
6000 Broken Sound Parkway, NW 
Suite 300, Boca Raton, FL 33487
711 Third Avenue 
New York, NY 10017
2 Park Square, Milton Park 
Abingdon, Oxon OX14 4RN, UK

an informa business

K18998

Computer GraphiCs 
with Control enGineerinG

Computer GraphiCs 
with Control enGineerinG

C
o

m
p

u
t

e
r

 G
r

a
p

h
iC

s
 w

ith
 C

o
n

t
r

o
l

 e
n

G
in

e
e

r
in

G

Gabriyel Wong
Jianliang Wang

Gabriyel Wong
Jianliang Wang

Wong
Wang

Real-Time 
RendeRing

Real-Time 
RendeRing

R
e

a
l

-T
im

e
 R

e
n

d
e

R
in

g

Consumers today expect extremely realistic imagery generated in real time for 
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with 
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality? 
Real-Time Rendering: Computer Graphics with Control Engineering presents a 
novel framework for solving the perennial challenge of resource allocation and the 
trade-off between quality and speed in interactive computer graphics rendering. 

Conventional approaches, mainly based on heuristics and algorithms, are largely 
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on 
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics 
• Proposes a data-driven modelling approach that more accurately represents 

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using 

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools 

and source code

This pioneering work takes a major step forward by applying control theory in the 
context of a computer graphics system. Promoting cross-disciplinary research, 
it offers guidance for anyone who wants to develop more advanced solutions for 
real-time computer graphics rendering.

Computer Science and Engineering
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Preface
Interactive computer graphics is a mature field of study. In fewer than 15 years, 
the improvements in speed and realism of computer-generated graphics from even 
consumer grade computers have been phenomenal. There is no lack of evidence to 
substantiate this statement as we observe the ever-increasing number of cutting-edge 
interactive applications such as computer games, virtual prototyping, and visualisa-
tion software. However, real-time computer graphics applications are often oriented 
toward meeting a particular set of goals without consideration of some form of global 
optimisation. A number of years ago, through real-life encounters in large-scale 
system implementation, the idea of convoluting computer graphics rendering with 
control theory was born.

From a larger perspective, computer graphics rendering is akin to any other pro-
cess that runs on a computer. In recent years, researchers found that the increasing 
inclination to employ control engineering techniques in computer-related processes 
is not so much a matter of computer control (using a computer as a controller) as 
controlling the processes within a computer. Examples of such implementation are 
discussed in the vast array of research literature about server performance, network 
traffic control, and adaptive software with defined quality-of-service metrics. We 
believe the trend is no coincidence; it represents wide acceptance of benefits from 
integrating control theory with computer processes.

Our motivation for this work is simple. First, we want to provide a fundamen-
tal analysis of interactive computer graphics rendering from a systems perspec-
tive. Second, we want to establish a framework that facilitates interactive computer 
graphics rendering in an environment providing optimal utilisation of resources and 
good responses to rendering load changes. These goals can be accomplished through 
the adoption of digital signal processing, system identification and control engineer-
ing techniques that we believe will draw the interest of researchers and practitioners 
in the computer graphics-related fields.

While classical control demands meticulous evaluation of numerous criteria, the 
goals of our control system described in this book focus on tracking user-defined 
performance objectives while providing good transient responses so that changes 
arising from rendering load control will not lead to abrupt changes in visual displays. 
Furthermore, unlike physical systems utilised in aircraft, motors, and chemical mix-
ers in which a failure of a control mechanism may lead to a catastrophic outcome, 
interactive computer graphics rendering is generally fail-safe.

In the course of this work, the computer graphics rendering process is modelled 
from a data-driven and black-box approach. We have shown the possibilities of vari-
ous input–output configurations in a system model setting. While some may argue that 
the rendering process is too complex to be modelled by a few variables, we hope the 
reader can appreciate that the modelling technique in this book is in fact not congruent 
to this argument, but rather a systematic approach because the derived system models 
are substantiated with measured data.



xxii Preface

Finally, it is our sincere hope that this work can further stimulate cross-disciplinary 
research and provide a premise upon which more interesting modelling and control 
techniques for real-time computer graphics may be developed.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Summary
The value of interactive computer graphics is underscored by myriad applications in 
many domains of our lives. Consumers today can expect extremely realistic imag-
ery generated in real time from commodity graphics hardware in applications such 
as virtual prototyping, computer games, and scientific visualisation. However, the 
constant and increasing demands for fidelity coupled with hardware architecture 
advancement pose many challenges to researchers and developers as they endeavour to 
find optimal solutions to accommodate speed of rendering and quality in interactive 
applications with real-time computer graphics rendering. The qualitative requirement 
of such applications, apart from the subjective perception of the displayed imagery, 
is the response time of a system based on user input. In other words, the requirement 
translates to the speed at which the machine can produce a rendered image according 
to the input provided by the person in the loop of the feedback system.

Earlier research attempted to address the frame latency problem by providing 
mathematical models of the rendering process. The models were often primitive 
because they were derived from coarse approximation or depended on specific 
application level data structures. Most approaches are based on heuristics and algo-
rithms and are largely dependent on a specific type of application corresponding to 
the research. A major shortcoming of such techniques lies in the non-guarantee of 
performance.

From a systems perspective, the rendering process is modelled from an open-loop 
approach underpinned by constraints and estimations of the constituents of the render-
ing process. As a result, the output often fluctuates within an acceptable performance 
range. Furthermore, many such techniques rely on specific hardware or they may 
require unfriendly implementation on current computer graphics hardware. The advent 
of more sophisticated consumer graphics hardware in recent years has caused the 
rendering pipeline to be used in a far more complex manner to achieve ultra-realistic 
visual effects. Consequently, adapting models into applications becomes progres-
sively more challenging as hardware and software technologies continue to evolve.

We can see from this background the exciting opportunities for the introduction 
of modelling and control principles into existing computer graphics systems. Our 
research focused on a systematic approach to realising a framework for modelling 
and control of real-time computer rendering in two stages:

	 1.	 Investigation, analysis, and implementation of a data-driven system identi-
fication process for real time rendering

	 2.	Structured analysis of the derived model for the selection and design of a 
suitable control strategy

The first part of this book focuses on the modelling aspects of real-time render-
ing. Based on the dynamic natures of the possible and myriad variations of render 
states, polygon streams, and the non-linearity of the rendering process, we propose 
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a data-driven modelling approach that accurately represents the system behaviour 
of this process from two angles: (1) the larger operating range where non-linearity 
exists and (2) the piecewise linear operating range. We propose two techniques for 
tackling the modelling challenge: (1) using a feed-forward time delay neural network 
derived from experimental data and (2) fuzzy modelling.

We demonstrate that both techniques can yield very accurate results in compari-
son with actual measured data. In addition, we compare the estimated outputs of our 
models with other mathematical estimation methods to show that the models derived 
from our approach yield better results than mathematical estimations. Starting with 
single-input–single-output (SISO) system models, we extend our work to investigate 
the validity of multiple-input–single output (MISO) systems as well.

The second part of this book focuses on the design of a control strategy based on 
the process nature investigated in the earlier chapters. The benefits of applying control 
theory in the context of a computer graphics system are explained and the relative 
advantages of the theory over the performances of existing heuristics and algorithms 
(open-loop estimations of rendering) are highlighted.

Our research proposed two controller designs to achieve stable output with accu-
rate tracking: (1) proportional, integral, derivative (PID) control and (2) neural and 
fuzzy control. We investigated control system implementation in both local and dis-
tributed configurations.

In the local configuration, the rendering process (“plant”) and controller reside in 
the same computer. In the distributed configuration, the controller runs on a com-
puter different from the one used for rendering. The control activities and plant feed-
back are communicated between the computers via a network link. Despite network 
latency, this configuration allows flexible usage of system-wide resources in an inte-
grated environment. The approach will be especially useful if elaborate controller 
designs adopted in the future result in the introduction of heavy computational loads 
into overall systems.
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1 Introduction

1.1 � BACKGROUND AND MOTIVATION

While modern rendering software claims to have controlling mechanisms that enhance 
runtime performance, the mechanisms are often very primitive and inadequate. The 
results of this deficiency are indeterminate drops in the visual quality of generated 
imagery and frame rates that can severely affect usage experience. By applying control 
theories in real-time rendering, it is possible to rectify these shortcomings altogether.

The vision is to create an intelligent rendering system that can systematically 
adapt to its operating environment to produce optimum runtime performance at all 
times. To our best knowledge, no commercial product exists as this work is written 
and no active research is in progress in this cross-disciplinary application field.

The application of control concepts in the computer graphics software provides 
new opportunities for better performance derivable from graphics hardware. Until 
today, typical rendering applications struggled to utilise hardware efficiently. Much of 
the burden of optimisation falls on the software programmer who must be extremely 
conversant with the graphics pipeline.

The predominance of interactive computer graphics is underscored by a burgeon-
ing variety of applications in various aspects of daily life. For example, it is easy 
to observe various types of interactive systems in an urban environment such as a 
shopping mall or an office building. These systems range from digital signage to 
projection-based displays and touch panels. At the industrial level, interactive com-
puter graphics technology powers important processes such as computer-aided design 
and manufacturing, virtual prototyping, and scientific visualisation and simulation.

While customers constantly demand high quality computer-generated graphics, 
the cost associated with their demands may not be within reach. To illustrate, the 
price of a performance workstation is typically many times more than the cost of 
a desktop PC for home use. Furthermore, mobile devices such as PDAs and cell 
phones lack sufficient computing power to render high quality graphics for produc-
tivity at work.

Our research concerns a fully automated technology that circumvents the afore-
mentioned problems and allows users to enjoy high quality interactive computer 
graphics on both desktop and mobile devices. The objective of this project is to 
leverage earlier research on this subject and extend the work to allow a product-ready 
toolkit to be developed for commercialisation opportunities.

Over the past few years, we developed a framework that realises the concept of 
delivering adaptive interactive rendering through laboratory experiments, theoretical 
modelling, and simulation. Our technology employs control theory and the system 
identification methodology, both of which are mature fields, proven by their use in 
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aeronautical, mechanical and electrical engineering, and electronics industries. The 
concept is based on feedback control that can provide consistent performance moni-
toring and regulation with no requirement for human intervention. From a systems 
perspective, the technical challenge translates into the form of a “plant” (process 
to be controlled) and a “controller” component that ensures the process performs 
optimally according to predefined objectives.

This technology clearly has numerous applications and commercialisation pos-
sibilities. We conceived the possibilities listed below.

Computer-aided design (CAD) and -manufacturing (CAM)—Three-dimensional 
(3D) datasets used widely in many industrial applications. Our technology will allow 
a user to view such datasets even on a mobile device. This brings productivity out of 
the office and makes it available to people on the move.

Virtual communication—The market for 3D virtual communication is growing, 
particularly in the education and corporate services segments. As a viral social net-
working medium or mode of communication in professional exchanges, 3D inter
active applications will remain key factors in online virtual communication. We see 
our technology as an enabling factor for linking more people to such networks.

Marketing and sales—More companies are moving toward high quality inter
active content intended for consumers. This provides an opportunity for us to 
introduce our technology so that more people can utilise it without the limitations 
imposed by hardware. As a result, commercial entities can expect greater market 
reach and corresponding increases in revenue.

Training and education—Our technology can be deployed in various training 
and education products, enabling them to be delivered to audiences utilising hard-
ware with different capabilities. The benefit offered by our technology is the easy 
ability to visualise 3D information even in a collaborative environment, therefore 
enhancing the value of training and knowledge dissemination.

1.2 � OBJECTIVES AND CONTRIBUTIONS

Based on the shortcomings of current real-time rendering software, our research 
entailed the investigation and development of a feasible solution that would allow accu-
rate and sustainable control of the real-time rendering process on different hardware 
platforms. The two key objectives affecting implementation of the technology are:

	 1.	Despite the complexities involved in real-time rendering, it is imperative to 
devise a systematic method to describe this process in a form that relates its 
inputs and outputs consistently.

	 2.	Based on the derivable form and the known characteristics of the rendering 
process, it is critical to find applicable control principles and frameworks 
that will ensure control of the process over a variety of scenarios.

Our research spans knowledge of the computer science (computer graphics rendering) 
and control engineering disciplines. Both fields imposed challenges that made our 
research both exciting and fulfilling. Our key research contributions are listed below.
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	 1.	We describe a novel framework by which the real-time rendering pro-
cess may be modelled accurately. This framework involves the adoption 
of data-driven system identification methodology. Previous attempts to 
characterise the rendering process via only observable variables and 
case-specific formulations led to inaccurate models. Our model addresses 
these shortcomings.

	 2.	Apart from linear models, our data-driven framework is extended to non-
linear models using soft computing techniques such as neural networks and 
fuzzy models.

	 3.	We developed control system frameworks for both linear and non-linear 
models in real-time rendering using (a) PID control with and without gain 
scheduling and (b) fuzzy control with and without adaptive neural networks.

The application of our control frameworks has shown much better resource utilisa-
tion in the real-time rendering process than earlier work that generally demonstrated 
coarse performance tracking.

1.3 � SCOPE OF WORK

Real-time rendering is a vast topic in the field of computer graphics. Although the 
modelling techniques and control framework may be applicable to areas such as 
volume- and image-based rendering, our study deals with polygonal-based rendering 
pipelines found in commodity graphics hardware and it leverages geometry sub
division technique as a basis for controlling the input to the rendering system.

At this juncture, our work is based largely on the rendering of a single large 
3D mesh that is used as a pseudo-representation of more complex 3D scenes with 
numerous objects. From a different perspective, this system is useful for applications 
involving a single large object of interest, for example, massive model rendering and 
computer-aided design.

Since the focus of this research is on real-time rendering relating to the response 
time of a system in an interactive environment, we consider the time required to 
render an image (frame) as the critical performance metric. While computer graphics 
activity is essentially visual, the quality of the generated image is frequently taken as 
the next most important metric for assessment. However, due to the subjectivity and 
complexity involved in processing image comparisons, the image quality component 
is omitted as a performance object in this work. From the system perspective, the 
real-time rendering framework proposed in this research is flexible to accommodate 
a multiple-input–multiple-output (MIMO) configuration. This means the user has 
the full freedom to implement additional output variables, which may include image 
quality related performance variables.

1.4 � BOOK OUTLINE

Chapter 1 provides the background and motivation that led to this research. 
Chapter 2 discusses the fundamental knowledge in two key disciplines related to 
this research—real-time computer graphics rendering and system identification 



4 Real-Time Rendering

methodology. We then provide a systems perspective of the rendering process 
and explain the impacts of variables surrounding the system inputs and outputs. 
After that, a survey of previous research in the areas of rendering load control and 
characterisation is discussed.

Chapter 3 delves into the details of our data-driven modelling approach to 
real-time rendering with a focus on linear system structures and their derivation. 
Through experiments, we provide rendering models for single-input–single-output 
(SISO) systems and show how they may be extended to more complex and practical 
systems involving multiple inputs.

In Chapter 4, we explore the use of soft computing techniques for modelling 
the real-time rendering process. The application of such techniques is performed 
at the operating range of the rendering system where non-linear characteristics are 
exhibited. Following that, we provide the basis for linearisation from the derived 
non-linear rendering system model.

Chapter 5 begins with the introduction of model-based control and deals with 
the control system framework for the linear rendering system model obtained in 
Chapter 3. The key control mechanism discussed in this chapter is the closed-loop 
feedback design with PID controller. We demonstrate how systems with single and 
multiple inputs may be controlled as well.

The focus of Chapter 6 is on advanced control techniques and considers our pro-
posed framework from a model-less perspective. This chapter illustrates the estab-
lishment of a control system framework without the need for an explicit system 
model as described in Chapters 3 and 4. By using a variety of fuzzy control tech-
niques, we demonstrate that a control system can perform very well when tracking 
the performance of a real-time rendering process.

Chapter 7 discusses applications, challenges, and possibilities, including system 
architectures, software and hardware performance and future technology.

The conclusions of our research and suggestions for future work are discussed in 
Chapter 8.

Annex A contains sample applications.
Annex B discusses the authors’ patent for Method and System for Adaptive Control 

of Real-Time Computer Graphics Rendering.
Annex C delineates Neural PID Control System Code.
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2 Preliminaries

2.1 � FUNDAMENTALS OF REAL-TIME 3D RENDERING

In real-time computer graphics, 3D rendering refers to the process of generating a 
sequence of images that produces not just the animated effect of motion and change 
but the visual cue of depth for objects in the imagery given an external input or stimu-
lus to the system. In typical applications, the goal is to provide visual feedback to the 
user when there is interaction via the human-computer interface. The speed at which 
each image, known as a frame, of the animation sequence is generated defines the 
performance of the system. 

Because speed of rendering every image is crucial in real-time rendering, both the 
computer hardware and software have to work together in the most optimal way so 
that the best possible image quality can be achieved in tandem with an acceptable 
frame rate (a metric that measures the number of frames that can be generated in one 
second). Over many years of research and development, the real-time 3D rendering 
process has taken leaps and bounds in terms of the image quality that is produced in 
various real-world applications such as computer games, training simulators and 3D 
product demonstrations. This involves an intricate process that spans the preparation 
of 3D content in elaborate modelling tools to processing combinations of rendering 
algorithms with myriad configurations of parameters for the final output which is the 
image to be shown eventually on the display device. Modern computers have dedicated 
hardware to handle computer graphics rendering. This hardware provides acceleration 
to computer graphics rendering routines so that the computer’s central processor unit 
(CPU) can focus on other non-computer-graphics-related and auxiliary tasks. In gen-
eral, real-time or interactive 3D rendering applications are supported by an abstraction 
layer that communicates with the hardware. This layer is commonly known as the 
3D rendering Application Programming Interface (API) and it is fully responsible for 
pushing rendering commands to the hardware and managing the render state machine. 

2.1.1  Polygon-Based Rendering

Figure 2.1 shows the multi-stage 3D real-time rendering pipeline. The transforma-
tion of inputs to the final visible pixels on a display device may be described system-
atically via the following steps.

•	 Creation in Local 3D Model Coordinate System
•	 Each object is created individually in its own 3D coordinate system.
•	 Objects may be represented in a variety of geometry formats (triangles, 

rectangles, strips of polygons, etc.). Essentially, every polygon in a 3D 
space consists of points known as vertices.
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•	 For polygons to be rendered with visually correct features, each vertex 
is associated with a set of attributes such as position (coordinates in 3D 
space), colour, normal (perpendicular) vector from a surface, texture 
coordinates (user-defined mapping onto the surface), and other factors.

•	 Transformation to Global World Coordinates
•	 To compose a scene in 3D space consisting of different objects, all cre-

ated 3D objects must be transformed into the same coordinate system.
•	 These transformations modify only the relative positions of the vertices 

and the normal. Visual attributes such as colour and texture coordinates 
are not modified.

•	 Transformation to 3D View Coordinate System
•	 A viewpoint in 3D space is commonly cited as the “camera” location.
•	 The geometry (vertex arrangement) from the 3D space is transformed 

into the camera view coordinate system. Depending on the rendering 
software, the common definition for this space is based on a right-
handed coordinate system with the camera at the origin pointing down 
the negative z axis. The x axis is to the right and the y axis up. The 
projection from 3D to 2D space is performed at this stage.

•	 The depth information of any object can be obtained from the z coordi-
nate value at this stage.

•	 The effect of virtual “lights” that create illumination properties in the 
3D scene is computed at this stage. For example, a surface colour shad-
ing algorithm known as Gouraud shading will be computed at each 
vertex of a 3D object using the light parameters, light position, normal 
vectors, and the 3D object’s texture or material properties.

•	 The removal of polygonal surfaces not shown in the view due to occlu-
sion is known as “culling” and is performed at this stage as well.

•	 Culling is related to the attributes of the camera view defined by a 
virtual trapezoid volume known as the “view frustum” using six planes 
(left, right, up, down, front, and back) as shown in Figure 2.2.

Per-vertex
operations

Rasterisation

Per-pixel
operations

Per-fragment
operation Framebuffer

Texture
assembly

Display lists

Vertex data

Pixel data

FIGURE 2.1  Real-time 3D rendering pipeline.
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•	 Transformation to 3D Clip Coordinate System
•	 The geometry data in this stage are prepared for a post-processing step 

known as “clipping.”
•	 The transformation of the geometry depends on the type of view pro-

jection used. Certain non-linear transformation may take place, for 
example, when perspective projection creates a tapering-off view of 
objects at a distant horizon in contrast to orthographic projection that 
consistently preserves the dimensions of a 3D object.

•	 Transformation to Normalised Device Coordinates
•	 The geometry is normalised for display in a 2D window on a physical 

display device.
•	 Further clipping is done to remove geometry outside the user-defined 

window boundaries.

•	 Transformation to Display Window Coordinates
•	 All vertices are converted to units of the display (pixels) window.
•	 Typically, the origin of reference is at the lower left corner of the display 

window.

•	 Transformation to 2D Screen Coordinate System
•	 The conversion to screen pixels (rasterisation) is performed. Pixels are 

visible colour dots that can be displayed on a screen.
•	 To generate shaded pixels, attributes such as texture coordinates, colour, 

and normal vectors are used in the computation and interpolated across 
the vertices and polygon surfaces.

•	 Algorithms may be used to perform further hidden surface removal by 
using depth information obtained from the geometry.

Eye point

Near plane

Far plane

Line of sight

Top plane

Bottom plane

Left plane

Right plane

FIGURE 2.2  Camera view frustum in 3D space.
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•	 The final colour of the pixel is determined by combining all other 
effect state settings (e.g., blending and stencil operations) in the ren-
dering pipeline.

•	 The output of this stage is the final colour of every pixel placed in the 
memory of the display hardware (the frame buffer).

In the course of rendering a 3D scene, many inputs and settings such as the geom-
etries of 3D objects and their material “look” parameters are sent to the graphics 
hardware for processing. About a decade ago, outdated graphics hardware relied 
solely on a few hard-wired algorithms to process such data via a method known as 
the fixed function rendering pipeline. As a result, real-time rendering application 
developers had little space to control the look of a 3D object based on a limited set of 
functions that computed the rendering output. The impact of such limitations is the 
lower quality of imagery generated from computer graphics hardware.

This problem was circumvented by the advances represented by a new generation 
of computer graphics hardware that allows rendering routines known as shaders 
to be injected into the hardware before or during the runtime of an application. 
This capability now gives application developers full control over the quality of the 
generated output by varying shader routines. Figure 2.3 depicts this new-generation 
fully programmable rendering pipeline.

Shaders come in two formats: vertex and pixel types. A vertex shader is a graph-
ics processing function used to add special effects to objects in a 3D environment. 
It is executed once for each vertex sent to the graphics processor. The purpose is to 
transform each vertex’s 3D position in virtual space to the 2D coordinate at which 
it appears on the screen and the as a depth value in the graphics hardware. A pixel 
shader is a computation kernel function that computes colour and other attributes of 
each pixel. Pixel shader functions range from always outputting the same colour to 
applying a lighting value to adding visual effects such as bump mapping, shadows, 
specular highlights, and translucency properties. They can alter pixel depth or output 
more than one colour if multiple render targets are active. Figure 2.4 illustrates an 
example of the effects of pixel shaders on a 3D object. Apart from vertex and pixel 
shaders, an important feature of state-of-the-art graphics rendering architectures is 
the functionality of geometry shaders. Geometry shaders are added to the rendering 
pipeline to enable generation of graphics primitives, such as points, lines and dif-
ferent types of triangles after the execution of vertex shaders. With this capability, 
it is then possible to perform operations such as mesh resolution manipulation and 
procedural geometry generation.

Computer hardware technology and new rendering algorithms continue to 
advance quickly. The evolution of the real-time rendering pipeline also continues as 
this book is written.

2.1.2 � Volumetric Rendering

In Section 2.1.1, we described how animation can be produced using 3D data and 
physics-based principles for surface shading effects. Another technique for pro-
ducing 3D visualization is through the usage of volume data that consists of not 
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just positional information in 3D space but continuous depth data with additional 
dimensions and possibly its materials information as well. This type of spatial data 
is commonly used in scientific and medical work where cross-sectional information 
is important for evaluation and study. Volume rendering produces the exterior and 
the interior look of an object, usually with visual cues such as transparency and color 
differentiation. The image generation process considers the absorption of light along 
the ray path to the eye and volume rendering algorithms can be designed to avoid 
visual artifacts caused by aliasing and quantisation.

2.1.3 �I mage-Based Rendering

In contrast to polygon-based rendering in which 3D geometry is provided for con-
structing the 3D hull of an object, image-based rendering techniques render novel 
3D views by using a set of input images. This avoids the need for a stage where 3D 
data has to be explicitly provided by manual labour or some data acquisition means. 
These techniques focus on computer vision algorithms in feature detection and 
extraction from a set of basis images and thereafter reconstruct a 3D object or scene. 
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FIGURE 2.3  Programmable rendering pipeline (DirectX 11).
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Image-based rendering techniques are often classified according to the degree by 
which geometry information is used. More importantly and in recent years, there has 
been a confluence of image-based techniques with polygon-based rendering in many 
applications due to the close continuum in 3D and 2D space in computer graphics.

As volume and image-based rendering are topics beyond the scope of this 
research, they are introduced here as auxiliary information on alternative 3D ren-
dering techniques and more information can be found on the Internet and major 
research publication portals.

2.2 � SYSTEM IDENTIFICATION

The goal of system identification is to derive a mathematical model of a dynamic 
system based on observed input and output data. Usually a priori information per-
taining to a system will be useful for postulating the preliminary model structure. 
The system may then be modelled according to empirical data (black-box modelling) 
or conceivable mathematical functions such as physical laws (white-box modelling). 
Often, real world systems are non-linear and operate with reliance on state memory. 
The systems are dynamic and thus their outputs may depend on a combination of pre-
vious inputs, outputs, and states. The combination provides the basis for time series 
and regression mathematical expressions (models) for different reproducible systems.

System identification is an iterative procedure that can be summarised briefly 
by the flowchart in Figure 2.5. A model structure is chosen in advance based on 

FIGURE 2.4  (See colour insert.) Samples of surface shading effects that can be achieved 
with pixel programs.
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preliminary information obtained from the system. The parameters of this model 
structure are then computed based on the set of experimental data collected previ-
ously. A portion of this data is allocated for model validation and the entire process 
from choosing a model structure to validation is repeated until the user-defined 
simulation performance criteria are met.

From a system identification perspective, we treat the real-time rendering process 
as the subject to be modelled. Since the rendering process cannot be described intui-
tively by physical laws such as mass, velocity, and temperature, black-box modelling 
is adopted. The system is first tested with a set of predefined inputs and the outputs 
are collected. This input–output dataset that captures a certain dynamic range of 
the behaviour of the system is then used with mathematical regression techniques to 
derive the estimated model.

Due to the scope of this book, we briefly summarise the steps in the system iden-
tification process below. A detailed and authoritative coverage of this topic can be 
found in Ljung’s book [1].

2.2.1 �D ata Collection

To obtain an effective model of a system, it is necessary for the measured data to 
capture and show the behaviour of the system adequately. An appropriate experi-
mental design can ensure that the correct variables and dynamics of the system are 

Design experiment and
collect data

Post-process dataY

N

N Y
End

Validate model

Model is acceptable

Data require post-
processing

Choose model
structure

Select model
parameters and fit

model to data

FIGURE 2.5  Process flow in system identification methodology.



8 Real-Time Rendering

measured at sufficiently good resolution. In general, the following principles should 
be observed:

	 1.	Select inputs that can excite the system dynamics adequately.
	 2.	Minimise the effects of noise and disturbance to obtain a good signal-to-noise 

ratio.
	 3.	Choose appropriate sampling intervals for measuring data.
	 4.	Set a sufficient long duration of data collection to ensure capture of impor-

tant time constants.

2.2.2 �M odel Selection

In system identification, we begin by determining the model structure best expressed 
by a mathematical relationship between input and output variables. This model 
structure typically provides the flexibility to describe a system based on certain 
parameters. Some examples of model structures include parameterised functions 
and state space equations. To illustrate, a linear parametric model is provided in the 
equation below.

	 y k ay k bu k( ) = −( )+ ( )1 	 (2.1)

where u is the input, y, the output, k, the discrete time step and a and b are model 
structure variables.

Essentially, system identification is a systematic approach that begins with the 
selection of a model structure and then using approximation techniques to estimate 
the numerical values of the model parameters. While it may seem arbitrary to start 
with the selection of a model structure, it is not an entirely ad hoc process. The fol-
lowing approaches may be adopted in deciding on an appropriate model structure.

	 1.	Start with the simplest system model structures to avoid unnecessary com-
plexity in cases where the data can be modelled by a simple structure. 
Alternatively, a user can try various mathematical structures in a technique 
known as black-box modelling.

	 2.	Designate a specific model structure for the data to be modelled by establish-
ing certain predetermined principles; this technique is known as grey-box 
modelling.

Some well known system model structures from established research include the:

Auto-regressive exogenous (ARX) model
Auto-regressive moving average (ARMA) model
Box–Jenkins model
Output error model
State space model
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2.2.3 �C omputing Model Parameters

In system identification, the model parameters are estimated by minimising the func-
tion that describes errors between the derived system model output and the measured 
response. Assuming a system is linear and time-invariant, the output of the linear 
model ymodel can be expressed as

	 y t G s u tmodel ( ) = ( ) ( ) 	 (2.2)

where G(s) is the transfer function, y the model output and u, the input to the model. 
To determine G(s), we can minimise the difference between the model output ymodel(t) 
and the measured output ymeas(t). We can use the minimisation criterion which is a 
weighted norm of the error v(t):

	 v t y t y t y t G s u tmeas model meas( ) = ( )− ( ) = ( )− ( ) ( ) 	 (2.3)

where ymodel(t) is either the model’s simulated response given an input u(t) or its pre-
dicted response given a finite series of past output measurements, i.e., (ymeas(t–1), 
ymeas(t–1),…).

From the above, v(t) is otherwise known as the simulation error or prediction 
error. The objective of the estimation algorithm is to generate a set of parameters in 
the model structure G such that eventually this error is minimised.

2.2.4 �E valuating Quality of Derived Model

The steps taken to evaluate the quality of a derived system model generally include 
the comparison of the model response to the measured response and the analysis 
of model residuals. Figure 2.6 compares the outputs of two different models with a 
measured output.

Residuals are differences between a model’s one-step-predicted output and the 
measured data. In other words, residuals may be understood as portions of validation 
data that are not well described by the model. In residual analysis, the whiteness and 
independence tests are key performance indicators.

The whiteness text examines whether a model includes a residual auto-correlation 
function inside the confidence interval of the estimates. If it does, the model passes 
the test and the outcome indicates that the residuals are not correlated.

In addition, a model is qualified when it passes the independence test (no correla-
tion between its residuals and past inputs). If evidence indicates such a correlation, 
the information revealing how the output relates to the input is incomplete. A simple 
example is an output y(t) beyond the confidence interval during a lag k that originates 
from the input u(t – k). A good model should perform both tests relatively well.

The system identification methodology accommodates an iterative process in the 
determination of the final model structure and parameters. A real world system may 
not be represented by only a single model structure. Whenever a derived model is 
found inadequate, it is necessary to revisit the model selection process, reconsider 
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the model parameter determination algorithm, and perhaps re-evaluate the data 
collection procedure.

2.3 � LITERATURE REVIEW

While control theory is a mature field of study developed after the industrial revolu-
tion, the adoption of the techniques in the domain of computer software, particularly 
real-time computer graphics systems, remains nascent. This literature review pro-
vides a survey of research in these areas as background for our research.

2.3.1 �C omparative Study on Existing Research

The premise of the novelty in our research is founded upon close examination of 
previous work done in the fields of both real-time computer graphics and control 
theory, particularly those that have been successful in fusing the two disciplines and 
a careful thought process in terms of innovation in this area. A broad-stroke but sys-
tematic and progressive approach was taken to consider research publications within 
two decades to ensure that relevant techniques are not missed out regardless of their 
age and how they might contribute to further knowledge development.

Figure 2.7 shows the research comparative study flow conducted in this work 
which consists of the Classification Stage and the Qualitative Comparison Stage. 
In the Classification Stage, we begin with the most relevant keywords in the litera-
ture search terms. We consider the following words as the “lowest denomination” 
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FIGURE 2.6  Comparison of two model outputs with measured system response.
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because of their relative importance in a subject matter. For example, omitting 
words such as “real-time”, “graphics” and “3D” since they are either rhetorical in 
computer graphics research or they may be replaced by stronger keywords such as 
“interactive”, “rendering” and directly meaningful candidates such as “frame rate” 
and “control”. These keywords are used in search fields in major research publica-
tion online portals  which indexes the world’s largest collection of research literature. 
The gleaning process covers more than 500 research papers in a combined cohort of 
4,000 search results from the publication portals. 

