
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

K18998

Computer GraphiCs
with Control enGineerinG

Computer GraphiCs
with Control enGineerinG

C
o

m
p

u
t

e
r

 G
r

a
p

h
iC

s
 w

ith
 C

o
n

t
r

o
l

 e
n

G
in

e
e

r
in

G

Gabriyel Wong
Jianliang Wang

Gabriyel Wong
Jianliang Wang

Wong
Wang

Real-Time
RendeRing

Real-Time
RendeRing

R
e

a
l

-T
im

e
 R

e
n

d
e

R
in

g

Consumers today expect extremely realistic imagery generated in real time for
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality?
Real-Time Rendering: Computer Graphics with Control Engineering presents a
novel framework for solving the perennial challenge of resource allocation and the
trade-off between quality and speed in interactive computer graphics rendering.

Conventional approaches, mainly based on heuristics and algorithms, are largely
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics
• Proposes a data-driven modelling approach that more accurately represents

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools

and source code

This pioneering work takes a major step forward by applying control theory in the
context of a computer graphics system. Promoting cross-disciplinary research,
it offers guidance for anyone who wants to develop more advanced solutions for
real-time computer graphics rendering.

Computer Science and Engineering

CAT#K18998 cover.indd 1 9/2/13 8:37 AM

About the pagination of this eBook

Due to the unique page numbering of this book, the electronic pagination of the eBook does not match the
pagination of the printed version. To navigate the text, please use the electronic Table of Contents or the
Search function.

Computer GraphiCs
with Control enGineerinG

Real-Time
RendeRing

AUTOMATION AND CONTROL ENGINEERING
A Series of Reference Books and Textbooks

Series Editors

FRANK L. LEWIS, Ph.D.,
Fellow IEEE, Fellow IFAC

Professor
The Univeristy of Texas Research Institute

The University of Texas at Arlington

SHUZHI SAM GE, Ph.D.,
Fellow IEEE

Professor
Interactive Digital Media Institute

The National University of Singapore

PUBLISHED TITLES

Real-Time Rendering: Computer Graphics with Control Engineering,
Gabriyel Wong; Jianliang Wang

Anti-Disturbance Control for Systems with Multiple Disturbances,
Lei Guo; Songyin Cao

Tensor Product Model Transformation in Polytopic Model-Based Control,
Péter Baranyi; Yeung Yam; Péter Várlaki

Fundamentals in Modeling and Control of Mobile Manipulators, Zhijun Li;
Shuzhi Sam Ge

Optimal and Robust Scheduling for Networked Control Systems, Stefano Longo;
Tingli Su; Guido Herrmann; Phil Barber

Advances in Missile Guidance, Control, and Estimation, S.N. Balakrishna;
Antonios Tsourdos; B.A. White

End to End Adaptive Congestion Control in TCP/IP Networks,
Christos N. Houmkozlis; George A Rovithakis

Robot Manipulator Control: Theory and Practice, Frank L. Lewis;
Darren M Dawson; Chaouki T. Abdallah

Quantitative Process Control Theory, Weidong Zhang

Classical Feedback Control: With MATLAB® and Simulink®, Second Edition,
Boris Lurie; Paul Enright

Intelligent Diagnosis and Prognosis of Industrial Networked Systems,
Chee Khiang Pang; Frank L. Lewis; Tong Heng Lee; Zhao Yang Dong

Synchronization and Control of Multiagent Systems, Dong Sun

Subspace Learning of Neural Networks, Jian Cheng; Zhang Yi; Jiliu Zhou

Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms,
Guang-Hong Yang; Dan Ye

Reinforcement Learning and Dynamic Programming Using Function
Approximators, Lucian Busoniu; Robert Babuska; Bart De Schutter; Damien Ernst

Modeling and Control of Vibration in Mechanical Systems, Chunling Du;
Lihua Xie

Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach,
Gang Feng

Lyapunov-Based Control of Robotic Systems, Aman Behal; Warren Dixon;
Darren M. Dawson; Bin Xian

System Modeling and Control with Resource-Oriented Petri Nets,
MengChu Zhou; Naiqi Wu

Sliding Mode Control in Electro-Mechanical Systems, Second Edition,
Vadim Utkin; Juergen Guldner; Jingxin Shi

Autonomous Mobile Robots: Sensing, Control, Decision Making and
Applications, Shuzhi Sam Ge; Frank L. Lewis

Linear Control Theory: Structure, Robustness, and Optimization,
Shankar P. Bhattacharyya; Aniruddha Datta; Lee H.Keel

Optimal Control: Weakly Coupled Systems and Applications, Zoran Gajic

Deterministic Learning Theory for Identification, Recognition, and Control,
Cong Wang; David J. Hill

Intelligent Systems: Modeling, Optimization, and Control, Yung C. Shin;
Myo-Taeg Lim; Dobrila Skataric; Wu-Chung Su; Vojislav Kecman

FORTHCOMING TITLES

Linear Control System Analysis and Design with MATLAB®, Sixth Edition,
Constantine H. Houpis; Stuart N. Sheldon

Modeling and Control for Micro/Nano Devices and Systems,
Ning Xi; Mingjun Zhang; Guangyong Li

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Computer GraphiCs
with Control enGineerinG

Gabriyel Wong
Jianliang Wang

Real-Time
RendeRing

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® and Simulink® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MAT-
LAB® and Simulink® software.

Cover design by Gabriyel Wong

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130822

International Standard Book Number-13: 978-1-4665-8360-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Especially for God, Crystal, Xavier, Xana, and Xaron, the love of my life.

G.W.

Could we with ink the ocean fill,
And were the skies of parchment made,
Were every stalk on earth a quill,
And every man a scribe by trade;
To write the love of God above
Would drain the ocean dry;
Nor could the scroll contain the whole,
Though stretched from sky to sky.

Frederick M. Lehman (1868–1953)

ix

Contents
List of Figures... xiii
List of Tables...xvii
List of Abbreviations...xix
Preface...xxi
Acknowledgements... xxiii
Summary...xxv
Authors..xxvii

Chapter 1	 Introduction...1

1.1	 Background and Motivation...1
1.2	 Objectives and Contributions...2
1.3	 Scope of Work..3
1.4	 Book Outline..3

Chapter 2	 Preliminaries...5

2.1	 Fundamentals of Real-Time 3D Rendering................................5
2.1.1	 Polygon-Based Rendering...5
2.1.2	 Volumetric Rendering...8
2.1.3	 Image-Based Rendering..9

2.2	 System Identification.. 10
2.2.1	 Data Collection.. 11
2.2.2	 Model Selection... 12
2.2.3	 Computing Model Parameters..................................... 13
2.2.4	 Evaluating Quality of Derived Model......................... 13

2.3	 Literature Review... 14
2.3.1	 Comparative Study on Existing Research................... 14
2.3.2	 Control-Theoretic Approaches to Computer Systems.... 16
2.3.3	 Control Principles in Computer Graphics Software..... 17

Chapter 3	 Linear Model Analysis of Real-Time Rendering................................ 19

3.1	 Introduction.. 19
3.2	 Background... 19

3.2.1	 Control-Centric Definition for Rendering Time
Control... 21

3.2.2	 Challenges in Using Heuristics................................... 21
3.2.3	 Purpose of Workload Characterisation and Analysis....22

3.3	 Case for Data-Driven Modelling..23
3.3.1	 Basis for Selection of System Variables......................23

x Contents

3.4	 Linear System Model Representation for Real-Time
Rendering...25

3.5	 Experiments..27
3.5.1	 Experiment 1: Single-Input–Single-Output

(SISO) System...27
3.5.2	 Experiment 2: Multiple-Input–Single-Output

(MISO) System..28
3.5.3	 Experiment 3: Control Framework Using System

Model...29
3.6	 Results..30

3.6.1	 Experiment 1...30
3.6.2	 Experiment 2... 33
3.6.3	 Experiment 3... 38

3.7	 Discussion...40
3.7.1	 Comparison with Other Estimation Techniques......... 41

3.8	 Superposition in 3D Rendering System Model........................ 43
3.8.1	 Principle of Superposition... 43
3.8.2	 Experiment..44
3.8.3	 Simulation...46
3.8.4	 Summary...48
3.8.5	 Additional Notes.. 49

