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Das Ganze ist aber nur das durch seine Entwicklung
sich vollendende Wesen. *

G. W.FE Hegel: Phinomenologie des Geistes (1807)

* The whole, however, is merely the essential nature reaching its
completeness through the process of its own development.

G. W.F. Hegel: The Phenomenology of Mind (1807)



This page intentionally left blank



Preface to the Fifth Edition

Complexity determines the spirit of twenty-first century science. The expansion of
the universe, the evolution of life, and the globalization of human economies and
societies all involve phase transitions of complex dynamical systems. Complexity
research is done in a growing number of disciplines in the physical and life sciences,
the economic and social sciences, and the cognitive and computer sciences, yielding
new results and insights. Thus, this book on “Thinking in Complexity” is inevitably
associated with a learning process and must be updated, although the main princi-
ples of complexity research are highlighted, just as they have been from the very
first edition. However, the fifth edition of “Thinking in Complexity” enlarges and
revises nearly all of the sections of the former book, and includes completely new
chapters on the evolution of computability and the emerging field of econophysics.

In Chapter 2, the methodological section on time series analysis now also con-
siders fractals and multifractals as geometric criteria for complexity. Further on,
power laws reveal the high level of complexity of all biological systems. They are
important indications of the scale-free laws associated with fractal and multifractal
features, which are additionally analyzed in Chapter 3. In Chapter 4, the traditional
dualism of mind and matter is overcome by invoking the concept of the embodied
mind, which was recently introduced in the fields of neurobiology and neuropsy-
chology. The reason is that people learn bodily from experiences with their envi-
ronment. In neuromedicine, the “Theory of Mind” (ToM) explains the awareness of
one’s own emotional states by specialized areas of the brain as a complex embodied
process. Finally, subjective experiences (qualia) emerge through the bodily interac-
tions of self-conscious organisms with their environment, which can be modeled by
the nonlinear dynamics of complex systems.

Chapter 5, on the evolution of computability, is completely new. After historical
background on Leibniz and an introduction to the basic concepts of computability
and algorithmic complexity, we discuss degrees of complexity in information theory
and the theory of probability. Probabilistic attractors allow the degrees of complexity
of stochastic processes to be classified. Probabilistic states are typical of the quan-
tum world. Quantum states are coded by quantum information, which is processed
by quantum computers. Quantum computability leads to degrees of quantum com-
plexity. Is the universe a giant expanding quantum computer of increasing complex-
ity? All of the degrees of complexity of dynamical systems can also be simulated
by cellular automata. New ideas in and results of organic computing are included
in Chap. 6. The natural evolution of life and intelligence has become an important
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paradigm for computational models. They are no longer restricted to the symbolic
knowledge representation associated with classical artificial intelligence (AI). The
embodied life and mind encountered in natural evolution has led to research into
embodied artificial intelligence, which involves robots and machines that undergo
bodily experiences and learning interactions with their changing environments.

Chapter 7 on complex systems and the evolution of economies is also com-
pletely new. After some historical remarks on economic self-organization, it begins
by introducing some basic concepts of nonequilibrium dynamics of complex eco-
nomic systems. Econophysics is a discipline that has arisen relatively recently in
which economic and financial systems are analyzed with the methods of nonlinear
dynamics. This situation is reminiscent of the beginnings of modern molecular biol-
ogy, when physicists such as Erwin Schrédinger (in his revolutionary book “What
is Life?”) rather than traditional biologists made breakthroughs in the life sciences
using modern mathematical physics methods. It may be that physicists, again, will
find useful economic and financial models based on mathematical methods derived
from the theories of complex systems and nonlinear dynamics. Complex and global
markets exhibit turbulence that appears to be remarkably similar to that observed
in weather and climate dynamics, which follows typical power laws of probabilistic
distributions. Stochastic processes with probabilistic attractors lead to abrupt and
discontinuous events (the “Noah effect”) or long-term trends (the “Joseph effect”).
Time series analysis permits the detection of typical patterns of fractal and multi-
fractal structures that can be used as warning signals for critical situations.

Chapter 8 on the evolution of human culture and society has been enlarged
through the addition of sections on media and communication in the age of World
Wide Web, mobile, and ubiquitous computing. These are examples of highly com-
plex self-organizing networks, each of which is very similar to a kind of superbrain.
The flow of data traffic can be characterized by phase transitions and attractors. In
order to efficiently manage an increasing flood of information, we need user-friendly
methods of information retrieval and personalized information systems. Adaptive
(“tailored”) e-learning presents a challenge to the application of communication
technologies in modern knowledge societies. The philosophical and ethical mes-
sages of modern complexity research are then highlighted in Chap. 9.

Finally, I would like to thank Christian Caron for initiating and supporting this
new edition. He follows in the good tradition of Springer-Verlag of focusing on
“Thinking in Complexity” as a key topic for the twenty-first century.

Augsburg, March 2007 Klaus Mainzer



Preface to the Fourth Edition

The first edition of this book, published in 1994, began with the statement that the
new science of complexity would characterize the scientific development of the 21st
century. In the first decade of this century, this prediction has been confirmed by
overwhelming new empirical results and theoretical insights the of physical and
biological sciences, cognitive and computer sciences, and social and economic sci-
ences. Complexity and nonlinearity are still prominent features in the evolution of
matter, mind, and human society. Thus, the science of complexity still aims at ex-
planations for the emergence of order in nature and mind and in the economy and
society by common principles.

But a new engineering view has focused the exploration of complexity. On the
one hand, we need new computational instruments to analyze complex data and rec-
ognize future trends. On the other hand, the principles of complex dynamics are in-
creasingly becoming the blueprints of gene, bio, and computer technology. Life and
computer sciences are growing into a new kind of complex engineering, changing
the basic conditions of human life and society. Nonlinear dynamics are implemented
in nonlinear computer chips of high speed and miniaturized size, which are not only
distributed in our technical equipment and environment, but also in our body and
brain. Robots are embodied. Nanotechnology with new materials, as well as articial
life and artificial intelligence are dramatic challenges to the future of complexity
science. In the age of globalization, humankind is growing along with worldwide
computational networks of information and communication. But we are also endan-
gered by the nonequilibrium phase transitions of technical, economic, and social
dynamics. All these new topics are considered in supplemented parts and chapters
of this enlarged and revised fourth edition.

Thus, Thinking in Complexity has the new subtitle The Computational Dynam-
ics of Matter, Mind, and Mankind. We can actually define precise degrees of algo-
rithmic and dynamic complexity. Basic theorems of computational dynamics have
been proven recently. But, because of chaos and randomness, understanding com-
putational dynamics does not mean predicting and determining the future in all its
details. While we can gain experience with nonlinear dynamics through computer
experiments, computer experiments cannot replace reality. As life is complex and
random, we have to live it in order to experience it. From a philosophical point of
view, this book outlines new standards of epistemology and ethical behavior, which
the complex problems of nature, mind, economy, and society demand.
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This new edition has been inspired by several fruitful collaborations. In 1997,
the book was translated into Japanese, and I was invited to universities in Tokyo,
Osaka, Nagasaki, and Fukui. In 1999, the Chinese translation brought invitations
to universities in Beijing and Shanghai. During the world exposition 2000 (Expo)
in Hannover, I was invited by the German Science Organizations to chair the top-
ics “Understanding Complex Systems” and “Global Networking” during the con-
ference “Science and Technology — Thinking the Future”. During the academic
year 2002/2003, I was a member of the international research group on “General
Principles of Information Theory and Combinatorics” at the Center of Interdisci-
plinary Research in Bielefeld, Germany. The 7th IEEE International Workshop on
“Cellular Neural Networks and Their Applications” (Frankfurt 2002) opened new
insights into recent developments in analogic neural computers and chip technol-
ogy. As a member of the editorial board of the International Journal of Bifurcation
and Chaos in Applied Sciences and Engineering, 1 have the opportunity to get an
interdisciplinary overview of worldwide explorations in the sciences of complex-
ity. I especially want to thank the editor of our journal, Leon O. Chua (Department
of Electrical Engineering & Computer Sciences, University of California, Berke-
ley), for his encouraging advice and kind invitation to Berkeley. Thanks also to
Stephen Wolfram and Leon Chua for the permission to reproduce some figures of
their books in Chaps. 5 and 6. Last, but not least, I would like to thank Wolf Beigl-
bock (Springer-Verlag) for initiating and supporting this new edition.

Augsburg, March 2003 Klaus Mainzer



Preface to the Third Edition

The second edition of “Thinking in Complexity”, like the first edition, was also
sold out in less than one year. Meanwhile, Japanese and Chinese translations of
the second editon have been published. Once more I have taken the opportunity
provided by a new edition to revise and extend the text.

A new Sect. 2.5 “Complex Systems and the Self-Construction of Materials™ is
included, in order to analyze the role of complex systems in the dramatic success
of supramolecular chemistry, nanotechnology, and the technology of smart (“intelli-
gent”) materials. These topics lie at the boundary between materials science and life
science. In recent years, life science and computer science have been growing to-
gether in a common field of research called “artificial life”. A further new Sect. 5.5
“From Artificial Intelligence to Artificial Life” has been added, in which the role
of complex systems in the field of artificial life is discussed. I also use the oppor-
tunity of the new edition to make some remarks about the relationship between the
Santa Fe approach to complex systems and the methods of synergetics and order
parameters which are key concepts in this book.

Research into complex systems continues world-wide. I have to thank the read-
ers who have written friendly and inspiring letters from all over the world. Some
months ago, a German Society of Complex Systems and Nonlinear Dynamics was
founded. The honorable German Academy of Natural Scientists Leopoldina invited
me to give a lecture on complexity for which I express my gratitude. Last but not
least, I would again like to thank Wolf Beiglbock of Springer-Verlag for initiating
and supporting this new edition.

Augsburg, November 1996 Klaus Mainzer
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Preface to the Second Edition

The first edition of “Thinking in Complexity” was sold out in less than one year.
Obviously, complexity and nonlinearity are “hot” topics of interdisciplinary interest
in the natural and social sciences. The situation is well summarized by a quotation
of Tan Stewart (Mathematics Institute, University of Warwick) who wrote a nice
review of my book under the title “Emerging new science” [Nature 374, 834 (1995)]:
“Nonlinearity is not a universal answer, but it is often a better way of thinking about
the problem”.

I have taken the opportunity provided by a second edition to revise and extend
the text. In Sect. 2.4 a supplement is included on the recent importance of conserva-
tive self-organization in supramolecular chemistry and the material sciences. Some
references are given to the recent discussion of self-organization in alternative cos-
mologies. Some remarks are made about new results on dissipative self-organization
in living cells (Sect. 3.3). The success and limitations of adaptive neural prosthe-
ses in neurotechnology are analyzed in more detail (Sect. 5.4). The last chapter is
extended into an “Epilogue on Future, Science, and Ethics”: After a short intro-
duction to traditional forecasting methods, their limitations and new procedures are
discussed under the constraints of nonlinearity and complexity in the natural and
social sciences. In particular, the possibilities of predicting and modeling scientific
and technological growth are extremely interesting for the contemporary debates on
human future and ethics.

General methods of nonlinear complex systems must be developed in coopera-
tion with the natural and social sciences under their particular observational, exper-
imental, and theoretical conditions. Thus, I want to thank some colleagues for their
helpful advice: Rolf Eckmiller (Dept. of Neuroin-formatics, University of Bonn),
Hans-Jorg Fahr and Wolf Priester (Dept. of Astrophysics and Max-Planck Insti-
tute for Radioastronomy, Bonn), Hermann Haken (Institute of Theoretical Physics
and Synergetics, Stuttgart), Benno Hess (Max-Planck Institute for Medical Re-
search, Heidelberg), S. P. Kurdyumov (Keldysh Institute of Applied Mathemat-
ics, Moscow), Renate Mayntz (Max-Planck Institute for Social Sciences, Cologne),
Achim Miiller (Dept. of Inorganic Chemistry, University of Bielefeld). Last but not
least, I would like to thank Wolf Beiglbock (Springer-Verlag) for initiating and sup-
porting this new edition.

Augsburg, November 1995 Klaus Mainzer
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Preface to the First Edition

Complexity and nonlinearity are prominent features in the evolution of matter, life,
and human society. Even our mind seems to be governed by the nonlinear dynamics
of the complex networks in our brain. This book considers complex systems in the
physical and biological sciences, cognitive and computer sciences, social and eco-
nomic sciences, and philosophy and history of science. An interdisciplinary method-
ology is introduced to explain the emergence of order in nature and mind and in the
economy and society by common principles.

These methods are sometimes said to foreshadow the new sciences of complex-
ity characterizing the scientific development of the 21st century. The book critically
analyzes the successes and limits of this approach, its systematic foundations, and
its historical and philosophical background. An epilogue discusses new standards of
ethical behavior which are demanded by the complex problems of nature and mind,
economy and society.

The “nucleus” of this book was a paper contributed to a conference on com-
plex nonlinear systems which was organized by Hermann Haken and Alexander
Mikhailov at the Center for Interdisciplinary Studies in Bielefeld, in October 1992.
In December 1992, Dr. Angela M. Lahee (Springer-Verlag) suggested that I elab-
orate the topics of my paper into a book. Thus, I would like to express my grat-
itude to Dr. Lahee for her kind and efficient support and to Hermann Haken for
his cooperation in several projects on complex systems and synergetics. I also wish
to thank the German Research Foundation (DFG) for the support of my projects
on “Computer, Chaos and Self-organization” (1990-1992: Ma 842/4-1) and “Neu-
roinformatics” (1993—-1994: Ma 842/6-1). I have received much inspiration from
teaching in a mathematical graduate program on “Complex Systems” (supported by
the DFG) and an economic program on “Nonlinearity in Economics and Manage-
ment” at the University of Augsburg. In 1991 and 1993, the Scientific Center of
Northrhine-Westphalia (Diisseldorf) invited me to two international conferences on
the cultural effects of computer technology, neurobiology, and neurophilosophy.

Last but not least, I would especially like to thank J. Andrew Ross (Springer-
Verlag) for carefully reading and correcting the book as a native speaker, and Katja
E. Hiither and Jutta Janfen (University of Augsburg) for typing the text.

Augsburg, June 1994 Klaus Mainzer
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1 Introduction: From Linear to Nonlinear Thinking

The theory of nonlinear complex systems has become a successful problem solv-
ing approach in the natural sciences — from laser physics, quantum chaos, and me-
tereology to molecular modeling in chemistry and computer-assisted simulations
of cellular growth in biology. On the other hand, the social sciences are recogniz-
ing that the main problems of mankind are global, complex, nonlinear, and often
random, too. Local changes in the ecological, economic, or political system can
cause a global crisis. Linear thinking and the belief that the whole is only the sum
of its parts are evidently obsolete. One of the most exciting topics of present sci-
entific and public interest is the idea that even our mind is governed by the non-
linear dynamics of complex systems. If this thesis of computational neuroscience
is correct, then indeed we have a powerful mathematical strategy to handle the in-
terdisciplinary problems of the natural sciences, social sciences, and the human-
ities. But one of the main insights of this book is the following: Handling prob-
lems does not always mean computing and determining the future. In the case of
randomness, we can understand the dynamical reasons, but there is no chance of
forecasting. Understanding complex dynamics is often more important for our prac-
tical behavior than computing definite solutions, especially when it is impossible to
do so.

What is the reason behind these successful interdisciplinary applications? The
book shows that the theory of nonlinear complex systems cannot be reduced to spe-
cial natural laws of physics, although its mathematical principles were discovered
and at first successfully applied in physics. Thus it is no kind of traditional “physical-
ism” to explain the dynamics of laser, ecological populations, or our brain by similar
structural laws. It is an interdisciplinary methodology to explain the emergence of
certain macroscopic phenomena via the nonlinear interactions of microscopic ele-
ments in complex systems. Macroscopic phenomena may be forms of light waves,
fluids, clouds, chemical waves, plants, animals, populations, markets, and cerebral
cell assemblies which are characterized by order parameters. They are not reduced
to the microscopic level of atoms, molecules, cells, organisms, etc., of complex sys-
tems. Actually, they represent properties of real macroscopic phenomena, such as
field potentials, social or economical power, feelings or even thoughts. Who will
deny that feelings and thoughts can change the world?

In history the concepts of the social sciences and humanities have often been
influenced by physical theories. In the age of mechanization Thomas Hobbes de-
scribed the state as a machine (“Leviathan”) with its citizens as cog wheels. For
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Lamettrie the human soul was reduced to the gear drive of an automaton. Adam
Smith explained the mechanism of the market by an “invisible” force like Newton’s
gravitation. In classical mechanics causality is deterministic in the sense of the New-
tonian or Hamiltonian equations of motion. A conservative system is characterized
by its reversibility (i.e., symmetry or invariance) in time and the conservation of
energy. Celestial mechanics and the pendulum without friction are prominent exam-
ples. Dissipative systems are irreversible, like Newton’s force with a friction term,
for instance.

But, in principle, nature was regarded as a huge conservative and deterministic
system the causal events of which can be forecast and traced back for each point of
time in the future and past if the initial state is well known (“Laplace’s demon”).
It was Henri Poincaré who recognized that celestial mechanics is no completely
calculable clockwork even with the restrictions of conservation and determinism.
The causal interactions of all planets, stars, and celestial bodies are nonlinear in
the sense that their mutual effects can lead to chaotic trajectories (e.g., the 3-body
problem). Nearly sixty years after Poincaré’s discovery, A.N. Kolmogorov (1954),
V.1. Arnold (1963), and J.K. Moser proved the so-called KAM theorem: Trajectories
in the phase space of classical mechanics are neither completely regular nor com-
pletely irregular, but they depend very sensitively on the chosen initial states. Tiny
fluctuations can cause chaotic developments (the “butterfly effect”).

In this century quantum mechanics has become the fundamental theory of
physics [1.1]. In Schrodinger’s wave mechanics the quantum world is believed to
be conservative and linear. In the first quantization classical systems described by
a Hamiltonian function are replaced by quantum systems (for instance electrons or
photons) described by a Hamiltonian operator. These systems are assumed to be
conservative, i.e., non-dissipative and invariant with respect to time reversal and
thus satisfy the conservation law of energy. States of a quantum system are de-
scribed by vectors (wave functions) of a Hilbert space spanned by the eigenvectors
of its Hamiltonian operator. The causal dynamics of quantum states is determined
by a deterministic differential equation (the Schrodinger equation) which is linear in
the sense of the superposition principle, i.e., solutions of this equation (wave func-
tions or state vectors) can be superposed like in classical optics. The superposition
or linearity principle of quantum mechanics delivers correlated (“entangled”) states
of combined systems which are highly confirmed by the EPR experiments (A. As-
pect 1981). In an entangled pure quantum state of superposition an observable can
only have indefinite eigenvalues. It follows that the entangled state of a quantum
system and a measuring apparatus can only have indefinite eigenvalues. But in the
laboratory the measuring apparatus shows definite measurement values. Thus, linear
quantum dynamics cannot explain the measurement process.

In the Copenhagen interpretation of Bohr, Heisenberg, et al., the measurement
process is explained by the so-called “collapse of the wave-packet”, i.e., splitting
up of the superposition state into two separated states of measurement apparatus
and measured quantum system with definite eigenvalues. Obviously, we must dis-
tinguish the linear dynamics of quantum systems from the nonlinear act of mea-
surement. This nonlinearity in the world is sometimes explained by the emergence
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of human consciousness. Eugene Wigner (1961) suggested that the linearity of
Schrodinger’s equation might fail for conscious observers, and be replaced by some
nonlinear procedure according to which either one or the other alternative would be
resolved out. But Wigner’s interpretation forces us to believe that the linear quantum
superpositions would be resolved into separated parts only in those corners of the
universe where human or human-like consciousness emerges. In the history of sci-
ence anthropic or teleological arguments often showed that there were weaknesses
and failures of explanation in science. Thus, some scientists, like Roger Penrose,
suppose that the linear dynamics of quantum mechanics is not appropriate to ex-
plain cosmic evolution with the emergence of consciousness. He argues that a uni-
fied theory of linear quantum mechanics and nonlinear general relativity could at
least explain the separated states of macroscopic systems in the world. A measuring
apparatus is a macroscopic system, and the measurement process is irreversible far
from thermal equilibrium. Thus, an explanation could only succeed in a unified non-
linear theory. Even the generalization of Schrodinger’s wave mechanics to quantum
field theory is already nonlinear. In quantum field theory, field functions are replaced
by field operators in the so-called second quantization. The quantum field equation
with a two-particle potential, for instance, contains a nonlinear term corresponding
to pair creation of elementary particles. In general the reactions of elementary parti-
cles in quantum field theory are essentially nonlinear phenomena. The interactions
of an elementary particle cause its quantum states to have only a finite duration and
thereby to violate the reversibility of time. Thus even the quantum world itself is nei-
ther conservative nor linear in general. In system theory, complexity means not only
nonlinearity but a huge number of elements with many degrees of freedom [1.2].
All macroscopic systems like stones or planets, clouds or fluids, plants or animals,
animal populations or human societies consist of component elements like atoms,
molecules, cells or organisms. The behaviour of single elements in complex systems
with huge numbers of degrees of freedom can neither be forecast nor traced back.
The deterministic description of single elements must be replaced by the evolution
of probabilistic distributions.

The second chapter analyzes Complex Systems and the Evolution of Matter.
Since the presocratics it has been a fundamental problem of natural philosophy to
discover how order arises from complex, irregular, and chaotic states of matter. Her-
aclitus believed in an ordering force of energy (logos) harmonizing irregular inter-
actions and creating order states of matter. Modern thermodynamics describes the
emergence of order by the mathematical concepts of statistical mechanics. We dis-
tinguish two kinds of phase transition (self-organization) for order states: conserva-
tive self-organization means the phase transition of reversible structures in thermal
equilibrium. Typical examples are the growth of snow crystals or the emergence of
magnetisation in a ferromagnet by annealing the system to a critical value of tem-
perature. Conservative self-organization mainly creates order structures with low
energy at low temperatures which are described by a Boltzmann distribution. An
application of modern technology is pattern formation in the materials sciences.
Complex systems of the nanoworld and self- constructing materials are challenges
of key technologies in the future.
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Dissipative self-organization is the phase transition of irreversible structures far
from thermal equilibrium [1.3]. Macroscopic patterns arise from the complex non-
linear cooperation of microscopic elements when the energetic interaction of the
dissipative (“open”) system with its environment reaches some critical value. Philo-
sophically speaking, the stability of the emergent structures is guaranteed by some
balance of nonlinearity and dissipation. Too much nonlinear interaction or dissipa-
tion would destroy the structure. As the conditions of dissipative phase transitions
are very general, there is a broad variety of interdisciplinary applications. A typical
physical example is the laser. In chemistry, the concentric rings or moving spirals in
the Belousov-Zhabotinski (BZ) reaction arise when specific chemicals are poured
together with a critical value. The competition of the separated ring waves show the
nonlinearity of these phenomena very clearly, because in the case of a superposition
principle the ring waves would penetrate each other like optical waves.

The phase transitions of nonlinear dissipative complex systems are explained by
synergetics. In a more qualitative way we may say that old structures become unsta-
ble and break down by changing control parameters. On the microscopic level the
stable modes of the old states are dominated by unstable modes (Haken’s “slaving
principle”) [1.4]. They determine order parameters which describe the macroscopic
structure and patterns of systems. There are different final patterns of phase transi-
tions corresponding to different attractors. Different attractors may be pictured as
a stream, the velocity of which is accelerated step by step. At the first level a homo-
geneous state of equilibrium is shown (“fixed point”). At a higher level of velocity
the bifurcation of two or more vortices can be observed corresponding to periodic
and quasi-periodic attractors. Finally the order decays into deterministic chaos as
a fractal attractor of complex systems. Philosophically, I want to underline that in
synergetics the microscopic description of matter is distinguished from the macro-
scopic order states. Thus the synergetic concept of order reminds me of Heraclitus”
“logos” or Aristotle’s “form” which produces the order states of nature in a trans-
formative process of matter. But, of course, in antiquity a mathematical description
was excluded.

In a more mathematical way, the microscopic view of a complex system is de-
scribed by the evolution equation of a state vector where each component depends
on space and time and where the components may denote the velocity components
of a fluid, its temperature field, or in the case of chemical reactions, concentrations
of chemicals. The slaving principle of synergetics allows us to eliminate the degrees
of freedom which refer to the stable modes. In the leading approximation the evo-
lution equation can be transformed into a specific form for the nonlinearity which
applies to those systems where a competition between patterns occurs. The ampli-
tudes of the leading terms of unstable modes are called order parameters. Their
evolution equation describes the emergence of macroscopic patterns. The final pat-
terns (“attractors”) are reached by a transition which can be understood as a kind
of symmetry breaking [1.5]. Philosophically speaking, the evolution of matter is
caused by symmetry breaking, which was earlier mentioned by Heraclitus.

Understanding complex systems and nonlinear dynamics in nature seems to
yield appropriate models for the evolution of matter. But how can we find correct
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models in practice? Physicists, chemists, biologists, or physicians start with data
mining in an unknown field of research. They only get a finite series of measured
data corresponding to time dependent events of an unknown dynamical system.
From the time series of these data, they must reconstruct the behavior of the system
in order to guess the type of its dynamical equation. Therefore, time series analysis
is a challenge to modern research in chaos theory and nonlinear dynamics.

The third chapter analyzes Complex Systems and the Evolution of Life. In the
history of science and philosophy, people believed in a sharp difference between
“dead” and “living” matter. Aristotle interpreted life as a power of self-organization
(entelechy) driving the growth of plants and animals to their final form. A living
system is able to move by itself, while a dead system can only be moved from out-
side. Life was explained by teleology, i.e., by non-causal (“vital”) forces aiming at
some goals in nature. In the 18th century Kant showed that self-organization of liv-
ing organisms cannot be explained by a mechanical system of Newtonian physics.
In a famous quotation he said that the Newton for explaining a blade of grass is
still lacking. In the 19th century the second law of thermodynamics describes the
irreversible movement of closed systems toward a state of maximal entropy or dis-
order. But how can one explain the emergence of order in Darwin’s evolution of
life? Boltzmann stressed that living organisms are open dissipative systems in ex-
change with their environment which do not violate the second law of closed sys-
tems. But nevertheless in the statistical interpretation from Boltzmann to Monod the
emergence of life can only be a contingent event, a local cosmic fluctuation “at the
boundary of universe”.

In the framework of complex systems the emergence of life is not contingent,
but necessary and lawful in the sense of dissipative self-organization. Only the con-
ditions for the emergence of life (for instance on the planet Earth) may be contingent
in the universe. In general, biology distinguishes ontogenesis (the growth of organ-
isms) from phylogenesis (the evolution of species). In any case we have complex
dissipative systems the development of which can be explained by the evolution of
(macroscopic) order parameters caused by nonlinear (microscopic) interactions of
molecules, cells, etc., in phase transitions far from thermal equilibrium. Forms of
biological systems (plants, animals, etc.) are described by order parameters. Aristo-
tle’s teleology of goals in nature is interpreted in terms of attractors in phase transi-
tions. But no special “vital” or “teleological” forces are necessary. Philosophically,
the emergence of life can be explained in the framework of nonlinear causality and
dissipative self-organization, although it may be described in a teleological language
for heuristic reasons.

I remind the reader that the prebiological evolution of biomolecules was ana-
lyzed and simulated by Manfred Eigen et al. Spencer’s idea that the evolution of
life is characterized by increasing complexity can be made precise in the context
of dissipative self-organization. It is well known that Turing analyzed a mathemat-
ical model of organisms represented as complex cellular systems. Gerisch, Mein-
hardt, et al. described the growth of an organism (e.g., a slime mould) by evolution
equations for the aggregation of cells. The nonlinear interactions of amebas cause
the emergence of a macroscopic organism like a slime mould when some critical
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value of cellular nutrition in the environment is reached. The evolution of the or-
der parameter corresponds to the aggregation forms during the phase transition of
the macroscopic organism. The mature multicellular body can be interpreted as the
“goal” or (better) “attractor” of organic growth. Multicellular bodies, like genetic
systems, nervous systems, immune systems, and ecosystems, are examples of com-
plex dynamical systems, which are composed of a network of many interacting el-
ements. S. Kauffman suggested studying random Boolean networks that could be
programmed in a computer. In computer experiments, he found a hierarchy of dy-
namical behavior with fixed points and cycles of increasing complexity, which can
be observed in real cells.

Even the ecological growth of biological populations may be simulated using
the concepts of synergetics. Ecological systems are complex dissipative systems of
plants or animals with mutual nonlinear metabolic interactions with each other and
with their environment. The symbiosis of two populations with their source of nu-
trition can be described by three coupled differential equations which were already
used by Edward Lorenz to describe the development of weather in meteorology. In
the 19th century the Italian mathematicians Lotka und Volterra described the devel-
opment of two populations in ecological competition. The nonlinear interactions of
the two complex populations are determined by two coupled differential equations
of prey and predator species. The evolution of the coupled systems have station-
ary points of equilibrium. The attractors of evolution are periodic oscillations (limit
cycles).

The theory of complex systems allows us to analyze the nonlinear causality
of ecological systems in nature. Since the industrial revolution human society has
become more and more involved in the ecological cycles of nature. But the com-
plex balance of natural equilibria is highly endangered by the linear mode of tra-
ditional industrial production. People assumed that nature contains endless sources
of energy, water, air, etc., which can be used without disturbing the natural balance.
Industry produces an endless flood of goods without considering their synergetic
effects like the ozone hole or waste utilization. The evolution of life is transformed
into the evolution of human society.

From a methodological point of view, the applicability of power laws to bio-
logical systems indicates that such systems are highly complex. Some examples of
biological power-law equations include those that relate physiological variables as-
sociated with the metabolic rate or life expectancy of an organism to its body mass.
Although not all power-law relationships are result from fractals, the existence of
such a relationship should inspire us to test the self-similarities of cellular subsys-
tems at different scales. Many cellular organs, such as the lungs, with their branching
trees of vessels, are at least statistically self-similar. The concept of fractals and self-
similarity has not only been used to describe biomedical phenomena, but it has also
prompted a new approach to health by clinicians. The new idea that has emerged
from nonlinear dynamics, scaling and power laws in biology is that health is home-
odynamic; in other words, there are a constellation of states that determine health.
A healthy physiological system has a certain amount of intrinsic variability and no
fixed state.



1 Introduction: From Linear to Nonlinear Thinking 7

Perhaps the most speculative interdisciplinary application of complex systems
is discussed in the fourth chapter, Complex Systems and the Evolution of Mind-
Brain. In the history of philosophy and science there have been many different
suggestions for solutions to the mind-body problem. Materialistic philosophers like
Democritus, Lamettrie, et al., proposed to reduce mind to atomic interactions. Ide-
alists like Plato, Penrose, et al. emphasized that mind is completely independent of
matter and brain. For Descartes, Eccles, et al. mind and matter are separate sub-
stances interacting with each other. Leibniz believed in a metaphysical parallelism
of mind and matter because they cannot interact physically. According to Leibniz
mind and matter are supposed to exist in “pre-established harmony” like two syn-
chronized clocks. Modern philosophers of mind like Searle defend a kind of evo-
lutionary naturalism. Searle argues that mind is characterized by intentional mental
states which are intrinsic features of the human brain’s biochemistry and which
therefore cannot be simulated by computers.

But the theory of complex systems cannot be reduced to these more or less one-
sided positions. The complex system approach is an interdisciplinary methodology
to deal with nonlinear complex systems like the cellular organ known as the brain.
The emergence of mental states (for instance pattern recognition, feelings, thoughts)
is explained by the evolution of (macroscopic) order parameters of cerebral assem-
blies which are caused by nonlinear (microscopic) interactions of neural cells in
learning strategies far from thermal equilibrium. Cell assemblies with mental states
are interpreted as attractors (fixed points, periodic, quasi-periodic, or chaotic) of
phase transitions.

If the brain is regarded as a complex system of neural cells, then its dynamics
is assumed to be described by the nonlinear mathematics of neural networks. Pat-
tern recognition, for instance, is interpreted as a kind of phase transition by analogy
with the evolution equations which are used for pattern emergence in physics, chem-
istry, and biology. Philosophically, we get an interdisciplinary research program that
should allow us to explain neurocomputational self-organization as a natural conse-
quence of physical, chemical, and neurobiological evolution by common principles.
As in the case of pattern formation, a specific pattern of recognition (for instance
a prototype face) is described by order parameters to which a specific set of features
belongs. Once some of the features which belong to the order parameter are given
(for instance a part of a face), the order parameter will complement these with the
other features so that the whole system acts as an associative memory (for instance
the reconstruction of a stored prototype face from an initially given part of that
face). According to Haken’s slaving principle the features of a recognized pattern
correspond to the enslaved subsystems during pattern formation.

But what about the emergence of consciousness, self-consciousness, and in-
tentionality? In synergetics we have to distinguish between external and internal
states of the brain. In external states of perception and recognition, order parame-
ters correspond to neural cell assemblies representing patterns of the external world.
Internal states of the brain are nothing other than self-referential states, i.e., mental
states referring to mental states and not to external states of the world. In the tradi-
tional language of philosophy we say that humans are able to reflect on themselves
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(self-reflection) and to refer external situations of the world to their own internal
state of feeling and intentions (intentionality). In recent neurobiological inquiries,
scientists speculate that the emergence of consciousness and self-consciousness de-
pends on a critical value of the production rate for “meta-cell-assemblies”, i.e., cell-
assemblies representing cell-assemblies which again represent cell-assemblies, etc.,
as neural realization of self-reflection. But this hypothesis (if successful) could only
explain the structure of emergent features like consciousness. Of course, mathemati-
cal evolution equations of cell assemblies do not enable us to feel like our neighbour.
In this sense — this is the negative message — science is blind. But otherwise — this
is the positive message — personal subjectivity is saved: Calculations and computer-
assisted simulations of nonlinear dynamics are limited in principle.

Anyway, the complex system approach solves an old metaphysical puzzle
which was described by Leibniz in the following picture: If we imagine the brain as
a big machine which we may enter like the internal machinery of a mill, we shall
only find its single parts like the cog wheels of the mill and never the mind, not to
mention the human soul. Of course, on the microscopic level we can only describe
the development of neurons as cerebral parts of the brain. But, on the macroscopic
level, the nonlinear interactions in the complex neural system cause the emergence
of cell assemblies referring to order parameters which cannot be identified with the
states of single cerebral cells. The whole is not the sum of its parts.

Today, we can distinguish several degrees of complexity in the CNS. Scales at
the levels of molecules, membranes, synapses, neurons, nuclei, circuits, networks,
layers, maps, sensory systems, and the entire nervous system are considered. Each
stratum can be characterized by some order parameters that determine its particular
structures, which are caused by complex interactions of subelements with respect
to the particular level of hierarchy. The brain of an organism observes, maps, and
monitors not only the external world, but also the internal states of the organism,
especially its emotional states. To “feel” is to have an awareness of one’s own emo-
tional states. In neuromedicine, the “Theory of Mind” (ToM) even analyzes the neu-
ral correlates of social feeling, which are situated in special areas of the neocortex.
From a neuropsychological point of view, the old philosophical problem of “qualia”
is also solvable. Qualia are properties that are consciously experienced by a person.
We can explain the dynamics of subjective feelings and experiences, but, of course,
the actual feeling is an individual experience.

It is obvious that the complex system approach delivers solutions of the mind-
body problem which are beyond the traditional philosophical answers of idealism,
materialism, physicalism, dualism, interactionism, etc. Concerning the distinction
between so-called natural and artificial intelligence, it is important to see that the
principles of nonlinear complex systems do not depend on the biochemistry of the
human brain.The human brain is a “natural” model of these principles in the sense
that the cerebral complex system is a product of physical and biological evolu-
tion. But other (“artificial”) models produced by human technology are possible,
although there will be technical and ethical limits to their realization.

In Chap. 5 we discuss Complex Systems and the Evolution of Computability.
Universal Turing machines and algorithmic complexity are the traditional concepts
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of computability. Computational systems are also described as information process-
ing machines in information theory. The degree of complexity of information en-
tropy is classified by performing a Fourier analysis of a time series in signal theory.
1/f spectra for signals with a frequency f are typical of processes that organize
themselves to a critical state at which many small interactions can trigger the emer-
gence of a new, unpredicted phenomenon. Earthquakes, atmospheric turbulence,
stock market fluctuations, and physiological processes of organisms are typical ex-
amples. Self-organization, emergence, chaos, fractality, and self-similarity are fea-
tures of complex systems that exhibit nonlinear dynamics. The fact that 1/f spectra
are measures of stochastic noise again emphasizes the deep relationship between
information theory and systems theory: any complex system can be considered to
be an information processing system.

In complex systems, the behavior of single elements is often completely un-
known. In this case, the degrees of complexity of stochastic processes must be dis-
tinguished. The outcomes of a stochastic process (e.g., coin tossing) are distributed
with different probabilities which are characterized by different probability distri-
bution functions. A well-known example is the bell-shaped Gaussian curve of the
normal distribution. This is, however, only one example of a probabilistic attrac-
tor in the functional space of probability density functions. The set of probability
density functions that fulfill the requirements of the central limit theorem with inde-
pendence and finite variance of random variables constitutes the basin of attraction
for the Gaussian distribution. Probabilistic attractors classify the functional space
of probability density functions into regions with different complexities. Distribu-
tion curves with fluctuating tails are typical of power laws, indicating highly com-
plex stochastic behavior. Power-law distributions are used to describe open systems.
They have become increasingly important when describing, for example, complex
economic and physiological systems. Turbulence in complex financial markets is
also characterized by power-law distributions with wildly fluctuating tails.

Although the computability of a deterministic system is limited by the degree of
algorithmic complexity (see Sect. 5.2), and the computability of a stochastic system
is limited by probabilistic measures (Sects. 5.3-5.4), dynamical systems can still
be considered to be computational systems that sometimes cannot deliver results in
a reasonable time. The old vision of Leibniz, that the world is a gigantic computer,
still holds true. From a modern physical point of view, quantum systems are the fun-
damental dynamical systems of nature. Quantum mechanics delivers a framework
for new computational systems — quantum computers. Quantum computers open up
new avenues of information processing, computation, and communication. An es-
sential feature of the quantum world is the superposition of quantum states and the
possibility of entangled states. However, quantum computing does not only imply
an exponential growth in computational capacity and a reduction in computational
complexity. All matter stores quantum information. Therefore, any elementary par-
ticle is a processor of quantum information. The universe is an expanding quantum
computer producing quantum information.

Are there limitations to the analogies of computers with human mind and brain
by Godel’s and Turing’s results of incompleteness and undecidability? How can
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the human brain be understood as both an information processing machine and
a knowledge-based system? John von Neumann’s concept of celluar automata re-
fined the idea of self-organizing cellular systems. Recent computer experiments by
Stephen Wolfram have shown that all kinds of nonlinear dynamics, from fixed point
attractors and oscillating behavior to chaos, can be simulated by cellular automata.
Even randomness can be generated by appropriate cellular automata, though their
local rules of cellular interaction may be very simple and well-known. Cellular au-
tomata deliver digital approximations of complex dynamical systems that are deter-
mined by continuous differential equations.

Computational dynamics opens up new avenues for Complex Systems and the
Evolution of Artificial Life and Intelligence (Chap. 6). The natural evolution of life
and intelligence has become an important paradigm for computational models. They
are no longer restricted to symbolic knowledge representation and artificial intel-
ligence (AI). Natural life and intelligence depends decisively on the evolution of
organisms and brains. Therefore, embodied life and mind lead to embodied arti-
ficial intelligence and embodied artificial life of embodied robotics. Artificial life
and neural networks have their roots in the universal methods of cellular automata.
Self-organization and learning are the main features of neural networks that model
intelligent systems. In synergetic computers, order parameter equations allow a new
kind of (non-Hebbian) learning: a strategy to minimize the number of synapses. In
contrast to neurocomputers of the spin-glass type (for instance Hopfield systems),
the neurons in such systems are not threshold elements but instead perform sim-
ple algebraic manipulations like multiplication and addition. As well as determinis-
tic homogeneous Hopfield networks, there are so-called Boltzmann machines, with
have a stochastic network architecture of nondeterministic processor elements and
a distributed knowledge representation which is described mathematically by an en-
ergy function. While Hopfield systems use a Hebbian learning strategy, Boltzmann
machines favor a backpropagation strategy (Widrow—Hoff rule) with hidden neu-
rons in a multilayered network.

In general it is the aim of a learning algorithm to diminish the information-
theoretic measure of the discrepancy between the brain’s internal model of the world
and the real environment via self-organization. The recent revival of interest in the
field of neural networks is mainly inspired by the successful technical applications
of statistical mechanics and nonlinear dynamics to solid state physics, spin glass
physics, chemical parallel computers, optical parallel computers, and — in the case of
synergetic computers — to laser systems. Other reasons are the recent development
of computing resources and the level of technology which make a computational
treatment of nonlinear systems more and more feasible. Philosophically, traditional
topics of epistemology like perception, imagination, and recognition may be dis-
cussed in the interdisciplinary framework of complex systems.

In electrical engineering, information theory, and computer science, the concept
of cellular neural networks (CNN) is becoming an influential paradigm of com-
plexity research, which has been realized in information and chip technology [1.6].
Analogic Cellular Computers are the technical response to the sensor revolution,
mimicking the anatomy and physiology of sensory and processing organs. A CNN
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is a nonlinear analog circuit that processes signals in real time. Its architecture dates
back to J. von Neumann’s earlier paradigm of Cellular Automata (CA). Unlike con-
ventional cellular automata, CNN host processors accept and generate analog sig-
nals in continuous time with real numbers as interaction values. The CNN universal
chip is a technical realization of the CNN Universal Machine (CNN-UM), anal-
ogous to the Universal Turing machine of digital computers. It is a milestone in
information technology because it is the first fully programmable, industrial-sized,
brain-like, stored-program dynamic array computer. Further on, appropriate CNNs
can simulate all kinds of pattern formation and pattern recognition, which have been
analyzed in synergetics in the theory of nonlinear dynamics. Two great advantages
of CNNs are their rigorous mathematical analysis and their technical realization.
The dynamic complexity of cellular automata and their corresponding nonlinear dy-
namic systems can be characterized by a precise complexity index. An immense
increase of computing speed, combined with significantly less electrical power in
the first CNN chips, has led to the current intensive research activities on CNN
since Chua and Yang’s proposal in 1988.

An important application of the complex system approach is neurobionics and
medicine. The human brain is not only a cerebral computer as a product of natural
evolution, but a central organ of our body which needs medical treatment, healing,
and curing. Neurosurgery, for instance, is a medical discipline responsible for main-
taining the health of the biological medium of the human mind. The future well-
being of the brain-mind entity is an essential aim of neurobionics. In recent years
new diagnostic procedures and technical facilities for transplantation have been in-
troduced which are based on new insights into the brain from complex dynamical
systems. In this context a change of clinical treatment is unavoidable. Neural and
psychic forms of illness can be interpreted as complex states in a nonlinear system
of high sensitivity. Even medical treatments must consider the high sensitivity of
this complex organ. Another more speculative aspect of the new technology is cy-
berspace. Perception, feeling, intuition, and fantasy as products of artificial neural
networks? Virtual reality has become a keyword in modern philosophy of culture.

After the evolution of matter, life, mind-brain, and artificial intelligence, we
consider the emergence of economic order in human societies. The seventh chap-
ter is titled Complex Systems and the Evolution of Economies. From a qualitative
point of view, Adam Smith’s free market model can already be explained by self-
organization. Smith underlined that good or bad intentions of individuals are not
essential. In contrast to a centralized economical system, the equilibrium of supply
and demand is not directed by a program-controlled central processor, but is the
effect of an “invisible hand” (Smith), which is simply the nonlinear interaction of
consumers and producers. It should be noted that Adam Smith’s liberal ideas were
conceived against a historical background of Newtonian physics. Like many physi-
cists, economists believed in the exact computability of their (linear) models, and
they suppressed the possibility of a “butterfly effect” that could lead to chaos and
excluded long-range economic forecasts.

However, in order to describe the dynamics of an economy, it is necessary to
have evolution equations for many economic quantities from perhaps thousands of
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sectors and millions of agents. Therefore, stochastic models are often preferred
when modeling global trends. Phase transitions and bifurcations at critical points
are crucial concepts for understanding the nonlinear dynamics of economies. One
challenge of globalization is to model the dramatic dynamics of financial markets.
Modern mathematical finance theory is still based on Louis Bachelier’s assump-
tion (1900) of an efficient market with a normal (“Gaussian”) distribution of price
changes and mild randomness. However, complex and global markets are actually
turbulent, like the weather, following typical power laws of distribution. Stochastic
processes with probabilistic attractors (see Sect. 5.4) lead to abrupt and discontin-
uous events (the “Noah effect”) or long-term trends (the “Joseph effect”). Fractals
and multifractals have been put forward as explanations for these stochastic pro-
cesses. Recently, econophysics has become a fruitful research field in economic and
financial sociodynamics.

After moving through matter, life, mind-brain, artificial intelligence, and eco-
nomics, the book finishes in a Hegelian grand synthesis with the eighth chapter,
Complex Systems and the Evolution of Human Culture and Society. In social sci-
ences one usually distinguishes strictly between biological evolution and the history
of human society. The reason is that the development of nations, markets, and cul-
tures is assumed to be guided by the intentional behavior of humans, i.e., human
decisions based on intentions, values, etc. From a microscopic viewpoint we may,
of course, observe single individuals with their intentions, beliefs, etc. But from
a macroscopic view the development of nations, markets, and cultures is not only
the sum of its parts. Mono-causality in politics and history is, as we all know, a false
and dangerous way of linear thinking. Synergetics seems to be a successful strategy
to deal with complex systems even in the humanities. Obviously it is not necessary
to reduce cultural history to biological evolution in order to apply synergetics in-
terdisciplinarily. Contrary to any reductionistic kind of naturalism and physicalism
we recognize the characteristic intentional features of human societies. Thus the
complex system approach may be a method of bridging the gap between the natural
sciences and the humanities that was criticized in Snow’s famous “two cultures”.

In the framework of complex systems the behaviour of human populations is
explained by the evolution of (macroscopic) order parameters which is caused by
nonlinear (microscopic) interactions of humans or human subgroups (states, institu-
tions, etc.). Social or economic order is interpreted by attractors of phase transitions.
Allen et al. analyze the growth of urban regions. From a microscopic point of view
the evolution of populations in single urban regions is mathematically described
by coupled differential equations with terms and functions referring to the capac-
ity, economic production, etc., of each region. The macroscopic development of the
whole system is illustrated by computer-assisted graphics with changing centers of
industrialization, recreation, etc., caused by nonlinear interactions of individual ur-
ban regions (for instance advantages and disadvantages of far and near connections
of transport, communication, etc.). An essential result of the synergetic model is that
urban development cannot be explained by the free will of single persons. Although
people of local regions are acting with their individual intentions, plans, etc., the
tendency of the global development is the result of nonlinear interactions.
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Another example of the interdisciplinary application of synergetics is Weid-
lich’s model of migration. He distinguishes the micro-level of individual decisions
and the macro-level of dynamical collective processes in a society. The probabilistic
macro-processes with stochastic fluctuations are described by the master equation
of human socioconfigurations. Each component of a socioconfiguration refers to
a subpopulation with a characteristic vector of behavior. The macroscopic develop-
ment of migration in a society could be illustrated by computer-assisted graphics
with changing centers of mixtures, ghettos, wandering, and chaos which are caused
by nonlinear interactions of social subpopulations. The differences between human
and non-human complex systems are obvious in this model. On the microscopic
level human migration is intentional (i.e., guided by considerations of utility) and
nonlinear (i.e., dependent on individual and collective interactions). A main result
of synergetics is again that the effects of national and international migration cannot
be explained by the free will of single persons. I think migration is a very dramatic
topic today, and demonstrates how dangerous linear and mono-causal thinking may
be. It is not sufficient to have good intentions without considering the nonlinear
effects of single decisions. Linear thinking and acting may provoke global chaos,
although we locally act with the best intentions.

In a dramatic step, the complex systems approach has been expanded from
neural networks to include global technical information networks like the World
Wide Web. The information flow is accomplished through information packets with
source and destination addresses. The dynamic of the Internet has essential analo-
gies with CAs and CNNs. Computational and information networks have become
technical superorganisms, evolving in a quasi-evolutionary process. The informa-
tion flood in a more or less chaotic Internet is a challenge for intelligent information
retrieval. We could use the analogies of the self-organizing and learning features of
a living brain to find heuristic devices for managing the information flood of the
Internet. Taking this further, we need personalized information systems that adapt
automatically to electronic profiles of users. These are a challenge in all fields of
practical appliances. Even tailored knowledge during e-learning can be packaged
by personalized information systems according to the learning profile of the user.

But the complexity of global networking isn’t confined to the Internet. Below
the complexity of a PC, cheap, low power, and smart chip devices are distributed
throughout the intelligent environments of our everyday world. Ubiquitous comput-
ing is a challenge of global networking by wireless media access, wide-bandwidth
range, real-time capabilities for multimedia over standard networks, and data packet
routing. Not only millions of PCs, but also billions of smart devices are interacting
via the Internet. The overwhelming flow of data and information forces us to operate
at the edge of chaos.

In general, economic information processes are very complex and demand non-
linear dissipative models. Recall the different attractors from economic cycles to
financial chaos which can only be explained as synergetic effects by nonlinear in-
teractions of consumers and producers, fiscal policy, stock market, unemployment,
etc. Even in management possible complex models are discussed in order to sup-
port creativity and innovation by nonlinear cooperation at all levels of management
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and production. But experience shows that the rationality of human decision mak-
ing is bounded. Human cognitive capabilities are overwhelmed by the complexity
and randomness of the nonlinear systems they are forced to manage. The concept of
bounded rationality, first introduced by Herbert Simon, was a reaction to the limita-
tions of human knowledge, information, and time.

Evidently, there are some successful strategies to handle nonlinear complex
systems. We shall discuss examples of applications in quantum physics, hydrody-
namics, chemistry, and biology, as well as economics, sociology, neurology, and
Al. What is the reason behind the successful applications in the natural sciences
and humanities? The complex system approach is not reduced to special natural
laws of physics, although its mathematical principles were discovered and at first
successfully applied in physics (for instance to the laser). Thus, it is an interdisci-
plinary methodology to explain the emergence of certain macroscopic phenomena
via the nonlinear interactions of microscopic elements in complex systems. Macro-
scopic phenomena may be forms of light waves, fluids, clouds, chemical waves,
biomolecules, plants, animals, populations, markets, neural cell assemblies, traf-
fic congestions in street networks or the Internet, which are characterized by order
parameters (Table 1.1). Philosophically, it is important to see that order parame-
ters are not reduced to the microscopic level of atoms, molecules, cells, organisms,
etc., of complex systems. In some cases they are measurable quantities (for instance
the field potential of a laser). In other cases they are qualitative properties (for in-
stance geometrical forms of patterns). Nevertheless, order parameters are not mere
theoretical concepts of mathematics without any reference to reality. Actually they
represent properties of real macroscopic phenomena, such as field potentials, so-
cial or economic power, feelings or even thoughts. Who will deny that feelings and
thoughts can change the world? If we can understand their nonlinear dynamics, it
could even become possible to implement them in chips, such as CNNs.

Thus, the complex systems approach is not a metaphysical process ontology.
Synergetic principles (among others) provide a heuristic scheme to construct mod-
els of nonlinear complex systems in the natural sciences and the humanities. If these
models can be mathematized and their properties quantified, then we get empirical
models which may or may not fit the data. The slaving principle shows another
advantage. As it diminishes the high number of degrees of freedom in a complex
system, synergetics is not only heuristic, mathematical, empirical and testable, but
economical too. Namely, it satisfies the famous principle of Ockham’s razor which
tells us to cut away superfluous entities. Further on, nonlinear models may be im-
plemented in nonlinear computer chips of high speed and miniaturized size. We
can also prove basic principles of computational dynamics. But, because of chaos
and randomness, understanding computational dynamics does not mean predicting
and determining the future in all its details. The analysis of computational systems
allows us to gain experience with nonlinear dynamics, as well as insights into and
feelings about what is going on in the real world. But, as life is complex and random,
we have to live it in order to experience it.

In this sense, our approach suggests that physical, social, and mental realities
are nonlinear, complex, and computational. This essential result of a new episte-
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mology has severe consequences for our behavior. As we underlined, linear think-
ing may be dangerous in a nonlinear complex reality. Recall, as one example, the
demand for a well-balanced complex system of ecology and economics. Our physi-
cians and psychologists must learn to consider humans as complex nonlinear entities
of mind and body. Linear thinking may fail to yield a successful diagnosis. Local,
isolated, and “linear” therapies of medical treatment may cause negative synergetic
effects. In politics and history, we must remember that mono-causality may lead to
dogmatism, intolerance, and fanaticism. As the ecological, economic, and political
problems of mankind have become global, complex, nonlinear, and random, the tra-
ditional concept of individual responsibility is questionable. We need new models
of collective behavior depending on the different degrees of our individual faculties
and insights. In short: The complex system approach demands new consequences
in epistemology and ethics. Finally, it offers a chance to handle chaos and random-
ness in a nonlinear complex world and utilize the creative possibilities of synergetic
effects.



2 Complex Systems and the Evolution of Matter

How can order arise from complex, irregular, and chaotic states of matter? In classi-
cal antiquity philosophers tried to take the complexity of natural phenomena back to
first principles. Astronomers suggested mathematical models in order to reduce the
irregular and complex planetary orbits as they are experienced to regular and simple
movements of spheres. Simplicity was understood, still for Copernicus, as a fea-
ture of truth (Sect. 2.1). With Newton and Leibniz something new was added to the
theory of kinetic models. The calculus allows scientists to compute the instaneous
velocity of a body and to visualize it as the tangent vector of the body’s trajectory.
The velocity vector field has become one of the basic concepts in dynamical sys-
tems theory. The cosmic theories of Newton and Einstein have been described by
dynamical models which are completely deterministic (Sect. 2.2).

But Poincaré discovered that those models may be non-computable in the long
run (the many-body-problem). Even in a fully deterministic world, the assumption
of a Laplacean demon which can calculate the universe in the long run was exposed
as an illusionary fiction. Chaos can arise not only in heaven, but also in the quan-
tum world (as quantum chaos) (Sect. 2.3). From a methodological point of view,
nonlinearity is a necessary but not sufficient condition of chaos. It also allows the
emergence of order. In the framework of modern physics, the emergence of the
structural variety in the universe from elementary particles to stars and living organ-
isms is modeled by phase transitions and symmetry breaking of equilibrium states
(Sect. 2.4). In the present state of superstring theories and M-theory, we do not have
a complete theory explaining the evolution of matter with its increasing complexity.
The presocratic wondering that “there is something and not nothing” is not dis-
solved. But the theory of complex systems opens new avenues of pattern formation
in the nano world with applications for self-constructing materials in materials sci-
ence (Sect. 2.5). From a methodological point of view, the question arises, how can
we detect attractors of pattern formation in an immense variety of measured data?
Time series analysis, fractals, and multifractals are challenges in the current theory
of complex systems. The chapter closes with a survey of the degrees of complexity
of different attractors in nonlinear dynamics (Sect. 2.6).
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2.1 Aristotle’s Cosmos and the Logos of Heraclitus

Since the presocratics it has been a fundamental problem of natural philosophy to
discover how order arises from complex, irregular, and chaotic states of matter [2.1].
What the presocratic philosophers did was to take the complexity of natural phe-
nomena as it is experienced back to “first origins” (&p x ), “principles” or a certain
order. Let us look at some examples. Thales of Miletus (625-545 B.C.), who is
said to have proven the first geometric theorems, is also the first philosopher of na-
ture to believe that only material primary causes could be the original causes of all
things. Thales assumes water, or the wet, as the first cause. His argument points to
the observation that nourishment and the seeds of all beings are wet and the natural
substratum for wet things is water.

Anaximander (610-545 B.C.), who is characterized as Thales’ student and
companion, extends Thales’ philosophy of nature. Why should water be the first
cause of all this? It is only one of many forms of matter that exist in uninterrupted
tensions and opposites: heat versus cold and wetness versus dryness ... Therefore
Anaximander assumes that the “origin and first cause of the existing things” is a
“boundlessly indeterminable” original matter (&7 epoov) out of which the opposed
forms of matter have arisen. Accordingly we have to imagine the “boundlessly in-
determinable” as the primordial state in which matter was boundless, without op-
posites, and, therefore, everywhere of the same character. Consequently, it was an
initial state of complete homogeneity and symmetry. The condition of symmetry is
followed by symmetry breaking, from which the world arises with all its observable
opposites and tensions:

The everlasting generative matter split apart in the creation of our world and out of
it a sphere of flame grew around the air surrounding the earth like the bark around a tree;
then, when it tore apart and bunched up into definite circles, the sun, moon and stars took its
place. [2.2]

The ensuing states of matter that Anaximander described in his cosmogeny
were therefore by no means chaotic; instead they were determined by new partial
orders. The fascination with Anaximander increases when one reads his early ideas
of biological evolution. He assumes that the first human beings were born from sea
animals whose young are quickly able to sustain themselves, as he had observed in
the case of certain kinds of sharks. A century later searches were already being made
for fossils of sea animals as evidence of the rise of humans from the sea. The third
famous Milesian philosopher of nature is Anaximenes (7525 B.C.), who is thought
to have been a companion of Anaximander. He regards change as the effect of the
external forces of condensation and rarefaction. In his view, every form of matter
can serve as basic. He chooses air (&€ pa):

And rarefied, it became fire; condensed, wind; then cloud; further, by still stronger con-
densation, water; then earth; then stones; but everything else originated by these. He, too,
assumed eternal motion as the origin of transformation. — What contracts and condenses mat-
ter, he said is (the) cold; by contrast, what thins and slackens is (the) warm. [2.3]



2.1 Aristotle’s Cosmos and the Logos of Heraclitus 19

Thus Anaximenes assumes external forces by which the various states of matter
were produced out of a common original matter and were transformed into each
other.

Heraclitus of Ephesus (ca. 500 B.C.), “the dark one”, as he was often called,
is of towering significance for our theme. His language is indeed esoteric, more
phrophetic than soberly scientific, and full of penetrating metaphors. He took over
from Anaximander the doctrine of struggle and the tension of opposites in nature.
The original matter, the source of everything, is itself change and therefore is iden-
tified with fire:

The ray of lightning (i.e., fire) guides the All. — This world order which is the same for
all was created neither by one of the gods nor by one of the humans, but it was always, and is,
and will be eternally living fire, glimmering and extinguishing according to measures. [2.4]

Heraclitus elaborated further on how all states of matter can be understood as
distinguishable forms of the original matter, fire. In our time the physicist Werner
Heisenberg declared:

At this point we can interpose that in a certain way modern physics comes extraordinar-
ily close to the teaching of Heraclitus. If one substitutes the word “fire”, one can view Her-
aclitus’ pronouncements almost word for word as an expression of our modern conception.
Energy is indeed the material of which all the elementary particles, all atoms and therefore
all things in general are made, and at the same time energy is also that which is moved ...
Energy can be transformed into movement, heat, light and tension. Energy can be regarded
as the cause of all changes in the world. [2.5]

To be sure, the material world consists of opposite conditions and tendencies
which, nevertheless, are held in unity by hidden harmony: “What is opposite strives
toward union, out of the diverse there arises the most beautiful harmony (& ppovia),
and the struggle makes everything come about in this way.” [2.6] The hidden har-
mony of opposites is thus Heraclitus’ cosmic law, which he called “logos” (Aoy o¢).

