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Das Ganze ist aber nur das durch seine Entwicklung
sich vollendende Wesen. ∗

G. W. F. Hegel: Phänomenologie des Geistes (1807)

∗ The whole, however, is merely the essential nature reaching its
completeness through the process of its own development.

G. W. F. Hegel: The Phenomenology of Mind (1807)
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Preface to the Fifth Edition

Complexity determines the spirit of twenty-first century science. The expansion of
the universe, the evolution of life, and the globalization of human economies and
societies all involve phase transitions of complex dynamical systems. Complexity
research is done in a growing number of disciplines in the physical and life sciences,
the economic and social sciences, and the cognitive and computer sciences, yielding
new results and insights. Thus, this book on “Thinking in Complexity” is inevitably
associated with a learning process and must be updated, although the main princi-
ples of complexity research are highlighted, just as they have been from the very
first edition. However, the fifth edition of “Thinking in Complexity” enlarges and
revises nearly all of the sections of the former book, and includes completely new
chapters on the evolution of computability and the emerging field of econophysics.

In Chapter 2, the methodological section on time series analysis now also con-
siders fractals and multifractals as geometric criteria for complexity. Further on,
power laws reveal the high level of complexity of all biological systems. They are
important indications of the scale-free laws associated with fractal and multifractal
features, which are additionally analyzed in Chapter 3. In Chapter 4, the traditional
dualism of mind and matter is overcome by invoking the concept of the embodied
mind, which was recently introduced in the fields of neurobiology and neuropsy-
chology. The reason is that people learn bodily from experiences with their envi-
ronment. In neuromedicine, the “Theory of Mind” (ToM) explains the awareness of
one’s own emotional states by specialized areas of the brain as a complex embodied
process. Finally, subjective experiences (qualia) emerge through the bodily interac-
tions of self-conscious organisms with their environment, which can be modeled by
the nonlinear dynamics of complex systems.

Chapter 5, on the evolution of computability, is completely new. After historical
background on Leibniz and an introduction to the basic concepts of computability
and algorithmic complexity, we discuss degrees of complexity in information theory
and the theory of probability. Probabilistic attractors allow the degrees of complexity
of stochastic processes to be classified. Probabilistic states are typical of the quan-
tum world. Quantum states are coded by quantum information, which is processed
by quantum computers. Quantum computability leads to degrees of quantum com-
plexity. Is the universe a giant expanding quantum computer of increasing complex-
ity? All of the degrees of complexity of dynamical systems can also be simulated
by cellular automata. New ideas in and results of organic computing are included
in Chap. 6. The natural evolution of life and intelligence has become an important
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paradigm for computational models. They are no longer restricted to the symbolic
knowledge representation associated with classical artificial intelligence (AI). The
embodied life and mind encountered in natural evolution has led to research into
embodied artificial intelligence, which involves robots and machines that undergo
bodily experiences and learning interactions with their changing environments.

Chapter 7 on complex systems and the evolution of economies is also com-
pletely new. After some historical remarks on economic self-organization, it begins
by introducing some basic concepts of nonequilibrium dynamics of complex eco-
nomic systems. Econophysics is a discipline that has arisen relatively recently in
which economic and financial systems are analyzed with the methods of nonlinear
dynamics. This situation is reminiscent of the beginnings of modern molecular biol-
ogy, when physicists such as Erwin Schrödinger (in his revolutionary book “What
is Life?”) rather than traditional biologists made breakthroughs in the life sciences
using modern mathematical physics methods. It may be that physicists, again, will
find useful economic and financial models based on mathematical methods derived
from the theories of complex systems and nonlinear dynamics. Complex and global
markets exhibit turbulence that appears to be remarkably similar to that observed
in weather and climate dynamics, which follows typical power laws of probabilistic
distributions. Stochastic processes with probabilistic attractors lead to abrupt and
discontinuous events (the “Noah effect”) or long-term trends (the “Joseph effect”).
Time series analysis permits the detection of typical patterns of fractal and multi-
fractal structures that can be used as warning signals for critical situations.

Chapter 8 on the evolution of human culture and society has been enlarged
through the addition of sections on media and communication in the age of World
Wide Web, mobile, and ubiquitous computing. These are examples of highly com-
plex self-organizing networks, each of which is very similar to a kind of superbrain.
The flow of data traffic can be characterized by phase transitions and attractors. In
order to efficiently manage an increasing flood of information, we need user-friendly
methods of information retrieval and personalized information systems. Adaptive
(“tailored”) e-learning presents a challenge to the application of communication
technologies in modern knowledge societies. The philosophical and ethical mes-
sages of modern complexity research are then highlighted in Chap. 9.

Finally, I would like to thank Christian Caron for initiating and supporting this
new edition. He follows in the good tradition of Springer-Verlag of focusing on
“Thinking in Complexity” as a key topic for the twenty-first century.

Augsburg, March 2007 Klaus Mainzer



Preface to the Fourth Edition

The first edition of this book, published in 1994, began with the statement that the
new science of complexity would characterize the scientific development of the 21st
century. In the first decade of this century, this prediction has been confirmed by
overwhelming new empirical results and theoretical insights the of physical and
biological sciences, cognitive and computer sciences, and social and economic sci-
ences. Complexity and nonlinearity are still prominent features in the evolution of
matter, mind, and human society. Thus, the science of complexity still aims at ex-
planations for the emergence of order in nature and mind and in the economy and
society by common principles.

But a new engineering view has focused the exploration of complexity. On the
one hand, we need new computational instruments to analyze complex data and rec-
ognize future trends. On the other hand, the principles of complex dynamics are in-
creasingly becoming the blueprints of gene, bio, and computer technology. Life and
computer sciences are growing into a new kind of complex engineering, changing
the basic conditions of human life and society. Nonlinear dynamics are implemented
in nonlinear computer chips of high speed and miniaturized size, which are not only
distributed in our technical equipment and environment, but also in our body and
brain. Robots are embodied. Nanotechnology with new materials, as well as articial
life and artificial intelligence are dramatic challenges to the future of complexity
science. In the age of globalization, humankind is growing along with worldwide
computational networks of information and communication. But we are also endan-
gered by the nonequilibrium phase transitions of technical, economic, and social
dynamics. All these new topics are considered in supplemented parts and chapters
of this enlarged and revised fourth edition.

Thus, Thinking in Complexity has the new subtitle The Computational Dynam-
ics of Matter, Mind, and Mankind. We can actually define precise degrees of algo-
rithmic and dynamic complexity. Basic theorems of computational dynamics have
been proven recently. But, because of chaos and randomness, understanding com-
putational dynamics does not mean predicting and determining the future in all its
details. While we can gain experience with nonlinear dynamics through computer
experiments, computer experiments cannot replace reality. As life is complex and
random, we have to live it in order to experience it. From a philosophical point of
view, this book outlines new standards of epistemology and ethical behavior, which
the complex problems of nature, mind, economy, and society demand.
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This new edition has been inspired by several fruitful collaborations. In 1997,
the book was translated into Japanese, and I was invited to universities in Tokyo,
Osaka, Nagasaki, and Fukui. In 1999, the Chinese translation brought invitations
to universities in Beijing and Shanghai. During the world exposition 2000 (Expo)
in Hannover, I was invited by the German Science Organizations to chair the top-
ics “Understanding Complex Systems” and “Global Networking” during the con-
ference “Science and Technology – Thinking the Future”. During the academic
year 2002/2003, I was a member of the international research group on “General
Principles of Information Theory and Combinatorics” at the Center of Interdisci-
plinary Research in Bielefeld, Germany. The 7th IEEE International Workshop on
“Cellular Neural Networks and Their Applications” (Frankfurt 2002) opened new
insights into recent developments in analogic neural computers and chip technol-
ogy. As a member of the editorial board of the International Journal of Bifurcation
and Chaos in Applied Sciences and Engineering, I have the opportunity to get an
interdisciplinary overview of worldwide explorations in the sciences of complex-
ity. I especially want to thank the editor of our journal, Leon O. Chua (Department
of Electrical Engineering & Computer Sciences, University of California, Berke-
ley), for his encouraging advice and kind invitation to Berkeley. Thanks also to
Stephen Wolfram and Leon Chua for the permission to reproduce some figures of
their books in Chaps. 5 and 6. Last, but not least, I would like to thank Wolf Beigl-
böck (Springer-Verlag) for initiating and supporting this new edition.

Augsburg, March 2003 Klaus Mainzer



Preface to the Third Edition

The second edition of “Thinking in Complexity”, like the first edition, was also
sold out in less than one year. Meanwhile, Japanese and Chinese translations of
the second editon have been published. Once more I have taken the opportunity
provided by a new edition to revise and extend the text.

A new Sect. 2.5 “Complex Systems and the Self-Construction of Materials” is
included, in order to analyze the role of complex systems in the dramatic success
of supramolecular chemistry, nanotechnology, and the technology of smart (“intelli-
gent”) materials. These topics lie at the boundary between materials science and life
science. In recent years, life science and computer science have been growing to-
gether in a common field of research called “artificial life”. A further new Sect. 5.5
“From Artificial Intelligence to Artificial Life” has been added, in which the role
of complex systems in the field of artificial life is discussed. I also use the oppor-
tunity of the new edition to make some remarks about the relationship between the
Santa Fe approach to complex systems and the methods of synergetics and order
parameters which are key concepts in this book.

Research into complex systems continues world-wide. I have to thank the read-
ers who have written friendly and inspiring letters from all over the world. Some
months ago, a German Society of Complex Systems and Nonlinear Dynamics was
founded. The honorable German Academy of Natural Scientists Leopoldina invited
me to give a lecture on complexity for which I express my gratitude. Last but not
least, I would again like to thank Wolf Beiglböck of Springer-Verlag for initiating
and supporting this new edition.

Augsburg, November 1996 Klaus Mainzer



This page intentionally left blank



Preface to the Second Edition

The first edition of “Thinking in Complexity” was sold out in less than one year.
Obviously, complexity and nonlinearity are “hot” topics of interdisciplinary interest
in the natural and social sciences. The situation is well summarized by a quotation
of Ian Stewart (Mathematics Institute, University of Warwick) who wrote a nice
review of my book under the title “Emerging new science” [Nature 374, 834 (1995)]:
“Nonlinearity is not a universal answer, but it is often a better way of thinking about
the problem”.

I have taken the opportunity provided by a second edition to revise and extend
the text. In Sect. 2.4 a supplement is included on the recent importance of conserva-
tive self-organization in supramolecular chemistry and the material sciences. Some
references are given to the recent discussion of self-organization in alternative cos-
mologies. Some remarks are made about new results on dissipative self-organization
in living cells (Sect. 3.3). The success and limitations of adaptive neural prosthe-
ses in neurotechnology are analyzed in more detail (Sect. 5.4). The last chapter is
extended into an “Epilogue on Future, Science, and Ethics”: After a short intro-
duction to traditional forecasting methods, their limitations and new procedures are
discussed under the constraints of nonlinearity and complexity in the natural and
social sciences. In particular, the possibilities of predicting and modeling scientific
and technological growth are extremely interesting for the contemporary debates on
human future and ethics.

General methods of nonlinear complex systems must be developed in coopera-
tion with the natural and social sciences under their particular observational, exper-
imental, and theoretical conditions. Thus, I want to thank some colleagues for their
helpful advice: Rolf Eckmiller (Dept. of Neuroin-formatics, University of Bonn),
Hans-Jörg Fahr and Wolf Priester (Dept. of Astrophysics and Max-Planck Insti-
tute for Radioastronomy, Bonn), Hermann Haken (Institute of Theoretical Physics
and Synergetics, Stuttgart), Benno Hess (Max-Planck Institute for Medical Re-
search, Heidelberg), S. P. Kurdyumov (Keldysh Institute of Applied Mathemat-
ics, Moscow), Renate Mayntz (Max-Planck Institute for Social Sciences, Cologne),
Achim Müller (Dept. of Inorganic Chemistry, University of Bielefeld). Last but not
least, I would like to thank Wolf Beiglböck (Springer-Verlag) for initiating and sup-
porting this new edition.

Augsburg, November 1995 Klaus Mainzer
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Preface to the First Edition

Complexity and nonlinearity are prominent features in the evolution of matter, life,
and human society. Even our mind seems to be governed by the nonlinear dynamics
of the complex networks in our brain. This book considers complex systems in the
physical and biological sciences, cognitive and computer sciences, social and eco-
nomic sciences, and philosophy and history of science. An interdisciplinary method-
ology is introduced to explain the emergence of order in nature and mind and in the
economy and society by common principles.

These methods are sometimes said to foreshadow the new sciences of complex-
ity characterizing the scientific development of the 21st century. The book critically
analyzes the successes and limits of this approach, its systematic foundations, and
its historical and philosophical background. An epilogue discusses new standards of
ethical behavior which are demanded by the complex problems of nature and mind,
economy and society.

The “nucleus” of this book was a paper contributed to a conference on com-
plex nonlinear systems which was organized by Hermann Haken and Alexander
Mikhailov at the Center for Interdisciplinary Studies in Bielefeld, in October 1992.
In December 1992, Dr. Angela M. Lahee (Springer-Verlag) suggested that I elab-
orate the topics of my paper into a book. Thus, I would like to express my grat-
itude to Dr. Lahee for her kind and efficient support and to Hermann Haken for
his cooperation in several projects on complex systems and synergetics. I also wish
to thank the German Research Foundation (DFG) for the support of my projects
on “Computer, Chaos and Self-organization” (1990–1992: Ma 842/4-1) and “Neu-
roinformatics” (1993–1994: Ma 842/6-1). I have received much inspiration from
teaching in a mathematical graduate program on “Complex Systems” (supported by
the DFG) and an economic program on “Nonlinearity in Economics and Manage-
ment” at the University of Augsburg. In 1991 and 1993, the Scientific Center of
Northrhine-Westphalia (Düsseldorf) invited me to two international conferences on
the cultural effects of computer technology, neurobiology, and neurophilosophy.

Last but not least, I would especially like to thank J. Andrew Ross (Springer-
Verlag) for carefully reading and correcting the book as a native speaker, and Katja
E. Hüther and Jutta Janßen (University of Augsburg) for typing the text.

Augsburg, June 1994 Klaus Mainzer
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1 Introduction: From Linear to Nonlinear Thinking

The theory of nonlinear complex systems has become a successful problem solv-
ing approach in the natural sciences – from laser physics, quantum chaos, and me-
tereology to molecular modeling in chemistry and computer-assisted simulations
of cellular growth in biology. On the other hand, the social sciences are recogniz-
ing that the main problems of mankind are global, complex, nonlinear, and often
random, too. Local changes in the ecological, economic, or political system can
cause a global crisis. Linear thinking and the belief that the whole is only the sum
of its parts are evidently obsolete. One of the most exciting topics of present sci-
entific and public interest is the idea that even our mind is governed by the non-
linear dynamics of complex systems. If this thesis of computational neuroscience
is correct, then indeed we have a powerful mathematical strategy to handle the in-
terdisciplinary problems of the natural sciences, social sciences, and the human-
ities. But one of the main insights of this book is the following: Handling prob-
lems does not always mean computing and determining the future. In the case of
randomness, we can understand the dynamical reasons, but there is no chance of
forecasting. Understanding complex dynamics is often more important for our prac-
tical behavior than computing definite solutions, especially when it is impossible to
do so.

What is the reason behind these successful interdisciplinary applications? The
book shows that the theory of nonlinear complex systems cannot be reduced to spe-
cial natural laws of physics, although its mathematical principles were discovered
and at first successfully applied in physics. Thus it is no kind of traditional “physical-
ism” to explain the dynamics of laser, ecological populations, or our brain by similar
structural laws. It is an interdisciplinary methodology to explain the emergence of
certain macroscopic phenomena via the nonlinear interactions of microscopic ele-
ments in complex systems. Macroscopic phenomena may be forms of light waves,
fluids, clouds, chemical waves, plants, animals, populations, markets, and cerebral
cell assemblies which are characterized by order parameters. They are not reduced
to the microscopic level of atoms, molecules, cells, organisms, etc., of complex sys-
tems. Actually, they represent properties of real macroscopic phenomena, such as
field potentials, social or economical power, feelings or even thoughts. Who will
deny that feelings and thoughts can change the world?

In history the concepts of the social sciences and humanities have often been
influenced by physical theories. In the age of mechanization Thomas Hobbes de-
scribed the state as a machine (“Leviathan”) with its citizens as cog wheels. For
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Lamettrie the human soul was reduced to the gear drive of an automaton. Adam
Smith explained the mechanism of the market by an “invisible” force like Newton’s
gravitation. In classical mechanics causality is deterministic in the sense of the New-
tonian or Hamiltonian equations of motion. A conservative system is characterized
by its reversibility (i.e., symmetry or invariance) in time and the conservation of
energy. Celestial mechanics and the pendulum without friction are prominent exam-
ples. Dissipative systems are irreversible, like Newton’s force with a friction term,
for instance.

But, in principle, nature was regarded as a huge conservative and deterministic
system the causal events of which can be forecast and traced back for each point of
time in the future and past if the initial state is well known (“Laplace’s demon”).
It was Henri Poincaré who recognized that celestial mechanics is no completely
calculable clockwork even with the restrictions of conservation and determinism.
The causal interactions of all planets, stars, and celestial bodies are nonlinear in
the sense that their mutual effects can lead to chaotic trajectories (e.g., the 3-body
problem). Nearly sixty years after Poincaré’s discovery, A.N. Kolmogorov (1954),
V.I. Arnold (1963), and J.K. Moser proved the so-called KAM theorem: Trajectories
in the phase space of classical mechanics are neither completely regular nor com-
pletely irregular, but they depend very sensitively on the chosen initial states. Tiny
fluctuations can cause chaotic developments (the “butterfly effect”).

In this century quantum mechanics has become the fundamental theory of
physics [1.1]. In Schrödinger’s wave mechanics the quantum world is believed to
be conservative and linear. In the first quantization classical systems described by
a Hamiltonian function are replaced by quantum systems (for instance electrons or
photons) described by a Hamiltonian operator. These systems are assumed to be
conservative, i.e., non-dissipative and invariant with respect to time reversal and
thus satisfy the conservation law of energy. States of a quantum system are de-
scribed by vectors (wave functions) of a Hilbert space spanned by the eigenvectors
of its Hamiltonian operator. The causal dynamics of quantum states is determined
by a deterministic differential equation (the Schrödinger equation) which is linear in
the sense of the superposition principle, i.e., solutions of this equation (wave func-
tions or state vectors) can be superposed like in classical optics. The superposition
or linearity principle of quantum mechanics delivers correlated (“entangled”) states
of combined systems which are highly confirmed by the EPR experiments (A. As-
pect 1981). In an entangled pure quantum state of superposition an observable can
only have indefinite eigenvalues. It follows that the entangled state of a quantum
system and a measuring apparatus can only have indefinite eigenvalues. But in the
laboratory the measuring apparatus shows definite measurement values. Thus, linear
quantum dynamics cannot explain the measurement process.

In the Copenhagen interpretation of Bohr, Heisenberg, et al., the measurement
process is explained by the so-called “collapse of the wave-packet”, i.e., splitting
up of the superposition state into two separated states of measurement apparatus
and measured quantum system with definite eigenvalues. Obviously, we must dis-
tinguish the linear dynamics of quantum systems from the nonlinear act of mea-
surement. This nonlinearity in the world is sometimes explained by the emergence
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of human consciousness. Eugene Wigner (1961) suggested that the linearity of
Schrödinger’s equation might fail for conscious observers, and be replaced by some
nonlinear procedure according to which either one or the other alternative would be
resolved out. But Wigner’s interpretation forces us to believe that the linear quantum
superpositions would be resolved into separated parts only in those corners of the
universe where human or human-like consciousness emerges. In the history of sci-
ence anthropic or teleological arguments often showed that there were weaknesses
and failures of explanation in science. Thus, some scientists, like Roger Penrose,
suppose that the linear dynamics of quantum mechanics is not appropriate to ex-
plain cosmic evolution with the emergence of consciousness. He argues that a uni-
fied theory of linear quantum mechanics and nonlinear general relativity could at
least explain the separated states of macroscopic systems in the world. A measuring
apparatus is a macroscopic system, and the measurement process is irreversible far
from thermal equilibrium. Thus, an explanation could only succeed in a unified non-
linear theory. Even the generalization of Schrödinger’s wave mechanics to quantum
field theory is already nonlinear. In quantum field theory, field functions are replaced
by field operators in the so-called second quantization. The quantum field equation
with a two-particle potential, for instance, contains a nonlinear term corresponding
to pair creation of elementary particles. In general the reactions of elementary parti-
cles in quantum field theory are essentially nonlinear phenomena. The interactions
of an elementary particle cause its quantum states to have only a finite duration and
thereby to violate the reversibility of time. Thus even the quantum world itself is nei-
ther conservative nor linear in general. In system theory, complexity means not only
nonlinearity but a huge number of elements with many degrees of freedom [1.2].
All macroscopic systems like stones or planets, clouds or fluids, plants or animals,
animal populations or human societies consist of component elements like atoms,
molecules, cells or organisms. The behaviour of single elements in complex systems
with huge numbers of degrees of freedom can neither be forecast nor traced back.
The deterministic description of single elements must be replaced by the evolution
of probabilistic distributions.

The second chapter analyzes Complex Systems and the Evolution of Matter.
Since the presocratics it has been a fundamental problem of natural philosophy to
discover how order arises from complex, irregular, and chaotic states of matter. Her-
aclitus believed in an ordering force of energy (logos) harmonizing irregular inter-
actions and creating order states of matter. Modern thermodynamics describes the
emergence of order by the mathematical concepts of statistical mechanics. We dis-
tinguish two kinds of phase transition (self-organization) for order states: conserva-
tive self-organization means the phase transition of reversible structures in thermal
equilibrium. Typical examples are the growth of snow crystals or the emergence of
magnetisation in a ferromagnet by annealing the system to a critical value of tem-
perature. Conservative self-organization mainly creates order structures with low
energy at low temperatures which are described by a Boltzmann distribution. An
application of modern technology is pattern formation in the materials sciences.
Complex systems of the nanoworld and self- constructing materials are challenges
of key technologies in the future.
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Dissipative self-organization is the phase transition of irreversible structures far
from thermal equilibrium [1.3]. Macroscopic patterns arise from the complex non-
linear cooperation of microscopic elements when the energetic interaction of the
dissipative (“open”) system with its environment reaches some critical value. Philo-
sophically speaking, the stability of the emergent structures is guaranteed by some
balance of nonlinearity and dissipation. Too much nonlinear interaction or dissipa-
tion would destroy the structure. As the conditions of dissipative phase transitions
are very general, there is a broad variety of interdisciplinary applications. A typical
physical example is the laser. In chemistry, the concentric rings or moving spirals in
the Belousov-Zhabotinski (BZ) reaction arise when specific chemicals are poured
together with a critical value. The competition of the separated ring waves show the
nonlinearity of these phenomena very clearly, because in the case of a superposition
principle the ring waves would penetrate each other like optical waves.

The phase transitions of nonlinear dissipative complex systems are explained by
synergetics. In a more qualitative way we may say that old structures become unsta-
ble and break down by changing control parameters. On the microscopic level the
stable modes of the old states are dominated by unstable modes (Haken’s “slaving
principle”) [1.4]. They determine order parameters which describe the macroscopic
structure and patterns of systems. There are different final patterns of phase transi-
tions corresponding to different attractors. Different attractors may be pictured as
a stream, the velocity of which is accelerated step by step. At the first level a homo-
geneous state of equilibrium is shown (“fixed point”). At a higher level of velocity
the bifurcation of two or more vortices can be observed corresponding to periodic
and quasi-periodic attractors. Finally the order decays into deterministic chaos as
a fractal attractor of complex systems. Philosophically, I want to underline that in
synergetics the microscopic description of matter is distinguished from the macro-
scopic order states. Thus the synergetic concept of order reminds me of Heraclitus”
“logos” or Aristotle’s “form” which produces the order states of nature in a trans-
formative process of matter. But, of course, in antiquity a mathematical description
was excluded.

In a more mathematical way, the microscopic view of a complex system is de-
scribed by the evolution equation of a state vector where each component depends
on space and time and where the components may denote the velocity components
of a fluid, its temperature field, or in the case of chemical reactions, concentrations
of chemicals. The slaving principle of synergetics allows us to eliminate the degrees
of freedom which refer to the stable modes. In the leading approximation the evo-
lution equation can be transformed into a specific form for the nonlinearity which
applies to those systems where a competition between patterns occurs. The ampli-
tudes of the leading terms of unstable modes are called order parameters. Their
evolution equation describes the emergence of macroscopic patterns. The final pat-
terns (“attractors”) are reached by a transition which can be understood as a kind
of symmetry breaking [1.5]. Philosophically speaking, the evolution of matter is
caused by symmetry breaking, which was earlier mentioned by Heraclitus.

Understanding complex systems and nonlinear dynamics in nature seems to
yield appropriate models for the evolution of matter. But how can we find correct
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models in practice? Physicists, chemists, biologists, or physicians start with data
mining in an unknown field of research. They only get a finite series of measured
data corresponding to time dependent events of an unknown dynamical system.
From the time series of these data, they must reconstruct the behavior of the system
in order to guess the type of its dynamical equation. Therefore, time series analysis
is a challenge to modern research in chaos theory and nonlinear dynamics.

The third chapter analyzes Complex Systems and the Evolution of Life. In the
history of science and philosophy, people believed in a sharp difference between
“dead” and “living” matter. Aristotle interpreted life as a power of self-organization
(entelechy) driving the growth of plants and animals to their final form. A living
system is able to move by itself, while a dead system can only be moved from out-
side. Life was explained by teleology, i.e., by non-causal (“vital”) forces aiming at
some goals in nature. In the 18th century Kant showed that self-organization of liv-
ing organisms cannot be explained by a mechanical system of Newtonian physics.
In a famous quotation he said that the Newton for explaining a blade of grass is
still lacking. In the 19th century the second law of thermodynamics describes the
irreversible movement of closed systems toward a state of maximal entropy or dis-
order. But how can one explain the emergence of order in Darwin’s evolution of
life? Boltzmann stressed that living organisms are open dissipative systems in ex-
change with their environment which do not violate the second law of closed sys-
tems. But nevertheless in the statistical interpretation from Boltzmann to Monod the
emergence of life can only be a contingent event, a local cosmic fluctuation “at the
boundary of universe”.

In the framework of complex systems the emergence of life is not contingent,
but necessary and lawful in the sense of dissipative self-organization. Only the con-
ditions for the emergence of life (for instance on the planet Earth) may be contingent
in the universe. In general, biology distinguishes ontogenesis (the growth of organ-
isms) from phylogenesis (the evolution of species). In any case we have complex
dissipative systems the development of which can be explained by the evolution of
(macroscopic) order parameters caused by nonlinear (microscopic) interactions of
molecules, cells, etc., in phase transitions far from thermal equilibrium. Forms of
biological systems (plants, animals, etc.) are described by order parameters. Aristo-
tle’s teleology of goals in nature is interpreted in terms of attractors in phase transi-
tions. But no special “vital” or “teleological” forces are necessary. Philosophically,
the emergence of life can be explained in the framework of nonlinear causality and
dissipative self-organization, although it may be described in a teleological language
for heuristic reasons.

I remind the reader that the prebiological evolution of biomolecules was ana-
lyzed and simulated by Manfred Eigen et al. Spencer’s idea that the evolution of
life is characterized by increasing complexity can be made precise in the context
of dissipative self-organization. It is well known that Turing analyzed a mathemat-
ical model of organisms represented as complex cellular systems. Gerisch, Mein-
hardt, et al. described the growth of an organism (e.g., a slime mould) by evolution
equations for the aggregation of cells. The nonlinear interactions of amebas cause
the emergence of a macroscopic organism like a slime mould when some critical
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value of cellular nutrition in the environment is reached. The evolution of the or-
der parameter corresponds to the aggregation forms during the phase transition of
the macroscopic organism. The mature multicellular body can be interpreted as the
“goal” or (better) “attractor” of organic growth. Multicellular bodies, like genetic
systems, nervous systems, immune systems, and ecosystems, are examples of com-
plex dynamical systems, which are composed of a network of many interacting el-
ements. S. Kauffman suggested studying random Boolean networks that could be
programmed in a computer. In computer experiments, he found a hierarchy of dy-
namical behavior with fixed points and cycles of increasing complexity, which can
be observed in real cells.

Even the ecological growth of biological populations may be simulated using
the concepts of synergetics. Ecological systems are complex dissipative systems of
plants or animals with mutual nonlinear metabolic interactions with each other and
with their environment. The symbiosis of two populations with their source of nu-
trition can be described by three coupled differential equations which were already
used by Edward Lorenz to describe the development of weather in meteorology. In
the 19th century the Italian mathematicians Lotka und Volterra described the devel-
opment of two populations in ecological competition. The nonlinear interactions of
the two complex populations are determined by two coupled differential equations
of prey and predator species. The evolution of the coupled systems have station-
ary points of equilibrium. The attractors of evolution are periodic oscillations (limit
cycles).

The theory of complex systems allows us to analyze the nonlinear causality
of ecological systems in nature. Since the industrial revolution human society has
become more and more involved in the ecological cycles of nature. But the com-
plex balance of natural equilibria is highly endangered by the linear mode of tra-
ditional industrial production. People assumed that nature contains endless sources
of energy, water, air, etc., which can be used without disturbing the natural balance.
Industry produces an endless flood of goods without considering their synergetic
effects like the ozone hole or waste utilization. The evolution of life is transformed
into the evolution of human society.

From a methodological point of view, the applicability of power laws to bio-
logical systems indicates that such systems are highly complex. Some examples of
biological power-law equations include those that relate physiological variables as-
sociated with the metabolic rate or life expectancy of an organism to its body mass.
Although not all power-law relationships are result from fractals, the existence of
such a relationship should inspire us to test the self-similarities of cellular subsys-
tems at different scales. Many cellular organs, such as the lungs, with their branching
trees of vessels, are at least statistically self-similar. The concept of fractals and self-
similarity has not only been used to describe biomedical phenomena, but it has also
prompted a new approach to health by clinicians. The new idea that has emerged
from nonlinear dynamics, scaling and power laws in biology is that health is home-
odynamic; in other words, there are a constellation of states that determine health.
A healthy physiological system has a certain amount of intrinsic variability and no
fixed state.
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Perhaps the most speculative interdisciplinary application of complex systems
is discussed in the fourth chapter, Complex Systems and the Evolution of Mind-
Brain. In the history of philosophy and science there have been many different
suggestions for solutions to the mind-body problem. Materialistic philosophers like
Democritus, Lamettrie, et al., proposed to reduce mind to atomic interactions. Ide-
alists like Plato, Penrose, et al. emphasized that mind is completely independent of
matter and brain. For Descartes, Eccles, et al. mind and matter are separate sub-
stances interacting with each other. Leibniz believed in a metaphysical parallelism
of mind and matter because they cannot interact physically. According to Leibniz
mind and matter are supposed to exist in “pre-established harmony” like two syn-
chronized clocks. Modern philosophers of mind like Searle defend a kind of evo-
lutionary naturalism. Searle argues that mind is characterized by intentional mental
states which are intrinsic features of the human brain’s biochemistry and which
therefore cannot be simulated by computers.

But the theory of complex systems cannot be reduced to these more or less one-
sided positions. The complex system approach is an interdisciplinary methodology
to deal with nonlinear complex systems like the cellular organ known as the brain.
The emergence of mental states (for instance pattern recognition, feelings, thoughts)
is explained by the evolution of (macroscopic) order parameters of cerebral assem-
blies which are caused by nonlinear (microscopic) interactions of neural cells in
learning strategies far from thermal equilibrium. Cell assemblies with mental states
are interpreted as attractors (fixed points, periodic, quasi-periodic, or chaotic) of
phase transitions.

If the brain is regarded as a complex system of neural cells, then its dynamics
is assumed to be described by the nonlinear mathematics of neural networks. Pat-
tern recognition, for instance, is interpreted as a kind of phase transition by analogy
with the evolution equations which are used for pattern emergence in physics, chem-
istry, and biology. Philosophically, we get an interdisciplinary research program that
should allow us to explain neurocomputational self-organization as a natural conse-
quence of physical, chemical, and neurobiological evolution by common principles.
As in the case of pattern formation, a specific pattern of recognition (for instance
a prototype face) is described by order parameters to which a specific set of features
belongs. Once some of the features which belong to the order parameter are given
(for instance a part of a face), the order parameter will complement these with the
other features so that the whole system acts as an associative memory (for instance
the reconstruction of a stored prototype face from an initially given part of that
face). According to Haken’s slaving principle the features of a recognized pattern
correspond to the enslaved subsystems during pattern formation.

But what about the emergence of consciousness, self-consciousness, and in-
tentionality? In synergetics we have to distinguish between external and internal
states of the brain. In external states of perception and recognition, order parame-
ters correspond to neural cell assemblies representing patterns of the external world.
Internal states of the brain are nothing other than self-referential states, i.e., mental
states referring to mental states and not to external states of the world. In the tradi-
tional language of philosophy we say that humans are able to reflect on themselves
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(self-reflection) and to refer external situations of the world to their own internal
state of feeling and intentions (intentionality). In recent neurobiological inquiries,
scientists speculate that the emergence of consciousness and self-consciousness de-
pends on a critical value of the production rate for “meta-cell-assemblies”, i.e., cell-
assemblies representing cell-assemblies which again represent cell-assemblies, etc.,
as neural realization of self-reflection. But this hypothesis (if successful) could only
explain the structure of emergent features like consciousness. Of course, mathemati-
cal evolution equations of cell assemblies do not enable us to feel like our neighbour.
In this sense – this is the negative message – science is blind. But otherwise – this
is the positive message – personal subjectivity is saved: Calculations and computer-
assisted simulations of nonlinear dynamics are limited in principle.

Anyway, the complex system approach solves an old metaphysical puzzle
which was described by Leibniz in the following picture: If we imagine the brain as
a big machine which we may enter like the internal machinery of a mill, we shall
only find its single parts like the cog wheels of the mill and never the mind, not to
mention the human soul. Of course, on the microscopic level we can only describe
the development of neurons as cerebral parts of the brain. But, on the macroscopic
level, the nonlinear interactions in the complex neural system cause the emergence
of cell assemblies referring to order parameters which cannot be identified with the
states of single cerebral cells. The whole is not the sum of its parts.

Today, we can distinguish several degrees of complexity in the CNS. Scales at
the levels of molecules, membranes, synapses, neurons, nuclei, circuits, networks,
layers, maps, sensory systems, and the entire nervous system are considered. Each
stratum can be characterized by some order parameters that determine its particular
structures, which are caused by complex interactions of subelements with respect
to the particular level of hierarchy. The brain of an organism observes, maps, and
monitors not only the external world, but also the internal states of the organism,
especially its emotional states. To “feel” is to have an awareness of one’s own emo-
tional states. In neuromedicine, the “Theory of Mind” (ToM) even analyzes the neu-
ral correlates of social feeling, which are situated in special areas of the neocortex.
From a neuropsychological point of view, the old philosophical problem of “qualia”
is also solvable. Qualia are properties that are consciously experienced by a person.
We can explain the dynamics of subjective feelings and experiences, but, of course,
the actual feeling is an individual experience.

It is obvious that the complex system approach delivers solutions of the mind-
body problem which are beyond the traditional philosophical answers of idealism,
materialism, physicalism, dualism, interactionism, etc. Concerning the distinction
between so-called natural and artificial intelligence, it is important to see that the
principles of nonlinear complex systems do not depend on the biochemistry of the
human brain.The human brain is a “natural” model of these principles in the sense
that the cerebral complex system is a product of physical and biological evolu-
tion. But other (“artificial”) models produced by human technology are possible,
although there will be technical and ethical limits to their realization.

In Chap. 5 we discuss Complex Systems and the Evolution of Computability.
Universal Turing machines and algorithmic complexity are the traditional concepts
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of computability. Computational systems are also described as information process-
ing machines in information theory. The degree of complexity of information en-
tropy is classified by performing a Fourier analysis of a time series in signal theory.
1/f spectra for signals with a frequency f are typical of processes that organize
themselves to a critical state at which many small interactions can trigger the emer-
gence of a new, unpredicted phenomenon. Earthquakes, atmospheric turbulence,
stock market fluctuations, and physiological processes of organisms are typical ex-
amples. Self-organization, emergence, chaos, fractality, and self-similarity are fea-
tures of complex systems that exhibit nonlinear dynamics. The fact that 1/f spectra
are measures of stochastic noise again emphasizes the deep relationship between
information theory and systems theory: any complex system can be considered to
be an information processing system.

In complex systems, the behavior of single elements is often completely un-
known. In this case, the degrees of complexity of stochastic processes must be dis-
tinguished. The outcomes of a stochastic process (e.g., coin tossing) are distributed
with different probabilities which are characterized by different probability distri-
bution functions. A well-known example is the bell-shaped Gaussian curve of the
normal distribution. This is, however, only one example of a probabilistic attrac-
tor in the functional space of probability density functions. The set of probability
density functions that fulfill the requirements of the central limit theorem with inde-
pendence and finite variance of random variables constitutes the basin of attraction
for the Gaussian distribution. Probabilistic attractors classify the functional space
of probability density functions into regions with different complexities. Distribu-
tion curves with fluctuating tails are typical of power laws, indicating highly com-
plex stochastic behavior. Power-law distributions are used to describe open systems.
They have become increasingly important when describing, for example, complex
economic and physiological systems. Turbulence in complex financial markets is
also characterized by power-law distributions with wildly fluctuating tails.

Although the computability of a deterministic system is limited by the degree of
algorithmic complexity (see Sect. 5.2), and the computability of a stochastic system
is limited by probabilistic measures (Sects. 5.3–5.4), dynamical systems can still
be considered to be computational systems that sometimes cannot deliver results in
a reasonable time. The old vision of Leibniz, that the world is a gigantic computer,
still holds true. From a modern physical point of view, quantum systems are the fun-
damental dynamical systems of nature. Quantum mechanics delivers a framework
for new computational systems – quantum computers. Quantum computers open up
new avenues of information processing, computation, and communication. An es-
sential feature of the quantum world is the superposition of quantum states and the
possibility of entangled states. However, quantum computing does not only imply
an exponential growth in computational capacity and a reduction in computational
complexity. All matter stores quantum information. Therefore, any elementary par-
ticle is a processor of quantum information. The universe is an expanding quantum
computer producing quantum information.

Are there limitations to the analogies of computers with human mind and brain
by Gödel’s and Turing’s results of incompleteness and undecidability? How can
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the human brain be understood as both an information processing machine and
a knowledge-based system? John von Neumann’s concept of celluar automata re-
fined the idea of self-organizing cellular systems. Recent computer experiments by
Stephen Wolfram have shown that all kinds of nonlinear dynamics, from fixed point
attractors and oscillating behavior to chaos, can be simulated by cellular automata.
Even randomness can be generated by appropriate cellular automata, though their
local rules of cellular interaction may be very simple and well-known. Cellular au-
tomata deliver digital approximations of complex dynamical systems that are deter-
mined by continuous differential equations.

Computational dynamics opens up new avenues for Complex Systems and the
Evolution of Artificial Life and Intelligence (Chap. 6). The natural evolution of life
and intelligence has become an important paradigm for computational models. They
are no longer restricted to symbolic knowledge representation and artificial intel-
ligence (AI). Natural life and intelligence depends decisively on the evolution of
organisms and brains. Therefore, embodied life and mind lead to embodied arti-
ficial intelligence and embodied artificial life of embodied robotics. Artificial life
and neural networks have their roots in the universal methods of cellular automata.
Self-organization and learning are the main features of neural networks that model
intelligent systems. In synergetic computers, order parameter equations allow a new
kind of (non-Hebbian) learning: a strategy to minimize the number of synapses. In
contrast to neurocomputers of the spin-glass type (for instance Hopfield systems),
the neurons in such systems are not threshold elements but instead perform sim-
ple algebraic manipulations like multiplication and addition. As well as determinis-
tic homogeneous Hopfield networks, there are so-called Boltzmann machines, with
have a stochastic network architecture of nondeterministic processor elements and
a distributed knowledge representation which is described mathematically by an en-
ergy function. While Hopfield systems use a Hebbian learning strategy, Boltzmann
machines favor a backpropagation strategy (Widrow–Hoff rule) with hidden neu-
rons in a multilayered network.

In general it is the aim of a learning algorithm to diminish the information-
theoretic measure of the discrepancy between the brain’s internal model of the world
and the real environment via self-organization. The recent revival of interest in the
field of neural networks is mainly inspired by the successful technical applications
of statistical mechanics and nonlinear dynamics to solid state physics, spin glass
physics, chemical parallel computers, optical parallel computers, and – in the case of
synergetic computers – to laser systems. Other reasons are the recent development
of computing resources and the level of technology which make a computational
treatment of nonlinear systems more and more feasible. Philosophically, traditional
topics of epistemology like perception, imagination, and recognition may be dis-
cussed in the interdisciplinary framework of complex systems.

In electrical engineering, information theory, and computer science, the concept
of cellular neural networks (CNN) is becoming an influential paradigm of com-
plexity research, which has been realized in information and chip technology [1.6].
Analogic Cellular Computers are the technical response to the sensor revolution,
mimicking the anatomy and physiology of sensory and processing organs. A CNN
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is a nonlinear analog circuit that processes signals in real time. Its architecture dates
back to J. von Neumann’s earlier paradigm of Cellular Automata (CA). Unlike con-
ventional cellular automata, CNN host processors accept and generate analog sig-
nals in continuous time with real numbers as interaction values. The CNN universal
chip is a technical realization of the CNN Universal Machine (CNN-UM), anal-
ogous to the Universal Turing machine of digital computers. It is a milestone in
information technology because it is the first fully programmable, industrial-sized,
brain-like, stored-program dynamic array computer. Further on, appropriate CNNs
can simulate all kinds of pattern formation and pattern recognition, which have been
analyzed in synergetics in the theory of nonlinear dynamics. Two great advantages
of CNNs are their rigorous mathematical analysis and their technical realization.
The dynamic complexity of cellular automata and their corresponding nonlinear dy-
namic systems can be characterized by a precise complexity index. An immense
increase of computing speed, combined with significantly less electrical power in
the first CNN chips, has led to the current intensive research activities on CNN
since Chua and Yang’s proposal in 1988.

An important application of the complex system approach is neurobionics and
medicine. The human brain is not only a cerebral computer as a product of natural
evolution, but a central organ of our body which needs medical treatment, healing,
and curing. Neurosurgery, for instance, is a medical discipline responsible for main-
taining the health of the biological medium of the human mind. The future well-
being of the brain-mind entity is an essential aim of neurobionics. In recent years
new diagnostic procedures and technical facilities for transplantation have been in-
troduced which are based on new insights into the brain from complex dynamical
systems. In this context a change of clinical treatment is unavoidable. Neural and
psychic forms of illness can be interpreted as complex states in a nonlinear system
of high sensitivity. Even medical treatments must consider the high sensitivity of
this complex organ. Another more speculative aspect of the new technology is cy-
berspace. Perception, feeling, intuition, and fantasy as products of artificial neural
networks? Virtual reality has become a keyword in modern philosophy of culture.

After the evolution of matter, life, mind-brain, and artificial intelligence, we
consider the emergence of economic order in human societies. The seventh chap-
ter is titled Complex Systems and the Evolution of Economies. From a qualitative
point of view, Adam Smith’s free market model can already be explained by self-
organization. Smith underlined that good or bad intentions of individuals are not
essential. In contrast to a centralized economical system, the equilibrium of supply
and demand is not directed by a program-controlled central processor, but is the
effect of an “invisible hand” (Smith), which is simply the nonlinear interaction of
consumers and producers. It should be noted that Adam Smith’s liberal ideas were
conceived against a historical background of Newtonian physics. Like many physi-
cists, economists believed in the exact computability of their (linear) models, and
they suppressed the possibility of a “butterfly effect” that could lead to chaos and
excluded long-range economic forecasts.

However, in order to describe the dynamics of an economy, it is necessary to
have evolution equations for many economic quantities from perhaps thousands of
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sectors and millions of agents. Therefore, stochastic models are often preferred
when modeling global trends. Phase transitions and bifurcations at critical points
are crucial concepts for understanding the nonlinear dynamics of economies. One
challenge of globalization is to model the dramatic dynamics of financial markets.
Modern mathematical finance theory is still based on Louis Bachelier’s assump-
tion (1900) of an efficient market with a normal (“Gaussian”) distribution of price
changes and mild randomness. However, complex and global markets are actually
turbulent, like the weather, following typical power laws of distribution. Stochastic
processes with probabilistic attractors (see Sect. 5.4) lead to abrupt and discontin-
uous events (the “Noah effect”) or long-term trends (the “Joseph effect”). Fractals
and multifractals have been put forward as explanations for these stochastic pro-
cesses. Recently, econophysics has become a fruitful research field in economic and
financial sociodynamics.

After moving through matter, life, mind-brain, artificial intelligence, and eco-
nomics, the book finishes in a Hegelian grand synthesis with the eighth chapter,
Complex Systems and the Evolution of Human Culture and Society. In social sci-
ences one usually distinguishes strictly between biological evolution and the history
of human society. The reason is that the development of nations, markets, and cul-
tures is assumed to be guided by the intentional behavior of humans, i.e., human
decisions based on intentions, values, etc. From a microscopic viewpoint we may,
of course, observe single individuals with their intentions, beliefs, etc. But from
a macroscopic view the development of nations, markets, and cultures is not only
the sum of its parts. Mono-causality in politics and history is, as we all know, a false
and dangerous way of linear thinking. Synergetics seems to be a successful strategy
to deal with complex systems even in the humanities. Obviously it is not necessary
to reduce cultural history to biological evolution in order to apply synergetics in-
terdisciplinarily. Contrary to any reductionistic kind of naturalism and physicalism
we recognize the characteristic intentional features of human societies. Thus the
complex system approach may be a method of bridging the gap between the natural
sciences and the humanities that was criticized in Snow’s famous “two cultures”.

In the framework of complex systems the behaviour of human populations is
explained by the evolution of (macroscopic) order parameters which is caused by
nonlinear (microscopic) interactions of humans or human subgroups (states, institu-
tions, etc.). Social or economic order is interpreted by attractors of phase transitions.
Allen et al. analyze the growth of urban regions. From a microscopic point of view
the evolution of populations in single urban regions is mathematically described
by coupled differential equations with terms and functions referring to the capac-
ity, economic production, etc., of each region. The macroscopic development of the
whole system is illustrated by computer-assisted graphics with changing centers of
industrialization, recreation, etc., caused by nonlinear interactions of individual ur-
ban regions (for instance advantages and disadvantages of far and near connections
of transport, communication, etc.). An essential result of the synergetic model is that
urban development cannot be explained by the free will of single persons. Although
people of local regions are acting with their individual intentions, plans, etc., the
tendency of the global development is the result of nonlinear interactions.
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Another example of the interdisciplinary application of synergetics is Weid-
lich’s model of migration. He distinguishes the micro-level of individual decisions
and the macro-level of dynamical collective processes in a society. The probabilistic
macro-processes with stochastic fluctuations are described by the master equation
of human socioconfigurations. Each component of a socioconfiguration refers to
a subpopulation with a characteristic vector of behavior. The macroscopic develop-
ment of migration in a society could be illustrated by computer-assisted graphics
with changing centers of mixtures, ghettos, wandering, and chaos which are caused
by nonlinear interactions of social subpopulations. The differences between human
and non-human complex systems are obvious in this model. On the microscopic
level human migration is intentional (i.e., guided by considerations of utility) and
nonlinear (i.e., dependent on individual and collective interactions). A main result
of synergetics is again that the effects of national and international migration cannot
be explained by the free will of single persons. I think migration is a very dramatic
topic today, and demonstrates how dangerous linear and mono-causal thinking may
be. It is not sufficient to have good intentions without considering the nonlinear
effects of single decisions. Linear thinking and acting may provoke global chaos,
although we locally act with the best intentions.

In a dramatic step, the complex systems approach has been expanded from
neural networks to include global technical information networks like the World
Wide Web. The information flow is accomplished through information packets with
source and destination addresses. The dynamic of the Internet has essential analo-
gies with CAs and CNNs. Computational and information networks have become
technical superorganisms, evolving in a quasi-evolutionary process. The informa-
tion flood in a more or less chaotic Internet is a challenge for intelligent information
retrieval. We could use the analogies of the self-organizing and learning features of
a living brain to find heuristic devices for managing the information flood of the
Internet. Taking this further, we need personalized information systems that adapt
automatically to electronic profiles of users. These are a challenge in all fields of
practical appliances. Even tailored knowledge during e-learning can be packaged
by personalized information systems according to the learning profile of the user.

But the complexity of global networking isn’t confined to the Internet. Below
the complexity of a PC, cheap, low power, and smart chip devices are distributed
throughout the intelligent environments of our everyday world. Ubiquitous comput-
ing is a challenge of global networking by wireless media access, wide-bandwidth
range, real-time capabilities for multimedia over standard networks, and data packet
routing. Not only millions of PCs, but also billions of smart devices are interacting
via the Internet. The overwhelming flow of data and information forces us to operate
at the edge of chaos.

In general, economic information processes are very complex and demand non-
linear dissipative models. Recall the different attractors from economic cycles to
financial chaos which can only be explained as synergetic effects by nonlinear in-
teractions of consumers and producers, fiscal policy, stock market, unemployment,
etc. Even in management possible complex models are discussed in order to sup-
port creativity and innovation by nonlinear cooperation at all levels of management
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and production. But experience shows that the rationality of human decision mak-
ing is bounded. Human cognitive capabilities are overwhelmed by the complexity
and randomness of the nonlinear systems they are forced to manage. The concept of
bounded rationality, first introduced by Herbert Simon, was a reaction to the limita-
tions of human knowledge, information, and time.

Evidently, there are some successful strategies to handle nonlinear complex
systems. We shall discuss examples of applications in quantum physics, hydrody-
namics, chemistry, and biology, as well as economics, sociology, neurology, and
AI. What is the reason behind the successful applications in the natural sciences
and humanities? The complex system approach is not reduced to special natural
laws of physics, although its mathematical principles were discovered and at first
successfully applied in physics (for instance to the laser). Thus, it is an interdisci-
plinary methodology to explain the emergence of certain macroscopic phenomena
via the nonlinear interactions of microscopic elements in complex systems. Macro-
scopic phenomena may be forms of light waves, fluids, clouds, chemical waves,
biomolecules, plants, animals, populations, markets, neural cell assemblies, traf-
fic congestions in street networks or the Internet, which are characterized by order
parameters (Table 1.1). Philosophically, it is important to see that order parame-
ters are not reduced to the microscopic level of atoms, molecules, cells, organisms,
etc., of complex systems. In some cases they are measurable quantities (for instance
the field potential of a laser). In other cases they are qualitative properties (for in-
stance geometrical forms of patterns). Nevertheless, order parameters are not mere
theoretical concepts of mathematics without any reference to reality. Actually they
represent properties of real macroscopic phenomena, such as field potentials, so-
cial or economic power, feelings or even thoughts. Who will deny that feelings and
thoughts can change the world? If we can understand their nonlinear dynamics, it
could even become possible to implement them in chips, such as CNNs.

Thus, the complex systems approach is not a metaphysical process ontology.
Synergetic principles (among others) provide a heuristic scheme to construct mod-
els of nonlinear complex systems in the natural sciences and the humanities. If these
models can be mathematized and their properties quantified, then we get empirical
models which may or may not fit the data. The slaving principle shows another
advantage. As it diminishes the high number of degrees of freedom in a complex
system, synergetics is not only heuristic, mathematical, empirical and testable, but
economical too. Namely, it satisfies the famous principle of Ockham’s razor which
tells us to cut away superfluous entities. Further on, nonlinear models may be im-
plemented in nonlinear computer chips of high speed and miniaturized size. We
can also prove basic principles of computational dynamics. But, because of chaos
and randomness, understanding computational dynamics does not mean predicting
and determining the future in all its details. The analysis of computational systems
allows us to gain experience with nonlinear dynamics, as well as insights into and
feelings about what is going on in the real world. But, as life is complex and random,
we have to live it in order to experience it.

In this sense, our approach suggests that physical, social, and mental realities
are nonlinear, complex, and computational. This essential result of a new episte-
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mology has severe consequences for our behavior. As we underlined, linear think-
ing may be dangerous in a nonlinear complex reality. Recall, as one example, the
demand for a well-balanced complex system of ecology and economics. Our physi-
cians and psychologists must learn to consider humans as complex nonlinear entities
of mind and body. Linear thinking may fail to yield a successful diagnosis. Local,
isolated, and “linear” therapies of medical treatment may cause negative synergetic
effects. In politics and history, we must remember that mono-causality may lead to
dogmatism, intolerance, and fanaticism. As the ecological, economic, and political
problems of mankind have become global, complex, nonlinear, and random, the tra-
ditional concept of individual responsibility is questionable. We need new models
of collective behavior depending on the different degrees of our individual faculties
and insights. In short: The complex system approach demands new consequences
in epistemology and ethics. Finally, it offers a chance to handle chaos and random-
ness in a nonlinear complex world and utilize the creative possibilities of synergetic
effects.



2 Complex Systems and the Evolution of Matter

How can order arise from complex, irregular, and chaotic states of matter? In classi-
cal antiquity philosophers tried to take the complexity of natural phenomena back to
first principles. Astronomers suggested mathematical models in order to reduce the
irregular and complex planetary orbits as they are experienced to regular and simple
movements of spheres. Simplicity was understood, still for Copernicus, as a fea-
ture of truth (Sect. 2.1). With Newton and Leibniz something new was added to the
theory of kinetic models. The calculus allows scientists to compute the instaneous
velocity of a body and to visualize it as the tangent vector of the body’s trajectory.
The velocity vector field has become one of the basic concepts in dynamical sys-
tems theory. The cosmic theories of Newton and Einstein have been described by
dynamical models which are completely deterministic (Sect. 2.2).

But Poincaré discovered that those models may be non-computable in the long
run (the many-body-problem). Even in a fully deterministic world, the assumption
of a Laplacean demon which can calculate the universe in the long run was exposed
as an illusionary fiction. Chaos can arise not only in heaven, but also in the quan-
tum world (as quantum chaos) (Sect. 2.3). From a methodological point of view,
nonlinearity is a necessary but not sufficient condition of chaos. It also allows the
emergence of order. In the framework of modern physics, the emergence of the
structural variety in the universe from elementary particles to stars and living organ-
isms is modeled by phase transitions and symmetry breaking of equilibrium states
(Sect. 2.4). In the present state of superstring theories and M-theory, we do not have
a complete theory explaining the evolution of matter with its increasing complexity.
The presocratic wondering that “there is something and not nothing” is not dis-
solved. But the theory of complex systems opens new avenues of pattern formation
in the nano world with applications for self-constructing materials in materials sci-
ence (Sect. 2.5). From a methodological point of view, the question arises, how can
we detect attractors of pattern formation in an immense variety of measured data?
Time series analysis, fractals, and multifractals are challenges in the current theory
of complex systems. The chapter closes with a survey of the degrees of complexity
of different attractors in nonlinear dynamics (Sect. 2.6).
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2.1 Aristotle’s Cosmos and the Logos of Heraclitus

Since the presocratics it has been a fundamental problem of natural philosophy to
discover how order arises from complex, irregular, and chaotic states of matter [2.1].
What the presocratic philosophers did was to take the complexity of natural phe-
nomena as it is experienced back to “first origins” ( ’αρχή), “principles” or a certain
order. Let us look at some examples. Thales of Miletus (625–545 B.C.), who is
said to have proven the first geometric theorems, is also the first philosopher of na-
ture to believe that only material primary causes could be the original causes of all
things. Thales assumes water, or the wet, as the first cause. His argument points to
the observation that nourishment and the seeds of all beings are wet and the natural
substratum for wet things is water.

Anaximander (610–545 B.C.), who is characterized as Thales’ student and
companion, extends Thales’ philosophy of nature. Why should water be the first
cause of all this? It is only one of many forms of matter that exist in uninterrupted
tensions and opposites: heat versus cold and wetness versus dryness . . . Therefore
Anaximander assumes that the “origin and first cause of the existing things” is a
“boundlessly indeterminable” original matter (’́απειρoν) out of which the opposed
forms of matter have arisen. Accordingly we have to imagine the “boundlessly in-
determinable” as the primordial state in which matter was boundless, without op-
posites, and, therefore, everywhere of the same character. Consequently, it was an
initial state of complete homogeneity and symmetry. The condition of symmetry is
followed by symmetry breaking, from which the world arises with all its observable
opposites and tensions:

The everlasting generative matter split apart in the creation of our world and out of
it a sphere of flame grew around the air surrounding the earth like the bark around a tree;
then, when it tore apart and bunched up into definite circles, the sun, moon and stars took its
place. [2.2]

The ensuing states of matter that Anaximander described in his cosmogeny
were therefore by no means chaotic; instead they were determined by new partial
orders. The fascination with Anaximander increases when one reads his early ideas
of biological evolution. He assumes that the first human beings were born from sea
animals whose young are quickly able to sustain themselves, as he had observed in
the case of certain kinds of sharks. A century later searches were already being made
for fossils of sea animals as evidence of the rise of humans from the sea. The third
famous Milesian philosopher of nature is Anaximenes (†525 B.C.), who is thought
to have been a companion of Anaximander. He regards change as the effect of the
external forces of condensation and rarefaction. In his view, every form of matter
can serve as basic. He chooses air ( ’αέρα):

And rarefied, it became fire; condensed, wind; then cloud; further, by still stronger con-
densation, water; then earth; then stones; but everything else originated by these. He, too,
assumed eternal motion as the origin of transformation. – What contracts and condenses mat-
ter, he said is (the) cold; by contrast, what thins and slackens is (the) warm. [2.3]
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Thus Anaximenes assumes external forces by which the various states of matter
were produced out of a common original matter and were transformed into each
other.

Heraclitus of Ephesus (ca. 500 B.C.), “the dark one”, as he was often called,
is of towering significance for our theme. His language is indeed esoteric, more
phrophetic than soberly scientific, and full of penetrating metaphors. He took over
from Anaximander the doctrine of struggle and the tension of opposites in nature.
The original matter, the source of everything, is itself change and therefore is iden-
tified with fire:

The ray of lightning (i.e., fire) guides the All. – This world order which is the same for
all was created neither by one of the gods nor by one of the humans, but it was always, and is,
and will be eternally living fire, glimmering and extinguishing according to measures. [2.4]

Heraclitus elaborated further on how all states of matter can be understood as
distinguishable forms of the original matter, fire. In our time the physicist Werner
Heisenberg declared:

At this point we can interpose that in a certain way modern physics comes extraordinar-
ily close to the teaching of Heraclitus. If one substitutes the word “fire”, one can view Her-
aclitus’ pronouncements almost word for word as an expression of our modern conception.
Energy is indeed the material of which all the elementary particles, all atoms and therefore
all things in general are made, and at the same time energy is also that which is moved . . .
Energy can be transformed into movement, heat, light and tension. Energy can be regarded
as the cause of all changes in the world. [2.5]

To be sure, the material world consists of opposite conditions and tendencies
which, nevertheless, are held in unity by hidden harmony: “What is opposite strives
toward union, out of the diverse there arises the most beautiful harmony ( ‘αρμoν ία),
and the struggle makes everything come about in this way.” [2.6] The hidden har-
mony of opposites is thus Heraclitus’ cosmic law, which he called “logos” (λóγ oς ).

What happens when the struggle of opposites comes to an end? According
to Heraclitus, then the world comes to a final state of absolute equilibrium. Par-
menides of Elea (ca. 500 B.C.) described this state of matter, in which there are no
longer changes and motions in (empty) spaces. Matter is then distributed everywhere
equally (homogeneously) and without any preferred direction for possible motion
(isotropically). It is noteworthy that infinity is thought to be imperfection and there-
fore a finite distribution of matter is assumed. In this way Parmenides arrived at
the image of a world that represents a solid, finite, uniform material sphere without
time, motion or change. The Eleatic philosophy of unchanging being was, indeed,
intended as a critique of the Heraclitean philosophy of constant change, which is put
aside as mere illusion of the senses. And the later historical impact of the Eleatic
philosophy in Plato appears in his critique of the deceptive changes that take place in
sensory perception in contrast to the true world of unchangeable being of the Ideas.
But from the point of view of philosophy of nature, the world Parmenides described
was not necessarily opposite to the teaching of Heraclitus; in his cosmogeny it can
be understood entirely as a singular end state of the highest symmetry.
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After water, air, and fire were designated as original elements, it was easy to
conceive of them as raw materials of the world. Empedocles (492–430 B.C.) took
that step and added earth as the fourth element to fire, water, and air. These elements
are free to mix and bind in varying proportions, and to dissolve and separate. What,
now, according to Empedocles, were the enduring principles behind the constant
changes and movements of nature? First there were the four elements, which he
thought arose from nature and chance (τ ύχη), not from any conscious intention.
Changes were caused by reciprocal effects among these elements, that is, mixing
and separation: “I shall proclaim to you another thing: there is no birth with any
of the material things, neither there is an ending in ruinous death. There is only
one thing: mixture and exchange of what is mixed” [2.7]. Two basic energies were
responsible for these reciprocal effects among the elements; he called them “love”
(φιλία) for attraction and “hatred” (νει̃κoς ) for repulsion. There is an analogy in
the yin–yang dualism of Chinese philosophy. Empedocles taught a constant process
of transformation, i.e., combination and separation of the elements, in which the
elements were preserved. He did not imagine these transformation processes to be at
all mechanical (as the later atomists did), but rather physiological, in that he carried
over processes of metabolism in organisms to inanimate nature.

In his medical theories, equilibrium is understood to be a genuinely propor-
tional relationship. Thus, health means a particular balance between the opposite
components and illness arises as soon as one of them gets the upper hand. If we
think of modern bacteriology with its understanding of the antibodies in the human
body, then this view of Empedocles proves to be surprisingly apt.

Anaxagoras (499–426 B.C.) advocated what was in many regards a refinement
of his predecessors’ teaching. Like Empedocles he developed a mixing theory of
matter. But he replaced Empedocles’ four elements with an unlimited number of
substances that were composed of seed particles (σπέρματα) or equal-sized parti-
cles ( ‘oμoιoμερη̃ (σ ώματα)). They were unlimited in their number and smallness,
i.e., matter was assumed to be infinitely divisible. The idea of a granulated contin-
uum comes forceably to mind. Anaxagoras also tried to explain mixtures of colors in
this way, when he said that snow is, to a certain degree, black, although the white-
ness predominates. Everything was contained in each thing, and there were only
predominances in the mixing relationships.

More distinctly than some of his predecessors, Anaxagoras tried in his phi-
losophy of nature to give physical explanations for the celestial appearances and
motions that were described only kinematically in the mathematical astronomy of
the Greeks. So in his cosmology he proceeded from a singular initial state: a homo-
geneous mixture of matter. An immaterial original power, which Anaxagoras called
“spirit” (νoυ̃ς ), set this mixture into a whirling motion which brought about a sepa-
ration of the various things depending on the speed of each of them. Earth clumped
together in the middle of the vortex, while heavier pieces of stone were hurled out-
ward and formed the stars. Their light was explained by the glow of their masses,
which was attributed to their fast speed. Anaxagoras’ vortex theory appears again
in modern times with Descartes, and then in more refined form in the Kant–Laplace
theory of the mechanical origin of the planetary system.
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In modern natural sciences atomism has proved to be an extremely success-
ful research program. In the history of philosophy the atomic theory of Democri-
tus is often presented as a consequence of Heraclitus’ philosophy of change and
Parmenides’ principle of unchanching being. The Democritean distinction between
the “full” and the “empty”, the smallest indestructable atoms (’́ατoμoς ) and empty
space, corresponded to Parmenides’ distinction between “being” and “not-being”.
Heraclitean complexity and change was derived from distinguishable reconfigura-
tions of the atoms. Empty space was supposed to be homogeneous and isotropic.

Atoms differ in their form (μoρϕή), their position (ϑέσ ις ), and their diverse
configurations (τ άξ ις ) in material combinations. The configuration of the atoms
for the purpose of designation is compared with the sequence of letters in words,
which has led to the presumption that atomistic ideas were developed only in cul-
tures with phonetic alphabets. In fact, in China, where there was no phonetic alpha-
bet but instead ideographic characters, the particle idea was unknown and a field-
and-wave conception of the natural processes prevailed. The Democritean atoms
move according to necessity ( ’ανάγ κη) in a constant whirl (δι̃νoς or δίνη). Here,
by contrast with later Aristotelian notions, motion means only change of location
in empty space. All phenomena, all becoming and perishing, result from combina-
tion (σ ύγ κρισ ις ) and separation (διάκρισ ις ). Aggregate states of matter, such as
gaseous, liquid, or solid, are explained by the atoms’ differing densities and poten-
tialities for motion. In view of today’s crystallography, the Democritean idea that
even atoms in solid bodies carry out oscillations in place is noteworthy.

Plato, in his dialogue Timaeus, introduced the first mathematical model of atom-
ism. The changes, mixings, and separations on earth of which the pre-socratics had
spoken were to be traced to unchangeable mathematical regularities. In Empedocles’
four elements, namely fire, air, water and earth, a classification was at hand that was
immediately accessible to experience. Theatetus made a complete determination of
all the regular bodies that are possible in 3-dimensional (Euclidian) space: tetrahe-
dra, octahedra, icosahedra, cubes and dodecahedra. Therefore what Plato proposed
to do amounted to interpreting Empedocles’ four elements with these geometric
building blocks.

Plato consciously avoided the Democritean designation “atom” for his ele-
ments, since they can be decomposed into separate plan figures. Thus tetrahedra,
octahedra and icosahedra have faces consisting of equilateral triangles which, when
they are bisected, yield right-angled triangles with sidelenghts 1, 2 and

√
3, while the

square faces of cubes, when bisected, yield right-angled triangles with side lengths
1, 1 and

√
2. A consequence is that “fluids” like water, air and fire can combine with

each other whereas a solid made of earth building blocks, because of its different
triangles, can only be converted into another solid.

Then Plato developed a kind of elementary particle physics in which the specific
elements are transformed into each other and “reciprocal effects” can take place with
the “elementary particles” (i.e., the corresponding component triangles) according
to geometric laws. Transformation of the elements results, for example, from their
being cut open along the edges. Plato made this possibility dependent on the acute-
ness of the angles of the solid. The more acute plane angles can cleave polyhedra
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which have a regular angle. Thus, in sequence, every tetrahedron, every cube, every
octahedron, every icosahedron can, in each case, cleave the following polyhedron,
but not the previous one or polyhedra of the same sort. The conclusion for the phi-
losophy of nature is that fire can separate or dissolve all elements; earth, only air
and water; air, only water.

Plato stated categorically that the elements are not all of the same size. For
instance, in order to be able to explain that fire can cause water in solid form to
change into water in liquid form, he maintained that in the liquid state the elements
are smaller and more mobile, while in the solid state they are larger.

The escape from fire is called cooling and the state after eradicating fire, so-
lidification. Fire and air can pass through the gaps in earth building blocks (cubes)
without hindrance, without dissolution of the earth elements. Condensed air cannot
be dissolved without destroying the element. Condensed air, namely, means an ac-
cumulation of octahedra under the best surface configurations possible. Even fire
would not be able to penetrate into the necessarily remaining gaps, whose plane an-
gles are smaller than those of all elements, without destroying the octahedra. In the
case of water, only fire is capable of breaking the strongest condensation. The gaps
between adjacent icosahedra form plane angles which do not admit penetration by
either earth or air. Only fire (tetrahedra) can penetrate and dissolve the combination.

Indeed, Plato developed an internally consistent mathematical model by which
various aggregate states and reciprocal effects of substances could be explained if
one accepted his – albeit more or less arbitrary – initial conditions for interpretation
of the elements. Naturally, a number of the consequences for the philosophy of na-
ture are strange and ridiculous. And yet we have here the first attempt in the history
of sciences to explain matter and its states by simple geometric laws. A high point
up to now in this developement is modern elementary particle physics. Heisenberg
made this observation about it: “. . . The elementary particles have the form Plato
ascribed to them because it is the mathematically most beautiful and simplest form.
Therefore the ultimate root of phenomena is not matter, but instead mathematical
law, symmetry, mathematical form” [2.8]. In Antiquity and the Middle Ages Plato’s
mathematical atomism gained little support. The basic problem, for his successors,
in his geometric theory of matter was already evident in the dialogue Timaeus. How
are the functions of living organisms to be explained? The suggestion that certain
corporeal forms are as they are in order to fulfill certain physiological purposes (e.g.,
the funnel shape of the gullet for assimilation of food) cannot, in any case, be derived
from the theory of regular solids. In addition, the idea of explaining the changing
and pulsating processes of life on the basis of the “rigid” and “dead” figures of ge-
ometry must have seemed thoroughly unnatural, speculative, and farfetched to the
contemporaries of that time. Contemporaries of our time still have difficulties un-
derstanding the detour that today’s scientific explanations take through complicated
and abstract mathematical theories. This is where the Aristotelian philosophy of
nature begins.

Aristotle formulated his concept of a balance or “equilibrium” in nature chiefly
on the basis of the ways in which living organisms such as plants and animals func-
tion. The process and courses of life are known to us from everyday experience.
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What is more obvious than to compare and explain the rest of the world, which is
unknown and strange, with the familiar? According to Aristotle, the task of science
is to explain the principles and functions of nature’s complexity and changes. This
was a criticism of those philosophers of nature who identified their principles with
individual substances. The individual plant or the individual animal was not simply
the sum of its material building blocks. Aristotle called the general, which made the
individual being what it was, form (ε ’̃ιδoς ). What was shaped by form was called
matter (‘́υλη). Yet form and matter did not exist in themselves, but were instead prin-
ciples of nature derived by abstraction. Therefore Matter was also characterized as
the potential (δύναμις ) for being formed. Not until matter is formed does reality
( ’ενέργ εια) come into being.

The real living creatures that we observe undergo constant change. Here Her-
aclitus was right and Parmenides, for whom changes were illusory, was wrong.
Changes are real. Yet according to Aristotle, Heraclitus was wrong in identifying
changes with a particular substance (fire). Aristotle explained those changes by
a third principle along with matter and form, namely, the lack of form (στ έρησ ις ),
which was to be nullified by an adequate change. The young plant and the child
are small, weak and immature. They grow because in accordance with their natural
tendencies (form), they were meant to become big, strong, and mature. Therefore
it was determined that movement (κίνησ ις ) in general was change, transition from
possibility to reality, “actualization of potential” (as people in the Middle Ages were
to say). The task of physics was to investigate movement in nature in this compre-
hensive sense. Nature (ϕύσ ις ) – in contrast to a work of art produced by man,
or a technical tool – was understood to be everything that carried the principle of
movement within itself. If the Aristotelian designations make us think, first of all,
of the life processes of plants, animals, and people as they present themselves to
us in everyday experience, these designations seem to us to be thoroughly plausible
and apposite. Nature is not a stone quarry from which one can break loose indi-
vidual pieces at will. Nature itself was imagined to be a rational organism whose
movements were both necessary and purposeful. Aristotle distinguished two sorts of
movement, namely quantitative change by increase or decrease in magnitude, qual-
itative change by alteration of characteristics, and spatial change by change of lo-
cation. Aristotle designated four aspects of causality as the causes of changes. Why
does a plant grow? It grows (1) because its material components make growth pos-
sible (causa materialis), (2) because its physiological functions determine growth
(causa formalis), (3) because external circumstances (nutrients in the earth, water,
sunlight, etc.) impel growth (causa efficiens), (4) because, in accordance with its
final purpose, it is meant to ripen out into the perfect form (causa finalis).

Aristotle then employed these same principles, which are obviously derived
from the life cycles of plants, animals, and humans, to explain matter in the narrower
sense, that is, what was later called the inorganic part of nature. Here too Aristotle
proceeded from immediate experience. What we meet with is not so and so many
elements as isolated building blocks of nature. Instead we experience characteris-
tics such as warmth and cold, wetness and dryness. Combination of these yield the
following pairs of characteristics which determine the elements: warm–dry (fire),
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warm–wet (air), cold–wet (water), cold–dry (earth). Warm–cold and wet–dry are
excluded as simultaneous conditions. Therefore there are only four elements. This
derivation was later criticized as arbitrary, but it shows the Aristotelian method,
namely to proceed not from abstract mathematical models, but instead directly from
experience. Fire, air, water, and earth are contained more or less, more intensively or
less intensively, in real bodies and they are involved in constant transformation. Ac-
cording to Aristotle, eliminating the coldness of water by means of warmth results
in air, and eliminating the wetness of the air results in fire. The changes of nature
are interpreted as maturational and transformational processes.

How could such a predominantly organic philosophy of nature deliver physical
explanations for mathematical natural science, insofar as it was extant at that time?
There were only two elementary spatial motions – those that proceeded in a straight
line and those that proceeded in a circle. Therefore there had to be certain elements
to which these elementary motions come naturally. The motions of the other bodies
were determined by these elements and their natural motions, depending on which
motion predominated with each of them. The most perfect motion was circular mo-
tion. It alone could go on without end, which was why it had to be assigned to
the imperishable element. This was the fifth element (quintessence), which made
up the unchangeable celestial spheres and the stars. The continual changes within
the earthly (sublunar) world were to be set off from the unchangeable regularity of
the celestial (superlunar) world. These transformational processes were associated
with the four elements to which straight-line motion is peculiar, and specifically
the straight-line motion toward the center of the world, toward which the heavy
elements earth and water strive as their natural locus, and the straight-line motion
toward the periphery of the lunar sphere, toward which the light elements strive
upwards as their natural locus.

Among the natural motions there was also free fall. But Aristotle did not
start out from isolated motions in idealized experimental situations as Galilei did.
A falling body is observed in its complex environment without abstraction of fric-
tional (“dissipating”) forces. During its free fall a body is sinking in the medium of
air like a stone in water. Thus, Aristotle imagines free fall as a hydrodynamical pro-
cess and not as an acceleration in vacuum. He assumes a constant speed of falling v,
which was directly proportional to the weight p of the body and inversely to the
density d of the medium (e.g., air), thus in modern notation v ∼ p/d. This equation
of proportionality at the same time provided Aristotle with an argument against the
void of atomists. In a vacuum with the density d = 0, all bodies would have to fall
infinitely fast, which obviously did not happen.

A typical example for a (humanly) forced motion is throwing, which, again,
is regarded in its complex environment of “dissipative” forces. According to Ari-
stotle a nonliving body can move only as a result of a constant external cause of
motion. Think of a cart on a bumpy road in Greece, which comes to a stop when
the donkey (or the slave) stops pulling or pushing. But why does a stone keep mov-
ing when the hand throwing it lets go? According to Aristotle, there could be no
action at a distance in empty space. Therefore, said Aristotle, the thrower imparts
a movement to the continuous medium of the stone’s surroundings, and this pro-
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pels the stone farther. For the velocity v of a pulling or pushing motion, Aristotle
asserted the proportionality v ∼ K/p with the applied force K. Of course, these are
not mathematical equations relating measured quantities, but instead proportionali-
ties of qualitative determinants, which first emerged in this algebraic notation in the
peripatetic physics of the Middle Ages. Thus in Aristotelian dynamics, in contrast
to Galilean–Newtonian dynamics, every (straight-line) change of position required
a cause of motion (force). The medieval theory of impetus altered Aristotelian dy-
namics by attributing the cause of motion to an “impetus” within the thrown body,
rather than to transmission by an external medium.

How did peripatetic dynamics explain the cosmic laws of heaven? The central
symmetry of the cosmological model was based on the (unforced) circular motion
of the spheres, which was considered natural for the “celestial” element, and on the
theory of the natural locus in the centerpoint of the cosmos. Ptolemy was still to
account for the position of the earth on the basis of the isotropy of the model and
by a kind of syllogism of sufficient reason. Given complete equivalence of all direc-
tions, there was no reason why the earth should move in one direction or another.

It was Aristotle’s teacher Plato who presented a centrally-symmetrical model
with the earth in the center; around it the whole sky turns to the right around the
celestial axis, which goes through the earth. Sun, Moon, and planets turn to the left
on spheres that have different distances from the earth in the sequence Moon, Mer-
cury, Venus, Sun, Mars, Jupiter, and Saturn. The outermost shell carries the sphere
of the fixed stars. According to the Platonic–Pythagorean conception, the rotational
periods are related to each other by whole numbers. There is a common multiple of
all rotational times, at the end of which all the planets are exactly in the same place
again. The motion of each one produces a sound, so that the tunes of the movements
of the spheres jointly form a harmony of the spheres in the sense of a well-ordered
musical scale. Geometry, arithmetic, and aesthetic symmetries of the cosmos ring
through the universe in a harmonious music of the spheres. Soon this emphatically
symmetrical model of the cosmos was called into question by exact observations.
A difficult problem was presented by the irregular planetary orbits, especially their
retrograde movements. The irregularities in the sky were disquieting, especially for
philosophers in the Pythagorean tradition, who were accustomed to comprehend-
ing the heaven – in contrast to the earth – as the realm of eternal symmetry and
harmony.

Plato posed a famous question in order to reduce the complexity of motions in
the heaven: by means of what regular, ordered circular movements could the phe-
nomena of the planets be “saved”, i.e., kinematically explained? An exact model of
the observed curves was achieved when Apollonius of Perga (ca. 210 B.C.) recom-
mended that the common center of the spheres be given up. But the spherical form
of planetary movement and the equal speed of the spheres were to be retained. Ac-
cording to this proposal, the planets rotate uniformly on spheres (epicycles), whose
imagined centers move uniformly on great circles (deferents) around the centerpoint
(the earth). By appropriately proportioning the speed and diameter of the two cir-
cular motions and by varying their directions of motion, it was possible to produce
an unanticipated potential for curves, and these found partial application in astron-
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omy from Kepler to Ptolemy also. The spherical symmetry of the individual models
was therefore preserved, even if they no longer had a common center, but various
different centers.

The following examples of the epicycle-deferent technique show what a mul-
tiplicity of apparent forms of motion can be created by appropriately combining
uniform circular motions [2.9]. This makes the Platonic philosophy more compre-
hensible in its view that behind the changes in phenomena there are the eternal and
unchangeable forms. In Fig. 2.1 an elliptical orbit is produced by combining a def-
erent motion and an epicycle motion. Figure 2.2 shows a closed cycloid. In this way,
changing distances between planets and the earth can also be represented. In princi-
ple, even angular figures can be produced. When the epicycle diameter approaches
the deferent diameter, an exact straight line results. Even regular triangles and rect-
angles can be produced by means of appropriate combinations of an epicycle motion
and a deferent motion, if one changes the speed of the east-west motion of a planet
that is moving on an epicycle with a west-east motion.

Fig. 2.1. Deferent-epicycle model of an el-
lipse

Fig. 2.2. Deferent-epicycle model of a cy-
cloid

If one lets the celestial body circle on a second epicycle whose midpoint moves
on the first epicycle, one can produce a multiplicity of elliptical orbits, reflection-
symmetric curves, periodic curves, and also non-periodic and asymmetric curves.
From a purely mathematical and kinetic standpoint, Plato’s problem of “saving
the phenomena” is completely solved. In principle, therefore, Plato’s reduction of
complexity in the sense of uniform circular motion (modified by Apollonius and
Ptolemy) could influence the sciences right up until today. In any case, it cannot
be disproved by phenomenological description of curved paths. In particular, from
this standpoint not only the reversed roles of the earth and the sun in the so-called
Copernican revolution, but also Kepler’s change from circular to elliptical orbits,
seem secondary, since both initiatives can be traced back to a combination of cir-
cular motions in accordance with the epicyle-deferent technique. This poses two
questions: (1) How is the assertion mathematically substantiated? (2) If it is sub-
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stantiated, why does it not play a role in modern scientific applications of curve
theory? In order to answer the first question exactly and generally, it is necessary
to go back to the modern structure of analytical geometry. But historically, Coper-
nicus and Kepler also knew how the curves that they used (e.g., ellipses) could be
reconstructed by the epicycle-deferent technique.

First of all, one must remember that points on the plane can be represented by complex
numbers z = x + iy = reiθ with the corresponding Cartesian coordinates (x, y) or polar co-
ordinates (r, θ). The addition of complex numbers then corresponds to vector addition [2.10].
A uniform circular motion with center c, radius � and period T can be represented by

z = c + �ei((2π t/T)+α) = c + �e(2π it/T)+iα (2.1)

with time t and initial phase α for the point. Now assume a point A that is moving according
to the equation z = f (t). Let a point B move relative to A on a circle with radius �, period T ,
and initial phase α. The motion of B is then described by the equation

z = f (t)+ �e(2π it/T)+iα (2.2)

Then it is possible to describe the movement of a point B on an epicycle whose center moves
around A. The addition of a new epicycle is described mathematically by the addition of a new
term �e(2π it/T)+iα to the expression for z. Clearly, �e(2π it/T)+iα = �eiα e(2π it/T) = aeikt

with a complex number a �= 0 and k as a real number. In the case of a retrograde motion, T
or k, respectively, is taken to be negative. A motion that results from the superposition of n
epicycles is then expressed by the equation

z = a1eik1t + a2eik2t + . . . + aneiknt (2.3)

Let us proceed first from a periodic motion on the plane z = f (t) (e.g., with period 2π).
Mathematically, we assume f continuous with limited variation. Then for f there exists a rep-
resentation with a uniformly converging series

f (t) =
∞∑

n=−∞
cneint (2.4)

Therefore it can easily be proved mathematically that f (t) can be approximated by means of
sums

SN (t) =
N∑

n=−N

cneint (2.5)

with any desired degree of exactitude for increasing N.
Function f is indeed uniformly convergent. Therefore for arbitrarily small ε > 0 one can
choose an index N0 so that for all N ≥ N0 and all t, it holds true that

|f (t)− SN(t)| < ε (2.6)

Astronomically, this result means that a constant-motion path (of limited variation) can
be approximated to any desired degree of exactitude by means of finite superpositions of the
epicycle motions.

Is it clear that so far we have used only superpositions with epicycle periods ±2π , ±π ,
± 2

3π , ± 1
2π , ± 2

5π , . . . . In particular, therefore, only commensurable superpositions were em-
ployed, which can be expressed by means of integer number ratios in accordance with
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the Pythagorean tradition. But in fact non-periodic curves can also be approximated by
means of epicyclical superpositions if we permit incommensurable periods. This result is
mathematically supported by a proposition by Harald Bohr about almost-periodic functions
(1932) [2.11]. The second question, why the epicycle-deferent technique for the explanation
of the paths of motion was abandoned, cannot be answered by pointing to the observation
of missing curves. Mathematically, observed curves – however exotic – could still be ex-
plained in principle (under the above, very broad mathematical frame conditions) by means
of the Platonic–Apollonian use of this ancient strategy for reducing the complexity of mo-
tions.

The decisive question in this case, however, is which motions the planets “re-
ally” carry out, whether they are, in fact, combined, uniform, and unforced circular
motions that seem to us on earth to be elliptical paths, or whether they are in fact
compelled to follow elliptical paths by forces. This determination cannot be made
geometrically and kinematically, but only dynamically, i.e., by means of a corre-
sponding theory of forces, hence by means of physics.

Besides the epicycle-deferent-technique, Ptolemy employed imaginary balance
points relative to which uniform circular motions were assumed that, relative to the
earth as center, appear non-uniform. This technique proved to be useful for cal-
culation, but constituted a violation of the central symmetry and therefore had the
effect of an ad hoc assumption that was not very convincing from the standpoint of
philosophy of nature, a criticism later made especially by Copernicus. The reasons
that Copernicus exchanged the earth for the position of the sun were predominantly
kinematic. Namely, a certain kinematic simplification of the description could be
achieved in that way with a greater symmetry. Thus in the heliocentric model the
retrograde planetary motions could be interpreted as effects of the annual motion of
the earth, which according to Copernicus moved more slowly than the outer planets
Mars, Jupiter and Saturn and faster than the inner planets Mercury and Venus. But
Copernicus remained thoroughly conservative as a philosopher of nature since he
considered greater simplicity in the sense of “natural” circular motion to be a sign
of proximity to reality.

With Johannes Kepler, the first great mathematician of modern astronomy, the
belief in simplicity was likewise unbroken. In his Mysterium cosmographicum of
1596, Kepler began by trying once more to base distance in the planetary system on
the regular solids, alternatingly inscribed and circumscribed by spheres. The planets
Saturn, Jupiter, Mars, Earth, Venus, and Mercury correspond to six spheres fitted
inside each other and separated in this sequence by a cube, a tetrahedron, a do-
decahedron, an icosahedra, and an octahedron. Kepler’s speculations could not, of
course, be extended to accommodate the discovery of Uranus, Neptune, and Pluto
in later centuries.

Yet Kepler was already too much of a natural scientist to lose himself for long in
Platonic speculations. His Astronomia Nova of 1609 is a unique document for study-
ing the step-by-step dissolution of the old Platonic concept of simplicity under the
constant pressure of the results of precise measurement. In contrast to Copernicus,
Kepler supplemented his kinematic investigations with original dynamic arguments.
Here the sun is no longer regarded as being physically functionless at a kinemati-
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cally eccentric point, as with Copernicus, but is seen as the dynamic cause for the
motion of planets. The new task was to determine these forces mathematically as
well. Kepler’s dynamic interpretation with magnetic fields was only a (false) initial
venture. Success came later, in the Newtonian theory of gravity.

The simplicity of the celestial (“superlunar”) world and the complexity of the
earthly (“sublunar”) are also popular themes in other cultures. Let us cast a glance
at the Taoist philosophy of nature of ancient China. To be sure, it is edged with myth
and less logically argued than the Greek philosophy of nature, and it also invokes
more intuition and empathy; nevertheless, there are parallels between the two. Tao-
ism describes nature as a great organism governed by cyclical motions and rhythms,
such as the life cycles of the generations, dynasties, and individuals from birth to
death; the food chains consisting of plant, animal, and human; the alternation of the
seasons; day and night; the rising and setting of the stars; etc. Everything is related
to everything else. Rhythms follow upon each other like waves in the water. What
forces are the ultimate cause of this pattern in nature? As with Empedocles, in Tao-
ism two opposite forces are distinguished, namely yin and yang, whose rhythmic
increase and decrease govern the world. In the book Kuei Ku Tzu (4th century B.C.)
it says: “Yang returns cyclically to its origin. Yin reaches its maximum and makes
way for yang.” [2.12] While according to Aristotle all individuals carry their natural
purposes and movements in themselves, the Tao of yin and yang determines the in-
ternal rhythms of individuals, and those energies always return to their origins. The
cyclical rotational model of the Tao provides explanations for making calendars in
astronomy, for water cycles in meteorology, for the food chain, and for the circula-
tory system in physiology. It draws its great persuasiveness from the rhythms of life
in nature, which people experience every day and can apply in orienting themselves
to life. Nature appears as a goal-directed organism.

It is noteworthy that the Chinese philosophy of nature had no notions of atom-
istic particles and therefore did not develop mathematical mechanics in the sense
of the occidental Renaissance. Instead, at its center there was a harmonious model
of nature with rhythmic waves and fields that cause everything to be connected to
everything. The preference for questions of acoustics and the early preoccupation
with magnetic and electrostatic effects is understandable given this philosophy of
nature. The view of the Taoists bear more resemblance to the philosophy of nature
of the Stoics than to Aristotle. Here too the discussion centers on effects that spread
out in a great continuum like waves on water. This continuum is the Stoics’ pneuma,
whose tensions and vibrations are said to determine the various states of nature. The
multifarious forms of nature are only transitory patterns that are formed by varied
tensions of the pneuma. Modern thinking leaps, of course, to the patterns of standing
water waves or sound waves or the patterns of magnetic fields. Nevertheless, neither
the Stoic nor the Taoist heuristic background led to the development of a physi-
cal theory of acoustic or magnetic fields comparable to Galilean mechanics with
its background of an atomistic philosophy of nature. The emergence of order from
complex, irregular, and chaotic states of matter was only qualitatively described,
using different models for earth and for heaven.
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2.2 Newton’s and Einstein’s Universe and the Demon of Laplace

Since antiquity, astronomers and philosophers have believed that the celestial mo-
tions are governed by simple geometric laws. Simplicity was not only understood as
the demand for an economical methodology, but, still for Copernicus, as a feature of
truth. Thus, the astronomical doctrine from Plato to Copernicus proclaimed: reduce
the apparent complexity of the celestial system to the simple scheme of some true
motions! The simple building blocks were given by the basic concepts of Euclidean
geometry: circle (compass) and straight line (ruler). In contrast to the simplicity of
the superlunar world, the sublunar earthly world seemed to be really complex. Thus
its dynamics could not be mathematized at least in the framework of Euclidean ge-
ometry. That was the reason why Plato’s mathematical atomism was soon forgotten,
and Aristotle’s belief in a complex qualitative dynamics of nature which cannot be
mathematized in principle overshadowed scientific research until the Renaissance.

Early physicists like Galileo overcame the boundary of a superlunar (“simple”)
and sublunar (“complex”) world. They were convinced that the dynamics of nature
is governed by the same simple mathematical laws in heaven and on earth. Techni-
cally, Galileo simplified the dynamics of, e.g., free fall by selecting some observable
and measurable quantities and neglecting other constraints. In short, he made a sim-
plified mathematical model of an idealized experimental situation. Of course, even
the astronomical models of antiquity only considered a few parameters, such as an-
gular velocity and position of the planets, and neglected the complex diversity of
other constraints (e.g., density, mass, friction of the celestial spheres). From a mod-
ern point of view, even the presocratic philosophers suggested qualitative “models”
of a complex dynamics in nature by selecting some dominant “parameters” (e.g.,
water, fire, air, and earth).

In general, a system which may be physical, biological, or social, is observed
in different states. The strategies for making models of observed phenomena may
have changed since ancient times, but the target of the modeling activity is in some
sense the same: the dynamics of the changing states in the observed systems. Ob-
viously, the real states cannot be described by only a few observable parameters,
but it is assumed that they can. In the case of early astronomy and mechanics, this
was the first step of mathematical idealization and led to a geometric model for the
set of idealized states which is nowadays called the state space of the model. The
presocratic “models” of nature differ from modern ones not only because of their
mathematization and measurability, but also because the relationship between the
actual states of a real system and the points of the geometric model was believed
to be ontologically necessary, while in modern systems it is a fiction maintained for
the sake of theory, prediction, and so on.

The simplest scheme is the one-parameter model. Early medical experience
with mammals shows that the state of health or illness can be correlated with the pa-
rameter of temperature. Many animals correlate observable features with the emo-
tional states of other animals: the ear attitude of a dog corresponds to its state of fear,
while its fang exposure is a qualitative “parameter” for its degree of rage. A com-
bination of both attitudes represents a more adequate characterization of the dog’s
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emotional state. The state of a planet in medieval cosmology can be defined by its
angular velocity and localization. States of other systems may need more than two
features (e.g., temperature, blood pressure, and pulse rate for the healthy state of
a mammal).

In any case, if these parameters are numerical, then the corresponding state
spaces can be represented by geometric spaces. Thus the values of two numerical
parameters may be represented by a single point in a two-dimensional state space
visualized by the plane of Euclidean geometry. Changes in the actual state of the
system are observed and may be represented as a curve in the state space. If each
point of this curve carries a label recording the time of observation, then we get
a trajectory of the model. Sometimes it is useful to introduce another coordinate of
time and to represent the changing parameters of states by its time series. This kind
of representation is called the graph of a trajectory.

The dynamical concepts of the Middle Ages included both kinds of represen-
tation. In the 1350s, the Parisian scholastic Nicole Oresme introduced the concept
of graphical representations or geometrical configurations of intensities of qualities.
Oresme mainly discussed the case of a linear quality whose extension is measured
by an interval or line segment of space or time (“longitude of the quality”). He
proposed to measure the intensity of the quality at each point of the interval by
a perpendicular ordinate (“latitude of the quality”) at that point. The quantity of
a linear quality is visualized by the configuration of both parameters. In the case
of a uniformly accelerated motion during a time interval corresponding to the lon-
gitude AB in Fig. 2.3, the latitude at each point P of AB is an ordinate PQ whose
length is the velocity at the corresponding instant [2.13]. The straight line DC of
the configuration is the graph of a trajectory representing the state of velocity. The
so-called Merton Rule is immediately derived with a geometrical verification of
Fig. 2.3: namely, it follows from the formula for the area of the trapezoid in Fig. 2.3
that the total distance traveled is s = 1

2 (v0 + vf )t.
Perhaps this interpretation was found on the basis of regarding this area as made

up of very many vertical segments (“indivisibles”), each representing a velocity con-

Fig. 2.3. Oresme’s coordinates of a linear quality
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tinued for a very short (“infinitesimal”) time. The Merton Rule shows that even in
the very early beginning of state space approaches a good geometric representation
is not only a useful visualization, but gives new insight into the concepts of dynam-
ics. Of course, Oresme and the Merton scholars at first only wanted to mathematize
an Aristotelean-like physics of qualities. But their work was widely disseminated in
Europe and led to the work of Galileo. In his famous Discorsi (1638), he introduced
the basic concepts of modern mechanics and proceeded to the well-known distance
formula s = 1

2 gt2 for uniformly accelerated motion from rest (free fall) with a proof
and an accompanying geometric diagram that are similar to Oresme’s ideas.

With Newton and Leibniz, something new was added to the theory of dynam-
ical systems. The calculus allows one to compute the instantaneous velocity as the
derivative of a velocity function and to visualize it as the tangent vector of the cor-
responding curve (Fig. 2.4a). The velocity vector field has become one of the basic
concepts in dynamical systems theory (Fig. 2.4b). Trajectories determine velocity

Fig. 2.4a–c. Geometric representation of a dynamical system: (a) Instantaneous velocity as
tangent vector, (b) velocity vector field, (c) phase portrait
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vectors by the differentiation procedure of the calculus. Conversely, the integration
procedure of the calculus allows one to determine trajectories from velocity vectors.

The strategy of modeling a dynamical system begins with the choice of a state
space in which observations can be represented by several parameters. Continuing
the observations leads to many trajectories within the state space. In the sense of
Newton’s and Leibniz’ calculus, a velocity vector may be derived at any point of
these curves, in order to describe their inherent dynamical tendency at any point.
A velocity vector field is defined by prescribing a velocity vector at each point in
the state space. The state space filled with trajectories is called the “phase portrait”
of the dynamical system (Fig. 2.4c). This basic concept of dynamical system theory
was originally introduced by Henri Poincaré. The velocity vector field was derived
from the phase portrait by differentiation [2.14].

Of course, the velocity vector field visualizes the dynamics of the particular
system being modeled. Actually, extensive observations over a long period of time
are necessary to reveal the dynamical tendencies of the system which is represented
by the corresponding velocity vector field. The modeling procedure is only adequate
if we assume that (a) the velocity vector of an observed trajectory is at each point
exactly the same as the vector specified by the dynamical system and (b) the vector
field of the model is smooth. The word “smooth” means intuitively that there are no
jumps and no sharp corners. In the case of a one-dimensional state space, the vector
field is specified by a graph in the plane. Thus, the graph is smooth if it is continuous
and its derivative is continuous as well. Historically, condition (b) corresponds to
Leibniz’ famous principle of continuity playing a dominating role in the framework
of classical physics.

In general, we summarize the modeling process as follows. A dynamical model
is prepared for some experimental situation. We may imagine the laboratory de-
vices of physicists like Galileo and Newton or biologists observing some organisms
or even sociologists working on some social groups. The dynamical model consists
of the state space and a vector field. The state space is a geometrical space (e.g.,
the Euclidean plane or in general a topological manifold) of the experimental sit-
uation. The vector field represents the habitual tendencies of the changing states
and is called the dynamics of the model. How can we find the trajectories, thus the
behaviour of the system? Technically, this problem is solved by creating the phase
portrait of the system. That means we have to construct the trajectories of the dy-
namical system. Given a state space and a (“smooth”) vector field, a curve in the
state space is a trajectory of the dynamical system if its velocity vector agrees with
the vector field in the sense of tangent vectors (Fig. 2.5). The point corresponding to
time zero is called the initial state of the trajectory. These trajectories are supposed
to describe the behaviour of systems as observed over an interval of time. Moreover,
physicists have been ambitious enough to aim at making predictions indefinitily far
into the future and to calculate the course of nature as if it were a huge clock.

Let us have a short glance at Newton’s cosmos, which seemed to be a successful
application of dynamical system theory evolving by the mathematical tools of New-
ton, Leibniz, Euler, etc. Newton gave three laws governing the behavior of material
bodies. The first law (“lex inertiae”) says that a body continues to move uniformly



34 2 Complex Systems and the Evolution of Matter

Fig. 2.5. Trajectory of a dynamical system in a vector field

in a straight line if no force acts on it. If a force does act on it, then its mass times its
acceleration is equal to that force (second law). The basic framework is completed
by a third law: to every action there is always opposed an equal reaction. The New-
tonian cosmos consists of particles moving around in a space which obeys the laws
of Euclidean geometry. The accelerations of these particles are determined by the
forces acting upon them. The force on each particle is obtained by adding together
all the forces of other particles in the sense of the vector addition law. If the force
is a gravitational one, then it acts attractively between two bodies and its strength is
proportional to the product of the two masses and the inverse square of the distance
between them. But, of course, there may be other types of forces.

Actually, Newton’s second law was understood as a universal scheme for all
forces of nature in the macrocosmos and microcosmos. With a specific law of force
the Newtonian scheme translates into a precise system of dynamical equations. If
the positions, velocities, and masses of the various particles are known at one time,
then their positions and velocities are mathematically determined for all later times.
In short, the state of a body in Newton’s cosmos is specified by the two parameters of
position and velocity. The Newtonian trajectories are determined by the dynamical
equations of motion. If the initial states were known, then the behavior of Newton’s
cosmos seemed to be determined completely. This form of determinism had a great
influence on the philosophy of the 18th and 19th centuries. Newton’s dynamics was
understood as basic science for modeling nature. But, of course, the mechanistic
models are valid only in the limiting case of vanishing friction and are never fully
achieved experimentally. Nature is so complex that physicists preferred to observe
unnatural (“artificial”) limiting cases. Later on we shall see that the physicists’ belief
in simple laws completely neglected the complexity of initial conditions and con-
straints and, thus, created an illusory model of a deterministic as well as computable
nature.



2.2 Newton’s and Einstein’s Universe and the Demon of Laplace 35

According to Newton, there is only one real world of matter in one absolute
framework of space-time, in which we may choose relative reference systems. This
means that for any two events it is regarded as objectively decidable whether they are
simultaneous and also whether they occur at the same place. Mathematically, New-
ton’s absolute space is represented by a 3-dimensional Euclidean space the metric
of which is measurable by means of rulers, while time is taken to be a 1-dimensional
Euclidean space with coordinate t which is measured by standard clocks.

Because of its absolute simultaneity the Newtonian 4-dimensional space-time
is stratified by maximal subsets of simultaneous events. Each stratum is a possible 3-
dimensional hyperplane t = t(e) of an event e which separates its causal future, with
strata t > t(e), from its causal past, with strata t < t(e). In Fig. 2.6a the third spatial
coordinate is neglected, in order to visualize each stratum as 2-dimensional plane.
This causal structure includes the Newtonian assumption that there are arbitrarily
fast signals by means of instantaneous action at a distance [2.15].

Newton’s relative spaces are made precise by Lange as inertial systems desig-
nating reference systems for a force-free body moving in a straight line with a steady
velocity. It is not stipulated which of the many possible inertial systems is used.
Particular transformations (Galilean transformations) from one inertial system to
another give the corresponding coordinates. Mechanical laws are preserved (invari-
ant) with respect to these transformations. As every Galilean transformation has ten
continuous parameters (one parameter for time and three times three parameters for
rotation, steady velocity and translation), we can derive ten laws of conservation.
Thus, e.g., the Galilean invariance of the time coordinate implicates the law of con-
servation of energy. Reference systems which are not inertial systems have typical
effects. A disk rotating relative to the fixed stars has radial forces which cannot be
eliminated by Galilean transformations. In short, in Newtonian space-time, uniform
motions are considered as absolutely preferred over accelerated motions. Its struc-
ture is defined by the group of Galilean transformations.

Fig. 2.6a. Newtonian space-time model with spatial strata of simultaneous events and trajec-
tories of uniform inertial movements (straight lines) and accelerations (curve)
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At the beginning of this century, Einstein proved that Newton’s model of space-
time is restricted to mechanical motions with slow speed relative to the speed c of
light. The constancy of c independently of any moving reference system is a fact of
Maxwell’s electrodynamics. Thus, Newton’s addition law of velocities and Galilean
invariance cannot hold true in electrodynamics. In his theory of special relativity
(1905), Einstein assumed the constancy of the speed of light and the invariance
of physical laws with respect to all inertial systems (“principle of special rela-
tivity”) and derived a common framework of space-time for electrodynamics and
mechanics. Einstein’s special relativistic space-time was modeled by Minkowski’s
four-dimensional geometry. The four-dimensionality should not surprise us, because
Newton’s space-time has three (Cartesian) space and one time coordinate, too.

For the sake of simplicity, the units are chosen in a way that the speed of light
is equal to one, and, thus, the units of length and time can be exchanged. Each point
in this space-time represents an event, which means a point in space at a single mo-
ment. As a particle persists in time, it is not represented by a point, but by a line
which is called the world-line of the particle. In order to visualize the Minkowskian
model, we depict a space-time system with a standard time coordinate, measured in
the vertical direction, and two space coordinates, measured in the horizontal direc-
tion (Fig. 2.6b) [2.16].

Uniformly moving particles are represented by straight lines, accelerated parti-
cles by curved lines. As particles of light (photons) uniformly travel with the funda-
mental speed c, their world-lines are straight lines at an angle of 45o to the vertical.
They form a light cone centred at the common origin 0. The system of light cones

Fig. 2.6b,c. Minkowskian space-time cone in special relativity (b), and the twin brother para-
dox of special relativity: the Minkowskian distance RQ is greater than the length of RS and
SQ together (c)
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at all space-time points is regarded as the Minkowskian model of relativistic space-
time.

Whereas the world-line of a photon is always along the light cone at each point,
the world-line of any accelerated or uniformly moved material particle with a speed
slower than c must always be inside the light cone at each point. As material particles
or photons cannot travel faster than light, only the world-lines along and inside the
light cone are determined physically. An event is called later than 0, if it is in the
future cone above 0; it is called earlier than 0, if it is in the past cone below 0. Thus,
the light cones determine the causal structure of relativistic space-time.

An essential difference between the Minkowskian model and ordinary Euclid-
ian representations is the fact that the length of world-lines is interpreted as the time
measured by physical clocks. Thus, time measurement becomes path-dependent,
contrary to Newton’s assumption of an absolute time. The so-called “twin para-
dox” visualizes this effect dramatically. In Fig. 2.6c, one twin brother remains on
the earth R moving uniformly and very slowly, while the other makes a journey to
a nearby star S at great speed, nearly that of light. Minkowskian geometry forecasts
that the travelling brother is still young upon his return at Q, while the stay-at-home
brother is an old man. This is not science fiction, of course, but a consequence of the
time-measuring length of Minkowskian world-lines: the Minkowskian distance RQ
is greater than the length of the distance RS and SQ together, contrary to the usual
Euclidean interpretation. Today, these effects are experimentally well confirmed for
elementary particles at high speeds near c.

In the framework of Minkowskian space-time, the invariance of physical laws
with respect to particular inertial systems is realized by the Lorentz transformation.
Newtonian space-time with Galilean invariance remains a limiting case for refer-
ence systems like celestial motions of planets or earthy motions of billiard balls
with slow speed relative to the constant c. In this sense, Einstein’s space-time is the
culmination of classical physics rather than a revolutionary break with Newton.

An important concept which was first introduced into classical physics by Leib-
niz is energy, consisting of the kinetic energy T and the potential energy U of a sys-
tem. The mechanical work done on a point mass which is displaced from a position
1 to a position 2 corresponds to the difference between the kinetic energy at position
1 and that of position 2. If this mechanical work is independent of the path followed
from 1 to 2, then the corresponding force field is called conservative. Frictional
forces are not conservative. In one dimension all forces must be conservative, since
there is a unique path from one point to another point in a straight line, ignoring
friction. The total energy T + U is constant in a conservative field of force.

An important application of Newton’s mechanics is the harmonic oscillator,
such as the small amplitude pendulum, or the weight oscillating up and down on
a spring. The harmonic oscillator appears as a model through all parts of physics and
even chemistry and biology. For example, remember electromagnetic light waves,
where the electric and magnetic field energies oscillate. Harmonic oscillations are
also well known in technology, for example as oscillating electrical currents in a coil
and a condenser, with friction corresponding to the electrical resistance. In the phi-
losophy of the 18th and 19th centuries the pendulum was a symbol of the mech-
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anistic universe which seemed to be completely determined and calculable by the
Newtonian equations of motion.

Thus, the pendulum may be considered as a classical example of the dynam-
ical modeling procedure. This model assumes that the rod is very light, but rigid.
The hinge at the top is perfectly frictionless. The weight at the lower end is heavy,
but very small. The force of gravity always pulls it straight down. In Fig. 2.7a, the
pendulum is drawn in a two-dimensional Euclidean plane with the angle α of ele-
vation, the force F of gravity, the pull F cosα along the rod, and the force F sinα
turning it. In order to visualize the dynamical behavior of the pendulum we have to
develop a dynamical model with a state space and a phase portrait. The state of the
pendulum is fully determined by the angular variable α (with α = 0 and α = 2π
denoting the same angle) and the angular velocity v. Thus, we get a two-dimensional
state space which can be visualized by the circular cylinder in Fig. 2.7b. The ver-
tical circle in the center of this cylinder denotes the states of zero angular velocity
v = 0. The straight line from front to back, at the bottom of the cylinder, is the axis
of zero inclination with α = 0, where the pendulum is lowest. At the origin with
(α, v) = (0, 0), the pendulum is at rest at its lowest position [2.17].

As there is no friction and no air in the way, moving the pendulum a little to
the left causes it to swing back and forth indefinitely. The full trajectory in the state
space, corresponding to this oscillating motion, is a cycle, or closed loop. In the next
case, the pendulum is balanced at the top, in unstable equilibrium. A tiny touch on
the left causes it to fall to the right and pick up speed. The angular velocity reaches
its maximum when the pendulum passes the bottom of the swing. On the way back
up to the top again, the pendulum slows down. Then the pendulum balances at the
top again. But when the pendulum at the beginning of its rotation shoved hard to
the right, then its rate of angular velocity is rather large. Moving back up again, it

Fig. 2.7a,b. Dynamical system (pendulum) (a) with 2-dimensional state space (circular cylin-
der) (b) [2.17]
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slows down, but not enough to come to rest at the top. Thus, the pendulum rotates
clockwise indefinitely. The corresponding trajectory in the cylindrical state space
is a cycle. Unlike the slow oscillation, the fast cycle goes around the cylinder. Per-
forming many experiments would reveal the phase portrait of this dynamical model
(Fig. 2.8a). There are two equilibrium points. At the top, there is a saddle point. At
the origin, there is a vortex point which is not a limit point of the nearby trajectories.
The phase portrait is easier to see when the cylinder is cut open along the straight
line from front to back through the saddle point at the top (Fig. 2.8b).

If the system is not closed and the effects of friction are included as in physical
reality, then the equilibrium point at the origin is no longer a vortex point (Fig. 2.8c).
It has become a spiraling type of point attractor. As any motion of the pendulum
will come to rest because of friction, any trajectory representing a slow motion of
the pendulum near the bottom approaches this limit point asymptotically.

In two dimensions or more, other types of trajectories and limit sets may occur.
For example, a cycle may be the asymptotic limit set for a trajectory (Fig. 2.9), or in
a three-dimensional system a torus or even other more or less strange limit sets may
occur.

Fig. 2.8a,b. Phase portrait of the pendulum on the cylindrical state space (a) and cut open
into a plane (b). (c) Phase portrait of the pendulum with friction
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Fig. 2.9. Cycle as asymptotic limit set for a trajectory

Limit sets enable us to model a system’s evolution to its equilibrium states.
The key concepts are limit sets called “attractors” [2.18]. Mathematically, a limit
set (limit point, cycle, torus, etc.) is called an attractor if the set of all trajectories
approaching this limit set asymptotically is open. Roughly speaking, attractors re-
ceive most of the trajectories in the neighborhood of the limit set. Of all limit sets
which represent possible dynamical equilibria of the system, the attractors are the
most prominent. In the case of a limit point, an attractor represents a static equi-
librium, while a limit cycle as attractor designates the periodic equilibrium of an
oscillation. Vibrations on a pendulum, spring, or musical instrument are only a few
of the mechanical applications. As we will see later on, periodic equilibria of oscil-
lating dynamical systems play an important role in physics, chemistry, biology, and
social sciences.

In a typical phase portrait, there will be more than one attractor. The phase por-
trait will be devided into their different regions of approaching trajectories. The di-
viding boundaries or regions are called separatrices. In Fig. 2.10, there are two point
attractors with their two open sets of approaching trajectories and their separatrix.

In reality, a dynamical system cannot be considered as isolated from other dy-
namical systems. In order to get more adequate models, we will study two cou-
pled systems. A simple example is provided by coupling two clocks. Historically,
this particular system was observed by Christian Huygens in the 17th century. He
noticed that two clocks hanging on the same wall tend to synchronize. This phe-
nomenon is caused by nonlinear coupling through the elasticity of the wall. Indeed,
any two dynamical systems can be combined into a single system by constructing
the Cartesian product of the two corresponding state spaces. A small perturbation of
this combined system is called a coupling of the two systems. The geometric model
for the states of this combined system is formed as follows [2.19].

Each clock A and B is a kind of oscillator. For the sake of visualizing the asymp-
totic behaviour of both oscillators, the transient behavior is ignored and the two-
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dimensional state model of the Euclidean plane with a limit cycle around the origin
for the two parameters of displacement and velocity is replaced by the limit cycle
alone. A state of oscillator A is specified by an angle α corresponding to its phase
(Fig. 2.11a), a state of oscillator B by an angle β (Fig. 2.11b).

Fig. 2.10. Phase portrait with two point attractors, two open sets of approaching trajectories,
and a separatrix

Fig. 2.11a,b. Two clocks as oscillators with two cycles as their corresponding state spaces



42 2 Complex Systems and the Evolution of Matter

In order to construct the state space for the combined system of both oscillators,
we consider the limit cycle of clock A in a horizontal plane. Each point of this
horizontal cycle represents a phase state of A. We consider such a point as the center
of the limit cycle of clock B erected perpendicular to the horizontal plane of clock A
(Fig. 2.11c). Each point of this vertical cycle represents a phase state of B. The pair
(α, β) of phases represents the state of the combined system [2.20].

If oscillator A is stuck at phase α and oscillator B moves through a full cycle,
then the combined phase point traverses the vertical cycle in Fig. 2.11c. If oscillator
A also moves through a full cycle, then the vertical cycle in Fig. 2.11c is pushed
around the horizontal cycle, sweeping out the torus in Fig. 2.11d. Thus, the state
space for the combined system of two oscillators is the torus, which is the Cartesian
product of the two cycles. Of course, the actual state model for two oscillators is
four-dimensional and not only two-dimensional as in our reduced figures.

In order to get the phase portrait of the dynamical behavior for the combined
system, we have to study the vector field and the trajectories on the state space of
the torus. Let us first assume that each clock is totally indifferent to the state of the
other. In this case, the clocks are uncoupled. The trajectory of a point on the torus
corresponding to the time phase of each clock winds around the torus. If the rate of
each clock is constant, then on the flat rectangular model of the torus, the trajectory
is a straight line (Fig. 2.12). The slope of this line is the ratio of the rate of clock B
to the rate of clock A. If the two clocks run at the same rates, the ratio is one. Telling
the same time means that both clocks have identical phases. Then the trajectory on
the flat torus is the diagonal line in Fig. 2.12a.

A slight change in the system results in a slight change in the ratio of the rates
or frequencies of the oscillators. Then the trajectory on the torus changes from a pe-
riodic trajectory to an almost periodic trajectory or to a periodic trajectory winding
many times around, instead of just once (Fig. 2.12b). If two oscillators are cou-
pled (for instance by Huygens’ shared wall for the two clocks), then a small vector
field must be added to the dynamical model representing the uncoupled system. It is
a noteworthy theorem of geometric analysis that the braid of trajectories on the torus
is structurally stable in the sense that a small perturbation does not result in a signif-
icant change in the phase portrait. Experimentally, this result was already confirmed
by Huygens’ observation of the synchronizing phenomenon of two clocks on the
same wall.

Fig. 2.11c,d. State space for the combined system of two oscillators (torus as Cartesian prod-
uct of two cycles)
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Fig. 2.12a,b. Phase portraits for the combined system of two oscillators with identical
phase (a) and a slight change (b)

Oscillators are a central dynamical paradigm for the modeling procedure of na-
ture. They are by no means restricted to mechanical applications. In the 19th century,
Hermann von Helmholtz invented an electrical vibrator and Lord Rayleigh studied
coupled systems of vacuum tube oscillators used in the first radio transmitters. In
this century, it was van der Pol who used the further development of radio frequency
electronics in understanding coupled oscillators.

In the Newtonian universe, coupled oscillators provide examples of many-body
problems. What can in general be said about the mechanics of point mass systems
with several moving point masses, exerting forces upon each other? Systems with
two point masses have simple and exact solutions. In a two-body problem with two
point masses with isotropic central forces, the (twelve) unknowns are determined
by the (ten) laws of conserved quantities and Newton’s laws of motion for the two
particles. The problem of two-point masses can be successfully reduced to the al-
ready solved problem of a single point mass by considering Newton’s law of motion
for the difference vector r and reduced mass μ = m1m2/(m1 + m2) of both point
masses m1 and m2. Historically, Galileo assumed that the earth moves around the
sun, which is at rest. Thus he reduced the celestial motions to the simple case of
a two-body problem. As we all know, the sun is actually moving around the com-
bined centre of mass of the sun–earth system, which lies inside the surface of the
sun. But this assumption is still inaccurate, of course, since many planets are si-
multaneously moving around the sun and all of them are exerting forces upon each
other.

Another example of such a many-body-problem is given by a triple collision
of three billiard balls. Provided that the balls collide only in pairs, and no triple
or higher-order collisions occur, then the situation is reduced to two-body prob-
lems. The outcome depends in a continuous way on the initial state. Sufficiently
tiny changes in the initial state lead only to small changes in the outcome. If three
balls come together at once, the resulting behavior depends critically upon which
balls come together first. Thus, the outcome depends discontinuously on the in-
put, contrary to Leibniz’ principle of continuity, which he used basically to criticize
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Descartes’ inquiries into percussion. In the Newtonian universe, many-body prob-
lems of billiard balls and planets can be described in deterministic models in the
sense that physical behavior is mathematically completely determined for all times
in the future and past by the positions and velocities of the balls or planets. But the
models may be non-computable in practice and in the long run. In the case of plan-
etary theory, numerical simulations on computers for many millions of years can
produce very large errors, because the initial positions and velocities are not known
exactly. A very tiny change in the initial data may rapidly give rise to an enormous
change in the outcome. Such instabilities in behavior are typical for many-body
problems. Even in a fully deterministic world, the assumption of a Laplacean de-
mon which can calculate the Newtonian universe in the long run will eventually be
exposed as an illusory fiction.