As described in Section 1.3 in Chapter 1, the research in this thesis is primarily 
focused on polygon-based rendering technique which is predominant in common 
consumer and industrial applications such as computer games, virtual reality soft-
ware and computer-aided design and prototyping. Hence, the Classification stage 
ends with segregating research literature that shares the same technique and is 
related to the topic of interactive 3D rendering. Table 2.1 shows the results from this 
classification stage from the initial pool of publications.

Start

Yes

Yes

Yes

No No

No

End

Classification Stage

Qualitative
Comparison

Similar
Technique?

(Polygon-based
Rendering)

Provide
frame rate

history?

Provide
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output error
from target
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frame rate
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Compare
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transition

speed

FIGURE 2.7  The comparative literature review workflow.
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The next step in this comparative study is to select literature which provides 
experimental results on frame rate control since we need to conduct a qualitative 
analysis on them. For this purpose, these results should contain a history of data 
points in the time domain that demonstrate certain desirable qualities such as stabil-
ity, offset errors and smooth frame rate transitions. These features would be com-
pared to the results we obtain from the experiments conducted using the techniques 
proposed in this research with both qualitative and quantitative perspectives.

While research papers could be found relating to the topic of interactive rendering, 
however many of them alluded to concrete experiment results on sustainable perfor-
mance as shown in the references from the bottom row of Table 2.1. In some cases 
[61] [71] [76], only static frame rates are given as an approximation to the interactive 
requirement. Furthermore, other researchers have chosen to work on volumetric [71] 
[76] [80] and image-based rendering [68] [70] [83] techniques which are prevalent 
in medical and large-scale visualization research but they differ from polygon-based 
rendering vastly. As a result, it is not straightforward to establish a direct comparison 
on the benefits offered by our research with these techniques. Despite these differ-
ences, we strive to provide a detailed qualitative and quantitative analysis on the 
aforementioned rendering architectures and their respective performance with our 
rendering framework in Chapter 8, Section 8.1.

2.3.2 �C ontrol-Theoretic Approaches to Computer Systems

As computer systems become increasingly complex through advances in hardware 
and software technology, traditional approaches to providing performance guaran-
tees have become inefficient. In recent years, control engineering principles used 
successfully in real-world applications such as mechanical and electrical systems 
and process control have emerged as promising solutions to meet performance con-
trol challenges such as real-time scheduling, network bandwidth control, and power 
management in complex computer systems.

The comprehensive framework presented by Abdelzaher et al. [2] introduces 
feedback performance control in software services. The authors emphasised the 
importance of guaranteed quality of service (QoS) in modern computer software 
and systems that indicates the need for robust frameworks to achieve certain perfor-
mance objectives. They further defined and explained the attributes of a QoS-aware 
service consisting of performance metrics such as queuing delays, execution 
latencies, and service response times. They also demonstrated that a software 

TABLE 2.1
Results from the Research Review Classification

Polygon-based Rendering Non-Polygon-based

With Frame Rate Data [62] [64] [65] [67] [72] [74] [77] [81] [84] 
[85] [92]

[69] [73] [80] [83] [86] [87]

Without Frame Rate Data [61] [63] [66] [68] [75] [78] [79] [82] [89] 
[90] [91]

[70] [71] [76] [88]
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system can be approximated by a linearised model with corresponding conceptual 
software representations of actuators and sensors. Although the feedback control 
architecture was provided for generic software systems, the entire work focuses on 
web server applications.

Abdelwahed et al. [3] proposed a generic online control framework to design 
self-managing computer systems. The control actions governing system operations 
were obtained by optimising system behaviour as forecasted by a mathematical 
model over a specified time horizon. The case studies cited deal with power manage-
ment under time-varying workloads and signal detection accuracy and latency levels.

Since computer systems in networked environments are gaining importance due to 
increasing Internet usage, Li and Nahrstedt [4] proposed a task control model to illus-
trate the dynamics of QoS adaptations using digital control theory. The objective was 
to provide optimum resource allocation to tasks in a distributed environment where 
multiple applications compete for and share limited system resources, thus ensuring the 
best user experience and efficiency. A proportional, integral, derivative (PID) control-
ler was used to achieve the desired performance objectives relating to the QoS metrics.

Hellerstein et al. [5] provided a comprehensive overview of the challenges in con-
trol engineering of computer systems. Similar studies were reported by Abdelzaher 
et al. [7], Lu et al. [8], and Karamanolis et al. [9].

2.3.3 �C ontrol Principles in Computer Graphics Software

In Li and Shen’s work [10], a fuzzy logic controller serves as an automatic mecha-
nism for controlling error tolerance in hierarchical volume rendering. Volume ren-
dering is a technique for directly displaying a sampled 3D scalar field without first 
fitting geometric primitives to the 3D discrete sampled date set. The performance 
criterion is a user-defined frame rate that the control system will strive to achieve 
based on adjusting the error tolerance.

Sort-last rendering is a computer graphics applications technique for rendering 
extremely large datasets in clusters of computers, usually in a distributed environ-
ment. Kirihata et al. [11] showed that it is possible to use feedback control to harness 
large data transfer processes in sort-last rendering.

Another example of the adoption of control principles in computer graphics 
software is the work by Dayal et al. [97]. They proposed an adaptive form of 
frameless rendering with the potential to increase rendering speed dramatically over 
conventional interactive rendering. This is done without the rigid sampling patterns 
of framed renderers and by allowing sampling and reconstruction to adapt with very 
fine granularity over spatial–temporal colour changes. A sampler uses closed-loop 
feedback to guide sampling toward edges or motion in the image to maximise ren-
dering efficiency.

To date, little research has focused on the adoption of control principles in com-
puter graphics applications related to rendering. While the potential benefits are 
immense based on a broader perspective in which control techniques have been used 
successfully in generic software, the challenges usually lie in specific applications 
that require in-depth understanding and appropriate modelling before the control 
concepts may be introduced.
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3 Linear Model Analysis 
of Real-Time Rendering

3.1 � INTRODUCTION

The real-time computer graphics rendering process embodies complex state transi-
tions and fast dynamics amidst observable steady-state behaviour. To yield realistic 
or visually useful graphical information, the rendering process may be loaded with 
myriad combinations of the input variables and states to the point where it is impor-
tant to describe this function in simple terms.

In this chapter, we describe the application of system identification methodology 
to real-time rendering. The basis for such an approach is that the rendering process 
may be treated from a system perspective as a data processing function. This allows 
us to analyse the process input and output data to establish some formal relationship 
between them.

3.2 � BACKGROUND

The perennial and increasing demands for fidelity, coupled with hardware archi-
tecture advancements, pose many challenges to researchers and developers as they 
endeavour to find the optimal solution to accommodate both speed and quality of 
rendering. To this end, key techniques developed since the evolution of computer 
graphics three decades ago revolve around their ability to reduce the rendering load 
at application runtime. They are largely based on the principles of visibility reduc-
tion, geometry decimation, image-based methods, and more recently, techniques 
such as programmable shading.

As space does not permit an exhaustive review of these research efforts, we refer 
the reader to the comprehensive surveys by Cohen-Or et al. [12], Haines [13], and 
Akenine-Moller et al. [14]. Despite the ability of each approach to reduce rendering 
loads during runtime, their common weakness lies in the inability to guarantee stable 
frame rates.

In this chapter, we introduce a novel framework for obtaining an accurate model 
of an interactive rendering process. This framework is based upon the system iden-
tification methodology [1] that is a mature field of study associated with systems and 
control theory.

In addition to expanding understanding of the dynamics relating to the rendering 
process, the objective of modelling this process is to establish the groundwork for a 
control framework. Only with an accurate model can we design this control frame-
work around the rendering process to yield the sustainable performance we desire.
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In this research, we focus on exploiting a current trend in hardware technol-
ogy that provides fine resolution in geometry control, known as tessellation. Since 
geometry is the primitive construct of any object in 3D space, it becomes a natural 
choice as one of the modelling variables in our framework. In brief, tessellation is 
the process of sub-dividing surfaces into smaller shapes with the objective of gen-
erating higher resolution information of the 3D model. Tessellation, also known as 
a subdivision technique, is a well researched field in computer graphics and had 
been adopted widely in many interactive rendering applications because of the visual 
acuity it provides. However, only recently has graphics hardware provided sufficient 
support for tessellation-based techniques in applications [30].

We introduce our modelling framework via experiments in two interactive render-
ing applications that use subdivision techniques in rendering load control. We aim to 
establish the fundamental validity of a system-based approach to modelling the ren-
dering processes in applications similar to those selected in these experiments. Since 
rendering tasks are inherently complex in real-world applications, we provide a sys-
tematic extension from a single-input–single-output (SISO) model of the rendering 
process to a multiple-input–single-output (MISO) model that more closely resembles 
a broader class of applications. We hope that this progression along with the system 
modelling principles and fundamental considerations related to 3D rendering will 
enable readers to appreciate the value of this framework and acquire the necessary 
knowledge for its implementation.

Current research in rendering workload characterisation [16,17] and rendering 
time estimation [18,19] strives to profile the attributes of rendering without providing 
a systematic way to control the process. Often, the user is expected to arrive at some 
form of a primitive control strategy based on profile information. This often requires 
several attempts to re-evaluate control strategy and ad hoc refinement steps are often 
needed to remove major rendering bottlenecks.

This motivated us to attempt to utilise a systems perspective to model the render-
ing process. In this chapter, we demonstrate that accurate models can be obtained 
via our data-driven framework and extend this framework by introducing the use of 
a controller that can track and regulate frame rates with guaranteed performance. 
In comparison with other work, our research offers the following benefits:

•	 Our framework does not require the pre-processing of the 3D content 
utilised in other research [20,21,22]. Its performance is not limited to static 
pre-processed geometry and scenes.

•	 Our approach leverages hardware-accelerated technology (tessellation) that 
provides smooth transitions in geometry scaling unlike techniques that may 
generate visual hysteresis [21,22,23].

•	 The outputs of the derived rendering models exhibit very high accuracy 
when compared to actual rendering process outputs.

•	 When the derived rendering model is used in conjunction with a suit-
able controller, the closed-loop system can produce guaranteed frame 
rates. The self-correction process occurs entirely online during runtimes 
unlike current techniques that may require repetitive and labour-intensive 
offline evaluation.
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3.2.1 �C ontrol-Centric Definition for Rendering Time Control

In contrast to previous research on interactive and time-critical rendering [20,22,24], 
we define rendering time control as a mechanism that should produce stable frame 
rates very close to the user-defined target instead of fluctuating below it. To date, much 
research on rendering time control has focused loosely on keeping the time required 
to render each frame within a certain budget and ignoring the quality of the control or 
the fluctuations resulting from the technique. This leads to two consequences.

The first implies that the times allocated to perform other tasks in an interactive appli-
cation such as logic computation, collision detection, and animation will not be consistent. 
In some cases, “starvation” of other processes that require CPU or GPU resources may 
occur. This is detrimental to the effectiveness of visual simulation applications in which 
external devices that require CPU cycles are tightly coupled to the rendering process.

Second, weak frame rate control leads to suboptimal resource use. For example, 
an object rendered at 15 FPS that achieves acceptable visual quality should not be 
rendered at 25 FPS unless allowed by the user for valid reasons. This requirement is 
especially critical in interactive applications and systems with tight resource control 
policies such as in game consoles [25,26] and portable devices where sustainable 
and guaranteed performance is vital because processor time must be allocated for 
related non-graphics computations. In contrast, applying control engineering leads to 
analysis of system attributes such as output overshoot, settling time, and steady-state 
errors that constitute a better qualitative framework for performance monitoring. 
We  feel that this is a more powerful outcome than the current research focus on 
frame rate control.

3.2.2 �C hallenges in Using Heuristics

Heuristics usually refers to an experience-based speculative formulation of a solution 
to a problem. Much research in the area of rendering performance control has been 
based on heuristics and analytical models [22,23,24,27]. As Gobbetti and Bouvier 
noted [24]:

“…Static heuristics are not adaptive and are therefore inherently unable to produce 
uniform frame rates….”

Leukbe describes the difficulty in modelling the rendering process in his book on 
level of detail (LoD) for 3D graphics [28]:

“…a predictive scheduler estimates the complexity of the frame about to be rendered…
this approach is substantially more complicated to implement…because it requires an 
accurate way to model how long the specific hardware will take to render a given set 
of polygons.”

The challenge in establishing reliable heuristics is straightforward. Driven by com-
mercial demand and innovation, computer graphics hardware and software continue 
to change at unprecedented rates. In confirmation of this fact, Dumont et al. [29] 
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stated that given the complexity of real-rendering applications today, heuristics may 
fail in controlling rendering time. Haines [13] also describes this trend:

“Perhaps one of the most exciting elements of computer graphics is that some of the 
ground rules change over time. Physical and perceptual laws are fixed, but what was 
once an optimal algorithm might fall by the wayside due to changes in hardware, both 
on the CPU and GPU. This gives the field vibrancy: we must constantly re-examine 
assumptions, exploit new capabilities, and discard old ways.”

Based on these findings, dissecting the rendering process into distinct compo-
nents that contribute to rendering cycle time is no trivial task. Tack et al. [18] did not 
consider overhead time in their performance model because of the complexity and 
additional costs it represented. The heuristics proposed in Wimmer and Wonker’s 
work [19] varied in performance for different applications. This implies that unless 
an application is specially built to fit into their proposed framework it may not be 
easy to achieve stable frame rates across a broader range of applications.

Heuristics ignore non-linearity in their formulation, that is, they assume that func-
tional relationships are always linear. This is unrealistic in practical applications 
because of the underlying hardware. Our experiments have shown that the time taken 
to render a vertex varies at different total processed vertex counts. The work of Lakhia 
et al. on interactive rendering [22] demonstrated that texture size has a non-linear rela-
tionship with the time taken to render a 3D object. Finally, heuristics face the same 
challenges as other frame rate control mechanisms in terms of balancing qualitative 
requirements such as visual hysteresis [23] and rendering performance.

3.2.3 � Purpose of Workload Characterisation and Analysis

Apart from heuristics in the quest to limit rendering time, researchers also analysed 
rendering workloads with the goal of identifying and eradicating bottlenecks at 
runtime. Kyöstilä et al. [16] created a debugger and system analyser for graphics 
applications running on mobile hardware. Monfort and Grossman [17] attempted to 
characterise the rendering workloads of 3D computer games via a specially devel-
oped tool. In recent years, major graphics hardware vendors have provided software 
toolkits that allow low level access to their hardware for debugging and in-depth 
analysis of graphics workload with the goal of optimising performance of interactive 
applications during runtime.

However, workload characterisation and analysis are not adaptive mechanisms that 
will bring about stable frame rates. They are helpful only for tracing bottlenecks and 
manifesting an application’s rendering workload profile. To utilise these mechanisms 
for runtime performance, the process usually involves (1) identification of the problem 
(such as the cause of a bottleneck) during runtime followed by (2) manual effort to 
eradicate the bottleneck offline and then re-run the same scenario. This approach does 
not guarantee performance when the application use or 3D scene content changes. 
Since interactive rendering usually causes dynamic changes to visual content, the 
approach of using workload characterisation and tuning is not generally robust.
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3.3 � CASE FOR DATA-DRIVEN MODELLING

In system identification, we approach the problem of modelling a dynamic sys-
tem from the observable data generated by its input and output. The case for using 
data-driven modelling is especially compelling for real-time rendering because the 
process is inherently complex. Rendering is a computer system process that thus 
raises considerations at both the hardware and software levels. Furthermore, unlike 
mechanical systems or chemical processes, no physical laws or intuitive functional 
relationships can be applied easily to achieve high accuracy.

Considering the real-time rendering process as a black box does not necessar-
ily imply high risk of inappropriate modelling of the system as long as reasonable 
assumptions are based on a priori understanding of the system and can be reinforced 
from experiment results. In this book, we approach the challenge of modelling a ren-
dering system by considering the expanded scopes of both single and multiple inputs. 
We also consider the output of the rendering process in terms of measurable quanti-
ties and the benefit of registering them as system outputs. This chapter discusses the 
inputs and outputs considered in system modelling and their eventual roles in system 
model representations.

To proceed with the modelling process, we first establish the relationship between 
the input and output of a system. This means that we must define and qualify the set 
of inputs and outputs before proceeding to identify their relationship. In the context 
of a real-time rendering application, it is reasonable to associate the geometry used 
for construction of 3D objects with the input to the rendering system and the output 
with the frame rate since empirical data indicate that they have an inverse relation-
ship. Furthermore, in system identification, the input variables must be modifiable 
by the user in a straightforward manner. This is different from research in workload 
characterisation and heuristics where the defined variables are quantities such as 
hardware level parameters and processing time that cannot be changed by a user 
during runtime.

3.3.1 � Basis for Selection of System Variables

With reference to the data flow in the computer graphics rendering pipeline shown in 
Figure 2.3 in Chapter 2, the inputs to the rendering process are obtained from mem-
ory resources (rectangle at far right) of the computer system. These inputs consist of 
various types of data ranging from geometry information to textures (image-related 
information) and rendering routines such as shader programs.

In order to define a set of variables to describe a rendering system, the input and 
output variables must be easily measurable. Furthermore, it is imperative that the 
input variables are controllable so that control actions can be implemented properly. 
Based on these criteria, we investigated the available performance counters with 
common low level graphics rendering profiler toolkits that included Microsoft’s PIX. 
Table 3.1 shows a set of performance counters commonly used in many computer 
graphics applications.

Since many performance counters fall into the same category and are derivatives 
of one another, we chose the lowest denomination or most primitive variable in each 
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selected category. To illustrate, the input geometry to the rendering pipeline may 
include lines, triangle fans, strips, and polygons. These are different input formats 
that share the same basis—3D geometry data. Hence the natural choice as the input 
variable of a rendering system should be the vertex count.

In addition to finding the appropriate variable by using its simplified form, another very 
important characteristic that determines suitability is whether a variable can be changed 
easily. For example, the batch counts and batch sizes of indexed buffers can impact the 
performance of a rendering system. However, little can be done to control these variables 
during an application runtime because these batches of vertices are predefined.

Finally, the resolution at which the selected variable may be adjusted affects the 
quality of the system model as well. The ideal case would involve a variable that 
allows fine resolution changes. For example, since the number of vertices is used 
as an input variable of a rendering system, it may be difficult to obtain an accurate 
model when this number can be varied only in limited steps.

One reason for this limitation is the underlying geometry LoD mechanism that 
controls the resolution of a 3D object with a certain topological objective and algo-
rithm. The discrete LoD technique is an example of such a mechanism. Figure 3.1 
illustrates the progressive variation (in steps) in the number of vertices that describe 
a 3D object. Conversely, other techniques such as progressive meshes and geometry 
tessellation allow 3D geometry variation at fine resolution levels. These techniques 
are preferred in comparison to the approaches cited earlier.

So far we have discussed guidelines for inputs to the rendering system. As for the 
output of the rendering system, the performance metric of primary concern to a user 
of real-time computer graphics is widely accepted as the frame rate (inverse of the 
time required to render one frame or image in a sequence) and quality of the gener-
ated imagery. The frame rate has a significant impact on the quality of the visual 

TABLE 3.1
Performance Counters in DirectX
Direct3D Counter Description Official Name

FPS (#) D3D FPS

Frame time in milliseconds D3D frame time

Driver time in milliseconds D3D time in driver

Triangle count (#) D3D triangle count

Triangle count instanced (#) D3D triangle count instanced

Batch count (#) D3D batch count

Locked render targets count (#) D3D locked render targets count

AGP/PCIE memory used in integer MB (#) D3D agpmem MB

AGP/PCIE memory used in bytes (#) D3D agpmem bytes

Video memory used in integer MB (#) D3D vidmem MB

Video memory used in bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Source:	 NVPerfKit documentation from www.nvidia.com
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experience offered by a real-time rendering application. While the quality of the 
generated imagery may be important to the user, the interactive experience is usu-
ally dominated by the application response rather than the quality of the generated 
imagery. Furthermore, quality is a subjective notion that complicates the adequacy 
of any useful metric.

3.4 � LINEAR SYSTEM MODEL REPRESENTATION 
FOR REAL-TIME RENDERING

This section describes the modelling process applied to the real-time rendering 
system and the derivation of the mathematical models for various types of rendering 
applications. Using the system identification methodology, we demonstrate that lin-
ear time-invariant models can be obtained from the input and output data collected 
from experiments conducted using sample rendering applications.

A basic relationship between the input and output of a system may be expressed 
as a linear difference equation as follows.

y t a y t a y t n b u t n b u t nn a k n ka b( )+ −( )+… −( ) = −( )+…+ − −1 11 nn e tb +( )+1   ( ) 	 (3.1)

where:

a1 … ana and b1 … bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −( )1  and y t na−( )  are the previous outputs on which the current output depends.
u t nk−( ) and u t n nk b− − +( )1  are the previous inputs on which the current output 

depends.
na is the number of poles of the system or the order of the system.
nb represents the number of zeroes plus one.
nk denotes delay in the system.
e(t) equals noise.

An alternative way to represent Equation (3.1) in a more compact manner is the ARX 
model described below:

	 A q y t B q u t n e tk( ) ( ) = ( ) −( )+ ( ) 	 (3.2)

Image

Vertices ~5500 ~2880 ~1580 ~670 140
Maximum detail,
for closeups.

Minimum detail,
very far objects.Notes

FIGURE 3.1  Visual effect of varying vertex count for 3D object in discrete steps. (Source: 
http://en.wikipedia.org/wiki/Level_of_detail#A_discrete_LOD_example)
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where q is the delay operator and A(q) and B(q) are represented as:

	 A q a a qn
n

s
s( ) = + + +− −1 1

1q � 	 (3.3)

	 B q b b q b qn
n

b
b( ) = + +…+− − +

1 2
1 1 	 (3.4)

and q is known as the backward shift operator defined by q–1u(t) = u(t – 1). Figure 3.2 
shows a graphical representation of an ARX model. In the context of this research, 
u(t) and y(t) may be taken as the input vertex count and output frame rate, respec-
tively. For compact notation, the following vectors are used:
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From Equations (3.5) and (3.6), Equation (3.2) can be expressed as:

	 y t( ) = φT t( )θ 	 (3.7)

Alternatively, we can use the following notation to highlight the dependency of y(t) 
on the set of parameters in θ:

	 ˆ |y t θ( ) = φT t( )θ 	 (3.8)

We want to compute the set of parameters θ by using the least square method and 
the criterion function:
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with the objective to get:
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FIGURE 3.2  ARX model structure.
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where ZN = [y(1), u(1), y(2), u(2) …, y(N), and u(N)] are the set of recorded inputs 
and outputs over a time interval of 1≤ t ≤ N. Since the parameters of the model are 
encapsulated in the vector θ, solving Equation (3.10) gives us their numerical values.

Alternatively, a model may be represented in the state–space format whereby the 
inputs, outputs, and state variables are expressed as vectors and the differential and 
algebraic equations are written in matrix form. This format provides a convenient 
and compact way to model and analyse systems with multiple inputs and outputs. 
The state–space representation of a discrete time-invariant dynamic system model is 
described by the equations below.

	
x k Ax k Bu k Ke k+( ) = ( )+ ( )+ ( )1 	 (3.11)

	
y k Cx k Du k( ) = ( )+ ( ) 	 (3.12)

where x(k) is the state vector, y(k) is the system output, u(k) the system input, and e(k) 
the stochastic error. A, B, C, D, and K are the system matrices. The derivation of the 
system matrices can be found in common system modelling and control engineering 
textbooks such as [1].

Although many model structures are used in the system identification field 
we consider primarily the two structures described in this section because of the 
advantages they offer in comparison to other model structures. The ARX model 
structure offers computational efficiency in polynomial estimation. It is thus pref-
erable in many situations, particularly when model order is high. On the other 
hand, state–space equations provide mathematical constructs that leverage linear, 
first-order derivative variables that allow convenient computation even for systems 
involving multiple-input–multiple-output systems.

3.5 � EXPERIMENTS

This section discusses two experiments conducted to derive the system model of 
rendering processes and one experiment illustrating the use of a derived model in a 
control system.

3.5.1 �E xperiment 1: Single-Input–Single-Output (SISO) System

To illustrate how our modelling framework may be applied, we select two applica-
tions that make use of geometry subdivision techniques for rendering 3D objects 
with high visual details. These two applications are taken from a popular 3D graph-
ics rendering toolkit (NVIDIA DirectX SDK) designed to help software developers 
exploit this subdivision technique in current computer hardware. The choice of the 
two applications is based on the current trend [30] for subdivision techniques in 
many application domains. The objective was to show that our framework can gener-
ate system models that describe the selected rendering applications accurately.

In Experiment 1, we wanted to establish a SISO rendering system model based 
on a sample interactive rendering application. The input and output variables were 
chosen as the input geometry (number of vertices) and frame rate, respectively. We 
selected the N-patch tessellation application (Figure  3.3) from DirectX SDK that 
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allows a user to set the tessellation segment values interactively to see the effect on 
the 3D object and the frame rate. To simulate the rendering quality in practical appli-
cation, we modified the system for this experiment to load an environment map and 
apply different shading effects on 3D objects. The application was developed to allow 
easy configuration—a feature that makes it applicable for massive model rendering.

We collected two sets of data including the vertex input values and frame rates over 
six tessellation segments. The first set of data consisted of inputs between 120,000 
and 920,000 vertices and frame rates (outputs) between 122 and 24 FPS over approxi-
mately 3,500 consecutive rendered frames. The second set consisted of 7,000  ren-
dered frames with the same input and output variables. Approximately 5,200 frames 
were used to derive the model; the remaining frames were used for validation.

In addition to deploying the modelling framework on this application, we 
extended the validation of the framework to a computer game with highly complex 
3D rendering. Figure 3.4 is a screenshot of the “Crysis” computer game (© Crytek). 
A total of 22,000 frames of input and output data were collected using Microsoft’s 
PIX performance profiling toolkit. The first 20,000 frames were used to derive the 
model and the remaining frames served as validation data.

3.5.2 �E xperiment 2: Multiple-Input–Single-Output (MISO) System

Since interactive rendering applications involve complicated processes, we extended 
our modelling framework to support multiple inputs in Experiment 2. In contrast to 
previous research [20,21,24] that did not focus on shading (an important aspect of 
3D rendering), we demonstrated through Experiment 2 that more than one property 
may be captured by our framework. In particular, we developed a shader program 
that accepts a numeric value between 1 and 6 to control the quality of the surface 

FIGURE 3.3  (See colour insert.) Screenshot of hardware tessellation sample application 
from DirectX SDK adapted with Stanford Dragon model in Experiments 1 and 2.
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shading of the 3D object in the application (Figure 3.3). From a causal system per-
spective, this variable is selected because of its independence from the geometry 
input variable. No tight coupling exists between the shader complexity variable used 
in the raster stage of the rendering pipeline and the input geometry typically used in 
the pre-rasterisation stage.

In the data collection process in Experiment 2, we manipulated the vertex input 
to the rendering process by changing the tessellation segments and the shader com-
plexity values at various tessellation levels. The corresponding frame rate changes 
were registered. Of the 14,000 frames collected, 12,000 frames were used for 
model derivation and the remainder for validation. From Experiment 2, the derived 
model allowed us to extrapolate the framework to support multiple inputs in more 
complicated rendering processes.

3.5.3 �E xperiment 3: Control Framework Using System Model

The objective was to construct a simple control framework using a system model 
derived from the aforementioned modelling process. We selected another appli-
cation from the DirectX toolkit that used a progressive mesh control mechanism 
(Figure 3.5). The technique is similar to geometry tessellation and has been adopted 
widely in many interactive graphics applications to achieve fine resolution control 
of a 3D object’s geometry. After a model of the rendering process was derived, we 
introduced the concept of a controller to manage the input to the rendering pro-
cess to produce a rendering framework that offered stability and conformed to a 
user-defined frame rate.

In Experiment 3, we collected 60,000 frames of data; 50,000 were used for model 
derivation and the remainder for validation of the system model. The input data 

FIGURE 3.4  (See colour insert.) Screenshot of application in Experiment 1.
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ranged from 38,000 to 45,000 vertices and the frame rate (output) between 330 and 
400 FPS (see Figure 3.13).

After we obtained the rendering system model in MATLAB®, we exported it to 
Simulink® for control system design. In Simulink, we constructed a feedback loop 
and introduced a PID controller to correct the error between the simulated model 
output and the user-defined performance target (frame rate). In a similar way, this 
architecture may be implemented in interactive rendering software to achieve a con-
stant frame rate.

All experiments were run on a desktop computer with an Intel Core2 Quad CPU 
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics 
processor hardware (with 4 GB video memory) on a 64-bit Windows 7 operating 
system. Since the experiments were run on a generic Windows PC, we were aware 
of the system processes that may have shared the computing resources during data 
collection. To best preserve the integrity of the experiment data, changes of inputs 
to the rendering process were introduced programmatically rather than via mouse 
input. The system identification toolbox [31] in MATLAB/Simulink was used for 
modelling rendering processes in all the experiments.

3.6 � RESULTS

3.6.1 �E xperiment 1

Using the sample application from DirectX SDK as shown in Figure 3.3, we can 
observe from Figure  3.6 that as the input vertex count increases due to greater 
tessellation, the frame rate decreases. This relationship is further plotted in Figure 3.7 
where the impact on frame rate due to vertex count increase is shown.

FIGURE 3.5  (See colour insert.) Screenshot of application in Experiment 3.
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For an ideal linear system, the hardware’s processing capability should remain 
unchanged at all operation ranges. This means that the time taken to process every 
vertex should be constant. However, we can see in Figure 3.7 a non-linear trend in 
vertex processing time as vertex count increases. The relationship may be approxi-
mated with multi-linear segments that fit the curve shown in the same figure. With 
this prior knowledge of the model, we proceed with model identification based on 
data measured in Experiment 1.

The simulated output of the derived model is shown in Figure 3.8. Note that the 
derived model produced reasonably accurate results in comparison to measured data 
with a maximum error less than 5 FPS in steady-state and best fit value of 84%. The 
best fit computation is:

	

Best Fit
y y
y y

   
| |
|

ˆ
= − −

−






1
1

	 (3.13)

where y is the measured output, ŷ is the simulated output, and y  is the mean of 
y. A 100% value corresponds to a perfect fit. This result validates our hypoth-
esis that the range is approximately linear. The model parameters are estimated 
in MATLAB using the system identification toolbox; the values are provided in 
Table 3.2.

In the second part of Experiment 1, we modelled the rendering of computer game 
software as shown in Figure 3.4. Figure 3.9 shows the measured and simulated out-
puts of the system. It is noteworthy that the environment to be modelled becomes 
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FIGURE 3.8  Measured and simulated output of rendering application in Experiment 1.
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more difficult as shown in the varying output levels compared to the first experi-
ment. The actual data captured consist of more spikes due to interruptions from 
other computer processes and the data must be filtered so that a reasonable model 
can be derived. Nevertheless, through the proposed approach, we are able to obtain 
a system model that produced output with an error less than 4 FPS. The parameters 
of this model are presented in Table 3.3.