What happens when the struggle of opposites comes to an end? According
to Heraclitus, then the world comes to a final state of absolute equilibrium. Par-
menides of Elea (ca. 500 B.C.) described this state of matter, in which there are no
longer changes and motions in (empty) spaces. Matter is then distributed everywhere
equally (homogeneously) and without any preferred direction for possible motion
(isotropically). It is noteworthy that infinity is thought to be imperfection and there-
fore a finite distribution of matter is assumed. In this way Parmenides arrived at
the image of a world that represents a solid, finite, uniform material sphere without
time, motion or change. The Eleatic philosophy of unchanging being was, indeed,
intended as a critique of the Heraclitean philosophy of constant change, which is put
aside as mere illusion of the senses. And the later historical impact of the Eleatic
philosophy in Plato appears in his critique of the deceptive changes that take place in
sensory perception in contrast to the true world of unchangeable being of the Ideas.
But from the point of view of philosophy of nature, the world Parmenides described
was not necessarily opposite to the teaching of Heraclitus; in his cosmogeny it can
be understood entirely as a singular end state of the highest symmetry.
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After water, air, and fire were designated as original elements, it was easy to
conceive of them as raw materials of the world. Empedocles (492—430 B.C.) took
that step and added earth as the fourth element to fire, water, and air. These elements
are free to mix and bind in varying proportions, and to dissolve and separate. What,
now, according to Empedocles, were the enduring principles behind the constant
changes and movements of nature? First there were the four elements, which he
thought arose from nature and chance (t0 ), not from any conscious intention.
Changes were caused by reciprocal effects among these elements, that is, mixing
and separation: “I shall proclaim to you another thing: there is no birth with any
of the material things, neither there is an ending in ruinous death. There is only
one thing: mixture and exchange of what is mixed” [2.7]. Two basic energies were
responsible for these reciprocal effects among the elements; he called them “love”
(¢periar) for attraction and “hatred” (veikoc) for repulsion. There is an analogy in
the yin—yang dualism of Chinese philosophy. Empedocles taught a constant process
of transformation, i.e., combination and separation of the elements, in which the
elements were preserved. He did not imagine these transformation processes to be at
all mechanical (as the later atomists did), but rather physiological, in that he carried
over processes of metabolism in organisms to inanimate nature.

In his medical theories, equilibrium is understood to be a genuinely propor-
tional relationship. Thus, health means a particular balance between the opposite
components and illness arises as soon as one of them gets the upper hand. If we
think of modern bacteriology with its understanding of the antibodies in the human
body, then this view of Empedocles proves to be surprisingly apt.

Anaxagoras (499-426 B.C.) advocated what was in many regards a refinement
of his predecessors’ teaching. Like Empedocles he developed a mixing theory of
matter. But he replaced Empedocles’ four elements with an unlimited number of
substances that were composed of seed particles (o7 épuata) or equal-sized parti-
cles (opotopepij (o wuata)). They were unlimited in their number and smallness,
i.e., matter was assumed to be infinitely divisible. The idea of a granulated contin-
uum comes forceably to mind. Anaxagoras also tried to explain mixtures of colors in
this way, when he said that snow is, to a certain degree, black, although the white-
ness predominates. Everything was contained in each thing, and there were only
predominances in the mixing relationships.

More distinctly than some of his predecessors, Anaxagoras tried in his phi-
losophy of nature to give physical explanations for the celestial appearances and
motions that were described only kinematically in the mathematical astronomy of
the Greeks. So in his cosmology he proceeded from a singular initial state: a homo-
geneous mixture of matter. An immaterial original power, which Anaxagoras called
“spirit” (vov¢), set this mixture into a whirling motion which brought about a sepa-
ration of the various things depending on the speed of each of them. Earth clumped
together in the middle of the vortex, while heavier pieces of stone were hurled out-
ward and formed the stars. Their light was explained by the glow of their masses,
which was attributed to their fast speed. Anaxagoras’ vortex theory appears again
in modern times with Descartes, and then in more refined form in the Kant-Laplace
theory of the mechanical origin of the planetary system.
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In modern natural sciences atomism has proved to be an extremely success-
ful research program. In the history of philosophy the atomic theory of Democri-
tus is often presented as a consequence of Heraclitus’ philosophy of change and
Parmenides’ principle of unchanching being. The Democritean distinction between
the “full” and the “empty”, the smallest indestructable atoms (&topo¢) and empty
space, corresponded to Parmenides’ distinction between “being” and “not-being”.
Heraclitean complexity and change was derived from distinguishable reconfigura-
tions of the atoms. Empty space was supposed to be homogeneous and isotropic.

Atoms differ in their form (op¢n), their position (Féotc), and their diverse
configurations (t@&t¢) in material combinations. The configuration of the atoms
for the purpose of designation is compared with the sequence of letters in words,
which has led to the presumption that atomistic ideas were developed only in cul-
tures with phonetic alphabets. In fact, in China, where there was no phonetic alpha-
bet but instead ideographic characters, the particle idea was unknown and a field-
and-wave conception of the natural processes prevailed. The Democritean atoms
move according to necessity (&vaykn) in a constant whirl (§ivog or Sivn). Here,
by contrast with later Aristotelian notions, motion means only change of location
in empty space. All phenomena, all becoming and perishing, result from combina-
tion (o Uy kptotg) and separation (Stakptotg). Aggregate states of matter, such as
gaseous, liquid, or solid, are explained by the atoms’ differing densities and poten-
tialities for motion. In view of today’s crystallography, the Democritean idea that
even atoms in solid bodies carry out oscillations in place is noteworthy.

Plato, in his dialogue Timaeus, introduced the first mathematical model of atom-
ism. The changes, mixings, and separations on earth of which the pre-socratics had
spoken were to be traced to unchangeable mathematical regularities. In Empedocles’
four elements, namely fire, air, water and earth, a classification was at hand that was
immediately accessible to experience. Theatetus made a complete determination of
all the regular bodies that are possible in 3-dimensional (Euclidian) space: tetrahe-
dra, octahedra, icosahedra, cubes and dodecahedra. Therefore what Plato proposed
to do amounted to interpreting Empedocles’ four elements with these geometric
building blocks.

Plato consciously avoided the Democritean designation “atom” for his ele-
ments, since they can be decomposed into separate plan figures. Thus tetrahedra,
octahedra and icosahedra have faces consisting of equilateral triangles which, when
they are bisected, yield right-angled triangles with sidelenghts 1, 2 and +/3, while the
square faces of cubes, when bisected, yield right-angled triangles with side lengths
1,1 and V2.A consequence is that “fluids” like water, air and fire can combine with
each other whereas a solid made of earth building blocks, because of its different
triangles, can only be converted into another solid.

Then Plato developed a kind of elementary particle physics in which the specific
elements are transformed into each other and “reciprocal effects” can take place with
the “elementary particles” (i.e., the corresponding component triangles) according
to geometric laws. Transformation of the elements results, for example, from their
being cut open along the edges. Plato made this possibility dependent on the acute-
ness of the angles of the solid. The more acute plane angles can cleave polyhedra
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which have a regular angle. Thus, in sequence, every tetrahedron, every cube, every
octahedron, every icosahedron can, in each case, cleave the following polyhedron,
but not the previous one or polyhedra of the same sort. The conclusion for the phi-
losophy of nature is that fire can separate or dissolve all elements; earth, only air
and water; air, only water.

Plato stated categorically that the elements are not all of the same size. For
instance, in order to be able to explain that fire can cause water in solid form to
change into water in liquid form, he maintained that in the liquid state the elements
are smaller and more mobile, while in the solid state they are larger.

The escape from fire is called cooling and the state after eradicating fire, so-
lidification. Fire and air can pass through the gaps in earth building blocks (cubes)
without hindrance, without dissolution of the earth elements. Condensed air cannot
be dissolved without destroying the element. Condensed air, namely, means an ac-
cumulation of octahedra under the best surface configurations possible. Even fire
would not be able to penetrate into the necessarily remaining gaps, whose plane an-
gles are smaller than those of all elements, without destroying the octahedra. In the
case of water, only fire is capable of breaking the strongest condensation. The gaps
between adjacent icosahedra form plane angles which do not admit penetration by
either earth or air. Only fire (tetrahedra) can penetrate and dissolve the combination.

Indeed, Plato developed an internally consistent mathematical model by which
various aggregate states and reciprocal effects of substances could be explained if
one accepted his — albeit more or less arbitrary — initial conditions for interpretation
of the elements. Naturally, a number of the consequences for the philosophy of na-
ture are strange and ridiculous. And yet we have here the first attempt in the history
of sciences to explain matter and its states by simple geometric laws. A high point
up to now in this developement is modern elementary particle physics. Heisenberg
made this observation about it: “... The elementary particles have the form Plato
ascribed to them because it is the mathematically most beautiful and simplest form.
Therefore the ultimate root of phenomena is not matter, but instead mathematical
law, symmetry, mathematical form” [2.8]. In Antiquity and the Middle Ages Plato’s
mathematical atomism gained little support. The basic problem, for his successors,
in his geometric theory of matter was already evident in the dialogue Timaeus. How
are the functions of living organisms to be explained? The suggestion that certain
corporeal forms are as they are in order to fulfill certain physiological purposes (e.g.,
the funnel shape of the gullet for assimilation of food) cannot, in any case, be derived
from the theory of regular solids. In addition, the idea of explaining the changing
and pulsating processes of life on the basis of the “rigid” and “dead” figures of ge-
ometry must have seemed thoroughly unnatural, speculative, and farfetched to the
contemporaries of that time. Contemporaries of our time still have difficulties un-
derstanding the detour that today’s scientific explanations take through complicated
and abstract mathematical theories. This is where the Aristotelian philosophy of
nature begins.

Aristotle formulated his concept of a balance or “equilibrium” in nature chiefly
on the basis of the ways in which living organisms such as plants and animals func-
tion. The process and courses of life are known to us from everyday experience.
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What is more obvious than to compare and explain the rest of the world, which is
unknown and strange, with the familiar? According to Aristotle, the task of science
is to explain the principles and functions of nature’s complexity and changes. This
was a criticism of those philosophers of nature who identified their principles with
individual substances. The individual plant or the individual animal was not simply
the sum of its material building blocks. Aristotle called the general, which made the
individual being what it was, form (gi§oc). What was shaped by form was called
matter (OAn). Yet form and matter did not exist in themselves, but were instead prin-
ciples of nature derived by abstraction. Therefore Matter was also characterized as
the potential (§Uvauig) for being formed. Not until matter is formed does reality
(évépyewa) come into being.

The real living creatures that we observe undergo constant change. Here Her-
aclitus was right and Parmenides, for whom changes were illusory, was wrong.
Changes are real. Yet according to Aristotle, Heraclitus was wrong in identifying
changes with a particular substance (fire). Aristotle explained those changes by
a third principle along with matter and form, namely, the lack of form (o tépnotc),
which was to be nullified by an adequate change. The young plant and the child
are small, weak and immature. They grow because in accordance with their natural
tendencies (form), they were meant to become big, strong, and mature. Therefore
it was determined that movement (k{vnotg) in general was change, transition from
possibility to reality, “actualization of potential” (as people in the Middle Ages were
to say). The task of physics was to investigate movement in nature in this compre-
hensive sense. Nature (pUotg) — in contrast to a work of art produced by man,
or a technical tool — was understood to be everything that carried the principle of
movement within itself. If the Aristotelian designations make us think, first of all,
of the life processes of plants, animals, and people as they present themselves to
us in everyday experience, these designations seem to us to be thoroughly plausible
and apposite. Nature is not a stone quarry from which one can break loose indi-
vidual pieces at will. Nature itself was imagined to be a rational organism whose
movements were both necessary and purposeful. Aristotle distinguished two sorts of
movement, namely quantitative change by increase or decrease in magnitude, qual-
itative change by alteration of characteristics, and spatial change by change of lo-
cation. Aristotle designated four aspects of causality as the causes of changes. Why
does a plant grow? It grows (1) because its material components make growth pos-
sible (causa materialis), (2) because its physiological functions determine growth
(causa formalis), (3) because external circumstances (nutrients in the earth, water,
sunlight, etc.) impel growth (causa efficiens), (4) because, in accordance with its
final purpose, it is meant to ripen out into the perfect form (causa finalis).

Aristotle then employed these same principles, which are obviously derived
from the life cycles of plants, animals, and humans, to explain matter in the narrower
sense, that is, what was later called the inorganic part of nature. Here too Aristotle
proceeded from immediate experience. What we meet with is not so and so many
elements as isolated building blocks of nature. Instead we experience characteris-
tics such as warmth and cold, wetness and dryness. Combination of these yield the
following pairs of characteristics which determine the elements: warm—dry (fire),
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warm-wet (air), cold—wet (water), cold—dry (earth). Warm—cold and wet—dry are
excluded as simultaneous conditions. Therefore there are only four elements. This
derivation was later criticized as arbitrary, but it shows the Aristotelian method,
namely to proceed not from abstract mathematical models, but instead directly from
experience. Fire, air, water, and earth are contained more or less, more intensively or
less intensively, in real bodies and they are involved in constant transformation. Ac-
cording to Aristotle, eliminating the coldness of water by means of warmth results
in air, and eliminating the wetness of the air results in fire. The changes of nature
are interpreted as maturational and transformational processes.

How could such a predominantly organic philosophy of nature deliver physical
explanations for mathematical natural science, insofar as it was extant at that time?
There were only two elementary spatial motions — those that proceeded in a straight
line and those that proceeded in a circle. Therefore there had to be certain elements
to which these elementary motions come naturally. The motions of the other bodies
were determined by these elements and their natural motions, depending on which
motion predominated with each of them. The most perfect motion was circular mo-
tion. It alone could go on without end, which was why it had to be assigned to
the imperishable element. This was the fifth element (quintessence), which made
up the unchangeable celestial spheres and the stars. The continual changes within
the earthly (sublunar) world were to be set off from the unchangeable regularity of
the celestial (superlunar) world. These transformational processes were associated
with the four elements to which straight-line motion is peculiar, and specifically
the straight-line motion toward the center of the world, toward which the heavy
elements earth and water strive as their natural locus, and the straight-line motion
toward the periphery of the lunar sphere, toward which the light elements strive
upwards as their natural locus.

Among the natural motions there was also free fall. But Aristotle did not
start out from isolated motions in idealized experimental situations as Galilei did.
A falling body is observed in its complex environment without abstraction of fric-
tional (“dissipating”) forces. During its free fall a body is sinking in the medium of
air like a stone in water. Thus, Aristotle imagines free fall as a hydrodynamical pro-
cess and not as an acceleration in vacuum. He assumes a constant speed of falling v,
which was directly proportional to the weight p of the body and inversely to the
density d of the medium (e.g., air), thus in modern notation v ~ p/d. This equation
of proportionality at the same time provided Aristotle with an argument against the
void of atomists. In a vacuum with the density d = 0, all bodies would have to fall
infinitely fast, which obviously did not happen.

A typical example for a (humanly) forced motion is throwing, which, again,
is regarded in its complex environment of “dissipative” forces. According to Ari-
stotle a nonliving body can move only as a result of a constant external cause of
motion. Think of a cart on a bumpy road in Greece, which comes to a stop when
the donkey (or the slave) stops pulling or pushing. But why does a stone keep mov-
ing when the hand throwing it lets go? According to Aristotle, there could be no
action at a distance in empty space. Therefore, said Aristotle, the thrower imparts
a movement to the continuous medium of the stone’s surroundings, and this pro-
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pels the stone farther. For the velocity v of a pulling or pushing motion, Aristotle
asserted the proportionality v ~ K /p with the applied force K. Of course, these are
not mathematical equations relating measured quantities, but instead proportionali-
ties of qualitative determinants, which first emerged in this algebraic notation in the
peripatetic physics of the Middle Ages. Thus in Aristotelian dynamics, in contrast
to Galilean—Newtonian dynamics, every (straight-line) change of position required
a cause of motion (force). The medieval theory of impetus altered Aristotelian dy-
namics by attributing the cause of motion to an “impetus” within the thrown body,
rather than to transmission by an external medium.

How did peripatetic dynamics explain the cosmic laws of heaven? The central
symmetry of the cosmological model was based on the (unforced) circular motion
of the spheres, which was considered natural for the “celestial” element, and on the
theory of the natural locus in the centerpoint of the cosmos. Ptolemy was still to
account for the position of the earth on the basis of the isotropy of the model and
by a kind of syllogism of sufficient reason. Given complete equivalence of all direc-
tions, there was no reason why the earth should move in one direction or another.

It was Aristotle’s teacher Plato who presented a centrally-symmetrical model
with the earth in the center; around it the whole sky turns to the right around the
celestial axis, which goes through the earth. Sun, Moon, and planets turn to the left
on spheres that have different distances from the earth in the sequence Moon, Mer-
cury, Venus, Sun, Mars, Jupiter, and Saturn. The outermost shell carries the sphere
of the fixed stars. According to the Platonic—Pythagorean conception, the rotational
periods are related to each other by whole numbers. There is a common multiple of
all rotational times, at the end of which all the planets are exactly in the same place
again. The motion of each one produces a sound, so that the tunes of the movements
of the spheres jointly form a harmony of the spheres in the sense of a well-ordered
musical scale. Geometry, arithmetic, and aesthetic symmetries of the cosmos ring
through the universe in a harmonious music of the spheres. Soon this emphatically
symmetrical model of the cosmos was called into question by exact observations.
A difficult problem was presented by the irregular planetary orbits, especially their
retrograde movements. The irregularities in the sky were disquieting, especially for
philosophers in the Pythagorean tradition, who were accustomed to comprehend-
ing the heaven — in contrast to the earth — as the realm of eternal symmetry and
harmony.

Plato posed a famous question in order to reduce the complexity of motions in
the heaven: by means of what regular, ordered circular movements could the phe-
nomena of the planets be “saved”, i.e., kinematically explained? An exact model of
the observed curves was achieved when Apollonius of Perga (ca. 210 B.C.) recom-
mended that the common center of the spheres be given up. But the spherical form
of planetary movement and the equal speed of the spheres were to be retained. Ac-
cording to this proposal, the planets rotate uniformly on spheres (epicycles), whose
imagined centers move uniformly on great circles (deferents) around the centerpoint
(the earth). By appropriately proportioning the speed and diameter of the two cir-
cular motions and by varying their directions of motion, it was possible to produce
an unanticipated potential for curves, and these found partial application in astron-
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omy from Kepler to Ptolemy also. The spherical symmetry of the individual models
was therefore preserved, even if they no longer had a common center, but various
different centers.

The following examples of the epicycle-deferent technique show what a mul-
tiplicity of apparent forms of motion can be created by appropriately combining
uniform circular motions [2.9]. This makes the Platonic philosophy more compre-
hensible in its view that behind the changes in phenomena there are the eternal and
unchangeable forms. In Fig. 2.1 an elliptical orbit is produced by combining a def-
erent motion and an epicycle motion. Figure 2.2 shows a closed cycloid. In this way,
changing distances between planets and the earth can also be represented. In princi-
ple, even angular figures can be produced. When the epicycle diameter approaches
the deferent diameter, an exact straight line results. Even regular triangles and rect-
angles can be produced by means of appropriate combinations of an epicycle motion
and a deferent motion, if one changes the speed of the east-west motion of a planet
that is moving on an epicycle with a west-east motion.
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Fig. 2.1. Deferent-epicycle model of an el- Fig. 2.2. Deferent-epicycle model of a cy-
lipse cloid

If one lets the celestial body circle on a second epicycle whose midpoint moves
on the first epicycle, one can produce a multiplicity of elliptical orbits, reflection-
symmetric curves, periodic curves, and also non-periodic and asymmetric curves.
From a purely mathematical and kinetic standpoint, Plato’s problem of “saving
the phenomena” is completely solved. In principle, therefore, Plato’s reduction of
complexity in the sense of uniform circular motion (modified by Apollonius and
Ptolemy) could influence the sciences right up until today. In any case, it cannot
be disproved by phenomenological description of curved paths. In particular, from
this standpoint not only the reversed roles of the earth and the sun in the so-called
Copernican revolution, but also Kepler’s change from circular to elliptical orbits,
seem secondary, since both initiatives can be traced back to a combination of cir-
cular motions in accordance with the epicyle-deferent technique. This poses two
questions: (1) How is the assertion mathematically substantiated? (2) If it is sub-
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stantiated, why does it not play a role in modern scientific applications of curve
theory? In order to answer the first question exactly and generally, it is necessary
to go back to the modern structure of analytical geometry. But historically, Coper-
nicus and Kepler also knew how the curves that they used (e.g., ellipses) could be
reconstructed by the epicycle-deferent technique.

First of all, one must remember that points on the plane can be represented by complex
numbers z = x + iy = rel? with the corresponding Cartesian coordinates (x, y) or polar co-
ordinates (7 0). The addition of complex numbers then corresponds to vector addition [2.10].
A uniform circular motion with center ¢, radius ¢ and period T can be represented by

2= e+ el @TITIH) 4 oo @it/ T)tia @0

with time ¢ and initial phase « for the point. Now assume a point A that is moving according
to the equation z = f(¢). Let a point B move relative to A on a circle with radius g, period 7,
and initial phase «. The motion of B is then described by the equation

Then it is possible to describe the movement of a point B on an epicycle whose center moves
around A. The addition of a new epicycle is described mathematically by the addition of a new
term ge(27 #t/T)+i (o the expression for z. Clearly, ge27 it/T)+ie — peie Qmit/T) — geikt
with a complex number a # 0 and k as a real number. In the case of a retrograde motion, T
or k, respectively, is taken to be negative. A motion that results from the superposition of n
epicycles is then expressed by the equation

z=ajeft 4 gyekt 4 getknt (2.3)

Let us proceed first from a periodic motion on the plane z = f(¢) (e.g., with period 2r).
Mathematically, we assume f continuous with limited variation. Then for f there exists a rep-
resentation with a uniformly converging series

o0 .
fo= Y cue™ (2.4)
n=-—00

Therefore it can easily be proved mathematically that f(7) can be approximated by means of
sums

N
SN = Y cne™ (2.5)
n=—N
with any desired degree of exactitude for increasing N.
Function f is indeed uniformly convergent. Therefore for arbitrarily small ¢ > 0 one can
choose an index N so that for all N > Ny and all ¢, it holds true that

If(n — Syl <& (2.6)

Astronomically, this result means that a constant-motion path (of limited variation) can
be approximated to any desired degree of exactitude by means of finite superpositions of the
epicycle motions.

Is it clear that so far we have used only superpositions with epicycle periods +2, £,
:I:%n, ﬂ:%ﬂ’, :i:%n, .... In particular, therefore, only commensurable superpositions were em-
ployed, which can be expressed by means of integer number ratios in accordance with
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the Pythagorean tradition. But in fact non-periodic curves can also be approximated by
means of epicyclical superpositions if we permit incommensurable periods. This result is
mathematically supported by a proposition by Harald Bohr about almost-periodic functions
(1932) [2.11]. The second question, why the epicycle-deferent technique for the explanation
of the paths of motion was abandoned, cannot be answered by pointing to the observation
of missing curves. Mathematically, observed curves — however exotic — could still be ex-
plained in principle (under the above, very broad mathematical frame conditions) by means
of the Platonic—Apollonian use of this ancient strategy for reducing the complexity of mo-
tions.

The decisive question in this case, however, is which motions the planets “re-
ally” carry out, whether they are, in fact, combined, uniform, and unforced circular
motions that seem to us on earth to be elliptical paths, or whether they are in fact
compelled to follow elliptical paths by forces. This determination cannot be made
geometrically and kinematically, but only dynamically, i.e., by means of a corre-
sponding theory of forces, hence by means of physics.

Besides the epicycle-deferent-technique, Ptolemy employed imaginary balance
points relative to which uniform circular motions were assumed that, relative to the
earth as center, appear non-uniform. This technique proved to be useful for cal-
culation, but constituted a violation of the central symmetry and therefore had the
effect of an ad hoc assumption that was not very convincing from the standpoint of
philosophy of nature, a criticism later made especially by Copernicus. The reasons
that Copernicus exchanged the earth for the position of the sun were predominantly
kinematic. Namely, a certain kinematic simplification of the description could be
achieved in that way with a greater symmetry. Thus in the heliocentric model the
retrograde planetary motions could be interpreted as effects of the annual motion of
the earth, which according to Copernicus moved more slowly than the outer planets
Mars, Jupiter and Saturn and faster than the inner planets Mercury and Venus. But
Copernicus remained thoroughly conservative as a philosopher of nature since he
considered greater simplicity in the sense of “natural” circular motion to be a sign
of proximity to reality.

With Johannes Kepler, the first great mathematician of modern astronomy, the
belief in simplicity was likewise unbroken. In his Mysterium cosmographicum of
1596, Kepler began by trying once more to base distance in the planetary system on
the regular solids, alternatingly inscribed and circumscribed by spheres. The planets
Saturn, Jupiter, Mars, Earth, Venus, and Mercury correspond to six spheres fitted
inside each other and separated in this sequence by a cube, a tetrahedron, a do-
decahedron, an icosahedra, and an octahedron. Kepler’s speculations could not, of
course, be extended to accommodate the discovery of Uranus, Neptune, and Pluto
in later centuries.

Yet Kepler was already too much of a natural scientist to lose himself for long in
Platonic speculations. His Astronomia Nova of 1609 is a unique document for study-
ing the step-by-step dissolution of the old Platonic concept of simplicity under the
constant pressure of the results of precise measurement. In contrast to Copernicus,
Kepler supplemented his kinematic investigations with original dynamic arguments.
Here the sun is no longer regarded as being physically functionless at a kinemati-
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cally eccentric point, as with Copernicus, but is seen as the dynamic cause for the
motion of planets. The new task was to determine these forces mathematically as
well. Kepler’s dynamic interpretation with magnetic fields was only a (false) initial
venture. Success came later, in the Newtonian theory of gravity.

The simplicity of the celestial (“superlunar’) world and the complexity of the
earthly (“sublunar”) are also popular themes in other cultures. Let us cast a glance
at the Taoist philosophy of nature of ancient China. To be sure, it is edged with myth
and less logically argued than the Greek philosophy of nature, and it also invokes
more intuition and empathy; nevertheless, there are parallels between the two. Tao-
ism describes nature as a great organism governed by cyclical motions and rhythms,
such as the life cycles of the generations, dynasties, and individuals from birth to
death; the food chains consisting of plant, animal, and human; the alternation of the
seasons; day and night; the rising and setting of the stars; etc. Everything is related
to everything else. Rhythms follow upon each other like waves in the water. What
forces are the ultimate cause of this pattern in nature? As with Empedocles, in Tao-
ism two opposite forces are distinguished, namely yin and yang, whose rhythmic
increase and decrease govern the world. In the book Kuei Ku Tzu (4th century B.C.)
it says: “Yang returns cyclically to its origin. Yin reaches its maximum and makes
way for yang.” [2.12] While according to Aristotle all individuals carry their natural
purposes and movements in themselves, the Tao of yin and yang determines the in-
ternal rhythms of individuals, and those energies always return to their origins. The
cyclical rotational model of the Tao provides explanations for making calendars in
astronomy, for water cycles in meteorology, for the food chain, and for the circula-
tory system in physiology. It draws its great persuasiveness from the rhythms of life
in nature, which people experience every day and can apply in orienting themselves
to life. Nature appears as a goal-directed organism.

It is noteworthy that the Chinese philosophy of nature had no notions of atom-
istic particles and therefore did not develop mathematical mechanics in the sense
of the occidental Renaissance. Instead, at its center there was a harmonious model
of nature with rhythmic waves and fields that cause everything to be connected to
everything. The preference for questions of acoustics and the early preoccupation
with magnetic and electrostatic effects is understandable given this philosophy of
nature. The view of the Taoists bear more resemblance to the philosophy of nature
of the Stoics than to Aristotle. Here too the discussion centers on effects that spread
out in a great continuum like waves on water. This continuum is the Stoics’ pneuma,
whose tensions and vibrations are said to determine the various states of nature. The
multifarious forms of nature are only transitory patterns that are formed by varied
tensions of the pneuma. Modern thinking leaps, of course, to the patterns of standing
water waves or sound waves or the patterns of magnetic fields. Nevertheless, neither
the Stoic nor the Taoist heuristic background led to the development of a physi-
cal theory of acoustic or magnetic fields comparable to Galilean mechanics with
its background of an atomistic philosophy of nature. The emergence of order from
complex, irregular, and chaotic states of matter was only qualitatively described,
using different models for earth and for heaven.
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2.2 Newton’s and Einstein’s Universe and the Demon of Laplace

Since antiquity, astronomers and philosophers have believed that the celestial mo-
tions are governed by simple geometric laws. Simplicity was not only understood as
the demand for an economical methodology, but, still for Copernicus, as a feature of
truth. Thus, the astronomical doctrine from Plato to Copernicus proclaimed: reduce
the apparent complexity of the celestial system to the simple scheme of some true
motions! The simple building blocks were given by the basic concepts of Euclidean
geometry: circle (compass) and straight line (ruler). In contrast to the simplicity of
the superlunar world, the sublunar earthly world seemed to be really complex. Thus
its dynamics could not be mathematized at least in the framework of Euclidean ge-
ometry. That was the reason why Plato’s mathematical atomism was soon forgotten,
and Aristotle’s belief in a complex qualitative dynamics of nature which cannot be
mathematized in principle overshadowed scientific research until the Renaissance.

Early physicists like Galileo overcame the boundary of a superlunar (“simple”)
and sublunar (“complex”) world. They were convinced that the dynamics of nature
is governed by the same simple mathematical laws in heaven and on earth. Techni-
cally, Galileo simplified the dynamics of, e.g., free fall by selecting some observable
and measurable quantities and neglecting other constraints. In short, he made a sim-
plified mathematical model of an idealized experimental situation. Of course, even
the astronomical models of antiquity only considered a few parameters, such as an-
gular velocity and position of the planets, and neglected the complex diversity of
other constraints (e.g., density, mass, friction of the celestial spheres). From a mod-
ern point of view, even the presocratic philosophers suggested qualitative “models”
of a complex dynamics in nature by selecting some dominant “parameters” (e.g.,
water, fire, air, and earth).

In general, a system which may be physical, biological, or social, is observed
in different states. The strategies for making models of observed phenomena may
have changed since ancient times, but the target of the modeling activity is in some
sense the same: the dynamics of the changing states in the observed systems. Ob-
viously, the real states cannot be described by only a few observable parameters,
but it is assumed that they can. In the case of early astronomy and mechanics, this
was the first step of mathematical idealization and led to a geometric model for the
set of idealized states which is nowadays called the state space of the model. The
presocratic “models” of nature differ from modern ones not only because of their
mathematization and measurability, but also because the relationship between the
actual states of a real system and the points of the geometric model was believed
to be ontologically necessary, while in modern systems it is a fiction maintained for
the sake of theory, prediction, and so on.

The simplest scheme is the one-parameter model. Early medical experience
with mammals shows that the state of health or illness can be correlated with the pa-
rameter of temperature. Many animals correlate observable features with the emo-
tional states of other animals: the ear attitude of a dog corresponds to its state of fear,
while its fang exposure is a qualitative “parameter” for its degree of rage. A com-
bination of both attitudes represents a more adequate characterization of the dog’s
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emotional state. The state of a planet in medieval cosmology can be defined by its
angular velocity and localization. States of other systems may need more than two
features (e.g., temperature, blood pressure, and pulse rate for the healthy state of
a mammal).

In any case, if these parameters are numerical, then the corresponding state
spaces can be represented by geometric spaces. Thus the values of two numerical
parameters may be represented by a single point in a two-dimensional state space
visualized by the plane of Euclidean geometry. Changes in the actual state of the
system are observed and may be represented as a curve in the state space. If each
point of this curve carries a label recording the time of observation, then we get
a trajectory of the model. Sometimes it is useful to introduce another coordinate of
time and to represent the changing parameters of states by its time series. This kind
of representation is called the graph of a trajectory.

The dynamical concepts of the Middle Ages included both kinds of represen-
tation. In the 1350s, the Parisian scholastic Nicole Oresme introduced the concept
of graphical representations or geometrical configurations of intensities of qualities.
Oresme mainly discussed the case of a linear quality whose extension is measured
by an interval or line segment of space or time (“longitude of the quality”). He
proposed to measure the intensity of the quality at each point of the interval by
a perpendicular ordinate (“latitude of the quality”) at that point. The quantity of
a linear quality is visualized by the configuration of both parameters. In the case
of a uniformly accelerated motion during a time interval corresponding to the lon-
gitude AB in Fig. 2.3, the latitude at each point P of AB is an ordinate PQ whose
length is the velocity at the corresponding instant [2.13]. The straight line DC of
the configuration is the graph of a trajectory representing the state of velocity. The
so-called Merton Rule is immediately derived with a geometrical verification of
Fig. 2.3: namely, it follows from the formula for the area of the trapezoid in Fig. 2.3
that the total distance traveled is s = %(vo + ve)t.

Perhaps this interpretation was found on the basis of regarding this area as made
up of very many vertical segments (“indivisibles”), each representing a velocity con-
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Fig. 2.3. Oresme’s coordinates of a linear quality



32 2 Complex Systems and the Evolution of Matter

tinued for a very short (“infinitesimal”) time. The Merton Rule shows that even in
the very early beginning of state space approaches a good geometric representation
is not only a useful visualization, but gives new insight into the concepts of dynam-
ics. Of course, Oresme and the Merton scholars at first only wanted to mathematize
an Aristotelean-like physics of qualities. But their work was widely disseminated in
Europe and led to the work of Galileo. In his famous Discorsi (1638), he introduced
the basic concepts of modern mechanics and proceeded to the well-known distance
formula s = % gt* for uniformly accelerated motion from rest (free fall) with a proof
and an accompanying geometric diagram that are similar to Oresme’s ideas.

With Newton and Leibniz, something new was added to the theory of dynam-
ical systems. The calculus allows one to compute the instantaneous velocity as the
derivative of a velocity function and to visualize it as the tangent vector of the cor-
responding curve (Fig. 2.4a). The velocity vector field has become one of the basic
concepts in dynamical systems theory (Fig. 2.4b). Trajectories determine velocity
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Fig. 2.4a—c. Geometric representation of a dynamical system: (a) Instantaneous velocity as
tangent vector, (b) velocity vector field, (¢) phase portrait
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vectors by the differentiation procedure of the calculus. Conversely, the integration
procedure of the calculus allows one to determine trajectories from velocity vectors.

The strategy of modeling a dynamical system begins with the choice of a state
space in which observations can be represented by several parameters. Continuing
the observations leads to many trajectories within the state space. In the sense of
Newton’s and Leibniz’ calculus, a velocity vector may be derived at any point of
these curves, in order to describe their inherent dynamical tendency at any point.
A velocity vector field is defined by prescribing a velocity vector at each point in
the state space. The state space filled with trajectories is called the “phase portrait”
of the dynamical system (Fig. 2.4c). This basic concept of dynamical system theory
was originally introduced by Henri Poincaré. The velocity vector field was derived
from the phase portrait by differentiation [2.14].

Of course, the velocity vector field visualizes the dynamics of the particular
system being modeled. Actually, extensive observations over a long period of time
are necessary to reveal the dynamical tendencies of the system which is represented
by the corresponding velocity vector field. The modeling procedure is only adequate
if we assume that (a) the velocity vector of an observed trajectory is at each point
exactly the same as the vector specified by the dynamical system and (b) the vector
field of the model is smooth. The word “smooth” means intuitively that there are no
jumps and no sharp corners. In the case of a one-dimensional state space, the vector
field is specified by a graph in the plane. Thus, the graph is smooth if it is continuous
and its derivative is continuous as well. Historically, condition (b) corresponds to
Leibniz’ famous principle of continuity playing a dominating role in the framework
of classical physics.

In general, we summarize the modeling process as follows. A dynamical model
is prepared for some experimental situation. We may imagine the laboratory de-
vices of physicists like Galileo and Newton or biologists observing some organisms
or even sociologists working on some social groups. The dynamical model consists
of the state space and a vector field. The state space is a geometrical space (e.g.,
the Euclidean plane or in general a topological manifold) of the experimental sit-
uation. The vector field represents the habitual tendencies of the changing states
and is called the dynamics of the model. How can we find the trajectories, thus the
behaviour of the system? Technically, this problem is solved by creating the phase
portrait of the system. That means we have to construct the trajectories of the dy-
namical system. Given a state space and a (“smooth”) vector field, a curve in the
state space is a trajectory of the dynamical system if its velocity vector agrees with
the vector field in the sense of tangent vectors (Fig. 2.5). The point corresponding to
time zero is called the initial state of the trajectory. These trajectories are supposed
to describe the behaviour of systems as observed over an interval of time. Moreover,
physicists have been ambitious enough to aim at making predictions indefinitily far
into the future and to calculate the course of nature as if it were a huge clock.

Let us have a short glance at Newton’s cosmos, which seemed to be a successful
application of dynamical system theory evolving by the mathematical tools of New-
ton, Leibniz, Euler, etc. Newton gave three laws governing the behavior of material
bodies. The first law (“lex inertiae”) says that a body continues to move uniformly
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Fig. 2.5. Trajectory of a dynamical system in a vector field

in a straight line if no force acts on it. If a force does act on it, then its mass times its
acceleration is equal to that force (second law). The basic framework is completed
by a third law: to every action there is always opposed an equal reaction. The New-
tonian cosmos consists of particles moving around in a space which obeys the laws
of Euclidean geometry. The accelerations of these particles are determined by the
forces acting upon them. The force on each particle is obtained by adding together
all the forces of other particles in the sense of the vector addition law. If the force
is a gravitational one, then it acts attractively between two bodies and its strength is
proportional to the product of the two masses and the inverse square of the distance
between them. But, of course, there may be other types of forces.

Actually, Newton’s second law was understood as a universal scheme for all
forces of nature in the macrocosmos and microcosmos. With a specific law of force
the Newtonian scheme translates into a precise system of dynamical equations. If
the positions, velocities, and masses of the various particles are known at one time,
then their positions and velocities are mathematically determined for all later times.
In short, the state of a body in Newton’s cosmos is specified by the two parameters of
position and velocity. The Newtonian trajectories are determined by the dynamical
equations of motion. If the initial states were known, then the behavior of Newton’s
cosmos seemed to be determined completely. This form of determinism had a great
influence on the philosophy of the 18th and 19th centuries. Newton’s dynamics was
understood as basic science for modeling nature. But, of course, the mechanistic
models are valid only in the limiting case of vanishing friction and are never fully
achieved experimentally. Nature is so complex that physicists preferred to observe
unnatural (“artificial”’) limiting cases. Later on we shall see that the physicists’ belief
in simple laws completely neglected the complexity of initial conditions and con-
straints and, thus, created an illusory model of a deterministic as well as computable
nature.
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According to Newton, there is only one real world of matter in one absolute
framework of space-time, in which we may choose relative reference systems. This
means that for any two events it is regarded as objectively decidable whether they are
simultaneous and also whether they occur at the same place. Mathematically, New-
ton’s absolute space is represented by a 3-dimensional Euclidean space the metric
of which is measurable by means of rulers, while time is taken to be a 1-dimensional
Euclidean space with coordinate  which is measured by standard clocks.

Because of its absolute simultaneity the Newtonian 4-dimensional space-time
is stratified by maximal subsets of simultaneous events. Each stratum is a possible 3-
dimensional hyperplane r = #(e) of an event e which separates its causal future, with
strata t > t(e), from its causal past, with strata t < #(e). In Fig. 2.6a the third spatial
coordinate is neglected, in order to visualize each stratum as 2-dimensional plane.
This causal structure includes the Newtonian assumption that there are arbitrarily
fast signals by means of instantaneous action at a distance [2.15].

Newton’s relative spaces are made precise by Lange as inertial systems desig-
nating reference systems for a force-free body moving in a straight line with a steady
velocity. It is not stipulated which of the many possible inertial systems is used.
Particular transformations (Galilean transformations) from one inertial system to
another give the corresponding coordinates. Mechanical laws are preserved (invari-
ant) with respect to these transformations. As every Galilean transformation has ten
continuous parameters (one parameter for time and three times three parameters for
rotation, steady velocity and translation), we can derive ten laws of conservation.
Thus, e.g., the Galilean invariance of the time coordinate implicates the law of con-
servation of energy. Reference systems which are not inertial systems have typical
effects. A disk rotating relative to the fixed stars has radial forces which cannot be
eliminated by Galilean transformations. In short, in Newtonian space-time, uniform
motions are considered as absolutely preferred over accelerated motions. Its struc-
ture is defined by the group of Galilean transformations.
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At the beginning of this century, Einstein proved that Newton’s model of space-
time is restricted to mechanical motions with slow speed relative to the speed c of
light. The constancy of ¢ independently of any moving reference system is a fact of
Maxwell’s electrodynamics. Thus, Newton’s addition law of velocities and Galilean
invariance cannot hold true in electrodynamics. In his theory of special relativity
(1905), Einstein assumed the constancy of the speed of light and the invariance
of physical laws with respect to all inertial systems (“principle of special rela-
tivity””) and derived a common framework of space-time for electrodynamics and
mechanics. Einstein’s special relativistic space-time was modeled by Minkowski’s
four-dimensional geometry. The four-dimensionality should not surprise us, because
Newton’s space-time has three (Cartesian) space and one time coordinate, too.

For the sake of simplicity, the units are chosen in a way that the speed of light
is equal to one, and, thus, the units of length and time can be exchanged. Each point
in this space-time represents an event, which means a point in space at a single mo-
ment. As a particle persists in time, it is not represented by a point, but by a line
which is called the world-line of the particle. In order to visualize the Minkowskian
model, we depict a space-time system with a standard time coordinate, measured in
the vertical direction, and two space coordinates, measured in the horizontal direc-
tion (Fig. 2.6b) [2.16].

Uniformly moving particles are represented by straight lines, accelerated parti-
cles by curved lines. As particles of light (photons) uniformly travel with the funda-
mental speed c, their world-lines are straight lines at an angle of 45° to the vertical.
They form a light cone centred at the common origin 0. The system of light cones
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Fig. 2.6b,c. Minkowskian space-time cone in special relativity (b), and the twin brother para-
dox of special relativity: the Minkowskian distance RQ is greater than the length of RS and
SQ together (c)
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at all space-time points is regarded as the Minkowskian model of relativistic space-
time.

Whereas the world-line of a photon is always along the light cone at each point,
the world-line of any accelerated or uniformly moved material particle with a speed
slower than ¢ must always be inside the light cone at each point. As material particles
or photons cannot travel faster than light, only the world-lines along and inside the
light cone are determined physically. An event is called later than O, if it is in the
future cone above 0; it is called earlier than 0, if it is in the past cone below 0. Thus,
the light cones determine the causal structure of relativistic space-time.

An essential difference between the Minkowskian model and ordinary Euclid-
ian representations is the fact that the length of world-lines is interpreted as the time
measured by physical clocks. Thus, time measurement becomes path-dependent,
contrary to Newton’s assumption of an absolute time. The so-called “twin para-
dox” visualizes this effect dramatically. In Fig. 2.6¢, one twin brother remains on
the earth R moving uniformly and very slowly, while the other makes a journey to
a nearby star S at great speed, nearly that of light. Minkowskian geometry forecasts
that the travelling brother is still young upon his return at Q, while the stay-at-home
brother is an old man. This is not science fiction, of course, but a consequence of the
time-measuring length of Minkowskian world-lines: the Minkowskian distance RQ
is greater than the length of the distance RS and SQ together, contrary to the usual
Euclidean interpretation. Today, these effects are experimentally well confirmed for
elementary particles at high speeds near c.

In the framework of Minkowskian space-time, the invariance of physical laws
with respect to particular inertial systems is realized by the Lorentz transformation.
Newtonian space-time with Galilean invariance remains a limiting case for refer-
ence systems like celestial motions of planets or earthy motions of billiard balls
with slow speed relative to the constant c. In this sense, Einstein’s space-time is the
culmination of classical physics rather than a revolutionary break with Newton.

An important concept which was first introduced into classical physics by Leib-
niz is energy, consisting of the kinetic energy T and the potential energy U of a sys-
tem. The mechanical work done on a point mass which is displaced from a position
1 to a position 2 corresponds to the difference between the kinetic energy at position
1 and that of position 2. If this mechanical work is independent of the path followed
from 1 to 2, then the corresponding force field is called conservative. Frictional
forces are not conservative. In one dimension all forces must be conservative, since
there is a unique path from one point to another point in a straight line, ignoring
friction. The total energy T + U is constant in a conservative field of force.

An important application of Newton’s mechanics is the harmonic oscillator,
such as the small amplitude pendulum, or the weight oscillating up and down on
a spring. The harmonic oscillator appears as a model through all parts of physics and
even chemistry and biology. For example, remember electromagnetic light waves,
where the electric and magnetic field energies oscillate. Harmonic oscillations are
also well known in technology, for example as oscillating electrical currents in a coil
and a condenser, with friction corresponding to the electrical resistance. In the phi-
losophy of the 18th and 19th centuries the pendulum was a symbol of the mech-
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anistic universe which seemed to be completely determined and calculable by the
Newtonian equations of motion.

Thus, the pendulum may be considered as a classical example of the dynam-
ical modeling procedure. This model assumes that the rod is very light, but rigid.
The hinge at the top is perfectly frictionless. The weight at the lower end is heavy,
but very small. The force of gravity always pulls it straight down. In Fig. 2.7a, the
pendulum is drawn in a two-dimensional Euclidean plane with the angle « of ele-
vation, the force F' of gravity, the pull F cos « along the rod, and the force F sin«
turning it. In order to visualize the dynamical behavior of the pendulum we have to
develop a dynamical model with a state space and a phase portrait. The state of the
pendulum is fully determined by the angular variable « (with @ = 0 and @ = 2x
denoting the same angle) and the angular velocity v. Thus, we get a two-dimensional
state space which can be visualized by the circular cylinder in Fig. 2.7b. The ver-
tical circle in the center of this cylinder denotes the states of zero angular velocity
v = 0. The straight line from front to back, at the bottom of the cylinder, is the axis
of zero inclination with @ = 0, where the pendulum is lowest. At the origin with
(v, v) = (0, 0), the pendulum is at rest at its lowest position [2.17].

As there is no friction and no air in the way, moving the pendulum a little to
the left causes it to swing back and forth indefinitely. The full trajectory in the state
space, corresponding to this oscillating motion, is a cycle, or closed loop. In the next
case, the pendulum is balanced at the top, in unstable equilibrium. A tiny touch on
the left causes it to fall to the right and pick up speed. The angular velocity reaches
its maximum when the pendulum passes the bottom of the swing. On the way back
up to the top again, the pendulum slows down. Then the pendulum balances at the
top again. But when the pendulum at the beginning of its rotation shoved hard to
the right, then its rate of angular velocity is rather large. Moving back up again, it

F=cosa«x

‘/F=sina

a)

Fig. 2.7a,b. Dynamical system (pendulum) (a) with 2-dimensional state space (circular cylin-
der) (b) [2.17]
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slows down, but not enough to come to rest at the top. Thus, the pendulum rotates
clockwise indefinitely. The corresponding trajectory in the cylindrical state space
is a cycle. Unlike the slow oscillation, the fast cycle goes around the cylinder. Per-
forming many experiments would reveal the phase portrait of this dynamical model
(Fig. 2.8a). There are two equilibrium points. At the top, there is a saddle point. At
the origin, there is a vortex point which is not a limit point of the nearby trajectories.
The phase portrait is easier to see when the cylinder is cut open along the straight
line from front to back through the saddle point at the top (Fig. 2.8b).

If the system is not closed and the effects of friction are included as in physical
reality, then the equilibrium point at the origin is no longer a vortex point (Fig. 2.8c).
It has become a spiraling type of point attractor. As any motion of the pendulum
will come to rest because of friction, any trajectory representing a slow motion of
the pendulum near the bottom approaches this limit point asymptotically.

In two dimensions or more, other types of trajectories and limit sets may occur.
For example, a cycle may be the asymptotic limit set for a trajectory (Fig. 2.9), or in
a three-dimensional system a torus or even other more or less strange limit sets may
occur.
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Fig. 2.8a,b. Phase portrait of the pendulum on the cylindrical state space (a) and cut open
into a plane (b). (¢) Phase portrait of the pendulum with friction
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Fig. 2.9. Cycle as asymptotic limit set for a trajectory
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Limit sets enable us to model a system’s evolution to its equilibrium states.
The key concepts are limit sets called “attractors” [2.18]. Mathematically, a limit
set (limit point, cycle, torus, etc.) is called an attractor if the set of all trajectories
approaching this limit set asymptotically is open. Roughly speaking, attractors re-
ceive most of the trajectories in the neighborhood of the limit set. Of all limit sets
which represent possible dynamical equilibria of the system, the attractors are the
most prominent. In the case of a limit point, an attractor represents a static equi-
librium, while a limit cycle as attractor designates the periodic equilibrium of an
oscillation. Vibrations on a pendulum, spring, or musical instrument are only a few
of the mechanical applications. As we will see later on, periodic equilibria of oscil-
lating dynamical systems play an important role in physics, chemistry, biology, and
social sciences.

In a typical phase portrait, there will be more than one attractor. The phase por-
trait will be devided into their different regions of approaching trajectories. The di-
viding boundaries or regions are called separatrices. In Fig. 2.10, there are two point
attractors with their two open sets of approaching trajectories and their separatrix.

In reality, a dynamical system cannot be considered as isolated from other dy-
namical systems. In order to get more adequate models, we will study two cou-
pled systems. A simple example is provided by coupling two clocks. Historically,
this particular system was observed by Christian Huygens in the 17th century. He
noticed that two clocks hanging on the same wall tend to synchronize. This phe-
nomenon is caused by nonlinear coupling through the elasticity of the wall. Indeed,
any two dynamical systems can be combined into a single system by constructing
the Cartesian product of the two corresponding state spaces. A small perturbation of
this combined system is called a coupling of the two systems. The geometric model
for the states of this combined system is formed as follows [2.19].

Each clock A and B is a kind of oscillator. For the sake of visualizing the asymp-
totic behaviour of both oscillators, the transient behavior is ignored and the two-
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dimensional state model of the Euclidean plane with a limit cycle around the origin
for the two parameters of displacement and velocity is replaced by the limit cycle
alone. A state of oscillator A is specified by an angle « corresponding to its phase
(Fig. 2.11a), a state of oscillator B by an angle g (Fig. 2.11b).
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Fig. 2.10. Phase portrait with two point attractors, two open sets of approaching trajectories,
and a separatrix

Fig. 2.11a,b. Two clocks as oscillators with two cycles as their corresponding state spaces
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In order to construct the state space for the combined system of both oscillators,
we consider the limit cycle of clock A in a horizontal plane. Each point of this
horizontal cycle represents a phase state of A. We consider such a point as the center
of the limit cycle of clock B erected perpendicular to the horizontal plane of clock A
(Fig. 2.11c¢). Each point of this vertical cycle represents a phase state of B. The pair
(a, B) of phases represents the state of the combined system [2.20].

If oscillator A is stuck at phase « and oscillator B moves through a full cycle,
then the combined phase point traverses the vertical cycle in Fig. 2.11c. If oscillator
A also moves through a full cycle, then the vertical cycle in Fig. 2.11c is pushed
around the horizontal cycle, sweeping out the torus in Fig. 2.11d. Thus, the state
space for the combined system of two oscillators is the torus, which is the Cartesian
product of the two cycles. Of course, the actual state model for two oscillators is
four-dimensional and not only two-dimensional as in our reduced figures.

In order to get the phase portrait of the dynamical behavior for the combined
system, we have to study the vector field and the trajectories on the state space of
the torus. Let us first assume that each clock is totally indifferent to the state of the
other. In this case, the clocks are uncoupled. The trajectory of a point on the torus
corresponding to the time phase of each clock winds around the torus. If the rate of
each clock is constant, then on the flat rectangular model of the torus, the trajectory
is a straight line (Fig. 2.12). The slope of this line is the ratio of the rate of clock B
to the rate of clock A. If the two clocks run at the same rates, the ratio is one. Telling
the same time means that both clocks have identical phases. Then the trajectory on
the flat torus is the diagonal line in Fig. 2.12a.

A slight change in the system results in a slight change in the ratio of the rates
or frequencies of the oscillators. Then the trajectory on the torus changes from a pe-
riodic trajectory to an almost periodic trajectory or to a periodic trajectory winding
many times around, instead of just once (Fig. 2.12b). If two oscillators are cou-
pled (for instance by Huygens’ shared wall for the two clocks), then a small vector
field must be added to the dynamical model representing the uncoupled system. It is
a noteworthy theorem of geometric analysis that the braid of trajectories on the torus
is structurally stable in the sense that a small perturbation does not result in a signif-
icant change in the phase portrait. Experimentally, this result was already confirmed
by Huygens’ observation of the synchronizing phenomenon of two clocks on the
same wall.

Fig. 2.11c,d. State space for the combined system of two oscillators (torus as Cartesian prod-
uct of two cycles)
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Fig. 2.12a,b. Phase portraits for the combined system of two oscillators with identical
phase (a) and a slight change (b)

Oscillators are a central dynamical paradigm for the modeling procedure of na-
ture. They are by no means restricted to mechanical applications. In the 19th century,
Hermann von Helmholtz invented an electrical vibrator and Lord Rayleigh studied
coupled systems of vacuum tube oscillators used in the first radio transmitters. In
this century, it was van der Pol who used the further development of radio frequency
electronics in understanding coupled oscillators.

In the Newtonian universe, coupled oscillators provide examples of many-body
problems. What can in general be said about the mechanics of point mass systems
with several moving point masses, exerting forces upon each other? Systems with
two point masses have simple and exact solutions. In a two-body problem with two
point masses with isotropic central forces, the (twelve) unknowns are determined
by the (ten) laws of conserved quantities and Newton’s laws of motion for the two
particles. The problem of two-point masses can be successfully reduced to the al-
ready solved problem of a single point mass by considering Newton’s law of motion
for the difference vector r and reduced mass = mymy/(m1 + my) of both point
masses mj and my. Historically, Galileo assumed that the earth moves around the
sun, which is at rest. Thus he reduced the celestial motions to the simple case of
a two-body problem. As we all know, the sun is actually moving around the com-
bined centre of mass of the sun—earth system, which lies inside the surface of the
sun. But this assumption is still inaccurate, of course, since many planets are si-
multaneously moving around the sun and all of them are exerting forces upon each
other.

Another example of such a many-body-problem is given by a triple collision
of three billiard balls. Provided that the balls collide only in pairs, and no triple
or higher-order collisions occur, then the situation is reduced to two-body prob-
lems. The outcome depends in a continuous way on the initial state. Sufficiently
tiny changes in the initial state lead only to small changes in the outcome. If three
balls come together at once, the resulting behavior depends critically upon which
balls come together first. Thus, the outcome depends discontinuously on the in-
put, contrary to Leibniz’ principle of continuity, which he used basically to criticize
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Descartes’ inquiries into percussion. In the Newtonian universe, many-body prob-
lems of billiard balls and planets can be described in deterministic models in the
sense that physical behavior is mathematically completely determined for all times
in the future and past by the positions and velocities of the balls or planets. But the
models may be non-computable in practice and in the long run. In the case of plan-
etary theory, numerical simulations on computers for many millions of years can
produce very large errors, because the initial positions and velocities are not known
exactly. A very tiny change in the initial data may rapidly give rise to an enormous
change in the outcome. Such instabilities in behavior are typical for many-body
problems. Even in a fully deterministic world, the assumption of a Laplacean de-
mon which can calculate the Newtonian universe in the long run will eventually be
exposed as an illusory fiction.

2.3 Hamiltonian Systems and the Chaos of Heaven
and the Quantum World

In the 18th and 19th centuries, Newtonian mechanics seemed to reveal an eternal
order of nature. From a modern point of view, Newtonian systems are only a use-
ful kind of dynamical system for modeling reality. In order to specify the initial
state of a Newtonian system, the positions and the velocities of all its particles must
be known. Around the middle of the 19th century, a very elegant and efficient for-
malism was introduced by the mathematician William Hamilton [2.21]. His fruitful
idea was to characterize a conservative system by a so-called Hamiltonian func-
tion H which is the expression for the total energy (= sum of kinetic and potential
energy) of the system in terms of all the position and momentum variables. While
the velocity of a particle is simply the rate of change of its position with respect
to time, its momentum is its velocity multiplied by its mass. Newtonian systems
are described with Newton’s second law of motion in terms of accelerations, which
are rates of change of rates of change of position. Thus, mathematically, they are
defined by second-order equations. In the Hamiltonian formulation, there are two
sets of equations. One set of equations describes how the momenta of particles are
changing with time, and the other describes how the positions are changing with
time. Obviously, Hamiltonian equations describe the rates of change of quantities
(i.e., position or momentum). Thus, we get a reduction of mathematical description
with first-order equations which are, of course, deterministic. For dynamical sys-
tems of n unconstrained particles with three independent directions of space, there
are 3n position coordinates and 3n momentum coordinates.

With suitable choices of the Hamiltonian function H, Hamiltonian equations
can be used to characterize any classical dynamical system, not just Newtonian sys-
tems. Even in Maxwell’s electrodynamics, Hamiltonian-like equations deliver the
rate of change with time of the electric and magnetic fields in terms of what their
values are at any given time. The only difference is that Maxwell’s equations are
field equations rather than particle equations, needing an infinite number of param-
eters to describe the state of the system, with field vectors at every single point in
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space, rather than the finite number of parameters with three coordinates of posi-
tion and three of momentum for each particle. Hamiltonian equations also hold true
for special relativity and (in somewhat modified form) for general relativity. Even,
the crucial step from classical mechanics to quantum mechanics is made by Bohr’s
correspondence principle in the framework of the Hamiltonian formalism. These
applications will be explained later on. Just now, it is sufficient to recall that Hamil-
tonian equations deliver a universal formalism for modeling dynamical systems in
physics.

The corresponding state spaces allow us to visualize the evolution of the dy-
namical systems in each “phase”. Thus they are called phase spaces. For systems
with n particles, phase spaces have 3n + 3n = 6n dimensions. A single point of
a phase space represents the entire state of a perhaps complex system with n parti-
cles. The Hamiltonian equations determine the trajectory of a phase point in a phase
space. Globally, they describe the rates of change at every phase point, and there-
fore define a vector field on the phase space, determining the whole dynamics of the
corresponding system.

It is a well-known fact from empirical applications that states of dynami-
cal models cannot be measured with arbitrary exactness. The measured values of
a quantity may differ by tiny intervals which are caused by the measuring appara-
tus, constraints of the environment, and so on. The corresponding phase points are
concentrated in some small regions of a neighborhood. Now, the crucial question
arises if trajectories starting with neighboring initial states are locally stable in the
sense that they have neighboring final states. In Fig. 2.13a, a phase state region Ry
of initial states of time zero is dragged along by the dynamics of the vector field to
aregion R; at later time ¢ (of course, the actual large number of coordinates must be
neglected in such a visualization of a phase space) [2.22].