2.3 Hamiltonian Systems and the Chaos of Heaven
and the Quantum World

In the 18th and 19th centuries, Newtonian mechanics seemed to reveal an eternal
order of nature. From a modern point of view, Newtonian systems are only a use-
ful kind of dynamical system for modeling reality. In order to specify the initial
state of a Newtonian system, the positions and the velocities of all its particles must
be known. Around the middle of the 19th century, a very elegant and efficient for-
malism was introduced by the mathematician William Hamilton [2.21]. His fruitful
idea was to characterize a conservative system by a so-called Hamiltonian func-
tion H which is the expression for the total energy (= sum of kinetic and potential
energy) of the system in terms of all the position and momentum variables. While
the velocity of a particle is simply the rate of change of its position with respect
to time, its momentum is its velocity multiplied by its mass. Newtonian systems
are described with Newton’s second law of motion in terms of accelerations, which
are rates of change of rates of change of position. Thus, mathematically, they are
defined by second-order equations. In the Hamiltonian formulation, there are two
sets of equations. One set of equations describes how the momenta of particles are
changing with time, and the other describes how the positions are changing with
time. Obviously, Hamiltonian equations describe the rates of change of quantities
(i.e., position or momentum). Thus, we get a reduction of mathematical description
with first-order equations which are, of course, deterministic. For dynamical sys-
tems of n unconstrained particles with three independent directions of space, there
are 3n position coordinates and 3n momentum coordinates.

With suitable choices of the Hamiltonian function H, Hamiltonian equations
can be used to characterize any classical dynamical system, not just Newtonian sys-
tems. Even in Maxwell’s electrodynamics, Hamiltonian-like equations deliver the
rate of change with time of the electric and magnetic fields in terms of what their
values are at any given time. The only difference is that Maxwell’s equations are
field equations rather than particle equations, needing an infinite number of param-
eters to describe the state of the system, with field vectors at every single point in
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space, rather than the finite number of parameters with three coordinates of posi-
tion and three of momentum for each particle. Hamiltonian equations also hold true
for special relativity and (in somewhat modified form) for general relativity. Even,
the crucial step from classical mechanics to quantum mechanics is made by Bohr’s
correspondence principle in the framework of the Hamiltonian formalism. These
applications will be explained later on. Just now, it is sufficient to recall that Hamil-
tonian equations deliver a universal formalism for modeling dynamical systems in
physics.

The corresponding state spaces allow us to visualize the evolution of the dy-
namical systems in each “phase”. Thus they are called phase spaces. For systems
with n particles, phase spaces have 3n + 3n = 6n dimensions. A single point of
a phase space represents the entire state of a perhaps complex system with n parti-
cles. The Hamiltonian equations determine the trajectory of a phase point in a phase
space. Globally, they describe the rates of change at every phase point, and there-
fore define a vector field on the phase space, determining the whole dynamics of the
corresponding system.

It is a well-known fact from empirical applications that states of dynami-
cal models cannot be measured with arbitrary exactness. The measured values of
a quantity may differ by tiny intervals which are caused by the measuring appara-
tus, constraints of the environment, and so on. The corresponding phase points are
concentrated in some small regions of a neighborhood. Now, the crucial question
arises if trajectories starting with neighboring initial states are locally stable in the
sense that they have neighboring final states. In Fig. 2.13a, a phase state region R0
of initial states of time zero is dragged along by the dynamics of the vector field to
a region Rt at later time t (of course, the actual large number of coordinates must be
neglected in such a visualization of a phase space) [2.22].

Fig. 2.13. (a) A phase state region R0 at time 0 is dragged along by a Hamiltonian dynamics
to a region Rt at later time t [2.22]. (b) According to Liouville’s theorem, the volume of an
initial phase state region is conserved under a Hamiltonian dynamics, although its shape may
be distorted, stretched, and spread outwards [2.22]
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In this case, similiar initial states lead to similiar final states. This assumption
is nothing else than a classical principle of causality in the language of Hamilto-
nian dynamics: similar causes lead to similiar effects. Historically, philosophers and
physicists from Leibniz to Maxwell believed in this causal principle, which seemed
to secure the stability of the measuring process and the possibility of forecasts de-
spite an appreciable interval of inaccuracy.

It is noteworthy that the representation in the Hamiltonian formalism allows
a general statement about the causality of classical dynamical systems. Due to a fa-
mous theorem of the mathematician Liouville, the volume of any region of the
phase space must remain constant under any Hamiltonian dynamics, and thus for
any conservative dynamical system. Consequently, the size of the initial region R0
in Fig. 2.13a cannot grow by any Hamiltonian dynamics if we understand “size” in
the right manner as phase-space volume. But its conservation does not exclude that
the shape of the initial region is distorted and stretched out to great distances in the
phase space (Fig. 2.13b) [2.22].

We may imagine a drop of ink spreading through a large volume of water in
a container. That possible spreading effect in phase spaces means that the local sta-
bility of trajectories is by no means secured by Liouville’s theorem. A very tiny
change in the initial data may still give rise to a large change in the outcome. Many-
body problems of celestial mechanics and billiard balls remain non-computable in
the long run, although their dynamics are deterministic. Nevertheless, Liouville’s
theorem implies some general consequences concerning the final regions which can
be displayed by Hamiltonian dynamics, and thus by conservative dynamical sys-
tems. Remember the phase portrait Fig. 2.8c of a pendulum with friction (which is
not a conservative system) with a different equilibrium point at the origin. While
the non-conservative system has a spiraling type of point attractor (Fig. 2.14a),
the conservative system has a vortex point (Fig. 2.14b) which is not an attrac-
tor [2.23].

In Fig. 2.14a, trajectories are attracted to a field point, and the volume of an in-
tial area shrinks. In Fig. 2.14b, the trajectories rotate around a vortex point, and the
volume of an initial area is conserved. Thus, due to Liouville’s theorem, we can gen-
erally conclude that in any conservative system attracting points must be excluded.

Fig. 2.14a,b. Point attractor of a non-conservative system without conservation (a), vortex
point of a conservative system with conservation (b)
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The effect of shrinking initial areas can easily be visualized for the trajectories of
limit cycles, too. So, limit cycles as attractors are also not possible in conservative
systems for the same mathematical (a priori) reasons.

These results are derived a priori by a far-reaching mathematical theorem of
Hamiltonian systems. We must be aware that conservative physical systems like
planetary systems, pendula, free fall, etc., are only some of the empirical appli-
cations of Hamiltonian systems. Hamiltonian systems are defined by a particular
kind of mathematical equation (Hamiltonian equations). Features of Hamiltonian
systems are derived from the mathematical theory of the corresponding equations.
Consequently, modeling reality by Hamiltonian systems means that we can epistem-
ically forecast some a priori features, e.g., that no static equilibrium of a limit point
attractor and no periodic equilibrium of a limit cycle attractor can be expected.

Philosophically, this point of view obviously conforms to Kant’s epistemology
in some modified sense. If we assume the mathematical framework of some dy-
namical systems, then, of course, we can assert some a priori statements about our
empirical models, independently of their empirical applications in several sciences.
But Kant’s epistemology and the dynamical system approach differ in the follow-
ing sense: not only is there one categorial framework (e.g., Newtonian systems),
but there are many kinds of systems modeling reality with more or less success.
So, it will not be physicalist or reductionist to apply conservative systems even in
cognitive and economical science, later on.

A further a priori result of Hamiltonian (conservative) systems says that there
are irregular and chaotic trajectories. In the 18th and 19th centuries, physicists
and philosophers were convinced that nature is determined by Newtonian- or
Hamiltonian-like equations of motion, and thus future and past states of the universe
can be calculated at least in principle if the initial states of present events are well
known. Philosophically, this belief was visualized by Laplace’s demon, which like
a huge computer without physical limitations can store and calculate all necessary
states. Mathematically, the belief in Laplace’s demon must presume that systems in
classical mechanics are integrable, and, thus are solvable. In 1892, Poincaré was al-
ready aware that the non-integrable three-body problem of classical mechanics can
lead to completely chaotic trajectories [2.24]. About sixty years later, Kolmogorov
(1954), Arnold (1963) and Moser (1967) proved with their famous KAM theorem
that motion in the phase space of classical mechanics is neither completely regular
nor completely irregular, but that the type of trajectory depends sensitively on the
chosen initial conditions [2.25].

As celestial mechanics is an empirically well confirmed dynamical model of
a Hamiltonian system, the KAM theorem refutes some traditional opinions about
the “superlunar” world. Heaven is not a world of eternal regularity, either in the
sense of Aristotle’s cosmos or in the sense of Laplace’s demon. Obviously, it is not
the seat of the Gods. Nevertheless, it is not completely chaotic. Heaven, as far as
recognized by Hamiltonian systems, is more or less regular and irregular. It seems
to have more similarity with our human everyday life than our forefathers believed.
This may be a motivation for writers to be curious about Hamiltonian systems. But
now let us see some mathematical facts.
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One of the simplest examples of an integrable system is a harmonic oscilla-
tor. Practically, the equations of motion of any integrable system with n degrees
of freedom are the same as those of a set of n uncoupled harmonic oscillators. The
corresponding phase space has 2n dimensions with n position coordinates and n mo-
mentum coordinates. For a harmonic oscillator with n = 1 we get a circle, and for
two harmonic oscillators with n = 2 a torus (compare Fig. 2.11d). Thus, the exis-
tence of n integrals of motion confines the trajectories in the 2n-dimensional phase
space of an integrable system to an n-dimensional manifold which has the topology
of an n-torus. For an integrable system with two degrees of freedom and a four-
dimensional phase space, the trajectories can be visualized on a torus. Closed orbits
of trajectories occur only if the frequency ratios of the two corresponding oscillators
are rational (Fig. 2.15). For irrational frequency ratios, the orbit of a trajectory never
repeats itself, but approaches every point on the torus infinitesimally closely [2.26].

A nonintegrable system of celestial mechanics was studied by Hénon and
Heiles in 1964. The dynamical model consists of an integrable pair of harmonic
oscillators coupled by nonintegrable cubic terms of coordinates. If the initial state
of the model with two position coordinates q1, q2 and two momentum coordinates
p1, p2 is known, then its total energy E is determined by the corresponding Hamil-
tonian function H depending on these position and momentum coordinates. The
trajectories of the system move in the four-dimensional phase space on a three-
dimensional hyperplane which is defined by H(q1, q2, p1, p2) = E.

The values of E can be used to study the coexistence of regular and irregular
motions which was forecast by the KAM theorem. For small values of E, the dy-
namical system has regular behavior, while for large values it becomes chaotic. In
order to visualize this changing behavior, we consider the intersections of the trajec-
tories with the two-dimensional plane of coordinates q1 and q2 (Poincaré maps). For
E = 1

24 (Fig. 2.16a) and E = 1
12 (Fig. 2.16b), the Poincaré maps show the intersec-

tions of somewhat deformed tori which signal regular motion. Above a critical value
of E = 1

9 , most, but not all, tori are destroyed, and spots of irregular points appear to
be random. For E = 1

8 (Fig. 2.16c), the Poincaré map illustrates a state of transition
with the coexistence of regular and irregular motions. For E = 1

6 (Fig. 2.16d), the
motion seems to be almost completely irregular and chaotic [2.27].

Fig. 2.15. Integrable system with two degrees of freedom on a torus and a closed orbit of
a trajectory
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Fig. 2.16a–d. Poincaré maps for the Hénon-Heiles system [2.27]

An empirical application is given in the following three-body problem of celes-
tial mechanics, which is nonintegrable. Consider the motion of Jupiter perturbing
the motion of an asteroid around the sun (Fig. 2.17).

Jupiter and the asteroid are interpreted as two oscillators with certain frequen-
cies. According to the KAM theorem, stable and unstable motions of the asteroid
can be distinguished, depending on the frequency ratio.

In general, we must be aware that stable as well as unstable trajectories are
mathematically well defined. Consequently, even nonintegrable many-body prob-
lems describe deterministic models of the world. Metaphorically, we may say that
the God of Leibniz and Newton would have no difficulty in forecasting regular and
irregular trajectories sub specie aeternitatis and does not need to calculate their de-
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Fig. 2.17. Perturbation of an asteroid’s motion by Jupiter

velopment step by step. The observed chaotic behavior is neither due to a large num-
ber of degrees of freedom ( a celestial three-body problem has rather few degrees
of freedom) nor to the uncertainty of human knowledge. The irregularity is caused
by the nonlinearity of Hamiltonian equations which let initially close trajectories
separate exponentially fast in a bounded region of phase. As their initial conditions
can only be measured with finite accuracy, and errors increase exponentially fast,
the long-term behavior of these systems cannot be predicted. Mathematically, ini-
tial conditions are characterized by real values which may be irrational numbers
with infinite sequences of digits. Thus, computer-assisted calculations will drive the
errors faster and faster with improved measurement of more and more digits.

The macrocosmos of celestial mechanics, the world of asteroids, planets, stars,
and galaxies, is determined by the coexistence of regular and irregular behavior.
Deterministic chaos in the heavens is not everywhere, but locally possible, and thus
may cause cosmic catastrophes which cannot be excluded in principle. What about
the microcosmos of quantum mechanics, the quantum world of photons, electrons,
atoms, and molecules? Is there chaos in the quantum world? In order to answer this
question, we first must remind the reader of some basic concepts of Hamiltonian
systems and phase spaces corresponding to objects in the quantum world [2.28].

In 1900, Max Planck proposed that electromagnetic oscillations occur only in
quanta, whose energy E bears the definite relation E = hν to the frequency ν de-
pending on the constant h (“Planck’s quantum”). Besides Einstein’s huge constant c
of light’s speed, Planck’s tiny constant of quanta is the second fundamental constant
of nature, according to 20th century physics. Planck’s relation was experimentally
supported by, e.g., the radiation of black bodies. In 1923, Louis de Broglie proposed
that even the particles of matter should sometimes behave as waves. De Broglie’s
wave-frequency ν for a particle of mass m satisfies the Planck relation. Combined
with Einstein’s famous theorem E = mc2 of Special Relativity (“mass is a particu-
lar state of energy and can therefore be transformed into energy by radiation”), we
get a relation telling us that ν is related to m by hν = mc2. It follows that in the
quantum world, fields oscillating with some frequency can occur only in discrete
units of mass, depending on Planck’s and Einstein’s constants. Obviously, in the
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quantum world, phenomena can be considered as waves as well as particles. This
so-called particle-wave duality was well confirmed by many experiments which re-
veal features of waves or particles for quantum systems like photons or electrons,
depending on the preparation of experimental conditions.

In 1913, Niels Bohr introduced his “planetary” model for the atom which could
explain the observed and measured discrete stable energy levels and spectral fre-
quencies with suprising accuracy. Bohr’s rules required that the angular momen-
tum of electrons in orbit about the nucleus can occur only in integer multiples of
h̄ = h/2π . His successful, albeit somewhat ad hoc rules only delivered an ap-
proximate geometric model which must be derived from a dynamical theory of the
quantum world, corresponding to Newtonian or Hamiltonian classical mechanics
which can explain Kepler’s planetary laws. The dynamics of the quantum world was
founded by Heisenberg’s and Schrödinger’s quantum mechanics, which became the
fundamental theory of matter in 20th century physics.

The main concepts of quantum mechanics can be introduced heuristically by
analogy with corresponding concepts of Hamiltonian mechanics if some necessary
modifications depending on Planck’s constant are taken into account. This proce-
dure is called Bohr’s correspondence principle (Fig. 2.18). So, in quantum mechan-
ics, classical vectors like position or momentum must be replaced by some operators
satisfying a non-commutative (non-classical) relation depending on Planck’s con-
stant. If h disappears (h → 0), then we get the well known classical commutative
relations of, e.g., position and momentum which allow us to measure both vectors
together with arbitrary accuracy. An immediate consequence of non-commutative
relations in quantum mechanics is Heisenberg’s uncertainty principleΔpΔq ≥ h̄/2.
If one measures the position q with precision Δq, then one disturbs the momentum
p by Δp. Thus, it is obvious that there are no trajectories or orbits in the quan-
tum world which demand precise values of both the position and the momentum of
a particle. Bohr’s popular electronic orbits are only very rough geometric visualiza-
tions [2.29].

According to Bohr’s correspondence principle, classical systems described by
Hamiltonian functions must be replaced by quantum systems (e.g., electrons or pho-
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Fig. 2.18. Bohr’s correspondence principle
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tons) described by a Hamiltonian operator depending on operators (for position and
momentum) instead of vectors. In classical physics, the states of Hamiltonian sys-
tems are determined by the points of a phase space. In quantum mechanics, the
appropriate analogous concept is that of a Hilbert space. States of a quantum sys-
tem are described by vectors of a Hilbert space spanned by the eigenvectors of its
Hamiltonian operator.

In order to illustrate this mathematical remark a little bit more, let us imag-
ine a single quantum particle. Classically, a particle is determined by its position
in space and by its momentum. In quantum mechanics, every single position which
the particle might have is a single alternative combined in a collection of all possi-
ble positions with complex-number weightings. Thus, we get a complex function of
position, the so-called wave function ψ(x). For each position x, the value of ψ(x)
denotes the amplitude for the particle to be at x. The probability of finding the parti-
cle in some small fixed-sized interval about this position is obtained by forming the
squared modulus of the amplitude |ψ(x)|2. The various amplitudes for the different
possible momenta are also determined by the wave function. Thus, the Hilbert space
is a complex state space of a quantum system.

The causal dynamics of quantum states is determined by a partial differential
equation called the Schrödinger equation. While classical observables are commu-
tative with always definite values, non-classical observables of quantum systems
are non-commutative with generally no common eigenvector and consequently no
definite eigenvalues. For observables in a quantum state only statistical expectation
values can be calculated.

An essential property of Schrödinger’s quantum formalism is the superposi-
tion principle demonstrating its linearity. For example, consider two quantum sys-
tems which once interacted (e.g., a pair of photons leaving a common source in
opposite directions). Even when their physical interaction ceases at a large distance,
they remain in a common superposition of states which cannot be separated or lo-
cated. In such an entangled (pure) quantum state of superposition an observable of
the two quantum systems can only have indefinite eigenvalues. The superposition
or linearity principle of quantum mechanics delivers correlated (entangled) states
of combined systems which are highly confirmed by the EPR experiments. Philo-
sophically, the (quantum) whole is more than the sum of its parts. Non-locality is
a fundamental property of the quantum world which differs from classical Hamilto-
nian systems [2.30]. We shall return to this question in discussing the emergence of
mind–brain and artificial intelligence (Chaps. 4–6).

Bohr’s correspondence principle lets the question arise of whether the exis-
tence of chaotic motion in classical Hamiltonian systems leads to irregularities in
the corresponding quantum systems [2.31]. Our summary of basic quantum me-
chanical concepts gives some hints of changes which must be expected in passing
from a classically chaotic system to its corresponding quantum mechanical version.
In contrast to classical mechanics, quantum mechanics only allows statistical predic-
tions. Although the Schrödinger equation is linear in the sense of the superposition
principle and can be solved exactly, e.g., for a harmonic oscillator, and although
the wave function is strictly determined by the Schrödinger equation, this does not
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mean that the properties of a quantum state can be calculated exactly. We can only
calculate the density of probability to find a photon or electron at a space-time point.

Because of Heisenberg’s uncertainty principle, there are no trajectories in the
quantum world. Therefore, the determination of chaos with the exponentially fast
separation of close trajectories is not possible for quantum systems. Another aspect
of the uncertainty principle concerning chaos is noteworthy: remember a classical
phase space with chaotical regions like in Fig. 2.16. The uncertainty principle im-
plies that points in a 2n-dimensional phase space within a volume hn cannot be
distinguished. The reason is that chaotic behavior smaller than hn cannot be repre-
sented in quantum mechanics. Only the regular behavior outside these chaotic re-
gions could be expected. In this sense, the tiny, but finite value of Planck’s constant
could suppress chaos.

In quantum mechanics, one distinguishes between time-independent stationary
and time-dependent Hamiltonian systems. For systems with stationary Hamiltonians
the Schrödinger equation can be reduced to a so-called linear eigenvalue problem
which allows one to calculate the energy levels of, e.g., a hydrogen atom. As long
as the levels are discrete, the wave function behaves regularly, and there is no chaos.
The question arises of whether there are differences between the energy spectra of
a quantum system with a regular classical limit and a quantum system whose classi-
cal version displays chaos. Time-dependent Hamiltonians are used to described the
time-evolution of, e.g., elementary particles and molecules.

According to Bohr’s correspondence principle, quantum chaos can be detected
by starting with the investigation of some classical Hamiltonian systems. They may
be integrable, almost integrable, or chaotic. Thus, the trajectories in the hyperplane
of energy may be regular, almost regular, or almost chaotic. Quantizing the Hamil-
tonian function by replacing the vectors of position and momentum with the corre-
sponding operators, we get the Hamiltonian operator of the corresponding quantum
system. In the next step, the Schrödinger equation and eigenvalue equation can be
derived. Now, we may ask if the properties of the classical system with its integrable,
almost integrable, or chaotic behavior can be transferred to the corresponding quan-
tum system. What about the spectrum, eigenfunctions, etc.? These questions are
summarized under the title “quantum chaos”. For instance, there are calculations
which show that the energy spectrum of a free quantum particle in a stadium, for
which the classical motion is chaotic, differs drastically from that of a free quantum
particle in a circle, for which the classical motion is regular.

In Fig. 2.19, the distribution of distances between neighboring levels is illus-
trated with two examples [2.32]. In Fig. 2.19a,b, a system consisting of two coupled
oscillators is shown for two different values of the coupling coefficient. While the
corresponding classical dynamics of Fig. 2.19a is regular, the classical dynamics of
Fig. 2.19b is almost chaotic.

Figure 2.19c,d shows the example of a hydrogen atom in a uniform magnetic
field. While the corresponding classical dynamics of Fig. 2.19c is regular, the clas-
sical dynamics of Fig. 2.19d is almost chaotic. The regular and chaotic cases can be
distinguished by different distributions of energy levels (Poisson and Wigner distri-
butions) which are calculated by solving the corresponding Schrödinger equation.
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Fig. 2.19a–d. Two coupled oscillators with regular (a) and almost chaotic classical dynamics,
(b) Hydrogen atom in a uniform magnetic field with corresponding regular (c) and almost
chaotic classical dynamics (d) [2.32]

They are confirmed by several numerical models as well as by measurements in
laboratories with laser spectroscopy. In this sense, quantum chaos is no illusion, but
a complex structural property of the quantum world. Hamiltonian systems are a key
to discovering chaos in the macro- and microcosmos. But, of course, we must not
confuse the complex mathematical structure of deterministic chaos with the popular
idea of disorder.

2.4 Conservative and Dissipative Systems
and the Emergence of Order

Since Poincaré’s celestial mechanics (1892), it was mathematically known that some
mechanical systems whose time evolution is governed by nonlinear Hamiltonian
equations could display chaotic motion. But as long as scientists did not have suit-
able tools to deal with nonintegrable systems, deterministic chaos was considered as
a mere curiosity. During the first decades of the 20th century, many numerical proce-
dures were developed to deal with the mathematical complexity of nonlinear differ-
ential equations at least approximately. The calculating power of modern high speed
computers and refined experimental techniques have supported the recent successes
of the nonlinear complex system approach in natural and social sciences. The visu-
alizations of nonlinear models by computer-assisted techniques promote interdisci-
plinary applications with far-reaching consequences in many branches of science. In
this scientific scenario (1963), the meteorologist Edward Lorenz, a student of the fa-
mous mathematician Birkhoff [2.33], observed that a dynamical system with three
coupled first-order nonlinear differential equations can lead to completely chaotic
trajectories. Mathematically, nonlinearity is a necessary, but not sufficient condi-
tion of chaos. It is necessary condition, because linear differential equations can be
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solved by well-known mathematical procedures (Fourier transformations) and do
not lead to chaos. The system Lorenz used to model the dynamics of weather differs
from Hamiltonian systems à la Poincaré mainly by its dissipativity. Roughly speak-
ing, a dissipative system is not conservative but “open”, with an external control
parameter that can be tuned to critical values causing the transitions to chaos.

More precisely, conservative as well as dissipative systems are characterized
by nonlinear differential equations ẋ = F(x, λ) with a nonlinear function F of the
vector x = (x1, . . . , xd) depending on an external control parameter λ. While for
conservative systems, according to Liouville’s theorem, the volume elements in the
corresponding phase space change their shape but retain their volume in the course
of time, the volume elements of dissipative systems shrink as time increases (com-
pare Figs. 2.13, 2.14) [2.34].

Lorenz’s discovery of a deterministic model of turbulence occurred during sim-
ulation of global weather patterns. The earth, warmed by the sun, heats the atmo-
sphere from below. Outer space, which is always cold, absorbs heat from the outer
shell of the atmosphere. The lower layer of air tries to rise, while the upper layer
tries to drop. This traffic of layers was modeled in several experiments by Bénard.
The air currents in the atmosphere can be visualized as cross-sections of the layers.
The traffic of the competing warm and cold air masses is represented by circulation
vortices, called Bénard cells. In three dimensions, a vortex may have warm air ris-
ing in a ring, and cold air descending in the center. Thus, the atmosphere consists
of a sea of three-dimensional Bénard-cells, closely packed as a hexagonal lattice.
A footprint of such a sea of atmospheric vortices can be observed in the regular
patterns of hills and valleys in deserts, snowfields, or icebergs.

In a typical Bénard experiment, a fluid layer is heated from below in a gravita-
tional field (Fig. 2.20a). The heated fluid at the bottom tries to rise, while the cold
liquid at the top tries to fall. These motions are opposed by viscous forces. For small
temperature differences ΔT, viscosity wins, the liquid remains at rest, and heat is
transported by uniform heat conduction. The external control parameter of the sys-
tem is the so-called Rayleigh number Ra of velocity, which is proportional to ΔT.
At a critical value of Ra, the state of the fluid becomes unstable, and a pattern of
stationary convection rolls develops (Fig. 2.20b) [2.35].

Beyond a greater critical value of Ra, a transition to chaotic motion is ob-
served. The complicated differential equations describing the Bénard experiment
were simplified by Lorenz to obtain the three nonlinear differential equations of his
famous model. Each differential equation describes the rate of change for a vari-

Fig. 2.20a,b. Bénard experiment: a heated fluid layer
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able X proportional to the circulatory fluid flow velocity, a variable Y characterizing
the temperature difference between ascending and descending fluid elements, and
a variable Z proportional to the deviation of the vertical temperature profile from its
equilibrium value. From these equations, it can be derived that an arbitrary volume
element of some surface in the corresponding phase space contracts exponentially
in time. Thus, the Lorenz model is dissipative.

This can be visualized by computer-assisted calculations of the trajectories gen-
erated by the three equations of the Lorenz model. Under certain conditions, a par-
ticular region in the three-dimensional phase space is attracted by the trajectories,
making one loop to the right, then a few loops to the left, then to the right again, etc.
(Fig. 2.21) [2.36].

Fig. 2.21. Lorenz attractor

The paths of these trajectories depend very sensitively on the initial conditions.
Tiny deviations of their values may lead to paths which soon deviate from the old
one with different numbers of loops. Because of its strange image, which looks
like the two eyes of an owl, the attracting region of the Lorenz phase was called
a “strange attractor”. Obviously, the strange attractor is chaotic. But which topolog-
ical structure do the trajectories achieve by winding more and more densely without
intersecting each other? An example illustrates the definition of so-called fractal
dimensions [2.37]:

Let M be the subset of the attractor in the n-dimensional phase space. Now, the phase
space is covered by cubes with edge length ε. Let N(ε) be the number of cubes which contain
a piece of the attractor M. If ε contracts to zero (ε → 0), then the negative limit of the ratio
of the logarithm of N(ε) and the logarithm of ε, i.e., D = − lim ln N(ε)/ln ε, is called the
fractal dimension.
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If the attractor is a point (Fig. 2.14a), the fractal dimension is zero. For a stable
limit circle (Fig. 2.9) the fractal dimension is one. But for chaotic systems the fractal
dimension is not an integer. In general, the fractal dimension can be calculated only
numerically. For the Lorenz model, the strange attractor has the fractal dimension
D ≈ 2. 06 ± 0. 01.

Another dissipative system in which chaotic motion has been studied experi-
mentally is the Belousov–Zhabotinsky reaction. In this chemical process an organic
molecule is oxidized by bromate ions, the oxidation being catalyzed by a redox
system. The rates of change for the concentrations of the reactants in a system of
chemical reactions are again described by a system of nonlinear differential equa-
tions with a nonlinear function. The variable which signals chaotic behavior in the
Belousov–Zhabotinsky reaction is the concentration of the ions in the redox sys-
tem. Experimentally, irregular oscillations of these concentrations are observed with
a suitable combination of the reactants. The oscillations are indicated by separated
colored rings. This separation is a fine visualization of nonlinearity. Linear evo-
lutions would satisfy the superposition principle. In this case the oscillating rings
would penetrate each other in superposition.

The corresponding differential equations are autonomous, i.e., they do not
depend on time explicitly. For computer-assisted visualization it is often conve-
nient to study the flow in a dynamical system described by differential equa-
tions of motion via discrete equations which construct the intersecting points of
the trajectories with the (d − 1)-dimensional Poincaré map in the corresponding
d-dimensional phase space (compare Fig. 2.16). The constructed points are denoted
by x(1), x(2), . . . , x(n), x(n + 1), . . . with increasing time points n. The correspond-
ing equation has the form x(n + 1) = G(x(n), λ) for the successor point x(n + 1)
of x(n) = (x1(n), . . . , xd−1(n)). The classification of conservative and dissipative
systems can be generalized from flows to Poincaré maps. A discrete map equation
is called dissipative if it leads to a contraction of volume in phase space.

A famous example of a discrete map is the so-called logistic map with many
applications in the natural sciences as well as the social sciences. The basic con-
cepts of complex dynamical systems from nonlinearity to chaos can be illustrated
by this map with rather simple computer-assisted methods. Thus, let us have a short
glance at this example. Mathematically, the logistic map is defined by a quadratic
(nonlinear) recursive map xn+1 = αxn(1 − xn) of the interval 0 ≤ x ≤ 1 onto itself
with control parameter α varying between 0 ≤ α ≤ 4. The function values of the
sequence x1, x2, x3, . . . can be calculated by a simple pocket computer. For α < 3
the sequence converges towards a fixed point (Fig. 2.22a). If α is increased beyond
a critical value α1, then the values of the sequence jump periodically between two
values after a certain time of transition (Fig. 2.22b). If α is increased further beyond
a critical value α2, the period length doubles. If α is increased further and further,
then the period doubles each time with a sequence of critical values α1, α2, . . . . But
beyond a critical value αc, the development becomes more and more irregular and
chaotic (Fig. 2.22c) [2.38].

The sequence of period doubling bifurcations which is illustrated in Fig. 2.23a is
governed by a law of constancy which was found by Grossmann and Thomae for
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Fig. 2.22a–c. Logistic curve as nonlinear recursive map with control parameter α =
4λ = 2 (a), α = 4λ = 3, 2 (b), and α = 4λ = 4 (c)

the logistic map and recognized by Feigenbaum as a universal property for a whole
class of functions (the Feigenbaum-constant) [2.39]. The chaotic regime beyond αc

is shown in Fig. 2.23b.
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Fig. 2.23a,b. Sequence of period doubling bifurcations (a) and chaotic regime of the logistic
map beyond αc = 4λc (b)

In Fig. 2.24a–c the mappings of xn onto xn+1 are illustrated for different con-
trol parameters, in order to construct the corresponding attractors of a fixed point,
periodic oscillation between two points, and complete irregularity without any point
attractor or periodicity.
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Fig. 2.24a–c. Attractors of logistic map with differing control parameter: fixed point attrac-
tor (a), periodic oscillation (c), and chaos (b)

It is rather astonishing that a simple mathematical law like the logistic map pro-
duces a complexity of bifurcations and chaos for possible developments as shown
in Fig. 2.23a,b. A necessary, but not sufficient reason is the nonlinearity of the equa-
tion. In this context, the degrees of increasing complexity are defined by the in-
creasing bifurcations which lead to chaos as the most complex and fractal scenario.
Each bifurcation illustrates a possible branch of solution for the nonlinear equation.
Physically, they denote phase transitions from a state of equilibrium to new possible
states of equilibria. If equilibrium is understood as a state of symmetry, then phase
transition means symmetry breaking which is caused by fluctuational forces.

Mathematically, symmetry is defined by the invariance of certain laws with
respect to several transformations between the corresponding reference systems of
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an observer. In this sense the symmetry of Kepler’s laws is defined by its Galilean
transformations (compare Fig. 2.6a). The hydrodynamical laws describing a fluid
layer heated from below (Fig. 2.20a) are invariant with respect to all horizontal
translations. The equations of chemical reactions (in an infinitely extended medium)
are invariant with respect to all translations, rotations, and reflections of a reference
system used by an observer [2.40].

Nevertheless, these highly symmetric laws allow phase transitions to states
with less symmetry. For example, in the case of a Bénard experiment, the heated
fluid layer becomes unstable, and the state of stationary convection rolls develops
(Fig. 2.20b). This phase transition means symmetry breaking, because tiny fluctu-
ations cause the rolls to prefer one of two possible directions. Our examples show
that phase transition and symmetry breaking is caused by a change of external pa-
rameters and leads eventually to a new macroscopic spatio-temporal pattern of the
system and emergence of order.

Obviously, thermal fluctuations bear in themselves an uncertainty, or more pre-
cisely speaking, probabilities. A particle which is randomly pushed back or forth
(Brownian motion) can be described by a stochastic equation governing the change
of the probability distribution as a function of time. One of the most important means
to determine the probability distribution of a process is the so-called master equa-
tion. To visualize the process we may think of a particle moving in three dimensions
on a lattice.

The probability of finding the system at point x at time t increases due to tran-
sitions from other points x′ to the point under consideration (“rate in”). It decreases
due to transitions leaving this point (“rate out”). As the “rate in” consists of all
transitions from initial points x′ to x, it is composed of the sum over these initial
points. Each term of the sum is given by the probability of finding the particle at
point x′, multiplied by the transition probability (per unit time) for passing from x′
to x. In an analogous way the “rate out” can be found for the outgoing transitions.
Thus, the rate of change for the probability distribution of a process is determined
by a stochastic differential equation which is defined by the difference between “rate
in” and “rate out”.

Fluctuations are caused by a huge number of randomly moving particles. An
example is a fluid with its molecules. So a bifurcation of a stochastic process can
only be determined by the change of probabilistic distribution. In Fig. 2.25 the prob-
abilistic function changes from a sharp centration at a single attractor (Fig. 2.25a) to

Fig. 2.25a–c. Probabilistic function with single attractor (a), flat distribution (b), and two
attractors as stochastic symmetry breaking (c)
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a flat distribution (Fig. 2.25b) and finally to a distribution with two maxima at two
attractors (Fig. 2.25c), when the control parameter increases beyond corresponding
critical values. Figure 2.25c illustrates stochastic symmetry breaking [2.41].

In this context, complexity means that a system has a huge number of degrees of
freedom. When we manipulate a system from the outside we can change its degrees
of freedom. For example, at elevated temperature the molecules of water vapor move
freely without mutual correlation. When the temperature is lowered, a liquid drop is
formed. This macroscopic phenomenon is formed when the molecules keep a mean
distance between each other with correlated motion. At the freezing point water
is transformed into ice crystals with a fixed molecular order. Since the early days
of mankind people have been familiar with these phase transitions. The different
aggregate states may have been a reason for philosophical ideas that water is a basic
element of matter (compare Sect. 2.1).

Another example is taken from the material sciences. When a ferromagnet is
heated, it loses its magnetization beyond a critical value. But the magnet regains
its magnetization when the temperature is lowered. Magnetization is a macroscopic
feature which can be explained by changing the degrees of freedom at the micro-
scopic level. The ferromagnet consists of many atomic magnets. At elevated tem-
perature, the elementary magnets point in random directions. If the corresponding
magnetic moments are added up, they cancel each other. Then, on the macroscopic
level, no magnetization can be observed. Below a critical temperature, the atomic
magnets are lined up in a macroscopic order, giving rise to the macroscopic fea-
ture of magnetization (Fig. 4.9a). In both examples, the emergence of macroscopic
order was caused by lowering the temperature. The structure is formed without
loss of energy at low temperature. Thus, it is a kind of conservative (reversible)
self-organization. Physically, it can be explained by Boltzmann’s law of distribu-
tion demanding that structures with less energy are mainly realized at low tempera-
tures.

On the other hand, there are systems whose order and functioning are not
achieved by lowering temperature, but by maintaining a flux of energy and matter
through them. Familiar examples are living systems like plants and animals which
are fed by biochemical energy. The processing of this energy may result in the for-
mation of macroscopic patterns like the growth of plants, locomotion of animals,
and so on. But this emergence of order is by no means reserved to living systems
(compare Chap. 3). It is a kind of dissipative (irreversible) self-organization far from
thermal equilibrium which can be found in physics and chemistry as well as in bi-
ology.

As is well-known from the second law of thermodynamics, closed systems
without any exchange of energy and matter with their environment develop to disor-
dered states near thermal equilibrium. The degree of disorder is measured by a quan-
tity called “entropy”. The second law says that in closed systems the entropy always
increases to its maximal value. For instance, when a cold body is brought into con-
tact with a hot body, then heat is exchanged so that both bodies acquire the same
temperature, i.e., a disordered and homogeneous order of molecules. When a drop
of milk is put into coffee, the milk spreads out to a finally disordered and homo-
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geneous mixture of milky coffee. The reverse processes are never observed. In this
sense, processes according to the second law of thermodynamics are irreversible
with a unique direction [2.42].

An example from hydrodynamics is the Bénard instability, which was already
described in the beginning of Sect. 2.4. When the heated fluid layer (Fig. 2.20a)
reaches a critical value, it starts a macroscopic motion (Fig. 2.20b). Thus a dynamic
well-ordered spatial pattern emerges out of a disordered and homogeneous state as
long as a certain flux of energy is maintained through the system.

Another example from fluid dynamics is the flow of fluid round a cylinder. The
external control parameter is the Reynolds number Re of fluid velocity. At low speed
the flow happens in a homogeneous manner (Fig. 2.26a). At higher speeds, a new
macroscopic pattern with two vortices appears (Fig. 2.26b). With yet higher speeds

Fig. 2.26a–e. Macroscopic patterns of fluid dynamics with homogeneous state (a), two vor-
tices (b), oscillations (c), quasi-oscillations (d), and chaos (e) behind a cylinder depending on
increasing fluid velocity as control parameter
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the vortices start to oscillate (Fig. 2.26c–d). At a certain critical value, the irregu-
lar and chaotic pattern of a turbulent flow arises behind the cylinder (Fig. 2.26e).
Figure 2.26a–e presents a survey of possible attractors with one and more fixed
points, bifurcations, oscillating, and quasi-oscillating attractors, and finally fractal
chaos [2.43].

A famous example from modern physics and technology is the laser. A solid
state laser consists of a rod of material in which specific atoms are embedded. Each
atom may be excited by energy from outside leading it to the emission of light
pulses. Mirrors at the end faces of the rod serve to select these pulses. If the pulses
run in the axial direction, then they are reflected several times and stay longer in
the laser, while pulses in different directions leave it. At small pump power the laser
operates like a lamp, because the atoms emit independently of each other light pulses
(Fig. 2.27a). At a certain pump power, the atoms oscillate in phase, and a single
ordered pulse of gigantic length emerges (Fig. 2.27b) [2.44].

The laser beam is an exampel of macroscopic order emerging by a dissipative
(irreversible) self-organization far from thermal equilibrium. With its exchange and
processing of energy, the laser is obviously a dissipative system far from thermal
equilibrium.

In former days of history, scientists would have postulated certain demons or
mystic forces leading the elements of these systems to new patterns of order. But,
as in the case of conservative self-organization, we can explain dissipative self-
organization by a general scheme which is made precise by well-known mathe-
matical procedures. We start with an old structure, for instance a homogeneous fluid
or randomly emitting laser. The instability of the old structure is caused by a change
of external parameters, leading eventually to a new macroscopic spatio-temporal
structure. Close to the instability point we may distinguish between stable and un-
stable collective motions or waves (modes). The unstable modes start to influence
and determine the stable modes which therefore can be eliminated. Hermann Haken
calls this process very suggestively a “slaving principle”. Actually, the stable modes
are “enslaved” by the unstable modes at a certain threshold.

Fig. 2.27a,b. Wave patterns emitted from a lamp (a) and from a laser (b)
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Mathematically, this procedure is well known as the so-called “adiabatic elimi-
nation” of fast relaxing variables, for instance, from the master equation describing
the change of probabilistic distribution in the corresponding system. Obviously, this
elimination procedure enables an enormous reduction of the degrees of freedom.
The emergence of a new structure results from the fact that the remaining unsta-
ble modes serve as order parameters determining the macroscopic behavior of the
system. The evolution of the macroscopic parameters is described by differential
equations. In contrast to properties of the elements of a system at the microscopic
level (for instance, atoms, molecules, etc.), the order parameters denote macroscopic
features of the whole system. In the case of the laser, some slowly varying (“un-
damped”) amplitudes of modes may serve as the order parameters, because they
start to enslave the atomic system. In the language of biology, the order parameter
equations describe a process of “competition” and “selection” between modes. But,
of course, these are only metaphoric formulations which can be made precise by the
mathematical procedure mentioned above [2.45].

In general, to summarize, a dissipative structure may become unstable at a cer-
tain threshold and break down, enabling the emergence of a new structure. As
the introduction of corresponding order parameters results from the elimination of
a huge number of degrees of freedom, the emergence of dissipative order is com-
bined with a drastic reduction of complexity. Dissipative structures are a fundamen-
tal concept of complex systems which are used in this book to model processes
in natural and social sciences. The irreversibility of dissipative structures may re-
mind us of Heraclitus’ famous quotation that nobody can enter a stream in the same
state. Obviously, irreversibility violates the time-invariance symmetry which char-
acterizes the classical (Hamiltonian) world of Newton and Einstein. But the clas-
sical view will turn out to be a special case in a steadily changing world. On the
other hand, Heraclitus believed in an ordering law harmonizing irregular interac-
tions and creating new order states of matter. We have to see wether the mathe-
matical scheme of a dissipative system will satisfy the universal features of such
a law.

A general framework for the evolution of matter would be based on a unified
theory of all physical forces (Fig. 2.28). The standard models of cosmic evolution
which are derived from Einstein’s general theory of relativity must be explained by
the principles of quantum theory. Until today there are only several more or less
satisfying mathematical models of cosmic evolution which can only partially be
tested and confirmed by experiments. Nevertheless, it is the general idea of these
models that the emergence of structures with increasing complexity (elementary
particles, atoms, molecules, planets, stars, galaxies, etc.) can be explained by cosmic
phase transitions or symmetry breaking [2.46].

In cosmic evolution an initial state is assumed to be nearly homogeneous and
symmetric in the sense that in general no elementary particles can be distinguished,
but they can be transformed into one another. During cosmic evolution, critical val-
ues have been realized step by step at which symmetries break down by deviations
and fluctuations and new particles and forces emerge: “C’est la dissymétrie, qui crée
le phénomène,” said Pierre Curie [2.47]. But we must be aware that the cosmic pro-
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Fig. 2.28. Unification of physical forces

cesses of symmetry breaking and phase transitions are mathematical extrapolations
from experiments and theories in high energy physics.

Nowadays, physics distinguishes four fundamental forces, the electromagnetic,
strong, weak, and gravitational forces which are mathematically described by so-
called gauge fields. Elementary particle physics aims to unify the four physical
forces in one fundamental force corresponding to the initial state of the universe.
Electromagnetic and weak forces have already been unified at very high energies in
an accelerator ring at CERN (Fig. 2.28). Unification means that at a state of very
high energy the particles that “feel” the weak force (electrons, neutrinos, etc.) and
those that “feel” the electromagnetic force cannot be distinguished. They can be de-
scribed by the same symmetry group (U(1) × SU(2)), i.e., they are invariant with
respect to transformations of this group. At a particular critical value of lower energy
the symmetry breaks down into partial symmetries (U(1) and SU(2)) corresponding
to the electromagnetic and weak forces.

Physically, this kind of symmetry breaking means a phase transition which is
connected with the emergence of two new physical forces and their elementary par-
ticles. The process of spontaneous symmetry breaking is well known. For instance,
our breakfast egg is not stable in its symmetric position on its top. Any tiny fluctua-
tion causes it to fall spontaneously down to an asymmetric, but energetically stable
position. The phase transition of a ferromagnet from a non-magnetic to a magnetic
state is caused by cooling down the temperature to a critical point. The elementary
dipoles spontaneously take one of the two possible magnetic orientations, break the
spin-rotation symmetry, and cause the emergence of a new macroscopic property
(magnetization).
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The complex variety of baryons (protons, neutrons, etc.) and mesons interacting
via the strong force are constructed from the so-called quarks with three degrees of
freedom, i.e., the so-called “colors” red, green, and blue. A baryon, for instance, is
built up from three quarks which are distinguishable by three different colors. These
three colors are complementary in the sense that a hadron is neutral (without color)
to its environment. The mathematical symmetry group (SU(3)) characterizing the
color transformation of quarks is well known.

After the successful unification of the electromagnetic and weak interactions
physicists try to realize the “grand unification” of electroweak and strong forces,
and in a last step the “superunification” of all four forces (Fig. 2.28). There are sev-
eral research programs for superunification, such as supergravity and superstring
theory. Mathematically, they are described by extensions to more general structures
of symmetry (“gauge groups”) including the partial symmetries of the four basic
forces. Technically, the unification steps should be realized with growing values of
very high energy. But the “grand unification” demands states of energy which can-
not be realized in laboratories. Thus, the high energy physics of grand unification
could only be confirmed by certain consequences which could be tested in a labo-
ratory or observed in the universe (e.g., the decay of protons). The superunification
of all forces would demand infinitely increasing states of energy whose physical
principles are still unknown.

The theory of the so-called “inflationary universe” assumes an early state of
the universe with small size, but very high energy (“quantum vacuum”) which ex-
pands very rapidly to macroscopic dimensions driven by a repulsive force of the
quantum vacuum state (“anti-gravity”). This cosmic phase transition allows one to
explain some well-known properties of the observed universe such as the relatively
homogeneous distribution of stars and matter. During the inflationary period, some
tiny deviations from symmetry and uniformity would have been amplified until they
were big enough to account for the observed structures of the universe. In the ex-
panding universe the density of matter varied slightly from place to place. Thus,
gravity would have caused the denser regions to slow down their expansion and start
contracting. These local events led to the formation of stars and galaxies [2.48].

In general, the emergence of the structural variety in the universe from the el-
ementary particles to stars and living organisms is explained by phase transitions,
corresponding to symmetry breaking of equilibrium states (Figs. 2.29, 2.30). In this
sense the cosmic evolution of matter is understood as a self-organizing process with
the emergence of conservative and dissipative structures. But we must be aware
that cosmic self-organization is today only a “regulative idea of research”, as Kant
had said: we have more or less plausible dynamical models which are more or less
empirically confirmed. The very beginning of cosmic evolution is still unknown.

If we only assume the classical principles of Einstein’s general relativity, then,
as Roger Penrose and Stephen Hawking have mathematically proved, the standard
models of cosmic evolution have an initial singularity which may be interpreted as
the Big Bang, i.e., the emergence of the universe from a mathematical point. But if
we assume a unification of the general theory of relativity (i.e., Einstein’s relativis-
tic theory of gravitation) and quantum mechanics with imaginary (instead of real)
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Fig. 2.29. The emergence of structural variety in the universe from elementary particles to
galaxies [2.48]

Fig. 2.30. The evolution of matter with increasing and decreasing complexity [2.51]
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time, then, as Hawking has mathematically proved, a “smooth” cosmic model is
possible without any beginning, which simply exists, according to the mathematical
principles of a unified relativistic quantum physics [2.49].

The singularity theorems of Penrose and Hawking started with predictions of
small regions of space where space-time is so warped that gravity becomes infinitely
great. The existence of such singularities, in the form of black holes, for example,
suffer from a methodological disadvantage: Classical and relativistic laws of physics
are not applicable in regions with infinite curvature, so it is not possible to predict
events in time. That consequence is, of course, quite more dramatic than the expo-
nentially increasing difficulties in predicting the long-term future of chaotic systems.
That is why James B. Hartle and Stephen Hawking have suggested a singularity-free
model of the universe, in which quantum theory and general relativity theory are uni-
fied, and the real time axis is replaced by an imaginary one (in the sense of real and
imaginary numbers) [2.50]. In Hawking’s model, in contrast to Einstein’s relativis-
tic theory, the three spatial axes, together with a complex time axis, lead to a closed
early quantum universe that lacks boundaries and edges. This space-time not only
would always have existed, but every physical event could be explained according
to its laws. In this model, the traditional concepts of everything having somehow
“begun” or been “created” are methodologically inappropriate and are revealed to
be human imaginings stemming from our having adapted to the limited space-time
facets of our everyday experience.

Hawking’s theory is not only mathematically consistent, but is also, at least in
principle, experimentally testable. It is, therefore, a scientific theory and not mere
speculation. Among the testable consequences of this singularity-free model is the
prediction of black holes in which not all world lines of photons (“light beams”)
disappear entirely, but are reemitted as measurable amounts of radiation. As in the
explanation of the initial singularity of the universe, the reason lies in the possibility
of quantum fluctuations rooted in the uncertainty relation. But radiating black holes
lose energy and mass. In time, they will disintegrate and, with them, the history of
their stars will be lost. In their place, memory gaps will appear in the universe. With
the collapse of its galactic structures, a featureless universe expanding into a void is
heading for a “cosmic Alzheimer’s disease”.

Philosophically, Hawking’s early quantum universe without a beginning re-
minds us of Parmenides world of unchangeable being. But the uncertainty principle
of quantum mechanics implies that the early universe cannot have been completely
uniform because there must have been some uncertainties or fluctuations in the posi-
tions and velocities of the particles. Thus, the universe would have undergone a pe-
riod of rapid expansion which is described by the inflationary model, leading to our
complex universe in the long run. The equilibrium of the Parmenidean world broke
down and changed to the evolutionary and complex world of Heraclitus, caused
by a basic principle of quantum physics under the hypothesis of a “smooth” time
without singularities.

A cosmological model of an “eternal” universe without beginning and without
end was already introduced by Hermann Bondi, Thomas Gold, and Fred Hoyle in
1948. These authors did not only assume spatial homogeneity and isotropy of the
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universe at every time (“Cosmological Principle” of the standard models with Big
Bang), but also temporal homogeneity and isotropy: Their “perfect Cosmological
Principle” suggests that the universe globally looks the same not only at all points
and in all directions, but at all times, leading to a steady state model. According to
Hubble, there is a correlation between the red shift and the increasing distances of
expanding galaxies. So if the average number of galaxies per unit proper volume is
to remain constant, new galaxies must appear to fill up the holes in the widening
comoving coordinate mesh. An ad-hoc hypothesis of steady state cosmology was
the necessity of continuous creation of matter.

In recent quasi-steady state cosmologies, the strange assumption of a contin-
gent and nonlocal creation of matter is explained by the local birth of new galaxies
everywhere and at every time in the universe. The conditions of local big bangs are
assumed to be realizable in the supermassive centers of old galaxies. The red shifts
seems also to indicate the age of a galaxy. The uniform evolution with the sequential
emergence of elementary particles, atoms, molecules, galaxies, stars, etc. after the
global Big Bang (Fig. 2.29) is replaced by an autocatalytically self-reproducing uni-
verse without global beginning and without end, but with local births, growths, and
deaths of galaxies. In this case, old dying galaxies create the matter of new galax-
ies like plants and organisms bearing the seed of new life. The universal dynamics
would be a gigantic never ending nonlinear recycling process of matter [2.49].

But, perhaps, the laws of quantum mechanics open loopholes (“wormholes”)
of escape from the fate of our universe. According to general relativity theory, time
travel cannot be faster than the speed of light. As light is curved by gravitational
fields, time travelers must pass curved paths in space-time with high speed, limited
by the speed of light. Therefore, in order to overcome disruption of space-time by
gravitational fields, space-time regions would have to be explored using vast curved
detours. According to Heisenberg’s principle of uncertainty, quantum fluctuations
could open short-lived wormholes in space-time. So, the laws of quantum mechan-
ics make it at least conceivable that wormholes can be employed as fleeting shortcuts
between folded regions. However, if our universe is not alone but is instead inter-
wined with a fractal multiverse, along with many other bifurcating universes, as was
suggested in Andrei Linde’s inflationary theory, then wormholes could also be used
as escape routes for fleeing a universe that is aging with cosmic Alzheimer’s disease
and growing hostile to life as it loses energy.

From a theological point of view, these models do not need any creator, because
their worlds simply have been and will be self-contained and self-organizing without
beginning and without end. From a mathematical point of view, these models may
be very elegant. But from a methodological point of view, we must conclude that we
do not yet have a complete and consistent theory combing quantum mechanics and
relativistic gravity which could explain the evolution of matter with its increasing
complexity. Thus we are only certain of some of the properties by gravitational fields
such a unified theory could have. Today, different approaches of string theories exist
for achieving this unification on a sublevel of elementary particles. If all kinds of
elementary particles of gravitational, strong, weak, and electromagnetic interactions
are generated by oscillating strings, then there is even a chance to avoid the ultimate
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loss of information in the black holes of an aging universe: The information could be
stored by the vibrating membranes of more-dimensional strings on the substructure
of matter [2.52].

2.5 Complex Systems of the Nano World
and Self-Constructing Materials

In the evolution of matter, self-organizing processes can be observed from the level
of elementary particles to the cosmic structures of galaxies. They are not only inter-
esting from an epistemic point of view, but for applications in materials and life sci-
ence, too. At the boundary between materials science and life science, supramolec-
ular systems play a tremendous role. In this case molecular self-organization means
the spontaneous association of molecules under equilibrium conditions into sta-
ble and structurally well-defined aggregates with dimensions of 1–102 nanometers
(1 nm = 10−9 m = 10 Å).

Nanostructures may be considered as small, familiar, or large, depending on the
view point of the disciplines concerned. To chemists, nanostructures are molecular
assemblies of atoms numbering from 103 to 109 and molecular weights of 104 to
1010 daltons. Thus, they are chemically large supramolecules. To molecular biolo-
gists, nanostructures have the size of familiar objects from proteins to viruses and
cellular organelles. But to materials scientists and electrical engineers, nanostruc-
tures are at the current limit of microfabrication and thus they are rather small [2.53].

In the beginning of nanoscience there was the vision of an ingenious physicist.
In an article entitled “There’s Plenty of Room at the Bottom”, Richard Feynman
declared:

The principles of physics, as far as I can see, do not speak against the possibility of
maneuvering things atom by atom. It would be, in principle, possible . . . for a physicist
to synthesize any chemical substance that the chemist writes down . . . How? Put the atoms
down where the chemist says, and so you make the substance. The problems of chemistry and
biology can be greatly helped if our ability to see what we are doing, and to do things on an
atomic level, is ultimately developed – a development which I think cannot be avoided. [2.54]

Feynman proclaimed his physical ideas of the nanoworld in the late 1950s. The
belief in a new world needs new instruments of observation and measurement for
confirmation. Since the start of the 1980s, the nanoworld could actually be explored
using the scanning tunnel microscope. At the end of the 1980s, Eric Drexler de-
scribed a revolutionary vision of technological applications:

Nature shows that molecules can serve as machines because living things work by means
of such machinery. Enzymes are molecular machines that make, break, and rearrange the
bonds holding other molecules together. Muscles are driven by molecular machines that haul
fibers past one another. DNA serves as a data-storage system, transmitting digital instructions
to molecular machines, the ribosomes, that manufacture protein molecules. And these protein
molecules, in turn, make up most of the molecular machinery just described. [2.55]
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With nanotechnology, atoms will be specifically placed and connected in a fash-
ion similar to processes found in living organisms. Complex organisms, such as
plants and animals, make use of molecular machinary to manufacture and under-
take repairs at the cellular and subcellular levels. A cell can be considered a factory
of nanomachines consisting of molecular prototypes such as protein, nucleic acid,
lipid, and polysaccharide. They are used for energy production, information pro-
cessing, self-replication, self-repairing, and moving. A ribosome, for example, is
a cellular nanomachine that reads information off a RNA strand in order to construct
the amino acids of a protein. It reminds us of the assembly-like production of cars
by robots in the motor industry. Biological micro-organisms have been understood
as cellular systems driven and controlled by nanomachines. For example, bacteria
such as Escherichia coli use whip-like tails for moving around in fluids. The tails
like a propeller fueled by biochemical nanomachines. These nanomachines consist
of proteins in membranes generating the rotation of whip-like tails. They use mo-
tor shafts and armatures like electric motors. But the similarity of nanomachines and
electric motors is only illustrative. A biochemical nanomachine does not use electric
current to generate a magnetic field; it changes the shape of molecules by biochem-
ical procedures, such as decomposing ATP, in order to rotate the shaft [2.56].

Genetic engineering and computer programming have begun to inspire the de-
velopment of new materials. Using special bacterium-sized assembler devices, nan-
otechnology should permit the exact control and fast manipulation of molecular
structures. A fast enzyme can process almost a million molecules per second, even
without conveyors and power-driven mechanisms to slap a new molecule into place
as soon as an old one is released. Drexler assumed that an assembler arm would be
about fifty million times shorter than a human arm and, accordingly, would be able
to move back and forth about fifty million times more rapidly. According to Feyn-
man’s vision, such machines would seize individual atoms using selectively sticky
manipulator arms, then plug those atoms together like Lego blocks until chemical
bonding took place. Following the line of computer programming, one would expect
general-purpose chemical synthesizers acting like a general-purpose computer us-
ing nanotechnology. The desired molecules would be modeled on a computer screen
and an appropriate assembler would allow the mass-production of the desired sub-
stances. Perhaps someday, specially designed nanodevices the size of bacteria will
be programmed to destroy arterial plaque or cancer cells, or to repair cellular dam-
age caused by aging. They could be injected into the body with an induction to
self-destruct or integrate themselves into the body’s cells. Finally, it still seems to
be science fiction that smart nanodevices distributed throughout the brain might per-
mit the copying of thought patterns and mind uploading, so that a copy of a person’s
personality and memories could be placed in storage, or even run as a form of natu-
rally created artificial intelligence.

Nanostructures are complex systems which evidently lie at the interface be-
tween solid-state physics, supramolecular chemistry, and molecular biology. It fol-
lows that the exploration of nanostructures may deliver hints about the emergence
of life and about the fabrication of new materials. But engineering of nanostructures
cannot be mastered in the traditional way of mechanical construction. There are no
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man-made tools or machines for putting together their building blocks like the ele-
ments of a clock, motor, or computer chip. We must thus understand the principles of
self-organization which are used by nanostructures in nature. Then, we only need to
arrange the appropriate constraints under which the atomic elements of nanostruc-
tures associate themselves in a spontaneous self-construction: The elements adjust
their own positions to reach a thermodynamic minimum without any manipulation
by a human engineer.

Historically, the idea of supramolecular interactions dates back to a famous
metaphor of Emil Fischer (1894), who described a selective interaction of molecules
as the lock and key principle. Today, supramolecular chemistry has far surpassed
its original focus. Molecular self-assemblies combine several features of covalent
and noncovalent synthesis to make large and structurally well-defined assemblies of
atoms. The strengths of individual van der Waals interactions and hydrogen bonds
are weak relative to typical covalent bonds and comparable to thermal energies.
Therefore, many of these weak noncovalent interactions are necessary in order to
achieve molecular stability in self-assembled aggregates. In biology, there are many
complex systems of nanoscale structures such as proteins and viruses which are
formed by self-assembly. Living systems sum up many weak interactions between
chemical entities to make large ones. How can one make structures of the size and
complexity of biological structures, but without using biological catalysts or the
informational devices coded in genes?

Many nonbiological systems also display self-organizing behavior and further-
more provide examples of useful interactions. Molecular crystals are self-organizing
structures. Liquid crystals are self-organized phases intermediate in order between
crystals and lipids. Micelles, emulsions, and lipids display a broad variety of self-
organizing behavior. An example is the generation of cascade polymers yielding
molecular bifurcational superstructures of fractal order [2.57]. Their synthesis is
based on the architectural design of trees. Thus, these supramolecules are called
dendrimers (from the Greek word dendron for tree and polymer). The generation of
dendrimers has followed two basic procedures for monomer addition. A divergent
construction begins at the core and builds outward via an increasing number of re-
peating bifurcations. A convergent construction begins at the periphery and builds
inward via a constant number of transformations. The divergent construction trans-
forms the chemical reaction centers from the center into the periphery, generating
a network of bifurcating branches around the center. The bifurcations increase ex-
ponentially up to a critical state of maximal size. They yield fractal structures such
as molecular sponges which can contain smaller molecules, which can then be dis-
persed in a controlled way for medical applications.

Examples of cave-like supramolecules are the Buckminsterfullerenes, forming
great balls of carbon [2.58]. The stability of these complex clusters is supported
by their high geometric symmetry. The Buckminsterfullerenes are named after the
geodesic networks of ball-like halls which were constructed by the American archi-
tect Richard Buckminster Fuller (1895–1983). The cluster C60 of 60 carbon atoms
has a highly Platonic symmetry of atomic pentagons forming a completely closed
spheroid.
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Cave-like supramolecules can be arranged using chemical templates and matri-
ces to produce complex molecular structures. Several giant clusters comparable in
size to small proteins have been obtained by self-assembly. Figure 2.31 shows a ball-
and-stick model of the largest discrete cluster (700 heavy atoms) ever characterized
by X-ray structure analysis. This cluster containing 154 molybdenum, 532 oxygen,
and 14 nitrogen atoms has a relative molecular mass of about 24 000. The highly
symmetric “big wheel” was synthesized by Achim Müller and coworkers [2.59]. Gi-
ant clusters may have exceptional novel structural and electronic properties: There
are planes of different magnetization which are typical for special solid-state struc-
tures and of great significance for materials science. A remarkable structural prop-
erty is the presence of a nanometer-sized cavity inside the giant cluster. The use
here of templates and the selection of appropriate molecular arrangements may well
remind us of Fischer’s lock and key principle.

Molecular cavities can be used as containers for other chemicals or even for
medicaments which need to be transported within the human organism. An iron-
storage protein that occurs in many higher organisms is ferritin. It is an unusual
host-guest system consisting of an organic host (an aprotein) and a variable inor-
ganic guest (an iron core). Depending on the external demand, iron can either be
removed from this system or incorporated into it. Complex chemical aggregates

Fig. 2.31. Giant supramolecular cluster (“big wheel”) in a ball-and-stick representation: An
example of a complex near-equilibrium system [2.59]
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like polyoxometalates are frequently discovered to be based upon regular convex
polyhedra, such as Platonic solids. But their collective electronic and/or magnetic
properties cannot be deduced from the known properties of these building blocks.
According to the catchphrase “from molecules to materials” supramolecular chem-
istry applies the “blue-prints” of conservative self-organization to build up complex
materials on the nanometer scale with novel catalytic, electronic, electrochemical,
optical, magnetic, and photochemical properties. Multi-property materials are ex-
tremely interesting.

The exploration of the nanoworld and applications in nanotechnology depend
on better instruments of observation and measurement. The scanning force micro-
scope is a further development of the scanning tunnel microscope and can be used
like a fountain pen to write down molecular structures of nano size. A thin film of
thiolmolecules is used as “nano ink”. In a tiny drop of water the thiolmolecules or-
ganize themselves as mono layer. Nanocrystals of a few hundred atoms can organize
themselves with cadmium ions, selen ions, and organic molecules in to a ball-like
structure (Fig. 2.32). In ultraviolet light they fluoresce with a certain color. Thus,
they could be used as markers (“quantum dotes”) of molecules, cells, and substances
in medicine, for example. Complex systems of carbon molecules can organize them-
selves as tiny tubes of 1nm diameter according to certain catalysts and templates.
Their symmetric order of bonding results in great hardness and toughness. Carbon
nanotubes might be used as conductors for miniaturized chips beyond the limits of
silicon technology.

Fig. 2.32. Self-organizing nanocrystals (“quantum dots”) [2.60]

Supramolecular transistors are an example that may stimulate a revolutionary
new step in the development of chemical computers. Actually, there is a strong trend
towards nanostructures in electronic systems which may realize small, fast devices
and high-density information storage. But one can also imagine nonelectronic ap-
plications of nanostructures. They could be used as components in microsensors or
as catalysts and recognition elements in analogy to enzymes and receptors in living
systems. In natural evolution very large complex molecular systems are also pro-
duced by stepwise gene-directed processes. The conservative self-organization pro-
cesses of nanomolecular chemistry are non-gene-controlled reactions. Only a clever
combination of conservative and non-conservative self-organization could have ini-
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tiated prebiotic evolution before genes emerged. But even during the evolution of
complex organisms, conservative self-organization must have occurred. Open (“dis-
sipative”) physical and chemical systems lose their structure when the input of en-
ergy and matter is stopped or changed (e.g., laser, BZ-reaction). Organismic sys-
tems (like cells) are able to conserve much of their structure at least for a relatively
long time. On the other hand, they need energy and matter within a certain inter-
val of time to keep their structure more or less far from thermal equilibrium. In the
technical evolution of mankind, the principles of conservative and dissipative self-
organization have once more been discovered and open new avenues of technical
applications.

The complex systems approach enables engineers to endow materials with more
and more of the attributes of living organisms. Self-regulation and self-adaption to
a changing environment are well-known capabilities of living systems. They can be
considered as specific forms of self-organizing open systems in a changing envi-
ronment. Analogously, engineers aim to create complex materials systems that can
sense their own state, the state of their environment and respond to it. Dramatic ex-
amples are materials for bridges that could detect and counter corrosion before a py-
lon gives way, buildings that could brace themselves against seismic waves, or skins
of aeroplanes that could spontaneously react against dangerous material fatigue.

Actuators are materials which can change their features according to changing
states of the system [2.61]. Examples are piezoelectric ceramics and polymers acting
either as pressure sensors or as mechanical actuators. The electrical polarity of their
crystal or molecular structures allows a transformation of mechanical forces exerted
on them into electrical current or, conversely, a transformation of electrical stimuli
into vibrations. Piezoelectric polymers could be embedded in the skin of a robotic
hand in order to get a high degree of sensitivity (e.g., to decipher braille).

Other examples are alloys with a so-called shape memory that can be used as
actuators. Below a certain control value of transition temperature, a shape-memory
wire will take any shape it is bent into. When the wire is heated beyond the transi-
tion, it returns to its original shape. Engineers propose the incorporation of a shape-
memory metal into a material system in its low- temperature shape. It exerts a force
whenever it is heated. The force-generating transition takes place as the atoms in the
alloy’s crystal grains toggle between different geometric arrangements. Damage-
resisting bridges or airplane wings would be possible applications of these control
structures.

There are even actuator materials that can reversibly transform their mechanical
properties from a liquid to a solid state. They consist of fine polarizable particles of
ceramic or polymer suspended in a liquid such as silicone oil. When subjected to
strong electric fields, such fluids organize themselves into filaments and networks
which stiffen the material into a gel-like solid. When the electric field is removed,
the organization dissipates, and the material becomes fluid again. Other applications
are optical fibers acting as sensor materials. The properties of these hair-thin fibers
are affected by changes in temperature, pressure or other physical or chemical con-
ditions within the materials. They can be considered as “glass nerves” providing
optical signals of the material’s internal “health”.
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Sometimes, modern materials scientists call their systems smart or even “intel-
ligent” materials. The goal of their research is sometimes described as “animation of
the inanimate world” [2.62]. From a philosophical point of view, this slogan seems
to hark back to alchemistic traditions. Some philosophers of science may perhaps
criticize the vocabulary of materials scientists as non-scientific animism. But, from
the view point of complex systems, there is a hard scientific core. Properties of self-
organization are not necessarily combined with conscious behavior on the basis of
nervous systems. They even do not necessarily depend on biological catalysts or the
informational devices coded in genes. Thus, there is no break between the so-called
inanimate and animate world. In the evolution of matter, we observe systems with
more or less high degrees of organization. It is clear that we have only made the
very first steps in understanding their full potential.

Concerning the future of technology, the question arises, how realistic is the
vision of self-replicating nanorobots? They would be the equivalent of a new para-
sitic life form. Pathogenic bacteria and cancer cells are dangerous examples of self-
replicating biological systems. Computer viruses with self-replicating strings of bits
are the first, at least virtual, examples of artificial self-organizing systems. Bill Joy,
the chief scientist of Sun Microsystems, has already raised concerns about the soci-
etal implications of proliferating nanobots [2.63]. In an artificial evolution, Joy says,
hostile agents could evolve into populations of embodied biochemical agents of
nano size. As autonomous, self-interested beings, they could attack the foundations
of human life. Richard E. Smalley, who received the Nobel Prize in chemistry for
the discovery of fullerenes, dismisses the notion of out-of-control nanorobots [2.64].
Following Feynman’s slogan, “There’s plenty of room at the bottom”, Smalley ar-
gues that not much room is needed to manipulate atoms one by one with nano-sized
atomic instruments. He calls these constraints the fat and sticky fingers problem: The
nanobot’s manipulating “fingers” are not only too large (“fat”) but also too sticky,
because their atoms will adhere to the atom that is being moved. Smalley’s picture
of fingers underlines the fact there are no counterparts of our today technology at
nanometer sizes. In living systems, evolution has developed examples of biochem-
ical nanomachines, and there is no reason to believe that there cannot be others on
different material grounds. But the technological strategy should follow the natural
idea of self-organization under appropriate constraints, not the old- fashioned me-
chanical idea of picking and placing atoms with nanoscale pincers. We should not
look for assemblers, but self-assemblers. From the point of view of computer sci-
ence, the idea of a universal fabricator of any kind of structure, including itself, is
not strange. A universal Turing machine (compare Sect. 5.2) is already embodied
by our general-purpose computers, which process all kinds of programs. Why not
on the nanoscale?

2.6 Time Series Analysis, Fractals, and Multifractals

Understanding complex systems and nonlinear dynamics in nature seems to yield
appropriate models for the evolution of matter. But how can we be sure that our
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models are correct? The mathematical theory of nonlinear dynamics distinguishes
different types of time-dependend equations, generating different types of behavior,
such as fixed points, limit cycles, and chaos. For application, they are related to
natural systems in the micro, nano, and macroworld. We use our understanding of
the special mechanisms to write an appropriate dynamical equation. For example,
Lorenz’s understanding of the dynamics of weather led to his famous nonlinear
equations, which were also applied to biological and economic systems by people
familiar with those fields.

From a methodological point of view, this is the top-down approach to model
building: We start with an assumed mathematical model of a natural system and de-
duce its behavior by solving the corresponding dynamical equations under certain
initial and secondary conditions. The solutions can be represented geometrically as
trajectories in the phase space of the dynamical system and classified by different
types of attractors. They forecast the types of behavior that we are likely to observe
in a specialized field of research. Especially chaotic dynamics can be derived from
the given equations if certain criteria are satisfied. But, in practice, we often must
take the opposite, bottom-up approach. Physicists, chemists, biologists, or physi-
cians start with data mining in an unknown field of research. They only get a finite
series of measured data corresponding to time- dependend events of a dynamical
system. From these data they must reconstruct the behavior of the system in order to
guess its type of dynamical equation. Therefore, the bottom-up approach is called
time series analysis [2.65]. In many cases, we have knowledge of the system from
which the data came. Time series analysis then aims to construct a black box, which
takes the measured data as input and provides as output a mathematical model de-
scribing the data. In practice, the realistic strategy of research is a combination of
the top-down approach with model building and the bottom-up approach with time
series analysis.

The bottom-up approach starts with data as results of measurements, not with
the idealized variables of a model. The measurements approximate the variables
of a dynamical model. Their difference is called measurement error, which can be
caused by several factors of noise. Noise of measurements refers to fluctuations of
data that differ from a well-defined average behavior and arise from chance. While
measurement noise is caused by the intrinsic behavior of the real system, the out-
side influence of the system also affects a kind of noise. Many variables of outside
influence must be excluded in order to reduce the complexity of model building.
The outside influence on the actual behavior of a system is considered random noise
affecting the measured variables of the model.

In classical measurement theory, measurement error is analyzed by statistical
methods, such as correlation coefficient and autocorrelation function. But these stan-
dard procedures are not able to distinguish between data from linear and nonlinear
models. In nonlinear data analysis, the measured data are used in a first step to recon-
struct the dynamics of the system in a reconstructed phase space. A simple example
is the finite difference equation of the logistic map, which we studied in Sect. 2.4:
The nonlinear equation xt+1 = f (xt) describes a relationship between xt+1 and xt.
In Fig. 2.24, the coordinates are plotted xt+1 versus xt. If there is no measurement
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noise, we can identify the measurement data Dt and the variable xt at time t. It is
no surprise then, that a scatter plot of the measured data Dt+1 versus Dt delivers the
same relationship as the model.

If data are collected from a continuous-time dynamical system with differential
equations, rather than finite-difference equations, the corresponding phase plane or
phase space must be reconstructed from the measured data of the continuous system.
The heuristic idea is that the measured data in the reconstructed phase space show
the same dynamical behavior as the trajectories in the phase space of the dynamical
model. Consider, for example, the data generated by a harmonic oscillator with the
2nd order differential equation d2x/dt2 = −bx. The corresponding phase plane is
given by the variables x and y, which are determined by the two 1st order differential
equations dx/dt = y and dy/dt = −bx. We suppose that a time series D(t) = x(t) is
measured without measurement noise. In order to reconstruct the phase plane from
the measured data, we remember that the state of the system at any instant t is rep-
resented by the position (x, y) on the phase plane. The time series of measurements
yields us only one coordinate D = x at every instant. But we can calculate the other
coordinate y = dD/dt from the 1st order differential equation of the phase space.
A plot dD/dt versus D generates a continuous phase plane. In the reconstructed dis-
crete phase plane of the measured data Dt+1 versus Dt the trajectory shows the same
cyclic behavior as in the continuous phase plane of the model.

In general, the dynamics on a phase plane are given by a pair of coupled differential
equations dx/dt = f (x, y) and dy/dt = g(x, y). Sometimes we can only measure x. But
then we can calculate dx/dt and get the value f (x, y), which also contains some information
about y. This information is often sufficient to reconstruct the dynamics of trajectories in the
(x, y) phase plane. The 1st derivative of x at time t is calculated using the well-known formula

dx(t)l dt = lim
h→0

[x(t + h)− x(t)]/h.

A time series of measurements D(t) = x(t) without noise consists of measurement data
D0, D1, D2, . . . at discrete times t = 0, 1, 2, . . .. The derivative of x at time t can be approxi-
mated by differences of corresponding measurement data

dDt/dt = [Dt+h − Dt]/h with h = 1, 2, . . . .

The smallest useful value of h is 1. But sometimes it is appropriate to select a larger time-lag h.
By plotting Dt+h versus Dt the phase plane dynamics of a system can often be reconstructed
from measurements Dt without the direct measurement of the variable y of the model. In
this case, the dynamics in the reconstructed (Dt, Dt+h) phase plane are similar to the original
(x, y) phase plane of the dynamical system.

Nonlinear dynamical systems generating chaos must be determined by at least
three equations. As an example, the Lorenz attractor (Fig. 2.21) is generated in
a phase space with three coordinates x(t), y(t), and z(t), which are determined by
three nonlinear differential equations. Figure 2.33a shows a time series of measured
data Dt from the Lorenz system. If only one variable D(t) = x(t) can be measured,
a Lorenz attractor in a (Dt, Dt−h, Dt−2h) phase space (Fig. 2.33c) can be recon-
structed with great similarity to the original Lorenz attractor of the (x, y, z) phase
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space (Fig. 2.33b). In general, a time series can be embedded in a p-dimensional
space with p-coordinates Dt = (Dt, Dt−h, Dt−2h, . . . , Dt−(p−1)h) and time-lag h. Ac-
cording to Takens’ embedding theorem [2.66], the reconstructed dynamics are ge-
ometrically similar to the original for both continuous-time and discrete-time sys-
tems. The sequence of points created by embedding a time series is called the tra-
jectory of the time series.

In practice, decisions about chaotic dynamics are rather difficult. How can we
decide that a time series of measured data is not generated by noisy irregularity
but by highly structured chaotic attractors? A chaotic attractor is determined by
a trajectory in a bounded region of a phase space with aperiodic behavior and sen-
sitive dependence on initial conditions. These criteria – determinism, boundedness,
aperiodicity, and sensitivity – can be checked by several techniques of time series
analysis. A system is called deterministic when future events are causally set by past
events. For example, a finite-difference equation like xt+1 = f (xt) is deterministic
if f (xt) has only one value for each value of xt and the future value xt+1 can be
calculated from the past value xt by function f .

How can we decide that measured data of past events Dt determine the future events
Dt+1? We suppose that measurements are made up to time T , and that a prediction of the
value at time T + 1 should be made. Again, we use the afore mentioned procedure to embed

Fig. 2.33a. Measured time series of Lorenz system [2.67]

Fig. 2.33b,c. Trajectory in (x, y, z) phase space (b) and reconstructed trajectory in
(Dt, Dt−h, Dt−2h) phase space with time-lag h of Lorenz attractor (c) [2.68]
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the time series in a p-dimensional space with time-lag h. The embedding point at time T ,
representing measurements of past events, is DT = (DT , DT−h, . . . , DT−(p−1)h). We look
through the finite rest of the embedded time series for the closest point to DT , which is called
Dc at time c. Dc represents the past events to the measurement Dc+1. As DT is close to Dc,
the measured value Dc+1 is expected to be close to DT+1 in deterministic dynamics. Thus,
the prediction of DT+1 is identified with the measured value Dc+1. The difference between
the prediction and DT+1 is the prediction error which indicates the quality of the prediction.
A more meaningful indication of determinism uses the average of many prediction errors.

Dynamics are bounded if they stay in a finite range of the phase space and do
not approach +∞ and −∞ when time increases. In the case of noise, the trajectories
spread unbounded all over the phase space. A chaotic attractor is always bounded
in a certain region of the phase space. But practically measured data are, of course,
always in a finite range, because the physical universe is finite. Thus, boundedness
of measured data is related to the concept of stationarity. A time series is stationary
if the mean and standard deviation remain the same throughout the time series. Ape-
riodicity means that the states of a dynamical system never return to their previous
values. But values of states may return more or less to previous values. Thus, aperi-
odicity is a question of degree. How can we determine the degree of aperiodicity in
measured data?

Again, we embed the time series of measurements in a p-dimensional space
with time-lag h. Each point Dt = (Dt, Dt−h, . . . , Dt−(p−1)h) represents the state of
the dynamical system at time t. The distance of two states is measured by the dis-
tance between two points at times i and j by δij = |Di − Dj| (Fig. 2.34). If the time
series is periodic with time T, the values of states are repeated after T values for
several times. In this case, the distance δij of the points representing times t and j is
zero for |i − j| = nT with n = 0, 1, 2, . . .. The degrees of periodicity and aperiodic-
ity can be studied in recurrence plots of points (i, j) if the distance of Di and Dj is
smaller than a given distance r.

Such plots depict how the reconstructed trajectory recurs or repeats itself. The
number of dots in a recurrence plot shows how many times the trajectory came

Fig. 2.34a,b. Recurrence plots with periodicity for quadratic map xt+1 = 3. 52xt(1 − xt)

(p = 2, r = 0. 001) (a) and aperiodicity for chaotic map xt+1 = 4xt(1 − xt) (p = 2,
r = 0. 001) (b) [2.69]
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within a distance r of a previous value. The correlation integral C(r) defines the
density of points (i, j) in a recurrence plot where the measured time series Di and Dj

are closer than r for i �= j (Fig. 2.34). The correlation integral is an effective concept
of chaotic time series analysis [2.70]. If the distance r increases, more dots appear
in the recurrence plots with an increasing density C(r). The characteristic curves of
C(r) are flat for a periodic system, with a gentle slope for a chaotic system, and with
a steeper slope for a random system.

There is an important relationship between the correlation integral and the con-
cept of fractal dimension (compare Sect. 2.4). Consider the scattered points in an
area within a distance r to a reference point on a 2-dimensional surface (e.g., a cir-
cle with radius r and area πr2) or in a 3-dimensional space (e.g., a sphere with ra-
dius r and volume 4/3πr3). In general, for points scattered throughout an object in
a ν-dimensional space, the number of points closer than distance r to a reference
point is proportinal to rν . The correlation integral was introduced as a measure
for the density of scattered points within a distance r to a reference point of a re-
currence plot. Thus, the correlation integral of a scattering of points throughout a
ν-dimensional object is proportional to rν i.e., C(r) = qrν with a constant q of
proportionality. The correlation dimension ν of the ν-dimensional object can be
calculated by the logarithm of this equation, i.e. log C(r) = ν log r + log q. In order
to find the correlation dimension ν, we can plot log C(r) versus log r and determine
the slope of the resulting line. This procedure can also be used to find the fractal
dimension of an object.

In time series analysis the correlation dimension is sometimes used to find at-
tractors. It is well known that chaotic attractors are often self-similar with fractal
dimension. If a time series is generated by a chaotic system, the trajectory of the
time series, which is reconstructed from the measurement data by embedding, has
the same topological properties as the original attractor of the system, as long as the
embedding dimension is large enough. Takens proved a method for finding an ap-
propriate embedding dimension for the reconstruction of an attractor: If the original
attractor has the dimension ν, then a dimension p = 2ν + 1 is adequate for the em-
bedding space of the reconstructed attractor. But this method yields no procedure
for finding a chaotic attractor, because its existence has been assumed in order to
determine its dimension from the measurement data.

Another way to characterize chaotic dynamics is to measure the strength of
their sensitive dependence on initial data. Consider two trajectories starting from
nearly the same initial data. In chaotic dynamics only a tiny difference in the initial
conditions can result in the two trajectories diverging exponentially quickly in the
phase space after a short period of time (Fig. 2.35). In this case, it is difficult to
calculate long-term forecasts, because the initial data can only be determined with
a finite degree of precision. Tiny deviations in digits behind the decimal point of
measurement data may lead to completely different forecasts. This is the reason why
attempts to forecast weather fail in an unstable and chaotic situation. In principle,
the wing of a butterfly may cause a global change of development. This “butterfly
effect” can be measured by the so-called Lyapunov exponent. A trajectory x(t) starts
with an initial state x(0). If it develops exponentially fast, then it is approximately



2.6 Time Series Analysis, Fractals, and Multifractals 83

Fig. 2.35. Exponential dependence on initial conditions measured by Lyapunov exponent Λ
[2.71]

given by |x(t)| ∼ |x(0)|eΛt. The exponent Λ is smaller than zero if the trajectory
is attracted by attractors, such as stable points or orbits. It is larger than zero if it is
divergent and sensitive to very small perturbations of the initial state.

Let us consider a finite-difference equation xt+1 = f (xt) with two nearby initial po-
sitions x0 and y0 in the phase space. By iterated application of the function f we get
xt = f (xt−1) = f t(x0) and yt = f (xt−1) = f t(y0) with t = 0, 1, 2, . . .. If the positions xt and
yt are separated exponentially fast by iterations, then their distances are |yt−xt| = |y0−x0|eλt

withΛ > 0. For increasing t → ∞ it follows (1/t)|yt − xt|/|y0 − x0| → Λ. If the path of the
trajectory is within a bounded region, the exponential separation only occurs when the initial
positions are very close to each other. In this case, we decrease the difference |y0 − x0| be-
fore we determine the limit for increasing t → ∞. The Lyapunov exponent of the trajectory
xt = f t(x0) can then be defined by the constant

Λ = lim
t→∞ 1/t lim|y0−x0|→0

ln |yt − xt|/|y0 − x0|

= lim
t→∞ 1/t lim|y0−x0|→0

ln |f t(y0)− f t(x0)|/|y0 − x0|

= lim
t→∞ 1/t ln |df t(x0)/x0| = lim

t→∞ 1/t
t−1∑

i=0

ln |df (xi)/xi|.

For continuous dynamical systems with differential equations, the trajectory is a vector x(t)
with a Lyapunov exponent Λ = lim sup 1/t ln |x(t)|. The Lyapunov exponent provides a mea-
sure for the mean convergence and divergence rate of neighboring trajectories of a dynamical
system. For an n-dimensional system, the n Lyapunov exponents Λ1 ≥ Λ2 ≥ . . . ≥ Λn
describe different types of attractors. For non-chaotic attractors we can distinguish asymptot-
ically stable equilibrium with Λi < 0 (i = 1, . . . , n), asymptotically stable limit cycle with
Λ1 = 0 and Λi < 0 (i = 2, . . . , n), asymptotically stable two-torus with Λ1 = Λ2 = 0 and
Λi < 0 (i = 3, . . . , n), and asymptotically stable m-torus with Λ1 = . . . = Λm = 0 and
Λi < 0 (i = m + 1, . . . , n). A chaotic system must have at least one positive Lyapunov ex-
ponent. In the 3-dimensional case, the only possibilty for chaos is Λ1 > 0, Λ2 = 0, Λ3 < 0
with Λ3 < −Λ1.

Dynamical systems can be classified by attractors with increasing complexity
from fixed points, periodic and quasi-periodic up to chaotic behavior. This classifica-
tion of attractors can be characterized by different methods, such as typical patterns
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of time series, their power spectrum, phase portraits in a phase space, Lyapunov ex-
ponents, (fractal) dimension, and a measure of their information flow (Kolmogorov-
Sinai-Entropy), which will be discussed in Sect. 5.3 in more detail. Table 2.1 yields
an overview of these degrees of dynamic complexity, which form the framework for
the complex dynamical approach of this book.

One of the most significant concepts is that of the fractal dimension, a measure
of the roughness of an object. Fractality seems to be a natural feature of reality.
Rocky coastlines consist of cliffs and crannies. Rocks with rough surfaces erode. In
organic growth, such as that for the airways of the lungs, a fractal process of itera-
tive division is the natural outcome of the genetic rules for animal development. In
Euclidean geometry, we are familiar with the single dimension of a straight line, or
the two dimensions of a plane. An example of a fractal dimension is that of Koch’s
curve (Fig. 2.36). In order to measure its length, one starts with a ruler that is one-
third of the breadth of the object (the curve). This ruler corresponds to each line
inside the curve in the top panel. The line fits inside the curve four times. The ruler
is then shortened to a third of its original length, as shown in the bottom diagram.
Because this shorter ruler can fit into more “crannies” of the curve, the length of
curve obtained using this ruler is greater than that given by the original ruler, (by
four-thirds). For each change in state, the length measured is multiplied by the same
fraction, four-thirds. The fractal dimension is then defined as the ratio of the loga-
rithm of 4 to the logarithm of 3, or 1. 2618 . . . The intuitive sense of this “fractal”
number is obvious: the curve is crinkly, so it fills more space than a one-dimensional
straight line does. However, it does not completely fill the two-dimensional plane.

Table 2.1. Dynamic complexity of attractors for 3-dimensional systems [2.72]
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Fig. 2.36. Fractal dimension of Koch’s curve

Using analog recursive procedures, we can construct Hilbert and Sierpinski
curves that fill a plane with self-similar patterns in iterated steps of increasing den-
sity. These curves seem to be more than lines, with one dimension, but less than
planes, with two dimensions. Their dimensions are “fractions” between the integers
one and two. The fractal dimension can be illustrated by the geometrical dimen-
sion D of similarity. For a Euclidean object of dimension D, the length, area or
volume of an object with edge length ε is proportional to εD. For example, a square
with edge length ε has an area of ε2, while a cube has a volume of ε3. For self-
similar objects, one way to measure the length, area or volume of an object is to
count the number of self-similar copies. If there are N copies each with an edge
length ε, then the length, area or volume of the object is related to its dimension:
N is proportional to εD. Thus, one obtains D ≈ log N/ log ε. For Koch’s curve,
the number of self-similar copies is N = 4 and the edge length is ε = 3. If phase
portraits of chaos attractors have a fractal dimension (Table 2.1), they are termed
“strange.” Time series are sometimes characterized by statistical self-similarity on
different scales (e.g., Fig. 8.16). Thus, a fractal dimension could hint at chaos, but
its presence alone does not indicate chaos.

Self-similar mathematical objects consist exclusively of smaller self-similar
copies of themselves. Our procedure for calculating the dimension of a fractal ob-
ject is only useful if we know the number N of self-similar copies and the size ε of
the original relative to each copy. For practical applications (e.g., a map or picture
of a fractal object or real objects in the three-dimensional world), we need a better
procedure for estimating the fractal dimension. The following procedure comes di-
rectly from the definition of the fractal dimension. In a first step, all points in the
object are covered with N(ε0) or cubes of edge length ε0. This step is repeated with
squares or cubes of edge length ε1 = ε0/2, then with ε2 = ε1/2, and so on. By doing
this, we obtain a function N(ε) sampled at the values ε = ε0, ε1, . . . In theory, the
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Fig. 2.37. Multifractal process of turbulance

dimension D is defined by lim N(ε) = k · ε−D, with a constant k. In practice, D can
be estimated as D ≈ (log(N(εi+1)/N(εi)))/(log(εi/εi+1)). However, the squares or
cubes should not be made smaller than the cells or particles that are considered to
be the building blocks of the object [2.73].

Intuitively, a fractal is a pattern or object whose parts echo the whole, only
scaled down. By contrast, a multifractal has more than one scaling ratio in the same
object. Some parts of the object shrink quickly, others slowly. Multifractals resem-
ble the way in which many aspects of nature really work more closely than fractals.
Different clusters are formed on the surface of the Earth in multifractal processes;
they are not always distributed and scaled in the same way. On a stormy day, the
wind velocities form clusters of high gusts interspersed with gentler breezes. One
can think of a multifractal as being composed of an infinite hierarchy of differ-
ent fractal sets. An example is given in Fig. 2.37, which shows a hierarchy for the
vertical cross-section of stratified turbulence. The generic multifractal process of
turbulence is a cascade of cells with different distributions of whirls. Mathemati-
cally, multifractals are defined by two groups. One determines the statistics (more
precisely, they vary as a function of scale), while the second defines the notion of
scale itself [2.74].



3 Complex Systems and the Evolution of Life

How can one explain the emergence of order in the Darwinian evolution of life?
In the history of philosophy and biology, life was explained teleologically by
non-causal (“vital”) forces aiming at some goals in nature. In a famous quotation
Kant said that the “Newton for explaining a blade of grass” could never be found
(Sect. 3.1). Boltzmann could show that living organisms are open dissipative sys-
tems which do not violate the second law of thermodynamics: Maxwell’s demons
are not necessary to explain the arising order of life in spite of the increasing en-
tropy and disorder in closed systems according to the second law. Nevertheless,
in the statistical interpretation from Boltzmann to Monod the emergence of life is
only a contingent event, a local cosmic fluctuation at the boundary of the universe
(Sect. 3.2). In the framework of complex systems the emergence of life is not con-
tingent, but necessary and lawful in the sense of dissipative self-organization. The
growth of organisms and species is modeled as the emergence of macroscopic pat-
terns caused by nonlinear (microscopic) interactions of molecules, cells, etc., in
phase transitions far from thermal equilibrium (Sect. 3.3). Even ecological popu-
lations are understood as complex dissipative systems of plants and animals with
mutual nonlinear interactions and metabolism with their environment (Sect. 3.4). In
the life sciences, relations between physiological, morphological or ecological vari-
ables often lead to power laws with an underlying fractal process. Complex organs
like the lungs or heart are obviously structured fractally. Power laws are important
criteria for complexity (Sect. 3.5). Therefore, Spencer’s idea that life is determined
by a structural evolution with increasing complexity can be mathematized through
complex dynamical systems. Has the “Newton of life” been found? The theory of
complex dynamical systems does not explain what life is, but it can model how
forms of life can arise under certain conditions. Thus, our existence remains a source
of wonder to us just as it did for our ancestors, even if we will eventually be able to
model the complex dynamics of life.

3.1 From Thales to Darwin

Before we discuss complex systems and the evolution of life, let us have a glance at
early philosophies of life [3.1]. It is a surprising fact that many aspects of modern
ecology remind us of early ideas of self-organization. In mystic interpretations, life
was understood as a cyclic movement of growth and decay, birth and death. Animals
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and humans only survived in adapting to the great cycles of nature such as high tide
and low tide, the change of seasons, changing constellations of stars, fertile and
sterile periods of nature, and so on. Nature itself seemed to be a great organism, and
humans were considered as partly involved in its natural development. Mythologies
of natural religions and their rituals were used to conjure the forces of nature and to
live in harmony with the natural order.

Mythology was given up in favour of natural philosophy, when people asked
for the basic principles of life, and when they no longer accepted demons and gods
as personified forces of nature. In the 6th century B.C. the presocratic philosopher
Thales of Miletus declared water to be the fundamental source of life. Anaximander
seems to have some early ideas of evolution:

It is said that in the wet element the first living beings come to be, in a husk of prickly
rinds; with increasing age they climbed onto the dry element, the rind tore of on all sides and
so, for a short time they took on a different live form. [3.2]

Regarding the derivation of humans, Anaximander expressed an utterly modern
conception. Observing the long period that human children need for care and pro-
tection, he drew the conclusion that if they had always required that, humans would
have not been able to survive. So, earlier they must have been different. Empedo-
cles explained the processes of life with certain mixtures and transformations of the
familiar elements water, air, fire, and earth.

While these organic explanations of life seemed to be intuitively convincing
for former contemporaries, Democritus’ atomism with his reduction of life to the
interaction of invisible atoms was considered as rather abstract. Even consciousness
and the soul of man was explained by microscopic interactions of tiny material
elements. So, Democritus and his school were not only attacked as materialists, but
as atheists too. Plato tried to model the first elements of matter and their combination
by geometric figures and constructions.

From a modern scientific point of view, Democritus’ atomism and Plato’s math-
ematical models were early reductionist programs for life. They tried to reduce phys-
iological and biological processes to the interactions of physical elements. But the
idea of explaining the changing and pulsating processes of life on the basis of the
rigid and dead figures of geometry or material atoms must have seemed thoroughly
unnatural, speculative, and far-fetched to the contemporaries of that time. In short,
“real” life seemed to be hopelessly “complex”, and Euclid’s mathematics too “sim-
ple”. So, Euclid’s mathematics was reserved for the “superlunar” world of stars, but
not applied to the “sublunar” world of earthly life.

This is where the Aristotelian philosophy of life begins. While Plato, in the
Pythagorean tradition, drew his concept from geometry, Aristotle formulated his
concept of processes in nature mainly on the basis of the ways in which living
organisms such as plants and animals function. The processes and courses of life
are known to us from everyday experience. What is more obvious than to com-
pare and explain the rest of the world, which is unknown and strange, with the
familiar? According to Aristotle, the task of physics is to explain the principles and
functions of nature’s complexity and changes. In modern terms, Aristotle rejected
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atomic reductionism as well as the mathematization of life as speculative and unre-
alistic.

Life was defined by the feature of self-movement, in contrast to a dead stone
which must be pushed from outside in order to move. In this Aristotelean sense, life
meant “having a soul”, which was understood as an organizing force (entelechy)
of matter (vitalism). In modern terms, the self-organisation of life was interpreted
by Aristotle as a functionally governed process aiming at certain “attractors” of
purposes (teleology). For instance, a tree grows out of a seed with the purpose of
reaching its final form. In modern terms, the change of forms characterizing the
growth of an organism is something like the (qualitative) evolution of an order pa-
rameter which Aristotle called the “potentiality” of that organism. But, of course, the
main difference compared to modern concepts of order parameters is the fact that
Aristotle criticized any reduction of macroscopic forms to atomic or microscopic
interactions.

It is noteworthy that Aristotle proposed a continuous scale of more or less an-
imated states of nature (scala naturae) and denied an absolute contrast of “alive”
and “dead”. He was always seeking for the intermediate or connecting links be-
tween organisms with different complexity. For instance, for a Greek like Aristotle,
living by the Mediterranean Sea with its plentiful flora and fauna, it was easy to
observe organisms like water-lilies “which may be doubted to be animals or plants,
because they grow to the floor like plants, but eat fishes like animals” [3.3]. On the
background of continuity, Aristotle suggested a kind of biogenetic law: “In the be-
ginning the fetus of an animal seems to have a kind of life like a plant; during its
later development, we may speek of a sensitive and thinking soul” [3.4].

Aristotle was not only a theorist, but one of the first observing botanists, zo-
ologists, and physiologists. He designed a taxonomy of plants and animals accord-
ing to different features, and tried to describe the physiological processes of life.
His leading paradigm of life was the idea of a self-organizing organism, rejecting
any atomic, molecular, or anorganic reductionism. Aristotle’s philosophy of life has
overshadowed the development of biology until today.

In the Roman period, even medicine was influenced by Aristotelean tradition.
Galen, the physician of the Roman emperor Marcus Aurelius, taught that organs
had to be adapted completely to their functions in our body. Following Aristotelean
teleology, he described the digestive organs selecting the “purposeful” parts of food
for the life processes and separating the “useless” ones. In the Middle Ages, Al-
bertus Magnus combined Aristotelean philosophy of life with Christianity. On the
background of Aristotle’s teleology, Albertus developed an early ecology demand-
ing that humans have to live in harmony with their natural environment. Organisms
and their environments are connected with each other by numerous exchanges of
air, food, excreta, etc. which are in a natural balance (“equilibrium”) governed by
divine ordinances. Albertus thought that even the health of the human soul depends
on a healthy environment with healthy air, climate, plants, and animals. Soul and
body are not separated, but an organic whole.

The decisive condition of modern physics was the connection of mathematics,
observation, experiment, and engineering which was realized by Galilei in the Re-
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naissance. Newton founded a new mathematical and experimental philosophy of
nature which he called Philosophiae naturalis principia mathematica (1687). Ge-
ometry and mechanics became the new paradigm of natural sciences. In the history
of science this period is called the mechanization of nature, which was imagined
to be nothing else than a huge mechanical clock. The mathematician and philoso-
pher René Descartes and the physicist Christian Huygens taught that every system
in nature consists of separated elements like the cog wheels of a clock. Every ef-
fect of nature was believed to be reducible to linear causal chains like sequences of
cog wheels of a clock. Obviously, Cartesian mechanism is contrary to Aristotelian
holism.

Even the physiology of life processes should be explained mechanically. The
heart, for instance, was considered as a pumping machine. In general, Descartes
believed that the motions of an animal and human body can be derived from the
mechanism of organs “and that with the same necessity as the mechanism of a clock
from the position and form of its weights and wheels” [3.5]. The anatomy of human
bodies which was practised by dissection since the Renaissance was an application
of the analytical method of Descartes. According to Descartes, each system can be
separated into its basic building blocks, in order to explain its functions by the laws
of geometry and mechanics.

The Italian physicist and physiologist Borelli (1608–1679) founded the so-
called iatrophysics as an early kind of biophysics. He transferred a famous quotation
of Galileo from physics to biology, and declared in his book De motu animalium
(About motions of animals) emphatically:

As the scientific recognition of all these things is founded on geometry, it will be correct
that God applied geometry by creating animal organisms, and that we need geometry for
understanding them; therefore it is the only and suitable science, if one wants to read and
understand the divine script of the animal world. [3.6]

While Descartes still believed in an immortal soul of man, Lamettrie reduced
man to an automaton without soul, according to his motto L’homme machine (1747).
Human and animal bodies were only distinguished by their level of complexity and
organization. After physics, teleology in the tradition of Aristotle should be elimi-
nated in physiology and medicine, too. During the Enlightenment, the mechanism of
life was understood as materialistic and atheistic philosophy. The following story by
Voltaire about Lamettrie is rather amusing: when Lamettrie suddenly fell ill during
a plentiful banquet, and died because of indigestion a few days later, the God-fearing
contemporaries were said to be thankful about the fact that a materialist had to die
because of his own insatiability.

Nevertheless, some Aristotelean concepts were discussed during the age of
mechanization. For instance, Leibniz assumed a hierarchical order of nature with
a continuous scale of animation from the smallest building blocks (“monads”) to
the complex organisms. Leibniz tried to combine Aristotelean ideas with physical
mechanics, and became one of the early pioneers for a theory of complex dynamical
systems. Concerning the status of man in nature, Leibniz declared:
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Thus, every organic body of a living being is a kind of divine machine or natural au-
tomaton surpassing all artificial automata infinitely. [3.7]

Inspired by Leibniz, the zoologist Bonnet (1720–1793) proposed a hierarchy of
nature (“Echelles des êtres naturelles”) with a measure of complexity which seems
to be rather modern. Bonnet underlined “organization” as the most important feature
of matter. An organization realizing the most effects with a given number of different
parts is defined as the most perfect one [3.8].

At the end of the 18th century, Immanuel Kant criticized the application of
Newtonian mechanics to biology: “The Newton explaining a blade of grass can-
not be found.” The main reason for Kant’s critique is that in the 18th century the
concept of a machine was only made precise in the framework of Newtonian me-
chanics. Thus, in his famous Kritik der Urteilskraft, Kant wrote that an organism
“cannot only be a machine, because a machine has only moving force; but an or-
ganism has an organizing force . . . which cannot be explained by mechanical mo-
tion alone” [3.9]. Kant also criticized Aristotelean teleology and the assumption of
“aims” and “purposes” in nature as a metaphorical anthropomorphism. An organism
must be described by the model of a “self-organizing being”.

Like Kant, Goethe rejected the materialistic-mechanical explanation of life
which was defended by, e.g., the French encyclopedist Holbach in his Système de
la Nature. For Goethe, the mechanist model of nature is “grey, . . . like death . . .
like a ghost and without sun” [3.10]. He believed that life develops organically and
harmonically like the metamorphosis of a plant or the mental maturity of man.

On the background of Goethe’s age and Kant’s critique of mechanistic rational-
ism, a romantic philosophy of nature arose in Germany in the beginning of the 19th
century. It was a renaissance of the organic paradigm against mechanism. Friedrich
Schelling (1775–1854) designed a “science of the living” assuming that organiza-
tion and reproduction are main features of the living [3.11]. Oken (1779–1851),
physician and philosopher of nature, described a “planetary process”, in which
living organisms were explained by a synthesis of magnetism, chemism, and gal-
vanism. From a modern point of view, “self-organization” and “self-reproduction”
were far-reaching concepts of the romantic philosophy of nature. But in those days
they were only speculations or inspired intuitions, because the experimental and
mathematical base was still missing.

The peaceful picture of an organic and harmonic metamorphosis was soon
pushed aside by biology. Charles Darwin’s theory of evolution does not need teleo-
logical forces to explain life. The “survival of the fittest” (Herbert Spencer) depends
on the greater advantage of selection with respect to certain conditions of the envi-
ronment (for instance nourishment, climate) [3.12]. Darwin was inspired by some
ideas of Lamarck (1744–1829), for instance the heredity of acquired properties.
Darwin’s evolution is governed by (genetic) variability of species (“mutation”) and
natural selection driving development in one direction. Spencer taught that life is
driving to more complexity, controlled by selection. Many contemporaries consid-
ered Darwinism not only as a theory of natural sciences. Darwin’s theory seemed
to present a scenario of life with a strong analogy to the society of the 19th cen-
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tury. The “selection of the fittest” became a slogan of the “social Darwinism” as
a political attitude.

In the second half of the 19th century, Haeckel generalized the evolution of life
from monocellular organisms to humans. But in those days the theory of evolution
could not be compared with the highly confirmed physical and chemical theories.
Darwin could only deliver some comparative studies of morphology. He described
the variability of species and natural selection, but he could not explain it by math-
ematized and testable laws like physics. Mendel’s laws of heredity (1865) were still
unknown to Darwin as well as to many contemporaries. Nevertheless, one of the
great physicists of the 19th century, Ludwig Boltzmann, declared, casting a retro-
spective glance at his century:

When you ask me for my deepest conviction if our century will sometimes be called
the iron century or the century of steam or the century of electricity, then I answer without
hesitation, it will be called the century of Darwin. [3.13]

3.2 Boltzmann’s Thermodynamics and the Evolution of Life

In the 19th century, the dominant topics of natural science, social science, and phi-
losophy became “evolution” and “history”. While the biological sources of these
ideas date back to Darwin’s theory of evolution, physical examples of irreversible
processes were at first discussed in thermodynamics. The initial principles of ther-
modynamics were developed by Carnot (1824). His principles were discovered in
analyzing mechanical forces produced by steam engines. Roughly speaking, the
first law of thermodynamics says that energy cannot be created or destroyed. De-
spite mechanical work, electrical energy, or chemical transformations that energy
is constantly undergoing in nature, the total energy within a closed system remains
unchanged. In accordance with Einstein’s equivalence of mass and energy (compare
Sect. 2.2), the first law has been enlarged to a conservation principle of mass and
energy in this century.

The basic importance of the second law in the context of physical evolution was
recognized by Clausius (1865) who borrowed the term “entropy” from the Greek
word for evolution or transformation [3.14]. Mathematically, the entropy change
of a system is defined by the reversible heat addition to the system divided by its
absolute temperature. According to Ilya Prigogine, one must refer to the fact that
every system has surroundings [3.15]. Thus, the variation of entropy during a time
moment is more generally the sum of the rate at which entropy is supplied to the
system by its surroundings and the rate at which entropy is produced inside the sys-
tem. The second law of thermodynamics demands that the rate at which entropy
is produced inside the system is greater than or equal to zero. For closed and iso-
lated systems without an entropy supply from (or sink to) the surroundings we get
the classical statement of Clausius that entropy increases or remains constant when
thermodynamic equilibrium has been reached. In other words, there is no process in
nature involving physical, chemical, biological, or (as we shall see) informational
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transformations occurring spontanously without some energetic cost in terms of en-
tropy.

Entropy is a macroscopic property of systems like volume and size. Therefore,
thermodynamics was at first only a phenomenological theory describing possible
heat distributions of macroscopic systems. Boltzmann was not happy with this pos-
itivistic attitude and tried to deliver a statistical-mechanical explanation reducing
such macroscopic states of systems as, e.g., heat to the mechanics of microscopic
molecules. Inspired by the microstate-macrostate distinction which has become cru-
cical for the theory of evolution, Boltzmann gave thermodynamics its first statistical
interpretation [3.16]. Irreversibility in statistical thermodynamics is based on this
distinction.

In general, statistical mechanics explains a macrostate like density, temperature,
etc., by microstates. In this sense, an observable macrostate is said to be realized by
a large number W of microstates. In order to define the number W, a large number of
independent mechanisms of the same kind like atoms, molecules, crystals, etc., are
considered. They develop their microstates according to their equations of motion
with different initial phase states. If a macrostate is realized by W microstates of
this kind, then Boltzmann’s entropy quantity H of the corresponding macrostate
is assumed to be proportional to the logarithm of W, i.e., H = k ln W with the
Boltzmann constant k. In a continous phase space, the Boltzmann expression can
be generalized by an integral of a velocity distribution function. For Boltzmann,
H is a measure for the probability of molecular arrangements corresponding to the
observable macrostates of the system.

Boltzmann’s reductionism met historically with violent objections from physi-
cists, mathematicians, and philosophers. Positivistic physicists and philosophers like
Ernst Mach criticized Boltmann’s hypothesis of molecules and atoms which were
not empirically confirmed in those days. But after their successful discovery this
critique is only of historical interest.

One of the most important objections is Loschmidt’s reversibility paradox.
Since the laws of mechanics are invariant (symmetric) with respect to the inver-
sion of time, to each process there belongs a corresponding time-reversed process.
This seems to be in contradiction with the existence of irreversible processes. Boltz-
mann answered that the second law of thermodynamics in the form of his so-called
H-theorem cannot be derived only from the (reversible) mechanical laws, but re-
quires the additional assumption of extremely improbable initial conditions, too.
The second law is assumed to hold true with very high probability, but not with se-
curity. Irreversible processes are only frequent or probabilistic, reversible ones sel-
dom and improbable. Thus, the second law allows local deviations or fluctuations
(for instance Brownian motion) [3.17].

Another objection, by Henri Poincaré and Ernst Zermelo, underlined that each
state of a mechanical system with finitely many degrees of freedom must recur at
least approximately after a certain time [3.18]. Thus, an arrow of time connected
with an increase of entropy cannot exist. Boltzmann answered that the times of re-
turn become extremely long with increasing number of degrees. Cosmologically,
there are two possible points of view in the sense of Boltzmann: (1) the universe
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started with extremely improbable initial conditions, or (2) when the universe is
large enough, there may be deviations from the equal distribution in some places.
Figure 3.1 illustrates Boltzmann’s hypothesis of fluctuations. He assumed that the
whole universe is in thermal equilibrium, i.e., in maximum disorder. Boltzmann be-
lieved that both directions of time are completely symmetric. So, the curve of local
entropy increases similarly in both directions of time, becoming flat with maximum
entropy [3.19].

Life as a developing system of order is only possible in regions with strongly
changing entropy, i.e., on the two slopes of the entropy curve in Fig. 3.1. The two
arrows denote Boltzmann’s local worlds in which life may occur. So, in the sense of
Boltzmann, there cannot be an objectively unique arrow of time, but only one of the
two possible directions of increasing entropy which people subjectively experience,
living in one of the two possible local worlds on the slopes in Fig. 3.1. Before we
criticize Boltzmann’s view in detail, let us have a glance at his theory of life against
the background of his thermodynamics of thermal equilibrium, which overshadowed
science in this century until recently.

Fig. 3.1. Entropy curve in Boltzmann’s universe in thermal equilibrium with symmetric di-
rections of time

Ludwig Boltzmann (1844–1906) was the first scientist who tried to reduce the
biological theory of evolution to the thermodynamics and chemistry of the 19th
century. For scientists at the end of the last century, it was a great problem that the
second law of thermodynamics seemed to forecast the final disorder, death, and de-
cay of nature, while Darwinian evolution seemed to develop living systems of order
with increasing complexity. Of course, the second law is reserved to closed sys-
tems, and living systems must be open, in a permanent exchange of energy, matter,
and information with their environment. Nevertheless, how is the local increase of
complexity possible in a sea of disorder and thermal equilibrium?

Boltzmann suggested some explanations which already remind us of modern
biochemical concepts of molecular autocatalysis and metabolism. The origin of first
primitive living beings like cells was reduced to a selection of inanimate molecu-
lar building blocks which Boltzmann imagined as a process like Brownian motion.
Plants as cellular aggregates are complex systems of order. Thus, in the sense of
the second law of thermodynamics they are improbable structures which must fight
against the spontaneous tendency of increasing entropy in their body with sunlight.
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Because of the high temparature of the sun, the earth gets energy with relatively low
entropy which can be used to compensate the spontaneous increase of entropy in the
plants. This process is realized by photosynthesis, which was physically explained
by Boltzmann in 1886:

Thus, the general struggle of life is neither a fight for basic material . . . nor for energy . . .
but for entropy becoming available by the transition from the hot sun to the cold earth. [3.20]

Boltzmann extended his physically founded theory of evolution to the history
of the nervous system and the emergence of memory and consciousness. He argued
that the sensitivity of primitive organisms to outer impressions has led to the devel-
opment of special nerves and organs of seeing, hearing, feeling, moving, etc.:

The brain is considered as the apparatus or the organ to develop models of the world.
Because of the great utility of these models for the survival of the race, the human brain has
been developed according to Darwin’s theory with the same perfection as the giraffe’s neck
or the stork’s bill. [3.21]

Even the ability to develop concepts and theories was explained by evolution.
Boltzmann tried to justify human categories of space, time, and causality as tools
developed by the brain for the racial survival of the fittest. He did not hesitate to
extend biological evolution even to the socio-cultural development and history of
mankind. In 1894, the Viennese physician S. Exner wrote about the subject “Moral-
ity as weapon for the struggle of life” in the sense of Boltzmann. In 1905, Boltzmann
himself gave a lecture with the amazing title “Explanation of the entropy law and
love by the principles of the probability calculus”. Obviously, Boltzmann’s Darwin-
ism had reached its limits.

At the beginning of this century, life still could not be explained by physical
and chemical foundations. Classical mechanics, the foundation of natural sciences
in the 17th and 18th centuries, assumed deterministic and time-reversible laws of
nature delivering no explanation of irreversible processes of life. A frictionless pen-
dulum clock moves time-reversibly as an oscillating mechanical system, in principle
without limit. Humans are born, grow, and die – why? The thermodynamics of the
19th century deals with irreversible processes of closed systems being driven to
a state of maximum entropy or disorder. But how can the development of complex
living systems be explained? In the sense of Boltzmann’s statistical interpretation,
the emergence of order and biological complexity can only be an improbable event,
a local cosmic fluctuation “at the edge of the universe” (as Jacques Monod said
later), which will disappear without significance for the whole universe in thermal
equilibrium [3.22]. Following Monod, we have only the philosophical choice of an
existentialism à la Camus, to perish in a finally senseless biological and cultural evo-
lution with human dignity. The tragic death of the genius Ludwig Boltzmann, who
committed suicide in 1909, seems to be a symbol of this attitude. But Boltzmann’s
thermodynamics did not definitely explain the origin of life. He only proved that his
statistical interpretation of the second law is not contrary to Darwinian evolution.

After classical mechanics in the 17th and 18th centuries and thermodynam-
ics in the 19th century, quantum mechanics has become the fundamental theory
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of physics. In spite of Heisenberg’s principle of uncertainty, the laws of quantum
mechanics and classical mechanics are characterized by the reversibility of time.
Concerning the reductionist program for treating complexity, it was a great success
that the quantum chemistry of molecules could be explained by the laws of quan-
tum mechanics. In 1927, Heitler and London succeeded in modifying Schrödinger’s
equation of atomic and subatomic systems for molecules. There are no particular
chemical forces in chemistry besides the well-known physical forces. After physics,
teleology seemed to be eliminated in chemistry.

But is chemistry completely reducible to physics [3.23]? Definitely only in a re-
stricted sense! The structural models of molecular orbits can only be introduced by
abstraction from quantum mechanical correlations. While, for instance, the elec-
trons of an atom cannot be distinguished in the sense of the Pauli principle, they
are used by chemists as quasi-classical objects moving around the atomic nucleus in
well-distinguished orbits. There are well-known chemical procedures of abstraction
(Born–Oppenheimer and Hartree–Fock procedure) for introducing electronic orbits
in approximately quasi-classical models of the non-classical quantum world. Further
on, we have to consider practical limitations of computability with Schrödinger’s
equations for complex molecules in spite of all the fantastic successes of numerical
quantum chemistry. This weak reduction of chemistry to physics seemed to prove
that scientists should continue on the path of reductionism, in order to reduce el-
ementary particles, atoms, molecules, cells, and finally organisms to physics and
chemistry.

In the 1920s and 1930s, the struggle between physical reductionism and neovi-
talism could not actually be decided. For example, the physicist Heitler, the biologist
Driesch, and the philosophers Bergson and Whitehead supported explicit neovitalis-
tic opinions in the Aristotelean tradition [3.24]. They argued that particular biolog-
ical laws may sometimes invalidate the laws of physics and chemistry. From Aris-
totle to Goethe and Schelling, teleological self-organization and the spontaneity of
life from living cells to consciously acting humans have been mentioned to demon-
strate that physical reductionism is impossible. Wholeness is a primary feature of
an organism which cannot be reduced to the sum of its building blocks. Inspired
by Niels Bohr’s so-called Copenhagen interpretation of quantum mechanics, some
physicsts tried to mediate between physicalism and vitalism with Bohr’s concept
of complementarity. Bohr used complementarity to justify such excluding concepts
of quantum mechanics as, e.g., particle–wave dualism. Thus, complementarity is
assumed for the two classes of physical-chemical and biological laws, which are
believed to be incommensurable. We must remember that complementarity is not
a physical law, but a philosophical interpretation of quantum mechanics which was
not supported by Erwin Schrödinger. He knew that in the 1930s and 1940s the strug-
gle of physicalism and vitalism could not be decided, and complementarity was only
a concept to describe the status quo. In his book What is Life? Schrödinger wrote:

After all we have heard about the structure of living matter we must be ready for the
fact that it works in a way which cannot be reduced to the usual physical laws. The reason
is not that a “new force” or something similiar governs the behavior of the single atoms in
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a living organism, but because its structure differs from all that we have ever studied in our
laboratories. [3.25]

Schrödinger recalls the image of an engineer who is familiar with a steam en-
gine and wants to explore an electromotor. As the two motors work in quite different
ways, he will hit upon the idea that the electromotor is driven by a ghost. In the tra-
dition of Leibniz, Schrödinger expects to understand a living organism as “the finest
master piece which was ever achieved according to the leading principles of God’s
quantum mechanics” [3.26].