3.9	 Conclusion.. 49

Chapter 4	 Modelling Non-Linear Rendering Processes...................................... 51

4.1	 Introduction.. 51
4.2	 Background... 51

4.2.1	 System Modelling with Neural Networks................... 51
4.2.2	 Systems Modelling with Fuzzy Logic......................... 53

4.3	 Experiments.. 56
4.3.1	 Time Delay Neural Network....................................... 56
4.3.2	 Adaptive Neuro-Fuzzy Inference System...................56

4.4	 Experiment Results...60
4.4.1	 Time Delay Neural Networks......................................60
4.4.2	 ANFIS Model.. 61

4.5	 Discussion... 63
4.6	 Linearised Approximation from Non-Linear Models..............64
4.7	 Conclusion..66

Chapter 5	 Model-Based Control.. 67

5.1	 Introduction.. 67
5.2	 Control System Perspective of Computer Graphics

Rendering Process.. 67
5.2.1	 Control System Architectures for Real-Time

Rendering..68

xiContents

5.2.2	 Control System Performance Concepts
Applicable to Real-Time Rendering............................ 70

5.3	 PID Control and Tuning... 71
5.3.1	 Implementing PID Control for Rendering Process..... 72
5.3.2	 Data Preprocessing in PID Control System................ 75
5.3.3	 Gain Scheduling for Non-Linear Rendering

Process Models.. 76
5.3.4	 Neural PID Control... 79

5.4	 Experiments.. 81
5.5	 Results.. 83

5.5.1	 Simulation Environment... 83
5.5.2	 Control System with Actual Rendering Process......... 83
5.5.3	 Gain Scheduling Control System................................85

5.6	 Conclusion..86

Chapter 6	 Model-Less Control... 89

6.1	 Introduction.. 89
6.2	 Fuzzy Control System.. 89
6.3	 Adaptive Neural Fuzzy Control..90
6.4	 Experiment...92
6.5	 Results..95

6.5.1	 Simulation...95
6.5.2	 Fuzzy Control System with Rendering Process..........95

6.6	 Discussion...97
6.7	 Conclusion..98

Chapter 7	 Applications, Challenges, and Possibilities...99

7.1	 System Architectures..99
7.1.1	 Software Design.. 101

7.2	 Software and Hardware Performance Considerations...........103
7.2.1	 Data Integrity.. 103
7.2.2	 Plant–Controller Communication Latency.............103
7.2.3	 Data Structures and Handling................................... 103
7.2.4	 Complexity of Control Algorithm............................. 104

7.3	 Applications of Rendering Control Systems.......................... 104
7.3.1	 Extension of Control System Framework.................. 105

7.4	 Convergence with Future Technology.................................... 105
7.4.1	 Greater Computing Parallelism................................. 105
7.4.2	 Increased Use of Mobile Devices.............................. 105
7.4.3	 Vast Improvements in Internet Infrastructure........... 106

7.5	 Economic and Productivity Impacts...................................... 106
7.5.1	 Enhanced Product Lifespan...................................... 106
7.5.2	 Increased Productivity.. 106
7.5.3	 New Products and Markets....................................... 107

xii Contents

Chapter 8	 Conclusion... 109

8.1	 Performance Analysis... 109
8.1.1	 Frame Rate Stability.. 109
8.1.2	 Transient Response.. 110
8.1.3	 Adaptive Tracking Capability................................... 112

8.2	 Summary.. 117
8.3	 Future Work.. 118

Annex A: Sample Applications.. 121
A.1	 Overview.. 121
A.2	 ProgressiveMesh Sample.. 121
A.3	 How Sample Works.. 121
A.4	 Tessellation Sample.. 122
A.5	 How Sample Works.. 122
A.6	 Samples... 122

Annex B: Patent for Application Method and System for
Adaptive Control of Real-Time Computer Graphics Rendering...................... 153

Title of Invention... 153
Field of Invention.. 153
Background of Invention... 153
Summary of Invention... 154
Brief Descriptions of Figures.. 155
Detailed Descriptions of Figures... 155
Control Design and Mechanism.. 156

I.	 PID Gain Scheduling... 156
II.	 Fuzzy Control (Model-Less Control).............................. 159

Claims (Preliminary)... 161

Annex C: Neural PID Control System Code.. 167

References.. 171

Publications and Achievements... 177
Patent Application... 177
Book.. 177
Book Chapters... 177
Conference Papers... 177
Achievements.. 178

xiii

List of Figures
FIGURE 2.1	 Real-time 3D rendering pipeline..6

FIGURE 2.2	 Camera view frustum in 3D space..7

FIGURE 2.3	 Programmable rendering pipeline (DirectX 11)...............................9

FIGURE 2.4	 Samples of surface shading effects that can be achieved with
pixel programs.. 10

FIGURE 2.5	 Process flow in system identification methodology........................ 11

FIGURE 2.6	 Comparison of two model outputs with measured system
response... 14

FIGURE 2.7	 The comparative literature review workflow.................................. 15

FIGURE 3.1	 Visual effect of varying vertex count for 3D object
in discrete steps...25

FIGURE 3.2	 ARX model structure..26

FIGURE 3.3	 Screenshot of hardware tessellation sample application
from DirectX SDK adapted with Stanford Dragon model
in Experiments 1 and 2...28

FIGURE 3.4	 Screenshot of application in Experiment 1.....................................29

FIGURE 3.5	 Screenshot of application in Experiment 3.....................................30

FIGURE 3.6	 Input and output profiles of application in Experiment 1............... 31

FIGURE 3.7	 Steady-state frame time and vertex count relationship
in Experiment 1... 31

FIGURE 3.8	 Measured and simulated output of rendering application in
Experiment 1... 32

FIGURE 3.9	 Error between measured and simulated output of application
in Experiment 1... 33

FIGURE 3.10	 Steady-state outputs of the system based on selected
combinations of two input variables... 35

FIGURE 3.11	 Profiles of two inputs and output of rendering system
in Experiment 2..36

FIGURE 3.12	 Measured and simulated outputs of MISO rendering system
in Experiment 2.. 37

xiv List of Figures

FIGURE 3.13	 Profiles of input and output of rendering system
in Experiment 3.. 38

FIGURE 3.14	 Measured and simulated rendering system output
in Experiment 3... 39

FIGURE 3.15	 SISO control system in Experiment 3...40

FIGURE 3.16	 Simulated reference tracking with PID controller..........................40

FIGURE 3.17	 Reference tracking with actual rendering application.................... 41

FIGURE 3.18	 Screenshot of test application in superposition experiment............ 45

FIGURE 3.19	 Measured output and predicted output from Model A...................46

FIGURE 3.20	 Measured output and predicted output from Model B....................46

FIGURE 3.21	 Measured output and predicted output from Model C................... 47

FIGURE 3.22	 Comparison of outputs from Model C and summed outputs
of Models A and B.. 47

FIGURE 4.1	 (a) Perceptron neuron. (b) Multi-layer perceptron network (MLP)...... 52

FIGURE 4.2	 Two-layer distributed time delay neural network with
time delays at inputs of each layer.. 53

FIGURE 4.3	 Fuzzy inference system...54

FIGURE 4.4	 Screenshot of application in Experiment 1..................................... 57

FIGURE 4.5	 Screenshot of application in Experiment 2..................................... 57

FIGURE 4.6	 Adaptive network.. 58

FIGURE 4.7	 Neural network in Experiment 1...60

FIGURE 4.8	 Data collected from Experiment 1.. 61

FIGURE 4.9	 Data collected from Experiment 2.. 62

FIGURE 4.10	 Screenshot of rendering application in Experiment 3..................... 62

FIGURE 4.11	 Measured and reference output from ANFIS in Experiment 3...... 63

FIGURE 5.1	 Rendering process from system perspective...................................68

FIGURE 5.2	 Closed-loop feedback control system...68

FIGURE 5.3	 Rendering system with adaptive controller and quality
of service feedback...69

FIGURE 5.4	 Modular adaptive control system for real-time rendering.............. 70

