targets must be adjusted
if the TP of the BS does not meet the desired goals. Clearly, the specifica-
tion of the order release rate into the wafer fab directly impacts performance
according to Little’s law (cf. Eq. (3.21)). The combination of setting the
value of the TP rate λ and specifying a desired target inventory level, rep-
resented by the WIP, leads to an effective estimate of expected CT via this
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important governing law of factory physics. Spearman et al. [289] describe
the development of a CONWIP-based hierarchical production planning and
control system for a circuit board manufacturer’s facility.

6.1.3 Comparing Push Versus Pull Approaches

As described in Sects. 6.1.1 and 6.1.2, push order release approaches are
motivated by a company wanting to produce some desired quantity of goods,
while pull-based methods are based on the knowledge of what actually can
possibly be produced in light of existing capacity constraints and/or conges-
tion issues. The superiority of pull systems is well documented in the litera-
ture for a variety of production environments employing dispatching policies
under varying levels of due date tightness [256, 262].

Unfortunately, research findings do not always make their way into
practice, as the presumed need for and protection of large amounts of
WIP have not been easily overcome in some industries and companies, even
when these same companies purport to follow JIT philosophies.

6.2 Tailored Approaches for Wafer Fabs

Order release and dispatching have received a fair amount of attention from
both semiconductor manufacturing researchers and practitioners alike. One
of the earliest papers that focused on semiconductor manufacturing work-
load control is by Dayhoff and Atherton [61]. Although they focused solely
on dispatching, their concept of signature analysis is embedded in much of
the semiconductor manufacturing-focused research that followed, which con-
cerned the impact of workload control in wafer fabs. Two seminal works of
note, the starvation avoidance method of Glassey and Resende [100] and
Wein’s workload regulation technique [318], were the primary catalysts that
launched a flurry of order release methods for wafer fabs. We discuss these
two important papers in the next two subsections. Then we focus on more
recent order release methods.

6.2.1 Starvation Avoidance

The starvation avoidance (SA) method of Glassey and Resende [100] focuses
on a single bottleneck work center and calculates a virtual inventory measured
over a lead time in order to regulate order release. This virtual inventory
comprises all work in the BS that potentially can reach the bottleneck within
the prespecified lead time. The lead time is the time required for jobs to
arrive to the bottleneck the first time after order release in a single-pro-
duct environment. In a multiproduct system, the worst case time among the
products to arrive to the bottleneck is used.

An important challenge in the SA method is tracking jobs that are
recirculating in the system as is the case in semiconductor manufacturing.
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One needs to detect when each recirculating job will move again/next within
the lead time window. The virtual inventory calculation also includes a mech-
anism to account for failed machines at the bottleneck machine group. A tar-
get value for the virtual inventory level is determined using inventory concepts
and safety stock considerations. The primary idea of SA is to determine an
acceptable level of risk of the bottleneck machine group running out of work,
i.e., starving.

Glassey and Resende [100] compare SA to four order release methods:
random starts, uniform starts, a simple input/output approach based on the
idea of constant WIP, and a simplified version of the workload regulation
method of Wein [318]. The workload regulation method is described in more
detail in Sect. 6.2.2. Glassey and Resende [100] also present a hybrid dispat-
ching method to boost the efficacy of SA that was subsequently enhanced
and expanded by Leachman et al. [156]. In addition to the hybrid dispatching
method, they use simple FIFO and SRPT dispatching (cf. Sect. 4.2.1 for the
corresponding priority indices) in their study.

Unlike Wein [318], the SA study concentrated more on the order release
process rather than investigating a large number of dispatching rules. In fact,
Glassey and Resende [100] suggest that dispatching decisions seem to have
little impact when uniform job releases are used. However, the comparisons
of SA both to the simple input/output approach based on constant WIP and
to Wein’s method for a simple wafer fab with 12-step process flows contain
no mention of statistical significance.

One of the issues practitioners can have with the SA method is that it is
both conceptually and computationally more complex than other available
approaches and it requires global information about the wafer fab inven-
tories. A companion paper by Lozinski and Glassey [168] provides details
on performing the necessary calculations and implementing the approach.
The superiority of SA over other simpler methods has never been adequately
verified. In fact, at least two subsequent attempts [54, 99] suggest the opposite
conclusion. However, the concept has a strong intuitive appeal and is inherent
in much of the subsequent research and development of workload control and
production control software for semiconductor manufacturing.

6.2.2 Workload Regulation

The second seminal paper in semiconductor manufacturing workload control
was the Wein [318] work that introduced the concept of workload regulation
(WR). The workload-regulating input method for order release is concep-
tually similar to other bottleneck methods that compute the load destined
for the bottleneck machine group and then strive to maintain this target
level of loading. The WR method computes machine group load in terms
of the number of hours of work in front of the bottleneck machine group
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rather than expressing the workload as a number of jobs or wafers. Wein
[318] introduces several modified versions of dispatching rules and introduces
a new dispatching method called workload balancing.

The bottleneck-oriented order release methodology that Wein created
is not that different from the OPT concept. Similarly, expressing bottle-
neck workload in terms of hours, rather than jobs or items, had been used
previously as an input/output control variable. The primary theoretical con-
tributions of the seminal Wein [318] paper pertain to dispatching based on
workload balancing. Of potentially even more importance, however, are the
following two points:

1. The WR approach taken by Wein focuses on the semiconductor manufac-
turing environment.

2. The examination of four order release methods, i.e., random starts,
uniform starts, a version of input/output control, and a bottleneck ap-
proach, combined with a number of dispatching rules is based on a
rigorous design of experiments using a significant testbed model.

The simulation study of Wein [318] compares a number of order release
strategies using three variations of a realistic semiconductor wafer fab model
that was developed using actual wafer fab data. Similar to Glassey and
Resende [100], Wein concludes that order release with a 30–40% change in
desired performance is more important than dispatching that leads to less
than 10% change. However, Wein’s statistical results reveal an important in-
teraction between order release and dispatching decisions. Finally, both the
SA and the WR studies support the conclusion that pull-based order release
strategies are preferable to push-based methods.

Most major semiconductor manufacturers are aware of Wein’s WR work,
have embraced the WR concept philosophically, and have developed control
systems around the method. This is most likely due to the fact that the infor-
mation associated with and the computational requirements of implementing
this approach are modest as compared to SA. While most of the information
is determined from the jobs being released, one also needs to estimate the re-
lationship between the desired workload target and BS TP. Such an estimate
is often determined using a wafer fab simulation model and/or a queueing
network approximation of the wafer fab.

It is interesting to note that there is no mention in either Glassey and
Resende [100] or Wein [318] of how dispatching decisions at batch processes,
such as diffusion ovens and wet sinks in etch, are treated. The dispatching
methods cited in these studies do not seem to apply, and given the stated
interaction between order release and dispatching, it follows that a similarly
strong interaction may exist with batching disciplines as well.
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6.2.3 Subsequent Order Release Methods

While both SA and WR were developed for single bottleneck systems, both
have been extended to multiple bottleneck environments by a number of au-
thors [17, 54, 99, 156, 166, 167]. When we consider the dispatching aspect of
flow control, it follows that as order release approaches become more effec-
tive, dispatching decisions will have a diminishing effect on BS performance.
However, dispatching can still be a means to assist the flow control process by
smoothing input flows to bottlenecks to prevent starvation and clogging. For
example, dispatching strategies may prioritize jobs for processing on a given
machine that are required at a key downstream step while deprioritizing jobs
for those whose downstream steps already have sufficient amounts of WIP
in front of key tools. The work of Wein [318] and Leachman et al. [156] are
examples of this trend.

Miller [184] describes an IBM wafer fab simulation model and its
application to the study of flow control policies for reducing CT. Through
effective flow control, WIP was reduced 30% in concert with a reduction in
CT of 25%. This is even more impressive when one considers that at the
same time, TP modestly increased. These reductions were achieved using
a very simple closed-loop order release method similar to CONWIP. Miller
[184] also concludes that when queues are reduced by better order release
practices, dispatching becomes less important. A simulation study of a pack-
aging line at IBM Bromont by Chandra and Gupta [44] uses an order release
strategy similar to WR in that the release quantities of different products
into the packaging line are determined so that total manufacturing lead time
is minimized, subject to satisfying product demands. The release quantities
are considered for the bottleneck, which happened to be the last batch station
of the line.

A case study by Martin-Vega et al. [170] provides an interesting example
of applying the general JIT philosophy to a photolithography area in a wafer
fab. Although a mention is given to Kanban, the authors achieve WIP reduc-
tion by physically limiting and redesigning buffer spaces and by prioritizing
specific operations. Leachman [154] is a suggested reference for readers desir-
ing a discussion of production planning and scheduling practices in the semi-
conductor industry as well as for additional discussion of workload control
implementations.

It should be noted, however, that exceptions to the viewpoint that order
release, when done well, is more important than dispatching do exist. Lu
et al. [169] introduce fluctuation smoothing policy-type dispatching rules
(cf. Sect. 4.2.1). Their dispatching policies compare favorably with WR in
Wein’s same wafer fab setting in that they produce more than 10% reduc-
tions in both the ACT and Var(CT). Given the variety of wafer fab environ-
ments, order release strategies, and dispatching approaches, the only thing
that is clear is that no one specific approach or method exists that is best for
all semiconductor manufacturing environments or conditions.
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In order to overcome some of the performance problems associated with
CONWIP and workload regulation-based rules during product mix changes,
Rose [264] introduces the constant load rule, CONLOAD. It is claimed that
while pull-based approaches are capable of maintaining appropriate inventory
levels in a wafer fab based on the current BS status, they unfortunately
can suffer from not comprehending the wafer fab’s current and/or desired
product mix. By taking into account the associated additional load that is
placed on a single machine or a group of machines due to a pending order
release decision, more informed order release decisions can be made based
on a desired bottleneck machine group loading threshold. This threshold is
calculated as the product of the desired bottleneck machine group’s utilization
and the number of machines in the bottleneck machine group. A simulation-
based study concludes that CONLOAD outperforms CONWIP, a workload
regulation-based approach called CONWORK, and a simple push metho-
dology in terms of producing and maintaining a desired level of bottleneck
machine group utilization while providing a smooth evolution of fab WIP
over time. An additional study by Rose [266] reveals that CONWIP-based
order release methods can help to reduce the variability in both WIP and
CT. However, it is confirmed that this reduced variability may come at the
price of increased mean values of both WIP and CT.

Later, Bahaji and Kuhl [16] present multiobjective composite dispatching
rules for both an application-specific integrated circuit (ASIC) wafer fab and
a low-mix, high-volume wafer fab. The proposed composite dispatching rules
utilize a combination of values based on current BS and individual job sta-
tus, such as the processing time of a job, the job’s arrival time at the current
process step, the amount of work present in queue at the job’s next process
step, and a job’s accumulated CT as compared to its theoretical process-
ing time, i.e., the job’s current flow factor. The authors conduct a rigorous
statistical analysis of both wafer fab environments using an AutoSched AP
simulation model for five different performance measures of interest based on
MASM lab testbed dataset 5 (cf. Fowler and Robinson [83] for a description of
these models). After analyzing four proposed approaches and ten competing
methods from the literature, Bahaji and Kuhl [16] find that their composite
dispatching approaches outperform both fixed-interval push order release and
a CONWIP policy in terms of producing superior ACT, the lowest amount
of variability in CT, and meeting required job due dates.

Finally, Qi et al. [250] examine the impact of production control
methodologies and other BS factors on both the ACT and VAR(CT), as
well as average lateness, WIP, and wafer fab output, at a Chartered Semi-
conductor wafer fab. A full factorial design of experiments that examines
three order release methodologies in concert with three dispatching rules and
three greedy batching policies reveals that the proposed WIPLOAD control
(WIPLCtrl) job release methodology nicely balances fab performance across
all of the performance measures of interest. In addition, a Markov process-
based analysis of the behavior of WIPLCtrl using a model of a transfer line
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system is presented in [251]. After defining WIPLOAD as the sum of the
remaining processing times of all jobs in the BS, Qi et al. [250] introduce
a control policy that only releases new jobs into the wafer fab when some
desired reference WIPLOAD level is not being met. This reference level may
be prescribed by the wafer fab’s manufacturing manager according to some
desired level of TP. The AutoSched AP simulation model of the Chartered
Semiconductor wafer fab contained many realistic BS factors such as machine
breakdowns. Thorough experimentation conducted suggests the efficacy of
their WIPLCtrl approach for a variety of wafer fab output levels.

6.3 Interaction of Order Release and Scheduling

In this section, we start by discussing the scheduling heuristic and the order
release approaches used. Then we describe the experimental setting and
present computational results. Finally, we discuss some conclusions from the
interaction study.

6.3.1 Scheduling Approach and Order Release Schemes

Given this background on the evolution and importance of order release in
wafer fabs, we now investigate the influence of three order release strategies
on the performance of a popular job shop scheduling heuristic. Order release
schemes and scheduling are usually treated independently. There is only little
known on the interaction of order release schemes and sophisticated schedu-
ling approaches. The interaction of a scheduling approach and an order release
scheme is discussed in a sequence-dependent setup situation by Ashby and
Uzsoy [11].

As described in Sect. 5.4, the SBH is a decomposition-based heuristic that
solves the job shop scheduling problem iteratively by solving a sequence of
machine scheduling subproblems and then determines the overall shop sched-
ule via a disjunctive graph. Mason et al. [172] modify the SBH for complex
job shops as exemplified by semiconductor wafer fabs. Batch-processing ma-
chines and reentrant process flows are modeled by adding additional arcs to
the disjunctive graph. In turn, unfortunately, the size of the graph increases
significantly with a large scheduling horizon h := τΔ +τah, and as a result, run-
time performance can be poor and software application memory requirements
can be large.

To effectively investigate the interaction of order release and scheduling, we
consider the two-layer, distributed approach for wafer fab scheduling DSBH
that is described in Sect. 5.4.6. We use an order pool to collect jobs released
for production prior to their release to the BS as a new ingredient. The overall
situation is shown in Fig. 6.2.

Within DSBH, the SBH is applied separately for each work area due to the
decoupling effect of the top ICA layer. Clearly, the performance of the DSBH
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Figure 6.2: Interaction of DSBH and order release

can be improved if a schedule for one or more work areas already exists. This
leads to the IDSBH scheme as described in Sect. 5.4.6. Given this background,
we use the DSBH approach to investigate the interaction between the push,
CONWIP, and CONLOAD order release strategies and scheduling.

The push strategy releases jobs into the BS as required by customer due
dates. Only simple capacity considerations are taken into account during job
release, and the release time r j for job j is calculated by a simple backward
calculation based on some desired flow factor FF ≥ 1:

r j := d j −FF
n j

∑
i=1

p ji. (6.1)

The CONWIP order release strategy requires a characteristic curve of the
wafer fab that provides the relationship between WIP and the production
rate of the wafer fab, i.e., number of jobs produced/output per day. Once the
WIP level corresponding to the desired production rate is determined, this
amount of WIP is set as the CONWIP quantity. Then, a new job is released
into the fab each time a job completes its processing such that the target
WIP level is achieved. Finally, the CONLOAD strategy also requires the use
of a characteristic curve. The workload of the wafer fab is measured as the
sum of the processing times at each remaining process step for all released
jobs. We obtain

WL :=
1

n CT

n

∑
j=1

n j

∑
i=k j+1

p ji, (6.2)
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where we assume that job j has completed all of its processing through process
step k j and that target cycle time is given by CT. In addition, the total num-
ber of jobs released into the fab that have not yet completed their processing
is denoted as n. It is easy to see that Eq. (6.2) reveals that WL ∈ [0,1] when
CT := FF∑

n j
i=1 p ji is used.

6.3.2 Experimental Setting and Computational Results

We use the simulation framework described in Sect. 3.3.2 to analyze the
interaction of order release and scheduling for a simulation model that is
derived from the MiniFab model (cf. the description in Fig. 3.4). The new
model contains three work areas. Each of them contains the machinery of the
MiniFab model. The process flows are organized into two mask layers.

We focus on different performance measures of interest. The ACT and
AWT measures are considered. In addition, we use TP for the wafer fab
within the simulation horizon T that is defined in this situation as follows:

T P := |{ j|0 ≤ r j,Cj < T}|. (6.3)

We also consider the average WIP in jobs during the simulation horizon
as a performance measure. In addition to the three order release strategies
described, we also vary the loading of the BS, the distribution of job weights,
and the desired wafer fab FF used in setting job due dates. We compare the
performance of the DSBH to FIFO dispatching using two different weight
distributions for jobs in terms of the probability that a given job will have a
specific weight value. We have

D1 :=

⎧
⎨

⎩

wj = 1, p1 = 0.5
wj = 5, p2 = 0.35

wj = 10, p3 = 0.15
(6.4)

and

D2 :=

⎧
⎨

⎩

wj = 1, p1 = 0.5
wj = 2, p2 = 0.45.

wj = 10, p3 = 0.05
(6.5)

The two weight distributions differ in that D1 has a small number of jobs that
have a high weight and a large number of jobs that have a medium weight
as compared to D2. Distribution D2 represents a wafer fab in which a very
small portion of the jobs have a high weight and the remaining jobs have a
small weight.

Figure 6.3 shows the relationship between WIP and wafer fab TP for our
simulation model of interest. From our initial simulation runs, we see that
the DSBH leads to a higher WIP level for a fixed TP value than pure FIFO
dispatching does. Based on the relationships displayed in Fig. 6.3, we define
specific TP levels of interest. For example, we use λ1 = 14 jobs per day in our



188 6 Order Release Approaches

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60

FIFO DSBH

70 80 90 100 110 120 130 140

WIP (Jobs)

Jo
bs

/D
ay

Figure 6.3: Simulated characteristic curve

model as the TP rate obtained by a WIP of 80 jobs. We refer to this situation
as high wafer fab loading. Furthermore, a WIP of 60 jobs leads to a TP rate
of 13.3 jobs per day in a moderately loaded wafer fab, while the low load case,
i.e., 40 jobs in WIP, leads to a TP rate of 11.5 jobs per day. Additionally,
we obtain a very highly loaded BS by increasing the job release rate that
leads to a highly loaded BS. We use WL = 0.76 for the highly loaded case
and WL = 0.78 for the very highly loaded case for the CONLOAD strategy.
In this situation, we simply set the target CT as the raw processing time, i.e.,
the sum of the processing time of all process steps of a job. Finally, we use
these desired wafer fab TP rates as the job release rates for the push order
release strategy.

For each performance measure of interest, we compute the performance
ratio of the DSBH-obtained result to the result derived by pure FIFO
dispatching. In this way, any performance ratio greater (less) than one de-
notes superior DSBH performance for objectives that we wish to maximize
(minimize). Of the four performance measures of interest, the only one that
we wish to maximize is TP. Otherwise, we seek to minimize AWT, ACT,
and WIP.

In all experiments, we simulate 180 days of wafer fab operations once an
appropriate amount of warm-up time has elapsed to initialize the wafer fab.
We do not consider any machine failures in our experimentation and employ a
scheduling time horizon of h = 2 and τah = 0h. Tables 6.1 and 6.2 present the
results for the model comparison of DSBH scheduling and FIFO dispatching
under all three order release strategies for the high and very high load cases.

We use P, CW, and CL for abbreviation for the push, CONWIP, and
CONLOAD order release schemes, respectively. In the case of a highly loaded
wafer fab, the FIFO dispatched system is stable, while the DSBH results
suggest increasing WIP levels, which consequently produce large CT values.
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Table 6.1: Computational results for AWT and ACT

AWT ACT
Load Weight FF P CW CL P CW CL

1.3 0.98 0.65 0.70 1.56 1.12 1.18
D1 1.5 1.11 0.59 0.57 1.61 1.14 1.10

High 1.7 1.82 0.62 0.43 1.82 1.15 1.04
1.3 1.00 0.83 1.02 1.51 1.11 1.21

D2 1.5 1.61 1.41 0.87 1.47 1.11 1.11
1.7 2.35 0.97 0.71 1.52 1.12 1.04

1.3 0.39 0.44 0.62 1.06 1.02 1.19
D1 1.5 0.33 0.37 0.48 1.06 1.02 1.12

Very 1.7 0.35 0.32 0.46 1.14 1.02 1.12
high 1.3 0.58 0.60 0.85 1.04 1.01 1.18

D2 1.5 0.58 0.58 0.70 1.06 1.02 1.08
1.7 0.64 0.54 0.62 1.12 1.01 1.04

Table 6.2: Computational results for TP and WIP

TP WIP
Load Weight FF P CW CL P CW CL

1.3 0.98 0.97 0.96 1.60 1.06 1.07
D1 1.5 0.97 0.96 0.95 1.81 1.06 0.93

High 1.7 0.96 0.95 0.94 2.08 1.08 0.87
1.3 0.98 0.98 0.98 1.50 1.04 1.14

D2 1.5 0.98 0.98 0.97 1.44 1.01 1.05
1.7 0.98 0.97 0.96 1.63 1.03 1.07

1.3 0.98 0.98 0.97 1.14 0.99 1.12
D1 1.5 0.98 0.96 0.96 0.99 0.98 1.14

Very 1.7 0.96 0.97 0.95 1.07 0.97 0.85
high 1.3 0.98 0.99 0.97 0.93 0.99 1.12

D2 1.5 0.98 0.98 0.98 0.93 0.98 1.02
1.7 0.98 0.98 0.97 0.93 0.98 1.00

The best improvement occurs in the cases of tight, i.e., FF = 1.3, and mod-
erate due dates, i.e., FF = 1.5, for the push scheme. Furthermore, we find
no significant difference between the two job-weighting distribution schemes.
Therefore, it appears that only in a very congested wafer fab would the use
of DSBH be warranted under a push order release strategy; otherwise, FIFO
dispatching is advisable.

However, in a highly loaded system, i.e., 80 jobs in WIP, the use of the
DSBH in combination with CONWIP order release can lead to an AWT
reduction of 30% or more as compared to the FIFO dispatching scheme. Fi-
nally, Tables 6.1 and 6.2 suggest that the DSBH method with CONLOAD
outperforms FIFO dispatching with respect to AWT in almost all situations.
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It follows that it is useful to combine DSBH scheduling with a CONLOAD
order release strategy in highly loaded wafer fabs. For additional experimen-
tation and results, we refer to Mönch [191].