Fig. 2.13. (a) A phase state region R at time 0 is dragged along by a Hamiltonian dynamics
to a region R; at later time ¢ [2.22]. (b) According to Liouville’s theorem, the volume of an
initial phase state region is conserved under a Hamiltonian dynamics, although its shape may
be distorted, stretched, and spread outwards [2.22]
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In this case, similiar initial states lead to similiar final states. This assumption
is nothing else than a classical principle of causality in the language of Hamilto-
nian dynamics: similar causes lead to similiar effects. Historically, philosophers and
physicists from Leibniz to Maxwell believed in this causal principle, which seemed
to secure the stability of the measuring process and the possibility of forecasts de-
spite an appreciable interval of inaccuracy.

It is noteworthy that the representation in the Hamiltonian formalism allows
a general statement about the causality of classical dynamical systems. Due to a fa-
mous theorem of the mathematician Liouville, the volume of any region of the
phase space must remain constant under any Hamiltonian dynamics, and thus for
any conservative dynamical system. Consequently, the size of the initial region Ry
in Fig. 2.13a cannot grow by any Hamiltonian dynamics if we understand “size” in
the right manner as phase-space volume. But its conservation does not exclude that
the shape of the initial region is distorted and stretched out to great distances in the
phase space (Fig. 2.13b) [2.22].

We may imagine a drop of ink spreading through a large volume of water in
a container. That possible spreading effect in phase spaces means that the local sta-
bility of trajectories is by no means secured by Liouville’s theorem. A very tiny
change in the initial data may still give rise to a large change in the outcome. Many-
body problems of celestial mechanics and billiard balls remain non-computable in
the long run, although their dynamics are deterministic. Nevertheless, Liouville’s
theorem implies some general consequences concerning the final regions which can
be displayed by Hamiltonian dynamics, and thus by conservative dynamical sys-
tems. Remember the phase portrait Fig. 2.8c of a pendulum with friction (which is
not a conservative system) with a different equilibrium point at the origin. While
the non-conservative system has a spiraling type of point attractor (Fig. 2.14a),
the conservative system has a vortex point (Fig. 2.14b) which is not an attrac-
tor [2.23].

In Fig. 2.14a, trajectories are attracted to a field point, and the volume of an in-
tial area shrinks. In Fig. 2.14b, the trajectories rotate around a vortex point, and the
volume of an initial area is conserved. Thus, due to Liouville’s theorem, we can gen-
erally conclude that in any conservative system attracting points must be excluded.

Fig. 2.14a,b. Point attractor of a non-conservative system without conservation (a), vortex
point of a conservative system with conservation (b)
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The effect of shrinking initial areas can easily be visualized for the trajectories of
limit cycles, too. So, limit cycles as attractors are also not possible in conservative
systems for the same mathematical (a priori) reasons.

These results are derived a priori by a far-reaching mathematical theorem of
Hamiltonian systems. We must be aware that conservative physical systems like
planetary systems, pendula, free fall, etc., are only some of the empirical appli-
cations of Hamiltonian systems. Hamiltonian systems are defined by a particular
kind of mathematical equation (Hamiltonian equations). Features of Hamiltonian
systems are derived from the mathematical theory of the corresponding equations.
Consequently, modeling reality by Hamiltonian systems means that we can epistem-
ically forecast some a priori features, e.g., that no static equilibrium of a limit point
attractor and no periodic equilibrium of a limit cycle attractor can be expected.

Philosophically, this point of view obviously conforms to Kant’s epistemology
in some modified sense. If we assume the mathematical framework of some dy-
namical systems, then, of course, we can assert some a priori statements about our
empirical models, independently of their empirical applications in several sciences.
But Kant’s epistemology and the dynamical system approach differ in the follow-
ing sense: not only is there one categorial framework (e.g., Newtonian systems),
but there are many kinds of systems modeling reality with more or less success.
So, it will not be physicalist or reductionist to apply conservative systems even in
cognitive and economical science, later on.

A further a priori result of Hamiltonian (conservative) systems says that there
are irregular and chaotic trajectories. In the 18th and 19th centuries, physicists
and philosophers were convinced that nature is determined by Newtonian- or
Hamiltonian-like equations of motion, and thus future and past states of the universe
can be calculated at least in principle if the initial states of present events are well
known. Philosophically, this belief was visualized by Laplace’s demon, which like
a huge computer without physical limitations can store and calculate all necessary
states. Mathematically, the belief in Laplace’s demon must presume that systems in
classical mechanics are integrable, and, thus are solvable. In 1892, Poincaré was al-
ready aware that the non-integrable three-body problem of classical mechanics can
lead to completely chaotic trajectories [2.24]. About sixty years later, Kolmogorov
(1954), Arnold (1963) and Moser (1967) proved with their famous KAM theorem
that motion in the phase space of classical mechanics is neither completely regular
nor completely irregular, but that the type of trajectory depends sensitively on the
chosen initial conditions [2.25].

As celestial mechanics is an empirically well confirmed dynamical model of
a Hamiltonian system, the KAM theorem refutes some traditional opinions about
the “superlunar” world. Heaven is not a world of eternal regularity, either in the
sense of Aristotle’s cosmos or in the sense of Laplace’s demon. Obviously, it is not
the seat of the Gods. Nevertheless, it is not completely chaotic. Heaven, as far as
recognized by Hamiltonian systems, is more or less regular and irregular. It seems
to have more similarity with our human everyday life than our forefathers believed.
This may be a motivation for writers to be curious about Hamiltonian systems. But
now let us see some mathematical facts.
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One of the simplest examples of an integrable system is a harmonic oscilla-
tor. Practically, the equations of motion of any integrable system with n degrees
of freedom are the same as those of a set of n uncoupled harmonic oscillators. The
corresponding phase space has 2n dimensions with n position coordinates and n mo-
mentum coordinates. For a harmonic oscillator with n = 1 we get a circle, and for
two harmonic oscillators with n = 2 a torus (compare Fig. 2.11d). Thus, the exis-
tence of n integrals of motion confines the trajectories in the 2n-dimensional phase
space of an integrable system to an n-dimensional manifold which has the topology
of an n-torus. For an integrable system with two degrees of freedom and a four-
dimensional phase space, the trajectories can be visualized on a torus. Closed orbits
of trajectories occur only if the frequency ratios of the two corresponding oscillators
are rational (Fig. 2.15). For irrational frequency ratios, the orbit of a trajectory never
repeats itself, but approaches every point on the torus infinitesimally closely [2.26].

A nonintegrable system of celestial mechanics was studied by Hénon and
Heiles in 1964. The dynamical model consists of an integrable pair of harmonic
oscillators coupled by nonintegrable cubic terms of coordinates. If the initial state
of the model with two position coordinates g1, g2 and two momentum coordinates
P1, p2 is known, then its total energy E is determined by the corresponding Hamil-
tonian function H depending on these position and momentum coordinates. The
trajectories of the system move in the four-dimensional phase space on a three-
dimensional hyperplane which is defined by H(q1, g2, p1, p2) = E.

The values of E can be used to study the coexistence of regular and irregular
motions which was forecast by the KAM theorem. For small values of E, the dy-
namical system has regular behavior, while for large values it becomes chaotic. In
order to visualize this changing behavior, we consider the intersections of the trajec-
tories with the two-dimensional plane of coordinates g and ¢> (Poincaré maps). For
E= 2—14 (Fig. 2.16a) and E = % (Fig. 2.16b), the Poincaré maps show the intersec-
tions of somewhat deformed tori which signal regular motion. Above a critical value
of E= é, most, but not all, tori are destroyed, and spots of irregular points appear to

be random. For E = % (Fig. 2.16c¢), the Poincaré map illustrates a state of transition

with the coexistence of regular and irregular motions. For E = % (Fig. 2.16d), the
motion seems to be almost completely irregular and chaotic [2.27].

Fig. 2.15. Integrable system with two degrees of freedom on a torus and a closed orbit of
a trajectory
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Fig. 2.16a—d. Poincaré maps for the Hénon-Heiles system [2.27]

An empirical application is given in the following three-body problem of celes-
tial mechanics, which is nonintegrable. Consider the motion of Jupiter perturbing

the motion of an asteroid around the sun (Fig. 2.17).

Jupiter and the asteroid are interpreted as two oscillators with certain frequen-
cies. According to the KAM theorem, stable and unstable motions of the asteroid

can be distinguished, depending on the frequency ratio.

In general, we must be aware that stable as well as unstable trajectories are
mathematically well defined. Consequently, even nonintegrable many-body prob-
lems describe deterministic models of the world. Metaphorically, we may say that
the God of Leibniz and Newton would have no difficulty in forecasting regular and
irregular trajectories sub specie aeternitatis and does not need to calculate their de-
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Jupiter

Asteroid

Fig. 2.17. Perturbation of an asteroid’s motion by Jupiter

velopment step by step. The observed chaotic behavior is neither due to a large num-
ber of degrees of freedom ( a celestial three-body problem has rather few degrees
of freedom) nor to the uncertainty of human knowledge. The irregularity is caused
by the nonlinearity of Hamiltonian equations which let initially close trajectories
separate exponentially fast in a bounded region of phase. As their initial conditions
can only be measured with finite accuracy, and errors increase exponentially fast,
the long-term behavior of these systems cannot be predicted. Mathematically, ini-
tial conditions are characterized by real values which may be irrational numbers
with infinite sequences of digits. Thus, computer-assisted calculations will drive the
errors faster and faster with improved measurement of more and more digits.

The macrocosmos of celestial mechanics, the world of asteroids, planets, stars,
and galaxies, is determined by the coexistence of regular and irregular behavior.
Deterministic chaos in the heavens is not everywhere, but locally possible, and thus
may cause cosmic catastrophes which cannot be excluded in principle. What about
the microcosmos of quantum mechanics, the quantum world of photons, electrons,
atoms, and molecules? Is there chaos in the quantum world? In order to answer this
question, we first must remind the reader of some basic concepts of Hamiltonian
systems and phase spaces corresponding to objects in the quantum world [2.28].

In 1900, Max Planck proposed that electromagnetic oscillations occur only in
quanta, whose energy E bears the definite relation E = hv to the frequency v de-
pending on the constant /# (“Planck’s quantum”). Besides Einstein’s huge constant ¢
of light’s speed, Planck’s tiny constant of quanta is the second fundamental constant
of nature, according to 20th century physics. Planck’s relation was experimentally
supported by, e.g., the radiation of black bodies. In 1923, Louis de Broglie proposed
that even the particles of matter should sometimes behave as waves. De Broglie’s
wave-frequency v for a particle of mass m satisfies the Planck relation. Combined
with Einstein’s famous theorem E = mc? of Special Relativity (“mass is a particu-
lar state of energy and can therefore be transformed into energy by radiation”), we
get a relation telling us that v is related to m by hv = mc?. It follows that in the
quantum world, fields oscillating with some frequency can occur only in discrete
units of mass, depending on Planck’s and Einstein’s constants. Obviously, in the
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quantum world, phenomena can be considered as waves as well as particles. This
so-called particle-wave duality was well confirmed by many experiments which re-
veal features of waves or particles for quantum systems like photons or electrons,
depending on the preparation of experimental conditions.

In 1913, Niels Bohr introduced his “planetary” model for the atom which could
explain the observed and measured discrete stable energy levels and spectral fre-
quencies with suprising accuracy. Bohr’s rules required that the angular momen-
tum of electrons in orbit about the nucleus can occur only in integer multiples of
A = h/2m. His successful, albeit somewhat ad hoc rules only delivered an ap-
proximate geometric model which must be derived from a dynamical theory of the
quantum world, corresponding to Newtonian or Hamiltonian classical mechanics
which can explain Kepler’s planetary laws. The dynamics of the quantum world was
founded by Heisenberg’s and Schrodinger’s quantum mechanics, which became the
fundamental theory of matter in 20th century physics.

The main concepts of quantum mechanics can be introduced heuristically by
analogy with corresponding concepts of Hamiltonian mechanics if some necessary
modifications depending on Planck’s constant are taken into account. This proce-
dure is called Bohr’s correspondence principle (Fig. 2.18). So, in quantum mechan-
ics, classical vectors like position or momentum must be replaced by some operators
satisfying a non-commutative (non-classical) relation depending on Planck’s con-
stant. If & disappears (A — 0), then we get the well known classical commutative
relations of, e.g., position and momentum which allow us to measure both vectors
together with arbitrary accuracy. An immediate consequence of non-commutative
relations in quantum mechanics is Heisenberg’s uncertainty principle ApAg > #/2.
If one measures the position g with precision Ag, then one disturbs the momentum
p by Ap. Thus, it is obvious that there are no trajectories or orbits in the quan-
tum world which demand precise values of both the position and the momentum of
a particle. Bohr’s popular electronic orbits are only very rough geometric visualiza-
tions [2.29].

According to Bohr’s correspondence principle, classical systems described by
Hamiltonian functions must be replaced by quantum systems (e.g., electrons or pho-

Classical Quantum
Mechanics Mechanics
Correspondence
Principle
Classical Space-Time Non-Classical
Observable (Galilean or Observable
Algebra Relativistic) Algebra

Fig. 2.18. Bohr’s correspondence principle
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tons) described by a Hamiltonian operator depending on operators (for position and
momentum) instead of vectors. In classical physics, the states of Hamiltonian sys-
tems are determined by the points of a phase space. In quantum mechanics, the
appropriate analogous concept is that of a Hilbert space. States of a quantum sys-
tem are described by vectors of a Hilbert space spanned by the eigenvectors of its
Hamiltonian operator.

In order to illustrate this mathematical remark a little bit more, let us imag-
ine a single quantum particle. Classically, a particle is determined by its position
in space and by its momentum. In quantum mechanics, every single position which
the particle might have is a single alternative combined in a collection of all possi-
ble positions with complex-number weightings. Thus, we get a complex function of
position, the so-called wave function ¥ (x). For each position x, the value of 1 (x)
denotes the amplitude for the particle to be at x. The probability of finding the parti-
cle in some small fixed-sized interval about this position is obtained by forming the
squared modulus of the amplitude |1 (x) 2. The various amplitudes for the different
possible momenta are also determined by the wave function. Thus, the Hilbert space
is a complex state space of a quantum system.

The causal dynamics of quantum states is determined by a partial differential
equation called the Schrddinger equation. While classical observables are commu-
tative with always definite values, non-classical observables of quantum systems
are non-commutative with generally no common eigenvector and consequently no
definite eigenvalues. For observables in a quantum state only statistical expectation
values can be calculated.

An essential property of Schrodinger’s quantum formalism is the superposi-
tion principle demonstrating its linearity. For example, consider two quantum sys-
tems which once interacted (e.g., a pair of photons leaving a common source in
opposite directions). Even when their physical interaction ceases at a large distance,
they remain in a common superposition of states which cannot be separated or lo-
cated. In such an entangled (pure) quantum state of superposition an observable of
the two quantum systems can only have indefinite eigenvalues. The superposition
or linearity principle of quantum mechanics delivers correlated (entangled) states
of combined systems which are highly confirmed by the EPR experiments. Philo-
sophically, the (quantum) whole is more than the sum of its parts. Non-locality is
a fundamental property of the quantum world which differs from classical Hamilto-
nian systems [2.30]. We shall return to this question in discussing the emergence of
mind-brain and artificial intelligence (Chaps. 4-6).

Bohr’s correspondence principle lets the question arise of whether the exis-
tence of chaotic motion in classical Hamiltonian systems leads to irregularities in
the corresponding quantum systems [2.31]. Our summary of basic quantum me-
chanical concepts gives some hints of changes which must be expected in passing
from a classically chaotic system to its corresponding quantum mechanical version.
In contrast to classical mechanics, quantum mechanics only allows statistical predic-
tions. Although the Schrddinger equation is linear in the sense of the superposition
principle and can be solved exactly, e.g., for a harmonic oscillator, and although
the wave function is strictly determined by the Schrodinger equation, this does not
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mean that the properties of a quantum state can be calculated exactly. We can only
calculate the density of probability to find a photon or electron at a space-time point.

Because of Heisenberg’s uncertainty principle, there are no trajectories in the
quantum world. Therefore, the determination of chaos with the exponentially fast
separation of close trajectories is not possible for quantum systems. Another aspect
of the uncertainty principle concerning chaos is noteworthy: remember a classical
phase space with chaotical regions like in Fig. 2.16. The uncertainty principle im-
plies that points in a 2n-dimensional phase space within a volume A" cannot be
distinguished. The reason is that chaotic behavior smaller than 4" cannot be repre-
sented in quantum mechanics. Only the regular behavior outside these chaotic re-
gions could be expected. In this sense, the tiny, but finite value of Planck’s constant
could suppress chaos.

In quantum mechanics, one distinguishes between time-independent stationary
and time-dependent Hamiltonian systems. For systems with stationary Hamiltonians
the Schrodinger equation can be reduced to a so-called linear eigenvalue problem
which allows one to calculate the energy levels of, e.g., a hydrogen atom. As long
as the levels are discrete, the wave function behaves regularly, and there is no chaos.
The question arises of whether there are differences between the energy spectra of
a quantum system with a regular classical limit and a quantum system whose classi-
cal version displays chaos. Time-dependent Hamiltonians are used to described the
time-evolution of, e.g., elementary particles and molecules.

According to Bohr’s correspondence principle, quantum chaos can be detected
by starting with the investigation of some classical Hamiltonian systems. They may
be integrable, almost integrable, or chaotic. Thus, the trajectories in the hyperplane
of energy may be regular, almost regular, or almost chaotic. Quantizing the Hamil-
tonian function by replacing the vectors of position and momentum with the corre-
sponding operators, we get the Hamiltonian operator of the corresponding quantum
system. In the next step, the Schrodinger equation and eigenvalue equation can be
derived. Now, we may ask if the properties of the classical system with its integrable,
almost integrable, or chaotic behavior can be transferred to the corresponding quan-
tum system. What about the spectrum, eigenfunctions, etc.? These questions are
summarized under the title “quantum chaos”. For instance, there are calculations
which show that the energy spectrum of a free quantum particle in a stadium, for
which the classical motion is chaotic, differs drastically from that of a free quantum
particle in a circle, for which the classical motion is regular.

In Fig. 2.19, the distribution of distances between neighboring levels is illus-
trated with two examples [2.32]. In Fig. 2.19a,b, a system consisting of two coupled
oscillators is shown for two different values of the coupling coefficient. While the
corresponding classical dynamics of Fig. 2.19a is regular, the classical dynamics of
Fig. 2.19b is almost chaotic.

Figure 2.19¢,d shows the example of a hydrogen atom in a uniform magnetic
field. While the corresponding classical dynamics of Fig. 2.19c is regular, the clas-
sical dynamics of Fig. 2.19d is almost chaotic. The regular and chaotic cases can be
distinguished by different distributions of energy levels (Poisson and Wigner distri-
butions) which are calculated by solving the corresponding Schrédinger equation.
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Fig. 2.19a—d. Two coupled oscillators with regular (a) and almost chaotic classical dynamics,
(b) Hydrogen atom in a uniform magnetic field with corresponding regular (c¢) and almost
chaotic classical dynamics (d) [2.32]

They are confirmed by several numerical models as well as by measurements in
laboratories with laser spectroscopy. In this sense, quantum chaos is no illusion, but
a complex structural property of the quantum world. Hamiltonian systems are a key
to discovering chaos in the macro- and microcosmos. But, of course, we must not
confuse the complex mathematical structure of deterministic chaos with the popular
idea of disorder.

2.4 Conservative and Dissipative Systems
and the Emergence of Order

Since Poincaré’s celestial mechanics (1892), it was mathematically known that some
mechanical systems whose time evolution is governed by nonlinear Hamiltonian
equations could display chaotic motion. But as long as scientists did not have suit-
able tools to deal with nonintegrable systems, deterministic chaos was considered as
a mere curiosity. During the first decades of the 20" century, many numerical proce-
dures were developed to deal with the mathematical complexity of nonlinear differ-
ential equations at least approximately. The calculating power of modern high speed
computers and refined experimental techniques have supported the recent successes
of the nonlinear complex system approach in natural and social sciences. The visu-
alizations of nonlinear models by computer-assisted techniques promote interdisci-
plinary applications with far-reaching consequences in many branches of science. In
this scientific scenario (1963), the meteorologist Edward Lorenz, a student of the fa-
mous mathematician Birkhoff [2.33], observed that a dynamical system with three
coupled first-order nonlinear differential equations can lead to completely chaotic
trajectories. Mathematically, nonlinearity is a necessary, but not sufficient condi-
tion of chaos. It is necessary condition, because linear differential equations can be
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solved by well-known mathematical procedures (Fourier transformations) and do
not lead to chaos. The system Lorenz used to model the dynamics of weather differs
from Hamiltonian systems a la Poincaré mainly by its dissipativity. Roughly speak-
ing, a dissipative system is not conservative but “open”, with an external control
parameter that can be tuned to critical values causing the transitions to chaos.

More precisely, conservative as well as dissipative systems are characterized
by nonlinear differential equations X = F(x, ) with a nonlinear function F of the
vector x = (x1,...,x4) depending on an external control parameter . While for
conservative systems, according to Liouville’s theorem, the volume elements in the
corresponding phase space change their shape but retain their volume in the course
of time, the volume elements of dissipative systems shrink as time increases (com-
pare Figs. 2.13,2.14) [2.34].

Lorenz’s discovery of a deterministic model of turbulence occurred during sim-
ulation of global weather patterns. The earth, warmed by the sun, heats the atmo-
sphere from below. Outer space, which is always cold, absorbs heat from the outer
shell of the atmosphere. The lower layer of air tries to rise, while the upper layer
tries to drop. This traffic of layers was modeled in several experiments by Bénard.
The air currents in the atmosphere can be visualized as cross-sections of the layers.
The traffic of the competing warm and cold air masses is represented by circulation
vortices, called Bénard cells. In three dimensions, a vortex may have warm air ris-
ing in a ring, and cold air descending in the center. Thus, the atmosphere consists
of a sea of three-dimensional Bénard-cells, closely packed as a hexagonal lattice.
A footprint of such a sea of atmospheric vortices can be observed in the regular
patterns of hills and valleys in deserts, snowfields, or icebergs.

In a typical Bénard experiment, a fluid layer is heated from below in a gravita-
tional field (Fig. 2.20a). The heated fluid at the bottom tries to rise, while the cold
liquid at the top tries to fall. These motions are opposed by viscous forces. For small
temperature differences AT, viscosity wins, the liquid remains at rest, and heat is
transported by uniform heat conduction. The external control parameter of the sys-
tem is the so-called Rayleigh number Ra of velocity, which is proportional to AT.
At a critical value of Ra, the state of the fluid becomes unstable, and a pattern of
stationary convection rolls develops (Fig. 2.20b) [2.35].

Beyond a greater critical value of Ra, a transition to chaotic motion is ob-
served. The complicated differential equations describing the Bénard experiment
were simplified by Lorenz to obtain the three nonlinear differential equations of his
famous model. Each differential equation describes the rate of change for a vari-
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Fig. 2.20a,b. Bénard experiment: a heated fluid layer
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able X proportional to the circulatory fluid flow velocity, a variable Y characterizing
the temperature difference between ascending and descending fluid elements, and
a variable Z proportional to the deviation of the vertical temperature profile from its
equilibrium value. From these equations, it can be derived that an arbitrary volume
element of some surface in the corresponding phase space contracts exponentially
in time. Thus, the Lorenz model is dissipative.

This can be visualized by computer-assisted calculations of the trajectories gen-
erated by the three equations of the Lorenz model. Under certain conditions, a par-
ticular region in the three-dimensional phase space is attracted by the trajectories,
making one loop to the right, then a few loops to the left, then to the right again, etc.
(Fig. 2.21) [2.36].

Fig. 2.21. Lorenz attractor

The paths of these trajectories depend very sensitively on the initial conditions.
Tiny deviations of their values may lead to paths which soon deviate from the old
one with different numbers of loops. Because of its strange image, which looks
like the two eyes of an owl, the attracting region of the Lorenz phase was called
a “strange attractor”’. Obviously, the strange attractor is chaotic. But which topolog-
ical structure do the trajectories achieve by winding more and more densely without
intersecting each other? An example illustrates the definition of so-called fractal
dimensions [2.37]:

Let M be the subset of the attractor in the n-dimensional phase space. Now, the phase
space is covered by cubes with edge length . Let N(¢) be the number of cubes which contain
a piece of the attractor M. If ¢ contracts to zero (¢ — 0), then the negative limit of the ratio
of the logarithm of N(¢) and the logarithm of ¢, i.e., D = —limIn N(¢)/In ¢, is called the
fractal dimension.
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If the attractor is a point (Fig. 2.14a), the fractal dimension is zero. For a stable
limit circle (Fig. 2.9) the fractal dimension is one. But for chaotic systems the fractal
dimension is not an integer. In general, the fractal dimension can be calculated only
numerically. For the Lorenz model, the strange attractor has the fractal dimension
D ~2.06+0.01.

Another dissipative system in which chaotic motion has been studied experi-
mentally is the Belousov—Zhabotinsky reaction. In this chemical process an organic
molecule is oxidized by bromate ions, the oxidation being catalyzed by a redox
system. The rates of change for the concentrations of the reactants in a system of
chemical reactions are again described by a system of nonlinear differential equa-
tions with a nonlinear function. The variable which signals chaotic behavior in the
Belousov—Zhabotinsky reaction is the concentration of the ions in the redox sys-
tem. Experimentally, irregular oscillations of these concentrations are observed with
a suitable combination of the reactants. The oscillations are indicated by separated
colored rings. This separation is a fine visualization of nonlinearity. Linear evo-
lutions would satisfy the superposition principle. In this case the oscillating rings
would penetrate each other in superposition.

The corresponding differential equations are autonomous, i.e., they do not
depend on time explicitly. For computer-assisted visualization it is often conve-
nient to study the flow in a dynamical system described by differential equa-
tions of motion via discrete equations which construct the intersecting points of
the trajectories with the (d — 1)-dimensional Poincaré map in the corresponding
d-dimensional phase space (compare Fig. 2.16). The constructed points are denoted
by x(1), x(2),...,x(n), x(n + 1), ... with increasing time points n. The correspond-
ing equation has the form x(n 4+ 1) = G(x(n), 1) for the successor point x(n + 1)
of x(n) = (x1(n),...,xg—1(n)). The classification of conservative and dissipative
systems can be generalized from flows to Poincaré maps. A discrete map equation
is called dissipative if it leads to a contraction of volume in phase space.

A famous example of a discrete map is the so-called logistic map with many
applications in the natural sciences as well as the social sciences. The basic con-
cepts of complex dynamical systems from nonlinearity to chaos can be illustrated
by this map with rather simple computer-assisted methods. Thus, let us have a short
glance at this example. Mathematically, the logistic map is defined by a quadratic
(nonlinear) recursive map x,,+1 = ax,(1 — x;) of the interval 0 < x < 1 onto itself
with control parameter « varying between 0 < o < 4. The function values of the
sequence xi, X, X3, ... can be calculated by a simple pocket computer. For & < 3
the sequence converges towards a fixed point (Fig. 2.22a). If « is increased beyond
a critical value o, then the values of the sequence jump periodically between two
values after a certain time of transition (Fig. 2.22b). If « is increased further beyond
a critical value «», the period length doubles. If « is increased further and further,
then the period doubles each time with a sequence of critical values ay, oy, . ... But
beyond a critical value «., the development becomes more and more irregular and
chaotic (Fig. 2.22c) [2.38].

The sequence of period doubling bifurcations which is illustrated in Fig. 2.23ais
governed by a law of constancy which was found by Grossmann and Thomae for
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Fig. 2.22a—c. Logistic curve as nonlinear recursive map with control parameter o
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the logistic map and recognized by Feigenbaum as a universal property for a whole
class of functions (the Feigenbaum-constant) [2.39]. The chaotic regime beyond o

is shown in Fig. 2.23b.
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Fig. 2.23a,b. Sequence of period doubling bifurcations (a) and chaotic regime of the logistic
map beyond a = 4X. (b)

In Fig. 2.24a—c the mappings of x,, onto x,4 are illustrated for different con-
trol parameters, in order to construct the corresponding attractors of a fixed point,
periodic oscillation between two points, and complete irregularity without any point
attractor or periodicity.
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Fig. 2.24a—c. Attractors of logistic map with differing control parameter: fixed point attrac-
tor (a), periodic oscillation (c), and chaos (b)

It is rather astonishing that a simple mathematical law like the logistic map pro-
duces a complexity of bifurcations and chaos for possible developments as shown
in Fig. 2.23a,b. A necessary, but not sufficient reason is the nonlinearity of the equa-
tion. In this context, the degrees of increasing complexity are defined by the in-
creasing bifurcations which lead to chaos as the most complex and fractal scenario.
Each bifurcation illustrates a possible branch of solution for the nonlinear equation.
Physically, they denote phase transitions from a state of equilibrium to new possible
states of equilibria. If equilibrium is understood as a state of symmetry, then phase
transition means symmetry breaking which is caused by fluctuational forces.

Mathematically, symmetry is defined by the invariance of certain laws with
respect to several transformations between the corresponding reference systems of
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an observer. In this sense the symmetry of Kepler’s laws is defined by its Galilean
transformations (compare Fig. 2.6a). The hydrodynamical laws describing a fluid
layer heated from below (Fig. 2.20a) are invariant with respect to all horizontal
translations. The equations of chemical reactions (in an infinitely extended medium)
are invariant with respect to all translations, rotations, and reflections of a reference
system used by an observer [2.40].

Nevertheless, these highly symmetric laws allow phase transitions to states
with less symmetry. For example, in the case of a Bénard experiment, the heated
fluid layer becomes unstable, and the state of stationary convection rolls develops
(Fig. 2.20b). This phase transition means symmetry breaking, because tiny fluctu-
ations cause the rolls to prefer one of two possible directions. Our examples show
that phase transition and symmetry breaking is caused by a change of external pa-
rameters and leads eventually to a new macroscopic spatio-temporal pattern of the
system and emergence of order.

Obviously, thermal fluctuations bear in themselves an uncertainty, or more pre-
cisely speaking, probabilities. A particle which is randomly pushed back or forth
(Brownian motion) can be described by a stochastic equation governing the change
of the probability distribution as a function of time. One of the most important means
to determine the probability distribution of a process is the so-called master equa-
tion. To visualize the process we may think of a particle moving in three dimensions
on a lattice.

The probability of finding the system at point x at time ¢ increases due to tran-
sitions from other points x’ to the point under consideration (“rate in”). It decreases
due to transitions leaving this point (“rate out”). As the “rate in” consists of all
transitions from initial points x’ to x, it is composed of the sum over these initial
points. Each term of the sum is given by the probability of finding the particle at
point x’, multiplied by the transition probability (per unit time) for passing from x’
to x. In an analogous way the “rate out” can be found for the outgoing transitions.
Thus, the rate of change for the probability distribution of a process is determined
by a stochastic differential equation which is defined by the difference between “rate
in” and “rate out”.

Fluctuations are caused by a huge number of randomly moving particles. An
example is a fluid with its molecules. So a bifurcation of a stochastic process can
only be determined by the change of probabilistic distribution. In Fig. 2.25 the prob-
abilistic function changes from a sharp centration at a single attractor (Fig. 2.25a) to
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Fig. 2.25a—c. Probabilistic function with single attractor (a), flat distribution (b), and two
attractors as stochastic symmetry breaking (c)
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a flat distribution (Fig. 2.25b) and finally to a distribution with two maxima at two
attractors (Fig. 2.25¢c), when the control parameter increases beyond corresponding
critical values. Figure 2.25c illustrates stochastic symmetry breaking [2.41].

In this context, complexity means that a system has a huge number of degrees of
freedom. When we manipulate a system from the outside we can change its degrees
of freedom. For example, at elevated temperature the molecules of water vapor move
freely without mutual correlation. When the temperature is lowered, a liquid drop is
formed. This macroscopic phenomenon is formed when the molecules keep a mean
distance between each other with correlated motion. At the freezing point water
is transformed into ice crystals with a fixed molecular order. Since the early days
of mankind people have been familiar with these phase transitions. The different
aggregate states may have been a reason for philosophical ideas that water is a basic
element of matter (compare Sect. 2.1).

Another example is taken from the material sciences. When a ferromagnet is
heated, it loses its magnetization beyond a critical value. But the magnet regains
its magnetization when the temperature is lowered. Magnetization is a macroscopic
feature which can be explained by changing the degrees of freedom at the micro-
scopic level. The ferromagnet consists of many atomic magnets. At elevated tem-
perature, the elementary magnets point in random directions. If the corresponding
magnetic moments are added up, they cancel each other. Then, on the macroscopic
level, no magnetization can be observed. Below a critical temperature, the atomic
magnets are lined up in a macroscopic order, giving rise to the macroscopic fea-
ture of magnetization (Fig. 4.9a). In both examples, the emergence of macroscopic
order was caused by lowering the temperature. The structure is formed without
loss of energy at low temperature. Thus, it is a kind of conservative (reversible)
self-organization. Physically, it can be explained by Boltzmann’s law of distribu-
tion demanding that structures with less energy are mainly realized at low tempera-
tures.

On the other hand, there are systems whose order and functioning are not
achieved by lowering temperature, but by maintaining a flux of energy and matter
through them. Familiar examples are living systems like plants and animals which
are fed by biochemical energy. The processing of this energy may result in the for-
mation of macroscopic patterns like the growth of plants, locomotion of animals,
and so on. But this emergence of order is by no means reserved to living systems
(compare Chap. 3). It is a kind of dissipative (irreversible) self-organization far from
thermal equilibrium which can be found in physics and chemistry as well as in bi-
ology.

As is well-known from the second law of thermodynamics, closed systems
without any exchange of energy and matter with their environment develop to disor-
dered states near thermal equilibrium. The degree of disorder is measured by a quan-
tity called “entropy”. The second law says that in closed systems the entropy always
increases to its maximal value. For instance, when a cold body is brought into con-
tact with a hot body, then heat is exchanged so that both bodies acquire the same
temperature, i.e., a disordered and homogeneous order of molecules. When a drop
of milk is put into coffee, the milk spreads out to a finally disordered and homo-
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geneous mixture of milky coffee. The reverse processes are never observed. In this
sense, processes according to the second law of thermodynamics are irreversible
with a unique direction [2.42].

An example from hydrodynamics is the Bénard instability, which was already
described in the beginning of Sect. 2.4. When the heated fluid layer (Fig. 2.20a)
reaches a critical value, it starts a macroscopic motion (Fig. 2.20b). Thus a dynamic
well-ordered spatial pattern emerges out of a disordered and homogeneous state as
long as a certain flux of energy is maintained through the system.

Another example from fluid dynamics is the flow of fluid round a cylinder. The
external control parameter is the Reynolds number Re of fluid velocity. At low speed
the flow happens in a homogeneous manner (Fig. 2.26a). At higher speeds, a new
macroscopic pattern with two vortices appears (Fig. 2.26b). With yet higher speeds

Re =10°

Fig. 2.26a—e. Macroscopic patterns of fluid dynamics with homogeneous state (a), two vor-
tices (b), oscillations (c), quasi-oscillations (d), and chaos (e) behind a cylinder depending on
increasing fluid velocity as control parameter
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the vortices start to oscillate (Fig. 2.26¢c—d). At a certain critical value, the irregu-
lar and chaotic pattern of a turbulent flow arises behind the cylinder (Fig. 2.26¢).
Figure 2.26a—e presents a survey of possible attractors with one and more fixed
points, bifurcations, oscillating, and quasi-oscillating attractors, and finally fractal
chaos [2.43].

A famous example from modern physics and technology is the laser. A solid
state laser consists of a rod of material in which specific atoms are embedded. Each
atom may be excited by energy from outside leading it to the emission of light
pulses. Mirrors at the end faces of the rod serve to select these pulses. If the pulses
run in the axial direction, then they are reflected several times and stay longer in
the laser, while pulses in different directions leave it. At small pump power the laser
operates like a lamp, because the atoms emit independently of each other light pulses
(Fig. 2.27a). At a certain pump power, the atoms oscillate in phase, and a single
ordered pulse of gigantic length emerges (Fig. 2.27b) [2.44].

The laser beam is an exampel of macroscopic order emerging by a dissipative
(irreversible) self-organization far from thermal equilibrium. With its exchange and
processing of energy, the laser is obviously a dissipative system far from thermal
equilibrium.

In former days of history, scientists would have postulated certain demons or
mystic forces leading the elements of these systems to new patterns of order. But,
as in the case of conservative self-organization, we can explain dissipative self-
organization by a general scheme which is made precise by well-known mathe-
matical procedures. We start with an old structure, for instance a homogeneous fluid
or randomly emitting laser. The instability of the old structure is caused by a change
of external parameters, leading eventually to a new macroscopic spatio-temporal
structure. Close to the instability point we may distinguish between stable and un-
stable collective motions or waves (modes). The unstable modes start to influence
and determine the stable modes which therefore can be eliminated. Hermann Haken
calls this process very suggestively a “slaving principle”. Actually, the stable modes
are “enslaved” by the unstable modes at a certain threshold.
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Fig. 2.27a,b. Wave patterns emitted from a lamp (a) and from a laser (b)
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Mathematically, this procedure is well known as the so-called “adiabatic elimi-
nation” of fast relaxing variables, for instance, from the master equation describing
the change of probabilistic distribution in the corresponding system. Obviously, this
elimination procedure enables an enormous reduction of the degrees of freedom.
The emergence of a new structure results from the fact that the remaining unsta-
ble modes serve as order parameters determining the macroscopic behavior of the
system. The evolution of the macroscopic parameters is described by differential
equations. In contrast to properties of the elements of a system at the microscopic
level (for instance, atoms, molecules, etc.), the order parameters denote macroscopic
features of the whole system. In the case of the laser, some slowly varying (‘“un-
damped”) amplitudes of modes may serve as the order parameters, because they
start to enslave the atomic system. In the language of biology, the order parameter
equations describe a process of “competition” and “selection” between modes. But,
of course, these are only metaphoric formulations which can be made precise by the
mathematical procedure mentioned above [2.45].

In general, to summarize, a dissipative structure may become unstable at a cer-
tain threshold and break down, enabling the emergence of a new structure. As
the introduction of corresponding order parameters results from the elimination of
a huge number of degrees of freedom, the emergence of dissipative order is com-
bined with a drastic reduction of complexity. Dissipative structures are a fundamen-
tal concept of complex systems which are used in this book to model processes
in natural and social sciences. The irreversibility of dissipative structures may re-
mind us of Heraclitus’ famous quotation that nobody can enter a stream in the same
state. Obviously, irreversibility violates the time-invariance symmetry which char-
acterizes the classical (Hamiltonian) world of Newton and Einstein. But the clas-
sical view will turn out to be a special case in a steadily changing world. On the
other hand, Heraclitus believed in an ordering law harmonizing irregular interac-
tions and creating new order states of matter. We have to see wether the mathe-
matical scheme of a dissipative system will satisfy the universal features of such
alaw.

A general framework for the evolution of matter would be based on a unified
theory of all physical forces (Fig. 2.28). The standard models of cosmic evolution
which are derived from Einstein’s general theory of relativity must be explained by
the principles of quantum theory. Until today there are only several more or less
satisfying mathematical models of cosmic evolution which can only partially be
tested and confirmed by experiments. Nevertheless, it is the general idea of these
models that the emergence of structures with increasing complexity (elementary
particles, atoms, molecules, planets, stars, galaxies, etc.) can be explained by cosmic
phase transitions or symmetry breaking [2.46].

In cosmic evolution an initial state is assumed to be nearly homogeneous and
symmetric in the sense that in general no elementary particles can be distinguished,
but they can be transformed into one another. During cosmic evolution, critical val-
ues have been realized step by step at which symmetries break down by deviations
and fluctuations and new particles and forces emerge: “C’est la dissymétrie, qui crée
le phénomene,” said Pierre Curie [2.47]. But we must be aware that the cosmic pro-



66 2 Complex Systems and the Evolution of Matter

Laws of planets

Newton's and Einstein's theory of gravitation

Laws of free fall, etc.

1
|
|
on earth |
N |
Electricity I
Maxwell's theory I
quantum Super unification
electrodynamics
Magnetism

Weak interaction

-1

Grand unification

E—

Strong interaction

Fig. 2.28. Unification of physical forces

cesses of symmetry breaking and phase transitions are mathematical extrapolations
from experiments and theories in high energy physics.

Nowadays, physics distinguishes four fundamental forces, the electromagnetic,
strong, weak, and gravitational forces which are mathematically described by so-
called gauge fields. Elementary particle physics aims to unify the four physical
forces in one fundamental force corresponding to the initial state of the universe.
Electromagnetic and weak forces have already been unified at very high energies in
an accelerator ring at CERN (Fig. 2.28). Unification means that at a state of very
high energy the particles that “feel” the weak force (electrons, neutrinos, etc.) and
those that “feel” the electromagnetic force cannot be distinguished. They can be de-
scribed by the same symmetry group (U(1) x SU(2)), i.e., they are invariant with
respect to transformations of this group. At a particular critical value of lower energy
the symmetry breaks down into partial symmetries (U(1) and SU(2)) corresponding
to the electromagnetic and weak forces.

Physically, this kind of symmetry breaking means a phase transition which is
connected with the emergence of two new physical forces and their elementary par-
ticles. The process of spontaneous symmetry breaking is well known. For instance,
our breakfast egg is not stable in its symmetric position on its top. Any tiny fluctua-
tion causes it to fall spontaneously down to an asymmetric, but energetically stable
position. The phase transition of a ferromagnet from a non-magnetic to a magnetic
state is caused by cooling down the temperature to a critical point. The elementary
dipoles spontaneously take one of the two possible magnetic orientations, break the
spin-rotation symmetry, and cause the emergence of a new macroscopic property
(magnetization).
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The complex variety of baryons (protons, neutrons, etc.) and mesons interacting
via the strong force are constructed from the so-called quarks with three degrees of
freedom, i.e., the so-called “colors” red, green, and blue. A baryon, for instance, is
built up from three quarks which are distinguishable by three different colors. These
three colors are complementary in the sense that a hadron is neutral (without color)
to its environment. The mathematical symmetry group (SU(3)) characterizing the
color transformation of quarks is well known.

After the successful unification of the electromagnetic and weak interactions
physicists try to realize the “grand unification” of electroweak and strong forces,
and in a last step the “superunification” of all four forces (Fig. 2.28). There are sev-
eral research programs for superunification, such as supergravity and superstring
theory. Mathematically, they are described by extensions to more general structures
of symmetry (“gauge groups”) including the partial symmetries of the four basic
forces. Technically, the unification steps should be realized with growing values of
very high energy. But the “grand unification” demands states of energy which can-
not be realized in laboratories. Thus, the high energy physics of grand unification
could only be confirmed by certain consequences which could be tested in a labo-
ratory or observed in the universe (e.g., the decay of protons). The superunification
of all forces would demand infinitely increasing states of energy whose physical
principles are still unknown.

The theory of the so-called “inflationary universe” assumes an early state of
the universe with small size, but very high energy (“quantum vacuum”) which ex-
pands very rapidly to macroscopic dimensions driven by a repulsive force of the
quantum vacuum state (“anti-gravity”). This cosmic phase transition allows one to
explain some well-known properties of the observed universe such as the relatively
homogeneous distribution of stars and matter. During the inflationary period, some
tiny deviations from symmetry and uniformity would have been amplified until they
were big enough to account for the observed structures of the universe. In the ex-
panding universe the density of matter varied slightly from place to place. Thus,
gravity would have caused the denser regions to slow down their expansion and start
contracting. These local events led to the formation of stars and galaxies [2.48].

In general, the emergence of the structural variety in the universe from the el-
ementary particles to stars and living organisms is explained by phase transitions,
corresponding to symmetry breaking of equilibrium states (Figs. 2.29, 2.30). In this
sense the cosmic evolution of matter is understood as a self-organizing process with
the emergence of conservative and dissipative structures. But we must be aware
that cosmic self-organization is today only a “regulative idea of research”, as Kant
had said: we have more or less plausible dynamical models which are more or less
empirically confirmed. The very beginning of cosmic evolution is still unknown.

If we only assume the classical principles of Einstein’s general relativity, then,
as Roger Penrose and Stephen Hawking have mathematically proved, the standard
models of cosmic evolution have an initial singularity which may be interpreted as
the Big Bang, i.e., the emergence of the universe from a mathematical point. But if
we assume a unification of the general theory of relativity (i.e., Einstein’s relativis-
tic theory of gravitation) and quantum mechanics with imaginary (instead of real)
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time, then, as Hawking has mathematically proved, a “smooth” cosmic model is
possible without any beginning, which simply exists, according to the mathematical
principles of a unified relativistic quantum physics [2.49].

The singularity theorems of Penrose and Hawking started with predictions of
small regions of space where space-time is so warped that gravity becomes infinitely
great. The existence of such singularities, in the form of black holes, for example,
suffer from a methodological disadvantage: Classical and relativistic laws of physics
are not applicable in regions with infinite curvature, so it is not possible to predict
events in time. That consequence is, of course, quite more dramatic than the expo-
nentially increasing difficulties in predicting the long-term future of chaotic systems.
That is why James B. Hartle and Stephen Hawking have suggested a singularity-free
model of the universe, in which quantum theory and general relativity theory are uni-
fied, and the real time axis is replaced by an imaginary one (in the sense of real and
imaginary numbers) [2.50]. In Hawking’s model, in contrast to Einstein’s relativis-
tic theory, the three spatial axes, together with a complex time axis, lead to a closed
early quantum universe that lacks boundaries and edges. This space-time not only
would always have existed, but every physical event could be explained according
to its laws. In this model, the traditional concepts of everything having somehow
“begun” or been “created” are methodologically inappropriate and are revealed to
be human imaginings stemming from our having adapted to the limited space-time
facets of our everyday experience.

Hawking’s theory is not only mathematically consistent, but is also, at least in
principle, experimentally testable. It is, therefore, a scientific theory and not mere
speculation. Among the testable consequences of this singularity-free model is the
prediction of black holes in which not all world lines of photons (“light beams™)
disappear entirely, but are reemitted as measurable amounts of radiation. As in the
explanation of the initial singularity of the universe, the reason lies in the possibility
of quantum fluctuations rooted in the uncertainty relation. But radiating black holes
lose energy and mass. In time, they will disintegrate and, with them, the history of
their stars will be lost. In their place, memory gaps will appear in the universe. With
the collapse of its galactic structures, a featureless universe expanding into a void is
heading for a “cosmic Alzheimer’s disease”.

Philosophically, Hawking’s early quantum universe without a beginning re-
minds us of Parmenides world of unchangeable being. But the uncertainty principle
of quantum mechanics implies that the early universe cannot have been completely
uniform because there must have been some uncertainties or fluctuations in the posi-
tions and velocities of the particles. Thus, the universe would have undergone a pe-
riod of rapid expansion which is described by the inflationary model, leading to our
complex universe in the long run. The equilibrium of the Parmenidean world broke
down and changed to the evolutionary and complex world of Heraclitus, caused
by a basic principle of quantum physics under the hypothesis of a “smooth” time
without singularities.

A cosmological model of an “eternal” universe without beginning and without
end was already introduced by Hermann Bondi, Thomas Gold, and Fred Hoyle in
1948. These authors did not only assume spatial homogeneity and isotropy of the
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universe at every time (“Cosmological Principle” of the standard models with Big
Bang), but also temporal homogeneity and isotropy: Their “perfect Cosmological
Principle” suggests that the universe globally looks the same not only at all points
and in all directions, but at all times, leading to a steady state model. According to
Hubble, there is a correlation between the red shift and the increasing distances of
expanding galaxies. So if the average number of galaxies per unit proper volume is
to remain constant, new galaxies must appear to fill up the holes in the widening
comoving coordinate mesh. An ad-hoc hypothesis of steady state cosmology was
the necessity of continuous creation of matter.

In recent quasi-steady state cosmologies, the strange assumption of a contin-
gent and nonlocal creation of matter is explained by the local birth of new galaxies
everywhere and at every time in the universe. The conditions of local big bangs are
assumed to be realizable in the supermassive centers of old galaxies. The red shifts
seems also to indicate the age of a galaxy. The uniform evolution with the sequential
emergence of elementary particles, atoms, molecules, galaxies, stars, etc. after the
global Big Bang (Fig. 2.29) is replaced by an autocatalytically self-reproducing uni-
verse without global beginning and without end, but with local births, growths, and
deaths of galaxies. In this case, old dying galaxies create the matter of new galax-
ies like plants and organisms bearing the seed of new life. The universal dynamics
would be a gigantic never ending nonlinear recycling process of matter [2.49].

But, perhaps, the laws of quantum mechanics open loopholes (“wormholes™)
of escape from the fate of our universe. According to general relativity theory, time
travel cannot be faster than the speed of light. As light is curved by gravitational
fields, time travelers must pass curved paths in space-time with high speed, limited
by the speed of light. Therefore, in order to overcome disruption of space-time by
gravitational fields, space-time regions would have to be explored using vast curved
detours. According to Heisenberg’s principle of uncertainty, quantum fluctuations
could open short-lived wormholes in space-time. So, the laws of quantum mechan-
ics make it at least conceivable that wormholes can be employed as fleeting shortcuts
between folded regions. However, if our universe is not alone but is instead inter-
wined with a fractal multiverse, along with many other bifurcating universes, as was
suggested in Andrei Linde’s inflationary theory, then wormholes could also be used
as escape routes for fleeing a universe that is aging with cosmic Alzheimer’s disease
and growing hostile to life as it loses energy.

From a theological point of view, these models do not need any creator, because
their worlds simply have been and will be self-contained and self-organizing without
beginning and without end. From a mathematical point of view, these models may
be very elegant. But from a methodological point of view, we must conclude that we
do not yet have a complete and consistent theory combing quantum mechanics and
relativistic gravity which could explain the evolution of matter with its increasing
complexity. Thus we are only certain of some of the properties by gravitational fields
such a unified theory could have. Today, different approaches of string theories exist
for achieving this unification on a sublevel of elementary particles. If all kinds of
elementary particles of gravitational, strong, weak, and electromagnetic interactions
are generated by oscillating strings, then there is even a chance to avoid the ultimate
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loss of information in the black holes of an aging universe: The information could be
stored by the vibrating membranes of more-dimensional strings on the substructure
of matter [2.52].

2.5 Complex Systems of the Nano World
and Self-Constructing Materials

In the evolution of matter, self-organizing processes can be observed from the level
of elementary particles to the cosmic structures of galaxies. They are not only inter-
esting from an epistemic point of view, but for applications in materials and life sci-
ence, too. At the boundary between materials science and life science, supramolec-
ular systems play a tremendous role. In this case molecular self-organization means
the spontaneous association of molecules under equilibrium conditions into sta-
ble and structurally well-defined aggregates with dimensions of 1-10% nanometers
(Inm=10""m=10A).

Nanostructures may be considered as small, familiar, or large, depending on the
view point of the disciplines concerned. To chemists, nanostructures are molecular
assemblies of atoms numbering from 10% to 10° and molecular weights of 10* to
1019 daltons. Thus, they are chemically large supramolecules. To molecular biolo-
gists, nanostructures have the size of familiar objects from proteins to viruses and
cellular organelles. But to materials scientists and electrical engineers, nanostruc-
tures are at the current limit of microfabrication and thus they are rather small [2.53].

In the beginning of nanoscience there was the vision of an ingenious physicist.
In an article entitled “There’s Plenty of Room at the Bottom”, Richard Feynman
declared:

The principles of physics, as far as I can see, do not speak against the possibility of
maneuvering things atom by atom. It would be, in principle, possible ... for a physicist
to synthesize any chemical substance that the chemist writes down ... How? Put the atoms
down where the chemist says, and so you make the substance. The problems of chemistry and
biology can be greatly helped if our ability to see what we are doing, and to do things on an
atomic level, is ultimately developed — a development which I think cannot be avoided. [2.54]

Feynman proclaimed his physical ideas of the nanoworld in the late 1950s. The
belief in a new world needs new instruments of observation and measurement for
confirmation. Since the start of the 1980s, the nanoworld could actually be explored
using the scanning tunnel microscope. At the end of the 1980s, Eric Drexler de-
scribed a revolutionary vision of technological applications:

Nature shows that molecules can serve as machines because living things work by means
of such machinery. Enzymes are molecular machines that make, break, and rearrange the
bonds holding other molecules together. Muscles are driven by molecular machines that haul
fibers past one another. DNA serves as a data-storage system, transmitting digital instructions
to molecular machines, the ribosomes, that manufacture protein molecules. And these protein
molecules, in turn, make up most of the molecular machinery just described. [2.55]
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With nanotechnology, atoms will be specifically placed and connected in a fash-
ion similar to processes found in living organisms. Complex organisms, such as
plants and animals, make use of molecular machinary to manufacture and under-
take repairs at the cellular and subcellular levels. A cell can be considered a factory
of nanomachines consisting of molecular prototypes such as protein, nucleic acid,
lipid, and polysaccharide. They are used for energy production, information pro-
cessing, self-replication, self-repairing, and moving. A ribosome, for example, is
a cellular nanomachine that reads information off a RNA strand in order to construct
the amino acids of a protein. It reminds us of the assembly-like production of cars
by robots in the motor industry. Biological micro-organisms have been understood
as cellular systems driven and controlled by nanomachines. For example, bacteria
such as Escherichia coli use whip-like tails for moving around in fluids. The tails
like a propeller fueled by biochemical nanomachines. These nanomachines consist
of proteins in membranes generating the rotation of whip-like tails. They use mo-
tor shafts and armatures like electric motors. But the similarity of nanomachines and
electric motors is only illustrative. A biochemical nanomachine does not use electric
current to generate a magnetic field; it changes the shape of molecules by biochem-
ical procedures, such as decomposing ATP, in order to rotate the shaft [2.56].

Genetic engineering and computer programming have begun to inspire the de-
velopment of new materials. Using special bacterium-sized assembler devices, nan-
otechnology should permit the exact control and fast manipulation of molecular
structures. A fast enzyme can process almost a million molecules per second, even
without conveyors and power-driven mechanisms to slap a new molecule into place
as soon as an old one is released. Drexler assumed that an assembler arm would be
about fifty million times shorter than a human arm and, accordingly, would be able
to move back and forth about fifty million times more rapidly. According to Feyn-
man’s vision, such machines would seize individual atoms using selectively sticky
manipulator arms, then plug those atoms together like Lego blocks until chemical
bonding took place. Following the line of computer programming, one would expect
general-purpose chemical synthesizers acting like a general-purpose computer us-
ing nanotechnology. The desired molecules would be modeled on a computer screen
and an appropriate assembler would allow the mass-production of the desired sub-
stances. Perhaps someday, specially designed nanodevices the size of bacteria will
be programmed to destroy arterial plaque or cancer cells, or to repair cellular dam-
age caused by aging. They could be injected into the body with an induction to
self-destruct or integrate themselves into the body’s cells. Finally, it still seems to
be science fiction that smart nanodevices distributed throughout the brain might per-
mit the copying of thought patterns and mind uploading, so that a copy of a person’s
personality and memories could be placed in storage, or even run as a form of natu-
rally created artificial intelligence.

Nanostructures are complex systems which evidently lie at the interface be-
tween solid-state physics, supramolecular chemistry, and molecular biology. It fol-
lows that the exploration of nanostructures may deliver hints about the emergence
of life and about the fabrication of new materials. But engineering of nanostructures
cannot be mastered in the traditional way of mechanical construction. There are no
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man-made tools or machines for putting together their building blocks like the ele-
ments of a clock, motor, or computer chip. We must thus understand the principles of
self-organization which are used by nanostructures in nature. Then, we only need to
arrange the appropriate constraints under which the atomic elements of nanostruc-
tures associate themselves in a spontaneous self-construction: The elements adjust
their own positions to reach a thermodynamic minimum without any manipulation
by a human engineer.

Historically, the idea of supramolecular interactions dates back to a famous
metaphor of Emil Fischer (1894), who described a selective interaction of molecules
as the lock and key principle. Today, supramolecular chemistry has far surpassed
its original focus. Molecular self-assemblies combine several features of covalent
and noncovalent synthesis to make large and structurally well-defined assemblies of
atoms. The strengths of individual van der Waals interactions and hydrogen bonds
are weak relative to typical covalent bonds and comparable to thermal energies.
Therefore, many of these weak noncovalent interactions are necessary in order to
achieve molecular stability in self-assembled aggregates. In biology, there are many
complex systems of nanoscale structures such as proteins and viruses which are
formed by self-assembly. Living systems sum up many weak interactions between
chemical entities to make large ones. How can one make structures of the size and
complexity of biological structures, but without using biological catalysts or the
informational devices coded in genes?

Many nonbiological systems also display self-organizing behavior and further-
more provide examples of useful interactions. Molecular crystals are self-organizing
structures. Liquid crystals are self-organized phases intermediate in order between
crystals and lipids. Micelles, emulsions, and lipids display a broad variety of self-
organizing behavior. An example is the generation of cascade polymers yielding
molecular bifurcational superstructures of fractal order [2.57]. Their synthesis is
based on the architectural design of trees. Thus, these supramolecules are called
dendrimers (from the Greek word dendron for tree and polymer). The generation of
dendrimers has followed two basic procedures for monomer addition. A divergent
construction begins at the core and builds outward via an increasing number of re-
peating bifurcations. A convergent construction begins at the periphery and builds
inward via a constant number of transformations. The divergent construction trans-
forms the chemical reaction centers from the center into the periphery, generating
a network of bifurcating branches around the center. The bifurcations increase ex-
ponentially up to a critical state of maximal size. They yield fractal structures such
as molecular sponges which can contain smaller molecules, which can then be dis-
persed in a controlled way for medical applications.

Examples of cave-like supramolecules are the Buckminsterfullerenes, forming
great balls of carbon [2.58]. The stability of these complex clusters is supported
by their high geometric symmetry. The Buckminsterfullerenes are named after the
geodesic networks of ball-like halls which were constructed by the American archi-
tect Richard Buckminster Fuller (1895-1983). The cluster Cgo of 60 carbon atoms
has a highly Platonic symmetry of atomic pentagons forming a completely closed
spheroid.
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Cave-like supramolecules can be arranged using chemical templates and matri-
ces to produce complex molecular structures. Several giant clusters comparable in
size to small proteins have been obtained by self-assembly. Figure 2.31 shows a ball-
and-stick model of the largest discrete cluster (700 heavy atoms) ever characterized
by X-ray structure analysis. This cluster containing 154 molybdenum, 532 oxygen,
and 14 nitrogen atoms has a relative molecular mass of about 24 000. The highly
symmetric “big wheel” was synthesized by Achim Miiller and coworkers [2.59]. Gi-
ant clusters may have exceptional novel structural and electronic properties: There
are planes of different magnetization which are typical for special solid-state struc-
tures and of great significance for materials science. A remarkable structural prop-
erty is the presence of a nanometer-sized cavity inside the giant cluster. The use
here of templates and the selection of appropriate molecular arrangements may well
remind us of Fischer’s lock and key principle.