FIGURE 5.5	 PID control system in MATLAB.. 73

xvList of Figures

FIGURE 5.6	 (a) Setting PID controller gain values in MATLAB.
(b) Interactive graphical user interface in MATLAB/Simulink
for tuning PID controller... 74

FIGURE 5.7	 Steady-state frame time and vertex count relationship shown
in Experiment 1... 76

FIGURE 5.8	 Gain scheduling PID control system.. 78

FIGURE 5.9	 Single neuron PID control system.. 79

FIGURE 5.10	 Comparison of system outputs using SNPID and PID controllers...... 81

FIGURE 5.11	 Control input from SNPID and PID controller............................... 82

FIGURE 5.12	 Screenshot of application with PID control.................................... 82

FIGURE 5.13	 Reference tracking using PID controller (low to high)................... 83

FIGURE 5.14	 Reference tracking using PID controller (high to low)...................84

FIGURE 5.15	 Reference tracking using PID controller (to higher FPS)...............84

FIGURE 5.16	 Reference tracking using PID controller (to lower FPS)................85

FIGURE 5.17	 Simulated output with gain scheduling PID controller...................86

FIGURE 6.1	 Fuzzy control system in Simulink/MATLAB................................90

FIGURE 6.2	 Configuring fuzzy controller in Simulink/MATLAB.................... 91

FIGURE 6.3	 ANFIS editor graphical user interface in Simulink/MATLAB.......... 92

FIGURE 6.4	 Neural network model structure in ANFIS....................................93

FIGURE 6.5	 Using ANFIS for controlling real-time rendering process.............93

FIGURE 6.6	 Input and output membership functions...94

FIGURE 6.7	 Fuzzy logic control system...95

FIGURE 6.8	 Reference tracking using fuzzy controller (high to low)................95

FIGURE 6.9	 Reference tracking using fuzzy controller (low to high)................96

FIGURE 6.10	 Reference tracking using fuzzy controller (to lower FPS)..............96

FIGURE 6.11	 Reference tracking using fuzzy controller (to higher FPS)............97

FIGURE 6.12	 Continuous reference tracking using ANFIS controller.................98

FIGURE 7.1	 The timing diagram of the rendering application used
in the control system... 101

FIGURE 7.2	 The high-level design of the rendering application...................... 102

FIGURE 8.1	 Experiment results from Pouderoux and Marvie’s research............ 110

xvi List of Figures

FIGURE 8.2	 Experiment results from Gobbetti and Bouvier’s
multi-resolution technique... 111

FIGURE 8.3	 Experiment results from Jeschke et al.’s approach with usage
of imposters... 112

FIGURE 8.4	 Experiment results from Paravati et al’s adaptive control
technique...113

FIGURE 8.5	 Screenshot of application in our experiment................................ 114

FIGURE 8.6	 Reference tracking using PID controller (low to high)................. 114

FIGURE 8.7	 Experiment results from Zheng et al’s work on rendering
large 3D models online... 115

FIGURE 8.8	 Experiment results from Li and Shen’s research
on time-critical multi-resolution volume rendering using
3D texture mapping hardware... 116

FIGURE 8.9	 Quick-VDR: Interactive view-dependent rendering
of massive models, Yoon et al... 117

FIGURE 8.10	 Experiment results from Scherzer, Yang, and Mattausch’s
research on exploiting temporal coherence in real-time rendering..... 118

FIGURE B.1	 System model of open-loop rendering process............................. 162

FIGURE B.2	 Closed-loop control system with feedback................................... 162

FIGURE B.3	 Deployment in single computer device... 163

FIGURE B.4	 Deployment in distributed computer environment....................... 163

FIGURE B.5	 Plot of steady-state values of input and output data...................... 164

FIGURE B.6	 Control system.. 164

FIGURE B.7	 Relationship of input and output of rendering system.................. 165

xvii

List of Tables
TABLE 2.1	 Results from the Research Review Classification............................... 16

TABLE 3.1	 Performance Counters in DirectX...24

TABLE 3.2	 Parameters of ARX Model in Experiment 1....................................... 33

TABLE 3.3	 Parameters of State Space Model in Experiment 1.............................34

TABLE 3.4	 Parameters of ARX Model in Experiment 2....................................... 38

TABLE 3.5	 Parameters of ARX Model in Experiment 3....................................... 39

TABLE 3.6	 Parameters of ARX Model A in Superposition Experiment...............48

TABLE 3.7	 Parameters of ARX Model B in Superposition Experiment...............48

TABLE 3.8	 Parameters of ARX Model C in Superposition Experiment...............48

TABLE 5.1	 Linear Operating Ranges...85

TABLE 6.1	 Fuzzy Inference Rule Set...90

xix

List of Abbreviations
3D	 Three-dimensional (computer graphics)
ANFIS	 Adaptive neuro-fuzzy inference system
ANN	 Artificial neural network
ARX	 Auto-regressive with exogenous (input or term)
BIBO	 Bounded-input bounded-output
CAD	 Computer-aided design
CAM	 Computer-aided manufacturing
DTDNN	 Distributed time-delay neural network
FPS	 Frames per second (also known as frame rate)
GPU	 Graphical processing unit
GUI	 Graphical user interface
LAN	 Local area network
LoD	 Level of detail
MISO	 Multiple-input–single-output
MLP	 Multi-layer perception
N4SID	 N4 subspace identification method
PID	 Proportional, integral, derivative (control)
QoS	 Quality of service
SISO	 Single-input–single-output
SNPID	 Single neuron PID
TCP	 Transmission control protocol

xxi

Preface
Interactive computer graphics is a mature field of study. In fewer than 15 years,
the improvements in speed and realism of computer-generated graphics from even
consumer grade computers have been phenomenal. There is no lack of evidence to
substantiate this statement as we observe the ever-increasing number of cutting-edge
interactive applications such as computer games, virtual prototyping, and visualisa-
tion software. However, real-time computer graphics applications are often oriented
toward meeting a particular set of goals without consideration of some form of global
optimisation. A number of years ago, through real-life encounters in large-scale
system implementation, the idea of convoluting computer graphics rendering with
control theory was born.

From a larger perspective, computer graphics rendering is akin to any other pro-
cess that runs on a computer. In recent years, researchers found that the increasing
inclination to employ control engineering techniques in computer-related processes
is not so much a matter of computer control (using a computer as a controller) as
controlling the processes within a computer. Examples of such implementation are
discussed in the vast array of research literature about server performance, network
traffic control, and adaptive software with defined quality-of-service metrics. We
believe the trend is no coincidence; it represents wide acceptance of benefits from
integrating control theory with computer processes.

Our motivation for this work is simple. First, we want to provide a fundamen-
tal analysis of interactive computer graphics rendering from a systems perspec-
tive. Second, we want to establish a framework that facilitates interactive computer
graphics rendering in an environment providing optimal utilisation of resources and
good responses to rendering load changes. These goals can be accomplished through
the adoption of digital signal processing, system identification and control engineer-
ing techniques that we believe will draw the interest of researchers and practitioners
in the computer graphics-related fields.

While classical control demands meticulous evaluation of numerous criteria, the
goals of our control system described in this book focus on tracking user-defined
performance objectives while providing good transient responses so that changes
arising from rendering load control will not lead to abrupt changes in visual displays.
Furthermore, unlike physical systems utilised in aircraft, motors, and chemical mix-
ers in which a failure of a control mechanism may lead to a catastrophic outcome,
interactive computer graphics rendering is generally fail-safe.

In the course of this work, the computer graphics rendering process is modelled
from a data-driven and black-box approach. We have shown the possibilities of vari-
ous input–output configurations in a system model setting. While some may argue that
the rendering process is too complex to be modelled by a few variables, we hope the
reader can appreciate that the modelling technique in this book is in fact not congruent
to this argument, but rather a systematic approach because the derived system models
are substantiated with measured data.

xxii Preface

Finally, it is our sincere hope that this work can further stimulate cross-disciplinary
research and provide a premise upon which more interesting modelling and control
techniques for real-time computer graphics may be developed.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information,
please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xxiii

Acknowledgements
Words are just inadequate to express my gratitude toward Professor Wang Jianliang,
who is more than just my supervisor, he is a mentor and friend for many years.
Through him, I have learnt to appreciate the beauty of control theory. More impor-
tantly, his enduring encouragement and support have left me with a deep appreciation
of him as a true educator. If there is one conversation I would choose to remember
for life, it would be when he distilled the spirit of academic research as a pursuit of
excellence and challenge.