The problem for Schrödinger was that he as well as Monod tried to describe
the emergence of order and life in the framework of Boltzmann’s thermodynamics.
He was right with his critique of teleological forces or ordering demons, which
were even postulated by physicists at the end of the last century. The fiction of
a demon which can reverse the increase of entropy in a closed system according to
the second law without outer influence, and therefore cause it to act as a perpetuum
mobile of the second kind, dates back to James Clerk Maxwell. In 1879 William
Thompson (the later Lord Kelvin) introduced “Maxwell’s sorting demon”, which
was able to separate the gas molecules in a closed container in static equilibrium
and with a homogeneous distribution of molecular velocities spontaneously into
two parts with faster and slower molecules [3.27].

Obviously, “sorting demons” are an ad hoc hypothesis which cannot be ex-
plained in the physical framework of the 19th century. Boltzmann’s thermodynamics
as well as Newton’s mechanics are insufficient to model the emergence of complex
order, and thus the origin and growth of living systems. The first and second laws of
thermodynamics are subjected to an important condition that is generally not true of
all nature. These laws assume that all energy exchanges take place in a closed and
isolated system. As energy and material fluxes through most regions of the universe,
natural systems are rarely closed. As solar energy bombards the earth, it cannot be
considered as a closed and isolated system.

So the first and second laws of thermodynamics are not false, but they are em-
pirically restricted to approximately isolated microscopic subsystems, cosmic sys-
tems, or prepared conditions in laboratories. The situation can be compared with
Newton’s classical mechanics. After Einstein’s special theory of relativity, it has not
become false, but it is no longer the universal scheme of physics, and is restricted
to motions that are slow relative to the speed of light. Most of nature must be mod-
eled by dynamical systems which do not live in Boltzmann’s general condition of
equilibrium, because they are subjected to energy and material fluxes.

Historically, fundamental contributions such as those of Maxwell or Gibbs deal
uniquely with situations corresponding to equilibrium or to situations infinitesi-
mally near to equilibrium. Pioneering work on non-equilibrium thermodynamics
was started by, e.g., Pierre Duhem at the beginning of this century. But his work
remained unnoticed until Onsager (1931), and later the Prigogine school, the Haken
school, and others began to study the behavior of complex systems far from ther-
mal equilibrium. From a historical point of view, the situation can be compared
with the development of chaos theory and complex Hamiltonian systems (compare
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Sect. 2.3). Chaotic phenomena were already discovered and well known to Poincaré,
Maxwell, and others. But the mathematical problems connected with nonlinear com-
plex systems deterred most scientists from searching for corresponding models.

3.3 Complex Systems and the Evolution of Organisms

Open systems not only have internal sources of entropy production but also an ex-
ternal source of entropy production associated with energy or mass transformations
to or from their surroundings. These systems maintain their structure by dissipation
and consumption of energy and are called “dissipative structures” by Ilya Prigogine.
We have already become acquainted with nonliving dissipative systems like fluids,
lasers, and clouds which are dependent on outside energy fluxes to maintain their
structure and organization. Nonequilibrium systems exchange energy and matter
with their environment, maintaining themselves for some period of time in a state
far from thermal equilibrium and at a locally reduced entropy state. Small insta-
bilities and fluctuations lead to irreversible bifurcations and thus to an increasing
complexity of possible behavior.

A mathematical theory of dissipative structures with nonlinear evolution equa-
tions seems to offer the framework for modeling Aristotle’s “sublunar” world of
growing and dying nature. It is amazing to recognize that Aristotle’s idea of a cyclic
nature corresponds to periodic attractors or limit cycle solutions of corresponding
differential equations. The cyclic nature of these systems allows them not only to
develop stability but also to develop a hierarchy of complex structures within them-
selves. A cycle of living systems as it was already described in antiquity becomes
autocatalytic by virtue of an evolutionary feedback.

The main idea was already expressed by Spencer and Boltzmann when they
assumed that a pre-biological system may evolve through a whole succession of
transitions leading to a hierarchy of more and more complex states. But, contrary to
Boltzmann, these transitions can only arise in nonlinear systems far from thermal
equilibrium. Beyond a critical threshold the steady-state regime becomes unstable
and the system evolves to a new configuration. Evolving through successive insta-
bilities, a living system must develop a procedure to increase the nonlinearity and
the distance from equilibrium. In other words, each transition must enable the sys-
tem to increase its entropy production. The evolutionary feedback of Ilya Prigogine,
Manfred Eigen, and others means that changing the control parameter of the system
beyond a certain threshold leads to an instability through fluctuations, which causes
increased dissipation and thus influences the threshold again.

It follows that life did not originate in a single extraordinarily unlikely event
and that the evolution of life did not proceed against the laws of physics. As we
have learnt, Boltzmann’s and Monod’s idea of a gigantic fluctuation which would
unfold over the time of biological evolution stems from equilibrium thermodynam-
ics. While the probability of a dissipative structure (for instance, a periodic temporal
process like a Bénard problem) is tiny in equilibrium statistical mechanics, it occurs
with probability one in conditions far from equilibrium. Thus, Prigogine can argue:



3.3 Complex Systems and the Evolution of Organisms 99

Far from being the work of some army of Maxwell’s demons, life appears as following
the laws of physics appropriate to specific kinetic schemes and too far from equilibrium
conditions. [3.28]

In the mathematical framework of nonlinear complex systems, many models
have already been suggested to simulate the molecular origin of life. Complexity
on the molecular scale is characterized by a large potential number of states which
could be populated given realistic limits of time and space.

For instance, a typical small protein molecule contains a polypeptide chain which is
made of about 102 amino-acid residues. Given the 20 classes of natural amino acids, there are
20100 or 10130 alternative sequences of this length. The DNA molecule that comprises the to-
tal genome of a single bacterial cell represents one or few choices out of more than 101000000

alternative sequences. Obviously, only a minute fraction of all such alternatives could have
been tested by nature. Mathematically, a sequence containing ν residues of λ classes allows
for

(ν
k

)
(λ−1)k alternative copies having substitutions at k positions. Figure 3.2 shows a gene

which codes for a sequence of 129 amino acids [3.29].

Certain microstates may strongly influence macroscopic behavior. Such fluctu-
ations may amplify and cause a breakdown of formerly stable states. Nonlinearity
comes in through processes far from the thermal equilibrium.

Classical and only necessary conditions for life demand: (1) self-reproduction
(in order to preserve a species, despite steady destruction), (2) variability and selec-
tion (in order to enlarge and perfect the possibility of a species, biased by certain
value criteria), and (3) metabolism (in order to compensate for the steady production
of entropy) [3.30].

Manfred Eigen has suggested a realization of these criteria by a mathematical
optimization process. In this model, the nucleation of a self-reproducing and further
evolving system occurs with a finite expectation value among any distribution of

Fig. 3.2. Gene coding for a sequence of 129 amino acids
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random sequences of macromolecules such as proteins and nucleic acids. The ini-
tial copy choice for self-reproduction is accidental, but the subsequent evolutionary
optimization to a level of unique efficiency is guided by physical principles. In this
model, life should be found wherever the physical and chemical conditions are fa-
vorable, although some molecular structures should show only slight similarity with
the systems known to us.

The final outcome will be a unique structure, e.g., an optimized molecular se-
quence. Darwin’s principle of the survival of the fittest is mathematized by an op-
timization principle for possible microstates of molecular sequences. It is assumed
that in simple cases biomolecules multiply by autocatalysis. For instance, two kinds
of biomolecules A and B from ground substances GS are multiplied by autocatal-
ysis, but in addition the multiplication of one kind is assisted by that of the other
kind and vice versa (Fig. 3.3a). In more complicated cases with more kinds of
biomolecules, the latter are assumed to multiply by cyclic catalysis (Eigen’s “hy-
percycles”) (Fig. 3.3b). This mechanism combined with mutations is able to realize
an evolutionary process.

Eigen suggests the following simplified model of an evolutionary optimiza-
tion [3.31]: the machinery of a biological cell is codified in a sequence of four chem-
ical substances A, T, G, C which consititute the genes. Each gene represents a func-
tional unit, which is optimally adapted to the special purpose of its environment.
The length of a gene in nature is seldom more than 1000 sequential positions. Thus
for 4 symbols, there are 41000 alternative genes (“mutations”) of length 1000. In sci-
entific notation that means about 10600 possibilities. In order to get an impression of
this huge number, we should recall that the content of matter in the whole universe
corresponds to 1074 genes and that the age of the universe is less than 1018 seconds.

Thus if all the matter of the universe since its very beginning (the “Big Bang”)
were used to alter and to produce new genes of length 1000 in each second, then by
today only 1093 mutations could have been tested. Eigen concludes that genes which
represent optimal functional unities cannot be produced by random processes, but
must be developed by a self-optimizing process.

Mathematically, the process of adaptation can be imagined as a successive re-
placement of positions which aims at a final (“optimal”) sequence. This is a typ-

Fig. 3.3a,b. Autocatalysis with two kinds of biomolecules (a) and cyclic catalysis (hyper-
cycles) with more kinds (b)
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ical interpretation of the problem-solving approach of computer science. In order
to solve a problem successfully, we must find an adequate spatial representation of
the self-optimizing strategies. Because of the huge numbers, a 3-dimensional space
is obviously not suitable. The length of strategies, i.e., the distance from a gene
to its optimal variant, is too long. One would go astray. Further, sequences with
a high degree of similarity cannot be represented adequately by a neighborhood in
a 3-dimensional space. Thus it is proposed to alter the dimensions in the following
way.

A sequence with n positions is defined as a point in n-dimensional space. For
two symbols 0 and 1 there are 2n alternative sequences, which are the points of the
space. Each point has n nearest neighbors, which represent the mutations differing
only in one position (“1-mistake mutation”). Between the two extremal points with
only 0 or only 1, there are n! possible connections. In Fig. 3.4a–d there are some ex-
amples of n-dimensional sequential spaces for the dual case. The great advantages
of these spaces are the very short distances and the dense network of possible con-
nections. As an example, the longest distance in a 1000-dimensional space is only
1000 units, in a 23-dimensional space with 1014 points only 23 units.

The 23-dimensional space suffices to represent all the points on the earth’s sur-
face in units of one meter. In this space optimal strategies can be given to find the
highest mountain in some region of the earth. For this purpose we introduce a valua-
tion function which associates each point with a numerical “height”. Imagine a tour
in the Alps. You have no fixed aim (for instance a special mountain), but a rough
idea of orientation: you want to wander “uphill” without losing too much height.
Mathematically, the gradient of your path is known and determines your decision
as to direction. In the real Alps you encounter 1-dimensional edges and passes in
the mountains, and your chances of reaching optimal points are restricted. In a 23-
dimensional space you can go in 23 directions and distinguish pathways with dif-
ferent gradients, i.e., k in direction “uphill” and 23 − k “downhill” (k ≤ 23). The
chances of reaching optimal points in your neighborhood are very high.

In the n-dimensional sequential space of genes, the valuation of points is given
by “selection values”. Mutations do not arise completely irregularly or chaotically,
but depend on which predecessors occur in the distribution most frequently. The
question of which predecessors occur in the distribution most frequently depends
again on their selection value relative to the optimal variant in the distribution.
The selection values are not distributed irregularly, but in connected regions. For
instance, on the earth a high mountain like Mount Everest is not situated in flat
countryside, but among the Himalayas.

For the replication and self-reproduction of life, Eigen presupposes a self-
optimizing machinery of high efficiency. Freeman Dyson proposed a mathemati-
cal model, according to which primitive life systems first occur without the correct
machinery for replication and selection and fulfill only metabolic functions in re-
lations to their environment [3.32]. The essential characteristic of such molecular
systems is their homeostasis, i.e., the ability to maintain a stable and more or less
constant equilibrium in a changing environment. According to Dyson, the configu-
ration of self-replication mechanisms occurs only in a second step. The nucleic acids
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Fig. 3.4a–d. N-dimensional sequential spaces



3.3 Complex Systems and the Evolution of Organisms 103

required for that purpose are explained by Dyson as “non-assimilated” byproducts
of the early metabolic life process, which first assumed a parasitic status in the
whole system, and then ultimately developed through symbiotic intermediate states
to fully-integrated functional mechanisms for reproduction and evolution.

The dual function of metabolism and replication in Dyson’s model has much
in common with the complex system of prebiotic evolution that was suggested by
Stuart Kauffman [3.33]. He rejects the idea that life sprung from an RNA world.
His hypercycle-like system is a complex autocatalytic network of reactions self-
organizing themselves in such a way that metabolism, as a macroscopic order state
of the system, becomes possible. Metabolism draws materials and energy from the
environment around to increase and maintain internal order. Thus, it is an open
dissipative system.

Examples of complex biological systems are genetic systems, nervous systems,
immune systems, and ecosystems, all of which are composed of a network of mul-
tiple interacting elements as agents. The nonlinear dynamics of these complex net-
works can only be modeled by some simplifications. So it is assumed that time is
discrete, and that the behavior of a network at one time depends on the state of
the network at a preceding time. Further on, the elements of a network have only
a limited number of different states, e.g., a gene is turned on or off, or a neuron is
firing or not firing. A network is a collection of connected elements as agents that
can be visualized by a set of nodes and a set of edges connecting pairs of nodes.
Each element is characterized by a single output and several inputs from elements
of the network. There is also a rule for each element telling what the output should
be given the inputs. In the case of Boolean elements, there are only two values
1 (“on”) or 0 (“off”). A rule determining a Boolean output by Boolean inputs is
called a Boolean function. The state of a Boolean network specifies whether each
element is “on” or “off”. For a network of n elements, there are 2n possible states.
Boolean networks of elements with a single input have only geometries of strings,
simple loops, and loops with strings. Thus, their dynamics are restricted to fixed
points, cycles, and multi-stability. When elements have more than one input, there
can be multiple, connected loops with much more complicated Boolean functions.
Examples of Boolean functions in biochemistry are control mechanisms, in which
activities of proteins and genes are regulated by circulating molecules. The regula-
tory gene networks in living organisms can be understood by the complex dynamics
of Boolean networks.

In order to manage the high complexity of gene networks in living organ-
isms, S. Kauffman suggested studying random Boolean networks. They are ordinary
Boolean networks, where the choice of connections and Boolean functions is made
randomly when the network is designed. For a network of n nodes with k inputs
of each node, there are 22k

Boolean functions. A random-number generator selects
the inputs to each node. Kauffman programmed a computer to iterate the dynamics
of random Boolean networks. In his experiments, he found a hierarchy of dynam-
ical behavior with fixed points and cycles of increasing complexity, which can be
observed in real cells.
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In general, an evolutionary process is expected to produce new kinds of
species [3.34]. A species may be considered as a population of biomolecules, bacte-
ria, plants, or animals. These populations are characterized by genes which undergo
mutations producing new features. Although mutations occur at random, they may
be influenced by external factors in the environment, such as changing temperature
or chemical agents. At a certain critical mutation pressure new kinds of individu-
als of a population come into existence. The rate of change of these individuals is
described by an evolution equation. As these individuals have new features, their
growth and death factors differ. A change (mutation) is only possible when fluc-
tuations occur in the population and the environment. Thus, the evolution equation
determines the rate of change as the sum of fluctuations and the difference of growth
and death factors.

A selection pressure can be modeled when different subspecies compete for the
same living conditions (e.g., the same food supply). If the mutation rate for a special
mutant is small, only that mutant survives which has the highest gain factor and
the smallest loss factor and is thus the fittest. The competition procedure can be
simulated by the slaving principle: unstable mutants begin to determine the stable
ones. It is noteworthy that the occurrence of a new species due to mutation and
selection can be compared with a nonequilibrium phase transition of a laser [3.35].

A living cell is an open system with a flow of energy passing through it. As
already shown by Erwin Schrödinger, the energy flow creates conditions that allow
strong deviations from thermodynamic equilibrium. According to Prigogine et al.,
this results in models of dissipative self-organization and pattern formation, the pa-
rameters of which are set up by genetic as well as epigenetic constraints. However,
it would be misleading to expect that the process of self-organization in living cells
simply represents a reduced copy of the pattern-formation phenomena in macro-
scopic reaction–diffusion systems. The laws of physics, when applied at a differ-
ent scale typical for intracellular processes, can influence the mechanisms involved
and produce a wealth of new properties. This also makes spatial pattern formation
based on such reactions and diffusion impossible at very small length scales. The
temporal self-organization of chemical processes, expressed in the generation of
different periodicities and interactions between them, plays a fundamental role in
living cells [3.36]. Thus, from a methodological point of view, it is not sufficient
to know the general scheme of dissipative self-organization. But we must inquire
experimentally into its cellular application under particular temporal, spatial, and
chemical constraints.

Nevertheless, the link between physical-chemical systems and biological struc-
tures can be modeled by dissipative structures which may be involved in living sys-
tems. An important example is provided by the immune system, the disturbance
of which causes many very dangerous illnesses, such as AIDS. Concerning the
antibody-antigen kinetics, new types of antibodies can be generated successively,
where some antibodies act as antigens. This process leads to a very complex dy-
namics of the total system [3.37].

As we have learnt, among the most striking features of dissipative systems are
oscillatory phenomena. At the subcellular level, there are series of oscillating en-
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zymatic reactions. Glycolysis is a process of great importance in living cells. The
regulatory enzyme gives rise to oscillations with periods ranging from two to ninety
minutes. Experimental oscillations can be identified with limit cycle type oscilla-
tions arising when the uniform state is unstable.

Another metabolic oscillation is that of the periodic synthesis of cyclic AMP
in cellular slime molds. This species exhibits a transition between two different
states of organization. First, the amebas are independent and separate cells. The
transition to an aggregation and finally to a multicellular fruiting body takes place
after starvation. Single cells, deprived of nutrient, aggregate in concentric waves
around centers as a response to cyclic AMP being emitted from the centers. The
synthesis of cyclic AMP realizes the limit cycle type. The aggregation process itself
represents a self-organization occurring beyond instability.

Modeling this process in the framework of complex systems, we first consider
a population of separated and homogeneous cells. A control parameter denotes the
supply of nutrition which can be tuned to a critical value of starvation. Then the
cyclic AMP is emitted and overcomes the random diffusive motion of amebas, and
the uniform state becomes unstable. On the macroscopic level, the cells start to
differentiate into several functions and to cooperate. On the macroscopic level, in-
termediate states of aggregation can be observed which finally lead to the new form
of the mature multicellar body. Producing isolated spores, the life cycle of the slime
mold is repeated in the described states of phase transition (Fig. 3.5) [3.38].

The spontaneous emergence of organic forms has seemed to be a miracle of
life. Thus, in the history of science morphogenesis was a prominent counterexample
against physical reductionism in biology. Today, morphogenesis is a prominent ex-

Fig. 3.5. Dynamical model of morphogenesis with states of cell formation (life cycle of the
slime mold)
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ample for modeling biological growth by complex dynamical systems. What would
Goethe have said about a mathematical model of his beloved metamorphosis? In
this context, pattern formation is understood as a complex process wherein iden-
tical cells become differentiated and give rise to a well-defined spatial structure.
The first dynamic models of morphogenesis were suggested by Rashevsky, Turing,
and others. Let us regard Rashevsky’s model for the morphogenesis of plant growth
(“phyllotaxis”) [3.39].

Figure 3.6a shows an idealized vine stalk sprouting one branchlet at a time with
a symmetrically rotating direction for the three branchlets. At the tip of the growing
stalk is a growth bud containing a mass of undifferentiated and totipotent cells. The
problem of phyllotaxis was the emergence of the growth pattern with differentiated
cells as the leaf bud cells, the branch cells, and others leading to the leaf buds and
branchlets. The Rashevsky model is based on a ring of growth cells around the
circumference of the stalk, near the growth bud at the top.

Fig. 3.6a. Dynamical model of morphogenesis with states of cell differentiation (Rashevsky
model of phyllotaxis) [3.39]

A cell is considered as a bag of fluid with homogeneous chemical composi-
tion. One of the chemical constituents is a growth hormone called morphogen. The
concentration x of this morphogen is the observed parameter of the model. As the
parameter varies between 0 and 1, the state space of the model is a line segment
(Fig. 3.6b). If the concentration of this morphogen exceeds a certain critical value,
the growth function of the cell is turned on, the cell devides, and a branchlet comes
into existence.

In the next step, two cells are considered as an open system in which one mor-
phogen can be exchanged between the two-celled system and its environment. If
the concentration of the morphogen in the second cell is denoted by y, then the
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Fig. 3.6b. A cell with concentration x of morphogen and the corresponding state space with
states x on a line segment

state of the whole system corresponds to a point (x, y) in the unit square which is
interpreted as the state space of the system. In Fig. 3.6c, the state space is divided
into four regions corresponding to the situations “cell 1 off and cell 2 growing” (A),
“both cells’ growth turned off” (B), “cell 1 growing, cell 2 off” (C), “both cells
growing” (D).

In the final step three cells form a ring with a uniform concentration of the mor-
phogen in each. The point (x, y, z) in the unit cube represents a state of the system. In
a three-dimensional space, the state space for the closed system of three cells with
one morphogen is realized by a triangle with x + y + z = 1, i.e., the sum of the
concentrations is constant (Fig. 3.6d).

Fig. 3.6c,d. A two-celled system with morphogens x and y and the corresponding state space
with states (x, y) in a unit square (c) and a three-celled system with a uniform concentration
of morphogens x, y, and z and the corresponding state space with states (x, y, z) in the unit
cube (d) [3.39]
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In Fig. 3.6e, a dynamical system with a periodic attractor is added to the state
space. One after another of the three cells is turned on, then off, periodically. In
Fig. 3.6f, the stalk is modeled as a stack of rings of cells, each ring represented as an
identical copy of the triangular model of Fig. 3.6d. Growth of the stalk upwards in
time is represented by associating time with the upward direction. The periodic at-
tractor of Fig. 3.6e is transformed to a periodic time series spiraling upwards in time.

Fig. 3.6e,f. A three-celled system with a periodic attractor (e) and the growth of a stalk mod-
eled as a stack of three-celled systems (Fig. 3.6d) with periodic attractor (Fig. 3.6e) trans-
formed to a spiraling time series (f) [3.39]

In this simplified dynamical model of morphogenesis, a central problem re-
mains open. How do the originally undifferentiated cells know where and in which
way to differentiate? Experiments indicate that this information is not originally
given individually to the cells but that a cell within a cellular system receives infor-
mation on its position from its surroundings. A famous example is the hydra, which
is a tiny animal, consisting of about 100 000 cells of about 15 different types. Along
its length it is subdivided into different regions, e.g., its head at one end. If a part
of a hydra is transplanted to a region close to its old head, a new head grows by
an activation of the cells. There is some experimental evidence that activator and
inhibitor molecules actually exist.

In a mathematical model due to Gierer and Meinhardt, two evolution equations
were suggested, describing the rate of change of activator and inhibitor concentra-
tions, which depend on the space-time coordinates. The change of rates is due to
a production rate, decay rate, and diffusion term. Obviously, inhibitor and activator
must be able to diffuse in some regions, in order to influence the neighboring cells
of some transplant. Further on, the effect of hindering autocatalysis by the inhibitor
must be modeled. In Fig. 3.7 the interplay between activator and inhibitor leads to
a growing periodic structure which is calculated and plotted by computer-assisted
methods [3.40].
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Fig. 3.7. Computer-assisted model of morphogenesis leading to a periodic structure [3.40]

To derive such patterns, it is essential that the inhibitor diffuses more easily
than the activator. Long range inhibition and short range activation are required for
a non-oscillating pattern. By methods of mathematical analysis, the evolving pat-
terns described by the evolution equations of Gierer and Meinhardt can be deter-
mined. A control parameter allows one to distinguish stable and unstable configura-
tions (“modes”).

At a critical value, the unstable modes start to influence and dominate the stable
ones according to the slaving principle. Mathematically, the stable modes can be
eliminated, and the unstable ones deliver order parameters determining the actual
pattern. Thus, actual patterns come into existence by competition and selection of
some unstable solution. Selection according to the slaving principle means reduction
of the complexity which stems from the huge number of degrees of freedom in
a complex system.

Biochemically, this kind of modeling of morphogenesis is based on the idea
that a morphogenetic field is formed by diffusion and reaction of certain chemicals.
This field switches genes on to cause cell differentiations. Independently of the par-
ticular biochemical mechanism, morphogenesis seemes to be governed by a general
scheme of pattern formation in physics and biology. We start with a population of
totipotent cells corresponding to a system with full symmetry. Then, cell differenta-
tion is effected by changing a control parameter which corresponds to symmetry
breaking. The consequence is an irreversible phase transition far from thermal equi-
librium. In Fig. 3.8, the phase transition of activator and inhibitor concentration is
illustrated in a computer simulation.

Independently of the common scheme of symmetry breaking, there is an impor-
tant difference between physico-chemical and biological pattern formation. Physical
and chemical systems lose their structure when the input of energy and materials is
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Fig. 3.8. Two computer-assisted models of morphogenesis simulating the phase transitions of
activator and inhibitor concentrations

stopped (compare, e.g., the laser or the Zhabotinsky reaction). Biological systems
are able to conserve much of their structure at least for a relatively long time. Thus
they seem to combine approximately conservative and dissipative structures.

Since antiquity, living systems were assumed to serve certain purposes and
tasks. Organs of animals and humans are typical examples of functional structures
which are explored by physiology and anatomy. How can the functional structures
of medicine be understood in the framework of complex systems [3.41]?

The complex bifurcations of vessel networks are examples of fractal structures.
The form of trees, ferns, corals, and other growing systems are well described by
fractals. In Chap. 5, we shall discuss recursive and computer assisted procedures
to simulate the fractal growth of trees. The vascular tree in the heart reminds us of
a complex network of branches and roots. This is quite natural when one appreciates
that vascular growth occurs by the budding of capillaries into regions of cell division
and differentiation.

Trees branching into open space have room to expand. But hearts, lungs, and
other organs occupy a limited space. The networks of nerves or vessels that pene-
trate them are servants to the principal occupants of the space. The structure of the
microvascular network is virtually completely defined by the cells of the organ. In
skeletal and cardiac muscles the capillaries are arrayed parallel to the muscle cells,
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with some cross-branches. The system is guided in its growth by the need for the
nerve or the vascular system to follow the lines of least resistance.

This leads to medically quite interesting questions of whether the fractal growth
and form of the vascular network can give rise to observed heterogeneities of flow
in the heart. A simple algorithm for a branching network as shown in Fig. 3.9 leads
to an appropriate probability density function of regional flow. The fractal system
of an organ has become a functional structure [3.42].

Fig. 3.9. A branching vascular network of the heart with fractal recursions for branch lengths
starting with length L0 of a main stem vessel and decreasing lengths of following daughter
vessels by factors fL and fS (subscripts L and S indicating longer and shorter vessels)

Fractal illustrations of a bronchial network are an inspiration for physicians to
apply these approaches to the lung. Physical systems, from galactic clusters to dif-
fusing molecules, often show fractal behavior. Obviously, living systems might often
be well described by fractal algorithms. The vascular network and the processes of
diffusion and transmembrane transport might be fractal features of the heart. These
fractal features provide a basis which enables physicians to understand more global
behavior such as atrial or ventricular fibrillation and perfusion heterogeneity.

As we have seen in Sect. 2.4, nonlinear dynamics allows us to describe the
emergence of turbulence, which is a great medical problem for blood flow in ar-
teries. Turbulence can be the basis of limit cycling, as can be shown with water
flowing through a cylindrical pipe. A variety of control systems produce oscilla-
tions. It might also be expected that some oscillating control systems show chaotic
behavior.

Atrial and ventricular fibrillation are the classic phenomena that appear chaotic.
The clinical statement on the heart rate in atrial fibrillation is that it is irregularly
irregular. The observations are that the surface of the atrium is pulsing in an appar-
ently chaotic fashion. However, the studies of reentry phenomena and of ventricular
fibrillation show that there are patterns of excitation, again illustrating that this is or-
ganized (“mathematical”) chaos. Fractal and chaotic algorithms for this have been
described. The two curves of Fig. 3.10 show a regular and chaotic heart rate [3.43].
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Fig. 3.10. Regular and chaotic heart rate

Nevertheless, chaotic states cannot generally be identified with illness, while
regular states do not always represent health. There are limited chaotic oscillations
protecting the organism from a dangerous inflexibility. Organs must be able to react
in flexible ways, when circumstances change rapidly and unexpectedly. The rates of
heart beat and respiration are by no means fixed like the mechanical model of an
idealized pendulum.

Single organs and the whole organism of the human body must each be un-
derstood as a system of nonlinear complex dynamical systems of high sensibility.
Tuning their control parameters to critical values may cause phase transitions of
irreversible developments representing more or less dangerous scenarios of human
health. Dissipative complex structures are open systems which cannot be separated
from their surrounding environment. Thus, on the background of the complex dy-
namical system approach, the classical “mechanical” view of medicine separating
the human body into particular parts for highly specialized experts must be heav-
ily criticized. The whole body is more than the sum of its parts. It is amazing to
recognize that from the modern view of complex dynamics an old demand of tra-
ditional physicians since antiquity is supported again, namely that medicine is not
only an analytical science, but an art of healing which has to consider the wholeness
of health and illness.

3.4 Complex Systems and the Ecology of Populations

Ecosystems are the results of physical, chemical, and biotic components of nature
acting together in a structurally and functionally organized system. Ecology is the
science of how these living and nonliving components function together in nature.
Obviously, in the framework of the complex system approach, ecology has to deal
with dissipative and conservative structures of very high complexity depending on
the complexity of the individual physical, chemical, and biotic systems involved in
them, and the complexity of their interactions [3.44].

In 1860, one of the first empirical case studies on ecology was provided by
Henri Thoreau in a lecture about “the succession of forest trees”. He observed that
nature displayed a process of plant development resulting in a sequential change of
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species that seemed to be observable and predictable. If the ecosystem is left undis-
turbed, the progression from bare field to grassland to grass-shrub to pine forest
and finally to an oak-hickory forest is a predictable, 150-year process, at least in
Massachusetts in the 19th century [3.45].

In nearly the same year, Charles Darwin published his famous theory of evo-
lution based on the mechanisms of variation and selection. Darwin saw progressive
changes by organisms resulting from competition and adaption to fit optimally into
ecological niches. It is the flux of energy from the sun and chemical reactions that
sets the process of life in motion and maintains it. Boltzmann already recognized
that the biosphere extracts a high energy-entropy cost for the organization of living
things. These processes are not only based on the biotic components of an ecosystem
but affect the nonbiotic components as well.

James Lovelock has proposed that living systems drive the major geochemical
cycles of the earth. He proposed that the global atmospheric composition was not
only developed by living systems but also controlled by the global ecosystem. The
“balance of nature” has become the popular title for a complex network of equilibria
characterizing the human ecosystem on earth [3.46].

The mathematical theory of complex systems allows one to model some simpli-
fied ecological case studies. The phenomena to be explained are, mainly, the abun-
dance and distribution of species. They may show typical features of dissipative
structures like temporal oscillations. At the beginning of the 20th century, fisher-
men in the Adriatic Sea observed a periodic change of numbers in fish populations.
These oscillations are caused by the interaction between predator and prey fish. If
the predators eat too many prey fish, the number of prey fish and then the number
of predators decreases. The result is that the number of prey fish increases, which
then leads to an increase in the number of predators. Thus, a cyclic change of both
populations occurs.

In 1925, Lotka and Volterra suggested a nonlinear dynamical model. Each state
of the model is determined by the number of prey fish and the number of predator
fish. So the state space of the model is represented by a two-dimensional Euclidean
plane with a coordinate for prey fish and a coordinate for predator fish. The obser-
vations, over time, of the two populations describe a dotted line in the plane. Births
and deaths change the coordinates by integers, a few at a time. To apply continuous
dynamics, the dotted lines must be idealized into continuous curves.

The vector field on the state space can be roughly described in terms of four re-
gions (Fig. 3.11a). In region A, both populations are relatively low. When both pop-
ulations are low, predator fish decrease for lack of prey fish while prey fish increase
because of less predation. The interpretation of this habitual tendency as a bound
velocity vector is drawn as an arrow. In region B, there are many prey fish, but
relatively few predators. But when there are many prey fish and few predator fish,
both populations increase. This is interpreted by the vector in region B. In region
C, both populations are relatively large. The predator fish are well fed and multiply,
while the prey fish population declines. This tendency is shown by the vector in
region C. In region D, there are few prey fish but many predator fish. Both popula-
tions decline. This tendency is shown by the vector in region D. The phase portrait
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Fig. 3.11a–d. Phase portraits of an ecological system with a prey and a predator population
(Lotka-Volterra): (a) a closed trajectory, (b) a nest of closed trajectories, (c) a point attractor,
(d) a periodic trajectory [3.47]

of this system can be visualized by a closed trajectory, because the flow tends to
circulate.

In Fig. 3.11b, the phase portrait is a nest of closed trajectories, around a central
equilibrium point. As dynamical systems theory tells what to expect in the long run,
the phase portrait enables the ecologist to know what happens to the two populations
in the long run. Each initial population of predator fish and prey fish will recur
periodically [3.47].

If some kind of ecological friction were added to the model, the center would
become a point attractor. This would be a model for an ecological system in static
equilibrium (Fig. 3.11c). A different but perhaps more realistic modification of the
model results in a phase portrait like Fig. 3.11d, with only one periodic trajectory.

From an analytical point of view, the evolution of a population is governed by
an equation for the rate of change of its size [3.48]. Obviously, the number of indi-
viduals in the population changes according to its growth rate minus its death rate.
A further parameter which has to be considered refers to the limited food supply or
depletion of the food resources. There are several living conditions of populations
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which must be modeled. If different species live on different kinds of food and do
not interact with each other, they can coexist.

If different species live in similiar conditions, then the overlapping food sup-
plies must be considered in the evolution equations of the populations. An enormous
reduction of complexity is realized if the temporal change of the food supply is ne-
glected. The resulting evolution equations allows several scenarios of coexistence,
when stable configurations are realized.

Biologically, stable states correspond to ecological niches which are important
for the survival of a species. The predator-prey relation of two populations is real-
ized by the Lotka–Volterra equations characterizing the phase portraits in Fig. 3.11.
A particular form of cooperation in nature is the symbiosis of two species. Model-
ing a symbiosis by evolution equations, it must be considered that the multiplication
rate of one species depends on the presence of the other.

Animal populations can be characterized on a scale of greater or lesser com-
plexity of social behavior. There are populations of insects with a complex social
structure which is rather interesting for sociobiology. Nicolis and others have tried
to model the social organization of termites by a complex dynamical system. The
interactions between individuals are physically realized by sound, vision, touch, and
the transmission of chemical signals.

The complex order of the system is determined by functional structures like
the regulation of the castes, nest construction, formation of paths, the transport of
materials or prey, etc. Ants synthesize chemical substances which regulate their
behavior. They have a tendency to follow the same direction at the place where the
density of the chemical molecules reaches a maximum. Collective and macroscopic
movements of the animals are regulated by these chemical concentrations.

In order to model the collective movements, two equations are suggested, con-
sidering the rate of change for the concentrations of insects and chemical sub-
stances. There is a critical value of an order parameter (“chemicotactic coefficient”)
for which a stationary homogeneous solution becomes unstable. The system then
evolves to an inhomogeneous stationary state. Accordingly, different branching
structures will appear, as observed in different ant societies. Figure 3.12 shows the
collective movement of ants with two types of structure characteristic of two differ-
ent species [3.49].

The social complexity of insects can also be characterized by such coordinated
behavior as nest construction. This activity has been well observed and explored
by experimental studies. A typical observation is that the existence of a deposit of
building material at a specific point stimulates the insects to accumulate more build-
ing material there. This is an autocatalytic reaction which, together with the ran-
dom displacement of insects, can be modeled by three differential equations. These
equations refer to the observation that the termites, in manipulating the construction
material, give it the scent of particular chemical substance, which diffuses in the
atmosphere and attracts the insects to the points of highest density, where deposits
of building material have already been made.

Thus, the first equation describes the rate of change of the concentration of
building material, which is proportional to the concentration of insects. A second
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Fig. 3.12. Branching networks of collective movements in two different species of ants [3.49]

evolution equation refers to the rate of change of the scent with a certain diffusion
coefficient. A third evolution equation describes the rate of change of the concentra-
tion of insects including the flow of insects, diffusion, and motion directed toward
the sources of the scent.

The complex social activity of nest construction correponds to the solutions of
these equations. Thus, an uncoordinated phase of activity in the beginning corre-
sponds to the homogeneous solution of these equations. If a sufficiently large fluc-
tuation with a larger deposit of building material is realized somewhere, then a pillar
or wall can appear. The emergence of macroscopic order, visualized in the insect’s
architecture of nests, has been caused by fluctuations of microscopic interactions.

Models of the above types are now often used in ecology. It must be mentioned
that they are still on a rather simplified level. In reality, one has to take into ac-
count many additional effects, such as time-lag, seasons, different death rates, and
different reaction behavior. In general, there is not only the interaction of one or
two complex populations with their (simplified) environments, but a huge number
of different interacting populations. The phase portraits of their nonlinear dynamics
at least allow global forecasts in the long run [3.50].



3.5 Complex Systems and Power Laws of Life 117

In the traditional Darwinian view, there are two important forces at work in
biological evolution which must be modeled in complex dynamical systems: mu-
tation pressure and selection. In biological populations in which the behavior of
individuals is governed uniquely by their genes, the amplification of a new type
individual corresponds to the Darwinian evolution by natural selection of mutants
which appear spontaneously in the system. In the case of higher animals, there is the
possibility of behavioral change (“innovation”) and its adaption by information. In
ecological evolution, new ecological niches have arisen which are occupied by spe-
cialized species. Obviously, there is no simple scheme of evolution, but a complex
hierarchy of changing and stabilizing strategies which have been layered from pre-
biological evolution to ecological and finally cultural evolution with human learning
strategies (compare Chap. 7).

The complex system approach shows a great variety of possible evolutions with
unexpected directions, caused by stochastic fluctuations. There is no global opti-
mizer, no global utility function, no global selection function, no other simplified
strategy of evolution but successive instabilities near bifurcation points. In short,
Darwin’s view is only a particular aspect of evolution. For many contemporaries,
he seemed to replace a personal deity called “God” by an impersonal deity called
“evolution” governing the world by simple laws. This secularized religious attitude
of the 19th century was later on continued by political thinkers like Karl Marx, who
believed in an impersonal deity called “history” governing human fate by simplified
laws of society.

In the 18th century, Kant had already complained that the term “nature” seems
to denote an impersonal deity. But “nature” is, as Kant argued, nothing more than
a “regulative idea” of man. From a modern point of view we can actually only
recognize dynamical models with more or less high degrees of complexity which
may fit observational data with more or less accuracy. The abandonment of some
mighty supervisor in nature and human history may leave us feeling alone with
perhaps dangerously chaotic fluctuations. But, on the other hand, these fluctuations
may enable real innovations, real choices, and real freedoms.

3.5 Complex Systems and Power Laws of Life

The goal of modeling in biology, as elsewhere in science, is to obtain appropriate
models that capture the essential features of the structure or process being investi-
gated. Simple linear laws and Euclidean forms and shapes are usually not applicable
to biology. Even fractal objects with geometrical self-similarity, where the parts that
make up the object are smaller, exact duplicates of the object itself (see Sect. 2.6),
cannot be found in real life. Parts of biological objects are rarely exact reduced
copies of the whole object. Rather than being geometrically self-similar, they are
statistically self-similar. In this case, the statistical properties of the pieces are pro-
portional to the statistical properties of the whole. An example is the average rate at
which new vessels branch off from their parent vessels in physiological structures.
This rate is the same for large and small vessels. Arteries in the lung or branch-
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ing vascular networks in the heart (Fig. 3.9) satisfy the conditions for statistical
self-similarity. Further examples of branching patterns that are similar at different
spatial scales can be found in the dendrites of neurons, the ducts in the liver, the
blood vessels in the circulatory system, and flow distributions inside them. Statisti-
cal self-similarity can also occur in a hierarchical structure. Processes where local
interactions between neighboring pieces produce a global statistical self-similar pat-
tern are termed “self-organizing.” Such patterns can be generated at the molecular
level, as in the binding of ligands to enzymes, at the cellular level, as in the dif-
ferentiation of the embryo, and at the organism level, as in slime mold aggregation
(Fig. 3.5).

Mathematically, statistical self-similarity means that a property measured at
high resolution for a part of an object is proportional to the same property measured
for the entire object at coarser resolution. Therefore, the value of a property L(r)
when it is measured at resolution r is compared to the value L(ar) when it is mea-
sured at a finer resolution ar, where a < 1. Statistical self-similarity means that L(r)
is proportional to L(ar), or L(ar) = k L(r), where k is a constant of proportionality,
which depends on a. The size of individual features depends on the measurement
resolution. In fractal objects, there is no true value for a measurement. The rela-
tionship between the value measured and the measurement resolution is called the
scaling relationship. Self-similarity determines the scaling relationship. The self-
similarity relationship mentioned above implies that there is a scaling relationship
that describes how the measured value of a property L(r) depends on the scale r at
which it is measured. The simplest scaling relationship determined by self-similarity
takes the form of the power law L(r) = A rα, where A and α are constant for any
particular fractal object or process. Taking the logarithms of both sides of this equa-
tion yields the linear equation log L(r) = α log(r)+ b with b = log A. Thus, power
law scalings are found to be straight lines when the logarithm of the measurement
is plotted against the logarithm of the scale at which it is measured [3.51]. Although
not all power-law relationships are due to fractals, the existence of such a relation-
ship should prompt us to test for self-similarity.

Examples of power-law scaling include the diameters of the bronchial passages
for the successive generations of branching in the lung. Another example is the
length of the transport pathway through the junctions between pulmonary endothe-
lial cells. The time courses of chemical reactions have also been studied in order to
determine whether the time delays resulting from the diffusion of the substrate are
long compared to the time required for enzymatic reactions. Scaling in mammalian
physiology, from small animals like mice to big ones like elephants, has been ex-
amined in relation to metabolism and structure. It is well known that small and light
animals usually move rapidly, whereas large and heavy ones move slowly. This is
also true for the frequency of the heartbeat, which is higher for a mouse than for
an elephant. Elephants also live longer than mice. Therefore, a relationship between
the lifetime or activity of a living being and its body mass is assumed.

The activity of an animal can be determined by the velocity of the metabolism.
The so-called metabolic rate XMB indicates the velocity of energetic exchange
between an organism and its environment. Is there a relationship between the
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metabolic rate and the mass of an organism? Obviously, the mass M of a body is pro-
portional to the volume L3 of an organism with a typical length L. Metabolism, the
exchange of energy with the environment, takes place on the surface of an organism
and so it scales as L2. From XMB ∼ L2 and M ∼ L3, it follows that XMB ∼ M2/3.
This expected relation is generally expressed as the so-called allometric equation
X = Xo · Mγ . This power-law equation relates a biological variable X (for exam-
ple, the metabolic rate or life expectation of an organism) to the body mass M. Xo

is a reference value that gauges the scale, and γ is the scaling exponent. While Xo

varies with the individual and typical properties of an organism, γ only takes a few
values. At first it was assumed that γ are multiples of one-third, because the mass
of a body depends on its three-dimensional volume. But experiments demonstrate
that the metabolic rate actually scales with M3/4. Examples of this are the heartbeat,
which scales as M−1/4, and both life expectation and blood circulation, which scale
as M1/4. G.B. West, J.H. Brown, and B.J. Enquist [3.52] suggested that these power
laws could be explained by the fractality of organisms. Their hypothesis is based on
three principles:

1. The natural selection pressure present in nature causes metabolic capacity of an
organism to be optimized by maximizing its surface area a and minimizing the
transport distance l and time t inside it.

2. Internal supply networks of an organism can be fractal.
3. There is a smallest typical unit of length lm in biological systems that does not

scale with the size of an organism, but remains constant.

It is remarkable that applying only two of these three principles leads to an (empir-
ically false) exponent of 1/3 and multiples of 1/3, but applying all three principles
leads to (empirically confirmed) multiples of 1/4. Where does the fourth dimension
come in? First, the whole area a of an organism changes if all characteristic lengths
li of an organism are stretched by a factor Γ as li → Γ · li. In this case we get a new
area a′(l1, l2, . . .) = Γ α · a(l1, l2, . . .). If all lengths can be scaled in an organism
(i.e., the third principle is not true), then it follows that α = 2. This is the expected
scaling of a normal area, which can easily be illustrated using an example: a rect-
angle with side lengths l1 = 3 m and l2 = 2 m has an area a(l1, l2) = 6 m2. If each
side is made three times longer, then the area of the rectangle increases ninefold, to
a′ = 36 m2. For Γ = 3, it follows that Γ 2 = 9 and that the new area a′ = Γ 2 · a is
nine times larger than the old area a. In general, α = 2 means the scaling of an area,
independent of the fractality of a. A similar argument holds for the typical unit of
length of an organism l′(Γ · l1,Γ · l2, . . .) = Γ λ · l(l1, l2, . . .) with λ = 1.

Now let us assume that the third principle holds for a normal area a(l1, l2),
which means that l1 cannot be stretched. In this case, the area after stretching is
a′ = l1 ·Γ · l2, which is only threefold larger the old area. The scaling law a′ = Γ α ·a
does not have the usual exponent (2) for an area; instead, α = 1, corresponding to
a length. With the scaling exponents α and λ for area and length, the scaling of
a volume is given by ν′ = Γ α+λ · ν. In the case of a uniform density of tissue,
the mass M of an organism is proportional to its volume ν . The dependence of the
internal area a on the mass M of an organism is then determined by a ∼ Mα/(α+λ).
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For normal values α = 2 and λ = 1 in our three-dimensional world, the (empir-
ically false) law a ∼ M2/3 follows. This also holds if there is no scale-resistant unit
in an organism. However, according to the second principle, biological systems have
a smallest length lm, which cannot be scaled (for example capillary diameter). In this
case, a possible fractal structure in a and l (as postulated by the second principle)
can be considered: the exponents α and λ do not necessarily take the values they
do in the three-dimensional world. According to the laws of fractals, they can vary
between 1 and 2 (for λ) and between 2 and 3 ( for α). For α = 3, we get a fractal that
fills a volume, while α = 2 gives a fractal that fills an area. In order to determine the
values of the equation a ∼ Mα/(α+λ), the first principle must be taken into account.
The area a becomes maximal if α takes the maximal value 3 and λ takes the minimal
value 1. Using these values, we obtain the observable law a ∼ M3/4 and, in general,
exponents with multiples of 1/4. This structure satisfies the first principle: the max-
imal internal area is a fractal that fills a volume. The shortest transport connections
are normally geometric lines that are not enlarged by fractal structures, so λ = 1. In
Fig. 3.13, geometric Euclidean and biological fractal dimensions are compared. The
relationships with biomass M assume a constant density of tissue. Living beings act
in three-dimensional space, but their internal physiology seems to suggest a four-
dimensional structure [3.53]. These results depend on empirical observations and
measurements. Therefore, future research could change and improve these results.
With more precise statistics, more precise deviations in the 1/4 exponents could be
identified.

In any case, the presence of power laws indicates the high complexity of all
physiological systems. At a static level, the bronchial system of the mammalian lung
serves as a useful example of anatomic complexity. The treelike network involves
a complicated hierarchy of airways, beginning with the trachea and branching down
through increasingly smaller scales to the level of the smallest branchioles. The hu-
man lung has two dominant features, irregularity and richness of structure, along
with organization. The essential concept underlying this kind of constrained ran-
domness is that of scaling. The corresponding power law scales are similar to the
scaling principles of allometry.

The fractal concept arises in the three distinct but related guises of geometry,
statistics, and dynamics. The first context in which we find fractals is complex geo-
metric forms. A fractal structure is not smooth and homogeneous but instead reveals

variable Euclidean scaling biological scaling

length L ∼ A1/2 ∼ V1/3 ∼ M1/3 l ∼ a1/3 ∼ v1/4 ∼ M1/4

area A ∼ L2 ∼ V2/3 ∼ M2/3 a ∼ l3 ∼ v3/4 ∼ M3/4

volume V ∼ L3 ∼ V3/2 ∼ M v ∼ l4 ∼ a4/3 ∼ M

Fig. 3.13. Scaling of length, area, and volume for biological networks and normal Euclidean
space
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greater and greater levels of detail. The lungs, the heart, and many other anatomic
structures may also process fractal structures. The second context in which we find
fractals involves the statistical properties of a process. The statistics are inhomoge-
neous and irregular rather than smooth in this case (instead of the structure). A frac-
tal statistical process is one in which there is a statistical rather than a geometrical
sameness to the process at all levels of magnification. Thus, just as the geometrical
structure satisfies a scaling relation, so too does the stochastic process. The third
context in which fractals are observed involves time, and is related to dynamical
processes. The chaotic dynamics that occur in nonlinear dynamical systems arise in
part because the attractor on which the dynamics take place has a fractal dimension.
This deep relation between chaotic time series and fractal structure was introduced
in Sect. 2.6. A second way in which a dynamical quantity can be related to a fractal
is when the conduit for the measured quantity has a fractal dimension. An example
is the voltage measured from the cardiac pulses that emerge from the conduction
system of the heart. Again, the small-scale structure is similar to the large-scale
form. The apparent lack of a characteristic time scale in the time series is a con-
sequence of the structure of the conduction system. This is one of the connections
between geometric structures and dynamics.

In applying the scaling ideas to physiology, we note that irregularity should be
seen as being fundamental rather than treated as a pathological deviation from some
classical ideal. The concept of fractals and self-similarity has not only entered into
descriptions of biomedical phenomena, but it has prompted a new health paradigm
for the clinician [3.54]. The traditional notion of health is one of homeostasis, which
is based on the idea that there is an ideal state in which the body is operating in
a vaguely defined, maximally efficient way. In this model, illness is considered to
be the deviation of the body from this state. It is the task of a physician to help the
patient to regain this state. The new idea that has emerged from nonlinear dynamics,
scaling, and power laws in biology is that health is homeodynamic; in other words
there are a constellation of states that determine health. A healthy person occupies
many of these states during the course of normal activity. Flexibility of response
and tolerance of error are typical features of this new paradigm. The most important
consequences of these concepts can be found in physiology and medicine, where
they have changed long-believed views about order and variability in health and
disease. A healthy physiological system has a certain amount of intrinsic variability,
and a transition to a more ordered or less complicated state may be indicative of dis-
ease. Strange attractors may determine the dynamical maps of healthy fluctuations
in the heart and brain.
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4 Complex Systems and the Evolution of Mind–Brain

How can one explain the emergence of brain and mind? The chapter starts with
a short history of the mind-body problem. Besides religious traditions, the concepts
of mind and body held by our ancestors were often influenced by the most advanced
standards in science and technology (Sect. 4.1). In the framework of complex sys-
tems the brain is modeled as a complex cellular system with nonlinear dynamics.
The emergence of mental states (for instance pattern recognition, feeling, thoughts)
is explained by the evolution of (macroscopic) order parameters of cerebral assem-
blies which are caused by nonlinear (microscopic) interactions of neural cells in
learning strategies far from thermal equilibrium. Pattern recognition, for instance,
is interpreted as a kind of phase transition by analogy with the evolution equations
which determine pattern emergence in physics, chemistry, and biology (Sect. 4.2).
In recent studies in neurobiology and cognitive psychology, scientists even spec-
ulate that the emergence of consciousness and self-consciousness depends on the
production rate of “meta-cell-assemblies” as neural realizations of self-reflection.
The Freudian unconscious is interpreted as a (partial) switching off of order param-
eters referring to certain states of attention. Even our dreams and emotions seem to
be governed by nonlinear dynamics (Sect. 4.3).

Is the “Newton of the human brain and mind” found? Of course not. The com-
plex system approach cannot explain what mind is. But we can model the dynamics
of some mental states under certain conditions. Even the modeling of intentional
behavior cannot be excluded in principle. Complex systems do not need a central
processor like the fiction of “a little man” in the brain. Thus, Virchow’s cynical ob-
servation that he did not find any soul in human bodies even after hundreds of oper-
ations is obsolete. A mental disposition is understood as a global state of a complex
system which is caused by the local nonlinear interactions of its parts, but which
cannot be reduced to its parts (Sect. 4.4). The wonder of our feeling, imagination,
and creativity which has been celebrated by poets and artists since the beginning of
human culture is not touched by the complex system approach, although we shall
sometimes model some aspects of their nonlinear dynamics.
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4.1 From Plato’s Soul to Lamettrie’s “L’Homme machine”

One of the most complex organs in nature is the human brain. Nowadays we know
that it enables the emergence of human mind, consciousness, and personality, which
has been considered as one of the greatest miracles of mankind since the early be-
ginning of human thinking. The complex system approach allows us to model the
emergence of human perception and thinking with respect to nonlinear interactions
of complex neural networks. Thus, models of complex systems help us to under-
stand how the mind-brain process may work, and how it may have emerged in nat-
ural evolution under certain conditions. From this point of view, it will be, in the
long run, no wonder how consciousness and mind emerge by well-known laws in
the evolution of nature. But it still remains a wonder that it has arisen.

Before we explore complex systems and the evolution of mind-brain, let us
glance at the early philosophy of mind and the history of neural physiology. On the
historical background we can decide which questions of the traditional mind-body
problem have been solved by the complex system approach and which questions are
still unsolved.

In the previous chapters, we have already remarked that early myths and reli-
gious beliefs were attempts to explain the human living world and to conjure the
forces of nature. Obviously, human desire, fear, anger, and imagination govern the
human living world like the might of nature. Consciousness or spirit or mind or soul
are experienced in life, and they seem to “leave” the body of dead people. Humans
have tried to model these unknown processes by familiar experiences of interacting
physical things. Mental or conscious states are hypostatized as a particular substance
called “soul”, or something like that, which is responsible for the intentional behav-
ior of humans. With the hypostatization of mental states, the problem of the position
of the soul in the body has been raised, and is usually answered by the idea that it
pervades the body, or is centered in some organs, such as the heart and the lungs.
Although the effects of this miraculous “thing” are obviously real, it cannot be seen
or seized like a God or ghost. Thus, it has been generally believed to have divine
origin. Criticizing traditional myths and religious beliefs, the presocratic philoso-
phers searched for natural causes and principles. Some thinkers regarded the “soul”
as material stuff like “air” or “fire” because they were believed to be the finest and
lightest forms of matter. For Anaxagoras mind is the principle of motion and order,
and therefore the principle of life. For Heraclitus soul is like a flame of fire ruled by
the law (logos) of the universe. The soul, like fire, is killed by water: “It is death for
souls to become water” [4.1]. These approaches are nothing else than modeling the
unknown by the familiar and known.

It is noteworthy that one of the early medical thinkers, the Pythagorean Al-
cmaeon of Croton, seems to have been the first Greek thinker to locate sensation
and thought in the brain [4.2]. Like the early Greek astronomical model of a helio-
centric universe, this genial idea was soon overshadowed by the authority of Aris-
totle who taught that the heart is the seat of consciousness, while the brain is only
a mechanism for cooling by means of air. Although Aristotle was greatly influ-
enced by the early Greek medical thinkers, he disagreed with Hippocrates’ great
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insight that the brain “is the messenger to consciousness (sunesis) and tells it what
is happening”.

An early reductionistic philosophy of mind was defended by Democritus, who
tried to reduce the mental states to interactions of the smallest atoms [4.3]. The prob-
lem with his reductionism is, of course, that “soul” is only identified with particular
material (but unobservable) atoms. In contrast to material identifications or analo-
gies, the Pythagorean philosophers explained that the human soul or mind must be
an immaterial essence because it is able to think immaterial ideas like mathemat-
ical numbers and relations. In other words, the soul is modeled as a mathematical
proportional system whose harmonies or disharmonies represent mental states like
musical melodies.

The Pythagorean concept influenced Plato’s philosophy of the human soul,
which is related to his theory of forms or ideas. In his dialogue Menon Plato demon-
strates that an untrained slave can solve mathematical problems. The reason is that
in Plato’s view every man has an eternal knowledge before (a priori) any empirical
experience. Man has this kind of a priori knowledge, e.g., in mathematics, by partic-
ipation in the eternal forms and ideas which are ante rem, which means independent
of the fuzzy and transitory appearance of being [4.4].

Aristotle criticized Plato’s hypothesis of an idealistic world behind reality. Ideas
are human abstractions of forms which are acting in nature (in re). The soul is de-
scribed as the form (“essence”) of the living body, the “first entelechy”, which is
a teleological force. But it is not separated from matter. The soul is involved as
potentiality in a human body. According to Aristotle, the human organism is under-
stood as a wholeness.

Nevertheless, in the Aristotelean and Stoic tradition the anatomy of the ner-
vous system had been discovered. Galen believed that the nerves transport a psy-
chic pneuma to the muscles which are caused to produce movements. The psychic
pneuma was not only a material stuff like breath or air, but a kind of vital spirit [4.5].
In the Middle Ages, the Aristotelean and Stoic philosophy of nature had a great in-
fluence on medical thinkers in the Islamic tradition like Avicenna, who founded
a medical school with impressive activities in the fields of surgery, pharmacology,
and practical healing and helping ill people [4.6]. Later on, these medical standards
of the Persian and Arabic world were only realized by a few thinkers of the Chris-
tian Middle Ages like Albertus Magnus. Concerning the philosophy of mind and
brain, the scientific discussions on, for example, the problem of human conscious-
ness were always overshadowed by religious ideologies, and for a long time it was
rather dangerous to dissect dead bodies in anatomy.

In contrast to holistic philosophy in the tradition of Aristotle and Avicenna,
Descartes’ rationalism taught a dualistic ontology strictly separating mind and mat-
ter, soul and body. The human body (res extensa) is a material machine constructed
by the laws of mechanics and geometry. It is directed and controlled by innate ideas
(ideae innatae) which are incorporated in the human mind (res cogitans). In his
Meditations, Descartes gets to his primal intuition of the human mind by method-
ically doubting everything. Methodical doubt is designed to uncover what, if any-
thing, is indubitable. Whereas Descartes can doubt the results of all sciences, of
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common sense, of perception, he cannot doubt that he exists as a kind of thing
which is capable of engaging in cognitive processes such as doubting:

But what then am I? A thing which thinks. What is a thing which thinks? It is a thing
which doubts, understands, affirms, denies, wills, refuses, which also imagines and feels. [4.7]

The difficulty with Descartes’ theory is, of course, the interaction of mind and
body. He assumes that the human organism with its various organs is directed by
the mind with its seat in the brain. The nerves are message cables to and from the
brain. They work as causal chains between the ordering mind and the executing
muscles. According to the clockwork paradigm of his mechanics, Descartes believed
in tiny material particles called “animal spirits” moving and pushing each other very
quickly in the cables of the nerves, in order to transport some input from the brain
to the muscles.

In contrast to all mechanical effects in nature, the human mind is able to decide
the direction of a movement voluntarily. Thus, the action of the mind on animal
spirits is to deflect the direction of their motion. This can be done without violating
Descartes’ laws of physics as long as the “amount of motion” (the later so-called
conservation law of momentum) was conserved. In Fig. 4.1, Descartes’ mechanical
model of perception is illustrated: the minute particles of light beams bomb the
human eyes, exciting the brain by the transmission of particular nerves and their
“animal spirits”. The movements of arm and hand are coordinated with perception
by the mind in the brain [4.8].

Fig. 4.1. Descartes’ geometric model of perception and arm movement
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In his book Passions of the soul Descartes even tried to analyze all emotional
states like fear and love as the passive physical outcomes of the way various “animal
spirits” are induced to flow by external events. If Descartes’ mechanical model of
animal spirits is replaced by biochemical substances and electrophysical effects like
hormones and neurotransmitters, then his concept of nervous activity seems to be
rather modern.

His main difficulty is the immediate interaction of an immaterial, and therefore
unextended and indivisible mind (res cogitans) with a material, and therefore ex-
tended and divisible body (res extensa). Descartes locates the mind within a very
small organ of the brain, the pineal gland, steering the movements of the animal
spirits. But how can the unextended mind exert a push on an extended particle like
an animal spirit? In the framework of mechanics, this problem of interaction was
unsolvable in principle and gave rise to s several developments in the philosophy of
mind.

For occasionalistic philosophers like Malebranche all causation is miraculous.
God must intervene on the occasion of every particular case of causal action. Thus,
the mind-body problem is explained by a theological and adhoc hypothesis. Spinoza
reduced Descartes’ dualism of mind and matter to a monism of one unique sub-
stance. God alone is the only substance of everything. All appearances of nature,
mind, and body are only attributes (“states”) of the universal substance. There are
no miracles at any occasion. But God and human mind are naturalized, and nature
has become divine in a universal pantheism [4.9].

According to the complex system approach, it was Leibniz who delivered
a most remarkable philosophy of mind. Concerning his philosophy of nature, we
recall of Leibniz’ universe that, contrary to Descartes and Spinoza, consists of in-
finitely many substances (“monads”), corresponding to different points of view in
space and with a more or less clear perspective on the whole. Thus, the monads are
considered as soul-like substances endowed with perception and memory, differing
in the degree of clarity of their consciousness. There are substances with a rather
great perspective and rather high degree of consciousness like humans, when they
are compared with animals, plants, and stones with decreasing degrees of conscious-
ness. Even God may be embedded in Leibniz’ monadology as the central monad
with the highest degree of consciousness and best perspective on the whole, but still
as an individual and different entity [4.10].

Obviously, Leibniz did not have the metaphysical problems of Descartes’ in-
teractionism. He actually tried to combine classical mechanics with the traditional
Aristotelean teleology of nature, because he was aware of the mechanistic lack of
an adequate philosophy of mind. From a modern point of view, Leibniz’ notion
of more or less animated soul-like substances with perception and memory seems
to be rather strange. But it was no problem for him to model his monadology in
the framework of automata with more or less complexity. Leibniz suggested that
each substance can be modeled by an automaton with different states corresponding
to the monad’s perceptions. Its degree of consciousness is measured by its degree
of complexity, characterizing the size of the monad’s state space and its informa-
tion processing capacity. The states of Leibniz’ more or less complex automata are
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correlated with each other in networks, according to his famous quotation that the
monads have “no windows” and do not interact, but reflect each other like the mir-
rors in a baroque palace. Leibniz’ complex networks of monads will be discussed
in Chap. 5 in more detail. In short, Leibniz assumed that mind is not reserved to hu-
mans, but is a feature of systems which emerges with different intensity according
to the system’s degree of complexity.

The English empiricist philosophers like Locke and Hume criticized the Carte-
sian-Platonic belief that mental states can be analyzed by introspection and pure
thinking without sensory experience. For empiricist philosophers mind is nothing
more than a tabula rasa, an empty store for receiving sensory data, in order to
form concepts by association and abstraction. Images are merely less vivid copies
of sense-impressions which can be imaginatively combined, like for instance the
notion of an unicorn.

According to the complex system approach, Hume developed a remarkable psy-
chological theory of association. He proclaimed that there is neither a causal mecha-
nism in nature nor a causal law in our mind, but only an unconscious reflex of associ-
ating those sense-impressions which occur in a correlated way on several occasions
like flashes of lightning and thunder. We may say that the brain has an unconscious
capacity to build up patterns of sense-impressions. Notions are nothing more than
terms designating more or less complex patterns of sense-impressions. Apart from
mathematics, there are no sharp and definite concepts founded on perception, but
only more or less fuzzy patterns allowing more or less probable assertions about
events. In A treatise of human nature, Hume wrote:

The table before me is alone sufficient by its view to give me the idea of extension. This
idea, then, is borrow’d from, and represents some impression, which this moment appears to
the senses. But my senses convey to me only the impressions of colour’d points, dispos’d in
a certain manner. If the eye is sensible of any thing farther, I desire it may be pointed out to
me. But if it be impossible to shew any thing farther, we may conclude with certainty, that the
idea of extension is nothing but a copy of these colour’d points, and of the manner of their
appearance. [4.11]

According to Descartes’ rationalism, the human mind rules the body’s mechan-
ics like a monarch governing the state in his century of absolutism. For Hume, there
is no separate substance of the human mind, but only a self-organizing field of per-
manently emerging and disappearing patterns excited by associations of more or
less intense sense-impressions. Hume’s spontaneously associating and separating
sense-impressions can be compared with the free citizens of a democratic society
who may associate in groups and parties without the orders and prohibitions of
a sovereign.

Kant tried to synthesize rationalism and empiricism. According to empiricism,
cognition starts with experience and sensory data. But rationalism is right, because
we need mental structures, cognitive schemes, and categories in order to organize
experience and cognition. Kant tried to introduce the philosophical categories which
found the axioms of Newtonian mechanics. It is the main feature of his epistemol-
ogy that recognition does not arise by passive impressions of the external world on
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the tabula rasa of our brain. Recognition in the Kantian sense is an active process
producing models of the world by a priori categories. The spatial and temporal or-
der of physical events is reduced to geometrical forms of intuition. Perception in the
Kantian sense is active information processing regulated by a priori anticipations.
The causal connections of events is made possible philosophically by an a priori
category of causality.

Hume was right that a causal relation cannot be perceived. But, in order to
forecast and calculate the path of a pushed billiard ball exactly, it is not sufficient
to repeat several pushes of billiard balls and to associate several sense-impressions
à la Hume. We must anticipate that causes and effects can be connected by some
deterministic relation. That is done by Kant’s general scheme of (deterministic)
causality in epistemology. But the question is which particular causal function is
adequate to decide and test by physical experience. Cognitive schemes are already
applied in everyday life. They are even modeled by data schemes of programming
languages in computer science (compare Sect. 5.2). Thus, Kant’s epistemology may
be interpreted as an important forerunner of modern cognitive sciences, where cog-
nitive schemes are presumed to order the mass of experienced data. But, contrary
to Kant, they may be changed in the development of history, as was shown by the
change from Euclidean space to non-Euclidean spaces, e.g., in the theory of relativ-
ity [4.12].

While Spinoza suggested a spiritual monism as a way out from Descartes’ dual-
ism, Lamettrie supported a kind of materialistic monism. Descartes’ assumption of
a separate soul-like substance (res cogitans) was criticized as superfluous, because
all mental states should be reduced to mechanical processes in the human body:
“L’Homme machine”. Lamettrie claimed there were no fundamental differences be-
tween humans and animals. Intelligent and reflex behavior should be explained by
“irritation” of the nerves and not by a “ghost in the machine”. But, in the mechanis-
tic framework of the 18th century, Lamettrie’s revolutionary ideas could only be an
inspiring program of physiological research [4.13].

The famous mathematical physicist and physiologist Hermann von Helmholtz
(1821–1894) was a post-Kantian philosopher [4.14]. He supported a kind of nat-
uralized framework of cognitive categories which must be presumed before any
particular perception of the world can be constructed. Of course, the categories had
changed since Kant. Nevertheless, there are some general schemes like the concept
of space, numbers, measurement, and causality characterizing the physical theories
of the 19th century. Helmholtz was aware, for instance, of the mathematical possi-
bility of non-Euclidian spaces. Thus, he thought that the correct physical geometry
must be decided by physical measurement.

Concerning his theories of physiology, Helmholtz started as a student of Jo-
hannes Müller (1801–1858), who is sometimes called the father of modern physiol-
ogy [4.15]. Müller defended a law of specific nerve energies demanding that each
nerve has its own particular energy or quality. He found that sensations could be
elicited by mechanical or chemical influences, heat, electricity, etc. A Kantian as-
pect of perception is now naturalized, because it became evident that the brain has
to reconstruct the world from its effects on nerves. Nevertheless, Müller defended
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an immaterial conception of animal spirit. He believed that animal spirits cannot be
measured, because their speed is too high.

Helmholtz had explored the mathematical conservation law of energy. As en-
ergy could be transformed but neither created nor destroyed, an immaterial energy
of life beyond the conservation law seemed to be senseless. Helmholtz preferred
the theory that so far as the question of energy was concerned, the body could be
viewed as a mechanical device for transforming energy from one form to another
without special forces and spirits. Chemical reactions were capable of producing
all the physical activity and heat generated by the organism. Muscular activity was
realized by chemical and physical changes in the muscles. Furthermore, Helmholtz
measured the velocity of nerve conduction and demonstrated that it was slower even
than the speed of sound [4.16]. Philosophically, these results were interpreted as
a refutation of Müller’s vitalism.

Emil du Bois-Reymond (1818–1896), who was another student of Müller,
showed that nervous affect was actually a wave of electrical activity. In those days,
histologists began to discover separate cell bodies and fibers through the micro-
scope. According to these results, nervous activity and the brain seemed to be a com-
plex system of nerve cells (“neurons”) with a complicated network of connections.
The communication structure of neurons transmitting a signal from one neuron to
another one was first described at the beginning of this century. But observations
of synaptic junctions were not possible before the use of the electron microscope
around the middle of this century.

How can the emergence of perceptions, thoughts, and feelings be explained by
these descriptions of neuroanatomy and neurophysiology? One of the first thinkers
who explained mental states by cell assemblies of neural networks was the Ameri-
can philosopher and psychologist William James. In his brief course “Psychology”
(1890), James defended the Darwinian and evolutionary position that the brain is
not constructed to think abstractly, but is constructed to ensure survival in evolution.
In a pragmatic way, he assumed that the brain has many of the features of a good
engineering solution applied to mental operations:

Mental facts cannot properly be studied apart from the physical environment of which
they take cognizance . . . . Mind and world in short have evolved together, and in consequence
are something of a mutual fit. [4.17]

Brain organization seems to be very poor at doing arithmetic and formal logic.
But the ability to form concepts and associations, to make good guesses and to as-
sume hypotheses is a characteristic feature of the brain. James presents a mechanis-
tic model of association that stems from Hume’s pioneering work and reminds us of
the later associative neural networks. In a more qualitative way, he formulated some
principles which are partially incorporated in the modern mathematical models of
complex neural networks:

1. James believed that association was mechanistic and a function of the cere-
bral cortex.
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2. James’ principle of association:

When two elementary brain processes are active together or in immediate succession,
one of them, on reoccurring tends to propagate its excitement into the other.

3. James’ summing rule for brain activity:

The amount of activity at any given point in the brain cortex is the sum of the tendencies
of all other points to discharge into it, such tendencies being proportionate (1) to the number
of times the excitement each other point may have accompanied that of the point in question;
(2) to the intensities of such excitements; and (3) to the absence of any rival point functionally
disconnected with the first point, into which the discharges might be diverted. [4.18]

If in the second principle the term “brain process” is replaced by “neuron”,
then we get a description of a synapse which was later introduced by Hebb (com-
pare Sect. 4.2). If in the third rule the term “point in the brain cortex” is replaced
by “neuron”, we get a linear summation rule of synaptic inputs which is very close
to some network models of the Hebbian type. James also discussed the ability of
networks of partial associations to reconstruct the missing pieces through some par-
ticular procedure of cell connecting. Although James was, of course, not familiar
with computer-assisted modeling, he had the essential insight of the complex sys-
tem approach that complex events are made up of numerous subassociations which
are interconnected by elementary mechanisms like synapses.

In his chapter on “Association”, James considered someone thinking of a cer-
tain dinner-party. The only thing which all the components of the dinner-party could
combine to recall would be the first concrete occurrence which ensued upon it. All
the details of this occurrence could in turn only combine to awaken the next fol-
lowing occurrence, and so on. In relation to Fig. 4.2, James described this process
schematically:

Fig. 4.2. William James’ geometric model of an association network
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If a, b, c, d, e, for instance, be the elementary nervetracts excited by the last act of the
dinner-party, call this act A, and l, m, n, o, p be those of walking home through the frosty
night, which we may call B, because a, b, c, d, e will each and all discharge into l through
the paths by which their original discharge took place. Similarly they will discharge into
m, n, o, and p; and these latter tracts will also each reinforce the other’s action because, in
the experience B, they have already vibrated in unison. The lines in Fig. 4.2 [4.19, Fig. 57]
symbolize the summation of discharges into each of the components of B, and the consequent
strength of the combination of influences by which B in its totality is awakened. [4.19]

James is convinced that “the order of presentation of the mind’s materials is due
to the cerebral physiology alone.” In the modern complex system approach, order
parameters are used to describe mental states which are caused by macroscopic
neural cell assemblies. In the following sections we will see that many basic insights
into the operations of the mind from the presocratic philosophers to Kant and James
have not been fundamentally altered even today.

4.2 Complex Systems and Neural Networks

In the 19th century, the physiologists discovered that macro-effects like perception,
vision, muscular motion, etc., displayed by the nervous system depend on individual
cells. These cells are able to receive and transmit signals by causing and responding
to electric current. Obviously, the nervous system and the brain have turned out to
be one of the most complex systems in the evolution of nature. There are at least
ten billion nerve cells (neurons) in the human brain. Each neuron receives inputs
from other cells, integrates the inputs, generates an output, and sends it to other
neurons. The inputs are received by specialized synapses, while outputs are sent by
specialized output lines called axons.

A neuron itself is a complex electrochemical device containing a continuous in-
ternal membrane potential. If the membrane potential exceeds a threshold, the neu-
ron propagates a digital action potential to other neurons. The nerve impulses origi-
nate in the cell body, and are propagated along the axon with one or more branches.
Neurologists usually distinguish excitatory and inhibitory synapses, which make it
more or less likely that the neuron fires action potentials. The dendrites surrounding
the neuron might receive incoming signals from tens or thousands of other neurons.
The activity of a neuron is measured by its firing frequency. Biological neurons
are not binary, because outputs are continuous. However, many models of neural
networks are simplified and use binary computing elements [4.20].

Brains are complex systems of such cells. But while an individual neuron
does not see or reason or remember, brains are able to do so. Vision, reasoning,
and remembrance are understood as higher-level functions. Scientists who prefer
a bottom-up strategy recommend that higher-level functions of the brain can be nei-
ther addressed nor understood until each particular property of each neuron and
synapse is explored and explained.

An important insight of the complex system approach discloses that emergent
effects of the whole system are system effects which cannot be reduced to the single
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elements. Philosophically, the whole is more than the sum of its parts. Thus, a purely
bottom-up-strategy of exploring the brain functions must fail. On the other hand, the
advocates of a purely top-down strategy proclaiming that cognition is completely
independent of the nervous system are caught in the old Cartesian dilemma “How
does the ghost drive the machine?”.

Traditional positions in the philosophy of mind (compare Sect. 4.1) have more
or less defended one of these strategies of research. In the 18th century, Leibniz and
later on the zoologist Bonnet already suggested that there is a scale of complexity
in nature with more or less highly developed levels of organization. In Fig. 4.3 the
levels of organization in the nervous system are illustrated [4.21]. The hierarchy of
anatomical organizations varies over different scales of magnitude, from molecular
dimensions to that of the entire central nervous system (CNS).

The scales consider molecules, membranes, synapses, neurons, nuclei, circuits,
networks, layers, maps, systems, and the entire nervous system. On the right side
of the figure, a chemical synapse is shown at the bottom, in the middle a network
model of how ganglion cells could be connected to simple cells in visual cortex, at
the top a subset of visual areas in visual cortex, and on the left the entire CNS.

Fig. 4.3. Degrees of complex systems in the central nervous system (CNS): a chemical
synapse, a network model of cellular connections in the visual cortex, and subsystems of
the visual cortex [4.21]
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The research perspectives on these hierarchical levels may concern questions,
for example, of how signals are integrated in dendrites, how neurons interact in
a network, how networks interact in a system like vision, how systems interact in
the CNS, or how the CNS interact with its environment. Each stratum may be char-
acterized by some order parameters determining its particular structure, which is
caused by complex interactions of subelements with respect to the particular level
of hierarchy. Beginning at the bottom we may, for instance, distinguish the orders
of ion movement, channel configurations, action potentials, potential waves, loco-
motion, perception, behavior, feeling, and reasoning.

It is quite obvious that an important function of the nervous system is to moni-
tor and control the living conditions of the organism relative to its environment. An
example of an elementary controllable state is, for instance, the temperature of an
organism. At the highest level the change of states in the environment needs antici-
patory planning and social interactions, which have led to the human skills of verbal
communication, creating art, solving mathematical problems, etc., during a complex
cultural evolution.

From a Darwinian point of view, the evolution of the nervous system with its
levels of increasing complexity seems to be driven by the fundamental purpose in
nature to survive as the fittest. Some scientists of the brain even defend the strong
opinion that the emergence of mental phenomena like abstract thinking is only some
kind of “epiphenomenon” which was not originally intended by nature. But the
belief in intentions and purposes of nature is, of course, only a human metaphor
presuming some secularized divinity called “nature” governing evolution. Accord-
ing to the complex system approach, each level of the CNS has its own functional
features which cannot be reduced to the functional features of lower levels. Thus,
abstract thinking can only be regarded as an “epiphenomenon” from the perspective
of a level like, say, the control system of the body’s temperature.

In order to model the brain and its complex abilities, it is quite adequate to
distinguish the following categories. In neuronal-level models, studies are concen-
trated on the dynamic and adaptive properties of each neuron, in order to describe
the neuron as a unit. In network-level models, identical neurons are interconnected
to exhibit emergent system functions. In nervous-system-level models, several net-
works are combined to demonstrate more complex functions of sensory percep-
tion, motor functions, stability control, etc. In mental-operation-level models, the
basic processes of cognition, thinking, problem-solving, etc. are described. Their
simulation is closely related to the framework of artificial intelligence (compare
Chap. 6).

From a methodological point of view, we must be aware that models can never
be complete and isomorphic mappings of reality. In physics, for instance, models
of the pendulum neglected friction. In chemistry, models of molecules treated elec-
trons in orbitals like planets in the solar system, contrary to Heisenberg’s uncertainty
principle. Nevertheless, these models are useful with respect to certain conditions
of application. The conditions of brain models are given by the levels of brain orga-
nization. If a function of a certain level of brain organization is modeled, the model
should take into account the conditions from the levels below and above. Higher-
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level properties are often not relevant. In general, the methodology of modeling is
determined by a calculation of methodological costs and benefits. A model of the
human brain which is intended to be realistic in every respect needs over-expensive
analysis and construction. It would never satisfy the desired purpose, and thus it
is impractical. Scientists will be more successful if they try to model each level of
brain organization with simplifications concerning the levels below. On the other
side, the models must be rich enough to reveal the essential complex features of
brain organization.

According to the complex system approach, brain functions should be mod-
eled by an appropriate state space and a phase portrait of its dynamical trajec-
tories describing the brain’s activities. René Descartes, the French mathematician
and philosopher, already described the coordination of perception, arm moving, and
brain in the framework of (Euclidian) geometry (Fig. 4.1).

Today, neural networks are geometrically characterized by vector spaces and
neural matrices. The electrochemical input of neurons are connected with the out-
puts by weights. In a schematic section of the cerbellum (Fig. 4.4) the weights wij

from a neural matrix allow the network to calculate the output vector from the input
vector by matrix multiplication [4.22].

The example of Fig. 4.4 concerns a 3 × 4-neuron matrix. Neural physiology
demands great flexibility of modeling, because the neural network may be rather
complex. But the connectivity matrices can effect transformations on state spaces
of high dimensionality into others with different dimensionality. Mathematically,
these transformations of high dimensionalities may provoke geometrical problems
which cannot be solved by the elementary formalism of analytical geometry. In this
case, a generalized tensor network theory is necessary, in order to manage complex
coordination tasks. From a historical point of view, it is amazing that the change
from Euclidian to more general topological and metric spaces can be stated not
only for the physics of the outer world in general relativity but also for the intrinsic
features of the nervous system.

Fig. 4.4. Schematic section of the cerebellum modeled by neural matrix multiplication [4.22]
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With respect to Descartes’ early approach, let us regard an elementary sensori-
motor coordination which is represented by vector or tensor transformations. How
can an animal seize an object which it perceives by its sensory organs (Fig. 4.5a)? In
a simplified model, the position of the two eyes is at first codified in a 2-dimensional
space of sensory data. The state space can be visualized by a 2-dimensional topo-

Fig. 4.5a. Sensorimotor coordination of perception and arm movement [4.23]

Fig. 4.5b. Geometric model of sensorimotoric coordination by sensory and motor topographic
maps [4.23]
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graphic map. An impulse is sent from a point of the sensory state space to a corre-
sponding point of the motor state space which is also represented by a 2-dimensional
topographic map. A point of the motor state space codifies the corresponding posi-
tion of the arm (Fig. 4.5b) [4.23].

Another example of sensorimotor coordination is given by the vestibulo-ocular
reflex. This is the neural arrangement whereby a creature can stabilize an image on
the retina by short-latency movements of the eyes in the opposite direction to head
movement. There are two neural structures involved in this neural system, which can
be represented by different coordinate systems intrinsic to the CNS. First we have to
analyze the semicircular canals of the vestibular apparatus in the ear, three canals on
each side, which can be represented by a 3-dimensional coordinate system. Second,
each eyeball has six extraocular muscles corresponding to a 6-dimensional coordi-
nate system. Thus, the sensorimotor coordination of the vestibulo-ocular reflex is
geometrically described by a tensor transformation of a 3-dimensional (covariant)
vector. The mathematical scheme can be used for calculations of any eye-muscle
activation emerging from a given vestibular input.

On the level of neurons and networks, nets of artificial units are used to simulate
and explore the brain organization [4.24]. These units are assumed to vary between
0 and 1. Each unit receives input signals from other units via synaptic connections of
various weights. The incoming and outgoing representations are ordered sets of val-
ues, and the output units are activated appropriately. Mathematically, the procedure
can be interpreted as a mapping of some inputs as arguments onto corresponding
outputs as function values. The function rule is determined by the arrangement of
the weights, which depends on the topology of the neural network.

In the brain, neurons sometimes constitute a population as input layer (Fig. 4.6).
The axons of these cells are sent to a second layer of neurons. Axons from cells in
this second layer can then project to a third population of cells, and so on. The as-
sembled set of simultaneous activation levels in all the input units is the network’s
representation of the input stimulus, as input vector. This input vector with its activa-
tion levels is propagated upward to the middle layer. The result is a set of activation
levels determined by the input vector of the input layer and the several connection
weights at the ends of the terminal branches of the input units to the neurons of the
middle layer. This activation vector of the middle layer is propagated upward to the

Fig. 4.6. Three-layer network with hidden units
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topmost layer of units, where in the case of a three-layer network an output vector
is produced. Again, this ouput vector is determined by the activation vector at the
middle layer and the connection weights at the ends of the terminal branches of the
middle units to the output units.

A two-layer network with only an input and an output layer corresponds to
a simple stimulus-response scheme with observable and measurable inputs and out-
puts. In the case of a three-layer network, the units of the middle layer with their
weights are sometimes not directly measurable or only hypothesized as a hidden
mechanism in a black box. Thus, they are called hidden units.

Real nervous systems, of course, display many more units and layers. In hu-
mans, for instance, the structure of the cerebral cortex contains at least six distinct
layers of neurons. By the way, the mapping of inputs onto outputs by a neural matrix
in the cerebellum in Fig. 4.4 can equivalently be described by a two-layer network
with input and output layer. A three-layered network is equivalent to a pair of neural
matrices connected in series. But this kind of a many-layered network cannot be
generalized for the whole brain and nervous system, because cell populations in the
real brain often show extensive cell-to-cell connections within a given layer, which
will be considered in some different models.

According to the complex system approach, the neurons of a particular layer
can be interpreted as the axes of a state space representing the possible activity states
of the layer. The development of states, their dynamics, is illustrated by trajectories
which may be caused by some learning process of the particular network.

For instance, a perception can be explained by vector-processing in a neural
network. At first, there is a sample of stimuli on the input neurons from the outer
world (e.g., electromagnetic light signals, colors in the eye, or sound waves in the
ear), which is processed in the neural network to produce an output vector which
represents, e.g., a visual or auditory picture of the outer world. But the neural net-
works must learn to distinguish and recognize the correct forms, colors, sounds, etc.,
in a huge mass of input data.

The learning procedure is nothing else than an adjustment of the many weights
so that the desired output vector (e.g., a perception) is achieved. The learning proce-
dures can be simulated by mathematical algorithms which are an important topic of
research in artificial intelligence (compare Sect. 6.2). They produce weight configu-
rations at each neural layer which can be represented in terms of vectors, too. At any
given time, the complete set of synaptic values defines a weight space with points
on each axis specifying the size of a particular weight. In general, learning means
minimizing the errors or differences between a most adequate solution (perception,
idea, etc.) and a less adequate one. Thus, a learning process can be visualized by
a trajectory in the weight space, starting from the initial randomly set position to
the final minimal-error position (Fig. 4.7a). The key to this kind of modeling means
that weights in a network can be set by an algorithmic procedure to embody a func-
tion. It is assumed that any representable world can be represented in a network, via
configurations of the weights.

Figure 4.7a shows a trajectory in the synaptic weight space during a learn-
ing process. This space, simplified for three weights, represents all possible weight



4.2 Complex Systems and Neural Networks 139

Fig. 4.7a,b. Synaptic weight space (a) and activation vector space (b) of the three-layer net-
work in Fig. 4.6 [4.25]

combinations from the synapses in the three-layer network (Fig. 4.6). Figure 4.7b
shows a corresponding activation-vector space whose axes are the hidden units of
the three-layer network (Fig. 4.6) [4.25].

The weight space and the activation space are similarity spaces, because similar
vectors representing similar things are reflected by proximity of position. Weight
configurations cluster similar things, taking into account that weight configurations
may be sensitive to very tiny differences between things. Thus, in the activation
space, we can distinguish prototype vectors representing similar things with tiny
differences measured by their distances to the prototype vector. On the macroscopic
level of observation and behavior, these prototype vectors may represent particular
categories of trees, plants, fruits, persons, etc., which are more or less similar. In
the framework of complex system dynamics, prototype vectors can be interpreted
as point attractors dividing the state space into several regions.

Similar motor behavior (like seizing, walking, etc.) is represented by similar
trajectories in a motor state space. Learning, as we saw, means reconfiguration of
weights according to some algorithmic procedure. The crucial question arises: how
do thousands of cells and synapses know when they should change their states with-
out the guiding hand of a demon?

In his famous book The Organization of Behavior (1943), Donald Hebb sug-
gested that learning must be understood as a kind of self-organization in a com-
plex brain model. As in the evolution of living organisms, the belief in organiz-
ing “demons” could be dropped and replaced by the self-organizing procedures of
the complex system approach. Historically, it was the first explicit statement of the
physiological learning rule for synaptic modification. Hebb used the word “connec-
tionism” in the context of a complex brain model. He introduced the concept of
a synapse, which was later called a “Hebb-synapse”. The connection between two
neurons should be strengthened if both neurons fired at the same time:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased. [4.26]
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In 1949, the “Hebb-synapse” could only be a hypothetical entity. Today, its
neurophysiological existence is empirically confirmed. Hebb’s rule is by no means
a mathematically exact statement. Later on, we shall see that many Hebb-like learn-
ing rules of connectionism are possible. A simple mathematical version of the Hebb
rule demands that the change ΔwBA of a weight wBA between a neuron A project-
ing to neuron B is proportional to the average firing rate vA of A and vB of B, i.e.,
ΔwBA = ε vBvA with the constant ε.

Hebb-like rules suggest schemes tending to sharpen up a neuron’s predisposi-
tion “without a teacher” from outside. In this sense, it is a self-organizating method
for a neuron’s firing to become better and better correlated with a cluster of stimulus
patterns. Hebb was aware that the brain uses global patterns of connected neurons
to represent something. He explicitly used the term “cell assemblies”, which has
become a key to modern neuroscience. Active cell assemblies could correspond to
complex perceptions or thoughts. Philosophically, Hebb’s idea of cell assemblies re-
minds us of Hume’s concept of association, which was only psychological without
the physiological basis of the brain.

How are Hebb’s physiological ideas incorporated in modern complex systems
of neural networks? The basic concept of an associative network demands that an
input vector is “associated” with an output vector by some transformation. Math-
ematically, the similarity of two vectors can be measured by their inner product,
which is the result of multiplying both vectors, component by component, and then
adding up the products. Geometrically, the inner product is proportional to the co-
sine of the angle between the vectors. In the case of total congruence of the vectors,
the angle is zero, which means that the similarity is complete.

Thus, the similarity of a stored prototype vector (for instance the prototype pic-
ture of a typical tree) with an input vector (for instance the perception of a particular
tree) can be calculated in an associative network by their inner product. The proto-
type vector is assumed to be stored in the matrix of the weights connecting the input
and output of the network. Figure 4.8a shows a net with horizontal input lines for
the input components, vertical output lines, and weights on the connections (which
are considered to be binary, with open circles for zero and closed circles for one).

If in general the input vector (xj) is associated with the output vector (yj) by
a linear transformation yi = ∑

j wij xj with respect to the stored weight vector wij,
then we get the simple case of a linear associator. This kind of an associative network
is able to classify vectors representing examples of some category which is realized
by a stored prototype vector. This task is actually crucial for the survival of animals.
In reality, a variety of more or less similar perceptions (for instance, of a hostile
animal) must be identified and subsumed under a category.

Another kind of associative network can perform vector completion or vector
correction. A so-called autoassociative network can produce an output which is as
close as possible to a prestored vector given only part of the vector as input. In
reality, noisy versions of an input vector (for instance, a picture of a person) must
be completed according to a stored picture. A Hebb-like rule can fulfill this task by
strengthening the connection weights between neurons with respect to the degree of
their correlated activity.
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Fig. 4.8a. Linear associative network

A method for increasing the capacity of such a complex network is to introduce
a nonlinear threshold for the output units. A linear associative network (for instance,
Fig. 4.8a) has a feedforward topology with information flowing from input units to
output units. Hebb-like learning procedures suggest local interactions of neural units
converging to the correct global output by self-organization. Circulating information
in the network means a feedback architecture. In Fig. 4.8b, each unit receives inputs
from outside and feedback from intrinsic units of the network. The weights are
represented by the intersections of horizontal with vertical lines [4.27].

Fig. 4.8b. Nonlinear feedback network [4.27]
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Obviously, the complex system of Fig. 4.8b models a nonlinear feedback net-
work which allows a wide range of possible dynamics. A famous example was
explored by John Hopfield (1982). His class of nonlinear feedback networks has
a dynamics converging to a solution. They have been interesting not only for mod-
eling brain functions, but also (as we shall see in Chap. 6 on artificial intelligence)
for the development of a new network technology. Concerning our complex system
approach, it is noteworthy that Hopfield is physicist who has applied mathematical
equations from spin glass physics to neural networks [4.28].

The dynamics of a ferromagnet is a well-known example of conservative self-
organization in thermal equilibrium. In the Ising model a ferromagnet consists of
a lattice of spins, each of which can be either up (↑) or down (↓). Each spin can
interact with its nearest neighbors. The state with the lowest energy has all the spins
lined up in the same direction. At a high temperature the directions of the spins are
random because the thermal energy which causes the fluctuations is larger than the
energies of interaction. If the temperature is reduced, the spins become aligned in
the same direction. Evidently, the spins behave like a magnet (compare Sect. 2.4).
Dynamically, it seems to seek the nearest local energy minimum as an attractor state
(Fig. 4.9a). But a single energy minimum with all spins pointing in the same direc-
tion is only provided if all interactions are attractive. In the case of mixed attractive
and repulsive interactions a complex system like a spin glass may have many local
energy minima [4.29].

Fig. 4.9a. Phase transition in a 2-dimensional Ising model of a ferromagnet (annealing)

Hopfield assumed that the function of the nervous system is to develop a num-
ber of locally stable points in state space. Other points in state space flow toward
the stable points as attractors of the system. As deviations from the stable points
disappear, this dynamics is a self-correcting procedure. On the other hand, the sta-
ble point appropriately completes missing parts of an incomplete initial state vector.
Thus, the dynamics can be used to complete noisy inputs.

Hopfield’s model is rather simplified and involves threshold logic units, sum-
ming synaptic inputs, and comparing the sum with a threshold. If the sum is at
or above threshold, they yield 1, and 0 otherwise. The network is recurrent in the
sense that the neurons connect to each other with the exception of self-connection.
Mathematically, the corresponding connectivity matrix has zeros along the main di-
agonal. Hopfield suggests a Hebb-like learning rule for constructing elements of
the connectivity matrix. The complex system evolves like an Ising model of a spin
glass according to a nonlinear feedback dynamics. The term isomorphic to energy
decreases until it reaches a – perhaps local – minimum.
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A simple application is given by the well-known problem of alphanumeric char-
acter recognition. The complex network is composed of interacting Boolean vari-
ables represented on a 2-dimensional grid. A pattern (for instance, the letter A) can
be associated to the grid with a dark point for all active variables (with a value 1),
and a blank point for those with a value 0. It is assumed that the letters of the alpha-
bet are associated to attractors (“fixed points”) as the desired states of the dynamical
system. We may imagine that a human brain has stored the correct shapes of the
letters by seeing many correct examples. If an incomplete and partly ruined letter
is shown to the system, it should be able to reconstruct the correct shape that was
learnt before (Fig. 4.9b) [4.30].

Fig. 4.9b. Phase transition in a Hopfield system for pattern recognition

Thus, pattern recognition means pattern evolution by self-organization. This
process aims at some attractors as the desired states of the system. We remember
that an attractor is a state towards which the system may evolve, starting from cer-
tain conditions. The basin of attraction is defined by the set of initial conditions that
drive the trajectories of the system in the direction of the attractor. As we saw in
earlier sections, an attractor may be a unique state referring to a fixed point or stable
state, as in the examples of Hopfield networks and spin glass systems. But a peri-
odic succession of states (a “limit cycle”) or several forms of chaotic attractors (in
dissipative systems) are also possible. Thus, the Hopfield networks are only a first
and simplified approach to modeling neural states by attractors of complex systems.

Hopfield saw the analogy between the local energy minima in spin glasses and
the prototypes in an associative brain. In the formal framework of a spin glass, at-
tractors can be designated as prototype vectors. In Fig. 4.10a, the state space of
a Hopfield system is visualized by an energy landscape by analogy with the ther-
modynamics of spin glasses. All possible states of the network are represented by
points in a plane. The height of the surface refers to the energy of the corresponding
state of the network.

The phase portrait of the system in Fig. 4.10b shows the convergence of the
trajectories to stable local minima from different starting points. Each point in the
plane is a state of the network. The energy landscape has basins attracting the trajec-
tories of the Hopfield dynamics. The stable points (“attractors”) are at the bottom of
the basin. In the example of pattern recognition, the prototype letters are connected
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Fig. 4.10a,b. State space of a Hopfield system as energy landscape (a) with local minima as
attractors (b) [4.31]

with the stable points. Thus, the process of pattern completion is a form of relax-
ation which can be compared formally with the annealing processes of conservative
self-organization. In the physical examples, the final states are ordered structures of
a spin glass, a magnetized ferromagnet, or a frozen crystal [4.31].

In general, Hopfield networks only converge to local minima in a state of lower
energy. In some applications, the local minima are associated with particular stored
items, and there may be no need to reach a global minimum. However, in many
cases the global minimum is required. A solution of this problem was offered by
making the individual units stochastic rather than deterministic.

Figure 4.11a visualizes the solution by a ball traveling along a curve of an
energy landscape to probably end up in the deepest minimum. Starting from a given
initial situation, the ball will move towards an energy minimum or the bottom of
a well. If the energy landscape is characterized by a muliplicity of minima close
together, the result depends upon the initial conditions. How can the network be
prevented from getting stuck in a local minimum? The idea is to shake the energy
landscape with a certain energy increment which is required to escape the valley of
the local minimum B to enter the attractor of the global minimum A.

Then, mechanically, the ball is more likely to go from B to A than from A to B.
On average, the ball should end up in the valley of A. In the language of thermody-

Fig. 4.11a. Phase transition from local minimum B to global minimum A in an energy land-
scape (simulated annealing)
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namics, the kinetic energy added by shaking the landscape corresponds to increas-
ing the temperature of the system. For fairly high temperatures, the probability of
transition between the valleys is no longer negligible. At thermal equilibrium, the
probability of occupying the various valleys only depends on their depth.

In practice, the method of simulated annealing is well known and used for
global optimization. As we already mentioned, annealing is the process of heating
a material (e.g., metal or glass) to a high temperature, and then gradually lowering
the temperature. But the material will only end up at its global energy minimum if
the annealing process is gradual enough. Sudden cooling of, e.g., metal will leave
the material only in a local minimum with a brittle state. Simulated annealing makes
the escape from local minima likely by allowing jumps to higher energy states.

In the thermodynamics of gases, the gas is described by its probability of phase
transition. It was Boltzmann who derived a probability distribution for the states of
a gas when it had reached a uniform distribution of temperature. Hinton, Sejnowski,
and others claimed that the distribution could be used to describe neural interactions.
In this case of modeling, the low temperature term added to the system is interpreted
as a small noise term. It is the neural analog to random thermal motions of molecules
in gases.

This formal equivalence is the reason that the network under consideration is
called a “Boltzmann machine” [4.32]. But, of course, no physicalism is intended,
reducing neural interactions to the molecular interactions of gases. In Boltzmann’s
formalism, it can be proved that a Boltzmann machine is guaranteed to find the
desired global minimum as long as it is cooled slowly enough. Obviously, a neural
network with the dynamics of simulated annealing is capable of searching a state
space for the pattern giving the global energy minimum.

A possible learning rule according to this dynamics matches probabilities be-
tween the network and its environment. All possible states of the network are pos-
sible at thermal equilibrium, with the relative probabilities of a Boltzmann distribu-
tion. If the probabilities of the states in the network are the same as the probabilities
of states of the environment, then the network has an adequate model of the envi-
ronment. Thus, a learning rule must be able to adjust the weights in the Boltzmann
machine so as to decrease the discrepancy between the network’s model and the
environment.

At first, the rule lets the system run free. The probabilities of the states taken by
each unit can be estimated. Then, the input and output units are clamped or forced
to take appropriate values. Again, values of the probabilities of the states of the units
are estimated. The local change of weights is proportional to the difference in the
probabilities of the units coupled by that weight [4.33].

Formally, the weight modification rule demands that

Δwij = ε(〈sisj〉 clamped − 〈sisj〉free)

where ε is the constant of proportionality (“rate of learning”), si is the binary unit of the ith
unit and sisj is averaged over time to 〈sisj〉 after the network has reached equilibrium. In the
clamped condition, the input and output units are fixed to their correct values. In the free
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condition, none of the units is fixed. Then, the learning rule is unsupervised. If the inputs are
fixed in the free condition, the learning rule is supervised.

In Fig. 4.11b, the units in the network of a Boltzmann machine have binary val-
ues and the connections between them are reciprocal [4.33]. The weights of the con-
nections can be trained by presenting patterns to the input units in the presence and
the absence of output patterns and applying the Boltzmann learning rule. During the
learning process, every weight in the network is modified. The hidden units which
do not receive direct information from outside enable the network to yield complex
associations between input and output patterns. Thus, Boltzmann machines with
hidden units in their middle layer have internal representations of the environment
which are not possible for networks with only visible (input and output) units.

Fig. 4.11b. Network of a Boltzmann machine [4.33]

From a neurobiological point of view, supervised learning with a “teacher”
seems to be rather unrealistic in nature. Feature extraction or categorization by an
animal must be self-organized from an analysis of the sensory inputs. The more
frequently a feature occurs in the input vectors, the more likely it is to belong to
a certain category. The outputs of the network must learn to converge to the corre-
sponding prototype vectors as attractors.

How can a network be designed to invent criteria of classification without the
supervision of an external teacher? Some authors assume that this kind of self-
organization depends on the nonlinear interactions and selective reinforcement of
the connections in a multi-layered system. The learning procedure is organized in
a Darwinian process of selection and competition.

In Fig. 4.12, the multi-layered architecture of a competitive learning system
is designed to produce such eminently cognitive tasks as classification and catego-
rization [4.34]. Active units are represented by filled dots, inactive ones by open
dots. The connections from the input layer to each element in the second layer are
excitatory. The second layer is subdivided into clusters within which each element
inhibits all the others. Elements of the same cluster compete with each other in re-
sponding to the input pattern. According to the rules of Rumelhart and Zipser, a unit
can learn only if it can win the competition with the other units within the same
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Fig. 4.12. Multi-layered network with competitive learning [4.34]

cluster. Learning means an increase in the active connections and a decrease in the
inactive connections.

A simple task of classification refers to word recognition by a child. Obviously,
the two-letter words AA, AB, BA and BB may be classified in several categories, for
instance, the set {AA, AB} of words beginning with A or the set {BA, BB} of words
beginning with B or the set {AA, BA} of words ending with A or the set {AB, BB}
of words ending with B. In a computer-assisted experiment, the two-letter words
were presented to a layered network with one level of competing units organized in
a cluster of two units. The system was able to detect the position of the letters. One
of the units spontaneously learnt to act as a detector of A as beginning letter, while
the other one detected B as the beginning letter.

In further experiments, the number of letters was increased, with a modified
network structure. Although these experiments seem only to illustrate limited capa-
bilities, they demonstrate the emergence of cognitive behavior from unsupervised
neural systems, at least in principle. They have started some interesting research
linking neurophysiology with the cognitive sciences in the framework of complex
systems which will be explored in more detail in Sect. 4.4.

Another approach to self-organizing cognitive systems through competitive
learning was proposed by Teuvo Kohonen. He is a physicist who also has worked
physiologically on associative memory. His mathematical modeling of neural sys-
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tems has been important for engineering applications in artificial intelligence (com-
pare Chap. 5). Kohonen’s ideas of brain modeling by self-organizing feature maps
stems back to anatomically and physiologically well-confirmed facts. Most neural
networks in the brain are two-dimensional layers of processing units which may be
cells or cellular modules. These units are interconnected through lateral feedback.
For instance, in the neocortex there are 10 000 interconnections for every principal
cell.

The synaptic coupling from a neuron to its neighbors is excitatory for all those
neurons whose distance is smaller than a certain critical value. It is inhibitory for
neurons lying at a greater distance. At some yet greater distance, the coupling is
weakly excitatory again. The degree of lateral interaction is mathematically modeled
by a curve with the form of a Mexican hat [4.35] (Fig. 4.13a).

Fig. 4.13a–c. Mexican hat of neural interaction (a). Distribution of neural activity in a 2-
dimensional model (b) and a raccoon’s cortex (c) [4.36]

Obviously, the activity of lateral couplings tends to a spatially bounded cluster.
Figure 4.13b shows a two-dimensional example of clustering which was simulated
by a network with a 21 × 21 square array of processing units. The clustering phe-
nomenon (“activity bubble”) depends on the degree of positive or negative feedback,
which may be influenced by chemical effects in the neural network. In neural reality,
“activity bubbles” do not have the regular form of computer-assisted simulations.
Figure 4.13c shows distributions of activity on a raccoon’s cortex, which does not
represent a regularly-shaped figure, but a rather diffuse map [4.36].

Nevertheless, the cluster phenomenon can be shown to be useful in the self-
organizing processes of the brain. While initially the activities of the neural network
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are homogeneously distributed, a progressive specialization of neural regions can
be observed, according to a self-organizing learning process. After presentation of
an input pattern, the neuron with highest activation and its neighbors are chosen for
learning. The neural weights are modified according to the circular neighborhood
of given radius, centered around the neuron with highest activation. This learning
rule can be used to detect and categorize similarities among input data of visual or
speech patterns.

Formally, Kohonen considered a nonlinear projection P from the space V of
input signals v onto a two-dimensional map A. Figure 4.14 illustrates the learning
step: the input value v selects a center s. In the neighborhood of s, all neurons shift
their weights ws in the direction of v. The degree of shift decrease with increasing
distance from the center s and is visualized by differing grey values [4.37].

Fig. 4.14. Kohonen’s model of self-organizing neural maps [4.37]

The map converges to a state of equilibrium with different regions of activity
by self-organization. The projection should map the regularities of the input signals
onto the neural map. Thus, P is mathematically called a topologically invariant map-
ping. Actually, the structure of the brain’s environment, which is represented by the
regularities of the sensory input signals, should be projected onto a neural map of
the brain: the brain should get an adequate model of the world.

How realistic is the modeling of the brain by self-organizing maps? The magni-
tude of a neural field varies, depending on the importance of the perceived sensory
stimuli for the survival of the species. In a neural field there are centers which can
analyze and represent the stimuli with more accuracy than their environment. For in-
stance, in the eye of a mammal the fine analysis of visual information is performed
by the “fovea”, which is a very small region around the optical axis of the retina
with a very high density of light-sensitive receptors. Thus, the dissolution of sig-
nals is essentially higher in this center than in the surrounding region of the neural
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field. Similiar unproportional representations can be observed in the somatosensory
system and in the motor cortex. The importance of the hand for human survival is
represented by a rather great region on the somatosensory and motor cortex, relative
to the representation of the body’s surface.

Contrary to these results, the auditory cortex of cats, dogs, and apes does not
project the frequencies of the outer world with special centers. An exception is the
bat with its specialized system of orientation, which is necessary for its survival.
Bats can send many different supersonic frequencies and determine the distance and
magnitude of objects by the reflections of the signals. The bat’s velocity relative to
other objects can be determined by the Doppler effect in supersonic echo sounding.
Even the movements of tiny insects can be detected by this sensitive system.

The specialization of the bat can be experimentally confirmed by a self-
organizing map on its auditory cortex. Figure 4.15a shows the brain of a bat with the
auditory cortex in the rectangle. Figure 4.15b is an enlargement of the rectangle with
a distribution of the best frequencies on the auditive cortex. The one-dimensional
frequency spectrum is represented continuously and monotonicly from the poste-

Fig. 4.15a–c. Brain of a bat with auditory cortex in the rectangle (a), its enlargement (b), and
distribution of the best frequencies (c) [4.38]
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rior to the anterior region of the auditive cortex. The frequency causing the highest
excitation of a neuron is called the best frequency of that neuron. The region of the
dotted lines is the primary auditory cortex. Figure 4.15c shows the distribution of
the best frequencies in the hatched region of Fig. 4.15a. The majority of measured
points are centered around the frequency of supersonic echo sounding. More than
the half of the anterior-posterior region is used to analyze the Doppler effect in the
supersonic echo sounding. It is remarkable that computer assisted simulations by
self-organizing maps produce the actual representations of the auditory cortex in
Fig. 4.15c [4.38].

The brain in primates consists of many regions with several neural net topolo-
gies. The retina, for instance, already develops during early ontogeny. It has a neural
topology with five separate layers for photoreceptors, horizontal cells, bipolar cells,
amacrine cells, and retinal ganglion cells. The photoreceptor layer in humans con-
sists of about 120 · 106 receptor cells. The retinal output, which is represented by
the spatio-temporal pattern of the impulse rates of all ganglion cells, travels along
the optic nerve toward the thalamus. In humans, there are about 1. 2 · 106 ganglion
cells. Thus, the retina is a really complex system. Nevertheless, the complexity of
more than 200 · 106 retinal neurons still is not understood completely. The cerebral
cortex is the phylogenetically youngest brain region. The percentage of cerebral cor-
tex to brain increased during evolution. Lower vertebrates like fishes did not evolve
a cerebral cortex. Its magnitude increased from small parts in reptiles and birds to
dogs, cats, and finally apes and humans. In primates, the cortex is divided into dif-
ferent regions with multilayered neural net topologies like visual, sensory, motor,
and association cortex. The cerebellum consists of the cerebellar cortex with many
multilayered subregions for specific sensorimotor functions.

The great variety of brain systems is described as densely packed sets of neu-
rons with particular network topologies, communicating with each other via many
nerves which consist of thousands of axons. In contrast to digital computers with
separate central processing unit, memory, and registers, the brain and the central
nervous system can be modeled as an ensemble with many special-purpose paral-
lel processing networks. Each network is capable of independent processing and
storage of information for sensory, motor, and associative functions.

Obviously, the biological brain does not apply principles known from program-
controlled centralized digital computers. The process of network self-organization
is fundamental to the structure of the brain. In the very long course of phylogene-
sis, complex structural forms, the purposes of which are sometimes not completely
clear to us, have been produced. On the macroscopic scale, particular neural areas
have been specialized for signals with different sensory functions, for information
processing operations with different levels, for humans as well as for the animal
and vegetative functions of the organism. Although they are distributed in different
areas of the brain, they can be understood as self-organizing complex or collective
effects.

Self-organization as a learning procedure demonstrates that organisms are not
fully determined by genes containing a blueprint which describes the organism in
detail. Each stage of brain organization involves some kind of self-organization.
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Genes would not be able to store the complex structure of the brain. With a cerebral
cortex of about 1014 synapses, ontogeny could not select the correct wiring diagram
out of all alternatives if all were equally likely. Thus, ontogeny must use the self-
organization of neural systems to handle their complexity. But the structure of the
cortex is not understandable without knowing the principles of its ontogenesis.

In earlier chapters, we have studied the emergence of ordering patterns from
complex systems in physics, chemistry, biology, metereology, and astronomy. Global
order emerges in complex systems with a large number of locally interacting ele-
ments. There are interacting atoms or molecules in a liquid or crystal, subvolumes
in an evolving star system, or neurons and synapses in a complex neural system
like a brain. We remind the reader of Bénard convection (“rolling columns”), which
arises by thermal fluctuations of a liquid.

How can global order be arranged by local interactions? The intermolecular
forces, for instance, acting within a volume of liquid have a very short range, while
the pattern of convective movement which is caused by the molecular interactions
may be ordered on a large scale. This principle, which arises in physical, chemical,
and biological evolution, has great importance to the brain, in which local interac-
tions between neighboring cellular elements create states of global order leading
to a coherent behavior of the organism. The ordering pattern is arranged by forces
between elements of the complex system and by initial and boundary conditions. In
the example of Bénard convection, the forces are hydrodynamic interactions, ther-
mal conduction, expansion, and gravity. Boundary conditions are, for instance, the
temperature which is given to the liquid. In the brain, the connection patterns are
arranged by several rules for the interaction of cellular units. As neurons are con-
nected by sometimes very long axons, a local interaction of two neurons does not
imply their spatial proximity in the brain’s anatomy, but only their immediate con-
nection by axons.

Although the general structure is universal for all types of neurons and synapses,
there can exist many qualitative and quantitative differences. The neural system of
an invertebrate, for instance, is deterministic with a high degree of coded informa-
tion in the specific location of individual neurons. For an associative system in the
mammalian neocortex, the specific responses to specific input patterns are achieved
by learning rules faciliating feedback of information from the output.

How adequate are complex system models to real neural networks? From
a methodological point of view, we must be critically aware that models cannot
be naively identified with each function and element of reality. Models are special-
purpose abstractions which may explain and simulate some part of the central ner-
vous system more or less, and other parts not at all. Sometimes model nets are criti-
cized in that they only demonstrate more or less correct execution of an input-output
function like a black box. But nothing could be revealed about how biological neural
nets execute that function. Hidden units were only theoretical concepts like hidden
variables in quantum physics which are assumed to be intrinsic elements of the sys-
tem realizing the relation between the observed and measurable input and output
values. Besides the architecture of a perhaps multi-layered network, the dynamics
and learning procedures are an essential problem of simulations.
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How realistic are the parameter-adjusting procedures of model nets to mini-
mize error? Many learning rules of model nets take unacceptably long to converge
to a set of weights that classify correctly. Although a successful weight-adjustment
is sometimes found, its optimality is by no means decided. In 1960, Widrow and
Hoff suggested a simple and elegant learning rule which was motivated by reasons
of technical optimization, and not by biological insight into the brain’s function
[4.39]. The Widrow–Hoff-rule and its variants have been extensively used in tech-
nical networks in recent years (compare Chap. 6).

The rule assumes that there is an input pattern, and an output classification of
the input pattern by an adaptive neuron, which can take values of either a+1 or a−1.
Thus, a “teacher” is assumed knowing what the answer was supposed to be for that
input. The adaptive neuron compute a weighted sum of activities of the inputs times
the synaptic weight. The system is able to form an error signal between what the
output is supposed to be and what the summer computed. According to the differ-
ence between them, the synaptic weights are adjusted, and the sum recomputed, so
the error signal becomes zero.

Widrow and Hoff’s strategy aims at reducing the square of the error signal to its
smallest possible value. All possible values of the input weighting coefficients give
rise to an error value. In Fig. 4.16, the situation is visualized by an error surface in
the weight space [4.40].

The minimum of the error surface is not known exactly, because the entire sur-
face cannot be seen. But the local topography can be measured. Thus, the directions
of adjustment which decrease the error the most can be calculated. The so-called
gradient descent method, which is well known in differential geometry and physics,
always adjusts the weights so that changes in weights move the system down the
error surface in the direction of the locally steepest descent.

Fig. 4.16. Error surface and learning by gradient descent [4.40]
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In Fig. 4.16, the gradient of the error surface is computed to find the direction
of steepest descent. The weights are incrementally changed by a certain value Δw
along this direction. The procedure is repeated until the weights reach wideal repre-
senting minimum error. For a nonlinear network the error surface may have many
local minima. Problems with gradient descent in general involve getting trapped
in local minima. Then the bottoms of valleys do not represent the lowest global
error.

Widrow and Hoff proved that there is a simple quadratic error surface with
only one global minimum. Mathematically, computing the gradient at a point means
computing partial derivatives of the square of the error with respect to the weights.
Widrow and Hoff proved that this derivative is proportional to the error signal. Thus,
the measurement of the error signal provides the direction of movement, in order to
correct the error. Technically, the existence of a “teacher” with perfect knowledge
may be justified for special purposes. But the assumption of supervised learning
procedures in nature seems to be rather unlikely.

In network models, so-called backpropagation is the best known supervised
algorithm which is a generalization of the simple Widrow-Hoff rule. In short, back-
propagation is a learning algorithm for adjusting weights in neural networks. The
error for each unit, which is the desired minus the actual output, can be calculated
at the output of the network and recursively propagated backward into the network.
This method enables the system to decide how to change the weights inside the net-
work to improve its overall performance. Figure 4.17 illustrates the backpropagation
method through an entire net with several layers [4.41].

Although models with backpropagation can be as successful as biological net-
works, it is not assumed that the real brain is organized by backpropagation. Many
values of parameters in a real network are sometimes known by measurement and
experimentation in anatomy, physiology, and pharmacology. For instance, the num-
ber of cell types and cells themselves may be roughly estimated. The topology and
architecture may be described, the question whether specific synapses are excita-
tory or inhibitory may be decided, and so on. But the specific weights are unknown.

Fig. 4.17. Backpropagation
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When there are thousands of them, the probability that the global minimum of
a brain net and a model net are exactly the same, weight for weight, is rather low.

Thus, the error minimization strategies of model nets may in general be hypo-
thetical, but they are necessary to deal with the complexity of perhaps thousands of
unknown parameters. They allow one to predict some local or global properties of
brain nets if the degree of similarity between the topology, architecture, and synap-
tical dynamics of model and brain nets is rather high. Backpropagation in neurobi-
ology is justified as a search tool to find local minima, but not as a replacement for
neurobiological analysis, which may reveal the real learning procedure of a neural
network.

Error minimization strategies have a long tradition in the evolution of nature
and have not emerged for the first time in the learning procedures of the brain.
Natural selection of, for instance, an ecological population can often be modeled
as a process of sliding down an error gradient to an error minimum representing
an environmental survival niche. But the parameter-adjusting procedure may only
find a local minimum, not necessarily the global minimum. As far as we know,
evolution in general does not find the best possible solution, but only a satisfac-
tory one which is good enough for survival. Only local minima of the entire evolu-
tion can be empirically evaluated with respect to their evolutionary survival value.
This evaluation depends on the observed and measured constraints of the chosen
model.

Thus, from a methodological point of view, the idea of an always globally and
perfectly optimizing nature is a metaphysical fiction. It is the secularized idea of
a godhead called “nature” or “evolution” which was born in the optimistic century of
enlightenment in order to replace the Christian God with his plan of creation. It was
already Kant who criticized the idea of a totally self-optimizing nature as a human
fiction which cannot be empirically justified in any sense. There is no supercom-
puter with a separate central processing unit which can optimize the evolutionary
strategy totally and in the long run. There are only locally more or less satisfactory
solutions, even many failures, and imperfection in real evolutionary processes. Their
complexity contradicts the simplified models of a perfect world à la Laplace.