Molecular cavities can be used as containers for other chemicals or even for
medicaments which need to be transported within the human organism. An iron-
storage protein that occurs in many higher organisms is ferritin. It is an unusual
host-guest system consisting of an organic host (an aprotein) and a variable inor-
ganic guest (an iron core). Depending on the external demand, iron can either be
removed from this system or incorporated into it. Complex chemical aggregates
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Fig. 2.31. Giant supramolecular cluster (“big wheel”) in a ball-and-stick representation: An
example of a complex near-equilibrium system [2.59]
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like polyoxometalates are frequently discovered to be based upon regular convex
polyhedra, such as Platonic solids. But their collective electronic and/or magnetic
properties cannot be deduced from the known properties of these building blocks.
According to the catchphrase “from molecules to materials” supramolecular chem-
istry applies the “blue-prints” of conservative self-organization to build up complex
materials on the nanometer scale with novel catalytic, electronic, electrochemical,
optical, magnetic, and photochemical properties. Multi-property materials are ex-
tremely interesting.

The exploration of the nanoworld and applications in nanotechnology depend
on better instruments of observation and measurement. The scanning force micro-
scope is a further development of the scanning tunnel microscope and can be used
like a fountain pen to write down molecular structures of nano size. A thin film of
thiolmolecules is used as “nano ink”. In a tiny drop of water the thiolmolecules or-
ganize themselves as mono layer. Nanocrystals of a few hundred atoms can organize
themselves with cadmium ions, selen ions, and organic molecules in to a ball-like
structure (Fig. 2.32). In ultraviolet light they fluoresce with a certain color. Thus,
they could be used as markers (“quantum dotes”) of molecules, cells, and substances
in medicine, for example. Complex systems of carbon molecules can organize them-
selves as tiny tubes of 1nm diameter according to certain catalysts and templates.
Their symmetric order of bonding results in great hardness and toughness. Carbon
nanotubes might be used as conductors for miniaturized chips beyond the limits of
silicon technology.

Fig. 2.32. Self-organizing nanocrystals (“quantum dots”) [2.60]

Supramolecular transistors are an example that may stimulate a revolutionary
new step in the development of chemical computers. Actually, there is a strong trend
towards nanostructures in electronic systems which may realize small, fast devices
and high-density information storage. But one can also imagine nonelectronic ap-
plications of nanostructures. They could be used as components in microsensors or
as catalysts and recognition elements in analogy to enzymes and receptors in living
systems. In natural evolution very large complex molecular systems are also pro-
duced by stepwise gene-directed processes. The conservative self-organization pro-
cesses of nanomolecular chemistry are non-gene-controlled reactions. Only a clever
combination of conservative and non-conservative self-organization could have ini-
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tiated prebiotic evolution before genes emerged. But even during the evolution of
complex organisms, conservative self-organization must have occurred. Open (““dis-
sipative”) physical and chemical systems lose their structure when the input of en-
ergy and matter is stopped or changed (e.g., laser, BZ-reaction). Organismic sys-
tems (like cells) are able to conserve much of their structure at least for a relatively
long time. On the other hand, they need energy and matter within a certain inter-
val of time to keep their structure more or less far from thermal equilibrium. In the
technical evolution of mankind, the principles of conservative and dissipative self-
organization have once more been discovered and open new avenues of technical
applications.

The complex systems approach enables engineers to endow materials with more
and more of the attributes of living organisms. Self-regulation and self-adaption to
a changing environment are well-known capabilities of living systems. They can be
considered as specific forms of self-organizing open systems in a changing envi-
ronment. Analogously, engineers aim to create complex materials systems that can
sense their own state, the state of their environment and respond to it. Dramatic ex-
amples are materials for bridges that could detect and counter corrosion before a py-
lon gives way, buildings that could brace themselves against seismic waves, or skins
of aeroplanes that could spontaneously react against dangerous material fatigue.

Actuators are materials which can change their features according to changing
states of the system [2.61]. Examples are piezoelectric ceramics and polymers acting
either as pressure sensors or as mechanical actuators. The electrical polarity of their
crystal or molecular structures allows a transformation of mechanical forces exerted
on them into electrical current or, conversely, a transformation of electrical stimuli
into vibrations. Piezoelectric polymers could be embedded in the skin of a robotic
hand in order to get a high degree of sensitivity (e.g., to decipher braille).

Other examples are alloys with a so-called shape memory that can be used as
actuators. Below a certain control value of transition temperature, a shape-memory
wire will take any shape it is bent into. When the wire is heated beyond the transi-
tion, it returns to its original shape. Engineers propose the incorporation of a shape-
memory metal into a material system in its low- temperature shape. It exerts a force
whenever it is heated. The force-generating transition takes place as the atoms in the
alloy’s crystal grains toggle between different geometric arrangements. Damage-
resisting bridges or airplane wings would be possible applications of these control
structures.

There are even actuator materials that can reversibly transform their mechanical
properties from a liquid to a solid state. They consist of fine polarizable particles of
ceramic or polymer suspended in a liquid such as silicone oil. When subjected to
strong electric fields, such fluids organize themselves into filaments and networks
which stiffen the material into a gel-like solid. When the electric field is removed,
the organization dissipates, and the material becomes fluid again. Other applications
are optical fibers acting as sensor materials. The properties of these hair-thin fibers
are affected by changes in temperature, pressure or other physical or chemical con-
ditions within the materials. They can be considered as “glass nerves” providing
optical signals of the material’s internal “health”.
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Sometimes, modern materials scientists call their systems smart or even “intel-
ligent” materials. The goal of their research is sometimes described as “animation of
the inanimate world” [2.62]. From a philosophical point of view, this slogan seems
to hark back to alchemistic traditions. Some philosophers of science may perhaps
criticize the vocabulary of materials scientists as non-scientific animism. But, from
the view point of complex systems, there is a hard scientific core. Properties of self-
organization are not necessarily combined with conscious behavior on the basis of
nervous systems. They even do not necessarily depend on biological catalysts or the
informational devices coded in genes. Thus, there is no break between the so-called
inanimate and animate world. In the evolution of matter, we observe systems with
more or less high degrees of organization. It is clear that we have only made the
very first steps in understanding their full potential.

Concerning the future of technology, the question arises, how realistic is the
vision of self-replicating nanorobots? They would be the equivalent of a new para-
sitic life form. Pathogenic bacteria and cancer cells are dangerous examples of self-
replicating biological systems. Computer viruses with self-replicating strings of bits
are the first, at least virtual, examples of artificial self-organizing systems. Bill Joy,
the chief scientist of Sun Microsystems, has already raised concerns about the soci-
etal implications of proliferating nanobots [2.63]. In an artificial evolution, Joy says,
hostile agents could evolve into populations of embodied biochemical agents of
nano size. As autonomous, self-interested beings, they could attack the foundations
of human life. Richard E. Smalley, who received the Nobel Prize in chemistry for
the discovery of fullerenes, dismisses the notion of out-of-control nanorobots [2.64].
Following Feynman’s slogan, “There’s plenty of room at the bottom”, Smalley ar-
gues that not much room is needed to manipulate atoms one by one with nano-sized
atomic instruments. He calls these constraints the fat and sticky fingers problem: The
nanobot’s manipulating “fingers” are not only too large (“fat”) but also too sticky,
because their atoms will adhere to the atom that is being moved. Smalley’s picture
of fingers underlines the fact there are no counterparts of our today technology at
nanometer sizes. In living systems, evolution has developed examples of biochem-
ical nanomachines, and there is no reason to believe that there cannot be others on
different material grounds. But the technological strategy should follow the natural
idea of self-organization under appropriate constraints, not the old- fashioned me-
chanical idea of picking and placing atoms with nanoscale pincers. We should not
look for assemblers, but self-assemblers. From the point of view of computer sci-
ence, the idea of a universal fabricator of any kind of structure, including itself, is
not strange. A universal Turing machine (compare Sect. 5.2) is already embodied
by our general-purpose computers, which process all kinds of programs. Why not
on the nanoscale?

2.6 Time Series Analysis, Fractals, and Multifractals

Understanding complex systems and nonlinear dynamics in nature seems to yield
appropriate models for the evolution of matter. But how can we be sure that our
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models are correct? The mathematical theory of nonlinear dynamics distinguishes
different types of time-dependend equations, generating different types of behavior,
such as fixed points, limit cycles, and chaos. For application, they are related to
natural systems in the micro, nano, and macroworld. We use our understanding of
the special mechanisms to write an appropriate dynamical equation. For example,
Lorenz’s understanding of the dynamics of weather led to his famous nonlinear
equations, which were also applied to biological and economic systems by people
familiar with those fields.

From a methodological point of view, this is the top-down approach to model
building: We start with an assumed mathematical model of a natural system and de-
duce its behavior by solving the corresponding dynamical equations under certain
initial and secondary conditions. The solutions can be represented geometrically as
trajectories in the phase space of the dynamical system and classified by different
types of attractors. They forecast the types of behavior that we are likely to observe
in a specialized field of research. Especially chaotic dynamics can be derived from
the given equations if certain criteria are satisfied. But, in practice, we often must
take the opposite, bottom-up approach. Physicists, chemists, biologists, or physi-
cians start with data mining in an unknown field of research. They only get a finite
series of measured data corresponding to time- dependend events of a dynamical
system. From these data they must reconstruct the behavior of the system in order to
guess its type of dynamical equation. Therefore, the bottom-up approach is called
time series analysis [2.65]. In many cases, we have knowledge of the system from
which the data came. Time series analysis then aims to construct a black box, which
takes the measured data as input and provides as output a mathematical model de-
scribing the data. In practice, the realistic strategy of research is a combination of
the top-down approach with model building and the bottom-up approach with time
series analysis.

The bottom-up approach starts with data as results of measurements, not with
the idealized variables of a model. The measurements approximate the variables
of a dynamical model. Their difference is called measurement error, which can be
caused by several factors of noise. Noise of measurements refers to fluctuations of
data that differ from a well-defined average behavior and arise from chance. While
measurement noise is caused by the intrinsic behavior of the real system, the out-
side influence of the system also affects a kind of noise. Many variables of outside
influence must be excluded in order to reduce the complexity of model building.
The outside influence on the actual behavior of a system is considered random noise
affecting the measured variables of the model.

In classical measurement theory, measurement error is analyzed by statistical
methods, such as correlation coefficient and autocorrelation function. But these stan-
dard procedures are not able to distinguish between data from linear and nonlinear
models. In nonlinear data analysis, the measured data are used in a first step to recon-
struct the dynamics of the system in a reconstructed phase space. A simple example
is the finite difference equation of the logistic map, which we studied in Sect. 2.4:
The nonlinear equation x;;1 = f(x;) describes a relationship between x;y; and x;.
In Fig. 2.24, the coordinates are plotted x,1 versus x;. If there is no measurement
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noise, we can identify the measurement data D; and the variable x; at time ¢. It is
no surprise then, that a scatter plot of the measured data D, versus D; delivers the
same relationship as the model.

If data are collected from a continuous-time dynamical system with differential
equations, rather than finite-difference equations, the corresponding phase plane or
phase space must be reconstructed from the measured data of the continuous system.
The heuristic idea is that the measured data in the reconstructed phase space show
the same dynamical behavior as the trajectories in the phase space of the dynamical
model. Consider, for example, the data generated by a harmonic oscillator with the
2nd order differential equation d?x/dr> = —bx. The corresponding phase plane is
given by the variables x and y, which are determined by the two 1st order differential
equations dx/dt = y and dy/dt = —bx. We suppose that a time series D(¢) = x(t) is
measured without measurement noise. In order to reconstruct the phase plane from
the measured data, we remember that the state of the system at any instant ¢ is rep-
resented by the position (x, y) on the phase plane. The time series of measurements
yields us only one coordinate D = x at every instant. But we can calculate the other
coordinate y = dD/dt from the 1st order differential equation of the phase space.
A plot dD/dt versus D generates a continuous phase plane. In the reconstructed dis-
crete phase plane of the measured data D, versus D; the trajectory shows the same
cyclic behavior as in the continuous phase plane of the model.

In general, the dynamics on a phase plane are given by a pair of coupled differential
equations dx/dt = f(x,y) and dy/dt = g(x, y). Sometimes we can only measure x. But
then we can calculate dx/dt and get the value f(x, y), which also contains some information
about y. This information is often sufficient to reconstruct the dynamics of trajectories in the
(x, y) phase plane. The 1st derivative of x at time ¢ is calculated using the well-known formula

dx(ldi = lim [x(t + ) = x(O)]/h

A time series of measurements D(f) = x(¢) without noise consists of measurement data
Do, D1, Dy, ... at discrete times ¢ = 0, 1, 2,.... The derivative of x at time ¢ can be approxi-
mated by differences of corresponding measurement data

dDy/dt = [Dyyj, — D/hwithh = 1,2, ...

The smallest useful value of % is 1. But sometimes it is appropriate to select a larger time-lag /.
By plotting D, j, versus D; the phase plane dynamics of a system can often be reconstructed
from measurements D; without the direct measurement of the variable y of the model. In
this case, the dynamics in the reconstructed (D, Dy ) phase plane are similar to the original
(x, ¥) phase plane of the dynamical system.

Nonlinear dynamical systems generating chaos must be determined by at least
three equations. As an example, the Lorenz attractor (Fig. 2.21) is generated in
a phase space with three coordinates x(f), y(¢), and z(¢), which are determined by
three nonlinear differential equations. Figure 2.33a shows a time series of measured
data D; from the Lorenz system. If only one variable D(f) = x(f) can be measured,
a Lorenz attractor in a (D;, D;—p, D;—2;,) phase space (Fig. 2.33c) can be recon-
structed with great similarity to the original Lorenz attractor of the (x,y, z) phase
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space (Fig. 2.33b). In general, a time series can be embedded in a p-dimensional
space with p-coordinates D, = (D, Dy—p, Dy—2p, . . ., Di—(p—1)n) and time-lag h. Ac-
cording to Takens’ embedding theorem [2.66], the reconstructed dynamics are ge-
ometrically similar to the original for both continuous-time and discrete-time sys-
tems. The sequence of points created by embedding a time series is called the tra-
jectory of the time series.

In practice, decisions about chaotic dynamics are rather difficult. How can we
decide that a time series of measured data is not generated by noisy irregularity
but by highly structured chaotic attractors? A chaotic attractor is determined by
a trajectory in a bounded region of a phase space with aperiodic behavior and sen-
sitive dependence on initial conditions. These criteria — determinism, boundedness,
aperiodicity, and sensitivity — can be checked by several techniques of time series
analysis. A system is called deterministic when future events are causally set by past
events. For example, a finite-difference equation like x;41 = f(x;) is deterministic
if f(x;) has only one value for each value of x; and the future value x,4; can be
calculated from the past value x; by function f.

How can we decide that measured data of past events D; determine the future events
Dy;11? We suppose that measurements are made up to time 7', and that a prediction of the
value at time 7 + 1 should be made. Again, we use the afore mentioned procedure to embed
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Fig. 2.33a. Measured time series of Lorenz system [2.67]

Fig. 2.33b,c. Trajectory in (x,y,z) phase space (b) and reconstructed trajectory in
(D¢, Dy—p, Dy—_np,) phase space with time-lag i of Lorenz attractor (c¢) [2.68]
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the time series in a p-dimensional space with time-lag 4. The embedding point at time 7,
representing measurements of past events, is Dy = (D1, Dy_p, ..., Dr—p—1)n)- We look
through the finite rest of the embedded time series for the closest point to D7, which is called
D, at time c. D¢ represents the past events to the measurement D.41. As Dy is close to D¢,
the measured value D, | is expected to be close to Dy in deterministic dynamics. Thus,
the prediction of D71 is identified with the measured value D, . The difference between
the prediction and D 1 is the prediction error which indicates the quality of the prediction.
A more meaningful indication of determinism uses the average of many prediction errors.

Dynamics are bounded if they stay in a finite range of the phase space and do
not approach 4-oo and —oo when time increases. In the case of noise, the trajectories
spread unbounded all over the phase space. A chaotic attractor is always bounded
in a certain region of the phase space. But practically measured data are, of course,
always in a finite range, because the physical universe is finite. Thus, boundedness
of measured data is related to the concept of stationarity. A time series is stationary
if the mean and standard deviation remain the same throughout the time series. Ape-
riodicity means that the states of a dynamical system never return to their previous
values. But values of states may return more or less to previous values. Thus, aperi-
odicity is a question of degree. How can we determine the degree of aperiodicity in
measured data?

Again, we embed the time series of measurements in a p-dimensional space
with time-lag h. Each point D; = (Dy, D;—p, ..., Di—p—1)) represents the state of
the dynamical system at time ¢. The distance of two states is measured by the dis-
tance between two points at times 7 and j by §;; = [D; — Dj| (Fig. 2.34). If the time
series is periodic with time 7, the values of states are repeated after T values for
several times. In this case, the distance §;; of the points representing times ¢ and j is
zero for |i — j| = nT withn =0, 1, 2, . ... The degrees of periodicity and aperiodic-
ity can be studied in recurrence plots of points (i, j) if the distance of D; and Dj is
smaller than a given distance r.

Such plots depict how the reconstructed trajectory recurs or repeats itself. The
number of dots in a recurrence plot shows how many times the trajectory came
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Fig. 2.34a,b. Recurrence plots with periodicity for quadratic map x;+1 = 3.52x;(1 — x;)
(p = 2, r = 0.001) (a) and aperiodicity for chaotic map x| = 4x;(1 —x) (p = 2,
r=0.001) (b) [2.69]
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within a distance r of a previous value. The correlation integral C(r) defines the
density of points (i, j) in a recurrence plot where the measured time series D; and D;
are closer than r for i # j (Fig. 2.34). The correlation integral is an effective concept
of chaotic time series analysis [2.70]. If the distance r increases, more dots appear
in the recurrence plots with an increasing density C(r). The characteristic curves of
C(r) are flat for a periodic system, with a gentle slope for a chaotic system, and with
a steeper slope for a random system.

There is an important relationship between the correlation integral and the con-
cept of fractal dimension (compare Sect. 2.4). Consider the scattered points in an
area within a distance r to a reference point on a 2-dimensional surface (e.g., a cir-
cle with radius » and area 777%) or in a 3-dimensional space (e.g., a sphere with ra-
dius r and volume 4/37 7). In general, for points scattered throughout an object in
a v-dimensional space, the number of points closer than distance r to a reference
point is proportinal to r”. The correlation integral was introduced as a measure
for the density of scattered points within a distance r to a reference point of a re-
currence plot. Thus, the correlation integral of a scattering of points throughout a
v-dimensional object is proportional to r” i.e., C(r) = gr” with a constant g of
proportionality. The correlation dimension v of the v-dimensional object can be
calculated by the logarithm of this equation, i.e. log C(r) = v log r +log g. In order
to find the correlation dimension v, we can plot log C(r) versus log r and determine
the slope of the resulting line. This procedure can also be used to find the fractal
dimension of an object.

In time series analysis the correlation dimension is sometimes used to find at-
tractors. It is well known that chaotic attractors are often self-similar with fractal
dimension. If a time series is generated by a chaotic system, the trajectory of the
time series, which is reconstructed from the measurement data by embedding, has
the same topological properties as the original attractor of the system, as long as the
embedding dimension is large enough. Takens proved a method for finding an ap-
propriate embedding dimension for the reconstruction of an attractor: If the original
attractor has the dimension v, then a dimension p = 2 + 1 is adequate for the em-
bedding space of the reconstructed attractor. But this method yields no procedure
for finding a chaotic attractor, because its existence has been assumed in order to
determine its dimension from the measurement data.

Another way to characterize chaotic dynamics is to measure the strength of
their sensitive dependence on initial data. Consider two trajectories starting from
nearly the same initial data. In chaotic dynamics only a tiny difference in the initial
conditions can result in the two trajectories diverging exponentially quickly in the
phase space after a short period of time (Fig. 2.35). In this case, it is difficult to
calculate long-term forecasts, because the initial data can only be determined with
a finite degree of precision. Tiny deviations in digits behind the decimal point of
measurement data may lead to completely different forecasts. This is the reason why
attempts to forecast weather fail in an unstable and chaotic situation. In principle,
the wing of a butterfly may cause a global change of development. This “butterfly
effect” can be measured by the so-called Lyapunov exponent. A trajectory x(¢) starts
with an initial state x(0). If it develops exponentially fast, then it is approximately
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Fig. 2.35. Exponential dependence on initial conditions measured by Lyapunov exponent A
[2.71]

given by |x(r)| ~ [x(0)|e?". The exponent A is smaller than zero if the trajectory
is attracted by attractors, such as stable points or orbits. It is larger than zero if it is
divergent and sensitive to very small perturbations of the initial state.

Let us consider a finite-difference equation x; 1 = f(x;) with two nearby initial po-
sitions xg and yg in the phase space. By iterated application of the function f we get
xr = f(x—1) =f(xg) and y; = f(x;—1) = f'(yp) witht = 0, 1,2,.... If the positions x; and
vt are separated exponentially fast by iterations, then their distances are |y; —xs| = |yg—xo |
with A > 0. For increasing t — oo it follows (1/1)|y; — x¢|/|yo — xg| — A. If the path of the
trajectory is within a bounded region, the exponential separation only occurs when the initial
positions are very close to each other. In this case, we decrease the difference [yg — xq| be-
fore we determine the limit for increasing t — co. The Lyapunov exponent of the trajectory
x¢ = f!(xg) can then be defined by the constant
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For continuous dynamical systems with differential equations, the trajectory is a vector X(¢)
with a Lyapunov exponent A = lim sup 1/71n |x()|. The Lyapunov exponent provides a mea-
sure for the mean convergence and divergence rate of neighboring trajectories of a dynamical
system. For an n-dimensional system, the n Lyapunov exponents A1 > Ay > ... > Ay,
describe different types of attractors. For non-chaotic attractors we can distinguish asymptot-
ically stable equilibrium with A; < O (i = 1,..., n), asymptotically stable limit cycle with
Ap =0and A; <0 (i =2,...,n), asymptotically stable two-torus with A; = Ay = 0 and
A; < 0 (i = 3,...,n), and asymptotically stable m-torus with Ay = ... = A, = 0 and
A <0 (@ =m+1,...,n). A chaotic system must have at least one positive Lyapunov ex-
ponent. In the 3-dimensional case, the only possibilty for chaosis A} > 0, A» =0, A3 <0
with A3 < —Aj.

Dynamical systems can be classified by attractors with increasing complexity
from fixed points, periodic and quasi-periodic up to chaotic behavior. This classifica-
tion of attractors can be characterized by different methods, such as typical patterns
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of time series, their power spectrum, phase portraits in a phase space, Lyapunov ex-
ponents, (fractal) dimension, and a measure of their information flow (Kolmogorov-
Sinai-Entropy), which will be discussed in Sect. 5.3 in more detail. Table 2.1 yields
an overview of these degrees of dynamic complexity, which form the framework for
the complex dynamical approach of this book.

One of the most significant concepts is that of the fractal dimension, a measure
of the roughness of an object. Fractality seems to be a natural feature of reality.
Rocky coastlines consist of cliffs and crannies. Rocks with rough surfaces erode. In
organic growth, such as that for the airways of the lungs, a fractal process of itera-
tive division is the natural outcome of the genetic rules for animal development. In
Euclidean geometry, we are familiar with the single dimension of a straight line, or
the two dimensions of a plane. An example of a fractal dimension is that of Koch’s
curve (Fig. 2.36). In order to measure its length, one starts with a ruler that is one-
third of the breadth of the object (the curve). This ruler corresponds to each line
inside the curve in the top panel. The line fits inside the curve four times. The ruler
is then shortened to a third of its original length, as shown in the bottom diagram.
Because this shorter ruler can fit into more “crannies” of the curve, the length of
curve obtained using this ruler is greater than that given by the original ruler, (by
four-thirds). For each change in state, the length measured is multiplied by the same
fraction, four-thirds. The fractal dimension is then defined as the ratio of the loga-
rithm of 4 to the logarithm of 3, or 1.2618... The intuitive sense of this “fractal”
number is obvious: the curve is crinkly, so it fills more space than a one-dimensional
straight line does. However, it does not completely fill the two-dimensional plane.

phase time-history power auto- Lyapunov- (fractal) KS-
portrait response spectrum | correlation | exponents dimension entropy
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Table 2.1. Dynamic complexity of attractors for 3-dimensional systems [2.72]
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Fig. 2.36. Fractal dimension of Koch’s curve

Using analog recursive procedures, we can construct Hilbert and Sierpinski
curves that fill a plane with self-similar patterns in iterated steps of increasing den-
sity. These curves seem to be more than lines, with one dimension, but less than
planes, with two dimensions. Their dimensions are “fractions” between the integers
one and two. The fractal dimension can be illustrated by the geometrical dimen-
sion D of similarity. For a Euclidean object of dimension D, the length, area or
volume of an object with edge length ¢ is proportional to £”. For example, a square
with edge length ¢ has an area of 2, while a cube has a volume of &3. For self-
similar objects, one way to measure the length, area or volume of an object is to
count the number of self-similar copies. If there are N copies each with an edge
length ¢, then the length, area or volume of the object is related to its dimension:
N is proportional to ¢”. Thus, one obtains D ~ logN/loge. For Koch’s curve,
the number of self-similar copies is N = 4 and the edge length is ¢ = 3. If phase
portraits of chaos attractors have a fractal dimension (Table 2.1), they are termed
“strange.” Time series are sometimes characterized by statistical self-similarity on
different scales (e.g., Fig. 8.16). Thus, a fractal dimension could hint at chaos, but
its presence alone does not indicate chaos.

Self-similar mathematical objects consist exclusively of smaller self-similar
copies of themselves. Our procedure for calculating the dimension of a fractal ob-
ject is only useful if we know the number N of self-similar copies and the size ¢ of
the original relative to each copy. For practical applications (e.g., a map or picture
of a fractal object or real objects in the three-dimensional world), we need a better
procedure for estimating the fractal dimension. The following procedure comes di-
rectly from the definition of the fractal dimension. In a first step, all points in the
object are covered with N(gg) or cubes of edge length (. This step is repeated with
squares or cubes of edge length 1 = ¢ /2, then with &2 = €1/2, and so on. By doing
this, we obtain a function N(¢) sampled at the values ¢ = ¢, €1, ... In theory, the
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dimension D is defined by limN(¢) = k - ¢~P with a constant k. In practice, D can
be estimated as D ~ (log(N(e;+1)/N(e;)))/(log(e;i/€i+1)). However, the squares or
cubes should not be made smaller than the cells or particles that are considered to
be the building blocks of the object [2.73].

Intuitively, a fractal is a pattern or object whose parts echo the whole, only
scaled down. By contrast, a multifractal has more than one scaling ratio in the same
object. Some parts of the object shrink quickly, others slowly. Multifractals resem-
ble the way in which many aspects of nature really work more closely than fractals.
Different clusters are formed on the surface of the Earth in multifractal processes;
they are not always distributed and scaled in the same way. On a stormy day, the
wind velocities form clusters of high gusts interspersed with gentler breezes. One
can think of a multifractal as being composed of an infinite hierarchy of differ-
ent fractal sets. An example is given in Fig. 2.37, which shows a hierarchy for the
vertical cross-section of stratified turbulence. The generic multifractal process of
turbulence is a cascade of cells with different distributions of whirls. Mathemati-
cally, multifractals are defined by two groups. One determines the statistics (more
precisely, they vary as a function of scale), while the second defines the notion of
scale itself [2.74].



3 Complex Systems and the Evolution of Life

How can one explain the emergence of order in the Darwinian evolution of life?
In the history of philosophy and biology, life was explained teleologically by
non-causal (“vital”) forces aiming at some goals in nature. In a famous quotation
Kant said that the “Newton for explaining a blade of grass” could never be found
(Sect. 3.1). Boltzmann could show that living organisms are open dissipative sys-
tems which do not violate the second law of thermodynamics: Maxwell’s demons
are not necessary to explain the arising order of life in spite of the increasing en-
tropy and disorder in closed systems according to the second law. Nevertheless,
in the statistical interpretation from Boltzmann to Monod the emergence of life is
only a contingent event, a local cosmic fluctuation at the boundary of the universe
(Sect. 3.2). In the framework of complex systems the emergence of life is not con-
tingent, but necessary and lawful in the sense of dissipative self-organization. The
growth of organisms and species is modeled as the emergence of macroscopic pat-
terns caused by nonlinear (microscopic) interactions of molecules, cells, etc., in
phase transitions far from thermal equilibrium (Sect. 3.3). Even ecological popu-
lations are understood as complex dissipative systems of plants and animals with
mutual nonlinear interactions and metabolism with their environment (Sect. 3.4). In
the life sciences, relations between physiological, morphological or ecological vari-
ables often lead to power laws with an underlying fractal process. Complex organs
like the lungs or heart are obviously structured fractally. Power laws are important
criteria for complexity (Sect. 3.5). Therefore, Spencer’s idea that life is determined
by a structural evolution with increasing complexity can be mathematized through
complex dynamical systems. Has the “Newton of life” been found? The theory of
complex dynamical systems does not explain what life is, but it can model how
forms of life can arise under certain conditions. Thus, our existence remains a source
of wonder to us just as it did for our ancestors, even if we will eventually be able to
model the complex dynamics of life.

3.1 From Thales to Darwin

Before we discuss complex systems and the evolution of life, let us have a glance at
early philosophies of life [3.1]. It is a surprising fact that many aspects of modern
ecology remind us of early ideas of self-organization. In mystic interpretations, life
was understood as a cyclic movement of growth and decay, birth and death. Animals
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and humans only survived in adapting to the great cycles of nature such as high tide
and low tide, the change of seasons, changing constellations of stars, fertile and
sterile periods of nature, and so on. Nature itself seemed to be a great organism, and
humans were considered as partly involved in its natural development. Mythologies
of natural religions and their rituals were used to conjure the forces of nature and to
live in harmony with the natural order.

Mythology was given up in favour of natural philosophy, when people asked
for the basic principles of life, and when they no longer accepted demons and gods
as personified forces of nature. In the 6th century B.C. the presocratic philosopher
Thales of Miletus declared water to be the fundamental source of life. Anaximander
seems to have some early ideas of evolution:

It is said that in the wet element the first living beings come to be, in a husk of prickly
rinds; with increasing age they climbed onto the dry element, the rind tore of on all sides and
so, for a short time they took on a different live form. [3.2]

Regarding the derivation of humans, Anaximander expressed an utterly modern
conception. Observing the long period that human children need for care and pro-
tection, he drew the conclusion that if they had always required that, humans would
have not been able to survive. So, earlier they must have been different. Empedo-
cles explained the processes of life with certain mixtures and transformations of the
familiar elements water, air, fire, and earth.

While these organic explanations of life seemed to be intuitively convincing
for former contemporaries, Democritus’ atomism with his reduction of life to the
interaction of invisible atoms was considered as rather abstract. Even consciousness
and the soul of man was explained by microscopic interactions of tiny material
elements. So, Democritus and his school were not only attacked as materialists, but
as atheists too. Plato tried to model the first elements of matter and their combination
by geometric figures and constructions.

From a modern scientific point of view, Democritus’ atomism and Plato’s math-
ematical models were early reductionist programs for life. They tried to reduce phys-
iological and biological processes to the interactions of physical elements. But the
idea of explaining the changing and pulsating processes of life on the basis of the
rigid and dead figures of geometry or material atoms must have seemed thoroughly
unnatural, speculative, and far-fetched to the contemporaries of that time. In short,
“real” life seemed to be hopelessly “complex”, and Euclid’s mathematics too “sim-
ple”. So, Euclid’s mathematics was reserved for the “superlunar” world of stars, but
not applied to the “sublunar” world of earthly life.

This is where the Aristotelian philosophy of life begins. While Plato, in the
Pythagorean tradition, drew his concept from geometry, Aristotle formulated his
concept of processes in nature mainly on the basis of the ways in which living
organisms such as plants and animals function. The processes and courses of life
are known to us from everyday experience. What is more obvious than to com-
pare and explain the rest of the world, which is unknown and strange, with the
familiar? According to Aristotle, the task of physics is to explain the principles and
functions of nature’s complexity and changes. In modern terms, Aristotle rejected



3.1 From Thales to Darwin 89

atomic reductionism as well as the mathematization of life as speculative and unre-
alistic.

Life was defined by the feature of self-movement, in contrast to a dead stone
which must be pushed from outside in order to move. In this Aristotelean sense, life
meant “having a soul”, which was understood as an organizing force (entelechy)
of matter (vitalism). In modern terms, the self-organisation of life was interpreted
by Aristotle as a functionally governed process aiming at certain “attractors” of
purposes (teleology). For instance, a tree grows out of a seed with the purpose of
reaching its final form. In modern terms, the change of forms characterizing the
growth of an organism is something like the (qualitative) evolution of an order pa-
rameter which Aristotle called the “potentiality” of that organism. But, of course, the
main difference compared to modern concepts of order parameters is the fact that
Aristotle criticized any reduction of macroscopic forms to atomic or microscopic
interactions.

It is noteworthy that Aristotle proposed a continuous scale of more or less an-
imated states of nature (scala naturae) and denied an absolute contrast of “alive”
and “dead”. He was always seeking for the intermediate or connecting links be-
tween organisms with different complexity. For instance, for a Greek like Aristotle,
living by the Mediterranean Sea with its plentiful flora and fauna, it was easy to
observe organisms like water-lilies “which may be doubted to be animals or plants,
because they grow to the floor like plants, but eat fishes like animals” [3.3]. On the
background of continuity, Aristotle suggested a kind of biogenetic law: “In the be-
ginning the fetus of an animal seems to have a kind of life like a plant; during its
later development, we may speek of a sensitive and thinking soul” [3.4].

Aristotle was not only a theorist, but one of the first observing botanists, zo-
ologists, and physiologists. He designed a taxonomy of plants and animals accord-
ing to different features, and tried to describe the physiological processes of life.
His leading paradigm of life was the idea of a self-organizing organism, rejecting
any atomic, molecular, or anorganic reductionism. Aristotle’s philosophy of life has
overshadowed the development of biology until today.

In the Roman period, even medicine was influenced by Aristotelean tradition.
Galen, the physician of the Roman emperor Marcus Aurelius, taught that organs
had to be adapted completely to their functions in our body. Following Aristotelean
teleology, he described the digestive organs selecting the “purposeful” parts of food
for the life processes and separating the “useless” ones. In the Middle Ages, Al-
bertus Magnus combined Aristotelean philosophy of life with Christianity. On the
background of Aristotle’s teleology, Albertus developed an early ecology demand-
ing that humans have to live in harmony with their natural environment. Organisms
and their environments are connected with each other by numerous exchanges of
air, food, excreta, etc. which are in a natural balance (“equilibrium’) governed by
divine ordinances. Albertus thought that even the health of the human soul depends
on a healthy environment with healthy air, climate, plants, and animals. Soul and
body are not separated, but an organic whole.

The decisive condition of modern physics was the connection of mathematics,
observation, experiment, and engineering which was realized by Galilei in the Re-
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naissance. Newton founded a new mathematical and experimental philosophy of
nature which he called Philosophiae naturalis principia mathematica (1687). Ge-
ometry and mechanics became the new paradigm of natural sciences. In the history
of science this period is called the mechanization of nature, which was imagined
to be nothing else than a huge mechanical clock. The mathematician and philoso-
pher René Descartes and the physicist Christian Huygens taught that every system
in nature consists of separated elements like the cog wheels of a clock. Every ef-
fect of nature was believed to be reducible to linear causal chains like sequences of
cog wheels of a clock. Obviously, Cartesian mechanism is contrary to Aristotelian
holism.

Even the physiology of life processes should be explained mechanically. The
heart, for instance, was considered as a pumping machine. In general, Descartes
believed that the motions of an animal and human body can be derived from the
mechanism of organs “and that with the same necessity as the mechanism of a clock
from the position and form of its weights and wheels” [3.5]. The anatomy of human
bodies which was practised by dissection since the Renaissance was an application
of the analytical method of Descartes. According to Descartes, each system can be
separated into its basic building blocks, in order to explain its functions by the laws
of geometry and mechanics.

The Italian physicist and physiologist Borelli (1608—-1679) founded the so-
called iatrophysics as an early kind of biophysics. He transferred a famous quotation
of Galileo from physics to biology, and declared in his book De motu animalium
(About motions of animals) emphatically:

As the scientific recognition of all these things is founded on geometry, it will be correct
that God applied geometry by creating animal organisms, and that we need geometry for
understanding them; therefore it is the only and suitable science, if one wants to read and
understand the divine script of the animal world. [3.6]

While Descartes still believed in an immortal soul of man, Lamettrie reduced
man to an automaton without soul, according to his motto L’homme machine (1747).
Human and animal bodies were only distinguished by their level of complexity and
organization. After physics, teleology in the tradition of Aristotle should be elimi-
nated in physiology and medicine, too. During the Enlightenment, the mechanism of
life was understood as materialistic and atheistic philosophy. The following story by
Voltaire about Lamettrie is rather amusing: when Lamettrie suddenly fell ill during
a plentiful banquet, and died because of indigestion a few days later, the God-fearing
contemporaries were said to be thankful about the fact that a materialist had to die
because of his own insatiability.

Nevertheless, some Aristotelean concepts were discussed during the age of
mechanization. For instance, Leibniz assumed a hierarchical order of nature with
a continuous scale of animation from the smallest building blocks (“monads”) to
the complex organisms. Leibniz tried to combine Aristotelean ideas with physical
mechanics, and became one of the early pioneers for a theory of complex dynamical
systems. Concerning the status of man in nature, Leibniz declared:
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Thus, every organic body of a living being is a kind of divine machine or natural au-
tomaton surpassing all artificial automata infinitely. [3.7]

Inspired by Leibniz, the zoologist Bonnet (1720-1793) proposed a hierarchy of
nature (“Echelles des étres naturelles”) with a measure of complexity which seems
to be rather modern. Bonnet underlined “organization” as the most important feature
of matter. An organization realizing the most effects with a given number of different
parts is defined as the most perfect one [3.8].

At the end of the 18th century, Immanuel Kant criticized the application of
Newtonian mechanics to biology: “The Newton explaining a blade of grass can-
not be found.” The main reason for Kant’s critique is that in the 18th century the
concept of a machine was only made precise in the framework of Newtonian me-
chanics. Thus, in his famous Kritik der Urteilskraft, Kant wrote that an organism
“cannot only be a machine, because a machine has only moving force; but an or-
ganism has an organizing force . .. which cannot be explained by mechanical mo-
tion alone” [3.9]. Kant also criticized Aristotelean teleology and the assumption of
“aims” and “purposes” in nature as a metaphorical anthropomorphism. An organism
must be described by the model of a “self-organizing being”.

Like Kant, Goethe rejected the materialistic-mechanical explanation of life
which was defended by, e.g., the French encyclopedist Holbach in his Systéme de
la Nature. For Goethe, the mechanist model of nature is “grey, ... like death ...
like a ghost and without sun” [3.10]. He believed that life develops organically and
harmonically like the metamorphosis of a plant or the mental maturity of man.

On the background of Goethe’s age and Kant’s critique of mechanistic rational-
ism, a romantic philosophy of nature arose in Germany in the beginning of the 19th
century. It was a renaissance of the organic paradigm against mechanism. Friedrich
Schelling (1775-1854) designed a “science of the living” assuming that organiza-
tion and reproduction are main features of the living [3.11]. Oken (1779-1851),
physician and philosopher of nature, described a “planetary process”, in which
living organisms were explained by a synthesis of magnetism, chemism, and gal-
vanism. From a modern point of view, “self-organization” and “self-reproduction”
were far-reaching concepts of the romantic philosophy of nature. But in those days
they were only speculations or inspired intuitions, because the experimental and
mathematical base was still missing.

The peaceful picture of an organic and harmonic metamorphosis was soon
pushed aside by biology. Charles Darwin’s theory of evolution does not need teleo-
logical forces to explain life. The “survival of the fittest” (Herbert Spencer) depends
on the greater advantage of selection with respect to certain conditions of the envi-
ronment (for instance nourishment, climate) [3.12]. Darwin was inspired by some
ideas of Lamarck (1744-1829), for instance the heredity of acquired properties.
Darwin’s evolution is governed by (genetic) variability of species (“mutation”) and
natural selection driving development in one direction. Spencer taught that life is
driving to more complexity, controlled by selection. Many contemporaries consid-
ered Darwinism not only as a theory of natural sciences. Darwin’s theory seemed
to present a scenario of life with a strong analogy to the society of the 19th cen-
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tury. The “selection of the fittest” became a slogan of the “social Darwinism” as
a political attitude.

In the second half of the 19th century, Haeckel generalized the evolution of life
from monocellular organisms to humans. But in those days the theory of evolution
could not be compared with the highly confirmed physical and chemical theories.
Darwin could only deliver some comparative studies of morphology. He described
the variability of species and natural selection, but he could not explain it by math-
ematized and testable laws like physics. Mendel’s laws of heredity (1865) were still
unknown to Darwin as well as to many contemporaries. Nevertheless, one of the
great physicists of the 19th century, Ludwig Boltzmann, declared, casting a retro-
spective glance at his century:

When you ask me for my deepest conviction if our century will sometimes be called
the iron century or the century of steam or the century of electricity, then I answer without
hesitation, it will be called the century of Darwin. [3.13]

3.2 Boltzmann’s Thermodynamics and the Evolution of Life

In the 19th century, the dominant topics of natural science, social science, and phi-
losophy became “evolution” and “history”. While the biological sources of these
ideas date back to Darwin’s theory of evolution, physical examples of irreversible
processes were at first discussed in thermodynamics. The initial principles of ther-
modynamics were developed by Carnot (1824). His principles were discovered in
analyzing mechanical forces produced by steam engines. Roughly speaking, the
first law of thermodynamics says that energy cannot be created or destroyed. De-
spite mechanical work, electrical energy, or chemical transformations that energy
is constantly undergoing in nature, the total energy within a closed system remains
unchanged. In accordance with Einstein’s equivalence of mass and energy (compare
Sect. 2.2), the first law has been enlarged to a conservation principle of mass and
energy in this century.

The basic importance of the second law in the context of physical evolution was
recognized by Clausius (1865) who borrowed the term “entropy” from the Greek
word for evolution or transformation [3.14]. Mathematically, the entropy change
of a system is defined by the reversible heat addition to the system divided by its
absolute temperature. According to Ilya Prigogine, one must refer to the fact that
every system has surroundings [3.15]. Thus, the variation of entropy during a time
moment is more generally the sum of the rate at which entropy is supplied to the
system by its surroundings and the rate at which entropy is produced inside the sys-
tem. The second law of thermodynamics demands that the rate at which entropy
is produced inside the system is greater than or equal to zero. For closed and iso-
lated systems without an entropy supply from (or sink to) the surroundings we get
the classical statement of Clausius that entropy increases or remains constant when
thermodynamic equilibrium has been reached. In other words, there is no process in
nature involving physical, chemical, biological, or (as we shall see) informational
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transformations occurring spontanously without some energetic cost in terms of en-
tropy.

Entropy is a macroscopic property of systems like volume and size. Therefore,
thermodynamics was at first only a phenomenological theory describing possible
heat distributions of macroscopic systems. Boltzmann was not happy with this pos-
itivistic attitude and tried to deliver a statistical-mechanical explanation reducing
such macroscopic states of systems as, e.g., heat to the mechanics of microscopic
molecules. Inspired by the microstate-macrostate distinction which has become cru-
cical for the theory of evolution, Boltzmann gave thermodynamics its first statistical
interpretation [3.16]. Irreversibility in statistical thermodynamics is based on this
distinction.

In general, statistical mechanics explains a macrostate like density, temperature,
etc., by microstates. In this sense, an observable macrostate is said to be realized by
a large number W of microstates. In order to define the number W, a large number of
independent mechanisms of the same kind like atoms, molecules, crystals, etc., are
considered. They develop their microstates according to their equations of motion
with different initial phase states. If a macrostate is realized by W microstates of
this kind, then Boltzmann’s entropy quantity H of the corresponding macrostate
is assumed to be proportional to the logarithm of W, i.e., H = k In W with the
Boltzmann constant k. In a continous phase space, the Boltzmann expression can
be generalized by an integral of a velocity distribution function. For Boltzmann,
H is a measure for the probability of molecular arrangements corresponding to the
observable macrostates of the system.

Boltzmann’s reductionism met historically with violent objections from physi-
cists, mathematicians, and philosophers. Positivistic physicists and philosophers like
Ernst Mach criticized Boltmann’s hypothesis of molecules and atoms which were
not empirically confirmed in those days. But after their successful discovery this
critique is only of historical interest.

One of the most important objections is Loschmidt’s reversibility paradox.
Since the laws of mechanics are invariant (symmetric) with respect to the inver-
sion of time, to each process there belongs a corresponding time-reversed process.
This seems to be in contradiction with the existence of irreversible processes. Boltz-
mann answered that the second law of thermodynamics in the form of his so-called
H-theorem cannot be derived only from the (reversible) mechanical laws, but re-
quires the additional assumption of extremely improbable initial conditions, too.
The second law is assumed to hold true with very high probability, but not with se-
curity. Irreversible processes are only frequent or probabilistic, reversible ones sel-
dom and improbable. Thus, the second law allows local deviations or fluctuations
(for instance Brownian motion) [3.17].

Another objection, by Henri Poincaré and Ernst Zermelo, underlined that each
state of a mechanical system with finitely many degrees of freedom must recur at
least approximately after a certain time [3.18]. Thus, an arrow of time connected
with an increase of entropy cannot exist. Boltzmann answered that the times of re-
turn become extremely long with increasing number of degrees. Cosmologically,
there are two possible points of view in the sense of Boltzmann: (1) the universe
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started with extremely improbable initial conditions, or (2) when the universe is
large enough, there may be deviations from the equal distribution in some places.
Figure 3.1 illustrates Boltzmann’s hypothesis of fluctuations. He assumed that the
whole universe is in thermal equilibrium, i.e., in maximum disorder. Boltzmann be-
lieved that both directions of time are completely symmetric. So, the curve of local
entropy increases similarly in both directions of time, becoming flat with maximum
entropy [3.19].

Life as a developing system of order is only possible in regions with strongly
changing entropy, i.e., on the two slopes of the entropy curve in Fig. 3.1. The two
arrows denote Boltzmann’s local worlds in which life may occur. So, in the sense of
Boltzmann, there cannot be an objectively unique arrow of time, but only one of the
two possible directions of increasing entropy which people subjectively experience,
living in one of the two possible local worlds on the slopes in Fig. 3.1. Before we
criticize Boltzmann’s view in detail, let us have a glance at his theory of life against
the background of his thermodynamics of thermal equilibrium, which overshadowed
science in this century until recently.

time arrow time arrow
. ) only for this interval only for this interval
time coordinate = e — P — time coordinate

L

equilibrium

AN entropy curve determines
the direction of time

Fig. 3.1. Entropy curve in Boltzmann’s universe in thermal equilibrium with symmetric di-
rections of time

Ludwig Boltzmann (1844—1906) was the first scientist who tried to reduce the
biological theory of evolution to the thermodynamics and chemistry of the 19th
century. For scientists at the end of the last century, it was a great problem that the
second law of thermodynamics seemed to forecast the final disorder, death, and de-
cay of nature, while Darwinian evolution seemed to develop living systems of order
with increasing complexity. Of course, the second law is reserved to closed sys-
tems, and living systems must be open, in a permanent exchange of energy, matter,
and information with their environment. Nevertheless, how is the local increase of
complexity possible in a sea of disorder and thermal equilibrium?

Boltzmann suggested some explanations which already remind us of modern
biochemical concepts of molecular autocatalysis and metabolism. The origin of first
primitive living beings like cells was reduced to a selection of inanimate molecu-
lar building blocks which Boltzmann imagined as a process like Brownian motion.
Plants as cellular aggregates are complex systems of order. Thus, in the sense of
the second law of thermodynamics they are improbable structures which must fight
against the spontaneous tendency of increasing entropy in their body with sunlight.
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Because of the high temparature of the sun, the earth gets energy with relatively low
entropy which can be used to compensate the spontaneous increase of entropy in the
plants. This process is realized by photosynthesis, which was physically explained
by Boltzmann in 1886:

Thus, the general struggle of life is neither a fight for basic material . . . nor for energy . ..
but for entropy becoming available by the transition from the hot sun to the cold earth. [3.20]

Boltzmann extended his physically founded theory of evolution to the history
of the nervous system and the emergence of memory and consciousness. He argued
that the sensitivity of primitive organisms to outer impressions has led to the devel-
opment of special nerves and organs of seeing, hearing, feeling, moving, etc.:

The brain is considered as the apparatus or the organ to develop models of the world.
Because of the great utility of these models for the survival of the race, the human brain has
been developed according to Darwin’s theory with the same perfection as the giraffe’s neck
or the stork’s bill. [3.21]

Even the ability to develop concepts and theories was explained by evolution.
Boltzmann tried to justify human categories of space, time, and causality as tools
developed by the brain for the racial survival of the fittest. He did not hesitate to
extend biological evolution even to the socio-cultural development and history of
mankind. In 1894, the Viennese physician S. Exner wrote about the subject “Moral-
ity as weapon for the struggle of life” in the sense of Boltzmann. In 1905, Boltzmann
himself gave a lecture with the amazing title “Explanation of the entropy law and
love by the principles of the probability calculus”. Obviously, Boltzmann’s Darwin-
ism had reached its limits.

At the beginning of this century, life still could not be explained by physical
and chemical foundations. Classical mechanics, the foundation of natural sciences
in the 17th and 18th centuries, assumed deterministic and time-reversible laws of
nature delivering no explanation of irreversible processes of life. A frictionless pen-
dulum clock moves time-reversibly as an oscillating mechanical system, in principle
without limit. Humans are born, grow, and die — why? The thermodynamics of the
19th century deals with irreversible processes of closed systems being driven to
a state of maximum entropy or disorder. But how can the development of complex
living systems be explained? In the sense of Boltzmann’s statistical interpretation,
the emergence of order and biological complexity can only be an improbable event,
a local cosmic fluctuation “at the edge of the universe” (as Jacques Monod said
later), which will disappear without significance for the whole universe in thermal
equilibrium [3.22]. Following Monod, we have only the philosophical choice of an
existentialism & la Camus, to perish in a finally senseless biological and cultural evo-
lution with human dignity. The tragic death of the genius Ludwig Boltzmann, who
committed suicide in 1909, seems to be a symbol of this attitude. But Boltzmann’s
thermodynamics did not definitely explain the origin of life. He only proved that his
statistical interpretation of the second law is not contrary to Darwinian evolution.

After classical mechanics in the 17th and 18th centuries and thermodynam-
ics in the 19th century, quantum mechanics has become the fundamental theory
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of physics. In spite of Heisenberg’s principle of uncertainty, the laws of quantum
mechanics and classical mechanics are characterized by the reversibility of time.
Concerning the reductionist program for treating complexity, it was a great success
that the quantum chemistry of molecules could be explained by the laws of quan-
tum mechanics. In 1927, Heitler and London succeeded in modifying Schrédinger’s
equation of atomic and subatomic systems for molecules. There are no particular
chemical forces in chemistry besides the well-known physical forces. After physics,
teleology seemed to be eliminated in chemistry.

But is chemistry completely reducible to physics [3.23]? Definitely only in a re-
stricted sense! The structural models of molecular orbits can only be introduced by
abstraction from quantum mechanical correlations. While, for instance, the elec-
trons of an atom cannot be distinguished in the sense of the Pauli principle, they
are used by chemists as quasi-classical objects moving around the atomic nucleus in
well-distinguished orbits. There are well-known chemical procedures of abstraction
(Born—Oppenheimer and Hartree—Fock procedure) for introducing electronic orbits
in approximately quasi-classical models of the non-classical quantum world. Further
on, we have to consider practical limitations of computability with Schrédinger’s
equations for complex molecules in spite of all the fantastic successes of numerical
quantum chemistry. This weak reduction of chemistry to physics seemed to prove
that scientists should continue on the path of reductionism, in order to reduce el-
ementary particles, atoms, molecules, cells, and finally organisms to physics and
chemistry.

In the 1920s and 1930s, the struggle between physical reductionism and neovi-
talism could not actually be decided. For example, the physicist Heitler, the biologist
Driesch, and the philosophers Bergson and Whitehead supported explicit neovitalis-
tic opinions in the Aristotelean tradition [3.24]. They argued that particular biolog-
ical laws may sometimes invalidate the laws of physics and chemistry. From Aris-
totle to Goethe and Schelling, teleological self-organization and the spontaneity of
life from living cells to consciously acting humans have been mentioned to demon-
strate that physical reductionism is impossible. Wholeness is a primary feature of
an organism which cannot be reduced to the sum of its building blocks. Inspired
by Niels Bohr’s so-called Copenhagen interpretation of quantum mechanics, some
physicsts tried to mediate between physicalism and vitalism with Bohr’s concept
of complementarity. Bohr used complementarity to justify such excluding concepts
of quantum mechanics as, e.g., particle—wave dualism. Thus, complementarity is
assumed for the two classes of physical-chemical and biological laws, which are
believed to be incommensurable. We must remember that complementarity is not
a physical law, but a philosophical interpretation of quantum mechanics which was
not supported by Erwin Schrodinger. He knew that in the 1930s and 1940s the strug-
gle of physicalism and vitalism could not be decided, and complementarity was only
a concept to describe the status quo. In his book What is Life? Schrédinger wrote:

After all we have heard about the structure of living matter we must be ready for the
fact that it works in a way which cannot be reduced to the usual physical laws. The reason
is not that a “new force” or something similiar governs the behavior of the single atoms in
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a living organism, but because its structure differs from all that we have ever studied in our
laboratories. [3.25]

Schrodinger recalls the image of an engineer who is familiar with a steam en-
gine and wants to explore an electromotor. As the two motors work in quite different
ways, he will hit upon the idea that the electromotor is driven by a ghost. In the tra-
dition of Leibniz, Schrédinger expects to understand a living organism as “the finest
master piece which was ever achieved according to the leading principles of God’s
quantum mechanics” [3.26].

The problem for Schrodinger was that he as well as Monod tried to describe
the emergence of order and life in the framework of Boltzmann’s thermodynamics.
He was right with his critique of teleological forces or ordering demons, which
were even postulated by physicists at the end of the last century. The fiction of
a demon which can reverse the increase of entropy in a closed system according to
the second law without outer influence, and therefore cause it to act as a perpetuum
mobile of the second kind, dates back to James Clerk Maxwell. In 1879 William
Thompson (the later Lord Kelvin) introduced “Maxwell’s sorting demon”, which
was able to separate the gas molecules in a closed container in static equilibrium
and with a homogeneous distribution of molecular velocities spontaneously into
two parts with faster and slower molecules [3.27].

Obviously, “sorting demons” are an ad hoc hypothesis which cannot be ex-
plained in the physical framework of the 19th century. Boltzmann’s thermodynamics
as well as Newton’s mechanics are insufficient to model the emergence of complex
order, and thus the origin and growth of living systems. The first and second laws of
thermodynamics are subjected to an important condition that is generally not true of
all nature. These laws assume that all energy exchanges take place in a closed and
isolated system. As energy and material fluxes through most regions of the universe,
natural systems are rarely closed. As solar energy bombards the earth, it cannot be
considered as a closed and isolated system.

So the first and second laws of thermodynamics are not false, but they are em-
pirically restricted to approximately isolated microscopic subsystems, cosmic sys-
tems, or prepared conditions in laboratories. The situation can be compared with
Newton’s classical mechanics. After Einstein’s special theory of relativity, it has not
become false, but it is no longer the universal scheme of physics, and is restricted
to motions that are slow relative to the speed of light. Most of nature must be mod-
eled by dynamical systems which do not live in Boltzmann’s general condition of
equilibrium, because they are subjected to energy and material fluxes.

Historically, fundamental contributions such as those of Maxwell or Gibbs deal
uniquely with situations corresponding to equilibrium or to situations infinitesi-
mally near to equilibrium. Pioneering work on non-equilibrium thermodynamics
was started by, e.g., Pierre Duhem at the beginning of this century. But his work
remained unnoticed until Onsager (1931), and later the Prigogine school, the Haken
school, and others began to study the behavior of complex systems far from ther-
mal equilibrium. From a historical point of view, the situation can be compared
with the development of chaos theory and complex Hamiltonian systems (compare
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Sect. 2.3). Chaotic phenomena were already discovered and well known to Poincaré,
Maxwell, and others. But the mathematical problems connected with nonlinear com-
plex systems deterred most scientists from searching for corresponding models.

3.3 Complex Systems and the Evolution of Organisms

Open systems not only have internal sources of entropy production but also an ex-
ternal source of entropy production associated with energy or mass transformations
to or from their surroundings. These systems maintain their structure by dissipation
and consumption of energy and are called “dissipative structures” by Ilya Prigogine.
We have already become acquainted with nonliving dissipative systems like fluids,
lasers, and clouds which are dependent on outside energy fluxes to maintain their
structure and organization. Nonequilibrium systems exchange energy and matter
with their environment, maintaining themselves for some period of time in a state
far from thermal equilibrium and at a locally reduced entropy state. Small insta-
bilities and fluctuations lead to irreversible bifurcations and thus to an increasing
complexity of possible behavior.

A mathematical theory of dissipative structures with nonlinear evolution equa-
tions seems to offer the framework for modeling Aristotle’s “sublunar” world of
growing and dying nature. It is amazing to recognize that Aristotle’s idea of a cyclic
nature corresponds to periodic attractors or limit cycle solutions of corresponding
differential equations. The cyclic nature of these systems allows them not only to
develop stability but also to develop a hierarchy of complex structures within them-
selves. A cycle of living systems as it was already described in antiquity becomes
autocatalytic by virtue of an evolutionary feedback.

The main idea was already expressed by Spencer and Boltzmann when they
assumed that a pre-biological system may evolve through a whole succession of
transitions leading to a hierarchy of more and more complex states. But, contrary to
Boltzmann, these transitions can only arise in nonlinear systems far from thermal
equilibrium. Beyond a critical threshold the steady-state regime becomes unstable
and the system evolves to a new configuration. Evolving through successive insta-
bilities, a living system must develop a procedure to increase the nonlinearity and
the distance from equilibrium. In other words, each transition must enable the sys-
tem to increase its entropy production. The evolutionary feedback of Ilya Prigogine,
Manfred Eigen, and others means that changing the control parameter of the system
beyond a certain threshold leads to an instability through fluctuations, which causes
increased dissipation and thus influences the threshold again.

It follows that life did not originate in a single extraordinarily unlikely event
and that the evolution of life did not proceed against the laws of physics. As we
have learnt, Boltzmann’s and Monod’s idea of a gigantic fluctuation which would
unfold over the time of biological evolution stems from equilibrium thermodynam-
ics. While the probability of a dissipative structure (for instance, a periodic temporal
process like a Bénard problem) is tiny in equilibrium statistical mechanics, it occurs
with probability one in conditions far from equilibrium. Thus, Prigogine can argue:
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Far from being the work of some army of Maxwell’s demons, life appears as following
the laws of physics appropriate to specific kinetic schemes and too far from equilibrium
conditions. [3.28]

In the mathematical framework of nonlinear complex systems, many models
have already been suggested to simulate the molecular origin of life. Complexity
on the molecular scale is characterized by a large potential number of states which
could be populated given realistic limits of time and space.