3.6.2 �E xperiment 2

We extended our modelling framework for rendering to consider more than one 
input. Based on selected combinations of two input variables (vertex count and 
shader value), we generated steady-state output responses of three settings as shown 
in Figure 3.10. Each graph in the figure indicates the steady-state input–output rela-
tionship exhibited by the system based on a certain combination of the values of the 
two inputs. The profiles of the measured inputs and outputs of the actual rendering 
are shown in Figure 3.11. A comparison of the simulated model and the measured 

TABLE 3.2
Parameters of ARX Model in Experiment 1

Parameter Calculation

A(q) 1 – 2.444 q–1 + 2.001 q–2 – 0.5565 q–3 + 4.21e – 006 q–4 + 0.1708 q–5

– 0.4541 q–6 + 0.2823 q–7

B(q) –2.375 × 10–7 q–1 + 3.072 × 10–7 q–2 – 2.84 × 10–7 q–3 – 3.156 × 10–7 q–4

– 1.18 × 10–7 q–5 + 1.263 × 10–6 q–6 – 6.156 × 10–7 q–7

Operating point u = 1.5331 × 105, y = 98.261
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TABLE 3.3
Parameters of State Space Model in Experiment 1	

x1 x2 x3 x4 x5

A x1 0.99984 –0.0057622 0.0037499 –0.00077957 0.0038575

x2 0.0055967 0.99989 –0.011718 0.0050316 0.0021258

x3 –0.0037656 0.011556 0.99982 0.010514 –0.0002729

x4 0.00092734 –0.0051813 –0.010446 0.99965 –0.024729

x5 –0.0035811 –0.0020073 0.00024635 0.024629 0.98977

x6 –0.00046382 0.0023359 –0.0002931 –0.0015093 –0.040291

x7 0.00070039 8.827e–005 0.00030079 –0.00013185 –0.0090756

x8 0.0010839 –0.0010905 0.0004099 0.00070348 –0.0029228

x9 0.0027148 0.0029469 0.0012923 –0.00086137 –0.007816

x6 x7 x8 x9

x1 –0.00011395 –0.0017801 0.00070025 0.0010708

x2 0.00016522 –0.00052253 1.6105e–005 –2.5063e–006

x3 –1.3826e–005 1.2645e–005 1.5497e–006 –3.1376e–007

x4 –0.0020448 0.0045989 0.00012686 –7.5176e–006

x5 0.068805 0.26254 –0.033504 –0.022596

x6 1.0012 –1.3995 0.28977 –0.179

x7 0.091242 0.48047 –0.049181 –0.16667

x8 –0.28184 0.43031 0.18121 –0.94739

x9 0.63828 –2.6907 0.44516 0.19954

u1

B x1 –5.4522e–007

x2 9.7623e–008

x3 6.6177e–009

x4 –1.0667e–006

x5 –1.0271e–005

x6 2.1522e–005

x7 0.00016518

x8 0.00089275

x9 0.00023178

x1 x2 x3 x4 x5

C y1 –138.38 5.7191 –3.9296 –20.813 –0.72794

x6 x7 x8 x9

y1 0.054266 –0.044465 –0.097836 –0.05148

u1

D y1 0

u1

K x1 3.2518

x2 0.84349

x3 –3.5836
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output is shown in Figure 3.12. We can observe that the simulated output tracks 
the measured output very closely—generally less than 2 FPS. Table 3.4 illustrates 
model parameters.

In Figure 3.11, the top and middle diagrams show the variations of the inputs to 
the rendering system while the bottom diagram shows the corresponding changes 
in the output. It can be seen that both inputs are varying during the experiment 
and none is held constant. This is to ensure that the data captured is representative 
of a MISO system model. In Figure 3.12, the top diagram shows the compari-
son of the output of the system model derived from the experiment data and the 
actual measured output. It can be observed that the simulated model output is very 
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FIGURE 3.10  (See colour insert.) Steady-state outputs of the system based on selected 
combinations of two input variables.

TABLE 3.3 (Continued)
Parameters of State Space Model in Experiment 1	

u1

x4 –21.457

x5 18.773

x6 –1.8395

x7 –0.85923

x8 –0.89561

x9 1.1259

Operating 
point

u = 1.4552 × 106, y = 14.6932
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FIGURE 3.11  Profiles of two inputs and output of rendering system in Experiment 2.
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close to the actual measured data signalling a highly accurate system model. The 
diagrams in the middle and bottom are snapshots of the inputs corresponding to 
this measured output.

3.6.3 �E xperiment 3

The objective was to adapt our modelling framework to another application and 
more importantly demonstrate the possibility of constructing a control system that 
provides stable frame rates based on this system model. Again, we first derived 
the rendering process model using experiment data collected from the applica-
tion. Figure  3.13 illustrates a profile of this data. After a suitable system model 
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FIGURE 3.13  Profiles of input and output of rendering system in Experiment 3.

TABLE 3.4
Parameters of ARX Model in Experiment 2

Parameter Calculation

A(q) 1 – 1.937 q–1 + 1.019 q–2 – 0.2182 q–3 + 0.1363 q–4

B1(q) –4.702 × 10–5 q–1 + 4.257 × 10–5 q–2 + 5.496 × 10–5 q–3 – 5.051 × 10–5 q–4

B2(q) 2.918 q–1 – 8.402 q–2 + 7.855 q–3 – 2.37 q–4

Operating point u1 = 1.7839 × 105, u2 = 4.3704, y = 109.0672
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was derived, we compared the output of the model with the actual measured data 
as shown in Figure 3.14. Similar to the comparison of the outputs in Figure 3.12, 
it can be observed that the simulated model produced an error rate less than 5 FPS 
throughout the simulated range. Table 3.5 illustrates model parameters.

Subsequently, we imported this model into Simulink and constructed a PID-based 
controller system as shown in Figure 3.15. We present the performance of this con-
trol system based on its tracking a pre-defined output level as shown in Figure 3.16. 
Note that the rendering system output follows the user-defined reference very closely 
at steady state and within a very short time without overshoot or oscillation.

To further validate our control framework, we replaced the system model with the 
actual rendering process in a separate test. The PID controller block was executed 
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FIGURE 3.14  Measured and simulated rendering system output in Experiment 3.

TABLE 3.5
Parameters of ARX Model in Experiment 3

Parameter Calculation

A(q) 1 – 4.159 q–1 + 5.814 q–2 – 1.659 q–3 – 3.322 q–4 + 3.158 q–5 – 0.8321 q–6

B(q) 1.007 × 10–5 q–1 – 5.033 × 10–5 q–2 + 0.0001007 q–3 – 0.0001008 q–4

+ 5.045 × 10–5 q–5 – 1.011 × 10–5 q–6

Operating point u = 4.1809 × 104, y = 356.7121
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on a different computer and communicated with the rendering process via a network 
link using the transmission control protocol (TCP). The purpose of such a modi-
fied design was to avoid the interference and loading of the rendering process from 
MATLAB computation. The output of this experiment is shown in Figure 3.17.

Note from Figure 3.17 that the actual rendering application tracks the pre-defined 
reference level accurately as in the previous case. The steady-state error is negligible 
(less than 1% of the reference value), further reinforcing the validity of our system 
model and control framework.

3.7 � DISCUSSION

One challenge we faced in this research was the stability of frame rates during data 
collection. We noted that frame rates on certain computers fluctuated even with-
out changes in input geometry or user-controlled events such as mouse movement 
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and keyboard input. Furthermore, in our analysis of the dynamics of the rendering 
process, we observed various step-like interruptions in the frame rate changes that 
persisted for a certain period. We attribute this phenomenon to hardware or software 
operations such as driver wait states and memory transport delays. Furthermore, 
current tools available to us do not allow access to sufficiently low-level operations 
to identify these interruptions and irregularities.

As indicated in previous research [32,33,34], common performance metrics in 
interactive rendering affect mainly frame rate and image quality. In this research, 
frame rate was selected over image quality because it is well known that computation 
at image level is resource intensive [29] and assessment of image quality metrics may 
be subjective. Furthermore, research indicates that frame rates exert greater impact 
on user perception and response [35,36,37] in many applications.

As noted in previous research [24,27] that reactive rendering time control tech-
niques cannot deal well with abrupt changes in scene load because the resultant 
oscillations in frame rates may negatively affect the user experience. We have shown 
in this research that our data-driven modelling framework provides an important 
basis for application of a control strategy that generates stable frame rates without 
noticeable oscillation. These are the benefits of employing system modelling and 
control techniques in the real-time computer graphics domain.

3.7.1 �C omparison with Other Estimation Techniques

Many application developers may intuitively perceive the real-time rendering process 
as linear and thus use simplistic mathematical models to estimate its performance. 
In this section, we validate the accuracy of our data-driven modelling framework by 
comparing its outputs with those of two other intuitive estimation models based on a 
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general relationship between the input and output of the rendering system. They are 
formulated mathematically as shown in Equation (3.14):

	
t k mframe vc= ×    	 (3.14)

where tframe is the time taken to render a frame and mvc is the rendering load repre-
sented by the total number of vertices used in rendering the 3D scene. In the first 
formulation, we want to express k as a factor estimated from all the training data. 
In the second formulation, k is expressed as an average of the previous n rendered 
frames. Based on this formulation, we may represent Equation (3.14) as a single 
best-fitting line segment expressed as:

	
f x p x p( ) = +1 2 	 (3.15)

where f(x) is the function describing the line segment, p1 is the gradient of the line 
and p2 is the vertical axis intercept. Hence k in (3.14) and p1 from above may be 
associated directly as:

	
k p= 1 	 (3.16)

Using the curve fitting technique from the MATLAB toolbox, we obtain the line 
segment for the operating range in Experiment 1 with p1 as 5.166 × 10–8. With refer-
ence to the experiment data in Figure 3.7, given the input vertex count of 120,000, 
the estimated frame time using the value of p1 is 0.0061992 s. This translates to a 
frame rate of 161.3111. However, the measured frame rate is approximately 104, 
yielding the error from this formulation as 57 FPS—in stark contrast to our model’s 
output that is much more accurate. Over the entire tested range, the error between 
our model’s output and the measured output is less than 5 FPS.

Next, we want to compare our system model with another that takes into account 
the k factor for previous frames instead of a single k factor for estimating frame 
time at any input point. Mathematically, this second model can be expressed as the 
n-moving average s given a sequence ai i

N{ } =1 taking the average of n terms.

	

s
n

a
j i

i n

j=
=

+ −

∑1
1

	 (3.17)

Therefore, each term a in the context of Equation (3.17) is the k factor estimated 
from a window of x number of frames. This gives us a set of values for k over the test 
range. The final value of k used for estimating the frame time corresponding to the 
experiment data is averaged over the number of predecessor sets. With reference to 
Figure 3.7, the following are obtained:

	 1.	The moving average of the gradient with a window of one frame is 
7.1423  ×  10–4. The estimated frame rate at a steady-state vertex count 
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input of 120,000 is 85.7076 FPS. However, the measured frame rate is 
approximately 104. Hence the error is approximately 18.3 FPS.

	 2.	The moving average of the gradient with a window of 200 frames is 
7.0482 × 10–4. The estimated frame rate at a steady-state vertex count input 
of 120,000 is 84.578. However, the measured frame rate is approximately 
104. Hence the error is approximately 19.4 FPS.

	 3.	The moving average of the gradient with a window of 500 frames is 
6.6301 × 10–4. The estimated frame rate at a steady-state vertex count input 
of 120,000 is 79.56. However, the measured frame rate is approximately 
104. Hence the error is approximately 24.44 FPS.

The above results obtained from the second frame time estimation technique show 
errors approximately four to six times larger than the output from the system model 
using our proposed approach. In brief, our modelling framework out-performs both 
the first and second estimation techniques.

3.8 � SUPERPOSITION IN 3D RENDERING SYSTEM MODEL

The system models derived in the previous sections are based on a specific configu-
ration of the rendering state machine. In this section, we want to further investigate 
and extend the proposition of a system model for the rendering process that may be 
broken down further into multiple system models. In the context of real-time render-
ing, this may be explained as the dissection of a rendering process into its constituent 
components. Why is this important? The formulation of a rendering process system 
model if proven to adhere to the principle of superposition is pivotal for gaining the 
following benefits:

•	 The output of a combination of rendering processes can be determined 
without additional modelling.

•	 A suitable controller can be designed for each constituent rendering process 
model. This provides greater flexibility and accuracy in controlling the out-
put of the combined rendering process.

At this juncture, we want to establish the validity that each constituent process sys-
tem model contributes to the combined rendering system model. A hypothesis in 
componentised modelling of 3D rendering based on the principle of superposition 
is proposed.

3.8.1 � Principle of Superposition

In system theory, the net response at a given place and time caused by two or more 
stimuli for linear systems is the sum of the responses that would have been caused 
by each stimulus individually. Thus, if input A produces response X and input B 
produces response Y, input (A + B) produces response (X + Y). Mathematically, for 
all linear systems, y = F(x) where x is some sort of stimulus (input) and y is some 
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sort of response (output), the superposition of stimuli yields a superposition of the 
respective responses such that:

	 F x x x F x F x F xn1 2 3 1 2+ +…+( ) = ( )+ ( )+…+ ( ) 	 (3.18)

Using the same principle, we propose that the overall rendering function of an appli-
cation is equivalent to the sum of the individual functions of the batch jobs lined in 
the render queue. To further illustrate, consider a 3D scene with n 3D objects, each 
with polygon count xn. The total number of polygons X would be:

	 X x
m

n

m=
=

∑
1

	 (3.19)

Based on the principle of superposition in Equation (3.19), we draw the parallel 
analogy that the time taken to render all objects in a scene is equivalent to the sum 
of the time taken to render each of the individual 3D objects in the scene as given by 
the following equation:

	 F X f x
m

n

m( ) =
=

∑
1

( ) 	 (3.20)

where F is the system model of the parent rendering process and f denotes the system 
model of the separate rendering processes, all obtained through black-box modelling. 
The assumptions associated with this hypothesis are:

•	 State changes and context switch overheads between rendering the 3D 
objects are negligible.

•	 All objects render within the linear range of the rendering model of the 
application.

•	 The application’s rendering process is largely partitioned by its content as well.

3.8.2 �E xperiment

To validate our hypothesis, we designed an experiment. A 3D rendering application 
able to display multiple and different types of objects in a single scene was selected. 
Each type of object was to be rendered in a different way and the number of objects 
of a type were to be changed during runtime by a user-specified variable. At any time 
during a run, one or more categories of objects could be rendered.

The application was first set to run with display of only a certain type of object. 
A  data set was defined to consist of a frame rate (output) and total number of 
objects/triangle count (input) of a type of object. A series of data sets were collected 
over various object counts within a certain range allowed in the application. The 
purpose of this step was to collect data so that the rendering process involving one 
type of object could be modelled.
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Step 2 was run again with another type of object and the same types of data were 
collected. This process was repeated for all types of objects in the 3D scene to enable 
us to derive the system models for rendering all types of objects separately.

Finally, the application was run with all types of objects displayed and data 
sets collected by varying the object counts for all the objects. The purpose of this 
step was modelling the full application so that the overall system model could be 
compared with the sum of the individual system models obtained in steps 1 and 2.

3.8.2.1 � Test Application
A test application was adopted from the NVIDIA DirectX 9.5 SDK. This sample 
application demonstrated rendering using the hardware instancing technique. The 
3D scene in this application consisted of three types of objects (rocks only, space-
ships only, and both rocks and spaceships as shown in Figure 3.18). The test applica-
tion allowed the user to switch off the rendering for any type of object and change 
the number of objects (for each type) to be rendered as well.

Our data collection procedure started by setting the application to render only one 
type of object (rocks). The triangle count (input) and frame rate (output) data pairs 
were collected over multiple object counts within the allowed range. The application 
then ran with only spaceships displayed. The same data pairs were then collected 
for a range of object counts. Subsequently, the application was run with both types 
of objects and the same data collection process. The intent was to constrain the 
rendering process to specific types of objects so that we could perform black-box 
modelling to develop the respective system models.

FIGURE 3.18  (See colour insert.) Screenshot of test application in superposition experiment.
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3.8.3 �S imulation

By using the MATLAB system identification toolbox and the collected data, we 
generated the following ARX models for the rendering process:

Model A: only rocks
Model B: only spaceships
Model C: both rocks and spaceships

Figure  3.19 compares the outputs of the measured and system models from the 
rendering process for rocks only. Figure  3.20 presents the same comparison of 
rendering only for spaceships. Finally, the output of Model C is compared with the 
measured data in Figure 3.21.
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FIGURE 3.19  Measured output and predicted output from Model A.
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43Linear Model Analysis of Real-Time Rendering

We can observe from these figures that the outputs from the derived system 
models match closely with the actual measured outputs from the rendering process. 
Model A’s output has a mean error of less than 0.2 ms over a validation range of 
10,000 frames. Model B’s output mean error is approximately 3 ms for 17,000 frames. 
Figure 3.21 indicates that the mean error from Model C’s output is approximately 
1 ms over 11,000 frames which may be considered very low.

Recall from Section 3.8.1 the description of the principle of superposition based 
on Equations (3.18) and (3.19). The accuracy of the derived system models allowed 
us to proceed further with validating the principle of superposition by comparing the 
sum of the individual output of Models A and B with the output of Model C as shown 
in Equation (3.18) based on the same input data.

From Figure 3.22, we can see that the outputs from Models A and B follow that of 
Model C very closely. From the experiment data, the peak error is less than 3 ms and 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

Frame

Ti
m

e (
m

s)

Output of Model C versus the Output from Models A and B

Output of Model C
Output of Models A and B

FIGURE 3.22  Comparison of outputs from Model C and summed outputs of Models A and B.



44 Real-Time Rendering

the mean error is approximately 1 ms for 2,000 frames. The parameters of the three 
rendering application system models are presented in Tables 3.6 to 3.8.

3.8.4 �S ummary

In this section, we proposed the compliance of the rendering process to the principle 
of superposition and validated this hypothesis systematically via experiments. This 

TABLE 3.7
Parameters of ARX Model B in Superposition Experiment

Parameter Calculation

A(q) 1 – 3.008 (+ –0.000723) q–1 + 3.023 (+ –0.001451) q–2 – 1.015 (+ –0.0007297) q–3

B(q) 0.0001093 (+ –4.514 × 10–6) q–8 – 0.0004042 (+ –1.786 × 10–5) q–9

+ 0.0005572 (+ –2.66 × 10–5) q–10 – 0.0003383 (+ –1.767 × 10–5) q–11

+ 7.605 × 10–5 (+ –4.42x10–6) q–12

Operating point u = 2.3494 × 105, y = 17.5628

TABLE 3.8
Parameters of ARX Model C in Superposition Experiment

Parameter Calculation

A(q) 1 – 6.471 (+ –0.007594) q–1 + 18.07 (+ –0.04455) q–2 – 28.26 (+ –0.1099) q–3

+ 26.77 (+ –0.1459) q–4 – 15.38 (+ –0.11) q–5 + 4.969 (+ –0.04464) q–6

– 0.6968 (+ –0.007617) q–7

B(q) 1.233 × 10–6 (+ –3.072 × 10–7) q–9 – 6.191 × 10–6 (+ –1.516 × 10–6) q–10

+ 1.25 × 10–5 (+ –3.01 × 10–6) q–11 – 1.269 × 10–5 (+ –3.006 × 10–6) q–12

+ 6.483 × 10–6 (+ –1.51 × 10–6) q–13 – 1.332 × 10–6 (+ –3.05 × 10–7) q–14

Operating point u = 1.6427 × 105, y = 25.2834

TABLE 3.6
Parameters of ARX Model A in Superposition Experiment

Parameter Calculation

A(q) 1 – 4.984 (+ –0.001374) q–1 + 9.943 (+ –0.005488) q–2 – 9.925 (+ –0.008229) q–3

+ 4.958 (+ –0.005488) q–4 – 0.9914 (+ –0.001374) q–5

B(q) 9.906 × 10–14 (+ –1.729 × 10–13) q–1

Operating point u = 1.1526 × 105, y = 22.0855
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investigation leads to the conclusion that the summation of separate rendering pro-
cess outputs (frame rates) is equivalent to the output of a single system model using 
the combined inputs. In terms of research significance, an accurate system model 
can be built upon by the concatenation of separate constituent rendering processes. 
This is particularly useful when devising a system model for a complicated render-
ing process is difficult. Furthermore, this principle provides a user with additional 
flexibility to manipulate application rendering at a higher resolution.

3.8.5 �A dditional Notes

With reference to Equations (3.18) and (3.19), it is important to note that the math-
ematical representation of the system model f is not unique even though it produces 
the same stable state output given a same set of input and rendering states. This 
is because the dynamics of the rendering system will vary at different operating 
(input and output) ranges.

3.9 � CONCLUSION

In this chapter, we demonstrated in a systematic manner how our proposed 
data-driven modelling framework can produce accurate linear models of real-time 
rendering for a variety of applications. We illustrated the extensibility of our frame-
work to handle multiple inputs and validated the accuracy of the resultant model. 
More importantly, we validated the case by which the models produced by such 
a framework are ultimately useful in the context of interactive rendering with the 
introduction of a controller. Finally, our control system is able to eliminate the frame 
rate oscillation problem found in typical reactive scheduling frameworks.

Our framework is designed to work on polygonal-based rendering pipelines found 
in commodity graphics hardware and it leverages geometry subdivision as a primary 
basis for process modelling. As a future research endeavour, we will try to expand 
the scope of the model variables for various types of rendering processes wherever 
appropriate and possible.

At this juncture, our work is largely based on the subdivision of a single large 
mesh. This is useful for applications involving a single object of interest such as 
massive model rendering and computer-aided design. However it can be extended to 
support multiple progressive meshes in more elaborate applications such as games.
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4 Modelling Non-Linear 
Rendering Processes

4.1 � INTRODUCTION

The real-time rendering process is inherently non-linear [38]. This can be understood 
from the fact that computer systems on which software runs are constructed using 
electronic components that exhibit non-linear material properties. Consequently, 
using a single linear model to describe the behaviour of a non-linear system would 
be inadequate. In this chapter, we describe an approach by which this non-linear 
characteristic can be captured sufficiently with appropriate system models using 
advanced techniques in soft computing.

4.2 � BACKGROUND

4.2.1 �S ystem Modelling with Neural Networks

In system identification, it is often necessary to begin with the assumption that 
the underlying model is linear and then apply the appropriate model structures 
described above. However, an actual system may not always exhibit linear char-
acteristics throughout an operating range. For example, research conducted by 
Hook and Bigos [38] showed that the time required to process a single vertex varies 
even when parameters such as rendering states and display resolution are fixed. 
Therefore, it is useful to conduct a comprehensive analysis to better understand the 
dynamics of a system.

In this research, we introduce the application of artificial neural networks (ANNs) 
to model the non-linearity in the real-time rendering process. Soft computing tech-
niques based on the artificial neuron proposed by McCulloch and Pitts [39] spread 
widely into many other fields of study in recent decades. The distinctive nature of the 
artificial neurons in various network configurations provided the capability to model 
both linear and non-linear systems with good accuracy.

The first artificial neuron proposed by McCulloch and Pitts mimicked the func-
tioning of biological neurons through a multiple-input–single-output model. The 
artificial neuron is essentially a processing unit that sums the weighted values of its 
inputs to produce an intermediate output that is then fed as an input to an activation 
function that produces the final output. An ANN is formed with layers of inter
connected neurons and is frequently used to simulate the functions of many systems.

Figure  4.1(a) illustrates the structure of the artificial neuron. ANNs must be 
trained to capture the characteristics of the systems they model. Training algorithms 
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for neural networks such as the back-propagation [40] and Levenberg-Marquardt [41] 
methods were developed to compute the weights and biases for inputs.

We adopted neural networks in our research for modelling the rendering pro-
cess because of their ability to capture information from complex, non-linear, 
multi-variate systems without the need to assume underlying data distribution or 
mathematical models. In recent years, the popularity of using multi-layer percep-
tion networks has increased due to their successes in real-world applications such as 
pattern recognition and control applications.

Dynamic neural networks use memory and recurrent feedback connections to 
capture temporal patterns in data. Waibel et al. [42] introduced the distributed time 
delay neural network (DTDNN) for phoneme recognition. An extension of this 
network structure gives the flexibility to have tapped delay line memory at the input 
to the first layer of a static feed-forward network and throughout the network as well. 
For general discussion, a two-layer DTDNN is presented in Figure 4.2.

The choice of using ANNs to model a computing process such as real-time 
rendering may be explained easily. First, the dynamics of an ANN arising from delay 
units within its structure provides an inferred correspondence with the architecture 
of current computing hardware. To illustrate, a delay usually occurs in embedded 
circuits when data are transferred between the processor and memory units.
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FIGURE 4.1  (a) Perceptron neuron. (b) Multi-layer perceptron network (MLP).
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Second, the ANN’s layered network structure makes it easy to extend by cascading 
ANNs together for modelling modular systems. For example, to model a compli-
cated system it may be possible to break down the process into modelling individual 
subsystems using simple ANNs and then joining them together. This is certainly 
applicable in the context of computer software since modern programming para-
digms emphasise modularity and object-oriented principles.

4.2.2 �S ystems Modelling with Fuzzy Logic

Fuzzy set theory and fuzzy control have been implemented successfully in many 
technical fields. The primary benefit offered by the fuzzy control paradigm is its 
ability to emulate human control based on linguistic variables and a set of intuitive 
expert rules used as a decision or inference system. In comparison to conventional 
control techniques, the advantages of the fuzzy control paradigm are twofold.

First, it imposes no requirement for a mathematical model of the system to be 
controlled. This is especially important and useful as it may be difficult to derive 
certain process models due to their complex dynamics and some systems cannot 
be modelled using first principles. Second, the fuzzy controller works on relatively 
straightforward computation and can be developed to handle non-linear processes 
empirically in practice without the need for complicated mathematics.

In addition, fuzzy logic is tolerant of imprecise data. Systems with reliable perfor-
mance can be built using fuzzy logic that leverages the experiences of experts. In direct 
contrast to neural networks that use training data and generate system models, fuzzy 
logic allows a user to rely on the experiences of humans who understand the system.

Furthermore, fuzzy logic can be blended with conventional control techniques. 
In many cases, fuzzy systems augment them and simplify other implementations. 
Finally, fuzzy logic is based on natural language that provides a strong basis for human 
communication. As a result, fuzzy logic is easy to use. These advantages translate to its 
appeal as a practical solution to real world control problems involving implementation.
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FIGURE 4.2  Two-layer distributed time delay neural network with time delays at inputs of 
each layer. The notations with their respective meaning or representative are:

U, the input layer
d, the delay
Wn, where W is the weight and n represents the nth layer
Bn where B is the bias and n represents the nth layer
Fn, where F is the firing function and n represents the nth layer
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In general, a fuzzy inference system (Figure 4.3) consists of five functional com-
ponents:

	 1.	A fuzzification process that transforms discrete values (inputs) into various 
degrees of membership with linguistic values

	 2.	A rule base containing a set of fuzzy if–then rules
	 3.	A set of membership functions of the fuzzy sets used in the rule base
	 4.	A decision-making process that performs fuzzy inference operations on 

the rules
	 5.	A defuzzification process that maps fuzzy results from the inference engine 

to a crisp output

The process for fuzzy reasoning performed by a fuzzy inference system is as follows.

	 1.	Fuzzify the input values by comparing the input variable with the member-
ship function to obtain their corresponding membership values.

	 2.	Combine the membership values of all the premise components to find the 
firing strength of each rule.

	 3.	Generate the consequent results from each rule depending on the firing 
strength.

	 4.	Defuzzify the results by aggregating the qualified consequents to produce 
the final crisp value.

The development of a fuzzy control system begins with the two key components: 
(1) the input–output membership functions describing the properties of the system 
(fuzzy sets) based on linguistic variables and (2) the rule-base that relates the 
input–output sets. Given an antecedent and consequent relationship between an 
input y to a SISO system’s output u using linguistic descriptions of their properties, 
the calculation may be represented as

	 IF y Y THEN u Uj j           ∈ ∈ 	 (4.1)

Fuzzification Defuzzification

Decision making

Knowledge Base

Database Rule base

Input Output

FIGURE 4.3  (See colour insert.) Fuzzy inference system.
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In each universe of discourse, Ui and Yi and ui and yi take on values with correspond-
ing linguistic variables ui

� and yi
�  that describe the characteristics of the variables. 

Suppose Ai
j�  denotes the jth linguistic value of the ui

� linguistic variable defined over 
the universe of discourse Ui. If we assume that many linguistic values are defined 
in Ui, the linguistic variable ui

� that takes on the elements from the set of linguistic 
values may be denoted by Equation (4.2).

	 A A j Ni i
j

i
� �= = …{ }  : , , ,1 2 	 (4.2)

In the same manner, we can consider that Bi
j�  to denote the jth value of the linguistic 

variable yi
�  defined over the universe of discourse Yi. yi

�  may be represented by ele-
ments taken from the set of linguistic values denoted by the following equation.

	 B B p Mi i
p

i
� �= = …{ }  : , , ,1 2 	 (4.3)

Given a condition where all the premise terms are used in every rule and a rule is 
formed for each possible combination of premise elements, we have rule set with Ni 

number of rules that can be expressed as:

	
i

n

i nN N N N
=
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1

1 2 …   	 (4.4)

Based on the membership functions, the conversion of a crisp input value into its 
corresponding fuzzy value is known as fuzzification. The defuzzification of the 
resultant fuzzy set from the inference system to a quantifiable value may be done 
using the centroid (centre of gravity) method [43]. The principle is to select the value 
in the resultant fuzzy set such that it would lead to the smallest error on average 
given any criterion. To determine y*, the least square method can be used and the 
square of the error is accompanied by the weight of the grade of the membership 
function  µB u( ). Therefore, the defuzzified output y* may be obtained by finding a 
solution to the following equation.

	 y y y y du
y

B
* *argmin

*
= ( ) −( )∫µ

2
	 (4.5)

Differentiating with respect to y* and equating the derivative to zero yields:

	 y
y y dy

y dy

Y
B

Y
B
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( )
∫
∫

µ

µ
	 (4.6)

which gives the value of the abscissa of the centre of gravity of the area below the 
membership function µB u( ).
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4.3 � EXPERIMENTS
In this section, we describe the experiments conducted to model two real-time ren-
dering applications. The approaches are premised upon the neural network and fuzzy 
modelling techniques mentioned in Section 4.2. In all experiments, empirical data 
consisting of the per-frame triangle count and frame rate were collected from the two 
different applications running on a Pentium IV, 3.2 GHz processor with 2 GB RAM 
and NVIDIA’s GeForce 6800 graphics board.

In the data collection process, the user is free to move the camera view to simulate 
common navigation patterns or object manipulation in virtual environments. This 
action is designed so that a wide range of polygon loads and a good combination of 
rendering features may be captured. All applications rendered the animated frames 
in real time according to the input of the user.

4.3.1 �T ime Delay Neural Network

To illustrate the applicability of time delay neural networks in modelling the render-
ing process, we selected two applications with different levels of complexity. The 
first application was developed to encompass most common rendering parameters in 
applications such as textures, fog, lighting, animation, shader effects, and moderate 
depth complexity. It consisted of a scene populated by hundreds of instances of a 
3D object (a virtual character with a certain surface shading effect) appearing with 
an animated landscape. A screenshot of this application is provided in Figure 4.4.

In contrast to the more controlled environment in the first experiment, the appli-
cation in the second experiment was taken from a popular game software system 
called “Serious Sam 2”© (2KGames, www.croteam.com). The test case was selected 
for its complex rendering functions and scene composition. Figure 4.5 is a screenshot 
of this software.

In the second experiment, a certain game environment was selected based on 
the level of complexity and the rendering statistics were collected. To capture the 
low-level data used in the real-time rendering processes, we used Microsoft’s DirectX 
tool, PIX Performance Analyzer [44], and utilities from NVIDIA’s NVPerfKit [45]. 
The MATLAB® Neural Network Plant Identification Tool [46] was utilised for 
modelling the rendering process.

In accordance to the system identification methodology described in Chapter 3, a 
neural network was first selected as the model structure. The collected data were fed 
into the neural network to train it to generate an accurate mapping of the relationship 
between the input triangle count and the output frame rate. Different neural network 
structures and parameters were tested to determine the best fitting model. This 
process continued iteratively until the performance objective (a numeric quantity 
describing the difference between the predicted and actual frame rates) was met. The 
same procedure was repeated for both experiments.

4.3.2 �A daptive Neuro-Fuzzy Inference System (ANFIS)

In addition to neural networks, we introduced the concept of using fuzzy system 
modelling for real-time rendering in Section 4.2.2. In Experiment 3, we adopted the 
adaptive neuro-fuzzy inference system (ANFIS) to achieve this objective.
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FIGURE 4.4  (See colour insert.) Screenshot of application in Experiment 1.

FIGURE 4.5  (See colour insert.) Screenshot of application in Experiment 2.
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The adaptive neuro-fuzzy inference system was introduced by Jang [47]. It is 
essentially a fuzzy inference system implemented in the framework of adaptive net-
works. The proposed architecture utilises a learning procedure of the adaptive net-
work which is a superset of general feed-forward neural networks with supervised 
learning capability.

Based on this adaptive design, the outputs of the framework depend on parameters 
pertaining to the nodes involved and the learning rule specifies how the parameters 
should change to minimise a prescribed error metric. The back-propagation algorithm 
or least square method may be used in such computation. The relative advantage is 
that this technique is capable of automatically constructing an input–output map-
ping based on both human knowledge and experimental data. Figure 4.6 presents the 
design of a basic ANFIS.