6.3.3 Conclusions from the Interaction Study

Our experimentation does not reveal any significant difference between the
three order release strategies in the low, and moderate-loaded cases. In eve-
ry case, pure FIFO dispatching outperforms the DSBH scheduling method
for the experimental wafer fab model under study (see Mönch [191]). For
all experimental levels of FF and job weight distribution, we find that ACT
increases and TP decreases when DSBH is used. Further examination of the
results confirms that this behavior is caused by low-quality scheduling deci-
sions being produced in the DSBH subproblems.

For a highly loaded BS, the use of either CONWIP- or CONLOAD-type
order release strategies in combination with DSBH scheduling appears to
be quite useful for reducing AWT. Finally, the push order release strategy
can be applied in conjunction with the DSBH in a very highly loaded BS
to produce reductions in AWT. However, CONWIP performance is superior
to that of both CONLOAD and push in the most congested wafer fab case,
while CONLOAD outperforms push. Note that we only consider the case
of continuous job arrivals in these experiments, i.e., newly arrived jobs are
released from the order pool on a regular, fixed time interval basis such as
every two, three, or four hours. However, one can investigate additional job
release schemes characterized by daily or weekly release frequencies. In this
situation, we expect reduced due date-based performance for both CONWIP
and CONLOAD order release strategies, as the time that a job spends waiting
in the BS will be shifted to waiting time in the order pool prior to being
released into the fab.

In the future, it is important to investigate the connection between order
release decisions and the anticipated scheduling decisions of the DSBH to
allow for release of new jobs into the wafer fab based on the anticipated load
at bottleneck machines caused by both newly released and current WIP jobs.
The next section describes an order release case study at an actual wafer
fab that further investigates the frequency and size of order releases into the
wafer fab.

6.4 A Large-Scale Order Release Study

In this section, we start by describing the overall situation. We discuss the
results of the release timing study. Finally, the findings of the release quantity
study are presented.
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6.4.1 Overall Situation

A global semiconductor manufacturer commonly releases new wafer jobs into
one of its wafer fabs both during morning and evening shifts, but never
during their night shift. The jobs are released one at a time, with the job
releases being carefully spread out across the time period spanning the morn-
ing and evening shifts. Upper-level management at this company commis-
sioned a simulation-based case study to examine how different job release
policies could potentially impact wafer fab performance. Simulation is a pop-
ular method for conducting such case studies as a high-fidelity model can
mimic wafer fab operations quite effectively without ever having any impact
on current wafer fab operations and output. The simulation-based order re-
lease study investigated two specific questions. First, the study examined the
impact of releasing wafer jobs into the wafer fab around the clock, i.e., during
all three production shifts, as compared to the current two-shift release policy.
We refer to this question as the release timing case study. Next, management
was interested in understanding the impact of releasing similar products as
groups, called trains, of jobs into the wafer fab rather than spreading out
individual job releases over time. We refer to this question as the release
quantity case study.

6.4.2 Release Timing Case Study

Consider five different job release plans, denoted as Case 1 through Case 5,
that each release an equal fraction of a given week’s job starting from Sunday
through Saturday. The cases differ in terms of at what time(s) during each
day jobs are released.

Figure 6.4 portrays the job release distribution for Case 1 along with the
proportion of each day’s job releases that enter the factory during 2-h time
intervals.
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Figure 6.4: Order release distribution for Case 1
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It is important to note that jobs are released individually at evenly spaced
time intervals within each 2-h time block in Fig. 6.4 according to the total
number of job releases planned for the time block.

In Case 2, job release only occurs during two time blocks per day.
The situation is depicted in Fig. 6.5. All jobs originally released between mid-
night and noon in Case 1 are now scheduled for release after the morning
shift change, i.e., between 6:00 and 7:00 am. Furthermore, all jobs originally
scheduled for release between noon and midnight in Case 1 are rescheduled
for release after the evening shift change, i.e., between 2:00 and 3:00 pm.
Within each of the two job release time blocks in Fig. 6.5, individual jobs are
released uniformly over time.
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Figure 6.5: Order release distribution for Case 2

Case 3 redistributes daily job releases into equal numbers of jobs every
2 h for each day. This is shown in Fig. 6.6. Jobs are released at each
even-numbered hour throughout the 24-h day, i.e., 12 times per day. As
the number of jobs scheduled each day is not necessarily evenly divisible by
12, the number of jobs released at 8:00 pm and 10:00 pm will be potentially
less than the other job releases to account for beginning- and end-of-day
effects.

Case 4 job releases follow the semiconductor manufacturer’s current order
release policy in that job release occurs only during the morning and evening
shifts. The policy is shown in Fig. 6.7.

Individual job releases are distributed evenly for each of these two shifts,
with all jobs released during the first half of the day, i.e., between midnight
and noon in Case 1, being scheduled for release at evenly spaced time inter-
vals during the morning shift, i.e., between 6:00 am and 2:00 pm. All jobs
originally scheduled for release during the second half of the day, i.e., between
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Figure 6.6: Order release distribution for Case 3
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Figure 6.7: Order release distribution for Case 4

noon and midnight in Case 1, are rescheduled for release at evenly spaced
time intervals during the evening shift, i.e., between 2:00 and 10:00 pm in
Case 4.

Finally, Case 5 job releases occur only during the morning and evening
shifts. The jobs released into the wafer fab in Case 5 are released in groups
only at specific even-numbered hours during these two production shifts. This
is depicted in Fig. 6.8.

The semiconductor manufacturer’s validated AutoSched AP simulation
model was used with representative job starts data to examine the five order
release cases previously discussed. Each simulation replication was run for a
period of three years, with the first year of results being discarded to mitigate
any potential for initialization bias. Given the complexity inherent in the
company’s simulation model, each simulation run required approximately 12 h
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Figure 6.8: Order release distribution for Case 5

of wall clock time. In order to measure the potential for on-time delivery
compliance, a due date offset equivalent to three times of each job’s raw
processing time was used.

A summary of all simulation replications made for the five job release cases
is given in Table 6.3 in terms of TP, expressed as number of jobs completed
per day; ACT, expressed as a multiple of the raw processing time, i.e., as
flow factor FF; and the percentage of jobs completed on or before their due
date, denoted by OTD(%). As stated previously, Case 4 is the most accurate
characterization of the company’s current job release policy. Case 3 was iden-
tified by the semiconductor manufacturer as the most appropriate alternative
approach for comparison purposes with Case 4. Finally, Case 5 is quite sim-
ilar to Case 4, except that instead of releasing jobs every m minutes during
the morning and evening shifts, it only releases jobs into the wafer fab every
2 h. For these reasons, it was decided to focus the detailed results analysis on
these three cases rather than on all five options.

Table 6.3: Simulation results for release timing case study

Compare TP (Jobs) ACT (FF theoretical) OTD(%)

Case 1 34.808 3.180 82.400
Case 2 34.848 3.150 86.900
Case 3 34.853 3.080 92.000
Case 4 34.850 3.110 90.000
Case 5 34.854 3.130 89.100

A paired t-test analysis of Cases 3 and 4 revealed the following with 95%
confidence:

1. The ACT value of jobs in Case 3 is shorter than the ACT value of Case
4 jobs.
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2. The on-time delivery performance of Case 3 is superior to that of Case 4.

Furthermore, no significant statistical difference was found between the TP
of Cases 3 and 4. As Case 3 was determined to be statistically superior to
Case 5 in all three performance measures of interest, the semiconductor man-
ufacturer’s study found compelling evidence to try an alternative job release
strategy that was determined to have the potential to improve operational
performance of its wafer fab.

6.4.3 Release Quantity Case Study

In the previous release timing case study, the jobs to be individually released
into the wafer fab were furnished by the semiconductor manufacturer in a
particular desired order without any regard being given to the product type of
each job. In the release quantity case study, both Cases 3 and 4 are examined
further by arranging the list of jobs to be released into the BS into groups, i.e.,
trains of multiple jobs less frequently, according to product type. A potential
benefit of the train approach is that early batch process steps will be able to
make fuller batches as sufficient quantities of production jobs will be available
within a shorter time horizon.

Figures 6.9 and 6.10 present the release time distribution for Case 3 trains
of jobs and Case 4 in the release quantity case study, respectively. The release
time distributions for the trains of jobs (TofJ) of the two cases are denoted
for abbreviation as TofJ3 and TofJ4, respectively.
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Figure 6.9: Order release distribution for Case 3 trains jobs

An initial analysis of the job trains contained in both the TofJ3 and TofJ4
simulation model inputs led the semiconductor manufacturer to suggest the
establishment of an upper bound on the number of jobs that can be present
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Figure 6.10: Order release distribution for Case 4 trains of jobs

in a single train. The limit of no greater than ten jobs per train was es-
tablished for both cases and with the idea that a train of ten jobs or less
would not unnecessarily overload any fab machine group. We use the nota-
tion TofJ3 NGT10 and TofJ4 NGT10, respectively. Finally, the job trains
established for Case 4 were examined for two additional upper-bound limits
on train size. The TofJ4 NGT OvenBatch case was created to restrict Case
4’s job train size to the maximum load size, measured in jobs, of the first dif-
fusion oven process step contained in each product’s process flow. Similarly,
the TofJ4 NGT6 case restricts the length of the Case 4’s jobs to six jobs.

As was the case in the previous case study, the semiconductor manufacturer’s
AutoSched AP simulation model was used, and each simulation replication
was run for a period of 3 years, with the first year of results being dis-
carded to mitigate any potential for initialization bias. Table 6.4 shows the
results of all simulated cases. We note that each TofJ case has a higher
ACT value and a lower OTD(%) value than the original Cases 3 and 4
except for TofJ4 NGT OvenBatch. Although releasing jobs in trains can
significantly increase CT values and reduce OTD(%) compared to current
practice, the resulting performance appears to depend on the size of the
trains formed. In some cases, the semiconductor manufacturer was presented
with the opportunity to actually improve performance, should they choose
to use oven batch-sized trains.

6.5 Optimization-Based Order Release

In addition to simulation-based methods for order release analysis/planning,
mathematical optimization-based approaches can be used. Such an ap-
proach is taken, for example, by Missbauer [185]. In this section, we dis-
cuss an optimization-based approach for order release in semiconductor
manufacturing.
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Table 6.4: Simulation results for release quantity case study

TP (jobs) ACT (FF theoretical) OTD(%)

Case 3 34.853 3.080 92.000
Case 4 34.850 3.110 90.000
TofJ3 34.858 3.240 78.200
TofJ4 34.857 3.250 76.800

TofJ3 NGT10 34.846 3.170 85.800
TofJ4 NGT10 34.854 3.180 84.700

TofJ4 NGT OvenBatch 34.855 3.100 93.100
TofJ4 NGT6 34.855 3.250 76.500

Consider a wafer fab that is interested in planning starts for some period
of time, for example, the next week. At the current time, WIP exists in the
wafer fab at a variety of locations, i.e., at different process steps, with each
job in WIP containing some number of wafers of a predefined technology,
process, and device type. The process step at which each job is located cor-
responds to some process flow that the job is required to follow. During this
process flow, we focus on the photolithography process steps and the loading
of the potential bottleneck machines of the wafer fab, the photolithography
steppers (cf. the description in Sect. 2.2.3). New job starts into the wafer
fab are released to meet customer demands for a specific product. They are
characterized in terms of their technology, process, and device. However, the
wafer fab has potentially more than one option, i.e., job type designation,
that it can make on new job starts that directly corresponds to the specific
steppers that will be visited during critical photolithography layers.

The option designation for all new job starts directly impacts the wafer fab
loading, as the choice of any device d’s option 1, for example, can require the
job to visit the first stepper two times and the second stepper six times at the
eight critical layers of the process flow. However, designating device d’s job
release as option 2 alternately can result in five visits to the first stepper, two
visits to the second stepper, and one visit to the third stepper for the eight
critical layers. Simulation-based optimization is used by Mönch et al. [201]
to solve a similar load-balancing problem for steppers in an ASIC wafer fab.

In this way, effective release job option designations are an important
way in which the photolithography capacity can be utilized most effectively.
The problem is further complicated when one considers that jobs can be re-
leased today, tomorrow, or on any other day within the desired job release
horizon. However, management may dictate that specific jobs and/or specific
job option designations must be started on a specific day.

We now provide a MIP formulation for the wafer release optimization
problem. The only wafer fab capacity constraints being represented in this
model are photolithography steppers. Without loss of generality, we use MES
data to collect information on the expected CT values of all other process
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steps for each process flow and model job travel through the BS in terms of
daily, i.e., 24-h, movements from a given process step to the expected location
of the job after 24 h of wafer fab operations.

The following indices and index sets will be used within the model:

t : technology index
p : index of process flows
d : index of devices
o : index of job type designation options for new job starts
s : index of process steps in process flow p of technology t
l : index of existing jobs in WIP that are following a specific process

flow
e : index of photolithography machines
h : index of production days in the planning horizon
T : technology set
P(t) : set of process flows of technology t
D(t) : set of devices of technology t
O(t) : set of job type designation options for new job starts of technology

t
S(t, p) : set of process steps in process flow p of technology t
L(t, p) : set of all existing jobs in WIP that are following process flow p of

technology t
E : set of all steppers
H : set of all production days in the planning horizon

In addition, for ease of reading, we define K(t, p) := {t}×P(t)× S(t, p)×
L(t, p), R(t, p) := K(t, p)× H, and J(t) := {t} × P(t)× D(t)× O(t)× H for
abbreviation. The following parameters will be used within the model:

α : first day job starts can be made
β : last day job starts can be made
σt ps : number of step s in process flow p of technology t

πt ps :

⎧
⎪⎨

⎪⎩

1, if process step s in process flow p of technology t is a

photolithography step

0, otherwise

ωt psl : processing rate (in wafers per hour) for fab job l at
photolithography step s in process flow p of technology t

ξt psd : processing rate (in wafers per hour) for any job of device type
d at photolithography step s in process flow p of technology t

φe : number of available processing hours per day for stepper e
τt pl : number of wafers of job l in initial WIP that follow the process

flow p of technology t
ηt p : number of the last step in process flow p of technology t
δt pl : number of the process step in process flow p of technology

t at which job l is initially located
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μt p,δt pl ,1 : number of the process step in process flow p of technology

t at which job l will move to 24 h after being at its initial
location δt pl

γt ps : number of the process step in process flow p of technology t
at which any job will move to 24 h after being at process step s

κt ps :

⎧
⎪⎨

⎪⎩

1, if process step s in process flow p of technology t can have

WIP present during the daily job location assessment

0, otherwise

ψt pss′ :

{
1, if step number s′ < γt ps

0, otherwise

εt plse :

⎧
⎪⎨

⎪⎩

1, if stepper e is qualified to process existing job l at process

step s in process flow p of technology t

0, otherwise

υt pdose :

⎧
⎪⎨

⎪⎩

1, if stepper e is qualified to process job releases of device d’s

option o at process step s in process flow p of technology t

0, otherwise

ρt ph : number of wafers for process flow p in technology t that must be
released on day h

θt p : number of wafers for process flow p of technology t to be released
during some days α ≤ h ≤ β

λt pdo :

⎧
⎪⎨

⎪⎩

1, if jobs of device d’s option o are qualified for release in

process flow p of technology t

0, otherwise

The following decision variables are required in the model:

It psl : initial WIP (in wafers) for job l at its initial step s in process
flow p of technology t

Mt pdoh : number of wafers in WIP from a new release of device d’s option
o in process flow p of technology t on day h

Nt pdsoh : number of wafers in WIP at process step s on day h in process
flow p of technology t from a new release of device d’s option o

Vt pslh : WIP (in wafers) for job l at process step s in process flow p
of technology t at the end of day h

Qt pselh : total hours of workload associated with existing job l, which
follows process flow p of technology t that is assigned to the
stepper e at process step s on day h

Rt pdseoh : total hours of workload associated with new job releases of option
o of device d, which follows process flow p of technology t that is
assigned to stepper e at process step s on day h
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Ueh : loading (utilization) of stepper e on day h
Wt pdoh : integer number of 25 wafer jobs of device d’s option o released in

process flow p of technology t on day h
Xt pdoh : integer number of wafers of device d’s option o released in process

flow p of technology t on day h
Yh : maximum projected daily loading of any stepper on day h
Z : maximum number of job starts on any day during the starts horizon

The order release optimization model can be formulated as follows:

minw1Z +w2 ∑
h∈H

Yh (6.6)

subject to

It psl = τt pl ,
{
(t, p,s, l) ∈ K(t, p)|σt ps = δt pl

}
, (6.7)

Vt psl1 = It p,δt pl ,l ,
{
(t, p,s, l) ∈ K(t, p)|σt ps = μt p,δt pl ,1

}
, (6.8)

Vt pslh = Vt p,μt p,δt pl ,h−1,l,h−1,
{
(t, p,s, l) ∈ K(t, p),h∈H|h>1,σt ps=μt p,δt pl ,h

}
, (6.9)

∑
{e∈E,r∈S(t,p)|πt pr=1, εt plre=1, δt pl≤σt pr<μt p,δt pl ,1

}
ωt prlQt prel1 ≥

∑
{a∈S(t,p)|πt pa=1, δt pl≤σt pa<μt p,δt pl ,1

}
∑

b=σt pa

ψt pabIt p,δt pl ,l , (6.10)

{
(t, p,s, l) ∈ K(t, p),σ ′ ∈ {1, . . . ,ηt p}|πt ps = 1,σt ps = σ ′,δt pl ≤ σt ps < μt p,δt pl ,1

}
,

∑
{e∈E,r∈S(t,p)|πt pr=1, μt p,δt pl ,h−1≤σt pr<μt p,δt pl ,h

, εt plre=1}
ωt prlQt prelh ≥

∑
{a∈S(t,p)|πt pa=1, μt p,δt pl ,h−1≤σt pa<μt p(δt pl)h

}
∑

b=σt psa

ψt pabVt p,μt p,δt pl ,h−1,l,h−1, (6.11)

{
(t, p,s, l,h)∈R(t, p),σ ′|h > 1,πt ps = 1,σt ps = σ ′ ≤ ηt p,μt p,δt pl ,h−1 ≤ σt ps < μt p,δt pl ,h

}
,

Mt pdoh = 25Wt pdoh,
{
(t, p,d,o,h) ∈ J(t)|t ∈ T,h ≤ β ,λt pdo = 1

}
, (6.12)

Nt pdsoh = Mt pdoh,
{
(t, p,d,o,h) ∈ J(t),s ∈ S(t, p)|σt ps = 1,h ≤ β ,λt pdo=1

}
,(6.13)
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Nt pdsoh = ∑
{r∈S(t,p)|κt p,σt pr=1,σt pr≤γt pr}

Nt pdro,h−1,

{
(t, p,d,o, t) ∈ J(t),s ∈ S(t, p)|t ∈ T,κt p,σt ps = 1,σt ps > 1,λt pdo = 1

}
, (6.14)

∑
{e∈E|vt pdose=1}

ξt psd Rt pdseoh ≥

∑
{a∈S(t,p)|πt pa=1, σt pa<γt ps1, κt p,σt pa=1}

∑
{b|b=σt pa, σt pa<γt ps, σt ps<γt pa}

ψt pab Nt pdao,h−1,

{
(t, p,d,o,h) ∈ J(t),s ∈ S(t, p)|t ∈ T,πt ps = 1,λt pdo = 1

}
, (6.15)

φeUeh ≥ ∑
t∈T

∑
p∈P(t)

∑
{s∈S(t,p)|πt ps=1}

∑
{l∈L(t,p)|εt plse=1, μt p,δt pl ,h−1≤σt ps≤μt p,δt pl ,h

}
Qt pselh

+∑
t∈T

∑
p∈P(t)

∑
d∈D(t)

∑
{s∈S(t,p)|πt ps=1}

∑
{o∈O(t)|λt pdo=1, vt pdose=1}

Rt pdseoh,

{e ∈ E,h ∈ H}, (6.16)

∑
p∈P(t)

∑
{o∈O(t)|λt pdo=1}

Xt pdoh ≥ ρtdh,

{t ∈ T, d ∈ D(t), h ∈ H|α ≤ h ≤ β} , (6.17)

∑
p∈P(t)

∑
{o∈O(t)|λt pdo=1}

∑
{h∈H|α≤h≤β}

Xt pdoh = ∑
{h′∈H|α≤h≤β}

ρtdh′ +θtd ,

{t ∈ T,d ∈ D(t)}, (6.18)

25Wt pdoh ≥ Xt pdoh,
{
(t, p,d,o,h) ∈ J(t)|t ∈ T,h ≤ β ,λt pdo = 1

}
, (6.19)

Z ≥ ∑
t∈T

∑
p∈P(t)

∑
d∈D(t)

∑
{o∈O(t)|λt pdo=1}

Wt pdoh, {h ∈ H|α ≤ h ≤ β} , (6.20)

Yh ≥ Ueh, {e ∈ E,h ∈ H}, (6.21)

It psl ≥ 0,Mt pdoh ≥ 0,Nt pdsoh ≥ 0,Vt pslh ≥ 0,Qt pselh ≥ 0,Ueh ≥ 0,Yh ≥ 0,Z ≥ 0,

{t ∈ T, p ∈ P(t),d ∈ D(t),s ∈ S(t, p),o ∈ O(t),e ∈ E, l ∈ L(t, p),h ∈ H}, (6.22)

Wt pdoh, Xt pdoh ∈ Z+, {(t, p,d,o,h) ∈ J(t)|t ∈ T}. (6.23)



202 6 Order Release Approaches

We seek to minimize the weighted sum of the maximum daily starts on any
single day and the sum of the maximum daily loading on each stepper over the
entire planning horizon. Clearly, weights are required to properly balance the
two objective function components in terms of their dimensionality, i.e., units
of measure, along with the desired importance the user prefers to specify for
each individual objective function component. The objective function that
combines these two key performance measures is given by expression (6.6).
In this objective function, both w1 ∈ IR+ and w2 ∈ IR+ are weights that can
be specified according to the user’s preference regarding the importance of
each objective function component in relation to each other.

We assume that a certain number of jobs exist currently in the wafer fab.
Without loss of generality, we assume that the MES or other database can
be queried to ascertain the current location, i.e., process step, of each exis-
ting job in WIP as well as other job-specific attributes such as its associated
technology, process, and the number of wafers in the job. Constraints (6.7)
establish the value of It psl based on the initial MES information.