For instance, a typical small protein molecule contains a polypeptide chain which is
made of about 102 amino-acid residues. Given the 20 classes of natural amino acids, there are
20100 6r 10130 alternative sequences of this length. The DNA molecule that comprises the to-
tal genome of a single bacterial cell represents one or few choices out of more than 101000000
alternative sequences. Obviously, only a minute fraction of all such alternatives could have
been tested by nature. Mathematically, a sequence containing v residues of A classes allows
for (Z) (A — D alternative copies having substitutions at k positions. Figure 3.2 shows a gene
which codes for a sequence of 129 amino acids [3.29].

Certain microstates may strongly influence macroscopic behavior. Such fluctu-
ations may amplify and cause a breakdown of formerly stable states. Nonlinearity
comes in through processes far from the thermal equilibrium.

Classical and only necessary conditions for life demand: (1) self-reproduction
(in order to preserve a species, despite steady destruction), (2) variability and selec-
tion (in order to enlarge and perfect the possibility of a species, biased by certain
value criteria), and (3) metabolism (in order to compensate for the steady production
of entropy) [3.30].

Manfred Eigen has suggested a realization of these criteria by a mathematical
optimization process. In this model, the nucleation of a self-reproducing and further
evolving system occurs with a finite expectation value among any distribution of
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random sequences of macromolecules such as proteins and nucleic acids. The ini-
tial copy choice for self-reproduction is accidental, but the subsequent evolutionary
optimization to a level of unique efficiency is guided by physical principles. In this
model, life should be found wherever the physical and chemical conditions are fa-
vorable, although some molecular structures should show only slight similarity with
the systems known to us.

The final outcome will be a unique structure, e.g., an optimized molecular se-
quence. Darwin’s principle of the survival of the fittest is mathematized by an op-
timization principle for possible microstates of molecular sequences. It is assumed
that in simple cases biomolecules multiply by autocatalysis. For instance, two kinds
of biomolecules A and B from ground substances GS are multiplied by autocatal-
ysis, but in addition the multiplication of one kind is assisted by that of the other
kind and vice versa (Fig. 3.3a). In more complicated cases with more kinds of
biomolecules, the latter are assumed to multiply by cyclic catalysis (Eigen’s “hy-
percycles”) (Fig. 3.3b). This mechanism combined with mutations is able to realize
an evolutionary process.

Eigen suggests the following simplified model of an evolutionary optimiza-
tion [3.31]: the machinery of a biological cell is codified in a sequence of four chem-
ical substances A, T, G, C which consititute the genes. Each gene represents a func-
tional unit, which is optimally adapted to the special purpose of its environment.
The length of a gene in nature is seldom more than 1000 sequential positions. Thus
for 4 symbols, there are 41900 alternative genes (“mutations”) of length 1000. In sci-
entific notation that means about 10°%0 possibilities. In order to get an impression of
this huge number, we should recall that the content of matter in the whole universe
corresponds to 1074 genes and that the age of the universe is less than 10'® seconds.

Thus if all the matter of the universe since its very beginning (the “Big Bang”)
were used to alter and to produce new genes of length 1000 in each second, then by
today only 10°3 mutations could have been tested. Eigen concludes that genes which
represent optimal functional unities cannot be produced by random processes, but
must be developed by a self-optimizing process.

Mathematically, the process of adaptation can be imagined as a successive re-
placement of positions which aims at a final (“optimal”) sequence. This is a typ-
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Fig. 3.3a,b. Autocatalysis with two kinds of biomolecules (a) and cyclic catalysis (hyper-
cycles) with more kinds (b)
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ical interpretation of the problem-solving approach of computer science. In order
to solve a problem successfully, we must find an adequate spatial representation of
the self-optimizing strategies. Because of the huge numbers, a 3-dimensional space
is obviously not suitable. The length of strategies, i.e., the distance from a gene
to its optimal variant, is too long. One would go astray. Further, sequences with
a high degree of similarity cannot be represented adequately by a neighborhood in
a 3-dimensional space. Thus it is proposed to alter the dimensions in the following
way.

A sequence with n positions is defined as a point in n-dimensional space. For
two symbols 0 and 1 there are 2" alternative sequences, which are the points of the
space. Each point has n nearest neighbors, which represent the mutations differing
only in one position (“1-mistake mutation”). Between the two extremal points with
only O or only 1, there are n! possible connections. In Fig. 3.4a—d there are some ex-
amples of n-dimensional sequential spaces for the dual case. The great advantages
of these spaces are the very short distances and the dense network of possible con-
nections. As an example, the longest distance in a 1000-dimensional space is only
1000 units, in a 23-dimensional space with 10'# points only 23 units.

The 23-dimensional space suffices to represent all the points on the earth’s sur-
face in units of one meter. In this space optimal strategies can be given to find the
highest mountain in some region of the earth. For this purpose we introduce a valua-
tion function which associates each point with a numerical “height”. Imagine a tour
in the Alps. You have no fixed aim (for instance a special mountain), but a rough
idea of orientation: you want to wander “uphill” without losing too much height.
Mathematically, the gradient of your path is known and determines your decision
as to direction. In the real Alps you encounter 1-dimensional edges and passes in
the mountains, and your chances of reaching optimal points are restricted. In a 23-
dimensional space you can go in 23 directions and distinguish pathways with dif-
ferent gradients, i.e., k in direction “uphill” and 23 — k “downhill” (k < 23). The
chances of reaching optimal points in your neighborhood are very high.

In the n-dimensional sequential space of genes, the valuation of points is given
by “selection values”. Mutations do not arise completely irregularly or chaotically,
but depend on which predecessors occur in the distribution most frequently. The
question of which predecessors occur in the distribution most frequently depends
again on their selection value relative to the optimal variant in the distribution.
The selection values are not distributed irregularly, but in connected regions. For
instance, on the earth a high mountain like Mount Everest is not situated in flat
countryside, but among the Himalayas.

For the replication and self-reproduction of life, Eigen presupposes a self-
optimizing machinery of high efficiency. Freeman Dyson proposed a mathemati-
cal model, according to which primitive life systems first occur without the correct
machinery for replication and selection and fulfill only metabolic functions in re-
lations to their environment [3.32]. The essential characteristic of such molecular
systems is their homeostasis, i.e., the ability to maintain a stable and more or less
constant equilibrium in a changing environment. According to Dyson, the configu-
ration of self-replication mechanisms occurs only in a second step. The nucleic acids
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required for that purpose are explained by Dyson as “non-assimilated” byproducts
of the early metabolic life process, which first assumed a parasitic status in the
whole system, and then ultimately developed through symbiotic intermediate states
to fully-integrated functional mechanisms for reproduction and evolution.

The dual function of metabolism and replication in Dyson’s model has much
in common with the complex system of prebiotic evolution that was suggested by
Stuart Kauffman [3.33]. He rejects the idea that life sprung from an RNA world.
His hypercycle-like system is a complex autocatalytic network of reactions self-
organizing themselves in such a way that metabolism, as a macroscopic order state
of the system, becomes possible. Metabolism draws materials and energy from the
environment around to increase and maintain internal order. Thus, it is an open
dissipative system.

Examples of complex biological systems are genetic systems, nervous systems,
immune systems, and ecosystems, all of which are composed of a network of mul-
tiple interacting elements as agents. The nonlinear dynamics of these complex net-
works can only be modeled by some simplifications. So it is assumed that time is
discrete, and that the behavior of a network at one time depends on the state of
the network at a preceding time. Further on, the elements of a network have only
a limited number of different states, e.g., a gene is turned on or off, or a neuron is
firing or not firing. A network is a collection of connected elements as agents that
can be visualized by a set of nodes and a set of edges connecting pairs of nodes.
Each element is characterized by a single output and several inputs from elements
of the network. There is also a rule for each element telling what the output should
be given the inputs. In the case of Boolean elements, there are only two values
1 (“on”) or 0 (“off”). A rule determining a Boolean output by Boolean inputs is
called a Boolean function. The state of a Boolean network specifies whether each
element is “on” or “off”. For a network of n elements, there are 2" possible states.
Boolean networks of elements with a single input have only geometries of strings,
simple loops, and loops with strings. Thus, their dynamics are restricted to fixed
points, cycles, and multi-stability. When elements have more than one input, there
can be multiple, connected loops with much more complicated Boolean functions.
Examples of Boolean functions in biochemistry are control mechanisms, in which
activities of proteins and genes are regulated by circulating molecules. The regula-
tory gene networks in living organisms can be understood by the complex dynamics
of Boolean networks.

In order to manage the high complexity of gene networks in living organ-
isms, S. Kauffman suggested studying random Boolean networks. They are ordinary
Boolean networks, where the choice of connections and Boolean functions is made
randomly when the network is designed. For a network of n nodes with k inputs
of each node, there are 22k Boolean functions. A random-number generator selects
the inputs to each node. Kauffman programmed a computer to iterate the dynamics
of random Boolean networks. In his experiments, he found a hierarchy of dynam-
ical behavior with fixed points and cycles of increasing complexity, which can be
observed in real cells.
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In general, an evolutionary process is expected to produce new kinds of
species [3.34]. A species may be considered as a population of biomolecules, bacte-
ria, plants, or animals. These populations are characterized by genes which undergo
mutations producing new features. Although mutations occur at random, they may
be influenced by external factors in the environment, such as changing temperature
or chemical agents. At a certain critical mutation pressure new kinds of individu-
als of a population come into existence. The rate of change of these individuals is
described by an evolution equation. As these individuals have new features, their
growth and death factors differ. A change (mutation) is only possible when fluc-
tuations occur in the population and the environment. Thus, the evolution equation
determines the rate of change as the sum of fluctuations and the difference of growth
and death factors.

A selection pressure can be modeled when different subspecies compete for the
same living conditions (e.g., the same food supply). If the mutation rate for a special
mutant is small, only that mutant survives which has the highest gain factor and
the smallest loss factor and is thus the fittest. The competition procedure can be
simulated by the slaving principle: unstable mutants begin to determine the stable
ones. It is noteworthy that the occurrence of a new species due to mutation and
selection can be compared with a nonequilibrium phase transition of a laser [3.35].

A living cell is an open system with a flow of energy passing through it. As
already shown by Erwin Schrodinger, the energy flow creates conditions that allow
strong deviations from thermodynamic equilibrium. According to Prigogine et al.,
this results in models of dissipative self-organization and pattern formation, the pa-
rameters of which are set up by genetic as well as epigenetic constraints. However,
it would be misleading to expect that the process of self-organization in living cells
simply represents a reduced copy of the pattern-formation phenomena in macro-
scopic reaction—diffusion systems. The laws of physics, when applied at a differ-
ent scale typical for intracellular processes, can influence the mechanisms involved
and produce a wealth of new properties. This also makes spatial pattern formation
based on such reactions and diffusion impossible at very small length scales. The
temporal self-organization of chemical processes, expressed in the generation of
different periodicities and interactions between them, plays a fundamental role in
living cells [3.36]. Thus, from a methodological point of view, it is not sufficient
to know the general scheme of dissipative self-organization. But we must inquire
experimentally into its cellular application under particular temporal, spatial, and
chemical constraints.

Nevertheless, the link between physical-chemical systems and biological struc-
tures can be modeled by dissipative structures which may be involved in living sys-
tems. An important example is provided by the immune system, the disturbance
of which causes many very dangerous illnesses, such as AIDS. Concerning the
antibody-antigen kinetics, new types of antibodies can be generated successively,
where some antibodies act as antigens. This process leads to a very complex dy-
namics of the total system [3.37].

As we have learnt, among the most striking features of dissipative systems are
oscillatory phenomena. At the subcellular level, there are series of oscillating en-
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zymatic reactions. Glycolysis is a process of great importance in living cells. The
regulatory enzyme gives rise to oscillations with periods ranging from two to ninety
minutes. Experimental oscillations can be identified with limit cycle type oscilla-
tions arising when the uniform state is unstable.

Another metabolic oscillation is that of the periodic synthesis of cyclic AMP
in cellular slime molds. This species exhibits a transition between two different
states of organization. First, the amebas are independent and separate cells. The
transition to an aggregation and finally to a multicellular fruiting body takes place
after starvation. Single cells, deprived of nutrient, aggregate in concentric waves
around centers as a response to cyclic AMP being emitted from the centers. The
synthesis of cyclic AMP realizes the limit cycle type. The aggregation process itself
represents a self-organization occurring beyond instability.

Modeling this process in the framework of complex systems, we first consider
a population of separated and homogeneous cells. A control parameter denotes the
supply of nutrition which can be tuned to a critical value of starvation. Then the
cyclic AMP is emitted and overcomes the random diffusive motion of amebas, and
the uniform state becomes unstable. On the macroscopic level, the cells start to
differentiate into several functions and to cooperate. On the macroscopic level, in-
termediate states of aggregation can be observed which finally lead to the new form
of the mature multicellar body. Producing isolated spores, the life cycle of the slime
mold is repeated in the described states of phase transition (Fig. 3.5) [3.38].

The spontaneous emergence of organic forms has seemed to be a miracle of
life. Thus, in the history of science morphogenesis was a prominent counterexample
against physical reductionism in biology. Today, morphogenesis is a prominent ex-
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Fig. 3.5. Dynamical model of morphogenesis with states of cell formation (life cycle of the
slime mold)
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ample for modeling biological growth by complex dynamical systems. What would
Goethe have said about a mathematical model of his beloved metamorphosis? In
this context, pattern formation is understood as a complex process wherein iden-
tical cells become differentiated and give rise to a well-defined spatial structure.
The first dynamic models of morphogenesis were suggested by Rashevsky, Turing,
and others. Let us regard Rashevsky’s model for the morphogenesis of plant growth
(“phyllotaxis™) [3.39].

Figure 3.6a shows an idealized vine stalk sprouting one branchlet at a time with
a symmetrically rotating direction for the three branchlets. At the tip of the growing
stalk is a growth bud containing a mass of undifferentiated and totipotent cells. The
problem of phyllotaxis was the emergence of the growth pattern with differentiated
cells as the leaf bud cells, the branch cells, and others leading to the leaf buds and
branchlets. The Rashevsky model is based on a ring of growth cells around the
circumference of the stalk, near the growth bud at the top.

Fig. 3.6a. Dynamical model of morphogenesis with states of cell differentiation (Rashevsky
model of phyllotaxis) [3.39]

A cell is considered as a bag of fluid with homogeneous chemical composi-
tion. One of the chemical constituents is a growth hormone called morphogen. The
concentration x of this morphogen is the observed parameter of the model. As the
parameter varies between 0 and 1, the state space of the model is a line segment
(Fig. 3.6b). If the concentration of this morphogen exceeds a certain critical value,
the growth function of the cell is turned on, the cell devides, and a branchlet comes
into existence.

In the next step, two cells are considered as an open system in which one mor-
phogen can be exchanged between the two-celled system and its environment. If
the concentration of the morphogen in the second cell is denoted by y, then the
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Fig. 3.6b. A cell with concentration x of morphogen and the corresponding state space with
states x on a line segment

state of the whole system corresponds to a point (x, y) in the unit square which is
interpreted as the state space of the system. In Fig. 3.6c, the state space is divided
into four regions corresponding to the situations “cell 1 off and cell 2 growing” (A),
“both cells’ growth turned off” (B), “cell 1 growing, cell 2 off” (C), “both cells
growing” (D).

In the final step three cells form a ring with a uniform concentration of the mor-
phogen in each. The point (x, y, z) in the unit cube represents a state of the system. In
a three-dimensional space, the state space for the closed system of three cells with
one morphogen is realized by a triangle with x + y 4+ z = 1, i.e., the sum of the
concentrations is constant (Fig. 3.6d).

Fig. 3.6¢,d. A two-celled system with morphogens x and y and the corresponding state space
with states (x, y) in a unit square (c¢) and a three-celled system with a uniform concentration
of morphogens x, y, and z and the corresponding state space with states (x, y, z) in the unit
cube (d) [3.39]
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In Fig. 3.6e, a dynamical system with a periodic attractor is added to the state
space. One after another of the three cells is turned on, then off, periodically. In
Fig. 3.6f, the stalk is modeled as a stack of rings of cells, each ring represented as an
identical copy of the triangular model of Fig. 3.6d. Growth of the stalk upwards in
time is represented by associating time with the upward direction. The periodic at-
tractor of Fig. 3.6e is transformed to a periodic time series spiraling upwards in time.

Fig. 3.6e,f. A three-celled system with a periodic attractor (e) and the growth of a stalk mod-
eled as a stack of three-celled systems (Fig. 3.6d) with periodic attractor (Fig. 3.6e) trans-
formed to a spiraling time series (f) [3.39]

In this simplified dynamical model of morphogenesis, a central problem re-
mains open. How do the originally undifferentiated cells know where and in which
way to differentiate? Experiments indicate that this information is not originally
given individually to the cells but that a cell within a cellular system receives infor-
mation on its position from its surroundings. A famous example is the hydra, which
is a tiny animal, consisting of about 100 000 cells of about 15 different types. Along
its length it is subdivided into different regions, e.g., its head at one end. If a part
of a hydra is transplanted to a region close to its old head, a new head grows by
an activation of the cells. There is some experimental evidence that activator and
inhibitor molecules actually exist.

In a mathematical model due to Gierer and Meinhardt, two evolution equations
were suggested, describing the rate of change of activator and inhibitor concentra-
tions, which depend on the space-time coordinates. The change of rates is due to
a production rate, decay rate, and diffusion term. Obviously, inhibitor and activator
must be able to diffuse in some regions, in order to influence the neighboring cells
of some transplant. Further on, the effect of hindering autocatalysis by the inhibitor
must be modeled. In Fig. 3.7 the interplay between activator and inhibitor leads to
a growing periodic structure which is calculated and plotted by computer-assisted
methods [3.40].
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Fig. 3.7. Computer-assisted model of morphogenesis leading to a periodic structure [3.40]

To derive such patterns, it is essential that the inhibitor diffuses more easily
than the activator. Long range inhibition and short range activation are required for
a non-oscillating pattern. By methods of mathematical analysis, the evolving pat-
terns described by the evolution equations of Gierer and Meinhardt can be deter-
mined. A control parameter allows one to distinguish stable and unstable configura-
tions (“modes”).

At a critical value, the unstable modes start to influence and dominate the stable
ones according to the slaving principle. Mathematically, the stable modes can be
eliminated, and the unstable ones deliver order parameters determining the actual
pattern. Thus, actual patterns come into existence by competition and selection of
some unstable solution. Selection according to the slaving principle means reduction
of the complexity which stems from the huge number of degrees of freedom in
a complex system.

Biochemically, this kind of modeling of morphogenesis is based on the idea
that a morphogenetic field is formed by diffusion and reaction of certain chemicals.
This field switches genes on to cause cell differentiations. Independently of the par-
ticular biochemical mechanism, morphogenesis seemes to be governed by a general
scheme of pattern formation in physics and biology. We start with a population of
totipotent cells corresponding to a system with full symmetry. Then, cell differenta-
tion is effected by changing a control parameter which corresponds to symmetry
breaking. The consequence is an irreversible phase transition far from thermal equi-
librium. In Fig. 3.8, the phase transition of activator and inhibitor concentration is
illustrated in a computer simulation.

Independently of the common scheme of symmetry breaking, there is an impor-
tant difference between physico-chemical and biological pattern formation. Physical
and chemical systems lose their structure when the input of energy and materials is
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Fig. 3.8. Two computer-assisted models of morphogenesis simulating the phase transitions of
activator and inhibitor concentrations

stopped (compare, e.g., the laser or the Zhabotinsky reaction). Biological systems
are able to conserve much of their structure at least for a relatively long time. Thus
they seem to combine approximately conservative and dissipative structures.

Since antiquity, living systems were assumed to serve certain purposes and
tasks. Organs of animals and humans are typical examples of functional structures
which are explored by physiology and anatomy. How can the functional structures
of medicine be understood in the framework of complex systems [3.41]?

The complex bifurcations of vessel networks are examples of fractal structures.
The form of trees, ferns, corals, and other growing systems are well described by
fractals. In Chap. 5, we shall discuss recursive and computer assisted procedures
to simulate the fractal growth of trees. The vascular tree in the heart reminds us of
a complex network of branches and roots. This is quite natural when one appreciates
that vascular growth occurs by the budding of capillaries into regions of cell division
and differentiation.

Trees branching into open space have room to expand. But hearts, lungs, and
other organs occupy a limited space. The networks of nerves or vessels that pene-
trate them are servants to the principal occupants of the space. The structure of the
microvascular network is virtually completely defined by the cells of the organ. In
skeletal and cardiac muscles the capillaries are arrayed parallel to the muscle cells,
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with some cross-branches. The system is guided in its growth by the need for the
nerve or the vascular system to follow the lines of least resistance.

This leads to medically quite interesting questions of whether the fractal growth
and form of the vascular network can give rise to observed heterogeneities of flow
in the heart. A simple algorithm for a branching network as shown in Fig. 3.9 leads
to an appropriate probability density function of regional flow. The fractal system
of an organ has become a functional structure [3.42].
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Fig. 3.9. A branching vascular network of the heart with fractal recursions for branch lengths
starting with length L of a main stem vessel and decreasing lengths of following daughter
vessels by factors f7, and fg (subscripts L and S indicating longer and shorter vessels)

Fractal illustrations of a bronchial network are an inspiration for physicians to
apply these approaches to the lung. Physical systems, from galactic clusters to dif-
fusing molecules, often show fractal behavior. Obviously, living systems might often
be well described by fractal algorithms. The vascular network and the processes of
diffusion and transmembrane transport might be fractal features of the heart. These
fractal features provide a basis which enables physicians to understand more global
behavior such as atrial or ventricular fibrillation and perfusion heterogeneity.

As we have seen in Sect. 2.4, nonlinear dynamics allows us to describe the
emergence of turbulence, which is a great medical problem for blood flow in ar-
teries. Turbulence can be the basis of limit cycling, as can be shown with water
flowing through a cylindrical pipe. A variety of control systems produce oscilla-
tions. It might also be expected that some oscillating control systems show chaotic
behavior.

Atrial and ventricular fibrillation are the classic phenomena that appear chaotic.
The clinical statement on the heart rate in atrial fibrillation is that it is irregularly
irregular. The observations are that the surface of the atrium is pulsing in an appar-
ently chaotic fashion. However, the studies of reentry phenomena and of ventricular
fibrillation show that there are patterns of excitation, again illustrating that this is or-
ganized (“mathematical”) chaos. Fractal and chaotic algorithms for this have been
described. The two curves of Fig. 3.10 show a regular and chaotic heart rate [3.43].
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Fig. 3.10. Regular and chaotic heart rate

Nevertheless, chaotic states cannot generally be identified with illness, while
regular states do not always represent health. There are limited chaotic oscillations
protecting the organism from a dangerous inflexibility. Organs must be able to react
in flexible ways, when circumstances change rapidly and unexpectedly. The rates of
heart beat and respiration are by no means fixed like the mechanical model of an
idealized pendulum.

Single organs and the whole organism of the human body must each be un-
derstood as a system of nonlinear complex dynamical systems of high sensibility.
Tuning their control parameters to critical values may cause phase transitions of
irreversible developments representing more or less dangerous scenarios of human
health. Dissipative complex structures are open systems which cannot be separated
from their surrounding environment. Thus, on the background of the complex dy-
namical system approach, the classical “mechanical” view of medicine separating
the human body into particular parts for highly specialized experts must be heav-
ily criticized. The whole body is more than the sum of its parts. It is amazing to
recognize that from the modern view of complex dynamics an old demand of tra-
ditional physicians since antiquity is supported again, namely that medicine is not
only an analytical science, but an art of healing which has to consider the wholeness
of health and illness.

3.4 Complex Systems and the Ecology of Populations

Ecosystems are the results of physical, chemical, and biotic components of nature
acting together in a structurally and functionally organized system. Ecology is the
science of how these living and nonliving components function together in nature.
Obviously, in the framework of the complex system approach, ecology has to deal
with dissipative and conservative structures of very high complexity depending on
the complexity of the individual physical, chemical, and biotic systems involved in
them, and the complexity of their interactions [3.44].

In 1860, one of the first empirical case studies on ecology was provided by
Henri Thoreau in a lecture about “the succession of forest trees”. He observed that
nature displayed a process of plant development resulting in a sequential change of
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species that seemed to be observable and predictable. If the ecosystem is left undis-
turbed, the progression from bare field to grassland to grass-shrub to pine forest
and finally to an oak-hickory forest is a predictable, 150-year process, at least in
Massachusetts in the 19th century [3.45].

In nearly the same year, Charles Darwin published his famous theory of evo-
lution based on the mechanisms of variation and selection. Darwin saw progressive
changes by organisms resulting from competition and adaption to fit optimally into
ecological niches. It is the flux of energy from the sun and chemical reactions that
sets the process of life in motion and maintains it. Boltzmann already recognized
that the biosphere extracts a high energy-entropy cost for the organization of living
things. These processes are not only based on the biotic components of an ecosystem
but affect the nonbiotic components as well.

James Lovelock has proposed that living systems drive the major geochemical
cycles of the earth. He proposed that the global atmospheric composition was not
only developed by living systems but also controlled by the global ecosystem. The
“balance of nature” has become the popular title for a complex network of equilibria
characterizing the human ecosystem on earth [3.46].

The mathematical theory of complex systems allows one to model some simpli-
fied ecological case studies. The phenomena to be explained are, mainly, the abun-
dance and distribution of species. They may show typical features of dissipative
structures like temporal oscillations. At the beginning of the 20th century, fisher-
men in the Adriatic Sea observed a periodic change of numbers in fish populations.
These oscillations are caused by the interaction between predator and prey fish. If
the predators eat too many prey fish, the number of prey fish and then the number
of predators decreases. The result is that the number of prey fish increases, which
then leads to an increase in the number of predators. Thus, a cyclic change of both
populations occurs.

In 1925, Lotka and Volterra suggested a nonlinear dynamical model. Each state
of the model is determined by the number of prey fish and the number of predator
fish. So the state space of the model is represented by a two-dimensional Euclidean
plane with a coordinate for prey fish and a coordinate for predator fish. The obser-
vations, over time, of the two populations describe a dotted line in the plane. Births
and deaths change the coordinates by integers, a few at a time. To apply continuous
dynamics, the dotted lines must be idealized into continuous curves.

The vector field on the state space can be roughly described in terms of four re-
gions (Fig. 3.11a). In region A, both populations are relatively low. When both pop-
ulations are low, predator fish decrease for lack of prey fish while prey fish increase
because of less predation. The interpretation of this habitual tendency as a bound
velocity vector is drawn as an arrow. In region B, there are many prey fish, but
relatively few predators. But when there are many prey fish and few predator fish,
both populations increase. This is interpreted by the vector in region B. In region
C, both populations are relatively large. The predator fish are well fed and multiply,
while the prey fish population declines. This tendency is shown by the vector in
region C. In region D, there are few prey fish but many predator fish. Both popula-
tions decline. This tendency is shown by the vector in region D. The phase portrait
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a) b)

6
Fig. 3.11a—-d. Phase portraits of an ecological system with a prey and a predator population

(Lotka-Volterra): (a) a closed trajectory, (b) a nest of closed trajectories, (¢) a point attractor,
(d) a periodic trajectory [3.47]

of this system can be visualized by a closed trajectory, because the flow tends to
circulate.

In Fig. 3.11b, the phase portrait is a nest of closed trajectories, around a central
equilibrium point. As dynamical systems theory tells what to expect in the long run,
the phase portrait enables the ecologist to know what happens to the two populations
in the long run. Each initial population of predator fish and prey fish will recur
periodically [3.47].

If some kind of ecological friction were added to the model, the center would
become a point attractor. This would be a model for an ecological system in static
equilibrium (Fig. 3.11c). A different but perhaps more realistic modification of the
model results in a phase portrait like Fig. 3.11d, with only one periodic trajectory.

From an analytical point of view, the evolution of a population is governed by
an equation for the rate of change of its size [3.48]. Obviously, the number of indi-
viduals in the population changes according to its growth rate minus its death rate.
A further parameter which has to be considered refers to the limited food supply or
depletion of the food resources. There are several living conditions of populations
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which must be modeled. If different species live on different kinds of food and do
not interact with each other, they can coexist.

If different species live in similiar conditions, then the overlapping food sup-
plies must be considered in the evolution equations of the populations. An enormous
reduction of complexity is realized if the temporal change of the food supply is ne-
glected. The resulting evolution equations allows several scenarios of coexistence,
when stable configurations are realized.

Biologically, stable states correspond to ecological niches which are important
for the survival of a species. The predator-prey relation of two populations is real-
ized by the Lotka—Volterra equations characterizing the phase portraits in Fig. 3.11.
A particular form of cooperation in nature is the symbiosis of two species. Model-
ing a symbiosis by evolution equations, it must be considered that the multiplication
rate of one species depends on the presence of the other.

Animal populations can be characterized on a scale of greater or lesser com-
plexity of social behavior. There are populations of insects with a complex social
structure which is rather interesting for sociobiology. Nicolis and others have tried
to model the social organization of termites by a complex dynamical system. The
interactions between individuals are physically realized by sound, vision, touch, and
the transmission of chemical signals.

The complex order of the system is determined by functional structures like
the regulation of the castes, nest construction, formation of paths, the transport of
materials or prey, etc. Ants synthesize chemical substances which regulate their
behavior. They have a tendency to follow the same direction at the place where the
density of the chemical molecules reaches a maximum. Collective and macroscopic
movements of the animals are regulated by these chemical concentrations.

In order to model the collective movements, two equations are suggested, con-
sidering the rate of change for the concentrations of insects and chemical sub-
stances. There is a critical value of an order parameter (“‘chemicotactic coefficient”)
for which a stationary homogeneous solution becomes unstable. The system then
evolves to an inhomogeneous stationary state. Accordingly, different branching
structures will appear, as observed in different ant societies. Figure 3.12 shows the
collective movement of ants with two types of structure characteristic of two differ-
ent species [3.49].

The social complexity of insects can also be characterized by such coordinated
behavior as nest construction. This activity has been well observed and explored
by experimental studies. A typical observation is that the existence of a deposit of
building material at a specific point stimulates the insects to accumulate more build-
ing material there. This is an autocatalytic reaction which, together with the ran-
dom displacement of insects, can be modeled by three differential equations. These
equations refer to the observation that the termites, in manipulating the construction
material, give it the scent of particular chemical substance, which diffuses in the
atmosphere and attracts the insects to the points of highest density, where deposits
of building material have already been made.

Thus, the first equation describes the rate of change of the concentration of
building material, which is proportional to the concentration of insects. A second
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Fig. 3.12. Branching networks of collective movements in two different species of ants [3.49]

evolution equation refers to the rate of change of the scent with a certain diffusion
coefficient. A third evolution equation describes the rate of change of the concentra-
tion of insects including the flow of insects, diffusion, and motion directed toward
the sources of the scent.

The complex social activity of nest construction correponds to the solutions of
these equations. Thus, an uncoordinated phase of activity in the beginning corre-
sponds to the homogeneous solution of these equations. If a sufficiently large fluc-
tuation with a larger deposit of building material is realized somewhere, then a pillar
or wall can appear. The emergence of macroscopic order, visualized in the insect’s
architecture of nests, has been caused by fluctuations of microscopic interactions.

Models of the above types are now often used in ecology. It must be mentioned
that they are still on a rather simplified level. In reality, one has to take into ac-
count many additional effects, such as time-lag, seasons, different death rates, and
different reaction behavior. In general, there is not only the interaction of one or
two complex populations with their (simplified) environments, but a huge number
of different interacting populations. The phase portraits of their nonlinear dynamics
at least allow global forecasts in the long run [3.50].
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In the traditional Darwinian view, there are two important forces at work in
biological evolution which must be modeled in complex dynamical systems: mu-
tation pressure and selection. In biological populations in which the behavior of
individuals is governed uniquely by their genes, the amplification of a new type
individual corresponds to the Darwinian evolution by natural selection of mutants
which appear spontaneously in the system. In the case of higher animals, there is the
possibility of behavioral change (“innovation”) and its adaption by information. In
ecological evolution, new ecological niches have arisen which are occupied by spe-
cialized species. Obviously, there is no simple scheme of evolution, but a complex
hierarchy of changing and stabilizing strategies which have been layered from pre-
biological evolution to ecological and finally cultural evolution with human learning
strategies (compare Chap. 7).

The complex system approach shows a great variety of possible evolutions with
unexpected directions, caused by stochastic fluctuations. There is no global opti-
mizer, no global utility function, no global selection function, no other simplified
strategy of evolution but successive instabilities near bifurcation points. In short,
Darwin’s view is only a particular aspect of evolution. For many contemporaries,
he seemed to replace a personal deity called “God” by an impersonal deity called
“evolution” governing the world by simple laws. This secularized religious attitude
of the 19th century was later on continued by political thinkers like Karl Marx, who
believed in an impersonal deity called “history” governing human fate by simplified
laws of society.

In the 18th century, Kant had already complained that the term “nature” seems
to denote an impersonal deity. But “nature” is, as Kant argued, nothing more than
a “regulative idea” of man. From a modern point of view we can actually only
recognize dynamical models with more or less high degrees of complexity which
may fit observational data with more or less accuracy. The abandonment of some
mighty supervisor in nature and human history may leave us feeling alone with
perhaps dangerously chaotic fluctuations. But, on the other hand, these fluctuations
may enable real innovations, real choices, and real freedoms.

3.5 Complex Systems and Power Laws of Life

The goal of modeling in biology, as elsewhere in science, is to obtain appropriate
models that capture the essential features of the structure or process being investi-
gated. Simple linear laws and Euclidean forms and shapes are usually not applicable
to biology. Even fractal objects with geometrical self-similarity, where the parts that
make up the object are smaller, exact duplicates of the object itself (see Sect. 2.6),
cannot be found in real life. Parts of biological objects are rarely exact reduced
copies of the whole object. Rather than being geometrically self-similar, they are
statistically self-similar. In this case, the statistical properties of the pieces are pro-
portional to the statistical properties of the whole. An example is the average rate at
which new vessels branch off from their parent vessels in physiological structures.
This rate is the same for large and small vessels. Arteries in the lung or branch-
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ing vascular networks in the heart (Fig. 3.9) satisfy the conditions for statistical
self-similarity. Further examples of branching patterns that are similar at different
spatial scales can be found in the dendrites of neurons, the ducts in the liver, the
blood vessels in the circulatory system, and flow distributions inside them. Statisti-
cal self-similarity can also occur in a hierarchical structure. Processes where local
interactions between neighboring pieces produce a global statistical self-similar pat-
tern are termed “self-organizing.” Such patterns can be generated at the molecular
level, as in the binding of ligands to enzymes, at the cellular level, as in the dif-
ferentiation of the embryo, and at the organism level, as in slime mold aggregation
(Fig. 3.5).

Mathematically, statistical self-similarity means that a property measured at
high resolution for a part of an object is proportional to the same property measured
for the entire object at coarser resolution. Therefore, the value of a property L(r)
when it is measured at resolution r is compared to the value L(ar) when it is mea-
sured at a finer resolution ar, where a < 1. Statistical self-similarity means that L(r)
is proportional to L(ar), or L(ar) = k L(r), where k is a constant of proportionality,
which depends on a. The size of individual features depends on the measurement
resolution. In fractal objects, there is no true value for a measurement. The rela-
tionship between the value measured and the measurement resolution is called the
scaling relationship. Self-similarity determines the scaling relationship. The self-
similarity relationship mentioned above implies that there is a scaling relationship
that describes how the measured value of a property L(r) depends on the scale r at
which it is measured. The simplest scaling relationship determined by self-similarity
takes the form of the power law L(r) = A r®, where A and « are constant for any
particular fractal object or process. Taking the logarithms of both sides of this equa-
tion yields the linear equation log L(r) = « log(r) + b with b = log A. Thus, power
law scalings are found to be straight lines when the logarithm of the measurement
is plotted against the logarithm of the scale at which it is measured [3.51]. Although
not all power-law relationships are due to fractals, the existence of such a relation-
ship should prompt us to test for self-similarity.

Examples of power-law scaling include the diameters of the bronchial passages
for the successive generations of branching in the lung. Another example is the
length of the transport pathway through the junctions between pulmonary endothe-
lial cells. The time courses of chemical reactions have also been studied in order to
determine whether the time delays resulting from the diffusion of the substrate are
long compared to the time required for enzymatic reactions. Scaling in mammalian
physiology, from small animals like mice to big ones like elephants, has been ex-
amined in relation to metabolism and structure. It is well known that small and light
animals usually move rapidly, whereas large and heavy ones move slowly. This is
also true for the frequency of the heartbeat, which is higher for a mouse than for
an elephant. Elephants also live longer than mice. Therefore, a relationship between
the lifetime or activity of a living being and its body mass is assumed.

The activity of an animal can be determined by the velocity of the metabolism.
The so-called metabolic rate Xyp indicates the velocity of energetic exchange
between an organism and its environment. Is there a relationship between the
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metabolic rate and the mass of an organism? Obviously, the mass M of a body is pro-
portional to the volume L3 of an organism with a typical length L. Metabolism, the
exchange of energy with the environment, takes place on the surface of an organism
and so it scales as L2. From Xy ~ L% and M ~ L3, it follows that Xz ~ M?/3.
This expected relation is generally expressed as the so-called allometric equation
X = X, - M? . This power-law equation relates a biological variable X (for exam-
ple, the metabolic rate or life expectation of an organism) to the body mass M. X,
is a reference value that gauges the scale, and y is the scaling exponent. While X,
varies with the individual and typical properties of an organism, y only takes a few
values. At first it was assumed that y are multiples of one-third, because the mass
of a body depends on its three-dimensional volume. But experiments demonstrate
that the metabolic rate actually scales with M3/4, Examples of this are the heartbeat,
which scales as M—1/4, and both life expectation and blood circulation, which scale
as M'/*. G.B. West, J.H. Brown, and B.J. Enquist [3.52] suggested that these power
laws could be explained by the fractality of organisms. Their hypothesis is based on
three principles:

1. The natural selection pressure present in nature causes metabolic capacity of an
organism to be optimized by maximizing its surface area @ and minimizing the
transport distance / and time ¢ inside it.

2. Internal supply networks of an organism can be fractal.

3. There is a smallest typical unit of length /,, in biological systems that does not
scale with the size of an organism, but remains constant.

It is remarkable that applying only two of these three principles leads to an (empir-
ically false) exponent of 1/3 and multiples of 1/3, but applying all three principles
leads to (empirically confirmed) multiples of 1/4. Where does the fourth dimension
come in? First, the whole area a of an organism changes if all characteristic lengths
l; of an organism are stretched by a factor I" as [; — I" - [;. In this case we get a new
area d'(I, bp,...) = I'* - a(ly, b, ...). If all lengths can be scaled in an organism
(i.e., the third principle is not true), then it follows that « = 2. This is the expected
scaling of a normal area, which can easily be illustrated using an example: a rect-
angle with side lengths /{ = 3m and /; = 2m has an area a(l;, [) = 6 m2. If each
side is made three times longer, then the area of the rectangle increases ninefold, to
a = 36m2. For I' = 3, it follows that "> = 9 and that the new areaad’ = ' - a is
nine times larger than the old area a. In general, « = 2 means the scaling of an area,
independent of the fractality of a. A similar argument holds for the typical unit of
length of an organism I'(I" - [y, I" - I,...) = . (I}, Ip,...) with A = 1.

Now let us assume that the third principle holds for a normal area a(ly, [2),
which means that /; cannot be stretched. In this case, the area after stretching is
a =11+ I -1, which is only threefold larger the old area. The scaling law o' = I'* -a
does not have the usual exponent (2) for an area; instead, « = 1, corresponding to
a length. With the scaling exponents o and A for area and length, the scaling of
a volume is given by v/ = I'“** . 1. In the case of a uniform density of tissue,
the mass M of an organism is proportional to its volume v . The dependence of the
internal area a on the mass M of an organism is then determined by a ~ M®/(@+4)
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For normal values @« = 2 and A = 1 in our three-dimensional world, the (empir-
ically false) law a ~ M?/3 follows. This also holds if there is no scale-resistant unit
in an organism. However, according to the second principle, biological systems have
a smallest length /,,,, which cannot be scaled (for example capillary diameter). In this
case, a possible fractal structure in a and / (as postulated by the second principle)
can be considered: the exponents « and A do not necessarily take the values they
do in the three-dimensional world. According to the laws of fractals, they can vary
between 1 and 2 (for A) and between 2 and 3 ( for ). For « = 3, we get a fractal that
fills a volume, while &« = 2 gives a fractal that fills an area. In order to determine the
values of the equation a ~ M*/@*+%) _the first principle must be taken into account.
The area a becomes maximal if « takes the maximal value 3 and A takes the minimal
value 1. Using these values, we obtain the observable law a ~ M3/* and, in general,
exponents with multiples of 1/4. This structure satisfies the first principle: the max-
imal internal area is a fractal that fills a volume. The shortest transport connections
are normally geometric lines that are not enlarged by fractal structures, so A = 1. In
Fig. 3.13, geometric Euclidean and biological fractal dimensions are compared. The
relationships with biomass M assume a constant density of tissue. Living beings act
in three-dimensional space, but their internal physiology seems to suggest a four-
dimensional structure [3.53]. These results depend on empirical observations and
measurements. Therefore, future research could change and improve these results.
With more precise statistics, more precise deviations in the 1/4 exponents could be
identified.

In any case, the presence of power laws indicates the high complexity of all
physiological systems. At a static level, the bronchial system of the mammalian lung
serves as a useful example of anatomic complexity. The treelike network involves
a complicated hierarchy of airways, beginning with the trachea and branching down
through increasingly smaller scales to the level of the smallest branchioles. The hu-
man lung has two dominant features, irregularity and richness of structure, along
with organization. The essential concept underlying this kind of constrained ran-
domness is that of scaling. The corresponding power law scales are similar to the
scaling principles of allometry.

The fractal concept arises in the three distinct but related guises of geometry,
statistics, and dynamics. The first context in which we find fractals is complex geo-
metric forms. A fractal structure is not smooth and homogeneous but instead reveals

variable Euclidean scaling biological scaling

length |L~ A2~ VI3~ M3 |1~ a3 ~yl4 ~ yl/4
area A~I2~ V2B~ M23 | g~ BB~ B34

volume | V~L3~V3/2~ym v~ ~d* B~ M

Fig. 3.13. Scaling of length, area, and volume for biological networks and normal Euclidean
space
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greater and greater levels of detail. The lungs, the heart, and many other anatomic
structures may also process fractal structures. The second context in which we find
fractals involves the statistical properties of a process. The statistics are inhomoge-
neous and irregular rather than smooth in this case (instead of the structure). A frac-
tal statistical process is one in which there is a statistical rather than a geometrical
sameness to the process at all levels of magnification. Thus, just as the geometrical
structure satisfies a scaling relation, so too does the stochastic process. The third
context in which fractals are observed involves time, and is related to dynamical
processes. The chaotic dynamics that occur in nonlinear dynamical systems arise in
part because the attractor on which the dynamics take place has a fractal dimension.
This deep relation between chaotic time series and fractal structure was introduced
in Sect. 2.6. A second way in which a dynamical quantity can be related to a fractal
is when the conduit for the measured quantity has a fractal dimension. An example
is the voltage measured from the cardiac pulses that emerge from the conduction
system of the heart. Again, the small-scale structure is similar to the large-scale
form. The apparent lack of a characteristic time scale in the time series is a con-
sequence of the structure of the conduction system. This is one of the connections
between geometric structures and dynamics.

In applying the scaling ideas to physiology, we note that irregularity should be
seen as being fundamental rather than treated as a pathological deviation from some
classical ideal. The concept of fractals and self-similarity has not only entered into
descriptions of biomedical phenomena, but it has prompted a new health paradigm
for the clinician [3.54]. The traditional notion of health is one of homeostasis, which
is based on the idea that there is an ideal state in which the body is operating in
a vaguely defined, maximally efficient way. In this model, illness is considered to
be the deviation of the body from this state. It is the task of a physician to help the
patient to regain this state. The new idea that has emerged from nonlinear dynamics,
scaling, and power laws in biology is that health is homeodynamic; in other words
there are a constellation of states that determine health. A healthy person occupies
many of these states during the course of normal activity. Flexibility of response
and tolerance of error are typical features of this new paradigm. The most important
consequences of these concepts can be found in physiology and medicine, where
they have changed long-believed views about order and variability in health and
disease. A healthy physiological system has a certain amount of intrinsic variability,
and a transition to a more ordered or less complicated state may be indicative of dis-
ease. Strange attractors may determine the dynamical maps of healthy fluctuations
in the heart and brain.



This page intentionally left blank



4 Complex Systems and the Evolution of Mind-Brain

How can one explain the emergence of brain and mind? The chapter starts with
a short history of the mind-body problem. Besides religious traditions, the concepts
of mind and body held by our ancestors were often influenced by the most advanced
standards in science and technology (Sect. 4.1). In the framework of complex sys-
tems the brain is modeled as a complex cellular system with nonlinear dynamics.
The emergence of mental states (for instance pattern recognition, feeling, thoughts)
is explained by the evolution of (macroscopic) order parameters of cerebral assem-
blies which are caused by nonlinear (microscopic) interactions of neural cells in
learning strategies far from thermal equilibrium. Pattern recognition, for instance,
is interpreted as a kind of phase transition by analogy with the evolution equations
which determine pattern emergence in physics, chemistry, and biology (Sect. 4.2).
In recent studies in neurobiology and cognitive psychology, scientists even spec-
ulate that the emergence of consciousness and self-consciousness depends on the
production rate of “meta-cell-assemblies” as neural realizations of self-reflection.
The Freudian unconscious is interpreted as a (partial) switching off of order param-
eters referring to certain states of attention. Even our dreams and emotions seem to
be governed by nonlinear dynamics (Sect. 4.3).

Is the “Newton of the human brain and mind” found? Of course not. The com-
plex system approach cannot explain what mind is. But we can model the dynamics
of some mental states under certain conditions. Even the modeling of intentional
behavior cannot be excluded in principle. Complex systems do not need a central
processor like the fiction of “a little man” in the brain. Thus, Virchow’s cynical ob-
servation that he did not find any soul in human bodies even after hundreds of oper-
ations is obsolete. A mental disposition is understood as a global state of a complex
system which is caused by the local nonlinear interactions of its parts, but which
cannot be reduced to its parts (Sect. 4.4). The wonder of our feeling, imagination,
and creativity which has been celebrated by poets and artists since the beginning of
human culture is not touched by the complex system approach, although we shall
sometimes model some aspects of their nonlinear dynamics.
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4.1 From Plato’s Soul to Lamettrie’s “L’Homme machine”

One of the most complex organs in nature is the human brain. Nowadays we know
that it enables the emergence of human mind, consciousness, and personality, which
has been considered as one of the greatest miracles of mankind since the early be-
ginning of human thinking. The complex system approach allows us to model the
emergence of human perception and thinking with respect to nonlinear interactions
of complex neural networks. Thus, models of complex systems help us to under-
stand how the mind-brain process may work, and how it may have emerged in nat-
ural evolution under certain conditions. From this point of view, it will be, in the
long run, no wonder how consciousness and mind emerge by well-known laws in
the evolution of nature. But it still remains a wonder that it has arisen.

Before we explore complex systems and the evolution of mind-brain, let us
glance at the early philosophy of mind and the history of neural physiology. On the
historical background we can decide which questions of the traditional mind-body
problem have been solved by the complex system approach and which questions are
still unsolved.

In the previous chapters, we have already remarked that early myths and reli-
gious beliefs were attempts to explain the human living world and to conjure the
forces of nature. Obviously, human desire, fear, anger, and imagination govern the
human living world like the might of nature. Consciousness or spirit or mind or soul
are experienced in life, and they seem to “leave” the body of dead people. Humans
have tried to model these unknown processes by familiar experiences of interacting
physical things. Mental or conscious states are hypostatized as a particular substance
called “soul”, or something like that, which is responsible for the intentional behav-
ior of humans. With the hypostatization of mental states, the problem of the position
of the soul in the body has been raised, and is usually answered by the idea that it
pervades the body, or is centered in some organs, such as the heart and the lungs.
Although the effects of this miraculous “thing” are obviously real, it cannot be seen
or seized like a God or ghost. Thus, it has been generally believed to have divine
origin. Criticizing traditional myths and religious beliefs, the presocratic philoso-
phers searched for natural causes and principles. Some thinkers regarded the “soul”
as material stuff like “air” or “fire” because they were believed to be the finest and
lightest forms of matter. For Anaxagoras mind is the principle of motion and order,
and therefore the principle of life. For Heraclitus soul is like a flame of fire ruled by
the law (logos) of the universe. The soul, like fire, is killed by water: “It is death for
souls to become water” [4.1]. These approaches are nothing else than modeling the
unknown by the familiar and known.

It is noteworthy that one of the early medical thinkers, the Pythagorean Al-
cmaeon of Croton, seems to have been the first Greek thinker to locate sensation
and thought in the brain [4.2]. Like the early Greek astronomical model of a helio-
centric universe, this genial idea was soon overshadowed by the authority of Aris-
totle who taught that the heart is the seat of consciousness, while the brain is only
a mechanism for cooling by means of air. Although Aristotle was greatly influ-
enced by the early Greek medical thinkers, he disagreed with Hippocrates’ great
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insight that the brain “is the messenger to consciousness (sunesis) and tells it what
is happening”.

An early reductionistic philosophy of mind was defended by Democritus, who
tried to reduce the mental states to interactions of the smallest atoms [4.3]. The prob-
lem with his reductionism is, of course, that “soul” is only identified with particular
material (but unobservable) atoms. In contrast to material identifications or analo-
gies, the Pythagorean philosophers explained that the human soul or mind must be
an immaterial essence because it is able to think immaterial ideas like mathemat-
ical numbers and relations. In other words, the soul is modeled as a mathematical
proportional system whose harmonies or disharmonies represent mental states like
musical melodies.

The Pythagorean concept influenced Plato’s philosophy of the human soul,
which is related to his theory of forms or ideas. In his dialogue Menon Plato demon-
strates that an untrained slave can solve mathematical problems. The reason is that
in Plato’s view every man has an eternal knowledge before (a priori) any empirical
experience. Man has this kind of a priori knowledge, e.g., in mathematics, by partic-
ipation in the eternal forms and ideas which are ante rem, which means independent
of the fuzzy and transitory appearance of being [4.4].

Aristotle criticized Plato’s hypothesis of an idealistic world behind reality. Ideas
are human abstractions of forms which are acting in nature (in re). The soul is de-
scribed as the form (“essence”) of the living body, the “first entelechy”, which is
a teleological force. But it is not separated from matter. The soul is involved as
potentiality in a human body. According to Aristotle, the human organism is under-
stood as a wholeness.

Nevertheless, in the Aristotelean and Stoic tradition the anatomy of the ner-
vous system had been discovered. Galen believed that the nerves transport a psy-
chic pneuma to the muscles which are caused to produce movements. The psychic
pneuma was not only a material stuff like breath or air, but a kind of vital spirit [4.5].
In the Middle Ages, the Aristotelean and Stoic philosophy of nature had a great in-
fluence on medical thinkers in the Islamic tradition like Avicenna, who founded
a medical school with impressive activities in the fields of surgery, pharmacology,
and practical healing and helping ill people [4.6]. Later on, these medical standards
of the Persian and Arabic world were only realized by a few thinkers of the Chris-
tian Middle Ages like Albertus Magnus. Concerning the philosophy of mind and
brain, the scientific discussions on, for example, the problem of human conscious-
ness were always overshadowed by religious ideologies, and for a long time it was
rather dangerous to dissect dead bodies in anatomy.

In contrast to holistic philosophy in the tradition of Aristotle and Avicenna,
Descartes’ rationalism taught a dualistic ontology strictly separating mind and mat-
ter, soul and body. The human body (res extensa) is a material machine constructed
by the laws of mechanics and geometry. It is directed and controlled by innate ideas
(ideae innatae) which are incorporated in the human mind (res cogitans). In his
Meditations, Descartes gets to his primal intuition of the human mind by method-
ically doubting everything. Methodical doubt is designed to uncover what, if any-
thing, is indubitable. Whereas Descartes can doubt the results of all sciences, of
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common sense, of perception, he cannot doubt that he exists as a kind of thing
which is capable of engaging in cognitive processes such as doubting:

But what then am I? A thing which thinks. What is a thing which thinks? It is a thing
which doubts, understands, affirms, denies, wills, refuses, which also imagines and feels. [4.7]

The difficulty with Descartes’ theory is, of course, the interaction of mind and
body. He assumes that the human organism with its various organs is directed by
the mind with its seat in the brain. The nerves are message cables to and from the
brain. They work as causal chains between the ordering mind and the executing
muscles. According to the clockwork paradigm of his mechanics, Descartes believed
in tiny material particles called “animal spirits” moving and pushing each other very
quickly in the cables of the nerves, in order to transport some input from the brain
to the muscles.

In contrast to all mechanical effects in nature, the human mind is able to decide
the direction of a movement voluntarily. Thus, the action of the mind on animal
spirits is to deflect the direction of their motion. This can be done without violating
Descartes’ laws of physics as long as the “amount of motion” (the later so-called
conservation law of momentum) was conserved. In Fig. 4.1, Descartes’ mechanical
model of perception is illustrated: the minute particles of light beams bomb the
human eyes, exciting the brain by the transmission of particular nerves and their
“animal spirits”. The movements of arm and hand are coordinated with perception
by the mind in the brain [4.8].

Fig. 4.1. Descartes’ geometric model of perception and arm movement
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In his book Passions of the soul Descartes even tried to analyze all emotional
states like fear and love as the passive physical outcomes of the way various “animal
spirits” are induced to flow by external events. If Descartes’ mechanical model of
animal spirits is replaced by biochemical substances and electrophysical effects like
hormones and neurotransmitters, then his concept of nervous activity seems to be
rather modern.

His main difficulty is the immediate interaction of an immaterial, and therefore
unextended and indivisible mind (res cogitans) with a material, and therefore ex-
tended and divisible body (res extensa). Descartes locates the mind within a very
small organ of the brain, the pineal gland, steering the movements of the animal
spirits. But how can the unextended mind exert a push on an extended particle like
an animal spirit? In the framework of mechanics, this problem of interaction was
unsolvable in principle and gave rise to s several developments in the philosophy of
mind.

For occasionalistic philosophers like Malebranche all causation is miraculous.
God must intervene on the occasion of every particular case of causal action. Thus,
the mind-body problem is explained by a theological and adhoc hypothesis. Spinoza
reduced Descartes’ dualism of mind and matter to a monism of one unique sub-
stance. God alone is the only substance of everything. All appearances of nature,
mind, and body are only attributes (“states”) of the universal substance. There are
no miracles at any occasion. But God and human mind are naturalized, and nature
has become divine in a universal pantheism [4.9].

According to the complex system approach, it was Leibniz who delivered
a most remarkable philosophy of mind. Concerning his philosophy of nature, we
recall of Leibniz’ universe that, contrary to Descartes and Spinoza, consists of in-
finitely many substances (“monads”), corresponding to different points of view in
space and with a more or less clear perspective on the whole. Thus, the monads are
considered as soul-like substances endowed with perception and memory, differing
in the degree of clarity of their consciousness. There are substances with a rather
great perspective and rather high degree of consciousness like humans, when they
are compared with animals, plants, and stones with decreasing degrees of conscious-
ness. Even God may be embedded in Leibniz” monadology as the central monad
with the highest degree of consciousness and best perspective on the whole, but still
as an individual and different entity [4.10].

Obviously, Leibniz did not have the metaphysical problems of Descartes’ in-
teractionism. He actually tried to combine classical mechanics with the traditional
Aristotelean teleology of nature, because he was aware of the mechanistic lack of
an adequate philosophy of mind. From a modern point of view, Leibniz’ notion
of more or less animated soul-like substances with perception and memory seems
to be rather strange. But it was no problem for him to model his monadology in
the framework of automata with more or less complexity. Leibniz suggested that
each substance can be modeled by an automaton with different states corresponding
to the monad’s perceptions. Its degree of consciousness is measured by its degree
of complexity, characterizing the size of the monad’s state space and its informa-
tion processing capacity. The states of Leibniz’ more or less complex automata are
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correlated with each other in networks, according to his famous quotation that the
monads have “no windows” and do not interact, but reflect each other like the mir-
rors in a baroque palace. Leibniz’ complex networks of monads will be discussed
in Chap. 5 in more detail. In short, Leibniz assumed that mind is not reserved to hu-
mans, but is a feature of systems which emerges with different intensity according
to the system’s degree of complexity.

The English empiricist philosophers like Locke and Hume criticized the Carte-
sian-Platonic belief that mental states can be analyzed by introspection and pure
thinking without sensory experience. For empiricist philosophers mind is nothing
more than a fabula rasa, an empty store for receiving sensory data, in order to
form concepts by association and abstraction. Images are merely less vivid copies
of sense-impressions which can be imaginatively combined, like for instance the
notion of an unicorn.

According to the complex system approach, Hume developed a remarkable psy-
chological theory of association. He proclaimed that there is neither a causal mecha-
nism in nature nor a causal law in our mind, but only an unconscious reflex of associ-
ating those sense-impressions which occur in a correlated way on several occasions
like flashes of lightning and thunder. We may say that the brain has an unconscious
capacity to build up patterns of sense-impressions. Notions are nothing more than
terms designating more or less complex patterns of sense-impressions. Apart from
mathematics, there are no sharp and definite concepts founded on perception, but
only more or less fuzzy patterns allowing more or less probable assertions about
events. In A treatise of human nature, Hume wrote:

The table before me is alone sufficient by its view to give me the idea of extension. This
idea, then, is borrow’d from, and represents some impression, which this moment appears to
the senses. But my senses convey to me only the impressions of colour’d points, dispos’d in
a certain manner. If the eye is sensible of any thing farther, I desire it may be pointed out to
me. But if it be impossible to shew any thing farther, we may conclude with certainty, that the
idea of extension is nothing but a copy of these colour’d points, and of the manner of their
appearance. [4.11]

According to Descartes’ rationalism, the human mind rules the body’s mechan-
ics like a monarch governing the state in his century of absolutism. For Hume, there
is no separate substance of the human mind, but only a self-organizing field of per-
manently emerging and disappearing patterns excited by associations of more or
less intense sense-impressions. Hume’s spontaneously associating and separating
sense-impressions can be compared with the free citizens of a democratic society
who may associate in groups and parties without the orders and prohibitions of
a sovereign.

Kant tried to synthesize rationalism and empiricism. According to empiricism,
cognition starts with experience and sensory data. But rationalism is right, because
we need mental structures, cognitive schemes, and categories in order to organize
experience and cognition. Kant tried to introduce the philosophical categories which
found the axioms of Newtonian mechanics. It is the main feature of his epistemol-
ogy that recognition does not arise by passive impressions of the external world on
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the tabula rasa of our brain. Recognition in the Kantian sense is an active process
producing models of the world by a priori categories. The spatial and temporal or-
der of physical events is reduced to geometrical forms of intuition. Perception in the
Kantian sense is active information processing regulated by a priori anticipations.
The causal connections of events is made possible philosophically by an a priori
category of causality.