The mathematics behind the ANFIS architecture is described as follows. First, 
we assume a given adaptive network with L layers and k nodes in the Kth layer. We 
use the notation (k, i) to describe the node at the ith position of the Kth layer with its 
node function Oi

k. In neural networks, node output is determined by the input signals 
and the note parameter set. Hence we denote this output by yi

k:

	 y O O O a b ci
k

i
k

i
k

k
k= … …( )−
−
−1
1
1, , , , ,   	 (4.7)

where a, b, c… are the parameters of this node. Next, assuming the given data has 
P entries, the error metric for the pth entry may be defined as the sum of squared errors:

	 E T Op

m

L

m p m p
L= −( )

=
∑

1

2
, , 	 (4.8)

Tm,p is the mth component of the pth target output vector, and Om p
L

,   is the mth compo-
nent of the actual output vector produced by the presentation of the pth input vector. 
The overall error measure is given by:

	 E E
p

P
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=

∑
1

	 (4.9)
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FIGURE 4.6  Adaptive network.
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The learning procedure using gradient descent over the parameter space requires error 
rates to be computed for the pth training data and for each node’s output O given by:

	
∂
∂

= − −( )E

O
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i p
L i p i p

L

,
, ,2 	 (4.10)

The error rate for the internal node at (k, i) can be derived using the chain rule:
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where 1 ≤ k ≤ L − 1. Given α as a parameter of the given adaptive network, we have
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where S is the set of nodes whose outputs depend on α. We can get the derivative of 
the overall error measure E with respect to α with Equation 4.13.
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Furthermore, we can describe the update formula for α as Equation 4.14.

	 Δα
α

= − ∂
∂

n
E

	 (4.14)

in which n is the learning rate.
Equations (4.6 to 4.14) describe the structure and learning process of the adaptive 

network. In an ANFIS architecture, this network should be functionally equivalent 
to a fuzzy inference system. To illustrate this mapping, consider a simple case of an 
ANFIS system with two inputs x1 and x2 and one output, y. Suppose the rule-base 
contains two fuzzy IF-THEN rules. Then we may write

Rule 1: IF x1 is A1 and x2 is B1, THEN f1 = p1x1 + q1x2 + r1

Rule 2: IF x1 is A2 and x2 is B2, THEN f2 = p2x1 + q2x2 + r2

where A and B are antecedents and f is the output of the neuron (node) in the same 
layer, p, q and r are the parameters specific to the node. In the adaptive network, 
the membership function describing an antecedent can be denoted by the following 
node function.

	 O xi Ai
1 = ( )µ 	 (4.15)
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where x is the input to the node i, A the linguistic label (antecedent) associated with 
this node function. In terms of the choice of membership function characteristics, 
Jang [47] proposes the typical bell-shaped function, which is adopted in this research 
and found to be adequate with minor adjustments.

For practical applications, the modelling approach using ANFIS is similar to many 
system identification techniques. First, a hypothetical parameterised model structure 
that relates the inputs to membership functions to rules to outputs to membership 
functions is selected. Thereafter, a set of input-output data collected from an experi-
ment is used for the ANFIS training. A portion of the same set of data is reserved 
for validation of the derived system model. In an iterative manner, the FIS model can 
be trained to emulate the data presented to it by modifying the membership function 
parameters according to a chosen error criterion.

4.4 � EXPERIMENT RESULTS

4.4.1 �T ime Delay Neural Networks

The neural network used to model the first application consisted of a MLP network 
with two layers, six units, and three delay units in each of the input and output chan-
nels. The second neural network differed and contained just four delay units in both 
the input and output channels. The neural network used to model the first application 
is shown in Figure 4.7.

In Figure 4.8, the diagrams at top right and bottom right show the measured and 
predicted output frame rates of the application and neural network, respectively. The 
difference between them is shown in the graph at bottom left. The graph in the top 
left corner shows the input (triangle count per frame) to the neural network model 
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over the test period. The mean difference between the frame rates generated by the 
neural network model and the actual application was 0.00455.

In the same order, the graphs for the second experiment using the game are shown 
in Figure 4.9. The neural network was able to model closely the characteristics of 
the rendering process in the second application with a mean difference of 0.00896 
in frame rate. All networks were trained using the Levenberg-Marquardt algorithm 
over 200 epochs for over 5,000 frame samples.

4.4.2 �ANFIS  Model

In Experiment 3, 120,000 input and output data pairs, each consisting of a vertex 
count and frame rate, were collected. Figure 4.10 is a screenshot of the 3D rendering 
application. Eighty thousand data pairs were used for training the ANFIS and the 
remaining data pairs for validation. We used the ANFIS tool from the MATLAB 
Fuzzy Logic Toolbox for the design and training of the fuzzy inference system.

The ANFIS model output was compared with the user-defined reference out-
put in Figure  4.11. We can observe from the figure that the output of the ANFIS 
model closely follows the reference output. The error over the entire duration of the 
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FIGURE 4.10  (See colour insert.) Screenshot of rendering application in Experiment 3.
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experiment was less than 5 FPS. A delay registered in the experiment results may be 
attributed to the latency between the connected peripherals in the experiment setup.

4.5 � DISCUSSION

The common objective of our tests was to derive an accurate system model of the 
rendering processes. While it may seem ideal to have a single model for all appli-
cations, a single model is impractical because various rendering applications have 
different dynamics and vary in the numbers of components contributing to the final 
render time.

For example, applications differ in the types and numbers of processes such as net-
work communication, application logic, and input–output computations. Hence it is not 
a trivial task to derive a universal model for all rendering applications. Furthermore, a 
generalised model would not necessarily be useful because it might not provide a user 
with a set of components that could be used easily in the rendering process.

Another benefit from using soft computing techniques such as neural networks 
and fuzzy systems is that they provide greater convenience for modelling wider 
operating ranges compared to using linear model structures. They eliminate the 
need to conduct several tedious data collection procedures over an operating range.

Furthermore, when a satisfactory model is derived, there is no need to re-train the 
neural network or ANFIS unless the construct of the application changes. As to speed 
of modelling, the training of our neural networks typically required fewer than 3 min-
utes for a dataset of approximately 5,000 data points on a mid-end desktop computer.
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Finally, we provide the mathematical basis by which even linear models can be 
derived from the non-linear models obtained from empirical data in Section 4.6.

4.6 � LINEARISED APPROXIMATION FROM NON-LINEAR MODELS

This section introduces linearisation of a non-linear system model (at a particular 
operating point) such as the ANN described previously. The need to extract linear 
properties of a non-linear model often arises because many systems function largely 
in a specific range instead of spanning an entire operating range. Furthermore, it is 
easier to work with linear systems due to the mathematics involved. With reference 
to Figure 4.7, it is possible to envision how a non-linear function may be approxi-
mated by a series of linear segments over different ranges.

We provide the mathematical derivation for linearisation of a DTDNN below. 
The linearised model takes the form of state space [8] equations that are common 
in many system identification and control studies. In addition to their maturity in 
the field of mathematics, state space equations provide mathematical constructs that 
leverage linear, first-order derivative variables that are convenient for both computa-
tion and extension. For linear systems, the state space equations are:

	 x k Ax k Bu k Ke k+( ) = ( )+ ( )+ ( )1 	 (4.16)

	 y k Cx k Du k( ) = ( )+ ( ) 	 (4.17)

where x(k) is the state vector, y(k) is the system output, u(k) the system input, and 
e(k) the stochastic error. A, B, C, D, and K are the system matrices.

Equations (4.16) and (4.17) describe the relationship of the internal states, input, 
and output of the system. The state variables are denoted by x1 and x2 while the input 
and output of the neural network are u and y, respectively. Wi denotes the weights 
assigned at the neurons on layer i while Bi refers to the corresponding bias value on 
the same layer. The triggering function at each layer of the neural network is denoted 
by Fi, which typically may be linear, sigmoid, or threshold in nature.

Unit time delays were introduced at the input stage of each layer, as denoted by 
the di blocks. Since the time delays relate to the dynamics of the neural network, the 
related equations are presented with a time step variable k that indicates its corre-
spondence in terms of implementation in digital systems such as computers.

	 x k u k1 1+( ) = ( ) 	 (4.18)

	 x k F W x k B2
1 1

1
11+( ) = ( )+( ) 	 (4.19)

	 y k F W x k B( ) = ( )+( )2 2
2

2 	 (4.20)
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The linearised approximation of the model at an operating (trim) point is:

	 Δ Δ Δx k A x k B u k+( ) = ( )+1 ( ) 	 (4.21)

	 Δ Δ Δy k C x k D u k( ) = ( )+ ( ) 	 (4.22)

where Δx1, Δx2, Δu, and Δy are small deviations:

	 Δx k x k x trim1 1 1( ) = ( )− 	 (4.23)

	 Δx k x k x trim2 2 2( ) = ( )− 	 (4.24)

	 Δu k u k utrim( ) = ( )− 	 (4.25)

	 Δy k y k ytrim( ) = ( )− 	 (4.26)

with

	 x utrim trim1 = 	 (4.27)

	 x F W u Btrim trim2
1 1 1= +( ) 	 (4.28)
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2 	 (4.29)
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From the above equations, we have:
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This linearised model representation of the rendering process makes it possible for 
a user to design a control system in which the output of this system model can be 
driven to produce the stable frame rates required in interactive applications.

4.7 � CONCLUSION

This chapter described approaches to modelling the non-linear real-time rendering 
process. Since linear models cannot fully capture the characteristics of certain ren-
dering processes and typically cover a larger operating range, we proposed the use of 
neural networks and the fuzzy inference system. The application of these techniques 
was demonstrated in experiments with various rendering processes. The results indi-
cate that both techniques are capable of producing accurate system models from the 
measured data.
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5 Model-Based Control

5.1 � INTRODUCTION

Research in real-time computer graphics focuses on trading speed of rendering for 
image quality but does not address the problem of frame rate stability—a critical 
component of the user experience. Common techniques offer “best effort” solutions 
to achieve interactive frame rates without any performance guarantee. Consequently, 
the onus of finding an optimal solution is left to the application developer if not 
totally forsaken. In the absence of a feasible solution, investments in many inter-
active applications such as those from the training, visualisation, and simulation 
domains may not yield adequate results. Previous research [48,49] has shown the 
importance of maintaining interactive frames in these applications.

Control engineering is a mature field of study with myriad applications in vari-
ous systems that affect our daily lives. Its efficiency when applied to electrical and 
mechanical systems in fields as varied as aerospace, defence, communications, and 
manufacturing equipment has been proven in numerous industries [50,51] around the 
world. Little research relates the adaptation of control theory to real-time computer 
graphics rendering. However, in recent years, we noted observable momentum of 
cross-disciplinary research in control theory and computer systems [2,7,52,54].

In this chapter, we introduce the concepts of control theory and demonstrate rel-
evant techniques as mechanisms for achieving sustainable performance in real-time 
computer graphics rendering.

5.2 � CONTROL SYSTEM PERSPECTIVE OF 
COMPUTER GRAPHICS RENDERING PROCESS

We consider the computing environment for real-time rendering to consist of a 
homogeneous infrastructure consisting of both hardware and software. A simple 
representation of the rendering system is shown in Figure 5.1.

The rendering process is modelled as the plant in control taxonomy. Its basic func-
tionality is to process a stream of inputs such as 3D geometry and other rendering data 
to create a series of images in real time. Other processes running in the same comput-
ing environment may periodically share the memory and CPU time thereby creating 
interruptions that may be represented as disturbances. Furthermore, the rendering 
system can receive input from user interaction with the computing environment.

To meet the goal of consistent and sustainable frame rates from the output of the 
plant, we introduce a controller as an extension of the system shown in Figure 5.1. 
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Figure 5.2 depicts a feedback control system in which this controller is adopted to 
regulate input to the plant to achieve a certain performance objective.

In this configuration, the rendering process produces a series of images, each in 
a certain amount of time (frame time) and this plant output is compared with a pre-
defined performance metric through a data feedback channel for every cycle of a ren-
dered frame. To make the comparison of the output of the plant and the performance 
objective useful, these two data streams must be expressed in the same unit of mea-
surement. Typically, the time taken to render one frame of image or its mathematical 
inverse (frame rate) is the measurement unit. The error between the two quantities 
is passed to the controller that subsequently generates a control action for the plant.

One interesting point is that the performance objective may be predefined by a 
user or dynamically set by a more elaborate system that measures quality of service 
(QoS) in the computing environment. Furthermore, this closed-loop feedback con-
trol system provides corrective action even when disturbance from the computing 
environment occurs.

5.2.1 �C ontrol System Architectures for Real-Time Rendering

A prudent and imperative step in control system design is understanding the plant 
characteristics to be controlled. Real world systems and processes seldom display 
linear characteristics over their operating ranges because the physical nature of 
materials used creates non-linearity in integrated systems.

Real-time rendering is also complex because of the numerous inputs and configu-
ration settings. A plant with varying dynamics would justify the use of an adaptive 
controller to meet system performance objectives. In Figure 5.3, a QoS component 
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FIGURE 5.2  (See colour insert.) Closed-loop feedback control system.
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FIGURE 5.1  (See colour insert.) Rendering process from system perspective.
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is introduced as an additional evaluation step to compute qualitative performance in 
addition to evaluating plant output only.

Furthermore, a model estimator (Figure  5.3) may be used to provide periodic 
assessments of plant dynamics so that an appropriate control strategy can be com-
puted and implemented to meet performance requirements. This approximation of 
the plant model forms an important basis to allow a designer to make decisions about 
changing control parameters or introducing new control laws into a control system. 
Astrom and Wittenmark’s research on adaptive control [53] provides insight into 
controller design based on a plant with uncertain parameters and dynamics.

The advantage of the control system described in Figure 5.3 lies in the flexibility 
of controller design that is not fixed and whose parameters do not need to be known 
at design time. While elaborate control system designs may be considered plausible 
solutions to the frame rate inconsistency problem in computer graphics rendering, 
they may not always be computationally effective for use in real-time applications 
due to their complexity.

An intuitive step to circumvent this problem is to design a control system in 
a modularised manner and treat the plant and control as separate subsystems. 
This architecture provides greater flexibility for the controller and plant because 
computing resources are dedicated to each subsystem and any disturbance arising 
from controller-related computation would not affect plant operation. The feedback 
data channel and feed-through from the controller to the plant can be achieved by 
network communication. The design of this modular control system is presented 
in Figure 5.4.

An additional consideration for the design shown in Figure 5.4 is the data trans-
port overhead arising from the inter-subsystem communication. In typical control 
engineering applications, this can be modelled analogously as delays from actuators 
and sensors. These delay components are illustrated as components of the commu-
nication channels in Figure 5.4.

In summary, we have provided a systematic and progressive introduction of the control 
system perspective for the real-time rendering. We also presented a high level overview 
of the various control system architectures and relevant implementation considerations.
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FIGURE 5.3  (See colour insert.) Rendering system with adaptive controller and quality of 
service feedback.
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5.2.2 �C ontrol System Performance Concepts 
Applicable to Real-Time Rendering

The value of incorporating control principles in real-time rendering would be better 
appreciated by highlighting important concepts pertaining to control system design. 
These performance objectives are the premises by which the control systems are vali-
dated for their effectiveness at the design level. Since exhaustive coverage of this topic 
is beyond the scope of this chapter, we focus the discussion on certain characteristics.

Stability—A system is inherently stable if it is not easily perturbed by small 
variations (disturbances) introduced when it is at equilibrium state. Stability is a 
system property that may be best described by the bounded-input–bounded-output 
(BIBO) signal processing nomenclature. One example is a rendering system 
designed to run at a user-defined frame rate when the controller works in a way that 
small load variations sent to the rendering process do not result in unstable frame 
rates at the output end.

Controllability—In control theory, it is possible to consider state and output con-
trollability. For brevity and in the context of real-time rendering, we extract the basic 
underlying concept—the ability to manipulate or steer the output based on an admis-
sible set of rendering inputs within a specific time window.

Observability—Observability and controllability are mathematical terms for the 
same problem. The observability of a system refers to how well its internal states 
may be inferred by knowledge of its outputs and inputs. In simpler terms, a system 
is observable if the behaviour or current values of its states can be determined by 
analysing its outputs and inputs. Both observability and controllability criteria 
reinforce a system with clear requirements for stable operation.

Robustness—Not all systems can handle large and unpredictable plant fluc-
tuations. The robustness of a system is its ability to operate under such situations 
to achieve its objectives or allow its performance to degrade gracefully without 
catastrophic failure. Apart from resilience to fluctuating operating conditions, a 
real-time rendering application generally does not incur significant cost or damage 
to its environment even when it fails.
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While real-time rendering may be considered similar to other computing pro-
cesses such as Web service, database queries, and network communication, it has 
distinctively different task handling properties. In the work of Hellerstein et al. 
[54], the tasks of feedback control are piecewise in nature and may be scheduled 
according to changes in system loading. However, real-time rendering involves a 
series of interdependent tasks (pipeline stages) that cannot be chosen selectively 
for processing. Therefore task scheduling algorithms are not applicable to this pro-
cess because each rendered frame must follow a sequential order to create visual 
animation effects.

5.3 � PID CONTROL AND TUNING

PID controllers [55] have accumulated a long history since the industrial revolu-
tion and are known to operate in more than 80% of the world’s control systems. 
The fundamental PID control algorithm works on simple structures and produces 
good performance without the need for heavy computation. This means that PID 
controllers are inherently fast and easy to design, operate, and maintain. The PID 
control action in a closed-loop feedback system takes a parallel mode form as shown 
in Equation (5.1).

	 u t K e t K e d K
d
dt

e tp i

t

d( ) = ( )+ ( ) + ( )∫
0

τ τ 	 (5.1)

At the implementation level, a PID controller’s discrete form may be expressed as 
Equation (5.2)

	 u n K e n K e k K e n e np i

k

n
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1(   ) 	 (5.2)
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where u(n) is the control action and Tp, Ti, and Td denote the time constants of the 
proportional, integral, and derivative terms, respectively.

For a PID controller to be effective, we see from Equation (5.2) that the gain 
values of the controller must be set correctly. The process of determining these 
parameters is known as controller tuning. A comprehensive summary of the tech-
niques for tuning the PID controller is provided in Reference [55]. For our system, 
the PID controller is tuned using the Robust Response Time Tuning Algorithm from 
the MATLAB® Control Design Toolbox [56].
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5.3.1 �I mplementing PID Control for Rendering Process

With reference to Figure 5.2, the implementation of a PID controller-based render-
ing system follows the same design with the controller block represented by a PID 
controller. The plant handles the rendering process. The procedure for obtaining the 
rendering process model is described in Chapters 3 and 4.

In this section, we discuss the introduction of a PID controller in a simulation 
environment and also use the controller in the rendering process. Figure 5.5 shows 
the design of the closed-loop PID control system adopted in this research. At the 
output, the numerical value of the frame rate is tapped and sent to a comparator that 
computes the difference between this output and a predefined frame rate. The error 
data are sent to the PID controller.

With reference to Equation (5.2), the control action is computed based on the e(n) 
input and the PID controller’s internal structure parameters (gain values). The con-
trol action generated by the controller regulates the input to the plant such that the 
frame rate eventually tracks the predefined target.

As mentioned in Section 5.2, it is common for other non-rendering processes to 
co-exist in the same computing environment. Processes from the operating system 
kernel may create minor disturbances of rendering because they share memory and 
CPU resources. Even though the modelling process for the rendering application 
does not account for such disturbances, the PID control action is expected to nullify 
them and continue to keep the frame rate stable.

If a large disturbance is introduced into the system through some unknown pro-
cess, the rendering application may suffer a huge momentary fluctuation in its frame 
rate. In this case, the PID controller may not be able to correct the error and thus 
allow the rendering process to swing beyond the controllable operating range.

We constructed the PID control system for the rendering process in MATLAB 
as shown in Figure 5.5. The key components are the PID controller block, the plant 
block, and the interlinking communication channels. In a simulation environment, 
we assume that the data transfer has zero latency because the control system is exe-
cuted by the same computer in the same memory space. However, when the plant 
model is swapped with the actual rendering process, this assumption may not be 
suitable because of network latency and communication overhead that can affect the 
performance of the control system.

The difference between the two simulation environments is that both the plant 
and the controller run on the same computer. The second environment has both func-
tions reside in different computers connected via a local area network (LAN). The 
communication blocks in the control system use the transmission control protocol 
(TCP) to send packet data over the network from the source to the destination loca-
tion between the controller and plant. This network communication protocol was 
selected because of the guaranteed delivery mechanism to ensure that data streams 
between the plant and controller will not be dropped for every rendered frame.

In addition to the mutual loading problem caused by the plant and controller pro-
cesses, the Windows operating system poses the limitation of multitasking in the 
graphical user interface (GUI) environment. This limitation prevents one applica-
tion window from receiving prioritised CPU time if it does not receive the focus 
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and restricts the plant and controller to execute in unison. This constraint made it 
imperative for our control system to be implemented across machines dedicated to 
the plant and controller processes separately.

To ensure that the PID controller is configured optimally, its gain values must 
be set correctly. Section 5.3 introduced the tuning process that is required before 
any PID controller can be employed. We tuned our PID controller using the Robust 
Response-Time Tuning Algorithm in MATLAB. Figures 5.6(a) and (b) illustrate the 
graphical user interface for this PID controller tuner.

The MATLAB/Simulink® PID controller block offers two key benefits for 
controller design. First, it integrates with the control design toolbox to provide 
closed-loop feedback analysis for linear systems. The resultant plots are very use-
ful for analysis of various-system related considerations such as stability, frequency 
response, and step response. Second, along with the GUI shown in Figure 5.6, the 

(a)

FIGURE 5.6  (See colour insert.) (a) Setting PID controller gain values in MATLAB. 
(b) Interactive graphical user interface in MATLAB/Simulink for tuning PID controller.
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user has the flexibility to manually overwrite the PID parameters for trials to 
obtain better system performance. As a result, the PID controller design process 
is greatly accelerated.

5.3.2 �D ata Preprocessing in PID Control System

It is common that raw data values obtained from experiments can vary from very 
small fractions to extremely large numbers. For example, in real-time rendering, the 
geometry (vertices) required for the construction of a 3D object can yield numerical 
values ranging from a few thousand to hundreds of thousands. Computations involv-
ing very large or small numbers may be difficult because of the data format required 
to represent them precisely. Consequently modelling errors may occur and cause 
further errors in the controller design phase.

To avoid this problem, prescaling and normalisation of numerical values are often 
done. In a simulation environment, internal scaling can improve control system 
performance significantly. However, the trade-off is that the scaled values may not 
always be directly indicative of real world data values.

The scaling issues are relevant to data structures internal to the system model and 
the controller. In implementing a PID control system, an amplifier is usually adopted 
so that controller tuning process can be simplified using smaller numerical values. 
An amplifier is shown in Figure 5.5 as the multiplier block that resides at the output 
of the PID controller.

(b)

FIGURE 5.6  (Continued)



72 Real-Time Rendering

5.3.3 �G ain Scheduling for Non-Linear Rendering Process Models

As mentioned in Chapter 4, the real-time rendering process exhibits non-linearity 
characteristics. Prior research [38] demonstrates that the time taken to render a 
vertex differs with changing rendering loads. Figure 5.7 (originally Figure 3.7 from 
Chapter 3) is reproduced here and clearly shows this property.

We can observe from the figure that a single line segment approximation of the 
system’s input–output relationship is inadequate. One approach to the challenge of 
designing a control strategy to counter this problem is to resolve the non-linearity 
at a piecewise level. In other words, we can approximate the system’s input–output 
relationship with a series of line segments at selected operating points instead of 
using a single line across an entire operating range.

Each line segment represents a region whereby the plant may be modelled using 
linear model structures. Thereafter a suitable PID controller can be designed and intro-
duced to achieve the desired performance for a delta region near a particular operat-
ing point. It is important to note the intention of Figure 5.7 is not to dictate or convey 
the number of segments to use for any particular application. It is produced to verify 
the existence of non-linearity in the rendering process. In practice, the number of 
linear segments to use is dependent and specific to the user’s modelling requirements.

Because numerous combinations of line segments can approximate the curve 
shown in Figure 5.7, we can approach this optimal allocation of line segments to 
describe the non-linear input–output relationship as a constrained optimisation 
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problem with a minimal number of line segments. First, we present this non-linear 
relationship represented by a polynomial model:

	 y p xi
n i

i

n

= + −

=

+

∑ 1

1

1

, u x uN0 ≤ ≤ 	 (5.3)

where (n + 1) is the order of the polynomial and n is the degree of the polynomial. 
The order denotes the number of coefficients to be fit, and the degree represents the 
highest power of the predictor variable. Since straight line segments are used to fit 
the curve, the degree of the polynomial is chosen as 1. The objective is to derive a 
series of line segments that fulfill the approximation of this relationship by:
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where the variables a and b minimise the following equation:
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(5.5)

The right side of the equation represents the least square error of the approximation. 
The different approaches to solving this problem are offered in previous research by 
Stone [58], Bellman [59], and Chan and Chin [60].

From the linear ranges derived, the corresponding input–output data set is used 
for model identification. The model structure is represented by the state–space [57] 
Equations [(5.6) and (5.7)]. The parameters of this system model structure may be 
obtained using the subspace algorithm (N4SID) [1].

	 x k Ax k Bu k+( ) = ( )+ ( )1 	 (5.6)

	 y k Cx k Du k( ) = ( )+ ( ) 	 (5.7)

Based on the non-linear operation characteristics of the rendering process, a single 
PID controller would be inadequate to provide reasonable control performance over 
the entire operating range. Therefore we approach the problem by scheduling dif-
ferent gain values for the PID controller according to the respective linear operating 
ranges (Figure 5.8). In this design, the configuration of the PID controller can be 
stored in a look-up table so that the relevant values may be set into the PID controller 
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as it traverses the different operating ranges. Such an implementation may be realised 
in MATLAB/Simulink as shown in Figure 5.8.

Since the PID gain values may differ greatly over the entire operating range, 
scheduling these values directly into the PID controller may cause some unexpected 
jitter at the border where the switch takes place. This jitter is typically manifested 
as a disruption to the control mechanism and may create some inconsistencies in 
plant output. A common technique to reduce the effect of this jitter is to adopt linear 
interpolation between the controller’s gain values.

5.3.4 �N eural PID Control

The PID controller is computationally straightforward and effective. The challenge 
lies in tuning its gain parameters, especially when it is difficult to derive a system 
model. In the previous section, we examined the use of a combination of separately 
tuned PID controllers. The goal is to create a control system that works over a large 
operating range and is resilient to the effects of the system’s non-linear characteristics.

In this section, we investigate a technique that does not require the cascading of PID 
controllers and eliminates the effort to tune them separately. This technique also allows 
a single PID controller to be continuously tuned online while the system operates.

Artificial neural networks (ANNs) are well known to be capable of memory 
retention and learning through their adaptive nature of modelling non-linear func-
tions. By utilising an artificial neuron to learn and adaptively tune a PID controller 
in the single neuron adaptive PID (SNPID) control algorithm [64], it is possible to 
achieve continuous control with good performance over a substantially large oper-
ating range. Figure 5.9 illustrates the SNPID control system design. Recall from 
Section 5.3 that the discrete incremental PID controller may be expressed as:

	 u k K e k K e k K e k e kp i

k

n

d( ) = ( )+ ( )+ ( )− −( )
=

∑
0

1(   ) 	 (5.8)

where u(k) is the output of the controller and Kp, Kd, and Ki are the proportional gain, 
derivative gain, and integration gain, respectively. e(k) is the error between the refer-
ence and system outputs that serves as input to the controller. In the SNPID control 
implementation [64], we have the output of the neuron given by the following equation.

	 Y X WT= 	 (5.9)

Rendering
ProcessK  

Reference OutputError, e State
Converter

x1

x2

x3

w3

w2

w1

FIGURE 5.9  Single neuron PID control system.
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where Y is the output of the neuron, X represents the internal states of the neuron, 
and W denotes weights assigned to each neural connection given as X x x x= ( ,  ,  )1 2 3  
and W w w w T= ( ,  , )1 2 3 , respectively. In the SNPID controller configuration, the adap-
tive weights wi are analogous to the conventional PID gains, Kp, Ki, and Kd. From 
Equation (5.8), the output of the SNPID controller is further expressed as

	 u k K w k x k
i

i i( ) =
=
∑

0

3

( ) ( ) 	 (5.10)

where K is the gain value of the neuron. Note that the input to the neuron at time k is 
given by the following equations.

	 x k e k e k1 1( ) = ( )− −( ) 	 (5.11)

	 x k e k2 ( ) = ( ) 	 (5.12)

	 x k e k e k e k3 2 1 2( ) = ( )− −( )+ −( ) 	 (5.13)

The errors at time k, (k – 1), (k – 2), etc., are represented by e(k), e(k – 1), (k – 2), etc. 
where:

	 e k r k y k( ) = ( )− ( ) 	 (5.14)

Hence the single neuron PID control law may be expressed as:

	 u k u k K w k x k
i

i i( ) = −( )+ ′
=
∑1

0

3

( ) ( ) 	 (5.15)

whereby the weights are determined by the Hebb learning algorithm described 
below from Equations (5.16) to (5.19).

	 ′ = ( )
( )

=∑
w k

w k

w k
i

i

i
i

( )

1

3 	 (5.16)

	 w k w k e k u k e k e k1 1 11 1 2 1( ) = −( )+ ( ) −( ) ( )− −( )ρ ( ) 	 (5.17)

	 w k w k e k u k e k e k2 2 21 1 2 1( ) = −( )+ ( ) −( ) ( )− −( )ρ ( ) 	 (5.18)

	 w k w k e k u k e k e k3 3 31 1 2 1( ) = −( )+ ( ) −( ) ( )− −( )ρ ( ) 	 (5.19)
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Experiment—To compare the performances of the SNPID and PID controllers, 
we created a MATLAB simulation consisting of a closed-loop feedback system using 
the system model derived in Experiment 3 from Chapter 3, Section 3.5.3. The system 
first ran with the SNPID controller, then with the PID controller over the same dura-
tion of 15,000 frames. During the simulation, we allowed the system output to stabi
lise before a new reference was set. In contrast to previous modelling experiments, 
we wanted to validate the performance of the SNPID controller over a large operat-
ing range. To achieve this, we deliberately set the reference changes in bigger steps.

Simulation results—Figure  5.10 presents the simulated system outputs from 
the SNPID and PID controllers. Figure 5.11 shows their respective and correspond-
ing control actions. Figure 5.10 indicates that the SNPID controller provides faster 
response than the PID controller with almost no overshoot at the system output. The 
SNPID controller was approximately two times faster than the PID controller in 
reaching new steady-state references.

5.4 � EXPERIMENTS

In this section, we present the details of the experiments conducted to validate the 
control framework described in this chapter. The objective was to demonstrate the 
implementation of a closed-loop feedback control system involving the real-time 
rendering process with the plant and PID controller. The rendering process to be 
controlled was the same as the application mentioned in Chapter 3. Figure 5.12 is 
a screenshot of the application. The details on deriving the system model and its 
parameters are also provided in Chapter 3.

Using the derived linear model, we first described two experiments in MATLAB: 
one executed fully in a simulation environment and the other an actual rendering 
process. In the actual rendering experiment, the plant and controller run on sepa-
rate computers as described in Section 5.2.1. Two sets of data were collected. Each 
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captured the same input (vertex count) and output (frame rate) quantities of the ren-
dering process. The third experiment dealt with the application of the gain schedul-
ing control system described in Section 5.3.3 in a simulated environment.

All experiments were run on a desktop computer with an Intel Core 2 Quad CPU 
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics pro-
cessor hardware (with 4 GB video memory) on a 64-bit Windows 7 operating system. 
The system identification toolbox was used for deriving the linear models of the 
rendering processes. The control design toolbox was used for the design and analysis 
of the feedback control systems.
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FIGURE 5.12  (See colour insert.) Screenshot of application with PID control.
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5.5 � RESULTS

5.5.1 �S imulation Environment

The results of the first experiment are shown in Figures 5.13 and 5.14. Based on 
Figure  5.13, the objective was to allow the controller to track a higher reference 
level. The rendering process was allowed to stabilise at approximately 360 FPS 
before triggering of a new reference level of 410. The PID controller took approxi-
mately 2,500 frames (6 s) to reach the target reference level. Furthermore, almost 
no overshooting was observed. A small amount (fewer than 5 FPS) of tracking error 
was noted. At a high frame rate of 400 FPS, this error can be regarded as negligible.