4.3 Brain and the Emergence of Consciousness

How can cognitive features be explained by neural interactions in complex mod-
els of the brain? Leibniz already had the problem that consciousness, thoughts, and
feelings cannot be found in the elements of the brain if it is interpreted as a mere
machine. Kant underlined that an organizing force is necessary to animate a physical
system. Until this century some physicists, biologists, and philosophers believed in
a immaterial organizing life factor which was called “elan vital” (Bergson) or “ent-
elechy” (Driesch). From the point of view of complex systems, Köhler’s gestalt psy-
chology was an interesting approach referring to the existence of physical systems
in which complex psychic structures originate spontaneously from the system’s own
intrinsic dynamics. Popularly speaking, the macroscopic “gestalt” (form) of a per-
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ceived object is more than the sum of its atomic parts, and cannot be reduced to the
microscopic scale.

Köhler had the idea that the emergence of visual phenomena can be explained
in the framework of thermodynamic models. But in those days, he referred to Boltz-
mann’s linear thermodynamics in equilibrium. He assumed: “The somatic processes
underlying static visual fields are stationary equilibrium distributions developed
from the inner dynamics of the optical system itself” [4.42]. Köhler even realized
that an organism is not a closed system, and tried to explain the emergence of or-
dered states as a kind of intuitively understood synergy. In this respect, Köhler was
already correct with his clear distinction between the microscopic level of elemen-
tary interactions and the macroscopic level of emerging ordered states in a syn-
ergetic system. But he still lacked an adequate framework of complex dynamical
systems to provide the formalism for a thermodynamics far from thermal equilib-
rium.

The complex system approach offers the possibility for modeling the neural
interactions of brain processes on the microscopic scale and the emergence of cog-
nitive structures on the macroscopic scale. Thus, it seems to be possible to bridge the
gap between the neurobiology of the brain and the cognitive sciences of the mind,
which traditionally has been considered as an unsolvable problem.

Complex models consist of state spaces and nonlinear evolution equations de-
scribing a system’s dynamics. With about 1011 nonsensory neurons, the human brain
is represented by a state space of 1011 dimensions. Even a typical subsystem con-
tains about 108 elements. In a state space with 108 dimensions and only 10 levels
of neural activitation, there are at least 10108

distinct positions representing activi-
tation vectors. If we assume 103 synaptic connections between each neuron and the
other 108 neurons of a subsystem, then about 1011 synapses must be distinguished.
Consequently, for only 10 distinct weights at each synapse, we get the huge number
of 101011

weights in a subsystem alone. This complexity provides numerous possi-
bilities for coding, representing, and processing information, which can be modeled
mathematically by vector and tensor transformations [4.43].

In Kohonen’s competitive learning network, the system self-organizes so that
nearby vectors map onto nearby points of the net. It is assumed that similar im-
pressions are represented by similar vectors with tiny distances to some prototype
vectors. In the framework of complex systems, prototype vectors are interpreted as
attractors. Thus, two distinct categories or classes are represented by two different
attractors in the state space (Fig. 4.7b). The learning process of cognitive distinction
is modeled by a training process of the network which involves adjusting the weights
so that an input vector (for instance, a visual or acoustic pattern) is submitted to the
prototype vector with the most similarity.

The concept of prototype in neural state spaces allows some interesting inter-
pretations of cognitive processes. How can a network recognize a pattern when the
input impression is only partially given? The task of vector completion is crucial for
animals to survive in the wild. Imagine a coyote in the desert which detects the tail
of a rat in the grass (Fig. 4.18a). The input to the retina of the coyote is limited to
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Fig. 4.18a. Recognition by prototype-activation in neural nets: a coyote recognizes the tail of
a rat [4.44]

that detail of the rat. The assumption or “hypothesis” that there is a rat in the grass
is enabled by the coyote’s visual system completing the input vector with the learnt
prototype vector of a rat. In this sense, we may say that the coyote has a “concept” of
a rat represented by a corresponding prototype activation pattern in the brain [4.44].

Paul Churchland even suggests interpreting human high-level cognitive abilities
by the prototype vector approach. So, explanatory understanding is reduced to the
activation of a specific prototype vector in well-trained networks. Prototype vectors
embody a huge amount of information which may differ for different people. The
reason is that different people may not always have the same items satisfying the
constraints of a prototype cluster. Indeed, people mostly have different degrees of
explanatory understanding, although they classify an object or situation in nearly the
same manner. A joiner, for example, has a higher degree of understanding of what
may be a chair than most other people. Nevertheless, they all will agree in most
cases. Thus, the prototype-activation model is rather realistic, because it considers
the fuzziness of human concepts and understanding.

In epistemology and cognitive psychology, it is usual to distinguish between
different kinds of explanation. There are classifying explanations (“Why is the
whale a mammal?”), causal explanations (“Why does the stone fall down?”), func-
tional explanations (“Why does a bird have wings?”), and others which correspond
to prototype activations of clusters, causal relations, functional properties, and so
on. Even mastering social situations is a matter of activating social-interaction pro-
totypes which have been trained and taught during a lifetime.

In the complex system approach, mental states are correlated with neural ac-
tivation patterns of the brain which are modeled by state vectors in complex state
spaces. External mental states referring to perceptions of the outer world may be
testable and correlated to neural activities of the brain. How can we test and explain
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internal states of consciousness which do not refer to events of the outer world, but
to mental states themselves?

It is well known that we can even reflect about our self-reflections, and re-
flect about the reflections about our self-reflections, and so on in an iteration pro-
cess which is in principle unlimited (Fig. 4.18b). Self-experience and self-reflection
lead to the concept of self-consciousness, which traditionally was considered as
the essential concept in the philosophy of mind and cognitive psychology. Self-
consciousness was defined as the crucial feature of human personality. The defi-
nitions of self-consciousness which historically have been discussed are not only
philosophically interesting. Obviously, these more or less speculative definitions
have powerful consequences in medicine and law. Which criteria must be satisfied
for a human being to be conscious and therefore responsible for his actions? Are
there medical criteria for consciousness? How can consciousness be disturbed or
even destroyed? What about the consciousness of animals? Can we feel like our
neighbor or like an animal?

The fundamental questions arise (1) if there are particular brain processes caus-
ing the emergence of consciousness, and (2) if the emergence of consciousness from
brain processes can be modeled by complex systems. The methodological difficulty

Fig. 4.18b. Self-reflection by iterated self-related prototype-activations



4.3 Brain and the Emergence of Consciousness 159

seems to be that subjective feelings like pains, smells, and so on are only accessi-
ble to introspection. These subjective states of feeling and consciousness are some-
times called phenomenal states. Some philosophers have criticized that a physical
description of brain states fails to grasp the essence of what is a phenomenal state.
Proponents of the opposite view have argued that notions of phenomenal states can
be reduced to notions of neurophysiological states of the brain. These arguments
are nothing more than modern variations of traditional positions which are known
as physicalism and mentalism (or antiphysicalism). Both positions are ideological
reductionisms and exaggerations which are neither justified by research nor very
helpful in research [4.45].

According to the complex system approach, neurophysiological states and men-
tal states are modeled by mathematical formalisms without reductionist ambitions.
Some philosophers fail heavily with their prejudice against mathematics, because
they seem to believe that formulas only can designate “physical” states. The reader
may recall, for instance, a Hopfield system which contains an “energy” formula by
analogy with the energy formula for a physical spin system. Nevertheless, in the
framework of a Hopfield system, the so-called “energy” formula must not be identi-
fied with energy in solid state physics. The mathematical expression only determines
the dynamics of a network, which may be simulated by neurobiological brains or
silicon computers or angelic organisms from still unknown star systems.

The mathematical model is empirically corroborated if it fits the observed data.
In other cases, it must be modified or dropped. We must be aware that a testable
and corroborated theory of mental states and consciousness does not enable us to
feel like our neighbor. A physician or a surgeon, for instance, who wishes to heal
a patient’s pain in the stomach does not need to feel the patient’s stomach pain.
He must have a good knowledge of the stomach based on anatomy, physiology,
biochemistry, psychology, etc. In the terminology of the complex system approach,
he must know the possible states of a stomach and their dynamics. In this sense,
a model of mental states and consciousness should be developed and tested without
any reductionist claims.

Obviously, there are many testable correlations between phenomenal states of
consciousness and the neurobiological functioning of the brain. Everybody knows
that a short period of oxygen deprivation causes unconsciousness. Electrical stim-
ulations, psychotropic drugs, anesthesia, and lesions may influence the degree of
consciousness too, which is not only experienced by self-experiment (autocere-
broscopy) but also clinically testable by observations and measurements of func-
tional deficits. The reason is that the brain is an open system whose states depends
on the physical, chemical, and biological metabolism with its environment far from
thermal equilibrium.

Conscious and unconscious states seem to depend on a rather complex neuro-
physiological system which contains feedback loops and interconnections at vari-
ous levels. Figure 4.19 shows the network of the cerebral cortex with its subsystems
of primary sensory cortex and association cortex. There are specific inputs (“af-
ferents”) from sense organs reaching the primary cortical projection areas through
specific transmitting subsystems and pathways. Non-specific inputs reach the cor-
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Fig. 4.19. Inputs to the cerebral cortex with somasensory pathways (SOM), auditory path-
ways (AUD), visual pathways (VIS), lateral geniculate (LG), medial geniculate (MG), nu-
cleus ventralis posterolateralis (VPL) [4.46]

tex from a subsystem called the “mesencephalic reticular formation”. The reticular
formation designates a complex network of neurons and nerve fibers with widely
distributed connections of synaptic contacts. It is known to play an essential role in
arousal, wakefulness, and attention [4.46].

Lesions within the complex network lead to various disturbances of conscious-
ness, which may be global or only local, with specific deficits of conscious experi-
ence during global wakefulness. Neurophysiology can experimentally demonstrate
that degrees of consciousness depend on the two streams of specific and non-specific
afferent signals processed in the cerebral cortex. But the question arises of how
mental states of consciousness emerge from these networks. In the terminology of
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Leibniz, we see the interacting elements like the cog wheels of a mill, but cannot
bridge the gap between the neurophysiological machinery and the mental states of
consciousness. Traditional neurophysiology has the conventional view that brain
functions are made possible by electrical impulses spreading through a network of
neurons connected by rigid synapses like the rigid connections of cog wheels in
Leibniz’ mechanistic model of a mill.

The complex system approach offers a view of self-organizing nets changing
their synaptic connections, which are induced by synaptic activation and depend on
the degree of activation. In the framework of neural complex systems, the micro-
scopic level of interacting neurons is distinguished from the macroscopic level of
global patterns produced as cell assemblies by self-organization. In earlier sections,
it was already mentioned that the concept of self-organizing neural cell assemblies
was introduced by Hebb. It was modified by Christoph von der Malsburg, Teuvo
Kohonen, and others. If simultaneous activity is induced in some neurons of a net
by a patterned input, then an assembly will be formed by synchronous activation
according to a Hebb-like learning rule.

The modification suggested by von der Malsburg is that assembly formation is
not a slow process, but produced by rapid synaptic changes [4.47]. These so-called
“Malsburg synapses” are used to model networks with rapid weight adjustment dy-
namics. Today, there is empirical evidence of Hebb- and Malsburg-type synapses
with high plasticity in the brain whose rule of interaction can be realized by molec-
ular mechanisms. The formation of assemblies in a network depends on the degree
of activation of its neurons.

But there is no “mother neuron” that can feel, think, or, at least, coordinate the
appropriate neurons. The binding problem of pixels and features in perception is
explained by cell assemblies of synchronously firing neurons dominated by learnt
attractors of brain dynamics. The binding problem asked: How can the perception
of entire objects be conceived without decaying into millions of unconnected pix-
els and signals of firing neurons? Barlow’s theory [4.48] assumed single neurons
for each property of a perceived object, other neurons for clusters of properties,
and, finally, a neuron for the entire object (“grandmother neuron”). Thus, the brain
needs an exploding number of specialized neurons which must be postulated in ad
hoc hypotheses for every new perception of changing situations (Fig. 4.20a). Wolf
Singer [4.49], and others confirmed Hebb’s concept of synchronously firing neurons
through observations and measurements (Fig. 4.20b). Thus, Barlow’s theory is not
necessary for the explanation of gestalt phenomena.

Concerning conscious and unconscious states, it is assumed that global acti-
vation of a cell population, as exerted by the reticular formation on the cortex
(Fig. 4.19), would generally increase the probability of assemblies being formed.
Thus, Hans Flohr has suggested that degrees of consciousness differ in the rate at
which assemblies can be generated. The production rate of cell assemblies deter-
mines the amount, complexity, and duration of representations of sensory patterns
from the outer world, for instance. Consciousness is a self-referential state of self-
reflection (Fig. 4.18b). Thus, a conscious state is based on a cell assembly repre-
senting an internal state (and not only a state of the outer world). For example, I not
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Fig. 4.20. Binding problem in Barlow’s theory of grandmother neurons (a) and Hebb’s theory
of cell assemblies (b) [4.50]

only have the impression of a green tree, but I am conscious that I am looking at this
tree. Furthermore, I can reflect on my state of being conscious of my looking at the
green tree, and continue with an iterative production of meta-meta...representations
reaching from phenomenal impressions and feelings to abstract and highly sophis-
ticated states of self-reflection. Whenever a critical threshold rate of production is
surpassed, phenomenal states must emerge. Deficits of consciousness occur below
the critical threshold level.

This hypothesis is testable by particular EEG changes corresponding to an in-
creasing formation rate of assemblies which represent a certain degree of attention.
As the production rate of cell assemblies is based on particular synapses with chang-
ing weights, the degrees of consciousness may be tested by interventions on synap-
tic connections. Actually, patients anesthetized with chemical substances which in-
fluence synaptic plasticity experience vivid dreams, sensory illusions, visual and
auditory hallucinations, and disorganized thoughts. In this sense, awareness can
be considered as the result of a system’s capacity to generate representations and
metarepresentations.

Neural networks with a high rate of assembly formation can produce more
complex representations than networks with a lower formation rate. Thus, at a suf-
ficiently high formation rate, complex systems will develop self-referential and
metacognitive activities. We may imagine a scale of more or less conscious sys-
tems corresponding to the degrees of consciousness in the evolution of living beings
with more or less complex nervous systems from the worm to humans. It follows
that in the framework of complex systems the emergence of consciousness is no
epiphenomenon of evolution. It is a lawful occurrence of global states according
to the dynamics of complex systems which produce macroscopic order patterns by
microscopic interactions of their elements if certain critical conditions are satisfied.
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If the complex systems approach is right, then the nervous systems of biolog-
ical evolution are only particular realizations of self-referential systems, and other,
perhaps technical systems with self-referential capacities based on materials differ-
ent from the human brain’s biochemistry cannot be excluded in principle (compare
Chap. 6). We may even be able to translate representations from one complex system
into an alien one. As the representations in both systems are not exactly the same, we
would not exactly feel like our neighbor, an animal, or another alien system. But we
would have a representation in the form of knowledge or a theory about their feel-
ings or thoughts. In this sense, subjectivity is saved, and a wide field of hermeneutics
in human communication remains even in the case of technical simulations.

Concerning the traditional mind-body problem, the complex system approach
shows that cognitive activity is neither completely independent and different from
brain activity nor simply identical, nor an epiphenomenon. Thoughts and feelings
are assumed to be both product and producer of neural processes without being iden-
tical to them. In the framework of complex systems, the brain is modeled as a self-
organizing system which operates far from thermal equilibrium and close to certain
threshold values as instability points. During neural instability, different modes of
collective excitations evolve to coherent macroscopic patterns which are neurophys-
iologically based on certain cell assemblies and psychologically expressed as certain
feelings or thoughts [4.51].

We all know the experience that in a situation of emotional instability a certain
feeling may dominate the other virtual ones and even guide our actions. In syn-
ergetics, the competition of stable and unstable modes is explained by the slaving
principle. The reader may be reminded of decision situations in which one thought
or concept begins to “enslave” the other possible ones. These nonequilibrium phase
transitions are governed by very few order parameters in the sense of minimum
information. Indeed, acting after a decision means an enormous reduction of com-
plexity. Too much knowledge hinders action or to quote Goethe: “An acting person
is always unscrupulous.”

Cognitive phenomena are referred to macroscopic properties of the brain’s dy-
namics and to order parameters which govern the underlying microscopic processes.
Thus, the so-called mind-brain interaction is only an old-fashioned formulation of
an inadequate and obsolete metaphysics that assumes some interacting substances
like colliding balls in mechanics. The overlapping area of brain and cognitive sci-
ences is modeled by the emergence of macroscopic properties from microscopic
neural interactions during phase transitions in complex neural systems.

In synergetics, phase transitions are interpreted as a kind of symmetry breaking
which can be visualized by an overdamped motion of a particle in a symmetric
potential (Fig. 4.21a) [4.52].

At the maximum of the potential the position of the particle is symmetric, but
unstable, and tiny initial fluctuations decide which of the two equal stable states of
minima the particle will reach. In the complex system approach, the two valleys of
Fig. 4.21a are interpreted as attractors. Obviously, the ambiguity of perceptions and
the spontaneous decision of the visual system for one interpretation is a well-known
psychological example of symmetry breaking. In Fig. 4.21b, there is an instability
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Fig. 4.21a. Symmetry breaking by an overdamped motion of a particle in a symmetric poten-
tial

Fig. 4.21b,c. Ambiguity of meaning: (b) white or black cross? (c) old or young woman?
[4.53]

of figure and ground. Do we see a white or black cross? Figure 4.21c shows an
ambiguity of meaning. Is it a picture of a young lady or an old woman? [4.53]

Symmetry breaking in psychology is governed by the nonlinear causality of
complex systems (the “butterfly effect”), which roughly means that a small cause
can have a big effect. Tiny details of initial individual perspectives, but also cog-
nitive prejudices, may “enslave” the other modes and lead to one dominant view.
A neurophysiological model has to simulate the corresponding phase transitions of
cell assemblies.

Phase transitions are well known in animal locomotion, for instance, in horse
gait. With increasing speed horses fall into different movement patterns, from walk-
ing to trotting to galloping, in order to minimize the energy costs. This phenomenon
of hysteresis is frequently observed in non-equilibrium phase transitions and inter-
preted as a sequence of stable states or attractors in the nervous system. Phase tran-
sitions appear also in thinking. The “aha-experience” and the sudden “insight” are
surprising phenomena arising from a situation of fluctuations and instability. In his-
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tory, there are many famous examples of scientists, engineers, artists, and composers
who suddenly found a new problem solution, an invention, an idea for a painting,
a melody, and so on in a situation of “creative” instability and confusion.

The complex system approach delivers no closed doctrine of psychology, but
an interdisciplinary research program to explore old and new problems of cogni-
tive science and to bring them nearer to an empirical and experimental analysis.
Thus, an exploration of correlations between the rates of changing cell assemblies
and intellectual abilities of learning, creativity, cognitive flexibility, and ability to
visualize is suggested. Phenomena of cognitive instability are assumed to be macro-
scopic properties of the microscopic instability of nervous processes. Thoughts and
expectations are interpreted as order parameters governing the activity of the whole
system if it is operating close to instability points. A confirmation of this theory
can be seen in psychological tests which produce hallucinations by suggestions that
correspond to measurable physiological effects. By recording the regional cerebral
blood flow it has been shown that even the thought or intention of acting increases
the neuronal activity of the motor area.

Who will deny that thoughts can change the world and that they are not only
mere interpretations of the world? In the field of psychosomatic phenomena the
placebo effect, for instance, demonstrates that a mere belief or leading idea can alter
not only the emotional state but also the physiological state. Obviously, psychoso-
matic states are close to instability points. The corresponding order parameters are
not just theoretical concepts of psychologists, but real modes governing and domi-
nating (“enslaving”) the activity of the central nervous system.

The last examples show that the application of self-organizing complex systems
in psychology cannot simply be evaluated by their forecasts and quantitative mea-
surability. It is an intrinsic feature of a complex system that its nonlinear dynamics
on the microscopic scale and its sensitive dependence on initial conditions do not
allow one to forecast the system’s final state. In the brain and cognitive research
we are confronted with a huge degree of complexity excluding exact calculations
or long term forecasts. Nevertheless, the complex system approach reveals essential
qualitative features of the mind-brain system, like its high sensitivity with respect to
tiny intrinsic fluctuations and changes in the outer world.

4.4 Intentionality and the Crocodile in the Brain

Besides consciousness, there is another fundamental feature of the human mind
which was traditionally emphasized – intentionality.

Intentionality is the reference of mental states to objects or states of affairs in the
outer world: I see something, I believe in something, I expect something, I am afraid
of something, I want something, etc. Intentional mental states can be distinguished
from non-intentional states without any reference object: I am nervous, I am afraid,
I am tired, I am happy, I am depressed, etc.

The phenomenon of intentionality can also be visualized by simple examples.
In Fig. 4.22, every observer sees a square, although there is physically not given
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Fig. 4.22. Intentional object of perception (square) [4.54]

any part of a square’s shape. The configuration of the lines suggests to the visual
system that there is a particular closed object. An intentional reference between the
observer and a configuration of stimuli is achieved [4.54].

Intentional objects or states may be fictional or real. Obviously, human culture
is full of signs and symbols for intentional objects and states from traffic signals to
religious symbols. Even buildings from memorials and churches to factories may
represent intentional objects. The intentional meaning of languages has been consti-
tuted in the long development of human cultures. In traditional epistemology, some
philosophers like Franz Brentano even proclaimed that intentionality is a particular
ability of the human mind to refer to the world. Intentionality was understood as
a feature of the mind which cannot be reduced to physical, chemical, or biological
properties.

Some modern philosophers like John Searle maintain that intentionality is a dis-
tinctive feature of the human mind. But they agree that the biological evolution of
the human brain somehow developed the intentional power of mental reference to
the world [4.55].

Actually, intentionality is not reserved to brains. It is a feature of certain com-
plex systems which can be modeled by the dynamics of attractors in the evolution
of life. Nest construction by social insects is an example of a collective intentional
dynamics. The specific feature of this complex system is the autocatalytic mecha-
nism by which the goal-directed work of building nest ecosystems each consisting
of a termite population with its environment is carried out. In the complex system
approach, it is assumed that this social system already illustrates paradigmatic prop-
erties which can be observed in more highly developed systems like brains or central
nervous systems [4.56].

The construction process of a nest involves the coordination of more than 5 mil-
lion insects on the microscopic level, and results in an evolution of certain macro-
scopic building modes. African termites, for instance, build nests that stand more
than 15 feet in height and weigh more than 10 tons. Each insect works indepen-
dently of each other termite. But their actions are locally determined by distribu-
tions of some chemical substance being excreted by the termites themselves. The
building material is marked by chemical substance. At first, the building material
is distributed randomly, then in an increasingly regular way, until the architectural
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structure arises from the local interactions of the insects governed by the chemical
distribution.

The pattern determines several centers as goals of collective activities, which
can be interpreted mathematically as attractors of a diffusion field. In earlier chap-
ters, an attractor was introduced as a solution shared by multiple trajectories origi-
nating from different initial conditions. The local trajectories either converge to or
diverge from the attractor. In physical or chemical field models, the attractors define
local regions in which the potential energy gradient degenerates, going to zero. The
region surrounding the attractor is called the basin of attraction and is defined by the
gradient flows converging to or diverging from the attractor. The flow pattern of the
insects is globally organized by the layout of attractors in their work space, which
is the phase portrait of the insects’ dynamics. It is well known that attractors are not
achieved for ever. If certain control parameters are changed, a pattern may become
unstable and break down, being followed by a new pattern of attractors.

Figure 4.23a shows the chemical diffusion gradient surrounding two attractors
which will be base of two pillars. As the two pillars act as competing attractors for

Fig. 4.23a–c. Arch formation as intentional dynamics of termites: (a) base of the two pillars
as two attractors in a 2-dimensional diffusion gradient field, (b) 3-dimensional field govern-
ing the direction of the pillars’ construction, (c) arc formation governed by an attractor of
a diffusion gradient [4.57]
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the termites, a saddle-point is determined between them. In a later building step, the
initial two-dimensional field of Fig. 4.23a is followed by a three- dimensional one
(Fig. 4.23b) governing the direction of the pillars’ construction. In Fig. 4.23c, the
arch formation is shown with one attractor of a chemical diffusion gradient [4.57].

Obviously, an intention at the ecological scale does not require that an individ-
ual component of a system must be aware of the global consequences of its actions.
The intention is only globally manifested in the long range by the system’s dynam-
ics. Figure 4.23d shows the autocatalytic cycle of a nest-building intentional com-
plex system. As it is not a supervised learning process, there is no “goal” or “plan”
of some supervising authority like “God” or “Nature”. That would be only a sim-
plified anthropomorphic metaphor which does not correctly describe the nonlinear
causality of the self-organizing complex system under consideration. Nevertheless,
globally there is intentional collective behavior arising from complex nonlinear in-
teractions.

Fig. 4.23d. The autocatalytic cycle of a nest-building intentional complex system

As brains and central nervous systems are complex systems with a nonlinear
dynamics governing their neurons and synapses, it is no wonder that they achieve in-
tentional behavior patterns, too. Intentionality has not fallen from heaven as a mirac-
ulous feature to guide and distinguish human mind from nature. It is a global pattern
emerging in particular complex systems under certain conditions. But there are dif-
ferent levels of intentionality depending on the increasing complexity of evolution.

Intentions must not necessarily be conscious. In Fig. 4.22, the intentional object
of our visual system is a square without our exerting conscious will. The so-called
perceptual illusions are also intentional patterns of our visual system emerging spon-
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taneously without our conscious will. Figure 4.24 manifests a warping effect of
manifolds which seems to be caused by the repellor gradients of different visual
attractors. Two equidistant parallel lines seem to change their curvature by a pair
of repellor gradients on the left and by a single repellor gradient on the right. The
state space of the observer’s visual system indicates different curvatures as a result
of different visual gradient fields, although the lines remain equidistant and parallel
in the physical figure.

Fig. 4.24. Warping effects of two equidistant parallel lines by visual attractors

Even conscious intentional patterns of behavior are not exclusive to humans.
A dog not only jumps, it jumps to catch prey, to greet its master, and so on. Inten-
tionality in the sense of conscious goal-directedness is a property of more or less
all animals. The question arises of how intentional behavior can be modeled by the
complex system approach and how the model can be tested experimentally.

In this context, an intention is defined as an intended behavior pattern which
may change the dynamical properties, such as stability, of intrinsic behavior pattern.
Thus, psychologists can model the intrinsic dynamics of behavior patterns which
may be changed by the dynamics of other, intended behavior patterns. Here we re-
mind the reader of the intrinsic dynamics governing some patterns of behavior which
can be modeled by nonequilibrium phase transitions and order parameters. Kelso,
Haken, and others have analyzed the following simple examples: when persons are
asked to move their fingers in parallel (Fig. 4.25a), they can easily perform this at
low frequency. When the test persons are asked to increase the frequency of their
finger movements, the fingers are suddenly moved in a symmetric and antiparallel
fashion without conscious intention (Fig. 4.25b) [4.58].

In order to model this phase transition of behavior patterns, the frequency is in-
terpreted as a control parameter, and the macroscopic variable describing the finger
movement is the phase ϕ. The behavior can be modeled in an energy landscape rel-
ative to the changing phase. The landscape must be symmetric, as the left and right
finger have equal functions. It must also be periodic in the phase angle (Fig. 4.26).
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Fig. 4.25a,b. Two fingers moving in parallel (a) and antiparallel fashion (b) [4.58]

Fig. 4.26. Dynamics of moving fingers in an energy landscape with relative phase ϕ as order
parameter

If the frequency increases, the landscape with its initially sharp valleys is deformed.
In the beginning of slow movement the pattern is stable, corresponding to a stable
phase at value π (Fig. 4.26a). Finally, the valley at π has disappeared, and a ball,
initially in the valley at π , has run down to the deepest minimum, corresponding the
symmetric movement of the fingers (Fig. 4.26c).

In some experiments, subjects were asked to switch intentionally between the
two patterns of bimanual coordination. The duration of the transient corresponds
to the switching time, which was measured. The stability of both patterns is mea-
sured by order parameter fluctuations. The relative phase dynamics is modeled by
a nonlinear evolution equation.
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Figure 4.27a visualizes the intrinsic dynamics according to the potential of this
equation with two minima. The contribution of intentional information to the rela-
tive phase dynamics is shown by the potentials of Fig. 4.27b. The result of summing
the intrinsic and the intentional dynamics to arrive at the full dynamics is shown
by Fig. 4.27c. The ball in the landscape travels faster along the steeper slope at
ϕ = 0 than ϕ = 180, corresponding to the empirically measured switching time.
Obviously, an intention can change the intrinsic dynamics by destabilizing one pat-
tern and stabilizing the other one. The intentional information is said to be a part
of the pattern dynamics attracting the system toward the intended pattern. In this
sense, intentional information defines an attractor in the same state space in which
the intrinsic dynamics is modeled [4.59].

Intentionality and linguistic meaning are often proclaimed to be essential fea-
tures of the human mind. Examples of intentional states are pains, tickles and
itches, beliefs, fears, hopes, desires, perceptual experiences, experiences of acting,
thoughts, feelings, etc., which are expressed by corresponding sentences like “I suf-
fer from pain in the stomach”, “I desire to get a car”, “I believe in God”, etc. Searle

Fig. 4.27a–c. Relative phase dynamics with intentional information [4.59]
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argues that mental states are as real as any other biological phenomena like lacta-
tion, photosynthesis, or digestion. He knows that mental states are macrostates of
the biological brain which are caused by neurophysiological interactions between
neurons on the microscopic scale. Thus, they cannot be identified with the neuro-
physiological states of single neurons.

The distinction between the micro- and macrostates of brains is illustrated by
an analogy with, for instance, micro- and macrostates in liquids: the macrostate of
liquidity cannot be reduced to single molecules or, in other words, single molecules
cannot be liquid. In this sense, beliefs, desires, thirsts, and visual experiences are
real causal features of the brain as much as the solidity of a table or the liquidity of
water. Intentional states can themselves be caused by and realized in the structure
of the brain. Searle declares that there is not, in addition, a metaphysical obstacle.

Nevertheless, he argues that no purely formal model will ever be sufficient by
itself for intentionality because the formal properties are not by themselves constitu-
tive of intentionality. His reason for holding this position is based on the thought ex-
periment of the “Chinese room”. A person who only understands English is locked
in a room with a great store of Chinese symbols, and a set of complicated transfor-
mation rules, written in English, for performing operations on sequences of Chinese
symbols. The person periodically receives sequences of Chinese symbols through
a slot (Fig. 4.28). He applies the transformation rules in order to produce a further
sequence of Chinese symbols which are put through the slot, again [4.60].

Fig. 4.28. Alice in the Chinese room

It is unknown to the person in the room that the store of sequences contains
a large amount of information about certain topics, written in Chinese. The input se-
quences which are put through the slot are questions or comments on those topics.
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The output sequences are reactions and comments to the received inputs. The trans-
formation rules used are a formal program to simulate the conversational behavior of
a native Chinese speaker. The person in the Chinese room applies the formal trans-
formation rules correctly without understanding the sequences of Chinese symbols,
which are meaningless to him.

Searle maintains that formal symbol manipulations by themselves do not have
any intentionality, because they are quite meaningless to the user. Intentionality in
this context is the feature of formal symbols like words, sentences, etc., that they
refer to certain “meant” entities (semantic relation of the symbol) and to the user
(pragmatic relation of the symbol). Searle asserts that this feature is intrinsic only
for the mental states of the brain.

His arguments against “computer simulation” fail, if he restricts simulations
to formal algorithms running on program-controlled Turing-type computers. But
we have shown that a brain has the typical characteristics of a self-organizing and
self-referential complex system which is quite different from a program-controlled
computer (compare Chap. 6). Self-organization and self-referentiality of complex
systems are not restricted to human or mammalian brains. They are only biochemi-
cal and neurophysiological realizations of particular complex structures which have
been produced in biological evolution. Thus, in principle it cannot be excluded
that these complex structures with their characteristic dynamics may be realized
by quite different materials which may be produced via human technology. Conse-
quently, as intentionality is made possible by the features of self-referentiality and
self-organization, at least a partial simulation by complex models different from
biological brains cannot be excluded in principle.

In traditional philosophies, intentionality is often founded on the so-called
“self” of the human being, which is said to be able to refer to the world and to
itself (“self-consciousness” as self-referentiality). But where is the self hidden in
the brain? Traditional positions like kinds of platonism or spiritualism or materi-
alism are even maintained by some modern researchers of the brain. For Sir John
Eccles, for instance, the self seems to be a spiritual entity interacting with the brain,
but completely different in nature [4.61]. But how should this hypothesis be de-
fended or refuted? It is a mere postulate with high metaphysical costs, which one
may believe or not believe.

Hypotheses must be criticizable, perhaps false, but fruitful for further research.
Thus, the metaphysical price is too high. Ockham’s razor from philosophy demands
that we cut away superfluous hypotheses, remain economical with the postulation of
metaphysical entities, and restrict hypotheses to the minimal number that seems in-
dispensable for empirical research. The complex system approach is a mathematical
research program of interdisciplinary models avoiding metaphysical dogmas. It may
fail in the long run. But this strategy of modeling has been confirmed by an impres-
sive number of successes in several sciences and technologies and, more important,
it suggests some fruitful concepts for further empirical research. On the other hand,
the traditional materialism which identifies mental states with neurophysiological
processes in single neurons is simply false.
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Nevertheless, in brain research, the question has arisen which part of the brain
is the center of the “self”. The cortex is the part of the brain which enables us to
learn, to memorize, to think, and to create all the products of human culture and civ-
ilization. But if the cortex is mainly modeled as a complex associative memory store
with certain learning procedures, then it is only a complex and highly sophisticated
instrument which has been evolved in biological evolution for enhanced survival of
the fittest.

Indeed, the cortex is the youngest part in the evolution of the human brain.
There are some much older, but more primitive structures which also can be found
in the brains of birds, reptiles, amphibians, and fishes. Some scientists assume that
basic feelings like lust and pain and all the servo-mechanisms which were necessary
to survive in a reptile’s life are essentially realized in these early structures of the
brain. This center would give the impulses for all kinds of activities, using the cortex
only as huge and effective associative store. Thus, in this interpretation, the “self”
is replaced by a little crocodile in the brain operating with some highly complex
instruments like the cortex, in order to survive in a more and more complex envi-
ronment [4.62]. Intentionality would be made possible by the cortex, but initiated
by the basic instincts of the crocodile in the human brain.

The idea of crocodiles with highly effective neural instruments of survival
seems to injure our vanity more than the popular Darwinistic motto of the last cen-
tury that the ape is the ancestor of man. From a scientific point of view, of course,
it should not be injured vanity which makes us criticize the concept of the “neural
crocodile”. The main objection is that our feelings have not rested at the level of
a crocodile, but have developed during biological and cultural evolution, too.

Our feelings of lust and pain are rather complex, because they are influenced
by the stimuli of a rather complex and sophisticated civilization which has been
produced by human brains. Thus, there is a complex feedback which has shaped
our feelings and desires from the crocodile until today. The history of literature,
art, and psychology demonstrates that lust and pain have been highly sophisticated
states of the human brain that are in permanent evolution. Thus, even the traditional
concept of a human soul which is more or less sensitive still makes sense in the
framework of complex system. But we must give up the traditional ideas of human
mind and soul as strange substances controlling and interacting with the human
body in a miraculous manner which cannot be conceived in principle.

4.5 Complexity and the Embodied Mind

The coordination of the complex cellular and organic interactions in an organism
requires a special type of self-organizing control. This was made possible by the
evolution of nervous systems that enabled organisms to adapt to changing living
conditions and to learn bodily from experiences with their environments. We call
this the emergence of the embodied mind [4.63]. The hierarchy of anatomical or-
ganization varies over different scales of magnitude, from molecular dimensions
to those of the entire central nervous system (CNS). Research into these hierarchi-
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cal levels concerns questions of (for example) how signals are integrated in den-
drites, how neurons interact in a network, how networks interact in a system like
that used in vision, how systems interact in the CNS, or how the CNS interacts
with its environment. Each stratum can be characterized by some order parameters
that determine its particular structure, which is caused by complex interactions of
subelements with respect to the particular level of hierarchy.

At the micro level of the brain, there are (massively) many-body problems
which need a reduction strategy to cope with the complexity. In the case of EEG
pictures, a complex system of electrodes measures local states (electric potentials)
of the brain. The whole state of a patient’s brain at the micro level is represented
by local time series. In the case of, say, petit mal epilepsy, these are characterized
by typical cyclic peaks. The microscopic states determine the macroscopic electric
field patterns during a cyclic period. Mathematically, the macroscopic patterns can
be determined by spatial modes and order parameters – the amplitude of the field
waves. In the corresponding phase space, they determine a chaotic attractor that
characterizes petit mal epilepsy.

Neural self-organization at the cellular and subcellular level is determined by
information processing in and between neurons. Chemical transmitters can effect
neural information processing using direct and indirect mechanisms of great plas-
ticity. The long-term potentiation (LTP) of synaptic interactions is an extremely
interesting topic of recent brain research. LTP seems to play an essential role in
the neural self-organization of cognitive features such as memory and learning. It
is assumed that the information is stored in the synaptic connections of neural cell
assemblies with typical macroscopic patterns.

However, while an individual neuron cannot see or reason or remember, brains
can. Vision, reasoning, and memory are understood as being higher-level functions.
Scientists who prefer a bottom-up strategy recommend that higher-level functions
of the brain can be neither addressed nor understood until the particular properties
of each neuron and synapse are explored and explained. An important insight gained
from the complex system approach is that emergent effects of the whole system are
synergetic system effects that cannot be reduced to single elements. They are due
to nonlinear interactions. Therefore, the whole is more than the (linear) sum of its
parts. Thus, from a methodological point of view, a purely bottom-up-strategy of
exploring brain functions must fail. On the other hand, the advocates of a purely
top-down strategy proclaiming that cognition is completely independent of the ner-
vous system are caught in the old Cartesian dilemma: ‘how does the ghost drive the
machine?’

We can now distinguish several degrees of complexity in the CNS. These scales
involve molecules, membranes, synapses, neurons, nuclei, circuits, networks, layers,
maps, sensory systems, and the entire nervous system. Research into these hierar-
chical levels concerns questions of how signals are integrated in dendrites, how
neurons interact in a network, how networks interact in a system like that of vision,
how systems interact in the CNS, or how the CNS interacts with its environment.
Each stratum can be characterized by some order parameters that determine its par-
ticular structures, which are caused by complex interactions of subelements at the
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particular level of hierarchy. Beginning at the bottom, we can distinguish the order
associated with ion movement, channel configurations, action potentials, potential
waves, locomotion, perception, behavior, feeling, and reasoning.

The different abilities of the brain require massively parallel information pro-
cessing in a complex hierarchy of neural structures and areas. We have complex
models of information processing in the visual and motor systems. The dynamics
of the emotional system even interact in a nonlinear feedback manner with several
structures of the human brain. These complex systems produce neural maps of cell
assemblies. The self-organization of somatosensoric maps is well-known in the vi-
sual and motor cortices. They can be enlarged and changed by learning procedures,
like that used when training an ape’s hand.

PET (positron emission tomography) pictures show macroscopic patterns of
neurochemical metabolic cell assemblies in different regions of the brain that are
correlated with cognitive abilities and conscious states, such as looking, hearing,
speaking, or thinking. Patterns formed by neural cell assemblies are even correlated
with complex processes of psychic states [4.64]. Perturbations of metabolic cellular
interactions (e.g., caused by cocaine intake) can lead to nonlinear effects that cause
complex changes in behavior (e.g., addictions to drugs). These correlations between
neural cell assemblies and order parameters (attractors) of cognitive and conscious
states demonstrate the connection between neurobiology and cognitive psychology
observed in recent research, depending on the precisions of the measuring instru-
ments and procedures employed.

Many questions are still unanswered. We can only observe that someone is
thinking and feeling, not what they are thinking and feeling. Also, there is no unique
substance called consciousness, but complex macrostates of the brain that pay differ-
ent degrees of attention to sensor, motor, or other types of function. Consciousness
means not only that we look, listen, speak, hear, feel, think, etc., but also that we
recognize when we are performing these cognitive processes. Our self is consid-
ered to be an order parameter of a state, which emerges from a recursive process
of multiple self-reflections, self-monitoring, and supervising our conscious actions.
Self-reflection is made possible by so-called mirror neurons (e.g., in the Broca area),
which allow primates (especially humans) to imitate and simulate interesting behav-
ior exhibited by their companions. Therefore, they can learn to see things from their
own and their companion’s perspectives, allowing them to understand their inten-
tions and to empathize with them. The emergence of subjectivity is well understood
neuropsychologically.

The brain observes, maps, and monitors both the external world and the internal
states of the organism, especially its emotional states. To “feel” means to have an
awareness of one’s emotional states, which are mainly caused by the limbic system.
In neuromedicine, the “Theory of Mind” (ToM) even analyzes the neural corre-
lates of social feeling, which are situated in special areas of the neocortex [4.65].
Some people, such as those suffering from Alzheimer’s disease, lose their feelings
of empathy and social responsibility because the associated neural areas have been
destroyed. Therefore, our moral reasoning and decision-making has a clear basis in
brain dynamics.
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From a neuropsychological point of view, the old philosophical problem of
“qualia” is also solvable. Qualia are properties that are consciously experienced
by a person. In a thought experiment, a neurobiologist is assumed to be caught in
a black and white room. Theoretically, she knows everything about the processing
of colors by neurons. However, she has never had a chance to experience colors.
Therefore, exact knowledge says nothing about the quality of conscious experience.
Qualia in this sense emerge through the interactions of self-conscious organisms
bodily with their environment, which can be explained via nonlinear dynamics of
complex systems. Therefore, we can explain the dynamics of subjective feelings
and experiences, but, of course, the actual feeling is an individual experience. In
medicine, the dynamics of a certain pain can often be completely explained by
a physician, although the actual feeling of pain is an individual experience for the
patient [4.66].

In order to model the brain and its complex abilities, it is adequate to distin-
guish the following categories. In neuron-level models, studies concentrate on the
dynamic and adaptive properties of each nerve cell or neuron, in order to describe
the neuron as a unit. In network-level models, identical neurons are interconnected,
resulting in basic system functions. In nervous-system-level models, several net-
works are combined to demonstrate some of the more complex functions of sensory
perception, motor functions, stability control, etc. In mental-operation-level models,
the basic processes of cognition, thinking, problem-solving, etc., are described.

In the complex systems approach, the microscopic level of interacting neurons
should be modeled by coupled differential equations that model the transmission of
nerve impulses by each neuron. The Hodgekin–Huxley equation is an example of
a nonlinear diffusion reaction equation with an exact solution of a traveling wave,
which provides a precise prediction of the speed and shape of the nerve impulse of
electric voltage. In general, nerve impulses emerge as new dynamical entities like
ring waves in BZ reactions or fluid patterns in non-equilibrium dynamics. In short,
they are the “atoms” of complex neural dynamics. At the macroscopic level, they
generate a cell assembly whose macrodynamics are dominated by order parameters.
For example, a synchronously firing cell assembly represents a visual perception
of a plant which is not only the sum of its perceived pixels, but is characterized
by some typical macroscopic features like form, background or foreground. At the
next level, cell assemblies of several perceptions interact in a complex scenario.
In this case, each cell assembly is a firing unit, generating a cell assembly of cell
assemblies whose macrodynamics are characterized by some order parameters. The
order parameters may represent similar properties of the perceived objects.

In this way, we obtain a hierarchy of emerging levels of cognition, starting with
the microdynamics of firing neurons. The dynamics of each level are assumed to
be characterized by differential equations with order parameters. For example, at
the first level of macrodynamics, order parameters characterize a visual perception.
At the following level, the observer becomes conscious of the perception. Then the
cell assembly of perception is connected with the neural area that is responsible for
states of consciousness. In a next step, a conscious perception may be the goal for
planning activities. In this case, cell assemblies of cell assemblies are connected
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with neural areas in the planning cortex, and so on. They are represented by cou-
pled nonlinear equations with firing rates of corresponding cell assemblies. Even
high-level concepts like self-consciousness can be explained by self-reflections of
self-reflections, connected with a personal memory which is represented in the cor-
responding cell assemblies of the brain. Brain states emerge, persist for a small
fraction of time, then disappear and are replaced by other states. It is the flexibility
and creativeness of this process that makes a brain so successful at enabling animals
to adapt to rapidly changing and unpredictable environments.



5 Complex Systems and the Evolution
of Computability

The evolution of complexity in nature and society can be understood as the evolution
of computational systems. In the beginning of modern times, Leibniz already had the
idea that the hierarchy of natural systems from stones and plants up to animals and
humans corresponded to natural automata with increasing degrees of complexity
(Sect. 5.1). The present theory of computability enables us to distinguish complexity
classes of problems, meaning the order of corresponding functions describing the
computational time of their algorithms or computational programs. But we can also
consider the size of a computer program when defining the algorithmic complexity
of symbolic patterns (Sect. 5.2).

Information dynamics in complex systems are analyzed by Shannon’s concept
of information entropy and Kolmogorov-Sinai entropy. Thus, the information flow
in complex systems with stable, oscillating, chaotic, or random dynamics can be
distinguished by well-defined methods. The degree of complexity of 1/f b noise can
be linked to attractors in nonlinear dynamics (Sect. 5.3). In general, any stochastic
process can be classified according to the degree of complexity of the probabilistic
attractor. This offers deep insights into the power laws of complex systems, indicat-
ing the self-organization and emergence of order in nature and society (Sect. 5.4).
Further on, we ask if more efficient information processing can be expected from
quantum computers and quantum complexity theory. Is matter nothing more than
“condensed” quantum information with different degrees of complexity (Sect. 5.5)?
Leibniz’s idea of natural automata has been made mathematically precise by John
von Neumann’s concept of cellular automata. Pattern formation in complex systems
can be analyzed in the framework of cellular automata. Even chaos and randomness
can be generated by simple rules of cellular automata, as demonstrated by Stephen
Wolfram’s computer experiments (Sect. 5.6).

5.1 Leibniz and Mathesis Universalis

One of the most speculative applications of complex systems is the evolution of arti-
ficial intelligence (AI) [5.1]. In the tradition of classical AI, the brain has been under-
stood as computer hardware of the most advanced machinery, while the mind is the
corresponding software program with deterministic algorithms. Even knowledge-
based expert systems are conceived by algorithmical representations of highly de-
veloped AI programming languages. But theoretical results of mathematical logic
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(Church, Turing, Gödel, etc.) and practical problems of programming limit the
mechanization of thought in the framework of classical AI.

A theory of the “cerebral computer” as a product of natural evolution has been
suggested to model the nature of the brain and its mental states by the non-linear
dynamics (“self-organization”) of complex neural networks. The question arises of
wether the insight into their dynamics delivers the “blue-prints” of a new revolu-
tionary technology which will pursue the natural evolution of brain and mind. Actu-
ally, the development of human knowledge and knowledge technology seems to be
a kind of technical evolution which has led to technical innovations like mutations
in biological evolution.

The first level was realized by simple tools like the hammer, the lever, and so on.
On the next level, machines using force and energy were invented. Today program-
controlled computers and information-processing automata have become tools of
everyday life. Computer scientists distinguish several generations of hardware and
software in the historical development of their machines. In artifical-intelligence
research one speaks of the “second computer age”, meaning the transition from
number-processing machines to knowledge-processing systems such as expert sys-
tems, which are said to simulate human experts, at least partially [5.2].

The early historical roots of computer science stem back to the age of classical
mechanics. The mechanization of thoughts begins with the invention of mechanical
devices for performing elementary arithmetic operations automatically. A mechani-
cal calculation machine executes serial instructions step by step. Thus, its dynamics
is determined by mechanical mono-causality, differing essentially from the paral-
lelism and self-organization of complex systems. In general, the traditional design
of a mechanical calculation machine contains the following devices.

First, there is an input mechanism by which a number is entered into the ma-
chine. A selector mechanism selects and provides the mechanical motion to cause
the addition or subtraction of values on the register mechanism. The register mech-
anism is necessary to indicate the value of a number stored within the machine,
technically realized by a series of wheels or disks. If a carry is generated because
one of the digits in the result register advances from 9 to 0, then that carry must be
propagated by a carry mechanism to the next digit or even across the entire result
register. A control mechanism ensures that all gears are properly positioned at the
end of each addition cycle to avoid false results or jamming the machine. An erasing
mechanism has to reset the register mechanism to store a value of zero.

Wilhelm Schickard (1592–1635), professor of Hebrew, oriental languages,
mathematics, astronomy, and geography, is presumed to be the first inventor of a me-
chanical calculating machine for the first four rules of arithmetic. The adding and
subtracting part of his machine is realized by a gear drive with an automatic carry
mechanism. The multiplication and division mechanism is based on Napier’s multi-
plication tables. Blaise Pascal (1623–1662), the brilliant French mathematician and
philosopher, invented an adding and subtracting machine with a sophisticated carry
mechanism which in principle is still realized in our hodometers of today [5.3].

But it was Leibniz’ mechanical calculating machine for the first four rules of
arithmetic which contained each of the mechanical devices from the input, selector,
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and register mechanism to the carry, control, and erasing mechanism. The Leibniz
machine became the prototype of a hand calculating machine. If we abstract from
the technical details and particular mechanical constructions of Leibniz’ machine,
then we get a model of an ideal calculating machine which in principle is able to
calculate all computable functions of natural numbers.

Figure 5.1 is a scheme of this ideal machine with a crank C and three number
stores SM, TM, RM [5.4]. Natural numbers can be entered in the set-up (input)
mechanism SM by the set-up handles SH. If crank C is turned to the right, then
the contents of SM are added to the contents of the result mechanism RM, and the
contents of the turning mechanism TM are raised by 1. A turn to the left with crank
C subtracts the contents of SM from the contents of RM and diminishes the contents
of TM by 1.

Addition means the following. At the beginning of the calculation, the erasing
procedure is implemented by setting TM and RM to zero. Then the first number is
set up in SM by SH. A turn to the right of crank C transports this number into RM.
In other words, the number is added to the zero 0 in RM. Now the second number
is set up in the SM and added to the contents of RM by a turn to the right. The sum
of both numbers can be read in the RM. After turning the crank twice to the right,
the TM shows 2. Multiplication only means a repeated addition of the same number.
The product b · a results from adding the number a to itself b times.

Leibniz even designed a mechanical calculating machine for the binary number
system with only two digits 0 and 1, which he discovered some years earlier. He
described a mechanism for translating a decimal number into the corresponding
binary number and vice versa. As modern electronic computers only have two states
1 (electronic impulse) and 0 (no electronic impulse), Leibniz truly became one of
the pioneers of computer science [5.5].

Leibniz’ historical machines suffered from many technical problems, because
the materials and technical skills then available were not up to the demands. Never-
theless, his design is part of a general research program for a mathesis universalis
intended to simulate human thinking by calculation procedures (“algorithms”) and
to implement them on mechanical calculating machines. Leibniz proclaimed two
basic disciplines of his mathesis universalis.

An ars iudicandi should allow every scientific problem to be decided by an ap-
propriate arithmetic algorithm after its codification into numeric symbols. An ars
inveniendi should allow scientists to seek and enumerate possible solutions of sci-

Fig. 5.1. Hand calculating machine
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entific problems. Leibniz’ mathesis universalis seems already to foreshadow the fa-
mous Hilbert program in our century with its demands for formalization and axiom-
atization of mathematical knowledge. Actually, Leibniz developed some procedures
to formalize and codify languages. He was deeply convinced that there are universal
algorithms to decide all problems in the world by mechanical devices [5.6].

Consequently, he proposed that natural systems like cells, plants, animals, and
even humans are more or less complex automata. In his Discourse on Metaphysics
(1686), Leibniz underlines that the mechanistic description and causal explanation
of living systems is not in contradiction to a teleological consideration that has great
heuristic value in science (§22). In his Monadology (§18) he introduced an individ-
ual substance (monade) as an elementary automaton (automates incorporels) which
is characterized by a (continuous) series of states (“perceptions”). The elementary
automata constitute aggregations of more or less complexity which are characterized
by different correlations and which can be interpreted as composite automata. In his
Theodicée (§200), Leibniz discusses the hierarchical structure and subordination in
living systems:

. . . the connection and order of things brings it about that the body of every animal and
of every plant is comprised of other animals and of other plants, or of other living organic
beings: consequently there is subordination, and one body, one substance, serves the other.

The unity of a living system is guaranteed by its form of organization, which
Leibniz, adapting an idea of Aristotle, called “entelechy”. But Leibniz only used
an old metaphysical term in order to introduce his own new concept. For Leibniz
a system can only be more or less unified in the sense of higher or lower degrees
of subordination and hierarchy. An aggregation with the same correlation between
all its substances has no hierarchical order and is less structured than a primitive
cellular organism, while in plants, animals, and humans we can observe a growing
degree of subordination.

For Leibniz the teleological terminology has a heuristical value, although in
principle nature can be explained by mechanistic causes. But it is a fundamental
error and misunderstanding when disciples of vitalism refer to Leibniz. The main
difference is that for Leibniz no new principle or force vitale is necessary to explain
living systems. At a certain degree of complexity, it is only heuristically suitable to
describe natural systems in the terminology of teleology. But, unlike natural sys-
tems, artificial mechanical automata are constructed by humans in finite steps. Only
an infinite analysis could demonstrate the complexity of a natural automaton, which
is correlated with each individual automaton (“substance”) in the world. Obviously,
Leibniz designed a theory of complex systems, but still in the framework of classical
mechanics and the belief in decidable universal algorithms.

In the 19th century it was the English mathematician and economist Charles
Babbage who not only constructed the first program-controlled calculation ma-
chine (the “analytical engine”) but also studied its economic and social conse-
quences [5.7]. A forerunner of his famous book On the economy of machinery and
manufactures (1841) was Adam Smith’s idea of economic laws, which paralleled
Newton’s mechanical laws (compare Sect. 6.2). In his book The Wealth of Nations,
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Smith described the industrial production of pins as an algorithmic procedure and
anticipated Henry Ford’s idea of program-controlled mass production in industry.

5.2 Computability and Algorithmic Complexity

The modern formal logic of Frege and Russell and the mathematical proof theory
of Hilbert and Gödel have been mainly influenced by Leibniz’ program of mathesis
universalis. The hand calculating machine (Fig. 5.1) which was abstracted from the
Leibniz machine in Sect. 5.1 can easily be generalized to Marvin Minsky’s so-called
register machine [5.8]. It allows the general concept of computability to be defined
in modern computer science.

A hand calculating machine had only two registers TM and RM, and only rather
small natural numbers can be input. An ideal register machine has a finite number
of registers which can store any finite number of a desired quantity. The registers
are denoted by natural numbers i = 1, 2, 3, . . .. The contents of register i are denoted
by 〈i〉. As an example, the device 〈4〉:=1 means that the content of the register with
number 4 is 1. The register is empty if it has the content 0.

In the hand calculating machine an addition or subtraction was realized only
for the two registers 〈SM〉 and 〈RM〉, with 〈SM〉+〈RM〉 or 〈RM〉 − 〈SM〉 going into
the register RM. In a register machine the result of subtraction 〈i〉 − 〈j〉 should be 0
if 〈j〉 is greater than 〈i〉. This modified subtraction is denoted by 〈i〉−̇〈j〉. In general,
the program of an ideal register machine is defined using the following elementary
procedures as building blocks:

1) Add 1 to 〈i〉 and put the result into register i, in short: 〈i〉 : = 〈i〉 + 1
2) Subtract 1 from 〈i〉 and put the result into register i, in short: 〈i〉 : = 〈i〉−̇1

These two elementary procedures can be composed using the following con-
cepts:

3) If P and Q are well-defined programs, then the chain P → Q is a well-defined
program. P → Q means that a machine has to execute program Q after program
P.

4) The iteration of a program, which is necessary for multiplication, for instance,
as iterated addition is controlled by the question of whether a certain register is
empty.

A diagram illustrates this feedback:

���
���

���
���

�
� P

	

�

no

yes

〈i〉 = 0
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If P is a well-defined program, then execute P until the content of the register
with number i is zero.

Each elementary operation (1) and (2) of a program is counted as a step of
computation. A simple example is the following addition program:

���
���

���
���〈j〉 = 0

�

�yes

�no 〈i〉 := 〈i〉 + 1
�

〈j〉 := 〈j〉−̇1

	

Each state of the machine is illustrated by the following matrix, which incre-
mentally adds the content y of register 〈j〉 to the content x of register 〈i〉 and simul-
taneously decrements the content of 〈j〉 to zero. The result x + y of the addition is
shown in register 〈j〉:

〈i〉 〈j〉
x y

x + 1 y−̇1
...

...
x + y y−̇y

A register machine with program F is defined to compute a function f with n ar-
guments if for arbitrary arguments x1, . . . , xn in the registers 1, . . . , n (and zero in
all other ones) the program F is executed and stops after a finite number of steps
with the arguments of the function in the registers 1, . . . , n and the function value
f (x1, . . . , xn) in register n + 1:

The program

〈1〉 := x1; . . . ; 〈n〉 := xn

↓
F
↓

〈n + 1〉 := f (x1, . . . , xn)

works according to a corresponding matrix. A function f is called computable by
a register machine RM (RM-computable) if there is a program F computing f .

The number of steps which a certain program F needs to compute a function
f is determined by the program and depends on the arguments of the function. The
complexity of program F is measured by a function sF(x1, . . . , xn) counting the steps
of computation according to program F. For example, the matrix of the addition
program for x + y shows that y elementary steps of adding 1 and y elementary
steps of subtracting 1 are necessary. Thus, sF(x, y) = 2y. As an RM-computable
function f may be computed by several programs, a function g is called the step
counting function of f if there is a program F to compute f with g(x1, . . . , xn) =
sF(x1, . . . , xn) for all arguments x1, . . . , xn. The complexity of a function is defined
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Fig. 5.2a. Turing machine with one tape

as the complexity of the best program computing the function with the least number
of steps.

Obviously, Minsky’s register machine is an intuitive generalization of a hand
calculating machine à la Leibniz. But, historically, some other, but equivalent for-
mulations of machines were at first introduced independently by Alan Turing and
Emil Post in 1936. A Turing machine (Fig. 5.2a) can carry out any effective proce-
dure provided it is correctly programmed [5.9]. It consists of

a) a control box in which a finite program is placed,
b) a potentially infinite tape, divided lengthwise into squares,
c) a device for scanning, or printing on one square of the tape at a time, and for

moving along the tape or stopping, all under the command of the control box.

If the symbols used by a Turing machine are restricted to a stroke | and a blank
∗, then an RM-computable function can be proved to be computable by a Turing
machine and vice versa. We must remember that every natural number x can be rep-
resented by a sequence of x strokes (for instance 3 by |||), each stroke on a square of
the Turing tape. The blank ∗ is used to denote that the square is empty (or the corre-
sponding number is zero). In particular, a blank is necessary to separate sequences
of strokes representing numbers. Thus, a Turing machine computing a function f
with arguments x1, . . . , xn starts with tape · · · ∗ x1 ∗ x2 ∗ · · · ∗ xn ∗ · · · and stops with
· · · ∗ x1 ∗ x2 ∗ · · · xn ∗ f (x1, . . . xn) ∗ · · · on the tape.

From a logical point of view, a general purpose computer – as constructed by
associates of John von Neumann in America and independently by Konrad Zuse
in Germany – is a technical realization of a universal Turing machine which can
simulate any kind of Turing program. Analogously, we can define a universal regis-
ter machine which can execute any kind of register program. Actually, the general
design of a von-Neumann computer consists of a central processor (program con-
troller), a memory, an arithmetic unit, and input-output devices. It operates step by
step in a largely serial fashion. A present-day computer à la von Neumann is really
a generalized Turing machine. The efficiency of a Turing machine can be increased
by the introduction of several tapes, which are not necessarily one-dimensional,
each acted on by one or more heads, but reporting back to a single control box
which coordinates all the activities of the machine (Fig. 5.2b) [5.10]. Thus, every
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Fig. 5.2b. Turing machine with several tapes [5.10]

computation of such a more effective machine can be done by an ordinary Turing
machine. Concerning the complex system approach, even a Turing machine with
several multidimensional tapes remains a sequential program-controlled computer,
differing essentially from self-organizing systems like neural networks.

Besides Turing- and register machines, there are many other mathematically
equivalent procedures for defining computable functions. Recursive functions are
defined by procedures of functional substitution and iteration, beginning with some
elementary functions (for instance, the successor function n(x) = x + 1) which are
obviously computable. All these definitions of computability by Turing machines,
register machines, recursive functions, etc., can be proved to be mathematically
equivalent. Obviously, each of these precise concepts defines a procedure which
is intuitively effective.

Thus, Alonzo Church postulated his famous thesis that the informal intuitive
notion of an effective procedure is identical with one of these equivalent precise
concepts, such as that of a Turing machine. Church’s thesis cannot be proved,
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of course, because mathematically precise concepts are compared with an infor-
mal intuitive notion. Nevertheless, the mathematical equivalence of several pre-
cise concepts of computability which are intuitively effective confirms Church’s
thesis. Consequently, we can speak about computability, effectiveness, and com-
putable functions without referring to particular effective procedures (“algorithms”)
like Turing machines, register machines, recursive functions, etc. According to
Church’s thesis, we may in particular say that every computational procedure (al-
gorithm) can be calculated by a Turing machine. So every recursive function,
as a kind of machine program, can be calculated by a general purpose com-
puter [5.11].

Now we are able to define effective procedures of decision and enumerability,
which were already demanded by Leibniz’ program of a mathesis universalis. The
characteristic function fM of a subset M of natural numbers is defined as fM(x) = 1
if x is an element of M, and as fM(x) = 0 otherwise. Thus, a set M is defined as
effectively decidable if its characteristic function saying whether or not a number
belongs to M is effectively computable (or recursive).

A set M is defined as effectively (recursively) enumerable if there exists an
effective (recursive) procedure f for generating its elements, one after another (for-
mally f (1) = x1, f (2) = x2, . . . for all elements x1, x2, . . . from M). It can easily
be proved that every recursive (decidable) set is recursively enumerable. But there
are recursively enumerable sets which are not decidable. These are the first hints
that there are limits to Leibniz’ originally optimistic program, based on a belief in
universal decision procedures.

Concerning natural and artificial intelligence, the paradigm of effective com-
putability implies that mind is represented by program-controlled machines, and
mental structures refer to symbolic data structures, while mental processes im-
plement algorithms. Historically the hard core of AI was established during the
Dartmouth Conference in 1956 when leading researchers such as John McCarthy,
Alan Newell, Herbert Simon, and others from different disciplines, formed the
new scientific community of AI. They all were inspired by Turing’s question “Can
machines think?” in his famous article “Computing machinery and intelligence”
(1950).

In the tradition of Leibniz’ mathesis universalis one could believe that human
thinking could be formalized with a kind of universal calculus. In a modern version
one could assume that human thinking could be represented by some powerful for-
mal programming language. In any case, formulas are sequences of symbols which
can be codified by natural numbers. Then assertions about objects would correspond
to functions over numbers, conclusions would follow from some kind of effective
numerical procedure, and so on. Actually, the machine language of a modern com-
puter consists of sequences of numbers, codifying every state and procedure of the
machine. Thus, the operations of a computer can be described by an effective or
recursive numerical procedure.

If human thinking can be represented by a recursive function, then by Church’s
thesis it can be represented by a Turing program which can be computed by a univer-
sal Turing machine. Thus, human thinking could be simulated by a general purpose
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computer and, in this sense, Turing’s question must be answered with “yes”. The
premise that human thinking can be codified and represented by recursive proce-
dures is, of course, doubtful. Even processes of mathematical thinking can be more
complex than recursive functions. Recursiveness or Turing computability is only
a theoretical limit of computability according to Church’s thesis.

In the following we want to consider problems with a degree of complexity
both below and beyond this limit. Below this limit there are many practical prob-
lems concerning certain limitations on how much the speed of an algorithm can be
increased. Especially among mathematical problems there are some classes of prob-
lems that are intrinsically more difficult to solve algorithmically than others. Thus,
there are degrees of computability for Turing machines which are made precise in
complexity theory in computer science [5.12].

Complexity classes of problems (or corresponding functions) can be charac-
terized by complexity degrees, which give the order of functions describing the
computational time (or number of elementary computational steps) of algorithms
(or computational programs) depending on the length of their inputs. The length of
inputs may be measured by the number of decimal digits. According to the machine
language of a computer it is convenient to codify decimal numbers into their binary
codes with only binary numbers 0 and 1 and to define their length by the number of
binary digits. For instance, 3 has the binary code 11 with the length 2. A function f
has linear computational time if the computational time of f is not greater than c · n
for all inputs with length n and a constant c.

The addition of two (binary) numbers has obviously only linear computational time. For
instance, the task 3+7=10 corresponds to the binary calculation

0 1 1
1 1 1

1 0 1 0

which needs 5 elementary computational steps of adding two binary digits (including car-
rying). We remind the reader that the elementary steps of adding binary digits are 0+0=0,
0+1=1, 1+0=1, 1+1=10, and carry. It is convenient to assume that the two numbers which
should be added have equal length. Otherwise we simply start the shorter one with a series of
zeros, for instance 111 and 011 instead of 11. In general, if the length of the particular pair of
numbers which should be added is n, the length of a number is n

2 , and thus, we need no more
than n

2 + n
2 = n elementary steps of computation including carrying.

A function f has quadratic computational time if the computational time of f is
not greater than c · n2 for all inputs with length n and a constant c.

A simple example of quadratic computational time is the multiplication of two (binary)
numbers. For instance, the task 7 · 3 = 21 corresponds to the binary calculation:

1 1 1 · 0 1 1
0 0 0

1 1 1
1 1 1

1 0 1 0 1
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According to former conventions, we have n = 6. The number of elementary binary multi-

plications is n
2 · n

2 = n2

4 . Including carrying, the number of elementary binary additions is
n
2 · n

2 − n
2 = n2

4 − n
2 . In all, we get n2

4 + n2

4 − n
2 = n2

2 − n
2 , which is smaller than n2

2 .

A function f has polynomial computational time if the computational time of f
is not greater than c · nk, which is assumed to be the leading term of a polynomial
p(n). A function f has exponential computational time if the computational time of
f is not greater than c · 2p(n). Many practical and theoretical problems belong to the
complexity class P of all functions which can be computed by a deterministic Turing
machine in polynomial time.

In the history of mathematics, there have been some nice problems of graph
theory to illustrate the basic concepts of complexity theory [5.13]. In 1736, the fa-
mous mathematician Leonhard Euler (1707–1783) solved one of the first problems
of graph theory. In the city of Königsberg, the capital of eastern Prussia, the so-
called old and new river Pregel are joined in the river Pregel. In the 18th century,
there were seven bridges connecting the southern s, northern n, and eastern e regions
with the island i (Fig. 5.3a). Is there a route which crosses each bridge only once
and returns to the starting point?

Euler reduced the problem to graph theory. The regions n, s, i, e are replaced
by vertices of a graph, and the bridges between two regions by edges between the
corresponding vertices (Fig. 5.3b).

In the language of graph theory, Euler’s problem is whether for every vertex
there is a route (an “Euler circuit”) passing each edge exactly once, returning finally
to the starting point. For arbitrary graphs Euler proved that an Euler circuit exists
if and only if each vertex has an even number of edges (the “Euler condition”). As
the graph of Fig. 5.3b does not satisfy this condition, there cannot be a solution
of Euler’s problem in this case. In general, there is an algorithm testing an arbitrary
graph by Euler’s condition if it is an Euler circuit. The input of the algorithm consists
of the set V of all vertices 1, . . . , n and the set E of all edges, which is a subset of
the set with all pairs of vertices. The computational time of this algorithm depends
linearly on the size of the graph, which is defined by the sum of the numbers of
vertices and edges.

In 1859, the mathematician William Hamilton (1805–1865) introduced a rather
similar problem that is much more complicated than Euler’s problem. Hamilton

Fig. 5.3a,b. Euler’s Königsberg river problem (a). Graph of Euler’s river problem (b)
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Fig. 5.3c. Hamilton’s problem

considered an arbitrary graph, which means nothing else than a finite collection of
vertices, a certain number of pairs of which are connected together by edges. Hamil-
ton’s problem is whether there is a closed circuit (a “Hamilton circuit”) passing each
vertex (not each edge as in Euler’s problem) exactly once. Figure 5.3c shows a graph
with a Hamilton circuit passing the vertices in the order of numbering.

However, unlike the case of Euler’s problem, we do not know any condition
which exactly characterizes whether a graph contains a Hamilton circuit or not. We
only can define an algorithm testing whether an arbitrary graph contains a Hamilton
circuit or not. The algorithm tests all permutations of vertices to see if they form
a Hamiltonian circuit. As there are n! different permutations of n vertices, the al-
gorithm does not need more than c · n! steps with a constant c to find a solution.
It can easily be proved that an order of n! corresponds to an order of nn. Conse-
quently, an algorithm for the Hamilton problem needs exponential computational
time, while the Euler problem can be solved algorithmically in linear computational
time. Thus, Hamilton’s problem cannot practically be solved by a computer even for
small numbers n.

The main reason for a high computational time may be a large number of single
subcases which must be tested by a deterministic computer step by step. It is more
convenient to use a non-deterministic computer which is allowed to choose a com-
putational procedure at random among a finite number of possible ones instead of
performing them step by step in a serial way. Let us consider Hamilton’s problem
again. An input graph may have n vertices ν1, . . . , νn. A non-deterministic algorithm
chooses a certain order νi1 , . . . , νin of vertices in a non-deterministic, random way.
Then the algorithm tests whether this order forms a Hamilton circuit. The question
is whether for all numbers j (j = 1, . . . , n − 1) the successive vertices νij and νij+1

and the beginning and starting vertices νin and νi1 are connected by an edge. The
computational time of this non-deterministic algorithm depends linearly on the size
of the graph.

In general, NP means the complexity class of functions which can be computed
by a non-deterministic Turing machine in polynomial time. Hamilton’s problem is
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an example of an NP-problem. Another NP-problem is the “travelling salesman
problem”, which is rather like Hamilton’s problem except that the various edges
have numbers attached to them. One seeks that Hamilton circuit for which the sum
of the numbers, or more intuitively the distance travelled by the salesman, is a min-
imum.

By definition every P-problem is an NP-problem. But it is a crucial question of
complexity theory whether P = NP or, in other words, whether problems which are
solved by non-deterministic computers in polynomial time can also be solved by
a deterministic computer in polynomial time [5.14].

Hamilton’s problem and the travelling salesman problem are examples of so-
called NP-complete problems. This means that any other NP-problem can be con-
verted into it in polynomial time. Consequently, if an NP-complete problem is ac-
tually proved to be a P-problem (if for instance a deterministic algorithm can be
constructed to solve Hamilton’s problem in polynomial time), then it would follow
that all NP-problems are actually in P. Otherwise if P �= NP, then no NP-complete
problem can be solved with a deterministic algorithm in polynomial time.

Obviously, complexity theory delivers degrees for the algorithmic power of Tur-
ing machines or Turing-type computers. The theory has practical consequences for
scientific and industrial applications. But does it imply limitations for the human
mind? The fundamental questions of complexity theory (for example N = NP or
N �= NP) refer to the measurement of the speed, computational time, storage capac-
ity, and so on, of algorithms. It is another question how one sets out to find more or
less complex algorithms. This is the creative work of a computer scientist which is
not considered in the complexity theory of algorithms.

On the other hand, Gödel’s famous theorems are sometimes said to limit the
mathematical power of computers and the human mind. His incompleteness theo-
rem says that in every consistently axiomatized enlargement of formal number the-
ory there is a (closed) formula which is not decidable. Actually, his theorem states
that any adequate consistent arithmetical logic is incomplete in the sense that there
exist true statements about the integers that cannot be proved within such a logic.
Even if we enlarge our axiomatization by the undecidable formula, then there is
another formula which is not decidable in the enlarged formalism. Gödel’s result
showed that the formalistic search for a complete consistent arithmetical logic in
the tradition of Leibniz and Hilbert must fail [5.15].

Furthermore, Gödel proved that it is impossible to show that arithmetical logic,
which may be incomplete, is consistent by methods that could be represented in the
logic itself. Some years after Gödel’s famous result, Gerhard Gentzen (1909–1945)
proved the consistency of elementary number theory using so-called ε0-induction,
which is an infinitary extension of the usual arithmetical induction over natural num-
bers. But the consistency of Gentzen’s extended proof method is as open to doubt
as that of the system to be justified. In other words, the complexity of the justifying
method is no less than that of the system to be justified. So there are only rela-
tive consistency proofs using methods which have to be justified by methods which
have to be justified, and so on. For human thinking there is no absolute foundation
of self-consistency which can be delivered by formal algorithms.
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From Gödel we know that a consistent axiomatic system for arithmetic cannot
be complete [5.16]. But there could still be a decision procedure that would enable
us to decide if a given assertion is true or not. It was Turing who in 1936 proved that
there cannot be such a universal decision procedure, a claim made in the tradition of
Leibniz and Hilbert [5.17]. Turing’s argument is in some sense deeper than Gödel’s,
because he reduced Hilbert’s Entscheidungsproblem to the so-called halting prob-
lem, a basic problem of computabilty and algorithmic complexity: A universal deci-
sion procedure would be able to determine whether an arbitrary computer program
stops after finite steps. Turing proved that the halting problem is in principle unsolv-
able. Then, Gödel’s incompleteness is only a corollary of Turing’s proof.

Turing started his proof with the question, are real numbers computable? A real
number like π = 3. 1415926 . . . has an infinite number of digits that seem to be
randomly distributed behind the decimal point. Nevertheless, there are simple finite
programs for calculating the digits step by step with increasing precision ofπ . In this
sense, π is called a computable real number. In a first step, Turing constructed an un-
computable real number. Remember that a computer program of a Turing machine,
for example, consists of a finite list of symbols. Thus, it can be coded by a natural
number called the program number. Imagine a list of all possible computer pro-
grams that are ordered according to their increasing program numbers p1, p2, p3, . . ..
If a program computes a real number with an infinite number of digits behind the
decimal point (e.g., π), then they should be written down behind the corresponding
program number. Otherwise, there is a blank line in the list:

p1 −. d11d12d13d14d15d16d17 . . .
p2 −. d21d22d23d24d25d26d27 . . .
p3 −. d31d32d33d34d35d36d37 . . .
p4
p5 −. d51d52d53d54d55d56d57 . . .
...

Following Cantor’s diagonal procedure, Turing changed the underlined digits on the
diagonal of the list and put these changed digits together into a new number with
a decimal point in front:

−. �= d11 �= d22 �= d33 �= d44 �= d55 . . .

This new number cannot be in the list because it differs from the first digit of the first
number behind p1, the second digit of the second number behind p2, etc. Therefore,
it is an uncomputable real number. With this number Turing got the unsolvability
of the halting problem. If we could solve the halting problem, then we could decide
if the n-th computer program ever puts out an n-th digit behind the decimal point.
In this case, we could actually carry out Cantor’s diagonal procedure and compute
a real number, which, by its definition, has to differ from any computable real.

The unsolvability of the halting problem refutes Hilbert’s Entscheidungsprob-
lem. If there is a complete formal axiomatic system from which all mathematical
truth follows, then it would give us a procedure to decide if a computer program
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will ever halt. We just run through all the possible proofs until we either find a proof
that the program halts, or we find a proof that it never halts. So if Hilbert’s finite
set of axioms from which all mathematical truth should follow were possible, then
by running through all possible proofs while checking which ones are correct, we
would be able to decide if computer program halts. That is impossible using Turing’s
proof.

A formal axiomatic system has the great advantage of compressing a lot of
theorems into a set of a few axioms. Thus, it delivers a shorter description of math-
ematical truth. Even a physical theory can be understood as a shorter description
of many empirical data. In general, a formal theory can be considered a computer
program that calculates true theorems or data. The smaller the program is relative to
the output, the better the theory. Obviously, besides running time, the size of a com-
puter program is an important measure of computational complexity. As a program
is a finite list of symbols, its length can be measured by its number of symbols in
binary coding. For example, consider the following sequences of binary digits:

s1 = 111111111111111111
s2 = 010101010101010101
s3 = 011010001101110100

For s1 and s2, there are shorter descriptions or printing programs than the actual
output: “14 times 1” for s1 and “8 times 01” for s2. But for s3, there seems to be no
shorter description than the actual output itself. Gregory J. Chaitin and Andrej N.
Kolmogorov came up with the idea that the algorithmic complexity of a symbolic
s sequence should be defined by the length of the shortest computer program for
generating s (measured in bits) [5.18]. Algorithmic complexity is sometimes called
the algorithmic information content of a symbolic sequence, which is the subject
of the algorithmic information theory. As random sequences have no regularities,
they cannot be described by shorter programs. They are incompressible with an al-
gorithmic complexity equivalent to their length. But, again, we are confronted with
incompleteness and undecidability. The reason is that we can never decide if an in-
dividual string of digits satisfies this definition of randomness and incompressibility.
We can never calculate the program-size complexity, because, in general, it is not
decidable if a certain program is the shortest one. If we have a program generating
a sequence, its size is only an upper bound on the program-size complexity of the
sequence. But we can never prove lower bounds, which means a first incompleteness
result in algorithmic information theory.

In the theory of computational complexity, with respect to the running time of
programs, lower bounds are much harder than upper bounds. If we find a fast pro-
gram, we only get an upper bound on the calculating time. At least in some cases, it
can be proved that a certain program is the fastest possible one. But in algorithmic
information theory, we can never prove any lower bounds. Nevertheless, there are
some relativizing results. The program-size complexity of formal theories and pro-
grams can be related to programming languages in which they are written. Chaitin
preferred the AI-programming language LISP [5.19]. In LISP, a formal axiomatic
system with program-size complexity N cannot be used to prove that for any LISP-
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expression more than N + 356 characters long there is no smaller program with the
same output. So this formal axiomatic system can only prove that for many finite
expressions no smaller program has the same output. In principle, the randomness
of a formal sequence cannot be decided. But for practical applications we can at
least refer to standard procedures for detecting regularities in a sequence. If we are
not successful, a sequence is called random with respect to these algorithms.

5.3 Information, Probability, and 1/f -Complexity

Computational systems can be described as information processing machines. Al-
gorithmic information theory refers to the size of a computer program in order to
determine the algorithmic information content of a message. According to Shan-
non’s information theory [5.20], a message from a sender (e.g., phone, PC) is sent
to a recipient by coding the signs of the message into binary digits (“bits”), repre-
senting binary technical signals (e.g., electrical pulses), and decoding them when
the message arrives. Communication means the exchange of information. The in-
formation content of a symbol is the number of binary decisions leading to it. For
N symbols, there are N = 2I selecting procedures with I binary decisions, i.e.,
I = ld N bit. If the symbols si (1 ≤ i ≤ N) occur with different probabilities pi, then
their information content is I(si) = ld p−1

i = −ld pi bit. A more probable symbol
has less information content than an improbable one. In this sense, the information
content of a symbol can be considered a measure of news for the receiver.

The mean information content of a sender with symbols si is the expectation
value of the information contents I(si) of its symbols si, i.e., H = ∑

i piI(si) =
− ∑

i pild pi with
∑

i p1 = 1. The mean information content H can be considered
a measure of uncertainty for the probabilistic distribution of the symbols of a source
(Fig. 5.4). The reason being that in the case of the uniform distribution of probabili-

Fig. 5.4. Mean information content (information entropy) of a system with two symbols
(states) with p1 = p and p2 = 1 − p
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ties, the mean information content Hmax of a source is maximal, i.e., the uncertainty
of a symbol is maximal. For H = 0 is pi = 1, i.e., symbol si is determined by the
source.

Shannon’s concept of information is not only applicable to technology. In evo-
lution, chemical and biological information is molecularly coded and can be rec-
ognized (decoded) by appropriate molecules, cells, or organisms (molecular pattern
recognition). The genetic information of an organism is coded by the four chemi-
cal compounds adenine (A), cytosine (C), guanine (G) and uracil (U). With binary
coding A = 00, U = 11, G = 01, and C = 10, we get a genetic code in bits. Senso-
rial stimuli of the human organism are analogous signals (e.g., mechanical pressure
of skin or muscles, acoustic waves in the ear, electromagnetic waves of the retina,
chemical stimuli in the nose) which are received by sensorial cells, coded into digital
action potentials, and sent as binary codes (firing and non- firing of neurons) in the
central nervous system (CNS) to the brain. Specific nervous signals (neural infor-
mation) are decoded as sensorial perceptions, emotions, imaginations, or thoughts
by specific areas of the brain. A mechanical stimulus (e.g., stretch of a muscle) is
received by a sensorial cell as an analogous signal and transformed into digital ac-
tion potentials. The intensity of the stimulus is coded by the number of equal action
potentials. According to information theory, information can be reduced to bits, the
smallest units of binary states 0 and 1. According to quantum theory, elementary
particles (e.g., photons) have binary spin-states ↑ (up) and ↓ (down) that can be
superposed in coherent states, called quantum bits [5.21]. Thus, each state of matter
can be considered a kind of “condensed” quantum information.

Information storage and information flow in matter, life, and the brain depend
on the dynamics of complex systems. According to L. Boltzmann, entropy S is
a measure of the probable distribution of microstates of elements (e.g., molecules
of a gas) in a complex dynamical system, generating a macrostate (e.g., temperature
of a gas), i.e., S = kB ln W with kB Boltzmann-constant and W number of probable
distributions of microstates, generating a macrostate. According to the 2nd law of
thermodynamics, entropy is a measure of increasing disorder in isolated systems.
The reversible process is extremely improbable. In information theory, entropy can
be introduced as a measure of uncertainty of random variables. The information
entropy H(X) of random variable X is the expectation value of the probabilistic dis-
tribution of its values x, i.e., H(X) = − ∑

x p(x) log p(x). Thus, in thermodynamic
systems, H(X) is the expectation value of the probabilistic distribution of their mi-
crostates. For H(X) = 0, the process X is deterministic. For H(X) maximal, there is
uniform distribution with maximal uncertainty of x. Information entropy is consid-
ered a measure of uncertainty.

According to Shannon, further concepts of information can be introduced in order to
measure the information flow in a dynamical system. The joint entropy H(X, Y) of random
variables X and Y is the expectation value of the distribution of joint probabilities p(x, y) of
values x of X and y of Y . The conditional entropy H(Y | X) of X and Y is the average outcome
of the degree of uncertainty of Y over all concrete outcomes of X. The relative entropy or
cross-entropy is a measure of the difference (“distance”) between two distributions p(x) and
q(x). Mutual information I(X; Y) measures the statistical independence of random variables
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X and Y with associated probability distributions p(x) and p(y): If X and Y are independent,
then I(X; Y) = 0. Mutual information is a symmetric measure, because I(X; Y) = I(Y; X),
I(X; X) = H(X). Mutual information can be considered measure of correlations between X
and Y . When X is the input and Y is the output of a stochastic channel, then I(X; Y) is the
amount of information transmitted in the stochastic channel. There is a remarkable applica-
tion of mutual information in brain research: In a self-organizing learning process, the brain
responds to different stimuli with different clusters of synchronously firing neurons. Accord-
ing to Hebb’s theory (compare Sect. 4.2), these cell assemblies code the binding of single
features in a perceptual object. The reliability of discrimination between different stimuli and
different clusters is measured by the mutual information between the corresponding random
variables.

An information system produces a time series of N different symbols si (1 ≤
i ≤ N). Let β be a partition of the symbolic dynamics and pβi the probability of
observing symbols si of the partition β. The entropy of the symbolic sequence with
partition β is defined by Hβ = − ∑

i pβi log pβi . The flow of information Iβp measures
the predictability of a dynamical step p steps into the future, given the whole past of
n → ∞ steps, with Iβp = limn→∞ Iβ(n; p), where Iβ(n; p) is the mutual information
between a word of n subsequent symbols and the symbol that is p steps ahead [5.22].
Therefore, this concept of information flow is an extension of the Kolmogorov-
Sinai-entropy (Table 2.1, measuring the predictability only one step ahead [5.22]. It
follows 0 ≤ Iβ(n; p) ≤ Hβ , where the minimal value (0) corresponds to statistical
independence and the maximal value (Hβ) to perfect predictability. For a chaotic
time series, we have Iβ(n; p) > Iβ(n; p+1), which expresses the loss of information
in the prediction horizon (Fig. 5.5).

A dynamical system can be considered an information processing machine,
computing a present or future state as output from an initial past state of input. Thus,
the computational efforts to determine the states of a system characterize the com-
putational complexity of a dynamical system. The transition from regular to chaotic

Fig. 5.5. Information flow with loss of information in one step (p = 1) for a chaotic logistic
map xn+1 = 4xn(1 − xn) with n = 1, 2, 5, 10 and bipartition [5.23]
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systems corresponds to increasing computational problems, according to the compu-
tational degrees in the theory of computational complexity. In statistical mechanics,
the information flow of a dynamical system describes the intrinsic evolution of sta-
tistical correlations between its past and future states. The Kolmogorov-Sinai (KS)
entropy is an extremely useful concept in studying the loss of predictable informa-
tion in dynamical systems, according to the complexity degrees of their attractors
(Table 2.1). Actually, the KS-entropy yields a measure of the prediction uncertainty
of a future state provided the whole past is known (with finite precision).

In the case of fixed points and limit cycles, oscillating or quasi-oscillating be-
havior, there is no uncertainty or loss of information, and the prediction of a future
state can be computed from the past. In chaotic systems with sensitive dependence
on the initial states, there is a finite loss of information for predictions of the fu-
ture, according to the decay of correlations between the past states and the future
state of prediction. The finite degree of uncertainty of a predicted state increases
linearly to its number of steps in the future, given the entire past. But in the case of
noise, the KS-entropy becomes infinite, which means a complete loss of predicting
information corresponding to the decay of all correlations (i.e., statistical indepen-
dence) between the past and the noisy state of the future. The degree of uncertainty
becomes infinite.

The degree of complexity of noise can also be classified via Fourier analysis of
time series in signal theory. Early in the nineteenth century, the French mathemati-
cian Jean-Baptiste-Joseph Fourier (1768–1830) proved that any continuous signal
(time series) of finite duration can be represented as a superposition of overlapping
periodic oscillations of different frequencies and amplitudes. The frequency f is the

Fig. 5.6. Fourier analysis with two periodic signals and their superposition [5.24]
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reciprocal of the length of the period, which means the duration 1/f of a complete
cycle. This measures how many periodic cycles there are per unit time. Figure 5.6
shows a portion of two periodic signals (solid lines) with different oscillation ampli-
tudes. The smaller fluctuation has a period of 10 seconds, while the larger fluctuation
has a period of 20 seconds. The frequencies are therefore 0.10 and 0.05 cycles per
second, respectively. Their sum (dashed line) is superimposed on the two oscilla-
tions.

Each signal has a spectrum (Table 2.1), which is a measure of how much vari-
ability the signal exhibits in each of its periodic components. The spectrum is usu-
ally expressed as the square of the magnitude of the oscillations at each frequency.
This indicates the extent to which the magnitude of each periodic oscillation con-
tributes to the total signal. If the signal is periodic, with a period of 1/f , then its
spectrum is zero except at the isolated value f . In the case of a signal that is a finite
sum of periodic oscillations, the spectrum will exhibit a finite number of values at
the frequencies of the oscillations that comprise the signal. For example, the spec-
trum of the dashed curve in Fig. 5.6 consists of two isolated values at the frequencies
0.05 and 0.10.

The opposite of periodicity is a signal whose values are statistically indepen-
dent and uncorrelated. In signal theory, a distribution of independent and uncorre-
lated values is called white noise. It contains contributions from oscillations whose
amplitudes are uniform over a wide range of frequencies. In this case the spectrum
has a constant value, flat throughout the frequency range. The contributions of peri-
odic components cannot be distinguished. Examples of periodicity and white noise
are given by the sequences of binary digits in Sect. 5.2: the sequence 010101 . . . is
obviously an example of a periodic signal, while a random string gives white noise.

However, in nonlinear dynamics of complex systems we are mainly interested
in complex series of data that conform to neither of these extremes. They consist
of many superimposed oscillations at different frequencies and amplitudes, with
a spectrum that is approximately proportional to 1/f b for some b greater than zero.
In that case, the spectrum varies inversely with the frequency. Such signals are called
1/f noise. Figure 5.7 illustrates examples of signals with spectra from pink noise
(b = 1), red noise (b = 2), and black noise (b = 3). White noise is designated by
b = 0. The degree of irregularity in the signals decreases as b increases.

When b exceeds 2 the correlations become persistent, because upwards and
downwards trends tend to maintain themselves. A large excursion in one time inter-
val is likely to be followed by another large excursion in the next time interval of
the same length. The time series seem to have a long-term memory, which is some-
times called the “Joseph effect.” In Sect. 7.4, we will remind the reader of Joseph’s
biblical story of seven years of plenty followed by seven years of famine. When b
is less than 2 the correlations are antipersistent, in the sense that an upswing is now
likely to be quickly followed by a downturn, and vice versa. When b increases from
the antipersistent to the persistent case, the curves in Fig. 5.7 become less jagged.
In Sect. 7.4, the change from uniform and antipersistent to persistent behavior is
mathematically characterized by the Hurst parameter.



5.3 Information, Probability, and 1/f -Complexity 199

Fig. 5.7. Degrees of complexity of 1/f b noise, with white noise (b = 0), pink noise (b = 1),
red noise (b = 2), and black noise (b = 3) [5.25]

The spectrum gets progressively smaller as the frequency increases. Therefore,
large-amplitude fluctuations are associated with long-wavelength (low-frequency)
oscillations, and smaller fluctuations correspond to short-wavelength (high-fre-
quency) cycles. In nonlinear dynamics, pink noise with b roughly equal to 1 is
particular interesting, because it characterizes processes that lie between the reg-
ular order of black noise and the complete disorder of white noise. For pink noise,
the fraction of total variability in the data between two frequencies f1 < f2 equals
the percentage variability within the interval cf1 < cf2 for any positive constant c.
Therefore, there must be fewer large-magnitude fluctuations at lower frequencies
than there are small-magnitude oscillations at high frequencies. As the time series
increases in length, more and more low-frequency but high-magnitude events are
uncovered because cycles of longer periods are included. The longest cycles have
periods comparable to the duration of the sampled data. Like all fractal patterns,
small changes in signals are superimposed on larger ones with self-similarity at all
scales (compare the fluctuation of the information packet from the World Wide Web
in Fig. 8.16).

In electronics, 1/f spectra are known as flicker noise, since they differ from
the uniform sound of white noise due to the individual signals [5.26]. The high-
frequency occurrences are hardly noticed compared to the large-magnitude events.
One remarkable application of 1/f spectra involves its use in different kinds of mu-
sic. The fluctuations in loudness as well as the intervals between successive notes
in the music of Bach have a 1/f spectrum. In contrast to Bach’s pink noise mu-
sic, white noise music consists of successive uncorrelated values. The brain fails
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to find any pattern in a structureless and irritating sound. On the other hand, black
noise music seems too predictable and boring, because the persistent signals depend
strongly on previous values. Obviously, creating impressive music involves finding
a balance between order and disorder, regularity and surprise.

1/f spectra are typical of processes that organize themselves to a critical state
at which many small interactions can trigger the emergence of a new, unpredicted
phenomenon. Earthquakes, atmospheric turbulence, stock market fluctuations, and
physiological processes of organisms are typical examples. Self-organization, emer-
gence, chaos, fractality, and self-similarity are features of complex systems with
nonlinear dynamics [5.27]. The fact that 1/f spectra are measures of stochastic
noise again emphasizes the deep relationship between information theory and sys-
tems theory: any complex system can be considered to be an information processing
system. In the following section, distributions of correlated and unrelated signals are
analyzed according to the theory of probability. White noise is characterized by the
normal distribution of the Gaussian bell curve. Pink noise with a 1/f spectrum is
decidedly non-Gaussian. Its patterns are footprints of complex self-organizing sys-
tems.

5.4 Stochastic Processes, Probabilistic Attractors,
and Probabilistic Complexity

In complex systems, the behavior of a single element is often completely unknown
and therefore considered to be a random process. In this case, it is not necessary to
distinguish between chance that occurs because of some hidden order that may exist
and chance that is the result of blind lawlessness. A stochastic process is assumed
to be a succession of unpredictable events. Nevertheless, the whole process can be
characterized by laws and regularities, or in the words of A.N. Kolmogorov, the
founder of the modern theory of probability: “The epistemological value of prob-
ability theory is based on the fact that chance phenomena, considered collectively
and on a grand scale, create non-random regularity” [5.28]. When tossing a coin,
for example, heads and tails are each assigned a probability of 1/2 whenever the
coin appears to be balanced. This is because one expects that an outcome of heads
or tails is equally likely in each flip. Therefore, the average number of heads or tails
in a large number of tosses should be close to 1/2, according to the law of large
numbers. This is what Kolmogorov meant.

The outcomes of a stochastic process can also have different probabilities of
occurring. Binary outcomes are designated by probabilities of p and 1 − p. In the
simplest case of p = 1/2, there is no propensity for one outcome to occur more
than another, and the outcomes are said to be uniformly distributed. For instance,
the six faces of a balanced die are all equally likely to land face-up after a toss,
and so the probability of each face is 1/6. In this case, a random process is thought
of as a succession of independent and uniformly distributed outcomes. In order to
turn this intuition into a more precise statement, we consider coin tossing with two
possible outcomes, labeled zero or one. The number of ones in n trials is denoted by
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Fig. 5.8. The distributions of values of rn/n when (a) n = 15 and (b) n = 60 after 10 000
samples

rn, and the sample average rn/n represents the fraction of the total number of trials
n that result in ones. Then, according to the law of large numbers, the probability
that rn/n is within some fixed interval around 1/2 will tend to one as n increases
without bound.

In Fig. 5.8a, the distribution of values of rn/n for n = 15 obtained after 10 000
samples is plotted for a probability p = 1/2. Obviously, the values cluster about 1/2,
with a dispersion that appears roughly bell-shaped. The height of each rectangle
in the figure indicates the number of all sample averages that lie in the indicated
interval along the horizontal axis. Figure 5.8b shows the distribution of values of
rn/n for n = 60 for 10 000 samples with a probability p = 1/2. The distribution
of values also appears to follow a bell-shaped curve, but the curve is narrower than
for n = 15 and it has a higher peak. The bell-shaped Gaussian curve illustrates
Kolmogorov’s statement that regularity emerges when large ensembles of random
events are considered.

The same general bell shape appears for several games with different average
outcomes, like playing with coins, throwing dice, or dealing cards. Some bells are
squatter and some narrower, but each can be described as a Gaussian curve. In fact,
the values of just two curve parameters are required to differentiate each curve: the
mean or average error and the variance or standard deviation, which expresses how
widely the bell spreads.

Another example of a stochastic process is a random walk. A single walker may
perform a number of independent identically distributed steps. If n is the number of
steps performed and Δt the time interval required to perform one step, the position
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x(t) of the walker at time t = nΔt can be considered to be the sum Sn = x1 + . . .+xn

of n independent identically distributed random variables xi with 1 ≤ i ≤ n. For
a random walk, the variance of the stochastic process x(t) grows linearly with the
number of steps. Starting from a discrete random walk, a continuous limit can be
obtained by making the limit n → ∞ and Δt → 0 such that t = nΔt is finite.
The linear dependence of the variance on t is characteristic of a diffusive process,
known as a Wiener process. A random walk is only a Gaussian distribution for
n → ∞; the Gaussian shape is assumed asymptotically. The probability distribu-
tion (density) function P(Sn) depends on n and its shape changes with time. P(xi) is
arbitrary. Figure 5.9 shows four different probability distribution functions, where
(i) is a delta distribution, (ii) a uniform distribution, (iii) a Gaussian distribution, and
(iv) is a Cauchy distribution. When one of these distributions characterizes the ran-
dom variables xi, the probability distribution function P(Sn) changes as n increases
(Fig. 5.10).

From Fig. 5.10, the delta and uniform distributions behave in a different way to
the Gaussian and Cauchy distributions as n is increased. The function P(Sn) changes
both in scale and in functional form as n increases for the delta and the uniform
distributions, while the Gaussian and the Cauchy distributions do not change in
shape, only in scale; they become broader when n increases. When the functional
form of P(Sn) is the same as the functional form P(xi), the stochastic process is said
to be stable. Therefore, while Gaussian and Cauchy processes are stable, stochastic
processes generally are not stable.

As long as the random variables xi exhibit both independence and finite vari-
ance, the central limit theorem [5.31] holds: the distribution P(Sn) gradually con-
verges to the Gaussian shape as n increases. For example, in Fig. 5.11, the stochas-
tic process Sn is simulated under the assumption that xi is characterized by a uni-
form P(xi). Obviously, the distribution P(Sn) broadens when n increases. The con-
vergence to the Gaussian asymptotic distribution can be emphasized by plotting
the probability density function using scaled units with x̃ = x/n1/2 and P̃(x̃) =
P(x̃) n1/2. In this case, the distribution rapidly converges to the functional form of
a Gaussian of unit variance, which is a smooth curve for large n.

If the conditions (independence and finite variance of the random variables) are
not satisfied, other limit theorems must be considered. Studies of limit theorems
use the concept of the basin of attraction of a probability distribution. This concept
relates to the changes that occur in the functional form of P(Sn) as n changes. In
the case of independent identically distributed random variables xi, P(S1) coincides
with P(xi) and is characterized by the choices made when selecting the random
variables xi. As n increases, P(Sn) changes its functional form and assumes the
Gaussian functional form for an asymptotically large value of n if the conditions of
the central limit theorem are satisfied. All of the probability density functions define
a functional space. The Gaussian probability function is a fixed-point attractor for
stochastic processes in that functional space. The set of probability density functions
that fulfill the requirements of the central limit theorem (independence and finite
variance of random variables) constitutes the basin of attraction of the Gaussian
distribution.
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Fig. 5.9. Different probability density functions: (i) a delta distribution, (ii) a uniform distri-
bution, (iii) a Gaussian distribution, and (iv) a Cauchy distribution [5.29]

Fig. 5.10. P(Sn) for independent identically distributed random variables (n = 1, 2) for the
probability density functions shown in Fig. 5.9 [5.30]
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In that functional space, we can imagine how two stochastic processes Sn con-
verge to the Gaussian attractor (Fig. 5.12). Both stochastic processes are obtained
by summing n independent identically distributed random variables xi and yi. If the
two processes xi and yi differ in their probability density functions, they start from
different regions of the functional space. With increasing n, both probability density
functions P(Sn) become progressively closer to the Gaussian attractor PG(S∞). The
number of steps required to observe the convergence of P(Sn) to PG(S∞) reflects
the speed of convergence of the two approximations. The Gaussian attractor is the
most important attractor in this functional space, but other attractors also exist.

Gaussian and Cauchy distributions are examples of stable distributions. A sta-
ble distribution of the sum of n independent identically distributed random variables
is encountered when the distribution does not change its functional form for differ-
ent values of n. The French mathematician Paul Lévy (1886–1971) determined the

Fig. 5.11. Simulation of P(Sn) for n ranging from n = 1 to n = 50 for the case when P(x) is
uniformly distributed (top), and the same distribution in scaled units (bottom) [5.32]
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entire class of stable distributions [5.33]. In general, they are characterized by a pa-
rameter α(0 < α ≤ 2), with α = 2 for the Gaussian distribution and α = 1 for the
Cauchy distribution. In contrast to the Gaussian distribution, non-Gaussian (“Lévy”)
stable stochastic processes with α < 2 have infinite variance. Their asymptotic be-
havior is characterized by distributions of the form PL(x) ∼ x−(1+α) that show
power-law behavior for large values of x. Unlike the smooth Gaussian bell curve,
their (“fat”) tails indicate fluctuations with a leptokurtic shape. Thus, they do not
have a characteristic scale, but they can be rescaled with self-similarity. Just like
the Gaussian distribution, non-Gaussian stable distributions can be attractors in the
functional space of probability density functions. There is a limit theorem which
states that the probability density function P(Sn) of a sum Sn of n independent iden-
tically distributed random variables xi converges, in probability, to a stable Lévy dis-
tribution PL(x) provided that certain conditions on the probability density function
of the random variable xi are upheld. P(Sn) belongs to the attraction basin of PL(x).

The functional space of probability density functions is characterized by the
continuous parameter α with 0 < α ≤ 2. Therefore, there are an infinite number
of attractors that comprise the set of all stable distributions. Figure 5.12 illustrates
several such attractors with the convergence of some stochastic processes. Attrac-
tors classify the functional space of probability density functions into regions with
different complexities. The complexity of the stochastic process is different for the
Gaussian attractor and stable non-Gaussian attractors. In the Gaussian basin of at-
traction, finite-variance random variables are present. However, in the basins of at-
traction of stable non-Gaussian distributions, random variables with infinite variance
can be found. Therefore, distributions with power-law tails are present in the stable
non-Gaussian basins of attraction.

Fig. 5.12. Convergence (in probability) to some of the stable attractors of the sum of inde-
pendent identically distributed random variables. The black circle is the Gaussian attractor
PG(S∞) with α = 2, and the black squares are the Lévy-stable non-Gaussian attractors char-
acterized by different values of α < 2 [5.34]
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Power-law distributions and infinite variance indicate highly complex stochas-
tic behavior [5.35]. Stochastic processes with infinite variance, although well-
defined mathematically, are extremely difficult to use and, moreover, raise funda-
mental questions when applied to real systems. In the closed physical systems of
equilibrium statistical mechanics, variance is often related to the system temper-
ature. In this case, infinite variance implies an infinite or undefined temperature.
Nevertheless, power-law distributions are used to describe open systems. They are
assuming increasing importance in descriptions of, for example, complex economic
and physiological systems. Actually, a power-law distribution was first introduced in
economics, as Pareto’s law of incomes. Turbulence in complex financial markets is
also characterized by power-law distributions with fat tails. In financial systems, in-
finite variance would complicate the important task of risk estimation (see Sect. 7.4).

5.5 Quantum Information, Quantum Computers,
and Quantum Complexity

In general, dynamical systems can be represented by computational models with
different degrees of complexity. Computational models permit information about
present or future states to be computed from initial conditions using the correspond-
ing dynamical equations. However, in the case of deterministic systems, the com-
putability is limited by the degree of algorithmic complexity (Sect. 5.2). The com-
putability of stochastic systems is limited by probabilistic measures (Sects. 5.3–5.4).
In any case, computational models of complex dynamical systems are not always
computable. With these limitations in mind, dynamical systems can still be thought
of as computers that sometimes cannot deliver results in a reasonable time. How far
can we go with this assumption? Is the world a complex computer in the sense of
Leibniz, with the corrections and limitations of modern algorithmic and probabilis-
tic theories?

Obviously, a Turing machine can be interpreted in the framework of classical
physics (Fig. 5.13). Such a computing machine is a physical system, the dynamical
evolution of which takes it from one of a set of input states to one of a set of output
states. The states are labeled such that they form a series. The machine is initialized
to a state with a given input value and then, following some deterministic evolution,
the output state is measured. For a classical deterministic system, the measured out-
put label is a definite function f of the input label. In principle, the value of that
label can be measured by an outside observer, and the machine is said to compute
the function f . But classical stochastic computing machines do not compute func-
tions in the above sense. The output state of a stochastic machine is random; the
output corresponds to a probability distribution depending on the input state.

From a modern physical point of view, quantum systems are the fundamental
dynamical systems of nature. In that case, the output state of a quantum machine, al-
though fully determined by the input state, is not an observable and so in general the
observer cannot discover its label. Why is this? We must now recall some basic con-
cepts of quantum mechanics, which were introduced in Sect. 2.3. In quantum me-
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Classical deterministic machine:
INPUT → OUTPUT

classical observable deterministic evolution classical observable

Classical stochastic computing machine:
INPUT → OUTPUT

classical observable stochastic evolution classical observable

Quantum computing machine:
INPUT → OUTPUT

quantum observable deterministic evolution quantum observable

Fig. 5.13. Classical and nonclassical computing machines

chanics, vectors like momentum or position must be replaced by operators satisfying
a non-commutative relation depending on Planck’s quantum (Fig. 2.18). Classical
systems described by a Hamiltonian function are replaced by quantum systems, for
instance, electrons or photons described by a Hamiltonian operator. States of a quan-
tum system are described by vectors of a Hilbert space spanned by the eigenvectors
of its Hamiltonian operator. The causal dynamics of quantum states is determined
by a partial differential equation called the Schrödinger equation. While classical
observables commute and always have definite values, non-classical oberservables
of quantum systems do not commute and in general have no common eigenvector
and consequently no definite eigenvalues. For observables in a quantum state only
statistical expectation values can be calculated.

A major difference from classical mechanics is given by the superposition prin-
ciple demonstrating the linearity of quantum mechanics. In an entangled pure quan-
tum state of superposition an observable can only have indefinite eigenvalues. In
short, the superposition or linearity principle of quantum mechanics delivers cor-
related (“entangled”) states of combined systems which are highly confirmed by
the EPR experiments (Alain Aspect 1981). Philosophically, the (quantum) whole is
more than the sum of its parts.

The superposition principle has severe consequences for the measurement of quantum
systems. In the quantum formalism a quantum system and a measuring apparatus are repre-
sented by two Hilbert spaces which are combined in a tensor product H = H1 ⊗ H2. In the
initial state φ(0) of measurement at time 0 the systems H1 and H2 are prepared in two sepa-
rated statesψ and ϕ respectively, with φ(0) = ψ⊗ϕ. The causal development of both systems
is determined by the Schrödinger equation, i.e., φ(t) = U(t)φ(0) with the unitary operator
U(t). Because of the linearity of U(t), the state φ(t) is entangled with indefinite eigenvalues
while the measuring apparatus at time t shows definite measurement values. Thus, the linear
quantum dynamics cannot explain the measurement process.

In a more popular way the measurement process is illustrated by Schrödinger’s
thought experiment of a cat in a linear superposition of the two states “dead” and
“alive” (Fig. 5.14a). Imagine a cat which is locked in a closed box with a sample
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Fig. 5.14a. Schrödinger’s cat

of radium. The radium is chosen in such a way that during one hour a single decay
takes place with a probability 1:2. If a decay happens, then an electrical circuit is
closed, causing a mechanism with a hammer to destroy a bottle of prussic acid and
thus killing the cat. The box remains closed for one hour [5.36].

According to quantum mechanics the two possible states of the cat, dead and
alive, remain undetermined until the observer decides them by opening the box.
For the cat’s state in the closed box, quantum mechanics as interpreted by Erwin
Schrödinger forecasts a correlated (“entangled”) state of superposition, i.e., the cat
is both dead and alive with equal parts. According to the measurement process, the
states “dead” and “alive” are interpreted as measurement indicators representing the
states “decayed” or “not decayed” of the radium.

In the Copenhagen interpretation of Bohr, Heisenberg, and others, the mea-
surement process is explained by the so-called “collapse of the wave-packet”, i.e.,
splitting up of the superposition state into two separated states of measurement appa-
ratus and measured quantum system with definite eigenvalues. Obviously, we must
distinguish the linear dynamics of quantum systems from the nonlinear act of mea-
surement. The reason for nonlinearity in the world is sometimes explained as the
emergence of human consciousness.

Eugene Wigner (1961) suggested that the linearity of Schrödinger’s equation
might fail for conscious observers, and be replaced by some nonlinear proce-
dure, according to which either one or the other alternative would be resolved out
(Fig. 5.14b). But Wigner’s interpretation forces us to believe that the complex quan-
tum linear superpositions would be resolved into separated parts only in those cor-
ners of the universe where human-like consciousness emerges. In the macroscopic
world of billiard balls, planets, or galaxies, EPR correlations are not measured, and
appear only in the microscopic world of elementary particles like photons. It seems
to be rather strange that the separated states of systems in the macroscopic world
which can be described in classical physics with definite measurement values are
caused by human-like consciousness.
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The Everett “many-worlds” interpretation of quantum mechanics seems to
avoid the problems of nonlinear reductions by splitting up human consciousness into
branching paths inhabiting different, mutually incompatible worlds (Fig. 5.14c).

In the measurement process the dynamics of measurement instrument and quantum sys-
tem is described by the equation φ(t) = ∑

i
ci(t)ψi ⊗ ϕi with states (ϕi) referring to the

measurement values of the measuring instrument. Everett argues that the state vector φ(t)
never splits up into partial states, but all branches ψi ⊗ ϕi are actualized. The state φ(t) de-
scribes a manifold of simultaneously existing real worlds with ψi ⊗ ϕi corresponding to the
state of the i-th parallel world. Thus, the measured partial system is never in a pure state. In
Everett’s sense, ψn may be interpreted as a relative state depending on the state of an observer
or measuring instrument with ψn = c−1

n (ϕn,φ)H2 . If ϕn are accepted as memory states, then
an observer with a definite memory can only be aware of his own branch of the world ψn⊗ϕn.
But he can never observe the other partial worlds.

The advantage of Everett’s interpretation is that a nonlinear reduction of su-
perposition does not need to be explained. But the disadvantage is his ontological
belief in myriads of worlds which are unobservable in principle. Thus, Everett’s
interpretation (if mathematically consistent) needs Ockham’s razor.

In the history of science, anthropic or teleological arguments often showed that
there were gaps or failures of explanation in science. Thus, some scientists, such as
Roger Penrose, suppose that the linear dynamics of quantum mechanics is inconve-
nient (Einstein said it was “incomplete”) for explaining cosmic evolution with the
emergence of consciousness. He argues that a unified theory of linear quantum me-
chanics and nonlinear general relativity could at least explain the separated states
of macroscopic systems in the world without reference to anthropic or teleological
principles. In Penrose’s proposed unified theory a linear superposition of a physical
system splits into separated states when the system is large enough for the effects
of relativistic gravitation. Penrose calculates a level of one graviton as the smallest
unit of curvature for such an effect [5.37]. The idea is that the level should lie com-
fortably between the quantum level of atoms, molecules, etc., with linear laws of
quantum mechanics and the classical level of everyday experiences. The advantage
of Penrose’s argument is that the linearity of the quantum world and the nonlinearity
of the macroscopic world would be explained by a unified physical theory without

Fig. 5.14b. Wigner’s interpretation of Schrödinger’s cat
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Fig. 5.14c. Everett’s interpretation of Schrödinger’s cat

reference to any human intervention. But, of course, we are still missing a testable
unified theory (compare Sect. 2.4).

Concerning the human brain, we want to argue that the quantum level of ele-
mentary particles, atoms, and molecules was necessary for its evolution, but not the
other way that mental states of the brain are necessary for the reduction of corre-
lated states in physics. Actually, there is a significant number of neurons sensitive
to single quanta with their superpositions and reductions of entangled states. But,
of course, these quantum states cannot be identified with mental states of the brain.
We have no consciousness either of superpositions or of their separation into single
states initiated by nonlinear random events. Nevertheless, quantum effects are in-
volved in the emergence and interaction of mental states of the brain in a way which
is still far from being satisfactorily understood.

Nevertheless, the question arises of whether quantum mechanics delivers
a framework for the evolution of the human brain, or at least for a new computer
technology to replace classical computing systems. The basic idea of quantum me-
chanics is the superposition of quantum states as a result of linear quantum dynam-
ics and the reduction of superpositions by some kind of measurement [5.38]. Thus,
a quantum computer would need a quantum version of a logic gate, where the out-
put would be the results of some unitary operator applied to the input and a final
act of measurement. The superposition of quantum systems (for instance photons)
reminds us of the parallelism of computations. A quantum computer would become
useful if we were interested in some suitable combination of many computational
results and not in their partial details. In this case a quantum computer could de-
liver the superposition of perhaps myriads of parallel computations in a rather short
time, overcoming the efficiency of classical computing systems. But quantum com-
puters would still work in an algorithmic way, because their linear dynamics would
be deterministic. The non-deterministic aspect comes in via the nonlinear act of
measurement. Thus, it cannot be expected that quantum computers will perform
non-algorithmic operations beyond the power of a Turing machine. So quantum
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computers (if they are ever built) may be more interesting for complexity theory
and for overcoming practical constraints of computation.

Quantum computers open new avenues of information processing, computa-
tion, and communication. An essential feature of the quantum world is the superpo-
sition of quantum states and the possibility of entangled states. If the binary informa-
tion units 0 and 1 are considered to be the alternative states of a computing machine,
then quantum physics allows a third state of quantum superposition. Bits that per-
mit such a state are called quantum bits or “qubits.” The laws of quantum mechanics
have enormous practical consequences for computing [5.39]. If, for example, two
partial subproblems of a problem are to be solved, then a classical computer must
solve them step by step in a sequential way. For a quantum computer, both sub-
problems can be superposed and processed simultaneously. Since it is analogous to
using parallel computers containing several processors, the information processing
of superposed quantum information is called quantum parallelism. Consider a com-
puter that must find an integer with a certain property. A classical computer counts
the integers 1, 2, 3, . . . and tests, step by step, whether a number satisfies the de-
manded property. If the number n sought is very large, then the property must be
tested n times, which involves considerable computational time. A quantum com-
puter could test the property for a large number of test numbers simultaneously in
one step. Decimal numbers are represented by sequences of binary digits. In quan-
tum computers, a bit corresponds to an alternative quantum state. One example is
the spin of an elementary particle, which can adopt states of 0 and 1. In this case,
a bit sequence represents a sequence of spin states. For seven particles, for exam-
ple, there are 27 potential combinations, such as 0000000 (for decimal number 0),
0000001 (for decimal number 1), 0000010 (for decimal number 2), etc., including
every number between 0 and 127.

In a classical computer, the binary numbers 0000000, 0000001, 0000010, . . .
must be tested sequentially. In a quantum computer, the spin states are changed
using an appropriate energetic impulse. When the impulse is too weak, the par-
ticle only has a particular probability of changing its spin state. In analogy to
Schrödinger’s cat, which is simultaneously dead and alive in a closed box, an el-
ementary particle is in a superposed state of alternative spin states as long as it
is not measured or observed. If every particle receives a weak impulse, then all
seven particles enter superposed states as long as they are not observed or mea-
sured. In this superposition, all 128 different states and all corresponding numbers
can be simultaneously represented and tested in one computational step. However,
it is a technical challenge to maintain a superposed state during a calculation. The
reason for this is that tiny perturbations and interactions with the environment can
lead to the collapse of a superposition or coherent state. This phenomenon is called
the decoherence problem in quantum computing.

The registers of a classical computer store classical yes(1)/no(0) bits. In a quan-
tum computer, the registers contain quantum systems whose states can be entangled.
The gates of a classical computer are the elementary logical operations, such as the
NOT gate, which transforms a 0 into a 1 and a 1 into a 0, or the AND gate, which
transforms a pair of 1 bits (11) into another 1, but any other pair combination (01,
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10, and 00) into a 0 – corresponding to the logic that the whole proposition is only
true if both of its partial propositions are true. An OR proposition is only true if at
least one partial proposition is true. Therefore, an OR gate transforms all pairs (01,
10 and 11) into a 1 except for a 00 pair, which it converts into a 0. All of the other
logical connections can be reduced to these types of gates. A classical program is
a sequence of gate operations that can be illustrated in a logical network.

The input of a classical computer is a sequence of bits, either 0 or 1. The input of
a quantum computer is an initialized group of registers. Sometimes it is a superpo-
sition of bit states in the registers. The output is uniquely determined in a classical
computer. A quantum computer can generate a superposition of bit states. In this
case, one of the two superposed values 0 and 1 is determined by measurement. Dur-
ing the measurement, the superposition jumps to state 0 or 1 according to the laws of
quantum mechanics. Therefore, this different type of processing can give different
results. Only probabilities of results can be forecast. Quantum registers differ from
classical registers due to the additional possibility of superpositions. In quantum
mechanics, superpositions are transformed by unitary operators, but they cannot be
realized by classical gates. Unitary operators are reversible, due to the time sym-
metry of quantum laws. Classical gates are largely irreversible. For example, the
classical OR gate delivers the value 1 in three different cases, and the AND gate
delivers the value 0 in three different cases; in such cases it is not possible to derive
the input directly from the output. However, reversibility can be ensured if the gate
“remembers” the input and generates it along with the computed result. The com-
putation of function f with input x and output f (x) is replaced by the transformation
of the input x into the output (x, f (x)). In Fig. 5.15, the input and output are des-
ignated as quantum mechanical state vectors. In the following diagrams, quantum
states are distinguished from classical states by using straight lines for classical and
wavy lines for quantum states.