Constraints (6.8) and (6.9) model the movement of the jobs existing in
the initial WIP through each job’s own respective process flow. Using MES
data, individual process step CT values are obtained and then aggregated to
establish the expected location of each job 24 h from the current time. While
constraints (6.8) make this calculation based on each initial step number δt pl

of each job, constraints (6.9) recursively project the rest of each job’s 24 h
daily movements using the same MES data based on the idea of a daily job
location assessment.

Constraints (6.9) establish the daily wafer fab location in terms of the
process step for each existing job during the planning horizon, while con-
straints (6.10) and (6.11) determine the assignment of the processing item
associated with each photolithography process step to each qualified stepper
by considering the wafer processing rate of each stepper at the process step.
While constraints (6.10) perform this computation for the first day of the
planning horizon, constraints (6.11) recursively compute this quantity for all
subsequent days of the planning horizon. In this way, the total hours required
to complete each existing job at each photolithography process step are com-
pletely allocated to one or more steppers. Therefore, rather than assigning a
specific stepper to process a specific existing job at a given process step, we
ensure that the total workload associated with the process step is allocated
to one or more steppers. This approach allows for reducing the complexity of
the model as typical binary assignment decision variables are not required.

Constraints (6.12) use the primary decision variable Wt pdoh for the number
of jobs released into the wafer fab of a given type on a given day to estab-
lish the number of new wafer starts by a qualified technology-process-device
option combination each day over the starts horizon for all new jobs released
into the fab. The number of wafers released found in constraints (6.12) is
subsequently used to establish the initial WIP at the first process step of
each valid process flow in constraints (6.13).
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Next, the initial WIP at the first process step of each valid process flow
as determined in constraints (6.13) for the new wafer starts is recursively
projected to where it is expected to move based on CT data from the MES
that is mapped into a parameter for every day in the planning horizon, i.e.,
daily job location assessment, in constraints (6.14).

Constraints (6.14) establish the daily fab location in terms of the process
step for each new job release during the planning horizon, and constraints
(6.15) determine the assignment of the processing time associated with each
photolithography step to each qualified stepper by considering the device-
specific processing rate of each stepper at the process step. This calculation
is analogous to the one in constraints (6.11), which focuses on existing jobs
in the wafer fab.

With constraints (6.10), (6.11), and (6.15), all qualified steppers have some
amount of assigned workload for each photolithography process step on a
day of the planning horizon. Constraints (6.16) sum up all of these workload
requirements and compute individual daily stepper loading percentages based
on the available hours per day for each stepper.

If it is specified that some desired number of wafer starts must be started
on a specific day during the starts horizon, constraints (6.17) ensure that at
least this desired number of wafers is started on that day.

Finally, constraints (6.18) ensure that all starts demand is satisfied.
Constraints (6.19) compute the number of 25 wafer jobs to be started over
the starts horizon for each valid type of starts designation from the individual
wafer starts decision variable.

Constraints (6.20) are used to compute the maximum number of job starts
on any single day during the horizon in which new job starts can be made.
These constraints are necessary to establish the value of one of the two ob-
jective function variables. Next, constraints (6.21) set the value of the second
objective function variable, the maximum daily loading of a stepper during
any day of the planning horizon.

Finally, constraints (6.22) describe the nonnegativity requirements for each
decision variable, while constraints (6.23) require positive integer values for
the two decision variables relating to wafer and job starts.

We now consider the case of a wafer fab’s starts planner who is interested
in making job release plans for the next work week. The current BS status
in terms of stepper quantities, the current location of all jobs, and the an-
ticipated wafer releases for the next week in terms of quantities and device
types based on customer demand forecasts for the quarter are input quanti-
ties of the optimization model. While some of this demand is for a specific
quantity of wafer releases on a specific day for one or more devices, much of
the demand is general demand in the form of 100 wafers of device type D1

that is of process P1 of technology T1 and should be started the next week.
Furthermore, the starts planner knows that due to an update from the

photolithography process engineers, available option designations for these
100 wafers are options O2 and O3. All other such information is also available
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and properly input into the model to develop a starts plan for the week that
seeks to both:

1. Minimize the maximum daily loading of a photolithography stepper during
any day of the planning horizon

2. Minimize the maximum total number of job starts that are made on any
day during the next week

Table 6.5 presents example optimization model results detailing the job
release plan for the upcoming week at the wafer fab.

Table 6.5: Example of weekly job starts recommended by Model (6.6)–(6.23)

Technology Process Device Option Day number Jobs to start

AA AAQ 7C65 O73 6 1
AA AAQ 7C69 O73 1 1
AA L8C 7AA6 O83 5 1

ALP11 S8DI 8C24 O72 1 1
ALP11 S8DI 8C25 O81 5 1
ALP11 S8DI 8C25 O83 3 4
ALP11 S8DIN 8F26 O82 7 1
ALP11 S8Q 8C38 O72 4 1
ALP11 S8Q 8C39 O83 3 1
ALP11 S8TMC 8C27 O83 3 2

Based on these recommended starts prescribed by the model, Table 6.6
indicates the expected stepper loading for the upcoming two weeks as well. It
is important to note that while job starts are being made over some planning
horizon such as a week, the overall planning horizon of the model must be at
least the length of the longest expected CT of any device’s process flow, as
it is important to properly model the transitions of both existing jobs in the
wafer fab as they work their way through the wafer fab and new job releases.

Finally, as this model will be run potentially on a weekly basis to plan
weekly job releases, a new BS status is imported into the model each week to
ensure that any unplanned events/changes in the wafer fab over the previous
week are properly accounted for in the latest model, whether it be new tech-
nologies/process flows or new stepper processing rates and/or availabilities.

The order release optimization model (6.6)–(6.23) can be expanded
and customized for the needs of a specific wafer fab. For example, Cy-
press Semiconductor, a global semiconductor manufacturer that designs,
develops, manufactures, and markets high-performance, mixed-signal, pro-
grammable solutions for a wide variety of customers, operates an 80,000-
square-foot wafer fab in Bloomington, Minnesota, called Fab 4. Fab 4 uses an
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Table 6.6: Example photolithography stepper loadings by day

Day iLine1 iLine2 iLine4 jLine1 jLine2 jLine3 jLine4 Alpha1 Alpha4

1 91 74 87 84 82 87 85 78 64
2 51 72 78 75 78 60 86 59 88
3 78 89 67 71 52 51 53 60 53
4 87 56 86 69 63 78 55 54 70
5 80 67 53 54 58 70 82 68 89
6 83 88 92 55 78 63 56 89 79
7 69 81 69 77 62 90 55 79 73
8 75 88 79 67 71 85 73 85 56
9 77 86 62 82 89 53 77 68 50
10 78 52 89 58 88 60 72 77 77
11 86 78 60 78 83 80 56 72 78
12 73 85 67 79 88 76 71 88 57
13 85 86 83 86 85 82 84 52 85
14 54 51 71 70 65 60 51 58 91

optimization-based approach for planning weekly order release. Fab 4’s order
release model, in addition to similar functionality to this base model, con-
tains Cypress’s own proprietary, company-specific constraints and additional
objective functions that allow Fab 4 to effectively load its machines under
a wide array of product mix scenarios. Currently, a practical-sized instance
of the MIP model (6.6)–(6.23) can be solved to within 1% of the optimal
solution in less than two minutes on a desktop computer using commercially
available optimization software.



Chapter 7

Production Planning Approaches

In this chapter, we discuss production planning approaches for semiconductor
manufacturing. Planning is on the highest level of the PPC hierarchy. Plan-
ning approaches provide important input for the order release schemes dis-
cussed in Chap. 6. We start by describing short-term planning approaches.
Spreadsheet modeling and simulation are used in this situation.

Then, we continue by describing master planning approaches in semi-
conductor manufacturing. They are used to assign production quantities to
different facilities in different periods of time for a horizon of several months.
Weekly time periods are considered. Simulation-based performance assess-
ment of master planning approaches is briefly discussed. Next, we discuss
capacity planning approaches. In contrast to master planning, these ap-
proaches deal with a longer planning horizon and monthly time periods. We
discuss only deterministic planning approaches for master and capacity plan-
ning. Then, we present enterprise-wide planning approaches. In this situation,
we consider a planning horizon of several years and quarters as periods. We
also deal with the question of whether or not it is beneficial to open new facil-
ities. Deterministic and stochastic settings are described for enterprise-wide
planning problems.

One typical assumption in planning approaches is a fixed CT; however, the
CT is load-dependent. Therefore, we discuss different possibilities to model
load-dependent CT within planning approaches. We consider CT-TP curves,
iterative simulation, and finally clearing functions.

7.1 Short-Term Capacity Planning

In this section, we start by discussing the motivation of spreadsheet-based and
simulation-based short-term capacity planning. We then make the first ap-
proach more concrete for wafer fabs. Spreadsheet-based short-term capacity
planning approaches are discussed for back-end facilities. Finally, short-term
capacity planning based on discrete-event simulation is described.

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 7,
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7.1.1 Motivation

Spreadsheet-based capacity planning models are ubiquitous. From the early
days of Lotus 123 and Quattro Pro to today’s Microsoft Excel-based tools,
many planners and other wafer fab personnel have developed their own
spreadsheet capacity model to make important decisions with regard to
near-term capacity needs in the wafer fab (see Occhino [216] and Ozturk
et al. [224]). While they can and do vary in size, complexity, level of de-
tail, focus area, and accuracy or validity, spreadsheet-based tools are widely
accepted methods for short-term capacity analysis in both wafer fabs and
assembly and test facilities.

The typical goal of any short-term capacity planning spreadsheet model
is to calculate the expected utilization of one or more machines or machine
groups under some amount of demand or loading. While this utilization cal-
culation is often needed to assess the feasibility of a proposed machine loading
scenario or to justify the need for additional wafer fab equipment, the under-
lying mathematics take a variety of forms. The ways in which utilization is
defined or calculated and then reported by wafer fab personnel often differ due
to one or more modeling assumptions and/or the contingency factors used
by the analyst. While spreadsheet-based short-term capacity analyses are
predominantly used throughout the front-end and back-end facilities world-
wide, the models quite often contain static, deterministic data inputs that
are updated on some sort of periodic or as-needed basis. While these updates
can be automatically made using SQL queries into corporate data sources
(cf. Witte [323] for such an approach), even the most up-to-date information
being included in the model will still produce only a static, deterministic
estimate of machine group capacity utilization.

Unfortunately, in the absence of some fairly sophisticated queueing net-
work analysis (which is rare in the short-term capacity planning models),
spreadsheet-based capacity analysis is unable to accurately model and pre-
dict dynamic performance measures associated with the planned capacity
levels, such as ACT, WIP levels, and CT variability. While this may not al-
ways be of interest to managers conducting strategic capacity analyses such
as yearly or five-year plans, short-term capacity analysis often is interested
in expected out dates for products/jobs currently in the manufacturing line
both in the front-end and the back-end. Discrete-event simulation can help
to provide a dynamic perspective for short-term capacity planning.

7.1.2 Spreadsheet-Based Approaches for Wafer Fabs

The basic approach for short-term capacity planning in wafer fabs typically
requires some of the following set of machine-specific input data for each
machine group w that we desire to analyze:

• Number of machines contained within machine group w, denoted by Q(w).
• Percentage of time that machines in machine group w are available on
average for processing wafers, denoted by Av(w).
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• Percentage of average available time each time period that machines in
machine group w are processing wafers, denoted by Eff(w).

• Total number of hours per time period that machines in machine group w
are scheduled for production, denoted by SH(w).

Multiple, different efficiency values can also be used in place of a single pa-
rameter estimate. For example, some wafer fabs track operator efficiency,
machine loading efficiency, and other measures. In this case, the collection
of efficiency measures, all of which are defined from 0% to 100%, would be
multiplied together to compute an overall efficiency measure for the machine
in question. With these machine-specific inputs, the total number of expected
productive hours PH(w) can be computed for each machine group w as follows:

PH(w) := Q(w)Av(w)Eff(w)SH(w). (7.1)

For example, an etch machine group containing eight machines, each of which
is scheduled 24 h per day, seven days per week, has a historical availability due
to both scheduled and unscheduled downtime events of 92%. In addition, the
corporate policy is to assume an 85% productivity efficiency, which relates
to the company’s desired minimum amount of idle time on the machine, and
a 90% load efficiency, which pertains to how fully the machine is typically
loaded with regard to maximum load size. In this case, we obtain:

Eff(w) = (0.85)(0.9) = 0.765. (7.2)

Applying Eq. (7.1) results in the expected number of productive hours per
week given by

PH(w) = (8)(0.92)(0.765)(168) = 945.9. (7.3)

Once the available machine group productive hours are known, the next step
is to characterize how the machine group is impacted, i.e., visited, by demand
for a specific product that is made according to some specified process flow
or route i, i.e., route-specific information.

Given the reentrant nature of front-end wafer fabrication processes, it is
important to capture a number of inputs to properly characterize a machine
group’s route-specific information. These inputs should include recipe-based
parameters as different recipes are visited various numbers of times in a typ-
ical manufacturing route i. In addition, since the speed or processing rate of
a machine can be recipe-dependent, this too should be taken into account.

With this in mind, route-specific inputs often contain some of the following
inputs for recipe r:

• Number of times the current recipe r is visited for route i, denoted by NVir.
• Rate at which recipe r processes wafers, expressed in wafers per hour, on
route i, denoted by UPHir.

• Percentage of recipe r wafers that must be reworked on route i, denoted
by RWPir
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In the case where multiple recipes are specified for a given route, typical
capacity analyses aggregate the inputs to calculate a total number of visits,
as well as average UPH and RWP values. Average UPH is calculated using a
visits-weighted harmonic mean. A harmonic mean is required when any time
rates, i.e., some quantity per unit time, are to be averaged, such as units
per hour. The weighted harmonic mean of j positive real numbers n1, . . . ,n j

associated with weights w1, . . . ,wj is defined as follows:

H =
j

∑
k=1

wk

/ j

∑
k=1

wk

nk
. (7.4)

Assume route i has j different recipes that machine group w encounters and
that recipe l, l = 1, . . . , j is visited NVil times by machine group w. A visits-
weighted harmonic mean is used to calculate the average UPH, denoted by
AUPH, for machine group w on route i with ∑ j

l=1 NVil total visits as follows:

AUPHi(w) :=
j

∑
l=1

NVil

/ j

∑
m=1

NVim

UPHim(w)
. (7.5)

The average RWP, denoted by ARWP, is a visits-weighted arithmetic mean
that is given by

ARWPi(w) :=
j

∑
l=1

(NVil RWPil(w))
/ j

∑
m=1

NVim. (7.6)

Given the machine- and route-specific inputs, a short-term capacity analysis
can be performed to determine the maximum number of wafers that machine
group w can feasibly process in some desired period of time for route i with
∑ j

l=1 NVil total visits by machine group w on route i. This is called the maxi-
mum number of wafer starts per time period (MaxWSPT) and is determined
as follows:

MaxWSPTi(w) =
PH(w)AUPHi(w)(1−ARWPi(w))

∑ j
l=1 NVil

. (7.7)

It follows that a similar analysis across the different routes to which machine
group w is assigned will provide a range of MaxWSPTi(w) values for the
different routes. From this point, performing a short-term analysis across all
machine groups used on a given route i will reveal the true maximum number
of wafer starts per week that each route i can feasibly accommodate in terms
of available capacity. This is equal to the minimum MaxWSPTi(w) value for
all machine groups visited on route i.

Finally, now that machine group- and route-specific parameters are known,
the demand placed on the machine, i.e., demand-specific information, is the
last piece of information required to compute the machine group’s utilization.
This information is typically specified in terms of the following inputs:
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• The number of wafer starts planned for route i in the period, denoted
by PSi.

• The number of days in the period for which the analysis is being conducted,
denoted by ND

Clearly, some unit conversion may be required to convert PSi to a weekly
quantity based on ND. Once this is reconciled, machine group w’s capacity
loading can be calculated as follows:

CLP(w) = ∑
i∈Routes

PSi

MaxWSPWi(w)
. (7.8)

It is possible, even desirable, to maximize CLP(w) for each machine group
w to 100%, as this quantity is related to utilizing productive hours rather
than total hours. Recall that we previously used various efficiency and avail-
ability factors to derate total hours down to the expected available number
of PH(w). Therefore, a 100% value for CLP(w) does not mean the machine
group is always busy, i.e., 100% utilized, but rather that the machine group is
completely utilizing all planned available productive hours. It follows that be-
cause not all machine groups are required for processing wafers on all routes,
wafer fab personnel are able to quickly analyze a variety of starts scenarios
in such a spreadsheet-based capacity planning tool. After analyzing corpo-
rate planning’s demand statement, the capacity planning tool reports the
expected machine utilization levels if such a plan were implemented. Once
the user appropriately adjusts the starts plan to make it capacity-feasible,
subsequent discussions are typically had with sales and marketing to see if
any additional products for which capacity is available to start can be sold. If
so, additional starts are analyzed within the capacity planning tool with the
goal of maximizing the number of machine groups for which CLP(w) attains
its maximum 100% value. In this way, the corporation’s overall goal of max-
imizing profits is pursued via the appropriate, feasible utilization of available
production capacity.

The above described methodology for front-end short-term capacity plan-
ning was used at Micrel Semiconductor to provide greater visibility into the
hidden factory associated with Micrel’s front-end wafer fabs. This hidden
factory refers to the incremental manufacturing capacity that exists within a
given wafer fab that is not being realized due to a combination of mislead-
ing machine performance assumptions and suboptimal wafer starts plans. By
specifying accurate, up-to-date machine performance inputs to the capacity
model, Micrel’s wafer fabs provide both wafer fab and corporate planners
a clear view of the amount of route-specific wafer starts that can be ac-
commodated in their wafer fab. Similarly, by comprehending current market
demands and forecasted orders, Micrel’s planners provide Micrel’s wafer fabs
with capacity-feasible wafer starts plans that maximize the manufacturing
capacity within each Micrel wafer fab.
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7.1.3 Spreadsheet-Based Approaches for Back-End

In contrast to front-end processes, back-end processes are characterized by lin-
ear, rather than reentrant, process flows. CT in back-end facilities is generally
measured in days rather than weeks. Although back-end machine groups are
typically visited only a single time during a process flow, additional comple-
xities exist in the back-end, such as the need for auxiliary handler equipment
in final test processes (cf. the description in Sect. 2.2.3) and the fact that
device outs, i.e., shipments to customers, are the typical demand-specific in-
puts, rather than wafer starts, that make short-term capacity planning for
back-end facilities non-trivial.

Front-end wafers are sent to a sorting process that evaluates each individ-
ual die’s functionality and marks defective dies in an electronic wafer map.
This map electronically records the good and bad dies on the entire wafer.
The map travels electronically to the assembly area with the wafer, and the
assembly equipment reads the map such that it knows what good dies to as-
semble and then send on to final test. Back-end short-term capacity planning
is complicated by the fact that hundreds of wafers from the front-end turn
into hundreds of thousands of individual dies that are to be packaged as func-
tional ICs, memory products, communications modules, or other products.

Spreadsheet-based tools are prevalent across back-end facilities. Similar
to the front-end discussion in Sect. 7.1.2, back-end capacity planning re-
quires machine-specific, route-specific, and demand-specific inputs. While the
machine-specific input parameters are quite similar, back-end processes for
electrical testing of individual dies, for example, require slightly different
route-specific information. Furthermore, back-end demand-specific informa-
tion may be specified in a variety of units of measure, such as wafers for
the sort process or thousands of dies for the assembly and test processes.
However, the same approach can be taken in order to estimate equipment
utilization and/or capacity loading.

Consider the final electrical testing phase of the back-end process, a com-
mon bottleneck operation. The equipment associated with this step includes
not only the tester but an accompanying handler at a minimum and poten-
tially a load board (cf. Sect. 2.2.3). Route-specific inputs for a short-term
capacity analysis for the electrical test of die d may include the following:

• The amount of time (in seconds) required for the tester to locate/navigate
to the die being tested, denoted by IT(d)

• The amount of time (in seconds) required to test an individual die, denoted
by TT(d)

• The number of test programs that an individual die must undergo, for
example, room temperature test, elevated temperature test, etc., denoted
by I(d)
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• The number of locations on the die to be tested, denoted by S(d)
• The probability that a die being tested functions properly, i.e., yield, de-
noted by Y (d)

Consider device d that is to be electrically tested. If we assume O(d) indivi-
dual die outs are required by customers for device d, then the total number
of test insertions required is calculated as

TI(d) := O(d)I(d)
/

Y (d). (7.9)

Now that the total number of test insertions is determined, the total amount
of tester and handler time required to electrically test device d, denoted by
total test hours (TTH), is calculated as

TTH(d) := TI(d)(IT(d)+TT(d))S(d)
/

3600. (7.10)

In Eq. (7.10), the 3,600 value in the denominator is used to convert seconds
into hours. This total number of hours required for final testing to produce
O(d) good customer units out of device d would then be summed up with all
other devices that require similar back-end equipment in order to compute
the capacity loading for each machine group and handler group using the
previously defined machine- and handler-specific inputs.

An interesting reality in short-term capacity planning for back-end fa-
cilities is the comprehension of both tester and handler capacity require-
ments. Consider the following resource requirements resulting from a capacity
analysis:

• Device LM001 requires 27.5 h of tester T1 and handler H1 time.
• Device JWF223 requires 42.5 h of tester T1 and handler H2 time.
• Device SJM11 requires 30.0 h of tester T2 and handler H1 time.

Clearly, this product mix results in a total of 27.5 + 42.5 = 70.0h of required
tester T1 time and 30.0 h of tester T2 time. However, in terms of the handling
resources, a total of 27.5 + 30.0 = 57.5h of handler H1 time is required, in
addition to 42.5 h of handler H2 time. In this case, assuming a 24-h work
day and an 85% efficiency factor, the required number of resources needed
to produce these desired device outs in a single day would be calculated as
follows:

• Number of required testers T1: � 70
24(0.85)�= 4.

• Number of required testers T2: � 30
24(0.85)�= 2.

• Number of required handlers H1: � 57.5
24(0.85)�= 3.

• Number of required handlers H2: � 42.5
24(0.85)�= 3.