The PID control system was then tested for its ability to track a lower reference 
level (380 FPS) from an initially higher frame rate (400 FPS). The results are shown 
in Figure 5.14. Tracking was very accurate (error rate below 3 FPS) and no oscilla-
tion arose from the control action.

5.5.2 �C ontrol System with Actual Rendering Process

The results of the second experiment in which the plant model is replaced by the 
actual rendering process are presented in Figures 5.15 and 5.16.

In the first part of the second experiment, the rendering process was allowed to 
stabilise at 350 FPS before a trigger changed the reference level to 390 FPS. The PID 
control action took approximately 25,000 frames to reach a stable frame rate close 
to the reference level. The steady-state error was approximately 5 FPS. In the second 
part of the same experiment, the control system was allowed to track a 380 FPS 
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reference level lower than its initial reference rate (400 FPS). We can see that the 
controller takes approximately the same time (25,000 frames) to bring the frame rate 
down to the lower reference level.

Both phases of the second experiment showed consistency in plant response 
time and the control action was able to track the reference level eventually. This 
indicates that the system model representation is reasonably accurate and that the 
PID controller was tuned adequately to work with the actual rendering process.

5.5.3 �G ain Scheduling Control System

With reference to Section 5.3.3 covering the application of PID control over an oper-
ating range involving non-linear characteristics, we wanted to validate the applica-
bility of the gain scheduling control strategy in such a scenario. First, an extended 
operating range was selected and divided into three segments as shown in Table 5.1. 
We modelled the rendering process within these segments at various operating 
points. A corresponding controller was designed at every operating range and its 
parameters were preset into the PID controller shown in Figure 5.8 for the purpose 
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TABLE 5.1
Linear Operating Ranges

Linear Range Reference Approximate Frame Rate Range

1 390–450

2 389–325

3 324–280
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of switching the PID gain values as the controller processed output errors across the 
extended operating range.

The first objective of the rendering system was tracking a predefined level at 
340 FPS. This is an output level in Operation Range 2 from Table 5.1. Figure 5.14 
indicates that the controller can bring the output to this level quickly with no over-
shoot and track the level steadily. Thereafter, we wanted to observe the controller’s 
ability to track a new reference level in a different operation range. We set the new 
reference output level to 390 FPS (Operation Range 1 in Table 5.1). The new reference 
output level was set while the control system was running.

Figure 5.17 shows the tracking of a new reference level with some overshoot. To 
drive the output toward the target reference level, the control action caused the input 
to the plant to take a steep dip that indicates an abrupt over-correction. Nevertheless, 
the rendering process output was still brought to the desired reference level with 
negligible error (fewer than 2 FPS).

5.6 � CONCLUSION

In this chapter, we introduced the concept of using control principles to track 
real-time rendering performance. The controller design was based on a closed-loop 
feedback system with a plant model. Although no restrictions were imposed on the 
controller design, we utilised the PID algorithm as the control strategy in a real-time 
rendering application.

Since real-time rendering is inherently non-linear, we provided a solution to 
control this process from a piecewise approach by approximating a large operat-
ing range by grouping smaller linear ones. We also introduced the neural-assisted 

450
400
350
300
250
200
150

Fr
am

e R
at

e (
FP

S)

100
50

0
0 0.5 1 1.5

Frame

Simulated Output

2 2.5 3

0
–2
–4
–6

Pr
e-

sc
al

ed
 In

pu
t (

Ve
rt

ic
es

)

–8
–10
–12

0 0.5 1 1.5
Frame

Input

2 2.5 3

×105

×104

×105

FIGURE 5.17  Simulated output with gain scheduling PID controller.



83Model-Based Control

PID control technique which is a superior approach to the conventional PID control 
design. It does not require manual tuning of its gain parameters and constitutes a 
viable solution for achieving performance targets in real-time rendering

In summary, we have shown by our experiments that the PID controller is effective 
in keeping the output of a rendering process close to the user defined performance 
target for linear rendering system models and when gain scheduling is adopted for 
larger operating ranges.





85

6 Model-Less Control

6.1 � INTRODUCTION

In this chapter we consider a different perspective for controlling the rendering 
process. While conventional data-driven system identification strategies may be 
adopted to derive a rendering process model, the result may not necessarily imply 
that an accurate model can be derived without resolving certain technical challenges 
in data processing.

To circumvent such problems, this chapter investigates an approach to control-
ling the rendering process by allowing the user to exploit a priori information about 
the rendering process without the need for an explicit rendering model by using 
a soft computing method known as fuzzy control. The fundamentals of fuzzy set 
theory and the mathematics for a conventional fuzzy inference system are provided 
in Section 4.2.2 in Chapter 4.

6.2 � FUZZY CONTROL SYSTEM

The construction of a fuzzy logic control system is relatively similar to the PID 
control system described in Chapter 5. Based on the same architecture described by 
Figure 5.2 in that chapter, we introduce the fuzzy controller is used in place of the 
PID controller. As in the case of the PID controller in which the quantity of the input 
to the plant is varied directly, no strict rule applies to the selection of the input to a 
fuzzy control system. Certain fuzzy control systems such as applications for tem-
perature and process control utilise the rate of change of the input to the plant instead 
of the numerical value of the quantity. In this research, the rate and the direction of 
change (increase or decrease of vertex count) are used.

The design of a fuzzy control system consists of two phases. First, we develop 
the fuzzy control system in a simulation environment where the plant model is used. 
After the control system is validated to work correctly, we replace the plant model 
with the actual rendering process as done in previous experiments.

Unlike a PID control system, a fuzzy logic controller functions on linguistics 
variables instead of numerical values. As described in Section 4.2.2, a fuzzy logic 
system is defined primarily by the type or structure of the controller, the rule base, 
and the membership functions of the input and output of the process to be con-
trolled (Figure 6.1). In this research, we adopted the Mamdani fuzzy model. The rule 
base was constructed based on a straightforward inverse input–output relationship 
between the frame rate and the rate of change of vertex count. This fuzzy inference 
rule set is shown in Table 6.1.

The fuzzy logic toolbox in Simulink®/MATLAB® provides comprehensive 
tools such as the rule editor and membership function editor to accelerate the 
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implementation of fuzzy control. Figure 6.2 illustrates the graphical user interface 
that allows the creation of membership functions, the set-up of the rule base, and 
several other parameters that may be changed.

Fuzzy logic deals with non-crisp values. Thus the approach to tuning fuzzy logic 
controller parameters relies on heuristics and iterative processes that allow easy 
observation of the effects on simulation performance from changes in fuzzy con-
troller parameters. Some parameters that may be changed include the membership 
function and the membership input and output ranges.

The fuzzy logic toolbox provides a step-through functionality in simulation 
time. This allows a user to observe how a defuzzified decision is derived by view-
ing the fuzzified inputs and how they are combined to produce the output via the 
firing function. This tool is important for helping a user decide the appropriate 
membership function to use by analysing the output of the fuzzy controller over a 
series of steps.

6.3 � ADAPTIVE NEURAL FUZZY CONTROL

We described the basic structure of the type of fuzzy inference system in a sys-
tematic manner. In brief, it consists of multi-tier relationships that first map input 
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characteristics to their membership functions. Thereafter, each input membership 
function is mapped to rules that are correlated to a set of output characteristics. 
Finally the output is determined by traversing the relationship between the output 
characteristics and the output membership functions such that a crisp or single-valued 
output is produced.

One key element in a fuzzy control system is the use of fixed membership func-
tions that were chosen arbitrarily. In other words, the applied fuzzy inference is 
applied only to systems whose rule structures are essentially predetermined by the 
user’s understanding and interpretation of the characteristics of the variables in the 
system model.

Nevertheless, it is possible that collection of input and output data is available for 
modelling but it is not clear to the user whether a predetermined model structure may 
be appropriate based on the characteristics of the variables in the system. In certain 
modelling situations, it may not be possible to discern the correct membership func-
tions to adopt by simply observing input and output data. Based on these scenarios, 
we approached the model-less control problem by using the adaptive neuro-fuzzy 
inference technique.

In brief, the neuro-adaptive learning technique that performs similarly to neural 
networks provides a method for a fuzzy modelling procedure to learn information from 
an input–output data set. By using the fuzzy logic toolbox in Simulink/MATLAB, 
it is possible to compute the membership function parameters that best allow the 
associated fuzzy inference system to track the given input–output data.

FIGURE 6.2  (See colour insert.) Configuring fuzzy controller in Simulink/MATLAB.
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In contrast to the fuzzy controller design process in which the user selects the 
membership functions, the adaptive neuro-fuzzy inference system (ANFIS) is 
capable of constructing a fuzzy system whose membership function parameters are 
tuned via a back-propagation algorithm alone or in combination with a least squares 
method by using a specific input–output dataset. In other words, the resultant ANFIS 
embodies the modelling of the plant process through the construction of membership 
functions and their inherent relationships. Figures 6.3 and 6.4 show the graphical 
user interface of the ANFIS tool in Simulink/MATLAB.

The process of constructing an ANFIS control system is similar to constructing 
a fuzzy controller except that the plant model is not used explicitly. From the same 
input–output data set collected, a portion is allocated for training while the rest is 
used for validation. After the ANFIS parameters such as the numbers of inputs, 
outputs, and membership functions are set by the user, the software computes the 
ANFIS structure that may be imported into a simulation environment for testing 
with the actual process. Figure 6.5 illustrates the control system design.

6.4 � EXPERIMENT

We designed two experiments to validate our control system framework using 
a fuzzy controller. As in the previous chapter’s experiments, our first experiment 
was performed in a fully synthetic simulation environment. The second experiment 
involved switching the plant with the actual rendering process.

FIGURE 6.3  (See colour insert.) ANFIS editor graphical user interface in Simulink/MATLAB.
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The fuzzy rule-set used in these experiments is shown in Table 6.1. The selection 
of an appropriate membership function is non-automatic and we begin with a generic 
non-linear segment of a parabolic curve. The next step is testing the fuzzy controller with 
the actual rendering process over several iterations to ensure that both the gradient of the 
selected range and membership enrollment (curve) functions are suitable to perform 
the tracking function correctly.  The membership functions are shown in Figure 6.6.

FIGURE 6.4  (See colour insert.) Neural network model structure in ANFIS.
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The fps_error fuzzy variable is set at ±40 FPS from the operating point of 400 
FPS while the vertex_count variable is set at ±4,000 vertices. The fuzzy control 
system follows the design in Figure 6.7.

All experiments were run on a desktop computer with an Intel Core 2 Quad CPU 
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics 
processor hardware (4 GB video memory) on a 64-bit Windows 7 operating system. 
The fuzzy logic toolbox was used to generate the fuzzy inference system and fuzzy 
controller design.
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6.5 � RESULTS

6.5.1 �S imulation

Figures 6.8 and 6.9 show results from both parts of the experiment using a fuzzy 
controller to track frame rate level changes. In both scenarios, the controller was 
capable of varying the input to the plant so that its output followed the reference level 
closely. However, the fuzzy controller took longer to perform this task as indicated 
by the output response times in both parts of this experiment.

6.5.2 �F uzzy Control System with Rendering Process

In the second experiment, the rendering process was allowed to stabilise at 400 FPS 
before the new reference level of 370 FPS was set as shown in Figure 6.10. The fuzzy 
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logic controller was able to reduce the frame rate after adjusting the load of the ren-
dering process. This adjustment took place over approximately 9,000 frames with an 
observable error of about 3 FPS.

In Figure 6.11, the frame rate increases from 370 FPS to a target of 400 FPS. 
Again, the fuzzy logic controller can reduce the load and track the new reference 
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frame rate with an approximate error of 5 FPS. The response for this action takes 
approximately 4,000 frames—fewer than required by the previous control action. 
However, in terms of tracking accuracy, the error can be observed as slightly 
larger than the one shown in Figure  6.10. In both figures, some fluctuations of 
input to the rendering process are observed. This can be explained by the scaling 
computation used in the control framework and the resolution of the computer 
program data structures.

In addition to comparing differences in controller designs, another objective of 
using the ANFIS controller was to determine its robustness for handling variations 
in user-defined references. Figure  6.12 depicts examples of such variations. Note 
that the variations may span over an operating point or zone where the rendering 
process may be approximated by a linear model. The ability of the ANFIS controller 
to maintain the plant output close to the changing reference levels in such a scenario 
indicates that it is inherently capable of controlling non-linear rendering processes.

6.6 � DISCUSSION

Figure 6.11 indicates that the rendering process output tracks the user set reference 
only after a short delay. This can be explained by the experiment set-up involving 
network communication. Since the plant and controller communicate via a network 
connection, transport delays arising when data are sent between the plant and the 
controller are expected.

While such delays are minimised via an isolated network infrastructure, it should 
be noted that data transport within computer systems is not instantaneous. Such 
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delays could be caused by different CPU utilisation and wait states or transports 
between memory storage locations.

The impact of delay on a control system should not affect a system’s ability to 
track user-defined performance targets noticeably. If a delay does affect the overall 
effectiveness of a control system, its effect should be modelled as part of the system 
as well. A detailed investigation into the intricacies of delay is beyond the scope of 
this book. Our experiment yielded satisfactory results and further work on more 
elaborate distributed control systems may further extend this research.

6.7 � CONCLUSION

The focus of this chapter is controlling real-time rendering via a model-less approach 
defined as no need for devising a formal mathematical representation of a rendering 
process plant model by which a rigorous system identification procedure is to be 
carried out. We provided a framework for model-less control of real-time rendering 
using a conventional fuzzy controller and adaptive neuro-fuzzy inference system.

The experiments showed that both techniques are capable of yielding good results 
without plant models. More importantly, we demonstrated that a model-less control 
framework can be extended to support a wider operating range where non-linear 
characteristics of the rendering process may appear.
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7 Applications, Challenges, 
and Possibilities

In this chapter, we examine further the details of the implementation of control tech-
nology for computer graphics introduced in this book. The objective is to provide 
insights into practical aspects of designing such systems that we believe will allow 
this book to serve as a useful resource to practitioners in the control engineering and 
computer graphics fields.

7.1 � SYSTEM ARCHITECTURES

The plant and controller system architecture described throughout this book may be 
realised in several forms, depending on the application and performance require-
ments. We classify the forms in broad terms into three categories:

	 A.	Plant and controller in the same computer in the same process (different 
execution threads)

	 B.	Plant and controller in the same computer and in separate processes
	 C.	Plant and controller in separate computers

As a quick primer, a process in computer programming terminology is the execution 
of an instance of an application. A thread is a single path of execution within a pro-
cess. In addition, a process (essentially an application) can spawn and use multiple 
threads. Since a process can consist of multiple threads, a thread is commonly clas-
sified as a lightweight process. Often, the essential differentiating point between a 
thread and a process is the nature of the task assigned to be accomplished.

Traditionally, developers use threads for smaller and specialised tasks such as net-
work communication and to achieve parallelism in application design. In contrast, 
processes are used for heavyweight tasks and involve broader scopes encompassing 
most other subtasks of an application. Another important fact is that threads within 
the same process share the same memory address space, whereas processes do not. 
This implies faster execution for threads because it allows them to read from and write 
to the same data structures, facilitating speedier communications between them.

In Configuration A, the controller is built into the rendering application. With this 
architecture, the implementation of the controller’s design must follow the program-
ming language by which the rendering application is developed. In other words, the 
developer must use the same programming language as the rendering application 
to code the controller. Since the plant and controller are compiled and built into the 
same binary, this configuration provides fast speed for runtime execution.
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However, this configuration also demands separation of the plant and controller 
into different execution threads because the rendering process must run asynchro-
nously and in tandem with the controller thread. A common mistake in structuring 
the code is to have the controller implemented in the same process. The results may 
be significantly slower frame rates due to hogging of CPU time by the controller 
when it shares a CPU time slice with the plant.

In Configuration B, the plant and controller execute as separate process within 
the same machine. A simple illustration is the use of two applications to realise this 
architecture, for example, using a specialised controller application that can com-
municate with the rendering application in real time. This is usually done via inter-
process or network communications within the local computer.

Since rendering processes vary in complexity and computational requirements, 
Configuration C provides a system architecture that decouples the plant and controller. 
This means that the controller can execute properly even if the plant computer is 
not suitable for running run both processes. Furthermore, Configuration C allows 
the control system to run without subjecting each process to the limitations of the 
underlying operating system (e.g., application window handling) and helps minimise 
the effects of kernel process disturbances on the control system. We conducted the 
experiments described in this chapter using Configuration C because:

•	 The controller was designed and simulated in Simulink®/MATLAB® and 
run as part of the main Simulink/MATLAB application.

•	 Due to development practices, MATLAB provided several useful graph-
ing windows for debugging and performance monitoring. Configuration B 
could not be adopted because the Windows operating system does not sup-
port multiple visible windows with equal CPU usage priority—at least not 
with MATLAB application windows and our rendering application. Using 
Configuration B for our control system implementation would have kept the 
controller or plant from running properly.

•	 By using separate and dedicated computers for the controller and plant, we 
circumvented the above problems.

A noteworthy point at this juncture is that our conduct of experiments using 
Configuration C does not suggest that the other two configurations are not useful. 
The adoption of any configuration depends on the system designer’s choice of the 
optimal way to devise a control system based on application requirements, nature of 
system, components to be used, and time and effort available.

Figure 7.1 is a timing diagram of our plant (rendering) application. Note that a 
thread is created for network communication at the beginning of the application 
and kept running until the end of the application’s life. The intent is to prevent the 
fetching and sending of data from and to a remote computer from bogging down 
the main rendering process. After the application initialises all required resources, 
the network communication thread works with the main process rendering loop at 
every frame to ensure that the control action is parsed and put into effect as needed. 
In addition, the controller also receives feedback information—essentially the frame 
rate from the plant for processing.
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7.1.1 �S oftware Design

One key requirement for implementing a control system involving a real-time ren-
dering application is that code level access is a primary task for the system to achieve 
the following:

	 1.	A form of interprocess or shared memory communication can be established 
between the rendering application and the controller.

	 2.	 Input and output data points from selected variables can be tapped.
	 3.	A form of rendering load control can be implemented.

Figure 7.2 shows a high-level componentised view of the rendering application used in 
the experiments in this chapter. In addition to the main rendering components, other 

Main Process

Instantiate local
memory for
variables()

Create network
Send/Receive threads

Create device
rendering and
I/O callback

functions

Receive: network listen
Send: send data (output)

Initialize application
and create rendering

window

Frame rate

Main rendering
loop

Rendering input
changes

Network
Processes

FIGURE 7.1  The timing diagram of the rendering application used in the control system.
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essential software modules include the network communication and level-of-detail 
(LoD) control blocks. LoD blocks are just example and may well be replaced with 
other blocks capable of varying the rendering load to alter system output.

The layered structure of the design in Figure  7.2 illustrates a service-oriented 
approach; each layer makes use of the service offered by the layer below it. While the 
network communication and LoD changer blocks interact with the main application 
(real-time rendering process), the main application makes use of the rendering API 
residing in the operating system. Furthermore, the rendering API then utilises the 
computer hardware to perform the final rendering functions that lead to the genera-
tion of visible pixels on a display device.

To exemplify the application design shown in Figures  7.1 and 7.2, we draw a 
direct reference to this architecture with the C++ code of the application used in 
Experiment 3 in Section 3.6.3 (see also Annex A). The following correspondences to 
the architecture are highlighted:

	 1.	Two threads instead of one, each dedicated to sending data and receiv-
ing data from the network as shown by SendDataThreadFunction and 
ReceiveDataThreadFunction.

	 2.	The LoD changer block is synonymous with SetTriangleCount, SetShader-
Complexity, and SetNumVertices functions.

	 3.	The application makes use of the DirectX-rendering API to provide 
hardware-accelerated rendering in real time.

Possible architectural abstractions—So far, we described implementation 
designs for the controller at the application level, that is, the controller is in either 
process or thread form. Despite this, it is certainly possible to have different abstrac-
tions for the implementation of the controller:

	 1.	The controller may be implemented as an API for users to integrate directly 
into their existing real-time rendering application.

	 2.	The controller may be integrated into the LoD function in rendering 
applications. The appeal of this implementation is that the user has no 
need to handle programming interfaces; the control mechanism is fully 
automated. One possibility is to have the controller deeply embedded in 
short programs that are loaded into the graphics processor during run-
time [1].

Network
Communication LoD Changer Application (“Plant”)

Rendering API

Hardware

FIGURE 7.2  (See colour insert.) The high-level design of the rendering application.
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7.2 � SOFTWARE AND HARDWARE 
PERFORMANCE CONSIDERATIONS

The process of establishing a valid control system for a real-time rendering applica-
tion requires special attention beginning from data collection and pre-processing 
and proceeding to system level moderation. We provide a list of the key hardware 
and software considerations below.

7.2.1 �D ata Integrity

When a non-real-time operating system is used, it is inevitable for kernel processes 
to introduce disturbance to the rendering system output. Consequently, the data col-
lected for system identification may contain spikes and occasional data points that do 
not follow the trend of the change in data direction. If such data are used for system 
identification directly, the result would be greater difficulty in deriving an accurate 
system model. Therefore, it is imperative to use a number of de-noising, filtering, and 
de-trending tools to preprocess data before the system identification step.

7.2.2 � Plant–Controller Communication Latency

When network communication is involved as it is in Configurations B and C 
(described in Section 7.1), it is important to consider the network latency that may 
arise from closed-loop feedback data movement. For Configuration B, even if the 
interprocess communication is handled via a loop-back network communication, the 
latency would be negligible because of the local network hardware. In contrast, this 
assumption deviates more with Configuration C because of real data routing latency 
across network switches and other physical media. To minimise latency, the set-up 
should include a high-speed switch and local area isolated network. This arrange-
ment was used in all our experiments.

From a software implementation perspective, the selected communication proto-
col plays an important role in system performance. In typical network communica-
tion arrangements the transmission control protocol (TCP) or universal datagram 
protocol (UDP) may be used. Configuration B would demonstrate a negligible differ-
ence between these options since performance is largely driven by hardware.

However, this is not true for systems using Configuration C. If the network con-
necting the plant and controller cannot be isolated for certain reasons, it would be 
better to use TCP as the mode of communication because it guarantees lossless 
delivery. Conversely, if a network is unlikely to be congested, UDP can be a good 
choice because it provides better speed.

7.2.3 �D ata Structures and Handling

For optimised transmission efficiency, it is always advantageous to use simple data 
structures. Complex data structures should be avoided to prevent data marshalling 
issues that may arise due to incompatibility in machine-specific hardware. Also, it is 
a good practice to utilise a single network communication channel for sending and 
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one for receiving data as much as possible so that CPU utilisation and contextual 
switch overhead are optimised.

For performance reasons, data should be sent only when a change occurs. This 
latch-on technique allows both the plant and controller to run more efficiently with-
out the need to waste CPU processing time or face network latency as long as the last 
sent or received value is valid.

Finally, data trim points are critical and necessary because they prevent spikes in 
data value due to conversion or other errors from destabilising the control system. 
If they are not implemented, the rendering process may produce unexpected out-
comes such as substantial fluctuations in frame rates due to erroneous computation 
by the controller.

7.2.4 �C omplexity of Control Algorithm

As described in Chapters 5 and 6, a number of control strategies may be adopted and 
a system designer has the prerogative to select the best candidate based on applica-
tion requirements. Nevertheless, it is important to consider the complexity of the 
selected control algorithm because the time taken for a compute cycle of this algo-
rithm may be excessively long and thus affect the effectiveness of the control system.

The same control algorithm may require a different computing time because of 
the software environment on which it runs. For example, the controller operated 
in the Simulink/MATLAB environment is somewhat slower than a controller con-
verted to an executable binary targeted to run in a real-time environment.

7.3 � APPLICATIONS OF RENDERING CONTROL SYSTEMS

The benefits of applying control engineering in real-time computer graphics render-
ing were mentioned earlier. In this section, a list of application domains will allow 
readers to understand and appreciate the spectrum of usage with this technology. 
While this list embodies the broad categories of real-time rendering applications, the 
technology is certainly not limited by the list.

Computer-aided design and manufacturing (CAD and CAM)—The 3D data 
sets used in this application domain represent a huge market. The introduction of a 
control system for such applications will allow users to view data sets even on mobile 
devices that require little computing power. This application can increase productiv-
ity and improve communication when data are moved around.

Computer games and virtual communication—The 3D virtual communica-
tion market is growing in the education and corporate services segments. As social 
networking continues to grow, 3D interactive applications such as games and virtual 
worlds remain key proponents to online communications. We see the integration of 
control techniques in real-time rendering as a technology that improves the quality 
of service of such network communications.

Virtual reality (VR)—These applications aim to create realistic virtual environ-
ment that resembles the real world. These applications include product and medical 
visualisation, scientific uses, military simulation, technical training and support, and 
3D sales and marketing software. With increasing demand for higher returns on 
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investments for real-time rendering applications, the technology described in this 
book can address this requirement by delivering consistent performance in various 
application settings.

Mixed reality (MR) and rich media—The Internet has evolved into a rich-media 
communication channel in recent years. Mixed reality (MR) applications blend both 
virtual and real objects together to create believable and informative worlds. The 
confluence of these subjects has generated interesting applications and products that 
require some form of interactive 3D rendering.

A key advantage offered by the control-assisted rendering technology described 
in this book offers is the deployment of these types of applications over a wide range 
of computer platforms and human–computer interfaces.

7.3.1 �E xtension of Control System Framework

Control engineering principles have been widely adopted around the world. 
Control techniques have been adopted across a spectrum of applications includ-
ing flight dynamics, temperature control, and mechanical systems. We believe the 
modelling and control system framework described in this book can be extended 
beyond real-time polygonal rendering (surface shading) to other forms of rendering 
such as:

Volume rendering [10]
Image-based rendering [61]
Real-time transcoding and compression of video streams [62,63]

7.4 � CONVERGENCE WITH FUTURE TECHNOLOGY

Key technology innovation in recent years created several interesting and promising 
opportunities for control engineering with real-time computer graphics rendering. 
We provide a summary of the advances and their future prospects below.

7.4.1 �G reater Computing Parallelism

The advent of the graphical processing unit (GPU) impelled the quality of real-time 
computer graphics to progress by leaps and bounds. Today it is typical for a com-
puter to have both a CPU and a GPU dedicated to graphics related task processing. 
From a control system architectural perspective, this provides a straightforward path 
to mapping of a controller to the CPU and a plant to the GPU. The benefit of the 
arrangement is more robust parallel processing and stability in the control system.

7.4.2 �I ncreased Use of Mobile Devices

Decreasing manufacturing costs and sleeker hardware designs flooded the global 
consumer market with portable and powerful mobile devices. The average time a 
consumer spends using mobile devices has risen significantly as a result of technology 
innovations and costs of ownership.
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Nevertheless, these devices are still constrained by limited local storage space 
and less powerful processors than those used in desktop systems. The widespread 
use of mobile devices provides a tremendous opportunity for the installation of cer-
tain adaptive control mechanisms to improve the quality of service of applications. 
This is an active field of research.

7.4.3 � Vast Improvements in Internet Infrastructure

As the availability of high-speed Internet connection increases globally, the com-
munication overheads of computers and devices reduce correspondingly. In control 
system design, this implies significant reductions in latency for closed-loop feedback 
communications. The improvements represented by Configuration C discussed in 
Section 7.1 may lead to scalable control system architectures to be implemented 
across networks and physical locations.

7.5 � ECONOMIC AND PRODUCTIVITY IMPACTS

While the technicalities of integrating control engineering with real-time computing 
have been presented extensively in this book, we feel that the economic and pro-
ductivity impacts should be emphasised as well. In broad terms and drawing from 
experiences in industrial fields where control engineering played a significant part, 
we provide a brief summary below.

7.5.1 �E nhanced Product Lifespan

As data requirements grow rapidly, hardware processing power may not be able to 
keep pace in many situations. To illustrate, CAD and CAM applications utilise 3D 
object data extensively. However, an investment in a computer system may yield 
decreasing productivity as data size scales.

By using adaptive control techniques with level-of-detail management, the work 
scope of a computer can be expanded significantly, thus prolonging its life as a 
productive tool. Furthermore, a lengthened product life allows a system to remain 
useful over a longer period, thus allowing better cost amortisation and lowering the 
total cost of ownership of computer graphics systems.

7.5.2 �I ncreased Productivity

The increasing complexity of designs of many products requires exchanges of design 
information among various stakeholders in the production pipeline. The advantage 
of virtual prototyping is that early analysis and insights derived from such activities 
can help engineers understand the potential pitfalls and test various ideas without 
incurring the high costs of producing physical prototypes.

In addition to enhanced product lifespan, another benefit is the increased pro-
ductivity resulting from better use of controlled systems in general. For example, 
without adaptive real-time rendering, a user would waste precious time generating 
images. This problem becomes especially acute when real-time visualisation is an 
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integral part of a design and/or manufacturing process. The introduction of a control 
mechanism can alleviate the display frame rate latency issue and help users become 
more productive. A direct benefit is a shorter time to market for a product that helps 
businesses better respond to changing market conditions.

7.5.3 �N ew Products and Markets

Recent market research and trends indicate that the digital media industry is growing 
at a phenomenal rate.* The forecast remains very positive, driven largely by stronger 
economies and great demand for digital content around the world. Interactive 
real-time rendering applications that form a substantial part of digital continue will 
continue remain relevant for many years.

We believe the technology proposed in this book can lead to many new products 
that address the needs of various segments of the digital media market. From a 
socioeconomical perspective, the technology may generate employment and service 
businesses. It is our hope that adaptive control will serve as a critical component of 
real-time rendering in the near future.

*	 3D CAD Software Market in the APAC Region 2011–2015. http://www.technavio.com/content/3d-
cad-software-market-apac-region-2011-2015. Gartner Forecast: Enterprise Software Markets World-
wide 2008–2013, 1Q09 http://www.gartner.com/DisplayDocument?ref=g_search&id=913424&subref
=simplesearch
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8 Conclusion

8.1 � PERFORMANCE ANALYSIS

In this section, we provide a qualitative and quantitative analysis on the experiment 
results of previous research in comparison to that from our proposed framework. 
The analysis is primarily based on three characteristics of the rendering perfor-
mance—the frame rate stability, transient response and adaptive tracking capability. 

Prior to discussing the analysis, it is known generally that the performance of 
different techniques is best compared by applying them in the same test data-set 
or environment. However, this cannot be easily accomplished in this research 
because we are not simply comparing an improvement to an existing technique or 
algorithm but introducing, establishing and validating a novel rendering architec-
ture. First, the subject matter deals with a 3D rendering approach (polygon-based) 
which is vastly different compared with other techniques such as image-based and 
volumetric rendering. This means that the rendering setup and data format cannot 
be shared or used across the platforms. Second, apart from software configuration 
certain research spanning interactive 3D rendering techniques surveyed in this book 
relies on specialized hardware [69,82,85,91] or they work on distributed environ-
ments [61,62,67,72] which contrasts greatly with our rendering framework’s setup. 
Therefore we deem the comparison to be adequate by referencing the qualitative 
and quantitative differences (frame rate stability, transient response and adaptive 
tracking capability) between the experiment results from previous research and 
our work.

8.1.1 �F rame Rate Stability

One of the key qualitative metric considered in this research which is important in 
real-time 3D rendering is frame rate stability. A stable frame rate does not only bring 
about steady visual display that allows positive user experience, it also carries the 
benefit of optimised resource usage. This can lead to more effective utilisation of 
the computer’s processor cycles compared to a “best-effort” technique that does not 
guarantee a stable frame rate. 

From Figure 8.1, it is evident that Pouderoux and Marvie’s technique of stream-
ing 3D terrain data using strip masks [78] did not generate persistently stable frame 
rates. Gobbetti and Bouvier’s multi-resolution technique [88] to control frame rate 
produces very coarse results as shown in Figure 8.2. The lack of strong adherence 
to target frame rates is probably most apparent in Jeschke et al.’s [77] research on 
using imposters as a means to improve frame rates. It is evident from the experiment 
data as shown in Figure 8.3 that this type of approach is not adaptive in nature and it 
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ascribes to the “best-effort” design. Paravati et al.’s [66] adaptive control system did 
not deliver stable frame rates as well as shown in Figure 8.4 rather the depicted frame 
rates bear an oscillatory behavior after some steady-state equilibrium.