Classical information can be transferred between senders and receivers realized
using different physical, chemical, or biological systems. But problems arise if they
are miniaturized to the quantum scale. In the quantum world, a sender corresponds
to an initial quantum system, while a receiver corresponds to a measurement M (see
Fig. 5.16). Quantum systems (e.g., elementary particles) that evolve from an ini-
tial state to a measurement transfer quantum information. The individual result of
a quantum transfer is random, because in quantum mechanics only statistical state-
ments about future events are possible. If the same experiment is repeated different
results may be obtained, but – as in the case of coin tossing – with a reproducible
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Fig. 5.15. Reversible computation of quantum gates
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frequency. Statistical frequencies can be used for probabilistic forecasts. Figure 5.16
illustrates the statistical transfer of quantum information.

Therefore, quantum information depends on the statistical laws of quantum
mechanics. It is a new type of information that cannot be translated into classi-
cal information without loss. Why is this? Figure 5.17 illustrates the translation of
quantum information into classical information and vice versa. A measurement M
of a quantum system (e.g., an elementary particle) containing certain quantum in-
formation (the first wavy line) is obtained. This measurement yields classical in-
formation (straight line) which is passed to a receiver P and used to prepare a new
quantum system (wavy line). The fact that it is impossible to fully translate quantum
information into classical information results from another statement of impossibil-
ity, the no-cloning theorem, according to which no quantum information can be
copied. An impossible quantum-copying machine is illustrated in Fig. 5.18. This is
a device that takes one quantum system as input and produces two systems of the
same type as output. The two copies should be indistinguishable from the input in
a statistical sense. If such a machine is not possible, important consequences follow:
data cannot be secured by copying it, as done in classical computers. Further, it is
not possible to read data in a quantum database without changing them. However,
the fact that quantum copying machines are impossible would also prevent secret
attacks on quantum data, because such attacks would change the quantum informa-
tion.

The impossibility of quantum copying machines derives from Heisenberg’s un-
certainty relation, which states that pairs of quantities, such as the location and en-
ergy of a quantum particle, cannot be determined simultaneously with certainty.

Let us assume, for the sake of argument, that it was possible to construct a quan-
tum copying machine. Then, two copies of a quantum particle could be produced
in order to measure the energy of one copy and the location of the other, both with
certainty. Due to the impossibility of a quantum copying machine, we can imme-
diately see that classical teleportation is impossible. If classical teleportation was

P M

Fig. 5.16. The statistical transfer of quantum information

PM
Measurement                                                     Preparation

Fig. 5.17. Classical translation of quantum information into classical information and vice
versa [5.40]
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possible we could easily construct a quantum copying machine: if we used classi-
cal teleportation in Fig. 5.17, the transferred classical information could be copied
with a classical computer. These copies could be transferred to the receivers P and
P′ (Fig. 5.19) in order to prepare new quantum particles. The system of Fig. 5.19
would perform the task of a quantum copying machine in Fig. 5.18.

Quantum information is not only associated with the impossibility of classical
teleportation, but also with the possibility of quantum teleportation. In science fic-
tion movies, teleportation means the almost instantaneous transfer of objects across
large distances. In order to do this, it is assumed that information (software) about
the atomic structure of an object can be separated from its material substance (hard-
ware); this information is then “beamed” to the desired location, where it is used
to “rebuild” the object. However, this assumption ignores the fact that the quantum
world adheres to the uncertainty principle, which states that at any particular instant,
it is not possible to measure all of the properties of elementary particles precisely.
Quantum information can only be transported without changing it if it is not mea-
sured or observed during the information transfer.

An amazing approach to instantaneous quantum teleportation can be realized
via entangled quantum states. According to EPR (Einstein–Podolsky–Rosen) exper-
iments, pairs of elementary particles (e.g., photons) that are emitted from a central
source in opposite directions remain correlated in the superposition of an entan-
gled quantum state. If one of two entangled quantum properties is measured at the

C

Fig. 5.18. Scheme of a “quantum copying machine”
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Fig. 5.19. Quantum copying machine utilizing classical teleportation [5.41]
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Fig. 5.20. Quantum teleportation

location of one particle, then the value of the other quantum property is instantly de-
termined at the location of the other particle, which has traveled the same distance
in the opposite direction. In Fig. 5.20, the sender of quantum information is called
Alice, while the receiver is called Bob. The teleported quantum particle is desig-
nated 1 (the wavy line). To achieve teleportation, Alice and Bob use an EPR source
that generates entangled pairs of quantum particles. An entangled pair of particles
consists of particle 2 (for Alice) and particle 3 (for Bob). Alice and Bob do not know
the individual states of the particles, but they do know that the pairs are correlated:
we assume they are in alternative and opposite states, like the “dead” and “alive”
states of Schrödinger’s cat in Fig. 5.14a. Alice does not know the teleported state of
particle 1 or the state of particle 2. For the teleportation, particle 1 is entangled with
particle 2.

In an EPR experiment, a quantum particle (e.g., a photon) can have alternative
quantum states, such as vertical or horizontal polarization. In quantum mechanics,
a quantum state ψ is represented by a vector |ψ〉. While classical bit values are 0
and 1, the alternative quantum bit (qubit) values are |0〉 and |1〉, which can be entan-
gled. In the case of entanglement, a quantum system simultaneously transports the
qubit value |0〉 with a certain probability and the qubit value |0〉 with the remaining
probability. The qubit only takes a value of |0〉 or |1〉 (at random) when the quantum
system is measured [5.42].

Alice prepares an entangled pair of particles, particle 1 (which she wishes to
teleport) and particle 2. Entangled pairs can be obtained for pairs of qubits when 0
and 1 occur with the same probability for each qubit. Based on the combinatorial
possibilities of the classical bit pairs 00, 01, 10, and 11, there are four possible entan-
gled states (Bell states) for pairs of qubits in this scenario [5.43]. Alice determines
that her pair of particles 1 and 2 is in one of these four possible entangled states (at
random) without measuring their states. For example, she determines the particular
entangled Bell state where both qubits are in opposite orientations. However, we
assumed that the entangled pair 2 and 3 (Bob’s particle) of the EPR source are also
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in opposite orientations. It follows therefore that Bob’s particle (3) must be in the
same state as Alice’s teleported particle (1). Therefore, classical measurement of the
teleported particle gives the value of the qubit for Bob’s particle. In this sense, it is
possible to instantaneously teleport quantum information between the sender Alice
and the receiver Bob.

Instantaneous quantum teleportation is also possible if another entangled Bell
state is randomly determined by Alice. The sequentially chained correlations of
particles 1, 2, and 3 in Fig. 5.20 allow Bob to adjust the qubit value of his particle
appropriately, by reversing the direction of the photon for instance. Bob and Alice
know the EPR-entanglement of particles 2 and 3. Thus, Bob’s manipulation only de-
pends upon the entangled state of particles 1 and 2. The correlation between particle
1 and 2 is sent from Alice to Bob as classical information, by phone for example
(Fig. 5.20). However, unlike instantaneous quantum teleportation, this classical in-
formation cannot be transferred at velocities faster than that of light.

The disadvantage of quantum teleportation is the fact that the transported quan-
tum information is unknown until it is determined randomly by measurement.
Therefore, quantum teleportation cannot be used for direct information transfer.
Thus, there is no conflict with Einstein’s theory of relativity and his postulate on the
maximum velocity of signals. However, so long as quantum information is not mea-
sured or observed, it can be transferred instantaneously via entanglement. Quantum
entanglement makes quantum parallelism and thus increased computational velocity
possible. Reducing computational time through massive quantum parallelism also
means reducing computational complexity.

Quantum computing does not only lead to the exponential growth of compu-
tational capacity and a reduction in computational complexity. Any form of matter
stores quantum information. Therefore, any elementary particle is a processor of
quantum information. The computational rules of these processors are symmetric
due to the principles of quantum symmetry. Any computational step is also re-
versible due to the quantum symmetry of time (microreversibility) [5.44]. Phase
transitions of matter are quantum information processing. The universe is an ex-
panding quantum computer that produces quantum information. Furthermore, it is
an immense database that conserves all quantum information via symmetry. We
must not forget that the concept of a computing machine is not restricted to human
technology with symbolic data dynamics. Symbols are only used to represent states
of dynamical systems for human purposes. Information processing does not depend
on human purposes and interests. Human knowledge only relates to a tiny part of
the information in the world. In principle, quantum information does not depend
on the presence of an observer or measurement process. Observing and measuring
quantum systems is only a special example of an interaction of a quantum system
with another system.

Quantum computers are quantum systems, and quantum information corre-
sponds to quantum states. If quantum systems are considered to be quantum com-
puters, then the whole universe is a quantum computer, a concept analogous to that
of Leibniz for classical mechanics. But in contrast to Leibniz, the quantum random-
ness of the universe is an integral part of this system. Looking deeper, conflicts with
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Einstein’s deterministic view of the world arise. According to Einstein’s theory of
general relativity, black holes with extremely strong curvatures of space–time are
possible, which attract and swallow all forms of matter and light. The center of
a black hole is a point singularity without return. Does it also destroy information
about the architecture and structure of the material systems swallowed? Does the
black hole of an imploding star erase the information about this part of the uni-
verse? Are black holes irreversible “memory holes” in space–time that increase in
number as the universe ages, just as Alzheimer’s disease leads to decay and loss of
information in the human brain?

According to the laws of quantum physics, quantum information must remain
constant. The wavefunction of a quantum system contains all of the information on
its state. The time-dependent development of a quantum state is determined by a uni-
tary transformation, which allows the initial state of the system to be reconstructed
from its end state without loss. Thus, no quantum information is lost in quantum
physics. But according to Einstein’s theory of relativity, information is definitely
lost in the point singularity of a black hole. This conflict between quantum and rel-
ativistic physics is called the paradox of quantum information. Hawking suggested
that the quantum vacuum around a black hole should be considered. According to
Heisenberg’s uncertainty relation, this vacuum is not completely “empty” but is ac-
tually filled with quantum fluctuations that cause the spontaneous creation of pairs
of particles and antiparticles that are annihilated after very small periods of time.
However, some of the particles fall into the black hole while their partners escape
from the black hole as thermal radiation (known as Hawking radiation). In Hawk-
ing’s model, however, the escaping particles are completely independent of their
swallowed partners. Thus, no information can escape from the center of the black
hole in order to save the quantum information from being erased.

A potential solution to this problem is obtained by assuming entangled quan-
tum states. In the Horowitz–Maldacena–model [5.45], the pairs of particles are en-
tangled. Therefore, an escaping particle does not only transports mass but also in-
formation. It is entangled with its partner, which falls into the black hole. Thus,
information about the swallowed matter can be “beamed” from inside to outside of
the black hole by quantum teleportation. The quantum world does not forget any-
thing. Only the Einsteinian deterministic model of the universe suffers from cosmic
Alzheimer’s disease.

5.6 Cellular Automata, Chaos, and Randomness

The dynamics of life and brain have been a challenge of traditional computer science
and artificial intelligence. It is obvious that algorithmic mechanization with Turing-
like machines confront severe obstacles which cannot be overcome by growing ca-
pacities of classical or quantum computers. For example, pattern recognition and
other complex tasks of human perception cannot be mastered by program-controlled
computers. The structure of the human brain seems to be completely different.
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In the history of science, the brain was illustrated by technical models of the
most advanced machinery [5.46]. Thus, during the age of mechanization, the brain
functions were thought of as hydraulic pressures which are conducted along the
nerves to operate on the muscles. With the beginning of electrical technology, the
brain was compared with telegraphs or telephone switchboards. Since the develop-
ment of computers, the brain has been identified with the most advanced hardware
generations. In the last chapter, we saw that even quantum computers (if they are
ever constructed) could not increase their power beyond the complexity of Turing-
like algorithms.

Unlike program-controlled serial computers, the human brain and mind are
characterized by contradictions, incompleteness, robustness, and resistance to noise,
but also by chaotic states, dependence on sensitive initial conditions, and last but not
least by learning processes. These features are well known in the complex system
approach. Concerning the architecture of Turing-like and complex systems, an es-
sential limitation derives from the sequential and centralized control of classical sys-
tems, but complex dynamical systems are intrinsically parallel and self-organized.

Nevertheless, historically, the first designs for neural network computers were
still influenced by Turing’s concept of a machine. In their famous paper “A logical
calculus of the ideas immanent in nervous activity” (1943), McCulloch and Pitts
offered a complex model of neurons as threshold logic units with excitatory and
inhibitory synapses, which applied concepts of the mathematical logic of Russell,
Hilbert, Carnap, and others, and the Turing machine. A McCulloch–Pitts neuron
fires an impulse y along its axon at time n + 1 if the weighted sum of its inputs
x1, . . . , xm and weights w1, . . . , wm at time n exceeds the threshold Θ of the neuron
(Fig. 5.21a) [5.47].

Particular applications of McCulloch–Pitts neurons are the following models of logical
connections: the OR-gate (Fig. 5.21b) models the logical disjunction x1 OR x2 of sentences
x1 and x2 (formally, x1 ∨ x2) which is only false if x1 and x2 are false sentences, and true
otherwise. The truth-values are binarily represented by 0 for “false” and 1 for “true”. For
threshold Θ = 1 and weights w1 = 1 and w2 = 1, the OR-gate fires with w1x1 + w2x2 ≥ Θ

so long as x1 or x2 or both x1 and x2 are 1.
The AND-gate (Fig. 5.21c) models the logical conjunction x1 AND x2 (formally, x1∧x2)

which is only true if x1 and x2 are true sentences, and false otherwise. For the thresholdΘ = 2
and weights w1 = 1 and w2 = 1, the AND-gate fires with w1x1 + w2x2 ≥ Θ only if both x1
and x2 are 1.

The NOT-gate (Fig. 5.21d) models the logical negation NOT x1 (formally, ¬x1) which
is only true if x1 is false, and false otherwise. For threshold Θ = 0 and weight w1 = −1 the
NOT-gate fires w1x1 ≥ Θ only if x1 is 0. Thus, if x1 is 1, then the NOT-gate does not fire,
which means that the ouput y = ¬x1 = 0.

A neural net à la McCulloch–Pitts is a system of McCulloch–Pitts neurons,
interconnected by splitting the output of each neuron into lines and connecting some
of these to the inputs of other neurons (Fig. 5.22). Although this concept of a system
may be very simplified, any “classical” von-Neumann computer can be simulated
by a network of such neurons. In 1945, John von Neumann wrote a draft report
which has become famous as the first place where the idea of a stored program,
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which resided in the computer’s memory along with the data it was to operate on,
was clearly stated. This historic document shows that von Neumann was completely
aware of the possibility of computation by a McCulloch–Pitts network.

Mathematically, a von-Neumann computer can be conceived as a finite automa-
ton, consisting of a finite set X of inputs, a finite set Y of outputs and a finite set Q
of states. The dynamics of a finite automaton is defined by a next-state function δ,
transforming the state q and input x at time t into a state δ(q, x) at the following time
t + 1, and an output function β, connecting a state q with an output β(q).

The components of a von-Neumann computer, such as an input-output unit,
a store, a logical control unit, and an arithmetic unit, can easily be shown to be
finite automata. Even a modern digital computer which is made up of a network of
thousands of elements and integrated onto chips can be understood as a McCulloch–
Pitts-like neural network. In general, every register machine, Turing machine, or
recursive function can be simulated by an appropriate network of finite automata.
But these applications of McCulloch–Pitts networks still work in the framework of
program-controlled serial computers.

It was again John von Neumann who first tried to extend Turing’s concept of
a universal computer to the idea of a self-reproducing automaton [5.48]. He noted
that a machine building other machines decreased its complexity, because it seems to
be impossible to use more material than is given by the building machine. Contrary
to this traditional mechanistic view, living organisms in biological evolution seem
to be at least as complex as their parents, with increasing complexity in the long run
of evolution (Herbert Spencer).

Von Neumann’s concept of cellular automata gave the first hints of mathemati-
cal models of living organisms conceived as self-reproducing networks of cells. The
state space is a homogeneous lattice which is divided into equal cells like a chess
board. An elementary cellular automaton is a cell which can have different states, for
instance “occupied” (by a mark), “free”, or “colored”. An aggregation of elemen-
tary automata is called a composite automaton or configuration. Each automaton is
characterized by its environment, i.e., the neighboring cells. The dynamics of the

Fig. 5.21a–d. McCulloch-Pitts neuron (a), OR-gate (b), AND-gate (c), NOT-gate (d) [5.34]
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Fig. 5.22. McCulloch-Pitts network

automata is determined by synchronous transformation rules. Von Neumann proved
that the typical feature of living systems, their tendency to reproduce themselves,
can be simulated by an automaton with 200 000 cells (in the plane), where each
cell has 29 possible states and the four orthogonal neighboring cells as environ-
ment [5.49].

This idea was developed by John Conway, whose cellular automata can simu-
late growth, change, and death of populations of living systems. A simple example
is defined by the following synchronous rules for cells with two possible states “oc-
cupied” (by a mark) or “free”:

1) Rule of survival: An occupied cell with 2 or 3 occupied neighboring cells re-
mains unchanged.

2) Rule of death: A cell loses its mark if it either has more than 3 neighboring cells
(“overpopulation”) or has less than 2 neighboring cells (“isolation”).

3) Rule of birth: If an empty cell has exactly 3 occupied neighboring cells, then it
gets a mark.

Figure 5.23a illustrates the “death” of a configuration in the third generation
and Fig. 5.23b shows “survival” after the second generation. Conway’s theory has
some more surprising results, which were discovered via computer experiments.

Cellular automata are not only nice computer games. They have turned out
to be discrete and quantized models of complex systems with nonlinear differen-
tial equations describing their evolution dynamics. Imagine a chessboard-like plane
with cells, again. A state of a one-dimensional cellular automaton consists of a finite
string of cells, each of which can take one of two states (“black” (0) or “white” (1))
and is connected only to its two nearest neighbors, with which it exchanges infor-
mation about its state. The following (later) states of a one-dimensional automaton
are the following strings on the space-time plane, each of which consists of cells
taking one of two states, depending on their preceding (earlier) states and the states
of their two nearest neighbors. Figure 5.24b–e illustrates the time evolution of four
automata in 60 time steps. Thus, the dynamics of an one-dimensional cellular au-
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Fig. 5.23a,b. Conway’s cellular automata modeling “death” (a) and “survival” (b)

tomaton is determined by a Boolean function of three variables, each of which can
take either the value 0 or 1 [5.50].

For three variables and two values, there are 23 = 8 possibilities for three
nearest neighbor sites. In Fig. 5.24a, they are ordered according to the corresponding
three-digit binary number. For each of the three nearest neighbor sites, there must
be a rule determining the following state of the middle cell. For eight sequences and
two possible states, there are 28 = 256 possible combinations. One of these rule
combinations, determining the dynamics of a one-dimensional cellular automaton,
is shown in Fig. 5.24a.

Each rule is characterized by the eight-digit binary number of the states which
each cell of the following string can take. These binary numbers can be ordered by
their corresponding decimal numbers.

The time evolution of these simple rules, characterizing the dynamics of a 1-
dimensional cellular automaton, produces very different cellular patterns, starting
from simple or random initial conditions. According to Stephen Wolfram, computer
experiments give rise to the following classes of attractors the cellular patterns of
evolution are aiming at. After a few steps, systems of class 1 reach a homogeneous
state of equilibrium independently of the initial conditions. This final state of equi-
librium is visualized by a totally white plane and corresponds to a fixed point as
attractor (Fig. 5.24b).

Systems of class 2, after a few time steps, show a constant or periodic pattern
of evolution which is relatively independent of the initial conditions. Specific posi-
tions of the pattern may depend on the initial conditions, but not the global pattern
structure itself (Fig. 5.24c).

In a 3rd class, cellular automata produce patterns that seem to spread ran-
domly and irregularly over a grid (Fig. 5.24d), while in a 4th class, evolutionary
patterns with ocassional quasi-organic and locally complex structures can be ob-
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Fig. 5.24a. Dynamics of 1-dimensional cellular automata

Fig. 5.24b–e. Attractors of 1-dimensional cellular automata

served (Fig. 5.24e). Contrary to 1st and 2nd class automata, patterns in the 3rd and
4th class sensibly depend on their initial conditions. Obviously, these four classes
of cellular automata model attractor behavior of nonlinear complex systems, a fact
well-known from self-organizing processes. They remind us of the familiar classi-
fications of materials into solids, liquids, and gases, or living organisms, such as
plants and animals. In general, the cellular automata approach confirms the intu-
itive idea that complex systems lie somewhere between regular order (like ice crys-
tals and Buckminsterfullerens) and complete irregularity or noise (like molecules in
a heated gas). Organisms and brains are highly complex, but neither is completely
ordered nor completely random and disordered [5.51].

Obviously, these four classes of cellular automata model the attractor behavior
of nonlinear complex systems which is well known from self-organizing processes.
In the preceding chapters, we have seen many examples in the evolution of matter,
life, and mind–brain. In Chaps. 7 and 8, we will consider many analogies with the
evolution of human societies. In general, self-organization has been understood as
a phase transition in a complex system. Macroscopic patterns arise from complex
nonlinear interactions of microscopic elements. There are different final patterns of
phase transitions corresponding to mathematically different attractors.

In Fig. 2.24a–e, a survey was given of the different attractors of a stream, the
velocity of which is accelerated step by step. These patterns of the stream have many
analogies with corresponding evolution patterns of cellular automata. At a first level,
the stream reaches a homogeneous state of equilibrium (“fixed point”). At a higher
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velocity, the bifurcation of two or more vortices can be observed corresponding to
periodic and quasi-periodic attractors. Finally, the order decays into deterministic
chaos as a fractal attractor of complex systems. Classes 3 and 4 of the cellular au-
tomata are extremely interesting for modeling processes. Class 3 delivers evolution
patterns which seem to be irregular, random, and noisy. Class 4 shows evolution
patterns of dissipative systems with sometimes quasi-organic forms which can be
observed in the evolution of organisms and populations.

From the information point of view, there are basic differences in the informa-
tion processing of each class of automata. As pattern formation of 1st class automata
is completely independent of initial patterns, the information about intial condi-
tions is rapidly forgotten. The final uniform pattern of equilibrium shows no trace of
them. In the oscillating patterns of 2nd class automata, some information about ini-
tial conditions is retained, but only in localized substructures. The global oscillating
behavior is independent of initial conditions. 3rd class automata are highly sensitive
to tiny changes in initial conditions. Thus, they show long-range communication
of information. Any local change in pattern formation is communicated globally to
the most distant parts, according to the butterfly effect. In 4th class automata, long-
range communication of information is possible, but is sometimes restricted to the
localized structures of their patterns. Another aspect of information processing is
the loss of predictable information, or the degree of prediction uncertainty in each
class of cellular automata measured by the Kolmogorov–Sinai-entropy. In the case
of 1st and 2nd class automata, the final states with uniform or oscillating patterns
are well-known and predictable from past states without loss of information. In the
case of 3rd and 4th class automata, the prediction of random patterns has an infinite
degree of uncertainty, while in the case of chaotic structures, predictions of a future
state can be computed from past states with a finite degree of uncertainty.

Predictions of future development are easy for cellular automata of the first two
classes. In the 1st class, cellular automata always evolve after finite steps to a uni-
form pattern of rest, which is repeated for all further steps in the sense of a fixed
point attractor. As they preserve no information about the arrangement of cells on
earlier steps, the evolution is irreversible: We have no chance to go backwards and
reconstruct the initial conditions from which the automata actually started. In the
2nd class, the development of repeated patterns is obviously reversible for all fu-
ture developments. It preserves sufficient information to allow one to go backwards
or forwards from any particular step. In random patterns of the 3rd class, all cor-
relations have decayed, and, therefore, the evolution is irreversible. For localized
complex structures of the 4th class, we perhaps have a chance to recognize strange
or chaotic attractors, which are highly complex and correlated patterns, contrary to
the complete loss of structure in the case of randomness.

Of the 256 simplest 1-dimensional cellular automata with nearest neighbors
and binary cellular states (or two colors), only six have reversible behavior. They
only generate simple repetitive changes in the initial conditions. In these cases, it is
always possible to reproduce the configurations of all previous steps, starting from
any given configuration. In other words, it is possible to interchange the past and
future. If we increase the number of cellular states to three, instead of two, colors, we
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Fig. 5.25. Rule of the reversible cellular automaton 122R

get 33 = 27 possibilities for three nearest neighbor sites and the gigantic number of
327 = 7. 625. 597. 484. 9871-dimensional cellular automata. Among them, there are
1800 reversible automata, so starting from any configuration of cells, it is possible to
generate the configurations of all previous steps. But some of these 1800 reversible
1-dimensional automata no longer only deduce simple repetitive transformations
of initial conditions, but show complex, scrambled patterns. Thus, reversible micro
rules can generate complex macro behavior.

For example, we can construct reversible rules that remain the same even when
turned upside-down. Therefore, the rules of a 1-dimensional cellular automaton are
affected by the dependence on colors two steps back. In Fig. 5.25, we take the ele-
mentary rule 122 of the 256 simplest 1-dimensional automata with nearest neighbors
and binary cellular states (or two colors). We add the restriction that the new state
(colour) of a cell should be inverted if the the cell is black (1) two steps back. With
knowledge of not one but two successive steps, it is always possible to determine
the cellular configurations of future or past steps.

The reversibility and irreversibility of temporal development are important top-
ics in natural science. All fundamental laws of classical, relativistic, and quantum
physics are reversible: They are invariant with respect to the two possible directions
of time, t or −t. Our everyday experience seems to support an irreversible develop-
ment with one direction of time. According to the 2nd law of thermodynamics, in-
creasing disorder and randomness (“entropy”) is generated from simple and ordered
initial conditions of closed dynamical systems (compare Sect. 3.2). Irreversibility is
highly probable inspite of the microreversibility of molecular laws. Some cellular
automata with reversible rules generate patterns of increasing randomness, starting
from simple and ordered initial conditions. In Fig. 5.26, the reversible cellular au-
tomaton of rule 122R can start from an initial condition in which all black cells or
particles lie in a completely ordered pattern at the center of a box. Running down-
wards, the distribution seems to become more and more random and irreversible, in
accordance with the 2nd law.

In principle, reversibility is possible, analogous to Poincaré’s famous theorem
of reversibility in statistical mechanics, but extremely improbable. By starting with
a simple state and tracing the actual evolution, one can find initial conditions that
will lead toward to decreasing randomness (Fig. 5.26). But for cellular automata, the
computational amount to go backwards and find these conditions cannot be reduced
to the actual evolution from simple to random patterns: Computational irreducibility
corresponds to temporal irreducibility and improbability. Thus, in computer experi-
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Fig. 5.26. Reversible cellular automaton with random pattern formation illustrating the 2nd
law of thermodynamics [5.52]

ments with cellular automata, we get a computational equivalence of the 2nd law of
thermodynamics.

Different increasingly complex and random patterns can be generated by the
same simple rules of cellular automata with different initial conditions. In many
cases, there is no finite program to forecast the development of complex and ran-
dom patterns. The algorithmic complexity (compare Sect. 5.2) is incompressible due
to its computational irreducibility. In this case, the question of how the system will
behave in the future is undecidable, because there can be no finite computation that
will decide it. Obviously, computational irreducibility is connected to Turing’s fun-
damental problem of undecidability. Whether a pattern of a cellular automaton ever
dies out can be considered analogous to the halting problem of Turing machines.

Computational irreducibility means that there is no finite method of predicting
how a system will behave except by going through nearly all the steps of actual
development. In the history of science, one assumes that the precise knowledge of
laws allows for precise forecasting of the future. Even in the case of chaos theory,
there are methods of time series analysis (compare Sect. 2.6) that determine, at least,
future trends and attractors of behavior. But in the case of randomness, there is no
shortcut to the actual evolution. Stephen Wolfram supposes that the sciences of com-
plexity are basically characterized by computational irreducibility [5.53]. Even if we
know all the laws of behavior on the micro level, we cannot predict the development
of a random system on the macro level. The brain, as a complex system, is deter-
mined by simple synaptic rules (e.g., Hebb’s rule) on the micro level of neurons that
are more or less well- known. Nevertheless, there is no chance of computing pattern
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formation of neural cell assemblies in all its details. In a philosophical sense, com-
putational irreducibility seems to support personal individuality: Our personal life
is influenced by many unexpected and random events. The pattern of our way of life
is highly nonlinear, complex, and random. Thus, there is no shortcut to predicting
life: If we want to experience our life, we have to live it.

From a methodological point of view, a 1-dimensional cellular automaton deliv-
ers a discrete and quantized model of the phase portrait which describes the dynami-
cal behavior of a complex system with a nonlinear differential equation of evolution,
depending on one space variable. There are many reasons for restricting oneself to
discrete models. The complexity of nonlinear systems is often too great to calculate
numerical approximations within a reasonable computation time. In that case, com-
puter experiments with discrete models give, at least, a rough idea and feeling of
what is going on, similar to laboratory experiments.

Two-dimensional cellular automata which have been used in Conway’s game of
Life can be interpreted as discrete models of complex systems with nonlinear evolu-
tion, depending on two space variables. Obviously, cellular automata are a very flex-
ible and effective modeling instrument when the complexity of nonlinear systems is
increasing and the possibility of determining their behavior by solving differential
equations or even by calculating numerical approximations becomes more and more
hopeless.



6 Complex Systems and the Evolution
of Artificial Life and Intelligence

All kinds of complex dynamical systems can be modeled by computational sys-
tems. Therefore, the natural evolution of life and intelligence could become an im-
portant paradigm for computational models. They are no longer restricted to sym-
bolic knowledge representation and artificial intelligence (AI) (Sect. 6.1). Their con-
cepts are inspired by the successful technical applications of nonlinear dynamics to
solid-state physics, spin-glass physics, chemical parallel computers, optical paral-
lel computers, laser systems, and the human brain (Sect. 6.2). The cellular neural
network (CNN) model has recently become an influential paradigm in complexity
research and is currently being realized in information and chip technology. CNNs
have resulted in a breakthrough in analog neural computing for visual computing
and pattern formation. A CNN is a highly complex computational system, because
it consists of a massively parallel focal-plane array with the computational power
of a supercomputer (Sect. 6.3). Like the universal Turing machine model for digital
computers, there is a universal CNN machine for modeling analog neural comput-
ers. CNNs are used not only for pattern recognition, but to simulate various types
of pattern formation. The degree of dynamic complexity is found through empirical
observations in computer experiments, and it is also rigorously defined via mathe-
matical methods (Sect. 6.4). Exciting applications of artificial neural networks al-
ready exist in the fields of organic computing, neurobionics, medicine, and robotics
(Sect. 6.5). Natural life and intelligence depends decisively on the evolution of or-
ganisms and brains. Therefore, embodied life and mind lead to embodied artificial
intelligence and embodied artificial life of embodied robotics (Sect. 6.6).

6.1 Turing and Symbolic Artificial Intelligence

Symbolic knowledge representation, which is currently used in database applica-
tions, artificial intelligence, software engineering, and many other disciplines of
computer science, has its roots in logic and philosophy. Aristotle (384–322 B.C.)
developed logic as a precise approach to reasoning in the search for knowledge. Syl-
logisms were introduced as formal patterns that represent special forms of logical
deduction. According to Aristotle, the subject of ontology is the study of categories
of things that exist or may exist in some domain.

More recently, Descartes considered the human brain to be a store of knowl-
edge. Recognition was made possible by an isomorphic correspondence between
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internal geometrical representations (ideae) and external situations and events. Leib-
niz was deeply influenced by these traditions. His mathesis universalis required
a universal formal language (lingua universalis) that could be used to represent
human thinking in calculation procedures which would then be implemented in me-
chanical calculating machines. An ars iudicandi would permit every problem to be
solved by an algorithm after representating it in numerical symbols, and an ars in-
veniendi would enable users to seek out and enumerate desired data and solutions
to problems. In the age of mechanics, knowledge representation was reduced to
mechanical calculation procedures.

In the twentieth century, computational cognitivism arose along with Turing’s
theory of computability. In his functionalism, the hardware of a computer is related
to the wetware of the human brain. The mind is considered to be the software of
a computer. Turing argued that if a human mind is computable, it can be represented
by a Turing program (Church’s thesis), which can be computed by a universal Tur-
ing machine, i.e., technically by a general-purpose computer. Even people that do
not believe in Turing’s strong AI thesis often claim that classical computational
cognitivism holds as follows. Computational processes operate on symbolic repre-
sentations that refer to situations in the outside world (Fig. 6.1). These formal repre-
sentations should obey Tarski’s correspondence theory of truth, as described below.
Imagine a real-world situation X1 (e.g., some boxes on a table) which is encoded
by a symbolic representation R1=encode(X1) (i.e., a description of the boxes on the
table). If the symbolic representation R1 is decoded, then we get the real world sit-
uation X1 as its meaning, i.e., we decode(R1)=X1. A real-world operation T (e.g.,

Fig. 6.1. Symbolic representation of real-world situations [6.1]
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a manipulation of the boxes on the table by hand) should produce the same real-
world result X2, whether it is performed in the real world or simply on the symbolic
representation: decode(encode(T)(encode(X1)))=T(X1)=X2. Thus, there is an iso-
morphism between the outside situation and its formal representation in Cartesian
tradition. As the symbolic operations are completely determined by algorithms, the
real-world processes are assumed to be completely controlled. Therefore, classical
robotics operate with completely determined control mechanisms.

Symbolic knowledge representation and problem solving have become key
concepts in the development of Artificial Intelligence (AI). The first period of AI
(1957–1962) was dominated by questions of heuristic programming, which means
the automated search for human problem solutions in trees of possible derivations,
controlled and evaluated by heuristics [6.2]. An example was the “Logical Theo-
rist” (1957) of Newell, Shaw, and Simon, which delivered proofs for the first 38
theorems of Russell and Whitehead’s Principia Mathematica. Its heuristics were
extracted from the rules of thumb used by several persons in psychological tests.

In 1962 these simulative procedures were generalized and enlarged for the so-
called “General Problem Solver” (GPS), which was assumed to be the heuristic
framework of human problem solving. But GPS could only solve some insignificant
problems in a formalized micro-world. Another example of heuristic programming
was the search for winning strategies in games (chess, checkers). The first programs
of pattern recognition (for instance lexical and syntactical lists of words and sym-
bols) were based on statistical methods. But in the long run the euphoric belief
in general cognitive simulation procedures was not justified by any program of this
early period. At least its metaphysics inspired the invention of McCarthy’s program-
ming language LISP, which was introduced as a functional programming language
for the comfortable processing of symbolic lists and which has become the most
powerful programming language for knowledge based systems today.

After the failure of general methods, the AI researchers propagated ad hoc
procedures of “semantic information processing”. The second period of AI (1963–
1967) was characterized by the development of specialized programs like STU-
DENT for solving simple algebraic problems, ANALOGY for pattern recognition
of analogical objects, and so on. Marvin Minsky, who was the leading figure at the
MIT during this period, gave up the claim of psychological simulation: “The current
approach”, he said, “is characterized by ad hoc solutions of cleverly chosen prob-
lems which give the illusion of complex intellectual activity.” For the first time it
was underlined that successful practical programming depends on special knowl-
edge, which became the central idea of knowledge based systems later on.

The search for general principles of problem solving still survived in theoretical
computer science: J.A. Robinson introduced the so-called resolution principle based
on the calculus of predicate logic and Herbrand’s completeness theorem permitted
the finding of proofs by logical refutation procedures.

The drive to practical and specialized programming in AI was accelerated dur-
ing the third period (1967–1972). It was characterized by the construction of spe-
cialized systems, methods for representation of knowledge, and interest in natural
languages. J. Moses, who invented the successful MACSYMA program for mathe-
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matical applications, described the change of paradigms in AI: “In fact, 1967 is the
turning point in my mind when there was enough feeling that the old ideas of gen-
eral principles had to go . . . I came up with an argument for what I call the primacy
of expertise.”

Another famous example of this period is the DENDRAL program, which uses
the specialized knowledge of a chemist in mass spectroscopy in order to find struc-
tural formulas for molecules. A paradigmatic example of this period became the
SHRDLU program for a robot who could manipulate a mini-world of different
blocks. The system could understand and answer questions in English concerning
the block-world, carry out orders for manipulating the block-world, divide orders
into a series of operations, understand what is done and why, and describe its ac-
tions in English.

In the fourth period (1972–1977), description, organization, and processing of
knowledge became the central paradigm combining engineering and the philosophy
of AI. Mitchell Feigenbaum introduced the term “knowledge engineering” for the
development of so-called expert systems. An example was the MYCIN program for
medical diagnosis, which simulates a physician with special medical knowledge of
bacterial infections.

A new method of knowledge representation was the conception of frames by
Marvin Minsky. A new programming language for symbolic knowledge processing
was PROLOG (“Programming in Logic”), which can be compared with LISP.

The fifth period of AI (1977–1986) is, so to say, “normal” in the sense of
Thomas Kuhn, meaning the paradigm of expert systems is worked out and commer-
cialized. Tools are developed in order to build new expert systems like automobiles
in mass production. AI is emerging from the laboratory and philosopher’s study and
is becoming the key technology of a world wide knowledge industry.

In the following, emphasis is put on expert systems, because they seem to be of
most interest for philosophical questions [6.3]. An expert system is a computer pro-
gram that has built into it the knowledge and capability that will allow it to operate
at an expert’s level (for instance DENDRAL in chemistry, MYCIN in medicine).
The reasoning of a human expert is illustrated in Fig. 6.2.

Some expert systems can even explain why they rejected certain paths of rea-
soning and chose others. Designers work hard to achieve this because they under-
stand that the ultimate use of an expert system will depend upon its credibility to its
users, and its credibility will rise if its behavior is transparent and explainable.

But unlike that of human beings, the knowledge of an expert system is restricted
to a specialized information base without generalized and structuralized knowledge
of the world. Therefore, expert systems have an intermediate function between the
conventional programs of numerical computers and human beings (Fig. 6.3).

The architecture of an expert system consists of the following components:
knowledge base, problem solving component (interference system), explanation
component, knowledge acquisition and dialogue component. Their coordination is
demonstrated in Fig. 6.4 [6.4].

Knowledge is the key factor in the performance of an expert system. The knowl-
edge is of two types. The first type is the facts of the domain that are written in
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Fig. 6.2. Reasoning of a human expert

Fig. 6.3. Expert systems between numerical computers and humans

textbooks and journals in the field. Equally important to the practice of a field is the
second type of knowledge, called heuristic knowledge, which is the knowledge of
good practice and judgement in a field. It is experimental knowledge, the art of good
guessing that a human expert acquires over years of work.

By the way, knowledge bases are not the same as data bases. The data base
of a physician, for instance, is the patient’s record, including patient history, mea-
surements of vital signs, drugs given, and response to drugs. These data must be
interpreted via the physician’s medical knowledge for purposes of continuing diag-
nosis and therapy planning. The knowledge base is what the physician learned in
his medical education and in the years of internship, residency, specialization, and
practice. It consists of facts, prejudices, beliefs, and heuristic knowledge.
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Fig. 6.4. Architecture of an expert system

The heuristic knowledge is hardest to get at because experts rarely have the
self-awareness to recognize what it is. Therefore knowledge engineers with inter-
disciplinary training have to acquire the expert’s rules, to represent them in pro-
gramming language, and to put them into a working program. This component of an
expert system is called knowledge acquisition. Its central function in the knowledge
processing of an expert system is illustrated in Fig. 6.5.

The most important methods of knowledge representation are production sys-
tems, logic, frames, and semantical networks. In addition to knowledge, an expert
system needs an inference procedure, a method of reasoning used to understand and
act upon the combination of knowledge and problem data. Such procedures are in-
dependent of the special knowledge base and are founded upon different philosoph-
ical methodologies, which will be analyzed for several examples of expert systems
later on.

The explanation component of expert systems has the task of explaining the
steps of the procedure to the user. The question “how” aims at the explanation of
facts or assertions which are derived by the system. The question “when” demands
the reasons for the questions or orders of a system.

The dialogue component handles the communication of expert system and user.
A natural-language processor could, of course, increase acceptance even for un-
trained users.

From a technological point of view the limits of expert systems are obvious.
First is the problem of knowledge representation. How shall the knowledge of a do-
main of work be represented as data structures in the memory of the computer and
accessed for problem solving? Second is the problem of knowledge utilization. How
should the inference engine be designed? Third is the question of knowledge acqui-
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Fig. 6.5. Knowledge processing in an expert system

sition. How is it possible to acquire the knowledge so important for problem solving
automatically so that the computer eases the transfer of expertise from humans to
the symbolic data structures?

The last and most important problem of expert systems is philosophical. How
should the specialized knowledge base of an expert system be combined with the
generalized and structuralized background knowledge of the world which influences
the decisions and actions of a human expert?

Thus, when deciding on an operation, a physician will also take into consid-
eration non-objective impressions he has concerning the patient’s living conditions
(family, job, etc.) and his attitude towards life. Especially in fundamental questions
of life and death, for example in connection with the present dispute over the dig-
nity of dying, the whole attitude and horizon of a physician flows into his decisions
in a manner that cannot be codified, although legislation seeks to lay down general
standards of behavior. In expert systems of law, for example, the same aspect could
be shown. Despite all consistent systems of norms a judge will in the end find a for-
mal scope for possible decisions where he will orient towards his personal outlook
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on life and the world. This invasion into subjectivity should not be complained of as
a lack of objectivity, but should be taken as a chance for a more humane medicine
and jurisdiction. With that, however, it is not excluded that in the future computer
science should aim at an expansion of knowledge based expert systems, which are
nowadays still very specialized. Yet essential limits are evident, resulting from the
nature of expert systems.

Expert systems are technological realizations of problem solving procedures.
Therefore the factually existing expert systems can be classified by the special pro-
lems which they are intended to solve. Figure 6.6 illustrates the most important
problem classes of expert systems.

A well analyzed problem class concerns “diagnosis”, for instance in medicine.
The input of such an expert system consists of measurement data, symptoms, etc,
and it delivers patterns recognized in the data regularities as output. Another prob-
lem class concerns “design”. The problem is how to find a product which conforms
to some constraint. The solution of a planning problem demands a sequence of ac-
tions which transform an initial state into a goal state. A simulation problem starts
with the initial state of a model, the following states of which must be calculated
and evaluated [6.5].

The problem-solving strategies are inferred by production rules which must
be chosen by a so-called rule interpreter. If several rules are applicable, a conflict-
solving strategy decides which rule is appropriate. The possible rules can be ordered,
for instance, by degrees of priority or generality. Then it may be suitable to choose
the rule with the highest degree of priority or specificity.

The combination of rules in an inference can be realized by so-called forward
and backward chaining. Forward chaining starts with given data and facts A and
applies the deduction machinery until the given goal D is deduced (Fig. 6.7).

In contrast to the data-driven forward chaining method, the backward chaining
method is goal-directed, which means that it starts with the given goal and tries

Fig. 6.6. Problem classes of expert systems



6.1 Turing and Symbolic Artificial Intelligence 235

Fig. 6.7. Problem solving strategies

to find the premises of rules which make the goal deducible. Therefore a premise
A must be found which is “true” or realizable (Fig. 6.7).

From a methodological point of view, the forward and backward chaining pro-
cedures of expert systems are nothing more than the well known methods of the
antique logician and philosopher Pappos for finding necessary or sufficient reasons
for affirmations. It is not surprising that nearly all inference strategies of expert sys-
tems are founded upon well known philosophical methodologies.

Nowadays, most of the philosophical theories used in AI are not taken from the
philosophical literature directly, but that does not make them any less interesting
philosophically. Nevertheless, some authors of famous expert systems were influ-
enced directly by philosophers [6.6].

To see that AI is philosophical logic and methodology, one need only consider
some expert systems in detail. Their problem class determines which strategy is suit-
able for problem solving. In general, a strategy aims at a reduction of the problem’s
complexity.

The task that the DENDRAL program addresses is the determination of molec-
ular structure from data consisting of the molecular formula of a compound, and the
mass spectrum of the compound [6.7]. The output is an ordered list of more or less
probable structural formulas. Its strategy of problem solving is called “Generate-
and-Test” and is an algorithm for generating the topological structures of organic
molecules consistent with a given molecular formula and rules about which molec-
ular bonds in a molecule are most likely to break. In short, we may say that the
program reduces the complexity of the generated tree of solutions by early pruning
of bad branches. Methodologically it involves a confirmation criterion.

In general, the following points are of importance, regardless of the chemical
application:

a) There is a set of formal objects in which the solution is contained.
b) There is a generator, i.e., a complete enumeration process of this set.
c) There is a test, i.e., a predicate identifying a generated element as part or not part

of a set of solutions.

This general method is defined by the following algorithm, i.e., by the following
recursive function according to Church’s thesis:
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Function GENERATE_AND_TEST (SET):
If the set SET to be examined is empty,
then failure,
otherwise let ELEM be the “following” element of SET;
If ELEM is goal element,
then give it as solution, otherwise repeat this function with the set SET
without the element ELEM.

For a translation into the AI programming language LISP [6.8], some recur-
sive auxiliary functions have to be introduced, such as GENERATE (generates an
element of a given set), GOALP (is a predicate function delivering T(true), if the
argument is part of the set of solution, otherwise NIL), SOLUTION (prepares the
solution element for “output”), and REMOVE (delivers the set minus the given el-
ement). Considering the common abbreviations in LISP, for example DE (Defini-
tion), COND (Condition), EQ (Equation), T (true), and the LISP conventions (e.g.,
brackets rules) when working out a list of symbols, the following algorithm in LISP
is received:

(DE GENERATE_AND_TEST(SET)
(COND((EQ SET NIL)’FAIL)

(T(LET(ELEM(GENERATE SET))
(COND((GOALP ELEM)(SOLUTION ELEM))

(T(GENERATE_AND_TEST
REMOVE ELEM SET)))))))

All chemical structures are systematically produced out of a given chemical
sum formula, for example C5H12, in a first step:
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Some chemical structures are eliminated because they are unstable or contra-
dictory. In the next step the corresponding mass spectrograms are computed and
compared with mass spectrograms empirically obtained. This comparison is the test
step of the process. GENERATE_AND_TEST thus technically realizes a methodol-
ogy for generating presumptions with elimination of the impossible and test of the
probable variants.

The META-DENDRAL program is designed to improve the rules of the DEN-
DRAL program regarding which molecular bonds will break in the mass spectrom-
eter. So META-DENTRAL uses the DENDRAL program plus the prediction crite-
rion of confirmation which was critically analyzed by Hempel.

The MYCIN program for helping physicians diagnose infections is a backward-
chaining deduction system [6.9]. Some 300 productions constitute MYCIN’s pool
of knowledge about blood bacterial infections. The following is typical:

If the infection type is primary-bacteremia, the suspected entry point is the gastrointesti-
nal tract, and the site of the culture is one of the sterile sites, then there is evidence that the
organism is bacteriodes.

To use such knowledge, MYCIN works backward. For each of 100 possible
hypotheses of diagnosis, MYCIN attempts to work toward primitive facts known
from laboratory results and clinical observations. As MYCIN works in a domain
where deductions are rarely certain, its developers combined a theory of plausible
and probabilistic reasoning with the basic production apparatus. The theory is used
to establish a so-called certainty factor for each conclusion in the AND/OR tree
(Fig. 6.8).

Here Fi is the certainty factor assigned to a fact by the user, Ci indicates the
certainty factor of a conclusion, and Ai the degree of reliability expected for a pro-
duction rule. Certainty factors according to straightforward formulas are computed
at the AND-nodes and the OR-nodes. If a certainty factor is 0.2 or less, the truth of
the corresponding fact is considered unknown, and the value 0 is assigned.

The program computes degrees of inductive justification in dependence of more
or less secure facts. This approach reminds of Rudolf Carnap’s theory of induction.
Carnap naturally did not believe in a universal inductive conclusion à la Bacon.
Conclusions are always deductive. No Popperian advice was required for that. Ex-
pert systems do not operate otherwise. Nevertheless, probabilistic measures used in
systems like MYCIN make the system more transparent to the user.

On the other hand, there are, so to say, Popperian programs with “Hypothesize-
and-Test” strategies which generate the most interesting hypotheses with hard tests.
There are programs that help to construct linear causal explanations of statistical
data. Other programs uses the old philosophers’ knowledge that inductive reason-
ing is nonmonotonic, which means a conclusion derived inductively from a set of
premises may not follow from consistent extensions of the premises. For example,
birds can fly, and Tweety is a bird, so I infer that Tweety can fly, but not if I also
know that Tweety is an ostrich [6.10].

Another strategy is the division of a complex problem into simpler parts or
less complex subproblems, which is for instance used in Georg Polya’s heuristic
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Fig. 6.8. AND/OR tree in MYCIN [6.9]

mathematical guide How to solve it. Therefore the domain of application must al-
low a division into independent parts. But it is obvious that a complex network of
dependencies cannot always be cut without changing the original state of the sys-
tem. For instance, consider the ecological network of the human environment or the
complex psychic dependencies which a psychiatrist has to analyze. The system is
not always the sum of its parts.

Some distinctions in philosophy of science can be translated as properties of
knowledge based systems. If research makes extensive use of theoretical concep-
tions associated with intrinsic properties of a theory, the discovery process is de-
scribed as theory-dependent (“theory-driven”). The converse view, which is often
called Baconian, takes a body of data as its starting point. Then the discovery pro-
cess is called data-driven. The distinction between theory- or data-driven knowledge
processing is also well known in AI.

Now I shall sketch some programs from knowledge based systems which real-
ize for various sciences the tasks and advantages just mentioned. My first example
concerns mathematics. AM [6.11] is a knowledge based system that has recursively
generated and, so to speak, rediscovered concepts from number theory. In contrast
with a program in empirical science, AM’s criterion of success is not that a concept
is compatible with empirical data but that it is “interesting” concerning its capacity
to generate examples, new problems, etc. The program, written in 1977 in LISP,
begins with basic concepts such as sets, lists, equality, and operations, and heuristic
advice to direct the discovery process. The heuristics suggest new tasks and create
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new concepts based on existing ones. New tasks are ordered according to their de-
grees of interest. Tasks proposed by a number of different heuristics tend to be more
interesting than those proposed by a single rule.

Using this measure to direct its search through the space of mathematical con-
cepts, AM defined concepts for the integers, multiplication, and the prime numbers,
and found propositions on prime numbers (for instance the unique-factorization the-
orem).

A closer analysis, however, shows that a demand for simulation of a historical
process of discovery cannot be maintained. The success of AM depends decisively
on features of the programming language LISP. Nevertheless, an analysis shows
interesting analogies with the human research process.

As is indicated by the name “LISP”, lists of symbols are worked out systemat-
ically. Two lists may be recursively defined as equal when both are atomic and the
atoms are equal, otherwise when the heads of the lists are equal and the rest of the
lists are equal. In LISP the recursive Boolian function is noted as follows:

(DE LIST-EQUAL (XY)
(COND((OR(ATOM X)(ATOM Y))

(EQ X Y))
(T(AND

(LIST-EQUAL(CAR X)(CAR Y))
(LIST-EQUAL(CDR X)(CDR Y))))))

Here CAR and CDR are basic operators in LISP sorting list heads and rest
lists, respectively, out of given lists of symbols. A heuristic generalizing rule of AM
generalizes the term of identity. Then two lists are called “generalized equal” if both
are atomic and the atoms are equal, otherwise the rest lists are “generalized equal”.
In LISP:

(DE L-E-1(XY)
(COND((OR(ATOM X)(ATOM Y))

(EQ X Y)
(T(L-E-1(CDR X)(CDR Y)))))

Because of the generalization all lists with the same length are considered
equivalent. They define a class which is called “number”. The process of discov-
ery realized on concrete objects by children is simulated by AM via transformation
rules. Addition is introduced as joining of two lists. The concept of prime number
is discovered by a heuristic tranformation rule for forming inverses out of concepts
already generated. AM was followed by EURISKO (1983) which can discover not
only new concepts but new heuristics as well.

The discovering of quantitative empirical laws was analyzed by a sequence
of programs called BACON [6.12]. The BACON systems are named after Fran-
cis Bacon, because they incorporate some of his ideas on the nature of scientific
reasoning. They are data-driven knowledge-processing systems which gather data,
discover regularities between two or more variables, and test laws. The basic meth-
ods of BACON make no reference to the semantic meaning of the data on which
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they operate and make no special assumptions about the structure of the data. In
cases where one has experimental control over the independent terms, the tradi-
tional method of “varying one term at a time” can be used to separate the effects
of each independent term on the dependent variables. Physical laws that can be re-
produced by the BACON program include Boyle’s law, Kepler’s third law, Galileo’s
law, and Ohm’s law.

An inquiry made with such a knowledge based system at least obeys the require-
ment that laws relevant for different disciplines should fulfill the same methodolog-
ical and heuristic frame conditions. The corresponding knowledge based system not
only reproduces certain laws, which were discovered in different historical contexts,
but also systematically generates the complete methodological scope of concepts
and sorts out interesting applications. The so-far latest BACON program is not only
data-driven, and thus in a strict sense “Baconian”, but also theory-driven. In its the-
oretical requirement for symmetry and conservation laws it generates, for example,
the conservation law of momentum.

Another sequence of programs are capable of inducing qualitative laws from
empirical data (GLAUBER, STAHL, DALTON). These programs can also induce
structural and explanatory models for certain phenomena. Qualitative laws are usual
in chemistry [6.13].

Competition between a machine and a human scientist is not intended. How-
ever, systematic and structural classifications of scientific laws and theories have
been accomplished which give insight into the complexity of scientific laws and
their conditions of discovery.

There are several aspects of the diverse activity known as scientific discovery,
such as finding quantitative laws, generating qualitative laws, inferring the com-
ponents of substances, and formulating structural models. An integrated discovery
system is envisaged which incorporates the individual systems as components. Each
component accepts input from one or more of the other components.

For instance, STAHL focuses on determining the components of chemical sub-
stances, whereas DALTON is concerned with the number of particles involved in
a reaction. Thus, STAHL can be viewed as laying the groundwork for a detailed
structural model in the sense of DALTON. In this way it might be possible to de-
velop more and more complex knowledge-based systems to analyze research as
knowledge processing and problem solving.

Even within such an expanded framework of research, we have not addressed
the mechanisms underlying the planning of experiments, or the invention of new
instruments of measurement. Any intrinsic concept, in association with the experi-
mental arrangement that allows it to be measured, can be employed as a scientific
instrument. In this case the discovery of the instrument is coincident with the dis-
covery of the concept itself.

There are also knowledge based systems which consider the design of exper-
iments and their interaction with other activities of scientific research. A system
called KEKADA (invented by a research group of Simon) is shown in Fig. 6.9 with
hypotheses generators, experiment choosers, expectation setters, etc. [6.14]. It was
developed to model the design of an experiment in biochemistry (Krebs’ discovery
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Fig. 6.9. Architecture of KEKADA [6.14]

of the urea cycle 1935). Like knowledge engineers, Simon and his crew analyzed
the laboratory notebooks of Krebs, defined his methodological rules of research and
translated them into a LISP-like programming language.

If the system has not decided which task to work on, problem choosers will
decide which problem the system should start working on. Hypothesis generators
create hypotheses when faced with a new problem. The hypothesis or strategy pro-
posers will choose a strategy to work on. Then the experiment proposers will pro-
pose the experiments to be carried out. Both types of heuristic may need the decision
makers. Then expectation setters set expectations and experimenters carry out exper-
iments. The results of the experimenters are interpreted by the hypothesis modifiers
and the confidence modifiers. When applicable, problem generators may add new
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problems to the agenda. If the outcome of an experiment violates the expectations
for it, then the study of this puzzling phenomenon is made a task, and it is added to
the agenda.

Every component of the system is an operator which is defined by a list of pro-
duction rules. Besides domain-specific heuristics the system contains general rules
that are part of general methodology of research. It is remarkable that a specific rule
defines the case that an experimental result is a “puzzling phenomenon”. Scientific
discovery thus becomes a gradual process guided by problem-solving heuristics,
and not by a single “flash of insight” or sudden leap. These examples of knowl-
edge based systems may be interpreted as assistants in the studies of philosophers
of science in the sense that, for instance, the program DENDRAL is an assistant in
the laboratory of a chemist. They can investigate the whole space of possible laws
produced by some heuristical rules. But they are the accurate assistants, not the
masters. Their “flash of insight”, the kind of “surprise” the system can recognize, is
frame-dependent, given by the masters.

What about Turing’s question, which motivated early AI researchers? Can ma-
chines “think”? Are machines “intelligent”? In my opinion, this question is for com-
puter technology a metaphysical one, because “thinking” and “intelligence” are not
well-defined concepts of computer science or AI.

All we can say today is this. If a program generates a structure that can be
interpreted as a new concept, then the rules of transformation used contain this con-
cept and the corresponding data structure implicitly. An algorithm which directs
the application of these rules makes the implicitly given concepts and data struc-
tures explicit. In philosophical discussions on AI much confusion is provoked by
the terminology of AI, which is introduced in a technical sense, but is associated

Fig. 6.10. Hardware and software levels
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with sometimes old and sophisticated meanings in philosophy and psychology. As
in other sciences, we have to live with traditional terms and notions, which may be
highly confusing if they are abstracted from their technical context. An example was
the notion “intelligence”, for instance, in “Artificial Intelligence” (AI).

A term which sometimes confuses philosophers is the use of “knowledge” in
AI. Let me again underline that “knowledge” in the term “knowledge based system”
has a technical meaning, and does not claim to explain the whole philosophical,
psychological, or sociological concept of knowledge. In AI technology as part of
practical computer science, no philosophical reductionism is involved.

“Knowledge processing” in so-called “knowledge based systems” means a new
kind of complex information processing which must be distinguished from the older
merely numerical data processing. It involves complex transformation rules of trans-
lation and interpretation which are characterized at a high level in the hierarchy
of programming languages (today LISP or PROLOG). This level is near to natu-
ral languages, but not identical, of course, and only grasps partial aspects of the
broad meaning of human knowledge (Fig. 6.10). Nevertheless, knowledge process-
ing remains program-controlled and in the tradition of Leibniz’ mechanization of
thoughts [6.15].

6.2 Neural Networks and Synergetic Computers

The algorithmic mechanization of thinking via program-controlled computers has
some severe obstacles which cannot be overcome by simple growth in computa-
tional capacity. For example, pattern recognition, the coordination of movements,
and other complex tasks of human learning cannot be mastered by Turing-like com-
puter programs. Cellular automata and artificial neural networks make use of the
principles of complex dynamical systems.

Historically, the modern development of cellular automata dates back to von
Neumann’s early ideas on self-reproducing automata. Besides self-reproduction,
there is another feature which appears to be essential for natural complex systems,
in contrast to traditional computers. The human brain has the ability to learn, for in-
stance by perception. In the first logical model of the brain, which was provided by
the McCulloch–Pitts network, the function of an artificial neuron was always fixed.
McCulloch and Pitts succeeded in demonstrating that a network of formal neurons
of this type could compute any finite logical expression.

However, in order to make a neural computer capable of complex tasks, it is
necessary to find mechanisms of self-organization that allow the network to learn.
In 1949, Donald Hebb suggested the first neurophysiological learning rule, which
gained importance during the development of neural computers. Synapses of neu-
rons do not always have the same sensitivity, but modify themselves in order to favor
the repetition of firing patterns which have occurred frequently in the past.

In 1958, Rosenblatt designed the first learning neural computer, which he fa-
mously termed the “perceptron” [6.16]. Rosenblatt was originally a psychologist
with a typical psychological interest in human learning processes. However, his de-
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sign for a learning machine that was capable of complex adaptive behavior was ex-
tremely interesting to engineers and physicists. Thus, it is no wonder that this idea,
originated by a psychologist, was grasped by engineers who were more interested
in robots and computer technology than in simulating processes in the human brain.
From a technical point of view, it is not essential that the learning procedures of
neural computers resemble the learning processes of the mind–brain system. They
must effectively manage complex tasks involving adaptive behavior, but they can
use methods that are completely different from those developed during biological
evolution.

Rosenblatt’s neural computer is a feedforward network with binary threshold
units and three layers. The first layer is a sensory surface called a “retina,” which
consists of stimulus cells (S-units). The S-units are connected with the intermediate
layer by fixed weights that do not change during the learning process. The elements
of the intermediate layer are called associator cells (A-units). Each A-unit has a fixed
weighted input of some S-units. In other words, some S-units project their output
onto an A-unit. An S-unit may also project its output onto several A-units. The
intermediate layer is completely connected to the output layer, the elements of which
are called response cells (R-units). The weights between the intermediate layer and
the output layer are variable, which makes the system capable of learning.

The perceptron is a neural computer that can classify a perceived pattern into
one of several possible groups. In the case of two groups, each R-unit learns to
distinguish between the input patterns by activation and deactivation. The learning
procedure of a perceptron is supervised. Thus, the desired R-unit states (active or
not) that correspond to a particular pattern to be learnt must be known in advance.
The patterns to be learnt are offered to the network, and the weights between the
intermediate and output layer are modified according to the learning rule. This pro-
cedure is repeated until all patterns produce the correct output.

The learning procedure is a simple algorithm. For each element i of the output layer,
the actual output oi produced by a certain pattern is compared with the desired output di. If
oi = di, then the pattern is already correctly classified. If the desired output di is equal to one
and the actual output oi is zero, then all weights wij(t) at time t with an active unit (oj > 0)
are increased in the following step t + 1, or more formally wij(t + 1) = wij(t) + σoj. The
constant σ is the learning rate, which governs the speed of learning. If the desired output is
zero and the actual output is one, then all weights with an active element are decreased, or
more formally wij(t + 1) = wij(t)− σoj.

The perceptron initially appeared to usher in a new era of computer technology
based on neural networks that could do anything. Early papers by the Perceptron
Group made exaggerated claims. However, in 1969, the early enthusiasm gave way
to bitter criticism. In that year, Marvin Minsky and Seymour Papert published their
famous book Perceptrons, which discussed the limitations of perceptrons with math-
ematical precision [6.17]. The reaction to this analysis was that most research groups
gave up their interest in the network and complex system approach and moved over
to classical AI and computer technology, which seemed to be more profitable than
the “speculations” of fans of the perceptron.
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This approach taken by the scientific community after 1969 was, of course, an
overreaction too. Uncritical enthusiasm and uncritical condemnation are inadequate
measures of evolution in science. Darwinian evolution took millions of years to
build brains capable of pattern recognition. It would be surprising if engineers could
succeed in constructing analogous neural computers in just a few years.

The critical questions are the following. What can a perceptron do? What can
it not do, and why does it have these limitations? A crucial step towards answering
these questions was Minsky’s and Papert’s proof of the so-called perceptron conver-
gence theorem. This states that any solution learnt by the network can in principle
also be found in a finite number of learning steps. Therefore, the convergence of the
system to a solution was proved.

However, the question then arose of whether a particular solution can be learnt
by a perceptron in principle. In general, we have to determine the classes of prob-
lems that may be applicable to perceptrons. Some simple problems show that per-
ceptrons cannot be applied universally, unlike it was initially and enthusiastically
believed. For instance, a perceptron is not able to distinguish between even and odd
numbers. One special case of this so-called parity problem is the following applica-
tion to elementary logics.

A perceptron is not able to learn to behave as an exclusive OR (abbreviated
XOR) gate. This unsolvable cognitive task places severe limitations on the applica-
tions of perceptrons to AI, as we will now show. Recall that the exclusive OR gate
only outputs “true” for x XOR y if either x or y, not both x and y, are true. (An OR
gate outputs “false” for x OR y if both x and y are false; otherwise it outputs “true.”)
The following table shows output values from the Boolean functions OR and XOR
for various pairs of input values:

x y x XOR y x OR y

1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0

Now, imagine a network with two input units x and y and an output unit z that
can take the states 1 (active) and 0 (inactive). To simulate XOR, the output should
be 0 for an even input (either both input units are active or neither is), and 1 for
an odd input (one input unit is active and the other one not). In Fig. 6.11a,b, the
possible input configurations of OR and XOR are illustrated in a coordinate system
where the inputs x and y are coordinates.

Each pair (x, y) of coordinates x and y has a corresponding value z, which is
marked by a white dot (0) or black dot (1). A linear threshold element Θ calcu-
lates the sum of the weighted inputs x and y with weights w1 and w2, or more for-
mally Θ = w1x + w2y. A simple derivation provides an equation for a straight
line, as drawn in Fig. 6.11a,b. The position of the straight line is determined by the
weights w1 and w2. This separates the active and inactive states of the threshold
element.
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Fig. 6.11a,b. The linear separation of active and inactive states is not possible for the XOR-
problem (a), but for the OR-problem (b)

In order to solve (“learn”) the OR or XOR problem, the weights w1 and w2
must be adjusted in such a way that the points (x, y) with value z = 1 are separated
from the points with value 0. This linear separation is geometrically possible for
the OR problem (Fig. 6.11b), but impossible for the XOR problem. In general, the
classification of input patterns by a perceptron is restricted to linearly separable
patterns.

This result can easily be generalized to networks with more than two input
units and real values. Many problems resemble XOR in that they are not linearly
separable, including most interesting computational problems. The XOR problem
can be solved by adding a single hidden unit to the network, which is connected to
both inputs and the output (see Fig. 6.11c).

When both inputs are zero, the hidden intermediate unit with a positive thresh-
old is off. A zero signal reaches the output, and because the threshold is positive,

Fig. 6.11c. The XOR problem can be solved by a network with a hidden unit
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the output is zero. If only one of the two inputs is 1, the hidden unit remains off and
the output unit is switched on by the direct connection between the inputs and the
output. Finally, when both inputs are 1, the hidden unit passes a 1 and inhibits the
activation of the output unit due to its negative weight of −2.

Thus, the incorporation of the hidden unit lead to an appropriate internal rep-
resentation. The XOR problem becomes a linearly separable problem through the
use of a two-dimensional threshold plane in the three-dimensional coordinate sys-
tem that arises when the three inputs of the output unit are employed as coordinates.
This separation is possible because the input (1,1) is shifted in the z-plane to the
point (1,1,1) (Fig. 6.11d).

A perceptron has only a single intermediate layer containing processor elements
that can learn. In a multilayered network, we encounter the problem that the errors
produced cannot be detected directly in the layers of neurons without connection to
the outer world. An error can only be derived directly between the output layer and
the intermediate layer below it.

The ability of a multilayered network to represent information and to solve
problems depends on the number of learning layers and the numbers of units in
these layers. It is therefore important to study the complexity of computation in
neural computers, because it is necessary to increase the complexity of the network
in order to move beyond the limitations of perceptrons.

In Sect. 4.2 we discussed the advantages of backpropagation in a multi-layered
network (Fig. 4.17). A backpropagating learning algorithm allows us to define an
error signal, even for the neurons in hidden layers. The error of the output layer is
recursively propagated back to the layer below it. The algorithm is able to construct
networks with many hidden layers, all of which contain neurons that can learn. As
multilayered networks can represent much more information in their hidden lay-
ers than one-layered networks, networks with backpropagation are very powerful
models for overcoming the limitations of perceptrons.

Fig. 6.11d. The XOR problem is made linearly separable by using a two-dimensional thresh-
old plane [6.20], 92
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While backpropagation delivers technically successful models, such models
generally are not analogous to neural networks produced by biological evolution.
Their adjustment of weights seems to be quite different from the approach used in
biological synapses. However, computer technology does not aim to simulate the
brain, but to solve problems in a reasonable amount of time. We must also look
beyond the childish illusion that nature is a God-like engineer that always finds the
best solutions through evolution. As we have already underlined in earlier chapters,
there is no centralized controlling and programming unit in nature. There are often
only local solutions that are, in general, not the “optimal” ones.

In 1988, a feedforward network, trained by the backpropagation of error method,
was designed by Gorman and Sejnowski that could distinguish between sonar
echoes of rocks and sonar echoes of mines. This task is rather difficult, even for
an untrained human ear, but it is of course of great importance to submarine engi-
neers confronted with the problem of designing a sonar system that distinguishes
between explosive mines and rocks. The architecture of the proposed network con-
sisted of an input layer with 60 units, a hidden layer with 1–24 units, and two output
units, each one representing the prototypes to be distinguished, “mine” and “rock”
(Fig. 6.12) [6.18].

Initially, a sonar echo is prepared by a frequency analyzer and is divided into 60
different frequency bands. Each value ranges between 0 and 1. These 60 values are
the components of an input vector that is passed to the corresponding input units.
They are transformed by the hidden units, leading to the activation of one of the
two output units, which can take values between 0 and 1. Thus, in a trained network
with well-adjusted weights, a mine echo leads to the output signal (1,0), while a rock
echo has the output signal (0,1).

In order to train the net, it must be fed with examples of mine and rock echoes.
In each case, the factual values of the output units are measured and compared with
the desired values, based on the corresponding input. The difference between them
is the error signal, which initiates small changes in the weights of the units. Using
this gradient-descent procedure, the weights of the network are slowly adjusted to
the correct levels.

The mine–rock network of Gorman and Sejnowski is an application of a com-
plex system to AI. It is not claimed, of course, that the system simulates the way that
the human brain distinguishes between two concepts like “mine” and “rock.” How-
ever, we can say that this technical system does incorporate internal representations
of these two concepts as prototype vectors in its hidden layer. In this restricted sense,
the artificial system is “intelligent” because it can solve a task, which is said to indi-
cate intelligence in the case of the human brain. Artificial networks are not, however,
restricted to discriminating between two concepts. In 1986, Sejnowski and Rosen-
berg designed a network called NETalk that was taught how to read. It takes strings
of characters that comprise English texts and converts them into strings of phonemes
that can serve as inputs to a speech synthesizer. The surprising fact is not the result-
ing stammering sound of a childlike voice, which has been praised as a spectacular
success in popular books. The important aspect of NETalk is its learning procedure
for an internal representation of several concepts of pronunciation. For each letter
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Fig. 6.12. Neural network that distinguishes between sonar echoes of rocks and mines [6.18]

of the alphabet, there is at least one phoneme assigned to it. For many letters there
are several phonemes that could be signified, depending on the lexical text.

Sejnowski and Rosenberg used a three-layer feedforward network with an input
layer, an intermediate hidden layer, and an output layer. Although backpropagation
is unlikely to be “naturally” realized in biological brains, it has turned out to be
the fastest learning procedure when compared with other solutions. The input layer
looks at a seven-character window of text, for instance the word “phone” in the
phrase “The_phone_is_” in Fig. 6.13a. Each of the seven letters is analyzed succes-
sively by 29 artificial neurons, each representing a letter of the alphabet (including
neurons for a blank spaces and punctuation marks). Thus, exactly one neuron from
each 29-element neural subsystem is activated.

The output layer consists of 26 neurons, each of which represents a component
of pronunciation. There are six components for the position of pronunciation, eight
for articulation, three for pitch, four for punctuation, and five for accentuation and
syllabication. Therefore, each sound has four characteristics from these four groups
of components. The 7 × 29 = 203 neurons of the input layer are connected with
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Fig. 6.13a–c. Architecture of NETalk (a) with neural interaction (b) and neural activa-
tion (c) [6.19]

80 internal neurons in the hidden layer, which is interconnected with 26 neurons of
the output layer (Fig. 6.13b). Neurons from the same layer are not connected. The
neurons of the input and output layers are also not directly connected.

An internal neuron from the hidden layer receives signals from 203 input neu-
rons, but only sends 26 signals to the output layer. As the internal neurons are thresh-
old units with thresholds T1, . . . , T8, the inputs are multiplied by particular weights,
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and the size of the sum of these products dictates whether or not the neuron is ac-
tivated (Fig. 6.13c). Realistically, the activation happens according to a continuous
“sigmoid curve” and not a digital jump [6.19].

The weights are initially fixed at random. Thus, NETalk first outputs incom-
prehensible stammering. In the learning phase, NETalk uses a particular text from
a child with well-known pronunciation. The random sounds are compared with the
desired ones, and the weights are corrected by backpropagation. It is worth noting
that this procedure is a kind of self-organization, and not a rule-based program of
pronunciation. There is only the global demand to change the weights by approx-
imating the factual output to the desired one. After ten runs of the particular text
from the child, the network could already pronounce text that could be understood.
After 50 runs only 5% of the text was pronounced incorrectly. In this phase, when
an unknown passage of text from the child was passed to the network, only 22% of
it was pronounced incorrectly.

So far, networks like NETalk have been simulated by traditional von Neumann
computers because direct hardware for complex networks has not been available.
Thus, each neuron must be calculated sequentially. Even today, the principles of
self-organizing complex networks are still mainly realized in software, not in hard-
ware. Nevertheless, we can still discuss “neural computers” because there are no
known theoretical barriers to creating such hardware; its development depends sim-
ply on technical advances in the future, such as in solid state materials or optical
procedures.

Projections derived from neural networks seem to be rather successful and prof-
itable in financial, insurance, and stock exchange forecasts. The reason for this is
that short-term forecasts of stock quotations are based on chaotic time series which
become more and more chaotic if the period covered by the forecast decreases.

Conventional statistical programs are only successful in long-term forecasts
if the stock trends can be smoothed without loss of relevant information. In this
case, good statistical programs have an accuracy of between 60% and 75%. How-
ever, short-term forecasts are rather limited. Conventional statistical procedures for
smoothing stock trends ignore the essential properties of short-term forecasts, which
are frequent but small exchange fluctuations. In a conventional statistical program,
the relevant calculation factors must be provided explicitly. A well-trained and ap-
propriately designed neural network can recognize the relevant factors without ex-
plicit programming. It can weight the input data and minimize the forecasting errors
in a self-organizing procedure. Furthermore, it can adapt to changing conditions in
the system’s environment, unlike computer programs that must be changed explic-
itly by a programmer. In order to design a neural network for stock forecasting, the
input data must be prepared by codifying the stock data into binary digits. The input
vector consists of several partial vectors that represent the exchange value, the ab-
solute change from the day before, the direction of change, the direction of change
from the day before yesterday, and relevant changes of greater than 1% compared
to the day before. If the input vector has a fixed length of, say, 40 units, then the
lengths of the partial vectors can vary, depending on their desired relevance. The
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system may have two output units. Activation of the left one signals a decrease in
the value of the stock, while activation of the right one signals an increase.

In the learning phase, the network was fed with the actual daily quoted rate dur-
ing a fixed period from, say, February 9, 1989, to April 18, 1989. Based on this learnt
data, the network forecasts the stock trends for the next 19 days. The forecasts were
then compared with the actual curves in order to measure the system’s accuracy.
Several multilayered structures were tested by backpropagation. They developed
their particular global heuristics for forecasts by self-organization. For instance, if
nearly the same value was forecast for the day after as for the actual day, then the
error was relatively small. The heuristic (rule of thumb) used here is that a change
in the quotation is more unlikely than it remaining unchanged. Figure 6.14a,b show
forecast (+) and actual (−) stock quotation curves for a bank (Commerzbank) and
a firm (Mercedes) [6.20].

Obviously, feedforward networks with backpropagation are very interesting
from a technical point of view, although they do not seem to share many similarities
with information processing in biological brains. In Sect. 4.2, we analyzed Hop-
field systems with feedback (Fig. 4.8b) and Hebb-type learning (Fig. 4.9b), which
appears to be utilized by biological brains. In the case of a homogeneous network
of boolean neurons, the two states of the neurons can be associated with the two
possible spin states of an electron in an external magnetic field. A Hopfield model is
a dynamical system which, similar to annealing processes in metals, involves an en-
ergy function. As it is a nonincreasing monotonic function, the system relaxes into
a local energy minimum, corresponding to a locally stable stationary state (a fixed
point attractor).

Thus, the dynamical evolution of a Hopfield system may correspond to mental
recognition. For example, an initial state representing a noisy picture of the letter “A”
evolved towards a final state representing the correct picture, which was trained into
the system using several examples (Fig. 4.9b). The physical explanation for this can
be given in terms of a phase transition in equilibrium thermodynamics. The correct
pattern is connected to the fixed point or final state of equilibrium. A more flexible
generalization is that of a Boltzmann machine with a stochastic network architecture
of nondeterministic processor elements and with a distributed knowledge represen-
tation, mathematically corresponding to an energy function (Fig. 4.11b).

The general idea behind relaxation is that a network converges to a more or less
global state of equilibrium on the basis of local interactions. Through iterative mod-
ification of the local connections (for instance, using a Hebb learning strategy in the
case of a Hopfield system), the network as a whole eventually relaxes into a stable
and optimal state. We can say that local interactions lead to a cooperative search
which is not supervised, but self-organized. There are networks that use the strategy
of cooperative search to perform mental activities such as searching for a probable
hypothesis. Imagine that a range of competing hypotheses are represented by neural
units that may activate or inhibit themselves. The system thus moves away from the
less probable hypotheses toward more probable hypotheses.

In 1986, McClelland and Rumelhart used this cognitive interpretation to simu-
late the recognition of ambivalent figures, which is a well known problem in Gestalt
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Fig. 6.14a,b. Neural network curves for forecast (+) and actual (−) stock quotations for Com-
merzbank (a) and Mercedes (b) [6.20]

psychology. Figure 6.15a shows a network used for a cooperative search that sim-
ulates the recognition of one of the two possible orientations of a Necker cube.
Each unit is a hypothesis concerning a vertex of the Necker cube. Abbreviations
are B (back), F (front), L (left), R (right), U (upper), L (lower). The network of
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Fig. 6.15a,b. Neural network simulating the recognition of one of the two possible orienta-
tions of a Necker cube (a) with three evolution patterns (b) [6.21]
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hypotheses consists of two interconnected subnetworks, one for each of the two
possible interpretations.

Incompatible hypotheses are negatively connected, and consilient hypotheses
are positively connected. Weights are assigned such that two negative inputs balance
three positive inputs. Each unit has three neighbors connected positively and two
competitors connected negatively. Each unit receives one positive input from the
stimulus. The subnet of hypotheses sought is the one that best fits the input. Tiny
initial fluctuations (small details in the special view of an observer) may decide
which orientation is seen in the long run.

To visualize the dynamics of the network, suppose that all units are off. Then
one unit receives a positive input at random. The network will evolve toward a state
where all of the units of one subnetwork are activated and all of the units of the other
network are turned off. In the cognitive interpretation, we can say that the system
has relaxed into one of the two interpretations of the ambivalent figure of either
a right-facing or a left-facing Necker cube.

Figure 6.15b shows three different evolution patterns, each of which depends
sensitively on the initial conditions. The size of a circle indicates the degree of ac-
tivation of the unit. In the third run, an undecided final state is reached, which is,
however, still in equilibrium [6.21]. Obviously, the architectural principles of this
network are cooperative computation, a distributed representation, and a relaxation
procedure, which are well known in the dynamics of complex systems.

Many designs for artificial neural networks have been suggested. They have
been inspired by problems in disciplines such as physics, chemistry, biology, psy-
chology, and sometimes just technical issues. What are the common principles of
the complex system approach? In earlier chapters, synergetics was introduced as an
interdisciplinary methodology for dealing with nonlinear complex systems. Syner-
getics seems to be a successful top-down strategy for deriving particular models of
complex systems from common principles that has been utilized in many scientific
disciplines. The main idea behind this strategy is that the emergence of global states
in complex systems can be explained by the evolution of (macroscopic) interactions
between the elements of a system during learning strategies far from thermal equi-
librium. Global states of order are interpreted as attractors (fixed points, periodic,
quasi-periodic, or chaotic) of phase transitions.

Pattern recognition, for instance, is interpreted as a kind of phase transition by
analogy with the evolution equations used for pattern emergence in physics, chem-
istry, and biology. We obtain an interdisciplinary research program that allows us
to explain neurocomputational self-organization as a natural consequence of phys-
ical, chemical, and neurobiological evolution based on common principles. As in
the case of pattern formation, a specific pattern of recognition (for instance a pro-
totype face) is described by order parameters to which a specific group of features
belong.

Once some of the features that belong to the order parameter are given (for
instance, a part of a face), the order parameter will complement these with other
features so that the whole system acts as an associative memory (for instance, it
can reconstruct a stored prototype face from just part of that face). According to
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Fig. 6.16a. Haken’s slaving principle for pattern formation and pattern recognition

Haken’s slaving principle, the features of a recognized pattern correspond to the
enslaved subsystems during pattern formation (Fig. 6.16) [6.22].

If a small part of the face that was learnt as a prototype is given to a synergetic
computer, then it can complete the whole face based on the codified family name
(Fig. 6.16b). The sequence of more or less fuzzy pictures corresponds to a phase
transition of states in the synergetic computer.

Fig. 6.16b. Recognition of a face by a synergetic computer using the slaving principle [6.22]

When an incomplete pattern is offered to the neurons, a competition between
different neuronal states, each corresponding to a specific prototype pattern, begins.
This competition is won by that total state of the neuronal system that corresponds
to the prototype pattern which most closely resembles the offered test pattern. In
complete analogy to the dynamics valid for pattern formation, when a test pattern is
offered to the synergetic computer, it will pull the test pattern from an initial state
(at t = 0) into a specific final state corresponding to one of the prototype patterns.

The evolution of the test pattern is somewhat similar to the overdamped mo-
tion of a particle with a certain position vector in a potential landscape. Figure
6.16c shows a two-dimensional example of such a potential. The two prototypes
correspond to two valleys. If the features of the pattern offered cannot be identi-
fied exactly with the features of the prototypes, then the particle adopts a position
away from the valleys in the potential landscape. Obviously, recognition is a kind
of symmetry breaking, as already illustrated by Fig. 4.21a for the one-dimensional
case.

In synergetic systems, the shape of the potential landscape can be changed by
tuning control parameters. As synergetic systems are open, control parameters can
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Fig. 6.16c. Illustrating the evolution of a test pattern (order parameter) in a synergetic com-
puter via the overdamped motion of a particle in a potential landscape [6.22]

represent the input of energy, matter, information, or other stimuli from the sys-
tem’s environment. When the control parameter is below a critical value, the land-
scape may have a single stable position, like the single valley with the dotted line
in Fig. 4.21a. After each excitation via fluctuations, the order parameter relaxes
towards its resting state. When the control parameter exceeds a critical value, the
formerly stable state becomes unstable and is replaced by two stable states in the
two valleys of Fig. 4.21a.

The learning procedure of a synergetic computer corresponds to the construc-
tion of a potential landscape. The potential intensities, which are visualized as the
shape of the landscape, indicate the synaptic forces of neural connections. It is an ad-
vantage of the synergetic approach that the huge number of microscopic details that
characterize a pattern (for instance, a face) are determined by a single macroscopic
order parameter. Thus, synergetic computers use the typical reduction of complexity
method applied in synergetic models of natural evolution (see Sect. 3.3).

Order parameter equations allow a new kind of (non-Hebbian) learning, namely
a strategy to minimize the number of synapses. In contrast to neurocomputers of the
spin-glass type (such as Hopfield systems), the neurons are not threshold elements
but instead perform simple multiplications and additions. However, the fundamental
difference between neurocomputers of the spin-glass type and synergetic comput-
ers is the following: complex systems of the spin-glass type are physically closed
systems. Thus, their pattern formation is driven by conservative self-organization
without any input of energy, matter, or information from outside. Typical patterns
formed by conservative self-organization are the “dead” ice flowers on windows in
winter, which are frozen in equilibrium at low energy and temperature. The phase
transitions of conservative self-organization can be explained completely by Boltz-
mann’s principles of equilibrium thermodynamics.

In Sect. 3.3, we explained that pattern formation in living systems is only possi-
ble through the input of energy, matter or information far from thermal equilibrium.
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This kind of self-organization has been called “dissipative” (Prigogine) or “syner-
getic” (Haken), but it can still be found in physical and chemical evolution. Conse-
quently, pattern formation in the human brain, a living system that depends sensi-
tively on influences from the outer world, will provide the “blueprints” or models
for a new computer technology in the framework of synergetics. Neurocomputers
of the spin-glass type may be practical and successful for particular technical pur-
poses, but they are physically closed systems and so they differ in principle from
living systems like the human brain.

The pattern recognition process of synergetic computers has been made simul-
taneously invariant to translation, rotation, and scaling. These features of recogni-
tion correspond to realistic situations. Faces, for instance, do not always appear as
they did in the learning phase – they may be translated, rotated, smaller or larger,
nearer or further away. A nice application of synergetic computers is the recognition
of oscillation (for instance ambivalent pictures) and hysteresis in perception. Figure
6.17a shows a well-known example of hysteresis. When one scans the images from
left to right, the transition from the image of a man’s face to that of a girl will only

Fig. 6.17a,b. Illustration of the hysteresis (a) of a synergetic computer based on the time
evolutions of characteristic order parameters (b) [6.23]
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occur after about six images. When one scans in the opposite direction, the switch
from the perception of a girl to the face of a man occurs only toward the leftmost
images.

Figure 6.17b shows the perception process for a synergetic computer in terms
of the time evolutions of characteristic order parameters. The broken line shows the
level of perception of the “girl,” while the solid one shows the level of perception
of the “face.” The first diagram shows the transition from the perception of a man’s
face to that of a girl, while the second shows the transition from the perception of
a girl to a man’s face [6.23].

At this point we could object, stating that synergetic computers must still be
simulated by traditional sequential computers. The principles of synergetic comput-
ers have only been realized in the field of computer software, not machine hardware.
However, the interdisciplinary applications of synergetics have given rise to mate-
rial and technical advances. As the laser is a well-understood model of synergetics
(compare Sect. 2.4), it may play an essential role in the construction of an optical
computer that utilizes synergetic principles. Different modes occur in a laser de-
pending on the critical values of the laser threshold. These can be characterized by
their photon numbers. At the microscopic level, the rate of change in photon number
is described by a nonlinear evolution equation, which depends on the gain, loss, and
saturation of the modes. At the macroscopic level, the order parameters correspond
to the field amplitudes of several light wavetracks (Fig. 2.27a,b).

This suggests a three-layer architecture with an input layer of data that can be
mapped by holographic mapping onto the laser. The laser, with its order parame-
ters, is the intermediate layer. With its modes, the laser serves as a decision-making
device via self-organization. The mode that survives, in the sense of the slaving
principle, triggers new sets of features. This level is conceived as the output layer.
Such a laser architecture for synergetic computers must, of course, be confirmed and
improved experimentally. A synergetic computer would be a real dissipative system
far from thermal equilibrium.

Obviously, complex dynamical systems are useful for simulating cognitive be-
havior and technical systems, too. The human brain can be modeled as a nonlinear
complex system, the dynamics of which may be governed by fixed-point attractors,
periodic or quasi-periodic attractors, or even chaotic attractors. Chaos, for instance,
has been confirmed experimentally to be an efficient brain reset mechanism. After
a study of the rabbit olfactory bulb, the recognition of various odors was modeled
by relaxing a neural network towards cyclic asymptotic states. The chaotic state
appeared during exhalation, eliminating the memory of the preceding odor. During
inhalation, the presence of a particular odor as input drove the system to reach the
limit cycle corresponding to that odor.

Technical applications of chaotic states are rather interesting, because chaotic
systems are able to generate information. It is well known that chaotic systems de-
pend sensitively on initial conditions. Thus, two trajectories may separate dramat-
ically at a particular point during dynamical evolution, even if their initial states
only differ by a very small value. Since any observation can only be made with
finite precision, the separation between two different states may be less than our
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resolving power. Initially, an observer may see them as equal. But over the course
of time, a chaotic system allows states that initially appear to be coincident to be
disciminated.

Actually, the technical applications of neural computers have been explored
in several industrial fields. Examples include robotics, aviation and astronautics
(sensitive and adaptive systems, air navigation, etc.), medicine (evaluation and con-
trol of medical data, therapy, diagnosis, etc.), production industries (quality control,
product optimization, etc.), safety technology, defense, communication technology,
banking, postal services, etc. The complex system approach to technology should
not be thought of as competition to or even opposition to classical AI. At the present
stage of technological development, both neural networks and classical AI systems
like expert systems seem to be useful and suited to different fields of application.
Complex systems appear to be more suited than classical AI systems to the analy-
sis and recognition of signals, images and speech, speech synthesis, sensorimotor
coordination in robots, etc. Obviously, these examples of neural net applications
are not single computers or robots, but complex functions that are integrated into
composite systems that perform several tasks. From an anthropomorphic point of
view, the problems actually managed by neural nets may be classified as “low-level”
ones.

In Sect. 6.1, we learned that inferential models based on AI-like expert sys-
tems have failed because their functionality must be exactly and sequentially pro-
grammed, making them less tolerant and flexible. In contrast to expert systems
and knowledge engineering, complex processes of self-organization cannot be con-
trolled by an explicit formulation of expert knowledge. On the other hand, rule-
based systems with inferential algorithms can be successful applied to any logically
structured problem. Compared with, for instance, sensorimotor coordination, logi-
cal programming seems to be an example of “high-level” knowledge. Nevertheless,
the low-level problems of nonlinear dynamical systems may be extremely complex.
Nonlinear complex systems are not restricted, of course, to low-level knowledge,
as we have seen in previous chapters. The principles of complex systems seem in-
stead to be suited to modeling high-level functions of the human brain like concepts,
thoughts, self-referential states, etc. However, the technology of neural nets is still
in its infancy.

In present and future technologies, heterogeneous systems with several modular
rule-based and complex dynamical systems are or will be of interest for specialized
tasks. A speech comprehension system could consist of a neural network performing
speech recognition and a rule-based symbolic module for syntactic and semantic
analyses. Hybrid systems combine inferential and dynamical techniques that may
be useful for various medical purposes. For example, imagine a system that is able
to recognize and control medical parameters via neural nets, combined with a rule-
based deductive system for diagnosing illness based on known data. Like nature, an
engineer should not be restricted dogmatically to one “optimal” strategy, but should
attempt to find purposeful solutions, such as several solutions that can be combined
but which need not be the best ones.
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6.3 Cellular Neural Networks and Analogic Neural Computers

The concept of synergetics with Haken’s “cooperative phenomena” and “slaving
principle” has its origin in statistical, quantum, and laser physics. In electrical engi-
neering, information and computer science, the concept of cellular neural networks
(CNN) has recently become an influential paradigm of complexity research and is
being realized in information and chip technology [6.24]. The emergence of CNN
has been made possible by the sensor revolution of the late 1990s. Cheap sensor and
MEMS (micro-electro-mechanical system) arrays are proliferating in all technical
infrastructures and human environments. They have become popular as artificial
eyes, noses, ears, tastes, and somatosensor devices. An immense number of generic
analog signals have been processed. Thus, a new kind of chip technology, similar to
signal processing in natural organisms, is needed. Analogic cellular computers are
the technical response to the sensor revolution, mimicking the anatomy and physi-
ology of sensory and processing organs. A CNN chip is their hard core, because it
is an array of analog dynamic processors or cells.

The CNN was invented by Leon O. Chua and Lin Yang at Berkeley in 1988
[6.25]. The main idea behind the CNN paradigm is Chua’s so-called “local ac-
tivity principle”, which asserts that no complex phenomena can arise in any ho-
mogeneous media without local activity. Obviously, local activity is a fundamental
property in micro-electronics. For example, vacuum tubes and, later on, transistors
became the locally active devices in the electronic circuits of radios, televisions,
and computers. The demand for local activity in neural networks was motivated by
the practical needs of technology. In 1985, Hopfield suggested his theoretical neu-
ral network, which, in principle, could overcome the failures of pattern recognition
in Rosenblatt’s “Perceptron”. But its globally connected architecture was highly im-
practical for technical applications in the VLSI (very-large-scale-integrated) circuits
of micro-electronics: The number of wires in a fully connected Hopfield network
grows exponentially with the size of the array. A CNN only needs electrical in-
terconnections in a prescribed sphere of influence [6.26]. An immense increase in
computing speed, combined with significantly less electrical power in the first CNN
chips, has led to the current intensive research activities on CNN since Chua and
Yang’s proposal in 1988.

In general, a CNN is a nonlinear analog circuit that processes signals in real
time. It is a multi-component system of regularly spaced identical (“cloned”) units,
called cells, that communicate directly with each other only through their nearest
neighbors. But the locality of direct connections allows for global information pro-
cessing. Communication between remotely connected units are achieved through
other units. The idea that complex and global phenomena can emerge from local
activities in a network dates back to J. von Neumann’s earlier paradigm of cel-
lular automata (CA). In this sense, the CNN paradigm is an advancement of the
CA paradigm under the new conditions of information processing and chip tech-
nology. Unlike conventional cellular automata, CNN host processors accept and
generate analog signals in continuous time with real numbers as interaction values.
But, actually, discreteness of CA is no principle difference to CNN. We can intro-
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duce continuous cellular automata (CCA) as a generalization of CA in which each
cell is not just, for example, black or white, but instead can have any of a continu-
ous range of grays. A possible rule of a CCN may demand that the new gray level
of each cell be the average of its own gray level, and that of its immediate neigh-
bors. It turns out that in continuous cellular automata simple rules of interaction can
generate patterns of increasing complexity, chaos, and randomness, which are not
essentially different to the behavior of discrete CA. Thus, they are useful in approxi-
mating the dynamics of systems that are determined by partial differential equations
(PDE).

For the CNN paradigm, a gene-technological and neurobiological language de-
livers metaphoric illustrations of concepts, which are nevertheless mathematically
defined and technically implemented. According to todays dominating paradigms
of life sciences, a biological language mediates visions of future connections be-
tween bio- and computer technology. Mathematically, a CNN is defined by (1) a spa-
tially discrete set of continuous nonlinear dynamical systems (“cells” or “neurons”)
where information is processed in each cell via three independent variables (“input”,
“threshold”, and “initial state”) and (2) a coupling law relating relevant variables of
each cell to all neighbor cells within a pre-described sphere of influence. A stan-
dard CNN architecture includes an M × N rectangular array of cells C(i, j) with
cartesian coordinates (i, j) with i = 1, 2, . . . , M and j = 1, 2, . . . , N (Fig. 6.18a).
Figure 6.18b–c shows examples of cellular spheres of influence as 3 × 3 and 5 × 5
neighborhoods. The dynamics of a cell’s state are defined by a nonlinear differen-
tial equation (CNN state equation) with scalars for “state” xij, “output” yij, “input”
uij, and “threshold” zij, and coefficients, called “synaptic weights”, modeling the
intensity of synaptic connections of the cell C(i, j) with the inputs (feedforward sig-
nals) and outputs (feedback signals) of the neighbor cells C(k, l). The CNN output
equation connects the states of a cell with the outputs.

The majority of CNN applications use space-invariant standard CNNs with
a cellular neighborhood of 3 × 3 cells and no variation of synaptic weights and
cellular thresholds in the cellular space. A 3 × 3 sphere of influence at each node
of the grid contains nine cells with eight neighbor cells, and the cell in its center. In

Fig. 6.18a–c. Standard CNN with array (a), 3 × 3 and 5 × 5 neighborhoods (b, c) [6.27]
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this case, the contributions of the output (feedback) and input (feedforward) weights
can be reduced to two fixed 3 × 3 matrices, which are called feedback (output)
cloning template A and feedforward (input) cloning template B. Thus, each CNN
is uniquely defined by the two cloning templates A, B, and a threshold z, which
consist of 3 × 3 + 3 × 3 + 1 = 19 real numbers. They can be ordered as a string of
19 scalars with a uniform threshold, nine feedforward and nine feedback synaptic
weights. This string is called a “CNN gene”, because it completely determines the
dynamics of the CNN. Consequently, the universe of all CNN genes is called the
“CNN genome”. With respect to the human genome project, steady progress can be
made by isolating and analyzing various classes of CNN genes and their influences
on CNN genomes.

Concerning visual computing, the triple {A, B, z}, and its 19 real numbers can
be considered a CNN macro instruction of how to transform an input image into
an output image. Simple examples are subclasses of CNNs with practical relevance,
such as the class C(A, B, z) of space-invariant CNNs with excitatory and inhibitory
synaptic weights; the zero-feedback (feedforward) class C(0, B, z) of CNNs without
cellular feedback; the zero-input (autonomous) class C(A, 0, z) of CNNs without
cellular input; and the uncoupled class C(A0, B, z) of CNNs without cellular cou-
pling. In A0 all weights are zero except for the weight of the cell in the center of
the matrix. Their signal flow and system structure can be illustrated in diagrams that
can easily be applied to electronic circuits, as well as to typical living neurons.

CNN templates are extremely useful for standards in visual computing. Simple
examples are CNNs that detect edges in either binary (black-and-white) or gray-
scale input images. An image consists of pixels corresponding to the cells of a CNN
with binary or gray scale. An EDGE CNN is an example of the zero-feedback class
C(0, B, z) with binary edge detection templates:

A =
0 0 0

0 0 0

0 0 0

B =
−1 −1 −1

−1 8 −1

−1 −1 −1

z = −1

The input is a static binary image of black pixels. The initial state is arbitrary (e.g.,
zero). The boundary conditions (e.g., zero) determine inputs and outputs of so-called
virtual cells that belong to a 3 × 3 neighborhood, but are outside the CNN grid.
The output should be a binary image showing all edges in black. The EDGE CNN
template is designed to work correctly for binary input images only. If the input
image is a gray-scale image, the output image will generally be gray scale where
black pixels correspond to sharp edges, near-black pixels correspond to fuzzy edges,
and near-white pixels correspond to noise. Local rules that generate the edge image
from a given input image are the following:

(1) white pixel → white, independent of neighbors
(2) black pixel → white, if all nearest neighbors are black
(3) black pixel → black, if at least one nearest neighbor is white
(4) black, gray, or white pixel → gray, if nearest neighbors are gray
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Fig. 6.19. Snapshots of image processing by EDGE CNN [6.28]

Logic operators can also be realized by simple CNN templates in order to com-
bine CNN templates for visual computing. The Logic NOT Operation CNN inverts
the intensities of all binary image pixels, and the foreground pixels become the
background, and vice versa. The Logic AND (Logic OR, respectively) Operation
CNN performs a pixel-wise logic AND (logic OR operation, respectively) on corre-
sponding elements of two binary images. These operations can be used as elements
of some Boolean Logic algorithms, which operate in parallel on data arranged in the
form of images.

The analysis of CNNs for visual computing follows a standard series of steps.
First (I), a non-technical description is given of the input-output image transforma-
tion at the complete image level. In the next step (II), local rules deliver a precise
recipe of how to transform input into output pixels. These local rules must be com-
plete in the sense that each output pixel can be uniquely determined by applying
these rules to the state and input of all pixels within a local sphere of influence.
Then (III), several examples are given, including (a) the input picture and initial
state, (b) several consecutive snapshots until a static output image is reached in
a transient settling time, or (c) time wave forms of both state and output at spe-
cial points of interest on the output image. Finally, in a mathematical analysis (IV),
a rigorous mathematical proof is given for each local rule. If a proof is not avail-
able, an intuitive proving sketch with various numerical studies is given. In this
way, a gallery of CNN templates can be introduced in a standard way in order to
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Fig. 6.20. Gallery of THRESHOLD CNN [6.29]

illustrate a new paradigm of problem solving in visual computing. An example is
a THRESHOLD CNN that converts a gray-scale image of a young girl into a binary
image, depending on a certain threshold of gray-scale intensity (Fig. 6.20).

The simplest form of a CNN can be characterized via Boolean functions. We
consider a space-invariant binary CNN belonging to the uncoupled class C(A0, B, z)
with a 3 × 3 neighborhood which maps any static 3 × 3 input pattern into a static
binary 3×3 output pattern. It can be uniquely defined by a Boolean function of nine
binary input variables, where each variable denotes one of the nine pixels within the
sphere of influence of a cell. Although there are infinitely many distinct templates of
the class C(A0, B, z), there is only a finite number of distinct combinations of a 3×3
pattern of black and white cells, 29 = 512. As each binary nine input pattern can
map to either 0 (white) or 1 (black), there are 2512 distinct Boolean maps of nine
binary variables. Thus, every binary standard CNN can be uniquely characterized
by a CNN truth table, consisting of 512 rows, with one for each distinct 3×3 black-
and-white pattern; nine input columns, one for each binary input variable; and one
output column, with binary values of the output variable.

For example, consider the truth table of the EDGE CNN (Fig. 6.19). Since the
table of 512 rows will exceed the length of a page, it is divided into 16 parts of truth
tables with 32 rows (Fig. 6.21). By convention, column 5 of each truth table denotes
the input of the cell in the center of the 3 × 3 neighborhood. According to the above
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mentioned local rules of Edge CNN, a white cell remains white independent of its
neighbors. Thus, since in the 16 truth tables the first 16 cells of the 5th column are
white, the corresponding output cell in the last column is also white. According to
the local rules, a black cell remains black if at least one nearest neighbor is black,
but it becomes white if all its nearest neighbors are black. Since the cells of the 5th
column from rows 17 to 32 in the truth tables are black, the corresponding output
cells of the last column remain black, except for the last row, where all the nearest
neighbors are black.

As the black-white patterns of the 16 truth tables remain unchanged in many
parts, it is sufficient to consider the last 16 columns of the 32 cells. Thus, we get
a minimal 16 × 32 CNN truth table of the EDGE CNN (Fig. 6.22). The truth table
for any binary CNN C(A0, B, z) with a prescribed initial state can be constructed by
simply solving the associated differential equations for the input of each of the 512
distinct binary patterns and calculating the corresponding binary outputs. It is also
easy to write a computer program to automatically generate the truth table under
these conditions. As these truth tables contain a great deal of redundancy in un-
changed patterns, it is generally sufficient to consider only the last column of output
values. In this way, a minimal CNN truth table with immense data compression can
be used to characterize the uncoupled CNNs.

The number of 2512 distinct Boolean functions of nine variables is gigantic,
and with 2512 ≈ 1. 3408 × 10154 > 10154 more than the volume of the uni-
verse. The uncoupled C(A0, B, z) CNNs are only a small subclass of CNNs. So
the question arises: Which subclass of Boolean functions characterizes the uncou-
pled CNNs exactly? In Sect. 6.2, we introduced the concept of linearly separable
and non-separable Boolean functions. The XOR-function (Fig. 6.11a) is an exam-
ple of a non-separable Boolean function. It can be proven that the class C(A0, B, z)
of all uncoupled CNNs with binary inputs and binary outputs is identical to the lin-
early separable class of Boolean functions. Thus, linearly non-separable Boolean
functions, such as the XOR function, cannot be realized by an uncoupled CNN. But
the uncoupled CNNs can be used as elementary building blocks, which are con-
nected by CNNs of logical operations. It can be proved that every Boolean function
of nine variables can be realized using uncoupled CNNs with nine inputs and ei-
ther one Logic OR CNN, or one Logic AND CNN, in addition to one Logic NOT
CNN.

Every uncoupled CNN C(A0, B, z) with static binary inputs is completely sta-
ble, in the sense that any solution converges to an equilibrium point. The waveform
of the CNN state increases or decreases monotonically to the equilibrium point, if
the state at this point is positive or negative. Moreover, except in some degenerated
cases, the steady state output solution can be explicitly calculated by an algebraic
formula without solving the associated nonlinear differential equations. Obviously,
this is an important result in characterizing a CNN class of nonlinear dynamics with
robust CNN templates. Completely stable CNNs are the workhorses of the most cur-
rent CNN applications. But there are even simple CNNs with oscillatory or chaotic
behavior. Future applications will exploit the immense potential of the unexplored
terrains of oscillatory and chaotic operating regions. Then, the Cellular Neural Net-
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Fig. 6.21a–p. Truth table of EDGE CNN [6.30]
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Fig. 6.22. Minimal CNN truth table [6.31]

works will actually be transformed into Cellular Nonlinear Networks with all kinds
of phase transitions and attractors of nonlinear dynamics.

An oscillatory CNN with only two cells is given by the templates

A =
0 0 0

β α −β
0 0 0

B =
0 0 0

0 0 0

0 0 0

z = 0

and zero boundary conditions. Figure 6.23 shows the architecture of the 1 × 2 CNN
with virtual boundary cells (gray) of zero potential (a), and the corresponding signal
flow graph. The state equations for the two cells of this CNN is given by the two
differential equations

ẋ1 = −x1 + αy1 − βy2
ẋ2 = −x2 + αy2 − βy1

The corresponding outputs yi (i = 1, 2) are related to the states xi by the standard
nonlinear function yi = f (xi) = 0. 5|xi + 1| − 0. 5|xi − 1| with piecewise-linear
characteristic.

In Fig. 6.24a,b, the corresponding time series x1(t) and x2(t) are shown for
example α = 2, β = 2, and initial condition x1(0) = 0. 1, x2(0) = 0. 1. In the
corresponding phase space (Fig. 6.24c), all trajectories starting from any initial state
except the origin will converge to a limit cycle.

A chaotic CNN with only two cells is given by the templates

A =
0 0 0

1. 2 2 −1. 2

0 0 0

B =
0 0 0

0 1 0

0 0 0

z = 0
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Fig. 6.23a,b. 1×2 CNN with (gray) virtual boundary cells (a) and signal flow graph (b) [6.32]

Fig. 6.24a–c. Periodic time series (a, b) and limit cycle (c) of 1 × 2 CNN [6.33]

and zero boundary conditions. Contrary to the example above, the CNN should be
non-autonomous with a sinusoidal input u11(t) = 4. 04 sin(π t/2) to cell C(1, 1), but
zero input u12 = 0 to cell C(1, 2) (Fig. 6.18a). From a technical point of view, the
circuit of the two-cell CNN is driven by a sinusoidal signal. The state equations are
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given by the two nonlinear differential equations

ẋ1 = −x1 + 2y1 − 1. 2y2 + 4. 04 sin(π t/2)
ẋ2 = −x2 + 1. 2y1 − 2y2

with the output function yi = f (xi) of the previous CNN. The corresponding non-
periodic time series x1(t) and x2(t) are shown in Fig. 6.25a,b with the same initial
conditions of the previous example. In the corresponding phase space (Fig. 6.25c),
the trajectories are attracted by a strange attractor called “Lady’s shoe attractor”,
because its Poincaré map (Fig. 6.25d) resembles the shape of a lady’s high heel.

From the perspective of nonlinear dynamics, it is convenient to think of standard
CNN state equations as a set of ordinary differential equations, with the components
of the CNN gene as bifurcation parameters. The dynamical behavior of standard
CNNs can then be studied in detail. Numerical examples deliver CNNs with limit
cycles and chaotic attractors. For technical implementations of standard CNNs, such
as silicon chips, complete stability properties must be formulated, in order to avoid
oscillations, chaotic, and noise phenomena. These results also have practical impor-
tance for image processing applications by CNNs. As brains and computers work

Fig. 6.25a–d. Non-periodic time series (a, b), chaotic attractor (c), and Poincaré map (d) of
1 × 2 CNN [6.34]
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with units in two distinct states, the conditions of bistability are studied in brain
research, as well as in chip technology.

The emergence of complex structures in nature can be explained by the non-
linear dynamics and attractors of complex systems. They result from the collective
behavior of interacting elements in a complex system. The different paradigms of
complexity research promise to explain pattern formation and pattern recognition in
nature by their specific mechanisms. From the CNN point of view, it is convenient
to study the subclass of autonomous CNNs that cells have no inputs. These systems
can explain how patterns arise, evolve, and sometimes converge to an equilibrium
by diffusion-reaction processes. Pattern formation starts with an initial uniform pat-
tern in an unstable equilibrium that is disturbed by small, random displacements.
Thus, in the initial state, the symmetry of the unstable equilibrium is broken, lead-
ing to rather complex patterns. Obviously, in these applications, cellular networks
do not only refer to neural activities in nerve systems, but also to pattern formation
in general. Thus, the abbreviation CNN is now understood as “Cellular Nonlinear
Network”.

A CNN is defined by the state equations of isolated cells and the cell coupling
laws. For simulating diffusion-reaction processes, the coupling law describes a dis-
crete version of diffusion (with a discrete Laplacian operator). CNN state equations
and CNN coupling laws can be combined in a CNN diffusion-relation equation to
determine the dynamics of autonomous CNNs. If we replace their discrete functions
and operators by their limiting continuum version, we get the well-known contin-
uous partial differential equations of diffusion-reaction processes, which have been
studied in the complexity paradigms of, for example, Prigogine’s non-equilibrium
chemistry and Haken’s synergetics. Chua’s version of the CNN diffusion-reaction
equation delivers computer simulations of these pattern formations in chemistry and
biology (e.g., concentric, auto- and spiral waves). On the other hand, many appro-
priate CNN equations can be associated with any nonlinear partial differential equa-
tion. In many cases, it is sufficient to study the computer simulations of associated
CNN equations in order to understand the nonlinear dynamics of these complex sys-
tems. Sometimes, the autonomous CNNs (like digital cellular automata) are only
considered approximations of nonlinear partial differential equations for the practi-
cal purpose of computer simulations. But, Chua claims, nonlinear partial differential
equations are limiting forms of autonomous CNNs. Thus, only a subclass of CNNs
has a limiting representation of partial differential equations. In short, the CNN
paradigm of complexity is more than the conventional approach with differential
equations.

Pattern recognition is understood in relation to pattern formation. Coupled
CNNs with linear synaptic weights open avenues to much richer visual comput-
ing applications than uncoupled CNNs. In coupled CNNs, there are couplings from
the outputs of the surrounding cells to a cell in the center. Thus, at least one element
of the feedback (output) template A (which is different from the coefficient of the
cell in the center) is not zero. Coupled CNNs are, for example, able to detect holes
(i.e., a set of adjacent pixels) on a surrounding background. In particular, it turns
out that the famous connectivity problem can be solved by a simple coupled CNN
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of this kind. This problem is not only important for practical reasons, but also has
a long tradition in the history of cognitive science. How can we recognize connected
patterns (“gestalt”), such as shapes, figures, or faces from a set of pixels? In a fa-
mous proof, Marvin Minsky demonstrated that the connectivity of certain patterns
could not be recognized by neural networks like Rosenblatt’s “Perceptron”.

In the CNN paradigm, cellular neural networks (CNNs) work with the special
assumption of local activity. How can a locally connected neural network realize
global functions and recognize a “Gestalt”? The strategy of a CNN is to delete all
the pixels that are part of a connected object defined by black pixels on a white back-
ground. The intuitive idea is that in a complex image the connected parts of pixels
are burnt out like in a propagating bushfire. In the case of a connected pattern (e.g.,
a labyrinth), the last image of pattern production is empty like a burnt countryside.
In the other cases, the unconnected pixels are left over like bushes that have survived
the fire (Fig. 6.26). In the sense of the local activity principle, the wavefront of the
fire propagates from pixels to neighbor pixels and “detects” the connecting pixel
clusters.

CNNs of this type are also used to study nonlinear waves of propagation phe-
nomena (e.g., infectious diseases by computer simulations). With respect to Min-
sky’s problem with Rosenblatt’s “Perceptron”, it can be proved that the global con-
nectivity property can be realized by an appropriate CNN for any binary input pat-

Fig. 6.26. Snapshots of the propagation of the CONNECTIVITY CNN [6.35]
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tern. Appropriate coupled CNNs are able to simulate visual illusions, where some
images can be perceived in an ambiguous way, depending on the initial thought or
attention (Fig. 4.22). One of the examples of this phenomenon is the face-vase illu-
sion, where the image can be interpreted either as two symmetric faces, or as a vase.
Initial attention is implemented by specifying, via a second binary pattern, one of
the two ambiguously interpreted regions.

In the case of linear synaptic weights, the characteristics of a synapse or tem-
plate element are linear. But in technical applications (e.g., with voltage-controlled
current sources) or living cells with synaptic communication by neurotransmitter,
they are never completely linear. If we use nonlinear templates for modeling synap-
tic dynamics, the analysis becomes more complex. Thus, a compromise of modeling
is the application of uncoupled CNNs with nonlinear, space-invariant weights.

6.4 Universal Cellular Neural Networks
and Dynamic Complexity

Image processing and pattern recognition applications are sometimes linearly non-
separable problems that need programs of several cellular neural networks. A CNN
program defined by a string of CNN genes is called a “CNN chromosome”. Ev-
ery cellular automaton (CA) with binary or Boolean states can be considered
a CNN chromosome. In particular, Conway’s game-of-life CA (compare Fig. 5.23
in Sect. 5.6) can be realized by a CNN chromosome of two CNN genes that are con-
nected by the Logic AND Operation CNN. Since the game-of-life CA is a universal
Turing machine, the corresponding game-of-life CNN is also a universal Turing
machine with the capacity to self-replicate. These results lead to the technical im-
plementation of the analog-input analog-output CNN universal machine, the CNN
universal chip, which solves computational problems, performing a trillion opera-
tions per second. Because of its massively nonlinear dynamics, it differs from a con-
ventional digital computer.

The CNN Universal Machine (CNN-UM) architecture needs an analog and
logic memory, a local logic unit, and, like any programmable system, a global clock
to control the instructions during a given clock cycle. As mentioned previously,
CNN templates can be considered instructions with well-defined input and output.
Not all tasks can be implemented by a single CNN template. Thus, when apply-
ing several templates, we define a CNN subroutine or function, such as in a C-like
programming language. There are three equivalent ways of implementing CNNs:
(1) hardware schematics with discrete hardwired cells and additional local and
global devices, (2) a flow diagram of the CNN algorithm, and (3) a CNN program in
an analogic (α) CNN programming language with CNN analog and logic operations.

There are practical and theoretical reasons to introduce the CNN-UM. From an
engineering point of view, it is totally impractical to implement different CNN com-
ponents or templates with different hardwired CNNs. Historically, John von Neu-
mann’s general purpose computer was inspired by Turing’s universal machine in
order to overcome all the different hardware machines of the 1930s and 1940s used
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for different applications. From a theoretical point of view, CNN-UM opens new av-
enues of analogic neural computers. In the CNN-UM, analog (continuous) and logic
operations are mixed and embedded in an array computer. It is a complex nonlinear
system that combines two different types of operations, namely, continuous nonlin-
ear array dynamics and continuous time with local and global logic. Obviously, the
mixture of analog and digital components is greatly similar to the neural informa-
tion processing in living organisms. The stored program, as a sequence of templates,
could be considered a kind of genetic code for the CNN-UM. The elementary genes
are the templates. 3 × 3 templates, for instance, have a 19 real-number code. In the
nervous system, the consecutive templates are placed in space as subsequent layers
of neurons.

Fig. 6.27. The structure of the CNN universal machine (CNN-UM) [6.36]
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The CNN-UM architecture consists of so-called extended standard CNN universal cells
(Fig. 6.27). The main components of a universal cell are the local logic memory (LLM)
and local analog memory (LAM), the local logic unit (LLU) and local analog output unit
(LAOU) for digital and continuous (analog) signals, respectively. The local communication
and control unit (LCCU) receives the programming instructions, in each cell, from the global
programming unit (GAPU). The instructions contain the analog template values {A, B, z}, the
logic fuction codes for the local logic unit, and the switch configuration of the cell, specifying
the signal paths and some settings of the functional units. Thus, the GAPU needs storage
elements (registers) for three types of information, namely an analog program register (APR)
for the CNN templates, a logic program register (LPR) for the LLU functions, and a switch
configuration register (SCR). Besides a global clock (GCL), there is a global wire (GW),
which decides whether any black pixels remain in the processed images.