This book would not have been possible without the support of many, especially
my family. My heartfelt appreciation goes to my parents who did not have an exten-
sive education yet believed wholeheartedly in the value of continual education, to
the extent of making sacrifices for me in so many ways. To me, there is no closer
personification of selfless love than this. My wife Crystal, the gem of my life, has
been most instrumental in this endeavor. I wish to thank her for carrying the burden
on the home front and being such a dedicated partner. She is a godsend whom I can
never do without in every season of my life. The credit and fruit of this labor belong
to all of them.

Last but certainly not least, I thank God for this journey of molding and growth.
I thank Him for all the people who have made a difference in my life through this
work and every step which He has hand-held me. To complete writing this book
is a task that requires unimaginable perseverance and strength which He has so
graciously given to me.

Gabriyel Wong

xxv

Summary
The value of interactive computer graphics is underscored by myriad applications in
many domains of our lives. Consumers today can expect extremely realistic imag-
ery generated in real time from commodity graphics hardware in applications such
as virtual prototyping, computer games, and scientific visualisation. However, the
constant and increasing demands for fidelity coupled with hardware architecture
advancement pose many challenges to researchers and developers as they endeavour to
find optimal solutions to accommodate speed of rendering and quality in interactive
applications with real-time computer graphics rendering. The qualitative requirement
of such applications, apart from the subjective perception of the displayed imagery,
is the response time of a system based on user input. In other words, the requirement
translates to the speed at which the machine can produce a rendered image according
to the input provided by the person in the loop of the feedback system.

Earlier research attempted to address the frame latency problem by providing
mathematical models of the rendering process. The models were often primitive
because they were derived from coarse approximation or depended on specific
application level data structures. Most approaches are based on heuristics and algo-
rithms and are largely dependent on a specific type of application corresponding to
the research. A major shortcoming of such techniques lies in the non-guarantee of
performance.

From a systems perspective, the rendering process is modelled from an open-loop
approach underpinned by constraints and estimations of the constituents of the render-
ing process. As a result, the output often fluctuates within an acceptable performance
range. Furthermore, many such techniques rely on specific hardware or they may
require unfriendly implementation on current computer graphics hardware. The advent
of more sophisticated consumer graphics hardware in recent years has caused the
rendering pipeline to be used in a far more complex manner to achieve ultra-realistic
visual effects. Consequently, adapting models into applications becomes progres-
sively more challenging as hardware and software technologies continue to evolve.

We can see from this background the exciting opportunities for the introduction
of modelling and control principles into existing computer graphics systems. Our
research focused on a systematic approach to realising a framework for modelling
and control of real-time computer rendering in two stages:

	 1.	 Investigation, analysis, and implementation of a data-driven system identi-
fication process for real time rendering

	 2.	Structured analysis of the derived model for the selection and design of a
suitable control strategy

The first part of this book focuses on the modelling aspects of real-time render-
ing. Based on the dynamic natures of the possible and myriad variations of render
states, polygon streams, and the non-linearity of the rendering process, we propose

xxvi Summary

a data-driven modelling approach that accurately represents the system behaviour
of this process from two angles: (1) the larger operating range where non-linearity
exists and (2) the piecewise linear operating range. We propose two techniques for
tackling the modelling challenge: (1) using a feed-forward time delay neural network
derived from experimental data and (2) fuzzy modelling.

We demonstrate that both techniques can yield very accurate results in compari-
son with actual measured data. In addition, we compare the estimated outputs of our
models with other mathematical estimation methods to show that the models derived
from our approach yield better results than mathematical estimations. Starting with
single-input–single-output (SISO) system models, we extend our work to investigate
the validity of multiple-input–single output (MISO) systems as well.

The second part of this book focuses on the design of a control strategy based on
the process nature investigated in the earlier chapters. The benefits of applying control
theory in the context of a computer graphics system are explained and the relative
advantages of the theory over the performances of existing heuristics and algorithms
(open-loop estimations of rendering) are highlighted.

Our research proposed two controller designs to achieve stable output with accu-
rate tracking: (1) proportional, integral, derivative (PID) control and (2) neural and
fuzzy control. We investigated control system implementation in both local and dis-
tributed configurations.

In the local configuration, the rendering process (“plant”) and controller reside in
the same computer. In the distributed configuration, the controller runs on a com-
puter different from the one used for rendering. The control activities and plant feed-
back are communicated between the computers via a network link. Despite network
latency, this configuration allows flexible usage of system-wide resources in an inte-
grated environment. The approach will be especially useful if elaborate controller
designs adopted in the future result in the introduction of heavy computational loads
into overall systems.

xxvii

Authors
Gabriyel Wong is an entrepreneur, innovator, and author with extensive experience
spanning leadership, managerial, and consulting roles in technology businesses. He
currently works for one of Europe’s largest private equity businesses in e-commerce
and heads product performance and strategy activities in Southeast Asia.

Wong was the co-founder of XPEGIA, a Singapore-based start-up specialising in
interactive media solutions for the advertisement and education markets. Before that,
he was the R&D Director at EON Reality, a global leader in virtual reality technology
based in the United States; he spearheaded the company’s research and development.
Before joining EON Reality, Wong was the founding director of gameLAB, the first
research laboratory in Singapore to focus on computer game design and technology.
He was a faculty member at Singapore’s Nanyang Technological University (NTU)
and lectured in both undergraduate and post-graduate programs.

He started his career as a technical lead at Singapore Technologies, one of Asia’s
largest engineering conglomerates and led the pioneering work on advanced com-
puter graphics technology for defense applications.

Wong has published papers and spoken at conferences around the world and
secured public and commercial funding for patenting his inventions. He earned
B Eng and M Eng degrees in 2000 and 2012 from NTU and will be earning his
PhD in 2013.

Jianliang Wang, PhD, earned a BE in electrical engineering from Beijing Institute
of Technology in China in 1982 and pursued MSE (1985) and PhD (1988) degrees
in electrical engineering from The Johns Hopkins University in the United States.

From 1988 to 1990, Dr Wang was a lecturer in the Department of Automatic
Control at Beijing University of Aeronautics and Astronautics. In 1990, he joined
the School of Electrical and Electronic Engineering at Nanyang Technological
University, Singapore, where he is currently a tenured associate professor.

Dr Wang’s current research interests include modelling and control of computer
graphics rendering systems and also robust and reliable controls, nonlinear controls,
and their applications to flight control systems. He has published 4 book chapters,
about 70 journal papers, and more than 130 conference papers.

Dr Wang currently serves as an associate editor of Transactions of the Institute of
Measurement and the Asian Journal of Control. He was a guest editor for a special
issue of Control and Intelligent Systems. The special issue of this international journal
published in January 2012 was dedicated to networked control and unmanned systems.

Dr Wang also served as the general chair of IEEE’s 2007 International Conference
on Control and Automation and program chair for the 2010 conference. He also
chaired various aspects of several conferences including the International Conference
on Control, Automation, Robotics, and Vision; the Asian Control Conference;
the Chinese Control Conference; and others. He was named chairman of IEEE’s
Singapore Control Systems Chapter for 2008–2009. He is a senior member of IEEE.

1

1 Introduction

1.1 � BACKGROUND AND MOTIVATION

While modern rendering software claims to have controlling mechanisms that enhance
runtime performance, the mechanisms are often very primitive and inadequate. The
results of this deficiency are indeterminate drops in the visual quality of generated
imagery and frame rates that can severely affect usage experience. By applying control
theories in real-time rendering, it is possible to rectify these shortcomings altogether.

The vision is to create an intelligent rendering system that can systematically
adapt to its operating environment to produce optimum runtime performance at all
times. To our best knowledge, no commercial product exists as this work is written
and no active research is in progress in this cross-disciplinary application field.

The application of control concepts in the computer graphics software provides
new opportunities for better performance derivable from graphics hardware. Until
today, typical rendering applications struggled to utilise hardware efficiently. Much of
the burden of optimisation falls on the software programmer who must be extremely
conversant with the graphics pipeline.