From a quantitative perspective, all the aforementioned research produced errors 
in frame rates of more 100% from the target value.

For the purpose of comparison and clarity, we reproduce Figure 5.12 and 5.13 
below as Figures 8.5 and 8.6. It can be seen that our proposed modelling and control 
framework creates absolutely stable frame rates with less than 3% error.

8.1.2 �T ransient Response

The transient response of a 3D rendering application refers to the quality of its transi-
tion as the frame rate changes from one steady-state level to another typically due to 
changing performance objective. This quality is particularly important at low frame 
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rate transitions because it can severely affect the user experience due to the “display 
stuttering” that occurs. With reference to the diagrams in Figure 8.7, Zheng et al. 
[76] showed in their experiment results that their algorithm in handling distributed 
rendering produces frame rate accuracies close to the targets. This is however done 
with bumpy transitions and as depicted in the diagram on the left, there are even 
oscillations after an initial steady-state.

In contrast to the results shown in Figure 8.7, our fuzzy controller system produces 
tracking with improved transitions as shown in Figures 5.12, 5.13 (now Figures 8.5 
and 8.6) and 6.11 in Chapter 6. There are no sporadic oscillations with large ampli-
tude after the output attains a steady-state level.

8.1.3 �A daptive Tracking Capability

While research in interactive 3D rendering purports accurate tracking to a perfor-
mance objective, what is often not presented is the ability of the technique to adapt to 
changing performance objectives. We illustrate a practical example where an appli-
cation that may draw considerable computer hardware processing power can benefit 
from a longer run-time if the display frame rate can be adaptively changed according 
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to power levels. For instance, it can start with a default 60 FPS when power is full 
and change progressively until it reaches 20 FPS at very low power levels. A mecha-
nism like this enhances the usability of the application across a wide operating range 
but calls for a technique that is robust and flexible enough to support it.

Figure 8.8 shows Li and Shen’s research output in time-critical multi-resolution 
volume rendering [80]. Their algorithm improves the quality of the output which 
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uses the feedback algorithm. However, it only presents to the reader a single frame 
rate objective.

Similarly, the experiment results from Yoon et al’s work [81] on interactive 
view-dependent rendering of massive models show improved frame rates but only 
with oscillations and unstable frame rates. There is no depiction in Figure 8.9 of any 
adaptive capability in handling discrete frame rate level changes.

Another example that shows frame rate improvement is found in Figure 8.10 from 
Scherzer, Yang, and Mattausch’s research [69] on exploiting temporal coherence 
in real-time rendering. The output from their technique is compared against other 
approaches but there is no information on the technique’s handling of frame rate 
level transitions and the corresponding transient response.

Our proposed control system for 3D rendering however produces fast and direct 
transitions from one steady-state transition to another as shown in Figure 6.12 in 
Chapter 6. The small amount of delay in the tracking is due to the implementation of 
the controller and plant which involves network communication.

8.2 � SUMMARY

In this book, we described an intelligent real-time rendering system based on our 
research in the fields of control engineering, system identification, and real-time 
computer graphics. We introduced a novel control system framework using a 
closed-loop feedback design with the rendering process—the plant to be controlled. 
The salient areas of this research were the detailed process steps for deriving system 
models for the real-time rendering process. The techniques were not discussed in 
previous research. We devised models that can capture both linear and non-linear 
characteristics of the rendering process.
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FIGURE 8.9  Quick-VDR: Interactive View-Dependent Rendering of Massive Models, 
Yoon et al. [81].
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Furthermore, we investigated and developed control frameworks using model-based 
and model-less approaches for real-time rendering. The frameworks discussed apply 
to conventional PID controls for linear processes, piecewise linear controls, and the 
use of soft computing techniques such as neuro-fuzzy control for setting up systems 
without formal model definitions.

Our experiments show that it is possible to model real-time rendering accurately. 
We performed further experiments that validated the performance of our control 
system utilising both PID and fuzzy controllers in different arrangements.

8.3 � FUTURE WORK

We hope our research will inspire appreciation for and wider adoption of theoretic 
controls for computer graphics applications. Based on the initial objectives we set 
and met in our research, we hope that future work that may generate interest in some 
related topics.

First, a global geometry manager for rendering software would be desirable for 
handling 3D scenes involving many different objects. More specifically, a managing 
device could resemble the common hierarchical scene graph by which objects and 
sub-objects are organised in a contextually meaningful manner. The function of this 
geometry manager is to provide better resolution control for the geometry load of 
a 3D scene by determining which objects must scaled appropriately based on their 
geometric constructs.
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FIGURE 8.10  Experiment results from Scherzer, Yang, and Mattausch’s [69] research on 
exploiting temporal coherence in real-time rendering.
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Certain visual-based criteria may serve as guidelines determining the extent to 
which individual 3D objects should be scaled. In other words, the manager will act 
as a “middle man” between the control action and the rendering process, distribut-
ing the effects of the control action in an elegant way to change individual objects 
within the 3D scene. This would extend the utility of the proposed control system 
framework to a larger pool of applications.

The next possible extension to this research is investigating other input variables 
to the plant that may be used in the control system framework. Although it may be 
difficult to find many variables that are easily accessible from the rendering pipeline 
and able to be changed at reasonable resolution rates, it may be possible to introduce 
certain user-defined input parameters specific to certain applications. For example 
instead of computer graphics rendering pipeline inputs, the control system frame-
work may include hardware-related resources such as memory and CPU utilisation 
that can impact rendering process performance. Also, recent advancements in com-
puter graphics hardware and techniques may expose new input variables that may be 
considered in future control system frameworks.

The experiments we conducted focused largely on verification of the key con-
cepts of introducing control principles in real-time computer graphics rendering. As 
a result, the simulation environment construct was performed using available test 
software. For practical applications, generic libraries should be developed so that inte-
gration into different real-time rendering software can be achieved easily. However, 
this proposal can involve significant time for code verification and optimisation of 
runtime efficiency.
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Annex A: Sample Applications

A.1 � OVERVIEW

The functionalities of the two sample applications used in the experiments described 
in this book are detailed below. They were used as the main rendering processes that 
were modified for implementation of a closed-loop feedback control system.

A.2 � PROGRESSIVEMESH SAMPLE*

This ProgressiveMesh sample shows how an application can use the D3DX progres-
sive mesh functionality to simplify meshes for faster rendering. It is a specialised mesh 
object that can increase or decrease its geometry complexity, thereby providing flex-
ibility when drawing a mesh so that performance can be maintained at a steady level. 
This feature is useful when providing LoD support. (Note: The simplification algorithm 
used to generate progressive meshes is based on Hugues Hoppe’s Siggraph papers.)

A.3 � HOW SAMPLE WORKS

The functionalities of progressive meshes are provided by ID3DXPMesh. The mesh 
interface is similar to ID3DXMesh with additional methods for managing complex-
ity. To generate a progressive mesh, call D3DXGeneratePMesh. The progressive 
mesh can be used just like a regular mesh. To render it, a sample loops through its 
materials and calls ID3DXBaseMesh::DrawSubset to send the geometry subset to 
the device. To adjust the level of detail (LoD) of the progressive mesh, the sample 
calls ID3DXPMesh::SetNumVertices and passes it the desired number of vertices. 
A progressive mesh will simplify or enhance its geometry to match the number of 
vertices as closely as possible.

The sample also shows an optimisation technique for progressive meshes by 
trimming multiple meshes. Trimming limits the maximum and minimum num-
ber of vertices or faces a progressive mesh can have. The sample divides the range 
(maximum to minimum) of the progressive mesh vertices into ten sub-ranges. After 
the sub-ranges are computed, the sample creates ten progressive meshes by calling 
ID3DXPMesh::ClonePMeshFVF on the original mesh. Then the sample calls 
ID3DXPMesh::TrimByVertices on each progressive mesh using a different sub-range.

After setting the range of vertices, the sample calls ID3DXPMesh::Optimize
BaseLOD to optimise the mesh vertex and index buffers. When a user changes the 
vertex count, the new vertex count is checked against the range of the optimised 
progressive mesh set, and the mesh whose range contains the desired vertex count is 
selected by calling ID3DXPMesh::SetNumVertices.

*	 Documentation reproduced from Microsoft DirectX SDK 2009.
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The advantage of multiple meshes over a single mesh is that adjusting LoD is 
more efficient. The performance load of changing LoD is directly proportional 
to the difference in complexity (represented by vertex count in this sample). 
Simplifying a mesh by reducing the number of vertices by 10 takes less time than 
reducing the vertex count by 100. That is why this sample achieves better perfor-
mance by trimming several progressive meshes, each of which covers a smaller 
LoD range.

A.4 � TESSELLATION SAMPLE*

This sample demonstrates mesh tessellation in Microsoft Direct3D. Mesh tessel-
lation subdivides mesh triangles to yield a mesh with finer geometry details that 
produces better results even with per-vertex lighting. Mesh tessellation is often used 
to implement LoD where meshes closer to the viewer are rendered with more details 
and more distant meshes are rendered with less detail.

A.5 � HOW SAMPLE WORKS

The sample can run in one of two modes: hardware or software tessellation. The 
user can set the tessellation level to different values and see how the mesh changes 
in reaction to the level adjustment.

When running in hardware tessellation mode, the sample tessellates the mesh by 
setting the Device.NPatchMode property that sets the number of tessellation seg-
ments into which the device will tessellate each mesh segment. For instance, speci-
fying 3.0 will cause each original segment in the input mesh to be tessellated into 
three segments. Tessellation happens in real-time, after the mesh draw calls in the 
render loop.

When running in software tessellation mode, the sample does not rely on the 
hardware to handle on-the-fly tessellation. The sample must process the mesh and 
obtain the desired detail level before rendering it. The code achieves this by calling 
Mesh.TessellateNPatches to take an input mesh and a segment count and then output 
another mesh that represents the tessellated version of the input mesh. The sample 
can then render this tessellated mesh using any standard mechanism.

A.6 � SAMPLES
//—————————————————————————————————————————————————————————————————————————
//Program modified by Gabriyel Wong from EnhancedMesh example from
//Microsoft DirectX 9 SDK
//Additional components added: network communication, tessellation and
//rendering quality controls.
//Author: Gabriyel Wong
//Original code copyrights Microsoft.
//—————————————————————————————————————————————————————————————————————————

*	 Documentation reproduced from Microsoft DirectX SDK 2009.
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#include “DXUT.h”
#include “DXUTcamera.h”
#include “DXUTsettingsdlg.h”
#include “SDKmisc.h”
#include “resource.h”
#include “skybox.h”
#include “XNet.h”
#include <iostream>
#include <fstream>
#include <time.h>

//#define DEBUG_VS //Uncomment this line to debug vertex shaders
//#define DEBUG_PS //Uncomment this line to debug pixel shaders

#define NUM_TONEMAP_TEXTURES	 5	 //Number of stages in the 3x3 
down-scaling of average luminance 
textures

#define NUM_BLOOM_TEXTURES	 2
#define RGB16_MAX	 100

enum ENCODING_MODE
{
	 FP16,
	 FP32,
	 RGB16,
	 RGBE8,
	 NUM_ENCODING_MODES
};

enum RENDER_MODE
{
	 DECODED,
	 RGB_ENCODED,
	 ALPHA_ENCODED,
	 NUM_RENDER_MODES
};

struct TECH_HANDLES
{
	 D3DXHANDLE XRay;
	 D3DXHANDLE SimpleLighting;
	 D3DXHANDLE SpecularLighting;
	 D3DXHANDLE ToonEffect;
	 D3DXHANDLE Reflect;
	 D3DXHANDLE ReflectSpecular;
};

struct SCREEN_VERTEX
{
	 D3DXVECTOR4 pos;
	 D3DXVECTOR2 tex;
	 static const DWORD FVF;
};

const DWORD SCREEN_VERTEX::FVF = D3DFVF_XYZRHW | D3DFVF_TEX1;
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//—————————————————————————————————————————————————————————————————————————
//Global variables
//—————————————————————————————————————————————————————————————————————————
IDirect3DDevice9*	 g_pd3dDevice;		  //Direct3D device
LPCWSTR	 g_Models[6] = {	L”Models\\dragon.x”,
		  L”Models\\engine.x”,
		  L”Models\\audi.x”,
		  L”Models\\skull.x”};
DWORD	 g_ModelCount = 6;
DWORD	 g_DwShaderFlags = 0;
DWORD	 g_CurrentModel = 0;
CSkybox	 g_Skybox;
ID3DXFont*	 g_pFont = NULL;	 //Font for drawing text
ID3DXSprite*	 g_pTextSprite = NULL;	//Sprite for batching draw 

text calls
ID3DXEffect*	 g_pEffect = NULL;	 //D3DX effect interface
CModelViewerCamera	 g_Camera;	 //A model viewing camera
IDirect3DTexture9*	 g_pDefaultTex = NULL;	//Default texture for 

texture-less material
bool	 g_bShowHelp = true;	 //If true, it renders the UI 

control text
CDXUTDialogResourceManager g_DialogResourceManager;//manager for 

shared resources of dialogs
CD3DSettingsDlg	 g_SettingsDlg;	 //Device settings dialog
CDXUTDialog	 g_HUD;	 //dialog for standard 

controls
CDXUTDialog	 g_SampleUI;	 //dialog for sample specific 

controls
ID3DXMesh*	 g_pMeshSysMem = NULL;	//system memory version of 

mesh, lives through 
resise’s

ID3DXMesh*	 g_pMeshEnhanced = NULL;	//vid mem version of mesh 
that is enhanced

UINT	 g_dwNumSegs = 1;	 //number of segments per edge 
(tesselation level)

D3DXMATERIAL*	 g_pMaterials = NULL;	 //pointer to material info in 
m_pbufMaterials

LPDIRECT3DTEXTURE9*	g_ppTextures = NULL;	 //array of textures, entries 
are NULL if no texture 
specified

DWORD	 g_dwNumMaterials = NULL;	 //number of materials
D3DXVECTOR3	 g_vObjectCenter;	 //Center of bounding sphere 

of object
FLOAT	 g_fObjectRadius;	 //Radius of bounding sphere 

of object
D3DXMATRIXA16	 g_mCenterWorld;	 //World matrix to center the 

mesh
ID3DXBuffer*	 g_pbufMaterials = NULL;	//contains both the 

materials data and the 
filename strings

ID3DXBuffer*	 g_pbufAdjacency = NULL;	//Contains the adjacency 
info loaded with the mesh

bool	 g_bUseHWNPatches = true;
bool	 g_bWireframe = false;
PDIRECT3DSURFACE9	 g_pMSRT = NULL;	 //Multi-Sample float render 

target
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PDIRECT3DSURFACE9	 g_pMSDS = NULL;	 //Depth Stencil surface for 
the float RT

LPDIRECT3DTEXTURE9	 g_pTexRender;	 //Render target texture
LPDIRECT3DTEXTURE9	 g_pTexBrightPass;	 //Bright pass filter
LPD3DXMESH	 g_pMesh;
LPDIRECT3DTEXTURE9	 g_apTexToneMap[NUM_TONEMAP_TEXTURES]; //Tone 

mapping calculation 
textures

LPDIRECT3DTEXTURE9	 g_apTexBloom[NUM_BLOOM_TEXTURES]; //Blooming 
effect intermediate texture

bool	 g_bBloom;	 //Bloom effect on/off
ENCODING_MODE	 g_eEncodingMode;
RENDER_MODE	 g_eRenderMode;
TECH_HANDLES	 g_aTechHandles;
TECH_HANDLES*	 g_pCurTechnique;
bool	 g_bShowText;
double	 g_aPowsOfTwo[257];	 //Lookup table for log 

calculations
bool	 g_bSupportsR16F = false;
bool	 g_bSupportsR32F = false;
bool	 g_bSupportsD16 = false;
bool	 g_bSupportsD32 = false;
bool	 g_bSupportsD24X8 = false;
bool	 g_bUseMultiSample = false; //True when using 

multisampling on a 
supported back buffer

D3DMULTISAMPLE_TYPE	g_MaxMultiSampleType = D3DMULTISAMPLE_NONE;
		  //Non-Zero when g_

bUseMultiSample is true
DWORD	 g_dwMultiSampleQuality = 0;
		  //Used when we have 

multisampling on a 
backbuffer

IDirect3DCubeTexture9* g_pCubeTexture = NULL;
int	 g_CurrentCubeTexture = 1;
LPCWSTR	 g_CubeTextures[16] = {	L”Light Probes\\street.dds”, L”Street”,
		  L”Light Probes\\castle.dds”, L”Castle”,
		  L”Light Probes\\park.dds”, L”Park”,
		  L”Light Probes\\night.dds”, L”Night”,
		  //L”Light Probes\\ParkLow.dds”, L”Park 

Low”,
		  //L”Light Probes\\Park.dds”, L”Park 

High”,
		  //L”Light Probes\\CreekLow.dds”, 

L”Creek Low”,
		  //L”Light Probes\\VasaLow.dds”, L”Vasa 

Low”,
		  //L”Light Probes\\Vasa.dds”, L”Vasa 

High”
};

float	 g_fModelReflectivity = 0.75f;
CHAR*	 g_Techniques[] = {“XRay”, “SimpleLighting”, 
“SpecularLighting”, “ToonEffect”, “Reflect”, “ReflectSpecular”,};
LPCWSTR	 g_TechniqueNames[] = {L”X-Ray”, L”Diffuse Lighting”, 
L”Specular Lighting”, L”Toon Effect”,
L”Reflection + Diffuse”, L”Reflection + Specular”};
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int	 g_CurrentTechnique = 0;
int	 g_OriginalNumFaces = 0;

//—————————————————————————————————————————————————————————————————————————
//UI control IDs
//—————————————————————————————————————————————————————————————————————————
#define IDC_TOGGLEFULLSCREEN	 1
#define IDC_TOGGLEREF	 3
#define IDC_CHANGEDEVICE	 4
#define IDC_FILLMODE	 5
#define IDC_SEGMENTLABEL	 6
#define IDC_SEGMENT	 7
#define IDC_HWNPATCHES	 8
#define IDC_CUBETEXTURELABEL	 9
#define IDC_CUBETEXTURE	 10
#define IDC_MODELREFLECTIVITYLABEL	 11
#define IDC_MODELREFLECTIVITY	 12
#define IDC_ACTIVEEFFECTLABEL	 13
#define IDC_ACTIVEEFFECT	 14

//—————————————————————————————————————————————————————————————————————————
//Forward declarations
//—————————————————————————————————————————————————————————————————————————
bool CALLBACK IsDeviceAcceptable(D3DCAPS9* pCaps, D3DFORMAT 
AdapterFormat, D3DFORMAT BackBufferFormat, bool bWindowed,
void* pUserContext);
bool CALLBACK ModifyDeviceSettings(DXUTDeviceSettings* 
pDeviceSettings, void* pUserContext);
HRESULT CALLBACK OnCreateDevice(IDirect3DDevice9* pd3dDevice, const 
D3DSURFACE_DESC* pBackBufferSurfaceDesc,
void* pUserContext);
HRESULT CALLBACK OnResetDevice(IDirect3DDevice9* pd3dDevice, const 
D3DSURFACE_DESC* pBackBufferSurfaceDesc,
void* pUserContext);
void CALLBACK OnFrameMove(double fTime, float fElapsedTime, void* 
pUserContext);
void CALLBACK OnFrameRender(IDirect3DDevice9* pd3dDevice, double 
fTime, float fElapsedTime, void* pUserContext);
LRESULT CALLBACK MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM 
lParam, bool* pbNoFurtherProcessing, void* pUserContext);
void CALLBACK KeyboardProc(UINT nChar, bool bKeyDown, bool bAltDown, 
void* pUserContext);
void CALLBACK OnGUIEvent(UINT nEvent, int nControlID, CDXUTControl* 
pControl, void* pUserContext);
void CALLBACK OnLostDevice(void* pUserContext);
void CALLBACK OnDestroyDevice(void* pUserContext);

void InitApp();
HRESULT LoadMesh(IDirect3DDevice9* pd3dDevice, WCHAR* strFileName, 
ID3DXMesh** ppMesh);
void RenderText();
HRESULT GenerateEnhancedMesh(IDirect3DDevice9* pd3dDevice, UINT 
cNewNumSegs);

//Use compile symbol NETWORK_CONTROL to set network configuration
#ifdef NETWORK_CONTROL
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//Threading info
#define MAX_THREADS 2
#define BUF_SIZE 255

DWORD WINAPI SendDataThreadFunction(LPVOID lpParam);
DWORD WINAPI ReceiveDataThreadFunction(LPVOID lpParam);

void ErrorHandler(LPTSTR lpszFunction);

//Sample custom data structure for threads to use.
//This is passed by void pointer so it can be any data type
//that can be passed using a single void pointer (LPVOID).
typedef struct MyData {
	 int val1;
	 int val2;
} MYDATA, *PMYDATA;

MyDataStruct ds, dr;

DWORD WINAPI SendDataThreadFunction(LPVOID lpParam)
{
		  XNet* xnet = new XNet();
		  xnet->init(CLIENT, 64000, UDP, “localhost”);
		  while(1)  //Keep the thread alive
		  {
			   xnet->sendData(ds);
			   printf(“SendDataThreadFunction:%f\n”, ds.data[0]);
		  }
	 return 0;
}

DWORD WINAPI ReceiveDataThreadFunction(LPVOID lpParam)
{
		  XNet* xnet = new XNet();
		  xnet->init(SERVER, 64001, UDP);
		  while(1)  //Keep the thread alive
		  {
			   dr.data[0] = xnet->receiveData().data[0];
			   dr.data[1] = xnet->receiveData().data[1];
		  }
	 return 0;
}

PMYDATA	 pDataArray[MAX_THREADS];
DWORD	 dwThreadIdArray[MAX_THREADS];
HANDLE	 hThreadArray[MAX_THREADS];
#endif

std::ofstream logfile;
//—————————————————————————————————————————————————————————————————————————
//Entry point to the program. Initialises everything and goes into a
//message processing loop. Idle time is used to render the scene.
//—————————————————————————————————————————————————————————————————————————
int main(void)
{
	 logfile.open (“data.log”);
	 long startTime = time(NULL);
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#ifdef NETWORK_CONTROL
	 //Since rendering application is C++, and the system is SISO/MISO, 
	 // there is only one data channel to send back to controller, i.e. y.
	 //Note data type and container size.
	 ds.data[0] = 999;	 //Initialization value
	 ds.data[1] = 999;

	 //Clear receive buffer
	 dr.data[0] = 999;
	 dr.data[1] = 999;

	 for(int i = 0; i<MAX_THREADS; i++)
	 {
		  //Allocate memory for thread data.
		  pDataArray[i] = (PMYDATA) HeapAlloc(GetProcessHeap(), 
HEAP_ZERO_MEMORY, sizeof(MYDATA));

		  if(pDataArray[i] = = NULL)
		  {
			   //If the array allocation fails, the system is out of memory
			   //so there is no point in trying to print an error message.
			   //Just terminate execution.
				    ExitProcess(2);
		  }

		  //0 - Send, 1 - Receive
		  if (i = = 0)
		  {
			   hThreadArray[i] = CreateThread(
				    NULL,	 //default security attributes
				    0,	 //use default stack size
				    SendDataThreadFunction,	 //thread function name
				    pDataArray[i],	 //argument to thread function
				    0,	 //use default creation flags
				    &dwThreadIdArray[i]);	 //returns the thread identifier
		  }

		  if (i = = 1)
		  {
			   hThreadArray[1] = CreateThread(
				    NULL,		 //default security attributes
				    0,		 //use default stack size
				    ReceiveDataThreadFunction,	 //thread function name
				    pDataArray[1],	 //argument to thread function
				    0,		 //use default creation flags
				    &dwThreadIdArray[1]);	 //returns the thread identifier
		  }

		  //Check the return value for success.
		  //If CreateThread fails, terminate execution.
		  //This will automatically clean up threads and memory.

		  if (hThreadArray[i] = = NULL)
		  {
				    printf(“Error creating thread...!\n”);
			   ExitProcess(3);
		  }
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	 }//End of main thread creation loop.

	 //Wait until all threads have terminated.
	 WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);

	 //Close all thread handles and free memory allocations.
	 for(int i = 0; i<MAX_THREADS; i++)
	 {
		  CloseHandle(hThreadArray[i]);
		  if(pDataArray[i] ! = NULL)
		  {
			   HeapFree(GetProcessHeap(), 0, pDataArray[i]);
			   pDataArray[i] = NULL; //Ensure address is not reused.
		  }
	 }
#endif

	 //Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
	 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

	 //Set the callback functions
	 DXUTSetCallbackD3D9DeviceAcceptable(IsDeviceAcceptable);
	 DXUTSetCallbackD3D9DeviceCreated(OnCreateDevice);
	 DXUTSetCallbackD3D9DeviceReset(OnResetDevice);
	 DXUTSetCallbackD3D9FrameRender(OnFrameRender);
	 DXUTSetCallbackD3D9DeviceLost(OnLostDevice);
	 DXUTSetCallbackD3D9DeviceDestroyed(OnDestroyDevice);
	 DXUTSetCallbackMsgProc(MsgProc);
	 DXUTSetCallbackKeyboard(KeyboardProc);
	 DXUTSetCallbackFrameMove(OnFrameMove);
	 DXUTSetCallbackDeviceChanging(ModifyDeviceSettings);

	 //Initialize DXUT and create the desired Win32 window and Direct3D
	 //device for the application
	 DXUTSetCursorSettings(true, true);//Show the cursor and clip it when 
in full screen
	 InitApp();
	 DXUTInit(true, true);//Parse the command line and show msgboxes
	 DXUTSetHotkeyHandling(true, true, true); //handle the default 
hotkeys
	 DXUTCreateWindow(L”Enhanced Mesh - N-Patches”);
	 DXUTCreateDevice(true, 1366, 768);
	 DXUTMainLoop();

	 //Perform any application-level cleanup here. Direct3D device
	 //resources are released within the appropriate callback functions
	 //and therefore don’t require any cleanup code here.

		  logfile << “Duration(sec): “ << time(NULL) - startTime << std::endl;
		  logfile.close();
	 return DXUTGetExitCode();
}



126 Annex A

//—————————————————————————————————————————————————————————————————————————
//Initialize the app
//—————————————————————————————————————————————————————————————————————————
void InitApp()
{
	 g_pFont = NULL;
	 g_pEffect = NULL;
	 g_bShowHelp = true;
	 g_bShowText = true;

	 g_pMesh = NULL;
	 g_pTexRender = NULL;

	 g_bBloom = TRUE;
	 g_eEncodingMode = RGBE8;
	 g_eRenderMode = DECODED;

	 g_pCurTechnique = &g_aTechHandles;

	 for(int i = 0; i < = 256; i++)
	 {
		  g_aPowsOfTwo[i] = powf(2.0f, (float)(i - 128));
	 }

	 ZeroMemory(g_apTexToneMap, sizeof(g_apTexToneMap));
	 ZeroMemory(g_apTexBloom, sizeof(g_apTexBloom));
	 //ZeroMemory(g_aTechHandles, sizeof(g_aTechHandles));

	 //Initialize dialogs
	 g_SettingsDlg.Init(&g_DialogResourceManager);
	 g_HUD.Init(&g_DialogResourceManager);
	 g_SampleUI.Init(&g_DialogResourceManager);

	 g_HUD.SetCallback(OnGUIEvent); int iY = 10;
	 g_HUD.AddButton(IDC_TOGGLEFULLSCREEN, L”Toggle full screen”, 35, iY, 
125, 22);
	 g_HUD.AddButton(IDC_TOGGLEREF, L”Toggle REF (F3)”, 35, iY + = 24, 
125, 22);
	 g_HUD.AddButton(IDC_CHANGEDEVICE, L”Change device (F2)”, 35, iY + = 
24, 125, 22, VK_F2);

	 g_SampleUI.SetCallback(OnGUIEvent); iY = 10;
	 g_SampleUI.AddComboBox(IDC_FILLMODE, 10, iY, 150, 24, L’F’);
	 g_SampleUI.GetComboBox(IDC_FILLMODE)->AddItem(L”(F)illmode: Solid”, 
(void*)0);
	 g_SampleUI.GetComboBox(IDC_FILLMODE)->AddItem(L”(F)illmode: 
Wireframe”, (void*)1);
	 g_SampleUI.AddStatic(IDC_SEGMENTLABEL, L”Number of segments: 1”, 10, 
iY + = 30, 150, 16);
	 g_SampleUI.AddSlider(IDC_SEGMENT, 10, iY + = 14, 150, 24, 1, 10, 1);
	 g_SampleUI.AddCheckBox(IDC_HWNPATCHES, L”Use hardware N-patches”, 
10, iY + = 26, 150, 20, true, L’H’);

		  g_SampleUI.AddStatic(IDC_CUBETEXTURELABEL, L”Skymap Texture:”, 
10, iY + = 26, 150, 16);
		  g_SampleUI.AddComboBox(IDC_CUBETEXTURE, 10, iY + = 14, 150, 24);
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		  for(int i = 1; i < 16; i + = 2)
		  {
			   g_SampleUI.GetComboBox(IDC_CUBETEXTURE)-> 
AddItem(g_CubeTextures[i], (void*)i);
		  }

		  g_SampleUI.AddStatic(IDC_MODELREFLECTIVITYLABEL, L”Model 
Reflectivity : 30”, 10, iY + = 35, 150, 16);
		  g_SampleUI.AddSlider(IDC_MODELREFLECTIVITY, 10, iY + = 14, 150, 
24, 0, 100, 30);
		  g_SampleUI.AddStatic(IDC_ACTIVEEFFECTLABEL, L”Active Shader”, 10, 
iY + = 26, 150, 16);
		  g_SampleUI.AddComboBox(IDC_ACTIVEEFFECT, -10, iY + = 14, 170, 24);
		  for(int i = 0; i < 6; ++i)
		  {
			   g_SampleUI.GetComboBox(IDC_ACTIVEEFFECT)->
AddItem(g_TechniqueNames[i], (void*)i);
		  }
}

//—————————————————————————————————————————————————————————————————————————
//Rejects any D3D9 devices that aren’t acceptable to the app by
//returning false
//—————————————————————————————————————————————————————————————————————————
bool CALLBACK IsDeviceAcceptable(D3DCAPS9* pCaps, D3DFORMAT 
AdapterFormat, D3DFORMAT BackBufferFormat, bool bWindowed, void* 
pUserContext)
{
	 //Skip backbuffer formats that don’t support alpha blending
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 if(FAILED(pD3D->CheckDeviceFormat(pCaps->AdapterOrdinal, 
pCaps->DeviceType, AdapterFormat, D3DUSAGE_QUERY_POSTPIXELSHADER_
BLENDING, D3DRTYPE_TEXTURE, BackBufferFormat)))
		  return false;

	 //Must support pixel shader 2.0
	 if(pCaps->PixelShaderVersion < D3DPS_VERSION(2, 0))
		  return false;

	 return true;
}

//—————————————————————————————————————————————————————————————————————————
//Before a device is created, modify the device settings as needed
//—————————————————————————————————————————————————————————————————————————
bool CALLBACK ModifyDeviceSettings(DXUTDeviceSettings* 
pDeviceSettings, void* pUserContext)
{
	 assert(DXUT_D3D9_DEVICE = = pDeviceSettings->ver);

	 HRESULT hr;
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 D3DCAPS9 caps;

	 V(pD3D->GetDeviceCaps(pDeviceSettings->d3d9.AdapterOrdinal, 
pDeviceSettings->d3d9.DeviceType, &caps));
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	 //Turn vsync off
	 pDeviceSettings->d3d9.pp.PresentationInterval = 
D3DPRESENT_INTERVAL_IMMEDIATE;
	 g_SettingsDlg.GetDialogControl()-> 
GetComboBox(DXUTSETTINGSDLG_PRESENT_INTERVAL)->SetEnabled(false);

	 //If device doesn’t support HW T&L or doesn’t support 1.1 vertex
	 //shaders in HW then switch to SWVP.
	 if((caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) = = 0 ||
		  caps.VertexShaderVersion < D3DVS_VERSION(1, 1))
	 {
		  pDeviceSettings->d3d9.BehaviourFlags = 
D3DCREATE_SOFTWARE_VERTEXPROCESSING;
	 }