Hume was right that a causal relation cannot be perceived. But, in order to
forecast and calculate the path of a pushed billiard ball exactly, it is not sufficient
to repeat several pushes of billiard balls and to associate several sense-impressions
a la Hume. We must anticipate that causes and effects can be connected by some
deterministic relation. That is done by Kant’s general scheme of (deterministic)
causality in epistemology. But the question is which particular causal function is
adequate to decide and test by physical experience. Cognitive schemes are already
applied in everyday life. They are even modeled by data schemes of programming
languages in computer science (compare Sect. 5.2). Thus, Kant’s epistemology may
be interpreted as an important forerunner of modern cognitive sciences, where cog-
nitive schemes are presumed to order the mass of experienced data. But, contrary
to Kant, they may be changed in the development of history, as was shown by the
change from Euclidean space to non-Euclidean spaces, e.g., in the theory of relativ-
ity [4.12].

While Spinoza suggested a spiritual monism as a way out from Descartes’ dual-
ism, Lamettrie supported a kind of materialistic monism. Descartes’ assumption of
a separate soul-like substance (res cogitans) was criticized as superfluous, because
all mental states should be reduced to mechanical processes in the human body:
“L’Homme machine”. Lamettrie claimed there were no fundamental differences be-
tween humans and animals. Intelligent and reflex behavior should be explained by
“irritation” of the nerves and not by a “ghost in the machine”. But, in the mechanis-
tic framework of the 18th century, Lamettrie’s revolutionary ideas could only be an
inspiring program of physiological research [4.13].

The famous mathematical physicist and physiologist Hermann von Helmholtz
(1821-1894) was a post-Kantian philosopher [4.14]. He supported a kind of nat-
uralized framework of cognitive categories which must be presumed before any
particular perception of the world can be constructed. Of course, the categories had
changed since Kant. Nevertheless, there are some general schemes like the concept
of space, numbers, measurement, and causality characterizing the physical theories
of the 19th century. Helmholtz was aware, for instance, of the mathematical possi-
bility of non-Euclidian spaces. Thus, he thought that the correct physical geometry
must be decided by physical measurement.

Concerning his theories of physiology, Helmholtz started as a student of Jo-
hannes Miiller (1801-1858), who is sometimes called the father of modern physiol-
ogy [4.15]. Miiller defended a law of specific nerve energies demanding that each
nerve has its own particular energy or quality. He found that sensations could be
elicited by mechanical or chemical influences, heat, electricity, etc. A Kantian as-
pect of perception is now naturalized, because it became evident that the brain has
to reconstruct the world from its effects on nerves. Nevertheless, Miiller defended
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an immaterial conception of animal spirit. He believed that animal spirits cannot be
measured, because their speed is too high.

Helmholtz had explored the mathematical conservation law of energy. As en-
ergy could be transformed but neither created nor destroyed, an immaterial energy
of life beyond the conservation law seemed to be senseless. Helmholtz preferred
the theory that so far as the question of energy was concerned, the body could be
viewed as a mechanical device for transforming energy from one form to another
without special forces and spirits. Chemical reactions were capable of producing
all the physical activity and heat generated by the organism. Muscular activity was
realized by chemical and physical changes in the muscles. Furthermore, Helmholtz
measured the velocity of nerve conduction and demonstrated that it was slower even
than the speed of sound [4.16]. Philosophically, these results were interpreted as
a refutation of Miiller’s vitalism.

Emil du Bois-Reymond (1818-1896), who was another student of Miiller,
showed that nervous affect was actually a wave of electrical activity. In those days,
histologists began to discover separate cell bodies and fibers through the micro-
scope. According to these results, nervous activity and the brain seemed to be a com-
plex system of nerve cells (“neurons”) with a complicated network of connections.
The communication structure of neurons transmitting a signal from one neuron to
another one was first described at the beginning of this century. But observations
of synaptic junctions were not possible before the use of the electron microscope
around the middle of this century.

How can the emergence of perceptions, thoughts, and feelings be explained by
these descriptions of neuroanatomy and neurophysiology? One of the first thinkers
who explained mental states by cell assemblies of neural networks was the Ameri-
can philosopher and psychologist William James. In his brief course “Psychology”
(1890), James defended the Darwinian and evolutionary position that the brain is
not constructed to think abstractly, but is constructed to ensure survival in evolution.
In a pragmatic way, he assumed that the brain has many of the features of a good
engineering solution applied to mental operations:

Mental facts cannot properly be studied apart from the physical environment of which
they take cognizance ... . Mind and world in short have evolved together, and in consequence
are something of a mutual fit. [4.17]

Brain organization seems to be very poor at doing arithmetic and formal logic.
But the ability to form concepts and associations, to make good guesses and to as-
sume hypotheses is a characteristic feature of the brain. James presents a mechanis-
tic model of association that stems from Hume’s pioneering work and reminds us of
the later associative neural networks. In a more qualitative way, he formulated some
principles which are partially incorporated in the modern mathematical models of
complex neural networks:

1. James believed that association was mechanistic and a function of the cere-
bral cortex.
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2. James’ principle of association:

When two elementary brain processes are active together or in immediate succession,
one of them, on reoccurring tends to propagate its excitement into the other.

3. James’ summing rule for brain activity:

The amount of activity at any given point in the brain cortex is the sum of the tendencies
of all other points to discharge into it, such tendencies being proportionate (1) to the number
of times the excitement each other point may have accompanied that of the point in question;
(2) to the intensities of such excitements; and (3) to the absence of any rival point functionally
disconnected with the first point, into which the discharges might be diverted. [4.18]

If in the second principle the term “brain process” is replaced by “neuron”,
then we get a description of a synapse which was later introduced by Hebb (com-
pare Sect. 4.2). If in the third rule the term “point in the brain cortex” is replaced
by “neuron”, we get a linear summation rule of synaptic inputs which is very close
to some network models of the Hebbian type. James also discussed the ability of
networks of partial associations to reconstruct the missing pieces through some par-
ticular procedure of cell connecting. Although James was, of course, not familiar
with computer-assisted modeling, he had the essential insight of the complex sys-
tem approach that complex events are made up of numerous subassociations which
are interconnected by elementary mechanisms like synapses.

In his chapter on “Association”, James considered someone thinking of a cer-
tain dinner-party. The only thing which all the components of the dinner-party could
combine to recall would be the first concrete occurrence which ensued upon it. All
the details of this occurrence could in turn only combine to awaken the next fol-
lowing occurrence, and so on. In relation to Fig. 4.2, James described this process
schematically:

A
a
b
c
d

Fig. 4.2. William James’ geometric model of an association network
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If a, b, c, d, e, for instance, be the elementary nervetracts excited by the last act of the
dinner-party, call this act A, and 1, m, n, o, p be those of walking home through the frosty
night, which we may call B, because a, b, c, d, e will each and all discharge into 1 through
the paths by which their original discharge took place. Similarly they will discharge into
m, n, o, and p; and these latter tracts will also each reinforce the other’s action because, in
the experience B, they have already vibrated in unison. The lines in Fig. 4.2 [4.19, Fig. 57]
symbolize the summation of discharges into each of the components of B, and the consequent
strength of the combination of influences by which B in its totality is awakened. [4.19]

James is convinced that “the order of presentation of the mind’s materials is due
to the cerebral physiology alone.” In the modern complex system approach, order
parameters are used to describe mental states which are caused by macroscopic
neural cell assemblies. In the following sections we will see that many basic insights
into the operations of the mind from the presocratic philosophers to Kant and James
have not been fundamentally altered even today.

4.2 Complex Systems and Neural Networks

In the 19th century, the physiologists discovered that macro-effects like perception,
vision, muscular motion, etc., displayed by the nervous system depend on individual
cells. These cells are able to receive and transmit signals by causing and responding
to electric current. Obviously, the nervous system and the brain have turned out to
be one of the most complex systems in the evolution of nature. There are at least
ten billion nerve cells (neurons) in the human brain. Each neuron receives inputs
from other cells, integrates the inputs, generates an output, and sends it to other
neurons. The inputs are received by specialized synapses, while outputs are sent by
specialized output lines called axons.

A neuron itself is a complex electrochemical device containing a continuous in-
ternal membrane potential. If the membrane potential exceeds a threshold, the neu-
ron propagates a digital action potential to other neurons. The nerve impulses origi-
nate in the cell body, and are propagated along the axon with one or more branches.
Neurologists usually distinguish excitatory and inhibitory synapses, which make it
more or less likely that the neuron fires action potentials. The dendrites surrounding
the neuron might receive incoming signals from tens or thousands of other neurons.
The activity of a neuron is measured by its firing frequency. Biological neurons
are not binary, because outputs are continuous. However, many models of neural
networks are simplified and use binary computing elements [4.20].

Brains are complex systems of such cells. But while an individual neuron
does not see or reason or remember, brains are able to do so. Vision, reasoning,
and remembrance are understood as higher-level functions. Scientists who prefer
a bottom-up strategy recommend that higher-level functions of the brain can be nei-
ther addressed nor understood until each particular property of each neuron and
synapse is explored and explained.

An important insight of the complex system approach discloses that emergent
effects of the whole system are system effects which cannot be reduced to the single
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elements. Philosophically, the whole is more than the sum of its parts. Thus, a purely
bottom-up-strategy of exploring the brain functions must fail. On the other hand, the
advocates of a purely top-down strategy proclaiming that cognition is completely
independent of the nervous system are caught in the old Cartesian dilemma “How
does the ghost drive the machine?”.

Traditional positions in the philosophy of mind (compare Sect. 4.1) have more
or less defended one of these strategies of research. In the 18th century, Leibniz and
later on the zoologist Bonnet already suggested that there is a scale of complexity
in nature with more or less highly developed levels of organization. In Fig. 4.3 the
levels of organization in the nervous system are illustrated [4.21]. The hierarchy of
anatomical organizations varies over different scales of magnitude, from molecular
dimensions to that of the entire central nervous system (CNS).

The scales consider molecules, membranes, synapses, neurons, nuclei, circuits,
networks, layers, maps, systems, and the entire nervous system. On the right side
of the figure, a chemical synapse is shown at the bottom, in the middle a network
model of how ganglion cells could be connected to simple cells in visual cortex, at
the top a subset of visual areas in visual cortex, and on the left the entire CNS.
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Fig. 4.3. Degrees of complex systems in the central nervous system (CNS): a chemical
synapse, a network model of cellular connections in the visual cortex, and subsystems of
the visual cortex [4.21]
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The research perspectives on these hierarchical levels may concern questions,
for example, of how signals are integrated in dendrites, how neurons interact in
a network, how networks interact in a system like vision, how systems interact in
the CNS, or how the CNS interact with its environment. Each stratum may be char-
acterized by some order parameters determining its particular structure, which is
caused by complex interactions of subelements with respect to the particular level
of hierarchy. Beginning at the bottom we may, for instance, distinguish the orders
of ion movement, channel configurations, action potentials, potential waves, loco-
motion, perception, behavior, feeling, and reasoning.

It is quite obvious that an important function of the nervous system is to moni-
tor and control the living conditions of the organism relative to its environment. An
example of an elementary controllable state is, for instance, the temperature of an
organism. At the highest level the change of states in the environment needs antici-
patory planning and social interactions, which have led to the human skills of verbal
communication, creating art, solving mathematical problems, etc., during a complex
cultural evolution.

From a Darwinian point of view, the evolution of the nervous system with its
levels of increasing complexity seems to be driven by the fundamental purpose in
nature to survive as the fittest. Some scientists of the brain even defend the strong
opinion that the emergence of mental phenomena like abstract thinking is only some
kind of “epiphenomenon” which was not originally intended by nature. But the
belief in intentions and purposes of nature is, of course, only a human metaphor
presuming some secularized divinity called “nature” governing evolution. Accord-
ing to the complex system approach, each level of the CNS has its own functional
features which cannot be reduced to the functional features of lower levels. Thus,
abstract thinking can only be regarded as an “epiphenomenon” from the perspective
of a level like, say, the control system of the body’s temperature.

In order to model the brain and its complex abilities, it is quite adequate to
distinguish the following categories. In neuronal-level models, studies are concen-
trated on the dynamic and adaptive properties of each neuron, in order to describe
the neuron as a unit. In network-level models, identical neurons are interconnected
to exhibit emergent system functions. In nervous-system-level models, several net-
works are combined to demonstrate more complex functions of sensory percep-
tion, motor functions, stability control, etc. In mental-operation-level models, the
basic processes of cognition, thinking, problem-solving, etc. are described. Their
simulation is closely related to the framework of artificial intelligence (compare
Chap. 6).

From a methodological point of view, we must be aware that models can never
be complete and isomorphic mappings of reality. In physics, for instance, models
of the pendulum neglected friction. In chemistry, models of molecules treated elec-
trons in orbitals like planets in the solar system, contrary to Heisenberg’s uncertainty
principle. Nevertheless, these models are useful with respect to certain conditions
of application. The conditions of brain models are given by the levels of brain orga-
nization. If a function of a certain level of brain organization is modeled, the model
should take into account the conditions from the levels below and above. Higher-
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level properties are often not relevant. In general, the methodology of modeling is
determined by a calculation of methodological costs and benefits. A model of the
human brain which is intended to be realistic in every respect needs over-expensive
analysis and construction. It would never satisfy the desired purpose, and thus it
is impractical. Scientists will be more successful if they try to model each level of
brain organization with simplifications concerning the levels below. On the other
side, the models must be rich enough to reveal the essential complex features of
brain organization.

According to the complex system approach, brain functions should be mod-
eled by an appropriate state space and a phase portrait of its dynamical trajec-
tories describing the brain’s activities. René Descartes, the French mathematician
and philosopher, already described the coordination of perception, arm moving, and
brain in the framework of (Euclidian) geometry (Fig. 4.1).

Today, neural networks are geometrically characterized by vector spaces and
neural matrices. The electrochemical input of neurons are connected with the out-
puts by weights. In a schematic section of the cerbellum (Fig. 4.4) the weights w;;
from a neural matrix allow the network to calculate the output vector from the input
vector by matrix multiplication [4.22].

The example of Fig. 4.4 concerns a 3 x 4-neuron matrix. Neural physiology
demands great flexibility of modeling, because the neural network may be rather
complex. But the connectivity matrices can effect transformations on state spaces
of high dimensionality into others with different dimensionality. Mathematically,
these transformations of high dimensionalities may provoke geometrical problems
which cannot be solved by the elementary formalism of analytical geometry. In this
case, a generalized tensor network theory is necessary, in order to manage complex
coordination tasks. From a historical point of view, it is amazing that the change
from Euclidian to more general topological and metric spaces can be stated not
only for the physics of the outer world in general relativity but also for the intrinsic
features of the nervous system.
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Fig. 4.4. Schematic section of the cerebellum modeled by neural matrix multiplication [4.22]
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With respect to Descartes’ early approach, let us regard an elementary sensori-
motor coordination which is represented by vector or tensor transformations. How
can an animal seize an object which it perceives by its sensory organs (Fig. 4.5a)? In
a simplified model, the position of the two eyes is at first codified in a 2-dimensional
space of sensory data. The state space can be visualized by a 2-dimensional topo-

Sensory
topographic map —
(metrically
deformed)

Motor
topographic map

6,9)=1(a,B)

Fig. 4.5b. Geometric model of sensorimotoric coordination by sensory and motor topographic
maps [4.23]
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graphic map. An impulse is sent from a point of the sensory state space to a corre-
sponding point of the motor state space which is also represented by a 2-dimensional
topographic map. A point of the motor state space codifies the corresponding posi-
tion of the arm (Fig. 4.5b) [4.23].

Another example of sensorimotor coordination is given by the vestibulo-ocular
reflex. This is the neural arrangement whereby a creature can stabilize an image on
the retina by short-latency movements of the eyes in the opposite direction to head
movement. There are two neural structures involved in this neural system, which can
be represented by different coordinate systems intrinsic to the CNS. First we have to
analyze the semicircular canals of the vestibular apparatus in the ear, three canals on
each side, which can be represented by a 3-dimensional coordinate system. Second,
each eyeball has six extraocular muscles corresponding to a 6-dimensional coordi-
nate system. Thus, the sensorimotor coordination of the vestibulo-ocular reflex is
geometrically described by a tensor transformation of a 3-dimensional (covariant)
vector. The mathematical scheme can be used for calculations of any eye-muscle
activation emerging from a given vestibular input.

On the level of neurons and networks, nets of artificial units are used to simulate
and explore the brain organization [4.24]. These units are assumed to vary between
0 and 1. Each unit receives input signals from other units via synaptic connections of
various weights. The incoming and outgoing representations are ordered sets of val-
ues, and the output units are activated appropriately. Mathematically, the procedure
can be interpreted as a mapping of some inputs as arguments onto corresponding
outputs as function values. The function rule is determined by the arrangement of
the weights, which depends on the topology of the neural network.

In the brain, neurons sometimes constitute a population as input layer (Fig. 4.6).
The axons of these cells are sent to a second layer of neurons. Axons from cells in
this second layer can then project to a third population of cells, and so on. The as-
sembled set of simultaneous activation levels in all the input units is the network’s
representation of the input stimulus, as input vector. This input vector with its activa-
tion levels is propagated upward to the middle layer. The result is a set of activation
levels determined by the input vector of the input layer and the several connection
weights at the ends of the terminal branches of the input units to the neurons of the
middle layer. This activation vector of the middle layer is propagated upward to the

o0 0 0O

Fig. 4.6. Three-layer network with hidden units
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topmost layer of units, where in the case of a three-layer network an output vector
is produced. Again, this ouput vector is determined by the activation vector at the
middle layer and the connection weights at the ends of the terminal branches of the
middle units to the output units.

A two-layer network with only an input and an output layer corresponds to
a simple stimulus-response scheme with observable and measurable inputs and out-
puts. In the case of a three-layer network, the units of the middle layer with their
weights are sometimes not directly measurable or only hypothesized as a hidden
mechanism in a black box. Thus, they are called hidden units.

Real nervous systems, of course, display many more units and layers. In hu-
mans, for instance, the structure of the cerebral cortex contains at least six distinct
layers of neurons. By the way, the mapping of inputs onto outputs by a neural matrix
in the cerebellum in Fig. 4.4 can equivalently be described by a two-layer network
with input and output layer. A three-layered network is equivalent to a pair of neural
matrices connected in series. But this kind of a many-layered network cannot be
generalized for the whole brain and nervous system, because cell populations in the
real brain often show extensive cell-to-cell connections within a given layer, which
will be considered in some different models.

According to the complex system approach, the neurons of a particular layer
can be interpreted as the axes of a state space representing the possible activity states
of the layer. The development of states, their dynamics, is illustrated by trajectories
which may be caused by some learning process of the particular network.

For instance, a perception can be explained by vector-processing in a neural
network. At first, there is a sample of stimuli on the input neurons from the outer
world (e.g., electromagnetic light signals, colors in the eye, or sound waves in the
ear), which is processed in the neural network to produce an output vector which
represents, e.g., a visual or auditory picture of the outer world. But the neural net-
works must learn to distinguish and recognize the correct forms, colors, sounds, etc.,
in a huge mass of input data.

The learning procedure is nothing else than an adjustment of the many weights
so that the desired output vector (e.g., a perception) is achieved. The learning proce-
dures can be simulated by mathematical algorithms which are an important topic of
research in artificial intelligence (compare Sect. 6.2). They produce weight configu-
rations at each neural layer which can be represented in terms of vectors, too. At any
given time, the complete set of synaptic values defines a weight space with points
on each axis specifying the size of a particular weight. In general, learning means
minimizing the errors or differences between a most adequate solution (perception,
idea, etc.) and a less adequate one. Thus, a learning process can be visualized by
a trajectory in the weight space, starting from the initial randomly set position to
the final minimal-error position (Fig. 4.7a). The key to this kind of modeling means
that weights in a network can be set by an algorithmic procedure to embody a func-
tion. It is assumed that any representable world can be represented in a network, via
configurations of the weights.

Figure 4.7a shows a trajectory in the synaptic weight space during a learn-
ing process. This space, simplified for three weights, represents all possible weight
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Fig. 4.7a,b. Synaptic weight space (a) and activation vector space (b) of the three-layer net-
work in Fig. 4.6 [4.25]

combinations from the synapses in the three-layer network (Fig. 4.6). Figure 4.7b
shows a corresponding activation-vector space whose axes are the hidden units of
the three-layer network (Fig. 4.6) [4.25].

The weight space and the activation space are similarity spaces, because similar
vectors representing similar things are reflected by proximity of position. Weight
configurations cluster similar things, taking into account that weight configurations
may be sensitive to very tiny differences between things. Thus, in the activation
space, we can distinguish prototype vectors representing similar things with tiny
differences measured by their distances to the prototype vector. On the macroscopic
level of observation and behavior, these prototype vectors may represent particular
categories of trees, plants, fruits, persons, etc., which are more or less similar. In
the framework of complex system dynamics, prototype vectors can be interpreted
as point attractors dividing the state space into several regions.

Similar motor behavior (like seizing, walking, etc.) is represented by similar
trajectories in a motor state space. Learning, as we saw, means reconfiguration of
weights according to some algorithmic procedure. The crucial question arises: how
do thousands of cells and synapses know when they should change their states with-
out the guiding hand of a demon?

In his famous book The Organization of Behavior (1943), Donald Hebb sug-
gested that learning must be understood as a kind of self-organization in a com-
plex brain model. As in the evolution of living organisms, the belief in organiz-
ing “demons” could be dropped and replaced by the self-organizing procedures of
the complex system approach. Historically, it was the first explicit statement of the
physiological learning rule for synaptic modification. Hebb used the word “connec-
tionism” in the context of a complex brain model. He introduced the concept of
a synapse, which was later called a “Hebb-synapse”. The connection between two
neurons should be strengthened if both neurons fired at the same time:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased. [4.26]
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In 1949, the “Hebb-synapse” could only be a hypothetical entity. Today, its
neurophysiological existence is empirically confirmed. Hebb’s rule is by no means
a mathematically exact statement. Later on, we shall see that many Hebb-like learn-
ing rules of connectionism are possible. A simple mathematical version of the Hebb
rule demands that the change A wps of a weight wpy between a neuron A project-
ing to neuron B is proportional to the average firing rate v4 of A and vp of B, i.e.,
Awpa = € vgvy with the constant .

Hebb-like rules suggest schemes tending to sharpen up a neuron’s predisposi-
tion “without a teacher” from outside. In this sense, it is a self-organizating method
for a neuron’s firing to become better and better correlated with a cluster of stimulus
patterns. Hebb was aware that the brain uses global patterns of connected neurons
to represent something. He explicitly used the term ‘“cell assemblies”, which has
become a key to modern neuroscience. Active cell assemblies could correspond to
complex perceptions or thoughts. Philosophically, Hebb’s idea of cell assemblies re-
minds us of Hume’s concept of association, which was only psychological without
the physiological basis of the brain.

How are Hebb’s physiological ideas incorporated in modern complex systems
of neural networks? The basic concept of an associative network demands that an
input vector is “associated” with an output vector by some transformation. Math-
ematically, the similarity of two vectors can be measured by their inner product,
which is the result of multiplying both vectors, component by component, and then
adding up the products. Geometrically, the inner product is proportional to the co-
sine of the angle between the vectors. In the case of total congruence of the vectors,
the angle is zero, which means that the similarity is complete.

Thus, the similarity of a stored prototype vector (for instance the prototype pic-
ture of a typical tree) with an input vector (for instance the perception of a particular
tree) can be calculated in an associative network by their inner product. The proto-
type vector is assumed to be stored in the matrix of the weights connecting the input
and output of the network. Figure 4.8a shows a net with horizontal input lines for
the input components, vertical output lines, and weights on the connections (which
are considered to be binary, with open circles for zero and closed circles for one).

If in general the input vector (x;) is associated with the output vector (y;) by
a linear transformation y; = . wj; x; with respect to the stored weight vector wy,
then we get the simple case of a linear associator. This kind of an associative network
is able to classify vectors representing examples of some category which is realized
by a stored prototype vector. This task is actually crucial for the survival of animals.
In reality, a variety of more or less similar perceptions (for instance, of a hostile
animal) must be identified and subsumed under a category.

Another kind of associative network can perform vector completion or vector
correction. A so-called autoassociative network can produce an output which is as
close as possible to a prestored vector given only part of the vector as input. In
reality, noisy versions of an input vector (for instance, a picture of a person) must
be completed according to a stored picture. A Hebb-like rule can fulfill this task by
strengthening the connection weights between neurons with respect to the degree of
their correlated activity.
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Output lines

Input lines
>

Fig. 4.8a. Linear associative network

A method for increasing the capacity of such a complex network is to introduce
a nonlinear threshold for the output units. A linear associative network (for instance,
Fig. 4.8a) has a feedforward topology with information flowing from input units to
output units. Hebb-like learning procedures suggest local interactions of neural units
converging to the correct global output by self-organization. Circulating information
in the network means a feedback architecture. In Fig. 4.8b, each unit receives inputs
from outside and feedback from intrinsic units of the network. The weights are
represented by the intersections of horizontal with vertical lines [4.27].

Inputs

Weights —\
\

Outputs

j)OO e ~O. Units

Fig. 4.8b. Nonlinear feedback network [4.27]
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Obviously, the complex system of Fig. 4.8b models a nonlinear feedback net-
work which allows a wide range of possible dynamics. A famous example was
explored by John Hopfield (1982). His class of nonlinear feedback networks has
a dynamics converging to a solution. They have been interesting not only for mod-
eling brain functions, but also (as we shall see in Chap. 6 on artificial intelligence)
for the development of a new network technology. Concerning our complex system
approach, it is noteworthy that Hopfield is physicist who has applied mathematical
equations from spin glass physics to neural networks [4.28].

The dynamics of a ferromagnet is a well-known example of conservative self-
organization in thermal equilibrium. In the Ising model a ferromagnet consists of
a lattice of spins, each of which can be either up (1) or down ({). Each spin can
interact with its nearest neighbors. The state with the lowest energy has all the spins
lined up in the same direction. At a high temperature the directions of the spins are
random because the thermal energy which causes the fluctuations is larger than the
energies of interaction. If the temperature is reduced, the spins become aligned in
the same direction. Evidently, the spins behave like a magnet (compare Sect. 2.4).
Dynamically, it seems to seek the nearest local energy minimum as an attractor state
(Fig. 4.9a). But a single energy minimum with all spins pointing in the same direc-
tion is only provided if all interactions are attractive. In the case of mixed attractive
and repulsive interactions a complex system like a spin glass may have many local
energy minima [4.29].
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Fig. 4.9a. Phase transition in a 2-dimensional Ising model of a ferromagnet (annealing)

Hopfield assumed that the function of the nervous system is to develop a num-
ber of locally stable points in state space. Other points in state space flow toward
the stable points as attractors of the system. As deviations from the stable points
disappear, this dynamics is a self-correcting procedure. On the other hand, the sta-
ble point appropriately completes missing parts of an incomplete initial state vector.
Thus, the dynamics can be used to complete noisy inputs.

Hopfield’s model is rather simplified and involves threshold logic units, sum-
ming synaptic inputs, and comparing the sum with a threshold. If the sum is at
or above threshold, they yield 1, and O otherwise. The network is recurrent in the
sense that the neurons connect to each other with the exception of self-connection.
Mathematically, the corresponding connectivity matrix has zeros along the main di-
agonal. Hopfield suggests a Hebb-like learning rule for constructing elements of
the connectivity matrix. The complex system evolves like an Ising model of a spin
glass according to a nonlinear feedback dynamics. The term isomorphic to energy
decreases until it reaches a — perhaps local — minimum.
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A simple application is given by the well-known problem of alphanumeric char-
acter recognition. The complex network is composed of interacting Boolean vari-
ables represented on a 2-dimensional grid. A pattern (for instance, the letter A) can
be associated to the grid with a dark point for all active variables (with a value 1),
and a blank point for those with a value 0. It is assumed that the letters of the alpha-
bet are associated to attractors (‘“fixed points™) as the desired states of the dynamical
system. We may imagine that a human brain has stored the correct shapes of the
letters by seeing many correct examples. If an incomplete and partly ruined letter
is shown to the system, it should be able to reconstruct the correct shape that was
learnt before (Fig. 4.9b) [4.30].

Fig. 4.9b. Phase transition in a Hopfield system for pattern recognition

Thus, pattern recognition means pattern evolution by self-organization. This
process aims at some attractors as the desired states of the system. We remember
that an attractor is a state towards which the system may evolve, starting from cer-
tain conditions. The basin of attraction is defined by the set of initial conditions that
drive the trajectories of the system in the direction of the attractor. As we saw in
earlier sections, an attractor may be a unique state referring to a fixed point or stable
state, as in the examples of Hopfield networks and spin glass systems. But a peri-
odic succession of states (a “limit cycle”) or several forms of chaotic attractors (in
dissipative systems) are also possible. Thus, the Hopfield networks are only a first
and simplified approach to modeling neural states by attractors of complex systems.

Hopfield saw the analogy between the local energy minima in spin glasses and
the prototypes in an associative brain. In the formal framework of a spin glass, at-
tractors can be designated as prototype vectors. In Fig. 4.10a, the state space of
a Hopfield system is visualized by an energy landscape by analogy with the ther-
modynamics of spin glasses. All possible states of the network are represented by
points in a plane. The height of the surface refers to the energy of the corresponding
state of the network.

The phase portrait of the system in Fig. 4.10b shows the convergence of the
trajectories to stable local minima from different starting points. Each point in the
plane is a state of the network. The energy landscape has basins attracting the trajec-
tories of the Hopfield dynamics. The stable points (“‘attractors”) are at the bottom of
the basin. In the example of pattern recognition, the prototype letters are connected
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Fig. 4.10a,b. State space of a Hopfield system as energy landscape (a) with local minima as
attractors (b) [4.31]

with the stable points. Thus, the process of pattern completion is a form of relax-
ation which can be compared formally with the annealing processes of conservative
self-organization. In the physical examples, the final states are ordered structures of
a spin glass, a magnetized ferromagnet, or a frozen crystal [4.31].

In general, Hopfield networks only converge to local minima in a state of lower
energy. In some applications, the local minima are associated with particular stored
items, and there may be no need to reach a global minimum. However, in many
cases the global minimum is required. A solution of this problem was offered by
making the individual units stochastic rather than deterministic.

Figure 4.11a visualizes the solution by a ball traveling along a curve of an
energy landscape to probably end up in the deepest minimum. Starting from a given
initial situation, the ball will move towards an energy minimum or the bottom of
a well. If the energy landscape is characterized by a muliplicity of minima close
together, the result depends upon the initial conditions. How can the network be
prevented from getting stuck in a local minimum? The idea is to shake the energy
landscape with a certain energy increment which is required to escape the valley of
the local minimum B to enter the attractor of the global minimum A.

Then, mechanically, the ball is more likely to go from B to A than from A to B.
On average, the ball should end up in the valley of A. In the language of thermody-

A

Fig. 4.11a. Phase transition from local minimum B to global minimum A in an energy land-
scape (simulated annealing)
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namics, the kinetic energy added by shaking the landscape corresponds to increas-
ing the temperature of the system. For fairly high temperatures, the probability of
transition between the valleys is no longer negligible. At thermal equilibrium, the
probability of occupying the various valleys only depends on their depth.

In practice, the method of simulated annealing is well known and used for
global optimization. As we already mentioned, annealing is the process of heating
a material (e.g., metal or glass) to a high temperature, and then gradually lowering
the temperature. But the material will only end up at its global energy minimum if
the annealing process is gradual enough. Sudden cooling of, e.g., metal will leave
the material only in a local minimum with a brittle state. Simulated annealing makes
the escape from local minima likely by allowing jumps to higher energy states.

In the thermodynamics of gases, the gas is described by its probability of phase
transition. It was Boltzmann who derived a probability distribution for the states of
a gas when it had reached a uniform distribution of temperature. Hinton, Sejnowski,
and others claimed that the distribution could be used to describe neural interactions.
In this case of modeling, the low temperature term added to the system is interpreted
as a small noise term. It is the neural analog to random thermal motions of molecules
in gases.

This formal equivalence is the reason that the network under consideration is
called a “Boltzmann machine” [4.32]. But, of course, no physicalism is intended,
reducing neural interactions to the molecular interactions of gases. In Boltzmann’s
formalism, it can be proved that a Boltzmann machine is guaranteed to find the
desired global minimum as long as it is cooled slowly enough. Obviously, a neural
network with the dynamics of simulated annealing is capable of searching a state
space for the pattern giving the global energy minimum.

A possible learning rule according to this dynamics matches probabilities be-
tween the network and its environment. All possible states of the network are pos-
sible at thermal equilibrium, with the relative probabilities of a Boltzmann distribu-
tion. If the probabilities of the states in the network are the same as the probabilities
of states of the environment, then the network has an adequate model of the envi-
ronment. Thus, a learning rule must be able to adjust the weights in the Boltzmann
machine so as to decrease the discrepancy between the network’s model and the
environment.

At first, the rule lets the system run free. The probabilities of the states taken by
each unit can be estimated. Then, the input and output units are clamped or forced
to take appropriate values. Again, values of the probabilities of the states of the units
are estimated. The local change of weights is proportional to the difference in the
probabilities of the units coupled by that weight [4.33].

Formally, the weight modification rule demands that
Awjj = e((s;s;) clamped — (s;s;)free)

where ¢ is the constant of proportionality (“rate of learning”), s; is the binary unit of the ith
unit and s;s; is averaged over time to (s;s;) after the network has reached equilibrium. In the
clamped condition, the input and output units are fixed to their correct values. In the free
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condition, none of the units is fixed. Then, the learning rule is unsupervised. If the inputs are
fixed in the free condition, the learning rule is supervised.

In Fig. 4.11b, the units in the network of a Boltzmann machine have binary val-
ues and the connections between them are reciprocal [4.33]. The weights of the con-
nections can be trained by presenting patterns to the input units in the presence and
the absence of output patterns and applying the Boltzmann learning rule. During the
learning process, every weight in the network is modified. The hidden units which
do not receive direct information from outside enable the network to yield complex
associations between input and output patterns. Thus, Boltzmann machines with
hidden units in their middle layer have internal representations of the environment
which are not possible for networks with only visible (input and output) units.

@ Hidden unit
O Visible unit
Fig. 4.11b. Network of a Boltzmann machine [4.33]

From a neurobiological point of view, supervised learning with a “teacher”
seems to be rather unrealistic in nature. Feature extraction or categorization by an
animal must be self-organized from an analysis of the sensory inputs. The more
frequently a feature occurs in the input vectors, the more likely it is to belong to
a certain category. The outputs of the network must learn to converge to the corre-
sponding prototype vectors as attractors.

How can a network be designed to invent criteria of classification without the
supervision of an external teacher? Some authors assume that this kind of self-
organization depends on the nonlinear interactions and selective reinforcement of
the connections in a multi-layered system. The learning procedure is organized in
a Darwinian process of selection and competition.

In Fig. 4.12, the multi-layered architecture of a competitive learning system
is designed to produce such eminently cognitive tasks as classification and catego-
rization [4.34]. Active units are represented by filled dots, inactive ones by open
dots. The connections from the input layer to each element in the second layer are
excitatory. The second layer is subdivided into clusters within which each element
inhibits all the others. Elements of the same cluster compete with each other in re-
sponding to the input pattern. According to the rules of Rumelhart and Zipser, a unit
can learn only if it can win the competition with the other units within the same
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Input units
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Fig. 4.12. Multi-layered network with competitive learning [4.34]

cluster. Learning means an increase in the active connections and a decrease in the
inactive connections.

A simple task of classification refers to word recognition by a child. Obviously,
the two-letter words AA, AB, BA and BB may be classified in several categories, for
instance, the set { AA, AB} of words beginning with A or the set {BA, BB} of words
beginning with B or the set {AA, BA} of words ending with A or the set {AB, BB}
of words ending with B. In a computer-assisted experiment, the two-letter words
were presented to a layered network with one level of competing units organized in
a cluster of two units. The system was able to detect the position of the letters. One
of the units spontaneously learnt to act as a detector of A as beginning letter, while
the other one detected B as the beginning letter.

In further experiments, the number of letters was increased, with a modified
network structure. Although these experiments seem only to illustrate limited capa-
bilities, they demonstrate the emergence of cognitive behavior from unsupervised
neural systems, at least in principle. They have started some interesting research
linking neurophysiology with the cognitive sciences in the framework of complex
systems which will be explored in more detail in Sect. 4.4.

Another approach to self-organizing cognitive systems through competitive
learning was proposed by Teuvo Kohonen. He is a physicist who also has worked
physiologically on associative memory. His mathematical modeling of neural sys-
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tems has been important for engineering applications in artificial intelligence (com-
pare Chap. 5). Kohonen’s ideas of brain modeling by self-organizing feature maps
stems back to anatomically and physiologically well-confirmed facts. Most neural
networks in the brain are two-dimensional layers of processing units which may be
cells or cellular modules. These units are interconnected through lateral feedback.
For instance, in the neocortex there are 10 000 interconnections for every principal
cell.

The synaptic coupling from a neuron to its neighbors is excitatory for all those
neurons whose distance is smaller than a certain critical value. It is inhibitory for
neurons lying at a greater distance. At some yet greater distance, the coupling is
weakly excitatory again. The degree of lateral interaction is mathematically modeled
by a curve with the form of a Mexican hat [4.35] (Fig. 4.13a).
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Fig. 4.13a—c. Mexican hat of neural interaction (a). Distribution of neural activity in a 2-
dimensional model (b) and a raccoon’s cortex (c¢) [4.36]

Obviously, the activity of lateral couplings tends to a spatially bounded cluster.
Figure 4.13b shows a two-dimensional example of clustering which was simulated
by a network with a 21 x 21 square array of processing units. The clustering phe-
nomenon (“‘activity bubble’’) depends on the degree of positive or negative feedback,
which may be influenced by chemical effects in the neural network. In neural reality,
“activity bubbles” do not have the regular form of computer-assisted simulations.
Figure 4.13c shows distributions of activity on a raccoon’s cortex, which does not
represent a regularly-shaped figure, but a rather diffuse map [4.36].

Nevertheless, the cluster phenomenon can be shown to be useful in the self-
organizing processes of the brain. While initially the activities of the neural network
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are homogeneously distributed, a progressive specialization of neural regions can
be observed, according to a self-organizing learning process. After presentation of
an input pattern, the neuron with highest activation and its neighbors are chosen for
learning. The neural weights are modified according to the circular neighborhood
of given radius, centered around the neuron with highest activation. This learning
rule can be used to detect and categorize similarities among input data of visual or
speech patterns.

Formally, Kohonen considered a nonlinear projection P from the space V of
input signals v onto a two-dimensional map A. Figure 4.14 illustrates the learning
step: the input value v selects a center s. In the neighborhood of s, all neurons shift
their weights wy in the direction of v. The degree of shift decrease with increasing
distance from the center s and is visualized by differing grey values [4.37].

Fig. 4.14. Kohonen’s model of self-organizing neural maps [4.37]

The map converges to a state of equilibrium with different regions of activity
by self-organization. The projection should map the regularities of the input signals
onto the neural map. Thus, P is mathematically called a topologically invariant map-
ping. Actually, the structure of the brain’s environment, which is represented by the
regularities of the sensory input signals, should be projected onto a neural map of
the brain: the brain should get an adequate model of the world.

How realistic is the modeling of the brain by self-organizing maps? The magni-
tude of a neural field varies, depending on the importance of the perceived sensory
stimuli for the survival of the species. In a neural field there are centers which can
analyze and represent the stimuli with more accuracy than their environment. For in-
stance, in the eye of a mammal the fine analysis of visual information is performed
by the “fovea”, which is a very small region around the optical axis of the retina
with a very high density of light-sensitive receptors. Thus, the dissolution of sig-
nals is essentially higher in this center than in the surrounding region of the neural
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field. Similiar unproportional representations can be observed in the somatosensory
system and in the motor cortex. The importance of the hand for human survival is
represented by a rather great region on the somatosensory and motor cortex, relative
to the representation of the body’s surface.

Contrary to these results, the auditory cortex of cats, dogs, and apes does not
project the frequencies of the outer world with special centers. An exception is the
bat with its specialized system of orientation, which is necessary for its survival.
Bats can send many different supersonic frequencies and determine the distance and
magnitude of objects by the reflections of the signals. The bat’s velocity relative to
other objects can be determined by the Doppler effect in supersonic echo sounding.
Even the movements of tiny insects can be detected by this sensitive system.

The specialization of the bat can be experimentally confirmed by a self-
organizing map on its auditory cortex. Figure 4.15a shows the brain of a bat with the
auditory cortex in the rectangle. Figure 4.15b is an enlargement of the rectangle with
a distribution of the best frequencies on the auditive cortex. The one-dimensional
frequency spectrum is represented continuously and monotonicly from the poste-
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Fig. 4.15a—c. Brain of a bat with auditory cortex in the rectangle (a), its enlargement (b), and
distribution of the best frequencies (c) [4.38]
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rior to the anterior region of the auditive cortex. The frequency causing the highest
excitation of a neuron is called the best frequency of that neuron. The region of the
dotted lines is the primary auditory cortex. Figure 4.15¢ shows the distribution of
the best frequencies in the hatched region of Fig. 4.15a. The majority of measured
points are centered around the frequency of supersonic echo sounding. More than
the half of the anterior-posterior region is used to analyze the Doppler effect in the
supersonic echo sounding. It is remarkable that computer assisted simulations by
self-organizing maps produce the actual representations of the auditory cortex in
Fig. 4.15¢ [4.38].

The brain in primates consists of many regions with several neural net topolo-
gies. The retina, for instance, already develops during early ontogeny. It has a neural
topology with five separate layers for photoreceptors, horizontal cells, bipolar cells,
amacrine cells, and retinal ganglion cells. The photoreceptor layer in humans con-
sists of about 120 - 10° receptor cells. The retinal output, which is represented by
the spatio-temporal pattern of the impulse rates of all ganglion cells, travels along
the optic nerve toward the thalamus. In humans, there are about 1.2 - 10° ganglion
cells. Thus, the retina is a really complex system. Nevertheless, the complexity of
more than 200 - 10° retinal neurons still is not understood completely. The cerebral
cortex is the phylogenetically youngest brain region. The percentage of cerebral cor-
tex to brain increased during evolution. Lower vertebrates like fishes did not evolve
a cerebral cortex. Its magnitude increased from small parts in reptiles and birds to
dogs, cats, and finally apes and humans. In primates, the cortex is divided into dif-
ferent regions with multilayered neural net topologies like visual, sensory, motor,
and association cortex. The cerebellum consists of the cerebellar cortex with many
multilayered subregions for specific sensorimotor functions.

The great variety of brain systems is described as densely packed sets of neu-
rons with particular network topologies, communicating with each other via many
nerves which consist of thousands of axons. In contrast to digital computers with
separate central processing unit, memory, and registers, the brain and the central
nervous system can be modeled as an ensemble with many special-purpose paral-
lel processing networks. Each network is capable of independent processing and
storage of information for sensory, motor, and associative functions.

Obviously, the biological brain does not apply principles known from program-
controlled centralized digital computers. The process of network self-organization
is fundamental to the structure of the brain. In the very long course of phylogene-
sis, complex structural forms, the purposes of which are sometimes not completely
clear to us, have been produced. On the macroscopic scale, particular neural areas
have been specialized for signals with different sensory functions, for information
processing operations with different levels, for humans as well as for the animal
and vegetative functions of the organism. Although they are distributed in different
areas of the brain, they can be understood as self-organizing complex or collective
effects.

Self-organization as a learning procedure demonstrates that organisms are not
fully determined by genes containing a blueprint which describes the organism in
detail. Each stage of brain organization involves some kind of self-organization.
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Genes would not be able to store the complex structure of the brain. With a cerebral
cortex of about 10'# synapses, ontogeny could not select the correct wiring diagram
out of all alternatives if all were equally likely. Thus, ontogeny must use the self-
organization of neural systems to handle their complexity. But the structure of the
cortex is not understandable without knowing the principles of its ontogenesis.

In earlier chapters, we have studied the emergence of ordering patterns from
complex systems in physics, chemistry, biology, metereology, and astronomy. Global
order emerges in complex systems with a large number of locally interacting ele-
ments. There are interacting atoms or molecules in a liquid or crystal, subvolumes
in an evolving star system, or neurons and synapses in a complex neural system
like a brain. We remind the reader of Bénard convection (“rolling columns’), which
arises by thermal fluctuations of a liquid.

How can global order be arranged by local interactions? The intermolecular
forces, for instance, acting within a volume of liquid have a very short range, while
the pattern of convective movement which is caused by the molecular interactions
may be ordered on a large scale. This principle, which arises in physical, chemical,
and biological evolution, has great importance to the brain, in which local interac-
tions between neighboring cellular elements create states of global order leading
to a coherent behavior of the organism. The ordering pattern is arranged by forces
between elements of the complex system and by initial and boundary conditions. In
the example of Bénard convection, the forces are hydrodynamic interactions, ther-
mal conduction, expansion, and gravity. Boundary conditions are, for instance, the
temperature which is given to the liquid. In the brain, the connection patterns are
arranged by several rules for the interaction of cellular units. As neurons are con-
nected by sometimes very long axons, a local interaction of two neurons does not
imply their spatial proximity in the brain’s anatomy, but only their immediate con-
nection by axons.

Although the general structure is universal for all types of neurons and synapses,
there can exist many qualitative and quantitative differences. The neural system of
an invertebrate, for instance, is deterministic with a high degree of coded informa-
tion in the specific location of individual neurons. For an associative system in the
mammalian neocortex, the specific responses to specific input patterns are achieved
by learning rules faciliating feedback of information from the output.

How adequate are complex system models to real neural networks? From
a methodological point of view, we must be critically aware that models cannot
be naively identified with each function and element of reality. Models are special-
purpose abstractions which may explain and simulate some part of the central ner-
vous system more or less, and other parts not at all. Sometimes model nets are criti-
cized in that they only demonstrate more or less correct execution of an input-output
function like a black box. But nothing could be revealed about how biological neural
nets execute that function. Hidden units were only theoretical concepts like hidden
variables in quantum physics which are assumed to be intrinsic elements of the sys-
tem realizing the relation between the observed and measurable input and output
values. Besides the architecture of a perhaps multi-layered network, the dynamics
and learning procedures are an essential problem of simulations.
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How realistic are the parameter-adjusting procedures of model nets to mini-
mize error? Many learning rules of model nets take unacceptably long to converge
to a set of weights that classify correctly. Although a successful weight-adjustment
is sometimes found, its optimality is by no means decided. In 1960, Widrow and
Hoff suggested a simple and elegant learning rule which was motivated by reasons
of technical optimization, and not by biological insight into the brain’s function
[4.39]. The Widrow—Hoff-rule and its variants have been extensively used in tech-
nical networks in recent years (compare Chap. 6).

The rule assumes that there is an input pattern, and an output classification of
the input pattern by an adaptive neuron, which can take values of either a+1 ora—1.
Thus, a “teacher” is assumed knowing what the answer was supposed to be for that
input. The adaptive neuron compute a weighted sum of activities of the inputs times
the synaptic weight. The system is able to form an error signal between what the
output is supposed to be and what the summer computed. According to the differ-
ence between them, the synaptic weights are adjusted, and the sum recomputed, so
the error signal becomes zero.

Widrow and Hoff’s strategy aims at reducing the square of the error signal to its
smallest possible value. All possible values of the input weighting coefficients give
rise to an error value. In Fig. 4.16, the situation is visualized by an error surface in
the weight space [4.40].

The minimum of the error surface is not known exactly, because the entire sur-
face cannot be seen. But the local topography can be measured. Thus, the directions
of adjustment which decrease the error the most can be calculated. The so-called
gradient descent method, which is well known in differential geometry and physics,
always adjusts the weights so that changes in weights move the system down the
error surface in the direction of the locally steepest descent.
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Fig. 4.16. Error surface and learning by gradient descent [4.40]
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In Fig. 4.16, the gradient of the error surface is computed to find the direction
of steepest descent. The weights are incrementally changed by a certain value Aw
along this direction. The procedure is repeated until the weights reach wjqea) repre-
senting minimum error. For a nonlinear network the error surface may have many
local minima. Problems with gradient descent in general involve getting trapped
in local minima. Then the bottoms of valleys do not represent the lowest global
error.

Widrow and Hoff proved that there is a simple quadratic error surface with
only one global minimum. Mathematically, computing the gradient at a point means
computing partial derivatives of the square of the error with respect to the weights.
Widrow and Hoff proved that this derivative is proportional to the error signal. Thus,
the measurement of the error signal provides the direction of movement, in order to
correct the error. Technically, the existence of a “teacher” with perfect knowledge
may be justified for special purposes. But the assumption of supervised learning
procedures in nature seems to be rather unlikely.

In network models, so-called backpropagation is the best known supervised
algorithm which is a generalization of the simple Widrow-Hoff rule. In short, back-
propagation is a learning algorithm for adjusting weights in neural networks. The
error for each unit, which is the desired minus the actual output, can be calculated
at the output of the network and recursively propagated backward into the network.
This method enables the system to decide how to change the weights inside the net-
work to improve its overall performance. Figure 4.17 illustrates the backpropagation
method through an entire net with several layers [4.41].

Although models with backpropagation can be as successful as biological net-
works, it is not assumed that the real brain is organized by backpropagation. Many
values of parameters in a real network are sometimes known by measurement and
experimentation in anatomy, physiology, and pharmacology. For instance, the num-
ber of cell types and cells themselves may be roughly estimated. The topology and
architecture may be described, the question whether specific synapses are excita-
tory or inhibitory may be decided, and so on. But the specific weights are unknown.
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Fig. 4.17. Backpropagation
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When there are thousands of them, the probability that the global minimum of
a brain net and a model net are exactly the same, weight for weight, is rather low.

Thus, the error minimization strategies of model nets may in general be hypo-
thetical, but they are necessary to deal with the complexity of perhaps thousands of
unknown parameters. They allow one to predict some local or global properties of
brain nets if the degree of similarity between the topology, architecture, and synap-
tical dynamics of model and brain nets is rather high. Backpropagation in neurobi-
ology is justified as a search tool to find local minima, but not as a replacement for
neurobiological analysis, which may reveal the real learning procedure of a neural
network.

Error minimization strategies have a long tradition in the evolution of nature
and have not emerged for the first time in the learning procedures of the brain.
Natural selection of, for instance, an ecological population can often be modeled
as a process of sliding down an error gradient to an error minimum representing
an environmental survival niche. But the parameter-adjusting procedure may only
find a local minimum, not necessarily the global minimum. As far as we know,
evolution in general does not find the best possible solution, but only a satisfac-
tory one which is good enough for survival. Only local minima of the entire evolu-
tion can be empirically evaluated with respect to their evolutionary survival value.
This evaluation depends on the observed and measured constraints of the chosen
model.

Thus, from a methodological point of view, the idea of an always globally and
perfectly optimizing nature is a metaphysical fiction. It is the secularized idea of
a godhead called “nature” or “evolution” which was born in the optimistic century of
enlightenment in order to replace the Christian God with his plan of creation. It was
already Kant who criticized the idea of a totally self-optimizing nature as a human
fiction which cannot be empirically justified in any sense. There is no supercom-
puter with a separate central processing unit which can optimize the evolutionary
strategy totally and in the long run. There are only locally more or less satisfactory
solutions, even many failures, and imperfection in real evolutionary processes. Their
complexity contradicts the simplified models of a perfect world a la Laplace.

4.3 Brain and the Emergence of Consciousness

How can cognitive features be explained by neural interactions in complex mod-
els of the brain? Leibniz already had the problem that consciousness, thoughts, and
feelings cannot be found in the elements of the brain if it is interpreted as a mere
machine. Kant underlined that an organizing force is necessary to animate a physical
system. Until this century some physicists, biologists, and philosophers believed in
a immaterial organizing life factor which was called “elan vital” (Bergson) or “ent-
elechy” (Driesch). From the point of view of complex systems, Kohler’s gestalt psy-
chology was an interesting approach referring to the existence of physical systems
in which complex psychic structures originate spontaneously from the system’s own
intrinsic dynamics. Popularly speaking, the macroscopic “gestalt” (form) of a per-
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ceived object is more than the sum of its atomic parts, and cannot be reduced to the
microscopic scale.

Kohler had the idea that the emergence of visual phenomena can be explained
in the framework of thermodynamic models. But in those days, he referred to Boltz-
mann’s linear thermodynamics in equilibrium. He assumed: “The somatic processes
underlying static visual fields are stationary equilibrium distributions developed
from the inner dynamics of the optical system itself” [4.42]. Kohler even realized
that an organism is not a closed system, and tried to explain the emergence of or-
dered states as a kind of intuitively understood synergy. In this respect, Kohler was
already correct with his clear distinction between the microscopic level of elemen-
tary interactions and the macroscopic level of emerging ordered states in a syn-
ergetic system. But he still lacked an adequate framework of complex dynamical
systems to provide the formalism for a thermodynamics far from thermal equilib-
rium.

The complex system approach offers the possibility for modeling the neural
interactions of brain processes on the microscopic scale and the emergence of cog-
nitive structures on the macroscopic scale. Thus, it seems to be possible to bridge the
gap between the neurobiology of the brain and the cognitive sciences of the mind,
which traditionally has been considered as an unsolvable problem.

Complex models consist of state spaces and nonlinear evolution equations de-
scribing a system’s dynamics. With about 10! nonsensory neurons, the human brain
is represented by a state space of 10!! dimensions. Even a typical subsystem con-
tains about 108 elements. In a state space with 10% dimensions and only 10 levels

of neural activitation, there are at least 109" distinct positions representing activi-
tation vectors. If we assume 103 synaptic connections between each neuron and the
other 108 neurons of a subsystem, then about 10'! synapses must be distinguished.
Consequently, for only 10 distinct weights at each synapse, we get the huge number

of 1010" weights in a subsystem alone. This complexity provides numerous possi-
bilities for coding, representing, and processing information, which can be modeled
mathematically by vector and tensor transformations [4.43].

In Kohonen’s competitive learning network, the system self-organizes so that
nearby vectors map onto nearby points of the net. It is assumed that similar im-
pressions are represented by similar vectors with tiny distances to some prototype
vectors. In the framework of complex systems, prototype vectors are interpreted as
attractors. Thus, two distinct categories or classes are represented by two different
attractors in the state space (Fig. 4.7b). The learning process of cognitive distinction
is modeled by a training process of the network which involves adjusting the weights
so that an input vector (for instance, a visual or acoustic pattern) is submitted to the
prototype vector with the most similarity.

The concept of prototype in neural state spaces allows some interesting inter-
pretations of cognitive processes. How can a network recognize a pattern when the
input impression is only partially given? The task of vector completion is crucial for
animals to survive in the wild. Imagine a coyote in the desert which detects the tail
of a rat in the grass (Fig. 4.18a). The input to the retina of the coyote is limited to
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Fig. 4.18a. Recognition by prototype-activation in neural nets: a coyote recognizes the tail of
arat [4.44]

that detail of the rat. The assumption or “hypothesis” that there is a rat in the grass
is enabled by the coyote’s visual system completing the input vector with the learnt
prototype vector of a rat. In this sense, we may say that the coyote has a “concept’” of
arat represented by a corresponding prototype activation pattern in the brain [4.44].

Paul Churchland even suggests interpreting human high-level cognitive abilities
by the prototype vector approach. So, explanatory understanding is reduced to the
activation of a specific prototype vector in well-trained networks. Prototype vectors
embody a huge amount of information which may differ for different people. The
reason is that different people may not always have the same items satisfying the
constraints of a prototype cluster. Indeed, people mostly have different degrees of
explanatory understanding, although they classify an object or situation in nearly the
same manner. A joiner, for example, has a higher degree of understanding of what
may be a chair than most other people. Nevertheless, they all will agree in most
cases. Thus, the prototype-activation model is rather realistic, because it considers
the fuzziness of human concepts and understanding.

In epistemology and cognitive psychology, it is usual to distinguish between
different kinds of explanation. There are classifying explanations (“Why is the
whale a mammal?”’), causal explanations (“Why does the stone fall down?”), func-
tional explanations (“Why does a bird have wings?”), and others which correspond
to prototype activations of clusters, causal relations, functional properties, and so
on. Even mastering social situations is a matter of activating social-interaction pro-
totypes which have been trained and taught during a lifetime.

In the complex system approach, mental states are correlated with neural ac-
tivation patterns of the brain which are modeled by state vectors in complex state
spaces. External mental states referring to perceptions of the outer world may be
testable and correlated to neural activities of the brain. How can we test and explain
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internal states of consciousness which do not refer to events of the outer world, but
to mental states themselves?

It is well known that we can even reflect about our self-reflections, and re-
flect about the reflections about our self-reflections, and so on in an iteration pro-
cess which is in principle unlimited (Fig. 4.18b). Self-experience and self-reflection
lead to the concept of self-consciousness, which traditionally was considered as
the essential concept in the philosophy of mind and cognitive psychology. Self-
consciousness was defined as the crucial feature of human personality. The defi-
nitions of self-consciousness which historically have been discussed are not only
philosophically interesting. Obviously, these more or less speculative definitions
have powerful consequences in medicine and law. Which criteria must be satisfied
for a human being to be conscious and therefore responsible for his actions? Are
there medical criteria for consciousness? How can consciousness be disturbed or
even destroyed? What about the consciousness of animals? Can we feel like our
neighbor or like an animal?

The fundamental questions arise (1) if there are particular brain processes caus-
ing the emergence of consciousness, and (2) if the emergence of consciousness from
brain processes can be modeled by complex systems. The methodological difficulty
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Fig. 4.18b. Self-reflection by iterated self-related prototype-activations
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seems to be that subjective feelings like pains, smells, and so on are only accessi-
ble to introspection. These subjective states of feeling and consciousness are some-
times called phenomenal states. Some philosophers have criticized that a physical
description of brain states fails to grasp the essence of what is a phenomenal state.
Proponents of the opposite view have argued that notions of phenomenal states can
be reduced to notions of neurophysiological states of the brain. These arguments
are nothing more than modern variations of traditional positions which are known
as physicalism and mentalism (or antiphysicalism). Both positions are ideological
reductionisms and exaggerations which are neither justified by research nor very
helpful in research [4.45].

According to the complex system approach, neurophysiological states and men-
tal states are modeled by mathematical formalisms without reductionist ambitions.
Some philosophers fail heavily with their prejudice against mathematics, because
they seem to believe that formulas only can designate “physical” states. The reader
may recall, for instance, a Hopfield system which contains an “energy” formula by
analogy with the energy formula for a physical spin system. Nevertheless, in the
framework of a Hopfield system, the so-called “energy” formula must not be identi-
fied with energy in solid state physics. The mathematical expression only determines
the dynamics of a network, which may be simulated by neurobiological brains or
silicon computers or angelic organisms from still unknown star systems.