After the introduction of the architecture with standard CNN universal cells and
the global analogic programming unit (GAPU), the complete sequence of an ana-
logic CNN program can be executed on a CNN Universal Machine. The description
of such a program contains the global task, the flow diagram of the algorithm, the
description of the algorithm in a high level α programming language, and the se-
quence of macro instructions by an α compiler in the form of an analogic machine
code (AMC). At the lowest level, the chips are embedded in their physical envi-
ronment of circuits. The AMC code will be translated into hardware circuits and
electrical signals. At the highest level, the α compiler generates a macro-level code,
called analogic macro code (AMC). The input of the α compiler is the description
of the flow diagram of the algorithm using the α language. Figure 6.28 describes
the levels of the software and the core engines. The AMC is used for software sim-
ulations running on a Pentium chip in a PC and for applications in a CNN universal
machine chip with a CNN chip prototyping system (CCPS).

The CNN universal machine is technically realized by analog and digital VLSI
(very large scale integrated) implementation. It is well-known that any complex
digital technology system can be built from a few implemented building blocks by
wiring and programming. In the same way, the CNN Universal Machine, also con-
taining analog building blocks, can be constructed. A circuit model of a standard
CNN cell was introduced by Chua and Yang. A core cell only needs three build-
ing blocks: a capacitor, resistor, and a VCCS (voltage controlled current source). If
a switch, logic register, and logic gate are added to the three building blocks, the
extended CNN cell of the CNN-UM can be implemented. In principle, six building
blocks plus wiring are sufficient to build the CNN-UM: resistor, capacitor, switch,
VCCS, logic register, and logic gate. As in a digital computer, stored programmabil-
ity can also be introduced for analogic neural computers, enabling the fabrication of
visual microprocessors. Similar to classical microprocessors, stored programmabil-
ity needs a complex computational infrastructure with a high-level language, a com-
piler, a macro code, an interpreter, an operating system, and a physical code, in
order to make it understandable to the human user. Using this computational infras-
tructure, a visual microprocessor can be programmed by downloading the programs
onto the chips, as in the case of classical digital microprocessors. Writing a program
for an analogic CNN algorithm is as easy as writing a Basic program.
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Fig. 6.28. The levels of the software and the core engines in the CNN-UM [6.37]

Concerning computing power, CNN computers offer an orders-of-magnitude
speed advantage over conventional technology when the task is complex. There are
also advantages in size, complexity, and power consumption. A complete CNN-
UM on a chip consists of an array of 64 × 64 0.5 micron CMOS cell processors
(Fig. 6.29). Each cell is endowed not only with a sensor for the direct optical input
of images and video, but also with communication and control circuitries, local
analog, and logic memories. CNN cells interface with their mearest neighbors, as
well as with the outside world. A CNN chip with 4096 cell processors on a chip
translates into 3.0 Tera OPS (operations per second) of computing power, which is
about a thousand times faster than the computing power of an advanced Pentium
processor. By exploiting the state-of-the-vertical packaging technologies, close to
1015 OPS CNN-UM architectures can be constructed on chips with 200×200 arrays.
Thus, CNN universal chips will realize Tera OPS or even Peta (1015) OPS, which are
required for high-speed target recognition and tracking, real-time visual inspection
of manufacturing processes, and intelligent vision capable of recognizing context-
sensitive and moving scenes.
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Fig. 6.29. One of the first prototypes of a CMM universal chip [6.38]

The CNN universal chip is a milestone in information technology, because it
is the first fully programmable, industrial-sized, brain-like stored-program dynamic
array computer. A CNN is a highly complex computational system, as it consists
of a massively parallel focal-plane array with the computational power of a super-
computer. Besides its computing power, the CNN universal chip, with its unique
brain-like architecture, can be used to implement brain-like information processing
tasks that, until now, could not be performed by conventional digital computers.
The development of adaptive sensor-computers will be a challenge for robotics and
high-tech medicine in the future.

From a theoretical point of view, the CNN-UM gives deep insights into the dy-
namic complexity of computational processes. While the classification of complex-
ity by cellular automata (CA) in Sect. 5.6 was more or less inspired by empirical
observations of pattern formation in computer experiments, the CNN approach de-
livers a mathematically precise measure of dynamic complexity. The basic idea is
to understand cellular automata as a special case of CNNs that can be characterized
by a precise code for attractors of nonlinear dynamical systems, and by a unique
complexity index.

Each 1-dimensional cellular automaton with two near neighbors of a cell in
a row (Fig. 5.24a) is determined by a Boolean function of three variables for the
two neighbors and the cell itself. Let us consider a ring of coupled cells Ci (i =
0, 1, 2, . . . , M). In the context of CNNs, each cell is assumed to be a dynamical
system with a state xi, an output yi, and three inputs ui−1, ui, and ui+1. Variable ui−1
denotes the input from the left neighboring cell Ci−1 to cell Ci, variable ui, the self-
input of cell Ci, and variable ui+1 the input coming from the right neighboring cell
Ci+1 to cell Ci. The Boolean function B delivers an output yi = B(ui−1, ui, ui+1) of
cell Ci. In this sense, any 1-dimensional cellular automaton with near neighbors can
be characterized by the truth table for a Boolean function of three binary variables
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ui−1 ui ui+1 yi

0 −1 −1 −1 γ0

1 −1 −1 1 γ1

2 −1 1 −1 γ2

3 −1 1 1 γ3

4 1 −1 −1 γ4

5 1 −1 1 γ5

6 1 1 −1 γ6

7 1 1 1 γ7

Fig. 6.30. Colored Boolean cube of a Boolean function representing a 1-dimensional cellular
automaton [6.39]

(Fig. 6.30). As there are 23 = 8 possibilities of three-bits words, we get 28 = 256
Boolean functions B.

In order to characterize cellular automata by dynamical systems with differential equa-
tions, the binary states of a truth table are not denoted by the conventional symbols 0 and 1,
but by the integers −1 and 1. The general scheme of a truth table for 256 Boolean functions is
shown in Fig. 6.30. Each Boolean function can be characterized by a unique code number if
we replace the output yi = (γ7, γ6, γ5, γ4, γ3, γ2, γ1, γ0) with γj either −1 or 1 by the equiva-
lent binary form yi = (β7,β6,β5,β4,β3,β2,β1,β0) with βj either 0 or 1. The corresponding
code number is the integer N = β7·27+β6·26+β5 ·25+β4 ·24+β3 ·23+β2 ·22+β1 ·21+β0 ·20

with N = 0, 1, 2, . . . , 255, because there are 256 distinct combinations of this 8-bit word for
256 Boolean functions (compare Fig. 5.24a).

Geometrically, each Boolean function of three binary variables can be uniquely repre-
sented by a Boolean cube with eight vertices (Fig. 6.30). The center of the cube is located
at the origin of a 3-dimensional space with coordinates ui−1, ui, and ui+1. The coordinates
(ui−1, ui, ui+1) of each vertex k (k = 0, 1, 2, . . . , 7) correspond to row k of the truth table.
The vertex numbers k are the binary codes of the coordinates (ui−1, ui, ui+1) if we replace
−1 and 1 by 0 and 1. The number 2k shown next to vertex k is its decimal equivalent. A vertex
is colored red if yi is 1, and blue if yi is −1. Obviously, a colored Boolean cube represents the
same information as the corresponding truth table. We get the code number N of a Boolean
function if we add the decimal numbers 2k associated with the red vertices k of a Boolean
cube. In the corresponding rule of a 1-dimensional cellular automaton (Fig. 5.24a), the red
vertices represent the outputs 1, while the blue vertices represent the outputs 0. For example,
rule N = 110 (Fig. 5.18e) is represented by a Boolean cube with red vertices 1, 2, 3, 5, 6, and
blue vertices 0, 4, 7. Thus, 110 = 21 + 22 + 23 + 25 + 26.

There are 256 different colored cubes representing the 256 Boolean functions
of 1-dimensional cellular automata. The spatial geometry of the colored cubes opens
new avenues to characterizing the structural complexity of a Boolean function, its
corresponding cellular automaton and rule. In relation to the Boolean functions of
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uncoupled CNNs in the previous chapter, we will distinguish linearly separable rules
and linearly non-separable rules. In the context of colored cubes of cellular au-
tomata, separability refers to the number of cutting (parallel) planes separating the
vertices into clusters of the same color. For rule 110, for example, we can introduce
two separating parallel planes of the corresponding colored cube, which are distin-
guished in Fig. 6.31b by two different colors. The red vertices 2 and 6 lie above
a yellow plane. The blue vertices 0, 4, and 7 lie between the yellow and a light blue
plane. The red vertices 3, 1, and 5 lie below the light blue plane. It is well-known
that the cellular automaton of rule 110 is one of the few types of the 256 automata
that are universal Turing machines. In the sense of Wolfram’s 3rd class of computer
experiments (Fig. 5.24e), it produces very complex patterns.

An example of an automaton that can only produce very simple patterns is rule
232. There is only one separating plane cutting the corresponding Boolean cube
for separating colored points (Fig. 6.31a): Red vertices 3, 5, 6, and 7 lie above
a light blue plane. The blue vertices 0, 1, 2, and 4 lie below the light blue plane.
A colored Boolean cube with three parallel separating planes is shown in Fig. 6.31c,
representing the cellular automaton of rule 150: The blue vertex 6 lies above a green
plane. The red vertices 2, 4, and 7 lie between the yellow and green planes. The
blue vertices 0, 3, and 5 lie between the yellow and light blue planes. The blue
vertex 1 lies below the light blue plane. Obviously, it is impossible to separate the
eight vertices into three colored clusters and, at the same time, separate them by two
parallel planes, no matter how the planes are positioned.

A rule whose colored vertices can be separated by only one plane is said to
be linearly separable. An examination of the 256 Boolean cubes shows that 104 of
them are linearly separable. The remaining 152 rules are not linearly separable. In
general, each rule can be separated by various numbers of parallel planes. In order
to use the number of separating planes as unique complexity index κ , it is neces-
sary to choose the minimum number. Obviously, all linearly separable rules have
a complexity index κ = 1. An analysis of the remaining 152 linearly non-separable
rules shows that they have a complexity index of either 2 or 3. For example, rule
110 has a complexity index κ = 2, whereas rule 150 has a complexity index κ = 3.
No rule with complexity index κ = 1 is capable of generating complex patterns,
even for random initial conditions. The emergence of complex phenomena signif-
icantly depends on a minimum complexity of κ = 2. In this sense, complexity
index 2 can be considered the threshold of complexity for 1-dimensional cellular
automata.

All 256 Boolean cubes can be classified into equivalence classes with an identical com-
plexity index. The corresponding Boolean rules are called equivalent if a transformation ex-
ists, mapping the one rule onto the other one, and vice versa. In the case of a Red ↔ Blue
complementary transformation, the colors of the vertices of corresponding Boolean cubes
(Fig. 6.30) complement each other, i.e., corresponding red vertices become blue, and vice
versa. In the case of left-right symmetrical transformation, the colors between vertices 3 and
6, as well as between vertices 1 and 4, in one Boolean cube (Fig. 6.30) are interchanged
in order to get the other one. Obviously, rule 150 (Fig. 6.31c) is invariant under a left-right
symmetrical transformation, because vertices 1 and 4 have identical colors (red), in addi-
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Fig. 6.31a–c. Separating planes in colored Boolean cubes of rule 232 (a), rule 110 (b), and
rule 150 (c) [6.40]
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tion to vertices 3 and 6 (blue). All members belonging to the same equivalence classes of
Boolean rules have an identical complexity index and show dynamic behavior that can be
predicted from each other. Thus, it is sufficient to study only one representative member of
each equivalence class. In general, 33 independent linearly separable and 47 independent
linearly non-separable rules can be identified. Thus, the nonlinear dynamics and dynamic
complexity of 256 Boolean functions with three binary inputs is characterized by only 80
independent representatives.

Every 1-dimensional cellular automata or Boolean function with rule number
N (N = 0, 1, 2, . . . , 255) can be mapped into the nonlinear dynamical system of
a corresponding cellular nonlinear network. In the context of CNNs, a 1-dimensional
cellular automaton with near neighbors can be considered a CNN with a 1 × 3
neighborhood of each cell Ci with inputs ui−1, ui, ui+1 (from the two neighboring
cells Ci−1, Ci+1 and the cell Ci itself) and an output yi. For a CNN of this kind, the
time-dependent evolution of future states in a cell Ci depends on the past cellular
state xi, the three inputs ui−1, ui, ui+1, and the output yi = y(xi). Thus, the nonlinear
dynamical systems for generating all 256 rules are defined by a state equation in
the form ẋi = f (xi, ui−1, ui, ui+1) and the same initial condition xi(0) = 0 at time
t = 0. The output yi of cell Ci is generated from state xi by the output equation
yi = y(xi) := 1

2 (|xi + 1| − |xi − 1|).
Figure 6.32 shows the nonlinear dynamical systems of CNNs for rules 2, 110,

150, and 232. The truth table for each rule is cast in the form of a gene code for
CAs (compare Fig. 5.24a). Each pattern consist of 30 × 61 pixels, generated by
a 1-dimensional cellular automaton with rule number N. The top row corresponds
to the initial pattern, which is “0” (blue) for all pixels except the center pixel, which
is “1” (red). The evolution over the next 29 iterations is displayed in rows 2 to 30.
Obviously, these CNNs generate patterns identical to the corresponding CAs. The
complexity index κ of each rule is quoted in the upper right corner of each quadrant.

The attractors of these nonlinear dynamical systems code precisely the truth
tables N (N = 0, 1, 2, . . . , 255) associated with their Boolean functions and Boolean
cubes. Therefore, we replace the output yi in the state equations (e.g., Fig. 6.32)
by their output equation yi = y(xi) := 1

2 (|xi + 1| − |xi − 1|) and consider the
state equations in the form ẋi = g(xi) + w(ui−1, ui, ui+1) with g(xi) = −xi + |xi +
1| − |xi − 1| and the remaining part w(ui−1, ui, ui+1). Since the nonlinear function
w(ui−1, ui, ui+1) delivers a constant real number for each vertex n (n = 0, 1, 2, . . . , 7)
with coordinates (ui−1, ui, ui+1) of the corresponding Boolean cube or for each row n
of the corresponding truth table (Fig. 6.30), we can write w(n) := w(ui−1, ui, ui+1).
Then, the state equation is recast into the form ẋi = g(xi)+ w(n) := hn(xi) for each
vertex n of the Boolean cube or row n of the corresponding truth table. For each
of these eight differential equations, we can study the trajectories and attractors
in the corresponding phase space. Figure 6.33 shows two typical cases if w(n) is
positive or negative. The curve Γ between the two trajectories denotes the plot of
g(xi) (“driving-point function”). The upper curve denotes a vertical translation of Γ
upwards by w(n) > 0, the lower curve denotes a vertical translation ofΓ downwards
by w(n) < 0. Since the initial condition is always assumed to be xi(0) = 0, the
trajectory must begin from the upper initial point P+(0) if w(n) > 0, or from the
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Fig. 6.32. Nonlinear dynamical systems generating rules 2, 110, 150, and 232 [6.41]

lower initial point P−(0) if w(n) < 0. Since ẋi > 0 at all points to the right of
the initial point P+(0) on the upper curve, the trajectory must flow monotonically
to the right until it arrives at the right equilibrium attractor point Q+ located at
xi = xi(Q+) > 1. Conversely, the trajectory must begin from the lower initial point
P−(0) if w(n) < 0 and flow leftwards until it arrives at the left equilibrium attractor
point Q− located at xi = xi(Q−) < −1.
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Fig. 6.33. Trajectories and attractors in the phase space of CNN state equation [6.42]

The corresponding output yi(t) converges at the Boolean state yi = 1 in the
former, and to the Boolean state yi = −1 in the latter case. If we paint vertex n
red whenever its equilibrium value xi(Q+) > 1, and blue whenever xi(Q−) < −1,
then the color of all eight vertices for the associated Boolean cube is uniquely de-
termined by the equilibrium solutions (attractors) of the eight associated differential
equations. There are eight attractors for each rule. A CNN chip can solve these
equations in a few nanoseconds, practically instantaneously.

The separating planes of a Boolean cube can be determined by the nonlinear func-
tion w(ui−1, ui, ui+1) of the corresponding state equation. Geometrically, it is interpreted
as a scalar function w(σ ) of only one variable σ := b1ui−1 + b2ui + b3ui+1, representing
an axis in the coordinate system (ui−1, ui, ui+1) with orientation b1, b2, and b3 (Fig. 6.30).
Each colored vertex of a Boolean cube can be mapped on the σ -axis by a perpendicular pro-
jection. If we plot the curve of w(σ ) on the σ -axis, we observe that its zero-crossing points
σ0 with w(σ0) = 0 separate the colored points on the projection-axis into clusters of com-
mon color. Thus, w(ui−1, ui, ui+1) is sometimes called the discriminant function. Each zero-
crossing point of w(σ ) defines a 2-dimensional plane σ0 = b1ui−1 + b2ui + b3ui+1 in the 3-
dimensional coordinate system (ui−1, ui, ui+1), separating the colored vertices of a Boolean
cube into clusters of common color (Fig. 6.31). If the colored vertices can be separated by
only one plane, we call the corresponding Boolean rule linearly separable. The reason is now
obvious: In this case, the associated discriminant function w(σ ) is a straight line. In the case
of several separating planes, there are several zero-crossing points of the separating curve
associated with a nonlinear discriminant function w(σ ). The corresponding Boolean rule is
then called linearly non-separable. The projection technique delivers a precise procedure to
compute the complexity indices of Boolean rules and their associated 1-dimensional cellular
automata.
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Fig. 6.34. Linearly non-separable rules decomposed in terms of linearly separable rules [6.43]

Linearly separable local rules have a complexity index κ = 1. We previously
analyzed linearly separable Boolean functions of two inputs (Sect. 6.2), nine inputs
(Sect. 6.3), and three inputs (Sect. 6.4). In general, they are the simplest building
blocks of Boolean functions of any dimension. From an engineering point of view,
they are also the simplest ones to implement on a chip. All 104 linearly separa-
ble rules are implemented on the CNN universal chip (CNN-UM) directly onto the
hardware without programming. A technical advantage is that linearly separable
rules are the fastest to execute on a chip. They only need a few nanoseconds via
silicon technology, and speed of light via optical technology. The speed of the as-
sociated cellular automata is independent of the size of the array. It takes the same
amount of time to run a 2-dimensional linearly separable rule on a 10 × 10 array as
on a 106 × 106 array of a cellular automaton on a CNN chip.

In the context of uncoupled CNNs (Sect. 6.3), we mentioned that linearly non-
separable Boolean rules of nine inputs can be implemented by combining only
a finite number of linearly separable rules via some few standard logic operations
(AND, OR, and NOT). As a special case of this fundamental insight, all 152 linearly
non-separable rules of three inputs can be decomposed in terms of at most three lin-
early separable rules and combining them pixel-wise via only AND and OR logic
operations. Figure 6.34 shows examples of decompositions for rule 110, involving
only one AND operation (a) and for rule 150 with one AND and one OR operation
(b). Thus, rule 105 is one of the most complicated 1-dimensional cellular automata
to implement on a chip. Concerning dynamic complexity, rule 150 has the highest
complexity index of 3.
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6.5 Organic Computing, Neurobionics, and Embodied Robotics

The natural evolution of organisms has become an important paradigm in computing
and robotics. The ultimate aim for organic computing is to construct self-organizing
computing systems that display desired emergent behavior, just as the organisms
produced via natural evolution do [6.44]. Emergence refers to a system property
that is not associated with any one particular part of the system [6.45]. In nonlinear
dynamical systems, the whole is more than the sum of its parts. In robotics, it refers
to behavior that results from the agent–environment interaction but that is not pre-
programmed. The term is generally not used if the behavior is entirely prespecified,
such as when the trajectory of a hand has been precalculated by a planner. Agents
designed using high-level ontologies have no room for emergence, for novel behav-
ior. A domain or high-level ontology consists of a complete representation of the
basic vocabulary – the primitives – that are used when designing the system. These
are the only components that can be used: everything is built on top of these basic
elements. The domain ontology remains constant for an extended period of time,
often for the entire lifetime of the system. A well-known example is the bounded
knowledge representation of an expert system. High-level ontologies are therefore
used whenever we know which environments the systems will be applied to, for
example in traditional computational systems or factory robot systems. If the en-
vironment is not known, a better strategy is to define a low-level ontology and to
introduce redundancy with a wide variety of self-organization.

What can we learn from nature? In unknown environments, a better strategy is
to define a low-level ontology, introduce redundancy (which there is a lot of in sen-
sory systems, for example), and leave room for self-organization. Low-level ontolo-
gies of robots only specify systems like the body, sensory systems, motor systems,
and the interactions among their components, which may be mechanical, electrical,
electromagnetic, thermal, etc. According to the complex systems approach, the com-
ponents are characterized by certain microstates that generate the macrodynamics
of the whole system.

Take a robot with legs. Its legs have joints that can assume different angles, and
various forces can be applied to them. Depending on the angles and the forces, the
robot will assume different positions and behave in different ways. Further, the legs
have connections to each other and to other elements. If a six-legged robot lifts one
of its legs, this immediately changes the forces on all the other legs, even though
no explicit connection needs to be specified. The connections are implicit: they are
enforced through the environment, because of the robot’s weight, the stiffness of its
body, and the surface on which it stands. Although these connections are elementary,
they are not explicitly included unless the designer wishes them to be. Connections
may exist between elementary components that we do not even realize. Electronic
components may interact via electromagnetic fields that the designer is not aware of.
These connections may generate adaptive patterns of behavior with high degrees of
fitness (order parameters). But they can also lead to sudden instability and chaotic
behavior. In our example, communication between the legs of a robot can be im-
plicit. In general, there is more implicit communication in a low-level specification



286 6 Complex Systems and the Evolution of Artificial Life and Intelligence

than in a high-level ontology. In restricted simulated agents with a bounded knowl-
edge representation, only what is made explicit exists, whereas in the complex real
world, many forces and properties exist, even when the designer does not explicitly
represent them. Thus, we must study the nonlinear dynamics of these systems in
experimental situations in order to find appropriate order parameters and to prevent
attractors due to unwanted emergent behavior.

In the dynamical systems approach, we first need to specify what system we in-
tend to model, and then we have to establish the differential or difference equations.
Time series analysis and further criteria for data mining can aid in the construction
of appropriate phase spaces, trajectories, and attractors [6.46]. In organic comput-
ing, one approach would be to model an agent and its environment separately, and
then to model the agent–environment interaction by making their state variables mu-
tually dependent [6.47]. The dynamical laws of the agent A and the environment E
can be described by simplified schemes of differential equations dxa/dt = A(xa, pa)

and dxe/dt = E(xe, pe), where xe and xa represent their state variables, such as an-
gles of joints, body temperature, or location in space, and p represents parameters
like thresholds, learning rates, nutrition, fuel supply, and other critical features of
change. Agents and environments can be coupled by defining a sensory function S
and a motor function M. The environment influences the agent through S. The agent
influences its environment through M. S and M constitute the agent–environment
coupling, i.e., dxa/dt = A(xa, S(xe), pa) and dxe/dt = E(xe, M(xa), pe), where pa

and pe are not involved in the coupling. Examples are walking or moving robots in
environments with obstacles. In this case, the basic analytical problem can be stated
in the following way: given environment dynamics E, agent dynamics A, and sen-
sory and motor functions S and M, explain how the observed behavior of the agent
is generated.

One of the controllers of the dynamics evolves when the agent’s angle sensors
are turned off and cannot sense the position of its legs. In this case, the activation lev-
els of the neurons exhibit a limit cycle that causes the agent’s single leg to stand and
swing rhythmically. Doing this causes the robot to walk. The system’s state repeat-
edly changes from the stance phase, with the foot on the ground, to the swing phase,
with the foot in the air, and then back. This example illustrates that the dynamical
systems approach can be applied in a synthetic way in order to design and con-
struct robots and their environments. However, in general, the dynamical systems
approach is used in an analytical way: it starts from a given agent–environment in-
teraction, which is formalized in terms of differential equations. Complex behavior
can be analyzed by solving, approximating or simulating the equations, in order to
find the dynamic attractors. The dynamic attractors of the interacting system can be
used to steer an agent or to allow it to self-organize in a desired way.

Obviously, self-organization leads to the emergence of new phenomena at suc-
cessive levels of evolution. Nature has demonstrated that self-organization is nec-
essary in order to manage the increasing complexity at these evolutionary levels.
However, nonlinear dynamics can also generate chaotic behavior that cannot be pre-
dicted and controlled in the long run. In complex dynamical systems of organisms,
monitoring and control are realized at hierarchical levels. There is still no final and
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unified theory of organic computing. We only know portions of biological, neu-
ral, cognitive, and social systems in the framework of complex dynamical systems.
However, even in physics, which doesn’t have a unified theory of all physical forces
yet, scientists still work successfully with an incomplete patchwork of theories. In
order to delve deeper into organic computing, we need interdisciplinary coopera-
tion between the technical, natural, computer, and cognitive sciences, as well as the
humanities.

The goal of organic computing is the construction of self-organizing computing
systems that provide services, that can help us to manage a world of increasing com-
plexity and to support a sustainable human infrastructure in the future. The complex
system approach will enable us to create a new kind of computer-assisted method-
ology in scientific, technological, industrial, economic, and even cultural life. How-
ever, we must not forget that we must decide on the direction and the ethical goals
that the technical development will target. Today, these goals vary between epis-
temic and scientific interests, technical, economic, cultural, and last but not least
military applications. Undoubtedly, medical research and applications must be high
on the list of research goals. I remind the reader of the old idea that medicine aims
not only at scientific recognition and research, but at praxis too. Praxis means knowl-
edge that is applied both technically, in the sense of an engineer, as well as to cure,
help, and heal. Knowledge and research are only instruments to achieve the funda-
mental aim of medicine, which since the days of Hippocrates has been to preserve
life [6.48].

The central organ of human personality is the brain. Thus, the medical task of
maintaining the health of the brain places a great responsibility upon neurosurgeons.
Their medical treatments involve manipulations of the whole mind–brain entity. In
order to provide the best medical treatment possible for the human mind–brain en-
tity, pioneering efforts are being made to expand and refine the diagnostic and thera-
peutic potentials of neurosurgery, operation planning, operating techniques, and re-
habilitation by applied research. As far as we know, the human mind–brain entity is
the most complex system produced by evolution. Therefore, an interdisciplinary re-
search program involving computational neuroscience, physics, engineering, molec-
ular biology, medicine, and epistemology is required to deal with this complex or-
gan. This is why some scientists have started an interdisciplinary research program
on the brain and mind that addresses ethical and anthropological issues. This has
been called “neurobionics.”

In general, “bionics” means the simulation of natural functions and processes
through the application of technical and artificial procedures and systems. The way
that aeroplanes and submarines are designed to emulate the aerodynamic bodies of
birds and fishes are well-known examples of this approach. Historically, bionics is
the age-old dream of mankind to simulate the principles of nature using technical
means, in order to manage the complex problems of life. In this tradition, neurobion-
ics means the elaboration of a techno-biological brain-like computing system con-
structed from silicon and/or organic materials that can enhance the morphological
and functional properties of natural neurons and be used to develop neural prosthe-
ses. This is not a Frankensteinian dream; consider the desolate states of patients suf-
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fering from tumors or accidental injuries of the brain, and how neurobionics could
potentially benefit them.

The specific medical discipline concerned with the treatment of conditions of
the central nervous system and the human brain is neurosurgery [6.49]. As the brain
is the biological medium of human personality and intellectual capability, the neu-
rosurgeon must not only bring to bear the principles of brain neurology but also
knowledge about the human mind and its function. Already, neurosurgery has re-
sulted in progress in the treatment of patients. Notable successes in this regard have
been achieved through the introduction of diagnostic visualization procedures like
computerized and nuclear magnetic resonance tomography, and by the use of mi-
crosurgical procedures during operations.

However, crucial problems encountered during the treatment of patients with
brain diseases are still unsolved. For example, the central nervous system of the adult
human can only replace damaged areas of tissue with functional tissue to a very
limited extent. This is due to the inability of nerve cells to subdivide further after
completing the embryonic phase, in contrast to other cells of the body. Only embry-
onic tissue has the potential to adapt itself to the surrounding host tissue. Therefore,
the destruction of neural cell groups by illness or accident often leads to permanent
functional disabilities. In this area of application, artificial complex networks, with
their principles of self-organization, will become extremely interesting.

In the history of medicine, attempts have been made to restore injured periph-
eral nerves by autografts. This method is based on the fact that even adults have the
capacity to regenerate nerve cell extensions that grow centrally from the spinal cord
into the periphery of the target organs. Thus, parts of functionally unimportant sen-
sitive nerves are removed from appropriate points in the body and inserted into the
area containing the interrupted nerves that need to be restored. The regrowth of the
interrupted nerve fibers is still not completely understood, however. Therefore, it is
not possible to control the growth of a transplant consisting of several hundred indi-
vidual nerve cell extensions towards the target organ. As the central nervous system
is unable to regenerate, transplantation is ineffective in the case of injuries close to
the spinal cord.

An improvement in peripheral nerve transplants is assumed in the field of
molecular biology. An understanding of the physiology and biochemistry of the
nerve cells and their associated cells, like glial cells and Schwann cells, could lead
to new methods of nerve transplantation. One advanced method of replacing tis-
sue in the central nervous system is to transplant cells from the same body that are
genetically altered and adapted. The effect of neural growth factors, the relation-
ship between the source of the transplant and the target area in the recipient brain,
and many other problems of molecular biology must be investigated. The resulting
methods are based on knowledge derived from genetic engineering.

Another possible method of performing peripheral nerve transplantation would
be to use artificial instead of biological transplants. Attempts to restore failed parts
of the nervous system by artificial replacement have already been made in the fields
of medicine and neurology.
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Artificial transplants are equipped with learning algorithms that act as natural
“blueprints.” In contrast to MCP (McCulloch & Pitts) networks, they are BPN (bi-
ological pulse-processing) networks that work in real time. Figure 6.35 illustrates
the general scheme for such a neurotechnological implant. A learning neural net-
work encodes control signals for sensation and motion into many parallel pulse
sequences, which are received by a set of implanted microcontacts that stimulate
the intact nerves (Fig. 6.35a). Signals registered by nerves are decoded by a neural
net that controls a movement prosthesis (Fig. 6.35b).

Fig. 6.35a,b. General scheme for neurotechnological prostheses with learning neural
nets [6.50]

In patients suffering from a damaged spinal cord, attempts have been made to
enhance standing and walking function with the aid of electrostimulation from BPN
systems. Assuming that the peripheral apparatus is intact, electrical stimulation of
the peripheral nerves brings about muscle contraction. This is caused by parallel
pulses from an adaptive learning network encoding the auditory commands of the
sensory system (Fig. 6.35a), which are provided by the patient. The system has the
ability to learn because it can adapt to the particular patient conditions involved
via sensory feedback to the moving legs. However, the system still depends on the
patient being conscious and able to speak. In the next research step, the unconscious



290 6 Complex Systems and the Evolution of Artificial Life and Intelligence

intentions of the brain must be decoded from signals registered in the spinal cord.
These signals can then be sent, for example as radio waves, to a receiver with an
adaptive neural encoder which again causes the muscles to contract, as in Fig. 6.35a.

One ambitious neurotechnology project concerns a certain type of blindness.
Patients with retinitis pigmentosa suffer from damage to certain layers of the retina
that are responsible for the perception of contours, surfaces, colors, and other visual
features. The damaged layers of the retina are bridged by a neuroprosthesis. In the
architecture of the so-called retina implant, the visual scene is registered by photore-
ceptors (e.g., transistors) in a spectacle frame equipped with an adaptive neural net-
work. Optical signals are processed by the neural network (BPN), which can learn to
model the receptive fields like a human eye. The signals are coded and transmitted
telemetrically to an inductive receiver with an electrode array at the damaged retina
in order to stimulate the optic nerve and the central nervous system (CNS). As this
research progresses, the spectacle arrangement will be replaced by a receptor unit
with adaptive neural net located directly in the eye. While neurotechnology cannot
realistically hope to replace the full visual faculty in these first trials, a restored per-
ception of contours and surfaces would facilitate patient orientation, and this is the
present aim of the endeavor.

Decisive progress can be achieved if the stimulation of different muscle groups
can be carried out directly at the branching of the ends of the peripheral nerves
without the need to use inorganic metal electrodes. Biotechnical connectivity must
be realized by molecular devices that are designed to produce electronic components
from organic molecules. The processors that control the electrodes and process the
information must be based on the principles of artificial neural networks, which are
able to process data at a speed high enough to fulfil the requirements of human walk-
ing and standing apparatus. Obviously, the development of those complex networks
requires the interdisciplinary cooperation of molecular biology, computational neu-
roscience, and high-tech hardware engineering.

A further example of the artificial replacement of failed neuronal function is the
replacement of the inner ear with a cochlear implant. If the auditory nerve is intact, a
25-pole electrode can be implanted via microsurgery as a replacement for the organ
of Corti. The auditory nerve is then excited by suitable electrode impulses that sim-
ulate acoustic patterns. The impulses are controlled by sequential microprocessors
that are programmed according to linguistic knowledge. However, during difficult
operations to remove tumors of the auditory nerve, there is the danger that the audi-
tory nerve can be damaged, resulting in deafness in the patient. It is now also pos-
sible to connect an artificial network directly into the central auditory pathway. The
sense of hearing can be restored despite loss of the auditory nerve. Interdisciplinary
cooperation between biotechnology, computational neuroscience, and engineering
is again necessary in order to achieve such advances.

In general, neurosurgery must take care of the following clinical aspects: neu-
rosurgical diagnostics, operation planning, operative technique, and neurorehabil-
itation, which can be aided by applying the complex system approach to biotech-
nology and computational neuroscience. The visualisation processes of computer-
ized tomography have opened up a new era in diagnostics. As neurosurgeons must
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deal with one of the most complex organs ever to have evolved, operation plan-
ning and simulation have become essential steps in preparing a successful therapy.
In this context, complexity also refers to the personality traits of a patient, his or
her particular case history, the pathology of a certain pathogenic process, individual
anatomical particularities, and possible postoperative consequences of an operation.

A new method has already been put into practice. Neurosurgical operations can
be simulated by CAD (computer-aided design)-supported techniques. Computer-
generated, three-dimensional reconstructions of pathological anatomy can be pro-
duced by particular programs. Potential operational difficulties can be discovered
during the simulation and thus avoided during the actual operation. In terms of op-
erative techniques, one progressive development would be a reduction in the need
for large open operations. Stereotactical and endoscopic techniques are important
methods of minimizing surgery-induced trauma. The further development of laser
technology in combination with neurosurgical endoscopy, intraoperative visualiza-
tion processes, and computer-controlled regulation techniques could lead to useful
complex operative instruments in the future.

A research group at the Massachusetts General Hospital in Boston used mag-
netic resonance image techniques (MRI) to get functional image maps of human
task activation in the visual cortex in response to photic stimulation. Contrast agents
were injected periodically over time. Images of the primary visual cortex were ob-
tained via rapid MRI scanning without injection. Figure 6.36 shows real-time visu-
alizations of brain cognitive activity as complex networks [6.51]. These advanced
computer-based visualizations of complex neural nets not only help injured patients,
but they will ultimately allow us to see ourselves think, feel, and dream.

Hallucinations are caused by self-organizing phenomena within the visual cor-
tex. This type of pattern perception appears to be similiar to the formation of patterns
in fluids in chemistry or aerodynamics. In chemistry, local nonlinear interactions
of chemical substances generate macro phenomena, such as oscillating chemical
clocks (e.g., the Belousov–Zhabotinsky reaction). Pattern formation in the visual
brain is due to local nonlinear coupling among cells. In the living organism, there
is a spatial transformation between the pattern perception of the retina and pat-
tern formation within the visual cortex of the brain. The first simulations of this
corticoretinal transformation by neural networks showed remarkable similarities to
pattern perceptions that are well-known from subjective hallucination experiences.
Perceptions of a spiraling tunnel pattern have been reported by people who were
clinically dead and later revived. The light at the end of the tunnel has sometimes
been interpreted as a religious experience.

Cellular neural networks (CNN) are optimal candidates for simulating local
neural cell interactions that generate collective macro phenomena. A simple au-
tonomous CNN was designed using a template with local activation and lateral
inhibition. It spontaneously generates a labyrinth pattern from random initial con-
ditions. In the next step, the retinocortical map is applied to the resulting stable
pattern. Geometrically, a polar-coordinate point on the retina is mapped from the
Cartesian point on the cortex, producing the perceived vision of a spiraling tunnel
pattern (Fig. 6.37). The advantage of a CNN-based model is obvious: it can easily be
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Fig. 6.36. Real-time visualizations of brain cognitive activity of complex networks [6.51]

programmed onto a CNN universal machine (CNN-UM) chip (see Sect. 6.4), which
can be incorporated into the living brain in future neurosurgery applications.

One important reason to develop artificial neural networks is that the produc-
tion of highly integrated electronic circuits based on the chemical element silicon
will reach its physical limits in the near future. It will then become impossible to
miniaturize silicon-based circuits, the basis for microprocessors, any further. High
parallelism and self-organization strategies are required to deal with the brain’s
complexity. Thus, the use of a new substrate appears to be crucial to the devel-
opment of information-processing systems. First steps are currently being taken to
develop molecular electronic devices based on biological components. Electrical
signals could be passed between nerve cells via organic conductors.

In computational neuroscience, computer simulations of neural networks can
help to identify the algorithms actually used by the central nervous system and the
brain. Present models of artificial neural nets are mainly investigated by simulations
performed on vector computers, workstations, special coprocessors, or transputer
arrays. However, the advantages of spatiotemporal parallelism in complex networks



6.5 Organic Computing, Neurobionics, and Embodied Robotics 293

Fig. 6.37. CNN model of hallucinations [6.52]

are entirely or partially lost when simulations are performed on classical computers.
Execution of tasks in real time only becomes possible with specially designed neural
hardware.

Cellular neural networks (CNN) that process information in nanoseconds (in
standard designs) and even at the speed of light (in optical technology) seem to
be optimal candidates for neurobionic applications. There are surprising similari-
ties between CNN architectures and, for example, the visual pathway of the brain.
An appropriate CNN approach is called the “Bionic Eye,” which involves a for-
mal framework of vision models combined and implemented on the CNN universal
machine (CNN-UM). The analysis starts with a model of the receptive field orga-
nization in the retina and the visual pathway. Figure 6.38a shows a neuron with
one axonal output, which acts as a branch to several other neurons and dendritic in-
puts. The small gaps denote the synapses that are modeled by template elements.
In Fig. 6.38b, a neuron in the center receives recurrent outputs from its neigh-
bors. Thus, the receptive field of a central neuron is modeled using a corresponding
3 × 3A-template as its local sphere of influence. In Fig. 6.38c, a part of a two-layer
neuron network is shown, with each layer shown as a one-dimensional representa-
tion of a two-dimensional grid. The neuron in the center of layer 2 receives dendritic
inputs from the neighborhood of input layer 1. The corresponding weights are mod-
eled by a B-template.

Several neuroanatomic and neurophysiological models can be translated into
CNN cloning templates. Length tuning, for example, means that certain neurons in
the lateral geniculate nucleus (LGN) and the visual cortex give a maximal response
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Fig. 6.38a–c. CNN neurobionics models, with a neuron (a), an A-template (b), and a B-tem-
plate (c) [6.53]

to an optimally oriented bar of a certain length. The response decreases or vanishes
as the length of the bar stimulus increases. A corresponding CNN model detects
horizontal, vertical, and diagonal bars whose lengths do not exceed three pixels.
Another function of the visual cortex is orientation selectivity, which can also be
realized by an uncoupled CNN. Visual illusions studied in cognitive psychology,
such as the arrowhead illusion, can also be simulated by an uncoupled CNN. After
introducing the “Lego” elements of the retina, such as cells, synapses, and templates
for receptive field organization, a simplified multilayered CNN model of the retina
can be designed and applied in neurobionics. Ultimately, the CNN-UM architecture
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allows the implementation of many spatiotemporal neuromorphic models. The same
universal machine architecture can be used to mimic the retinas of animals (e.g., of
a frog, a tiger salamander, a rabbit, or an eagle) and they can also be combined
and optimized for technical applications. Combinations of biological and artificial
chips, long associated with cyborgs in science fiction, are now a technical reality,
with inspiring ramifications for robotics and medicine.

Clinical applications of CNN chips to epileptology have already been envis-
aged. The idea is to develop a miniaturized chip device for the prediction and pre-
vention of epileptic seizures. Nonlinear time series analysis techniques have been
developed that can characterize the typical EEG patterns of an epileptic seizure and
recognize the phase transitions leading to epileptic neural states. These techniques
mainly involve estimates of established criteria, such as correlation dimension mea-
surements, Kolmogrov–Sinai–entropy, Lyapunov exponents, measures of determin-
ism, fractal similarity, etc. (see Sect. 2.6). Implantable seizure predictions and pre-
vention devices are already being applied to parkinsonian patients. For epileptic pro-
cesses, such a device would continuously monitor features extracted from the EEG,
compute the probability of an impending seizure, and provide suitable prevention
techniques. It should also be both highly tunable to individual patient patterns and it
should allow the estimation of these features in real time. Ultimately, such devices
should have a low energy consumption and be small enough to be implemented in
a miniaturized, implantable system. These requirements are optimally realized by
CNNs, with their massive parallel computing power, analogic information process-
ing, and capacity for universal computation. Figure 6.39 shows a miniaturized chip
device for seizure prediction and prevention. EEG data are recorded from electrodes
implanted near or within the epileptic area and fed to a time series analysis system.
The system extracts features of an impending seizure using a warning system (I)
and supports the on-demand infusion of fast-acting drugs to prevent the seizure (II).

In future neurobionic applications, the training of neural chips that can serve
as interfaces between human nerve fibers will give rise to nonlinear dynamics of
great complexity. The chip designer is faced with interconnection problems: if tens
of thousands of wires are to be connected physically to a neuron and thousands

Fig. 6.39. CNN-UM chip used for epileptic seizure prediction and prevention [6.54]
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of neurons need to be implemented, then the wiring area will grow to such a size
that the delay in the wires will tend to exceed the latency time of the functional
block representing the neuron. As the reduction of technological structure size is an
economically and physically limited process, bionics designers now favor an archi-
tectural solution to the interconnection problem. First, they would need to check the
real processing time of the neural net, and they would then consider the extent to
which it is possible to deviate from its ideal massive parallelism.

Obviously, the underlying parallel hardware significantly increases the com-
plexity of the software and calls for new methods. Powerful operating systems, pro-
gramming tools, and flexible user interfaces must be designed in order to ease in-
terface communication with the system. This task will become especially important
in an interdisciplinary team with differing degrees of knowledge of computer sci-
ence. Knowledge-based expert systems may help team members to work with the
bionic software and to help them integrate into the team. Neural network hardware
programming will differ significantly from the classical programming of von Neu-
mann computers. The programmer must identify the necessary network topology
and architecture and specify neuron behavior with interconnection schemes. Thus,
the use of heterogeneous and hybrid systems that integrate neural nets with clas-
sical knowledge-based systems (as described in Sect. 6.2) appears to be a realistic
approach in neurobionics.

In nature, complex patterns of movements are not computed and controlled by
a central processor, but by self-organizing learning algorithms of feedback nets. An
example is a grasshopper with six legs and different motor modules that perform
lifting, swinging, and coordinating. External information about an unknown envi-
ronment is learned and stored implicitly by the distribution of synaptic weights in
neural nets. During evolution, decentralized network modules were used as building
blocks for different organisms due to changing conditions. These biological insights
into motor information processing are already being applied to robotics and chip
technology (embodied cognition). Soft computing uses fuzzy logic, genetic and
learning algorithms for flexibility, and adaptive and human-like information sys-
tems. Affective computing aims at recognizing and modeling emotional states of the
brain as information processing. Cyborgs (cybernetic organisms) represent a vision
of a brain with implanted neural computer chips. Neural nets could recognize pat-
terns in brain activity (e.g., EEG signals) that correlate with states of cognition and
consciousness. In a next step, neural activity patterns could be scanned and down-
loaded to a supercomputer. Then, of course, an important ethical problem arises:
could human personality (not just the DNA genotype) be cloned and influenced by
computational systems?

Some people may fear that hybrid computer systems of increasing complexity
cannot be managed without highly specialized training. New interfaces between
computer systems and users must be developed. The manipulation of computer-
generated images should achieved via direct speech and visual and tactile contacts
in a “virtual reality.” In this case, the user becomes part of the computer-generated
reality by connecting his or her senses to it through technology.
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Visual impressions are generated by a monitor with position sensors which can
be worn as an eye-mask. A microphone is connected to a speech recognition system
that translates spoken orders into system commands. Tactile contacts are generated
and modeled using so-called “data gloves” that transform hand and finger move-
ments into electrical signals (Fig. 6.40) [6.55].

Optical fibers are placed between two layers of cloth in the data glove. They are
connected to a special module that transforms the light signals into electrical sig-
nals. It is assumed that data gloves will have practical applications in, for instance,
astronautics. NASA is interested in the development of robots that can perform com-
plicated and dangerous actions in space by simulating the hand movements of an
astronaut located safely in a space station. It also appears possible to extend the
principles of data gloves to create a data suit that simulates the movements and
reactions of the whole body.

The senses have an important influence on human imagination. Thus, molecular
modeling can be enhanced through the use of not only computer-assisted graphics

Fig. 6.40. Data glove [6.55]
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that aid structural visualization, but through the introduction of a tactile element
too. Using data gloves, chemists will be able to grasp a molecule, to feel its surface,
and to manipulate it in a desired manner. Engineers try to generate the effects of
touches and forces using particular technical systems. As it manipulates molecules
in a virtual reality via data gloves, the human hand should receive feedback from
the imaginary objects touched. The complexity of the experienced world should be
simulated in all its aspects.

In the examples given above, the virtual reality created corresponds to actual
reality in the macro- or microcosmos. However, imagine computer-generated sce-
narios of fantastic worlds that only exist as electronic realities. The boundary be-
tween technical feasibility and science fiction appears to be fuzzy. People may feel
like imaginary bodies in a computer-generated “telereality.” There are proposals to
build so-called “home reality engines” that can transfer the user into a virtual world
of both desired and unwanted fantasies. Sex with Marilyn Monroe or discussions
with Albert Einstein – whatever you want – have been promised by the prophets of
computer-generated virtual realities. Authors of science fiction like William Gibson
describe a computer-generated “cyberspace” that will be experienced by people as
a gigantic hallucination:

Cyberspace. A consensual hallucination experienced daily by billions of legitimate op-
erators, in every nation, by children being taught mathematical concepts . . . . A graphic repre-
sentation of data abstracted from the banks of every computer in the human system. Unthink-
able complexity. Lines of light ranged in the nonspace of the mind, clusters and constellations
of data. Like city lights, receding . . . [6.56]

These perspectives, of course, give rise to an essential critique on our cultural
development. People locked up in boxes with their own private or manipulated vir-
tual reality generated by super-Crays and neural networks seem to be a chilling
vision akin to Orwell’s Big Brother.

Besides those ethical problems, there are some severe epistemic questions that
arise with the possibility of computer-generated complex artificial worlds. In tradi-
tional epistemology, philosophers like Berkeley and Hume discussed the solipsistic
or sceptical position that the reality of the outer world cannot be proved by any
means. All of our impressions may be illusions generated by our brain and its men-
tal states. These puzzling problems were not meant as jokes by childish philosophers
who were completely ignorant of the world. They were invoked to inspire us to test
and analyze the validity of our arguments. Modern logicians and philosophers of the
mind like Hilary Putnam have translated the problem in the following way, which
reminds us of the famous Turing test.

Imagine that a human has been subjected to an operation by an “evil scientist.”
The person’s brain has been removed from the body and placed in a vat of nutri-
ents that keeps the brain alive. The nerve endings have been connected to a hybrid
neural computer which causes the person whose brain it is to have the illusion that
everything is perfectly normal. All the person experiences is the result of electronic
impulses sent from the computer to the nerve endings. If the person intends to raise
his hand, the feedback from the computer will cause him to “see” and “feel” the
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hand being raised, although there is no physical eye or ear, only the corresponding
patterns in the brain. The evil scientist can cause the poor person to experience any
situation. Putnam said:

It can even seem to the victim that he is sitting and reading these very words about the
amusing but quite absurd supposition that there is an evil scientist who removes people’s
brains from their bodies and places them in a vat of nutrients which keep the brains alive. The
nerve endings are supposed to be connected to a super-scientific computer which causes the
person whose brain it is to have the illusion that . . . [6.57]

Could we, if we were brains in a vat in this way, say or think that we were?
Putnam argues that we could not. The supposition that we are actually brains in
a vat cannot possibly be true, because it is self-refuting. A self-refuting supposition
is one whose truth implies its own falsity. A logical example is the general thesis
that all general statements are false. If it is true, then because of its generality it must
be false. An epistemic example is the thesis “I do not exist” which is self-refuting if
thought by me. Thus, Descartes argued that one can be certain that oneself exists, if
one thinks about it. The supposition that we are brains in a vat has this property.

Suppose that we are brains in a vat with nutrient fluid and afferent nerve endings
connected to a super neural computer that produces all of the brain’s sensory inputs.
As the human brain in the vat is functioning well, it of course possesses conscious-
ness and intelligence. However, its ideas and images of trees, houses, etc., have no
causal connection to actual trees, houses, etc., in the outer world of the brain in the
vat, because these ideas and images are produced by our super neural computer.
Thus, if we suppose that we are brains in a vat with all of these conditions, then
the words “vat,” “nutrient fluid,” etc., do not refer to an actual vat, nutrient fluid,
etc., but to certain ideas and images that have been produced by our super neural
computer. Consequently, the statement “we are brains in a vat” is false (Fig. 6.41).

Note that the possibility that we are brains in a vat is not ruled out by physics,
but by logic and philosophy. A physically possible world in which we are brains in
a vat is compatible with the laws of physics. However, we can even use a Gedan-
kenexperiment to rule out the existence of physically possible worlds.

The reason for this seems to be the structure of self-referentiality, which is typ-
ical of the high-level capabilities of the mind–brain system. In Sects. 4.3 and 4.4,
we argued that self-referentiality may be a prerequisite to consciousness and self-
consciousness – not only in the mind–brain system, a product of biological evolu-
tion, but even in artificial complex systems with a quite different hardware.

Turing himself proposed a well known test that could be used to decide whether
an artificial system like a computer is conscious nor not: allow someone to have
a keyboard conversation with the computer and a similar conversation with a (hu-
man) stranger. If he cannot tell the computer from the human being based on the
conversations, then the computer is conscious. In short: a computing machine is
conscious if it can pass the Turing test.

The “brain in the vat” thought experiment shows that Turing’s dialog test must
fail at some point. The words and sentences used by the artificial system do not nec-
essarily refer to the actual objects and events we refer to in natural human languages.
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Fig. 6.41. Brain in a vat which thinks that it is a brain in a vat

The use of words and sentences can be governed by syntactic patterns that are pro-
grammed into the Turing machine in a highly sophisticated way. Weizenbaum’s
program ELIZA, which simulated the dialog of a patient with his psychologist, may
hint at these possibilities. In this sense, Turing’s test cannot rule out the notion that
the conversation of the machine is only a syntactic play that resembles intelligent hu-
man discourse. Nevertheless, in principle, it cannot be excluded that self-organizing
complex systems are able to learn the particular references of syntactic words and
rules using prototype patterns and experiences with their environment. In the long
run, we will have to answer the ethical question of whether we want to develop those
highly autonomous (dissipative) systems.

6.6 Embodied Artificial Intelligence and Artificial Life

While technological advances in the life sciences and computer science are expected
in the future, we can also expect much research into “artificial life” and “artificial
evolution.” In a famous quotation from his Monadology (§64), Leibniz argued that
every organism is a kind of “divine machine” or “natural automaton surpassing all
artificial automata infinitely.” The modern sciences of computability and complex-
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ity, which try to model intelligent behavior using computational and complex dy-
namical systems, can be traced back to the work of Leibniz.

While “artificial intelligence” (AI) is a classical discipline within computer sci-
ence, “artificial life” (AL) describes a novel but growing field of research performed
within the framework of the science of complexity. The term “artificial life” literally
means life made by man rather than by nature. For Christopher G. Langton from the
Santa Fe Institute, who organized the first AL conference in 1987, artificial life is
still in the process of defining itself [6.58]. Natural life on Earth is organized at the
molecular, cellular, organism, and population–ecosystem levels. Research into arti-
ficial life attempts to find modeling tools that are powerful enough to capture the
key concepts of living systems at these levels of increasing complexity.

A key concept of living systems is the distinction between genotype and phe-
notype. In biology, the genotype is the complex set of genetic information (genes)
encoded in the DNA of an organism. The phenotype is the physical organism it-
self. The development of the phenotype, as directed by the genes of the genotype,
is called morphogenesis. Morphogenesis was characterized in Sect. 3.3 by com-
plex dynamical order parameters. In our framework of complex systems, phenotype
refers to a macrophenomenon with order parameters that depend on the nonlinear
interactions of genes at the microlevel of the system. The high nonlinearity of ge-
netic dynamics provides a great variety of possible phenotypes. On the other hand,
it prevents predictions or derivations of the properties or future behavior of an indi-
vidual phenotype.

In the artificial life approach, the distinction between genotype and phenotype
is not restricted to life processes based on carbon-chain chemistry. In the theory of
computability, the genotype can be generalized as being a set of local computational
devices (“genes”) which recursively generate global phenotype structures.

Examples of the artificial life approach are the so-called L-systems of Aristid
Lindenmayer, which model filaments and branching botanical trees and other plants
and organs [6.59]. L-systems consist of sets of rules for deriving strings of sym-
bols, which are analogous to the formal grammars of Noam Chomsky. For example,
x → y means that every occurrence of the symbol x in a formal structure should
be replaced by the string y. The symbol x can appear on the right as well as the left
side of some rules. Thus, the set of rules can be applied recursively to previously
derived structures. We then get finite structures (“phenotypes”) step by step, ad in-
finitum. If the context of symbolic replacement is not considered, the rules are called
context-free. Context-free rules that only replace single symbols are equivalent to
the operations of finite state machines (or the regular languages of Chomsky gram-
mars). This kind of L-system can produce branching structures such as the vascular
network of the heart shown in Fig. 3.9.

When there is more than one symbol on the left-hand side of a rule, the rules
constitute context-sensitive grammars that are equivalent to Chomsky’s Turing lan-
guages. Obviously, in context-sensitive grammars the way that local rules are ap-
plied depends on neighboring symbols, which corresponds to nonlinear interactions
of the elements in complex systems. Without context sensitivity, the global struc-
tures (“phenotypes”) produced by L-systems are linearly decomposable.
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A formal advantage of L-systems is their ability to measure complexity in the
context of computer science (cf. Sect. 5.2). A phenotype is interpreted as a formal
structure that may or may not belong to the class of derivable structures in a certain
L-system. Thus, the undecidability of the membership to a given class indicates
that this class is more complex than those for which the membership is decidable.
Furthermore, we can measure the computational time for derivations in L-systems.
In this case, L-systems can be ordered according to the degree of complexity from
N to NP complete problems.

L-systems provide a rich variety of computer-generated shapes for modeled
plants and organs. Sometimes the formal rules of L-systems can be realized by
mechanisms observed in matter. In supramolecular chemistry, for example, tree-like
polymers such as dendrimers (cf. Sect. 2.5) are generated by a divergent synthesis of
repeating bifurcations which can be described by the recursive rules of an L-system.
Obviously, L-systems are highly applicable to computer graphics that illustrate and
visualize molecular and cellular growth in chemistry and biology. However, the ac-
tual mechanisms of molecular and cellular growth must be observed and measured
in the laboratories of chemists and biologists of course – not by computer experi-
ments.

Another example of the artificial life approach is the concept of cellular au-
tomata, which we discussed in Sect. 5.6. Their simple sets of local rules can be inter-
preted as “genotypes” that produce “phenotypes” of more or less complex patterns.
Cellular automata allow remarkable simulations of key concepts in biology. John
von Neumann’s idea of a self-reproducing automaton has already been mentioned.
Although this idea is justified by a mathematically precise proof, it is hard to realize
with technical computers. The reason for this is von Neumann’s requirement that the
self-reproducing structure must be a universal computer that has the degree of com-
plexity of a universal Turing machine. Obviously, self-reproducing molecules from
prebiotic evolution (for example, see Eigen’s model, described in Sect. 3.3) were
hardly capable of universal construction. Therefore, Christopher Langton dropped
the requirement for universality and designed a very simple cellular automaton that
can reproduce itself. It consists of a set of neighboring cells that are finite state
automata.

In Fig. 6.42, each number is the state of one of the automata in the lattice. Blank
space means cells in state 0. The 2-states form a sheet around the 1-state data path,
which forms a loop with a tail at one end, reminiscent of a Q-shaped virus. The inner
data path conducts data, such as the state pairs 70 and 40, which are necessary for
self-reproduction. With each new generation of the whole cellular automaton, the
cells in this inner layer follow rules that affect the states of the neighboring cells.
They propagate signals counter-clockwise around the loop. When the signals reach
the end of the tail, each 70 signal extends the tail by one unit and the two 40 signals
construct a left-hand corner at the end of the tail. For each full cycle of the signals
around the loop, another side and corner is constructed. After four cycles the tail
loops back on itself and the two loops are disconnected. The cellular automaton of
the loop has then reproduced itself.
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Each loop goes on to produce further offspring, which also reproduce (Fig.
6.43a,b). This development continues indefinitely and produces an expanding colony
of loops. As the loops in the core of the colony have no space to reproduce, they lose
their tails and “die” (Fig. 6.43c). Thus, the colony contains a reproductive fringe that
surrounds a growing “dead” core (Fig. 6.43d). This pattern seems to be similar to
the growth of coral, with dead skeletal structures inside and living cells on the sur-
face.

In Sect. 5.6, we mentioned that cellular automata can be used as discrete and
digital models of phase portraits describing the global dynamical behavior of com-
plex systems. The complexity classes of cellular automata (Fig. 5.24b,c) corre-
spond to the degrees of complexity of the attractors that classify dynamical systems.
Langton introduced a certain parameter λ that characterizes the dynamical behavior
of cellular systems depending on their transition rules [6.61]. Figure 5.24a shows
a one-dimensional cellular automaton with 8 = 23 transition rules since there are
three neighboring cells and two possible cellular states.

In general, a cellular automaton has KN transition rules for N neighbors and K
states. An arbitrary state of a cellular automaton is distinguished as the quiescent
state. In Fig. 5.24b, the quiescent state is the white cell (“zero”). If nq is the number
of transition rules to this special quiescent state, then there are KN − nq remaining
rules that should be spread randomly and uniformly over the other K − 1 states.
Now, the λ-parameter is defined by λ = (KN − nq)/KN , which ranges from zero to
one. If nq = KN , then all transition rules of the automaton are to the quiescent state

Fig. 6.42. Self-reproducing Langton loop with an extending tail, and the formation of
a daughter loop [6.60]
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Fig. 6.43a–d. Expanding colony of artificial coral [6.60]

and λ = 0. If nq = 0 then there are no transition rules to the quiescent state and
λ = 1.

The dynamical meaning of λ is obvious. If λ is very small and approaches zero,
then all dynamics are frozen after a short time, like the molecules in a frozen solid. If
λ is very large, approaching its maximum value, then the dynamics are very free and
chaotic, and a cellular pattern is very difficult to retain, like molecules in a gaseous
state. Physically, life cannot be maintained at these extreme scenarios. However,
there is a certain region between these extreme situations where the dynamics still
change, but not rapidly enough to lose all configurations of the previous state. This
region corresponds to the liquid state, which has indeed supported the emergence of
life during biological evolution.

Computer experiments show that the progression of the λ parameter charac-
terizes the spectrum of dynamical behavior from fixed point dynamics to periodic
dynamics, then to complex dynamics and finally to chaotic dynamics. These regimes
correspond to the complexity classes of cellular automata, as illustrated in Fig. 5.24b
(fixed point dynamics), Fig. 5.24c (periodic dynamics), Fig. 5.24e (complex dynam-
ics), Fig. 5.24d (chaotic dynamics). Thus, the λ parameter corresponds to a control
parameter of a dynamical system that characterizes its phase transitions. At an in-
termediate critical value λC, we observe a phase transition between periodic and
chaotic dynamics. There is an increase in complexity at λC in the sense of longer
cellular patterns. Transition lengths of cellular patterns are shorter at both ends of
the range of λ and they get longer in the middle of the range. At λC the transient
lengths diverge. Beyond λC, the transient lengths get shorter with increasing λ, al-
though the dynamical activity expands more rapidly with time until the onset of
chaos. There is even evidence of a second-order phase transition at λC, because the
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average Shannon entropy of cellular growth has no discrete jump, but is smooth
at λC.

From a computer modeling viewpoint, the solid, liquid, and vapor phases of
matter are only special types of dynamical system. They can also be realized by
artificial systems such as cellular automata in the medium of a computer. In this
framework, artificial life is possible in the neighborhood of the critical value λC.
In Sect. 5.6, we suggested how cellular automata may be related to our concept
of order parameters and synergetics. Order parameters correspond to macroscopic
spatiotemporal properties of cellular patterns such as fixed point, periodic, complex,
or chaotic attractors.

In the synergetic approach, stable and unstable collective motions (“modes”)
can be distinguished close to critical points of instability. This instability is caused
by a change in a control parameter, which leads to new macroscopic spatiotemporal
patterns. In cellular automata, stable and unstable motions can be characterized by
transition rules that may or may not change previous states. The stable modes are
enslaved by the unstable modes and can be eliminated (Fig. 6.16a). The remaining
unstable modes serve as order parameters that determine the global macroscopic
pattern of the system. In general, eliminating unstable modes by enslaving results
in an enormous reduction of the degrees of freedom. The global dynamics of order
parameters may lead to fixed points, periodic, oscillating, pulsating, or chaotic pat-
terns. Recall the patterns of fluid dynamics (Fig. 2.26a–e) or the laser (Fig. 2.27a,b).

For cellular automata, fixed point dynamics are independent of fluctuating ini-
tial states such as order formation near to thermal equilibrium. It corresponds to
a low value of the control parameter λ, close to zero. In the neighborhood of the crit-
ical value λC the cellular dynamics depends sensitively on initial fluctuations. Thus,
it simulates the complex dynamics of open dissipative systems such as the laser
in physics, a Belousov–Zhabotinsky reaction in chemistry, or the cellular differen-
tiation of an organism in biology. Langton’s λC-regime is not therefore restricted
to “artificial life” as a computer simulation of biological life, but to “artificial dis-
sipative non-chaotic systems.” In Sect. 3.3 we underlined that, from a biological
point of view, it is not sufficient to know the general scheme of dissipative self-
organization. We must know more about the tricks of “carbon-chain chemistry” to
create biological life (especially its clever combination of conservative and dissipa-
tive self-organization). We can then also grasp the complex dynamics of “artificial
life” in the medium of a computer. Otherwise the cellular automata approach is too
general for modeling life processes.

Since Darwin, selection has been emphasized as a key mechanism of biological
evolution. However, there are also selection processes in dissipative systems like
the laser in physics or the Belousov–Zhabotinsky reaction in chemistry. The non-
linearity of their dynamics shows that there is no superposition of pattern waves,
but a competition of stable and unstable modes. In the late 1960s, Ingo Rechen-
berg [6.62] used evolutionary strategies as blueprints when optimizing technical
systems. John Holland applied the process of selection to algorithmic learning pro-
cedures [6.63]. His genetic algorithms have gained importance in artificial life re-
search. In general, a genetic algorithm is a method for moving from one population
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of genotypes to a new “fitter” population. The genotypes may be represented by,
for example, bit strings for the genes of an organism, or by possible solutions to
a problem. The basic concept of a genetic algorithm works as follows. (1) Start
with a randomly generated population of genotypes. (2) Calculate the fitness of
each genotype in the population. (3) Apply selection and genetic operators to the
population to create a new population. (4) Go to step 2. Selection chooses those
genotypes in the population that can reproduce and decides how many offspring
each is likely to have; the fitter genotypes produce on average more offspring than
less fit ones. Holland distinguishes the genetic operators of crossover, mutation, and
inversion. Crossover exchanges subparts of two genotypes (Fig. 6.44). Mutation ran-
domly changes the values of some locations in the genotype. Inversion reverses the
order of a contiguous section of the genotype.

If the algorithmic procedure (1–4) is repeated over many time steps, it pro-
duces a series of populations (generations) until one or more highly fit genotype
emerges. Genetic algorithms have been applied successfully to many scientific and
engineering problems [6.64]. In Sect. 4.2, we analyzed neural networks with com-
petitive learning procedures (Fig. 4.12) and learning classifier systems. Eigen’s self-
optimizing strategy of genetics (Sect. 3.3) can also be thought of as a kind of genetic
algorithm.

The learning we each perform during our lives does not directly affect our geno-
type. However, if learning helps survival, then the organisms that are best able to
learn have the most offspring. They increase the frequency of the genes responsible
for learning. This indirect effect of learning on evolution is called the Baldwin ef-
fect. Computer experiments can help to understand and to measure the success of
this effect. The learning process is not necessarily supervised by a global function
that evaluates the fitness of the population. However, it is a macroeffect of individ-
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Fig. 6.44a–c. Crossover operator of a genetic algorithm with binary coding
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ual learning processes by individual agents of the population. At each time step t
in an agent’s life, the agent evaluates its current state, using its evaluation network.
This evaluation is compared with the evaluation it produced at time t − 1. The com-
parison gives a reinforcement signal that is used to modify the weights in the action
network. The next action can then be determined. Obviously, this kind of unsuper-
vised learning can be used in computer models of social and economic systems. It
can be embedded in the learning procedures of neural networks to improve their
capacity for problem solving.

Other extremely interesting applications of genetic algorithms include com-
puter models and computer experiments in gene technology. Another example is
the medical simulation of immune systems in which learning takes place [6.65].
In recent years, immunology has become a tremendously important field of med-
ical research, especially with respect to therapies for cancer. The human immune
system is capable of recognizing on the order of 1016 different foreign molecules.
The genome encoding the construction rules of the immune system only contains
about 105 genes. Thus, the immune system is an example of a complex dynamical
system which is highly effective for pattern recognition with relatively few instruc-
tion rules. There is no central organ to control it. Thus, pattern recognition by an
immune system is a macroeffect of local molecular interactions. It can be character-
ized by order parameters. They represent the extent of molecular binding between
the cells performing the recognition (“antibodies”) and the foreign material (“anti-
gens”). Genetic algorithms can be used as artificial immune systems in the medium
of a computer by representing antigens and antibodies with binary strings. The bi-
nary immune systems have been used to study the ability to detect typical patterns
in an environment of randomly distributed antigens or to learn new patterns if the
pathogenic material is rapidly evolving through mutations.

Organic forms of dangerous viruses are well known. But artificial forms are
not only interesting for simulating and modeling biological immune systems. Over
the past few years there has been considerable interest in the application of com-
puter viruses as security and the social problems of global computer-assisted net-
works [6.66]. In general, a computer virus is a code that can attach itself to other
computer entities such as programs, data files, etc. and reproduce itself, at least
partially. Today, we can distinguish generations of more or less sophisticated and
dangerous computer viruses. A shell virus, for example, forms a shell around the
original code. The virus becomes the program, and the original host program be-
comes a subroutine of the viral code. The most dangerous computer viruses are the
polymorphic or self-mutating viruses. They infect their targets with a modified or
encoded version of themselves. Scanners are often used as a computer virus defense
or an artificial immune system. They read data from a disk and apply pattern match-
ing operations against a list of known virus patterns. However, polymorphic viruses
cannot be detected by scanners and need learning algorithms for their detection.

From an artificial life viewpoint, computer viruses do satisfy some of the cri-
teria for life, but not all. Obviously, a computer virus is able to reproduce itself.
On the other hand, it is not the agent of reproduction; the computer is. Obviously,
a computer virus stores information on its self-representation. Like DNA molecules,
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its code is a template that is used by the virus to replicate itself. There also seems
to be a kind of metabolism that converts matter and energy. However, electrical en-
ergy is again not used by the virus but by the underlying computer system. There
are also ecological forms of computer viruses, such as those displaying predatory,
territorial, or self-protective behavior. Up to now, however, these behaviors have not
been initiated by the viruses themselves, but by a human programmer. In the future
virtual computer viruses in cyberspace may have all the dangerous capabilities that
are associated with biological life.

In biology, artificial life systems are applied as software, hardware, and wet-
ware systems [6.67]. Wetware refers to the techniques of a biochemical laboratory
which, for example, are used to model the molecular origins of prebiotic evolution in
an evolutionary reactor. These are, of course, empirical experiments that reproduce
the biochemical evolution of life or that create new forms of biological life. They
are only termed “artificial” because the conditions required for the self-organization
of biological life are arranged by human experimentors. Software systems are com-
puter programs or networks that model key concepts of life and evolution. We have
already analyzed the cellular automata approach. There are also computer programs
that model the evolution of animals. In the program GENESYS, for example, ani-
mals are represented as neural nets or finite automata. The genes of each organism
are represented as bit strings encoding the weights of a neural net or the transition
lists of a finite automaton. In order to increase the modeling capacity of the program,
it is executed on a massively parallel connection machine. The GENESYS program
reminds us of Leibniz’ vision of natural and artificial automata in his Monadology.
Hardware models of artificial life are used in robotics. In Sect. 6.5 we analyzed the
first applications of neurobionics. In Sect. 2.5 we mentioned the self-construction of
smart and “intelligent” new materials.

In evolutionary robotics, initial research is into the artificial evolution of intel-
ligent systems. It is important to realize that the traditional idea of computers as
“intelligent” is inappropriate, because the brain does not run simple programs. Evo-
lutionary theory says that the brain has evolved not to derive formal proofs but to
control our behavior and to ensure our survival. Thus, intelligence always manifests
itself in interactions with our bodily behavior and interactions with our environ-
ment. A new field has grown up around the study of behavior-based intelligence,
also known as embodied cognitive science, new AI, and behavior-based AI [6.68].
It aims to produce a coherent framework for the study of naturally and artificially in-
telligent systems. Its goal is to understand complexity and intelligence by designing,
constructing, and building robots.

The artificial life approach is clearly not a homogeneous field of research [6.69].
However, it does seem to provide many useful modeling instruments for chemical
and biological research. Besides these practical applications, there is a visionary
dream of AL with a hard scientific core. Actual biological evolution is simply a com-
plex dynamical model which is governed by highly nonlinear equations. Today, we
only know some properties of these equations, and when they are known, we have
no analytical tools to solve them exactly. Even numerical approximations would
be restricted by their immense degree of computational complexity. Nevertheless,
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computer models may allow computer experiments to become familiar with possi-
ble scenarios under several restricted constraints. These experiences with computer
experiments may be used to create particular conditions under which new materi-
als may construct themselves and new forms of life may organize themselves. The
first steps toward this have already been taken. Even the emergence of artificial con-
sciousness cannot be excluded in principle [6.70]. If we know the complex neural
dynamics behind conscious states (see Sects. 4.3, 4.4, 6.5), then the wetware and
hardware of the human brain is only a particular model. It is not matter itself that
makes new materials, life, and consciousness possible, but its particular organiza-
tion and dynamical laws, which can be modeled using more or less complex sys-
tems. Thus, in the long run, we will need to address the ethical question of whether
we want open-ended artificial evolution, the results of which we cannot forecast.

Obviously, interacting embodied minds and embodied robots generate embod-
ied superorganisms of self-organizing information and communication systems.
What are the implications of self-organizing human–robot interaction (HRI)? Self-
organization means more freedom but also more responsibility. Controlled emer-
gence must be guaranteed in order to prevent undesirable side-effects. However,
in a complex dynamical world, decision-making and acting is only possible un-
der conditions of bounded rationality. Bounded rationality results from limitations
on our knowledge, cognitive capabilities, and time. Our perceptions are selec-
tive, our knowledge of the real world is incomplete, our mental models are sim-
plified, our powers of deduction and inference are weak and fallible. Emotional
and subconscious factors effect our behavior. Deliberation takes time and we must
often make decisions before we are ready. Thus, knowledge representation must
not be restricted to explicit declarations. Tacit background knowledge, changes in
emotional states, personal attitudes, and situations with increasing complexity are
challenges encountered when modeling information and communication systems.
Human-oriented information services must be improved in order to support a sus-
tainable information world.

While a computational process of, say, a PC is running, we often do not know
the quality of the processing or how close the current processing is to a desired
objective. Computational processes seldom provide intermediate results to tell us
how near the current process is to any desired behavior. In biological systems, for
example, humans experience a sense that we know the answer. In a kind of recur-
sive self-monitoring, some internal processes observe something about our cognitive
states that help us to evaluate our progress. The evolutionary selection value of self-
reflection is obvious: if we have these types of observations available to us, we can
alter our current strategies according to changing goals and situations. Engineered
systems have some counterparts to the kinesthetic feedbacks one finds in biological
systems. However, the challenge is to create feedback that is useful for decisions
made by a system that can reflectively reason about its own computations, resource
use, goals, and behavior within its environment. This kind of cognitive instrumenta-
tion of engineered systems [6.71] can only be obtained through artificial evolution,
because the cognitive processes of humans, with their multiple feedback processes,
developed only after a long history of evolution and individual learning.
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Thus, we need generative processes, cognitive instrumentation, and reflective
processes of systems in order to handle the complexity of human–robot interac-
tions. Biological systems take advantage of layers with recursive processing involv-
ing self-monitoring and self-control from the molecular and cellular to the organic
levels. Self-reflection leads to a knowledge that is used by a system to control its
own processes and behaviors. What distinguishes self-reflection from any execu-
tive control process is that this reflection involves reasoning about that system; the
system is able to determine or adjust its own goals because of this reflection. How-
ever, self-reflection must be distinguished from self-consciousness. Consciousness
is at least partly about the feeling and experience of being aware of one’s own self.
Therefore, we could construct self-reflecting systems without consciousness that
may be better than biological systems for certain applications. It is well known that
technical instruments (e.g., sensors) already surpass the corresponding capacities of
natural organisms by many orders of magnitude. Self-reflecting systems could help
to improve self-organization and controlled emergence in a complex world.

But just how far should we go? Self-consciousness and feeling are states of
brain dynamics which could, at least in principle, be simulated by computational
systems. The brain observes, maps, and monitors not just the external world but also
internal states of the organism, especially its emotional states. To “feel” is to have an
awareness of one’s emotional states. In neuromedicine, the “Theory of Mind” (ToM)
even analyzes the neural correlates of social feeling, which are situated in special
areas of the neocortex. People, for example, suffering from Alzheimer’s disease
lose their feelings of empathy and social responsibility because the neural areas
associated with them are destroyed. Therefore, our moral reasoning and decision-
making has a clear basis in brain dynamics which, in principle, could be simulated
by self-conscious artificial systems. In highly industrialized nations with advanced
aging, feeling robots with empathy may be used to nurse old people as the number of
young people engaged in public social welfare decreases and personal costs increase
dramatically [6.72].



7 Complex Systems and the Evolution of Economies

How can one explain the emergence of economic order in human societies? This
chapter starts with a short history of economic systems in the seventeenth and eigh-
teenth centuries. The concepts of economic order that were conceived during this
period were often associated with other technical, physical, or biological concepts
of the period. The physiocrats based their model of the economic system of an abso-
lutist state on a typical eighteenth-century clockwork mechanism. The liberal ideas
of Adam Smith were devised against a historical backdrop of Newtonian physics.
Until recently, mainstream economics has often been inspired by models from lin-
ear mathematics, classical mechanics, thermal equilibrium thermodynamics, and
sometimes the Darwinian theory of evolution. Like many physicists, economists
believed in the exact computability of their (linear) models and suppressed the pos-
sibility of any “butterfly effect” that could lead to chaos and rule out long-term
economic forecasts (Sect. 7.1). To describe the dynamics of an economy, it is neces-
sary to have evolution equations for many economic quantities from perhaps thou-
sands of sectors and millions of agents. Therefore, stochastic models are often pre-
ferred when modeling global trends. Phase transitions and bifurcations at critical
points are crucial concepts when attempting to understand the nonlinear dynamics
of economies. Chaos and randomness lead to the behavioral concept of bounded
rationality (Sect. 7.2). One challenge of globalization is to understand the dramatic
dynamics of financial markets. Modern mathematical finance theory is still based
on Louis Bachelier’s assumption (from 1900) of an efficient market with a nor-
mal (“Gaussian”) distribution of price changes and mild randomness (Sect. 7.3).
However, complex and global markets are actually turbulent like the weather; they
exhibit typical power-law distributions. Stochastic processes with probabilistic at-
tractors (see Sect. 5.4) lead to abrupt and discontinuous events (the “Noah effect”)
or long-term trends (the “Joseph effect”) (Sect. 7.4). Economic and financial socio-
dynamics open up new avenues of econophysics (Sect. 7.5).

7.1 Smith’s Economics and Market Equilibrium

In the seventeenth and eighteenth centuries, classical mechanics became the univer-
sal scientific paradigm. The mechanistic view of an economy was elaborated later
on by the French scientist François Quesnay (1694–1774), the founder of the phys-
iocratic school in economics [7.1]. Quesnay, who started as a physician at the court
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of Louis XV, wrote a book about the “animal economy” (oeconomie animale) of
the human body inspiring him with the idea of an economy of the social organism.
Descartes’ mechanistic world view was the leading philosophy of the physiocrats.

Thus, the economic system was modeled as a mechanistic clockwork of cog
wheels, springs, and weights. A clock is a sequentially operating system with pro-
grammed functions. Analogously, the physiocratic economy cannot regulate itself.
Advances in agriculture, which are the driving forces of the physiocratic economy,
are compared with the weights and springs of a clock. Economic production was
referred to the composed movements in a clock. Consequently, economic prosperity
is only guaranteed by a regular economic circulation like a clockwork.

The physiocrats used a particular table (Tableau économique) to visualize the
circulation of wealth between the social classes of farmers (“productive class”),
tradesmen (“sterile class”) and land owner. In Fig. 7.1a, an economic period starts
when the class of land owners distributes their received rent (for instance 200 mil-
lion Louisdor) for food and agricultural products to the left column of farmers (100
million Louisdor) and for the goods of tradesmen to the right column (100 million
Louisdor) [7.2]. Both incomes enable the two classes of farmers and tradesmen to
produce new goods. As farmers use the products of tradesmen and tradesmen use
the goods of agriculture, money must circulate between the columns of the corre-
sponding classes. The circulation forms a zigzag curve, until the net profit is paid
out at the bottom of the table.

But the expenditure of the net profit causes new receipts making new expendi-
ture possible, which may reproduce the net profit, in order to start a new economic
circulation. The mechanics of the regular circulating and iterative reproduction of
the net profit was illustrated by clocks with rolling balls (Fig. 7.1b) [7.3]. The clocks
measure time by means of balls rolling down inclined zigzag paths. After a period
of circulation the balls are lifted to the top of the system and the process is iterated.
Obviously, the distribution of net profit in a circulation period is compared with the
zigzag path of the rolling balls in the clockwork. The iteration of an economic cir-
culation period corresponds to the lifting of a ball and its rolling down the zigzag
path again.

The physiocratic economists used physical models in the framework of Carte-
sian mechanics. Their causal determinism without any kind of self-regulation or in-
dividual freedom corresponds completely to the political system of absolutism. The
citizens are reduced to functioning elements in a political and economic machine.

While the physiocrats designed their economic model against the background
of Cartesian mechanics, Adam Smith referred to the classical physics of his great
predecessor Sir Isaac Newton. In Cartesian mechanics, all physical events are re-
duced to the contact effects of interacting elements like cog wheels in a clock or
impulses between balls. Thus, Cartesian physicists constructed hypothetical mech-
anisms which are often not observable. For instance, the refraction of light was
explained by the interactions of hypothetical tiny glass-like balls. The laws of per-
cussion and impulse were fundamental in Cartesian physics.

Newton critized Cartesian mechanics with his famous phrase Hypotheses non
fingo. His law of gravitation was mathematically deduced from his axioms of me-
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Fig. 7.1a. The “Tableau économique” of the physiocrats [7.3]

chanics and empirically confirmed by forecasts and experiments. But he renounced
any explanation of the long-distance effects of gravitation in empty space (actio in
distans) by some hypothetical transmission mechanism which was not observable.

In Newton’s celestial mechanics, material bodies move in a system of dynami-
cal equilibrium which is determined by the invisible forces of gravitation. The phys-
ical concept of freely moving individuals in dynamical equilibrium corresponds to
the liberal ideas of a free economy and society with the division of independent po-
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Fig. 7.1b. The “Tableau économique” of the physiocrats (a) illustrated by the zigzag path of
the rolling ball in a clockwork (b) [7.3]

litical powers. Contrary to the liberal ideas, the Cartesian clockwork of nature seems
to accord with the state machinery of absolutism with its citizens as cog wheels.

The publication of Smith’s famous Inquiry into the Nature and Causes of the
Wealth of Nations (1776) is often celebrated as the birth of a separate discipline.
Nevertheless, Smith was a professor of moral philosophy, and Newton was a pro-
fessor of natural philosophy. Actually, Smith tried to unify ethics, economics and
politics, and Newton embedded his physics into a cosmic and even religious frame-
work. In his Theory of Moral Sentiments Smith analyzed the role of sympathy in
human beings [7.4]. In his Wealth of Nations the self-interested behavior of men is
assumed to be the essential impulse of economics.

In both of these books Smith tried to apply the Newtonian method to ethics and
to economics [7.5]. He described the Newtonian method as one in which a scientist
lays down “certain principles, primary or proved, in the beginning, from whence
we account for several phenomena, connecting all together by the same chain.” In
a Hume-like manner, Smith credited the origin of science not to men’s love for truth,
but to the simple desire to maximize “wonder, surprise, and admiration.” The great
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purpose of human life is the uniform, constant, and uninterrupted effort to better
men’s condition. In short, the self-interest of men tends to maximize the welfare
function.

According to Newton’s motto Hypotheses non fingo, Smith emphasized that
human self-interest is not a theoretical construction of economists, but an empiri-
cal fact of experience. Self-interest is a strong and natural impulse of single human
beings, and therefore a human right. But the interactions of several single micro-
interests achieve the common macro-effect of welfare by the mechanism of the mar-
ket. Two famous quotations from Smith’s Wealth of Nations: “I have never known
much good done by those who affected to trade for the public good” [7.6] and “It
is not from the benevolence of the butcher, the brewer, or the baker, that we expect
our dinner, but from their regard to their own interest” [7.7].

The mechanism of the market is regulated by supply and demand driving the
competing micro-interests to the macro-effect of welfare and the “wealth of the na-
tion” in the equilibrium of the market. In the mechanistic view, the micro-interests
seem to be drawn to the common macrostate of equilibrium by an “economic de-
mon” or mechanical spring. According to the Newtonian method, Smith prefers the
picture of an “invisible hand” directing the micro-interests like the “invisible” long-
distance force of gravitation in astronomy. Obviously, Smith describes an economy
as a complex system of many competing micro-interests. The dynamics of their in-
teractions is a self-organizing process of competition with a final state of equilibrium
between supply and demand.

The value of goods is measured by money. But the money measure could not be
used without a precaution. It was necessary to distinguish between “market prices”
achieved by the market mechanism and the “natural prices” or actual costs of a good.
Economists had to find a “standard of value” in order to be able to correct the value
of money. Thus, Smith already aimed at a political economy based upon a theory
of value. Values were needed for weighting the social product. Figure 7.2 illustrates
Smith’s self-organizing process of supply and demand by a feedback scheme with
demand r for a good, supply c, market price m, and natural price n [7.8]:

Fig. 7.2. Adam Smith’s self-organizing process of supply and demand illustrated by a feed-
back schema [7.8]

But Smith did not introduce a “just” price like Aristotle on the background of
ethical ideals like justice. His inquiry analyzed the “nature” and “causes” of the
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“wealth of nations” based on actual facts of human nature like self-interest. Con-
cerning the natural prices of goods, Smith and early classical economics like David
Ricardo tried to find an absolute measure of value such as gold, corn, or labor.

For Ricardo, the common measure should be explained by his labor theory of
value. Ricardo, like Smith was familiar with the general ideas of classical physics.
Thus, he believed that some of the conclusions of economics were “as certain as
the principles of gravitation” [7.9]. As history went on and economic and political
problems changed, Ricardo’s theory of growth, rent, and labor was influenced by the
historical conditions of his own time at the beginning of the 19th century. Promi-
nently, there were the economic problems of feeding a growing population which
had been already considered by Malthus.

John Stuart Mill (1806–1873), the British philosopher and economist, had
a great interest in the methodology of economics. He defined “political economy”
as an axiomatic system of deductive analysis resting on assumed psychological
premises and abstracting from all noneconomic aspects of human behavior. These
abstractions were compared with disturbing causes like friction in mechanics:

The disturbing causes have their laws, as the causes which are thereby disturbed have
theirs; and from the laws of the disturbing causes, the nature and amount of the disturbance
may be predicted a priori . . . The effect of the special causes is then to be added to, or
subtracted from, the effect of the general ones. [7.10]

In this quotation, Mill obviously described the principle of causality in clas-
sical physics, which basically made forecasting in the long-run possible: similiar
causes effect similiar results. Thus, Mill’s methodology of economics accords with
the Laplacean spirit of classical physics, assuming an approximately correct calcu-
lation of forecasts by economic laws if initial conditions are approximately known.
Furthermore, Mill’s axiomatic hypotheses define a simplified model of economic
behavior, and not the complex economic reality.

Thus, Mill was the first economic theorist who explicitly operated with the fic-
tional “economic man” (homo oeconomicus), not with the real man in his whole
complexity which originally was the subject of Smith’s inquiry. The general hy-
pothesis of an economic man maximizing a certain economic utility function is em-
pirically based on a kind of experience, namely, introspection and the observation
of Mill’s fellow men, but it is not derived from specific observations or concrete
events. Analogously, Newton’s general law of gravitation was empirically justified
by some special observations of falling bodies or moving celestial bodies, but not
derived from these events. Mill’s methodology corresponds to new insights into the
role of formal systems and models in 19th century physics.

Predecessors of modern mathematical economics like Walras and Pareto prop-
agated the use of the mathematical methods of physics in economics. Both thinkers
were representatives of the so-called Lausanne School. Classical theorists were al-
ready implicitly guided by physico-mathematical concepts. They spoke of a more
or less rough correspondence between the play of economic forces and mechan-
ical equilibrium. Actually, the predecessors of mathematical economics borrowed
much of their vocabulary from mechanics and thermodynamics, for instance, equi-
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librium, stability, elasticity, expansion, inflation, contraction, flow, force, pressure,
resistance, reaction, movement, friction, and so on [7.11].

In 1874, Walras followed Smith’s idea that the maximizing behavior of con-
sumers and producers will result in an equilibrium between amounts demanded
and supplied in every product and factor market of the economy [7.12]. Since Wal-
ras, general equilibrium theory has become a leading concept which demands ex-
istence proofs of equilibrium in mathematical models of an economy. Mathemati-
cal economists tried to isolate the elements of a complex system from its environ-
ment, which was specified by exogenous parameters. If the exogenous parameters
themselves depend on influences from the whole system, however, then separating
system and environment and neglecting the actually existing feedback makes an
adequate economic model impossible.

In general, classical economists tried to reduce the complexity of economic re-
ality by some typical assumptions characterizing their linear and mechanistic mod-
els. First of all, they believed in the fiction of a rational economic agent (homo oe-
conomicus) for each human action. The individual behavior of agents, for instance,
in a market should be isolated as a whole. Human behavior is described by gen-
eral behavioral patterns abstracted from individual behavior. Thus, individual hu-
man behavior is assumed to be regular and predicable like elements of a mechanical
system with certain mathematical laws of motion. If the initial conditions and the
environment are known and precisely measurable, then individual behavior within
the environment is believed to be deterministic like that of molecules in a gas.

The linearity of the economic models follows from the superposition princi-
ple, assuming that a society consists of the additive actions of its members. The
principle of superposition implies that society as a whole does not differ from the
sum of the individual actions. Obviously, linear models abstract from unpredictable
and irrational individual behavior, from restrictions in the environment, and from
non-additive (“nonlinear”) and synergetic interdependencies between individuals
and their actions.

These linear principles of methodology completely correspond to the Laplace-
an world view of physics. They still have a strong influence on mainstream eco-
nomics today, although physics itself has undergone some dramatic revolutions in
this century, such as quantum mechanics with its characteristic uncertainty relation.
But, Heisenberg’s uncertainty relation is a consequence of particular relations be-
tween quantum mechanical operators depending on Planck’s constant, which seems
to have no relevance for the dimensions of the economical world. Nevertheless,
the quantum formalism à la Schrödinger and Heisenberg remains linear (compare
Sect. 2.3). The fact that classical linear dynamical systems behave in a very regular
fashion allows exact forecasts. A nonlinear model demonstrating chaotic behavior
as well as the impossibility of predictions in the long run was considered as a bad
economic instrument.

In this century, mathematical economists have more and more given up the
physicalism of the Lausanne School, for instance, which tried to determine an econ-
omy like a classical physical system. Economists have tried to found their own basic
mathematical instruments. The assumptions of linear dynamical models have been



318 7 Complex Systems and the Evolution of Economies

justified by technical reasons. This formal attitude is expressed in the following
statement by John Maynard Keynes in a letter to Roy Harrod from 1938:

It seems to me that economics is a branch of logic, a way of thinking; and that you do not
repel sufficiently firmly attempts . . . to turn it into a pseudo-natural science . . . Economics
is a science of thinking in terms of models joined to the art of choosing models which are
relevant to the contemporary world. [7.13]

Under the influence of characteristic economic crashes (for instance at the end
of the 1920s), Keynes and others underlined that the economic system is not auto-
matically capable of self-regulation. The “instability of capitalism” has become the
popular version of the so-called Keynesian doctrine. So, it was suggested that the
economic system be stabilized from outside by particular instruments of policy like
fiscalism. Linear models have been employed especially by neoclassical theorists
who, again, have concentrated on the investigation of equilibrium economics.

Nonlinear approaches have been preferred mainly by economists who felt un-
comfortable with the classical ideal of equilibrium economics. Thus, Keynesian au-
thors have often criticized the linear framework of equilibrium theories without be-
ing familiar with the mathematical methods of nonlinearity.

A new epoch of linear mathematical economics was introduced by John von
Neumann and Oskar Morgenstern’s Theory of Games and Economic Behavior
(1943) [7.14]. Linear programming, operational research, and even mathematical
sociology have been influenced by this famous book. In the Theory of Games, von
Neumann and Morgenstern assumed rationally acting persons who try to maxi-
mize their profit in terms of certain utilities. In general, a class of possible actions
a1, . . . , am and a class of possible states s1, . . . , sn are used to form pairs (ai, sj) with
1 ≤ i ≤ m and 1 ≤ j ≤ n which are mapped onto utilities uij. The possible utilities
uij are ordered in a (m × n)-matrix.

Several criteria of rationality have been suggested for decisions under uncer-
tainty, for instance. Uncertainty means that no probabilities of possible utilities are
known. The so-called maximin utility criterion is mainly used. In this case each pos-
sible action ai is associated with an index which is the minimum of the utility values
ui1, . . . , uin, the smallest value in the i-th line of the matrix (uij) of utilities. Then,
the rule demands: choose the action the index of which is a maximum. In short,
the maximin rule chooses the action maximizing the utility of the most unfavorable
case. The rule can be applied very easily and mechanically to the matrix of utilities.

Imagine the following example from the philosopher Carl Gustav Hempel [7.15].
There are two urns with balls of equal size which cannot be distinguished by the
sense of touch. In the first urn there are balls of lead and platinum. In the second
urn there are balls of gold and silver. A player is allowed to take a ball from one of
the two urns as a free gift. A probability distribution of the balls in the urns is not
known to the player. The utilities of the balls are estimated at 1000 (platinum), 100
(gold), 10 (silver), 1 (lead).

The maximin rule suggests choosing the second urn. In this urn the most unfa-
vorable case is a silver ball, but in the first urn the most unfavorable case is a lead
ball. Obviously, the maximin rule corresponds to a pessimistic view of the world. In
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a game the player assumes a very hostile opponent. Then, the maximin rule suggests
the most useful actions.

An optimistic attitude corresponds to the so-called maximax utility criterion.
The player is convinced that each possible action has a best possible result. Thus, it
seems to be rational to choose an action the best possible result of which is at least
as good as the most favorable result of an alternative action. In our urns example the
maximax rule suggests choosing the first urn.

A cautious player would not like to choose that rule. But on the other hand the
maximin rule is only rational if the opponent is known to be hostile. Some numerical
examples may confirm these interpretations. For two possible states s1, s2 and two
possible actions a1, a2 the matrix of utilities is given by Fig. 7.3a.

s1 s2

a1 0 100

a2 1 1

s1 s2

a1 0 1015

a2 0.000001 0.000001

Fig. 7.3a,b. Utility matrices

The maximin rule suggests action a2. Even if the number 1 is diminished to
a tiny value such as 0,000001 and the number 100 is enlarged to a very great value
such as 1015 (Fig. 7.3b), the maximin rule would suggest action a2. This decision
is actually rational for a player who must assume an absolutely hostile opponent.
In any case the opponent would try to prevent a state corresponding to maximum
utility for the player. But otherwise the maximin rule would be irrational, because
a1 would be the better action. If state s1 is realized, then the player has to give up
an increment of utility which is very small. In the case of state s2, he would receive
a very large growth of profit with action a1.

In order to justify such a decision, Savage introduced the so-called minimax risk
criterion. He suggested replacing the matrix of utilities uij (Fig. 7.3a) by a matrix of
risk values rij (Fig. 7.3c). A risk value rij must be added to a utility value uij in order
to get the maximum value of utility in the j-th column.

In matrix 7.3a the largest value of utility in the first column is 1, and in the
second column it is 100. Thus, the risk matrix is given by Fig. 7.3c.

s1 s2

a1 1 0

a2 0 99

Fig. 7.3c. Risk matrix

The minimax risk rule demands: choose an action minimizing the maximum
risk. As the maximum risk of a2 has the value 99 and that of a1 has the value 1,
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it seems to be rational to choose action a1. But, of course, this rule is only ra-
tional under certain particular conditions. There are many other criteria of ra-
tionality.

A further example is the so-called pessimism optimism criterion which suggests
a solution between the pessimistic maximin rule and the optimistic maximax rule.
For an action ai let mi be the minimum and Mi the maximum of utilities ui1, . . . , uin.
Let α be a constant such that 0 ≤ α ≤ 1 called the optimism pessimism index. Then,
the action ai is associated with the so-called α-index αmi+(1−α)Mi. The pessimism
optimism rule prefers actions with a larger α-index. But, of course, a special crite-
rion is only defined if a particular number α is given. These examples demonstrate
that there is no absolute criterion of rationality, but a class of criteria corresponding
to different degrees of optimism and pessimism under certain circumstances.

Von Neumann and Morgenstern’s book Theory of Games considers the stabil-
ity of a society or market as the result of interactions of competing or cooperating
persons or groups. In many cases, they accept an oversimplification of the actual
economic, social, and psychological complexity. Each player can exactly determine
his possible actions to aim at certain states and possible utilities. In general, the
theory of games assumes the principle of linearity (superposition) that complex in-
teractions of many persons in a society (“game”) can be reduced to the sum of many
simple interactions of a few persons.

Thus, the investigation of 2-person games plays a crucial role in game theory.
The event that player 1 chooses action a1 and player 2 chooses action a2 is des-
ignated by the pair (a1, a2). In the case of this event, the utilities are defined as
u1(a1, a2) for player 1 and u2(a1, a2) for player 2. An important class of games is
characterized by the fact that the utilities of both players in each event are absolutely
opposite with u1(a1, a2) + u2(a1, a2) = 0 (“zero-sum” games). Any cooperation is
excluded. Then the maximin rule seems to be rational if there is no special infor-
mation about the irrationality of the opponent. In other cases a cooperation may
sometimes be rational.

The mathematically essential problem is the existence of equilibrium points in
games [7.16]. If there is no cooperation, an equilibrium point can be defined for
the possible actions of the two players in the following way. An event (a1, a2) is an
equilibrium point of the game if the utility value u1(a1, a2) of player 1 is greater
than or equal to u1(a1, a2) for all his actions a1 and if the utility value u2(a1, a2) of
player 2 is greater than or equal to u2(a1, a2) for all his actions a2.

If player 1, assuming that player 2 chooses his action a2, tries to maximize his
utility, then he can choose action a2 and vice versa. The equilibrium is stable in the
sense that a player knowing that his or her opponent is at the equilibrium point has
no reason to alter his or her behavior. Obviously, this definition of equilibrium does
not consider any dynamical aspect. But the actual behavior of societies and mar-
kets is determined by a complex dynamics in time. The trade cycles are well known
examples of economic dynamics. The question arises of whether these dynamical
processes are attracted by equilibria and whether these equilibria are stable. In gen-
eral, the theory of games does not consider the “butterfly effect” that a small failure
of behavior may sometimes cause a global crisis and even chaos.
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The game theory of von Neumann and Morgenstern is not only in the tradi-
tion of linear mathematical economics. It developes the ideas of economic welfare
theory. A rational society is assumed to choose a distribution of profits which is
Pareto-optimal. A distribution of profits is called Pareto-optimal if the welfare of no
individual can be increased by a deviation without diminishing the welfare of at least
some other individual. It is not sufficient that this weak condition of Pareto-optimal
welfare is satisfied. The power of potential coalitions must be considered, too. The
theory of cooperative solutions in game theory mainly stems back to the ideas of
welfare economics, diplomacy, and self-interested politicians who are sometimes
social. Mathematically, the concepts of justice, impartiality, or fair play, which de-
termine the political and social framework of welfare economics, are reduced to
certain principles of symmetry.

Game theory is an exact mathematical theory whose application to economics
has sometimes been overestimated. Its limitations are mainly given by its typical lin-
ear assumptions about society. Nevertheless, game theory is a brilliant mathematical
invention – which was mainly initiated by John von Neumann. It is noteworthy that
John von Neumann was a central figure in nearly all the scientific developments of
this century which are considered in this book. He was engaged in the development
of program-controlled computers, the theory of automata, quantum mechanics, and
game theory. Furthermore, he was interested in interdisciplinary mathematical mod-
els in the natural and social sciences. All these brilliant developments are mainly
ruled by principles of linearity. But John von Neumann was also one of the first sci-
entists to recognize the importance of self-reproduction and self-organization. His
theory of cellular automata is a famous example.

7.2 Complex Economic Systems, Chaos, and Randomness

From a methodological point of view, mainstream economics has often been in-
spired by models from linear mathematics, classical mechanics, thermodynamics of
thermal equilibrium, and sometimes the Darwinian theory of evolution. Classical
economic models have postulated a rational economical man (homo oeconomicus)
who seeks to maximize his utility by minimizing his costs and maximizing his prof-
its. These rational agents are assumed to interact by exchanging commodities in
markets that achieve an economic equilibrium of demand and supply by certain
price mechanisms.

To describe the dynamics of an economy, it is necessary to have evolution equa-
tions for many economic quantities from perhaps thousands of sectors and millions
of agents. Since everything depends, in economics like elsewhere, on everything
else, the equations will be coupled and nonlinear, in order to model economic com-
plexity as well as possible. But then, even completely deterministic models may
produce highly irregular behavior which is unpredictable in the long run. Economics
seems to suffer from the same shortcomings as meteorology [7.17].

Before the discovery of mathematical chaos and the butterfly effect in meteorol-
ogy, people believed in the possibility of precise long-term forecasts of the weather.
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John von Neumann as a computer pioneer maintained that, given sufficient data
about global weather and a supercomputer, he could provide accurate predictions of
weather over time and space. He did not fail for mathematical reasons, because in
the framework of linear mathematics he was as right as a classical astronomer. But
the actual behavior of fluids and weather differ dramatically from these models in
the long run.

How does one deal with the complexity of weather and the economy? In
meteorology, Edward Lorenz has proposed a nonlinear dynamical model which
can produce chaotic behavior by its intrinsic (“exogenous”) disturbance (compare
Sect. 2.4). Analogously, there are two possible ways of explaining the complex-
ity of economic evolution. The mainstream approach has assumed linear models
with somewhat ad hoc and unexplained exogenous shocks. The nonlinear approach
gives up oversimplified hypotheses of linearity and ad hoc hypotheses of exogenous
shocks and tries to explain the complexity of actual economies by their endoge-
nous nonlinear dynamics. In a few cases nonlinearities may be so weak that linear
approximations do not constitute an essential error.

In the history of economics, the Great Depression of the 1930s gave rise to
theories which tried to explain the economic irregularities. But the models (for in-
stance, the Kalecki and the Hansen-Samuelson models) were linear and could not
explain the emergence of oscillations [7.18]. Thus, exogenous shocks were assumed
by economists to produce the observed oscillations. If the economists had been more
familiar with mathematical developments, they would have been acquainted with
nonlinear mathematical models leading to limit cycles as solutions.

Originally, economists only knew about stable equilibrium as a fixed-point at-
tractor. Poincaré generalized the conception of equilibrium to include equilibrium
motion in the form of limit cycles. But for chaotic attractors like the Lorenz model
(Fig. 2.21) there is neither a fixed point nor a fixed motion, but a never-repeating
motion. Nevertheless, it is a bounded motion and a non-wandering set attracting
certain dynamical systems to a final state of dynamical equilibrium.

Historically, the economy in this century has been characterized by growth that
was interrupted by spectacular collapses, for instance, in the 1930s (the Great De-
pression) and in the 1970s (the Oil Crisis). Concerning the structure of growth,
particular attention must be given to innovations and technical progress. The ex-
pansion of a successful innovation is empirically well represented by the logistic
function which was introduced in Sect. 2.4. A recursive version can be referred to
integers t as time indices and a growth factor α > 0. Initially, an innovation is rather
unfamiliar. Then as it gains acceptance it reaches its maximum rate of expansion.
After that there is a slow deceleration of the process of absorption as the innovation
approaches complete integration into the economy.

The resulting curve is shown in Fig. 2.22. For α ≤ 3 we get a fixed point attrac-
tor which is visualized in Fig. 2.22a. For larger α, the result is a periodic oscillation
(Fig. 2.22b and Fig. 2.24c) and then a chaotic movement (Fig. 2.22c and Fig. 2.24b).
For α > 3 the number of periods doubles successively as α increases (Fig. 2.23a),
until it is transformed into complete chaos (Fig. 2.23).
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The connection between innovation and economic output is shown in the fol-
lowing model of Fig. 7.4 [7.19]. Initial output q is taken to be in equilibrium so
that as the growth rate Δk rises, the output also rises, gradually. But then as inno-
vation reaches its saturation and Δk drops to towards zero, output q falls back to
its initial level. So innovation stimulates a boom but also a subsequent collapse. An
innovation may be labor-saving. If inputs of labor per unit of output falls by 20%,
employment will fall also.

Fig. 7.4. Logistic curve of innovation capacity with output and employment curve [7.19]

As the growth of new ideas is assumed to be exponential, economists like
Schumpeter have maintained that at the end of an innovatory burst a new one will
start. Then a second boom and collapse is initiated, and so on, as the economic sys-
tem continues to function and technological conceptions continue to grow at around
4% per year. Innovation is crucial to economic cycle theory, because in a depression
there is no other basis for the new investment which is necessary to generate a new
expansion.

New ideas arise steadily. When enough ideas have accumulated, a group of in-
novations are introduced. They develop slowly at first, then accelerate as the meth-
ods are improved. A logistic development characterizes the typical trajectory of an
innovation. Some investment must precede the introduction of an innovation. Invest-
ment stimulates demand. Increased demand facilitates the spread of the innovation.
Then, as all the innovations are fully exploited, the process decelerates towards zero.

Schumpeter called this phenomenon the “swarming” of innovations. In his
three-cycle model, the first short cycle relates to the stocks cycle and innovations
play no role. The following longer cycle is related to innovations. Schumpeter rec-
ognized the significance of historical statistics and related the evidence of long
waves to the fact that the most important innovations like steam, steel, railways,
steamships, and electricity required 30 to 100 years to become completely integrated
into the economy.

In general, he described economic evolution as technical progress in the form of
“swarms” which were explained in a logistic framework. A technological swarm is
assumed to shift the equilibrium to a new fixed point in a cyclical way. The resulting
new equilibrium is characterized by a higher real wage and higher consumption and
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output. But Schumpeter’s analysis ignores the essential issue of effective demand as
determining output.

Historically, the Great Depression of the 1930s inspired economic models of
business cycles. However, the first models (for instance Hansen–Samuelson and
Lundberg–Metzler) were linear and hence required exogenous shocks to explain
their irregularity. The standard econometric methodology has argued in this tradi-
tion, although an intrinsic analysis of cycles has been possible since the mathemat-
ical discovery of strange attractors. The traditional linear models of the 1930s can
easily be reformulated in the framework of nonlinear systems.

The Metzler model is determined by two evolution equations. In the first equa-
tion, the rate of change of output q̇ is proportional to the difference between actual
stocks s and desired stocks s∗. The desired stocks are proportional to the output. The
next equation concerns the rate of change of stocks ṡ which is output q less demand.
The demand is proportional to the output. The complex system whose dynamics is
determined by these two evolution equations will produce simple harmonic motion
with increasing amplitude.

If the system is expanded by certain nonlinearities, a different kind of behavior
results. A third equation may be associated with perverse behavior of net public
surpluses and deficits. The aim is to produce a cycle of a certain duration of years.
A mathematical model is suggested by the so-called Rössler band [7.20]. One uses
a Möbius strip, top to bottom, sides reversed, giving a one-sided surface (Fig. 7.5a).
Following a trajectory, an outer loop expands to the right and upward. Then it folds
over and as it descends, contracts to an inner loop and so on. Figure 7.5a gives a two-
dimensional projection which shows the two cycles. The lines tend to get grouped
with empty spaces in between. If the simulation is continued these bands become
more and more dense.

Figure 7.5a is a simple but remarkable example of a chaotic (“strange”) attrac-
tor. Although each trajectory is exactly determined by the evolution equations, it
cannot be calculated and predicted in the long run. Tiny deviations of the initial
conditions may dramatically change the path of trajectories in the sense of the but-
terfly effect. Figure 7.5b shows a trajectory of output in the state space plotted over
15 years, which was simulated in a computer experiment with chosen parameters.
Figure 7.5c shows the corresponding development as a time series [7.21].

Fig. 7.5a. Rössler attractor
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Fig. 7.5b,c. Business cycle of an endogenous nonlinear system with trajectory in state
space (b) and time series of output (c) [7.21]

This highly erratic behavior is produced by a completely endogenous system
without any exogenous shocks. In economics the irregularities of time series are
usually explained by exogenous shocks. But they are only arbitrary ad hoc hypothe-
ses and hence can explain anything. From a methodological point of view, chaotic
endogenous models with strange attractors seem to be more satisfactory. Neverthe-
less, endogenous nonlinear models and linear models with exogenous shocks must
be taken in earnest and tested in economics.

Obviously, an economy consists of many connected and separated parts with
endogenous dynamics and exogenous forces. There are individual national eco-
nomies which are increasingly acted on by movements of the world economy.
Within an economy there are several markets with particular dynamics. They are
influenced by cycles, for instance, the annual solar cycle determining the agricul-
tural, tourist, or fuel market. The pig cycle and building cycle are further well known
economic examples. Thus endogenous nonlinear systems with impressed waves of
exogenous forces are realistic models of economies. The impression given is of
a disturbed chaotic attractor or a kind of super-chaos. It is this erratic character of
economic events which causes great problems for economic agents who have to
make decisions that depend on an unpredictable future.
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In Sect. 2.3 we saw that self-organizing complex systems may be conserva-
tive or dissipative. Their different types of attractors were illustrated in Fig. 2.14a,b.
Some well known examples of conservative and dissipative models from the natural
sciences have been applied to economies, too. In 1967, Goodwin proposed a con-
servative dynamical model to make the 19th-century idea of class struggle precise.
He considered an economy consisting of workers and capitalists. Workers spend
all their income on consumption, while capitalists save all their income. Goodwin
used a somewhat modified predator-prey model of Lotka and Volterra which was
described in Sect. 3.4 [7.22].

Goodwin’s conservative model supports the idea that a capitalist economy is
permanently oscillating. Thus, the trajectories describe closed orbits as illustrated
in Fig. 3.11b. Goodwin’s model was criticized as superficial, because it does not
refer directly to the functional income shares of capitalists and workers or to their
population size. But it is mainly its conservative character that makes Goodwin’s
model seem economically unrealistic. The model is put together as an isolated set
of assumptions which do not reflect other influences.

Thus, the model has been made more realistic by the assumption of “economic
friction”. In the biological case, a dissipative Lotka–Volterra model with a point
attractor was illustrated in Fig. 3.11c. A dissipative system always possesses attrac-
tors or repellers, in the form either of fixed points, limit cycles, or strange attractors.
As dissipative systems have an irreversible time evolution, any kind of backward
prediction is excluded [7.23].

In reality, a dynamical system cannot be considered as isolated from other dy-
namical systems. Thus, in Sect. 2.2, we studied coupled oscillating systems like,
for instance, two clocks (Fig. 2.11a,b). The state space of the combined systems
was represented by a torus (Fig. 2.11c,d). The dynamics of the whole system was
illustrated by the phase portrait of trajectories and the vector field on the torus.

An economic model of coupled oscillatory systems is provided by international
trade. Imagine a simplified macroeconomic model of a single economy with gross
investment and savings, depending both on income and interest rate. The dynamics
of the system is determined by an evolution equation for income which adjusts it ac-
cording to excess demand in the market for goods, and a second evolution equation
for the interest rate. These equations constitute a nonlinear oscillator in such a way
that the model generates endogenous fluctuations.

The interactions of three economies, for instance, can be described by a system
of three independent, two-dimensional limit cycle oscillators. If all three economies
are oscillating, the overall motion of the system constitutes a motion on a three-
dimensional torus. The coupling of nonlinear oscillators can be understood as a per-
turbation of the motion of the autonomous economies on a three-dimensional torus.
The coupling procedure has been applied to several economic examples, such as
international trade models, business cycle models, and interdependent markets.

A crucial problem of practical policy occurs when self-organizing economic
systems are allowed to be influenced by political interventions. In some cases the
market is not able to develop according to welfare criteria. If the economy is left to
itself, it may be characterized by fluctuations. But policy measures can cause effects
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opposite to those intended if the complexity and nonlinearity of economic growth is
not considered.

With respect to the dramatic social and political consequences of economic
catastrophes, several policy measures have been discussed in the framework of Key-
nesianism and Neo-Keynesianism. Compensatory fiscal policy, for instance, may be
regarded as a type of dynamical control. It should serve to diminish the amplitude of
economic fluctuations. But post-war experiences have shown that there is no hope
of reducing fluctuations to zero, or holding the degree of employment constant. Fur-
thermore, a good policy needs considerable time for the collection of data, analyzing
the results, and formulating the legislative or executive measures. The result is that
any policy may be outdated by the time it is effective. Thus, a policy measure in
the complex and nonlinear world of economics may be absolutely counterproduc-
tive [7.24].

For example, a Keynesian income policy can be ineffective when the assumed
economic dynamics and the proposed time path of policy interventions are too sim-
ple. In the framework of complex systems, economic policy measures can be in-
terpreted as impressing exogenous forces on an oscillating system. Thus, it cannot
be excluded that the economy becomes chaotic. Forced oscillator systems are well
known in physics. For instance, if a dynamical system like a pendulum (Fig. 2.7)
is oscillating, and if it is periodically influenced by an exogenous force, the out-
come may be unpredictable because of increasing amplitudes, total damping of the
oscillation, and complete irregularity.

Since the time of the economic classics until today, it has been the aim of busi-
ness cycle theory to model the dynamics of an economy with its typical regular
fluctuations. According to the linear mechanical view, the actual business cycles
were modeled by regular systems with superimposed stochastic exogenous shocks
that had to be explained by more or less appropriate economic assumptions. It is,
of course, highly unsatisfactory when these exogenous forces determine the main
qualitative properties of a model without their having a reasonable economic in-
terpretation. If an actual system is nonlinear and chaotic, further information on
possible exogenous forces that may influence the economic dynamics may be su-
perfluous. From a methodological point of view, Ockham’s famous razor should be
applied to cut out these superfluous ad hoc hypotheses of economics, according to
his motto entia non sunt multiplicanda sine necessitate ((theoretical) entities should
not be multiplied without necessity).

From the practical point of view of an agent, it may be rather irrelevant whether
he is confronted with a stochastic linear process or a chaotic nonlinear process. Both
kinds of systems seem to prevent him from making precise predictions. As a chaotic
model has a sensitive dependence on initial conditions, arbitrarily precise digital
computers are in principle unable to calculate the future evolution of the system in
the long run. The trajectories diverge exponentially. On the other hand, an agent
believing in stochastic exogenous shocks may resign in face of the too-complex
behavior of the system.

Nevertheless, nonlinear systems with chaotic time series do not exclude local
predictions. If the attractor of a nonlinear system can be reconstructed, then numer-
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ical techniques promise to predict the short-run evolution with sufficient accuracy.
Short-term economic forecasting may be an interesting application of complex sys-
tem theory in economics, which is still in its infancy [7.25].

Since the beginning of economics, empirical tests and confirmations have been
a severe methodological problem for economic models. In contrast to the natural
sciences with their arbitrarily many measurements and experiments in laborato-
ries, economic time series must refer to time units of a day, or annual, quarterly,
or monthly data. The length of a standard time series typically consists of a few
hundred points. Thus, there are already empirical reasons for the limited reliability
of economic models. Empirical experiments are, of course, largely excluded.

Therefore an adequate knowledge of endogenous economic dynamics will at
least help to achieve mathematical models whose future developments may be simu-
lated by computer experiments. A politician and manager will at least get the “phase
portrait” of alternative economic scenarios if the assumptions of their economic and
political surroundings are realized. The qualitative insight into the high sensitivity of
nonlinear systems may at least prevent overacting agents from pushing the system
from an unstable point to further and perhaps even greater chaos.

The main arguments for nonlinear models in economics are given by the recent
structural change of economic growth caused by the development of new dominant
technologies. The traditional theory of economics assumes decreasing income. The
more goods of a certain kind are produced and put on the market, the more difficult
their production and sale will become and the less profit can be gained. The inter-
action of agents is determined by a negative feedback stabilizing the economy by
counteracting each reaction caused by an economic change.

In an economy with negative feedback an equilibrium of prices and market
shares may arise and may be forecast. A famous example was the Oil Crisis in the
1970s. The sudden increase of prices for crude oil in the 1970s induced savings and
the search for alternative energy which caused a decrease of oil prices in the 1980s.
In traditional economies the equilibrium corresponds to an optimal result with re-
spect to the particular surroundings. The theorem of decreasing income implies the
existence of a single equilibrium point. Economies with the negative feedback of
decreasing income are typical for traditional sectors like agriculture, the mining in-
dustry, and mass products.

But economic sectors depending on high technical knowledge gain increas-
ing income. The development and production of high-tech goods like computers,
software, airplanes, chemicals, and electronics need complex processes of research,
experiment, planning, and design, demanding high investments. But if the high-tech
products are put on the market, the enlargement of production capacity is relatively
cheap and income is going to increase. Thus, modern high-tech industries must be
described in dynamical models as generating the positive feedback of increasing
income.

Systems with positive feedback have not only a single, but several states of
equilibrium which are not necessarily optimal [7.26]. If a product has some acci-
dental competitive advantages on the market, then the market leader will dominate
in the long run and even enlarge its advantage without being necessarily the bet-
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ter product. Many examples of modern high-tech industries show that competing
products may have approximately equal market shares in the beginning. But tiny
fluctuations which increase the market share of a particular product decide its final
success. Sometimes the final market leader may even have less quality from a tech-
nical point of view.

These effects cannot be explained in the framework of traditional linear dy-
namics. But they are well known in nonlinear systems. Figure 7.6 illustrates the
competition of two technologies with positive feedback. Some trajectories of mar-
ket shares are drawn on a convex surface. The more a technology can dominate the
market, the more easily it can gain a yet greater market share. As a leading market
position is initiated by random fluctuations, it cannot be forecast. In Fig. 7.6, the
left curve illustrates the final dominant of technology A. In the two other cases, the
technology B will finally dominate the market after initial fluctuations [7.27].