	 //Debugging vertex shaders requires either REF or software vertex
	 //processing and debugging pixel shaders requires REF.
#ifdef DEBUG_VS
	 if(pDeviceSettings->d3d9.DeviceType ! = D3DDEVTYPE_REF)
	 {
		  pDeviceSettings->d3d9.BehaviourFlags & = 
~D3DCREATE_HARDWARE_VERTEXPROCESSING;
		  pDeviceSettings->d3d9.BehaviourFlags & = ~D3DCREATE_PUREDEVICE;
		  pDeviceSettings->d3d9.BehaviourFlags | = 
D3DCREATE_SOFTWARE_VERTEXPROCESSING;
	 }
#endif
#ifdef DEBUG_PS
	 pDeviceSettings->d3d9.DeviceType = D3DDEVTYPE_REF;
#endif
	 //For the first device created if its a REF device, optionally
	 //display a warning dialog box
	 static bool s_bFirstTime = true;
	 if(s_bFirstTime)
	 {
		  s_bFirstTime = false;
		  if(pDeviceSettings->d3d9.DeviceType = = D3DDEVTYPE_REF)
			   DXUTDisplaySwitchingToREFWarning(pDeviceSettings->ver);
	 }

	 return true;
}

//—————————————————————————————————————————————————————————————————————————
//Generate a mesh that can be tesselated.
//—————————————————————————————————————————————————————————————————————————
HRESULT GenerateEnhancedMesh(IDirect3DDevice9* pd3dDevice, UINT 
dwNewNumSegs)
{
	 LPD3DXMESH pMeshEnhancedSysMem = NULL;
	 LPD3DXMESH pMeshTemp;
	 HRESULT hr;

	 if(g_pMeshSysMem = = NULL)
		  return S_OK;
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	 //if using hw, just copy the mesh
	 if(g_bUseHWNPatches)
	 {
		  hr = g_pMeshSysMem->CloneMeshFVF(D3DXMESH_WRITEONLY | 
D3DXMESH_NPATCHES | (g_pMeshSysMem->GetOptions() & D3DXMESH_32BIT), 
g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
		  if(FAILED(hr))
			   return hr;
	 }
	 else //Tesselate the mesh in software
	 {
		  //Create an enhanced version of the mesh, will be in sysmem since
		  //source is
		  hr = D3DXTessellateNPatches(g_pMeshSysMem, (DWORD*)g_
pbufAdjacency->GetBufferPointer(), (float)dwNewNumSegs, FALSE, 
&pMeshEnhancedSysMem, NULL);
		  if(FAILED(hr))
		  {
			   //If the tessellate failed, there might have been more
			   //triangles or vertices than can fit into a 16bit mesh,
			   //so try cloning to 32bit before tessellation

			   hr = g_pMeshSysMem->CloneMeshFVF(D3DXMESH_SYSTEMMEM | 
D3DXMESH_32BIT, g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
			   if(FAILED(hr))
				    return hr;

			   hr = D3DXTessellateNPatches(pMeshTemp,
(DWORD*)g_pbufAdjacency->GetBufferPointer(), (float)dwNewNumSegs, FALSE, 
&pMeshEnhancedSysMem, NULL);
			   if(FAILED(hr))
			   {
				    pMeshTemp->Release();
				    return hr;
			   }
			   pMeshTemp->Release();
		  }

		  //Make a video memory version of the mesh
		  //Only set WRITEONLY if it doesn’t use 32bit indices, because
		  //those often need to be emulated, which means that D3DX needs
		  //read-access.
		  DWORD dwMeshEnhancedFlags = pMeshEnhancedSysMem->GetOptions() & 
D3DXMESH_32BIT;
		  if((dwMeshEnhancedFlags & D3DXMESH_32BIT) = = 0)
			   dwMeshEnhancedFlags | = D3DXMESH_WRITEONLY;
		  hr = pMeshEnhancedSysMem->CloneMeshFVF(dwMeshEnhancedFlags, 
g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
		  if(FAILED(hr))
		  {
			   SAFE_RELEASE(pMeshEnhancedSysMem);
			   return hr;
		  }

		  //Latch in the enhanced mesh
		  SAFE_RELEASE(pMeshEnhancedSysMem);
	 }
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	 SAFE_RELEASE(g_pMeshEnhanced);
	 g_pMeshEnhanced = pMeshTemp;
	 g_dwNumSegs = dwNewNumSegs;

	 return S_OK;
}

HRESULT LoadEffect(IDirect3DDevice9* pd3dDevice, LPCWSTR effect)
{
		  HRESULT hr;

		  SAFE_RELEASE(g_pEffect);

		  //Read the D3DX effect file
	 WCHAR str[MAX_PATH];
	 V_RETURN(DXUTFindDXSDKMediaFileCch(str, MAX_PATH, effect));

	 //If this fails, there should be debug output as to
	 //they the.fx file failed to compile
	 V_RETURN(D3DXCreateEffectFromFile(pd3dDevice, str, NULL, NULL, 
g_DwShaderFlags, NULL, &g_pEffect, NULL));
		  return S_OK;
}

HRESULT LoadMesh(IDirect3DDevice9* pd3dDevice, DWORD meshIndex)
{
	 HRESULT hr;
	 WCHAR wszMeshDir[MAX_PATH];
	 WCHAR wszWorkingDir[MAX_PATH];
	 IDirect3DVertexBuffer9* pVB = NULL;

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
		  SAFE_RELEASE(g_ppTextures[i]);
	 SAFE_DELETE_ARRAY(g_ppTextures);
	 SAFE_RELEASE(g_pMeshSysMem);
	 SAFE_RELEASE(g_pbufMaterials);
	 SAFE_RELEASE(g_pbufAdjacency);
		  SAFE_RELEASE(g_pMeshEnhanced);

	 //Load the mesh
		  V_RETURN(DXUTFindDXSDKMediaFileCch(wszMeshDir, MAX_PATH, 
g_Models[meshIndex]));
	 V_RETURN(D3DXLoadMeshFromX(wszMeshDir, D3DXMESH_SYSTEMMEM, 
pd3dDevice, &g_pbufAdjacency, &g_pbufMaterials, NULL, 
&g_dwNumMaterials, &g_pMeshSysMem));
		  g_OriginalNumFaces = g_pMeshSysMem->GetNumFaces();
	 //Initialize the mesh directory string
	 WCHAR* pwszLastBSlash = wcsrchr(wszMeshDir, L’\\’);
	 if(pwszLastBSlash)
		  *pwszLastBSlash = L’\0’;
	 else
		  StringCchCopyW(wszMeshDir, MAX_PATH, L”.”);

	 //Lock the vertex buffer, to generate a simple bounding sphere
	 hr = g_pMeshSysMem->GetVertexBuffer(&pVB);
	 if(FAILED(hr))
		  return hr;



131Annex A

	 void* pVertices = NULL;
	 hr = pVB->Lock(0, 0, &pVertices, 0);
	 if(FAILED(hr))
	 {
		  SAFE_RELEASE(pVB);
		  return hr;
	 }

	 hr = D3DXComputeBoundingSphere((D3DXVECTOR3*)pVertices, 
g_pMeshSysMem->GetNumVertices(), 
D3DXGetFVFVertexSize(g_pMeshSysMem->GetFVF()), &g_vObjectCenter, 
&g_fObjectRadius);
	 pVB->Unlock();
	 SAFE_RELEASE(pVB);

	 if(FAILED(hr))
		  return hr;

	 if(0 = = g_dwNumMaterials)
		  return E_INVALIDARG;

	 D3DXMatrixTranslation(&g_mCenterWorld, -g_vObjectCenter.x, 
-g_vObjectCenter.y, -g_vObjectCenter.z);

	 //Change the current directory to the.x’s directory so
	 //that the search can find the texture files.
	 GetCurrentDirectory(MAX_PATH, wszWorkingDir);
	 wszWorkingDir[MAX_PATH - 1] = L’\0’;
	 SetCurrentDirectory(wszMeshDir);

	 //Get the array of materials out of the returned buffer, allocate a
	 //texture array, and load the textures
	 g_pMaterials = (D3DXMATERIAL*)g_pbufMaterials->GetBufferPointer();
	 g_ppTextures = new LPDIRECT3DTEXTURE9[g_dwNumMaterials];

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
	 {
		  WCHAR strTexturePath[512] = L””;
		  WCHAR* wszName;
		  WCHAR wszBuf[MAX_PATH];
		  wszName = wszBuf;
		  MultiByteToWideChar(CP_ACP, 0, g_pMaterials[i].pTextureFilename, -1, 
wszBuf, MAX_PATH);
		  wszBuf[MAX_PATH - 1] = L’\0’;
		  DXUTFindDXSDKMediaFileCch(strTexturePath, 512, wszName);
		  if(FAILED(D3DXCreateTextureFromFile(pd3dDevice, strTexturePath, 
&g_ppTextures[i])))
			   g_ppTextures[i] = NULL;
	 }
	 SetCurrentDirectory(wszWorkingDir);

	 //Make sure there are normals, which are required for the
	 //tessellation enhancement.
	 if(!(g_pMeshSysMem->GetFVF() & D3DFVF_NORMAL))
	 {
		  ID3DXMesh* pTempMesh;
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		  V_RETURN(g_pMeshSysMem->CloneMeshFVF(g_pMeshSysMem->GetOptions(), 
g_pMeshSysMem->GetFVF() | D3DFVF_NORMAL, pd3dDevice, &pTempMesh));
		  D3DXComputeNormals(pTempMesh, NULL);

		  SAFE_RELEASE(g_pMeshSysMem);
		  g_pMeshSysMem = pTempMesh;
		  }

		  V_RETURN(GenerateEnhancedMesh(pd3dDevice, g_dwNumSegs));

		  return S_OK;
}

bool SetTriangleCount(double k)
{
		  unsigned int segmentCount = (int)sqrt((float)k/
(float)g_OriginalNumFaces);
		  unsigned int targetFaceCount = 0;

		  unsigned int faceCount = g_OriginalNumFaces * (segmentCount * 
segmentCount);
		  unsigned int faceCount2 = g_OriginalNumFaces * ((segmentCount + 1) 
* (segmentCount + 1));

		  if (abs((int)(faceCount - k)) < abs((int)(faceCount2 - k)))
		  {
			   targetFaceCount = faceCount;
		  }
		  else
		  {
			   targetFaceCount = faceCount2;
		  }

		  g_dwNumSegs = (int)sqrt((float)targetFaceCount/(float)g_
OriginalNumFaces);

		  GenerateEnhancedMesh(g_pd3dDevice, g_dwNumSegs);

	 WCHAR wszBuf[256];
	 //StringCchPrintf(wszBuf, 256, L”Number of segments:%u”, g_dwNumSegs);
	 g_SampleUI.GetStatic(IDC_SEGMENTLABEL)->SetText(wszBuf);
		  g_SampleUI.GetSlider(IDC_SEGMENT)->SetValue(g_dwNumSegs);

		  return true;
}

bool SetShaderComplexity(double k)
{
		  unsigned int shaderlevel = (unsigned int)(k);
		  if (shaderlevel > 5)
			   return false;
		  g_CurrentTechnique = shaderlevel;
		  g_SampleUI.GetComboBox(IDC_ACTIVEEFFECT)->SetSelectedByData((void*)
shaderlevel);
		  return true;
}
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void LoadCubeTexture(LPCWSTR FileName)
{
	 WCHAR strPath[MAX_PATH];
	 DXUTFindDXSDKMediaFileCch(strPath, MAX_PATH, FileName);

		  IDirect3DCubeTexture9* cubeTexture;

	 D3DXCreateCubeTextureFromFileEx(g_pd3dDevice, strPath, D3DX_DEFAULT, 
1, 0, D3DFMT_A16B16G16R16F, D3DPOOL_MANAGED, D3DX_FILTER_NONE, 
D3DX_FILTER_NONE, 0, NULL, NULL, &cubeTexture);

		  SAFE_RELEASE(g_pCubeTexture);

		  g_pCubeTexture = cubeTexture;
}

inline float GaussianDistribution(float x, float y, float rho)
{
	 float g = 1.0f/sqrtf(2.0f * D3DX_PI * rho * rho);
	 g * = expf(-(x * x + y * y)/(2 * rho * rho));

	 return g;
}

//Auxiliary helper functions
inline int log2_ceiling(float val)
{
	 int iMax = 256;
	 int iMin = 0;

	 while(iMax - iMin > 1)
	 {
		  int iMiddle = (iMax + iMin)/2;

		  if(val > g_aPowsOfTwo[iMiddle])
			   iMin = iMiddle;
		  else
			   iMax = iMiddle;
	 }

	 return iMax - 128;
}

inline VOID EncodeRGBE8(D3DXFLOAT16* pSrc, BYTE** ppDest)
{
	 FLOAT r, g, b;

	 r = (FLOAT)*(pSrc + 0);
	 g = (FLOAT)*(pSrc + 1);
	 b = (FLOAT)*(pSrc + 2);

	 //Determine the largest colour component
	 float maxComponent = max(max(r, g), b);
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	 //Round to the nearest integer exponent
	 int nExp = log2_ceiling(maxComponent);

	 //Divide the components by the shared exponent
	 FLOAT fDivisor = (FLOAT)g_aPowsOfTwo[nExp + 128];

	 r/= fDivisor;
	 g/= fDivisor;
	 b/= fDivisor;

	 //Constrain the colour components
	 r = max(0, min(1, r));
	 g = max(0, min(1, g));
	 b = max(0, min(1, b));

	 //Store the shared exponent in the alpha channel
	 D3DCOLOUR* pDestColour = (D3DCOLOUR*)*ppDest;
	 *pDestColour = D3DCOLOUR_RGBA((BYTE)(r * 255), (BYTE)(g * 255), (BYTE)
(b * 255), nExp + 128);
	 *ppDest + = sizeof(D3DCOLOUR);
}

//—————————————————————————————————————————————————————————————————————————
inline VOID EncodeRGB16(D3DXFLOAT16* pSrc, BYTE** ppDest)
{
	 FLOAT r, g, b;

	 r = (FLOAT)*(pSrc + 0);
	 g = (FLOAT)*(pSrc + 1);
	 b = (FLOAT)*(pSrc + 2);

	 //Divide the components by the multiplier
	 r/= RGB16_MAX;
	 g/= RGB16_MAX;
	 b/= RGB16_MAX;

	 //Constrain the colour components
	 r = max(0, min(1, r));
	 g = max(0, min(1, g));
	 b = max(0, min(1, b));

	 //Store
	 USHORT* pDestColour = (USHORT*)*ppDest;
	 *pDestColour++ = (USHORT)(r * 65535);
	 *pDestColour++ = (USHORT)(g * 65535);
	 *pDestColour++ = (USHORT)(b * 65535);

	 *ppDest + = sizeof(UINT64);
}

HRESULT RetrieveTechHandles()
{
	 DWORD dwNumTechniques = sizeof(TECH_HANDLES)/sizeof(D3DXHANDLE);

	 CHAR strBuffer[MAX_PATH] = {0};

	 D3DXHANDLE* pHandle = (D3DXHANDLE*)&g_aTechHandles;
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	 for(UINT t = 0; t < dwNumTechniques; t++)
	 {
		  StringCchPrintfA(strBuffer, MAX_PATH - 1, “%s”, g_Techniques[t]);

		  *pHandle++ = g_pEffect->GetTechniqueByName(strBuffer);
	 }

	 return S_OK;
}

//—————————————————————————————————————————————————————————————————————————
//Create any D3D9 resources that will live through a device reset
//(D3DPOOL_MANAGED) and aren’t tied to the back buffer size
//—————————————————————————————————————————————————————————————————————————
HRESULT CALLBACK OnCreateDevice(IDirect3DDevice9* pd3dDevice, const 
D3DSURFACE_DESC* pBackBufferSurfaceDesc, void* pUserContext)
{
	 HRESULT hr;

	 V_RETURN(g_DialogResourceManager.OnD3D9CreateDevice(pd3dDevice));
	 V_RETURN(g_SettingsDlg.OnD3D9CreateDevice(pd3dDevice));

	 g_pd3dDevice = pd3dDevice;

	 D3DCAPS9 d3dCaps;
	 pd3dDevice->GetDeviceCaps(&d3dCaps);
	 if(!(d3dCaps.DevCaps & D3DDEVCAPS_NPATCHES))
	 {
		  //No hardware support. Disable the checkbox.
		  g_bUseHWNPatches = false;
		  g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetChecked(false);
		  g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetEnabled(false);
	 }
	 else
		  g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetEnabled(true);

	 //Initialize the font
	 V_RETURN(D3DXCreateFont(pd3dDevice, 15, 0, FW_BOLD, 1, FALSE, 
DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH | 
FF_DONTCARE, L”Arial”, &g_pFont));
	 g_DwShaderFlags = D3DXFX_NOT_CLONEABLE;
#if defined(DEBUG) || defined(_DEBUG)
		  g_DwShaderFlags | = D3DXSHADER_DEBUG;
	 #endif
#ifdef DEBUG_VS
		  g_DwShaderFlags | = D3DXSHADER_FORCE_VS_SOFTWARE_NOOPT;
	 #endif
#ifdef DEBUG_PS
		  g_DwShaderFlags | = D3DXSHADER_FORCE_PS_SOFTWARE_NOOPT;
	 #endif

		  V_RETURN(LoadMesh(pd3dDevice, g_CurrentModel));
		  V_RETURN(LoadEffect(pd3dDevice, L”EnhancedMesh.fx”));

	 RetrieveTechHandles();
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	 //Determine which encoding modes this device can support
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 DXUTDeviceSettings settings = DXUTGetDeviceSettings();

		  LoadCubeTexture(g_CubeTextures[0]);
	 V_RETURN(g_Skybox.OnCreateDevice(pd3dDevice, 50, g_pCubeTexture, 
L”skybox.fx”));

	 //Create the 1x1 white default texture
	 V_RETURN(pd3dDevice->CreateTexture(1, 1, 1, 0, D3DFMT_A8R8G8B8, 
D3DPOOL_MANAGED, &g_pDefaultTex, NULL));

	 D3DLOCKED_RECT lr;
	 V_RETURN(g_pDefaultTex->LockRect(0, &lr, NULL, 0));
	 *(LPDWORD)lr.pBits = D3DCOLOUR_RGBA(255, 255, 255, 255);
	 V_RETURN(g_pDefaultTex->UnlockRect(0));

	 //Setup the camera’s view parameters
	 D3DXVECTOR3 vecEye(0.0f, 0.0f, -5.0f);
	 D3DXVECTOR3 vecAt (0.0f, 0.0f, -0.0f);
	 g_Camera.SetViewParams(&vecEye, &vecAt);

	 return S_OK;
}

//—————————————————————————————————————————————————————————————————————————
//Create any D3D9 resources that won’t live through a device reset
//(D3DPOOL_DEFAULT) or that are tied to the back buffer size
//—————————————————————————————————————————————————————————————————————————
HRESULT CALLBACK OnResetDevice(IDirect3DDevice9* pd3dDevice, 
const D3DSURFACE_DESC* pBackBufferSurfaceDesc, void* pUserContext)
{
	 HRESULT hr;
	 int i = 0;

	 V_RETURN(g_DialogResourceManager.OnD3D9ResetDevice());
	 V_RETURN(g_SettingsDlg.OnD3D9ResetDevice());

	 g_Skybox.OnResetDevice(pBackBufferSurfaceDesc);

	 if(g_pFont)
		  V_RETURN(g_pFont->OnResetDevice());
	 if(g_pEffect)
		  V_RETURN(g_pEffect->OnResetDevice());

	 D3DFORMAT fmt = D3DFMT_UNKNOWN;
	 switch(g_eEncodingMode)
	 {
		  case FP16:
			   fmt = D3DFMT_A16B16G16R16F; break;
		  case FP32:
			   fmt = D3DFMT_A16B16G16R16F; break;
		  case RGBE8:
			   fmt = D3DFMT_A8R8G8B8; break;
		  case RGB16:
			   fmt = D3DFMT_A16B16G16R16; break;
	 }
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	 hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width, 
pBackBufferSurfaceDesc->Height, 1, D3DUSAGE_RENDERTARGET, fmt, 
D3DPOOL_DEFAULT, &g_pTexRender, NULL);
	 if(FAILED(hr))
		  return hr;

	 hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width/8, 
pBackBufferSurfaceDesc->Height/8, 1, D3DUSAGE_RENDERTARGET, 
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_pTexBrightPass, NULL);
	 if(FAILED(hr))
		  return hr;

	 //Determine whether we can and should support a multisampling on the 
HDR render target
	 g_bUseMultiSample = false;
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 if(!pD3D)
		  return E_FAIL;

	 DXUTDeviceSettings settings = DXUTGetDeviceSettings();

	 g_bSupportsD16 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal, 
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D16)))
	 {
		  if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
fmt, D3DFMT_D16)))
		  {
			   g_bSupportsD16 = true;
		  }
	 }
	 g_bSupportsD32 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal, 
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D32)))
	 {
		  if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
fmt, D3DFMT_D32)))
		  {
			   g_bSupportsD32 = true;
		  }
	 }
	 g_bSupportsD24X8 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal, 
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D24X8)))
	 {
		  if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat, 
fmt, D3DFMT_D24X8)))
		  {
			   g_bSupportsD24X8 = true;
		  }
	 }
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	 D3DFORMAT dfmt = D3DFMT_UNKNOWN;
	 if(g_bSupportsD16)
		  dfmt = D3DFMT_D16;
	 else if(g_bSupportsD32)
		  dfmt = D3DFMT_D32;
	 else if(g_bSupportsD24X8)
		  dfmt = D3DFMT_D24X8;

	 if(dfmt ! = D3DFMT_UNKNOWN)
	 {
		  D3DCAPS9 Caps;
		  pd3dDevice->GetDeviceCaps(&Caps);

		  g_MaxMultiSampleType = D3DMULTISAMPLE_NONE;
		  for(D3DMULTISAMPLE_TYPE imst = D3DMULTISAMPLE_2_SAMPLES; imst < = 
D3DMULTISAMPLE_16_SAMPLES;
			   imst = (D3DMULTISAMPLE_TYPE)(imst + 1))
		  {
			   DWORD msQuality = 0;
			   if(SUCCEEDED(pD3D->CheckDeviceMultiSampleType(Caps.AdapterOrdinal, 
Caps.DeviceType, fmt, settings.d3d9.pp.Windowed, imst, &msQuality)))
			   {
				    g_bUseMultiSample = true;
				    g_MaxMultiSampleType = imst;
				    if(msQuality > 0)
					     g_dwMultiSampleQuality = msQuality - 1;
				    else
					     g_dwMultiSampleQuality = msQuality;
			   }
		  }

		  //Create the Multi-Sample floating point render target
		  if(g_bUseMultiSample)
		  {
			   const D3DSURFACE_DESC* pBackBufferDesc = 
DXUTGetD3D9BackBufferSurfaceDesc();
			   hr = g_pd3dDevice->CreateRenderTarget(pBackBufferDesc->Width, 
pBackBufferDesc->Height, fmt, g_MaxMultiSampleType, 
g_dwMultiSampleQuality, FALSE, &g_pMSRT, NULL);
			   if(FAILED(hr))
				    g_bUseMultiSample = false;
			   else
			   {
				    hr = g_pd3dDevice->CreateDepthStencilSurface(pBackBufferD
esc->Width, pBackBufferDesc->Height, dfmt, g_MaxMultiSampleType, 
g_dwMultiSampleQuality, TRUE, &g_pMSDS, NULL);
				    if(FAILED(hr))
				    {
					     g_bUseMultiSample = false;
					     SAFE_RELEASE(g_pMSRT);
				    }
			   }
		  }
	 }
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	 //For each scale stage, create a texture to hold the intermediate
	 //results of the luminance calculation
	 int nSampleLen = 1;
	 for(i = 0; i < NUM_TONEMAP_TEXTURES; i++)
	 {
		  fmt = D3DFMT_UNKNOWN;
		  switch(g_eEncodingMode)
		  {
			   case FP16:
				    fmt = D3DFMT_R16F; break;
			   case FP32:
				    fmt = D3DFMT_R32F; break;
			   case RGBE8:
				    fmt = D3DFMT_A8R8G8B8; break;
			   case RGB16:
				    fmt = D3DFMT_A16B16G16R16; break;
		  }

		  hr = pd3dDevice->CreateTexture(nSampleLen, nSampleLen, 1, 
D3DUSAGE_RENDERTARGET, fmt, D3DPOOL_DEFAULT, &g_apTexToneMap[i], NULL);
		  if(FAILED(hr))
			   return hr;

		  nSampleLen * = 3;
	 }

	 //Create the temporary blooming effect textures
	 for(i = 0; i < NUM_BLOOM_TEXTURES; i++)
	 {
		  hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width/8, 
pBackBufferSurfaceDesc->Height/8, 1, D3DUSAGE_RENDERTARGET, 
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_apTexBloom[i], NULL);
		  if(FAILED(hr))
			   return hr;
	 }

	 //Create a sprite to help batch calls when drawing many lines of text
	 V_RETURN(D3DXCreateSprite(pd3dDevice, &g_pTextSprite));

	 V_RETURN(GenerateEnhancedMesh(pd3dDevice, g_dwNumSegs));

	 if(g_bWireframe)
		  pd3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
	 else
		  pd3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);

	 //Setup the camera’s projection parameters
	 float fAspectRatio = pBackBufferSurfaceDesc->Width/(FLOAT)
pBackBufferSurfaceDesc->Height;
	 g_Camera.SetProjParams(D3DX_PI/4, fAspectRatio, 0.1f, 1000.0f);
	 g_Camera.SetWindow(pBackBufferSurfaceDesc->Width, 
pBackBufferSurfaceDesc->Height);

	 g_HUD.SetLocation(pBackBufferSurfaceDesc->Width - 170, 0);
	 g_HUD.SetSize(170, 170);
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	 g_SampleUI.SetLocation(pBackBufferSurfaceDesc->Width - 170, 
pBackBufferSurfaceDesc->Height - 350);
	 g_SampleUI.SetSize(170, 300);

	 return S_OK;
}

//—————————————————————————————————————————————————————————————————————————
//Handle updates to the scene. This is called regardless of which
//D3D API is used
//—————————————————————————————————————————————————————————————————————————
void CALLBACK OnFrameMove(double fTime, float fElapsedTime, 
void* pUserContext)
{
	 IDirect3DDevice9* pd3dDevice = DXUTGetD3D9Device();

	 //Update the camera’s position based on user input
	 g_Camera.FrameMove(fElapsedTime);

	 pd3dDevice->SetTransform(D3DTS_WORLD, g_Camera.GetWorldMatrix());
	 pd3dDevice->SetTransform(D3DTS_VIEW, g_Camera.GetViewMatrix());

	 g_pEffect->SetValue(“g_vEyePt”, g_Camera.GetEyePt(), 
sizeof(D3DXVECTOR3));
}

//—————————————————————————————————————————————————————————————————————————
//Render the scene using the D3D9 device
//—————————————————————————————————————————————————————————————————————————
void CALLBACK OnFrameRender(IDirect3DDevice9* pd3dDevice, double 
fTime, float fElapsedTime, void* pUserContext)
{
	 //If the settings dialog is being shown, then
	 //render it instead of rendering the app’s scene
	 if(g_SettingsDlg.IsActive())
	 {
		  g_SettingsDlg.OnRender(fElapsedTime);
		  return;
	 }

	 HRESULT hr;
	 D3DXMATRIXA16 mWorld;
	 D3DXMATRIXA16 mWorldI;
	 D3DXMATRIXA16 mView;
	 D3DXMATRIXA16 mProj;
	 D3DXMATRIXA16 mWorldViewProjection;

	 //Clear the render target and the zbuffer
	 V(pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 
D3DCOLOUR_ARGB(0, 0, 0, 0), 1.0f, 0));

	 //Render the scene
	 if(SUCCEEDED(pd3dDevice->BeginScene()))
	 {
#ifdef NETWORK_CONTROL
				    //Control actions



141Annex A

				    SetTriangleCount(dr.data[0]);
				    SetShaderComplexity(dr.data[1]);
#endif
				    //Get the projection & view matrix from the camera class
		  mWorld = *g_Camera.GetWorldMatrix();
		  mProj = *g_Camera.GetProjMatrix();
		  mView = *g_Camera.GetViewMatrix();

		  mWorldViewProjection = g_mCenterWorld * mWorld * mView * mProj;

		  g_Skybox.Render(&mWorldViewProjection);

	 //Update the effect’s variables. Instead of using strings, it would
	 //be more efficient to cache a handle to the parameter by calling
	 //ID3DXEffect::GetParameterByName
		  V(g_pEffect->SetMatrix(“g_mWorldViewProjection”, 
&mWorldViewProjection));
		  V(g_pEffect->SetMatrix(“g_mWorld”, &mWorld));
		  V(g_pEffect->SetMatrix(“g_mWorldI”, &mWorldI));
		  V(g_pEffect->SetMatrix(“g_mView”, &mView));
		  V(g_pEffect->SetMatrix(“g_mProj”, &mProj));
			   V(g_pEffect->SetFloat(“g_fTime”, (float)fTime));
			   V(g_pEffect->SetFloat(“g_fModelReflectivity”, 
g_fModelReflectivity));

		  if(g_bUseHWNPatches)
		  {
			   float fNumSegs;

			   fNumSegs = (float)g_dwNumSegs;
			   pd3dDevice->SetNPatchMode(fNumSegs);
		  }

		  UINT cPasses;

				    switch (g_CurrentTechnique)
				    {
				    case 0:
					     g_pEffect->SetTechnique(g_pCurTechnique->XRay);
					     break;
				    case 1:
					     g_pEffect->SetTechnique(g_pCurTechnique->SimpleLighting);
					     break;
				    case 2:
					     g_pEffect->SetTechnique(g_pCurTechnique->SpecularLighting);
					     break;
				    case 3:
					     g_pEffect->SetTechnique(g_pCurTechnique->ToonEffect);
					     break;
				    case 4:
					     g_pEffect->SetTechnique(g_pCurTechnique->Reflect);
					     break;
				    case 5:
					     g_pEffect->SetTechnique(g_pCurTechnique->ReflectSpecular);
					     break;
				    }
			   g_pEffect->SetTexture(“g_tCube”, g_Skybox.GetEnvironmentMap());
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		  V(g_pEffect->Begin(&cPasses, 0));
		  for(UINT p = 0; p < cPasses; ++p)
		  {
			   V(g_pEffect->BeginPass(p));

			   //set and draw each of the materials in the mesh
			   for(UINT i = 0; i < g_dwNumMaterials; i++)
			   {
				    V(g_pEffect->SetVector(“g_vDiffuse”, 
(D3DXVECTOR4*)&g_pMaterials[i].MatD3D.Diffuse));
				    if(g_ppTextures[i])
				    {
					     V(g_pEffect->SetTexture(“g_txScene”, g_ppTextures[i]));
				    }
				    else
				    {
					     V(g_pEffect->SetTexture(“g_txScene”, g_pDefaultTex));
				    }
					     V(g_pEffect->CommitChanges());
				    g_pMeshEnhanced->DrawSubset(i);
			   }

			   V(g_pEffect->EndPass());
		  }
		  V(g_pEffect->End());

		  if(g_bUseHWNPatches)
		  {
			   pd3dDevice->SetNPatchMode(0);
		  }

		  RenderText();
		  V(g_HUD.OnRender(fElapsedTime));
		  V(g_SampleUI.OnRender(fElapsedTime));

		  V(pd3dDevice->EndScene());
	 }

#ifdef NETWORK_CONTROL
		  ds.data[0] = DXUTGetFPS();  //Sending the frame rate to the 
Controller
		  //printf(“My FPS is:%f\n”, ds.data[0]);
#endif
}

//—————————————————————————————————————————————————————————————————————————
//Render the help and statistics text. This function uses the
//ID3DXFont interface for efficient text rendering.
//—————————————————————————————————————————————————————————————————————————
void RenderText()
{
	 //The helper object simply helps keep track of text position,
	 //and colour and then it calls pFont->DrawText(m_pSprite, strMsg, -1,
	 //&rc, DT_NOCLIP, m_clr);
	 //If NULL is passed in as the sprite object, then it will work
	 //however the pFont->DrawText() will not be batched together.
	 //Batching calls will improves performance.
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	 CDXUTTextHelper txtHelper(g_pFont, g_pTextSprite, 15);

	 //Output statistics
	 txtHelper.Begin();
	 txtHelper.SetInsertionPos(5, 5);
	 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 1.0f, 0.0f, 1.0f));
	 txtHelper.DrawTextLine(DXUTGetFrameStats(DXUTIsVsyncEnabled()));
	 txtHelper.DrawTextLine(DXUTGetDeviceStats());