The mathematical model is empirically corroborated if it fits the observed data.
In other cases, it must be modified or dropped. We must be aware that a testable
and corroborated theory of mental states and consciousness does not enable us to
feel like our neighbor. A physician or a surgeon, for instance, who wishes to heal
a patient’s pain in the stomach does not need to feel the patient’s stomach pain.
He must have a good knowledge of the stomach based on anatomy, physiology,
biochemistry, psychology, etc. In the terminology of the complex system approach,
he must know the possible states of a stomach and their dynamics. In this sense,
a model of mental states and consciousness should be developed and tested without
any reductionist claims.

Obviously, there are many testable correlations between phenomenal states of
consciousness and the neurobiological functioning of the brain. Everybody knows
that a short period of oxygen deprivation causes unconsciousness. Electrical stim-
ulations, psychotropic drugs, anesthesia, and lesions may influence the degree of
consciousness too, which is not only experienced by self-experiment (autocere-
broscopy) but also clinically testable by observations and measurements of func-
tional deficits. The reason is that the brain is an open system whose states depends
on the physical, chemical, and biological metabolism with its environment far from
thermal equilibrium.

Conscious and unconscious states seem to depend on a rather complex neuro-
physiological system which contains feedback loops and interconnections at vari-
ous levels. Figure 4.19 shows the network of the cerebral cortex with its subsystems
of primary sensory cortex and association cortex. There are specific inputs (“af-
ferents”) from sense organs reaching the primary cortical projection areas through
specific transmitting subsystems and pathways. Non-specific inputs reach the cor-
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Fig. 4.19. Inputs to the cerebral cortex with somasensory pathways (SOM), auditory path-
ways (AUD), visual pathways (VIS), lateral geniculate (LG), medial geniculate (MG), nu-
cleus ventralis posterolateralis (VPL) [4.46]

tex from a subsystem called the “mesencephalic reticular formation”. The reticular
formation designates a complex network of neurons and nerve fibers with widely
distributed connections of synaptic contacts. It is known to play an essential role in
arousal, wakefulness, and attention [4.46].

Lesions within the complex network lead to various disturbances of conscious-
ness, which may be global or only local, with specific deficits of conscious experi-
ence during global wakefulness. Neurophysiology can experimentally demonstrate
that degrees of consciousness depend on the two streams of specific and non-specific
afferent signals processed in the cerebral cortex. But the question arises of how
mental states of consciousness emerge from these networks. In the terminology of
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Leibniz, we see the interacting elements like the cog wheels of a mill, but cannot
bridge the gap between the neurophysiological machinery and the mental states of
consciousness. Traditional neurophysiology has the conventional view that brain
functions are made possible by electrical impulses spreading through a network of
neurons connected by rigid synapses like the rigid connections of cog wheels in
Leibniz’ mechanistic model of a mill.

The complex system approach offers a view of self-organizing nets changing
their synaptic connections, which are induced by synaptic activation and depend on
the degree of activation. In the framework of neural complex systems, the micro-
scopic level of interacting neurons is distinguished from the macroscopic level of
global patterns produced as cell assemblies by self-organization. In earlier sections,
it was already mentioned that the concept of self-organizing neural cell assemblies
was introduced by Hebb. It was modified by Christoph von der Malsburg, Teuvo
Kohonen, and others. If simultaneous activity is induced in some neurons of a net
by a patterned input, then an assembly will be formed by synchronous activation
according to a Hebb-like learning rule.

The modification suggested by von der Malsburg is that assembly formation is
not a slow process, but produced by rapid synaptic changes [4.47]. These so-called
“Malsburg synapses” are used to model networks with rapid weight adjustment dy-
namics. Today, there is empirical evidence of Hebb- and Malsburg-type synapses
with high plasticity in the brain whose rule of interaction can be realized by molec-
ular mechanisms. The formation of assemblies in a network depends on the degree
of activation of its neurons.

But there is no “mother neuron” that can feel, think, or, at least, coordinate the
appropriate neurons. The binding problem of pixels and features in perception is
explained by cell assemblies of synchronously firing neurons dominated by learnt
attractors of brain dynamics. The binding problem asked: How can the perception
of entire objects be conceived without decaying into millions of unconnected pix-
els and signals of firing neurons? Barlow’s theory [4.48] assumed single neurons
for each property of a perceived object, other neurons for clusters of properties,
and, finally, a neuron for the entire object (“grandmother neuron”). Thus, the brain
needs an exploding number of specialized neurons which must be postulated in ad
hoc hypotheses for every new perception of changing situations (Fig. 4.20a). Wolf
Singer [4.49], and others confirmed Hebb’s concept of synchronously firing neurons
through observations and measurements (Fig. 4.20b). Thus, Barlow’s theory is not
necessary for the explanation of gestalt phenomena.

Concerning conscious and unconscious states, it is assumed that global acti-
vation of a cell population, as exerted by the reticular formation on the cortex
(Fig. 4.19), would generally increase the probability of assemblies being formed.
Thus, Hans Flohr has suggested that degrees of consciousness differ in the rate at
which assemblies can be generated. The production rate of cell assemblies deter-
mines the amount, complexity, and duration of representations of sensory patterns
from the outer world, for instance. Consciousness is a self-referential state of self-
reflection (Fig. 4.18b). Thus, a conscious state is based on a cell assembly repre-
senting an internal state (and not only a state of the outer world). For example, I not
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Fig. 4.20. Binding problem in Barlow’s theory of grandmother neurons (a) and Hebb’s theory
of cell assemblies (b) [4.50]

only have the impression of a green tree, but I am conscious that I am looking at this
tree. Furthermore, I can reflect on my state of being conscious of my looking at the
green tree, and continue with an iterative production of meta-meta...representations
reaching from phenomenal impressions and feelings to abstract and highly sophis-
ticated states of self-reflection. Whenever a critical threshold rate of production is
surpassed, phenomenal states must emerge. Deficits of consciousness occur below
the critical threshold level.

This hypothesis is testable by particular EEG changes corresponding to an in-
creasing formation rate of assemblies which represent a certain degree of attention.
As the production rate of cell assemblies is based on particular synapses with chang-
ing weights, the degrees of consciousness may be tested by interventions on synap-
tic connections. Actually, patients anesthetized with chemical substances which in-
fluence synaptic plasticity experience vivid dreams, sensory illusions, visual and
auditory hallucinations, and disorganized thoughts. In this sense, awareness can
be considered as the result of a system’s capacity to generate representations and
metarepresentations.

Neural networks with a high rate of assembly formation can produce more
complex representations than networks with a lower formation rate. Thus, at a suf-
ficiently high formation rate, complex systems will develop self-referential and
metacognitive activities. We may imagine a scale of more or less conscious sys-
tems corresponding to the degrees of consciousness in the evolution of living beings
with more or less complex nervous systems from the worm to humans. It follows
that in the framework of complex systems the emergence of consciousness is no
epiphenomenon of evolution. It is a lawful occurrence of global states according
to the dynamics of complex systems which produce macroscopic order patterns by
microscopic interactions of their elements if certain critical conditions are satisfied.
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If the complex systems approach is right, then the nervous systems of biolog-
ical evolution are only particular realizations of self-referential systems, and other,
perhaps technical systems with self-referential capacities based on materials differ-
ent from the human brain’s biochemistry cannot be excluded in principle (compare
Chap. 6). We may even be able to translate representations from one complex system
into an alien one. As the representations in both systems are not exactly the same, we
would not exactly feel like our neighbor, an animal, or another alien system. But we
would have a representation in the form of knowledge or a theory about their feel-
ings or thoughts. In this sense, subjectivity is saved, and a wide field of hermeneutics
in human communication remains even in the case of technical simulations.

Concerning the traditional mind-body problem, the complex system approach
shows that cognitive activity is neither completely independent and different from
brain activity nor simply identical, nor an epiphenomenon. Thoughts and feelings
are assumed to be both product and producer of neural processes without being iden-
tical to them. In the framework of complex systems, the brain is modeled as a self-
organizing system which operates far from thermal equilibrium and close to certain
threshold values as instability points. During neural instability, different modes of
collective excitations evolve to coherent macroscopic patterns which are neurophys-
iologically based on certain cell assemblies and psychologically expressed as certain
feelings or thoughts [4.51].

We all know the experience that in a situation of emotional instability a certain
feeling may dominate the other virtual ones and even guide our actions. In syn-
ergetics, the competition of stable and unstable modes is explained by the slaving
principle. The reader may be reminded of decision situations in which one thought
or concept begins to “enslave” the other possible ones. These nonequilibrium phase
transitions are governed by very few order parameters in the sense of minimum
information. Indeed, acting after a decision means an enormous reduction of com-
plexity. Too much knowledge hinders action or to quote Goethe: “An acting person
is always unscrupulous.”

Cognitive phenomena are referred to macroscopic properties of the brain’s dy-
namics and to order parameters which govern the underlying microscopic processes.
Thus, the so-called mind-brain interaction is only an old-fashioned formulation of
an inadequate and obsolete metaphysics that assumes some interacting substances
like colliding balls in mechanics. The overlapping area of brain and cognitive sci-
ences is modeled by the emergence of macroscopic properties from microscopic
neural interactions during phase transitions in complex neural systems.

In synergetics, phase transitions are interpreted as a kind of symmetry breaking
which can be visualized by an overdamped motion of a particle in a symmetric
potential (Fig. 4.21a) [4.52].

At the maximum of the potential the position of the particle is symmetric, but
unstable, and tiny initial fluctuations decide which of the two equal stable states of
minima the particle will reach. In the complex system approach, the two valleys of
Fig. 4.21a are interpreted as attractors. Obviously, the ambiguity of perceptions and
the spontaneous decision of the visual system for one interpretation is a well-known
psychological example of symmetry breaking. In Fig. 4.21b, there is an instability
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Fig. 4.21a. Symmetry breaking by an overdamped motion of a particle in a symmetric poten-
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Fig. 4.21b,c. Ambiguity of meaning: (b) white or black cross? (¢) old or young woman?
[4.53]

of figure and ground. Do we see a white or black cross? Figure 4.21c shows an
ambiguity of meaning. Is it a picture of a young lady or an old woman? [4.53]

Symmetry breaking in psychology is governed by the nonlinear causality of
complex systems (the “butterfly effect”), which roughly means that a small cause
can have a big effect. Tiny details of initial individual perspectives, but also cog-
nitive prejudices, may “enslave” the other modes and lead to one dominant view.
A neurophysiological model has to simulate the corresponding phase transitions of
cell assemblies.

Phase transitions are well known in animal locomotion, for instance, in horse
gait. With increasing speed horses fall into different movement patterns, from walk-
ing to trotting to galloping, in order to minimize the energy costs. This phenomenon
of hysteresis is frequently observed in non-equilibrium phase transitions and inter-
preted as a sequence of stable states or attractors in the nervous system. Phase tran-
sitions appear also in thinking. The “aha-experience” and the sudden “insight” are
surprising phenomena arising from a situation of fluctuations and instability. In his-



4.4 Intentionality and the Crocodile in the Brain 165

tory, there are many famous examples of scientists, engineers, artists, and composers
who suddenly found a new problem solution, an invention, an idea for a painting,
a melody, and so on in a situation of “creative” instability and confusion.

The complex system approach delivers no closed doctrine of psychology, but
an interdisciplinary research program to explore old and new problems of cogni-
tive science and to bring them nearer to an empirical and experimental analysis.
Thus, an exploration of correlations between the rates of changing cell assemblies
and intellectual abilities of learning, creativity, cognitive flexibility, and ability to
visualize is suggested. Phenomena of cognitive instability are assumed to be macro-
scopic properties of the microscopic instability of nervous processes. Thoughts and
expectations are interpreted as order parameters governing the activity of the whole
system if it is operating close to instability points. A confirmation of this theory
can be seen in psychological tests which produce hallucinations by suggestions that
correspond to measurable physiological effects. By recording the regional cerebral
blood flow it has been shown that even the thought or intention of acting increases
the neuronal activity of the motor area.

Who will deny that thoughts can change the world and that they are not only
mere interpretations of the world? In the field of psychosomatic phenomena the
placebo effect, for instance, demonstrates that a mere belief or leading idea can alter
not only the emotional state but also the physiological state. Obviously, psychoso-
matic states are close to instability points. The corresponding order parameters are
not just theoretical concepts of psychologists, but real modes governing and domi-
nating (“enslaving”) the activity of the central nervous system.

The last examples show that the application of self-organizing complex systems
in psychology cannot simply be evaluated by their forecasts and quantitative mea-
surability. It is an intrinsic feature of a complex system that its nonlinear dynamics
on the microscopic scale and its sensitive dependence on initial conditions do not
allow one to forecast the system’s final state. In the brain and cognitive research
we are confronted with a huge degree of complexity excluding exact calculations
or long term forecasts. Nevertheless, the complex system approach reveals essential
qualitative features of the mind-brain system, like its high sensitivity with respect to
tiny intrinsic fluctuations and changes in the outer world.

4.4 Intentionality and the Crocodile in the Brain

Besides consciousness, there is another fundamental feature of the human mind
which was traditionally emphasized — intentionality.

Intentionality is the reference of mental states to objects or states of affairs in the
outer world: I see something, 1 believe in something, | expect something, I am afraid
of something, I want something, etc. Intentional mental states can be distinguished
from non-intentional states without any reference object: I am nervous, I am afraid,
I am tired, I am happy, I am depressed, etc.

The phenomenon of intentionality can also be visualized by simple examples.
In Fig. 4.22, every observer sees a square, although there is physically not given
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Fig. 4.22. Intentional object of perception (square) [4.54]

any part of a square’s shape. The configuration of the lines suggests to the visual
system that there is a particular closed object. An intentional reference between the
observer and a configuration of stimuli is achieved [4.54].

Intentional objects or states may be fictional or real. Obviously, human culture
is full of signs and symbols for intentional objects and states from traffic signals to
religious symbols. Even buildings from memorials and churches to factories may
represent intentional objects. The intentional meaning of languages has been consti-
tuted in the long development of human cultures. In traditional epistemology, some
philosophers like Franz Brentano even proclaimed that intentionality is a particular
ability of the human mind to refer to the world. Intentionality was understood as
a feature of the mind which cannot be reduced to physical, chemical, or biological
properties.

Some modern philosophers like John Searle maintain that intentionality is a dis-
tinctive feature of the human mind. But they agree that the biological evolution of
the human brain somehow developed the intentional power of mental reference to
the world [4.55].

Actually, intentionality is not reserved to brains. It is a feature of certain com-
plex systems which can be modeled by the dynamics of attractors in the evolution
of life. Nest construction by social insects is an example of a collective intentional
dynamics. The specific feature of this complex system is the autocatalytic mecha-
nism by which the goal-directed work of building nest ecosystems each consisting
of a termite population with its environment is carried out. In the complex system
approach, it is assumed that this social system already illustrates paradigmatic prop-
erties which can be observed in more highly developed systems like brains or central
nervous systems [4.56].

The construction process of a nest involves the coordination of more than 5 mil-
lion insects on the microscopic level, and results in an evolution of certain macro-
scopic building modes. African termites, for instance, build nests that stand more
than 15 feet in height and weigh more than 10 tons. Each insect works indepen-
dently of each other termite. But their actions are locally determined by distribu-
tions of some chemical substance being excreted by the termites themselves. The
building material is marked by chemical substance. At first, the building material
is distributed randomly, then in an increasingly regular way, until the architectural
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structure arises from the local interactions of the insects governed by the chemical
distribution.

The pattern determines several centers as goals of collective activities, which
can be interpreted mathematically as attractors of a diffusion field. In earlier chap-
ters, an attractor was introduced as a solution shared by multiple trajectories origi-
nating from different initial conditions. The local trajectories either converge to or
diverge from the attractor. In physical or chemical field models, the attractors define
local regions in which the potential energy gradient degenerates, going to zero. The
region surrounding the attractor is called the basin of attraction and is defined by the
gradient flows converging to or diverging from the attractor. The flow pattern of the
insects is globally organized by the layout of attractors in their work space, which
is the phase portrait of the insects’ dynamics. It is well known that attractors are not
achieved for ever. If certain control parameters are changed, a pattern may become
unstable and break down, being followed by a new pattern of attractors.

Figure 4.23a shows the chemical diffusion gradient surrounding two attractors
which will be base of two pillars. As the two pillars act as competing attractors for

Fig. 4.23a—c. Arch formation as intentional dynamics of termites: (a) base of the two pillars
as two attractors in a 2-dimensional diffusion gradient field, (b) 3-dimensional field govern-
ing the direction of the pillars’ construction, (¢) arc formation governed by an attractor of
a diffusion gradient [4.57]
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the termites, a saddle-point is determined between them. In a later building step, the
initial two-dimensional field of Fig. 4.23a is followed by a three- dimensional one
(Fig. 4.23b) governing the direction of the pillars’ construction. In Fig. 4.23c, the
arch formation is shown with one attractor of a chemical diffusion gradient [4.57].

Obviously, an intention at the ecological scale does not require that an individ-
ual component of a system must be aware of the global consequences of its actions.
The intention is only globally manifested in the long range by the system’s dynam-
ics. Figure 4.23d shows the autocatalytic cycle of a nest-building intentional com-
plex system. As it is not a supervised learning process, there is no “goal” or “plan”
of some supervising authority like “God” or “Nature”. That would be only a sim-
plified anthropomorphic metaphor which does not correctly describe the nonlinear
causality of the self-organizing complex system under consideration. Nevertheless,
globally there is intentional collective behavior arising from complex nonlinear in-
teractions.
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Fig. 4.23d. The autocatalytic cycle of a nest-building intentional complex system

As brains and central nervous systems are complex systems with a nonlinear
dynamics governing their neurons and synapses, it is no wonder that they achieve in-
tentional behavior patterns, too. Intentionality has not fallen from heaven as a mirac-
ulous feature to guide and distinguish human mind from nature. It is a global pattern
emerging in particular complex systems under certain conditions. But there are dif-
ferent levels of intentionality depending on the increasing complexity of evolution.

Intentions must not necessarily be conscious. In Fig. 4.22, the intentional object
of our visual system is a square without our exerting conscious will. The so-called
perceptual illusions are also intentional patterns of our visual system emerging spon-
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taneously without our conscious will. Figure 4.24 manifests a warping effect of
manifolds which seems to be caused by the repellor gradients of different visual
attractors. Two equidistant parallel lines seem to change their curvature by a pair
of repellor gradients on the left and by a single repellor gradient on the right. The
state space of the observer’s visual system indicates different curvatures as a result
of different visual gradient fields, although the lines remain equidistant and parallel
in the physical figure.
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Fig. 4.24. Warping effects of two equidistant parallel lines by visual attractors

Even conscious intentional patterns of behavior are not exclusive to humans.
A dog not only jumps, it jumps to catch prey, to greet its master, and so on. Inten-
tionality in the sense of conscious goal-directedness is a property of more or less
all animals. The question arises of how intentional behavior can be modeled by the
complex system approach and how the model can be tested experimentally.

In this context, an intention is defined as an intended behavior pattern which
may change the dynamical properties, such as stability, of intrinsic behavior pattern.
Thus, psychologists can model the intrinsic dynamics of behavior patterns which
may be changed by the dynamics of other, intended behavior patterns. Here we re-
mind the reader of the intrinsic dynamics governing some patterns of behavior which
can be modeled by nonequilibrium phase transitions and order parameters. Kelso,
Haken, and others have analyzed the following simple examples: when persons are
asked to move their fingers in parallel (Fig. 4.25a), they can easily perform this at
low frequency. When the test persons are asked to increase the frequency of their
finger movements, the fingers are suddenly moved in a symmetric and antiparallel
fashion without conscious intention (Fig. 4.25b) [4.58].

In order to model this phase transition of behavior patterns, the frequency is in-
terpreted as a control parameter, and the macroscopic variable describing the finger
movement is the phase ¢. The behavior can be modeled in an energy landscape rel-
ative to the changing phase. The landscape must be symmetric, as the left and right
finger have equal functions. It must also be periodic in the phase angle (Fig. 4.26).
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Fig. 4.25a,b. Two fingers moving in parallel (a) and antiparallel fashion (b) [4.58]
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Fig. 4.26. Dynamics of moving fingers in an energy landscape with relative phase ¢ as order
parameter

If the frequency increases, the landscape with its initially sharp valleys is deformed.
In the beginning of slow movement the pattern is stable, corresponding to a stable
phase at value 7 (Fig. 4.26a). Finally, the valley at = has disappeared, and a ball,
initially in the valley at 77, has run down to the deepest minimum, corresponding the
symmetric movement of the fingers (Fig. 4.26¢).

In some experiments, subjects were asked to switch intentionally between the
two patterns of bimanual coordination. The duration of the transient corresponds
to the switching time, which was measured. The stability of both patterns is mea-
sured by order parameter fluctuations. The relative phase dynamics is modeled by
a nonlinear evolution equation.
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Figure 4.27a visualizes the intrinsic dynamics according to the potential of this
equation with two minima. The contribution of intentional information to the rela-
tive phase dynamics is shown by the potentials of Fig. 4.27b. The result of summing
the intrinsic and the intentional dynamics to arrive at the full dynamics is shown
by Fig. 4.27c. The ball in the landscape travels faster along the steeper slope at
¢ = 0 than ¢ = 180, corresponding to the empirically measured switching time.
Obviously, an intention can change the intrinsic dynamics by destabilizing one pat-
tern and stabilizing the other one. The intentional information is said to be a part
of the pattern dynamics attracting the system toward the intended pattern. In this
sense, intentional information defines an attractor in the same state space in which
the intrinsic dynamics is modeled [4.59].

Intentionality and linguistic meaning are often proclaimed to be essential fea-
tures of the human mind. Examples of intentional states are pains, tickles and
itches, beliefs, fears, hopes, desires, perceptual experiences, experiences of acting,
thoughts, feelings, etc., which are expressed by corresponding sentences like I suf-
fer from pain in the stomach”, “I desire to get a car”, “I believe in God”, etc. Searle
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Fig. 4.27a—c. Relative phase dynamics with intentional information [4.59]
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argues that mental states are as real as any other biological phenomena like lacta-
tion, photosynthesis, or digestion. He knows that mental states are macrostates of
the biological brain which are caused by neurophysiological interactions between
neurons on the microscopic scale. Thus, they cannot be identified with the neuro-
physiological states of single neurons.

The distinction between the micro- and macrostates of brains is illustrated by
an analogy with, for instance, micro- and macrostates in liquids: the macrostate of
liquidity cannot be reduced to single molecules or, in other words, single molecules
cannot be liquid. In this sense, beliefs, desires, thirsts, and visual experiences are
real causal features of the brain as much as the solidity of a table or the liquidity of
water. Intentional states can themselves be caused by and realized in the structure
of the brain. Searle declares that there is not, in addition, a metaphysical obstacle.

Nevertheless, he argues that no purely formal model will ever be sufficient by
itself for intentionality because the formal properties are not by themselves constitu-
tive of intentionality. His reason for holding this position is based on the thought ex-
periment of the “Chinese room”. A person who only understands English is locked
in a room with a great store of Chinese symbols, and a set of complicated transfor-
mation rules, written in English, for performing operations on sequences of Chinese
symbols. The person periodically receives sequences of Chinese symbols through
a slot (Fig. 4.28). He applies the transformation rules in order to produce a further
sequence of Chinese symbols which are put through the slot, again [4.60].

Fig. 4.28. Alice in the Chinese room

It is unknown to the person in the room that the store of sequences contains
a large amount of information about certain topics, written in Chinese. The input se-
quences which are put through the slot are questions or comments on those topics.
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The output sequences are reactions and comments to the received inputs. The trans-
formation rules used are a formal program to simulate the conversational behavior of
a native Chinese speaker. The person in the Chinese room applies the formal trans-
formation rules correctly without understanding the sequences of Chinese symbols,
which are meaningless to him.

Searle maintains that formal symbol manipulations by themselves do not have
any intentionality, because they are quite meaningless to the user. Intentionality in
this context is the feature of formal symbols like words, sentences, etc., that they
refer to certain “meant” entities (semantic relation of the symbol) and to the user
(pragmatic relation of the symbol). Searle asserts that this feature is intrinsic only
for the mental states of the brain.

His arguments against “computer simulation” fail, if he restricts simulations
to formal algorithms running on program-controlled Turing-type computers. But
we have shown that a brain has the typical characteristics of a self-organizing and
self-referential complex system which is quite different from a program-controlled
computer (compare Chap. 6). Self-organization and self-referentiality of complex
systems are not restricted to human or mammalian brains. They are only biochemi-
cal and neurophysiological realizations of particular complex structures which have
been produced in biological evolution. Thus, in principle it cannot be excluded
that these complex structures with their characteristic dynamics may be realized
by quite different materials which may be produced via human technology. Conse-
quently, as intentionality is made possible by the features of self-referentiality and
self-organization, at least a partial simulation by complex models different from
biological brains cannot be excluded in principle.

In traditional philosophies, intentionality is often founded on the so-called
“self” of the human being, which is said to be able to refer to the world and to
itself (“self-consciousness” as self-referentiality). But where is the self hidden in
the brain? Traditional positions like kinds of platonism or spiritualism or materi-
alism are even maintained by some modern researchers of the brain. For Sir John
Eccles, for instance, the self seems to be a spiritual entity interacting with the brain,
but completely different in nature [4.61]. But how should this hypothesis be de-
fended or refuted? It is a mere postulate with high metaphysical costs, which one
may believe or not believe.

Hypotheses must be criticizable, perhaps false, but fruitful for further research.
Thus, the metaphysical price is too high. Ockham’s razor from philosophy demands
that we cut away superfluous hypotheses, remain economical with the postulation of
metaphysical entities, and restrict hypotheses to the minimal number that seems in-
dispensable for empirical research. The complex system approach is a mathematical
research program of interdisciplinary models avoiding metaphysical dogmas. It may
fail in the long run. But this strategy of modeling has been confirmed by an impres-
sive number of successes in several sciences and technologies and, more important,
it suggests some fruitful concepts for further empirical research. On the other hand,
the traditional materialism which identifies mental states with neurophysiological
processes in single neurons is simply false.
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Nevertheless, in brain research, the question has arisen which part of the brain
is the center of the “self”. The cortex is the part of the brain which enables us to
learn, to memorize, to think, and to create all the products of human culture and civ-
ilization. But if the cortex is mainly modeled as a complex associative memory store
with certain learning procedures, then it is only a complex and highly sophisticated
instrument which has been evolved in biological evolution for enhanced survival of
the fittest.

Indeed, the cortex is the youngest part in the evolution of the human brain.
There are some much older, but more primitive structures which also can be found
in the brains of birds, reptiles, amphibians, and fishes. Some scientists assume that
basic feelings like lust and pain and all the servo-mechanisms which were necessary
to survive in a reptile’s life are essentially realized in these early structures of the
brain. This center would give the impulses for all kinds of activities, using the cortex
only as huge and effective associative store. Thus, in this interpretation, the “self”
is replaced by a little crocodile in the brain operating with some highly complex
instruments like the cortex, in order to survive in a more and more complex envi-
ronment [4.62]. Intentionality would be made possible by the cortex, but initiated
by the basic instincts of the crocodile in the human brain.

The idea of crocodiles with highly effective neural instruments of survival
seems to injure our vanity more than the popular Darwinistic motto of the last cen-
tury that the ape is the ancestor of man. From a scientific point of view, of course,
it should not be injured vanity which makes us criticize the concept of the “neural
crocodile”. The main objection is that our feelings have not rested at the level of
a crocodile, but have developed during biological and cultural evolution, too.

Our feelings of lust and pain are rather complex, because they are influenced
by the stimuli of a rather complex and sophisticated civilization which has been
produced by human brains. Thus, there is a complex feedback which has shaped
our feelings and desires from the crocodile until today. The history of literature,
art, and psychology demonstrates that lust and pain have been highly sophisticated
states of the human brain that are in permanent evolution. Thus, even the traditional
concept of a human soul which is more or less sensitive still makes sense in the
framework of complex system. But we must give up the traditional ideas of human
mind and soul as strange substances controlling and interacting with the human
body in a miraculous manner which cannot be conceived in principle.

4.5 Complexity and the Embodied Mind

The coordination of the complex cellular and organic interactions in an organism
requires a special type of self-organizing control. This was made possible by the
evolution of nervous systems that enabled organisms to adapt to changing living
conditions and to learn bodily from experiences with their environments. We call
this the emergence of the embodied mind [4.63]. The hierarchy of anatomical or-
ganization varies over different scales of magnitude, from molecular dimensions
to those of the entire central nervous system (CNS). Research into these hierarchi-
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cal levels concerns questions of (for example) how signals are integrated in den-
drites, how neurons interact in a network, how networks interact in a system like
that used in vision, how systems interact in the CNS, or how the CNS interacts
with its environment. Each stratum can be characterized by some order parameters
that determine its particular structure, which is caused by complex interactions of
subelements with respect to the particular level of hierarchy.

At the micro level of the brain, there are (massively) many-body problems
which need a reduction strategy to cope with the complexity. In the case of EEG
pictures, a complex system of electrodes measures local states (electric potentials)
of the brain. The whole state of a patient’s brain at the micro level is represented
by local time series. In the case of, say, petit mal epilepsy, these are characterized
by typical cyclic peaks. The microscopic states determine the macroscopic electric
field patterns during a cyclic period. Mathematically, the macroscopic patterns can
be determined by spatial modes and order parameters — the amplitude of the field
waves. In the corresponding phase space, they determine a chaotic attractor that
characterizes petit mal epilepsy.

Neural self-organization at the cellular and subcellular level is determined by
information processing in and between neurons. Chemical transmitters can effect
neural information processing using direct and indirect mechanisms of great plas-
ticity. The long-term potentiation (LTP) of synaptic interactions is an extremely
interesting topic of recent brain research. LTP seems to play an essential role in
the neural self-organization of cognitive features such as memory and learning. It
is assumed that the information is stored in the synaptic connections of neural cell
assemblies with typical macroscopic patterns.

However, while an individual neuron cannot see or reason or remember, brains
can. Vision, reasoning, and memory are understood as being higher-level functions.
Scientists who prefer a bottom-up strategy recommend that higher-level functions
of the brain can be neither addressed nor understood until the particular properties
of each neuron and synapse are explored and explained. An important insight gained
from the complex system approach is that emergent effects of the whole system are
synergetic system effects that cannot be reduced to single elements. They are due
to nonlinear interactions. Therefore, the whole is more than the (linear) sum of its
parts. Thus, from a methodological point of view, a purely bottom-up-strategy of
exploring brain functions must fail. On the other hand, the advocates of a purely
top-down strategy proclaiming that cognition is completely independent of the ner-
vous system are caught in the old Cartesian dilemma: ‘how does the ghost drive the
machine?’

We can now distinguish several degrees of complexity in the CNS. These scales
involve molecules, membranes, synapses, neurons, nuclei, circuits, networks, layers,
maps, sensory systems, and the entire nervous system. Research into these hierar-
chical levels concerns questions of how signals are integrated in dendrites, how
neurons interact in a network, how networks interact in a system like that of vision,
how systems interact in the CNS, or how the CNS interacts with its environment.
Each stratum can be characterized by some order parameters that determine its par-
ticular structures, which are caused by complex interactions of subelements at the
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particular level of hierarchy. Beginning at the bottom, we can distinguish the order
associated with ion movement, channel configurations, action potentials, potential
waves, locomotion, perception, behavior, feeling, and reasoning.

The different abilities of the brain require massively parallel information pro-
cessing in a complex hierarchy of neural structures and areas. We have complex
models of information processing in the visual and motor systems. The dynamics
of the emotional system even interact in a nonlinear feedback manner with several
structures of the human brain. These complex systems produce neural maps of cell
assemblies. The self-organization of somatosensoric maps is well-known in the vi-
sual and motor cortices. They can be enlarged and changed by learning procedures,
like that used when training an ape’s hand.

PET (positron emission tomography) pictures show macroscopic patterns of
neurochemical metabolic cell assemblies in different regions of the brain that are
correlated with cognitive abilities and conscious states, such as looking, hearing,
speaking, or thinking. Patterns formed by neural cell assemblies are even correlated
with complex processes of psychic states [4.64]. Perturbations of metabolic cellular
interactions (e.g., caused by cocaine intake) can lead to nonlinear effects that cause
complex changes in behavior (e.g., addictions to drugs). These correlations between
neural cell assemblies and order parameters (attractors) of cognitive and conscious
states demonstrate the connection between neurobiology and cognitive psychology
observed in recent research, depending on the precisions of the measuring instru-
ments and procedures employed.

Many questions are still unanswered. We can only observe that someone is
thinking and feeling, not what they are thinking and feeling. Also, there is no unique
substance called consciousness, but complex macrostates of the brain that pay differ-
ent degrees of attention to sensor, motor, or other types of function. Consciousness
means not only that we look, listen, speak, hear, feel, think, etc., but also that we
recognize when we are performing these cognitive processes. Our self is consid-
ered to be an order parameter of a state, which emerges from a recursive process
of multiple self-reflections, self-monitoring, and supervising our conscious actions.
Self-reflection is made possible by so-called mirror neurons (e.g., in the Broca area),
which allow primates (especially humans) to imitate and simulate interesting behav-
ior exhibited by their companions. Therefore, they can learn to see things from their
own and their companion’s perspectives, allowing them to understand their inten-
tions and to empathize with them. The emergence of subjectivity is well understood
neuropsychologically.

The brain observes, maps, and monitors both the external world and the internal
states of the organism, especially its emotional states. To “feel” means to have an
awareness of one’s emotional states, which are mainly caused by the limbic system.
In neuromedicine, the “Theory of Mind” (ToM) even analyzes the neural corre-
lates of social feeling, which are situated in special areas of the neocortex [4.65].
Some people, such as those suffering from Alzheimer’s disease, lose their feelings
of empathy and social responsibility because the associated neural areas have been
destroyed. Therefore, our moral reasoning and decision-making has a clear basis in
brain dynamics.
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From a neuropsychological point of view, the old philosophical problem of
“qualia” is also solvable. Qualia are properties that are consciously experienced
by a person. In a thought experiment, a neurobiologist is assumed to be caught in
a black and white room. Theoretically, she knows everything about the processing
of colors by neurons. However, she has never had a chance to experience colors.
Therefore, exact knowledge says nothing about the quality of conscious experience.
Qualia in this sense emerge through the interactions of self-conscious organisms
bodily with their environment, which can be explained via nonlinear dynamics of
complex systems. Therefore, we can explain the dynamics of subjective feelings
and experiences, but, of course, the actual feeling is an individual experience. In
medicine, the dynamics of a certain pain can often be completely explained by
a physician, although the actual feeling of pain is an individual experience for the
patient [4.66].

In order to model the brain and its complex abilities, it is adequate to distin-
guish the following categories. In neuron-level models, studies concentrate on the
dynamic and adaptive properties of each nerve cell or neuron, in order to describe
the neuron as a unit. In network-level models, identical neurons are interconnected,
resulting in basic system functions. In nervous-system-level models, several net-
works are combined to demonstrate some of the more complex functions of sensory
perception, motor functions, stability control, etc. In mental-operation-level models,
the basic processes of cognition, thinking, problem-solving, etc., are described.

In the complex systems approach, the microscopic level of interacting neurons
should be modeled by coupled differential equations that model the transmission of
nerve impulses by each neuron. The Hodgekin—Huxley equation is an example of
a nonlinear diffusion reaction equation with an exact solution of a traveling wave,
which provides a precise prediction of the speed and shape of the nerve impulse of
electric voltage. In general, nerve impulses emerge as new dynamical entities like
ring waves in BZ reactions or fluid patterns in non-equilibrium dynamics. In short,
they are the “atoms” of complex neural dynamics. At the macroscopic level, they
generate a cell assembly whose macrodynamics are dominated by order parameters.
For example, a synchronously firing cell assembly represents a visual perception
of a plant which is not only the sum of its perceived pixels, but is characterized
by some typical macroscopic features like form, background or foreground. At the
next level, cell assemblies of several perceptions interact in a complex scenario.
In this case, each cell assembly is a firing unit, generating a cell assembly of cell
assemblies whose macrodynamics are characterized by some order parameters. The
order parameters may represent similar properties of the perceived objects.

In this way, we obtain a hierarchy of emerging levels of cognition, starting with
the microdynamics of firing neurons. The dynamics of each level are assumed to
be characterized by differential equations with order parameters. For example, at
the first level of macrodynamics, order parameters characterize a visual perception.
At the following level, the observer becomes conscious of the perception. Then the
cell assembly of perception is connected with the neural area that is responsible for
states of consciousness. In a next step, a conscious perception may be the goal for
planning activities. In this case, cell assemblies of cell assemblies are connected
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with neural areas in the planning cortex, and so on. They are represented by cou-
pled nonlinear equations with firing rates of corresponding cell assemblies. Even
high-level concepts like self-consciousness can be explained by self-reflections of
self-reflections, connected with a personal memory which is represented in the cor-
responding cell assemblies of the brain. Brain states emerge, persist for a small
fraction of time, then disappear and are replaced by other states. It is the flexibility
and creativeness of this process that makes a brain so successful at enabling animals
to adapt to rapidly changing and unpredictable environments.



5 Complex Systems and the Evolution
of Computability

The evolution of complexity in nature and society can be understood as the evolution
of computational systems. In the beginning of modern times, Leibniz already had the
idea that the hierarchy of natural systems from stones and plants up to animals and
humans corresponded to natural automata with increasing degrees of complexity
(Sect. 5.1). The present theory of computability enables us to distinguish complexity
classes of problems, meaning the order of corresponding functions describing the
computational time of their algorithms or computational programs. But we can also
consider the size of a computer program when defining the algorithmic complexity
of symbolic patterns (Sect. 5.2).

Information dynamics in complex systems are analyzed by Shannon’s concept
of information entropy and Kolmogorov-Sinai entropy. Thus, the information flow
in complex systems with stable, oscillating, chaotic, or random dynamics can be
distinguished by well-defined methods. The degree of complexity of 1/f” noise can
be linked to attractors in nonlinear dynamics (Sect. 5.3). In general, any stochastic
process can be classified according to the degree of complexity of the probabilistic
attractor. This offers deep insights into the power laws of complex systems, indicat-
ing the self-organization and emergence of order in nature and society (Sect. 5.4).
Further on, we ask if more efficient information processing can be expected from
quantum computers and quantum complexity theory. Is matter nothing more than
“condensed” quantum information with different degrees of complexity (Sect. 5.5)?
Leibniz’s idea of natural automata has been made mathematically precise by John
von Neumann’s concept of cellular automata. Pattern formation in complex systems
can be analyzed in the framework of cellular automata. Even chaos and randomness
can be generated by simple rules of cellular automata, as demonstrated by Stephen
Wolfram’s computer experiments (Sect. 5.6).

5.1 Leibniz and Mathesis Universalis

One of the most speculative applications of complex systems is the evolution of arti-
ficial intelligence (AI) [5.1]. In the tradition of classical Al, the brain has been under-
stood as computer hardware of the most advanced machinery, while the mind is the
corresponding software program with deterministic algorithms. Even knowledge-
based expert systems are conceived by algorithmical representations of highly de-
veloped Al programming languages. But theoretical results of mathematical logic
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(Church, Turing, Godel, etc.) and practical problems of programming limit the
mechanization of thought in the framework of classical Al

A theory of the “cerebral computer” as a product of natural evolution has been
suggested to model the nature of the brain and its mental states by the non-linear
dynamics (“self-organization”) of complex neural networks. The question arises of
wether the insight into their dynamics delivers the “blue-prints” of a new revolu-
tionary technology which will pursue the natural evolution of brain and mind. Actu-
ally, the development of human knowledge and knowledge technology seems to be
a kind of technical evolution which has led to technical innovations like mutations
in biological evolution.

The first level was realized by simple tools like the hammer, the lever, and so on.
On the next level, machines using force and energy were invented. Today program-
controlled computers and information-processing automata have become tools of
everyday life. Computer scientists distinguish several generations of hardware and
software in the historical development of their machines. In artifical-intelligence
research one speaks of the “second computer age”, meaning the transition from
number-processing machines to knowledge-processing systems such as expert sys-
tems, which are said to simulate human experts, at least partially [5.2].

The early historical roots of computer science stem back to the age of classical
mechanics. The mechanization of thoughts begins with the invention of mechanical
devices for performing elementary arithmetic operations automatically. A mechani-
cal calculation machine executes serial instructions step by step. Thus, its dynamics
is determined by mechanical mono-causality, differing essentially from the paral-
lelism and self-organization of complex systems. In general, the traditional design
of a mechanical calculation machine contains the following devices.

First, there is an input mechanism by which a number is entered into the ma-
chine. A selector mechanism selects and provides the mechanical motion to cause
the addition or subtraction of values on the register mechanism. The register mech-
anism is necessary to indicate the value of a number stored within the machine,
technically realized by a series of wheels or disks. If a carry is generated because
one of the digits in the result register advances from 9 to 0, then that carry must be
propagated by a carry mechanism to the next digit or even across the entire result
register. A control mechanism ensures that all gears are properly positioned at the
end of each addition cycle to avoid false results or jamming the machine. An erasing
mechanism has to reset the register mechanism to store a value of zero.

Wilhelm Schickard (1592-1635), professor of Hebrew, oriental languages,
mathematics, astronomy, and geography, is presumed to be the first inventor of a me-
chanical calculating machine for the first four rules of arithmetic. The adding and
subtracting part of his machine is realized by a gear drive with an automatic carry
mechanism. The multiplication and division mechanism is based on Napier’s multi-
plication tables. Blaise Pascal (1623-1662), the brilliant French mathematician and
philosopher, invented an adding and subtracting machine with a sophisticated carry
mechanism which in principle is still realized in our hodometers of today [5.3].

But it was Leibniz’ mechanical calculating machine for the first four rules of
arithmetic which contained each of the mechanical devices from the input, selector,
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and register mechanism to the carry, control, and erasing mechanism. The Leibniz
machine became the prototype of a hand calculating machine. If we abstract from
the technical details and particular mechanical constructions of Leibniz’ machine,
then we get a model of an ideal calculating machine which in principle is able to
calculate all computable functions of natural numbers.

Figure 5.1 is a scheme of this ideal machine with a crank C and three number
stores SM, TM, RM [5.4]. Natural numbers can be entered in the set-up (input)
mechanism SM by the set-up handles SH. If crank C is turned to the right, then
the contents of SM are added to the contents of the result mechanism RM, and the
contents of the turning mechanism TM are raised by 1. A turn to the left with crank
C subtracts the contents of SM from the contents of RM and diminishes the contents
of TM by 1.

Addition means the following. At the beginning of the calculation, the erasing
procedure is implemented by setting TM and RM to zero. Then the first number is
set up in SM by SH. A turn to the right of crank C transports this number into RM.
In other words, the number is added to the zero 0 in RM. Now the second number
is set up in the SM and added to the contents of RM by a turn to the right. The sum
of both numbers can be read in the RM. After turning the crank twice to the right,
the TM shows 2. Multiplication only means a repeated addition of the same number.
The product b - a results from adding the number a to itself b times.

Leibniz even designed a mechanical calculating machine for the binary number
system with only two digits 0 and 1, which he discovered some years earlier. He
described a mechanism for translating a decimal number into the corresponding
binary number and vice versa. As modern electronic computers only have two states
1 (electronic impulse) and 0 (no electronic impulse), Leibniz truly became one of
the pioneers of computer science [5.5].

Leibniz’ historical machines suffered from many technical problems, because
the materials and technical skills then available were not up to the demands. Never-
theless, his design is part of a general research program for a mathesis universalis
intended to simulate human thinking by calculation procedures (“algorithms”) and
to implement them on mechanical calculating machines. Leibniz proclaimed two
basic disciplines of his mathesis universalis.

An ars iudicandi should allow every scientific problem to be decided by an ap-
propriate arithmetic algorithm after its codification into numeric symbols. An ars
inveniendi should allow scientists to seek and enumerate possible solutions of sci-
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Fig. 5.1. Hand calculating machine
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entific problems. Leibniz’ mathesis universalis seems already to foreshadow the fa-
mous Hilbert program in our century with its demands for formalization and axiom-
atization of mathematical knowledge. Actually, Leibniz developed some procedures
to formalize and codify languages. He was deeply convinced that there are universal
algorithms to decide all problems in the world by mechanical devices [5.6].

Consequently, he proposed that natural systems like cells, plants, animals, and
even humans are more or less complex automata. In his Discourse on Metaphysics
(1686), Leibniz underlines that the mechanistic description and causal explanation
of living systems is not in contradiction to a teleological consideration that has great
heuristic value in science (§22). In his Monadology (§18) he introduced an individ-
ual substance (monade) as an elementary automaton (automates incorporels) which
is characterized by a (continuous) series of states (“perceptions”). The elementary
automata constitute aggregations of more or less complexity which are characterized
by different correlations and which can be interpreted as composite automata. In his
Theodicée (§200), Leibniz discusses the hierarchical structure and subordination in
living systems:

... the connection and order of things brings it about that the body of every animal and
of every plant is comprised of other animals and of other plants, or of other living organic
beings: consequently there is subordination, and one body, one substance, serves the other.

The unity of a living system is guaranteed by its form of organization, which
Leibniz, adapting an idea of Aristotle, called “entelechy”. But Leibniz only used
an old metaphysical term in order to introduce his own new concept. For Leibniz
a system can only be more or less unified in the sense of higher or lower degrees
of subordination and hierarchy. An aggregation with the same correlation between
all its substances has no hierarchical order and is less structured than a primitive
cellular organism, while in plants, animals, and humans we can observe a growing
degree of subordination.

For Leibniz the teleological terminology has a heuristical value, although in
principle nature can be explained by mechanistic causes. But it is a fundamental
error and misunderstanding when disciples of vitalism refer to Leibniz. The main
difference is that for Leibniz no new principle or force vitale is necessary to explain
living systems. At a certain degree of complexity, it is only heuristically suitable to
describe natural systems in the terminology of teleology. But, unlike natural sys-
tems, artificial mechanical automata are constructed by humans in finite steps. Only
an infinite analysis could demonstrate the complexity of a natural automaton, which
is correlated with each individual automaton (“substance”) in the world. Obviously,
Leibniz designed a theory of complex systems, but still in the framework of classical
mechanics and the belief in decidable universal algorithms.

In the 19th century it was the English mathematician and economist Charles
Babbage who not only constructed the first program-controlled calculation ma-
chine (the “analytical engine”) but also studied its economic and social conse-
quences [5.7]. A forerunner of his famous book On the economy of machinery and
manufactures (1841) was Adam Smith’s idea of economic laws, which paralleled
Newton’s mechanical laws (compare Sect. 6.2). In his book The Wealth of Nations,
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Smith described the industrial production of pins as an algorithmic procedure and
anticipated Henry Ford’s idea of program-controlled mass production in industry.

5.2 Computability and Algorithmic Complexity

The modern formal logic of Frege and Russell and the mathematical proof theory
of Hilbert and Godel have been mainly influenced by Leibniz’ program of mathesis
universalis. The hand calculating machine (Fig. 5.1) which was abstracted from the
Leibniz machine in Sect. 5.1 can easily be generalized to Marvin Minsky’s so-called
register machine [5.8]. It allows the general concept of computability to be defined
in modern computer science.

A hand calculating machine had only two registers TM and RM, and only rather
small natural numbers can be input. An ideal register machine has a finite number
of registers which can store any finite number of a desired quantity. The registers
are denoted by natural numbers i = 1, 2, 3, . ... The contents of register i are denoted
by (i). As an example, the device (4):=1 means that the content of the register with
number 4 is 1. The register is empty if it has the content 0.

In the hand calculating machine an addition or subtraction was realized only
for the two registers (SM) and (RM), with (SM)+(RM) or (RM) — (SM) going into
the register RM. In a register machine the result of subtraction (i) — (j) should be 0
if (j) is greater than (i). This modified subtraction is denoted by (i)—(j). In general,
the program of an ideal register machine is defined using the following elementary
procedures as building blocks:

1) Add 1 to (i) and put the result into register 7, in short: (i) : = (i) + 1
2) Subtract 1 from (i) and put the result into register i, in short: (i) : = (i)—1

These two elementary procedures can be composed using the following con-
cepts:

3) If P and Q are well-defined programs, then the chain P — Q is a well-defined
program. P — Q means that a machine has to execute program Q after program
P.

4) The iteration of a program, which is necessary for multiplication, for instance,
as iterated addition is controlled by the question of whether a certain register is
empty.

A diagram illustrates this feedback:
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If P is a well-defined program, then execute P until the content of the register
with number i is zero.

Each elementary operation (1) and (2) of a program is counted as a step of
computation. A simple example is the following addition program:

Each state of the machine is illustrated by the following matrix, which incre-
mentally adds the content y of register (j) to the content x of register (i) and simul-
taneously decrements the content of (j) to zero. The result x 4 y of the addition is
shown in register (j):

0 O

X y
x+1y=-1
x+yy-y
A register machine with program F is defined to compute a function f with n ar-
guments if for arbitrary arguments xi, ..., x, in the registers 1,..., n (and zero in
all other ones) the program F is executed and stops after a finite number of steps
with the arguments of the function in the registers 1, ..., n and the function value
f(x1,...,xp) in register n + 1:
The program
(1) :=x15 ...; (n) :=xy
!
F
\

n+1):=f(x1,...,xn)

works according to a corresponding matrix. A function f is called computable by
a register machine RM (RM-computable) if there is a program F computing f.

The number of steps which a certain program F needs to compute a function
f is determined by the program and depends on the arguments of the function. The
complexity of program F is measured by a function sF(xy, . .., x,) counting the steps
of computation according to program F. For example, the matrix of the addition
program for x + y shows that y elementary steps of adding 1 and y elementary
steps of subtracting 1 are necessary. Thus, sp(x, y) = 2y. As an RM-computable
function f may be computed by several programs, a function g is called the step
counting function of f if there is a program F to compute f with g(xy,...,x,) =
SF(x1, ..., x,) for all arguments xi, ..., x,. The complexity of a function is defined
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as the complexity of the best program computing the function with the least number
of steps.

Obviously, Minsky’s register machine is an intuitive generalization of a hand
calculating machine a la Leibniz. But, historically, some other, but equivalent for-
mulations of machines were at first introduced independently by Alan Turing and
Emil Post in 1936. A Turing machine (Fig. 5.2a) can carry out any effective proce-
dure provided it is correctly programmed [5.9]. It consists of

a) acontrol box in which a finite program is placed,

b) a potentially infinite tape, divided lengthwise into squares,

¢) a device for scanning, or printing on one square of the tape at a time, and for
moving along the tape or stopping, all under the command of the control box.

If the symbols used by a Turing machine are restricted to a stroke | and a blank
%, then an RM-computable function can be proved to be computable by a Turing
machine and vice versa. We must remember that every natural number x can be rep-
resented by a sequence of x strokes (for instance 3 by |||), each stroke on a square of
the Turing tape. The blank * is used to denote that the square is empty (or the corre-
sponding number is zero). In particular, a blank is necessary to separate sequences
of strokes representing numbers. Thus, a Turing machine computing a function f
with arguments xy, . . ., x,, starts with tape - - - x| % xp * - - - k X, * - - - and stops with
cee®X] kX2 k- Xp % f(X],...Xx,) % - - - on the tape.

From a logical point of view, a general purpose computer — as constructed by
associates of John von Neumann in America and independently by Konrad Zuse
in Germany — is a technical realization of a universal Turing machine which can
simulate any kind of Turing program. Analogously, we can define a universal regis-
ter machine which can execute any kind of register program. Actually, the general
design of a von-Neumann computer consists of a central processor (program con-
troller), a memory, an arithmetic unit, and input-output devices. It operates step by
step in a largely serial fashion. A present-day computer a la von Neumann is really
a generalized Turing machine. The efficiency of a Turing machine can be increased
by the introduction of several tapes, which are not necessarily one-dimensional,
each acted on by one or more heads, but reporting back to a single control box
which coordinates all the activities of the machine (Fig. 5.2b) [5.10]. Thus, every
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Fig. 5.2b. Turing machine with several tapes [5.10]

computation of such a more effective machine can be done by an ordinary Turing
machine. Concerning the complex system approach, even a Turing machine with
several multidimensional tapes remains a sequential program-controlled computer,
differing essentially from self-organizing systems like neural networks.

Besides Turing- and register machines, there are many other mathematically
equivalent procedures for defining computable functions. Recursive functions are
defined by procedures of functional substitution and iteration, beginning with some
elementary functions (for instance, the successor function n(x) = x 4+ 1) which are
obviously computable. All these definitions of computability by Turing machines,
register machines, recursive functions, etc., can be proved to be mathematically
equivalent. Obviously, each of these precise concepts defines a procedure which
is intuitively effective.

Thus, Alonzo Church postulated his famous thesis that the informal intuitive
notion of an effective procedure is identical with one of these equivalent precise
concepts, such as that of a Turing machine. Church’s thesis cannot be proved,
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of course, because mathematically precise concepts are compared with an infor-
mal intuitive notion. Nevertheless, the mathematical equivalence of several pre-
cise concepts of computability which are intuitively effective confirms Church’s
thesis. Consequently, we can speak about computability, effectiveness, and com-
putable functions without referring to particular effective procedures (“algorithms’)
like Turing machines, register machines, recursive functions, etc. According to
Church’s thesis, we may in particular say that every computational procedure (al-
gorithm) can be calculated by a Turing machine. So every recursive function,
as a kind of machine program, can be calculated by a general purpose com-
puter [5.11].

Now we are able to define effective procedures of decision and enumerability,
which were already demanded by Leibniz’ program of a mathesis universalis. The
characteristic function fj; of a subset M of natural numbers is defined as fys(x) = 1
if x is an element of M, and as fy;(x) = O otherwise. Thus, a set M is defined as
effectively decidable if its characteristic function saying whether or not a number
belongs to M is effectively computable (or recursive).

A set M is defined as effectively (recursively) enumerable if there exists an
effective (recursive) procedure f for generating its elements, one after another (for-
mally (1) = x1,f(2) = xa,... for all elements xi, x2, ... from M). It can easily
be proved that every recursive (decidable) set is recursively enumerable. But there
are recursively enumerable sets which are not decidable. These are the first hints
that there are limits to Leibniz’ originally optimistic program, based on a belief in
universal decision procedures.

Concerning natural and artificial intelligence, the paradigm of effective com-
putability implies that mind is represented by program-controlled machines, and
mental structures refer to symbolic data structures, while mental processes im-
plement algorithms. Historically the hard core of Al was established during the
Dartmouth Conference in 1956 when leading researchers such as John McCarthy,
Alan Newell, Herbert Simon, and others from different disciplines, formed the
new scientific community of Al. They all were inspired by Turing’s question “Can
machines think?” in his famous article “Computing machinery and intelligence”
(1950).

In the tradition of Leibniz’ mathesis universalis one could believe that human
thinking could be formalized with a kind of universal calculus. In a modern version
one could assume that human thinking could be represented by some powerful for-
mal programming language. In any case, formulas are sequences of symbols which
can be codified by natural numbers. Then assertions about objects would correspond
to functions over numbers, conclusions would follow from some kind of effective
numerical procedure, and so on. Actually, the machine language of a modern com-
puter consists of sequences of numbers, codifying every state and procedure of the
machine. Thus, the operations of a computer can be described by an effective or
recursive numerical procedure.

If human thinking can be represented by a recursive function, then by Church’s
thesis it can be represented by a Turing program which can be computed by a univer-
sal Turing machine. Thus, human thinking could be simulated by a general purpose
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computer and, in this sense, Turing’s question must be answered with “yes”. The
premise that human thinking can be codified and represented by recursive proce-
dures is, of course, doubtful. Even processes of mathematical thinking can be more
complex than recursive functions. Recursiveness or Turing computability is only
a theoretical limit of computability according to Church’s thesis.

In the following we want to consider problems with a degree of complexity
both below and beyond this limit. Below this limit there are many practical prob-
lems concerning certain limitations on how much the speed of an algorithm can be
increased. Especially among mathematical problems there are some classes of prob-
lems that are intrinsically more difficult to solve algorithmically than others. Thus,
there are degrees of computability for Turing machines which are made precise in
complexity theory in computer science [5.12].

Complexity classes of problems (or corresponding functions) can be charac-
terized by complexity degrees, which give the order of functions describing the
computational time (or number of elementary computational steps) of algorithms
(or computational programs) depending on the length of their inputs. The length of
inputs may be measured by the number of decimal digits. According to the machine
language of a computer it is convenient to codify decimal numbers into their binary
codes with only binary numbers O and 1 and to define their length by the number of
binary digits. For instance, 3 has the binary code 11 with the length 2. A function f
has linear computational time if the computational time of f is not greater thanc - n
for all inputs with length n and a constant c.

The addition of two (binary) numbers has obviously only linear computational time. For
instance, the task 3+7=10 corresponds to the binary calculation

011
111
1010

which needs 5 elementary computational steps of adding two binary digits (including car-
rying). We remind the reader that the elementary steps of adding binary digits are 0+0=0,
0+1=1, 14+0=1, 1+1=10, and carry. It is convenient to assume that the two numbers which
should be added have equal length. Otherwise we simply start the shorter one with a series of
zeros, for instance 111 and 011 instead of 11. In general, if the length of the particular pair of
numbers which should be added is n, the length of a number is Z, and thus, we need no more
than % + % = n elementary steps of computation including carrying.

A function f has quadratic computational time if the computational time of f is
not greater than ¢ - n? for all inputs with length » and a constant c.

A simple example of quadratic computational time is the multiplication of two (binary)
numbers. For instance, the task 7 - 3 = 21 corresponds to the binary calculation:

111-011
000
111
111
10101



5.2 Computability and Algorithmic Complexity 189

According to former conventions, we have n = 6. The number of elementary binary multi-
plications is % . % = % Including carrying, the number of elementary binary additions is
5.3-3= % — %.Inall,weget% + % 5= % — 5, which is smaller than %

A function f has polynomial computational time if the computational time of f
is not greater than c - n*, which is assumed to be the leading term of a polynomial
p(n). A function f has exponential computational time if the computational time of
f is not greater than ¢ - 27 Many practical and theoretical problems belong to the
complexity class P of all functions which can be computed by a deterministic Turing
machine in polynomial time.

In the history of mathematics, there have been some nice problems of graph
theory to illustrate the basic concepts of complexity theory [5.13]. In 1736, the fa-
mous mathematician Leonhard Euler (1707-1783) solved one of the first problems
of graph theory. In the city of Konigsberg, the capital of eastern Prussia, the so-
called old and new river Pregel are joined in the river Pregel. In the 18th century,
there were seven bridges connecting the southern s, northern n, and eastern e regions
with the island i (Fig. 5.3a). Is there a route which crosses each bridge only once
and returns to the starting point?

Euler reduced the problem to graph theory. The regions n, s, i, e are replaced
by vertices of a graph, and the bridges between two regions by edges between the
corresponding vertices (Fig. 5.3b).