The nonlinear dynamics of these economic models is determined by initial ran-
dom fluctuations and positive feedback. Obviously, the bifurcation of the possible
paths is a kind of symmetry breaking by initial random fluctuations, which is well
known in complex physical systems. The reader need only recall the stationary con-
vection rolls that appear in a heated fluid (Fig. 2.20b), where the rolling direction
left or right depends on initial random fluctuations.

Obviously, many structural analogies exist between patterns of behavior in soci-
eties and pattern formations in nature. From a microscopic point of view, economies
can be considered complex multicomponent systems consisting of individuals inter-
acting with themselves and with their material environment. From a macroscopic
point of view, collective trends of behavior emerge from microscopic interactions.
Thus, the question arises: Is there a general strategy and modeling procedure for the
collective dynamic macro-processes in society and economy, as there is in nature.
But the modeling procedure cannot simply be taken from non-equilibrium thermo-
dynamics. In this case, we would need equations for motion on the microlevel of
interacting agents in the economy, which are necessary to derive the corresponding
equations of macrovariables for pattern formation. Only in rather simple models of

Fig. 7.6. Nonlinear dynamics of two competing technologies [7.27]
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sociobiology, can we observe direct input stimulus and output reactions between
interacting members of a population, such as neurochemical interactions of insects
or the Pavlov reflex of mammals. In general, there are only indirect estimations and
valuations between environmental input and individual decisions and reactions.

The complexity of human behavior only allows for a probabilistic treatment of
individual decisions and actions. From stochastic microbehavior, we get a stochastic
description of the macrodynamics by a so-called master equation for the probabil-
ity distribution of macrovariables, which are order parameters of economies and
societies. They dominate the individual attitudes and activities corresponding to mi-
crovariables and govern the patterns of behavior on the macrolevel. Consequently,
an appropriate choice of macrovariables plays a key role in successful modeling in
economics and social sciences.

In economics, we distinguish the configuration of collective material variables
and the socioconfiguration of collective personal variables. Material variables are
well-known in economics. Like in thermodynamics, there are intensive variables
that are independent of the size of a system. Examples are prices, productivity,
and the density of commodities. Extensive variables are proportional to the size of
a system and concern, e.g., the extent of production and investment, or the size and
number of buildings. Collective material variables are measurable. Their values are
influenced by the individual activities of agents, which are often not directly measur-
able. The social and political climate of a firm is connected to socio-psychological
processes, which are influenced by the attitudes, opinions, or actions of individuals
and their subgroups. Thus, in order to introduce the socioconfiguration of collective
personal variables, we must consider the states of individuals, expressed by their
attitudes, opinions, or actions. Further on, there are subgroups with constant char-
acteristics (e.g., sections or departments of a firm or an institution), so that each
individual is a member of one subgroup. The number of members of a certain sub-
group in a certain state is a measurable macrovariable. Thus, the socioconfiguration
of a company, for example, is a set of macrovariables describing the distribution of
attitudes, opinions, and actions among its subgroups at a particular time. The total
macroconfiguration is given by the multiple of material configuration and sociocon-
figuration.

If all macrovariables of a macroconfiguration remain constant over time, the
social system is in a stationary macroscopic equilibrium, which can be compared
to thermodynamic equilibrium. If there are dynamics, we must consider the transi-
tion rate between macroconfigurations by either increasing or decreasing macrovari-
ables. In the case of material configuration, an elementary change consists of the in-
crease or decrease of one macrovariable (e.g., price of commodities) by one appro-
priately chosen unit. The elementary change in the socioconfiguration takes place
if one individual of a subgroup changes its state, leading to an increase or decrease
in the number of a subgroup by one unit. Thus, the transition rates of neighboring
configurations describe the probability per unit of time that the respective transition
takes place if the initial configuration is realized. They can be used for setting up the
central evolution equation of a social system, the master equation for the probabil-
ity distribution over the macrovariables of total macroconfiguration. The distribu-
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tion function P(m, n; t) of the master equation is the probability of finding a certain
macroconfiguration of material configuration m and socioconfiguration n at time t.
The master equation with dP(m, n; t)/dt describes the change of the probability of
a total macroconfiguration due to transitions of the material configurations and the
socioconfigurations [7.28].

As an economic example, consider a system of firms, producing the same kind
of substitutable, durable, high-tech commodities and competing with respect to the
quality of their products. A positive feedback between quality enhancement and
customer reaction to quality is assumed. On the demand side, the consumer con-
figuration consists of collective personal macrovariables distinguishing between the
number of owners of a certain good and the number of nonowners which are pos-
sible customers. The supply configuration consists of material variables referring to
the number of commodity units produced by a certain firm in the time unit, prices
per commodity, and measures of the quality of commodities. The total economic
configuration E contains the consumer configuration n and supply configuration m.
The evolution of the system takes place via elementary transition between a total
economic configuration and its neighboring economic configurations. On the con-
sumer side, the corresponding transition rates count the purchase steps of nonowners
becoming owners of a certain commodity and the sorting out steps of owners becom-
ing nonowners. On the supply side, the transition rates refer to the decisions of firms
to change their production output, their prices, and the quality of their products. Us-
ing these transition rates, it is possible to set up the corresponding master equation.
The distribution function P(E; t) is the probability finding the economic configura-
tion E at time t. The master equation dP(E; t)/dt describes the effects of transitions
on the consumer configuration of personal variables and the configuration of supply
variables.

However, in general, it is not possible to exhaust all the information contained
in the probability distribution of a master equation by comparison with empirical
data. In this case it is best to neglect the fluctuations of the macrovariables around
their mean evolution and to restrict ourselves to quasi-meanvalue equations of the
macrovariables which are derivable from the master equation. Let us consider an
economic system with only two competing firms. In synergetics, order parameters
of the macrodynamics of a system were introduced by the adiabatic elimination
of fast-relaxing variables (compare Sect. 2.4). The idea is that a dynamical system
with fluctuations (e.g., a laser) starts with stable modes (waves) according to a cer-
tain control parameter (e.g., pumping of energy). If the control parameter changes
to a critical value, the modes that are becoming unstable are taken as order param-
eters, because they start to dominate (“enslave”) the stable ones. Since their relax-
ation time tends toward infinity, the fast-relaxing variables can be eliminated adia-
batically. In more popular terms, synergetics demand that long-living systems en-
slave short-living systems. Thus, if we assume that prices and supply are the quickly
adapting variables of our economic system, they may be adiabatically eliminated,
according to the synergetic procedure. What remain are the equations for the cus-
tomer macrovariables and for the quality macrovariables of products. A decisive
control parameter of this system is, obviously, competition between two firms. If
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the evolution of the quality of products is slow compared with the purchase activity
of customers, then, according to synergetics, the fast-relaxing customer variables
may also be eliminated adiabatically. The only surviving evolution equation is the
equation for the quality variables, which may be considered the order parameters of
the system.

The evolution of the quality variables qi for firm i = 1 and firm i = 2 can be
investigated numerically. In Fig. 7.7, their (stationary) solutions qi(φ) are depicted
as a function of the competition parameter φ. It turns out that both firms have the
same stationary quality q(φ) of their products and also the same stationary market
share, as long as the competition value φ is smaller than a critical value φc. At φc,
a bifurcation occurs and for φ > φc there exist two stable quality values q+(φ) and
q−(φ). The winning firm, say i = 1, will have reached the quality q+(φ), whereas
the losing firm, i = 2, arrives at quality q−(φ) with corresponding market shares.

Besides synergetic and dissipative systems, there are also conservative ones
with symmetry breaking. Consider the self-organization of the dipoles in a spin-
glass when the temperature is reduced (Fig. 4.9a). In thermal equilibrium, the spins
become aligned in the same direction, depending on initial random fluctuations. The
dynamics of market shares seem to develop in the same manner. There are many ex-
amples of technologies which have made their way because of initial random fluctu-
ations. In the last century neighboring railway companies accept the same gauge in
a larger region. The standard gauge was only the result of historical random events
and not distinguished by technical reasons.

The behavior of these complex systems is determined by similar evolution
equations, like the symmetry breaking of spin-glass systems or ferromagnets. Fig-

Fig. 7.7. Bifurcation of two competing firms into winner and loser after competition φ > φc
[7.29]
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ure 7.8a shows the evolution of magnetic dipoles in a ferromagnet. Each dipole or
elementary magnet can be either up (North) or down (South). A dipole can interact
with its nearest neighbors. At a high temperature the directions of the dipoles are
random. If the temperature is reduced, then the elementary dipoles become aligned
in the same direction. As the evolution is a kind of symmetry breaking, it cannot be
forecast which direction is distinguished in the final state of equilibrium. Figure 7.8b
illustrates the analogous process of self-organization for the gauges of railway com-
panies.

Self-reinforcing mechanisms with positive feedback are typical features of non-
linear complex systems in economies and societies. For example, we may speculate
why Santa Clara County in California has become the famous Silicon Valley. In
the 1940s and 1950s some key individuals (like the employers Hewlett, Packard,
and Shockley) founded electronics firms in the neighborhood of Stanford Univer-
sity. These pioneers created a concentration of high-tech engineers and produc-
tion which has become an attractor for finally more than 900 firms. At the begin-
ning, there were some random fluctuations favoring Santa Clara County. Thus, it
is no miracle, but lawfulness in a nonlinear sense that explains how Silicon Valley

Fig. 7.8a,b. Nonlinear dynamics of magnetic dipoles in a ferromagnet (a) and nonlinear dy-
namics of competing technologies (gauges of railway companies) in an economy (b) [7.27]
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arose. But it is a miracle in the sense of randomness that it arose in Santa Clara
County.

Nowadays, self-reinforcing mechanics determine the international trade of
high-tech technologies [7.30]. The car industry competition between the USA and
Japan can be explained in this framework. Initially, the Japanese industry offered
small cars on the American market without any resistance from the American car in-
dustry, which was traditionally specialized for production of big cars. The Japanese
industry could gain market share, lower costs, and raise quality. Thus, the positive
feedback enabled the Japanese industry to invade the American market.

The insight into these nonlinear market effects may have major consequences
for political decisions. From the traditional point of view, assuming a constant or de-
creasing income, governments trust in open markets, try to prevent monopolies and
hope that industries will support research and technical developments. They believe
in a fixed equilibrium of world market prices and refuse to intervene with subven-
tions or tariffs. Their politics is justified in an economy with decreasing income,
but it may be dangerous in sectors depending on high technology with increasing
income.

Mechanisms operating with increasing income change the equilibria of com-
petition among nations. Even strong national economies may miss out on the de-
velopment of important technologies. The technology gap between Western Europe
and the USA in the 1960s (for instance in the computer industry) is a famous ex-
ample. Technical standards or conventions have often been established by positive
feedback. Examples like the gauge of railways, the English language as the standard
language of air navigation, FORTRAN as a computer language, a particular screw
thread, and so on often cannot be changed even if alternative techniques or conven-
tions may be better. They have gained too much market share. But superiority at the
beginning is no guarantee for survival in the long run.

The theory of complex systems can help design a global phase portrait of eco-
nomic dynamics. Time series analysis delivers useful criteria and procedures to rec-
ognize patterns of behavior in, e.g., stock markets. But experience and intuition are
sometimes more helpful than scientific knowledge for finding the local equilibria of
economic welfare. Economists and politicians must be highly sensitive when deal-
ing with highly sensitive complex systems and must make appropriate decisions.

Experience shows that the rationality of human decision making is bounded.
Human cognitive capabilities are overwhelmed by the complexity of the nonlinear
systems they are forced to manage. Traditional mathematical decision theory as-
sumed perfect rationality of economic agents (homo oeconomicus). Herbert Simon,
Nobel Prize laureate of economics and one of the leading pioneers of systems sci-
ence and artificial intelligence, introduced the principle of bounded rationality in
1959:

The capacity of the human mind for formulating and solving complex problems is very
small compared with the size of the problem whose solution is required for objectively ra-
tional behavior in the real world or even for a reasonable approximation to such objective
rationality [7.31].
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Bounded rationality is not only given by the limitations of human knowledge,
information, and time. It is not only the incompleteness of our knowledge and the
simplification of our models. The constraints of short-term memory and of informa-
tion storage in long-term memory are well-established. In stressful situations people
are overwhelmed by a flood of information, which must be filtered under time pres-
sure. Therefore, we must refer to the real features of human information processing
and decision making, which is characterized by emotional, subconscious, and all
kinds of affective and nonrational factors. Even experts and managers often prefer
to rely on rules of thumb and heuristics, which are based on intuitive feelings of for-
mer experiences. Experience shows that human intuition does not only mean lack of
information and the failure to make decisions. Our affective behavior and intuitive
feeling are parts of our evolutionary heritage that enable us to make decisions when
matters of survival are at stake.

In traditional economics and decision theory, affectiveness and intuition have
been regarded as imperfect information processing, which must be overcome by
computer and information technology. But even our modern insight into the compu-
tational complexity of nature and life enforces us to give up traditional standards of
so-called rationality. Actually, nature and life are not only characterized by highly
complex and chaotic dynamics, but also by randomness and noise. In this case, there
is no shortcut to any finite program or law that would forecast the future and reduce
complexity. The computational amount of reducing complexity would be at least as
large as the actual behavior of the system. Computational irreducibility and undecid-
ability (compare Sect. 5.6) force us to look for behavioral strategies that are based
on our actual experiences in analog situations. Instead of mathematical optimiza-
tion theory, empirical and experimental research are needed to find and evaluate the
heuristics people actually use in decision making.

As optimal decison making with perfect models is impossible, people have de-
veloped many individual strategies to respond to bounded rationality [7.32]. They
always intend to reduce the complexity of real situations. Organizational habits and
routines are justified by a firm’s tradition and culture. Rules of thumb are based
on simplified and incomplete models of situations that have been justified in the
past. If, for example, managers do not have the information or time to set the price
of each item to optimize store profits, they may multiply wholesale costs by a tra-
ditional markup ratio. When prices seem too high or too low, they are corrected
according to other rules of thumb. Solving optimization problems is often too com-
plex for decision making. Instead of optimization, people tend to set goals that
they can reach under given resource and time constraints. If the goals are met, they
stop their efforts, though they cannot be sure if there was a more perfect solution
to the problem. Consumers, for example, stop searching for bargains if they find
a low enough price for a certain item. Employers sometimes hire the first candidate
who meets the job requirements, rather than searching for the best one. Decon-
structing decision problems into subgoals is also a strategy to reduce complexity.
But, of course, local decision makers in a complex firm run the danger of ignor-
ing those aspects of their subgoals which they believe are not directly related to
them.
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If decision makers ignore the side effects and feedbacks of actions in the non-
linear dynamics of a firm or market, they may cause instability and dysfunction in
the system. But people are not complete irrational, insensible, or narrow-minded.
The principle of bounded rationality tells us that there is no global concept of ratio-
nality. As people, nevertheless, try to act purposefully on the basis of their knowl-
edge, experience, and feelings, their decisions may be intendedly or locally rational.
A decision rule is called intended or locally rational if it generates reasonable and
sensible results in the context of the decision makers believed and assumed envi-
ronment. For example, it seems rational for a firm to cut prices to stimulate market
share when capacity utilization is low. However, it is not generally a rational rule,
because it depends on the managers belief that competitors will not, or cannot, re-
spond by cutting their own prices. Later on, this example illustrates how locally ra-
tional rules can lead to global irrationality by the nonlinear dynamics of a complex
system.

The nonlinear dynamics of competing firms is determined by several feedback
loops. A company cuts prices when capacity utilization falls below a certain level.
This is a negative feedback that managers attempt to follow. They only concentrate
on this feedback loop and simplify the whole system in the sense that the price of
competing products is considered exogenous. If that were true, then cutting prices
to stimulate demand and boost profits would make sense. But the managers model
is only a small fraction of the whole nonlinear reality. Competitors are likely to set
prices using the same feedback loop as their local strategy. Cutting prices when uti-
lization drops initiates a reinforcing feedback in which a drop in price causes the
market share and utilization of competing firms to fall. Thus, they are motivated to
cut their prices. The company states that its market share and utilization have not im-
proved as expected and cuts prices again, thereby closing a positive loop. When the
managers model of exogenous prices is false, their locally and intendedly rational
decisions lead to an unintended price war that destroys the profitability for all.

In order to avoid global failure by locally rational decisions, it is necessary to
test partial models. In a corresponding test, each organizational function is isolated
from its environment until it is consistent with the model that belongs to the decision
rule. Obviously, in complex systems, intendedly and locally rational decision rules
used by individual actors cannot guarantee globally rational behavior. In general,
it is one of the most amazing insights of modern research in computational com-
plexity – that very simple and well-determined rules of local behavior generate not
only highly complex and chaotic, but also random dynamics of the whole system
(compare Sect. 5.6).

If we look at the development of prices in financial markets, we will see time
series with trends and patterns, but also amounts of apparent randomness with which
prices fluctuate. The reason is that prices are not determined by true values, as Aris-
totle and Adam Smith believed; prices are determined by their estimated value at
any given time. These estimates are influenced by all kinds of events that people
relate to them and to their feelings and intuitions. In this sense, random fluctuations
in prices reflect the random change of the outside world and its human estimation
which can be observed on different time scales of time series. Thus, price fluctu-
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ations are the results of nonlinear interactions of a large number of factors. How
can this large number of factors be represented in appropriate models? Even the
nonlinear equations of dynamical systems reduce complexity to a certain number of
continuous functions. Sometimes these functions are not well-known, or they must
be selected and isolated from a complex background in an idealized manner. Instead
of solving difficult nonlinear equations with selected functions, it could be more ap-
propriate to consider computer programs of complex systems with a large number
of interacting entities, which could be analyzed in computer experiments.

Following the line of Sect. 5.6, a market could be viewed as a 1-dimensional
cellular automaton. Each cell represents a single trading unity with a finite number
of states (e.g., colors), indicating, for example, whether it chooses to buy or sell at
that step. All kinds of behavior could be interpreted by changing states of unities.
The information flow in a market is realized by the change of states depending
on the actions of their neighbors on previous steps. In a simple Wolfram cellular
automaton (Fig. 7.9a), the behavior of a given cell is determined by looking at the
behavior of its two neighbors on the previous step according to simple rules with
cellular states 1 (black) and 0 (white).

1 1

0

1 0

1

0 1

1

0 0

0

Fig. 7.9a,b. Market model of buying and selling units (cells) by pattern formation of
a 1-dimensional cellular automaton (a) with time series of market price (b) [7.33]

As a rough analog to a market price, the running difference of the total num-
ber of black and white cells at successive steps in the cellular pattern is plotted as
a time series (Fig. 7.9b). This plot looks random, although patches of predictability
can be seen in the pattern of the complete behavior of the system. In real markets
we have, of course, no chance of knowing the detailed behavior of each entity, as in
a cellular automaton. But this kind of idealization is also assumed in the molecular
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models of thermodynamics. Although we do not know the exact behavior of each
gas molecule, we can recognize trends of behavior or the complete randomness of
the whole gas. For cellular automata and equivalent systems, it is well-known that
even the more complicated local rules of interacting entities do not change the global
pattern of behavior. Thus, even in more realistic models, where agents are allowed
to have different or changing rules, there is no essential change in global behav-
ior. These systems can generate complex, chaotic, and even random patterns. Thus,
in economic contexts, locally or intendedly rational behavior can lead to random
fluctuation. The consequence is that even from a computational point of view, we
must support experimental research on the actual behavior of economic agents in
changing situations. There is no shortcut to a philosophers stone in economics.

7.3 Bachelier’s Financial Theory and Market Equilibrium

In economics as well as in financial theory, uncertainty and incomplete information
prevent exact predictions. A widely accepted belief in financial theory is that time
series of asset prices are unpredictable. Chaos theory has shown that unpredictable
time series can arise from deterministic nonlinear systems. The results obtained in
the study of physical, chemical, and biological systems raise the question of whether
the time evolutions of asset prices in financial markets may be the result of underly-
ing nonlinear deterministic dynamics of a finite number of variables. If we analyze
financial markets using the tools of nonlinear dynamics, we may be interested in
reconstructing an attractor. In time series analysis (Sect. 2.6), it is rather difficult
to reconstruct an underlying attractor and its dimension d. For chaotic systems with
d > 3, it is a challenge to distinguish between a chaotic time evolution and a random
process, especially if the underlying deterministic dynamics are unknown. From an
empirical point of view, discriminating between randomness and chaos is often an
impossible task. The time evolution of an asset price depends on all of the informa-
tion that affects the investigated asset. It seems unlikely that all of this information
can easily be described by a limited number of nonlinear deterministic equations.

Therefore, asserts price dynamics are assumed to be stochastic processes. One
key concept to understanding stochastic processes that was discovered early on was
the random walk (see Sect. 5.4). The first theoretical description in the natural sci-
ences of a random walk was given in 1905 in Einstein’s analysis of molecular in-
teractions. However, the first mathematization of a random walk was not realized in
physics, but in the social sciences, by the French mathematician Louis Jean Bache-
lier (1870–1946). In 1900 he published his doctoral thesis, entitled “Théorie de la
Spéculation” [7.34]. During that time, most market analyses looked at stock and
bond prices in a causal way: something happens (the cause) and prices react (the ef-
fect). In complex markets with thousands of actions and reactions, a causal analysis
is difficult to work out after the reaction has occurred, never mind beforehand (i.e.,
in an attempt to forecast a reaction). One cannot know everything. Instead, Bache-
lier tried to estimate the odds that prices will move. He was inspired by an analogy
between the diffusion of heat through a substance and how a bond price fluctuates.
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He believed that both were processes that could not be forecast precisely. At the
level of particles in matter or individuals in markets, the details are too complicated.
One can never analyze exactly how all relevant factors interrelate to spread energy
or to energize spreads. However, the broad pattern of probability that describes the
whole system can be seen in both fields.

Bachelier introduced a stochastic model by analyzing the bond market as a fair
game. Each time one tosses a coin, the odds of obtaining heads or tails remains 1/2
regardless of what was obtained in the prior toss. In this sense, coin tossing is said
to have no memory. Even during long runs of heads or tails, the run is as likely to
end as to continue upon each new toss. In the thick of the trading, price changes
can certainly look that way. Bachelier assumed that the market had already taken all
relevant information into account, and that prices were in equilibrium, with supply
matched to demand and seller paired with buyer. Unless some new information came
along to change that balance, one would have no reason to expect any change in
price. The next move could be up or down, with each equally as likely.

Actually, prices follow a random walk. Imagine a drunken man staggering
across an open field. How far will he have staggered after a certain period of time?
He could go one step left, two steps right, three backwards, and so on in an aimless
path. On average, just as in coin tossing, he gets nowhere; his random walk is stuck
at his starting point. In the same way, market prices can go up or down, in big steps
or small ones. With no new information to push a price in one direction or the other,
a price will on average fluctuate around its starting point. In this case, the best fore-
cast is the price today. Each variation in price is unrelated to the last. In a stochastic
model, the price changes form a sequence of independent and identically distributed
random variables. In Fig. 7.10b, a chart of changes in price illustrates a more or less
uniform distribution over time. Most price changes occur within a narrow range.
There are also some larger fluctuations, but these are relatively rare; this then re-
sembles an unmown lawn, in that most of the blades of grass fall within a narrow
range of heights, while a minority rise above this range.

In order to illustrate this smooth distribution, Bachelier plotted all of the
changes in bond price over a month or year on a graph. When the price changes
were independent and identically distributed, they spread out in the well-known
bell curve shape of a normal (“Gaussian”) distribution (see Sect. 5.4), with many
small changes clustered in the center of the bell and a few big changes at the edges
(Fig. 7.10a). Bachelier assumed that price changes behave like the random walk of
molecules in Brownian motion. Long before Bachelier and Einstein, the Scottish
botanist Robert Brown had studied the erratic way that tiny pollen grains jiggled
about in a sample of water. Einstein explained that this motion was due to molec-
ular interactions and developed equations very similar to Bachelier’s equation of
bond-price probability, although Einstein didn’t realize this. It is a remarkable co-
incidence that the movement of security prices, the motion of molecules, and the
diffusion of heat are all described by mathematically analogous models. In short,
Bachelier’s model depends on the three hypotheses of: (1) statistical independence
(each change in price is independent of the previous change); (2) statistical station-
arity of the price changes (the process that produces the price changes does not
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Fig. 7.10. Normal Gaussian distribution curve (a) and chart of price changes (b) obtained by
Bachelier [7.35]

evolve over time); and (3) a normal distribution (the price changes occur according
to the shape of the Gaussian bell curve).

However, it was a long time before economists recognized the practical virtues
of describing markets via the laws of chance and Brownian motion. In 1956, Bache-
lier’s idea of a fair game was used by Paul A. Samuelson and his school to formulate
the Efficient Markets Hypothesis [7.36]. They argued that in an ideal market, secu-
rity prices fully reflect all relevant information. A financial market is a fair game in
which buyer balances seller. By reading price charts, analyzing public information,
and acting on inside information, the market quickly discounts the new information
that results. Prices rise or fall to reach a new equilibrium between buyer and seller.
The next price change is, once again, as likely to be up as to be down. Therefore,
one can expect to win half of the time and lose half of the time. If one had special
insights into a stock, one could profit from being the first in the market to act on
it. However, because there are many people in the market that are as intelligent as
oneself, one cannot be sure of being first or correct.

Following the work of Samuelson, Bachelier’s theory was not only elaborated
into a mature theory of how prices vary and how markets work; it was more impor-
tant for the financial world to translate the theory into practical financial tools. In the
1950s, Harry M. Markowitz was inspired by Bachelier to introduce Modern Portfo-
lio Theory (MPT) as a method for selecting investments [7.37]. In the early 1960s,
William F. Sharpe devised a method of valuing an asset called the Capital Asset
Pricing Method (CAPM). Finally, the Black–Scholes formula for valuing options
contracts and assessing risk was devised by Fischer Black and Myron S. Scholes
in the early 1970s. These three innovations – CAPM, MPT, and Black–Scholes –
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are still the fundamental tools of classical financial theory, based on Bachelier’s
hypotheses for financial markets.

Markowitz, who won the Nobel Prize for Economics in 1990, suggested that in-
vestment risks could be minimized by distributing them in portfolios, according to
the Gaussian bell curve: given two investment portfolios to choose from, go for the
one with the highest expected mean return and the lowest variance, or risk. Math-
ematically, Markowitz argued that any stock’s prospects can be described by two
numbers, the reward and the risk, or the mean and the variance of what one expects
the stock will pay back by the time one sells. The first number, the average expected
selling price, is predicted with standard stock analyst tools. The second number, the
variance, is predicted by reviewing how the stock did in the past and using the bell
curve as a yardstick. With these two numbers as coordinates, stocks can be repre-
sented by points in a plane and compared systematically. They are scattered across
the plane in a spectrum of mean and variance, profit and risk. The final step is to
combine the stocks in an efficient portfolio cluster.

The problem is that portfolio risk is more complicated than adding numbers.
Taken as a whole, a portfolio can be greater or less than the sum of its parts. Stocks
have a tendency to move up and down together. Markowitz compared it with the
coin-tossing game. If one bets on a set of fair coins and their tosses are all uncor-
related, one will probably come out even. The heads will counterbalance the tails,
and the bet is diversified. However, if the coins are correlated, then the outcomes
of the coin tosses will be dependent on each other in some fashion. In a similar
way, any stock is correlated more or less with other stocks, depending on the mar-
ket sector. Markowitz’s portfolio theory suggests that some stocks that tend to give
tails should be mixed with others that tend to give heads, so to speak, in order to
lower the risk associated with the overall portfolio. More and more stocks should
be added in different combinations to build an efficient portfolio. A portfolio is
efficient if it produces the most profit with the least risk. The variance of a port-
folio can be mathematically estimated based on the variances of its stocks. In the
simplified case of a two-stock portfolio P, its variance is defined by the formula
σ 2

P = w2
Aσ

2
A + w2

Bσ
2
B + 2wAwBσAσBρAB, where σA and σB are the standard devia-

tions of stock A and B, the squares are the variances, w is each stock’s weighting
in the portfolio, and ρAB is the correlation between A and B. Using these meth-
ods, Markowitz transformed investing from a game of stock tips into an analysis of
means, variances, and risk aversion indices. This marked the beginning of financial
engineering.

But what would happen if everybody in the market uses Markowitz’s rules?
Sharpe, who also won the Nobel Prize for Economics in 1990, concluded that there
would be not as many efficient portfolios as there were people in the market, but
just one portfolio for all of them [7.38]. The reason for this is that everybody would
abandon a first portfolio and move their money in a second one if fluctuations in
stock prices suggested that the second portfolio was better. After time, there would
be just one portfolio, known as the market portfolio. The market itself is a kind of
computer that performs Markowitz’s calculations. Therefore, Sharpe introduced the
notion of a stock index fund: a large pool of money from thousands of investors that
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hold shares in exactly the same proportion as the real market. In short, the stock
index fund is considered to be a model of the real market. This is the main idea
behind Sharpe’s Capital Asset Pricing Model (CAPM).

From a computational point of view, a stock index fund is a clever reduction of
complexity. In order to reduce the thousands of calculations specified by Markowitz
for many complex portfolios, a stock index fund with less variables can be used to
simulate the real market. Instead of the real market, the stock index fund should be
used to find the best portfolios. The amount by which a stock reacts to a changing
market is called β. For a portfolio, it is now sufficient to estimate the value of β for
each of its stocks. Each stock has its own β, or degree to which its price fluctuations
correlate with those of the market overall. It is defined as how much the stock varies
with the market (the covariance) divided by the variance or risk of the market itself.
Therefore, the validity of β depends entirely on whether prices actually do fit the as-
sumed Gaussian bell curve [7.39]. Sharpe’s CAPM and Markowitz’s MPT are based
on Bachelier’s hypothesis of a normal distribution of price changes (Fig. 7.10).

The next step in the evolution of modern financial theory was the development
of the famous Black–Scholes formula [7.40]. The American economists Black and
Scholes proposed this formula for valuing warrants or options. Based on the results
of the Black–Scholes formula, financiers buy insurance, or hedge, against unwanted
market problems [7.41]. The formula has permitted an entirely new type of trad-
ing, not on stocks, but on their volatility. One important class of financial contract,
derivatives, encompasses financial products whose price depends upon the price of
another financial product. Examples of derivatives include forward contracts, fu-
tures, options, and swaps [7.42]. Derivatives are traded in either over-the-counter
markets or specialized exchanges. The simplest derivative is a forward contract.
When a forward contract is stipulated, one of the parties agrees to buy a given
amount of an asset at a specified price, called the forward price or delivery price
K, on a specified future date, the delivery date T. The other party agrees to sell the
specified amount of the asset at the delivery price on the delivery date. The party
agreeing to buy is said to have a long position, and the party agreeing to sell is said
to have a short position. The actual price Y of the underlying financial asset fluc-
tuates. The price Y(T) at the delivery date usually differs from the delivery price
specified in the forward contract. The payoff is either positive or negative, so what-
ever is gained by one party will be lost by the other.

A future contract is a forward contract traded on an exchange. This implies that
the contract is standardized, because the two parties interact through an exchange
institution, called the clearing house. The clearing house writes the contracts with
the buyer and the seller, guaranteeing that they will be executed at the delivery
date.

An option is a financial contract giving the holders the right to buy or to sell on
an underlying asset at time T and at price K. The price K is called the strike price
or the exercise price. T is the expiration date, sometimes called the exercise date or
the date of maturity. Options can also be characterized by the period during which
the option can be exercised. If the option can be exercised only at maturity, t = T,
it is called a European option. If the option can be exercised at any time between
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the contract initiation at t = 0 and t = T, it is called an American option. In the
following, European options are considered.

There are call options and put options. In a call option, the buyer of the option
has the right to buy the underlying financial asset at a given strike price K at maturity.
This right is obtained by paying an amount of money C(Y, t) to the seller of the
option. In a call option, the contract is issued and thereby acquires a right to be
exercised in the future, while the seller of the option receives cash immediately but
faces potential liabilities in the future. In a put option, the buyer of the option has
the right to sell the underlying financial asset at a given price K at maturity, t = T,
back to the seller of the option.

Derivatives are financial products traded by speculators and hedgers. Specula-
tors are interested in derivatives that provide an inexpensive way to expose a port-
folio to a large amount of risk. Hedgers are interested in derivatives that allow in-
vestors to reduce the market risk to which they are already exposed. Obviously,
hedging and speculating are typical trading strategies in financial markets. Hedgers
focus on portfolio risk reduction, while speculators maximize portfolio risk. In any
case, option pricing is a challenge for financial markets. The task is to find the ratio-
nal and fair price C(Y, t) of an option. Since the price Y(t) at each step t is a random
variable, C(Y, t) is a function of a random variable.

The Black–Scholes formula is a solution to the option-pricing problem [7.43].
Black and Scholes assumed several conditions for financial markets. (1) The change
in price Y(t) at each step t can be described by the stochastic differential equation
of Brownian motion. This assumption implies that the changes in the (logarithm of)
price are normally distributed. (2) Security trading is continuous. (3) Securities can
be sold at any time. (4) There are no transaction costs. (5) The market interest rate r
is constant. (6) There are no dividends between t = 0 and t = T.

(7) There are no arbitrage opportunities. Arbitrage is a key concept when at-
tempting to understand markets. It means the purchase and sale of the same or equiv-
alent security in order to profit from price discrepancies. A stock may be traded on
two different stock exchanges in two different countries with different currencies.
For example, assume that the current price of a share is 9 US dollars in New York
and 8 euros in Frankfurt, and that the exchange rate between US dollars and euros is
0.80 (euros to 1 dollar). By buying several shares of the stock in New York and sell-
ing them in Frankfurt, the arbitrager makes a profit (ignoring any transaction costs).
Traders looking for arbitrage opportunities contribute to the market’s ability to yield
the most rational price for goods. The reason is obvious: if someone has discovered
an arbitrage opportunity and succeeded in making a profit, he will repeat the same
action. After carrying out this action repeatedly and systematically several times,
the prices change to minimize his arbitrage opportunities. In short: new arbitrage
opportunities continually appear in markets, but as soon as they are discovered the
market moves in a direction that gradually eliminates them.

Now, in the absence of arbitrage opportunities, the change in the value of
a portfolio must equal the gain obtained by investing the same amount of money
in a riskless security providing a return per unit of time r. This assumption al-
lows us to derive the Black–Scholes partial differential equation, which is valid for
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both call and put European options. Under some boundary conditions and substitu-
tions, the Black–Scholes partial differential equation becomes formally equivalent
to the heat transfer equation used in physics, which is analytically solvable. The fa-
mous Black–Scholes formula for option pricing is just such an analytical solution,
C(Y, t) = YN(d1) − Ker(t−T)N(d2), where N(x) is the cumulative density function
for a Gaussian variable with a mean of zero and unit standard deviation [7.44].

The analytical Black–Scholes solution to the option-pricing problem was ob-
viously a mathematical milestone in the modern theory of finance. However, their
model of financial activity does not fully reflect the stochastic behavior observed
in real markets. The main reason is the use of Bachelier’s hypothesis of changes
in stock prices, which assumes small changes that are on average within the Gaus-
sian standard deviation interval (Fig. 7.10). Markowitz also believed that variance
and standard deviation provided good proxies for risk, with the uniform distribution
of the Gaussian bell curve describing how prices move. In the next step, Sharpe’s
beta (β) and cost-of-capital estimates depend on Markowitz’s concept of portfolios,
which is correct, provided that Bachelier is right. Finally, the Black–Scholes for-
mula is right provided that the bell curve and a normal distribution of small changes
with continuously moving prices are correct. Therefore, in the end, the mathematics
of modern financial theory is founded on Bachelier’s hypothesis.

However, at the end of the 1980s, abrupt financial crashes took many investors
by surprise. For example, on October 19, 1987, the Dow Jones plunged by 29.2%.
According to Bachelier’s normal distribution of small changes in the Gaussian bell
curve, the fall should not have happened and was mathematically considered a once-
in-an-eon event. The correctly designed investment portfolios blew up, and options-
based portfolio insurance failed. The subsequent heavy financial fluctuations ob-
served in the 1990s reinforced increasing doubts about the validity of the financial
theory. Further, the path of the underlying asset price can be discontinuous upon the
arrival of relevant economic information. The volatilities of a given stock or index
and the interest rate are not constant, but are themselves random processes.

The classical Black–Scholes formula considers the option pricing problem in
an ideal frictionless market. However, in physics as well as in economics, models
without friction are purely theoretical. In mechanics, for example, it is of course
much easier to formalize a general model of motion without friction than to at-
tempt to model the real world. In thermodynamics, similar scenarios are observed
when equilibrium and nonequilibrium theories are compared. Real markets are of-
ten efficient, but they are never ideal. The complexity of modeling financial markets
increases when aspects of real markets are taken into account. Market imperfec-
tions are not formalized in the ideal model. Some of these economic examples of
“friction” are considered in the following section.

The existence of a portfolio containing both riskless and risky assets is crucial
when determining the rational price of the option under the assumption that no arbi-
trage opportunities are present. However, in order to obtain the rational price of an
option, other assumptions must be made concerning the risk aversion and price ex-
pectations of the traders. Actually, the price of the underlying asset does not follow
Brownian motion, but a jump-diffusion model. Discontinuities in the path followed
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by the asset price is just one of the imperfections. Another imperfection of real
markets concerns the random character of volatility. Further, in idealized financial
markets, the strategy for perfectly hedging a portfolio consisting of both riskless
and risky assets is known. In real markets, this strategy is unrealistic, because the
rebalancing of the hedged portfolio is not performed continuously, and, contrary
to the conditions of the Black–Scholes formula, there are transaction costs in real
markets. These market imperfections imply that perfect hedging of a portfolio is not
guaranteed in a real market if the asset dynamics are assumed to be determined by
Brownian motion.

In science, models are used to understand the basic aspects of a scientific prob-
lem. An idealized model is not able to describe all aspects of reality, but it is, at
least, able to describe those that are assumed to be essential. As soon as the validity
of the idealized model is criticized, extensions and generalizations of the model are
attempted in order to improve the description of the real system. In this case, the
complexity of the modeling grows, the number of assumptions increases, and the
generality of the solutions diminishes. The Black–Scholes formula is an idealized
model with restricted validity [7.45]. Extensions of the Black–Scholes formula aim
to relax assumptions that may not be realistic for real financial markets. Examples
are option pricing with stochastic interest rates, option pricing with a jump-diffusion
stochastic stock price process, option pricing with stochastic volatility, and option
pricing with non-Gaussian distributions of prices. When one or several of the Black–
Scholes assumptions are relaxed, the complexity of the corresponding equations im-
mediately increases. It is no longer possible to find a simple replicating portfolio, or
to perfectly hedge an optimal portfolio. The simplicity and elegance of the idealized
Black–Scholes solution is lost in real markets.

7.4 Complex Financial Markets, Turbulence, and Power Laws

The computational dynamics of globalized commerce are realized in centers of fi-
nancial trade and financial engineering around the world. These centers are where
financial theories, from Bachelier to Black–Scholes, meet financial reality. Some of
these theories are deeply rooted in classical economics but are refuted by observa-
tions of real human behavior:

1) Assumption: People are rational in the sense of Adam Smith’s homo oe-
conomicus. Consequently, when presented with all the relevant information about
a stock or bond, investors will make the obvious rational choice, leading to the great-
est possible wealth and happiness. Their preferences can be expressed by mathemat-
ical formulae involving utility functions that can be maximized. Rational investors
lead to a rational model of an efficient market. In reality, people do not only think
in terms of mathematical utility functions, and are not always rational and self-
interested. They are driven by emotions that distort their decisions. Sometimes, they
miscalculate probabilities and feel differently about loss than gain.

2) Assumption: All investors are alike. Consequently, people have the same in-
vestment goals and react and behave in the same manner. In short, they act like the
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molecules in an ideal gas in physics. An equation that describes one such molecule
or investor can be used to describe any such molecule. In reality, people are not alike.
If the assumption of homogeneity is dropped, a more complex model of the market
emerges. For example, there are at least two different types of investor. A funda-
mentalist believes that each stock has its own value and will eventually sell for that
value. On the other hand, a chartist ignores the fundamentals and monitors price
trends in order to jump on or off bandwagons. Interactions between these types of
investor can lead to price bubbles and spontaneous crashes. The market switches
from a well-balanced linear system, in which one factor adds to the next in a pre-
dictable manner, to a chaotic nonlinear system in which factors interact, resulting in
synergetic and unanticipated effects.

3) Assumption: Prices change in a practically continuous manner. Conse-
quently, stock quotes or exchange rates do not jump up or down, but move smoothly
from one value to the next. Continuity is assumed in classical physics, and Leib-
niz’ melegantly stated that “natura non facit saltum” (nature does not make leaps),
which was later repeated by Alfred Marshall in his textbook on economic systems,
“Principles of Economics” (1890). From a methodological point of view, the belief
that nature and economies behave continuously makes it possible to apply contin-
uous functions and differential equations in order to solve physical or economic
problems analytically. In reality, however, prices in economy and quantum states
in quantum physics do jump, and reality is actually discontinuous. In contrast to
Einstein’s famous objection to quantum physics, God does play with dice – in both
nature and society.

4) Assumption: Price changes can be described by Brownian motion. Brow-
nian motion, as mentioned earlier, was first described by physicists but was later
applied to financial markets by Bachelier. When applied to economics, Brownian
motion implies three assumptions. First, that each change in price does not depend
on the previous change (statistical independence). Second, the process that gener-
ates the price fluctuations does not change over time (statistical stationarity). Third,
the price changes follow a normal distribution – when the frequency of each change
is plotted, a Gaussian bell curve results. Actually, plots of financial data do not result
in a smooth normal distribution of price changes. The analysis of real distribution
patterns using stochastic mathematics and systems theory is somewhat challenging,
and one that provides new insights into the complexity of modern society.

One well-known financial time series is the Dow Jones Industrial Average. This
is a simple average of the stock prices of the thirty most highly valued companies
in the United States. The Dow Jones is usually presented in the form of Fig. 7.11,
which shows the daily index values from 1916 through to its peak of 11,722 in Jan-
uary 2000, as well as the few years of bear market that followed. Although crashes
in the market, for example, on October 19, 1987, are visible, the overall impression
is one of exponential growth at the end of the last century.

However, rather than showing just the index values, it is easier to study the
fluctuations in the index by plotting the index changes from one day to the next. In
order to demonstrate the differences between a hypothetical index that conforms to
Brownian motion and the behavior of the Dow Jones index, each index change is
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Fig. 7.11. Dow Jones Industrial Average values during the twentieth century [7.46]

converted into the number of standard deviations beyond the average change. In this
case, a very large and rare index change will produce a tall bar in the chart. Small
(common) changes give short bars. It is apparent from comparing the two plots in
Fig. 7.12 that the underlying dynamics of the Dow Jones index are very different
from Brownian motion. Mathematically, the standard deviation is designated by the
Greek letter σ . In the Brownian chart (7.12b), most values are within 2σ , and very
few values are any larger than this. However, the spikes are huge in the Dow Jones
chart (7.12a); some are 10σ , and one, corresponding to the market crash in 1987, is
22σ .

The Dow Jones chart demonstrates that movements in financial markets are not
distributed normally. Price fluctuations in real markets are not mild, but wild. This
means that stocks are riskier than would be assumed based on a normal distribution.
If the bell curve is used as a guide, stock portfolios could be put together incorrectly,
risk management could fail, and misguided trading strategies could be used. Further,
the Dow Jones chart shows that, as globalization gathers pace, we will see more
financial crises. Therefore, we must focus on market extremes.

On a qualitative level, financial markets seem to be similar to turbulence in na-
ture. Wind is an example of natural turbulence, and its properties can be studied
in a wind tunnel. When the rotor at the start of the tunnel spins relatively slowly,
the resulting wind profile is smooth; and the wind currents form long, steady lines,
planes, and curves. However, as the rotor speed increases, the wind speed and en-
ergy inside the tunnel increases and the wind suddenly breaks up into sharp and
intermittent gusts. Eddies form, and a cascade of whirlpools of various sizes appear
spontaneously. The same emergence of patterns and attractors has been noted for
the fluid dynamics of water (Fig. 2.26).

Figure 7.13a shows the time series for a turbulent wind. The chart illustrates
the change in wind speed as it jumps into and out of gusty, turbulent flow. Turbu-
lence can be observed everywhere in nature. Turbulence occurs in clouds, as well as
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Fig. 7.12. Fluctuations in the Dow Jones index (a), and fluctuations from Brownian mo-
tion (b), both given in standard deviations [7.47]

in patterns of sunspots. All kinds of signals seem to be characterized by turbulent
signatures. Figure 7.13b shows a “turbulent wind” in the stock market, which varies
wildly through the turbulent twentieth century. This chart shows the volatility of the
stock market: the fluctuations in price vary wildly in size from month to month. The
peaks occur from 1929 to 1934 and in 1987. If this pattern is compared with the
wind chart (7.13a), it is easy to spot the same types of behavior in both plots: abrupt
discontinuities between wild motion and quiet activity, intermittent periods, and the
same bunching of events in time. It is clear that the destructive turbulence observed
in nature can also be seen in financial markets.

Indeed, the word “turbulence” is even used by politicians, since price fluctu-
ations in financial markets qualitatively resemble velocity fluctuations in natural
turbulence. The question then arises of whether this qualitative parallel is also use-
ful on a quantitative level, such that our understanding of turbulence could aid our
understanding of price fluctuations. Turbulence is a well-defined but still unsolved
physical problem. It is a considerable challenge to mathematical physicists, and one
that is central to research into complexity. A simple system that exhibits turbulence
is a fluid of kinematic viscosity ν flowing with a velocity V in a pipe of diameter L.
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Fig. 7.13. Turbulent winds in nature (a) and in the financial market (b) [7.48]

The control parameter that determines the complexity of this flowing fluid is the
Reynolds number Re = LV/ν (Fig. 2.26). When Re reaches a particular threshold
value, the complexity of the fluid patterns increases dramatically, leading to turbu-
lence.

The equations that describe the time evolution of an incompressible fluid were
studied by Claude Louis Navier (1785–1836) in 1824. The Navier–Stokes equations
take the form of ∂/∂ tV(r, t) + (V(r, t) · ∇)V(r, t) = −∇P + ν∇2V(r, t), and ∇ ·
V(r, t) = 0, where V(r, t) is the velocity vector at position r and time t, and P is
the pressure. The Navier–Stokes equations characterize fully developed turbulence
completely at high Reynolds numbers. However, it has proven impossible to solve
these equations analytically, and it is even impossible to get numerical solutions for
very large values of Re.

In 1941, Kolmogorov [7.49] proved that in the limit of an infinitely large
Reynolds number, there is an approximate solution for the mean square velocity
increase during turbulence, but he failed to describe mean velocity increases of any
higher order. In fully developed turbulence, velocity fluctuations are characterized
by intermittent behavior, as indicated by the leptokurtic shape of the probability den-
sity function of the velocity increases. Kolmogorov’s theory is not able to describe
the intermittent behavior of velocity increases. However, there are at least practical
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approximations devised by experimenters that can be used to estimate fully devel-
oped turbulence from the measured velocity V(t).

Turbulence displays both analogies with and differences from the time evolu-
tion of prices in financial markets [7.50]. If we compare the time evolution of a stock
index and the velocity of a turbulent fluid at high Reynolds number, both processes
display intermittency and non-Gaussian features at short time intervals. Both pro-
cesses are nonstationary at short time scales, but are asymptotically stationary. The
similarities are their intermittency, non-Gaussian probability density functions, and
their gradual convergence to a Gaussian probability attractor (see Fig. 5.12). How-
ever, the probability density functions have different shapes in the two systems, and
the probabilities that they will return to the origin are different for the two systems.
Also, velocity fluctuations are anticorrelated whereas index fluctuations are uncor-
related. The evolution of the variance of velocity fluctuations is characterized by
a power law, which is valid only for a system in which the dynamical evolution
is essentially controlled by the energy dissipation rate per unit mass. In a financial
market, there is no reason that assets should exhibit a dynamical evolution that is
controlled by a similar variable. In short, there is no analog to the power law for
price dynamics.

Nevertheless, in modern physics and economics, phase transitions and nonlin-
ear dynamics are related to power laws, scaling, and unpredictable stochastic and
deterministic time series. Historically, the first mathematical application of a power-
law distribution occurred in the social sciences and not in physics. Recall that the
concept of a random walk was also mathematically described in economics (by
Bachelier) before it was applied in physics by Einstein (see Sect. 7.3). The Italian
social economist Vilfredo Pareto (1848–1923), one of the founders of the Lausanne
school of economics (see Sect. 7.2), investigated the statistical characteristics of the
wealth of individuals in a stable economy by modeling them using the distribution
y ∼ x−ν , where y is the number of people with income greater than or equal to x,
and ν is an exponent that Pareto estimated to be 1.5 [7.51]. He noticed that his result
could be generalized to different countries. Therefore, Pareto’s law of income was
sometimes interpreted as a universal social rule that was rooted in Darwin’s law of
natural selection.

In Sect. 5.4, we mentioned that power-law distributions may lack any character-
istic scale. This property prevented the use of power-law distributions in the natural
sciences until the introduction of Lévy’s new probabilistic mathematical concepts
and the introduction of new scaling concepts for thermodynamic functions and cor-
relation functions in physics. In financial markets, time scale invariance means that
even a stock expert cannot distinguish between time series where the prices are pro-
vided, for example, daily, weekly, or monthly. Figure 7.14a shows the natural loga-
rithms of the daily final prices of the German stock index (DAX) between November
4th 1986 and August 4th 1993. In Fig. 7.14b, three time series are shown that con-
tain 60 days of daily prices, 60 weeks of weekly prices, and 60 months of monthly
prices; all of these plots are very similar from a statistical viewpoint.
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Fig. 7.14. Natural logarithms of the daily final prices of the DAX (the German stock index)
(a), and three (statistically similar) time series showing daily, weekly, and monthly prices,
respectively (b) [7.52]

The stock price (s) series is given by {Xs(kt)}t0+60
t0 , where the scale k = 1,

5, and 20 for daily, weekly, and monthly prices, respectively. If X(t) is the time-
dependent stock price sequence, the return obtained when prices are given every k
days is given by Yk(t) = ln X(t + k)− ln X(t) ≈ (X(t + k)− X(t))/X(t). Due to the
statistical self-similarity of the time series, the return when prices are given every
k days, Yk(t), has an equal distribution to the normed return obtained when prices
are given every k′ days, c(k, k′)Yk′ ; here c(k, k′) is a scaling factor and k, k′ are
natural integers. The scale invariance of measurable magnitudes resulting from self-
similarity also implies that formal relationships between the magnitudes are scale-
invariant. For example, we consider the average return for a number T of trading
days, 〈|Yk|〉 = 1/T

∑T
t=1 Yk(t). Then the ratio of the measurable average returns

〈|Yk|〉
/ 〈|Yk′ |〉 = 〈|Yk|〉

/ 〈|Yk′ |〉
is also valid for all scales k, k′ > 0 and scalings λ > 0. It follows that the scaling
factors c(k, k′) = c(λk, λk′) are equal, especially c(k, k′) = c(k/k′, 1) for λ = 1/k′.
As the average values 〈|Yk|〉 are functions of k, both sides of the equation can be
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differentiated with respect to k. With k = k′ we get the relation

∂ ln 〈|Yk|〉 /∂ ln k = ∂ ln 〈|Yλk|〉 /∂ ln λk

for all λ > 0, which means a constant magnitude for all k, designated by

H = ∂ ln 〈|Yk|〉 /∂ ln k .

The resulting homogeneous first-order linear differential equation

∂ 〈|Yk|〉 /∂k − H/k 〈|Yk|〉 = 0

has the solution 〈|Yk|〉 = C kH with C = 〈|Y1|〉. Therefore the average k-day returns
satisfy the power law 〈|Yk|〉 ∼ kH . This allows us to determine the scaling factors
c(k, k′) for scale invariance with

Yk =P (k/k
′)HYk′ ,

where =P means “identically distributed.” The exponent 0 ≤ H ≤ 1 is called the
Hurst exponent. For independent and identically distributed random variables in the
sense of Bachelier’s random walk model for the financial market, H = 1/2 from the
central limit theorem (see Sect. 5.4). This is called the square root of time law of
Brownian motion.

Because of the self-similarity of financial charts, Mandelbrot suggested that it
was possible to construct fractal cartoons from them. A fractal is a pattern whose
parts echo the whole [7.53]. Figure 7.15 illustrates the construction of a fractal car-
toon of Bachelier’s financial chart. The fractal starts with an initial box, called the
fractal generator. Inside the box, a straight line rising from the bottom left corner to
the top right corner symbolizes the underlying trend line of the dynamics. The price
fluctuations along the way are represented by a zizag shape that fits over the straight
line. The zigzag line consists of three parts: a rise, a fall, and then another rise (all
of which are straight lines). In a next step, each of these straight line segments is
replaced with a copy of the broken line that spans the whole box. This construction
is repeated recursively, generating charts with ever-smaller lines and zigzags. The
top line shows the first steps in the construction of the fractal. The middle diagram is
the completed fractal chart. The diagram beneath that shows the increases from one
moment to the next. The construction can be made more realistic via randomization.
In this case, the process starts with different initial boxes that are selected at random
and then used in the subsequent recursive construction steps.

Fractal generated from financial charts can be further complicated by using
different zigzag lines. Of course, real price charts do not arise this way. Real
charts record thousands of transactions that cannot be analyzed individually. Instead,
a mathematical model can mimic the real process by simulating its tendency to rise
and fall. The fractal constructed from this will not trace exactly the same path as that
followed by the real price, but it will behave in the same manner from a statistical
point of view. Computers can easily and quickly perform numerous recursive con-
struction steps. Using this approach, although we cannot forecast financial events
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Fig. 7.15. Fractal reconstruction of Bachelier’s normally distributed financial chart [7.54]

like we can predict the positions of the planets, we can still study typical behav-
ioral patterns in financial markets in order to understand their dynamics and prepare
ourselves for the future.

Bachelier’s stochastic model of stock price dynamics assumes that ln X(t) is
a diffusive process and that increases in ln X(t) increments are normally distributed.
This model, based on Brownian motion, provides a first approximation of the be-
havior of empirical data. However, systematic deviations from the predictions of the
model are observed. The empirical distributions are more leptokuric than Gaussian
in form. A highly leptokurtic distribution is characterized by a narrower and larger
maximum and by fatter tails than in the Gaussian case. The degree of leptokurtosis
is much larger for high-frequency data. Figure 7.16 shows the empirical probability
density function for high-frequency price fluctuations in Xerox stock traded on the
New York Stock Exchange during a two-year period (1994–1995). The Gaussian
obtained with the measured standard deviation is also shown for comparison.

Several alternative models to Brownian motion that are based on different as-
sumptions have been proposed. The models differ in terms of the shape and lep-
tokurtosis of the probability density function, and in terms of key properties such
as the finiteness or infiniteness of the variance, the stationarity present at a short
time scale or asymptotically, the continuous or discontinuous character of X(t), and
the scaling behavior of the stochastic process. The first model to explicitly take
into account the leptokurtosis observed empirically in the probability density func-
tion was proposed in 1963, when Mandelbrot modeled ln X(t) for cotton prices. For
more than a century, the New York Cotton Exchange had kept exact daily records of
prices. Nearly all interstate trading was centralized at one exchange. It was a huge,
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Fig. 7.16. Empirical probability density function (pdf) for high-frequency price fluctuations
S(t) in Xerox stock. Note the fat tails, in contrast to the Gaussian constructed for the measured
standard deviation [7.55]

liquid market, with ample resources for record-keeping. However, it had long been
a nightmare for mathematical economists. No matter how they manipulated the
numbers, they could not get them to fit into Bachelier’s model. The price jumps
and falls were just too big. The volatility or standard deviation of the prices kept
shifting over time. The prices were stable in some years but wild in others.

Mandelbrot’s paper “The variation of certain speculative prices” (1963) was
a breakthrough in economic theory [7.56]. For the first time, he applied Lévy-stable
non-Gaussian distributions (see Sect. 5.4) and emphasized the importance of power
laws in wild financial markets. The most interesting properties of Lévy-stable non-
Gaussian processes are their stability and self-similarity, and their role as attractors
in probability space (Fig. 5.12). Mandelbrot’s Lévy-stable hypothesis implies that
lnX(t) is discontinuous and successive changes S(t) = ln X(t + 1) − ln X(t) in the
natural logarithm of the price are characterized by non-Gaussian scaling and by
a distribution with infinite variance.

The concept of scaling and discontinuity can also be translated into a fractal car-
toon. Fractal patterns are used to characterize the fat tails and abrupt price changes
of real financial markets. In Fig. 7.15, we saw that the fractal cartoon of Brownian
motion was constructed with a rising, straight-line initiator and a zigzag generator.
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Shrunken copies of the generator are interpolated into the diagram recursively. By
repeating this process, the specific fractal for Brownian motion can be generated.
The reason for this is the specific shape of the generator: starting at the point (0,0),
it rises to the point (4/9, 2/3), falls to the point (5/9, 1/3), and ends up at (1,1).
The sizes of the three segments of the generator are decisive. Their widths are 4/9,
1/9, and 4/9, respectively. The heights are 2/3, -1/3 (minus, because the line falls),
and 2/3. Obviously, each width is the square of each height, or each height is the
square root of each width. This square-root relationship between widths and heights
characterizes the Brownian motion fractal.

If these coordinates are changed, however, the outcome can look much more
like the cotton price chart. In Fig. 7.17, fractal construction starts with five inclined
intervals, but adds two vertical discontinuities. Unlike the Brownian generator, this
pattern exhibits sharp discontinuities. Each construction step adds further jumps up
and down. The bottom panel of Fig. 7.17 shows the changes in value from one mo-
ment to the next; many sharp outliers are present, giving the plot a very different
look to that of Bachelier’s normal distribution. The jumps follow a power-law dis-
tribution, corresponding to a curve with fat and leptokurtic tails. The exponent α
of the power law is the α parameter of the Lévy-stable non-Gaussian distribution
(0 < α < 2). A stable Gaussian distribution is characterized by α = 2 (see
Sect. 5.4).

Abrupt price changes were called the “Noah effect” by Mandelbrot, due to an
analogy with the flood described in the story of Noah in the Bible (see Fig. 7.18). In

Fig. 7.17. Fractal reconstruction of abrupt price changes [7.57]
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Genesis 7:4, God ordered the great Flood in order to purify a wicked world: “I will
cause it to rain upon the earth forty days and forty nights, and every living substance
that I have made will I destroy from off the face of the earth.” Noah survived; divine
advice caused him to prepare for the coming flood by building a ship strong enough
to withstand it. The flood came and went. It was catastrophic, but transient like
a market crash. Noah could not forecast the biblical flood, but he understood the
signs and symbols that hinted at that catastrophe to come. In the same manner, we
study the fractal patterns of time series and distribution laws in order to prepare
ourselves for sudden events.

There is another biblical story that illustrates a second type of wild behavior in
the financial markets. In this story, the Pharaoh dreamed that seven fat cattle were
feeding in the meadows when seven lean cattle rose out of the Nile and ate them
(Fig. 7.19). Genesis 41:28–30 explains: “What God is about to do he showeth unto
Pharaoh. Behold, there come seven years of great plenty throughout all the land of
Egypt: and there shall arise after them seven years of famine; and all the plenty
shall be forgotten in the land of Egypt; and the famine shall consume the land.”
Joseph called the Pharaoh’s dreams prophetic: seven years of famine would follow
seven years of prosperity. Therefore, he advised the Pharaoh to stockpile grain for
bad times to come. This pattern of periods of feast then famine is analogous to the
behavior often observed in financial markets where a period of rises is followed by
another period of falls (an “almost cycle”). Such behavior was termed the “Joseph
effect” by Mandelbrot, and its presence indicates that market fluctuations are de-
pendent on each other to some degree (i.e., the market appears to have a long-term
memory).

Fig. 7.18. The Noah effect: discontinuities in market dynamics, as illustrated by Noah’s ark
and the biblical flood [7.58]
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Fig. 7.19. The Joseph effect: long-term memories in financial markets, as illustrated by
Joseph’s interpretation of the Pharaoh’s dream [7.59]

The flooding of the Nile inspired the British engineer Harold Edwin Hurst to
derive a formula that could be used to model this long-term cyclic behavior [7.60].
The height of the flood was required in order to be able to construct appropriate
dams. At first, engineers assumed that the variations in the flood level from one
year to the next were statistically independent, just like Bachelier’s coin-tossing.
In this case, the range between the biggest winning margin at one moment of the
game and the worst losing margin at another time varies by the square root of the
number of tosses. However, Hurst found that the range from the highest Nile flood
to the lowest widened faster than the coin-tossing rule predicted. The range did not
widen according to the square-root rule (i.e. a one-half-power), but according to the
number of flood heights measured raised to power of three-quarters.

Long-term dependence also occurs in financial data when correlations fall more
slowly than expected. This is due not only to the complexity of the physical world of
weather, crops, ores, and factories, but also the psychological complexity of humans
and their changing expectations and estimations of what may or may not happen. In
such a complex world of interrelations, events in the distant past continue to echo
in the present. Financiers that were shocked by the 1929 stock market crash and the
Great Depression would hesitate to take a risk on the wildest forms of speculation.
Their memories led to long-term dependencies in the financial markets. It may be no
coincidence then that in 1987, when most of those financiers were no longer on the
scene and their wisdom had been forgotten, another great crash happened. Never-
theless, classical financial theory, based on Bachelier’s hypothesis of mild markets,
holds that all that matters is today’s news and the expectation of tomorrow’s news.

Brownian motion provides a very handy rule for estimating the development
of prices. It tells us how far an asset’s price may rise or fall and how much it is
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likely to fluctuate within a certain broad band. However, the exchange rates of dif-
ferent countries, for example, can actually wander further than the square root of
time law forecasts. This can occur when exchange rates exhibit long-term depen-
dencies. The movement of a rate in one direction will tend to continue over the next
few days. The rate will still fluctuate from da to day. However, in the long run it
will drift further from its starting point than predicted by the Brownian rule. The
rates are no longer simple random fluctuations that conform to Bachelier’s hypoth-
esis.

Bachelier’s square root of time law is a power law with an exponent H of 1/2.
Actually, it is only a special case of a more general rule for particles in physics or
prices in financial markets: the distance traveled (by the particle or price) is propor-
tional to some power H of the time elapsed, with 0 ≤ H ≤ 1 (note that the exponent
of the power law is called H in honor of Hurst). If H is bigger than the Brownian
value of 0.5, the particle or price will persistently roam far. This is the case when
there are long-term correlations with “memory” and echo effects. If H is smaller
than the Brownian value of 0.5, the particle or price will roam less, in a narrow and
furious zizag pattern. Therefore, the degree of dependence (the Joseph effect) be-
tween price changes can be measured by the Hurst exponent H. In Fig. 7.20b, each
price change is assumed to be independent of the last with H = 0. 5. Figure 7.20c
shows the persistent case, when H > 0. 5 and the resulting price trends are broad
and exhibit long-term memory. Figure 7.20 a shows the antipersistent case, when
H < 0. 5 and the action is furious but still constrained.

Fig. 7.20. Degrees of complexity of long-term dependencies, where (a) shows H > 0. 5
and persistent behavior, (b) H = 0. 5 and Brownian independence, and (c) H < 0. 5 and
antipersistent behavior [7.61]
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The degrees of complexity of long-term dependencies can also be characterized
by the fractal patterns in Fig. 7.21. Recall that the pattern for Brownian motion (the
middle panel in Fig. 7.21) is characterized by a square-root relationship in the three
segments of the fractal initiator, corresponding to the Hurst exponent H = 1/2.
The height of each segment is the square root of its width. Consequently, when at-
tempting fractal reconstructions of the charts 7.20a,c, each segment’s height should
be made equal to its width raised to some arbitrary power between 0 and 1. The
result of using a value of H that is greater than 1/2 is shown in the bottom panel
of Fig. 7.21, which corresponds to persistent behavior. The result of using a value
of H that is smaller than 1/2 is shown in the top panel of 7.21, which corresponds to
antipersistence.

Fractal patterns illustrate the scale invariance of time series. At different time
scales they all look roughly alike. No matter how wild the chart is, it sometimes rises
or falls in long waves, or with small waves superimposed on bigger waves. How-
ever, two forms of wildness seem to typify the zigzag-patterns: the abrupt changes
and discontinuities of the Noah effect and the almost cycles of the Joseph effect.

Fig. 7.21. Fractal reconstructions of long-term dependences where (a) shows H > 0. 5 and
persistent behavior, (b) H = 0. 5 and Brownian independence, and (c) H < 0. 5 and antiper-
sistent behavior [7.62]
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Mathematically, these can be characterized by two parameters: 0 < α ≤ 2 for stable
Lévy distributions and 0 ≤ H ≤ 1. Both are the exponents of power laws. A low-α
market would be risky, with wild price swings. As α is increased the behavior of
the market becomes closer to that of Bachelier’s market (where α = 2). Obviously,
Lévy’s α is an appropriate tool for describing discontinuities and abrupt changes
in the sense of the Noah effect. A Hurst exponent H of 1/2 implies that each price
change is independent of the previous one [7.63]. A larger H suggests that the data
are correlated; they move persistently in a certain direction. A smaller H implies
antipersistent behavior. The Hurst parameter H characterizes the long-term memory
associated with the Joseph effect.

Sometimes, both effects are interrelated; for example, when H = 1/α. This is
the case for Brownian-type markets with α = 2. Interrelations can also be observed
in investment bubbles. Investment bubble crashes are Noah effects that are produced
by Joseph-style dependencies. During the Internet boom at the end of the 1990s,
the investment bubble of, for example, the company Cisco Systems indicated how
enthusiastic investors extrapolated the earning trends of 1999 into a soaring stock
price. In 2000, as earnings plateaued, investors started to sober up and the bubble be-
gan to deflate. The dynamics and exponents discussed above explain why economic
bubbles are sometimes unavoidable under certain circumstances. They are not irra-
tional deviations from the economic norm, caused by the immorality of speculators.
Therefore, we must prepare ourselves for them by analyzing the intricate dynamics
of financial markets.

Complex dynamical systems have their own intrinsic time scales that differ
from standard clock time. In physiology, organisms are characterized by their own
intrinsic aging processes. Two sixty-year-old people may be in very different states
of health; sixty years is the external physical clock time, not the internal biological
clock time. Aging is a set of complex physiological and psychological processes
that depend on the organs which may be in different states of health. Also, our mind
is characterized by an intrinsic experience time. In boring situations, time appears to
drag, while time flies when we are busy and engaged in exciting tasks. In the same
way, markets have their own intrinsic trading times. When the volume of trade is
climbing, and prices are rising, then time seems to fly. However, there are also slow
times, when trading is thin on the ground and prices are quiet.

Mandelbrot, the father of fractal geometry, suggested that the mixed behavioral
patterns of trading time can be modeled by multifractals (see Sect. 2.6). As we noted
earlier, a fractal is a pattern whose parts echo the whole, only scaled down. A multi-
fractal has more than one scaling ratio in the same pattern. Some parts of the pattern
shrink quickly, others slowly. Multifractals have distributions with tails that follow
power laws. They all manifest the Noah effect (they show abrupt and discontinuous
changes) as well as the Joseph effect (long-term trends). Thus, multifractal models
mirror the intrinsic dynamics of the market.

Multifractal models can also be sketched using multifractal cartoons. Recall
that the Brownian chart displayed a relationship between the width and the height
of each segment in the fractal generator (Fig. 7.15). This was related to the pres-
ence of a power law in which one was the square root of the other. By choosing
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different powers, one could generate charts with varying degrees of long-term de-
pendence. By adding vertical jumps to the fractal generators, charts with fat tails and
discontinuities were also produced. Thus, a multifractal cartoon can be generated by
modifying the initial generator.

In this way, the clock time can be converted into a multifractal trading time
in an erratic process. A simplified sketch of a multiplicative cascade is shown in
Fig. 7.22: a portion from the time axis is considered at successively finer scales.
The top rectangle is the first approximation. In this, 60% of the trading activity is to
the left and 40% to the right. Each half of the time axis is then cut into two halves,
with 60% of the activity in each half again placed in the left quarter and 40% in the
right quarter. In other words, the distribution in the first quarter is 60% times 60%,
or 36% of the total trading activity. The second quarter contains 40% times 60%,
or 24% of the total trading activity. When this operation is performed repeatedly,
the final panel of Fig. 7.22 is eventually generated. It is a very uneven distribution.
Trading time bunches and moves quickly at the peaks, and thins and moves slowly
in the valleys. This is, of course, only a sketch of a much more complex multifractal
structure of trading time.

More sophisticated versions of multifractal trading time have successfully mod-
eled real data [7.65]. Price changes in particular currency markets scaled just as the
model predicted. Volatility clustered. Episodes of fast action were interspersed with
intervals of slow and dull trading. By zooming in on fast episodes, they were seen
to have subclusters of fast and slow subintervals. Clusters within clusters showed
a multifractal pattern. Multifractal models assume unchanging and fundamental pat-
terns of market behavior. In this sense, they mirror mathematical invariances in
financial dynamics. Invariances are the fundamental principles that guarantee the
validity of a theory and its laws everywhere and at any time under the boundary
conditions of the theory.

Fig. 7.22. Multifractal trading time [7.64]
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Let us finish this section by summarizing some essential insights into the dy-
namics of financial markets. Financial markets are more complex than traditional
academic theory would have us believe. They are turbulent, not in the strict physical
sense, but due to their intrinsic complex stochastic dynamics, and this turbulence
can have dangerous consequences, just like earthquakes, tsunamies, or hurricanes in
nature. Therefore, financial systems are not linear, continuous, and computable ma-
chines; individual economic events cannot be predicted like planetary positions in
astronomy. Financial systems are very risky and complex but still computational, be-
cause the application of appropriate stochastic mathematics allows us to analyze and
recognize typical patterns and attractors in the underlying dynamics. These meth-
ods support market timing. However, there is no guarantee of success: big gains
and losses are concentrated into small periods of time. The belief in a continuous
economic development is refuted by the fact that prices often leap, adding to the
risk. Markets are determined by an intrinsic trading time, which is different from
the physical clock time. Trading time is flexible. As price changes become more
dramatic, the trading time passes more quickly. As the price chart becomes duller,
the market clock passes more slowly. Obviously, trading time also fits our subjec-
tive feeling of time, which depends on the intensity of our experiences. Markets
are mathematically characterized by power laws and invariance. A practical con-
sequence of this is that all markets – whatever the location or time period – work
alike. If market properties that remain constant over time or location can be found,
it is then possible to build useful models that can be used to help with financial
decisions. However, we must be cautious, because markets are deceptive. Their dy-
namics sometimes appear to provide patterns of correlations that do not actually
exist, because we subconsciously want to see them. During evolution, our brain was
trained to recognize patterns of correlation since this skill aids survival. Therefore,
we sometimes see patterns where there are none. Systems theory and appropriate
tools of complexity research should help to stop us from seeing imaginary correla-
tions in markets.

7.5 Perspectives on Econophysics

Econophysics is an interdisciplinary scientific field that refers to economics research
performed by physicists by applying mathematical methods. The interest of physi-
cists in economics and finance started with the explosion of research into nonlinear
dynamics, complex systems, and chaos theory in the 1980s. Historically, the first
applications of physical models to the social sciences occurred even earlier, in the
nineteenth century. In 1798, the British cleric Thomas Robert Malthus analyzed
the exponential growth of populations [7.66]. He proposed that the incremental in-
crease in the size of the human population was geometric; in other words the human
population increases according to a constant ratio from generation to generation.
Mathematically, his assumption of growth can be represented by the elementary
differential equation dN(t)/dt = kN(t), where N(t) is the population at time t, and k
is a constant that characterizes the rate at which the population grows. The solution
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to Malthus’ growth equation is N(t) = N(0) exp(kt), where N(0) is the size of the
population at time 0 and exp(kt) is the exponential function with unrestricted growth
to infinity.

The Belgian mathematician Pierre-Francois Verhulst (1804–1849) noted that
the growth of real populations is not unbounded. He argued that factors such as the
availability of food, shelter, and sanitary conditions influence and restrict the growth
of populations. Therefore, he suggested the equation dN(t)/dt = kN(t)[1−N(t)/M],
which limits the growth of the population to a level M. The solution to the Ver-
hulst equation is the S-shaped logistic curve N(t) = MN(0)/[N(0) + (M −
N(0)) exp(−kt)]. Both solutions coincide at early on but deviate from each other
in the long run (see Fig. 7.23). Therefore, Malthus’ dynamic equation can be con-
sidered to be a fundamental law of growth in the absence of any limiting influence.
The deviation of the growth curve into an S-shape becomes evident when an influ-
ential “social force” exists. This is not unlike Newton’s force law, which defines that
a force must be applied to induce a change in the otherwise constant momentum of
a particle.

Actually, in the 1970s, three laws of social dynamics were suggested that were
analogous to Newton’s famous laws of mechanics [7.68]. The first law states that in
the absence of any social, economic, or ecological force, the rate of change in the
logarithm of the population size N(t) is constant, which means d/dt log N(t) is con-
stant. The second part of this law is that, under the same conditions, in other words
an absence of social, economic, or ecological forces, the rate of change of the loga-
rithm of the price P(t) of maintaining a population member is also constant, which

Fig. 7.23. The deviation of Verhulst’s logistic curve from Malthus’ exponential curve [7.67]
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means that d/dt log P(t) is constant. For products, P(t) is the unit cost. Obviously,
the first part of the law is just Malthus’ law for the exponential growth of a popula-
tion, and the second part is a formulation of the observation that things always get
more expensive over time.

In his second law, Newton defined a physical force as being anything that causes
a change in momentum. Thus, the formulae associated with the first social law are
violated upon the application of a social, economic, or ecological force. The force
is measured by observing the way in which the violation occurs. The third law of
social dynamics is that evolution is the result of a sequence of replacements. The
term evolution in this context is broader than its biological meaning and is intended
to include changes in social systems over time, changes in economic products over
successive generations, or improvements in modes of transportation over the years.
In biology, the term may refer to mutations, whereas in computer technology it may
denote the latest chip generation, and in transportation it may refer to the stagecoach
being replaced by the train, which in turn is replaced by the airplane.

Newton’s three laws were intuitively true axioms that he never derived from
first principles. Later on, they became fundamental laws in many areas of classical
physics. From a methodological point of view, we could ask the question: what
are physical laws or “natural laws?” What do we mean by social laws? Can social
dynamics be reduced to fundamental principles? Do economics and physics have
laws in common? These methodological questions are central to econophysics as an
interdisciplinary field of economic and physical research.

Since they are an essential feature of the mathematical laws of nature, the laws
of physics do not change on any time scale that we can observe. Nature obeys in-
violable mathematical laws only because those laws are grounded in fundamental
principles of symmetry. Symmetry refers to invariance with respect to frames or sys-
tems moving at constant velocity relative to each other, in the sense of the principle
of relativity, translational invariance, rotational invariance, and time-translational in-
variance. These invariances are the same whether we are discussing Newtonian me-
chanics, general relativity, or quantum mechanics [7.69]. Without these principles
of symmetry, it would be impossible to discover the mathematical laws of nature.
This is because the invariances form the theoretical basis for repeatedly performing
identical experiments whose results can be reproduced by different observers inde-
pendent of where and at what time the observations are made, and independent of
the state of relative motion of the observational system. In physics, therefore, we
do not merely have models of the behavior of matter but laws that are justified by
invariance principles. Fundamental laws are characterized by fundamental natural
constants.

Laws of nature are established by repeatedly performing identical experiments
or observations. In physics and astronomy, any prediction must be falsifiable in prac-
tice, otherwise the model or theory used to make the prediction is not regarded
scientific. A falsifiable theory or model is one with few enough parameters and pre-
dictions that are precise enough to be able to be tested observationally. One might,
however, object that in economics there are no inviolable mathematical laws and
“natural” constants. Real economic laws, like any legislated law or social contract,
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can always be violated by people and groups that wish to do so. Because the laws
of physics are based on the principles of invariance, they are independent of initial
conditions like absolute time, absolute position, and absolute orientation. Socioeco-
nomic behavior is not necessarily universal but may vary from country to country.
Many econophysicists hope that a single universal law governs markets. Are there
any socioeconomic invariances that can support this hope [7.70]?

In the past, econophysicists only had limited success when modeling finan-
cial markets, following Bachelier, Markowitz, Sharpe, Black, and Scholes (see
Sect. 7.3). Their financial models at least allow predictions that can be falsified.
Also, they satisfy general mathematical equations that can be considered to be gen-
eral laws governing the dynamics of complex systems. In Sect. 7.4, the Black–
Scholes model, for example, was a mathematical solution to a modified physical
heat equation. However, the important point is that these equations are only used
formally, as particular types of differential and stochastic equations, without any
physical meaning. In the previous section, we emphasized the differences between
physical and economic turbulence. In general, the Navier–Stokes equations of tur-
bulence are not analytically solvable due to their computational complexity. Never-
theless, in fluid dynamics, we know the equations of motion, since they are based on
Galilean invariance principles. In economics, we miss out these principles in order
to describe the microdynamics of human behavior. In physical turbulence theory,
we cannot predict the weather in the long run like we can predict planetary motion
using Kepler’s laws, but we understand the underlying physical principles.

Therefore, from a methodological point of view, the name “econophysics”
is extremely misleading, because it seems to suggest a physics-like science of
economies. I prefer the term “sociodynamics,” which refers to a particular class of
models in the general mathematical theory of complex dynamical systems. Physical
dynamical systems as well as chemical and biological systems are described by par-
ticular classes of models in this general mathematical theory. From a mathematical
point of view, the general theory of complex systems and nonlinear dynamics con-
cerns, for example, particular differential and stochastic equations, phase spaces of
attractors, mathematical invariances and group structures. Even in sociodynamics,
we encounter typical invariances which are characterized by attractors of a proba-
bilistic space (for example, the Lévy-stable distributions of economic turbulence),
scale invariance, and power laws. They are falsifiable in economics and finance
and may be modified in the future. However, the invariance principles of physics
must also be falsifiable. The symmetry of time, for example, is widely accepted
in physics. Nevertheless, it has been refuted by the results from experiments with
particular elementary particles (kaons), and the reason for this is still not under-
stood. Thus, symmetries and invariances are not eternal truths, but general and for-
mal frameworks of research which are, nevertheless, falsifiable. In short, the theory
of complex dynamical systems is a part of mathematics, not physics. Applications of
it in physics, chemistry, biology, economics, finance, and the social sciences require
particular initial and boundary conditions, frames and empirical interpretations of
the basic formal concepts. The falsifiability of these models depend on the particu-
lar empirical conditions applied.
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8 Complex Systems and the Evolution
of Human Culture and Society

How can one explain the emergence of political, social, and cultural order in human
societies? This chapter starts with a brief history of political systems from classical
antiquity to the present. Political ideas have often grown from the technical, physi-
cal, or biological concepts that were preeminent at the time. In the seventeenth cen-
tury, Thomas Hobbes tried to transfer the Galilean and Cartesian laws of movement
from mechanics to anthropology and state theory. The liberal ideas of Locke and
Hume were devised against a historical backdrop of Newtonian physics. Like many
physicists, political thinkers, lawyers, and politicians have believed in a mechanistic
world of linear causality (see Sect. 8.1). But what about the “butterfly effect”, when
small errors or local conflicts have global effects? How much should individuals or
firms, cities or countries be blamed when their local failures lead to global catas-
trophes (e.g., in environmental policy)? The main point highlighted by the complex
system approach is that from a macroscopic point of view, the development of politi-
cal, social, or cultural order is not just the sum of single intentions, but the collective
result of nonlinear interactions. In Sect. 8.2, examples of complex social and cultural
problems are analyzed in the framework of complex dynamical systems: the growth
of urban centers, global migration problems, and managemental issues associated
with complex organizations.

One challenge for nonlinear dynamics is to address the evolution of complex
communication networks in the age of globalization (Sect. 8.3). The flow of data
traffic can be characterized by phase transitions and attractors. In order to manage
an ever-increasing flood of increasing complexity, we need user-friendly methods
of information retrieval and personalized information systems. In soft computing,
information retrieval is supported by neural network and multiagent technology.
However, the complexity of global networking refers to more than the growth of the
Internet. Ubiquitous computing (Sect. 8.4) is an expansion of the global networking,
wireless media access, wide-bandwidth-range, real-time capabilities of multimedia
over standard networks, and data packet routing. The chapter finishes with a look at
complex communication networks, which offer the prospect of a worldwide “global
village,” as well as the enslavement of mankind through a proliferation of modern,
high-tech procedures.
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8.1 From Aristotle’s Polis to Hobbes’ Leviathan

After the evolution of matter, life, mind–brain, and artificial intelligence we finish
the book with the question of whether the evolution of human society can be at
least partially described and modeled in the framework of complex systems. In the
social sciences one usually strictly distinguishes between biological evolution and
the history of human society. The reason is that the development of nations, markets,
and cultures is assumed to be guided by the intentional behavior of humans, i.e.,
human decisions based on intentions and values.

From a microscopic view we may actually observe single individuals with their
intentions, beliefs, and so on. But from a macroscopic view the development of na-
tions, markets, and cultures is more than the sum of its parts. The emergence of
political, social, and economical order seems to be caused by procedures of self-
organization which remind us of certain phase transitions in complex systems. Nev-
ertheless, avoiding any reductionist kind of naturalism or physicalism, we shall con-
sider the characteristic intentional features of human societies. In Sects. 3.4 and 4.4,
the evolution of animal populations was modeled in the framework of the com-
plex system approach. Macroscopic structures like social order, organization of
social behavior, the construction of nests, and so on were explained by attractors
of complex systems. But the difference of complexity between animal populations
and human societies is enormous, although there are common origins and features.
Thus, in the following, concepts like “evolution” and “nature” cannot be restricted
to the mechanisms of molecules, fishes, ants, and so on. They imply a new kind of
complex dynamics, the analysis of which must consider the long tradition of social
philosophy.

Plato and Aristotle were the first philosophers who tried to explain the emer-
gence of political, social, and economic order of human societies. They analyzed
the structure of the Greek polis, which has become the germ cell of Western soci-
eties and states. In Greek antiquity a polis (π óλις ) like Athens was the republic of
a small city, which later on may be compared with the Italian states of Florence and
Venice in the Renaissance, and perhaps the Swiss cantons of cities in modern times.
A Greek polis was a small, but politically and economically almost autonomous
state and society [8.1]. The Greek philosophers suggested an idealized model which
was more or less realized by the historical examples.

Plato distinguished several states of transformation which a polis must undergo
before reaching the final goal of a harmonious society. In the first state the citizens
must learn different skills and professions, business, and trades, in order to satisfy
the different needs of the whole community. Plato believed that the people of a po-
lis must specialize, according to their different gifts. The citizens must organize
themselves for cooperative work. Plato assumed that the exchange of their products
and services achieved an equilibrium of work and demand by spontaneous self-
organization. This economic state of equilibrium is characterized by “just” prices.

But Plato’s idyllic world of cooperative work is, of course, unstable. People try
to pursue their interests and make profits. They are selfish, immodest, full of envy,
and driven by passions. Thus, conflicts arise and political power must be organized
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to avoid the destruction of the polis. Plato suggested an aristocracy of the best and
wisest men (“philosopher-kings”) who should rule the state [8.2]. Their government
is intended to keep the whole system with its conflicting fluctuations in a state of
equilibrium. It is well known that Plato distrusted democracy, because in his opinion
common people without philosophical education are not able to recognize the true
idea of justice. Plato believed in an eternal hierarchy of ethical values behind the
changing and transitory world of appearances. Thus, there is an objective measure
of values which people have to be aware of, in order to avoid chaos and to keep the
system in a state of harmony.

Obviously, Plato defends a centralized system of political power. In the lan-
guage of system theory, there is a centralized processor controlling all actions and
reactions of the system’s elements. Like the Laplacean demon in the scientific world,
there is Plato’s political myth of an ideal, wise, and good politician leading the sys-
tem to a harmonious equilibrium. In a small city like a Greek polis, Plato’s aris-
tocracy of the best “philosopher-kings” may be justified under certain critical cir-
cumstances. Nevertheless, the experiences of actual history have shown that even
well educated and intelligent political leaders are not free of temptations to misuse
their power. Nowadays, Plato’s aristocracy of the best may be compared with the
power of experts in knowledge based complex societies. But, under present condi-
tions of highly developed information and computer technologies, Plato’s myth of
a wise and good politician can easily change to Orwell’s horror-scenario of a “Big
Brother” with omnipotent controlling power.

The second famous philosopher who referred to the Greek polis was Aristo-
tle [8.3]. He assumed that humans are social beings by nature who want to survive.
Furthermore, they are political beings because they want to live well and happily.
Aristotle believed in an organic development of human society, driven by the social
and political nature of its members. The social and political dynamics reach a final
state of equilibrium when the social and political form of a polis is realized. Aristotle
described the social and political dynamics as processes in nature.

However, a dynamical process of nature is not conceived as a causal movement
of mechanics, but as an organic growth like a plant or animal, starting with the initial
state of a seed and aiming at the final state of its complete form (compare Sect. 2.1).
Thus, Aristotle’s model of society is naturalistic in the sense that humans are driven
by the impulses of their social and political nature. But only the human instinct of
social organization for the purpose of survival is common with animals. Humans
are distinguished by their political nature to achieve a just society. In a famous for-
mulation, Aristotle said humans are defined as rational beings striving for truth in
science and philosophy, and they are political beings striving for justice in society.

Justice means a natural state of completion if the society is arranged in its har-
monic proportions in equilibrium, like the static balance of an Archimedean scale
(Fig. 8.1). Thus, economic equilibrium in an Aristotelean society is measured by
“just prices” according to the “natural” value of goods and services. Economics
was a part of Aristotle’s moral philosophy of justice and state. He distinguished
between commutative justice (iustitia commutativa) in private exchange and affairs
of citizens and distributive justice (iustitia distributiva) concerning the relationship
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Fig. 8.1. Last Judgement of Osiris (Egypt: 2nd century B.C.)

of citizens and the state. The Aristotelean model of economic and political justice
became the leading idea during the Middle Ages. Obviously, it accorded with the
Aristotelean concept of nature in those days.

The mechanistic view of nature was founded by Galileo, Descartes, and others,
leading to Newton’s grand system of classical physics. In his famous book Leviathan
or the Matter, Form and Power of a Commonwealth, Ecclesiastical and Civil (1651),
Thomas Hobbes (1588–1678) projected a mechanistic model of modern society and
state [8.4]. At the end of the Middle Ages and the beginning of modern times,
Hobbes lived in a period of dramatic political changes. The traditional monarchy
and aristocracy of the Middle Ages had lost their religious legitimacy. In bloody civil
wars, European societies and states were falling into ruin and chaos. Scientifically,
Hobbes was impressed by the new mechanical method of Galileo and its successes
in physics. Thus, he tried to use this method in order to found a mechanistic model
of modern society without the obsolete traditional metaphysics to compromize its
legitimacy in science and politics.

According to Galilean mechanics, there is an analytic or resolving method for
dividing a system (“body”) into its separable elements and a synthetic method for
composing and unifying the separated building blocks into the whole system again.
In short, the whole is the sum of its parts. Obviously, Galileo described the cru-
cial superposition principle founding the linearity of the mechanistic world view.
Actually, a mechanical system like a clock can be divided into separated elements
such cog wheels and other mechanical parts which together constitute its perfect
functionality.

Hobbes tried to transfer the law of movement from mechanics to anthropology
and state theory. Humans are assumed to be driven by affects and emotions like
physical bodies by mechanical impulses. The main affect is the individual instinct
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Fig. 8.2. The “Leviathan” on the title page of Hobbes’ book

of self-preservation and survival. In the opinion of Hobbes, it is a natural right of
man to pursue his instinct of survival, leading to force and violence against other hu-
mans. Thus, in Hobbes’ natural state of human society, there is a permanent struggle
of everyone against everyone (bellum omnium contra omnes) without any state of
equilibrium.

On the other hand, humans with their complex necessities can only survive in
society. Thus, their reason dictates a first natural law to search for peace. In order to
realize the “law of peace”, a second law is necessary, demanding a social contract.
Hobbes suggested that in this social contract all citizens have to transfer their natural
right of power to an absolute sovereign (“Leviathan”) who is alone legitimated to
apply political power and to rule the state. In modern words, Hobbes’ social contract
legitimates the state’s monopoly of power, in order to keep society in an absolute
equilibrium.

Hobbes defines the sovereign as the “sum of all individuals” who made the so-
cial contract. Obviously, this idea is an application of Galileo’s mechanical principle
of superposition or linearity. The title page of Hobbes’ book (Fig. 8.2) shows the
body of the Leviathan as a huge complex system of single individuals, illustrating
Hobbes’ political principle of linearity.

The “phase transition” from the natural state of chaos to political order and
equilibrium is realized by a social contract of all citizens and in this sense by self-
organization. But then, the final state of Leviathan is a centralized and deterministic
system without any political “degree of freedom” for its citizens. Hobbes compared
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the economic circulation of goods and money with the circulation of blood, which
was discovered by the English physician William Harvey. Income and expenditure
were referred to the incoming and outcoming blood of the heart as the pumping
machine of the whole circulation.

The famous English philosopher John Locke (1632–1704) influenced not only
the epistemology and methodology of Newtonian physics but also the political the-
ory of modern democracy and constitution. He asked why man is willing to give up
his absolute freedom in the state of nature and to subject himself to the control of
political power. Locke argued that the enjoyment of the property man has in the nat-
ural state is very unsafe and insecure, because everyone else wants to take it away
from him in a state of unrestricted freedom. Thus, the state of nature is unstable and
will transfer to an equilibrium of political forces. For Locke, the “phase transition”
from the state of nature to a society with government is driven by men’s intention to
preserve their property.

However, government does not mean the unfree machinery of Leviathan. It is
a state of balance (“equilibrium”) with independent political powers like the legis-
lature and executive. Since laws are made by a parliament as representative organ
of the society, there is an essential feedback to the citizens, who only give up their
natural freedom to the extent that the preservation of themselves and their property
require: “And all this to be directed to no other end but the peace, safety, and pub-
lic good of the people” [8.5]. Historically, Locke’s ideas of democracy, division of
power, property, and tolerance mainly influenced the American and French consti-
tutions.

As in epistemology, the great Scottish philosopher David Hume (1711–1776)
was both more critical and more exact in political theory than Locke. In epistemol-
ogy he taught that human consciousness is governed by associations of sensations
and feelings which may be reinforced or diminished by outer experiences (com-
pare Sect. 4.1). Thus, there is no absolute truth even in Newtonian physics, but only
a useful method with more or less probable results. Analogously, there is no eter-
nal ethical value like justice determining human behavior. Ethical ideas can only be
evaluated by their individual or public usefulness [8.6]. In general, political institu-
tions are only legitimated by their usefulness in being accepted by a society or not.
Thus, Hume became a forerunner of utilitarian ethics and political philosophy. His
friend and Scottish fellow-countryman Adam Smith was probably inspired by his
sceptical anthropology of self-interested behavior in human societies.

With the assault on the Bastille, the system of absolutism collapsed. A local
event made global history. Immanuel Kant (1724–1804) celebrated the age of re-
publican freedom as a new state of civil history. A free civil society was believed
to lead to the balance that historical developments had been aiming for. In short:
a free civil society was considered an attractor of history. The constitution of human
rights was to guarantee the civil rights of people in a balance of liberté, égalité, and
fraternité. Kant postulated his categorical imperative as a universal ethical principle
that balanced the individual freedom of a person with the freedom of other peo-
ple. However, Kant’s well-balanced equilibrium state seemed to contrast with the
conflicts and wars of the real historical world. Therefore, Georg Wilhelm Friedrich
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Hegel (1770–1831) explained that history charted a dialectic development of sys-
tems [8.7]. Dialectics refers to phase transitions from being to becoming, which is
now addressed by systems theory. Contradictions, tensions, and conflicts (“nega-
tion”) lead to the emergence of new order (“qualitative change”). Karl Marx (1818–
1883) tried to apply Hegel’s dialectic method to politics and economics [8.8]. How-
ever, due to the physical views that predominated in the nineteenth century, he be-
lieved in deterministic historical laws. Thus, Marx and his comrades assumed that
absolute control of political and economic processes is possible, and that such con-
trol could be utilized to guide history to the equilibrium state of communism. This
was a dangerous error that was due to the assumption of linear models. The resulting
reduction of social and economic complexity led to the collapse and implosion of
communist states at the end of the twentieth century.

8.2 Complex Social and Cultural Systems

In the social sciences and humanities one usually distinguishes strictly between bi-
ological evolution and the history of human cultures. The main reason is that the
development of nations and cultures is obviously guided by the intentional behavior
of humans with their attitudes, emotions, plans, and ideals, while systems in bio-
logical evolution are assumed to be driven by unintended self-organization. From
a microscopic view, we observe single human individuals with their intentions and
desires. Even in biological systems like animal ecologies there are individuals with
intentional behavior of some degree.

The crucial point of the complex system approach is that from a macroscopic
point of view the development of political, social, or cultural order is not only the
sum of single intentions, but the collective result of nonlinear interactions. Adam
Smith already knew that the distribution of economic wealth and welfare does
not result from the social good will of single bakers and butchers. Individual self-
interested and egoistic intentions may be counteracting collective interests. Never-
theless, their (nonlinear) interactions achieve collective equilibria by an “invisible
hand” (Smith) or the “cunning of reason” (List der Vernunft) (Hegel).

Nonlinear systems of individuals with intentional behavior may be more com-
plex than, for instance, a physical system of atoms or a chemical mixture of
molecules. In Sect. 4.3–4.4, intentional behavior and consciousness were modeled
as self-referential global states of complex neural systems which are caused by non-
linear interactions of neurons. The emergence of collective order phenomena with
more or less complex degree is an intrinsic common feature of all nonlinear systems
which is not necessarily linked with consciousness. A political state as a collective
order of a human society obviously has no kind of consciousness or intelligence,
as Hegel mistakenly believed, although its emergence may be modeled by a kind
of phase transition caused by the nonlinear interaction of conscious humans with
intentional behavior.

Thus, in the mathematical framework of complex systems the concept of “evo-
lution” does not in general refer to the particular mechanisms of biological evolu-
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tion. In a complex system, the so-called evolution equations describe the dynamics
of its elements, which may be elementary particles, atoms, molecules, organisms,
humans, firms, and so on. Another concept with a broad meaning is complexity it-
self. In the context of the social sciences there are many aspects of complexity, some
of which are designed in Fig. 8.3 [8.9].

In the mathematical framework of complex systems in this book, complexity is
at first defined as nonlinearity, which is a necessary but not sufficient condition of
chaos and self-organization. On the other hand, linearity implies the superposition
principle, which says in a popular slogan “the whole is only the sum of its parts”.
A second important aspect of complexity is defined by the structure of algorithms
which was discussed in Sect. 5.2. Complexity theory in computer science provides
a hierarchy of complexity degrees, depending on, for instance, the computational
time of computer programs or algorithms. As nonlinear complex systems are some-
times modeled by computer graphics, their degree of algorithmic complexity may
be described as their capacity for self-organization. This relationship has been ex-
plored in the theory of cellular automata (compare Sect. 5.6), in which different
classes of self-organizing complex systems are modeled.

In the social sciences, the complexity of a highly industrialized society mainly
consists in the great number of its citizens and their relationships, its organizational
substructures, and their dependencies [8.10]. We should remember that in a complex
system it is not the great number of its elements that is essential for the emergence of
collective (synergetic) order phenomena, but their nonlinear interactions. The reader
may recall the astronomical three-body problem with chaotic trajectories as possible
solutions.

In the mathematical framework of complex systems, a physical or biological
reductionism of human history and sociocultural development is not justified in any
case. Models of social and cultural developments must be discussed with their par-

Fig. 8.3. Meanings of complexity [8.9]
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ticular constraints and limitations. A severe methodological problem is that of pro-
viding empirical tests and confirmation of these models. Thus, the computer-assisted
simulation of complex cultural systems has become a crucial instrument for provid-
ing new insights into their dynamics which may be helpful for our decisions and
actions.

Historically, the interest of social sciences in nonlinear problems dates back
to Thomas Malthus [8.11]. He argued that a population would outstrip its food sup-
plies, since the population grows exponentially whereas the food supplies grow only
linearly. In 1844, Verhulst modified the exponential equation, arguing that the rate
of population growth is proportional to the product of the population and the dif-
ference between the total amount of resources and the amount of those resources
consumed by the existing population. His famous logistic curve with its character-
istical attractor of equilibrium has been used in demography, economics, and many
other examples of social sciences. It provides a cascade of possible bifurcations and
phase transitions including chaos.

The evolution of a predator–prey ecosystem described by Volterra and Lotka is
another model which has been applied to social sciences. For instance, the Lotka–
Volterra model helps us to understand the appearance of an agricultural society.
Because of their ability to learn, humans can change their coefficients of interaction
with the environment faster than nature can genetically evolve countermeasures.
A human society which only tries to improve its hunting abilities for its survival
diminishes the prey population. Then the society will be diminished, too. Conse-
quently, both predator and prey population will become extinct. But agriculture in-
volves developing the ability to increase the prey birthrate. Thus, human population
increases and can be stabilized at a certain equilibrium.

The evolution of biological systems is governed by their genes. In Darwinian
evolution a new type of individual emerges by the natural selection of mutants which
appear spontaneously. In populations of higher animals the new possibility of be-
havioral change and adaption by imitation arises. In human societies, there are still
more sophisticated strategies of learning, which dominate the behavioral patterns.
Societies have developed particular institutions like the legal system, the state, re-
ligion, trade, and so on to stabilize the behavioral change for the following genera-
tions.

The complex system approach provides the essential insight that neither genetic
evolution nor the evolution of behavior needs a global program like a supervising
divine will, a vital force, or a global strategy of evolutionary optimization. The sur-
vival of genes or the emergence of global patterns of behavior are explained by local
interactions of individuals composing the system. To make this point clear, it may
be a question of religious or political Weltanschauung whether there is a “global
program” like God, History or Evolution. In the methodological framework of com-
plex systems, these hypotheses are not necessary for explanations and superfluous
in the sense of Ockham’s razor and his economy of theoretical concepts.

Obviously, nonlinear systems like biological organisms, animal populations, or
human societies have evolved to become more and more complex. Our present so-
ciety, when compared to Aristotle’s polis or the political system of the physiocrats,
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is characterized by a high degree of institutional complexity and information net-
working. In the last century, Herbert Spencer already maintained that increasing
complexity is the hallmark of evolution in general: “Evolution is an increase in
complexity of structure and function . . . incidental to the . . . process of equilibra-
tion . . . ” [8.12]. Spencer still argued in the thermodynamic framework of thermal
equilibrium.

In the framework of thermodynamics far from thermal equilibrium, there is
not just a single fixed point of equilibrium, but a hierarchy of more or less com-
plex attractors, beginning with fixed points and ending with the fractal structures of
strange attractors. Thus, there is no fixed limit of complexity, either in biological or
in sociocultural evolution, but there are more or less complex attractors representing
metastable equilibria of certain phase transitions which may be overcome if certain
threshold parameters are actualized. The structural stability of a society is related to
these more or less complex attractors.

The traditional functionalist view of homeostasis and self-regulating systems
stems from the concept of a technical thermostat. It may perhaps help us to under-
stand why societies stay the same, but not why they change and why equilibria have
been overthrown. In the framework of complex systems, the dynamics of a society
is understood in terms of phase transitions of a dissipative system exchanging mate-
rial, energy, and information with its environment. The institutions of a society are
dissipative structures which may emerge and stay the same in a particular interval
of threshold conditions. For instance, in neolithic villages, the institution of farming
changed from dry farming to irrigation when the food supply was no longer secured
by the established social structures.

In the history of industrialized societies, we can distinguish more or less strong
economic fluctuations which may initiate the crash of social institutions and the
emergence of new ones. For instance, the economic depression of the USA in 1922
was relatively mild and short-lived and did not produce a structural change of the
society. In contrast to that phase of American history, the stock market crash of 1929
had a genuine butterfly effect in initiating the Great Depression of 1933 [8.13]. This
crisis caused the financial ruin of many firms and a huge number of unemployed,
and could not be managed by the established social institutions. The threshold pa-
rameters of the established structures were exceeded. New social institutions like
the Securities and Exchange Commission, the Federal Deposit Insurance Corpora-
tion, and the Public Works Administration came into being to overcome the effects
of depression and to prevent excessive fluctuations in the future business cycle. This
Keynesian reaction by American society became famous as the New Deal legislation
of President Roosevelt.

But as we have learnt from the neoclassic economists and the experience of
social development after the Second World War, an optimizing strategy of public
welfare may initiate a self-dynamics of administrative bureaucracy which paralyses
economic initiatives and counteracts the originally good intentions. Overreactions
may be as dangerous as no reactions for the structural stability of a system. On
the other hand, the history of political revolutions shows that societies can totally
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lose their structural stability and achieve new constitutions, institutions, and social
structures, but, of course, without any guarantee of durability.

From a methodological point of view, the question arises of how to represent
the sociocultural evolution of societies in the mathematical framework of complex
systems. The recognition of attractors and equilibria needs a phase portrait of the
sociocultural dynamics which presumes the definition of a “sociocultural state” and
a “sociocultural state space”. But what is the sociocultural state space of Victorian
England or the Weimar Republic? These questions demonstrate obvious limitations.
What are the possibilities of the complex system approach in the historical and social
sciences?

It cannot be the aim of research to represent a historical period in a complete
mathematical state space. The relevant data are often unknown, contingent, and not
quantified. In the last section, complex systems with state spaces and dynamical
phase portraits were used to model the economic evolution of human societies.
Economists do not claim to represent the complete economic development of the
Weimar Republic, for instance. But nonlinear endogenous or linear exogenous mod-
els of business cycles can describe typical economic scenarios that influenced or
depended on situations in political and cultural history.

Economic models are not studied for their own sake. Economists want to under-
stand economic dynamics in order to support practical decisions by better structural
insights. The economic dynamics of a society is embedded in its global sociocul-
tural development. In view of its complexity, attempts have been made to model the
sociocultural development only of such subsystems as urban centers. These models
may grasp the typical features of evolving urban systems, which can help politicians
and citizens to make better decisions in appropriate stituations.

In modern industrialized societies, there is a great variety of centers of all
sizes, forms, and characters, from very large cities with high densities to small vil-
lages with few inhabitants. We may ask what is the reason for the spatial distribu-
tion of these different centers and what will be their evolution in time. To answer
this, we need to know the global spatio-temporal state of an urban system result-
ing from local nonlinear interactions of its agents – individuals, families, firms,
administrators, and so on – who may pursue different cooperative or conflicting
interests. The structure of an urban center depends on commercial and industrial
interests, the flows of goods and services, traffic connections, cultural attractive-
ness, and ecological demands. These factors are to be made precise as measurable
quantities. The urban system has several exchanges with the outside world. Thus,
it can be interpreted as a dissipative structure modeled by a complex dynamical
system.

Peter Allen has suggested a system with evolution equations expressing the
nonlinear interactions of its different actors. The spatio-temporal structure of the
urban system with its changing centers and concentrations of inhabitants is not the
trival sum of its actors. It is not the result of some global optimizer or some collective
utility function, but the result of the instability of successive equilibria caused by
nonlinear phase transitions. In this sense, the evolution of an urban system is not
ruled by a Platonic king (or dictator), not constructed by a Cartesian architect or
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forecast by a Laplacean spirit. In the mathematical framework of complex systems
the form of an urban system seems to grow like a living organism.

In Allen’s analysis [8.14], the geographic space of the urban system is simu-
lated by a triangular lattice of 50 local points (Fig. 8.4). The growth of the urban

Fig. 8.4a–e. Computer-assisted model of urban evolution at time (a) t = 4, (b) t = 12, (c)
t = 20, (d) t = 34, (e) t = 46 [8.14]
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system is determined by two equations describing the change of the population on
the local points and the evolution of the employment offered at the points. The local
population and the local capacity for employment are linked by the urban multi-
plier as a positive feedback. The employment concentration offers externalities and
common infrastructure which in turn gives rise to a positive feedback, while the
residents and entrepreneurs together compete for space in a center that provides
negative feedback.

The computer-drawn pictures Fig. 8.4a–e show the evolution of the population
distribution of a region that starts off initially an area with no interaction between
local centers. The urbanization process is revealed in phase transitions with chang-
ing local attractors. In Fig. 8.4b at time t = 12 units, the structure is beginning to
solidify around five main centers. In Fig. 8.4c, the central core of the largest center
is going through a maximum. In Fig. 8.4d at time t = 34, the basic structure is
essentially stable. Two centers have undergone central core decay. In Fig. 8.4e, the
basic pattern is stable. The decline, centralization, and decentralization result from
the complex nonlinear dynamics.

Figure 8.4a–e form a speeded-up motion picture of the urban system’s global
evolution. Each picture is a phase portrait of a global dynamical state at a particu-
lar time. The model is simplified, of course. But it can be enlarged by integrating
more functional aspects and by studying their more complicated nonlinear interac-
tions. Nevertheless, the potential of the model for the exploration of decision alter-
natives can be analyzed in computer-simulated case studies. Either local or global
changes can be imposed on the system. These simulations are extremely interesting
for a government.
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A possible strategy may be to interfere in the urban structure by placing a spe-
cific investment at a particular point. This decision strategy corresponds to the de-
velopment of a hitherto undeveloped region in an urban system. Investments mean
not only economic measures but also cultural attractions and traffic connections, for
instance. Sometimes, an investment may intiate a local butterfly effect with global
consequences that counteract the good intentions of the urban planners. This may
occur because of the model’s nonlinearity, which limits the possibilities of forecast-
ing in the long run.

An urban dynamics is a practical example of a complex system demonstrating
that the good will of single individuals is not enough and may even be dangerous
if the nonlinear consequences are neglected. The collective effects of individual
actions characterize our society. Decisions should be made, as far as possible, with
an awareness of these collective effects. The importance of these results lies not
only in computer simulations of concrete decisions and their nonlinear effects. Even
citizens who are not engaged in concrete planning activities must be aware of the
complex interdependencies in a society.

The demagogic demand for a strong political leader who can solve all prob-
lems is not only dangerous from a democratic point of view. It is false for mathe-
matical reasons due to the complexity characterizing modern highly industrialized
societies. On the other hand, we should not hold out high hopes for single politi-
cians or parties and then react with total political frustration when our exaggerated
expectations are disappointed. Human societies are characterized by the intention-
ality of their members. Nevertheless, they are governed by the nonlinear laws of
complexity like atomic groups, molecular mixtures, cellular organisms, or ecologi-
cal populations.

Sociological theories considering the epistemological consequences of com-
plexity and nonlinearity are still in their infancy. The development of an appropri-
ate statistical mathematics capable of handling the complexity of social problems
could serve as a bridge to traditional concepts of sociology. In the complex system
approach, social phenomena are described by nonlinear equations. When, for in-
stance, Emil Durkheim [8.15] speaks of solidarity in society, then we may ascribe
the functional aspects of this concept to nonlinear and collective effects of complex
systems. We can distinguish political decisions as “linear”, corresponding to “indi-
vidual” choices, and “nonlinear”, corresponding to the institutional environment of
administrations, mass media, political parties, for instance. The actions and reac-
tions of many citizens and institutions may be understood as fluctuations inherent
to the statistical description of the society. The deterministic character of the soci-
ety reflects only the averages of the distribution functions, which develop in time
according to nonlinear laws like a master equation.

This approach to socio-economic dynamics has been realized by the Stuttgart
school of Wolfgang Weidlich. The mathematical modeling methods are derived
from synergetics and statistical physics, and allow a quantitative description of col-
lective developments in the society. Synergetics suggests a relationship between the
micro-level of individual decisions and the macro-level of dynamical collective pro-
cesses in a society. The distinction between micro- and macro-economics or micro-
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and macro-sociology are well known traditional concepts in the social sciences.
The synergetic approach of Weidlich aims at a probabilistic description of macro-
processes including stochastic fluctuations and derivation of a quasi-deterministic
description neglecting the fluctuations.

Models of solutions can be investigated either by analytical methods, for in-
stance, the exact or approximate solution of master equations or average equations,
or by numerical and computer-assisted simulations of characteristic scenarios. Em-
pirical systems can be analyzed and evaluated by determining the model parameters
with field research on the micro-level or by estimating future developments with
model simulation. The methodological framework of the synergetic approach to
modeling social dynamics is illustrated in Fig. 8.6 [8.16].

Specific concepts of social
systems: behavioral vectors,
socioconfiguration, dynamical
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Fig. 8.5. Synergetic methodology for modeling social dynamics [8.16]

An example of application are urban systems, which can be considered evolv-
ing dissipative systems, in the sense of Allen and Prigogine, as well as stochastic
systems, in the sense of synergetics. The macrovariables are material ones (compare
Sect. 7.2), characterizing the state of a city. Human influence is not represented di-
rectly by collective personal macrovariables. The activities of municipal authorities,
house builders, architects, and other decision makers are represented indirectly in



382 8 Complex Systems and the Evolution of Human Culture and Society

the evolution of the states of an urban system. Later on, they show up in the differ-
ent styles and fashions of suburbs, streets, and parts of a city. On a detailed level,
the state of a city can be characterized by the number, location, and distribution of
the different kinds of buildings fulfilling different purposes. The area of a city is
mapped into a lattice of squares with discrete coordinates. We distinguish various
kinds of buildings, such as lodgings, factories, schools, stores, houses, parks, etc.
There are numbers of building units of a certain kind on the squares of the lattice.
For example, there are macrovariables of lodgings or factories on the squares of the
lattice. The set of numbers of building units of all kinds on all squares is denoted as
city configuration.

In order to apply synergetics, the transition rates of city configurations to neigh-
boring configurations must be set up. An elementary change of a city configuration
consists of the increase or decrease of one macrovariable (e.g., the number of lodg-
ings on a certain square) by one appropriately chosen unit. The transition rates of
neighboring configurations describe the probability per unit of time in which the
respective transition takes place if the initial configuration is realized. Transition
rates are connected with utility functions measuring the differences of utilities of
a city configuration before and after the transition step. For example, it may be un-
favorable to build lodgings and factories in a near neighborhood, and that it leads
to a high utility to have them at a certain distance on the lattice of area. Accord-
ing to synergetics, the transition rates can be used to set up the master equation for
the probability distribution P(x, y, t) over the city configurations of, e.g., macrovari-
ables x of lodgings and macrovariables y of factories at time t. Again, in general, it
is not possible to exhaust all of the information contained in the probability distri-
bution of a master equation by comparison with empirical data. Then it is indicated
to neglect the fluctuations of the macrovariables around their mean evolution and to
restrict to quasi-meanvalue equations of, e.g., the macrovariables x of lodgings and
y of factories derivable from the master equation. The evolution of these equations
leads to several possible stationary states, depending on differing initial conditions.
In corresponding computer simulations, the stationary states of city configurations
are represented by different distributions of residential and industrial districts within
an urban area.

The synergetic concept of modeling has been applied to several questions in
the social sciences, for instance, collective formation of political opinions, demog-
raphy, migration of populations, and regional geography. The synergetic concept is
especially appropriate for integrating the interactions of several sectors of a soci-
ety like, such as the relationship between the economy and collective formation of
political opinions, or the interaction between the economy and processes of migra-
tion. Migration is a very dramatic topic nowadays, and demonstrates how dangerous
linear and mono-causal thinking may be. It is not sufficient to have good individ-
ual intentions without considering the nonlinear effects of single decisions. Linear
thinking and acting may provoke global chaos, although we act locally with the best
intentions.

According to the synergetic approach, a socio-economic system is character-
ized on two levels, distinguishing the micro-aspect of individual decisions and
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the macro-aspect of collective dynamical processes in a society. The probabilistic
macro-processes with stochastic fluctuations are described by the master equation
of human socioconfigurations. Each components of a socioconfiguration refers to
a subpopulation with a characteristic vector of behavior. Concerning the migration
of populations, the behavior and the decisions to rest or to leave a region can be
identified with the spatial distribution of populations and their change. Thus, the
dynamics of the model allows us to describe the phase transitions between different
global macro-states of the populations.

The empirical administrative data can be used to test the theory. The models
may concern regional migration within a country, motivated by different economic
and urban developments, or even the dramatic worldwide migration between the
“South” and the “North”, between the poor countries and the highly industrialized
states of Western Europe and the USA, driven by political and economic depres-
sion. Physical transport or migration of animal populations are often uncontrolled,
random, and linear, without interaction between the elements and collective aggre-
gations. But human migration is intentional (driven by considerations of utilities)
and nonlinear, because the transition rates depend not linearly on the whole socio-
configuration.

The migration interaction of two human populations may cause several syner-
getic macro-phenomena, such as the emergence of a stable mixture, the emergence
of two separated, but stable ghettos, or the emergence of a restless migration pro-
cess. In numerical simulations and phase portraits of the migration dynamics, the
synergetic macro-phenomena can be identified with corresponding attractors. Fig-
ure 8.6a,b shows the homogenous mixture of both populations with weak trends
of agglomeration and segregation in each population. Figure 8.6a is the phase por-
trait of the average equations with a stable point of equilibrium. Figure 8.6b shows
the stationary solution of the master equation and a stationary probabilistic distri-
bution with a maximum at the origin. Figure 8.7a,b shows the emergence of two
stable ghettos with a weak trend of agglomeration and a strong trend of segregation
between the populations. Figure 8.7a is a phase portrait with two stationary fixed
points, while Fig. 8.7b describes the probabilistic distribution with maxima at the
stationary points.

Figure 8.8a,b shows a moderate trend of agglomeration in each population
and a strong asymmetric interaction between the populations. Figure 8.8a illus-
trates a vortex picture and Fig. 8.8b the corresponding probabilistic distribution with
a maximum at the origin. Figure 8.9a,b corresponds to a restless migration process
with a strong trend of agglomeration in each population and a strong asymmetric
interaction between the populations. The phase portrait 8.9a shows a limit cycle
with unstable origin. The stationary probabilistic distribution of Fig. 8.9b has four
maximum values with connecting ridges along the limit cycle. Sociologically, this
case may be interpreted as sequential erosion of regions by asymmetric invasion and
emigration of the populations.

If we consider three instead of two populations in three regions, then the phe-
nomenon of deterministic chaos emerges in the nonlinear model of migration. Some
numerical simulations have a strange attractor as the final state of trajectories. In
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other cases, a successive bifurcation becomes more and more complex with a final
transition to chaos.

Another practical application of the complex system approach is management
and organizational sociology [8.17]. Actually, modern firms have begun to reorga-
nize and decentralize their large organizations, in order to enable successful strate-
gies in spite of the increasing complexity of their problems. They have started to
support organizational fluidity, for instance, with new pathways that allow project-
centered groups to form rapidly and reconfigure as circumstances demand. Fluid
organizations display higher levels of cooperation than groups with a fixed social
structure. Faced with a social dilemma, fluid organizations show a huge variety of
complex cooperative behaviors caused by the nonlinear interplay between individ-
ual strategies and structural changes.

Thus, the dynamics of these social groups may by modeled by complex sys-
tems. Computer simulations can deliver global insights into the development of

Fig. 8.6a,b. Migration dynamics with a stable point of equilibrium: (a) phase portrait, (b)
probabilistic distribution [8.16]

Fig. 8.7a,b. Migration dynamics with two stationary fixed points [8.16]
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Fig. 8.8a,b. Migration dynamics with a vortex [8.16]

Fig. 8.9a,b. Migration dynamics with a limit cycle and instable origin [8.16]

possible behavioral patterns which may help managers to achieve appropriate condi-
tions of development. If models of complex systems are applicable, then forecasting
in the long run and overall control by a centralized supervisor is, of course, excluded.