The predominance of interactive computer graphics is underscored by a burgeon-
ing variety of applications in various aspects of daily life. For example, it is easy
to observe various types of interactive systems in an urban environment such as a
shopping mall or an office building. These systems range from digital signage to
projection-based displays and touch panels. At the industrial level, interactive com-
puter graphics technology powers important processes such as computer-aided design
and manufacturing, virtual prototyping, and scientific visualisation and simulation.

While customers constantly demand high quality computer-generated graphics,
the cost associated with their demands may not be within reach. To illustrate, the
price of a performance workstation is typically many times more than the cost of
a desktop PC for home use. Furthermore, mobile devices such as PDAs and cell
phones lack sufficient computing power to render high quality graphics for produc-
tivity at work.

Our research concerns a fully automated technology that circumvents the afore-
mentioned problems and allows users to enjoy high quality interactive computer
graphics on both desktop and mobile devices. The objective of this project is to
leverage earlier research on this subject and extend the work to allow a product-ready
toolkit to be developed for commercialisation opportunities.

Over the past few years, we developed a framework that realises the concept of
delivering adaptive interactive rendering through laboratory experiments, theoretical
modelling, and simulation. Our technology employs control theory and the system
identification methodology, both of which are mature fields, proven by their use in

2 Real-Time Rendering

aeronautical, mechanical and electrical engineering, and electronics industries. The
concept is based on feedback control that can provide consistent performance moni-
toring and regulation with no requirement for human intervention. From a systems
perspective, the technical challenge translates into the form of a “plant” (process
to be controlled) and a “controller” component that ensures the process performs
optimally according to predefined objectives.

This technology clearly has numerous applications and commercialisation pos-
sibilities. We conceived the possibilities listed below.

Computer-aided design (CAD) and -manufacturing (CAM)—Three-dimensional
(3D) datasets used widely in many industrial applications. Our technology will allow
a user to view such datasets even on a mobile device. This brings productivity out of
the office and makes it available to people on the move.

Virtual communication—The market for 3D virtual communication is growing,
particularly in the education and corporate services segments. As a viral social net-
working medium or mode of communication in professional exchanges, 3D inter
active applications will remain key factors in online virtual communication. We see
our technology as an enabling factor for linking more people to such networks.

Marketing and sales—More companies are moving toward high quality inter
active content intended for consumers. This provides an opportunity for us to
introduce our technology so that more people can utilise it without the limitations
imposed by hardware. As a result, commercial entities can expect greater market
reach and corresponding increases in revenue.

Training and education—Our technology can be deployed in various training
and education products, enabling them to be delivered to audiences utilising hard-
ware with different capabilities. The benefit offered by our technology is the easy
ability to visualise 3D information even in a collaborative environment, therefore
enhancing the value of training and knowledge dissemination.

1.2 � OBJECTIVES AND CONTRIBUTIONS

Based on the shortcomings of current real-time rendering software, our research
entailed the investigation and development of a feasible solution that would allow accu-
rate and sustainable control of the real-time rendering process on different hardware
platforms. The two key objectives affecting implementation of the technology are:

	 1.	Despite the complexities involved in real-time rendering, it is imperative to
devise a systematic method to describe this process in a form that relates its
inputs and outputs consistently.

	 2.	Based on the derivable form and the known characteristics of the rendering
process, it is critical to find applicable control principles and frameworks
that will ensure control of the process over a variety of scenarios.

Our research spans knowledge of the computer science (computer graphics rendering)
and control engineering disciplines. Both fields imposed challenges that made our
research both exciting and fulfilling. Our key research contributions are listed below.

3Introduction

	 1.	We describe a novel framework by which the real-time rendering pro-
cess may be modelled accurately. This framework involves the adoption
of data-driven system identification methodology. Previous attempts to
characterise the rendering process via only observable variables and
case-specific formulations led to inaccurate models. Our model addresses
these shortcomings.

	 2.	Apart from linear models, our data-driven framework is extended to non-
linear models using soft computing techniques such as neural networks and
fuzzy models.

	 3.	We developed control system frameworks for both linear and non-linear
models in real-time rendering using (a) PID control with and without gain
scheduling and (b) fuzzy control with and without adaptive neural networks.

The application of our control frameworks has shown much better resource utilisa-
tion in the real-time rendering process than earlier work that generally demonstrated
coarse performance tracking.

1.3 � SCOPE OF WORK

Real-time rendering is a vast topic in the field of computer graphics. Although the
modelling techniques and control framework may be applicable to areas such as
volume- and image-based rendering, our study deals with polygonal-based rendering
pipelines found in commodity graphics hardware and it leverages geometry sub
division technique as a basis for controlling the input to the rendering system.

At this juncture, our work is based largely on the rendering of a single large
3D mesh that is used as a pseudo-representation of more complex 3D scenes with
numerous objects. From a different perspective, this system is useful for applications
involving a single large object of interest, for example, massive model rendering and
computer-aided design.

Since the focus of this research is on real-time rendering relating to the response
time of a system in an interactive environment, we consider the time required to
render an image (frame) as the critical performance metric. While computer graphics
activity is essentially visual, the quality of the generated image is frequently taken as
the next most important metric for assessment. However, due to the subjectivity and
complexity involved in processing image comparisons, the image quality component
is omitted as a performance object in this work. From the system perspective, the
real-time rendering framework proposed in this research is flexible to accommodate
a multiple-input–multiple-output (MIMO) configuration. This means the user has
the full freedom to implement additional output variables, which may include image
quality related performance variables.

1.4 � BOOK OUTLINE

Chapter 1 provides the background and motivation that led to this research.
Chapter 2 discusses the fundamental knowledge in two key disciplines related to
this research—real-time computer graphics rendering and system identification

4 Real-Time Rendering

methodology. We then provide a systems perspective of the rendering process
and explain the impacts of variables surrounding the system inputs and outputs.
After that, a survey of previous research in the areas of rendering load control and
characterisation is discussed.

Chapter 3 delves into the details of our data-driven modelling approach to
real-time rendering with a focus on linear system structures and their derivation.
Through experiments, we provide rendering models for single-input–single-output
(SISO) systems and show how they may be extended to more complex and practical
systems involving multiple inputs.

In Chapter 4, we explore the use of soft computing techniques for modelling
the real-time rendering process. The application of such techniques is performed
at the operating range of the rendering system where non-linear characteristics are
exhibited. Following that, we provide the basis for linearisation from the derived
non-linear rendering system model.

Chapter 5 begins with the introduction of model-based control and deals with
the control system framework for the linear rendering system model obtained in
Chapter 3. The key control mechanism discussed in this chapter is the closed-loop
feedback design with PID controller. We demonstrate how systems with single and
multiple inputs may be controlled as well.

The focus of Chapter 6 is on advanced control techniques and considers our pro-
posed framework from a model-less perspective. This chapter illustrates the estab-
lishment of a control system framework without the need for an explicit system
model as described in Chapters 3 and 4. By using a variety of fuzzy control tech-
niques, we demonstrate that a control system can perform very well when tracking
the performance of a real-time rendering process.

Chapter 7 discusses applications, challenges, and possibilities, including system
architectures, software and hardware performance and future technology.

The conclusions of our research and suggestions for future work are discussed in
Chapter 8.

Annex A contains sample applications.
Annex B discusses the authors’ patent for Method and System for Adaptive Control

of Real-Time Computer Graphics Rendering.
Annex C delineates Neural PID Control System Code.

1

2 Preliminaries

2.1 � FUNDAMENTALS OF REAL-TIME 3D RENDERING

In real-time computer graphics, 3D rendering refers to the process of generating a
sequence of images that produces not just the animated effect of motion and change
but the visual cue of depth for objects in the imagery given an external input or stimu-
lus to the system. In typical applications, the goal is to provide visual feedback to the
user when there is interaction via the human-computer interface. The speed at which
each image, known as a frame, of the animation sequence is generated defines the
performance of the system.