Therefore, the utilization of the tester and handler resources must be care-
fully computed as above so that accurate short-term capacity planning is per-
formed that produces effective estimates of capacity loading and/or resource
utilization. This is necessary when one considers the fact that an insufficient
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amount of tester or handler resources can limit back-end test capacity.
Although typically not the case, additional auxiliary resources, such as load
boards and/or operators, can also limit capacity. If this is potentially the
case in the back-end facility being analyzed, then a similar analysis should
be performed on those resources as well, as they also can be modeled in
terms of machine-, route-, and demand-specific inputs. We note that all the
calculations described in this section can be performed by spreadsheets.

7.1.4 An Integrated Approach Using Simulation

Often, a result of short-term capacity analysis is the expected out dates
for products/jobs currently in the BS both in the front-end and back-end.
Discrete-event simulation can help to provide a dynamic perspective for short-
term capacity planning. While calculating such a WIP Flush projection can
be done in a spreadsheet using historical estimates for expected process step
CT, many analysts have turned to discrete-event simulation methods as they
are designed to accommodate many of the uncertain realities present in wafer
fabs that spreadsheet models do not readily model, such as machine failures
(cf. Sect. 3.2.8).

While spreadsheet-based models do include machine availability assump-
tions, stating that a machine is available 92% of the time, for example, is
simply a high-level (but necessary) assumption. This is different from the
capability provided in simulation models to specify both machine TTF and
TTR distributions. The same 92% availability can be modeled as mean TTF
of 100h and mean TTR of 8 h, for example, in a simulation model when TTF
and TTR are assumed to be exponentially distributed with rate parameter
λ = 0.010 and λ = 0.125, respectively.

A validated simulation model of the wafer fab can be automatically po-
pulated with the current WIP at each process step and the status of each
machine group such that a short-term WIP Flush analysis can be conducted
to estimate the day and time one or more jobs of interest are expected to
exit the BS. This can be especially useful when customers are calling to ask
when their requested products will be available to them. In addition, wafer
fabs sometimes perform WIP Flush runs to estimate if they will be able to
make their quarterly shipment goals to their back-end facilities.

It is important to note that many of the inputs required to build a valid
simulation model can also be found in spreadsheet-based capacity analysis
models, and as such, one powerful technique for performing short-term ca-
pacity analysis studies is an integrated approach that utilizes the strengths
of both methods. First, the spreadsheet model can be used to accurately de-
termine resource levels in terms of number of machines, operators, and/or
other capacitated resources that are required to make some desired quantity
of goods. The resulting resource levels can then be fed into the simulation
model, along with process flow, equipment, and demand information, and
this proposed BS and BP configuration can be simulated to ascertain the
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resulting dynamic performance of the wafer fab in terms of CT and WIP
levels.

While this integrated approach has proven quite valuable, an additional
level of model utility can be achieved when the results of the simulation runs
are used to change some of the underlying assumptions and/or inputs con-
tained in the spreadsheet capacity analysis model. The analyst can fine-tune
the desired performance of the wafer fab under study by using both modeling
approaches in this interactive fashion. This can be especially important con-
sidering the ability of a spreadsheet model to compute required investment
levels regarding new equipment acquisition and personnel hiring decisions.
By using both spreadsheet- and simulation-based short-term capacity analy-
sis methods, a greater level of insight and understanding may be afforded to
the analyst conducting the study.

7.2 Master Planning

Master planning (MP) is somewhere between short-term capacity planning
and more strategic capacity planning. It deals with determining appropriate
wafer quantities for several products, several production sites, and several
periods of time.

A master plan typically has a horizon of six months divided into weekly
time buckets. Since market demand is not entirely known when planning
a couple of weeks or months ahead, we have to distinguish between firm
customer orders and additional forecasts. Explicit customer requirements are
confirmed, postponed, or reduced by the order management process based on
available supply. On the other hand, the demand planning process performed
every month by sales and marketing departments tries to foresee the rest of
the market needs. Both are main inputs of MP (see Vieira [313]).

In the following, we describe a model for master planning as proposed
by Ponsignon and Mönch [245]. The resultant model is called MPSC
for abbreviation. We start by presenting the related index information:

p = 1, . . . ,P : product index
t = 1, . . . ,T : time index

k = 0, . . . ,kmax : index for measuring capacity consumption
m = 1, . . . ,mmax : facility index

b = 1, . . . ,bm,max : bottleneck index for facility m

We assume that P products can be processed in mmax facilities consisting
of ihmax in-house locations and scmax subcontractor sites. The total number of
bottleneck work centers associated with all facilities is represented by bmax.
We assume that each bottleneck is assigned to exactly one facility and that
each facility has at least one bottleneck. This assumption is reasonable be-
cause planned bottlenecks, caused by very expensive machines, exist in all
wafer fabs. Clearly,∑mmax

m=1 bm,max = bmax holds. In case of subcontractors, we
model only one bottleneck, i.e., we set bm,max = 1. The quantity T stands for
the planning horizon measured in periods. We use one week as the length of
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a single time bucket. We assume for simplicity reasons that all products have
the same cycle time of kmax + 1 weeks.

The following parameters are part of MPSC:

Bp0 : initial backlog of product p at the beginning of the first period
Cmin

mbt : minimum utilization of bottleneck b in facility m in period t (in
hours or pieces)

Cmax
mbt : maximum available capacity of bottleneck b in facility m in period

t (in hours or pieces)
ccpmbk : capacity consumption of one wafer of product p when this product

is processed in facility m at bottleneck b and the completion period
is k periods ahead

d( f c)
pt : additional forecast demands for product p at the end of period t

d(o)
pt : confirmed orders for product p at the end of period t

hcpt : inventory cost for holding one wafer of product p during period t
Ip0 : initial inventory level of product p at the beginning of the first

period
lcpmt : location cost when product p is processed in facility m in period t,

i.e., fixed costs
mcpmt : cost to produce one wafer of product p in facility m in period t, i.e.,

variable costs
revpt : expected revenue per wafer for satisfying additional demands of

product p in period t
udcpt : cost due to unmet confirmed orders for one wafer of product p

postponed from period t to period t + 1

x(i)pmt : initial number of wafers of product p to be completed at the end
of period t in facility m, i.e., WIP started before the first period of
the model

α : large number

The following decision variables are used within the model:

xpmt : number of wafers of product p to be completed at the end of period
t in facility m

s( f c)
pt : sales quantity of additional forecast demand of product p in period

t

s(o)pt : sales quantity of confirmed orders of product p in period t
Bpt : backlog of confirmed orders of product p at the end of period t
Ipt : inventory level of product p at the end of period t

upmt : binary indicator variable for occurrence of fixed production costs of
product p in facility m in period t

The model can be formulated as follows:

max
P

∑
p=1

T

∑
t=1

{

revpts
( f c)
pt − hcptIpt − udcptBpt −

mmax

∑
m=1

(mcpmtxpmt + lcpmtupmt)

}

(7.11)
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subject to:

Ip,t−1 − s(o)pt − s( f c)
pt +

mmax

∑
m=1

(
xpmt + x(i)pmt

)
= Ipt , p = 1, . . . ,P, t = 1, . . . ,T, (7.12)

s(o)pt +Bpt = d(o)
pt +Bp,t−1, p = 1, . . . ,P, t = 1, . . . ,T, (7.13)

s( f c)
pt ≤ d( f c)

pt , p = 1, . . . ,P, t = 1, . . . ,T, (7.14)

Cmin
mbt ≤

P

∑
p=1

min(kmax,T−t)

∑
k=0

ccpmbk

(
xpm,t+k + x(i)pm,t+k

)
≤Cmax

mbt ,

m = 1, . . . ,mmax, b = 1, . . . ,bm,max, t = 1, . . . ,T, (7.15)

xpmt ≤ αupmt , p = 1, . . . ,P, m = 1, . . . ,mmax, t = 1, . . . ,T, (7.16)

xpmt ≥ 0,s(o)pt ≥ 0,s( f c)
pt ≥ 0, Ipt ≥ 0,Bpt ≥ 0, p = 1, . . . ,P,

m = 1, . . . ,mmax, t = 1, . . . ,T, (7.17)

upmt ∈ {0,1}, p = 1, . . . ,P, m = 1, . . . ,mmax, t = 1, . . . ,T. (7.18)

The objective is to maximize the overall difference between the revenues
and the sum of costs. The first term in the objective function (7.11) models
the revenues for fulfilling additional forecast demands. The costs for holding
inventory are modeled by the second term. The third term refers to penalty
costs for backlogged customer orders. The fourth and fifth terms represent
variable and fixed production costs, respectively.

Constraint (7.12) represents the flow balance in every period and for every
product. The inflows are the initial inventory, the production quantities, and
the WIP inventory; the outflows are the sales quantities related to confirmed
orders and forecasts and the ending inventory. Constraints (7.13) and (7.14)
relate sales quantities to market demand. Backlog is allowed only for customer
orders. In case of additional forecasts, we only consider a maximum bound.
The capacity restrictions for every bottleneck in each period are defined in
constraints (7.15) with minimum and maximum utilization limits. The overall
loading is calculated by taking production quantities and WIP inventory of
all products into account. We assume ∑P

p=1 ccpmb0 > 0 to ensure that there is

at least one product p such that ∑min(kmax,T−t)
k=1 ccpmbk > 0 for all t = 1, . . . ,T , b,

and m. Inequalities (7.16) set the binary variable upmt to 1 whenever there is
a positive production for the considered product, location, and time period.
On the other hand, upmt = 0 leads to xpmt = 0. It makes sure that an additional
facility is used only when it is necessary. Nonnegativity and binary conditions
are defined by constraints (7.17) and (7.18).

It is shown in [245] that this problem is NP-hard because a knapsack
problem can be reduced to a special case of it. Therefore, efficient heuristics
are proposed in [245]. A product-based decomposition heuristic and a GA are
described. The product-based decomposition procedure is similar to fix-and-
optimize approaches in lot sizing. It can be summarized as follows.
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Product-based Decomposition (PD)

1. Initialize the objective function value by fcurr := 0.
2. Sort the products with respect to the index Ip in descending order, where

we define

Ip :=
T

∑
t=1

udcptd
(o)
pt , p = 1, . . . ,P. (7.19)

3. Decompose the set of all products into n disjoint subsets P1, . . . ,Pn of equal
size, only the last subset might have a different size, such that products
with similar Ip values are part of the same subset or in consecutive subsets.

4. Solve MPSC given by objective function (7.11) and constraints (7.12)–
(7.18) for the current product subset Pi by taking the actual maximum
capacity limits into account and by setting the minimum capacity bounds
to zero. Increment fcurr with the objective value of the current subprob-
lem.

5. Decrease the maximum capacity limits as follows:

Cmax
mbt :=Cmax

mbt − ∑
p∈Pi

min(kmax,T−t)

∑
k=0

ccpmbk

(
xpm,t+k + x(i)pm,t+k

)
(7.20)

for each m = 1, . . . ,mmax, b = 1, . . . ,bm,max, and t = 1, . . . ,T .
6. As long as any product subset has not been considered, increment the

index i of the current product subset Pi and go to step 4, else return fcurr.

In step 3, the quantity n is determined by some preliminary computational
experiments in such a way that the subproblems in step 4 can be solved to
optimality by a MIP solver.

We see that the minimum capacity limit is ignored in the PD algorithm.
Consider that a minimum utilization threshold leads to an artificial increase
of production quantities for products of the first subset. As a result, the
remaining capacity may not be sufficient for other subsets. That is why an
a posteriori repair scheme where the bottleneck usage in each time period
is checked and increased in the case that the minimum bound is not met is
proposed by Ponsignon and Mönch [245].

Some computational results for P ∈ {50,100,200} and mmax ∈ {8,12} are
shown in Table 7.1. We provide the ratio of the objective function values
obtained by PD and by the MIP. The total number of considered problem
instances is 120. The MIP is solved using the commercial solver CPLEX. The
number of products within each subproblem is four, i.e., we have n := �P/4�.
The maximum computing time for the MIP is 30min per problem instance,
while the average computing time of PD for P = 50, P = 100, and P = 200 is
10, 15, and finally 30min, respectively.

We can see from Table 7.1 that the MIP gap increases quickly when the
number of products gets larger. Up to 100 products, PD behaves similar to
the MIP, but PD clearly outperforms the MIP for P = 200.
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Table 7.1: Computational results for MPSC

P ihmax scmax PD/MIP ratio Average MIP gap

50 6 2 0.9775 0.0318
50 8 4 0.9753 0.0185
100 6 2 0.9824 0.1441
100 8 4 0.9762 0.0786
200 6 2 1.1343 0.7361
200 8 4 1.1090 0.4008

More computational results, including results for the proposed GA, can be
found in [245]. Note that the GA is faster than PD, especially for large-scale
problem instances. However, PD usually performs better from a solution qual-
ity point of view. Some computational results using heuristics for master plan-
ning in a rolling horizon setting can be found in Ponsignon and Mönch [244].
An architecture similar to those described in Sect. 3.3.2 is used. Feedback
from the BS and the BP is taken into account with respect to backlog, in-
ventories, and capacity each time an MPSC instance is solved.

7.3 Capacity Planning

In contrast to master planning, the planning horizon for capacity is usually
one to three years. Capacity planning is therefore mid-term or long-term.
Instead of weeks, usually months or even quarters are used as periods. Con-
tinuous decision variables are generally appropriate for production quantities.
However, integer-valued decision variables come into play, when capacity ex-
pansion decisions are considered by purchasing new machines.

In the following, we present a multi-period capacity planning formulation
that is due to Barahona et al. [22]. We start by introducing the following
indices and sets that are used within the model:

j = 1, . . . ,J : operation index
i = 1 . . . , I : machine group index

I( j) : set of all machine groups that can perform operation j
J(i) : set of all operations that can be performed on machine group i
PT : set of primary machine groups
ST : set of secondary machine groups

t = 1, . . . ,T : period index
p : product index
P : set of all products

The following parameters are used within the model:

γpt : expected number of wafers completed per wafer started for product
p in period t

dpt : demand in wafers per day for product p in period t
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b jpt : number of passes, adjusted for yield, of operation j on product p
in period t

μit : initial capacity for machine group i in hours/day in period t
cit : unit capacity for machine group i in hours/day in period t

hi jt : number of hours to process one wafer through operation j on ma-
chine group i in period t

mit : cost of purchasing a new machine group i in period t
βt : total budget available for buying new machines in period t

αpt : upper bound for the unmet demand in wafers per day for product
p in period t

q1 : penalty for buying a primary tool
q2 : penalty for buying a secondary tool

The following decision variables are used in the model:

Upt : unmet demand for product p in wafers per day in period t
Wpt : number of wafers per day for product p that enter the wafer fab in

period t
O jit : number of wafers per day that require operation j on machine group

i in period t
Nit : number of new machines bought for machine group i in period t

The capacity planning model can be formulated as follows:

min
T

∑
t=1

∑
p∈P

Upt +
T

∑
t=1

(

q1 ∑
i∈PT

Nit + q2 ∑
i∈ST

Nit

)

(7.21)

subject to:

γptWpt +Upt = dpt , t = 1, . . . ,T, p ∈ P, (7.22)

∑
p∈P

b jptWpt = ∑
i∈I( j)

O jit , j = 1, . . . ,J, t = 1, . . . ,T, (7.23)

∑
j∈J(i)

hi jtO jit ≤ μit + cit

t

∑
τ=1

Niτ , t = 1, . . . ,T, i = 1, . . . , I, (7.24)

I

∑
i=1

mitNit ≤ βt , t = 1, . . . ,T, (7.25)

Upt ≤ αpt , p ∈ P, t = 1, . . . ,T, (7.26)

Upt ≥ 0,Wpt ≥ 0,O jit ≥ 0, t = 1, . . . ,T, p ∈ P, i = 1, . . . , I, (7.27)

Nit∈ IN, i = 1, . . . , I, t = 1, . . . ,T. (7.28)

The objective (7.21) of the model is minimizing the sum of the total unmet
demand and two penalty terms that discourage purchasing primary and se-
condary machines, respectively. Constraints (7.22) relate the demand for each
product to unmet demand and production quantities. It is assumed that the
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demand of all periods is satisfied with production from the same period.
This assumption is reasonable because inventory is generally kept very low in
semiconductor manufacturing. Note that 0 ≤ γpt < 1 models the occurrence
of yield in semiconductor manufacturing. Constraints (7.23) determine the
total number of wafers that require a specific operation distributed over all
possible machines as the sum of the corresponding production levels. Con-
straints (7.24) ensure that the total production load on machine group i is
smaller than the available capacity for this machine group measured in hours
per day of production in a specific period. Budget constraints for purchasing
new machines are given by constraints (7.25). Upper bounds for the unmet
demand are set by constraints (7.26). Finally, constraints (7.27) and (7.28)
express the fact that all decision variables are non-negative and that Nit is an
integer for each machine group and each period.

Note that a two-stage stochastic programming formulation for a situation
similar to that covered in model (7.21)–(7.28) is provided by Hood et al. [117]
and Barahona et al. [22]. The first stage deals with capacity expansion deci-
sions. The second stage is related to production decisions that can be made
when the demand profile is known with certainty. Several demand scenarios
with associated probabilities are provided to tackle the two-stage model sim-
ilar to that described in Sect. 3.2.4. However, additional difficulties have to
be resolved that are imposed by the integrality requirements for variable Nit .

We continue by briefly discussing the capacity optimization planning sys-
tem (CAPS). CAPS is a decision-support system used by IBM for strategic
planning of its semiconductor capacity (see Bermon and Hood [24]). It is
based on linear programming. CAPS determines the product mix that maxi-
mizes profit given the existing machine capacity. At the same time, it is also
able to determine the necessary capacity taking a given product mix into
account. The unrelated parallel machines that are typical for wafer fabs are
modeled in detail in the LP to determine a preferential order in which these
machine groups are used.

While capacity planning for a single wafer fab is addressed in model (7.21)–
(7.28) and by the CAPS model, a multi-facility situation is covered by the
model proposed by Habla and Mönch [113]. The model is somewhat similar
to the master planning model described in Sect. 7.2; however, assignment
decisions to single wafer fabs are not taken. Consequently, integer-valued
decision variables are not necessary. The objective is to maximize revenue for
forecasted orders and minimize at the same time production costs, inventory
holding costs, and costs for unmet committed orders. A quite general product
structure is assumed to allow for modeling make-to-stock, assemble-to-order,
and make-to-order production.

A detailed survey of strategic capacity planning approaches in semicon-
ductor manufacturing is presented by Geng and Jiang [97]. A stochastic pro-
gramming model for capacity planning in wafer fabs with uncertain demand
and capacity is described by Geng et al. [98].
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7.4 Enterprise-Wide Planning

Enterprise-wide semiconductor planning considers the allocation of products
to wafer fabs and then routing the wafers with the ICs for testing. The tested
wafers are routed to where they can be cut into individual chips and put in
a package. The packages are then sent to final test facilities for testing and
classification. The products are classified, i.e., binned, according to perfor-
mance, and shipped to final inventory warehouses, or demand centers, for
selling. Planning when to increase or decrease capacity at the production fa-
cilities as well as planning when and whether to build new facilities are some
of the possibilities for these operations, for example, purchasing a new ma-
chine for one of the bottleneck machine groups in a wafer fab, building a new
test facility in a new region, or subcontracting to a foundry. In the following,
we present a MIP that is due to Stray et al. [293]. The model can be used to
answer the following questions:

• What facilities should be built?
• What machines should be purchased?
• What products should be manufactured in which facilities?
• What demand should be met by subcontracting, and what demand should
be left unmet in order to maximize profit?

The model is focused at a strategic level, and a typical instance of the problem
covers a few years in several segments of perhaps three months per segment,
i.e., quarters. The level of detail is deep enough to support decisions such
as quarterly production amounts of each product in a company’s product
portfolio, including the routing of the product between facilities. The model
does not attempt to schedule individual jobs of products within facilities. The
model is presented below.

We use the following sets and indices in the model formulation:

FAM : set of product families
PKGp : set of packages, where one set PKGp is for each p in FAM
BINpq : set of bins for each product package q and family p
BETb : set of bins that can be sold as product with bin b characteristics

L : set of all location sets
LF : wafer fab set
LS : sort location set

LM : assembly set
LT : test set
LD : demand center set

MGl : set of all machine groups in location l
p : index for product families
q : index for packages
b : index for bins
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f , l : index for locations
i : index for machine types
t : index for time periods

In the remainder of this section, we use F,S,M,T,D as abbreviations for
fab, sort, assembly, test, and demand center, respectively.
The following parameters are part of the model:

PBClt : cost of building facility l in period t
POClt : cost of operating facility l in period t
PRClt : cost of removing facility l in period t
MPCilt : cost of purchasing a single machine i in facility l in period t
MOCilt : cost of operating machine i in facility l through period t

SCpt : cost for subcontracting one job of wafers of family p in period t
mil : number of machines initially installed in machine group i and

facility l
MAXS

il : maximum number of machines allowed in machine group i in
facility l

MAXT
l : total number of machines allowed in all machine groups in

facility l
αil : maximum machine utilization for machine group i in location l
Sil : average downtime of machine group i in hours in location l over

a period of length TPL
TPL : length of one period in hours

T : number of periods in the model
Cplt : fraction of product p in location l started in period t that finishes

in period t + 1
Cpqlt : fraction of product p and package q in location l started in period

t that finishes in period t + 1
Qplt : yield of product p in location l in period t

Q f pqlt : yield of the product p and package q in location l in period t,
where f is the wafer fab in which the original wafer was manu-
factured

Q f pqblt : resulting bins b of a product, depending on origin wafer fab f ,
family p, package q, location l, and time period t

Gpq : number of chips per wafer for family p and package q
Tipl : total time product p takes to complete on machine group i in

location l
Dpqblt : demand of a product p in package q and bin b at location l and

period t
PCplt : cost of starting product p at location l in period t
TCldt : transportation cost from l to d in period t
ICplt : inventory cost for product p in location l and period t

PVpqblt : sales price for product p in package q and bin b at demand
center l in period t
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PENpqbt : penalty for not meeting demand for product p in package
q and bin b in period t

WLSl : number of wafers in a job at wafer fabs and wafer sorts,
by location l

CLSl : number of chips in a job at assembly, test, and demand centers
by location l

LBTl : building time for location l
N : large number

All periods are of the same length in the model. The complementary frac-
tions of Cplt and Cpqlt finish in period t. In order to incorporate yield at the
test operations, the quantity Q f pqblt is summed over q for all p, and this
number has to be less than or equal to one.