In the language of graph theory, Euler’s problem is whether for every vertex
there is a route (an “Euler circuit”) passing each edge exactly once, returning finally
to the starting point. For arbitrary graphs Euler proved that an Euler circuit exists
if and only if each vertex has an even number of edges (the “Euler condition”). As
the graph of Fig. 5.3b does not satisfy this condition, there cannot be a solution
of Euler’s problem in this case. In general, there is an algorithm testing an arbitrary
graph by Euler’s condition if it is an Euler circuit. The input of the algorithm consists
of the set V of all vertices 1, ..., n and the set E of all edges, which is a subset of
the set with all pairs of vertices. The computational time of this algorithm depends
linearly on the size of the graph, which is defined by the sum of the numbers of
vertices and edges.

In 1859, the mathematician William Hamilton (1805-1865) introduced a rather
similar problem that is much more complicated than Euler’s problem. Hamilton
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Fig. 5.3a,b. Euler’s Konigsberg river problem (a). Graph of Euler’s river problem (b)
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Fig. 5.3c. Hamilton’s problem

considered an arbitrary graph, which means nothing else than a finite collection of
vertices, a certain number of pairs of which are connected together by edges. Hamil-
ton’s problem is whether there is a closed circuit (a “Hamilton circuit”) passing each
vertex (not each edge as in Euler’s problem) exactly once. Figure 5.3¢ shows a graph
with a Hamilton circuit passing the vertices in the order of numbering.

However, unlike the case of Euler’s problem, we do not know any condition
which exactly characterizes whether a graph contains a Hamilton circuit or not. We
only can define an algorithm testing whether an arbitrary graph contains a Hamilton
circuit or not. The algorithm tests all permutations of vertices to see if they form
a Hamiltonian circuit. As there are n! different permutations of n vertices, the al-
gorithm does not need more than c - n! steps with a constant c to find a solution.
It can easily be proved that an order of n! corresponds to an order of n". Conse-
quently, an algorithm for the Hamilton problem needs exponential computational
time, while the Euler problem can be solved algorithmically in linear computational
time. Thus, Hamilton’s problem cannot practically be solved by a computer even for
small numbers n.

The main reason for a high computational time may be a large number of single
subcases which must be tested by a deterministic computer step by step. It is more
convenient to use a non-deterministic computer which is allowed to choose a com-
putational procedure at random among a finite number of possible ones instead of
performing them step by step in a serial way. Let us consider Hamilton’s problem
again. An input graph may have n vertices v, . . ., v,. A non-deterministic algorithm
chooses a certain order v;,, .. ., v;, of vertices in a non-deterministic, random way.
Then the algorithm tests whether this order forms a Hamilton circuit. The question
is whether for all numbersj (j = 1,...,n — 1) the successive vertices vij and Vij
and the beginning and starting vertices v;, and v;, are connected by an edge. The
computational time of this non-deterministic algorithm depends linearly on the size
of the graph.

In general, NP means the complexity class of functions which can be computed
by a non-deterministic Turing machine in polynomial time. Hamilton’s problem is
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an example of an NP-problem. Another NP-problem is the “travelling salesman
problem”, which is rather like Hamilton’s problem except that the various edges
have numbers attached to them. One seeks that Hamilton circuit for which the sum
of the numbers, or more intuitively the distance travelled by the salesman, is a min-
imum.

By definition every P-problem is an NP-problem. But it is a crucial question of
complexity theory whether P = NP or, in other words, whether problems which are
solved by non-deterministic computers in polynomial time can also be solved by
a deterministic computer in polynomial time [5.14].

Hamilton’s problem and the travelling salesman problem are examples of so-
called NP-complete problems. This means that any other NP-problem can be con-
verted into it in polynomial time. Consequently, if an NP-complete problem is ac-
tually proved to be a P-problem (if for instance a deterministic algorithm can be
constructed to solve Hamilton’s problem in polynomial time), then it would follow
that all NP-problems are actually in P. Otherwise if P % NP, then no NP-complete
problem can be solved with a deterministic algorithm in polynomial time.

Obviously, complexity theory delivers degrees for the algorithmic power of Tur-
ing machines or Turing-type computers. The theory has practical consequences for
scientific and industrial applications. But does it imply limitations for the human
mind? The fundamental questions of complexity theory (for example N = NP or
N # NP) refer to the measurement of the speed, computational time, storage capac-
ity, and so on, of algorithms. It is another question how one sets out to find more or
less complex algorithms. This is the creative work of a computer scientist which is
not considered in the complexity theory of algorithms.

On the other hand, G6del’s famous theorems are sometimes said to limit the
mathematical power of computers and the human mind. His incompleteness theo-
rem says that in every consistently axiomatized enlargement of formal number the-
ory there is a (closed) formula which is not decidable. Actually, his theorem states
that any adequate consistent arithmetical logic is incomplete in the sense that there
exist true statements about the integers that cannot be proved within such a logic.
Even if we enlarge our axiomatization by the undecidable formula, then there is
another formula which is not decidable in the enlarged formalism. Godel’s result
showed that the formalistic search for a complete consistent arithmetical logic in
the tradition of Leibniz and Hilbert must fail [5.15].

Furthermore, Godel proved that it is impossible to show that arithmetical logic,
which may be incomplete, is consistent by methods that could be represented in the
logic itself. Some years after Godel’s famous result, Gerhard Gentzen (1909-1945)
proved the consistency of elementary number theory using so-called gg-induction,
which is an infinitary extension of the usual arithmetical induction over natural num-
bers. But the consistency of Gentzen’s extended proof method is as open to doubt
as that of the system to be justified. In other words, the complexity of the justifying
method is no less than that of the system to be justified. So there are only rela-
tive consistency proofs using methods which have to be justified by methods which
have to be justified, and so on. For human thinking there is no absolute foundation
of self-consistency which can be delivered by formal algorithms.
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From Godel we know that a consistent axiomatic system for arithmetic cannot
be complete [5.16]. But there could still be a decision procedure that would enable
us to decide if a given assertion is true or not. It was Turing who in 1936 proved that
there cannot be such a universal decision procedure, a claim made in the tradition of
Leibniz and Hilbert [5.17]. Turing’s argument is in some sense deeper than Godel’s,
because he reduced Hilbert’s Entscheidungsproblem to the so-called halting prob-
lem, a basic problem of computabilty and algorithmic complexity: A universal deci-
sion procedure would be able to determine whether an arbitrary computer program
stops after finite steps. Turing proved that the halting problem is in principle unsolv-
able. Then, Godel’s incompleteness is only a corollary of Turing’s proof.

Turing started his proof with the question, are real numbers computable? A real
number like 7 = 3. 1415926. .. has an infinite number of digits that seem to be
randomly distributed behind the decimal point. Nevertheless, there are simple finite
programs for calculating the digits step by step with increasing precision of 7. In this
sense, 7 is called a computable real number. In a first step, Turing constructed an un-
computable real number. Remember that a computer program of a Turing machine,
for example, consists of a finite list of symbols. Thus, it can be coded by a natural
number called the program number. Imagine a list of all possible computer pro-
grams that are ordered according to their increasing program numbers p1, p2, p3, - . ..
If a program computes a real number with an infinite number of digits behind the
decimal point (e.g., ), then they should be written down behind the corresponding
program number. Otherwise, there is a blank line in the list:

p1 —.dydiadizdiadisdiedi . ..
P2 —. daidyydazdrsdysdredyy ..
p3 — d31ddyzdiadssdiedsy . ..
p4
ps

-ds1dspds3dsadssdsedsy . . .

Following Cantor’s diagonal procedure, Turing changed the underlined digits on the
diagonal of the list and put these changed digits together into a new number with
a decimal point in front:

—F#Fdn Fdn #d33 Fdg Fdss. ..

This new number cannot be in the list because it differs from the first digit of the first
number behind p1, the second digit of the second number behind p, etc. Therefore,
it is an uncomputable real number. With this number Turing got the unsolvability
of the halting problem. If we could solve the halting problem, then we could decide
if the n-th computer program ever puts out an n-th digit behind the decimal point.
In this case, we could actually carry out Cantor’s diagonal procedure and compute
a real number, which, by its definition, has to differ from any computable real.

The unsolvability of the halting problem refutes Hilbert’s Entscheidungsprob-
lem. If there is a complete formal axiomatic system from which all mathematical
truth follows, then it would give us a procedure to decide if a computer program
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will ever halt. We just run through all the possible proofs until we either find a proof
that the program halts, or we find a proof that it never halts. So if Hilbert’s finite
set of axioms from which all mathematical truth should follow were possible, then
by running through all possible proofs while checking which ones are correct, we
would be able to decide if computer program halts. That is impossible using Turing’s
proof.

A formal axiomatic system has the great advantage of compressing a lot of
theorems into a set of a few axioms. Thus, it delivers a shorter description of math-
ematical truth. Even a physical theory can be understood as a shorter description
of many empirical data. In general, a formal theory can be considered a computer
program that calculates true theorems or data. The smaller the program is relative to
the output, the better the theory. Obviously, besides running time, the size of a com-
puter program is an important measure of computational complexity. As a program
is a finite list of symbols, its length can be measured by its number of symbols in
binary coding. For example, consider the following sequences of binary digits:

sy =111111111111111111
5o =010101010101010101
s3 =011010001101110100

For 51 and s7, there are shorter descriptions or printing programs than the actual
output: “14 times 1” for 51 and “8 times 01 for s,. But for s3, there seems to be no
shorter description than the actual output itself. Gregory J. Chaitin and Andrej N.
Kolmogorov came up with the idea that the algorithmic complexity of a symbolic
s sequence should be defined by the length of the shortest computer program for
generating s (measured in bits) [5.18]. Algorithmic complexity is sometimes called
the algorithmic information content of a symbolic sequence, which is the subject
of the algorithmic information theory. As random sequences have no regularities,
they cannot be described by shorter programs. They are incompressible with an al-
gorithmic complexity equivalent to their length. But, again, we are confronted with
incompleteness and undecidability. The reason is that we can never decide if an in-
dividual string of digits satisfies this definition of randomness and incompressibility.
We can never calculate the program-size complexity, because, in general, it is not
decidable if a certain program is the shortest one. If we have a program generating
a sequence, its size is only an upper bound on the program-size complexity of the
sequence. But we can never prove lower bounds, which means a first incompleteness
result in algorithmic information theory.

In the theory of computational complexity, with respect to the running time of
programs, lower bounds are much harder than upper bounds. If we find a fast pro-
gram, we only get an upper bound on the calculating time. At least in some cases, it
can be proved that a certain program is the fastest possible one. But in algorithmic
information theory, we can never prove any lower bounds. Nevertheless, there are
some relativizing results. The program-size complexity of formal theories and pro-
grams can be related to programming languages in which they are written. Chaitin
preferred the Al-programming language LISP [5.19]. In LISP, a formal axiomatic
system with program-size complexity N cannot be used to prove that for any LISP-
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expression more than N 4 356 characters long there is no smaller program with the
same output. So this formal axiomatic system can only prove that for many finite
expressions no smaller program has the same output. In principle, the randomness
of a formal sequence cannot be decided. But for practical applications we can at
least refer to standard procedures for detecting regularities in a sequence. If we are
not successful, a sequence is called random with respect to these algorithms.

5.3 Information, Probability, and 1/f-Complexity

Computational systems can be described as information processing machines. Al-
gorithmic information theory refers to the size of a computer program in order to
determine the algorithmic information content of a message. According to Shan-
non’s information theory [5.20], a message from a sender (e.g., phone, PC) is sent
to a recipient by coding the signs of the message into binary digits (“bits”), repre-
senting binary technical signals (e.g., electrical pulses), and decoding them when
the message arrives. Communication means the exchange of information. The in-
formation content of a symbol is the number of binary decisions leading to it. For
N symbols, there are N = 2! selecting procedures with / binary decisions, i.e.,
I = 1d N bit. If the symbols s; (1 < i < N) occur with different probabilities p;, then
their information content is I(s;) = 1d pi_l = —Idp; bit. A more probable symbol
has less information content than an improbable one. In this sense, the information
content of a symbol can be considered a measure of news for the receiver.

The mean information content of a sender with symbols s; is the expectation
value of the information contents I(s;) of its symbols s;, i.e., H = Zi pil(s;) =
— > ;pildp; with >, p1 = 1. The mean information content H can be considered
a measure of uncertainty for the probabilistic distribution of the symbols of a source
(Fig. 5.4). The reason being that in the case of the uniform distribution of probabili-
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Fig. 5.4. Mean information content (information entropy) of a system with two symbols
(states) withpy = pandpy, =1—p
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ties, the mean information content Hyy,x of a source is maximal, i.e., the uncertainty
of a symbol is maximal. For H = 0 is p; = 1, i.e., symbol s; is determined by the
source.

Shannon’s concept of information is not only applicable to technology. In evo-
lution, chemical and biological information is molecularly coded and can be rec-
ognized (decoded) by appropriate molecules, cells, or organisms (molecular pattern
recognition). The genetic information of an organism is coded by the four chemi-
cal compounds adenine (A), cytosine (C), guanine (G) and uracil (U). With binary
coding A =00, U =11, G=01, and C = 10, we get a genetic code in bits. Senso-
rial stimuli of the human organism are analogous signals (e.g., mechanical pressure
of skin or muscles, acoustic waves in the ear, electromagnetic waves of the retina,
chemical stimuli in the nose) which are received by sensorial cells, coded into digital
action potentials, and sent as binary codes (firing and non- firing of neurons) in the
central nervous system (CNS) to the brain. Specific nervous signals (neural infor-
mation) are decoded as sensorial perceptions, emotions, imaginations, or thoughts
by specific areas of the brain. A mechanical stimulus (e.g., stretch of a muscle) is
received by a sensorial cell as an analogous signal and transformed into digital ac-
tion potentials. The intensity of the stimulus is coded by the number of equal action
potentials. According to information theory, information can be reduced to bits, the
smallest units of binary states 0 and 1. According to quantum theory, elementary
particles (e.g., photons) have binary spin-states 1 (up) and | (down) that can be
superposed in coherent states, called quantum bits [5.21]. Thus, each state of matter
can be considered a kind of “condensed” quantum information.

Information storage and information flow in matter, life, and the brain depend
on the dynamics of complex systems. According to L. Boltzmann, entropy S is
a measure of the probable distribution of microstates of elements (e.g., molecules
of a gas) in a complex dynamical system, generating a macrostate (e.g., temperature
of a gas), i.e., S = kpIn W with kp Boltzmann-constant and W number of probable
distributions of microstates, generating a macrostate. According to the 2nd law of
thermodynamics, entropy is a measure of increasing disorder in isolated systems.
The reversible process is extremely improbable. In information theory, entropy can
be introduced as a measure of uncertainty of random variables. The information
entropy H(X) of random variable X is the expectation value of the probabilistic dis-
tribution of its values x, i.e., H(X) = — Y p(x) logp(x). Thus, in thermodynamic
systems, H(X) is the expectation value of the probabilistic distribution of their mi-
crostates. For H(X) = 0, the process X is deterministic. For H(X) maximal, there is
uniform distribution with maximal uncertainty of x. Information entropy is consid-
ered a measure of uncertainty.

According to Shannon, further concepts of information can be introduced in order to
measure the information flow in a dynamical system. The joint entropy H(X, Y) of random
variables X and Y is the expectation value of the distribution of joint probabilities p(x, y) of
values x of X and y of Y. The conditional entropy H(Y | X) of X and Y is the average outcome
of the degree of uncertainty of Y over all concrete outcomes of X. The relative entropy or
cross-entropy is a measure of the difference (“distance”) between two distributions p(x) and
¢(x). Mutual information /(X; Y) measures the statistical independence of random variables
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X and Y with associated probability distributions p(x) and p(y): If X and Y are independent,
then /(X; Y) = 0. Mutual information is a symmetric measure, because /(X; Y) = I(Y; X),
1(X; X) = H(X). Mutual information can be considered measure of correlations between X
and Y. When X is the input and Y is the output of a stochastic channel, then /(X; Y) is the
amount of information transmitted in the stochastic channel. There is a remarkable applica-
tion of mutual information in brain research: In a self-organizing learning process, the brain
responds to different stimuli with different clusters of synchronously firing neurons. Accord-
ing to Hebb’s theory (compare Sect. 4.2), these cell assemblies code the binding of single
features in a perceptual object. The reliability of discrimination between different stimuli and
different clusters is measured by the mutual information between the corresponding random
variables.

An information system produces a time series of N different symbols s; (1 <
i < N). Let B be a partition of the symbolic dynamics and p? the probability of
observing symbols s; of the partition 8. The entropy of the symbolic sequence with
partition 8 is defined by Hf = — > pf log p? . The flow of information I,’? measures
the predictability of a dynamical step p steps into the future, given the whole past of
n — oo steps, with I;? = lim,,_s o0 I? (n; p), where & (n; p) is the mutual information
between a word of n subsequent symbols and the symbol that is p steps ahead [5.22].
Therefore, this concept of information flow is an extension of the Kolmogorov-
Sinai-entropy (Table 2.1, measuring the predictability only one step ahead [5.22]. It
follows 0 < 1P (n;p) < HP, where the minimal value (0) corresponds to statistical
independence and the maximal value (H?) to perfect predictability. For a chaotic
time series, we have I (n; p)>1 B(n; p—+1), which expresses the loss of information
in the prediction horizon (Fig. 5.5).

A dynamical system can be considered an information processing machine,
computing a present or future state as output from an initial past state of input. Thus,
the computational efforts to determine the states of a system characterize the com-
putational complexity of a dynamical system. The transition from regular to chaotic
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Fig. 5.5. Information flow with loss of information in one step (p = 1) for a chaotic logistic
map x,41 = 4x, (1 — x,) withn = 1,2, 5, 10 and bipartition [5.23]
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systems corresponds to increasing computational problems, according to the compu-
tational degrees in the theory of computational complexity. In statistical mechanics,
the information flow of a dynamical system describes the intrinsic evolution of sta-
tistical correlations between its past and future states. The Kolmogorov-Sinai (KS)
entropy is an extremely useful concept in studying the loss of predictable informa-
tion in dynamical systems, according to the complexity degrees of their attractors
(Table 2.1). Actually, the KS-entropy yields a measure of the prediction uncertainty
of a future state provided the whole past is known (with finite precision).

In the case of fixed points and limit cycles, oscillating or quasi-oscillating be-
havior, there is no uncertainty or loss of information, and the prediction of a future
state can be computed from the past. In chaotic systems with sensitive dependence
on the initial states, there is a finite loss of information for predictions of the fu-
ture, according to the decay of correlations between the past states and the future
state of prediction. The finite degree of uncertainty of a predicted state increases
linearly to its number of steps in the future, given the entire past. But in the case of
noise, the KS-entropy becomes infinite, which means a complete loss of predicting
information corresponding to the decay of all correlations (i.e., statistical indepen-
dence) between the past and the noisy state of the future. The degree of uncertainty
becomes infinite.

The degree of complexity of noise can also be classified via Fourier analysis of
time series in signal theory. Early in the nineteenth century, the French mathemati-
cian Jean-Baptiste-Joseph Fourier (1768—1830) proved that any continuous signal
(time series) of finite duration can be represented as a superposition of overlapping
periodic oscillations of different frequencies and amplitudes. The frequency f is the

periodic signals

1 1
0 5 10 15 20 25 30 35 40 45 50
time in seconds

Fig. 5.6. Fourier analysis with two periodic signals and their superposition [5.24]
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reciprocal of the length of the period, which means the duration 1/f of a complete
cycle. This measures how many periodic cycles there are per unit time. Figure 5.6
shows a portion of two periodic signals (solid lines) with different oscillation ampli-
tudes. The smaller fluctuation has a period of 10 seconds, while the larger fluctuation
has a period of 20 seconds. The frequencies are therefore 0.10 and 0.05 cycles per
second, respectively. Their sum (dashed line) is superimposed on the two oscilla-
tions.

Each signal has a spectrum (Table 2.1), which is a measure of how much vari-
ability the signal exhibits in each of its periodic components. The spectrum is usu-
ally expressed as the square of the magnitude of the oscillations at each frequency.
This indicates the extent to which the magnitude of each periodic oscillation con-
tributes to the total signal. If the signal is periodic, with a period of 1/f, then its
spectrum is zero except at the isolated value f. In the case of a signal that is a finite
sum of periodic oscillations, the spectrum will exhibit a finite number of values at
the frequencies of the oscillations that comprise the signal. For example, the spec-
trum of the dashed curve in Fig. 5.6 consists of two isolated values at the frequencies
0.05 and 0.10.

The opposite of periodicity is a signal whose values are statistically indepen-
dent and uncorrelated. In signal theory, a distribution of independent and uncorre-
lated values is called white noise. It contains contributions from oscillations whose
amplitudes are uniform over a wide range of frequencies. In this case the spectrum
has a constant value, flat throughout the frequency range. The contributions of peri-
odic components cannot be distinguished. Examples of periodicity and white noise
are given by the sequences of binary digits in Sect. 5.2: the sequence 010101 ... is
obviously an example of a periodic signal, while a random string gives white noise.

However, in nonlinear dynamics of complex systems we are mainly interested
in complex series of data that conform to neither of these extremes. They consist
of many superimposed oscillations at different frequencies and amplitudes, with
a spectrum that is approximately proportional to 1/f? for some b greater than zero.
In that case, the spectrum varies inversely with the frequency. Such signals are called
1/f noise. Figure 5.7 illustrates examples of signals with spectra from pink noise
(b = 1), red noise (b = 2), and black noise (b = 3). White noise is designated by
b = 0. The degree of irregularity in the signals decreases as b increases.

When b exceeds 2 the correlations become persistent, because upwards and
downwards trends tend to maintain themselves. A large excursion in one time inter-
val is likely to be followed by another large excursion in the next time interval of
the same length. The time series seem to have a long-term memory, which is some-
times called the “Joseph effect.” In Sect. 7.4, we will remind the reader of Joseph’s
biblical story of seven years of plenty followed by seven years of famine. When b
is less than 2 the correlations are antipersistent, in the sense that an upswing is now
likely to be quickly followed by a downturn, and vice versa. When b increases from
the antipersistent to the persistent case, the curves in Fig. 5.7 become less jagged.
In Sect. 7.4, the change from uniform and antipersistent to persistent behavior is
mathematically characterized by the Hurst parameter.
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Fig. 5.7. Degrees of complexity of 1/ fb noise, with white noise (b = 0), pink noise (b = 1),
red noise (b = 2), and black noise (b = 3) [5.25]

The spectrum gets progressively smaller as the frequency increases. Therefore,
large-amplitude fluctuations are associated with long-wavelength (low-frequency)
oscillations, and smaller fluctuations correspond to short-wavelength (high-fre-
quency) cycles. In nonlinear dynamics, pink noise with b roughly equal to 1 is
particular interesting, because it characterizes processes that lie between the reg-
ular order of black noise and the complete disorder of white noise. For pink noise,
the fraction of total variability in the data between two frequencies fi < f> equals
the percentage variability within the interval c¢f; < cf> for any positive constant c.
Therefore, there must be fewer large-magnitude fluctuations at lower frequencies
than there are small-magnitude oscillations at high frequencies. As the time series
increases in length, more and more low-frequency but high-magnitude events are
uncovered because cycles of longer periods are included. The longest cycles have
periods comparable to the duration of the sampled data. Like all fractal patterns,
small changes in signals are superimposed on larger ones with self-similarity at all
scales (compare the fluctuation of the information packet from the World Wide Web
in Fig. 8.16).

In electronics, 1/f spectra are known as flicker noise, since they differ from
the uniform sound of white noise due to the individual signals [5.26]. The high-
frequency occurrences are hardly noticed compared to the large-magnitude events.
One remarkable application of 1/f spectra involves its use in different kinds of mu-
sic. The fluctuations in loudness as well as the intervals between successive notes
in the music of Bach have a 1/f spectrum. In contrast to Bach’s pink noise mu-
sic, white noise music consists of successive uncorrelated values. The brain fails
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to find any pattern in a structureless and irritating sound. On the other hand, black
noise music seems too predictable and boring, because the persistent signals depend
strongly on previous values. Obviously, creating impressive music involves finding
a balance between order and disorder, regularity and surprise.

1/f spectra are typical of processes that organize themselves to a critical state
at which many small interactions can trigger the emergence of a new, unpredicted
phenomenon. Earthquakes, atmospheric turbulence, stock market fluctuations, and
physiological processes of organisms are typical examples. Self-organization, emer-
gence, chaos, fractality, and self-similarity are features of complex systems with
nonlinear dynamics [5.27]. The fact that 1/f spectra are measures of stochastic
noise again emphasizes the deep relationship between information theory and sys-
tems theory: any complex system can be considered to be an information processing
system. In the following section, distributions of correlated and unrelated signals are
analyzed according to the theory of probability. White noise is characterized by the
normal distribution of the Gaussian bell curve. Pink noise with a 1/f spectrum is
decidedly non-Gaussian. Its patterns are footprints of complex self-organizing sys-
tems.

5.4 Stochastic Processes, Probabilistic Attractors,
and Probabilistic Complexity

In complex systems, the behavior of a single element is often completely unknown
and therefore considered to be a random process. In this case, it is not necessary to
distinguish between chance that occurs because of some hidden order that may exist
and chance that is the result of blind lawlessness. A stochastic process is assumed
to be a succession of unpredictable events. Nevertheless, the whole process can be
characterized by laws and regularities, or in the words of A.N. Kolmogorov, the
founder of the modern theory of probability: “The epistemological value of prob-
ability theory is based on the fact that chance phenomena, considered collectively
and on a grand scale, create non-random regularity” [5.28]. When tossing a coin,
for example, heads and tails are each assigned a probability of 1/2 whenever the
coin appears to be balanced. This is because one expects that an outcome of heads
or tails is equally likely in each flip. Therefore, the average number of heads or tails
in a large number of tosses should be close to 1/2, according to the law of large
numbers. This is what Kolmogorov meant.

The outcomes of a stochastic process can also have different probabilities of
occurring. Binary outcomes are designated by probabilities of p and 1 — p. In the
simplest case of p = 1/2, there is no propensity for one outcome to occur more
than another, and the outcomes are said to be uniformly distributed. For instance,
the six faces of a balanced die are all equally likely to land face-up after a toss,
and so the probability of each face is 1/6. In this case, a random process is thought
of as a succession of independent and uniformly distributed outcomes. In order to
turn this intuition into a more precise statement, we consider coin tossing with two
possible outcomes, labeled zero or one. The number of ones in 7 trials is denoted by
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Fig. 5.8. The distributions of values of r;,/n when (a) n = 15 and (b) n = 60 after 10000
samples

rn, and the sample average r;, /n represents the fraction of the total number of trials
n that result in ones. Then, according to the law of large numbers, the probability
that r,/n is within some fixed interval around 1/2 will tend to one as n increases
without bound.

In Fig. 5.8a, the distribution of values of r,,/n for n = 15 obtained after 10000
samples is plotted for a probability p = 1/2. Obviously, the values cluster about 1/2,
with a dispersion that appears roughly bell-shaped. The height of each rectangle
in the figure indicates the number of all sample averages that lie in the indicated
interval along the horizontal axis. Figure 5.8b shows the distribution of values of
rp/n for n = 60 for 10000 samples with a probability p = 1/2. The distribution
of values also appears to follow a bell-shaped curve, but the curve is narrower than
for n = 15 and it has a higher peak. The bell-shaped Gaussian curve illustrates
Kolmogorov’s statement that regularity emerges when large ensembles of random
events are considered.

The same general bell shape appears for several games with different average
outcomes, like playing with coins, throwing dice, or dealing cards. Some bells are
squatter and some narrower, but each can be described as a Gaussian curve. In fact,
the values of just two curve parameters are required to differentiate each curve: the
mean or average error and the variance or standard deviation, which expresses how
widely the bell spreads.

Another example of a stochastic process is a random walk. A single walker may
perform a number of independent identically distributed steps. If n is the number of
steps performed and At the time interval required to perform one step, the position
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x(t) of the walker at time t = n At can be considered to be the sum S,, = x;+...4+x;,
of n independent identically distributed random variables x; with 1 < i < n. For
a random walk, the variance of the stochastic process x(#) grows linearly with the
number of steps. Starting from a discrete random walk, a continuous limit can be
obtained by making the limit » — oo and At — 0 such that ¢t = nA¢ is finite.
The linear dependence of the variance on 7 is characteristic of a diffusive process,
known as a Wiener process. A random walk is only a Gaussian distribution for
n — 00; the Gaussian shape is assumed asymptotically. The probability distribu-
tion (density) function P(S,) depends on n and its shape changes with time. P(x;) is
arbitrary. Figure 5.9 shows four different probability distribution functions, where
(i) is a delta distribution, (ii) a uniform distribution, (iii) a Gaussian distribution, and
(iv) is a Cauchy distribution. When one of these distributions characterizes the ran-
dom variables x;, the probability distribution function P(S,) changes as n increases
(Fig. 5.10).

From Fig. 5.10, the delta and uniform distributions behave in a different way to
the Gaussian and Cauchy distributions as 7 is increased. The function P(S,) changes
both in scale and in functional form as n increases for the delta and the uniform
distributions, while the Gaussian and the Cauchy distributions do not change in
shape, only in scale; they become broader when n increases. When the functional
form of P(S,) is the same as the functional form P(x;), the stochastic process is said
to be stable. Therefore, while Gaussian and Cauchy processes are stable, stochastic
processes generally are not stable.

As long as the random variables x; exhibit both independence and finite vari-
ance, the central limit theorem [5.31] holds: the distribution P(S,) gradually con-
verges to the Gaussian shape as n increases. For example, in Fig. 5.11, the stochas-
tic process S, is simulated under the assumption that x; is characterized by a uni-
form P(x;). Obviously, the distribution P(S,) broadens when n increases. The con-
vergence to the Gaussian asymptotic distribution can be emphasized by plotting
the probability density function using scaled units with ¥ = x/n'/? and P(¥) =
P(%) n'/?. In this case, the distribution rapidly converges to the functional form of
a Gaussian of unit variance, which is a smooth curve for large n.

If the conditions (independence and finite variance of the random variables) are
not satisfied, other limit theorems must be considered. Studies of limit theorems
use the concept of the basin of attraction of a probability distribution. This concept
relates to the changes that occur in the functional form of P(S,) as n changes. In
the case of independent identically distributed random variables x;, P(S1) coincides
with P(x;) and is characterized by the choices made when selecting the random
variables x;. As n increases, P(S,) changes its functional form and assumes the
Gaussian functional form for an asymptotically large value of » if the conditions of
the central limit theorem are satisfied. All of the probability density functions define
a functional space. The Gaussian probability function is a fixed-point attractor for
stochastic processes in that functional space. The set of probability density functions
that fulfill the requirements of the central limit theorem (independence and finite
variance of random variables) constitutes the basin of attraction of the Gaussian
distribution.
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In that functional space, we can imagine how two stochastic processes S,, con-
verge to the Gaussian attractor (Fig. 5.12). Both stochastic processes are obtained
by summing n independent identically distributed random variables x; and y;. If the
two processes x; and y; differ in their probability density functions, they start from
different regions of the functional space. With increasing n, both probability density
functions P(S,) become progressively closer to the Gaussian attractor PG(Soo). The
number of steps required to observe the convergence of P(S,) to Pg(Sx) reflects
the speed of convergence of the two approximations. The Gaussian attractor is the
most important attractor in this functional space, but other attractors also exist.

Gaussian and Cauchy distributions are examples of stable distributions. A sta-
ble distribution of the sum of n independent identically distributed random variables
is encountered when the distribution does not change its functional form for differ-
ent values of n. The French mathematician Paul Lévy (1886—1971) determined the

0.4

Fig. 5.11. Simulation of P(S,) for n ranging from n = 1 to n = 50 for the case when P(x) is
uniformly distributed (fop), and the same distribution in scaled units (bottom) [5.32]
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entire class of stable distributions [5.33]. In general, they are characterized by a pa-
rameter (0 < o < 2), with o = 2 for the Gaussian distribution and o = 1 for the
Cauchy distribution. In contrast to the Gaussian distribution, non-Gaussian (“Lévy”)
stable stochastic processes with o« < 2 have infinite variance. Their asymptotic be-
havior is characterized by distributions of the form Pr(x) ~ x~ U+ that show
power-law behavior for large values of x. Unlike the smooth Gaussian bell curve,
their (“fat”) tails indicate fluctuations with a leptokurtic shape. Thus, they do not
have a characteristic scale, but they can be rescaled with self-similarity. Just like
the Gaussian distribution, non-Gaussian stable distributions can be attractors in the
functional space of probability density functions. There is a limit theorem which
states that the probability density function P(S,) of a sum S, of n independent iden-
tically distributed random variables x; converges, in probability, to a stable Lévy dis-
tribution Py (x) provided that certain conditions on the probability density function
of the random variable x; are upheld. P(S,) belongs to the attraction basin of Py (x).

The functional space of probability density functions is characterized by the
continuous parameter ¢ with 0 < « < 2. Therefore, there are an infinite number
of attractors that comprise the set of all stable distributions. Figure 5.12 illustrates
several such attractors with the convergence of some stochastic processes. Attrac-
tors classify the functional space of probability density functions into regions with
different complexities. The complexity of the stochastic process is different for the
Gaussian attractor and stable non-Gaussian attractors. In the Gaussian basin of at-
traction, finite-variance random variables are present. However, in the basins of at-
traction of stable non-Gaussian distributions, random variables with infinite variance
can be found. Therefore, distributions with power-law tails are present in the stable
non-Gaussian basins of attraction.
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Fig. 5.12. Convergence (in probability) to some of the stable attractors of the sum of inde-
pendent identically distributed random variables. The black circle is the Gaussian attractor
PG (Sec) with o = 2, and the black squares are the Lévy-stable non-Gaussian attractors char-
acterized by different values of o < 2 [5.34]
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Power-law distributions and infinite variance indicate highly complex stochas-
tic behavior [5.35]. Stochastic processes with infinite variance, although well-
defined mathematically, are extremely difficult to use and, moreover, raise funda-
mental questions when applied to real systems. In the closed physical systems of
equilibrium statistical mechanics, variance is often related to the system temper-
ature. In this case, infinite variance implies an infinite or undefined temperature.
Nevertheless, power-law distributions are used to describe open systems. They are
assuming increasing importance in descriptions of, for example, complex economic
and physiological systems. Actually, a power-law distribution was first introduced in
economics, as Pareto’s law of incomes. Turbulence in complex financial markets is
also characterized by power-law distributions with fat tails. In financial systems, in-
finite variance would complicate the important task of risk estimation (see Sect. 7.4).

5.5 Quantum Information, Quantum Computers,
and Quantum Complexity

In general, dynamical systems can be represented by computational models with
different degrees of complexity. Computational models permit information about
present or future states to be computed from initial conditions using the correspond-
ing dynamical equations. However, in the case of deterministic systems, the com-
putability is limited by the degree of algorithmic complexity (Sect. 5.2). The com-
putability of stochastic systems is limited by probabilistic measures (Sects. 5.3-5.4).
In any case, computational models of complex dynamical systems are not always
computable. With these limitations in mind, dynamical systems can still be thought
of as computers that sometimes cannot deliver results in a reasonable time. How far
can we go with this assumption? Is the world a complex computer in the sense of
Leibniz, with the corrections and limitations of modern algorithmic and probabilis-
tic theories?

Obviously, a Turing machine can be interpreted in the framework of classical
physics (Fig. 5.13). Such a computing machine is a physical system, the dynamical
evolution of which takes it from one of a set of input states to one of a set of output
states. The states are labeled such that they form a series. The machine is initialized
to a state with a given input value and then, following some deterministic evolution,
the output state is measured. For a classical deterministic system, the measured out-
put label is a definite function f of the input label. In principle, the value of that
label can be measured by an outside observer, and the machine is said to compute
the function f. But classical stochastic computing machines do not compute func-
tions in the above sense. The output state of a stochastic machine is random; the
output corresponds to a probability distribution depending on the input state.

From a modern physical point of view, quantum systems are the fundamental
dynamical systems of nature. In that case, the output state of a quantum machine, al-
though fully determined by the input state, is not an observable and so in general the
observer cannot discover its label. Why is this? We must now recall some basic con-
cepts of quantum mechanics, which were introduced in Sect. 2.3. In quantum me-
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Classical deterministic machine:
INPUT — OUTPUT
classical observable deterministic evolution classical observable

Classical stochastic computing machine:
INPUT — OUTPUT
classical observable stochastic evolution classical observable

Quantum computing machine:
INPUT — OUTPUT
quantum observable deterministic evolution quantum observable

Fig. 5.13. Classical and nonclassical computing machines

chanics, vectors like momentum or position must be replaced by operators satisfying
a non-commutative relation depending on Planck’s quantum (Fig. 2.18). Classical
systems described by a Hamiltonian function are replaced by quantum systems, for
instance, electrons or photons described by a Hamiltonian operator. States of a quan-
tum system are described by vectors of a Hilbert space spanned by the eigenvectors
of its Hamiltonian operator. The causal dynamics of quantum states is determined
by a partial differential equation called the Schrodinger equation. While classical
observables commute and always have definite values, non-classical oberservables
of quantum systems do not commute and in general have no common eigenvector
and consequently no definite eigenvalues. For observables in a quantum state only
statistical expectation values can be calculated.

A major difference from classical mechanics is given by the superposition prin-
ciple demonstrating the linearity of quantum mechanics. In an entangled pure quan-
tum state of superposition an observable can only have indefinite eigenvalues. In
short, the superposition or linearity principle of quantum mechanics delivers cor-
related (“entangled”) states of combined systems which are highly confirmed by
the EPR experiments (Alain Aspect 1981). Philosophically, the (quantum) whole is
more than the sum of its parts.

The superposition principle has severe consequences for the measurement of quantum
systems. In the quantum formalism a quantum system and a measuring apparatus are repre-
sented by two Hilbert spaces which are combined in a tensor product H = H| ® H,. In the
initial state ¢ (0) of measurement at time O the systems H| and H» are prepared in two sepa-
rated states ¥ and ¢ respectively, with ¢ (0) = ¥ ®¢. The causal development of both systems
is determined by the Schrodinger equation, i.e., ¢ (r) = U(#)¢(0) with the unitary operator
U(t). Because of the linearity of U(z), the state ¢ (¢) is entangled with indefinite eigenvalues
while the measuring apparatus at time ¢ shows definite measurement values. Thus, the linear
quantum dynamics cannot explain the measurement process.

In a more popular way the measurement process is illustrated by Schrodinger’s
thought experiment of a cat in a linear superposition of the two states “dead” and
“alive” (Fig. 5.14a). Imagine a cat which is locked in a closed box with a sample
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Fig. 5.14a. Schrodinger’s cat

of radium. The radium is chosen in such a way that during one hour a single decay
takes place with a probability 1:2. If a decay happens, then an electrical circuit is
closed, causing a mechanism with a hammer to destroy a bottle of prussic acid and
thus killing the cat. The box remains closed for one hour [5.36].

According to quantum mechanics the two possible states of the cat, dead and
alive, remain undetermined until the observer decides them by opening the box.
For the cat’s state in the closed box, quantum mechanics as interpreted by Erwin
Schrodinger forecasts a correlated (“entangled”) state of superposition, i.e., the cat
is both dead and alive with equal parts. According to the measurement process, the
states “dead” and “alive” are interpreted as measurement indicators representing the
states “decayed” or “not decayed” of the radium.

In the Copenhagen interpretation of Bohr, Heisenberg, and others, the mea-
surement process is explained by the so-called “collapse of the wave-packet”, i.e.,
splitting up of the superposition state into two separated states of measurement appa-
ratus and measured quantum system with definite eigenvalues. Obviously, we must
distinguish the linear dynamics of quantum systems from the nonlinear act of mea-
surement. The reason for nonlinearity in the world is sometimes explained as the
emergence of human consciousness.

Eugene Wigner (1961) suggested that the linearity of Schrodinger’s equation
might fail for conscious observers, and be replaced by some nonlinear proce-
dure, according to which either one or the other alternative would be resolved out
(Fig. 5.14b). But Wigner’s interpretation forces us to believe that the complex quan-
tum linear superpositions would be resolved into separated parts only in those cor-
ners of the universe where human-like consciousness emerges. In the macroscopic
world of billiard balls, planets, or galaxies, EPR correlations are not measured, and
appear only in the microscopic world of elementary particles like photons. It seems
to be rather strange that the separated states of systems in the macroscopic world
which can be described in classical physics with definite measurement values are
caused by human-like consciousness.
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The Everett “many-worlds” interpretation of quantum mechanics seems to
avoid the problems of nonlinear reductions by splitting up human consciousness into
branching paths inhabiting different, mutually incompatible worlds (Fig. 5.14c).

In the measurement process the dynamics of measurement instrument and quantum sys-
tem is described by the equation ¢ (1) = > ci()Y; ® ¢; with states (¢;) referring to the

measurement values of the measuring instrlirnent. Everett argues that the state vector ¢ ()
never splits up into partial states, but all branches ¥; ® ¢; are actualized. The state ¢ () de-
scribes a manifold of simultaneously existing real worlds with ¥; ® ¢; corresponding to the
state of the i-th parallel world. Thus, the measured partial system is never in a pure state. In
Everett’s sense, 1/, may be interpreted as a relative state depending on the state of an observer
or measuring instrument with ¥, = ¢,; 1 (¢n, @), - If @p are accepted as memory states, then
an observer with a definite memory can only be aware of his own branch of the world ¥, ® ;.
But he can never observe the other partial worlds.

The advantage of Everett’s interpretation is that a nonlinear reduction of su-
perposition does not need to be explained. But the disadvantage is his ontological
belief in myriads of worlds which are unobservable in principle. Thus, Everett’s
interpretation (if mathematically consistent) needs Ockham’s razor.

In the history of science, anthropic or teleological arguments often showed that
there were gaps or failures of explanation in science. Thus, some scientists, such as
Roger Penrose, suppose that the linear dynamics of quantum mechanics is inconve-
nient (Einstein said it was “incomplete”) for explaining cosmic evolution with the
emergence of consciousness. He argues that a unified theory of linear quantum me-
chanics and nonlinear general relativity could at least explain the separated states
of macroscopic systems in the world without reference to anthropic or teleological
principles. In Penrose’s proposed unified theory a linear superposition of a physical
system splits into separated states when the system is large enough for the effects
of relativistic gravitation. Penrose calculates a level of one graviton as the smallest
unit of curvature for such an effect [5.37]. The idea is that the level should lie com-
fortably between the quantum level of atoms, molecules, etc., with linear laws of
quantum mechanics and the classical level of everyday experiences. The advantage
of Penrose’s argument is that the linearity of the quantum world and the nonlinearity
of the macroscopic world would be explained by a unified physical theory without
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Fig. 5.14b. Wigner’s interpretation of Schrodinger’s cat
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Fig. 5.14c. Everett’s interpretation of Schrodinger’s cat

reference to any human intervention. But, of course, we are still missing a testable
unified theory (compare Sect. 2.4).

Concerning the human brain, we want to argue that the quantum level of ele-
mentary particles, atoms, and molecules was necessary for its evolution, but not the
other way that mental states of the brain are necessary for the reduction of corre-
lated states in physics. Actually, there is a significant number of neurons sensitive
to single quanta with their superpositions and reductions of entangled states. But,
of course, these quantum states cannot be identified with mental states of the brain.
We have no consciousness either of superpositions or of their separation into single
states initiated by nonlinear random events. Nevertheless, quantum effects are in-
volved in the emergence and interaction of mental states of the brain in a way which
is still far from being satisfactorily understood.

Nevertheless, the question arises of whether quantum mechanics delivers
a framework for the evolution of the human brain, or at least for a new computer
technology to replace classical computing systems. The basic idea of quantum me-
chanics is the superposition of quantum states as a result of linear quantum dynam-
ics and the reduction of superpositions by some kind of measurement [5.38]. Thus,
a quantum computer would need a quantum version of a logic gate, where the out-
put would be the results of some unitary operator applied to the input and a final
act of measurement. The superposition of quantum systems (for instance photons)
reminds us of the parallelism of computations. A quantum computer would become
useful if we were interested in some suitable combination of many computational
results and not in their partial details. In this case a quantum computer could de-
liver the superposition of perhaps myriads of parallel computations in a rather short
time, overcoming the efficiency of classical computing systems. But quantum com-
puters would still work in an algorithmic way, because their linear dynamics would
be deterministic. The non-deterministic aspect comes in via the nonlinear act of
measurement. Thus, it cannot be expected that quantum computers will perform
non-algorithmic operations beyond the power of a Turing machine. So quantum
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computers (if they are ever built) may be more interesting for complexity theory
and for overcoming practical constraints of computation.

Quantum computers open new avenues of information processing, computa-
tion, and communication. An essential feature of the quantum world is the superpo-
sition of quantum states and the possibility of entangled states. If the binary informa-
tion units 0 and 1 are considered to be the alternative states of a computing machine,
then quantum physics allows a third state of quantum superposition. Bits that per-
mit such a state are called quantum bits or “qubits.” The laws of quantum mechanics
have enormous practical consequences for computing [5.39]. If, for example, two
partial subproblems of a problem are to be solved, then a classical computer must
solve them step by step in a sequential way. For a quantum computer, both sub-
problems can be superposed and processed simultaneously. Since it is analogous to
using parallel computers containing several processors, the information processing
of superposed quantum information is called quantum parallelism. Consider a com-
puter that must find an integer with a certain property. A classical computer counts
the integers 1, 2, 3, ... and tests, step by step, whether a number satisfies the de-
manded property. If the number n sought is very large, then the property must be
tested n times, which involves considerable computational time. A quantum com-
puter could test the property for a large number of test numbers simultaneously in
one step. Decimal numbers are represented by sequences of binary digits. In quan-
tum computers, a bit corresponds to an alternative quantum state. One example is
the spin of an elementary particle, which can adopt states of 0 and 1. In this case,
a bit sequence represents a sequence of spin states. For seven particles, for exam-
ple, there are 27 potential combinations, such as 0000000 (for decimal number 0),
0000001 (for decimal number 1), 0000010 (for decimal number 2), etc., including
every number between 0 and 127.

In a classical computer, the binary numbers 0000000, 0000001, 0000010, . ..
must be tested sequentially. In a quantum computer, the spin states are changed
using an appropriate energetic impulse. When the impulse is too weak, the par-
ticle only has a particular probability of changing its spin state. In analogy to
Schrodinger’s cat, which is simultaneously dead and alive in a closed box, an el-
ementary particle is in a superposed state of alternative spin states as long as it
is not measured or observed. If every particle receives a weak impulse, then all
seven particles enter superposed states as long as they are not observed or mea-
sured. In this superposition, all 128 different states and all corresponding numbers
can be simultaneously represented and tested in one computational step. However,
it is a technical challenge to maintain a superposed state during a calculation. The
reason for this is that tiny perturbations and interactions with the environment can
lead to the collapse of a superposition or coherent state. This phenomenon is called
the decoherence problem in quantum computing.

The registers of a classical computer store classical yes(1)/no(0) bits. In a quan-
tum computer, the registers contain quantum systems whose states can be entangled.
The gates of a classical computer are the elementary logical operations, such as the
NOT gate, which transforms a 0 into a 1 and a 1 into a 0, or the AND gate, which
transforms a pair of 1 bits (11) into another 1, but any other pair combination (01,
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10, and 00) into a 0 — corresponding to the logic that the whole proposition is only
true if both of its partial propositions are true. An OR proposition is only true if at
least one partial proposition is true. Therefore, an OR gate transforms all pairs (01,
10 and 11) into a 1 except for a 00 pair, which it converts into a 0. All of the other
logical connections can be reduced to these types of gates. A classical program is
a sequence of gate operations that can be illustrated in a logical network.

The input of a classical computer is a sequence of bits, either O or 1. The input of
a quantum computer is an initialized group of registers. Sometimes it is a superpo-
sition of bit states in the registers. The output is uniquely determined in a classical
computer. A quantum computer can generate a superposition of bit states. In this
case, one of the two superposed values 0 and 1 is determined by measurement. Dur-
ing the measurement, the superposition jumps to state 0 or 1 according to the laws of
quantum mechanics. Therefore, this different type of processing can give different
results. Only probabilities of results can be forecast. Quantum registers differ from
classical registers due to the additional possibility of superpositions. In quantum
mechanics, superpositions are transformed by unitary operators, but they cannot be
realized by classical gates. Unitary operators are reversible, due to the time sym-
metry of quantum laws. Classical gates are largely irreversible. For example, the
classical OR gate delivers the value 1 in three different cases, and the AND gate
delivers the value O in three different cases; in such cases it is not possible to derive
the input directly from the output. However, reversibility can be ensured if the gate
“remembers” the input and generates it along with the computed result. The com-
putation of function f with input x and output f(x) is replaced by the transformation
of the input x into the output (x, f(x)). In Fig. 5.15, the input and output are des-
ignated as quantum mechanical state vectors. In the following diagrams, quantum
states are distinguished from classical states by using straight lines for classical and
wavy lines for quantum states.

Classical information can be transferred between senders and receivers realized
using different physical, chemical, or biological systems. But problems arise if they
are miniaturized to the quantum scale. In the quantum world, a sender corresponds
to an initial quantum system, while a receiver corresponds to a measurement M (see
Fig. 5.16). Quantum systems (e.g., elementary particles) that evolve from an ini-
tial state to a measurement transfer quantum information. The individual result of
a quantum transfer is random, because in quantum mechanics only statistical state-
ments about future events are possible. If the same experiment is repeated different
results may be obtained, but — as in the case of coin tossing — with a reproducible
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Fig. 5.15. Reversible computation of quantum gates
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frequency. Statistical frequencies can be used for probabilistic forecasts. Figure 5.16
illustrates the statistical transfer of quantum information.

Therefore, quantum information depends on the statistical laws of quantum
mechanics. It is a new type of information that cannot be translated into classi-
cal information without loss. Why is this? Figure 5.17 illustrates the translation of
quantum information into classical information and vice versa. A measurement M
of a quantum system (e.g., an elementary particle) containing certain quantum in-
formation (the first wavy line) is obtained. This measurement yields classical in-
formation (straight line) which is passed to a receiver P and used to prepare a new
quantum system (wavy line). The fact that it is impossible to fully translate quantum
information into classical information results from another statement of impossibil-
ity, the no-cloning theorem, according to which no quantum information can be
copied. An impossible quantum-copying machine is illustrated in Fig. 5.18. This is
a device that takes one quantum system as input and produces two systems of the
same type as output. The two copies should be indistinguishable from the input in
a statistical sense. If such a machine is not possible, important consequences follow:
data cannot be secured by copying it, as done in classical computers. Further, it is
not possible to read data in a quantum database without changing them. However,
the fact that quantum copying machines are impossible would also prevent secret
attacks on quantum data, because such attacks would change the quantum informa-
tion.

The impossibility of quantum copying machines derives from Heisenberg’s un-
certainty relation, which states that pairs of quantities, such as the location and en-
ergy of a quantum particle, cannot be determined simultaneously with certainty.

Let us assume, for the sake of argument, that it was possible to construct a quan-
tum copying machine. Then, two copies of a quantum particle could be produced
in order to measure the energy of one copy and the location of the other, both with
certainty. Due to the impossibility of a quantum copying machine, we can imme-
diately see that classical teleportation is impossible. If classical teleportation was

P — M

Fig. 5.16. The statistical transfer of quantum information

Measurement Preparation

Fig. 5.17. Classical translation of quantum information into classical information and vice
versa [5.40]
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possible we could easily construct a quantum copying machine: if we used classi-
cal teleportation in Fig. 5.17, the transferred classical information could be copied
with a classical computer. These copies could be transferred to the receivers P and
P’ (Fig. 5.19) in order to prepare new quantum particles. The system of Fig. 5.19
would perform the task of a quantum copying machine in Fig. 5.18.

Quantum information is not only associated with the impossibility of classical
teleportation, but also with the possibility of quantum teleportation. In science fic-
tion movies, teleportation means the almost instantaneous transfer of objects across
large distances. In order to do this, it is assumed that information (software) about
the atomic structure of an object can be separated from its material substance (hard-
ware); this information is then “beamed” to the desired location, where it is used
to “rebuild” the object. However, this assumption ignores the fact that the quantum
world adheres to the uncertainty principle, which states that at any particular instant,
it is not possible to measure all of the properties of elementary particles precisely.
Quantum information can only be transported without changing it if it is not mea-
sured or observed during the information transfer.

An amazing approach to instantaneous quantum teleportation can be realized
via entangled quantum states. According to EPR (Einstein—Podolsky—Rosen) exper-
iments, pairs of elementary particles (e.g., photons) that are emitted from a central
source in opposite directions remain correlated in the superposition of an entan-
gled quantum state. If one of two entangled quantum properties is measured at the
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Fig. 5.18. Scheme of a “quantum copying machine”
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Fig. 5.19. Quantum copying machine utilizing classical teleportation [5.41]
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Fig. 5.20. Quantum teleportation

location of one particle, then the value of the other quantum property is instantly de-
termined at the location of the other particle, which has traveled the same distance
in the opposite direction. In Fig. 5.20, the sender of quantum information is called
Alice, while the receiver is called Bob. The teleported quantum particle is desig-
nated 1 (the wavy line). To achieve teleportation, Alice and Bob use an EPR source
that generates entangled pairs of quantum particles. An entangled pair of particles
consists of particle 2 (for Alice) and particle 3 (for Bob). Alice and Bob do not know
the individual states of the particles, but they do know that the pairs are correlated:
we assume they are in alternative and opposite states, like the “dead” and “alive”
states of Schrodinger’s cat in Fig. 5.14a. Alice does not know the teleported state of
particle 1 or the state of particle 2. For the teleportation, particle 1 is entangled with
particle 2.

In an EPR experiment, a quantum particle (e.g., a photon) can have alternative
quantum states, such as vertical or horizontal polarization. In quantum mechanics,
a quantum state ¥ is represented by a vector |1). While classical bit values are 0
and 1, the alternative quantum bit (qubit) values are |0) and |1), which can be entan-
gled. In the case of entanglement, a quantum system simultaneously transports the
qubit value |0) with a certain probability and the qubit value |0) with the remaining
probability. The qubit only takes a value of |0) or |1) (at random) when the quantum
system is measured [5.42].

Alice prepares an entangled pair of particles, particle 1 (which she wishes to
teleport) and particle 2. Entangled pairs can be obtained for pairs of qubits when 0
and 1 occur with the same probability for each qubit. Based on the combinatorial
possibilities of the classical bit pairs 00, 01, 10, and 11, there are four possible entan-
gled states (Bell states) for pairs of qubits in this scenario [5.43]. Alice determines
that her pair of particles 1 and 2 is in one of these four possible entangled states (at
random) without measuring their states. For example, she determines the particular
entangled Bell state where both qubits are in opposite orientations. However, we
assumed that the entangled pair 2 and 3 (Bob’s particle) of the EPR source are also
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in opposite orientations. It follows therefore that Bob’s particle (3) must be in the
same state as Alice’s teleported particle (1). Therefore, classical measurement of the
teleported particle gives the value of the qubit for Bob’s particle. In this sense, it is
possible to instantaneously teleport quantum information between the sender Alice
and the receiver Bob.

Instantaneous quantum teleportation is also possible if another entangled Bell
state is randomly determined by Alice. The sequentially chained correlations of
particles 1, 2, and 3 in Fig. 5.20 allow Bob to adjust the qubit value of his particle
appropriately, by reversing the direction of the photon for instance. Bob and Alice
know the EPR-entanglement of particles 2 and 3. Thus, Bob’s manipulation only de-
pends upon the entangled state of particles 1 and 2. The correlation between particle
1 and 2 is sent from Alice to Bob as classical information, by phone for example
(Fig. 5.20). However, unlike instantaneous quantum teleportation, this classical in-
formation cannot be transferred at velocities faster than that of light.

The disadvantage of quantum teleportation is the fact that the transported quan-
tum information is unknown until it is determined randomly by measurement.
Therefore, quantum teleportation cannot be used for direct information transfer.
Thus, there is no conflict with Einstein’s theory of relativity and his postulate on the
maximum velocity of signals. However, so long as quantum information is not mea-
sured or observed, it can be transferred instantaneously via entanglement. Quantum
entanglement makes quantum parallelism and thus increased computational velocity
possible. Reducing computational time through massive quantum parallelism also
means reducing computational complexity.

Quantum computing does not only lead to the exponential growth of compu-
tational capacity and a reduction in computational complexity. Any form of matter
stores quantum information. Therefore, any elementary particle is a processor of
quantum information. The computational rules of these processors are symmetric
due to the principles of quantum symmetry. Any computational step is also re-
versible due to the quantum symmetry of time (microreversibility) [5.44]. Phase
transitions of matter are quantum information processing. The universe is an ex-
panding quantum computer that produces quantum information. Furthermore, it is
an immense database that conserves all quantum information via symmetry. We
must not forget that the concept of a computing machine is not restricted to human
technology with symbolic data dynamics. Symbols are only used to represent states
of dynamical systems for human purposes. Information processing does not depend
on human purposes and interests. Human knowledge only relates to a tiny part of
the information in the world. In principle, quantum information does not depend
on the presence of an observer or measurement process. Observing and measuring
quantum systems is only a special example of an interaction of a quantum system
with another system.

Quantum computers are quantum systems, and quantum information corre-
sponds to quantum states. If quantum systems are considered to be quantum com-
puters, then the whole universe is a quantum computer, a concept analogous to that
of Leibniz for classical mechanics. But in contrast to Leibniz, the quantum random-
ness of the universe is an integral part of this system. Looking deeper, conflicts with
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Einstein’s deterministic view of the world arise. According to Einstein’s theory of
general relativity, black holes with extremely strong curvatures of space—time are
possible, which attract and swallow all forms of matter and light. The center of
a black hole is a point singularity without return. Does it also destroy information
about the architecture and structure of the material systems swallowed? Does the
black hole of an imploding star erase the information about this part of the uni-
verse? Are black holes irreversible “memory holes” in space—time that increase in
number as the universe ages, just as Alzheimer’s disease leads to decay and loss of
information in the human brain?

According to the laws of quantum physics, quantum information must remain
constant. The wavefunction of a quantum system contains all of the information on
its state. The time-dependent development of a quantum state is determined by a uni-
tary transformation, which allows the initial state of the system to be reconstructed
from its end state without loss. Thus, no quantum information is lost in quantum
physics. But according to Einstein’s theory of relativity, information is definitely
lost in the point singularity of a black hole. This conflict between quantum and rel-
ativistic physics is called the paradox of quantum information. Hawking suggested
that the quantum vacuum around a black hole should be considered. According to
Heisenberg’s uncertainty relation, this vacuum is not completely “empty” but is ac-
tually filled with quantum fluctuations that cause the spontaneous creation of pairs
of particles and antiparticles that are annihilated after very small periods of time.
However, some of the particles fall into the black hole while their partners escape
from the black hole as thermal radiation (known as Hawking radiation). In Hawk-
ing’s model, however, the escaping particles are completely independent of their
swallowed partners. Thus, no information can escape from the center of the black
hole in order to save the quantum information from being erased.

A potential solution to this problem is obtained by assuming entangled quan-
tum states. In the Horowitz—Maldacena—model [5.45], the pairs of particles are en-
tangled. Therefore, an escaping particle does not only transports mass but also in-
formation. It is entangled with its partner, which falls into the black hole. Thus,
information about the s