Because speed of rendering every image is crucial in real-time rendering, both the
computer hardware and software have to work together in the most optimal way so
that the best possible image quality can be achieved in tandem with an acceptable
frame rate (a metric that measures the number of frames that can be generated in one
second). Over many years of research and development, the real-time 3D rendering
process has taken leaps and bounds in terms of the image quality that is produced in
various real-world applications such as computer games, training simulators and 3D
product demonstrations. This involves an intricate process that spans the preparation
of 3D content in elaborate modelling tools to processing combinations of rendering
algorithms with myriad configurations of parameters for the final output which is the
image to be shown eventually on the display device. Modern computers have dedicated
hardware to handle computer graphics rendering. This hardware provides acceleration
to computer graphics rendering routines so that the computer’s central processor unit
(CPU) can focus on other non-computer-graphics-related and auxiliary tasks. In gen-
eral, real-time or interactive 3D rendering applications are supported by an abstraction
layer that communicates with the hardware. This layer is commonly known as the
3D rendering Application Programming Interface (API) and it is fully responsible for
pushing rendering commands to the hardware and managing the render state machine.

2.1.1  Polygon-Based Rendering

Figure 2.1 shows the multi-stage 3D real-time rendering pipeline. The transforma-
tion of inputs to the final visible pixels on a display device may be described system-
atically via the following steps.

•	 Creation in Local 3D Model Coordinate System
•	 Each object is created individually in its own 3D coordinate system.
•	 Objects may be represented in a variety of geometry formats (triangles,

rectangles, strips of polygons, etc.). Essentially, every polygon in a 3D
space consists of points known as vertices.

2 Real-Time Rendering

•	 For polygons to be rendered with visually correct features, each vertex
is associated with a set of attributes such as position (coordinates in 3D
space), colour, normal (perpendicular) vector from a surface, texture
coordinates (user-defined mapping onto the surface), and other factors.

•	 Transformation to Global World Coordinates
•	 To compose a scene in 3D space consisting of different objects, all cre-

ated 3D objects must be transformed into the same coordinate system.
•	 These transformations modify only the relative positions of the vertices

and the normal. Visual attributes such as colour and texture coordinates
are not modified.

•	 Transformation to 3D View Coordinate System
•	 A viewpoint in 3D space is commonly cited as the “camera” location.
•	 The geometry (vertex arrangement) from the 3D space is transformed

into the camera view coordinate system. Depending on the rendering
software, the common definition for this space is based on a right-
handed coordinate system with the camera at the origin pointing down
the negative z axis. The x axis is to the right and the y axis up. The
projection from 3D to 2D space is performed at this stage.

•	 The depth information of any object can be obtained from the z coordi-
nate value at this stage.

•	 The effect of virtual “lights” that create illumination properties in the
3D scene is computed at this stage. For example, a surface colour shad-
ing algorithm known as Gouraud shading will be computed at each
vertex of a 3D object using the light parameters, light position, normal
vectors, and the 3D object’s texture or material properties.

•	 The removal of polygonal surfaces not shown in the view due to occlu-
sion is known as “culling” and is performed at this stage as well.

•	 Culling is related to the attributes of the camera view defined by a
virtual trapezoid volume known as the “view frustum” using six planes
(left, right, up, down, front, and back) as shown in Figure 2.2.

Per-vertex
operations

Rasterisation

Per-pixel
operations

Per-fragment
operation Framebuffer

Texture
assembly

Display lists

Vertex data

Pixel data

FIGURE 2.1  Real-time 3D rendering pipeline.

3Preliminaries

•	 Transformation to 3D Clip Coordinate System
•	 The geometry data in this stage are prepared for a post-processing step

known as “clipping.”
•	 The transformation of the geometry depends on the type of view pro-

jection used. Certain non-linear transformation may take place, for
example, when perspective projection creates a tapering-off view of
objects at a distant horizon in contrast to orthographic projection that
consistently preserves the dimensions of a 3D object.

•	 Transformation to Normalised Device Coordinates
•	 The geometry is normalised for display in a 2D window on a physical

display device.
•	 Further clipping is done to remove geometry outside the user-defined

window boundaries.

•	 Transformation to Display Window Coordinates
•	 All vertices are converted to units of the display (pixels) window.
•	 Typically, the origin of reference is at the lower left corner of the display

window.

•	 Transformation to 2D Screen Coordinate System
•	 The conversion to screen pixels (rasterisation) is performed. Pixels are

visible colour dots that can be displayed on a screen.
•	 To generate shaded pixels, attributes such as texture coordinates, colour,

and normal vectors are used in the computation and interpolated across
the vertices and polygon surfaces.

•	 Algorithms may be used to perform further hidden surface removal by
using depth information obtained from the geometry.

Eye point

Near plane

Far plane

Line of sight

Top plane

Bottom plane

Left plane

Right plane

FIGURE 2.2  Camera view frustum in 3D space.

4 Real-Time Rendering

•	 The final colour of the pixel is determined by combining all other
effect state settings (e.g., blending and stencil operations) in the ren-
dering pipeline.

•	 The output of this stage is the final colour of every pixel placed in the
memory of the display hardware (the frame buffer).

In the course of rendering a 3D scene, many inputs and settings such as the geom-
etries of 3D objects and their material “look” parameters are sent to the graphics
hardware for processing. About a decade ago, outdated graphics hardware relied
solely on a few hard-wired algorithms to process such data via a method known as
the fixed function rendering pipeline. As a result, real-time rendering application
developers had little space to control the look of a 3D object based on a limited set of
functions that computed the rendering output. The impact of such limitations is the
lower quality of imagery generated from computer graphics hardware.

This problem was circumvented by the advances represented by a new generation
of computer graphics hardware that allows rendering routines known as shaders
to be injected into the hardware before or during the runtime of an application.
This capability now gives application developers full control over the quality of the
generated output by varying shader routines. Figure 2.3 depicts this new-generation
fully programmable rendering pipeline.

Shaders come in two formats: vertex and pixel types. A vertex shader is a graph-
ics processing function used to add special effects to objects in a 3D environment.
It is executed once for each vertex sent to the graphics processor. The purpose is to
transform each vertex’s 3D position in virtual space to the 2D coordinate at which
it appears on the screen and the as a depth value in the graphics hardware. A pixel
shader is a computation kernel function that computes colour and other attributes of
each pixel. Pixel shader functions range from always outputting the same colour to
applying a lighting value to adding visual effects such as bump mapping, shadows,
specular highlights, and translucency properties. They can alter pixel depth or output
more than one colour if multiple render targets are active. Figure 2.4 illustrates an
example of the effects of pixel shaders on a 3D object. Apart from vertex and pixel
shaders, an important feature of state-of-the-art graphics rendering architectures is
the functionality of geometry shaders. Geometry shaders are added to the rendering
pipeline to enable generation of graphics primitives, such as points, lines and dif-
ferent types of triangles after the execution of vertex shaders. With this capability,
it is then possible to perform operations such as mesh resolution manipulation and
procedural geometry generation.

Computer hardware technology and new rendering algorithms continue to
advance quickly. The evolution of the real-time rendering pipeline also continues as
this book is written.

2.1.2 � Volumetric Rendering

In Section 2.1.1, we described how animation can be produced using 3D data and
physics-based principles for surface shading effects. Another technique for pro-
ducing 3D visualization is through the usage of volume data that consists of not

5Preliminaries

just positional information in 3D space but continuous depth data with additional
dimensions and possibly its materials information as well. This type of spatial data
is commonly used in scientific and medical work where cross-sectional information
is important for evaluation and study. Volume rendering produces the exterior and
the interior look of an object, usually with visual cues such as transparency and color
differentiation. The image generation process considers the absorption of light along
the ray path to the eye and volume rendering algorithms can be designed to avoid
visual artifacts caused by aliasing and quantisation.

2.1.3 �I mage-Based Rendering

In contrast to polygon-based rendering in which 3D geometry is provided for con-
structing the 3D hull of an object, image-based rendering techniques render novel
3D views by using a set of input images. This avoids the need for a stage where 3D
data has to be explicitly provided by manual labour or some data acquisition means.
These techniques focus on computer vision algorithms in feature detection and
extraction from a set of basis images and thereafter reconstruct a 3D object or scene.

Input

Vertex Shader

Input Assembler

Geometry
Shader

Stream
Output

M
em

or
y R

es
ou

rc
es

 (B
uff

er
, T

ex
tu

re
s,

et
c.