The following decision variables are used within the model:

XS1
plt : number of jobs of product p to start in facility l in period t,

S1 ∈ {F,S,M,T}
XS1

f plt : number of jobs of product p produced in fab f to start in facility
l in period t, S1 ∈ {S,M,T}

XM
f pqlt : number of jobs of product p, package q, produced in fab f to

start in assembly facility l in period t
W S1,S2

plt : number of jobs of product p to put in inventory before (B) or
after (A) location l in period t, S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

W S1,S2
f plt : number of jobs of product p produced in fab f to put in inventory

before (B) or after (A) location l in period t, S1 ∈ {A,B}, S2 ∈
{F,S,M,T,D}

W S1,S2
f pqlt : number of jobs of product p, package q, produced in fab f to

put in inventory before (B) or after (A) location l in period t,
S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

W S1,S2
f pqblt : number of jobs of product p, package q, bin b, produced in fab

f to put in inventory before (B) or after (A) location l in period
t, S1 ∈ {A,B}, S2 ∈ {F,S,M,T,D}

Y S1,S2
pldt : number of jobs of product p shipped between two locations l and

d in period t, S1 ∈ L, S2 ∈ L
Y S1,S2

f pldt : number of jobs of product p produced in fab f shipped between
two locations l and d in period t, S1 ∈ L, S2 ∈ L

Y S1,S2
f pqldt : number of jobs of product p, package q, produced in fab f

shipped between two locations l and d in period t, S1 ∈ L, S2 ∈ L
Y S1,S2

f pqbldt : number of jobs of product p, package q, bin b, produced in fab f
shipped between two locations l and d in period t, S1 ∈ L, S2 ∈ L

Zpqbdt : number of jobs of product p, package q, bin b, demand center d,
sold in period t

ςpqbdt : number of jobs of product p, package q, bin b, available at de-
mand center d in period t
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MA
ilt : number of machines added to machine group i, location l, and

period t
MR

ilt : number of machines removed from machine group i, location l,
and period t

ΩA
lt : binary indicator variable for adding plant l in period t

ΩR
lt : binary indicator variable for removing plant l in period t

Splt : number of wafers subcontracted of each family p to each assembly
operation l in each period t

Milt : number of machines in machine group i, location l, and time
period t

Ωlt : binary indicator variable for plant existence for location l in time
period t

The objective function and the constraints of the model can be formulated
as follows:

max ∑
t,p,q,b,d∈LD

PVpqbt Zpqbdt − ∑
t,p,q,b,d∈LD

PENpqbt
(
Dpqblt −Zpqbdt

)

− ∑
t,p,l∈LF

(
PCplt XF

plt + ICplt W AF
plt

)− ∑
t,p,l∈LF ,d∈LS

TCldt Y FS
pldt

− ∑
t,p, f∈LF ,l∈LS

ICplt W BS
f plt − ∑

t,p, f∈LF ,l∈LS

(
PCplt XS

f plt + ICplt W AS
f plt

)

− ∑
t,p, f∈LF ,l∈LS,d∈LM

TCldt Y SM
f pldt − ∑

t,p, f∈LF ,l∈LM

ICplt W BM
f plt

− ∑
t,p,q, f∈LF ,l∈LM

(
PCplt XM

f pqlt + ICplt W AM
f pqlt

)

− ∑
t,p,q, f∈LF ,l∈LM ,d∈LT

TCldt Y MT
f pqldt − ∑

t,p,q, f∈LF ,l∈LT

ICplt W BT
f pqlt

− ∑
t,p,q, f∈LF ,l∈LT

PCplt XT
f pqlt − ∑

t,p,q,b, f∈LF ,l∈LT

ICplt W AT
f pqblt

− ∑
t,p,q,b, f∈LF ,l∈LT ,d∈LD

TCldt Y T D
f pqbldt − ∑

t,p,q,b, f∈LF ,l∈LD

ICpltW
BD
f pqblt

− ∑
t,l∈L

PBCltΩA
lt − ∑

t,l∈L

POCltΩlt − ∑
t,l∈L

PRCltΩR
lt

− ∑
t,l∈L,i∈MGl

MPCiltM
A
ilt − ∑

t,l∈L,i∈MGl

MOCiltMilt − ∑
p,l∈LA,t

SCpltSplt (7.29)

subject to:

r

∑
t=1

{
(
1−Cplt

)
QpltX

F
plt +Cpl,t−1Qpl,t−1XF

pl,t−1 − ∑
d∈LS

Y FS
pldt

}

=W AF
plr ,

p ∈ FAM, l ∈ LF , r = 1, . . . ,T, (7.30)
r

∑
t=1

(
Y FS

pldt −XS
l pdt

)
=W BS

l pdr, l ∈ LF , p ∈ FAM, d ∈ LS, r = 1, . . . ,T, (7.31)
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r

∑
t=1

{

(1−Cpst)Q f pstX
S
f pst +Cps,t−1Q f ps,t−1XS

f ps,t−1 − ∑
d∈LM

Y SM
f psdt

}

=W AS
f psr,

f ∈ LF , p ∈ FAM, s ∈ LS, r = 1, . . . ,T, (7.32)

r

∑
t=1

{

∑
l∈LS

Y SM
f plat − ∑

q∈PKGp

CLSa

GpqWLS f
XM

f pqat

}

=W BM
f par,

p ∈ FAM, a ∈ LM, f ∈ LF , r = 1, . . . ,T, (7.33)

r

∑
t=1

{

(1−Cpqat)Q f pqatX
M
f pqat +Cpqa,t−1Q f pqa,t−1XM

f pqa,t−1 − ∑
d∈LT

Y MT
f pqadt

}

= W AM
f pqar, f ∈ LF , p ∈ FAM, q ∈ PKGp, a ∈ LM, r = 1, . . . ,T, (7.34)

r

∑
t=1

{

∑
l∈LM

Y MT
f pqldt −XT

f pqt

}

=W BT
f pqdr,

f ∈ LF , p ∈ FAM, q ∈ PKGp, d ∈ LT , r = 1, . . . ,T, (7.35)

r

∑
t=1

{

(1−Cqlt)Q f pqbltX
T
f pqt +Q f pqbl,t−1Cql,t−1XT

f pq,t−1 − ∑
d∈LD

Y T D
f pqbldt

}

=W AT
f pqblr, f ∈ LF , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, l ∈ LT , r = 1, . . . ,T,
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r

∑
t=1

{

∑
l∈LT

Y T D
f pqbldt − ςpqbdt

}

=W BD
f pqbdr,

f ∈ LF , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, r = 1, . . . ,T, (7.37)

∑
b̃∈BETb

ςpqb̃dt − ∑
b̃∈BETb

Zpqb̃dt ≥ 0,

p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, t = 1, . . . ,T, (7.38)

Zpqbdt ≤ Dpqbdt , p ∈ FAM, q ∈ PKGp, b ∈ BINpq, d ∈ LD, t = 1, . . . ,T, (7.39)

∑
p∈FAM

{
Tipl
(
(1−Cplt)X

F
plt +Cpl,t−1XF

pl,t−1

)}≤ αilMilt(TPL− Sil),

l ∈ LF , i ∈ MGl , t = 1, . . . ,T, (7.40)

NΩlt ≥ XF
plt , p ∈ FAM, l ∈ LF , t = 1, . . . ,T, (7.41)

Ωlt =
max(t−LBTl ,0)

∑
r=1

ΩA
l,r+LBTl

−
t

∑
r=1

ΩR
lr, t = 1, . . . ,T, l ∈ L, (7.42)

Milt =
t

∑
r=1

(MA
ilr −MR

ilr)+mil, i ∈ MGl , l ∈ L, t = 1, . . . ,T, (7.43)

Milt ≤ MAXS
il , i ∈ MGl , l ∈ L, t = 1, . . . ,T, (7.44)

∑
i∈MGl

Milt ≤ MAXT
l , l ∈ L, t = 1, . . . ,T, (7.45)
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XS1
plt ≥ 0,XS1

f plt ≥ 0,XM
f pqlt ≥ 0,WS1,S2

plt ≥ 0,W S1,S2
f plt ≥ 0,W S1,S2

f pqlt ≥ 0,W S1,S2
f pqblt ≥ 0,

Y S1,S2
pldt ≥ 0,Y S1,S2

f pldt ≥ 0,Y S1,S2
f pqldt ≥ 0,Y S1,S2

f pqbldt ≥ 0,Zpqbdt ≥ 0,ςpqbdt ≥ 0,Splt ≥ 0,

f ∈ LF , l ∈ L, t = 1, . . . ,T, p ∈ FAM, q ∈ PKGp, b ∈ BINpq, (7.46)

Milt ∈ IN, MA
ilt ∈ IN, MR

ilt ∈ IN, t = 1, . . . ,T, l ∈ L, i ∈ MGl , (7.47)

Ωlt ,ΩA
lt ,Ω

R
lt ∈ {0,1}, t = 1, . . . ,T, l ∈ L. (7.48)

The objective function (7.29) includes revenue generated from selling pro-
ducts, the costs of not meeting the demand, the production costs, and the
costs for building and operating or removing facilities and machines. The first
line of objective function (7.29) represents the revenue generated by meeting
demand and the penalty for not meeting the demand. The second line in-
dicates the wafer fab production costs, inventory carrying costs for finished
wafers, and the costs for transporting wafers between the wafer fab and sort
sites. The third line is related to the inventory carrying costs before sort,
the products costs for sort, and the inventory carrying cost before assembly.
The fourth through eighth lines represent the costs associated with the as-
sembly and test operations, the transportation between these facilities, the
transportation costs to the demand centers, and the inventory carrying costs
at each of these facilities. The ninth line indicates the costs for building fa-
cilities, operating the facilities, and closing facilities, and the first two terms
of the tenth line represent the costs for purchasing machines and operating
them. Finally, the last term in the last line of expression (7.29) represents the
costs for subcontracting the fabrication of wafers, but does not include any
costs for establishing subcontract relationships.

The model contains network flow constraints, capacity constraints, pro-
duct substitution constraints, demand constraints, production suppressing
constraints, facility counting constraints, machine counting constraints, and
constraints on the number of machines that can be purchased. The network
flow constraints (7.30)–(7.37) enforce the material flow conservation, i.e., total
inflow is equal to total outflow. The even-numbered network flow constraints
deal with the production of products in a facility and the shipment of products
to the next facility, while the odd-numbered network flow constraints deal
with the balance of flow between the inflow of materials into a facility and
the amount of products started for production.

Constraints (7.38) determine which products will be downgraded in order
to meet demand, and the demand by product constraints are given by in-
equalities (7.39). Wafer fabrication is limited by constraints (7.40), and while
they are not shown here, there are similar constraints sets for sort, assembly,
and test.

In order to prevent production in a non-existent facility, constraints (7.41)
are needed for fab production with similar constraints sets (not shown) for
sort, assembly, and test. Constraints (7.42) keep track of the facilities that
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are built and shutdown. In a similar way, constraints (7.43) keep track of the
number of machines purchased and sold. Constraints (7.44) and (7.45) limit
the number of machines in each machine group and place a limit on the total
number of machines in a facility, respectively. Finally, constraints (7.46)–
(7.48) are nonnegativity and integer restrictions for the decision variables.

Next, we discuss some computational results from Stray et al. [293]. We
present a break-even analysis for a situation where demand ranges from very
low to very high. Very low demand is related to a situation where the produc-
tion facilities are running with substantial excess capacity. In the very high
demand case, the production facilities are running with too little capacity.
In addition, the amount of subcontracting is limited. Practically, this means
setting the parameter demand level Dpqblt to an even level across all periods
and then solving the problem. The solution is then analyzed, and the number
of machines bought, wafers subcontracted, and what facilities were built are
noted. The model is rerun with a different demand level, and the same char-
acteristics are noted. After running enough problem instances with different
demand levels, curves are generated and examined to see what the demand
level is that makes the model go from current capacity to subcontracting,
from subcontracting to buying new machines, and from buying machines to
buying entire wafer fabs, assembly facilities, and test facilities. The network
for this analysis is shown in Fig. 7.1.
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Figure 7.1: Example network

In this scenario, one wafer fab is already up and running, together with one
sort, one assembly, and one test facility, and five demand centers. The capacity
in this model is balanced so that the maximum capacity of each individual
facility matches the maximum capacity of a single facility, preceding it in
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the manufacturing supply chain. One sort facility can thus handle the output
from one wafer fab, and one assembly facility can handle the output from a
single sort facility.

There is also one foundry available with limited capacity. The product
from the foundry is ready for the assembly operation. The price of wafers
from the foundry is higher than the cost of producing them in-house as long
as existing capacity is utilized. However, if a wafer fab has to be built, the
cost per unit will increase. When the costs are high enough, subcontracting
becomes an interesting option. All existing and potential wafer fabs have the
same maximum capacity per period. The maximum capacity is defined as
the capacity of a facility when the allowed maximum number of machines
has been installed. Demand is varied evenly over the five demand centers.

There are two product families in the model, each divided into two packa-
ges. In the binning process, two different qualities result from each package.
Wafer fabs are considered to have two bottleneck machine groups, while sort,
assembly, and test have one each. The planning problem is NP-hard, because
it contains knapsack- and facility location problem-type subproblems. There-
fore, we will allow feasible solutions that are provably within 5% of optimum.
Figure 7.2 shows the obtained solutions for 20 different demand settings, var-
ied along the x-axis, with subcontracting of wafers limited. For each demand
scenario, the MIP was run using AMPL and CPLEX.
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Figure 7.2: Optimal production solutions with limited subcontracting

In this analysis, a wafer fab is built at five hundred twenty million chips,
two hundred million more than the maximum capacity of a wafer fab that is
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three hundred twenty million chips. After the wafer fab is built, foundry pro-
duction goes down and stays down comfortably under the allowed maximum.
The reason why foundry production is not zero is that it covers for the pro-
duction capacity that is lost during the building of the wafer fab. The dip in
in-house production and increase in subcontracting at the six hundred eighty
million chips demand scenario can only be explained by the 5% allowed MIP
gap, i.e., accepting the solution even though it is not optimal. The solution
at six hundred forty million chips consisted of shutting down one of the wafer
fabs in the last time period, replacing its capacity with subcontracting, saving
the operation costs for the facility and its machines, and spending the money
on the subcontracted wafers.

Rastogi et al. [258] present a stochastic version of the enterprise model of
Stray et al. [293] where the total expected profit is maximized when product
demand is uncertain. A two-stage, multiperiod stochastic MIP with recourse
was developed to provide solutions that reduce the overall risk in planning
(cf. Sect. 3.2.4). The first stage decisions include purchasing of machines at
various production facilities, outsourcing production, or even construction
of a new production facility depending upon the demand. The second stage
(recourse) actions include increasing the internal capacity by purchasing ma-
chines at a premium as well as external capacity by subcontracting and can-
cellation of contracts for outsourcing made in the first stage.

The model provides information regarding the trade-offs between risk and
expected short- and long-term returns. It is coded in AMPL and solved using
CPLEX. When the uncertainty in demand increases, a more conservative
approach is adopted, and the model displays an inherent tendency of no
commitment, i.e., the capacity increment is negligible.

In addition to the uncertainty in demand, the effect of correlation between
the demands of two products is studied. It is evident from the analysis, and
also as stated by Simchi-Levi et al. [283], that positive correlation between the
products, for example, increasing market size, involves higher risk compared
to negative, for example, introduction of new products, or no correlation.

The usefulness of the model compared to the alternatives available was
evaluated. The model was compared to the expected value model of Stray et
al. [293] and to the perfect information case, which revealed that as the un-
certainty in demand increases, the model improves its performance over the
expected value model. However, the gap between the stochastic solution and
perfect information solution also increases with the increment in variability
of demand. By increasing the number of scenarios to map the uncertainty of
demand, the results show that the efficiency of stochastic solutions increases.
Adding uncertainty to the deterministic version of the model with multiple
scenarios yielded more realistic and robust results, and analysis on correla-
tion between multiple product demands resulted in unintuitive decisions for
strategic make/buy problems.
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7.5 Modeling of Load-Dependent Cycle Times

CT is load-dependent. It increases nonlinearly with resource utilization as
known from queueing theory. This causes some problems in model formula-
tions for production planning because CT information serves as a parameter
of the models. At the same time, production planning approaches determine
the load of the BS by determining release quantities. In this section, we dis-
cuss several methods to tackle this conflict. We study CT-TP curves, iterative
simulation schemes, and finally clearing functions. For a detailed review of
production planning models with load-dependent CT in manufacturing, we
refer to Pahl et al. [226].

7.5.1 Cycle Time Throughput Curves

This section is an abridged version of Ankenman et al. [8]. CT-TP curves
are often employed as decision-making tools in manufacturing settings (cf.
Brown et al. [33]). A CT-TP curve displays the projected average CT plotted
against TP rate, or start rate. These curves are useful for planning at both
the strategic and tactical levels.

Decisions regarding the impact on CT of a 2% increase in start rate can be
widely different depending on the shape of the curve and the distance from
the knee. For example, if a wafer fab has a curve as illustrated in Fig. 7.3 and
is operating at the level of 22,000 wafer starts per month, it will experience
only a minor change in average CT by ramping up an additional 500 wafer
starts.
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Figure 7.3: Sample CT-TP curve

Alternatively, if the wafer fab is operating on the same curve but is at
22,500 wafer starts per month, a 500-wafer start increase dramatically alters
CT. In both cases, we called for a 500-wafer start increase, yet drastically
different outcomes resulted from what seemed to be the same action. Man-
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agement therefore needs to develop CT-TP curves if they are interested in
predicting the impact of start rate changes on average CT.

Unfortunately, the simple collection and analysis of past TP history is
insufficient for curve generation. It is unlikely that an operating wafer fab
has experienced a sufficient number of changes along the same curve to al-
low creation of the curve. For example, a wafer fab seldom operates on the
flat portion of the curve where equipment utilizations are in the less than
70% range. It is also unlikely that the wafer fab has carefully ramped up
production start rates over the most rapidly changing portion of the curve,
so the estimation of the shape in this region becomes problematic. In fact,
every time the wafer fab changes its dispatching policy or adds more equip-
ment, it may not just be moving along the curve, it may in fact be shifting to
an entirely new curve. The technique of empirical CT-TP curve generation
requires the collection of large amounts of representative data. As a result,
other than for the simplest of systems, simulation is the preferred method of
data generation.

While simulation is the most common technique for generating CT-TP
curves, the methods used to select the points to simulate and the effort to
allocate to these points vary. Several different design points must be simulated
to generate a CT-TP curve. A careful selection of the design points can lead
to minimal simulation expense. Various authors have discussed methods for
generating a CT-TP curve and how to select these design points (cf. Park
et al. [230], Fowler et al. [86], and Yang et al. [325]).

Other authors have presented methods for determining an appropriate
allocation of simulation effort to the design points of the CT-TP curve being
simulated so as to obtain nearly equal absolute or relative precision (cf. Leach
et al. [153]).

The method commonly used by practitioners to generate a CT-TP curve
via simulation is to allocate an equal amount of simulation effort to each
TP rate being simulated. This situation is shown in Fig. 7.4. As TP rate
approaches capacity, the CT and the variance of CT (Var(CT)) increase.
Figure 7.4 illustrates that by equally allocating simulation effort to all design
points, yielding a CT-TP curve that is less precise as we approach capacity, a
clearly undesirable characteristic. We consider single-product CT-TP curves.
Note that when we say single product, we could be considering a CT-TP
curve of a facility that produces only one product, or we could be focusing
on one product out of many provided that the relative mix of the various
products, as defined below, remains the same at all levels of the system’s TP.

We define the following quantities:

λ := (λ1, . . . ,λK) : vector of start rates for K products
x : utilization of the bottleneck in the wafer fab, 0 < x < 1

α := (α1, . . . ,αK) : product mix vector where αk := λk/∑K
h=1 λh
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Figure 7.4: CT-TP curve using equal allocation of simulation effort

Without loss of generality, we will only consider the CT of product 1
and denote its steady-state CT as C(λ ) = C(x,α), a random variable with
unknown distribution that depends on the start rates. Notice that if we know
the processing capacity of the bottleneck station, then specifying (x,α) is
equivalent to specifying λ . We will drop the dependence on α in the single-
product case. For the CT random variable to have a limiting distribution
steady state, among other things, the system logic and driving inputs must
not be changing over time. Generically, let

cr(λ ) = cr(x,α) := E(Cr(x,α)), r ∈ IN, r ≥ 1 (7.49)

be noncentral moments of the steady-state CT; we drop the subscript r when
we refer to the mean, i.e., first moment.

To estimate moments of CT, we will make one or more replications of
a typically large number of individual product CT values. Let Ci j(x,α) be
the jth observed CT from the ith replication for i = 1, . . . ,m(x,α) and j =
1, . . . , l(x,α). The quantity m(x,α) is the number of replications for given x
and α, while l(x,α) denotes the length of a single simulation run for given
x and α. Our steady state assumption corresponds to requiring that Ci j(x,α)
converges in distribution to C(x,α) as j → ∞ for any i.

The most straightforward way to generate a CT-TP curve via simulation is
to select a fine grid of TP values, say 0< x1 < · · ·< xd < 1, and run simulation
experiments at each one to estimate cr(x). We could, equivalently, select a grid
of release rates λ that correspond to TP in a steady state. However, later
when we fit CT-TP curves to the data, there are a number of advantages to
standardizing TP so that system capacity always corresponds to a TP of 1.
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Unfortunately, this approach has pitfalls. First, it requires a large number
of simulation runs to develop a fine grid. A second repercussion of point-by-
point CT-TP curve estimation is that some sort of interpolation is needed to
estimate CT properties at TP values x that were not simulated. If the grid
points are packed closely enough, then perhaps a simple linear interpolation
is adequate. However, as mentioned earlier, exceptionally long runs may be
required at the higher levels of TP, which argues against running simulations
at a very fine grid.

In a series of papers, Kleijnen and van Beers (cf. Kleijnen and van
Beers [143] and van Beers and Kleijnen [308, 309]) describe how the inter-
polation method of Kriging can be adapted to the output of discrete-event,
stochastic simulations in general and queueing simulations in particular. In its
simplest form, Kriging estimates c(x) by a weighted average of the estimated
ACT values at the grid points x = (x1, . . . ,xd). Loosely speaking, the Kriging
estimator gives more weight to CT estimates at grid points xh,h = 1, . . . ,d
that are closer to the point x to be interpolated.