The model consists of intentional agents making choices that depend on their
individual preferences, expectations, and beliefs as well as upon incomplete knowl-
edge of the past. Patterns of cooperation merge from individual choices at certain
threshold values. An agent will cooperate when the fraction of the group perceived
as cooperating exceeds a critical threshold. Critical thresholds depend on the group
size and the social organizational structure emerging from the pattern of interdepen-
dencies among individuals. The potential for cooperative solutions of social dilem-
mas increases if groups are allowed to change their social structure. The advantages
of organizational fluidity must be balanced against possible loss of effectiveness.
The effectiveness of an organization may be measured by its capability to obtain an
overall utility over time.
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In firms, there is generally an informal structure emerging from the pattern of
affective ties among the agents as well as a formal one dictated by the hierarchy. The
informal structure is achieved by a kind of self-organization and can be represented
by the sociometric structure of a social network. This approach dates back to early
sociological explorations on social networks of urban families in the 1950s and
has developed to a sophisticated computer-assisted instrument of sociology [8.18].
From the micro-view of individual interdependencies a global perspective on social
structures emerges.

In Figs. 8.10 and 8.11, these structures are visualized as trees. Each branch rep-
resents a subdivision of the higher level in the hierarchy. The modes at the lowest
level represent individuals, with filled circles marking cooperators and open circles
marking defectors. The number of organizational layers which separate two indi-
viduals is determined by the number of modes backwards up the tree from each
individual until a common ancestor is reached. The distance between two agents
in the organization is measured by the number of separating layers. The larger the
distance between two agents, the less their actions are assumed to affect each other.
Thus the tree illustrates the amount and extent of clustering in a group.

The crucial question is how the structure and fluidity of a group will affect
the dynamics of cooperation. Fluidity depends on how easily individuals can move
within the social structure, and how easily they can break away on their own, ex-
tending the structure. In the framework of complex systems, macroscopic properties
of the system are derived from the underlying interactions among the constituents,
which are mathematically modeled by nonlinear evolution equations [8.19].

Figure 8.10a–d, due to Glance and Huberman, shows a computer simulation of
some phase transitions in a fixed social structure, a three-level hierarchy consisting
of three large clusters, each subsuming three clusters of three agents [8.20]. The final
overall cooperation of Fig. 8.10d has been initiated by the actions of a few agents
clustered together in Fig. 8.10a. These agents reinforce each other and at the same
time can spur agents one level further removed from them to begin cooperating.
This increase of cooperation can affect cooperation in agents even further removed
in the structure.

A tiny act of cooperation within a hierarchy can initiate a widespread transition
to cooperation within the entire organization. This cascade of increasing cooperation
leads to a fixed point of equilibrium. But groups with fixed structures easily grow
beyond the bounds within which cooperation is sustainable. In this case, the group
rapidly evolves into its equilibrium state of overall defection. But even in these
bounds, cooperation patterns may be metastable in the sense that the agents remain
cooperating for a long time, until suddenly a symmetry breaking takes place with
a transition to overall defection.

In fluid structures, individual agents are able to move within the organization.
Individuals make their decision to cooperate or defect according to the long-term
benefit they expect to obtain. In order to evaluate his or her position in the structure,
an individual compares the long-term payoff he or she expects if he or she stays
with the long-term payoff expected if he or she moves to another location, chosen
randomly. When evaluating his or her position the individual also considers the
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Fig. 8.10. Social dynamics in a fixed three-level hierarchy: the nodes at the lowest level
of each tree represent individuals, with filled circles marking cooperators and open circles
marking defectors [8.20]

possibility of breaking away to form a new cluster if he or she feels there is nothing
to lose. How easily agents are tempted to break away determines the breakaway
threshold, which is given as a fraction of the maximum possible payoff over time.

Figure 8.11a–e shows snapshots of a phase transition in a fluid organiza-
tion [8.21]. Initially (Fig. 8.11a) all members of the group, divided into four clusters
of four agents each, are defecting. Figure 8.11b shows that nearly all the agents
have broken away on their own. In this situation, agents are much more likely to
switch to a cooperative strategy, as realized in Fig. 8.11c. Because of uncertainty,
agents will occasionally switch between clusters (Fig. 8.11d). When a cluster be-
comes too large, a transition to defection may start within that cluster. At this phase
of transition (Fig. 8.11e), more and more agents will break away on their own, and
a similar development is repeated. Cycles of this type have been observed to appear
frequently in simulated organizations.

As in the case of urban growth (Figs. 8.4) or migration dynamics (Figs. 8.6–
8.9), computer experiments simulating social organizations cannot deliver deter-
ministic forecasts of individual behavior, but they help one to understand the sen-
sitivity and complexity of social dynamics. Thereafter, appropriate circumstances
and conditions may be achieved that allow the living conditions of humans in the
corresponding social systems to be improved.

Models of sociocultural evolution must consider several interacting sections of
a society. If a society is composed of overlapping layers and sectors of dissipative
structures, we must find an appropriate picture of how these come about. In com-
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Fig. 8.11. Social dynamics in a hierarchy with fluid structure [8.21]

plex developments involving interacting dissipative systems, the emergence of new
macro-structures is an uncentralized and unplanned event in the long run. Moreover,
each section includes many more or less unclear human ideas, feelings, and projec-
tions, motivating and inspiring human actions. They cannot be directly identified as
measurable quantities, because they are dissolved in a kind of mainstream which is
called “lifestyle”. Nevertheless, the lifestyle of a society is a typical sociocultural
macro-phenomenon depending on several interacting factors which can be identi-
fied, like conditions relating to the economy, technology, work, travel, ecology, and
the mass media.

In modern times, the evolution of technologies has been a driving force for
change, influencing numerous lifestyle components. With respect to self-organizing
processes, it is a significant feature of technological developments that they are au-
tocatalytic, each innovation catalyzing the generation of the next. If technological
and social evolution is interpreted as a consequence of sequential replacements of
a technique, a mainstream idea (“paradigm”), or an artifact by another, then the
development from growth to saturation can be mathematically modeled by a pat-
tern of interdependent logistic curves. The assertion that a technology advances
through a series of phase transitions and substitutions implies that it might be con-
sidered as a succession of logistic curves. Each curve reaches a saturation level.
With each level of evolutionary innovation a transition to a new logistic curve de-
velops.
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In Chap. 7, we have already discussed that these phase transitions in technol-
ogy are connected with the growth and decline of economies. The development of
computer and information technologies has influenced the lifestyle of mankind in
nearly all sectors as never before in history. It seems to be comparable with a quasi-
evolutionary process producing computers and information systems of increasing
complexity. Computer scientists use the terminology of Herbert Spencer when they
speak of computer generations overwhelming the complexity of earlier generations.
Actually, the complexity of the systems’ functionality has increased. But on the
other hand, the complexity of problems, which is measured by their computational
time, for instance, has been reduced. The reduction of problem complexity is an
order parameter of the quasi-evolutionary process of these technologies.

Computers and informational systems have become crucial techniques in so-
ciocultural development, evolving in a quasi-evolutionary process. The replicators
of this process are any of the information patterns that make up a culture and spread
with variation from human to human. As humans, unlike molecules or primitive
organisms, have their own intentionality, the spreading process of information pat-
terns is realized not via mechanical imitation but via communication. By analogy
with genes, these replicators are sometimes called “memes” [8.22]. They include
ideas, beliefs, habits, morals, fashions, techniques, and so on.

Any pattern which can spread via communication of information is a meme,
even if its human host cannot articulate it or is unaware of its existence. It is im-
portant to recognize that the replicators of human culture are memes, not people.
Our ability to change our minds allows cultural evolution to proceed not by selec-
tion of humans, but by “letting our theories die in our stead”, as Karl Popper has
proclaimed [8.23].

In the framework of complex systems, we may, of course, speak of the system’s
“evolution” in the abstract sense of mathematical evolution equations. Biological
evolution with its special biochemical mechanisms is only a special model of the
general mathematical scheme characterizing complex systems. Thus, the evolution-
ary character of human culture cannot be reduced to the biochemical mechanisms
of biological evolution. But concepts like “memes” should not be misunderstood as
a merely social-Darwinistic jargon. They may illustrate basic features of complex
systems which can be mathematically defined and empirically tested.

In this sense, the development of a worldwide communication network can be
interpreted as the evolution of complex systems for aiding the spread of memes
among humans and for establishing a memetic ecosystem [8.24]. The memes mak-
ing up human culture are diverse, as are their variation and selection mechanisms.
Economic markets are more or less open to their own environment of human society.
They operate under a wide range of more or less rigorously enforced rules, imposed
by a variety of legal and regulatory institutions.

In human societies, legal systems and governmental activities provide a frame-
work for the market. In the framework of complex systems, they are not protected
from evolutionary forces. They evolve within a political ecosystem with its own
mechanisms for the variation and selection of laws [8.25]. Some political memes,
like political desires, slogans, or programs, may become attractors in the dynamical
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phase portrait of a society. In an open democratic society, they may emerge, but also
decline, if their attractiveness decreases due to the selection pressure of competing
alternatives.

8.3 Complex Communication Networks, Information Retrieval,
and Personalized Information Systems

Natural evolution has not focused on single organisms with increasing intelligence
based on neural information processing. In species and populations, we observe in-
creasing degrees of fitness enabled by increasing capacities of swarm, collective,
and distributed intelligence with extrasomatic information processing. In sociobiol-
ogy, populations of ants and termites organize complex transport, and information
and communication systems through swarm intelligence. There is no central super-
visor over the construction of complex networks of paths between their bivouacs.
The ordering of the system is self-organizing according to chemical signals be-
tween thousands of animals. In human history, complex transport and information
networks have emerged with more or less self-organizing behavior. Telephone and
railway networks are supervised by global control stations, while car traffic in net-
works of streets depends on the local behavior of drivers. Thus, auto traffic can
be considered a complex dynamical system with typical phenomena of oscillation
(“stop-and-go”), congestion, and chaos.

The capacity to manage the complexity of modern societies depends decisively
on an effective communication network. Like the neural nets of biological brains,
this network determines the learning capability that can help mankind to survive. In
the framework of complex systems, we have to model the dynamics of information
technologies spreading in their economic and cultural environment. Thus, we speak
of informational and computational ecologies. There are actually realized examples,
like those used in airline reservation, bank connections, or research laboratories,
which include networks containing many different kind of computers.

Incomplete knowledge and delayed information are the typical features of
open computational systems which have no central controls. These large networks,
emerging from the increasing connectivity between diverse computer-assisted in-
formation centers, are becoming self-organizing systems which are different from
their individual program-controlled components. Their unplanned growth leads to
an immense diversity of technical composition and use, with increasing difficul-
ties of interoperability. The horrifying vision of a separated robotic world enslaving
human culture may be the ultimate consequence of many possible uncomfortable
scenarios.

As the worldwide growth of local information and computation centers can-
not be planned by a centralized processor, it seems to have a nonlinear dynamics
which should be studied in the framework of complex systems. Even simplified
case studies would provide crucial insights in the complex dynamics of modern so-
ciocultural evolution. The complex interdependencies of computational ecologies
violate the traditional requirements for a hierarchical decomposition into technical,
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industrial, or administrative modules as used in traditional management. Modern
technical communication networks are growing open systems which must be used
without central control, synchronicity, or consistent data from other agents like ma-
chines or humans. Thus, the dynamical theory of informational and computational
ecologies which incorporates the features of incomplete knowledge and delayed
information will provide well known evolutionary patterns like fixed points, oscil-
lations, or chaos.

Imperfect knowledge leads to an optimality gap, while delays in information
access induce oscillations in the number of the agents involved. Synergetic effects
may arise by cooperation and competition for finite resources. Chaos prevents any
stable strategy of problem solving. Marvin Minsky has studied a simplified model of
collective problem solving by nearly independent agents working on a set of related
problems and interacting with each other. In the end of the 1980th, this example was
already used as a design model for a distribut system of computer-assisted informa-
tion systems [8.26].

The world is going to be populated with a huge number of computing systems
with increasing complexity [8.27]. Among them will be traditional von-Neumann
machines, vectorizing super-computers, shared-memory multi-processors, connec-
tion machines, neural-net simulators, millions of personal computers overcrowding
the world like amebas, and future molecular machines. These computing systems are
becoming more and more linked with such information systems as satellites, phones,
and optical fiber. The idea of a self-organizing worldwide network of software and
hardware systems has become reality. In a dramatic step, the complex systems ap-
proach has been expanded from neural networks to global technical information
networks like the World Wide Web. In 1969, a computer-assisted information net-
work was established at the U.S. Department of Defense. It has become the nucleus
of a pullulating network with 175 000 computers, 936 subnets, and innumerable hu-
mans. The growth of Internet was not planned or controlled by any central processor
unit, but a more or less anarchic process. Nevertheless, patterns of organization both
arise from chaos or and decline in a kind of global self-organization.

In complex information networks, knowledge and information is distributed
among several centers and individual programmers. Their complexity excludes cen-
tral planning. Like all systems involving goals, resources, and actions, computation
has been described in economic terms. Obviously, there is already a computational
market for software and hardware using market mechanisms. As we have seen in
Sect. 7.2, markets are a form of self-organizing complex ecosystem. According to
Smith’s fundamental insight, the force of consumer choice can make computational
market ecosystems serve human purposes better than any programmer or central
processor could plan or understand. The reason is the enormous complexity and
diversity of computational ecosystems linked to the human market.

The reader may be reminded of the complexity of a biological ecosystem
with several levels like cells, organs, and organisms. The elements of a computa-
tional ecosystem are likewise grouped on different levels according to the increas-
ing complexity of its computational systems. Figure 8.12 shows the global network
of USENET, which has grown through many local initiatives [8.28]. The network
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is shown in its state at the beginning of the 1990s as a fraction of the Internet
(Fig. 8.12).

Today, the Internet can be considered a complex open computer network of au-
tonomous nodes (hosts, routers, gateways, etc.), self-organizing without a central
control mechanism. In the case of communicating with computers via the Internet,
a message (e.g., e-mail) in an appropriate computer language (e.g., HTML) must
be coded and administrated in several protocol layers before it can be sent through
the network as byte packets from a sender to a receiver. Communication in com-
puter networks is, for example, realized by the OSI-model of International Standard
Organization (ISO).

The information flow is realized by information packets with source and des-
tination addresses (e.g., IP address). The Internet shares the local activity concept
with CAs and CNNs in the following sense: Routers are nodes of the network deter-
mining the local path of each packet by using local routing tables with cost metrics
for neighboring routers. A router forwards each packet to a neighboring router, at
the lowest cost, to the destination (Fig. 8.13). In the sense of the CA and CNN
paradigms, the local routing tables can be considered “templates” of local nonlinear
information processing.

As a router can only deal with one packet at a time, other arriving packets must
be stored in a buffer. If more packets arrive than a buffer can store, the router discards
the overflowing packets. Senders of packets wait for a confirmation message from
the destination host. These buffering and resending activities of routers can cause
congestion in the Internet. Fluctuations of information packet congestions can be
indirectly observed through echo experiments of control messages between neigh-
boring routers. A monitoring host between two routers periodically sends a series of

Fig. 8.12. Global networking in the beginning of the 1990s [8.28]
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Fig. 8.13. Router node of the Internet [8.29]

echo packets to both routers. The packets take a round-trip time (RTT) to the desti-
nation and back. Congestion is associated with higher RTT values. RTT fluctuations
increase with the sequence of routers in the Internet network (Fig. 8.14).

In automobile traffic systems, a phase transition from non-jamming to jamming
depends on the average car density as the control parameter. At a critical value,
fluctuations with self-similarity and power law distribution can be observed. From
this analogy, a control parameter of data density is defined by the propagation of
congestion from a router to neighboring routes and the dissolution of the conges-
tion at each router [8.31]. The cumulative distribution of congestion duration is an
order parameter of pattern formation. There are phase transitions between spare and
congestion phases. The spare phase corresponds to a case in which the mean input
of the information system is smaller than the maximum output. The critical point
condition is when the mean input rate is equal to the maximum rate (Fig. 8.15).

At a critical point, when the congestion propagation rate is equal to congestion
dissolution, fractal and chaotic features can be observed in data flow. On different
time scales, we can analyze the self-similarity of the information packet’s fluctua-
tions, which is a necessary (not sufficient) condition of strange attractors (compare
Sect. 2.6).

Congested buffers behave in surprising analogy to infected people. If a buffer
becomes overloaded, it tries to send packets to its neighboring routers. Therefore,
congestion spreads spatially. On the other hand, routers can recover when conges-
tion to and from its own subnet is lower than the service rate of the router. Describing
the epidemic processes of malaria in relation to the dynamics of routers is not only
an illustrative metaphor, but provides a hint about nonlinear mathematical mod-
els. Thus, appropriate CAs and CNNs producing propagations of nonlinear waves
would be able to simulate the data traffic of the World Wide Web [8.34]. Compu-
tational and information networks have become technical superorganisms, evolving
in a quasi-evolutionary process. Computer networks are computational ecologies.
If the Internet is a highly complex information network, then we have to manage
information flow with a loss of information in chaotic situations. “Lost in the Net”
is a popular slogan to describe these problems of increasing complexity.
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Fig. 8.14a,b. Time series (a) and power spectra (b) of RRT data fluctuations at Internet
routers [8.30]

The information flood in a more or less chaotic Internet is a challenge for intel-
ligent information retrieval [8.35]. Information Retrieval (IR) in the Internet can be
considered decisive procedure for evaluating and selecting the most relevant doc-
uments according to certain constraints. In binary (Boolean) logic, a document is
either relevant (1) or not (0) for an information query. In fuzzy logic, it has a de-
gree of relevance in the internal [0,1]. Each document is characterized by keywords.
A query is a proposition of logically connected keywords. A document is relevant
for a query, if the same keywords occur in the document and in the Boolean propo-
sition of the query. A query and the documents can be geometrically represented as
vectors in a vector space of keywords. The relevance of keywords in a document
or query is weighted by coordinates. The similarity of queries and documents is
measured by the cosine (with values between 0 and 1) of the angle between their
representing vectors.

There are also applications of genetic algorithms, in order to improve informa-
tion retrieval. Genetic algorithms optimize populations of chromosomes in sequen-
tial generations by reproduction, mutation, and selection. In information retrieval,
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Fig. 8.15a–c. Phase transition of low (a), middle (b), and high (c) mean density of data
traffic [8.32]

they are used for optimizing the queries of documents. A chromosome is a sequence
of documents that is characterized by weighted key terms in binary codes. By ex-
tension, populations are sets of chromosomes. Mutation is the random change of
binary digits. Sequential binary codes can be recombined. Fitness degrees measure
the relevance of documents. Selection is the evaluation of populations of documents.

It is not only a metaphor to consider the Internet as a kind of superbrain with
self-organizing features of learning and adapting [8.36]. We could use the analogies
with a brain as heuristic devices to manage the information flood in the Internet.
Information retrieval is already realized by neural networks adapting with synap-
tic plasticity to the information preferences of human users. Multi-layered neuronal
nets can be applied for optimizing queries of documents (Fig. 8.17). Synaptic con-
nections (“weights”) between neurons change according to learning algorithms. The
topology of the neural net consists of an input layer of the user’s information pref-
erences qui

(s) with key terms ti of query u in state s, a neuronal layer of key terms ti,
a neuronal layer of documents di, and an output layer of query results. The relevance
of terms in a document corresponds to the weights between the neurons of terms and
documents. Neurons fire if the sum of weighted inputs surpasses a critical threshold.
A learning algorithm delivers a first query result by propagation. Deviations in user
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Fig. 8.16. Self-similarity of an information packet’s fluctuation on different time scales
(“strange attractor”) [8.33]

preferences are weighted and propagated back to the term and input layer (“back
propagation”) and are improved during several iterations.

Neuronal maps in brains (e.g., visual cortex) generate representations of the world by
neuronal clusters. Kohonen’s self-organizing maps work in the same manner (Fig. 4.14).
They can be applied to detect semantic similarities between documents, self-organizing in
clusters. Each neuron of the neuronal net (output space) is connected to a weight of neuronal
activity (input space). As an example, 245 documents of countries were characterized by 952
weighted key terms. In a 10 × 10 map, neurons were connected with names of countries and
regions according to the input pattern of documents [8.38]. Countries and regions with sim-
ilar properties self-organize in neighbouring clusters (e.g., islands, Western Europe, Eastern
Europe, South America, and Africa).

In sociobiology, we can learn from populations of ants and termites how to or-
ganize traffic and information processing through swarm intelligence. From a tech-
nical point of view, we need intelligent programs distributed throughout the nets.
There are already more or less intelligent virtual organisms (agents), learning, self-
organizing, and adapting to our individual preferences of information, to select our
e-mails, to prepare economic transactions, or to defend against the attacks of hos-
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Input layer Neural term layer Neural document layer Output layer

Fig. 8.17. Information retrieval with multi-layered neural nets [8.37]

tile computer viruses, like the human immune system. Virtual agents are designed
with different degrees of autonomy, mobility, reactivity, and learning capabilities for
communicating. They communicate and cooperate with their virtual environment as
local spheres of influence.

Stationary agents localized in special servers or mobile agents can be sent as
byte codes into the World Wide Web, performing their services without an online
connection between client and server. E-commerce is a challenge for complexity
research, as it can only be managed with the help of virtual agents, which support
economic transactions. In the future, genetic algorithms will enable us to breed pop-
ulations of agents in a complex evolution of virtual life. Populations of agents can
reproduce themselves by genetic algorithms in order to optimize their information
retrieval according to the queries of a user. Agents start with a user’s profile and
weight the relevance of a document, e.g., by determining the distance (number of
links) between keywords and the keywords of a query. The “energy of life” of an
agent increases or decreases according to the success or failure of the query. Suc-
cessful agents are selected, mutate their genotype, and reproduce themselves [8.39].

Initialize agents;
Obtain queries from user;
while (there is an alive agent){

Get document Da pointed by current agent;
Pick an agent a randomly;
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Select a link and fetch select document D′
a;

Compute the relevancy of document D′
a;

Update energy (Ea) according to the document relevancy;
if (Ea > ε)

Set parent and offspring’s genotype appropriately;
Mutate offspring’s genotype;

else if (Ea < 0)
Kill agent a;

}
Update user profile;

The analogy between computational ecosystems and biological ecosystems
[8.40] does not imply any reductionism or biologism. In the framework of com-
plex systems, computational ecosystems and biological ecosystems are only models
of mathematical evolution equations characterizing the nonlinear dynamics of com-
plex systems. According to Minsky, the computer-assisted networks all over the
world can be interpreted as a “marketplace” or “society of mind” [8.41].

Philosophically, this new kind of worldwide “knowledge medium” or com-
puter-assisted “intelligence” may remind us of Hegelian ideas concerning the emer-
gence of an “objective mind” embodied in human societies and their legal systems,
economies, and bureaucracies, that overcomes the “subjective mind” of individual
humans [8.42]. But these computational ecosystems have neither the consciousness
nor the intentionality possessed by the cerebral neural networks of human individu-
als (compare Chap. 4).

Nevertheless, the question arises of whether computational ecosystems may be
called “intelligent” to some degree. Individuals taking intelligence tests are judged
by their ability to achieve goals set by a test-giver using time provided for the pur-
pose. In this context, intelligence is no metaphysical universal concept; instead,
there are several more or less well defined and testable standards of behavior. Some
authors have suggested judging the “intelligence” of a society likewise by its abil-
ity to achieve goals set by certain legitimated subgroups (for instance, parliaments),
using resources provided for the purpose. The degree of “intelligence” would de-
pend on the range of goals that can be achieved, the speed with which they can be
achieved, and the efficiency of the means used. The details of these definitions may
differ, but “intelligence” based on these concepts would actually refer to a macro-
feature of the whole system. The practical purpose of these definitions would be to
compare computational ecosystems and their degrees of successful problem solv-
ing. In contrast, terms like the collective “intelligence” of a nation are ideologically
dangerous. Furthermore, we should be aware that technical standards of intelligence
are to be distinguished from concepts like consciousness which have actually been
realized by the self-referentiality of certain brain networks in biological evolution.

The growth of informational and computational ecosystems is connected with
a fundamental change of society characterized by a switch from traditional indus-
tries handling goods to knowledge industries for information and an economy of in-
formation services. The production, distribution, and administration of information
have become the main acitivites of modern knowledge based societies. Thus, the
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interface between humans and information systems must be continously improved
in order to realize the ideal of worldwide human communication. Human means of
expression like speech, gestures, or handwriting should be understood immediately
by computation and information systems. The “whole-person paradigm” and the
“human-machine network” are highlights in the future world of communication.

Human communication involves not only bit strings of information, but also
intuition, feeling, and emotion. The future world of communication is sometimes
called a “global village” to emphasize the degree of familiarization created by the
high-tech environment. But its acceptance decisively depends on the realization of
human-friendly interfaces. We have to consider a new kind of complexity, refer-
ring to human intuition and emotion. The old ideals of rationality abstracting from
these essentials of human life are absolutely ignorant of the human world. Even the
process of scientific research is inspired by human intuition and driven by human
emotions that must be considered in the future world of communication.

Some people are afraid that the final attractor of sociocultural evolution will
not be a global village or worldwide polis, but a gigantic “Leviathan” dominating
mankind with the effectiveness of modern high-tech procedures. In the computer-
ized world of virtual realities, all human means of expressions would be digitized
without any niche for personal intimacy. But the complexity of sociocultural evolu-
tion could allow several attractors. They cannot be forecast or determined by human
decisions, but they may be influenced by conditions and constraints humans are able
to achieve. What is the chance of human freedom in a world of high complexity?
What is the degree of individual responsibility in a complex world of collective
effects with high nonlinearity? These questions lead to an epilogue on ethics in
a complex and nonlinear world.

The bounded rationality of users of the World Wide Web is a challenge to in-
formatics, especially when the complex information associated with web-based ap-
plications and services that offer access to a vast variety of information sources is
considered. Obtaining a precise account of what the individual user wants or means
is a mission-critical task, particularly in areas of computer science that rely on users
expressing their individual needs, such as when searching databases and informa-
tion systems according to user queries, retrieving media in document collections, or
encountering selection problems in Web services or e-commerce work-flows.

In practical system implementations, such information is usually deduced from
a user’s profile or some explicitly stated preferences. User modeling is concerned
with trying to fully describe which of the users’ interests should influence a com-
puter application. However, psychological research shows that users are usually not
fully conscious of their exact wishes, even in purposeful tasks [8.43]. A tedious
process like the manual selection of services or areas of interest is often required
to personalize publish/subscribe systems. Moreover, given that some knowledge is
incorporated, the elicited information will naturally be incomplete, and so simply
logging and storing and using user-stated keywords/behavior will sometimes lead to
counter-intuitive results. Therefore, in order to improve the relevance of a person-
alized system’s performance, a system must not only focus on explicit user specifi-
cations, but it should also take information specified by the user’s implicit notions,
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situation, or assumed common knowledge into account. This information can be
garnered from four main sources [8.44]:

Long-term preferences: The notion of relevance from previous interactions or
generally applicable knowledge about a user is used.

Intention: The specific user’s reason for interacting is included when personal-
izing the system.

Situation: The present state and environment of the user is used to decide
whether specific preferences or rules are applicable.

Domain: Knowledge of the specific domain (often referred to as expert knowl-
edge) is used within an interaction.

Typical personalized information systems are considered in the following ex-
amples. Long-term preferences include typical recurring individual preferences that
represent individual tastes, like colors, general areas of interest, or preferred layout
settings. This kind of preference can generally be used to personalize the system
for individual users and so it is the kind of data often stored in user profiles. Sys-
tems, however, cannot always rely on these preferences, since different preferences
may apply to different categories or the preferences simply may not be applicable in
a certain context. Consider, for instance, a set of color preferences in an e-commerce
setting. Though a user can be assumed to have a certain favourite color that will ap-
ply to shopping decisions, the preferences might be different for clothing and cars:
the user may like driving red cars, for example, but the user may not like wearing red
clothes. Moreover, when shopping for books the color preferences becomes entirely
inapplicable, since it is somewhat rare to buy a book based on its color [8.45].

Less general, but more interesting, types of personalization tasks are covered
by the last three categories. Consider the intention in a real world application
like book shopping. Personalized book stores (including Internet portals such as
www.amazon.com) will usually maintain a list of recommended books that is com-
piled based on the topics a user expressed interest in during previous interactions
(i.e., a long-term profile of topical categories). Now assume that the same user ac-
cesses the book store with the intention of buying a present for an acquaintance. In
most cases this present will be purchased based on the preferences of the acquain-
tance; hence the user’s profile is not applicable in this case, and the interaction and
the topics accessed should not be used to update the user’s personal profile. In this
example, the intention of the user – to buy a book for him/herself or for a differ-
ent person – makes all the difference. Thus, the (assumed) intention of a user will
help to specify the choices that the user should be offered in personalization and
which characteristics the user will require at a certain point in time during his/her
interaction with the system. Typical examples of the incorporation of intent into
Web-based systems are adaptive hypertext applications, where the user’s previous
interactions and current navigation patterns are used to personalize the environment
for the user [8.46].

The current situation also impacts on how the system should be personalized.
Context-aware systems use clues from the user’s direct environment (like the time
or location), personal characteristics like emotional states, technical characteristics
like client device capabilities, or certain high-level situational information like “user



8.3 Complex Communication Networks and Information Retrieval 401

in a business meeting” or “user at home” (both of which are examples of social
situations) when performing personalization. Examples of systems that use this ap-
proach are location-based services, situation-based communication routing, or the
context-aware synthesis of multimedia content [8.47].

The most renowned realizations of the last kind of personalization preferences,
those based on domain knowledge, are the so-called “expert systems” that contain
domain knowledge elicited from domain experts, often along with rules for deduc-
ing how this knowledge should be applied to a particular situation. However [8.48],
most expert knowledge is not represented by rules, but embodied in the experts
themselves. Thus, we cannot simply consider domain preferences in the sense of
expert systems; we must instead rely on domain-specific heuristics, such as which
general preferences may be applicable (and in which combination), or on what users
generally care about in a certain domain. The idea behind this is often referred to as
common knowledge or world knowledge – knowledge about the environment that
all humans interacting in a certain domain are assumed to know or implicitly share.
Ontologies provide a good way of presenting some of this knowledge for use by
those who are not experts in the domain. In today’s systems, the latter three kinds of
preferences – if included at all – are mostly built directly into the application logic
and represent the embodied mind, as opposed to the collected individual long-term
preferences, which form the user’s individual profile.

Let us consider two specific application studies where we can see parts of the
embodied mind, as represented by adequate preferences, being used for improved
system personalization, in order to handle the complexity of the information flood.
To achieve effective personalization, knowledge from all four sources discussed
above must be blended with the specific user-provided details/keywords for an indi-
vidual interaction. Though not all embodied knowledge can be captured in this way,
this method nevertheless provides a useful way of personalizing systems under the
notion of bounded rationality.

First consider personalized information searches of and retrievals from data-
bases and information systems. The classical relational model that is still predom-
inant in today’s practical database applications uses relational algebra to specify
rigid selection predicates that allow objects to be selected with certain character-
istics from (usually) large data sets. Though this model is applicable to a variety
of simple cases, for example when customer information for a bank account with
a certain account number must be retrieved, modern information-driven environ-
ments demand somewhat fuzzier capabilities when specifying the information that
the user needs to accomplish his/her task. In most practical applications, such as
Web search engines, information searches will lead to either empty or too many
results. If a user asks a very specific query during a necessarily fuzzy task like an
information search, the query may be overspecified (for instance, overly specific
keywords may be chosen), leading to an empty result that is not very helpful to
the user. On the other hand, asking rather unspecific (i.e., underspecified) queries is
bound to lead to a flood of information. In this case, lots of items more or less closely
match the user’s needs. However, since the user does not know the contents of the
underlying database or information collection, he or she simply cannot be expected
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to know how specific their query needs to be to retrieve a helpful yet manageable
set of results.

Preferences that show the structure of interests for an individual user or ontolo-
gies that model the common level of understanding of topics in a certain domain
can help to tackle this problem. The expansion of queries using user-specific prefer-
ences is rooted in the notion of cooperative answering [8.49]. The basic idea behind
cooperative retrieval systems is to relax the user-specified terms until a match can
be found in a collection of data [8.50]. In this case, even an overspecified query
will lead to some useful results and avoid empty result sets as well as bypassing
the need for any tedious manual refinement of queries. This way of dealing with
query predicates, as soft constraints, is also necessary when performing personal-
ization tasks using individual preferences that have not been explicitly stated for
a specific interaction. Since they are implicitly assumed by the system to repre-
sent common or embodied knowledge ascertained from either long-term profiles,
intentions, situations, or domains, they must be considered to be less important
than any explicitly provided terms (i.e., they are soft constraints that can be used
to refine result sets that are too large, or they can be relaxed when empty re-
sult sets are retrieved). A system of preferences can be introduced in the form of
strict partial orders with simple “I like A better than B” semantics into database
queries [8.51]. For example, when searching for a rental car, the user could state
that cars with automatic transmission are preferred over those with manual trans-
missions. If two offers are retrieved that meet all of the basic requirements, the
result set can be ordered by or even limited to those objects that also fulfil the trans-
mission preference. Single preferences such as type of transmission in a car can
be modeled and combined into more complex queries using operators for deriv-
ing Pareto sets (i.e., all preferences are considered as equally important, following
the Pareto principle from economics), prioritized sets (i.e., order is imposed on the
preferences, such as lexicographic order), and ranked result sets (i.e., preferences
associated with numerical domains that are aggregated using suitable utility func-
tions).

As a second example, let us consider the discovery of useful Web services or the
selection of suitable services for constructing complex workflows in a personalized
manner [8.52]. Service-oriented application infrastructures are becoming more and
more common. As the Internet becomes ubiquitous, the Web service paradigm is ex-
pected to substantially alter the modern business world. The essential components
of this emerging service paradigm are Internet-based, modular applications that pro-
vide standard interfaces and communication protocols for efficient and effective ser-
vice provisioning between different business units or businesses and customers. The
reusability of basic building blocks (or implementations) that are common in some
workflows and the easy customization possible within complex workflows are par-
ticularly appealing features of these services. However, just as we noted for infor-
mation searches above, a retrieval model based on exact matches alone is unlikely
to succeed. Users are generally much more interested in accomplishing high-level
tasks than the exact intermediate steps required to do so. Thus, exactly specifying all
characteristics of the services needed instead of using a more fuzzy understanding
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of the workflow in question is usually a counterproductive approach. As the com-
plexity and diversity of Web services are expected to grow, enhanced techniques for
service discovery and selection will be needed.

When they start to design a service, such as a restaurant reservation or flight
booking service, providers already have quite specific ideas about what the service
should provide and about what types of interactions to expect. Thus providers are
domain experts that can provide a set of useful domain preferences and even ontolo-
gies for categorization that foster the successful execution/composition of services,
even for non-expert users. Moreover, providers may also anticipate different ways
in which the service could be used (possibly in different situations). Generally, only
a certain number of typical requests/business processes will exist in a well-defined
service. These typical interactions for different users/groups are also preference pat-
terns or usage patterns that allow for a personalization approach. A usage pattern
may for instance depend on the basic intentions of a significant group of users. Dif-
ferent intentions will require different patterns that depend on both the user’s profile,
which states his or her notion of a service’s usefulness or desired characteristics (like
execution costs, quality guarantees, etc.), as well as the service profiles that are em-
ployed to carry out the actual business task. The basic approach where demands are
relaxed when empty result sets are obtained is also necessary in this case, in order
to support users in a cooperative fashion.

In order to illustrate some examples of the different types of preferences and
how to derive them, consider a restaurant booking service. One of the most impor-
tant parameters to consider when choosing a restaurant is the type of cuisine. Any
restaurant can be characterized adequately using a cuisine parameter, but querying
for it becomes a tedious process if it is not cooperatively supported. For example,
if a user is interested in eating at a restaurant offering Sichuan cuisine located in
a particular district, such a query might be too specific and deliver an empty result

Fig. 8.18. Preferences derived from different sources in complex information worlds by per-
sonalized information systems [8.53]
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set. On the other hand, just asking for a restaurant that offers Asian cuisine might
result in a large set of rather unspecific choices offering Chinese, Japanese, Indian,
or Thai cuisine. One thing a cooperative system could use is an explicit preference
(either explicitly specified with the current service request or derived from previ-
ous interactions of the same user). Such a preference could, for example, specify
that a user prefers Sichuan cuisine over Italian and over French and Japanese (see
Fig. 8.18).

When such a preference is not explicitly given, the service provider can as-
sume some information. For example, the general notion of a similarity between
cuisines from geographically close regions could be assumed, based on the reason-
ing that cuisines in similar geographic regions involve the same kind of ingredients,
herbs, and spices. One possible assumption would thus be that, since Sichuan is
a specific Chinese cuisine, other Chinese cuisines like Cantonese could be accept-
able alternatives to a user asking for Sichuan cuisine. To express this knowledge,
a domain-specific ontology like that shown in Fig. 8.18 could be provided, and in
the case of empty results and no explicitly stated preferences it could be used to
relax a user’s request. As an example of the application of user intentions, consider
the usage pattern (or conceptual view) shown in Fig. 8.18. If we assume that a user
is interested in hot and spicy food (i.e., a user has a rather taste-based notion of the
similarities between types of restaurant, instead of the geographical one presented
above), some cuisines like Indian or Mexican are closer to Sichuan cuisine (known
for its spiciness) than those that are geographically closer. Thus, if a user is known
to subscribe to a specific taste, a more specific pattern must be used for cooperative
request relaxation.

In this section we focused on the representation of knowledge used for person-
alization tasks in complex information worlds. Starting from the notion that not all
of the most relevant information used for personalization tasks can be elicited as
expert knowledge, since it is embodied in the individual user (which is also consis-
tent with current brain research), we proposed the use of flexible preference-based
frameworks when personalizing computer systems under the paradigm of bounded
rationality. This means that although an electronic system cannot anticipate all pos-
sible influential factors, it can at least enrich user-related processes with some in-
tentional, situational, and domain-specific common knowledge.

As discussed for typical user interactions in the areas of personalized retrieval
from databases/information systems and proactive Web service discovery/selection,
personalizing the interaction with preferences from each individual user’s long-term
profile, intention, situation, and domain will result in improved system effectiveness.
This is because the “embodied” information necessary for a certain task can be com-
bined with the information provided by the user. Since this embodied information
is not provided consciously, this embellishment adds real value to the personalized
task. However, since all of the preferences that are combined with the user informa-
tion have a lower level of importance than the explicitly provided information (and
so can be ignored – relaxed – if necessary), this enhancement of the user information
respects the individual user’s needs and does not violate explicit constraints. Obvi-
ously, personalized computer systems do not aim to be a complete computational
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model of the embodied human mind, which was an impractical illusion of tradi-
tional AI and expert systems. In a complex information world, we want to construct
effective and appropriate tools and service systems under the conditions of bounded
knowledge, which requires interdisciplinary cooperation, especially with cognitive
science and philosophy of mind.

8.4 Complex Mobile Networks, Ubiquitous Computing,
and Adaptive E-Learning

Complexity of global networking is not restricted to increasing numbers of PC’s,
workstations, servers, and supercomputers interacting via data traffic in the Internet.
With less complexity than a PC, cheap and smart devices of low-power are dis-
tributed in intelligent environments throughout our everyday world [8.54]. Exam-
ples are tabs, pads, and boards: inch-scale machines that approximate active Post-It
notes, foot-scale ones that behave something like a sheet of paper, a book or a mag-
azine, and yard-scale displays that are the equivalent of a blackboard or bulletin
board. Tabs, pads, and boards are just the beginning of ubiquitous computing. Smart
devices are intelligent microprocessors embedded in an alarm clock, the microwave
oven, the TV remote controls, the stereo and TV systems, the kids’ toys, etc. Ubiq-
uitous computing makes ‘things that think’ [8.55], not only highly intelligent su-
percomputers, but an intelligent superorganism with ‘swarm intelligence’. The third
generation (3G) services of wireless communication include packet networks and
interconnectivity of computerized appliances, such as phones, faxes, printers, soft-
ware radio, etc. The enabling technologies demand faster data converters, more
powerful processors, Java and other forms of downloadable software. The technical
development of 3G-Communicators is an interdisciplinary system engineering task.

Like a GPS (Global Position System) in car traffic, things of everyday life could
interact telematically by more or less intelligent sensors. Global position systems are
nice examples of complex information systems realizing the local activity concept.
A car driver using GPS is telematically guided by a network of neighbor GPS sta-
tions. In future, the processors, chips, and displays of these smart devices will not
need a user interface such as a mouse, or keyboards, only a pleasant and effective
place to get things done. Wireless computing devices of all scales become more
and more invisible to the user [8.56]. Ubiquitous computing enables people to live,
work, use, and enjoy things without being aware of their computing devices.

From a technical point of view, ubiquitous computing is a challenge for global
networking using wireless media access, wide-bandwidth range, real-time capabili-
ties for multimedia over standard networks, and data packet routing. Not only mil-
lions of PC’c, but billions of smart devices are interacting via the Internet. They are
real, physical things of varying scale, but with virtual data shadows in the Internet,
the control of which requires powerful, complexity aware, data tracking manage-
ment. The overwhelming flow of data and information enforces us to operate at the
edge of chaos.
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Global networking is becoming one of the exciting challenges of complexity re-
search. Understanding complex systems in nature and society supports the effective
management of communication networks. In the 21st century, information, commu-
nication, and biotechnology are growing together. Therefore, information process-
ing requires learning from nature. Information can be generated, transmitted, stored,
processed, and represented in nature by sense organs, the nervous system and the
brain. Cognitive processes like learning and thinking, language, motorics, percep-
tion, and communication, are simulated using technology by physical, chemical,
and biological sensors, light-wave conductors, electronic, optical stores, micropro-
cessors, neural nets, robotics, virtual reality, ubiquitous computing, artificial life and
intelligence. Together they aim at producing learning, adapting, and self-organizing
evolutionary complex systems.

An exciting example of current research is the evolutionary architecture of fu-
ture automobiles, integrating all aspects of complexity and self-organization. The
automobile industry is still one of the driving and dominating engines of the global
economy. Thus, complexity research finds a realistic application in the production
of future cars as learning, adapting, and self-organizing evolutionary complex sys-
tems. A challenge of the automobile industry is the increasing complexity of elec-
tronic systems. If we consider the electronic cable systems of automobiles from the
beginning through to today, there will be a surprising similarity to neural networks
of organisms which increase in complexity during evolution. Contrary to biolog-
ical evolution, electronic systems of today are rigid, compact, and unflexible. So
tiny failures can lead to a collapse of the whole system. In an evolutionary archi-
tecture (EvoArch) the nervous system of an automobile is devided into autonomous
units (carlets) which can configurate themselves in cooperative functions, in order
to solve intelligent tasks. Examples are the complex functions of motor, brake, and
light, wireless guide systems like GPS, smart devices for information processing,
and the electronic infrastructure of entertainment.

In the case of injuries or accidents, living organisms have the remarkable ca-
pability of self-healing and flexible change of units, in order to support vital func-
tions via different organic cooperations. If, for example, people loose their ability
to speak by a stroke, the damaged parts of the brain will sometimes be replaced
by new configurations and connections of neural areas. If in an automobile, for
example, the autonomous unit “lamp” will fail, then other autonomous units con-
nected with the damaged one will search for substitutes by self-organization. They
will arrange themselves with other units, in order to guarantee the vital functions
of a car. In an evolutionary electronic architecture (EvoArch) [8.57], there are sev-
eral “self-x-features” with great similarity to self-organizing organic systems in bi-
ological evolution (Fig. 8.19a): Self-healing demands self-configuration and self-
diagnosis. Self-diagnosis means error recognition and self-reflexion. In a car, self-
configuration consists of self-reflexion, an update mechanism, and extension. Self-
advisory means self-reflexion, situation recognition, and a knowledge book. Self-
adaption is based on situation recognition and self-configuration. The relations of
self-x-features are illustrated in a taxonomy:
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Fig. 8.19a. Self-x-features in an evolutionary architecture (EvoArch) [8.57]

According to the complex systems approach, the functions of a car are con-
sidered as macro-features which emerge from self-organizing interactions and the
cooperation of autonomous units on the micro-level. Examples of autonomous units
of a car (carlets) are, e.g., switches, lamps, tuners, controlers, regulators, horn. A car
function like “air conditioning”, “turn indication” or “hazard warning” needs one or
more switches which must be selected among more than hundred candidates. Actu-
ally, a car function like “turn indication” needs carlets for a turn indicator switch,
a terminal switch, turn indicator flashing, and several turn indicator lamps. In an evo-
lutionary architecture, cooperations are realized in the EvoArch-arena (Fig. 8.19b),
where active autonomous units ask for cooperation with passive autonomous units
which have the appropriate features to execute a car function. Each unit (carlet) has
an ID-number for self-identification. It can declare its property (e.g., turn indica-
tion) and its intention (e.g., search for a switch). The interaction of units (carlets)
is made possible by a communication system (carCom) with information retrieval
procedures, protocols, and contracts of cooperation which are well-known in the
internet like RMI (Remote Method Invocation) and RPC (Remote Procedure Call).
As in the internet, the network-management is based on the middleware of routing-
procedures with routing-protocols and routing-tables.

After a call for cooperation, an active autonomous unit gets a list of possible
passive candidates to replace, e.g., a damaged carlet. In the next step, exactly one
candidate must be selected in order to realize a car function through cooperation. In
the case of damaged units and failures of functions, the flexibility of a car and poten-
tiality of its self-x-features increases with the number of possible candidates. But,
on the other hand, the amount of computational time which is needed for selection
increases nonlinearly with the size of the list of candidates. In a running car of to-
day, approx. 30 functions need one or more switches which must be selected among
more than 100 candidates. In general, if n is the number of active autonomous units,



408 8 Complex Systems and the Evolution of Human Culture and Society

EvoArch arena

active autonomous units

passive autonomous units

cooperation network

Fig. 8.19b. Self-organization of car functions in an evolutionary architecture
(EvoArch) [8.57]

m the number of passive units required, and M the number of possible passive units
with M−m > mn, then the number Con(m, n) of possible configurations of partners
is given by the formula

Con(m, n) = n!
∑
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The reason is that n! combinations are necessary to determine the succession of ac-
tive autonomous units searching for passive ones. Without taking succession into
account,
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)
combinations are possible. The selection among M possible units is
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binations possible, in the third step only
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)
combinations, etc. For n = 30

active autonomous units, m = 2 necessary passive units for a car function, and
M = 100 possible passive units, we get 2. 09 ×1017 combinations. If a combination
corresponds to one computational instruction, a processor with 102 MIPS (million
instructions per second) will need 2. 42 × 1024 days for checking all possible com-
binations. Obviously, information retrieval is needed to reduce complexity.

As in the internet, the quality of information retrieval depends on the precision
of calls for necessary partners. An unprecise call like “search for a switch” leads to
a too long list of possible candidates. A more precise call “search for a switch for
the left window in the left door” confines the possiblities. We need procedures for
weighting and giving preferences which are well known in soft computing and ar-
tificial intelligence. In soft computing features are neither relevant nor not relevant
as in Boolean logic. They are more or less relevant according to the degrees of their
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similarity. In a taxonomy, features and functions of a car can be classified by cate-
gories of similarity: On the bottom, the hierarchy consists of carlets as, e.g., lamps
and switches. On the next level, a carlet like a lamp may belong to the category
“lamps left behind” or “yellow lamps” which may belong to the more abstract cate-
gories “functions outside the car” or “functions in front of the car” on the following
level up to abstract categories such as “position”, “indication”, “input”, “output” etc.
on the top level. In the sense of object-oriented programming languages (e.g., Java
or C++), these categories may be considered as classes with attributes and methods
which are represented in a diagrame of nodes and edges. The arrows of edges indi-
cate relations of inheritable features which can be implemented in a computational
model of evolutionary architecture. If a carlet searches for a possible partner to re-
alize a car function, its features will be confined according to the attributes of its
call for cooperation localizing the position of a carlet as partner in the diagrame of
taxonomy. T(taxonomy)-selection reduces the number of possibilities and enables
the emergence of self-x-features such as self-healing or self-adaption in proper time.

Self-healing and self-adaption does not only mean replacing damaged hardware
units or extending the architecture by new hardware units. In biological evolution,
new physiological arrangements can be developed by an organism to guarantee vital
functions or to introduce new abilities. In evolutionary architecture, the computa-
tional system of a car makes it possible to design virtual units to replace demaged
hardware carlets or to introduce new functions requested by a driver. This enor-
mous progress is based on mobile networks and ubiquitous computing. In Bluetooth
technology, complex networks of cables between carlets are replaced by wireless
communication. Each unit with an appropriate interface can take part in the wire-
less interaction. New electronic connections for, e.g., mobile telefones, GPS, or sets
of electronic entertainment can be embedded by specific communication protocols
(profiles). But it is also possible to control car functions from outside by mobile
smart devices such as a PDA (Portable Digital Assistant). Drivers and engineers can
influence all kinds of autonomous units in the same way physicians influence the
organs of a living body. Thus, a car-gateway is introduced as an autonomous unit to
realize the interface between the IT-world inside a car and the IT-world outside with
mobile and smart devices of ubiquitous computing.

Bluetooth technology opens completely new avenues of utilities. In an evo-
lutionary architecture (EvoArch), new functions can be adapted or even created
according to the desires of a user. If, e.g., the joystick of a radio panel fails, the
Bluetooth-car-gateway can design a virtual model of the joystick with the same log-
ical procedures as the hardware version. The virtual joystick is represented on the
touch screen of a PDA which can be used by a driver to operate the radio. The
function “radio behavior” with carlets like “display” or “loudspeaker” is enlarged
by the new autonomous unit “virtual joystick” with a wireless connection to a PDA.
In EvoArch, an automobile is transformed into a self-organizing information pro-
cessing system which is embedded into the world of wireless mobile networks and
ubiquitous computing.

In the traditional automobile industry, the car architecure remains unchanged
during the “lifetime” of a car after the end of its production. Future architecures
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must be open and flexible like evolutionary organisms. There are hard facts of
global markets also demanding flexibility of car architecture. An automobile com-
pany cannot be restricted to one singular series of car model for several years. The
innovation cycles and competition with other companies are accelerating more and
more. If companies decide to cooperate with one another on global markets, then
autonomous units of car series must be interchangeable. Later on, companies must
take care of the political, economic, and ecological conditions of markets. Demands
of consumers, fashions, and trends are changing quickly. Thus, autonomous units
must be replaced or extended during the lifetime of a car like reproducing cells in
living organisms. Self-adaption, self-configuration, and self-explanation are self-x-
features of car production related to the whole life time of a series like the biological
evolution of a population. Like living organisms, evolutionary architectures of auto-
mobiles are examples of information dynamics of complex systems self-organizing
via information processing and communication of cellular units.

The information dynamics in nature and society have been analyzed in the
framework of the theories of information, computability, and nonlinear dynamics.
We have considered the dynamics of natural systems (e.g., atomic, molecular, ge-
netic, neuronal systems), computational systems (e.g., quantum, molecular, DNA-,
bio-, neurocomputing systems), global networking (e.g., internet, routing, informa-
tion retrieval, multiagent systems), and ubiquitous computing (e.g., mobile phones,
GPS, PDA, smart devices, intelligent environments).

Global networking is no longer only a challenge of technical development.
Ubiquitous computing could improve the human interface with information sys-
tems, but it must not perplex people with a diversity of technical equipment. Global
networking must be developed as a calm and invisible technology. Calm and in-
visible computing tries to integrate global networking and information processing
in human environments and daily life without enslaving people with technical sce-
narios. Global networking must be developed as a technical service to mankind,
no more no less. Thus, information processing in global networks cannot only be
pushed by the technical sciences. It must be an interdisciplinary task of microelec-
tronics, computer science, information science, and also a challenge of cognitive
science, sociology, and the humanities.

In this age of globalization, people are nomadic and must adapt to changing
information environments. In nomadic and pervasive computing, personalized dig-
ital profiles are automatically matched to local information services. Examples of
this include personalized information services that are used when traveling and in
traffic. Travellers can communicate by their PDAs (personal digital assistants) with
the information system of, say, a railway station or airport. Tickets, reservations,
and payments are handled electronically and wirelessly without a PC or a booking
office. Information is automatically actualized. The traveler is guided by electronic
advice to the seat that they booked.

In a nomadic world, a mobile user must be able to access their information at
their present location, wherever that may be in the world [8.58]. The user’s portable
PDA is equipped with a personalized user profile, personal data, and preferences.
Local servers are contacted automatically, personalized user profiles are matched
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and adapted to changing locales, allowing the preferences and services desired (e.g.,
information on hotels, restaurants) to be realized. Most of the information retrieved
by humans is obtained subconsciously (e.g., via body language and gestures). Thus,
as well as a preference manager for explicit query preferences, the derivation of
preferences requires interdisciplinary cognitive research to build up an adequate
rule base for the expected usage patterns, domains, and situations. Cognitive expan-
sion of queries aims at the implementation of a knowledge-based query builder that
allows complex query building in cooperation with the user.

Globalization requires mobility and steady adaptation to changing environ-
ments in everyday life. Several questions must be addressed in this regard. How do
we coordinate the technical infrastructure and the heterogeneity of mobile equip-
ment? Does the nomadization of information technology correspond to a nomadiza-
tion of society, with the erosion of social structures and the loss of local rootedness?
Personalized information systems should be adapted to the conditions and needs
of human beings. In nomadic and ubiquitous computing, personalized information
devices are wireless and pervasive. However, the technical equipment required to
enable this computing should be hidden in the background (invisible computing)
and used to augment our lives (augmented reality).

Further examples are personalized information services in a supermarket [8.59].
In nomadic and ubiquitous computing, even cheap supermarket products could be
represented electronically in databases with high computational power. Therefore,
supermarkets could introduce personalized and dynamic prices depending on per-
sonal customer data (e.g., frequency and amount of shopping) and products (e.g.,
the “best before” date). What social consequences would follow from personalized
prices? Social discrimination or economic competition? How can the abuse of per-
sonal customer profiles be prevented? Personalized information services may also
improve the complex communications that occur in a hospital [8.60]. In ubiquitous
computing, physical reality is mapped onto a world of digital shadows. In a hos-
pital, physicians and patients could be electronically monitored and controlled by
pervasively distributed sensors and microprocessors. The schedules and activities of
patients and physicians could be coordinated automatically, improving time man-
agement. But how can privacy and security be guaranteed? Who is responsible for
failures in a complex information and computational system with automatic ser-
vices?

Global information worlds can only be handled by knowledgeable and well-
educated people. However, people have different intellectual capacities and live and
work under different conditions [8.61]. Thus, knowledge must be tailored to their
different and changing intellectual capacities and living conditions. How can we
apply personalized information services to education? In today’s knowledge based
economies, the knowledge and skills of citizens are becoming increasingly impor-
tant. Based on this notion, a new paradigm of personalized on-demand learning
emerges, where the anyone, anytime, anywhere delivery of education and training is
adapted to the requirements and preferences of each individual citizen within differ-
ent e-learning and e-working settings. People learn in different ways. Thus, learning
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Fig. 8.20. Personalized information systems in global knowledge society [8.62]

materials must be packaged by personalized information systems according to the
requirements of those who wish to learn (Fig. 8.20).

In the global knowledge society, different e-learning and e-working settings
must be developed for different users, such as service providers, authors and pub-
lishers of learning materials, platform providers, and citizens, in a personalized way.
In this age of globalization, nomadic computing is leading to an increased need to
learn on the move. A mobile learning environment requires that appropriate learning
resources are available to the learner anytime and anywhere. This can be achieved
by adapting the content to the preferences of the learner, the characteristics of the
device used to interact with the learning material (e.g., a PDA, mobile phone, or
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laptop), and an appropriately selected narrative template. In the field of artificial in-
telligence, adaptive and personalized agents and robots will be developed to support
adaptive and personalized learning environments. They must not only understand
natural human language, but also human emotions, motivations, preferences, and the
different forms of human creativity. With the increasing complexity and specializa-
tion of human knowledge, they will be an essential part of adaptive and personalized
learning.

In this age of globalization, firms and organizations must be learning, adap-
tive, and self-organizing information systems if they are to remain competitive in
the marketplace. Learning organizations are interested in providing their employees
with personalized and tailored internal access to organizational e-knowledge materi-
als that promote life-long learning and training scenarios. Only personalized access
guarantees that all of the human resources of the organization, with their individual
competencies for creative innovations, will be utilized [8.63].

Humans in organizations (e.g., firms, administrations, universities) are not just
reacting agents but also embodied minds with perception, cognition, and emotions.
Their intentions and actions are determined by conscious and subconscious images
of an actual situation. Management must recognize and use the creativity and tacit
knowledge of people for innovation coaching. We distinguish between tacit and ex-
plicit knowledge based on brain dynamics. Tacit knowledge means knowledge of ex-
periences and the body, simultaneous knowledge (here and now), analog knowledge,
and practice. Explicit knowledge is mainly sequential symbolic knowledge or dig-
itally declared knowledge. In complex human organizations, there is a knowledge-
conversion process with several transitional steps [8.64]. The first step, socialization,
means the transition from tacit knowledge to tacit knowledge – the accumulation of
tacit knowledge, the extra-organizational collection of social information, the intra-
organizational collection of social information, and the transfer of tacit knowledge.
The next step refers to the transition from tacit knowledge to explicit knowledge. To
achieve this, managers should facilitate creative and essential dialogues, hypotheti-
cal thinking, the use of metaphors, and include organizational designers. In the third
step, combination, explicit knowledge is connected with explicit knowledge via ac-
quisition and integration (plans, computer simulations), synthesis and processing
(manuals, documents, databases), and dissemination (presentation). The last step,
internalization, changes explicit to tacit knowledge through personal experience,
acquisition of real-world knowledge, simulation and experimentation, and the ac-
quisition of virtual-world knowledge.

One can then distinguish four kinds of knowledge assets in organizations, cor-
responding to these four phases of the knowledge-conversion process. Experimental
knowledge assets mean tacit knowledge shared through common experiences, such
as skills and know-how of individuals, care, trust, and security, or energy, passion,
and tension. Conceptual knowledge assets refer to explicit knowledge articulated
through images, symbols, and language. Examples are product concepts, and design
or brand equity in firms. Systemic knowledge assets contain systemized and packed
explicit knowledge, like documents, specifications, manuals, databases, patents, and
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licenses. Routine knowledge assets are incorporated in the tacit knowledge that is
routinized and embedded in the actions and practices of coworkers.

When organizations (e.g., firms, universities, research laboratories, suppliers,
and customers) become allies in a partnership, new platforms for learning are added.
These are called interorganizational [8.65]. When organizations begin to adapt to
larger networks, platforms for learning multiply. Virtual organizations are systems
of networking partners who coordinate their activities through shared missions, vi-
sions, values, projects, and products. Organizational learning is derived from trans-
formations of individual knowledge into artificial memories, rules, and routines.
Explicit rules (e.g., written regulations, memoranda) have an objective existence,
whereas tacit knowledge exists only in the practices of interesting people. Explicit
and tacit knowledge are not only the abilities of individuals, but the potentials of vir-
tual networks. In this age of globalization, learning organizations compete in global
networks or become allies. Therefore, we need global self-organizing and intelligent
knowledge systems in order to find tailored solutions for staff, partners, and clients,
and to manage complex competitive situations.

During evolution, new forms of information storage have developed from ge-
netic information up to neuronal information and finally extrasomatic information.
In humans, the storage capacity of approximatly 1010 bit genetic information is
overcome by approximatly 1014 bit neuronal information in brains, corresponding
roughly to the possible number of synaptic connections. For the past 103 years,
mankind has developed extrasomatic information storage (e.g., libraries, data bases,
the Internet). Their information capacity has overcome the capacity of single brains.
At the beginning of the 21st century, the exponential dynamics of key technologies is
dominated by the miniaturization of computers, gene technology, and the growth of
the Internet. According to J. Schumpeter (1883–1950), economic growth is driven
by basic innovations of science and technology initiating long-term Kondratieff-
cycles of business and enterpreneurship. After four cycles of the industrial society,
depending mainly on natural resources, the 5th Kondratieff has generated the infor-
mation society with mainly non-material products of information services.

In industrial societies economies have been characterized by the steps of pro-
duction, logistics, distribution, marketing and sale of material goods. In information
societies, there is an offer and demand of virtual information products and services
with steps of information collection, information systematization, information re-
trieval, production and trade of information-based systems. Therefore, economists
distinguish material chains of value in industral societies and virtual chains of value
in information societies. According to Shannon, the content of information goods
is measured by the degree of news for a receiver. But it is not sufficient to be well
informed in order to settle our life. In a next step, information of high value must
be evaluated and applied to solve problems. Information must be transformed to
knowledge in the sense of know-how for problem solving.

Besides matter and life, the chief ingredients of the 21st century are information
and knowledge. In a knowledge society, science is a productive power of economic
and social growth which needs new strategies of cooperation with economy and
politics [8.66]. The “wealth of nations” (A. Smith) is the knowledge of their people.
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Therefore in the process of globalization with competing nations and societies, ed-
ucation must secure the sustainable future of the knowledge society. The technical
evolution of information and knowledge is the fundamental challenge of mankind
in the 21st century. Humans will no longer be only products of a blind evolution,
but will try to influence their development by use of information and knowledge.

But, knowledge is not sufficient in order to decide about the goals of our prob-
lem solving. The experience with science and technology in the last century un-
doubtedly underlines the demand for ethical evaluations of our technical develop-
ments. Thus, the future of the information and knowledge society cannot be sep-
arated from ethics and politics. In the tradition of philosophy, the connection of
knowledge with ethics has been called wisdom. The transformation from data to in-
formation, knowledge, and wisdom is the interdisciplinary challenge of a knowledge
society [8.67].
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9 Epilogue on Future, Science, and Ethics

The principles of complex systems suggest that the physical, social, and mental
world is nonlinear, complex, random. This essential result of epistemology has im-
portant consequences for our present and future behavior. Science and technology
will have a crucial impact on future developments. Thus this book finishes with an
outlook on future, science, and ethics in a nonlinear, complex, and random world.
What can we know about its future? What should we do?

9.1 Complexity, Forecasts, and the Future

In ancient times the ability to predict the future seemed to be a mysterious power
of prophets, priests and astrologists. In the oracle of Delphi, for example, the seer
Pythia (6th century B.C.) revealed the destiny of kings and heroes in a state of trance
(Fig. 9.1) In modern times people came to believe in the unbounded capabilities of
Laplace’s demon: Forecasting in a linear and conservative world without friction
and irreversibility would be perfect. We only need to know the exact initial condi-
tions and equations of motion of a process in order to predict the future events by
solving the equations for future times. Philosophers of science have tried to analyze
the logical conditions of forecasting in the natural and social sciences [9.1]. Belief in
man’s forecasting power has been shaken over the course of this century by several
scientific developments. Quantum theory teaches us that, in general, we can only
make predictions in terms of probabilities (cf. Sect. 2.3). A wide class of phenom-
ena is governed by deterministic chaos: Although their motions obey the laws of
Newtonian physics, their trajectories depend sensitively on their initial conditions
and thereby exclude predictions in the long run. In dissipative systems, such as the
fluid layer of a Bénard experiment (Fig. 2.20), the emergence of order depends on
microscopically small initial fluctuations. A tiny event, such as the stroke of a but-
terfly’s wing, can, in principle, influence the global dynamics of weather. In chaotic
systems, the prediction of future events is restricted, because the information flow
from past to future decreases: The Kolmogorov–Sinai entropy has a finite value.
But, in the case of random and noise, every correlation of past and future decays
and the Kolmogorov-Sinai entropy is running to infinity: No prediction is possible.
Obviously, the randomness of human fate was the challenge of ancient prophets,
priests, and astrologists. In Chap. 7 we have learnt that patterns and relationships
in economics, business, and society sometimes change dramatically. Going beyond
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Fig. 9.1. Aigeas, king of Athens, asking the Oracle at Delphi about his future (Greek bowl:
440–430 B.C.)

the natural sciences, people’s actions, which are observed in the social sciences, can
and do influence future events. A forecast can, therefore, become a self-fulfilling or
self-defeating prophecy that itself changes established patterns or relationships of
the past. Is forecasting nothing more than staring into a crystal ball?

But nearly all our decisions are related to future events and require forecasts
of circumstances surrounding that future environment. This is true for personal de-
cisions, such as when and whom to marry or when and how to invest savings, and
for complex decisions affecting an entire organization, firm, society, or the global
state of the earth. In recent years increased emphasis has been placed on improving
forecasting and decision making in economy and ecology, management and poli-
tics. Economic shocks, ecological catastrophes, political disasters, but also chances
such as new markets, new technological trends, and new social structures, should no
longer be random and fateful events sent by the gods. People want to be prepared
and have thus developed a variety of quantitative forecasting methods for different
situations, e.g., in business and management. From a methodological point of view,
every quantitative forecasting instrument can be characterized by a particular pre-
dictability horizon which limits its reliable application. Let us have a look at the
strengths and weakness of some forecasting instruments.

The most common quantitative methods of forecasting are the time-series pro-
cedures [9.2]. They assume that some pattern in a data series is recurring over time
and can be extrapolated to future periods. Thus, a time-series procedure may be ap-
propriate for forecasting environmental factors such as the level of employment or
the pattern of weekly supermarket sales where individual decisions have little im-
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pact. But time-series methods cannot explain the causes behind the data patterns. In
historical times, the method was used by the Babylonian astronomers who extrap-
olated the data pattern of moonrise into the future without any explanation based
on models of planetary motion. In the 18th century physicists knew little about
the causes of sunspots. But in the observations of sunspots a pattern of frequency
and magnitude was found and predictions were possible by its continuation through
time-series analysis. In business and economics, there are various underlying pat-
terns in data series. A horizontal pattern exists where there is no trend in the data
(e.g., products with stable sales). A seasonal pattern exists when a series fluctu-
ates according to some seasonal factor such as products whose sale depends on the
weather. A cyclic pattern may not repeat itself at constant intervals of time, e.g.,
the price of metals or the gross national product. A trend pattern exists when there
is a general increase or decrease in the value of the variable over time. When an
underlying pattern exists in a data series, that pattern must be distinguished from
randomness by averaging and weighting (“smoothing”) the past data values. Math-
ematically, a linear smoothing method can be used effectively with data that exhibit
a trend pattern. But smoothing methods make no attempt to identify individual com-
ponents of the basic underlying patterns. There may be subpatterns of trend, cycle,
and seasonal factors, which must be separated and decomposed in analyzing the
overall pattern of the data series.

While in time-series procedures some data pattern from the past is merely ex-
trapolated to the future, an explanatory model assumes a relationship between the
(“dependent”) variable y that we want to forecast and another (“independent”) vari-
able x. For example, the dependent variable y is the cost of production per unit, and
the independent variable x determining the cost of production is the number of units
produced. In this case, we can model the relationship in a two-dimensional coor-
dinate system of y and x and draw a straight line that in some sense will give the
best linear approximation of the relationship. Regression analysis uses the method
of least squares in order to minimize the distance between the actual observations
y and the corresponding points ŷ on the straight line of linear approximation. Obvi-
ously, there are many situations in which this is not a valid approach. An example
is the forecast of monthly sales varying nonlinearily according to the seasons of
the year. Furthermore, every manager knows that sales are not influenced by time
alone, but by a variety of other factors such as the gross national product, prices,
competitors, production costs, taxes, etc. The linear interaction of two factors only
is a simplification in economy similar to the two-body problems in the linear and
conservative world of classical physics.

But, of course, a complex model that is more accurate requires a larger amount
of effort, greater expertise and more computational time. In many decision-making
situations more than one variable can be used to explain or forecast a certain depen-
dent variable. An ordinary example is a marketing manager who wants to forecast
corporate sales for the coming year and to better understand the factors that influ-
ence them. Since he has more than one independent variable, his analysis is known
as multiple regression analysis. Nevertheless, the dependent variable he wishes to
forecast is expressed as a linear function of the independent variables. The compu-
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tation of the coefficients in the regression equation is based on the use of a sample
of past observations. Consequently the reliability of forecasts based on that regres-
sion equation depends largely on the specific sample of observations that were used.
Therefore degrees of reliability must be measured by tests of statistical significance.
While multiple regression involves a single equation, econometric models can in-
clude any number of simultaneous multiple regression equations [9.3]. In the case
of linear equations, the mathematical methods of solution are based on linear alge-
bra and linear optimization methods (e.g., simplex method). In spite of their linear-
ity, the econometric models may be highly complicated with many variables which
can only be mastered by computer programs and machines. The solution strategy
of nonlinear programming in economics often decomposes complex problems into
subproblems which can be approximately treated as linear.

An implicit assumption in using these methods is that the model best fitting
the available historical data will also be the best model to predict the future beyond
these data. But this assumption does not hold true for the great majority of real-
world situations. Furthermore, most data series used in economics and business are
short, measurement errors abound, and controlled experimentation is not possible. It
is therefore necessary to understand how various forecasting methods succeed when
changes in the established patterns of the past take place. The predictions are differ-
ent at the various forecasting horizons characterizing each method. Obviously, there
is no unique method that can forecast best for all series and forecasting horizons.
Sometimes there is nothing in the past data to indicate that a change will be forth-
coming. Thus, it may be impossible to anticipate a pattern change without inside
knowledge. Pattern shifts or the “change of paradigms” is an everyday experience
of business people and managers and by no means an extraordinary insight of some
philosophers of science in the tradition of Kuhn et al.

Are there quantitative procedures for determining when a pattern or relationship
in a data series has changed? Such methods indeed exist and use a tracking signal to
identify when changes in the forecasting errors indicate that a nonrandom shift has
occurred. In a quality control chart of, e.g., a production series of cars, the output
of the equipment is sampled periodically. As long as that sample mean is within
the control limits, the equipment is operating correctly. When this is not the case,
the production is stopped and an appropriate action is taken to return it to correct
operation. In general, automatic monitoring of quantitative forecasting methods fol-
lows the concept of a quality control chart. Every time a forecast is made, its error
(i.e., actual minus predicted value) is checked against the upper and lower control
limits. If it is within an acceptable range, the extrapolated pattern has not changed.
If the forecasting error is outside the control limits, there has probably been some
systematic change in the established pattern. Automatic monitoring through track-
ing signals may be appropriate when large numbers of forecasts are involved. But in
the case of one or only a few series, one must still play a waiting game to discover
whether changes in the trends of business data are occurring.

Forecasting the future of technological trends and markets, the profitability of
new products or services, and the associated trends in employment and unemploy-
ment is one of the most difficult, but also most necessary tasks of managers and
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politicians. Their decisions depend on a large number of technological, economic,
competitive, social, and political factors. Since the emergence of commercial com-
puters in the 1950s there has been hope that one might master these complex prob-
lems by increasing computational speed and data memory. Indeed, any quantitative
forecasting method can be programmed to run on a computer. As no single forecast-
ing method is appropriate for all situations, computer-based multiple forecasting
systems have been developed in order to provide a menu of alternative methods for
a manager. An example is the forecasting system SIBYL which is named after the
ancient seer Sibyl. The story goes that Sibyl of Cumae sold the famous Sibylian
books to the Roman king Tarquinius Superbus.

Indeed, SIBYL is a knowledge-based system (cf. Sect. 6.1) for a computerized
package of forecasting methods [9.4]. It provides programs for data preparation and
data handling, screening of available forecasting methods, application of selected
methods, and comparing, selecting, and combining of forecasts. In screening al-
ternative forecasting techniques, the inference component of the knowledge based
system suggests those methods that most closely match the specific situation and
its characteristics based on a broad sample of forecasting applications and decision
rules. The final function of SIBYL is that of testing and comparing which method
provides the best results. The interface of user and system is as friendly and efficient
as possible, in order to suit a forecasting expert as well as a novice. Nevertheless, we
must not forget that SIBYL can only optimize the application of stored forecasting
methods. In principle, the predictability horizon of forecasting methods cannot be
enlarged by the application of computers. Contrary to the learning ability of a hu-
man expert, forecasting systems such as SIBYL are still program-controlled with
the typical limitations of knowledge-based systems.

In general, the computer-based automation of forecasting followed along the
lines of linear thinking. On the other hand, the increasing capability of modern
computers encouraged researches to analyze nonlinear problems. In the mid-1950s
meteorologists preferred statistical methods of forecasting based on the concept of
linear regression. This development was supported by Norbert Wiener’s successful
predicting of stationary random processes. Edward Lorenz was sceptical about the
idea of statistical forecasting and decided to test its validity experimentally against
a nonlinear dynamical model (cf. Sect. 2.4). Weather and climate is an example of
an open system with energy dissipation. The state of such a system is modeled by
a point in a phase space, the behavior of the system by a phase trajectory. After
some transient process a trajectory reaches an attracting set (“attractor”) which may
be a stable singular point of the system (Fig. 2.14a or 3.11c), a periodic oscillation
called a limit cycle (Fig. 3.11d) or a strange attractor (Fig. 2.21). If one wants to
predict the behavior of a system containing a stable singular point or a limit cycle,
one may observe that the divergence of nearby trajectories appears not to be grow-
ing and may even diminish (Fig. 9.2). In this case, a whole class of initial conditions
will be able to reach the steady state and the corresponding systems are predictable.
An example is an ecological system with periodic trajectorties of prey and preda-
tor populations modeled by nonlinear Lotka–Volterra equations. The divergence or
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Fig. 9.2. Predictable system with stable point attractor or limit cycle and convergence of
nearby trajectories [9.5]

convergence of nearby trajectories can be measured numerically by the so-called
Lyapunov exponent:

Let us consider two nearby trajectories x(t) and x′(t) with the initial states x(0) and
x′(0) at time t = 0 and the length d(t) = ∣∣x′(t)− x(t)

∣∣ of the vector d(t). If the trajectories
converge, then d(t) ≈ eΛt and Λ < 0. The quantity Λ is called Lyapunov exponent and
defined as Λ(x(0), d(0)) = lim

t→∞ lim
d(0)→0

[(1/t) ln(d(t)/d(0))]. If it is positive, the Lyapunov

exponent gives the rate of divergence. In Fig. 9.2, the model process x′(t) delivers reliable
predictions of the real process x(t), because the system is assumed to have converging trajec-
tories independent of their initial conditions.

A phase portrait of a nonlinear system may have a number of attractors with dif-
ferent regions (“separatrices”) of approaching trajectories (cf. Fig. 2.10). For fore-
casting the future of the evolving system it is not sufficient to know all possible
attractors and the initial state x(0). What we need to know in addition are the sepa-
ratrices for attraction basins of the different attractors. If the initial state of a system
happens to be far away from the basin of a certain attractor, the final state of the
corresponding attractor cannot be predicted.

In Fig. 2.22a-c, the nonlinear logistic map describes a transition from order to
chaos depending on an increasing control parameter. Figure 2.23a,b illustrates the
corresponding sequence of bifurcations with the chaotic regime occurring beyond
a critical threshold. If the corresponding Lyapunov exponent is positive, the behavior
of the system is chaotic. If it is zero, the system has a tendency to bifurcate. If it is
negative, the system is in a stable state or branch of the bifurcation tree. In this
case the system is predictable. In the other cases the sensitivity to initial conditions
comes into play. It is remarkable that a nonlinear system in the chaotic regime is
nonetheless not completely unpredictable. The white stripes or “windows” in the
grey veil of a chaotic future (Fig. 2.23b) indicate local states of order with negative
Lyapunov exponents. Thus, in a sea of chaos we may find predictable islands of
order. In this case the system is at least predictable for characteristic short intervals
of time.

In general, the degree of predictability is measured by a statistical correlation
between the observed process and the model at the particular time since the start
of the observation. Values close to unity correspond to a satisfactory forecast, while
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small values indicate a discrepancy between observation and prediction. Every fore-
casting model has a certain time of predictable behavior after which the degree
of predictability decreases more or less rapidly to zero. With improvement of the
model the time of predictable behavior may be enlarged to some extent. But the pre-
dictability range depends upon fluctuational parameters. Weak microscopic pertur-
bations of locally unstable chaotic systems can reach a macroscopic scale in a short
time. Thus, local instabilities reduce the improvement of predictable behavior dras-
tically. The predictability horizon of a forecasting system means a finite timespan
of predictable behavior that cannot be surpassed by either improved measuring in-
struments or a refined prediction model. When we remember that the atmosphere
is modeled, following Lorenz, by nonlinear systems with local and global instabili-
ties, we realize the difficulties encountered by meteorologists in obtaining efficient
long- or even medium-term forecasting. The belief in a linear progress of weather
forecasting by increasing computational capacities was an illusion of the 1950s.

As nonlinear models are applied in different fields of research, we gain general
insights into the predictable horizons of oscillatory chemical reactions, fluctuations
of species, populations, fluid turbulence, and economic processes. The emergence
of sunspots, for instance, which was formerly analyzed by statistical methods of
time-series is by no means a random activity. It can be modeled by a nonlinear
chaotic system with several characteristic periods and a strange attractor only al-
lowing bounded forecasts of the variations. In nonlinear models of public opinion
formation, for instance, we may distinguish a predictable stable state before the
public voting (“bifurcation”) when neither of two possible opinions is preferred,
the short interval of bifurcation when tiny unpredictable fluctuations may induce
abrupt changes, and the transition to a stable majority. The situation reminds us of
growing air bubbles in turbulently boiling water: When a bubble has become big
enough, its steady growth on its way upward is predictable. But its origin and early
growth is a question of random fluctuation. Obviously, nonlinear modeling explains
the difficulties of the modern Pythias and Sibyls of demoscopy.

Today, nonlinear forecasting models do not always deliver better and more ef-
ficient predictions than the standard linear procedures. Their main advantage is the
explanation of the actual nonlinear dynamics in real processes, the identification and
improvement of local horizons with short-term predictions. But first of all an appro-
priate dynamical equation governing an observation at time t must be reconstructed,
in order to predict future behavior by solving that equation. Even in the natural sci-
ences, it is still unclear whether appropriate equations for complex fields such as
earthquakes can be derived. We may hope to set up a list in a computer memory
with typical nonlinear equations whose coefficients can be automatically adjusted
for the observed process. Instead, to make an exhaustive search for all possible rel-
evant parameters, a learning strategy may start with a crude model operating over
relatively short times and then specify a smaller number of parameters in a rela-
tively narrow range of values. An improvement of short-term forecasting has been
realized by the learning strategies of neural networks. On the basis of learned data,
neural nets can weight the input data and minimize the forecasting errors of short-
term stock quotations by self-organizing procedures (Fig. 6.14a,b). So long as only
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some stock market advisors use this technical support, they may do well. But if
all agents in a market use the same learning strategy, the forecasting will become
a self-defeating prophecy.

The reason is that human societies are not complex systems of molecules or
ants, but the result of highly intentional acting beings with a greater or lesser amount
of free will [9.6]. A particular kind of self-fulfilling prophecy is the Oedipus effect
in which people like the legendary Greek king try, in vain, to change their future
as forecasted to them. From a macroscopic viewpoint we may, of course, observe
single individuals contributing with their activities to the collective macrostate of so-
ciety representing cultural, political, and economic order (“order parameters”). Yet,
macrostates of a society, of course, do not simply average over its parts. Its order
parameters strongly influence the individuals of the society by orientating (“enslav-
ing”) their activities and by activating or deactivating their attitudes and capabilities.
This kind of feedback is typical for complex dynamical systems. If the control pa-
rameters of the environmental conditions attain certain critical values due to inter-
nal or external interactions, the macrovariables may move into an unstable domain
out of which highly divergent alternative paths are possible. Tiny unpredictable mi-
crofluctuations (e.g., actions of very few influential people, scientific dicoveries,
new technologies) may decide which of the diverging paths in an unstable state of
bifurcation society will follow.

One of the deepest insights into complex systems is the fact that even com-
plete knowledge of microscopic interactions does not guarantee predictions of the
future. In this book, we have learnt that simple rules of physical, genetic, neural, or
social dynamics can generate very complex and even random patterns of material
formation, organic growth, mental recognition, and social behavior. Randomness, in
a practical sense, only means that future formation or behavior cannot be detected
by familiar and well-known patterns or programs. In this case, the computability of
the future is not reducible relative to certain patterns and programs. Randomness,
in principle, implies computational irreducibility: Then, there is no finite method of
predicting how the system will behave except by going through nearly all the steps
of actual development. In the case of randomness, there is no shortcut to evolution.
Mathematical systems like cellular automata (CA) or technical systems like cellular
neural/nonlinear networks (CNN) can achieve exactly the same level of complexity
and randomness of nature and society. Thus, the traditional view of science – that
precise knowledge of laws allows precise forecasting – fails in the case of nonlinear
and random dynamics.

9.2 Complexity, Science, and Technology

Despite the difficulties referred to above, we need reliable support for short-,
medium-, and long-term forecasts of our local and global future. A recent demand
from politics is the modeling of future developments in science and technology
which have become a crucial factor of modern civilization. Actually, this kind of
development seems to be governed by the complex dynamics of scientific ideas and
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research groups which are embedded in the complex network of human society.
Common topics of research groups attract the interest and capacity of researchers
for longer or shorter periods of time. These research “attractors” seem to dominate
the activities of scientists like the attractors and vortices in fluid dynamics. When
states of research become unstable, research groups may split up into subgroups
following particular paths of research which may end with solutions or may bifur-
cate again, and so forth. The dynamics of science seems to be realized by phase
transitions in a bifurcation tree with increasing complexity. Sometimes scientific
problems are well-defined and lead to clear solutions. But there are also “strange”
and “diffuse” states like the strange attractors of chaos theory.

Historically, quantitative inquiries into scientific growth started with statistical
approaches such as Rainoff’s work on “Wave-like fluctuations of creativity in the
development of West-European physics in the 18th and 19th century” (1929). From
a sociological point of view Robert Merton discussed “Changing foci of interest in
the sciences and technology”, while Pitirim Sorokin analyzed the exponential in-
crease of scientific discoveries and technological inventions since the 15th century.
He argued that the importance of an invention or discovery does not depend on
subjective weighting, but on the amount of subsequent scientific work inspired by
the basic innovation. As early as 1912 Alfred Lotka had the idea of describing true
epidemic processes like the spread of malaria and chemical oscillations with the
help of differential equations. Later on, the information scientist William Goffman
applied the epidemic model to the spread of scientific ideas. There is an initial fo-
cus of “infectious ideas” infecting more and more people in quasi-epidemic waves.
Thus, from the viewpoint of epidemiology, the cumulation and concentration in
a scientific field is modeled by so-called Lotka- and Bradford-distributions, starting
with a few articles of some individual authors which are the nuclei of publication
clusters [9.7]. The epidemic model was also applied to the spread of technical in-
novations. In all these examples we find the well-known S-curve of a logistic map
(Fig. 2.22a) with a slow start followed by an exponential increase and then a final
slow growth towards saturation. Obviously a learning process is also described in
the three phases of an S-curve with slow learning success of an individual in the be-
ginning, then a rapid exponential increase and finally a slow final phase approaching
saturation.

The transition from statistical analysis to dynamical models has the great
methodological advantage that incomprehensible phenomena such as strange fluctu-
ations or statistical correlations of scientific activities can be illustrated in computer-
assisted simulation experiments with varying dynamical scenarios. The epidemic
model and Lotka–Volterra equation were only a first attempt to simulate coupled
growth processes of scientific communities. However, essential properties of evo-
lutionary processes like creation of new structural elements (mutation, innovation,
etc.) cannot be reflected. Evolutionary processes in social systems have to be pic-
tured through unstable transitions by which new ideas, research fields, and tech-
nologies (like new products in economic models) replace already existing ones and
thereby change the structure of the scientific system. In a generalization of Eigen’s
equation of prebiotic evolution (cf. Sect. 3.3), the scientific system is described by
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an enumerable set of fields (i.e., subdisciplines of a scientific research field), each
of which is characterized by a number of occupying elements (i.e., scientists work-
ing in the particular subdiscipline). Elementary processes of self-reproduction, de-
cline, exchange, and input from external sources or spontaneous generation have to
be modeled. Each self-replication or death process changes only the occupation of
a single field. For simple linear self-reproduction processes without exchange, the
selection value of a field is given by the difference between the “birth” and “death”
rates of the field. When a new field is first populated, it is its selection value that
decides whether the system is stable or unstable with respect to the innovation. If
its selection value is larger than any other selection value of existing fields, the new
field will outgrow the others, and the system may become unstable. The evolution
of new fields with higher selection values characterizes a simple selection process
according to Darwinian “survival of the fittest”.

But we must not forget that such mathematical models do not imply the reduc-
tion of scientific activities to biological mechanisms. The variables and constants of
the evolution equation do not refer to biochemical quantities and measurements, but
to the statistical tables of scientometrics. Self-reproduction corresponds to young
scientists joining the field of research they want to start working in. Their choice
is influenced by education processes, social needs, individual interest, scientific
schools, etc. Decline means that scientists are active in science for a limited number
of years. The scientists may leave the scientific system for different reasons (e.g.,
age). Field mobility means the process of exchange of scientists between research
fields according to the model of migration. Scientists might prefer the direction of
higher attractiveness of a field expressed by a higher self-reproduction rate. When
processes include exchange between fields with nonlinear growth functions of self-
reproduction and decline, then the calculation of selection values of an innovation is
a rather complicated mathematical task. In general, a new field with higher selection
value is indicated by the instability of the system with respect to a corresponding
perturbation.

Actually, scientific growth is a stochastic process. When, for example, only
a few pioneers are working in the initial phase of a new field, stochastic fluctuations
are typical. The stochastic dynamics of the probable occupation density in the sci-
entific subfields is modeled by a master equation with a transition operator which is
defined by transition probabilities of self-reproduction, decline, and field mobility.
The stochastic model provides the basis for several computer-assisted simulations
of scientific growth processes. The corresponding deterministic curves, as average
over a large number of identical stochastic systems, are considered for trend anal-
ysis, too. As a result, the general S-shaped growth law for scientific communities
in subdisciplines with a delayed initial phase, a rapid growth phase, and a satura-
tion phase has been established in several simulations. In a series of simulations
(Fig. 9.3), a research field was assumed to comprise about 120–160 members. For
five fields, 100 scientists were chosen as initial condition with the saturation domain
near the initial conditions. A sixth field is not yet set up (with the initial condition
of zero members). In a first example, the influence of the self-reproduction process
on the growth curve of the new field was simulated for several cases. With increas-
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Fig. 9.3. Influence of the self-reproduction rate of a new scientific field on the growth curves
of neighboring fields [9.8]

ing self-reproduction rates the new field grows ever more rapidly at the expense of
neighboring fields.

The emergence of a new field may have a tendency to more coexistence or se-
lection. The growth of the initial phase may be more or less rapid or can also be
delayed. A famous example of delayed growth in the history of science is chaos the-
ory itself, which was treated by only very few scientists (e.g., Poincaré) in its initial
phase. Although the mathematical principles of the new field were quite clear, its ex-
ponential growth began only some years ago when computational technology could
handle nonlinear equations. Sometimes an emerging field cannot expand to a real
domain of science, because it has only a weak selection advantage in comparison
with mighty surrounding fields. It is a pity that some technological fields such as al-
ternative energies (e.g., wind, solar) are still in such a poor state, surrounded by the
powerful industries of traditional or nuclear energy. If a new attractive field emerges,
a strong influx of scientists from the surrounding fields can be observed. These peo-
ple are adapting to the style and problem solving pattern of the new field. This kind
of directed field mobility sometimes leads to the phenomena of fashion in science.

It is well-known that the S-shaped nonlinear logistic map gives rise to a variety
of complex dynamical behaviors such as fixed points, oscillations, and deterministic
chaos, if the appropriate control parameters increase beyond certain critical values
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(Fig. 2.22). Obviously, both the stochastic and the deterministic models reflect some
typical properties of scientific growth. Such effects are structural differentiation,
deletion, creation, extension of new fields with delay, disappearance, rapid growth,
overshooting fashions, and regression. The computer-assisted graphic simulations
of these dynamical effects allow characterization by appropriate order parameters
which are testable on the basis of scientometric data. Possible scenarios under vary-
ing conditions can be simulated, in order to predict the landmarks and the scope of
future developments.

But so far, the evolution of scientific research fields has been considered in
the model only in terms of changes of the scientific manpower in the selected
fields. A more adequate representation of scientific growth must take account of
the problem-solving processes of scientific endeavors. But it is a difficult method-
ological problem to find an adequate state space representing the development of
problem solving in a scientific field. In the mathematical theory of biological evolu-
tion, the species can be represented by points in a high-dimensional space of biolog-
ical characters (Fig. 3.4). The evolution of a species corresponds to the movement
of a point through the phenotypic character space. Analogously, in the science sys-
tem, a high-dimensional character space of scientific problems has to be established.
Configurations of scientific articles which are analyzed by the technique of multidi-
mensional scaling in co-citation clusters can be represented by points in a space of
two or three dimensions. Sometimes research problems are indicated by sequences
of keywords (“macro-terms”) which are registered according to the frequency of
their occurrence or co-occurrence in a scientific text.

In a continuous evolution model each point of the problem space is described
by a vector corresponding to a research problem (Fig. 9.4a). The problem space
consists of all scientific problems of a scientific field, of which some are perhaps
still unknown and not under investigation. This space is metric, because the dis-
tance between two points corresponds to the degree of thematic connection between
the problems represented. The scientists working on problem q at time t distribute
themselves over the problem space with the density x(q, t). In the continuous model
x(q, t) dq means the number of scientists working at time t in the “problem element”
dq (Fig. 9.4b).

Thus the research fields may correspond to more or less closely connected point
clouds in the problem space. Single points between these areas of greater density
correspond to scientists working on isolated research problems which may repre-
sent possible nuclei of new research fields. History of science shows that it may
take decades before a cluster of research problems grows up into a research field.
In the continuous model, field mobility processes are reflected by density change:
If a scientist changes from problem q to problem q′, then the density x(q, t) will
get smaller and x(q′, t) will increase. The movement of scientists in the problem
space is modeled by a certain reproduction–transport equation. A function a(q) ex-
presses the rate at which the number of scientists in field q is growing through
self-reproduction and decline. Thus, it is a function with many maxima and minima
over the problem space, expressing the increasing or decreasing attractiveness of the
problems in a scientific field. In analogy to physical potentials (e.g., Fig. 4.10), one
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Fig. 9.4a,b. A two-dimensional problem space (a) with research fields (r) as clouds of related
problems, possible nuclei (n) of new research fields, and a potential landscape (b) of research
activities x(q, t) in problem q = (q1, q2) of the problem space at time t [9.9]

may interpret a(q) as a potential landscape of attractiveness with hills and valleys,
representing the attractors and deadlocked areas of a research field (Fig. 9.4b).

Dynamical models of the growth of knowledge become testable by scientomet-
rics. Thus, they may open a bridge between philosophy of science with its concep-
tual ideas of scientific growth and history of science with its evaluation of scientific
documents. In cognitive scientometrics an attempt has recently been made to quan-
tify the concept of research problems and to represent them in appropriate problem
spaces by bibliometric, cognitive, and social characteristics. The simplified schemes
of the history of science which have been suggested by Popper, Kuhn, and others,
could perhaps be replaced by testable hypotheses. Kuhn’s discontinuous sequence
with phases of “normal” and “revolutionary” science is obviously not able to tackle
the growth of knowledge. On the other hand, the naive belief of some historians that
the growth of science is a continuous cumulation of eternal truths is not appropriate
to the complex dynamics of research in any way. Even Popper’s sophisticated late
philosophy that science does not grow through a monotonic increase of the num-
ber of indubitably established laws but through learning strategies of hypotheses
and criticism needs more precision and clarification with reference to the changing
historical standards of methodology, institutionalization, and organization. The in-
creasing computational capacities of modern computers enable a new quantitative
approach with simulation experiments in social sciences. The great advantage of dy-
namical models is their computer-assisted graphic illustration of several scenarios
with varying parameters. These scenarios may confirm, restrict, or refute the chosen
model. Last but not least, we need reliable support for decisions in science policy.
Different scenarios of future developments may help us to decide where to invest
our limited resources of research budget and how to realize desirable future states
of society.
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Thus nonlinear modeling and computer-assisted simulation may enable us to
derive multiple futures, but provides no algorithm to decide between them. Nor-
mative goals must be involved in order to realize desirable future states of society.
Since the 1960s the reports of the Club of Rome have tried to initiate international
debates about the goals and alternative futures of mankind, supported by quantitative
long-term forecasts. In Sect. 7.2, we saw the limitations of quantitative long-term
forecasting in a nonlinear world. Consequently, scientific ideas and technological
innovations cannot be forced into being by political decisions. But they must no
longer be fateful random events which may or may not happen. We need instru-
ments to evaluate desirable goals and their chance of realization.

A nonquantitative approach is the so-called Delphi method, used to prepare de-
cisions and forecasts of scientific and technological trends by a panel of experts. The
name “Delphi” is a reference to the legendary Pythia (Fig. 9.1) who was said to pre-
pare her prophecies by gathering information about her clients. The Delphi method
of today uses the estimates of scientific experts. The individual experts are kept apart
so that their judgement is not influenced by social pressure or group behavior. The
experts were asked in a letter to name and to weight inventions and scientific break-
throughs that are possible and/or desirable in a certain period of time. Sometimes
they are not only asked for the probability of each development: Additionally, they
are asked to estimate the probability that the occurrence of any one of the potential
developments will influence the likelihood of occurrence of each of the others. Thus
one gets a correlated network of future developments which can be represented by
a matrix of subjective conditional probabilities. In the next phase the experts are
informed about the items with general consensus. When they are asked to state the
reasons for their disagreement with the majority, several of the experts re-evaluate
their time estimates, and a narrower range for each breakthrough may be arranged.

The Delphi method, of course, cannot deliver a single answer. But the spread
of expert opinions gathers considerable information about potential major break-
throughs. The average deviations from the majority should be narrowed down with-
out pressuring the experts with extreme responses. But the Delphi method therefore
cannot predict the unexpected. Sometimes the Delphi method is supported by the
relevance-tree method, in order to select the best actions from alternatives by con-
structing decision trees. The relevance-tree method uses the ideas of decision theory
to assess the desirability of a certain future and to select those areas of science and
technology whose development is necessary for the achievment of those goals.

Obviously there is no single method of forecasting and deciding in a complex
nonlinear world. We need an integrative (“hybrid”) network of quantitative and qual-
itative methods. Finally, we need ethical landmarks to guide us in applying these
instruments and in mastering the future.

9.3 Complexity, Responsibility, and Freedom

In recent years, ethics has become a major topic attracting increasing interest from
a wide variety of professionals including engineers, physicians, scientists, managers,
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and politicians. The reasons for this interest are the growing problems with the
environment, the economy, and modern technologies, questions of responsibility,
increasing alarm, and decreasing acceptance of critical consequences in a highly
industrialized world. But we must be aware that our standards of ethical behavior
have not fallen to Earth from Heaven and have not been revealed by some mysteri-
ous higher authority. They have changed and they will continue to change, because
they are involved in the evolution of our sociocultural world.

In modeling human society we must not forget the highly nonlinear selfrefer-
entiality of a complex system with intentionally acting beings. There is a particular
measurement problem in social sciences arising from the fact that scientists ob-
serving and recording behavior of society are themselves members of the social
system they observe. Well-known examples are the effects of demoscopic opinion-
polling during political elections. Furthermore, theoretical models of society may
have a normative function influencing the future behavior of its agents. A well-
known example was the social Darwinism of the 19th century which tried to explain
the social development of mankind as a linear continuation of biological evolution.
Actually, that social theory initiated a brutal ideology legitimating the ruthless se-
lection of the social, economic, and racial victors of history. Today, it is sometimes
fashionable to legitimate political ideas of basic democracy and ecological econ-
omy by biological models of self-organization [9.10]. But nature is neither good nor
bad, neither peaceful nor militant. These are human evaluations. Biological strate-
gies over millions of years have operated at the expense of myriads of populations
and species with gene defects, cancer, etc., and have, from a human point of view,
perpetrated many other cruelties. They cannot deliver the ethical standards for our
political, economic, and social developments.

In this book we have seen that the historical models of life, mind, and society
often depend on historical concepts of nature and historical standards of technology.
Especially the linear and mechanistic view of causality was a dominant paradigm
in the history of natural, social, and technical sciences. It also influenced ethical
norms and values which cannot be understood without the epistemic concepts of the
historical epochs in which they arose. The historical interdependence of epistemol-
ogy and ethics does not mean any kind of relativism or naturalism. As in the case
of scientific theories and hypotheses we have to distinguish their context of histor-
ical and psychological invention and discovery from their context of justification
and validity. Even human rights have a historical development with changing mean-
ings [9.11]. Hegel once mentioned that the history of mankind can be understood as
a “development to freedom”. Thus, before we discuss possible ethical consequences
in a complex, nonlinear, and random world, we should take a short glance at the his-
torical development of ethical standards.

Ethics is a discipline of philosophy like logic, epistemology, philosophy of sci-
ence, language, law, religion, and so on [9.12]. Historically, the word “ethics” stems
back to the Greek word ’̃ηϑoς , which means custom and practice. Originally, ethics
was understood as a doctrine of moral customs and institutions teaching people how
to live. The central problem of ethics has become that of finding a good moral code
with advice on how to live well, how to act justly, and how to decide rationally. Some
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essential concepts of ethics were already discussed in Greek philosophy following
Socrates. His student Plato generalized the Socratic quest for a good life to the uni-
versal idea of the greatest good, which is eternal and independent of the historical
life behind the transistory and continously changing world of matter [9.13].

Aristotle criticized his teacher’s doctrine of eternal values as ignorant of real
human life. For Aristotle the validity of the good, the just, and the rational is re-
ferred to the political society (polis), the family, and the interaction of single per-
sons [9.14]. Justice in the polis is realized by the proportionality or the equilibrium
of natural interest of free men. The greatest good of man is happiness, which is re-
alized by a successful life according to the natural customs and practice in the polis
and the family. Obviously, Aristotle’s concept of ethics corresponds to his organic
view of a nature filled with growing and maturing organisms like plants, animals,
and humans.

After the dissolution of the Greek polis, ethics needed a new framework of stan-
dards. In Epicurean ethics, the internal equality of individual life, action, and feeling
was emphasized, while the ethics of the Stoics underlined the external equality of
all people achieved by nature. In the Christian Middle Ages a hierarchy of eternal
values was guaranteed by the divine order of the world. At the beginning of modern
times the theological framework as a universally accepted foundation of ethics was
ripe for dissolution.

Descartes not only suggested a mechanistic model of nature but also demanded
a moral system founded upon scientific reason. Baruch Spinoza derived an axiom-
atized system of rationalist morality corresponding to the deterministic and mech-
anistic model of nature. As the laws of nature are believed to be identical with the
laws of rationality, human freedom only could mean acting according to determinis-
tic laws which were recognized as rational. The greatest good meant the dominance
of rationality over the affects of the material human body. Hobbes defended a mech-
anistic view of nature and society, but he doubted human rationality. Political laws
and customs can only be guaranteed by the centralized power of “Leviathan”. The
greatest good is peace as a fixed and final equilibrium in an absolutist state.

The liberal society of Locke, Hume, and Smith was understood by analogy
with Newton’s model of separable forces and interacting celestial bodies. In the
American and French revolutions, individual freedom was proclaimed as a natural
right [9.15]. But how to justify individual freedom in a mechanistic world with
deterministic causality? Every natural event is the effect of a linear chain of causes
which in principle can be derived by mechanistic equations of motion. Only humans
are assumed to be capable of spontaneous and free decisions initiating causal chains
of actions without being influenced by outer circumstances. Kant called this human
feature the “causality of freedom”.

As nobody’s opinions and desires are privileged, only advice which is accept-
able for everybody is justified as reasonable. In the words of Kant, only those gen-
erally accepted “maxims” can be justified as universal moral laws. This formal prin-
ciple of moral universality is Kant’s famous categorical imperative of reason: we
should act according to imperatives which can be justified as general laws of moral-
ity. The freedom of a person is limited by the freedom of his or her neighbor. In
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another famous formulation, Kant said that humans as free beings should not be mis-
used as instruments for the interests of other humans. Thus, besides the mechanistic
world of nature, which is ruled by deterministic laws, there is the internal world
of reason with the laws of freedom and morality. Kant’s ethic of freedom has been
incorporated in the formal principles of every modern constitutional state [9.16].

But how can the laws of freedom be realized in the real world of politics
and economics? During the initial process of industrialization the ethics of Anglo-
American utilitarianism (due to Bentham and Mill) required an estimation of per-
sonal happiness. The happiness of the majority of people was declared to be the
greatest good of ethics. While Kant suggested a formal principle of individual free-
dom, the utilitarian principle of happiness can be interpreted as its material comple-
tion. It was explicitly demanded as a natural human right in the American constitu-
tion. The utilitarian philosophers and economists defined the demand for happiness
as an utility function that must be optimized with as few costs as possible in order
to realize the greatest welfare for the majority of people. The principles of utilitari-
anism have become the ethical framework of welfare economics [9.17].

Modern philosophers like John Rawls have argued that the utilitarian princi-
ple in combination with Kant’s demand for ethical universality can help to realize
the demand for a just distribution of goods in modern welfare politics [9.18]. From
a methodological point of view, the ethical, political, and economic model of utilitar-
ianism corresponds to a self-organizing complex system with a single fixed point of
equilibrium which is realized by an optimization of the utility function of a society
and which is connected with a just distribution of goods to the majority of people.

Obviously, Kant’s ethics as well as Anglo-American utilitarianism are norma-
tive demands to judge our actions. They may be accepted or not by individuals.
Hegel argued that the subjective ethical standards of individuals were products of
objective historical processes in history which were realized by the institutions of
a society. Thus, he distinguished between the subjective morality and subjective rea-
son of individuals and the objective morality and objective reason of institutions in
a society. Historically, Hegel’s foundation of ethics in the actual customs and moral-
ity of a civil society reminds the reader of Aristotle’s realistic ethics of the Greek
polis. But Aristotle’s order of society was static, while Hegel assumed a historical
evolution of states and their institutions.

From a methodological point of view, it is remarkable that Hegel already dis-
tinguished between the micro-level of individuals and a macro-level of societies
and their institutions which is not only the sum of their citizens. Furthermore, he
described an evolution of society which is not determined by the intentions and
the subjective reason of single individuals, but by the self-organizing process of
a collective reason. Nevertheless, Hegel believed in a rather simplified model of
evolution with sequential states of equilibrium leading to a final fixed point which
is realized by the attractor of a just civil society. Actual history after Hegel showed
that his belief in the rational forces of history driving human society to a final state
of justice by self-organization was a dangerous illusion. It is well known that his
model was modified and misused by totalitarian politicians of the political right and
left.
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Friedrich Nietzsche attacted the belief in objective reason as well as in eternal
ethical values as idealistic ideologies which were contrary to the real forces of life.
Nietzsche’s philosophy of life was influenced by Darwin’s biology of evolution,
which had become a popular philosophy in the late 19th century. Although Niet-
zsche had criticized nationalism and racism in his writings, his glorification of life
and the victors in the struggle of life was terribly misused in the politics of the 20th

century. Nevertheless, he is another example to show that concepts from the natural
sciences have influenced political and ethical ideas [9.19].

Nietzsche’s nihilism and his critique of modern civilization were continued by
Martin Heidegger in our century. In Heidegger’s view, the technical evolution of
mankind is an automatism without orientation which has forgotten the essential
foundation of man and humanity. A philosopher like Heidegger cannot and will not
change or influence this evolution. He only has the freedom to bear this fate with
composure. But in what way is Heidegger’s attitude against technology and civi-
lization more than resignation, fatalism, and an escape into an idyllic utopia without
technology which has never existed in history? It seems to be the extreme counter-
position to the Laplacean belief in an omnipotent planning and controlling capacity
in nature and society [9.20].

What are the ethical consequences of the complex system approach which has
been discussed in this book? First, we must be aware that the theory of complex
systems is not a metaphysical process ontology. It is not an epistemic doctrine in the
traditional sense of philosophy. The principles of this methodology deliver a heuris-
tic scheme for constructing models of nonlinear complex systems in the natural and
social sciences. If these models can be mathematized and their properties quanti-
fied, then we get empirical models which may or may not fit the data. Moreover,
it tries to use a minimum of hypotheses in the sense of Ockham’s razor. Thus it
is a mathematical, empirical, testable, and heuristically economical methodology.
Furthermore, it is an interdisplinary research program in which several natural and
social sciences are engaged. However, it is not an ethical doctrine in the traditional
sense of philosophy.

Nevertheless, our models of complex, nonlinear, and random processes in na-
ture and society have important consequences for our behavior. In general, linear
thinking may be dangerous in a nonlinear complex reality. We have seen that tradi-
tional concepts of freedom were based on linear models of behavior. In this frame-
work every event is the effect of a well defined initial cause. Thus, if we assume
a linear model of behavior, the responsibility for an event or effect seems to be
uniquely decidable. But what about the global ecological damage which is caused
by the local nonlinear interactions of billions of self-interested people? Recall, as
one example, the demand for a well balanced complex system of ecology and eco-
nomics. As ecological chaos can be global and uncontrollable, some philosophers
like Hans Jonas have proposed that we stop any activity which could perhaps have
some unknown consequences [9.21]. But we can never forecast all developments of
a complex system in the long run. Must we therefore retire into a Heidegger-like
attitude of resignation? The problem is that doing nothing does not necessarily sta-
bilize the equilibrium of a complex system and can drive it to another metastable
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state. In chaotic situations, short-term forecasting is possible in complex systems,
and attempts are being made to improve it in economics, for instance. But in the case
of randomness and information noise, any kind of forecasting fails, eventhough we
may be completely informed about the local rules of interaction in a complex sys-
tem.

In a linear model, the extent of an effect is believed to be similar to the extent
of its cause. Thus, a legal punishment of a punishable action can be proportional to
the degree of damage effected. But what about the butterfly effect of tiny fluctua-
tions which are initiated by some persons, groups, or firms, and which may result in
a global crisis in politics and economics? For instance, consider the responsibility
of managers and politicians whose failure can cause the misery of thousands or mil-
lions of people [9.22]. But what about responsibility in the case of random events?
Information noise in the Internet, for example, must be prevented beforehand. If
random happens, it is too late.

As the ecological, economic, and political problems of mankind have become
global, complex, nonlinear, and random, the traditional concept of individual re-
sponsibility is questionable. We need new models of collective behavior depending
on the different degrees of our individual faculties and insights. Individual freedom
of decision is not abolished, but restricted by collective effects of complex sys-
tems in nature and society which cannot be forecast or controlled in the long run.
Thus, it is not enough to have good individual intentions. We have to consider their
nonlinear effects. Global dynamical phase portraits deliver possible scenarios un-
der certain circumstances. They may help to achieve the appropriate conditions for
fostering desired developments and preventing evil ones.

The dynamics of globalization is surely the most important political challenge
of complexity for the future of mankind. After the fall of the Berlin wall, politi-
cians believed in the linear assumption that coupling the dynamics of free markets
and democracy would automatically lead to a community of modernized, peace-
loving nations with civic-minded citizens and consumers. This was a terrible error in
a complex world! From our point of view, complexity is driven by multi-component
dynamics. Politicians and economists forgot that there are also ethnic and religious,
psychological and social forces which can dominate the whole dynamics of a nation
at a critical point of instability. As we all know from complex dynamical systems,
we must not forget the initial and secondary conditions of dynamics. Instability
emerges if free markets and elections are implemented under conditions of under-
development.

Recent studies [9.23] demonstrate that in many countries of Southeast Asia,
South America, Africa, Southeast Europe, and the Middle East the coupling of
laissez-faire economics and electoral freedom did not automatically lead to more
justice, welfare, and peace, but tipped the balance in these regions toward disinte-
gration and strife. One reason is that these countries mainly have no broad majority
of well educated people. Thus, minorities of clever ethnic groups, tribes, and clans
come to power and dominate the dynamics of markets and politics. In the terminol-
ogy of complex dynamics, they are the order parameters dominating (“enslaving”)
the whole dynamics of a nation. Again, the good intentions of democracy and free
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markets are not sufficient. We must consider the local conditions of countries and
regions.

In classical philosophy, the transition from an intended development to a de-
velopment contrary to the spirit of the philosophy has become famous as a con-
tradiction of dialectics (e.g., Hegel). Good intentions may lead to bad effects. But
sometimes human agents are driven by history to good effects without their subjec-
tive intentions. Hegel called it a “stratagem of reason” (List der Vernunft). Actually,
it is a well-known effect of nonlinear dynamics. Therefore, market-dominant mi-
norities are not a priori evil. Minorities are also the driving forces of activity. If they
are open-minded and flexible, they prevent narrow-minded “enslaving” which may
be successful only for a short time. In their own interest, they must try to stabilize
the whole system in the long run. Therefore they should help dampening the social
effects of free markets, bridging social cleavages, and transcending class division
during a phase transition to democracy and welfare for the majority of the people.
But these phase transitions may be different from region to region in the world. Re-
sponsible decisions require sensativity to local conditions in light of the butterfly
effect.

There are not only local minorities in regions and countries. During the process
of globalization, a minority of nations, institutions, and companies can come to
power and dominate the whole dynamics of global economics and politics. Recent
discussions on globalization show that a lot of people are not happy with the results
of globalization. But it is necessary to understand that globalization means nothing
more than the gobal dynamics of political and economic systems in the world. So,
in a first run, it is neither good nor evil like the dynamics of weather. But contrary to
weather, the dynamics of globalization is generated by the interactions of humans
and their institutions. Thus, there will be a chance to influence globalization if we
take into account the dynamical laws of complexity and nonlinearity.

It is a hard fact that the order parameters of globalization have been defined by
a minority of nations. They are the world’s preeminent political, economic, military,
and technological powers whether we like it or not. Philosophers, mathematicians,
and systems scientists have no power. But, again, we should use Hegel’s “stratagem
of reason”: Minorities are also the centers of driving power which enables chances
for change. Concepts and ideas without political power have no chance. If the dom-
inating minorities of globilization are open-minded and flexible, they will prevent
narrow-minded “enslaving” which may be successful only for a short time. In their
own interest, they must try to stabilize the whole system in the long run. Therefore
they should help dampening the social effects of global free markets, bridging so-
cial cleavages, and transcending class division during a phase transition to global
democracy and welfare for the majority of the people.

Globalization means the critical phase transion to global governance in the
world. We need new global structures to manage the political, economic, military,
and technological power in the world according to the interests of the majority of
people on earth. Global structures emerge from the nonlinear interactions of peoples,
nations, and systems. At the end of the 18th century, Kant already demanded a law
of nations leading “To Eternal Peace” (1795) [9.24]. After the 1st World War, pres-
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ident Wilson of the United States strongly influenced the foundation of the League
of Nations. After the 2nd World War, the United Nations (UN) presented a new
chance to handle international conflicts, but they often fail because of their lack of
power. The dilemma of international law is that law needs power to enforce rights
and ethical norms. Therefore nations have to give up parts of their sovereignty, in
order to be dominated by commonly accepted “order parameters”. After Septem-
ber 11 2001, a global network of terrorism threatens the preeminent political and
economic nations of the world. This is the reason why especially the United States,
which historically helped found the League of Nations as well as the Unitied Na-
tions, now hesitates to restrict its national sovereignty and prefers to organize its
own national security through global military defense.

Clearly it is a long way to global governance among autonomous nations.
On the other hand, we must not forget the practical progress made by new so-
cial and humanitarian institutions of the UN. New economic, technological, and
cultural networks of cooperation emerge and let people grow slowly together in
spite of reactions and frictions in political reality. On the way to “eternal peace”,
Kant described a federal (multi-component) community of autonomous nations self-
organizing their political, economic, and cultural affairs without military conflicts.
But an eminent working condition of his model is the demand that states organize
their internal affairs according to the civil laws of freedom. It is a hard fact of histor-
ical experience that civic-mindedness and humanization have sometimes not only
be defended, but also enforced by military power. As long as the demand for civil
laws of freedom is not internationally fulfilled, the organization of military power is
an urgent challenge to globalization.

Globalization and international cooperation is accelerated by the growth of
global information and computational networks like the internet and wireless mobile
communication systems. On the other hand, the electronic vision of a global village
implies a severe threat to personal freedom. If information about citizens can eas-
ily be gained and evaluated in large communication networks, then the danger of
misuse by interested institutions must to be taken in earnest. As in the traditional
economy of goods, there may arise information monopolies acting as dominating
minorities prejudicing other people, classes, and countries. For instance, consider
the former “Third World” or the “South” with its less developed systems for infor-
mation services which would have no fair chance against the “North” in a global
communication village.

Our physicians and psychologists must learn to consider humans as complex
nonlinear entities of mind and body. Linear thinking may fail to yield a successful
diagnosis. Local, isolated, and “linear” therapies of medical treatment may cause
negative synergetic effects. Thus, it is noteworthy that mathematical modeling of
complex medical and psychological situations advises high sensitivity and cautious-
ness, in order to heal and help ill people. The complex system approach cannot ex-
plain to us what life is. But it can show us how complex and sensitive life is. Thus,
it can help us to become aware of the value of our life.

But what about the value of our life if it is computable? One of the most es-
sential insights of this book is that the dynamics of nature and society are not only
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characterized by nonlinearity and chaos, but by randomness, too. Only in random-
ness can human free will have a real chance [9.25]. In the completely deterministic
and computational world of a mechanical nature, Kant had to postulate a transcen-
dental world in order to make free will, ethical duties, and responsibility possible.
In random states of nature and society, the behavior of a system is not determined in
any way. Random dynamics can be generated even if all rules of interaction of the
elements in a dynamical system are known. In this case, the dynamics of a system
correspond to irreducible computation, which means that there is no chance of fore-
casting. The only way to learn anything about the future of the system is to perform
the dynamics. The macrobehavior of a brain, for example, could correspond to an
irreducible computation, although we know all the rules of synaptic interactions. In
this case, there is no shortcut or finite program for our life. We have to live our life
in order to experience it. It is amazing that human free will seems to be supported
just by the mathematical theory of computability.

Obviously, the theory of complex systems has consequences for the ethics of
politics, economics, ecology, medicine, and biological, computational, and informa-
tion sciences. These ethical consequences strongly depend on our knowledge about
complex nonlinear dynamics in nature and society, but they are not derived from the
principles of complex systems. Thus, we do not defend any kind of ethical natural-
ism or reductionism. Dynamical models of urban developments, global ecologies,
human organs, or information networks only deliver possible scenarios with dif-
ferent attractors. It is a question for us to evaluate which attractor we should prefer
ethically and help to realize by achievement of the appropriate conditions. Immanuel
Kant summarized the problems of philosophy in the three famous questions [9.26]:

The first question concerns epistemology with the possibilities and limitations
of our recognition. The theory of complex systems explains what we can know and
what we cannot know about nonlinear dynamics in nature and society. In general, the
question invites a demand for scientific research, in order to improve our knowledge
about complexity and evolution.

The second question concerns ethics and the evaluation of our actions. In gen-
eral, it invites a demand for sensitivity in dealing with highly sensitive complex
systems in nature and society. We should neither overact nor retire, because over-
action as well as retirement can push the system from one chaotic state to another.
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We should be both cautious and courageous, according to the conditions of nonlin-
earity and complexity in evolution. In politics we should be aware that any kind of
mono-causality may lead to dogmatism, intolerance, and fanaticism.

Kant’s last question “What may we hope?” concerns the Greatest Good, which
has traditionally been discussed as summum bonum in the philosophy of religion. At
first glance, it seems to be beyond the theory of complex systems, which only allows
us to derive global scenarios in the long run and short-term forecasts under particular
conditions. But when we consider the long sociocultural evolution of mankind, the
greatest good that people have struggled for has been the dignity of their personal
life. This does not depend on individual abilities, the degree of intelligence, or social
advantages acquired by the contingencies of birth. It has been a free act of human
self-determination in a stream of nonlinearity and randomness in history. We have
to project the Greatest Good on an ongoing evolution of increasing complexity.
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