..)

Rasteriser

Pixel Shader

Output Merger

FIGURE 2.3  Programmable rendering pipeline (DirectX 11).

6 Real-Time Rendering

Image-based rendering techniques are often classified according to the degree by
which geometry information is used. More importantly and in recent years, there has
been a confluence of image-based techniques with polygon-based rendering in many
applications due to the close continuum in 3D and 2D space in computer graphics.

As volume and image-based rendering are topics beyond the scope of this
research, they are introduced here as auxiliary information on alternative 3D ren-
dering techniques and more information can be found on the Internet and major
research publication portals.

2.2 � SYSTEM IDENTIFICATION

The goal of system identification is to derive a mathematical model of a dynamic
system based on observed input and output data. Usually a priori information per-
taining to a system will be useful for postulating the preliminary model structure.
The system may then be modelled according to empirical data (black-box modelling)
or conceivable mathematical functions such as physical laws (white-box modelling).
Often, real world systems are non-linear and operate with reliance on state memory.
The systems are dynamic and thus their outputs may depend on a combination of pre-
vious inputs, outputs, and states. The combination provides the basis for time series
and regression mathematical expressions (models) for different reproducible systems.

System identification is an iterative procedure that can be summarised briefly
by the flowchart in Figure 2.5. A model structure is chosen in advance based on

FIGURE 2.4  (See colour insert.) Samples of surface shading effects that can be achieved
with pixel programs.

7Preliminaries

preliminary information obtained from the system. The parameters of this model
structure are then computed based on the set of experimental data collected previ-
ously. A portion of this data is allocated for model validation and the entire process
from choosing a model structure to validation is repeated until the user-defined
simulation performance criteria are met.

From a system identification perspective, we treat the real-time rendering process
as the subject to be modelled. Since the rendering process cannot be described intui-
tively by physical laws such as mass, velocity, and temperature, black-box modelling
is adopted. The system is first tested with a set of predefined inputs and the outputs
are collected. This input–output dataset that captures a certain dynamic range of
the behaviour of the system is then used with mathematical regression techniques to
derive the estimated model.

Due to the scope of this book, we briefly summarise the steps in the system iden-
tification process below. A detailed and authoritative coverage of this topic can be
found in Ljung’s book [1].

2.2.1 �D ata Collection

To obtain an effective model of a system, it is necessary for the measured data to
capture and show the behaviour of the system adequately. An appropriate experi-
mental design can ensure that the correct variables and dynamics of the system are

Design experiment and
collect data

Post-process dataY

N

N Y
End

Validate model

Model is acceptable

Data require post-
processing

Choose model
structure

Select model
parameters and fit

model to data

FIGURE 2.5  Process flow in system identification methodology.

8 Real-Time Rendering

measured at sufficiently good resolution. In general, the following principles should
be observed:

	 1.	Select inputs that can excite the system dynamics adequately.
	 2.	Minimise the effects of noise and disturbance to obtain a good signal-to-noise

ratio.
	 3.	Choose appropriate sampling intervals for measuring data.
	 4.	Set a sufficient long duration of data collection to ensure capture of impor-

tant time constants.

2.2.2 �M odel Selection

In system identification, we begin by determining the model structure best expressed
by a mathematical relationship between input and output variables. This model
structure typically provides the flexibility to describe a system based on certain
parameters. Some examples of model structures include parameterised functions
and state space equations. To illustrate, a linear parametric model is provided in the
equation below.

	 y k ay k bu k() = −()+ ()1 	 (2.1)

where u is the input, y, the output, k, the discrete time step and a and b are model
structure variables.

Essentially, system identification is a systematic approach that begins with the
selection of a model structure and then using approximation techniques to estimate
the numerical values of the model parameters. While it may seem arbitrary to start
with the selection of a model structure, it is not an entirely ad hoc process. The fol-
lowing approaches may be adopted in deciding on an appropriate model structure.

	 1.	Start with the simplest system model structures to avoid unnecessary com-
plexity in cases where the data can be modelled by a simple structure.
Alternatively, a user can try various mathematical structures in a technique
known as black-box modelling.

	 2.	Designate a specific model structure for the data to be modelled by establish-
ing certain predetermined principles; this technique is known as grey-box
modelling.

Some well known system model structures from established research include the:

Auto-regressive exogenous (ARX) model
Auto-regressive moving average (ARMA) model
Box–Jenkins model
Output error model
State space model

9Preliminaries

2.2.3 �C omputing Model Parameters

In system identification, the model parameters are estimated by minimising the func-
tion that describes errors between the derived system model output and the measured
response. Assuming a system is linear and time-invariant, the output of the linear
model ymodel can be expressed as

	 y t G s u tmodel () = () () 	 (2.2)

where G(s) is the transfer function, y the model output and u, the input to the model.
To determine G(s), we can minimise the difference between the model output ymodel(t)
and the measured output ymeas(t). We can use the minimisation criterion which is a
weighted norm of the error v(t):

	 v t y t y t y t G s u tmeas model meas() = ()− () = ()− () () 	 (2.3)

where ymodel(t) is either the model’s simulated response given an input u(t) or its pre-
dicted response given a finite series of past output measurements, i.e., (ymeas(t–1),
ymeas(t–1),…).

From the above, v(t) is otherwise known as the simulation error or prediction
error. The objective of the estimation algorithm is to generate a set of parameters in
the model structure G such that eventually this error is minimised.

2.2.4 �E valuating Quality of Derived Model

The steps taken to evaluate the quality of a derived system model generally include
the comparison of the model response to the measured response and the analysis
of model residuals. Figure 2.6 compares the outputs of two different models with a
measured output.

Residuals are differences between a model’s one-step-predicted output and the
measured data. In other words, residuals may be understood as portions of validation
data that are not well described by the model. In residual analysis, the whiteness and
independence tests are key performance indicators.

The whiteness text examines whether a model includes a residual auto-correlation
function inside the confidence interval of the estimates. If it does, the model passes
the test and the outcome indicates that the residuals are not correlated.

In addition, a model is qualified when it passes the independence test (no correla-
tion between its residuals and past inputs). If evidence indicates such a correlation,
the information revealing how the output relates to the input is incomplete. A simple
example is an output y(t) beyond the confidence interval during a lag k that originates
from the input u(t – k). A good model should perform both tests relatively well.

The system identification methodology accommodates an iterative process in the
determination of the final model structure and parameters. A real world system may
not be represented by only a single model structure. Whenever a derived model is
found inadequate, it is necessary to revisit the model selection process, reconsider

10 Real-Time Rendering

the model parameter determination algorithm, and perhaps re-evaluate the data
collection procedure.

2.3 � LITERATURE REVIEW

While control theory is a mature field of study developed after the industrial revolu-
tion, the adoption of the techniques in the domain of computer software, particularly
real-time computer graphics systems, remains nascent. This literature review pro-
vides a survey of research in these areas as background for our research.

2.3.1 �C omparative Study on Existing Research

The premise of the novelty in our research is founded upon close examination of
previous work done in the fields of both real-time computer graphics and control
theory, particularly those that have been successful in fusing the two disciplines and
a careful thought process in terms of innovation in this area. A broad-stroke but sys-
tematic and progressive approach was taken to consider research publications within
two decades to ensure that relevant techniques are not missed out regardless of their
age and how they might contribute to further knowledge development.

Figure 2.7 shows the research comparative study flow conducted in this work
which consists of the Classification Stage and the Qualitative Comparison Stage.
In the Classification Stage, we begin with the most relevant keywords in the litera-
ture search terms. We consider the following words as the “lowest denomination”

55 60 65 70 75 80 85

−10

−5

0

5

10

Model Outputs vs Measure Output

Time

y

Output; measured
Model1; fit: 76.48%
Model2; fit: 55.82%

FIGURE 2.6  Comparison of two model outputs with measured system response.

11Preliminaries

because of their relative importance in a subject matter. For example, omitting
words such as “real-time”, “graphics” and “3D” since they are either rhetorical in
computer graphics research or they may be replaced by stronger keywords such as
“interactive”, “rendering” and directly meaningful candidates such as “frame rate”
and “control”. These keywords are used in search fields in major research publica-
tion online portals which indexes the world’s largest collection of research literature.
The gleaning process covers more than 500 research papers in a combined cohort of
4,000 search results from the publication portals.