Because the Kriging approach is an interpolation method, it favors a finer
grid, i.e., more design points x, than the queueing-motivated models we de-
scribe below. Furthermore, there is no guarantee that the Kriging estimator
will exhibit known properties of the response function, for instance, that c(x)
is nondecreasing in x. However, the Kriging approach has the advantages that
it is general purpose, it will not be subject to the lack of fit inherent in a
poorly chosen meta-model, and it works largely without change for interpo-
lating higher moments than the mean. Further, Kriging extends naturally to
a multidimensional independent variable, like the product mix α.

Fowler et al. [86] investigated the use of variance reduction techniques
based on common random numbers and antithetic variates (cf. the discussion
in Sect. 3.3.1) in efficiently generating CT-TP curves that linearly interpolate
a set of (TP, CT) points. In their paper, the term efficient reflects the capabi-
lity to provide a simulation-based CT-TP curve with an acceptable precision
and accuracy by using limited available resources. The goal was to generate
CT-TP curves more economically, so the cost of analysis could be reduced,
thus allowing companies to make better manufacturing capacity management
decisions. The experimentation in their paper included simulating an M/M/1
queueing system (cf. Sect. 3.2.7) and a system with five stations in series, a
special case of a Jackson queueing network. The results showed that com-
mon random numbers were effective when there was an adequate computing
budget, but they introduce too much bias when the computing budget is not
large enough. On the other hand, the results showed that antithetic variates
were effective for small or large computing budgets.

Park et al. [230] use the D-optimality criterion (cf. Sect. 3.3.1) to choose
design points for building the CT-TP curve. Since it concerns the confidence
interval of the parameters of a model, D-optimality assumes that a model
is specified for the response curve. Park et al. [230] suggest two nonlinear
regression models, one of which is bowl shaped and is appropriate when using
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batching policies such as the full batch policy MBSF or the minimum batch
size policy MBS with a minimum greater than 1 (cf. Sect. 4.5 for a description
of these two batching policies) that increase the CT at low levels of TP.
The other model, which models the CT as a monotonically increasing function
of the TP, is used when there is no batching or a greedy batch policy is
employed. The two models are given below. Notice that both models have
the CT exploding as the TP, x, nears the capacity β2. If the TP is normalized
to the capacity, then β2 = 1. We obtain for the two models:

c(x) :=
β1x

β2 − x
−β3, (7.50)

c(x) :=
β3

x
+

β1x
β2 − x

−β4, (7.51)

where βi ∈ IR are appropriate parameters of the models. Both of these models
are generalizations of the CT-TP curve of a G/G/1 queue.

The experimental design for fitting these models is a selection of TP values
at which exhaustive simulations are conducted and the steady state ACT
value is recorded. Nonlinear regression is used to estimate the parameters,
and thus the linear approximation to the variance/covariance matrix is used
to approximate the D-criterion. The candidate design points are placed at
regular intervals from zero TP to one, where one represents full capacity.
The experimental design procedure recommended is a sequential procedure
that starts with the minimum number of design points that are required to
support the model, i.e., three in the case of model (7.50) and four in the case
of model (7.51). The D-criterion can be expressed as a function of the location
of the design points. The initial points are selected as the set of three or four
in the case of model (7.51) candidate points that maximize the D-criterion.
All the other candidate points are then ranked according to the D-criterion for
entry into the design if needed. After simulations are conducted at the initial
points, the model parameters are estimated. Each additional candidate point
is added sequentially in the predefined order until the parameter estimates
no longer change by an appreciable amount, i.e., 1% was used as a stopping
criterion. This method was validated through construction of a CT-TP curve
for a wafer fab.

Another approach to building CT-TP curves was proposed by Cheng and
Kleijnen [46], hereafter called the CK approach, where they generalized the
CT-TP curve of the M/M/1 curve as shown below:

c(x) := f (x)
t

∑
l=0

βlx
l + ε(x) = ∑t

l=0 βlxl

1− x
+ ε(x), (7.52)

where f (x) := 1/(1− x) and it is assumed that TP, represented by variable x,
is scaled from zero to one. The quantity ε(x) is an error term. Again x = 1
represents full capacity. The CK approach only deals with the case of no
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batching or a greedy batch policy, and thus the model in (7.52) is a more
general form of the model (7.50) proposed by Park et al. [230].

To fit model (7.52) to the simulation data, the CK approach develops a
linear regression model since the only nonlinear part of the equation, f (x), is
known and can be dealt with through a transformation. The variance of the
error term in model (7.53) depends on x as

Var[ε(x)] = [h(x)σ ]2, (7.53)

where h(x) is assumed known from asymptotic theory or other considerations.
The design of the experiment consists of the location of the design points

x = (x1, . . . ,xm) and the fraction of a total of N replications assigned to those
points π := (π1, . . . ,πm). The design is constructed to minimize a criterion
called PM, which is a scaled version of the weighted-average variance of the
estimated expected response over the TP range of interest.

The CK procedure for fitting the model (7.52) can be summarized as
follows. Given f (x), h(x), a maximum value of t, and a fixed budget of N
replications, find the optimal design (x,π) by minimizing PM. With the design
points x fixed, carry out simulation experiments sequentially and adjust the
allocation x. Once the total number of runs has been exhausted, use backward
selection to decide the appropriate polynomial order of model (7.52) and
obtain the fitted curve.

The CK method leaves open the question of how to specify f (x) and h(x),
which affect the design of the experiment and, more importantly, the ade-
quacy of model (7.52) to represent the true CT-TP curve. When these two
functions are known, CK is highly effective and efficient, and works within a
fixed budget. However, for complicated manufacturing systems, there is not
likely to be sufficient information to infer such characteristics. In other words,
obtaining good choices for f (x) or h(x), although not impossible, is difficult
in practice. Further, we have strong empirical evidence from Allen [6] and
Johnson et al. [132] that the f (x) and h(x) used by the CK method can be far
from correct in realistic manufacturing simulations. Since model (7.50) used
in Park et al. [230] is a specific instance of Eq. (7.52), the same weakness can
be attributed to their method as well.

In summary, the procedures by Park et al. [230] and CK are both interes-
ting and useful methods of experimental design for fitting a model such as is
given in Eq. (7.52), but there may arise cases in practice where these models
are not sufficiently accurate to produce useful CT-TP curves.

A precision-driven design of experiment strategy was proposed in Yang
et al. [325] to sequentially build up simulation experiments for the efficient
generation of CT-TP curves. It allows the user to specify a precision level and
is able to provide a fitted curve with desired precision by running simulation.
We summarize the method in the remainder of this section.

The estimation of the CT-TP curve is based on the two statistical regres-
sion models (7.54) and (7.55), the forms of which are both motivated by heavy
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traffic queueing analysis and supported by extensive investigation of realistic
manufacturing systems. One is called the expected CT (ECT) model:

c(x) = E[Ci(x)] =
∑t

l=0 βlxl

(1− x)p , i = 1, , . . . ,m(x), (7.54)

that characterizes the relationship between the expected CT and normalized
TP x over a range of interest [xL,xU ]. Unknown parameters are the polynomial
coefficients β , polynomial order t, and the exponent p. As explained earlier,
the sample mean CT Ci(x) obtained from the ith simulation replication per-
formed at x will be used as the data points to which the CT-TP models are
fit. The variance of Ci(x) depends on x and is represented by the following
variance model:

Var[Ci(x)] =
σ2

(1− x)2q . (7.55)

Both σ2 and q are unknown parameters. With the sample mean CT data
{Ci(x), i = 1, . . . ,m(x)} at different values of x, the sample variance of Ci(x)
can also be estimated over x, from which the variance model (7.55) can be
fitted. With the estimated parameter q̂, transforming the response Ci(x) by
multiplying by (1−x)q will yield a constant variance and result in a standard
nonlinear regression model:

c(x)(1− x)q = E[Ci(x)(1− x)q] = (1− x)q−p
t

∑
l=0

βlx
l = (1− x)r

t

∑
l=0

βlx
l , (7.56)

where β , t, and the exponent r are unknown parameters. Thus, given a
{Ci(x), i = 1, . . . ,m(x)} dataset, the model fitting is performed in two steps:

1. Fit the variance model (7.55) and obtain the q estimate.
2. Use the estimated parameter q̂ to stabilize the variance for the original

observations Ci(x) and then fit model (7.54).

The estimators of the ECT model (7.54) are obtained indirectly by noting
that the coefficients β in model (7.54) coincide with those in (7.56), and p is
estimated by the difference between the q and r estimates.

The goal is to obtain a precisely estimated CT-TP curve that helps manu-
facturers decide at what TP they should run the system. Thus, Yang et
al. [325] evaluate the goodness of the fitting by the relative error achieved
on the ECT response estimators. Since the curve fitting is based on the non-
linear regression performed on models (7.55) and (7.56), variance estimates
can be obtained on the estimated parameters in Eqs. (7.55) and (7.56). Since
model (7.54) is derived indirectly from Eqs. (7.55) and (7.56), a conservative
variance estimate can be inferred for ĉ(x), the ECT predicted at x under some
empirical approximation (see Yang et al. [325]). Yang et al. [325] let the user
specify a target precision, say γ %, which is defined as the relative error on
the ECT estimator:
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γ % :=

√
Var[ĉ(x)]
ĉ(x)

. (7.57)

Once fitted curves have been obtained, the relative error on the ECT estimate
ĉ(x) can be approximated for any TP x over [xL,xU ]. The user can choose
to check the precision achieved at a TP level of particular interest or at a
number of points in [xL,xU ] before they declare that a fitted curve with desired
precision has been generated.

For the efficient estimation of the CT-TP models presented above, design
of experiments methodologies is developed to collect simulation data sequen-
tially. The experimental design consists of the location of design points, the
TP levels at which simulations will be executed, the allocation of compu-
tational effort, and the number of simulation replications assigned to each
design point. The best choice of experimental design depends on the true
ECT and variance curves, which are unknown at the stage of designing experi-
ments. In light of this, Yang et al. [325] approach the design of experiments
problem in a sequential manner. The model curves are estimated ever more
precisely as more simulation data are obtained, and further experimentation
is guided by the current best estimate of the models. This design and mo-
deling process is continued until the prespecified precision γ % is achieved on
the ECT response estimator.

To demonstrate the effectiveness of the Yan procedure, Yang et al. [325]
applied it on a number of systems to generate their corresponding CT-TP
curves. The systems explored included analytically tractable queueing mo-
dels and realistic semiconductor manufacturing systems. For simple queueing
models such as M/M/1/FIFO, M/M/1/SPT, and M/M/1/LPT, the true CT-
TP curves can be derived analytically, and hence the quality of the simulation-
based model estimation can be evaluated easily. The real wafer fab considered
is provided by the MASM Lab testbed (see Fowler and Robinson [83]). Since
the true underlying curve is unknown in this case, nearly true ECT estimates
were obtained by running simulations until the standard error of the expected
CT estimates were essentially zero. These estimates provide a benchmark to
which the ECT estimates obtained from the Yan method are compared. All
the computational experiments show that the Yan method is able to genera-
te high-quality CT-TP curves with desired precision. Comparisons were also
performed that show that the Yan approach can be more efficient than the
procedure proposed by Cheng and Kleijnen [46].

The focus of this section has been on CT as a function of TP, but product
mix (PM) can also affect CTs even if the overall system TP is unchanged.
However, fitting CT-TH-PM surfaces via simulation is a much more chal-
lenging problem and is beyond the scope of this section. More details of this
problem are presented in Yang et al. [326].

Note that considerable simulation effort is necessary to determine mea-
ningful CT-TP curves. These curves are valid for all possible TP situations
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however, it is not evident to see how these curves can be used in some produc-
tion planning approaches. In the next two sections, we will describe two more
methods. The first method, iterative simulation, tries to determine CT values
that are appropriate for certain released quantities. The second method, the
clearing function approach, is similar to the CT-TP curve approach; how-
ever, it tries to find the relationship between load and CT and also covers the
incorporation of the clearing function into production planning approaches.

7.5.2 Iterative Simulation

The first iterative procedure for production planning in semiconductor man-
ufacturing was proposed by Hung and Leachman [120]. An LP model is for-
mulated that requires estimated lead times, i.e., cycle times, Fpl for a job
of product p to reach process step l after being released into the wafer fab.
It is shown by Irdem et al. [124] that an unambiguous convergence of the
approach of Hung and Leachman is hard to achieve. This is true even for
situations where the demand is constant for all products over the planning
horizon. Because of the limitations of the Hung and Leachman approach, we
discuss a second formulation that when used within an iterative simulation
setting shows a consistent convergence.

We describe an LP model for production planning that is due to Kim and
Kim [139]. Recently, this formulation is extended to a production planning
situation in semiconductor manufacturing by Irdem et al. [124]. The actual
workload profiles on each machine over the planning periods are taken into
account. Therefore, the effective loading ratio epk(g,t) is introduced in [139].
This quantity is defined as the proportion of the start quantity of product p
released in a period g ≤ t that contributes to the workload at machine group
k in period t. Furthermore, the effective utilization ukt of machine group k in
period t is taken into account. The quantity ukt is defined as the proportion
of the total capacity of machine group k that is available to process the start
quantities during period t. The adjusted capacity of machine group k in period
t is obtained by simply multiplying the capacity Ckt by ukt . It is clear that
the effective loading ratios and the effective utilization can be used to model
load-dependent cycle times.

Following Irdem et al. [124], the corresponding LP model is formulated.
The following indices and index sets are used:

t = 1, . . . ,T : period index
p : product index
P : set of all products

k = 1, . . . ,K : machine group index
l = 1, . . . , lp : process step index for wafers of wafer type p
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The parameters used within the model are:

aplkt : average machine hours for process step l of a single wafer of wafer
type p on machine group k processed in period t

Ckt : hours of machine group k available in period t
rpt : unit revenue from product p in period t
cpt : unit incremental production cost of product p in period t
hpt : unit inventory holding cost for product p in period t
bpt : unit backlog cost for product p in period t
dpt : demand for wafer type p in period t

epk(g,t) : effective loading ratio of product p on machine group k in period t
due to starts in period g

epM(g,t) : effective loading ratio of product p on the last processing machine
in period t because of starts in period g

ukt : effective utilization of machine group k in period t
Bp0 : initial backlog for wafer type p
Ip0 : initial inventory for wafer type p

The following decision variables are used in the model:

Xpt : release quantity for wafers of type p in period t
Ypt : output quantity for wafers of type p in period t
Ipt : units of product p in inventory of finished goods at the end of

period t
Bpt : units of product p backlogged at the end of period t

The production planning model can be formulated as follows:

max ∑
p∈P

T

∑
t=1

(rptYpt − cptXpt − hptIpt − bptBpt) (7.58)

subject to:

∑
p∈P

t

∑
g=1

lp

∑
l=1

epk(g,t)aplktXpg ≤ uktCkt , t = 1, . . . ,T, k = 1, . . . ,K, (7.59)

Ypt + Ip,t−1−Bp,t−1 +Bpt = dpt + Ipt , p ∈ P, t = 1, . . . ,T, (7.60)

t

∑
g=1

epM(g,t)Xpg = Ypt , p ∈ P, t = 1, . . . ,T, (7.61)

Xpt ≥ 0, Ipt ≥ 0,Bpt ≥ 0, t = 1, . . . ,T, p ∈ P. (7.62)

The objective function (7.58) is related to profit. The objective function value
is the difference of revenue and the sum of production, inventory holding, and
backlog costs. Constraints (7.59) model the resource capacity, whereas con-
straints (7.60) are material conservation equations. The release-output rela-
tionship is expressed by constraints (7.61). Finally, nonnegativity conditions
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for decision variables are taken into account by constraints (7.62). As typical
in production planning models, we do not use integer variables.

The iterative procedure proposed by Kim and Kim [139] can be formulated
as follows (cf. Sect. 3.2.8 for the general principle of iterative simulation). Note
that we use the term KK procedure as an abbreviation.

KK Procedure

1. Initialize the counter for the current iteration curr := 1 and select the
maximum number of iterations itermax. Calculate initial effective loading

ratios epk(g,t),curr := e(0)pk(g,t) and machine utilizations ukt,curr := u(0)kt using a

steady state simulation. The period demands are used as release quanti-
ties within the simulation.

2. Solve the LP (7.58)–(7.62) using epk(g,t),curr and ukt,curr to determine release
quantities Xpt,curr and wafer output quantities Ypt,curr.

3. Use a prescribed number of independent replications of a simulation run
to obtain updates for epk(g,t),curr and ukt,curr, taking the release quantities
Xpt,curr of step 2 into account. Take the average for epk(g,t) and ukt over
all simulation runs to determine epk(g,t),curr+1 and ukt,curr+1. Collect also
output quantities SYpt,curr, where S indicates that these quantities are
determined from the simulation.

4. If curr < itermax, then set curr := curr+1 and go to step 2. Otherwise, the
iterative scheme terminates.

The mean absolute deviation between Ypt,curr and SYpt,curr is used to measure
convergence of the KK iterative procedure. A relatively small number of
iterations is generally enough. It is shown in [124] by extensive simulation
experiments that the KK procedure shows a consistent convergence behavior.
Hence, it seems that this procedure has some potential for being applied in
practice.

7.5.3 Clearing Functions

Clearing functions are used to model the relationship between the expected
output of a manufacturing system and the WIP inventory. These functions
have the advantage that they are able to capture the nonlinear relationship
between resource utilization, i.e., load, and CT.

Clearing functions were proposed for the first time by Graves [108]. The
following linear function f is used in [108]:

Yt = cWt , (7.63)

where c > 0 is a constant, called the proportional factor, and Yt is the output
at the end of period t. Finally, Wt is a measure for the WIP at the beginning
of period t. An infinite capacity assumption is a consequence of this model,
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because the manufacturing system is assumed to be able to complete the
amount cWt even when Wt is very large. The major drawback of this model is
that the planned CT is fixed based on Little’s law (cf. Eq. (3.21) in Sect. 3.2.7),
even when Wt is changing. Therefore, CT values are not appropriate taken
into account in model formulations that use this clearing function.

Later, nonlinear clearing functions were proposed that take the finite ca-
pacity of the BS into account. The general idea of a clearing function f is
introducing a clearing factor c(W ) to obtain a clearing function f of the form:

f (W ) := c(W )W, W ≥ 0. (7.64)

The clearing factor is a nonlinear function of the WIP W . Clearly, we have
f (0) = 0 for each clearing function of this form.

Kamarkar [136] proposed the following clearing function:

f (W ) :=
C1W

C2 +W
, W ≥ 0, (7.65)

where C1 and C2 are positive constants. This clearing function is a nonde-
creasing, concave function of WIP. We can see easily that C1 is the maxi-
mal possible output that is obtained for W → ∞. It represents the maximum
capacity. The quantity C2 is a user-specific parameter controlling the cur-
vature of the clearing function. The following clearing function is due to
Srinivasan et al. [292]:

f (W ) :=C1(1− exp−C2W ), W ≥ 0, (7.66)

where again C1 and C2 are positive constants. By considering W → ∞, we
obtain that C1 is the maximum possible output. By using the expression
expx = ∑∞

k=0 xk/k!, it is evident that the clearing function (7.66) is of the
form (7.64). Note that the two constants C1 and C2 can be determined, in
principle, by fitting the function to empirical data.

In the remainder of this section, we assume that the clearing function f
is concave and f (0) = 0 holds. Furthermore, it is a smooth function with the

property d f (W )
dW > 0, i.e., f is monotone increasing.

In the following, we want to derive an LP formulation similar to the
model (7.58)–(7.62). Therefore, we have to incorporate the clearing function
into the LP model. Following Asmundsson et al. [13], we replace the capacity
constraints (7.59) in a single-stage multi-product situation with the product
set P and T periods by

∑
p∈P

ξptYpt ≤ ft

(

∑
p∈P

ξptWpt

)

, t = 1, . . . ,T, (7.67)
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where the following notation is used:

Ypt : total production quantity of product p in period t
ξpt : amount of resource (machine time) required to produce one unit of

product p in period t
Wpt : WIP of product p in period t

ft : clearing function for period t

As stated in [13], there is no link between the mix of WIP available in the
period and the corresponding production in the capacity restriction (7.67). To
avoid this problem, the overall clearing function is decomposed. We obtain:

ξptYpt ≤ Zpt ft

(

∑
p∈P

ξptWpt

)

, p ∈ P, t = 1, . . . ,T, (7.68)

∑
p∈P

Zpt = 1, t = 1, . . . ,T, (7.69)

where the new decision variable Zpt ≥ 0 represents the allocation of the ex-
pected TP represented by the clearing function among the different products.