	 //Draw help
	 if(g_bShowHelp)
	 {
		  const D3DSURFACE_DESC* pd3dsdBackBuffer = 
DXUTGetD3D9BackBufferSurfaceDesc();
		  txtHelper.SetInsertionPos(10, pd3dsdBackBuffer->Height - 15 * 9);
		  txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 0.75f, 0.0f, 1.0f));
		  txtHelper.DrawTextLine(L”Controls (F1 to hide):”);

		  txtHelper.SetInsertionPos(40, pd3dsdBackBuffer->Height - 15 * 8);

			   txtHelper.DrawTextLine(L”F4: Load next mesh\n”
				    L”1,2,3,4,5,6: Load mesh\n”
				    L”Rotate mesh: Left click drag\n”
				    L”Rotate camera: right click drag\n”
				    L”Zoom: Mouse wheel\n”
				    L”Quit: ESC”);
	 }
	 else
	 {
		  txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 1.0f, 1.0f, 1.0f));
		  txtHelper.DrawTextLine(L”Press F1 for help”);
	 }

		  float fps = DXUTGetFPS();
		  //Write to logfile
		  //logfile << fps << “ “ << g_pMeshEnhanced->GetNumVertices() << 
std::endl;  //SISO
		  logfile << fps << “ “ << g_pMeshEnhanced->GetNumVertices()/*<< “ 
“ << g_CurrentTechnique*/<< std::endl;  //MISO/MIMO

	 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 0.75f, 0.0f, 1.0f));
	 txtHelper.SetInsertionPos(10, 65);
	 txtHelper.DrawFormattedTextLine(L”NumSegs:%d\n”, g_dwNumSegs);
	 txtHelper.DrawFormattedTextLine(L”NumFaces:%d\n”, 
(g_pMeshEnhanced = = NULL) ? 0 : g_pMeshEnhanced->GetNumFaces());
	 txtHelper.DrawFormattedTextLine(L”NumVertices:%d\n”, 
(g_pMeshEnhanced = = NULL) ? 0 : g_pMeshEnhanced->GetNumVertices());
		  txtHelper.DrawFormattedTextLine(L”FPS:%f\n”, fps);

	 txtHelper.End();
}

//—————————————————————————————————————————————————————————————————————————
//Handle messages to the application
//—————————————————————————————————————————————————————————————————————————
LRESULT CALLBACK MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM 
lParam, bool* pbNoFurtherProcessing, void* pUserContext)
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{
	 //Always allow dialog resource manager calls to handle global
	 //messages so GUI state is updated correctly
	 *pbNoFurtherProcessing = g_DialogResourceManager.MsgProc(hWnd, uMsg, 
wParam, lParam);
	 if(*pbNoFurtherProcessing)
		  return 0;

	 if(g_SettingsDlg.IsActive())
	 {
		  g_SettingsDlg.MsgProc(hWnd, uMsg, wParam, lParam);
		  return 0;
	 }

	 //Give the dialogs a chance to handle the message first
	 *pbNoFurtherProcessing = g_HUD.MsgProc(hWnd, uMsg, wParam, lParam);
	 if(*pbNoFurtherProcessing)
		  return 0;
	 *pbNoFurtherProcessing = g_SampleUI.MsgProc(hWnd, uMsg, wParam, 
lParam);
	 if(*pbNoFurtherProcessing)
		  return 0;

	 //Pass all remaining windows messages to camera so it can respond to 
user input
	 g_Camera.HandleMessages(hWnd, uMsg, wParam, lParam);

	 return 0;
}

//—————————————————————————————————————————————————————————————————————————
//Handle key presses
//—————————————————————————————————————————————————————————————————————————
void CALLBACK KeyboardProc(UINT nChar, bool bKeyDown, bool bAltDown, 
void* pUserContext)
{
		  IDirect3DCubeTexture9* pCubeTexture = NULL;
	 if(bKeyDown)
	 {
		  switch(nChar)
		  {
			   case VK_F1:
				    g_bShowHelp = !g_bShowHelp; break;
					     case VK_F4:
						      if (++g_CurrentModel = = g_ModelCount)
							       g_CurrentModel = 0;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘1’:
						      g_CurrentModel = 0;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘2’:
						      g_CurrentModel = 1;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
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					     case ‘3’:
						      g_CurrentModel = 2;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘4’:
						      g_CurrentModel = 3;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘5’:
						      g_CurrentModel = 4;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘6’:
						      g_CurrentModel = 5;
						      LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						      break;
					     case ‘B’:
						      WCHAR strPath[MAX_PATH];

						      DXUTFindDXSDKMediaFileCch(strPath, MAX_PATH, L”Light 
Probes\\uffizi_cross.dds”);
						      D3DXCreateCubeTextureFromFileEx(g_pd3dDevice, strPath, 
D3DX_DEFAULT, 1, 0, D3DFMT_A16B16G16R16F, D3DPOOL_MANAGED, 
D3DX_FILTER_NONE, D3DX_FILTER_NONE, 0, NULL,
							       NULL, &pCubeTexture);
						      g_Skybox.SetEnvironmentMap(pCubeTexture);
						      break;
					     case ‘N’:
						      SetShaderComplexity(4);
						      break;
		  }
	 }
}

//—————————————————————————————————————————————————————————————————————————
//Handles the GUI events
//—————————————————————————————————————————————————————————————————————————
void CALLBACK OnGUIEvent(UINT nEvent, int nControlID, 
CDXUTControl* pControl, void* pUserContext)
{
		  int index;

	 switch(nControlID)
	 {
		  case IDC_TOGGLEFULLSCREEN:
			   DXUTToggleFullScreen(); break;
		  case IDC_TOGGLEREF:
			   DXUTToggleREF(); break;
		  case IDC_CHANGEDEVICE:
			   g_SettingsDlg.SetActive(!g_SettingsDlg.IsActive()); break;
		  case IDC_FILLMODE:
		  {
			   g_bWireframe = ((CDXUTComboBox*)pControl)->GetSelectedData() 
! = 0;
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			   IDirect3DDevice9* pd3dDevice = DXUTGetD3D9Device();
			   pd3dDevice->SetRenderState(D3DRS_FILLMODE, g_bWireframe ? 
D3DFILL_WIREFRAME : D3DFILL_SOLID);
			   break;
		  }
		  case IDC_SEGMENT:
			   g_dwNumSegs = ((CDXUTSlider*)pControl)->GetValue();
			   WCHAR wszBuf[256];
			   StringCchPrintf(wszBuf, 256, L”Number of segments:%u”, 
g_dwNumSegs);
			   g_SampleUI.GetStatic(IDC_SEGMENTLABEL)->SetText(wszBuf);
			   GenerateEnhancedMesh(DXUTGetD3D9Device(), g_dwNumSegs);
			   break;
				    case IDC_HWNPATCHES:
					     g_bUseHWNPatches = ((CDXUTCheckBox*)pControl)-
>GetChecked();
					     GenerateEnhancedMesh(DXUTGetD3D9Device(), g_dwNumSegs);
					     break;
				    case IDC_CUBETEXTURE:
					     index = (int)((CDXUTComboBox*)pControl)->GetSelectedData();
					     LoadCubeTexture(g_CubeTextures[index - 1]);
					     g_Skybox.SetEnvironmentMap(g_pCubeTexture);
					     break;
				    case IDC_MODELREFLECTIVITY:
					     g_fModelReflectivity = (float)((CDXUTSlider*)pControl)-
>GetValue()/100.0f;
					     StringCchPrintf(wszBuf, 256, L”Model Reflectivity:%u”, 
((CDXUTSlider*)pControl)->GetValue());
					     g_SampleUI.GetStatic(IDC_MODELREFLECTIVITYLABEL)-
>SetText(wszBuf);
					     break;
				    case IDC_ACTIVEEFFECT:
					     index = (int)((CDXUTComboBox*)pControl)->GetSelectedData();
			   g_CurrentTechnique = index;

			   break;
	 }
}

//—————————————————————————————————————————————————————————————————————————
//Release D3D9 resources created in the OnResetDevice callback
//—————————————————————————————————————————————————————————————————————————
void CALLBACK OnLostDevice(void* pUserContext)
{
	 g_DialogResourceManager.OnD3D9LostDevice();
	 g_SettingsDlg.OnD3D9LostDevice();

	 g_Skybox.OnLostDevice();

	 if(g_pFont)
		  g_pFont->OnLostDevice();
	 if(g_pEffect)
		  g_pEffect->OnLostDevice();
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	 SAFE_RELEASE(g_pTextSprite);
	 SAFE_RELEASE(g_pMeshEnhanced);

	 SAFE_RELEASE(g_pMSRT);
	 SAFE_RELEASE(g_pMSDS);

	 SAFE_RELEASE(g_pTexRender);
	 SAFE_RELEASE(g_pTexBrightPass);

		  int i = 0;

	 for(i = 0; i < NUM_TONEMAP_TEXTURES; i++)
	 {
		  SAFE_RELEASE(g_apTexToneMap[i]);
	 }

	 for(i = 0; i < NUM_BLOOM_TEXTURES; i++)
	 {
		  SAFE_RELEASE(g_apTexBloom[i]);
	 }
}

//—————————————————————————————————————————————————————————————————————————
//Release D3D9 resources created in the OnCreateDevice callback
//—————————————————————————————————————————————————————————————————————————
void CALLBACK OnDestroyDevice(void* pUserContext)
{
	 g_DialogResourceManager.OnD3D9DestroyDevice();
	 g_SettingsDlg.OnD3D9DestroyDevice();
	 SAFE_RELEASE(g_pEffect);
	 SAFE_RELEASE(g_pFont);

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
		  SAFE_RELEASE(g_ppTextures[i]);

	 SAFE_RELEASE(g_pDefaultTex);
	 SAFE_DELETE_ARRAY(g_ppTextures);
	 SAFE_RELEASE(g_pMeshSysMem);
	 SAFE_RELEASE(g_pbufMaterials);
	 SAFE_RELEASE(g_pbufAdjacency);
	 g_dwNumMaterials = 0L;

	 g_Skybox.OnDestroyDevice();
}
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Annex B: Patent for 
Application Method and 
System for Adaptive Control 
of Real-Time Computer 
Graphics Rendering*

TITLE OF INVENTION

Method and System for Adaptive Control of Real-Time Computer Graphics Rendering

FIELD OF INVENTION

This invention provides a method for controlling real-time computer generated 
graphics (known as rendering) such that it is able to achieve user-defined perfor-
mance objectives without the user’s intervention.

BACKGROUND OF INVENTION

Computer generated graphics is required in many interactive digital media appli-
cations today. The requirement for this process to be “real-time” is based upon 
the need for adequate response to the user in a continuous feedback loop. One key 
performance metric in interactive computer graphics systems is the time taken to 
render one frame of the animation sequence. Current techniques in interactive ren-
dering do not guarantee consistent resource and time control in this respect. This 
is inhibitive in many aspects of computer software related to real-time computer 
graphics rendering.

In the present invention, a modelling framework is described for real-time com-
puter graphics rendering. This modelling framework forms the first part of the 
entire method to control real-time computer graphics rendering. A control system 
is described in the present context which consists of the aforementioned rendering 
process model (also known as the “plant”) and a controller module. Based on this 
method, the control system is capable of controlling the rendering process whether 
it is implemented in the local computer hardware or a remote computer device via a 
communication channel.

*	 U.S. Patent Office provisional application dated 13 July 2011, US61/507,486.
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SUMMARY OF INVENTION

The object of the present invention is to provide a method to control the rendering of 
computer-generated graphics in real time for interactive applications.

In the present context, the rendering process refers to a set of computer program 
routines that support the generation of a sequence of images such that they create 
the impression of an animation. The rendering process is by convention a piece of 
software that operates on input in the form of data structures which describe the 
geometry of an object in 3D space and the quality of its visual appearance.

According to Figure B.1 the input to the rendering process may consist of one 
element or a set of elements as long as each element is independent of the others and 
each element exerts an observable influence on the output of the rendering process. 
The output of the rendering process may consist of one element or a set of elements. 
Both the input and output to the rendering process are measurable quantities. The 
input to the rendering process is a variable or a set of variables that can be changed 
during the execution of the application. The disturbance described in Figure B.1 
refers to any auxiliary process that runs in the same environment as the rendering 
process. For example, the operating system’s kernel processes run in the background 
which is mandatory for the computer device to function normally.

In the context of Figure B.1, the rendering process model can be expressed as, but 
is not limited to, a polynomial equation or a state space representation through an 
iterative process that involves regressive computation of the rendering process’s pre-
vious input and outputs. The user defines the actual process input variables and out-
put quantities based on the desired performance objectives and the controller design. 
More importantly, all input and output to the system must be measurable quantities.

In Figure B.2, the controller 201 is a module that may be implemented as a piece 
of software or a computer program that executes a set of computer instructions which 
is built into an embedded computer subsystem. The purpose of the controller is to 
adjust the input to the plant (the rendering process) such that the output of the plant 
202 can be driven to meet a certain performance objective. The controller receives 
an input which is the difference between the user defined reference 203 and the cur-
rent output from the plant. The controller is typically designed with saturation limits 
to prevent the system from swinging beyond normal operating range. The controller 
design is not limited to any particular control algorithm or a combination of such 
algorithms as long as the purpose of the controller is achieved. In the same spirit, the 
controller and the plant implementation is not limited to any specific programming 
language or software toolkit.

In Figure B.3 a deployment of the control system in a computer device is shown 
with the key components as the shared memory 301, the controller 302 and the plant 
303. The controller sends its control action to the rendering process (the plant) via the 
shared memory where this value will thereafter be copied into the execution space 
of the rendering process. Similarly, the rendering process will write the values from 
its output into the same shared memory area where the controller will access, to 
copy these values for the error computation. In the context of this invention, the data 
access method is not limited to shared memory but variants of common memory 



151Annex B

access methods provided by any operating system such as pipes or any inter-process 
communication technique.

In Figure B.4, the control system is deployed in a distributed computing environ
ment where the controller 401 and the plant 402 (the rendering process) are executed in 
different physical machine locations. In the context of this invention, the deployment 
platform is not limited to any particular operating system or 3D rendering toolkit. The 
controller and plant communication is realised through the external network infra-
structure 403 that may be instituted with wired or wireless connection capability. 
The communication link 404 between the controller and the plant is driven by soft-
ware routines using suitable protocol-based transmission such as and not limited to 
TCP and other IP-based standards. The software implementation supporting such a 
communication method can be of the client-server or peer-to-peer or any other archi-
tecture as long as the objective for reliable data transmission is supported.

BRIEF DESCRIPTIONS OF FIGURES

The present invention will now be further described with reference to the figures, 
wherein:

Figure B.1 illustrates the open-loop system model of the rendering process with 
the input and output of the system and the inherent disturbance arising from other 
processes that may be running in the computing environment.

Figure B.2 illustrates the closed-loop control system with feedback. The control-
ler is introduced to ensure that the error between the output and the performance 
objective is eventually removed.

Figure B.3 illustrates the deployment of this control system in a single com-
puter device. Both the controller and plant are software processes that run in the 
common/shared memory address space and communication between the controller 
and plant is done via shared memory.

Figure B.4 illustrates the deployment of this control system in a remote/distributed 
setting. In this scenario, the controller and the plant are running in separate and dif-
ferent computer machines. Communication between the controller and the plant is 
done via the network infrastructure which links the two computers.

DETAILED DESCRIPTIONS OF FIGURES

The present invention provides a method for automatic control of the real-time com-
puter graphics rendering process such that it is able to consistently meet a certain per-
formance objective. This is particularly important in many interactive applications 
where user’s input to the application is processed and the response (output of the 
rendering process) is sent back to the user promptly. In cases where the rendering 
process takes unduly long time, the generated animation sequence will look “laggy” 
and thereby affect the user’s visual and usage experience of the application.

Figure B.1 illustrates the fundamental system concept of the rendering process 101. 
Each rendering process can receive an input vector 102 and generates an output 
vector 103. A vector may consist of one or more elements. Since the rendering pro-
cess is basically run on a computer device, there may be other processes that share 



152 Annex B

the resources on the computer. The effect on the rendering process attributed by 
these external processes is defined as the disturbance 104 to the system.

Figure B.2 illustrates schematically the fundamental control system in a closed-loop 
configuration. The controller module 201 works on the error between the output 204 
of the plant 202 and the reference 203 (performance objective). Depending on the 
design, the computed output of the controller module 201 will be fed into the plant 
202 such that the plant’s output may be regulated to the reference 203. This process 
is iterative until the error between the plant’s output and the user-defined reference 
diminishes to a negligible value.

Figure B.3 illustrates the control system in componentised form localised within 
a computer device. The controller 301 and the plant 302 share the resources from 
this computer device, such as memory, data bus, and main processor’s computation 
bandwidth. The controller and plant are connected for data exchange via the main 
memory using the shared memory 301 within the same execution space.

Figure B.4 illustrates the framework by which the control system is deployed in 
a distributed computing environment. The controller 401 resides in a different com-
puter device from the plant 402 (the rendering process). The controller and the plant 
are linked via an external network 403. The control action and the plant’s output are 
routed via bidirectional digital channel data 404 over this network.

CONTROL DESIGN AND MECHANISM

Due to the complexity in modern computer graphics hardware, rendering processes 
may not exhibit linear properties over certain operating ranges. The present invention 
describes a design technique that yields a controller which is capable of handling such 
non-linearity during the system’s operation. The approach consists of two strategies:

	 I.	PID gain scheduling
	 II.	Fuzzy control

The design process commences with collection of a qualified set of input–output 
data pairs. The qualifications of the input and output variables are contingent 
upon whether the quantities are both measureable and controllable. The data gen-
eration process involves selecting a range of inputs that are sufficient to drive the 
dynamics of the rendering system. The derivation of the system model is based on 
the system identification methodology where the model may be represented in a 
linear auto-regressive (ARX) model or its corresponding state space representation.

I. � PID Gain Scheduling

After collecting the steady-state values of the input–output data, they are plotted 
against each other as shown in Figure B.5. The example shows the output (frame rate) 
is plotted against the input (vertex count). Empirically, the input–output relation-
ship is typically non-linear. The gain scheduling technique proposed in this inven-
tion requires piece-wise approximation of non-linear curves using straight line 
segments. Each segment represents a linear region of operation by which linear 
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time-invariant dynamic models may be derived using the aforementioned system 
identification technique.

To obtain the individual line segments for curves, we can describe this non-linear 
relationship represented by a polynomial model:
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where n is the degree of the polynomial and (n + 1) is the degree that gives the 
highest power of the predictor variable. Since straight line segments are used to 
fit the curve, the order of the polynomial is chosen as 1. The objective is to derive 
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where the variables a and b are to be found that minimise the following equation (a 
constrained optimisation problem):
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and the right hand side of the equation represents the least square error of the 
approximation.

Given the solution to the optimisation problem in Equation (3), the input–output 
data pairs in each line segment shall be used for the derivation of the corresponding 
system model which may be expressed as in the following state space representation 
or its ARX model representation as shown in Equations (4), (5), and (6), respectively:

	 x k Ax k Bu k+( ) = ( )+ ( )1 	 (4)

	 y k Cx k Du k( ) = ( )+ ( ) 	 (5)

Here x is the state variable of the system, u is the input to the system, y is the output 
of the system, and k is the time step. The ARX model representation is given by

	 y t a y t a y t n b u t n b u t nn a k n ka b( )+ −( )+… −( ) = −( )+…+ − −1 11 nnb +( )1 	 (6)
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where:

a1 … ana and b1… bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −( )1  … y t na−( )  are the previous outputs on which the current output depends.
u t nk−( ) … u t n nk b− − +( )1  are the previous inputs on which the current output 

depends.
na is the number of poles or the order of the system.
nb is the number of zeroes plus one.
nk is the delay in the system.

The proportional, integral, and derivative (PID) controller is well reputed for its adop-
tion in over 90% of the world’s real control systems. There are several advantages 
in using the PID controller, namely its efficiency attributed by the relatively simpler 
computation and the ease of implementation compared to other more elaborate con-
trol schemes. In brief, the PID control action in a closed-loop feedback system takes 
the form (parallel mode):
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and derivative controls. At the implementation level, the PID controller’s discrete 
time form may be expressed as:
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where T is the sampling period and
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where u(n) is the control action. The PID controller’s gain values may be derived 
either empirically via trial and adjustments or by using the model derived in the 
previous section in a closed-loop feedback system as shown in Figure B.2 with an 
auto-tuning algorithm.

The derivation of both the system model and the PID controller is exercised 
for each linear operation range corresponding to the line segments derived from 
the solution to Equation (3). By cascading the series of PID controllers, an overall 
control system may be derived as shown in Figure B.6. The object 601 represents 
the cascaded PID controller array in which only one PID controller is active at 
any time. The object 602 represents a switch agent that channels and activates the 
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appropriate PID controller based on the operating point of the rendering system. 
Mechanisms may also be incorporated in to achieve the so-called bump-less trans-
fer that smooths the abrupt changes in the behaviour of the system when switching 
among the controllers occurs.

II. �F uzzy Control (Model-Less Control)

The primary benefit offered by the fuzzy control paradigm is its ability to emu-
late human control based on linguistic variables and a set of intuitive expert rules 
used as the decision or inference system. In comparison to conventional control 
techniques, the advantages of the fuzzy control paradigm are twofold. First, there 
is no requirement for a mathematical model of the system to be controlled. This 
is especially important and useful as it may be difficult to derive certain process 
models due to their complex dynamics and when some systems cannot be mod-
elled using first principles. Second, the fuzzy controller itself works on relatively 
straightforward computation and it can be developed to handle non-linear processes 
empirically in practice without the need for complicated mathematics. These advan-
tages translate to its appeal as a practical solution to real world control problems in 
terms of implementation.

The development of fuzzy control system begins with the two key components: 
the input–output membership functions describing the properties of the system 
(fuzzy sets) based on linguistic variables and the rule base which relates the input–
output sets. Given an antecedent and consequent relationship between an input y to 
a SISO system’s output u using linguistic descriptions of their properties, this may 
be represented as:

	 IF y Y THEN u Uj j∈ ∈ 	 (9)

In each universe of discourse Ui and Yi, ui and yi exist taking on values with 
corresponding linguistic variables ui

�  and yi
�  which describe the characteristics of 

the variables. Suppose Ai
j�  denotes the jth linguistic value of the linguistic variable ui

�  
defined over the universe of discourse Ui. If the assumption that there exist many 
linguistic values defined in Ui, then the linguistic variable ui

�  which takes on the 
elements from the set of linguistic values may be denoted by Equation (9).
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In the same manner, we can consider Bi
j� to denote the jth value of the linguistic 

variable yi
�  defined over the universe of discourse Yi. yi

�  may be represented by 
elements taken from the set of linguistic values denoted by the following equation:
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Given a condition where all the premise terms are used in every rule and a rule is 
formed for each possible combination of premise elements, then we have rule set 
with Ni number of rules that can be expressed as:

	 N N N Ni
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Given the membership functions, the conversion of a crisp input value into its cor-
responding fuzzy value is known as fuzzification. The defuzzification of the resul-
tant fuzzy set from the inference system to a quantifiable value may be done using 
the centroid (centre of gravity) method. The principle is to select the value in the 
resultant fuzzy set such that it would lead to the smallest error on average given any 
criterion. To determine y* the least square method can be used and the square of 
the error is accompanied by the weightage of the grade of the membership µB u( ). 
Therefore, the defuzzified output, y* may be obtained by finding the solution to the 
following equation.
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Differentiating with respect to y* and equating the derivative to zero yields
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which gives the value of the abscissa of the centre of gravity of the area below the 
membership function µB u( ).

The derivation of the membership functions is based on intuitive recognition of 
the fundamental relationship between input and output of the rendering system. In the 
context of the present invention, for example, there is an inverse relationship between 
the frame rate and the total number of vertices used in the rendering process.

Figure B.7 indicates how this relationship may be developed in the form of a com-
bination of sigmoid functions for both the input and output variables. The diagram 701 
illustrates the membership functions used for the input variable. There are two function 
curves used for the linguistic value of the FPS error input variable. The function curve 
at the left is to describe the extent of high and the one at the right is used to describe the 
extent of low. In a similar manner, the diagram 702 shows the membership functions 
for the output variable, which is the vertex count. The rule base of the fuzzy inference 
rule set relating the input and output membership functions is shown in object 703.

In the same spirit as the closed-loop control feedback system shown in Figure B.2, 
a fuzzy controller-based rendering system may be constructed using the aforemen-
tioned approach and using the derived fuzzy controller as the controller block in 
Figure B.2.
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CLAIMS (PRELIMINARY)

	 1.	A method that defines correlation between the single or multiple inputs and 
single or multiple outputs of the computer graphics rendering process via a 
system’s approach whereby:

	 a.	 The inputs and outputs of the rendering process can be measured quanti-
tatively and the inputs can be varied in terms of their values by the user.

	 b.	 The inputs to the rendering process are independent of one another, but 
the outputs are dependent on the inputs.

	 c.	 The inputs and outputs are related via mathematical expressions such as 
dynamic polynomial equations and/or state space equations.

	 2.	A method for controlling user-defined parameters pertaining to the input(s) 
and output(s) described to Claim (1) of the rendering system whereby:

	 a.	 The correlation described in Claim (1) is represented as a system model 
and is used to determine the parameters in the controller design.

	 b.	 The controller may be designed by using model-based control design 
approaches as well as by using model-free approaches.

	 3.	A method for establishing the communication channel between the rendering 
process and the controller, whereby the following schemes may be implemented:

	 a.	 The control system is implemented in a single computer device/hardware 
as the rendering process.

	 b.	 The control system is implemented over a network of computer devices/
hardware via a communication channel.

	 4.	A system for controlling real-time computer graphics rendering whereby:
	 a.	 The rendering process is able to meet user defined objectives without 

human intervention
	 b.	 The rendering process continues to run “online” without the need to 

stop or any manual effort to work on it “off-line”
	 c.	 The performance objectives are met consistently over a period of time 

and are sustainable.

	 5.	A method for designing the controller for the rendering system whereby:
	 a.	 A gain scheduling PID controller is used to control a large operating 

range by cascading several PID controllers
	 b.	 Each PID controller’s gain parameters are derived using rendering 

system models obtained from empirical data via the system identifica-
tion methodology

	 c.	 A fuzzy controller is used to control the rendering system without the 
need for any predefined system model of the rendering process

	 d.	 The fuzzy controller’s membership functions and rule base are derived 
from intuitive understanding of the relationship between the input and 
output of the rendering system.
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FIGURE B.1  System model of open-loop rendering process.
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FIGURE B.2  Closed-loop control system with feedback.
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FIGURE B.4  Deployment in distributed computer environment.
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FIGURE B.7  Relationship of input and output of rendering system.
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Annex C: Neural PID 
Control System Code

%Single Neural Adaptive PID Controller Code

clear all;
close all;

%Initialize key variables
% Neuron states
x = [0,0,0]’;
xP = 300.001;
xI = 0.85;
xD = 0.25;

% Neuron weights
wkp_1 = 0.50;
wki_1 = 0.50;
wkd_1 = 0.50;

error_1 = 0;
error_2 = 0;

refValue = 356;

y_1 = 0;y_2 = 0;y_3 = 0;
u_1 = 0;u_2 = 0;u_3 = 0;

%load n4s1
load model

%convert idss model to ss
H = ss(n4s1);

%take “measured” channel
plant = tf(H(1) + H(2));
ts = H.Ts;

%get direct form coefficients to use `direct form 1` in loop
b = plant.num{1};
a = plant.den{1};

%%%%%%%%%%%%%%%%%% First run executes based on SNPID %%%%%%%%%%%%%%%%%
for k = 1:15000
	 time(k) = k*ts;

	 if k< = 5000
	 % Reference
		  rin(k) = 356.0;
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	 elseif k< = 10000
		  rin(k) = 200;
	 else
		  rin(k) = 50;
	 end

	 try
		  u(k) = u_1+K*w*x; %Control law
	 catch
		  u(k) = 0;
	 end
	 % Plant model
	 yout(k) = b(1) * u(k) + b(2) * u_1 + b(3) * u_2 + b(4) * u_3 - a(2) 
* y_1 - a(3) * y_2 - a(4) * y_3;
	 % Error
	 error(k) = rin(k)-yout(k);

%Adjusting Weight Value by hebb learning algorithm
M = 4;
if M = =1	 %No Supervised Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*u_1*x(1); %P
	 wki(k) = wki_1+xiteI*u_1*x(2); %I
	 wkd(k) = wkd_1+xiteD*u_1*x(3); %D
	 K = 0.06;
elseif M = =2	 %Supervised Delta learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1; %P
	 wki(k) = wki_1+xiteI*error(k)*u_1; %I
	 wkd(k) = wkd_1+xiteD*error(k)*u_1; %D
	 K = 0.12;
elseif M = =3	 %Supervised Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1*x(1); %P
	 wki(k) = wki_1+xiteI*error(k)*u_1*x(2); %I
	 wkd(k) = wkd_1+xiteD*error(k)*u_1*x(3); %D
	 K = 0.12;
elseif M = =4	 %Improved Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1);
	 wki(k) = wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1);
	 wkd(k) = wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1);
	 K = 0.12;
end

	 x(1) = error(k)-error_1;	 %P
	 x(2) = error(k);	 %I
	 x(3) = error(k)-2*error_1+error_2;	 %D

	 wadd(k) = abs(wkp(k))+abs(wki(k))+abs(wkd(k));
	 w11(k) = wkp(k)/wadd(k);
	 w22(k) = wki(k)/wadd(k);
	 w33(k) = wkd(k)/wadd(k);
	 w = [w11(k),w22(k),w33(k)];

error_2 = error_1;
error_1 = error(k);

u_3 = u_2;u_2 = u_1;u_1 = u(k);
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y_3 = y_2;y_2 = y_1;y_1 = yout(k);

wkp_1 = wkp(k);
wkd_1 = wkd(k);
wki_1 = wki(k);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% Second run executes based on Matlab’s built-in PID %%%%%%%%%
load model
%convert idss model to ss
H = ss(n4s1);
%take “measured” channel
H = H(1);
ts = H.Ts;
%train pid
C = pidtune(H, ‘pi’);

plantWithPid = feedback(series(C, H), 1);
% rin->(+)->[C]—> [H]——>yout
% ^	 |
% |———————-|

%constant rin
%pid_rin = refValue * ones(1, length(time));
pid_rin = rin;
pid_yout = lsim(plantWithPid, pid_rin, time);
pid_error = pid_rin’ - pid_yout;

%to find pid’s output send rin-yout to pid
%rin-yout’ -> [pid] -> u
pid_u = lsim(C, pid_rin-pid_yout’, time);

%test original system with pid signal
%pid_yout2 = lsim(n4s1, pid_u, time);

%Output graphs
figure 1);
hold on;
plot(time,rin,’b’,time,yout,’r’);
plot(time,pid_rin,’k’,time,pid_yout,’k’);
xlabel(‘Frame’);ylabel(‘rin,yout’);
legend(‘rin’,’yout’, ‘pid yout’);

%Error graphs
figure 2);
plot(time,error,’r’, time, pid_error, ‘b’);
xlabel(‘Frame’);ylabel(‘error’);
legend(‘error’, ‘pid error’);

%SNPID control input
%figure 3);
%plot(time,u,’r’);
%xlabel(‘Frame’);ylabel(‘Control Input’);
%legend(‘u’, ‘pid u’);
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%PID control input
%figure 4);
%plot(time,pid_u,’g’);
%xlabel(‘Frame’);ylabel(‘Control Input’);
%legend(‘u’, ‘pid u’);

figure 5);
subplot(2,1,1);
plot(time,u,’r’);
xlabel(‘Frame’);ylabel(‘Control Input’);
subplot(2,1,2);
plot(time,pid_u,’g’);
xlabel(‘Frame’);ylabel(‘Control Input’);
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Consumers today expect extremely realistic imagery generated in real time for 
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with 
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality? 
Real-Time Rendering: Computer Graphics with Control Engineering presents a 
novel framework for solving the perennial challenge of resource allocation and the 
trade-off between quality and speed in interactive computer graphics rendering. 

Conventional approaches, mainly based on heuristics and algorithms, are largely 
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on 
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics 
• Proposes a data-driven modelling approach that more accurately represents 

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using 

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools 

and source code

This pioneering work takes a major step forward by applying control theory in the 
context of a computer graphics system. Promoting cross-disciplinary research, 
it offers guidance for anyone who wants to develop more advanced solutions for 
real-time computer graphics rendering.
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