The capacity constraints (7.68) still have the disadvantage that ft has the
total WIP as argument and not the WIP for a specific product. To solve
this problem, it is assumed in [13] that the expected TP between products is
proportional to the mix of products represented in the WIP in period t. We
obtain

∑
p∈P

ξptWpt =
ξptWpt

Zpt
, p ∈ P, t = 1, . . . ,T. (7.70)

The quantity
ξptWpt

Zpt
can be interpreted as the extrapolated total WIP in pe-

riod t. Using Little’s law (cf. Eq. (3.21) in Sect. 3.2.7), it is shown in [13] that
this extrapolation is exact when all products have the same average CT at
the resource. The resultant capacity constraints substituting the right-hand
side of Eq. (7.70) into capacity constraints (7.68) are

ξptYpt ≤ Zpt ft

(
ξptWpt

Zpt

)

, p ∈ P, t = 1, . . . ,T, (7.71)

∑
p∈P

Zpt = 1, t = 1, . . . ,T. (7.72)

This is called the allocated clearing function (ACF) formulation. To obtain a
tractable LP formulation, we replace the partitioned clearing function (7.71)
by a set of linear constraints using outer approximations. Because f is con-
cave, it can be approximated by the convex hull of a set of linear func-
tions αcξptWpt + β c, where c = 1, . . . ,C denotes the individual straight line,
i.e., segment, in the approximation. The quantity αc denotes the slope of
the linearized clearing function for segment c, whereas β c is the intercept
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of the linearized clearing function for segment c. We use αC = 0 to model
the fact that the maximum throughput is reached. In addition, we have
αC < .. . < α2 < α1 and β 1 = 0. An individual clearing function is assigned to
each resource k = 1, . . . ,K. The capacity constraint is linear because we have

Zpt ft

(
ξptWpt

Zpt

)

= Zpt min
c

{

αc ξptWpt

Zpt
+β c

}

= min
c

{
αcξptWpt +β cZgp

}
. (7.73)

Next, we present a corresponding LP formulation following [12, 123] with
products p ∈ P and periods t = 1, . . . ,T . Setup times and consequently lot
sizing effects are not modeled. For simplicity reasons, we model only a single
stage multiproduct system; however, extensions to multistage situations are
presented in [12, 123]. The following indices and index sets are used in the
resultant LP:

t = 1, . . . ,T : period index
p : product index
P : set of all products

The parameters used in the model are:

cpt : unit production cost of product p in period t
ξpt : amount of resource (machine time) required to produce one unit of

product p in period t
hpt : unit inventory holding cost of product p in period t
bpt : unit backlog cost of product p in period t
wpt : unit WIP holding cost of product p in period t
dpt : demand for product p in period t
αc : slope of the linearized clearing function at segment c
β c : intercept of the linearized clearing function at segment c

Wp0 : initial WIP for wafer type p
Bp0 : initial backlog for wafer type p
Ip0 : initial inventory for wafer type p

The following decision variables are used within the model:

Xpt : release quantity for wafers of type p in period t
Ypt : output quantity for wafers of type p in period t
Wpt : WIP quantity for wafers of type p over period t
Ipt : units of product p in inventory of finished goods at the end of period t
Bpt : units of product p backlogged at the end of period t
Zpt : fraction of capacity that is used by product p in period t

Now, the model can be formulated as follows:

min ∑
p∈P

T

∑
t=1

{
cptYpt + hptIpt + bptBpt +wptWpt

}
(7.74)
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subject to:

Wpt =Wp,t−1 −Ypt +Xpt, p ∈ P, t = 1, . . . ,T, (7.75)

Bp,t−1 + Ipt + dpt = Ypt + Ip,t−1 +Bpt , p ∈ P, t = 1, . . . ,T, (7.76)

ξptYpt ≤ αcξptWpt +β cZpt , p ∈ P, t = 1, . . . ,T,

c = 1, . . . ,C, (7.77)

∑
p∈P

Zpt = 1, t = 1, . . . ,T, (7.78)

Xpt ≥ 0,Ypt ≥ 0,Wpt ≥ 0, Ipt ≥ 0, Bpt ≥ 0, Zpt ≥ 0 p ∈ P, t = 1, . . . ,T. (7.79)

The objective function (7.74) is based on the production, backorder,WIP, and
finished good inventory costs. Constraints (7.75) model the WIP flow. The in-
ventory balance equations are given by constraints (7.76). Constraints (7.77)
are related to capacity represented by the linearized clearing function. Con-
straints (7.78) ensure that the fractions of capacity used by a single product
sum up to one. Finally, nonnegativity conditions for decision variables are
taken into account by constraints (7.79).

Computational experiments with the linearized ACF multi-stage approach
for wafer fabs are described in [12, 123]. Job releases obtained by the
ACF formulation are smoother and lead consequently to better overall CT
performance compared to production planning approaches based on the fixed
CT assumption.

There are several ways to derive clearing functions. The first approach con-
sists in using steady-state or transient queueing models to determine clear-
ing functions analytically [13]. This approach has some limitation in complex
manufacturing systems such as wafer fabs. The second approach is estimating
clearing functions from empirical data. The empirical data can be collected
using discrete-event simulation. The overall procedure from [12, 123] can be
summarized as follows.
Estimating a clearing function (ECF)

1. Generate randomly demand realizations that correspond to different
bottleneck utilization levels.

2. Determine job releases using a production planning approach that takes
the demand realizations from step 1 as input. Alternatively, job releases
can be determined based on the demand and some simple backward cal-
culation to obtain starting times for the jobs.

3. For each release plan from step 2, perform repeated simulation runs of the
BS and BP using myopic dispatching as FIFO to determine pairs (W k

t ,Y
k

t )
for each period t and each machine group k.

4. Determine C1 for the functional forms (7.65) or (7.66) from the empirical
data from step 3. Use a nonlinear least-square fitting technique to find the
remaining parameter C2.
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5. Perform a piecewise linearization procedure, i.e., a nonlinear optimization,
to find the segments with the corresponding slopes and intercepts (cf.
Irdem [123] for details). Three segments are generally appropriate.

It is obvious that the ECF procedure is time-consuming because of the re-
peated simulation runs and because of running the different optimization
procedures.

So far, a clearing function is constructed for each resource separately. The
resulting output capacity is allocated to the different products. A different
approach is proposed by Kacar and Uzsoy [134]. A clearing function is
estimated for each product based on the release quantities and WIP lev-
els of this product and other products in a certain number of periods using
multiple regression.

In conclusion, it seems that estimating clearing functions from empirical
data is far from being a trivial task. The computational methods and the
resultant effort are similar to the case of CT-TP curves.

Overall, it seems that, from a real-world implementation point of view,
the iterative simulation approach requires the least effort among the three
methodologies discussed in this section.



Chapter 8

State of the Practice and Future Needs
for Production Planning and Control
Systems

In this chapter, we describe information systems for production planning
and control of wafer fabs. We start by discussing the current state-of-the-
practice systems. Then we derive requirements for advanced production
planning and control systems based on the results of the previous chap-
ters. Next, we describe MES core functionality related to production con-
trol. Because the scheduling and dispatching functionality of many MESs
is not adequate, we continue by describing specific dispatching systems. We
also provide basic principles of a coupling architecture that allows for func-
tionality extensions of MES in a plug-and-play manner. Moreover, we pro-
vide details of an agent-based architecture for modern production control
systems. Software agents turn out to be an appropriate concept to imple-
ment enterprise-wide distributed production planning and control systems.
We briefly discuss MCS functionality. Because of the increasing importance of
production planning functionality, we finally describe requirements for ERP
systems and APSs. These systems are usually provided by commercial soft-
ware packages. Therefore, we also describe how these systems can interact
with internally developed software components.

8.1 Motivation and State of the Art

In the previous chapters, different production planning and control metho-
dologies were introduced. These algorithms have to be embedded into appro-
priate information systems because human decision makers are often not able
to solve the corresponding decision problems since most of the algorithms
proposed in the previous chapters require intensive computational effort and
power.

Therefore, in this chapter, we mainly discuss the automated parts of the
enterprise-wide information system, namely different application systems for
production planning and control in wafer fabs or more generally in supply net-
works for semiconductor manufacturing. Enterprise-wide information systems

L. Mönch et al., Production Planning and Control for Semiconductor Wafer
Fabrication Facilities, Operations Research/Computer Science Interfaces
Series 52, DOI 10.1007/978-1-4614-4472-5 8,
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for manufacturing contain so-called front-end and back-end application sys-
tems. Front-end systems are business-related systems, whereas back-end ap-
plication systems are formed by shop-floor systems (see Qiu and Zhou [255]).
Typical front-end application systems are used for sales management, cus-
tomer services, and planning, while back-end application systems are used
for supportive logistics, machine controls, and MES. It is essential for semi-
conductor manufacturers to invest in modern APSs and advanced MESs [158,
255] to be competitive. Semiconductor manufacturers can increase their rev-
enues by providing services and sales through efficient channels supported by
front-end application systems. At the same time, the manufacturing-related
costs can be reduced by efficient back-end application systems.

We start by reconsidering the PPC hierarchy shown in Fig. 2.5 in Chap. 2.
In Table 8.1, we assign corresponding front-end and back-end application
systems to the different levels of this hierarchy.

Table 8.1: Assignment of application systems to the levels of the PPC hierarchy

Level Application system

Planning
APS
ERP

Custom planning system
Order release ERP/APS/MES

Scheduling
MES

Custom scheduling system

Dispatching
MES
MCS

Custom dispatching system

Note that the individual software systems for production planning and
control are typically extensions of commercial software packages that offer
a more specialized functionality. In many companies, the packaged software
systems provide the necessary data for the tailored software systems.

We start by developing a high-level picture of the architecture of an
enterprise-wide information system and will refine the overall picture in sub-
sequent sections. We show the overall architecture for an enterprise-wide
information system in a wafer fab in Fig. 8.1.

Application systems of the PS other than the ERP system are often
components of APSs. The MES communicates with the immediate control
systems for the machines and the AMHS via middleware. Sometimes the no-
tion of an enterprise service bus is used for this kind of middleware. The mid-
dleware is responsible for transaction processing and event handling. It also
provides recovery functionality. Note that we avoid discussing manufacturing
automation details in this monograph. We refer to Lee [158] for background
material on this topic. Because the data flow between the planning systems
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Middleware

MES Quality/Yield Management System

Scheduling/Dispatching
Equipment Management and Maintenance

System

Machine  Controller AMHS Controller (MCS)

ERP

ATP/Order Management

Demand Planning Capacity Planning

Master Planning

Planning
System

Control System

Operational Production
Planning

Figure 8.1: Enterprise-wide information system architecture

and the control systems is not extensive, proprietary application program-
ming interfaces or web services are typically used to allow a message transfer
between the planning systems and the MES.

When new business requirements appear, the supporting business
processes have to change accordingly. Changing the business processes leads
to new requirements for the enterprise-wide information system. In the next
section, we will discuss some requirements for information systems that allow
for these frequent changes.

8.2 Requirements of Production Planning and Control
Systems

We derive several requirements for the different components of an
enterprise-wide information system in wafer fabs or more generally in semi-
conductor supply chains. We identify the following requirements according
to Qiu and Zhou [255]:

• The application systems should be able to deal with the data volume and
the number of transactions that are typical for semiconductor manufac-
turing. This requirement is important because of the amount of data col-
lected from the machine controllers and AMHS controllers.
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• There are requirements related to the responsiveness of the application
systems. A close to real-time response is critical for the MES, because
the MES has to communicate with the machine controllers and AMHS
controllers.

• The application systems should offer standardized connectivity with other
application systems inside and outside the wafer fab. A plug-and-play con-
nectivity that is suitable for different computing environments is highly
desirable.

• Scalability and reconfigurability are key features of the application systems
that are necessary to support business dynamics and growth.

• There is a trend towards multi-product facilities. The application systems
have to be able to deal with many products. Furthermore, in some cases
a single job is produced in several wafer fabs, i.e., borderless wafer fab
scenarios (cf. Qiu and Zhou [255] and Sect. 2.2.2). The different planning
systems and the MES have to support these requirements.

• The MES should allow an even tighter integration with automation
solutions on the shop floor (see Lee [158]). Furthermore, it is anticipated
that the advanced process control (APC) and AMHS operations will in
the future be more tightly integrated with scheduling functionality. It is
also expected that the importance of scheduling systems will be increased
with a higher level of automation in future-generation wafer fabs. The
MES architecture has to take these requirements into account.

• Appropriate production planning and control functionality should be
offered by the application systems with respect to solution quality and
the time needed to compute the solutions. It should be possible to modify
and change the algorithms used quite easily to quickly react to changing
business needs.

• The application systems should have an open and modular system
architecture that is web-based to support the required interoperability
for heterogeneous application systems. Furthermore, the target architec-
ture should ensure a certain degree of adaptability for more advanced
new technologies. We see also a trend towards collaborative manufactur-
ing [47, 255]. A future enterprise-wide architecture has to take this trend
into account.

It seems that service-oriented architectures (SOA) support many of the
desired requirements. SOA proposes to define the required business func-
tionality by a set of composable services. When needed because of changes
in the business processes, new services can be obtained by service composi-
tion to support these business processes. However, it is difficult to assess the
benefit of this type of architecture in semiconductor manufacturing.

It seems that SOA principles are used so far only on a preliminary basis
in semiconductor manufacturing. An application on the factory automation
level is described by Qiu [253]. A service-based application system for virtual
manufacturing systems that involves several vendors in the semiconductor
industry is discussed by Cherbakov et al. [47].
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An interesting discussion of future architectures for enterprise-wide
information systems in the pre-SOA era can be also found in Qiu [252].
In this context, E-manufacturing is defined as advanced manufacturing that
takes advantage of the Internet and advanced information technologies to
integrate the different manufacturing-related applications within a semicon-
ductor supply network.

8.3 Production Control Systems

In this section, we start by discussing MES functionality. Then, we describe
dispatching systems and explain their interaction with the MES. We present
design and implementation details of a hierarchically organized multi-
agent-system for production scheduling. Finally, we briefly discuss MCS
functionality.

8.3.1 MES Core Functionality

An MES is an application system that consists of a set of integrated hardware
and software components that are used to manage the production from job
release until job completion [178, 182]. An MES is between the production
PS and the execution of the production; it bridges the BS with the PS.
The embedding of an MES into the overall system landscape of a wafer fab
according to Chung and Jeng [50] is shown in Fig. 8.2.
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Figure 8.2: Interaction of an MES with other application systems
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The main functionality of an MES in a wafer fab includes the following

• Equipment definition
• Product process definition
• Resource status tracking
• WIP status tracking
• Information management, i.e., data collection and acquisition
• Dispatching and scheduling
• Performance analysis

The equipment definition is used to define the processing capabilities of each
machine. Usually, the machines are organized in types that are based on the
associated processing capabilities.

The product process definition refers to the definition of the process flows.
Each product type can potentially be manufactured using different versions.
Each process version consists of several subroutes. Each subroute contains
several consecutive process steps. A single process step refers to a recipe that
is executed on the machine that is associated with the recipe. Each process
step can have several versions. They depend on the machine and parameter
calibrations. Current and planned production activities are used to define
product processes.

Resource status tracking determines what task each single machine is cur-
rently performing. Furthermore, the current status of secondary resources is
also tracked. Note that the status of the different resources involved in the
AMHS is usually tracked in the MCS and not in the MES. The WIP sta-
tus tracking refers to the situation where the progress of jobs is monitored.
The aim is to create a full history for each working object of the BP. The
information management functionality deals with monitoring and gathering
of data about the different objects within the BS and the BP. Information
management is an important prerequisite for implementing the resource and
WIP tracking capabilities.

Dispatching and scheduling are among the key functionalities offered by an
MES. They are based on the data that is determined by the MES. Some pack-
aged MES products for wafer fabs offer dispatching functionality, but often
additional off-the-shelf or homegrown solutions are used (cf. Pfund et al. [234]
for the results of a corresponding survey). Therefore, we discuss dispatching
and scheduling systems in more detail in subsequent sections.

The performance analysis component of an MES is responsible for com-
paring performance measure values with the corresponding objectives that
are set by the management of the wafer fab or by customers. Graphical and
numerical reports are also provided by this component.

Note that quality management and maintenance management are also key
capabilities of MES [178, 182]. However, due to their high importance in
semiconductor manufacturing, the corresponding functionality is often offered
by separate application systems (cf. also Fig. 8.1). Therefore, we will discuss
some of these systems briefly in subsequent sections.
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Important packaged MES products in semiconductor manufacturing are
WorkStream, WorkStream DFS, i.e., FAB300, from Consilium; PROMIS
from Brooks Automation, Inc.; and SiView from IBM (see Qiu and
Zhou [255]). The development of a homegrown MES is generally supported
by the SEMATECH CIM-Framework [279]. However, it seems that packaged
MES solutions have become the dominant implementations in wafer fabs (see
Pfund et al. [234]).

8.3.2 Dispatching Systems

Dispatching systems are in place in most wafer fabs [234]. In an ideal
scenario, a proposed dispatching method’s superiority is established through
experimental testing using actual semiconductor manufacturing data. In this
scenario, the actual BS and BP data obtained in several relational databases
including the MES database are extracted from the MES for use in developing
and testing dispatching approaches. Therefore, a central repository is used to
store this data. The application layer of the dispatching system interacts with
the repository and also directly with the MES. This layer contains tools to
construct blended, multilevel, conditioning, and truncated dispatching rules
(cf. Sect. 4.1) and can be considered as a rule-based system (cf. Sect. 4.7.1).
A simulation model of the current BS and BP is built using the data in
the repository, and simulation analysis is used to assess the performance
of the proposed dispatching rules that are developed using the functionality
of the application layer. The dispatching system is completed by a graphical
user interface (GUI) and a reporting interface.

Some manufacturers use dispatching systems that communicate directly
with their MES in near real time. The dispatching list shown in the GUI of
the dispatching system is implemented using functions of the MES.

Applied Materials’ real time dispatcher (RTD) product [10] and the
FabTime product [77] are commonly used [9, 238]. Once the efficacy of
the dispatching approach is confirmed, the final step in this process is the
deployment of the dispatching approach in an actual wafer fab.

RTD is a real-time, high-performance dispatching solution that helps
manufacturers develop customized rules and improve dispatching analyses
and decisions. As a member of Applied Materials’ productivity family, RTD
directs pre-staging, releases jobs, and adjusts production equipment loads
through“what next, where next, and when next”rules. The goal of these rules
is to improve the utilization of wafer fab equipment, carriers, and wafer fab
personnel. RTD allows planners to define job selection logic in various rules
and make production dispatching decisions in real time. This is facilitated by
collecting and storing data from multiple sources in a high-speed, temporal
repository. In this way, RTD is able to rapidly access both current shop-floor
status and historical information over a desired definable time period [10].
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FabTime is a web-based digital dashboard system that was created for
the original purpose of helping wafer fabs to measure and improve their CT
performance. In real time, FabTime provides a comprehensive view of every-
thing a wafer fab manager would need for proactive CT management. The
system includes over 120 standard wafer fab management charts focused on
metrics such as WIP, moves, job age, WIP turns, per-visit CT, factory CT,
machine states, machine overall equipment effectiveness (OEE), scrap, and
holds. The FabTime system works by taking a continuous feed of operational
transactions from the wafer fab’s MES and processing these transactions in
real time for storage in a database. Both chart and tabular output can be
viewed using a standard web browser across a corporate intranet. In ad-
dition to providing real-time alerting so that users can specify conditions
under which to be notified (such as a machine down event or the release of a
new product), FabTime also includes optional dispatching and static capacity
planning modules. As the FabTime system maintains real-time knowledge of
current wafer fab status through its database information (which is constantly
updated by the MES), FabTime’s dispatching module [77] can effectively pro-
mote in-fab deployment of the system’s recommended job dispatch list for any
machine in the wafer fab.

The typical architecture of a dispatching system is shown in Fig. 8.3.
It is similar to those described in Sect. 3.3.2 because the simulation model
represents the BS and the BP in both situations.

Database 3Database 2Database 1

Repository

Dispatching System Application Layer Simulation ModelMES Application Layer

Reporting Interface
Graphical User
Interface Layer

Figure 8.3: Architecture of dispatching systems
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8.3.3 Scheduling Systems

Similar to dispatching systems, scheduling systems often are not part of the
MES because it is hard to adapt generic scheduling functionality to the situa-
tion in a specific wafer fab. Currently, wafer fab-wide scheduling systems are
generally not in use (see Mönch et al. [207]). However, scheduling systems for
work centers or even work areas are in use in many wafer fabs. Some example
systems are described in [28, 147, 329, 330].

We continue by describing the architecture of scheduling systems.
A scheduling system typically consists of the following components (see
Framinan and Ruiz [90]):

• User interface component
• Schedule generator component
• Business logic component
• Database management component

The main functionality of the different components can be characterized
according to Framinan and Ruiz [90] as follows. The user interface component
offers the required interfaces between the user of the scheduling system and
the system itself. The component allows for the representation of schedu-
ling output. Finally, the user can initiate the scheduling process, including
choosing appropriate parameter settings, using the user interface.

The schedule generator component contains all the functionality that is
required to determine schedules for the users. It consists of an algorithm
library that contains scheduling and rescheduling algorithms. An algorithm
generator is responsible for adding new algorithms or obtaining new ones by
combining existing ones from the algorithm library. The input data is trans-
formed by a preprocessor into a format that is appropriate for the scheduling
algorithm. Finally, a schedule is calculated.

The business logic component is between the user interface component, the
schedule generator component, and the database management component.
It ensures the required abstraction when data is accessed from the database by
the user interface or by the schedule generator. The business logic component
is a transformation component. Finally, the database management component
is responsible for storing all the data that is obtained from the MES and from
other databases similar to the repository in the case of dispatching systems.
It provides interfaces to the application systems that contain the data that
are necessary for scheduling.

In Sect. 8.3.4, we present some details of an agent-based scheduling system
prototype that can be used in wafer fabs. We show how the NDSBH and
the IDSBH algorithms from Sect. 5.4.6 can be implemented in a distributed
manner.
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8.3.4 FABMAS: An Agent-Based Scheduling System

Software agents allow for the implementation of distributed planning and
control algorithms. The agents are able to act autonomously; on the other
hand, their communication abilities ensure a cooperative behavior and the
fulfillment of global system goals. Furthermore, agent-based systems facilitate
maintenance and further development tasks of the software (see Weiss [319]
and Wooldridge [324]).

We start by the agentification of the scheduling problem for a single wafer
fab. Many approaches address the problem of identifying proper agents for
a given application domain. We refer, for example, to the Gaia approach
described by Zambonelli et al. [331]. The Gaia approach is a generic approach
that assigns a set of roles to a given domain. We define a role as a class
that determines the normative behavior repertoire of an agent (see Odell
et al. [217]). Interactions are identified that take place between the different
roles. However, as pointed out by Bussmann [38] and by Bussmann et al. [39,
40], it is necessary to analyze and understand the decisions in the course of
the production control process.

We combine the approach of Bussmann [38] with the PROSA reference
architecture for holonic manufacturing systems (cf. Van Brussel et al. [310]).
PROSA is an abbreviation for Product, Resource, Order, and Staff
Architecture. The reference architecture suggests building agent-based pro-
duction control systems by using these agent (holon) categories. Furthermore,
PROSA provides a high-level description of the interaction of instances of
these agent categories and a set of examples for using the architecture.
A holonic manufacturing system is a system of holons that are able to coop-
erate to achieve a common objective (see McFarlane and Bussmann [179]).
An autonomous and cooperative building block of a manufacturing system
for transforming, storing, transporting, and validating information and phys-
ical objects is called a holon. Holons can be part of other holons, i.e., there
is a recursive structure. Note that for our purposes, the difference between
holons and agents is not important (cf. McFarlane and Bussmann [179] for a
discussion of related issues). We consider three steps:

1. Analyze the decision-making process.
2. Identify the necessary agents.
3. Choose appropriate interaction protocols.

Based on the proposed hierarchical approach described in Sect. 5.4.6, we
distinguish three types of decisions. These decision types are presented in
Table 8.2.

The decision-making on the top and middle layer will be performed in a
rolling horizon or event-driven manner. The ICA scheme (cf. Sect. 5.4.6) is
used on the top layer, while NDSBH or IDSBH (cf. Sect. 5.4.6) makes deci-
sions on the middle layer. The decisions of the base layer are made dependent
on the situation of the machine group. If the schedule is infeasible, then
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Table 8.2: Decision types in FABMAS

Layer of the hierarchy Decision Decision space

Top layer Start and end dates for each
macro operation of a job

Time slots for the start and
end dates

Middle layer Assignment and sequencing
decisions for operations of a
job

A specific machine among
parallel machines, a concrete
time slot on that particular
machine

Base layer Whether to follow the sched-
ule or not, assignment and
sequencing decisions for
operations in the latter case

A specific machine among
parallel machines, a concrete
time slot on that particular
machine

decision-making entities of the jobs make dispatching decisions together with
the decision-making entities of the machine groups. A contract net-type al-
location algorithm (cf. Weiss [319] for contract nets) is used.

Starting with PROSA, we distinguish between decision-making agents and
staff agents. Decision-making agents solve decision problems while the staff
agents try to support them in the course of the decision-making process.
In PROSA, we find order, product, and resource agents as abstract classes.
We identify eight decision-making agent types, i.e., roles, in our application
scenario.

1. Each job agent represents a single job.
2. Batch agents are used to control a certain batch, i.e., a collection of jobs

that are intended to be processed at the same time on the same machine.
3. A PM agent represents a preventive maintenance order.
4. Work center agents represent machine groups on the shop floor.
5. We aggregate several work center agents into one work area agent.
6. The fab agent consists of all work area agents.
7. Tool agents are used for the representation of auxiliary resources.
8. We consider technology agents that encapsulate the product knowledge,

i.e., the routes, according to the product holons of PROSA.

We identify two additional staff agents that encapsulate the scheduling and
monitoring functionality for the hierarchical production control scheme.

We summarize the basic functionality of the members of the decision-
making and staff agency in Table 8.3. The different agent roles are shown
in Fig. 8.4. Each role is described by a set of possible behaviors. A single
behavior is given by a set of states and by transition paths from one state
to another state. PROSA describes the basic interaction between product,
resource, and order agent roles (see Van Brussel et al. [310]). For the purpose
of FABMAS, a modeling of the interactions between decision-making and
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Table 8.3: Functionality of decision-making and staff agents

Member of the agency Task description

Fab agent – Coordinating the work of the fab scheduling agent,
the monitoring agent, and the work area agents

Fab scheduling agent – Preparing to run ICA
– Running ICA and providing scheduling information

Work area agent – Coordinating the work of the corresponding work
area scheduling and monitoring agent

– Decision-making for choosing the proper machine
criticality measure for NDSBH or IDSBH

– Providing information services

Work area scheduling agent – Preparing to run NDSBH or IDSBH
– Running the heuristic
– Providing scheduling information

Work center agent – Implementing the work area schedules
– Mediating in the case of a contract net-type alloca-

tion algorithm

Tool agent – Implementing the work area schedules

Job agent – Coordinating the processing of the job that is repre-
sented by the job agent

– Negotiating with work center agents

Batch agent – Coordinating the processing of the batch that is
represented by the batch agent

– Negotiation with work center agents

PM agent – Coordinating the preventive maintenance step that
is associated with the agent

Technology agent – Providing routing information to job agents, work
center agents, and various staff agents

– Dynamically changing the assignment of work centers
to process steps, e.g., caused by machine breakdowns

staff agents is more important. We identify four different behaviors for staff
agents:

• PrepareSolution behavior
• ParameterizeAlgorithm behavior
• SolveOrInterrupt behavior
• CommunicateSolution behavior

A brief description of the different behaviors of staff agents is given in
Table 8.4.
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For decision-making agents, we identify the behaviors:

• PrepareDecisionMaking
• MakeDecision
• InformDecisionMakingAgents
• StartStaffAgent
• RequestDecisionMakingAgentResults

The different behaviors of decision-making agents are briefly described in
Table 8.5.

«interface»
AgentRole Agent
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DecisionMakingAgent StaffAgent
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HierarchyAssociation

Figure 8.4: Agent roles in FABMAS

Table 8.4: Behaviors of staff agents

Behavior Description

PrepareSolution This behavior models the data collection and parame-
ter determination phase of the problem solution pro-
cess

ParameterizeAlgorithm Parameters are assigned to the solution algorithm
SolveOrInterrupt Feasible solutions are determined for the problem un-

der consideration
CommunicateSolution The behavior informs the decision-making agent asso-

ciated with the staff agent

Next, we briefly discuss the implementation of the FABMAS prototype
[204]. The use of an agent toolkit or framework was avoided because none
of the existing tools allows for the implementation of hierarchies and the
usage of discrete-event simulation for performance assessment. Furthermore,
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problems with respect to computational performance were expected because
the majority of toolkits are Java-based. The prototype is implemented using
the Microsoft .NET framework for inter computer communication. Within
.NET, we implement the prototype in the C# programming language, while
some parts of source code are developed in the C++ programming language.
According to the foundation for intelligent physical agents (FIPA) [79] Ab-
stract Architecture for agent systems, we develop an agent runtime environ-
ment. The runtime environment consists of an agent directory service, an
agent management system, an agent container, and an agent communicator.
These parts of the system provide services that are used by the agents to get
information about other agents and to communicate and interact with them.

Table 8.5: Behaviors of decision-making agents

Behavior Description

PrepareDecisionMaking The agent is prepared for a decision-making
process, for example, by data collection

MakeDecision A decision is made by the agent
InformDecisionMakingAgents Another decision-making agent is informed of

a decision of the agent
StartStaffAgent A service of a staff agent is requested by the

decision-making agent
RequestDecisionMakingAgentResults A certain result obtained by another decision-

making agent is requested

For communication purposes, the agent communicator encapsulates
communication capabilities. Each communication act between agents is
handled by the agent communicator. The agent directory service is the lo-
cation where agents register their specification as a service entry. Agents
are able to ask the local directory service to find information about other
agents they want to interact with. If the information is not available, the
directory service tries to find the information by contacting other directory
services within the whole multi-agent-system. Hence, it is not necessary to
establish a global directory service as a centralized information point in a
distributed system. Each agent runtime environment requires an agent man-
agement system that administers the life cycle of each agent. As a result, the
management system is responsible for creating the agents, provides potential
mobility services, and removes an agent if it is no longer needed. The last
component of the agent runtime environment is the agent container as a
collection of all active agents within the environment.

Next, we discuss the communication in FABMAS. Various opportunities
for implementing communication abilities are given by choosing the .NET
Platform for the development of the agent system. An agent communica-
tor is part of every runtime environment and provides two capabilities for
communication. The multicast communication is used for announcement of
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new active runtimes and by the agent directory service to keep their agent
list up-to-date. The direct communication is used for communication pur-
poses between single agents. Both types of communication are implemented
by using the .NET Remoting framework for distributed computing.

The agent communicator hides all the communication capabilities from the
agents and can be used as an interface. An agent that is intended to send a
message to another agent transfers the message to the agent communicator.
The communicator determines the location of the agent, and, if the other
agent is on a remote host, .NET Remoting is used for sending the message.
If the receiver agent is in the same runtime, the message is directly put into
the mailbox of the receiver agent.

The agent communicator is implemented as client and server,
simultaneously. The usage of threads makes the agent communicator con-
currently executable. According to the FIPA proposal for an agent com-
munication language, we use the content format described by Mönch and
Stehli [195]. The format is basically given by a context-free grammar, and it
relies heavily on the ontology described by Mönch and Stehli [196].

We continue by discussing the representation of hierarchies within
FABMAS. The hierarchy according to the suggested hierarchical approach is
modeled by using an agent identifier. The identifier is a pointer to agents. An
agent identifier encapsulates the agent name, the address where the agent
is located, and the services provided by the agent. Each agent on a higher
level stores the agent identifier of its child agents on the next hierarchy layer.
The fab agent contains all agent identifiers of the work area agents. Each
work area agent knows the identifiers of the agents associated with work
centers that are part of the work area. On the other hand, each work center
agent knows its work area agent. Thus, a structure exists that allows for
communication and cooperation among the decision-making entities at the
same hierarchy layer and between adjacent layers.

We use an extension of the architecture described in Sect. 3.3.2 to carry
out the performance assessment of FABMAS. The center point of this archi-
tecture is a blackboard-type data layer that contains all the information to
execute the ICA heuristic (cf. Sect. 5.4.6), construct the disjunctive graphs
for the NDSBH and IDSBH schemes (cf. Sect. 5.4.6), and make the scheduling
decisions. The data layer is between a simulation model that emulates the
manufacturing process of interest and the FABMAS system. The objects of
the data layer are updated in an event-driven manner by appropriate simula-
tion events. Calculated schedules are submitted to the simulation engine Au-
toSched AP in order to use the information of the schedules in a dispatching-
based manner. The architecture allows for rolling horizon-type scheduling as
well as for event-driven rescheduling activities. We implement an interfacing
component in order to connect FABMAS with the blackboard. The .NET
system supports the encapsulation process and also registers the component
for the Windows Registry. The .NET framework creates a component object
model (COM) callable wrapper during runtime. This wrapper offers user-
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specific interfaces to the component and also the typical interfaces of COM.
The blackboard can call methods of the interface and transfer data via pa-
rameters to the FABMAS multi-agent-system. This data is forwarded by the
.NET Remoting component to the agent runtime environment. On the other
hand, data is transported back from the multi-agent-system to the blackboard
via method calls using reference parameters. The communication between the
described components is shown in Fig. 8.5.

ASAP Simulation Model (BS and BP)

Blackboard-type Data Layer

Dispatcher

Runtime
Environment

Interface

Runtime
Environment

.NET-Framework

FABMAS

Runtime
Environment

Runtime
Environment

Figure 8.5: Architecture for performance assessment of the FABMAS system

We wish to point out that agent-based approaches have become popular in
semiconductor manufacturing over the last decade. In addition to FABMAS,
there is an agent-based scheduling system at AMD/GLOBALFOUNDRIES
discussed by Pinedo [240]. In addition, Yoon and Shen [328] describe a multi-
agent-system for wafer fabs that makes scheduling decisions based on a
bidding scheme.

8.3.5 Additional Application Systems as Part
of the Control System

Among the different controls, we discuss only the MCS because of its
importance in modern wafer fabs. The MCS is responsible for initiating and
coordinating movements of carriers for wafers and reticles (see Foster and
Pillai [82]). Furthermore, it coordinates interbay and intrabay activities be-
tween stockers and machine load ports. Intrabay and intrabay AMHS com-
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ponents are monitored by the MCS. Carrier locations within the AMHS are
stored in the MCS.

The MCS interfaces with the MES and also with different components of
the AMHS. It receives job destination information and also dispatching- and
scheduling-related information from the MES. The MES is updated by the
MCS when jobs are moved within the wafer fab. The MCS receives the identi-
fication numbers of jobs and carriers when they enter the AMHS. The move-
ment of jobs is instructed and coordinated by the MCS. Finally, the MCS
collects information with respect to job movements, job locations, and AMHS
reliability.

Equipment engineering systems (EES) are used as tools for vendors to
monitor process control of machines and tune process parameters remotely
(see Lee [158]). It is a physical implementation of equipment engineering ca-
pabilities (EEC). The main goal of an EES is to increase the OEE. An EES
contains fault detection and classification (FDC) and predictive maintenance.
Sometimes, the functionality of a quality/yield management system is also
part of an EES. FDC aims to detect anomalies in process control that can
cause large quality problems, classify the problems, and report them. Sta-
tistical methods and methods from data mining and machine learning are
applied to solve this task. Predictive maintenance starts by detecting a fai-
lure symptom. Then, the residual life of the equipment is predicted before the
failure occurs. A failover process is finally initiated. An equipment manage-
ment and maintenance system (EMMS) is a software tool that monitors and
tracks equipment states and preventive maintenance schedules in real time.
It is similar to an EES.

Quality requirements have become stricter over the years in semiconductor
manufacturing (see Lee [158]). Therefore, separate quality/yield management
systems are installed in most wafer fabs, and they are not generally part of the
MES. APC functionality is an integrated part of a quality/yield management
system. APC includes run-to-run control, FDC, statistical process control
(SPC), and virtual metrology (VM). Run-to-run control is responsible for
adapting process control parameters (see Moyne et al. [211]). Therefore, mea-
surements of process sensors are used that are taken on a wafer-to-wafer, job-
to-job, or batch-to-batch basis to adjust recipes. Typically, statistical methods
and methods from machine learning are used. FDC is typically part of the
EES. SPC is used to monitor the physical measurements of the wafers. This
measurement is carried out using metrology equipment. VM is based on the
insight that metrology is time- and cost-consuming. Therefore, the number of
wafers that can be measured is limited. VM uses mathematical modeling to
estimate the values of metrology measures on the wafers depending on FDC
indicators without physical metrology operations.

While we have described only production control-related application
systems so far, in the following section, we discuss in more detail planning-
related application systems. Such systems provide instructions that are
important for production control-related application systems.
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8.4 Production Planning Systems

In this section, we describe the main functionality of ERP systems and APSs.
We then briefly discuss the interaction with other systems.

8.4.1 ERP and APS Core Functionality

We start by describing the core functionality of an ERP system. ERP systems
are typically transaction-oriented software packages. They offer functionality
related to finance, human resources, manufacturing and logistics, and finally
sales and distribution (see Hopp and Spearman [119]). ERP systems are oper-
ational application systems. They store important BS- and BP-related data,
called master data. This includes product data, bills of materials, routes, and
resource- and job-related data. ERP systems are often organized in different
software modules. Each of these modules supports one of the main ERP func-
tionalities. ERP systems follow an integrated approach that is characterized
by the following features [119]:

• Integrated functionality
• Integrated databases
• Consistent user interfaces
• Unified architecture and tools to maintain, improve, and extend the system
• Single vendor/contract and a unified product support

The manufacturing- and logistics-related module typically offers MRP and
manufacturing resources planning (MRP II) functionality. However, it is well
known that several assumptions of these approaches, like infinite capacity
and fixed CT, might lead to fundamental problems and low performance of
manufacturing systems.

Because of the simple or even missing bill of materials in many wafer fabs,
the production planning functionality of ERP systems is used only to a small
extent in wafer fabs. The order management functionality offered by ERP
systems is often the most important functionality in this context. The second
important functionality is demand planning, i.e., forecasting. However, on the
entire enterprise level, ERP systems are often complemented by APSs.

An APS supports decisions within the supply chain management context
on a long-term, mid-term, and finally short-term planning level. They can be
considered as extensions of ERP systems because these systems are typically
not able to solve the entire set of decision-making problems associated with
a supply chain. An APS is an application system that supports production
planning tasks using OR and AI methods taking the finite capacity of the
BS into account. The most important features of an APS are according to
Fleischmann et al. [81] as follows:

• Integrated planning along the entire supply chain
• Optimization-based approaches based on mathematical models and
algorithms that either provide optimal or heuristic solutions
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• Application of a hierarchical planning approach that decomposes the
entire planning problem in a series of smaller, less complex subproblems
that are assigned to the different layers of the hierarchy

Similar to ERP systems, APSs are usually offered as packaged software
systems. They provide functionality related to the strategic design of the
manufacturing network, demand planning, supply network planning, external
procurement, production planning and scheduling, transportation planning
and vehicle scheduling, order fulfillment, and available-to-promise (ATP).
In contrast to ERP systems, APSs often use algorithms that are based on
data in the memory of the computers. This approach, sometimes called Live-
Cache technology, allows for very fast accessing of the data, because accessing
relational databases is avoided.

Next, we describe how the different subsystems of the overall PS in Fig. 8.1
are implemented in semiconductor manufacturing. We start with demand
planning. Demand planning is related to the task of forecasting the future
market demand for the semiconductor products of the companies. Demand
planning is more important when the company follows a make-to-stock rather
than a make-to-order strategy. Long-term demand forecasts are important
for the design of the supply network and for capacity expansion decisions.
Mid-term forecasts are essential for the coordination of procurement, man-
ufacturing, and distribution. They form an important input for supply net-
work planning, i.e., master planning. Finally, short-term demand forecasts
are essential to ensure high service levels (see Günther [109]).

Based on a survey by Roundy [271], we conclude that the demand planning
functionality of ERP systems and APSs is often used in semiconductor manu-
facturing. However, homegrown solutions are also widespread in this industry.
A prototype that offers optimization-based short-term forecast functionality
in semiconductor manufacturing is described by Mönch and Zimmermann
[199]. It uses web services to interact with different application systems to
gather the required data.

The main purpose of an order management component consists in
matching customer orders against quantities available in stock or from
already planned production orders. The investigation of whether a delivery
can be performed or not is called ATP. Usually, one looks for available stock
that can be promised for delivery. Many APSs are able to check the available
capacity that can be used to place new orders. Furthermore, it is also checked
whether or not the size of already planned orders can be increased. This fea-
ture is called capable-to-promise (CTP). An order management component
is also responsible for order entry and customer service, reporting, order
processing, and financial processing.

Capacity planning decisions are described in Sect. 7.3. It seems that often
homegrown decision-support systems, including a commercial MIP solver, are
used to make these kinds of decisions. Simple spreadsheet-based applications
that use the included LP or MIP solvers are also popular. One example for
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the first class discussed in the literature is CAPS (see Bermon and Hood [24])
that was run at several IBM wafer fabs to support capacity planning decisions
(cf. Sect. 7.3).

Master planning in semiconductor manufacturing is discussed in Sect. 7.2.
Master planning algorithms are typically provided by APSs; however, because
packaged APSs are often not able to deal appropriately with process restric-
tions of semiconductor manufacturing, homegrown solutions are also in use.
In Kallrath and Maindl [135], it is indicated that heuristics from SAP APO
are used for master planning in semiconductor manufacturing.

Operational planning is short-term planning that is discussed in Sect. 7.1.
It is often supported by homegrown, spreadsheet-like solutions. In a certain
sense, the ICA algorithm, presented in Sect. 5.4.6, is somewhere between op-
erative planning and production control. Usually, this kind of approach is
provided by an MES.

A discussion of some trends in planning systems for supply chains in the
semiconductor manufacturing industry can be found in Banerjee [20]. Some
empirical evidence of APS failures in semiconductor manufacturing can be
found in Lin et al. [164]. It is shown that APSs in semiconductor manufactu-
ring often do not perform better than humans that make planning decisions
with computer support.

8.4.2 Interaction with Other Systems

We can see from Fig. 8.1 that there is a link between operational planning
systems and dispatching and scheduling systems. Furthermore, there can be
a link between the ERP system and the MES because the MES needs order
information. In addition, when a job is completed, this information has to be
sent to the ERP system.

Within the PS, there are several possibilities for the interactions of APS
and ERP systems. In the simplest case, there is exactly one APS that is on
top of the ERP system. But it is also possible that several APSs are in use
together with one centralized ERP system. Furthermore, we might have one
centralized APS and several ERP systems. Typically, global supply chains in
the semiconductor industry contain multiple APSs and several ERP systems.
Little is known about how SOA-type approaches will impact the architecture
of the next-generation PS in semiconductor manufacturing.
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76. Dümmler, M.: Modeling and optimization of cluster tools in semiconductor man-
ufacturing. PhD thesis, University of Würzburg (2004)

77. FabTime. Fabtime dispatching module (2011). http://www.fabtime.com/

dispatch.shtml

http://www.fabtime.com/dispatch.shtml
http://www.fabtime.com/dispatch.shtml


References 271

78. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Chichester
(1998)

79. FIPA. Foundation for Intelligent Physical Agents (FIPA) (2011). http://www.
fipa.org/

80. Fischmann, C., Böttinger, F., Wertz, R., Kunz, C.: Buffer management for
automated material handling systems in semiconductor industries. In: Proceed-
ings 22nd European Conference on Modeling and Simulation (ECMS 2008),
pp. 423–427 (2008)

81. Fleischmann, B., Meyr, H., Wagner, M.: Advanced planning. In: Stadtler, H.,
Kilger, C. (eds.) Supply Chain Management and Advanced Planning, 4th edn.,
pp. 81–106. Springer, Berlin (2008)

82. Foster, L., Pillai, D.: 300 mm wafer fab logistics and automated material han-
dling systems. In: Doering, R., Nishi, Y. (eds.) Handbook of Semiconductor
Manufacturing Technology, pp. 33–1–33–67. CRC Press, USA (2007)

83. Fowler, J.W., Robinson, J.: Measurement and improvement of manufacturing
capacity (MIMAC): Final report. Technical Report 95062861A-TR, SEMA-
TECH, Austin, TX (1995)

84. Fowler, J.W., Phillips, D.T., Hogg, G.L.: Real-time control of multiproduct bulk-
service semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf.
5(2), 158–163 (1992)

85. Fowler, J.W., Hogg, G.L., Phillips, D.T.: Control of multiproduct bulk server
diffusion/oxidation processes. Part 2: multiple servers. IIE Trans. Scheduling
Logistics 32(2), 167–176 (2000)

86. Fowler, J.W., Park, S., Mackulak, G.T., Shunk, D.L.: Efficient cycle time-
throughput curve generation using a fixed sample size procedure. Int. J. Prod.
Res. 39(12), 2595–2613 (2001)

87. Fowler, J.W., Hogg, G.L., Mason, S.J.: Workload control in the semiconductor
industry. Prod. Plann. Contr. 13(7), 568–578 (2002)

88. Fowler, J.W., Horng, S., Cochran, J.K.: A hybridized genetic algorithm to solve
parallel machine scheduling problems with sequence dependent setups. Int. J.
Ind. Eng. 10(3), 232–243 (2003)

89. Fowler, J.W., Rose, O.: Grand challenges in modeling and simulation of complex
manufacturing systems. SIMULATION—Trans. Soc. Model. Simulat. Int. 80(9),
469–476 (2004)

90. Framinan, J.M., Ruiz, R.: Architecture of manufacturing scheduling systems:
literature review and an integrated proposal. Eur. J. Oper. Res. 205(2), 237–246
(2010)
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