As described in Section 1.3 in Chapter 1, the research in this thesis is primarily
focused on polygon-based rendering technique which is predominant in common
consumer and industrial applications such as computer games, virtual reality soft-
ware and computer-aided design and prototyping. Hence, the Classification stage
ends with segregating research literature that shares the same technique and is
related to the topic of interactive 3D rendering. Table 2.1 shows the results from this
classification stage from the initial pool of publications.

Start

Yes

Yes

Yes

No No

No

End

Classification Stage

Qualitative
Comparison

Similar
Technique?

(Polygon-based
Rendering)

Provide
frame rate

history?

Provide
frame rate

history?

Other
considerations

Compare
oscillatory
behavior

Compare
output error
from target
frame rate

Compare
frame rate

stability

Compare
frame rate
transition

speed

FIGURE 2.7  The comparative literature review workflow.

12 Real-Time Rendering

The next step in this comparative study is to select literature which provides
experimental results on frame rate control since we need to conduct a qualitative
analysis on them. For this purpose, these results should contain a history of data
points in the time domain that demonstrate certain desirable qualities such as stabil-
ity, offset errors and smooth frame rate transitions. These features would be com-
pared to the results we obtain from the experiments conducted using the techniques
proposed in this research with both qualitative and quantitative perspectives.

While research papers could be found relating to the topic of interactive rendering,
however many of them alluded to concrete experiment results on sustainable perfor-
mance as shown in the references from the bottom row of Table 2.1. In some cases
[61] [71] [76], only static frame rates are given as an approximation to the interactive
requirement. Furthermore, other researchers have chosen to work on volumetric [71]
[76] [80] and image-based rendering [68] [70] [83] techniques which are prevalent
in medical and large-scale visualization research but they differ from polygon-based
rendering vastly. As a result, it is not straightforward to establish a direct comparison
on the benefits offered by our research with these techniques. Despite these differ-
ences, we strive to provide a detailed qualitative and quantitative analysis on the
aforementioned rendering architectures and their respective performance with our
rendering framework in Chapter 8, Section 8.1.

2.3.2 �C ontrol-Theoretic Approaches to Computer Systems

As computer systems become increasingly complex through advances in hardware
and software technology, traditional approaches to providing performance guaran-
tees have become inefficient. In recent years, control engineering principles used
successfully in real-world applications such as mechanical and electrical systems
and process control have emerged as promising solutions to meet performance con-
trol challenges such as real-time scheduling, network bandwidth control, and power
management in complex computer systems.

The comprehensive framework presented by Abdelzaher et al. [2] introduces
feedback performance control in software services. The authors emphasised the
importance of guaranteed quality of service (QoS) in modern computer software
and systems that indicates the need for robust frameworks to achieve certain perfor-
mance objectives. They further defined and explained the attributes of a QoS-aware
service consisting of performance metrics such as queuing delays, execution
latencies, and service response times. They also demonstrated that a software

TABLE 2.1
Results from the Research Review Classification

Polygon-based Rendering Non-Polygon-based

With Frame Rate Data [62] [64] [65] [67] [72] [74] [77] [81] [84]
[85] [92]

[69] [73] [80] [83] [86] [87]

Without Frame Rate Data [61] [63] [66] [68] [75] [78] [79] [82] [89]
[90] [91]

[70] [71] [76] [88]

13Preliminaries

system can be approximated by a linearised model with corresponding conceptual
software representations of actuators and sensors. Although the feedback control
architecture was provided for generic software systems, the entire work focuses on
web server applications.

Abdelwahed et al. [3] proposed a generic online control framework to design
self-managing computer systems. The control actions governing system operations
were obtained by optimising system behaviour as forecasted by a mathematical
model over a specified time horizon. The case studies cited deal with power manage-
ment under time-varying workloads and signal detection accuracy and latency levels.

Since computer systems in networked environments are gaining importance due to
increasing Internet usage, Li and Nahrstedt [4] proposed a task control model to illus-
trate the dynamics of QoS adaptations using digital control theory. The objective was
to provide optimum resource allocation to tasks in a distributed environment where
multiple applications compete for and share limited system resources, thus ensuring the
best user experience and efficiency. A proportional, integral, derivative (PID) control-
ler was used to achieve the desired performance objectives relating to the QoS metrics.

Hellerstein et al. [5] provided a comprehensive overview of the challenges in con-
trol engineering of computer systems. Similar studies were reported by Abdelzaher
et al. [7], Lu et al. [8], and Karamanolis et al. [9].

2.3.3 �C ontrol Principles in Computer Graphics Software

In Li and Shen’s work [10], a fuzzy logic controller serves as an automatic mecha-
nism for controlling error tolerance in hierarchical volume rendering. Volume ren-
dering is a technique for directly displaying a sampled 3D scalar field without first
fitting geometric primitives to the 3D discrete sampled date set. The performance
criterion is a user-defined frame rate that the control system will strive to achieve
based on adjusting the error tolerance.

Sort-last rendering is a computer graphics applications technique for rendering
extremely large datasets in clusters of computers, usually in a distributed environ-
ment. Kirihata et al. [11] showed that it is possible to use feedback control to harness
large data transfer processes in sort-last rendering.

Another example of the adoption of control principles in computer graphics
software is the work by Dayal et al. [97]. They proposed an adaptive form of
frameless rendering with the potential to increase rendering speed dramatically over
conventional interactive rendering. This is done without the rigid sampling patterns
of framed renderers and by allowing sampling and reconstruction to adapt with very
fine granularity over spatial–temporal colour changes. A sampler uses closed-loop
feedback to guide sampling toward edges or motion in the image to maximise ren-
dering efficiency.

To date, little research has focused on the adoption of control principles in com-
puter graphics applications related to rendering. While the potential benefits are
immense based on a broader perspective in which control techniques have been used
successfully in generic software, the challenges usually lie in specific applications
that require in-depth understanding and appropriate modelling before the control
concepts may be introduced.

15

3 Linear Model Analysis
of Real-Time Rendering

3.1 � INTRODUCTION

The real-time computer graphics rendering process embodies complex state transi-
tions and fast dynamics amidst observable steady-state behaviour. To yield realistic
or visually useful graphical information, the rendering process may be loaded with
myriad combinations of the input variables and states to the point where it is impor-
tant to describe this function in simple terms.

In this chapter, we describe the application of system identification methodology
to real-time rendering. The basis for such an approach is that the rendering process
may be treated from a system perspective as a data processing function. This allows
us to analyse the process input and output data to establish some formal relationship
between them.

3.2 � BACKGROUND

The perennial and increasing demands for fidelity, coupled with hardware archi-
tecture advancements, pose many challenges to researchers and developers as they
endeavour to find the optimal solution to accommodate both speed and quality of
rendering. To this end, key techniques developed since the evolution of computer
graphics three decades ago revolve around their ability to reduce the rendering load
at application runtime. They are largely based on the principles of visibility reduc-
tion, geometry decimation, image-based methods, and more recently, techniques
such as programmable shading.

As space does not permit an exhaustive review of these research efforts, we refer
the reader to the comprehensive surveys by Cohen-Or et al. [12], Haines [13], and
Akenine-Moller et al. [14]. Despite the ability of each approach to reduce rendering
loads during runtime, their common weakness lies in the inability to guarantee stable
frame rates.

In this chapter, we introduce a novel framework for obtaining an accurate model
of an interactive rendering process. This framework is based upon the system iden-
tification methodology [1] that is a mature field of study associated with systems and
control theory.

In addition to expanding understanding of the dynamics relating to the rendering
process, the objective of modelling this process is to establish the groundwork for a
control framework. Only with an accurate model can we design this control frame-
work around the rendering process to yield the sustainable performance we desire.

16 Real-Time Rendering

In this research, we focus on exploiting a current trend in hardware technol-
ogy that provides fine resolution in geometry control, known as tessellation. Since
geometry is the primitive construct of any object in 3D space, it becomes a natural
choice as one of the modelling variables in our framework. In brief, tessellation is
the process of sub-dividing surfaces into smaller shapes with the objective of gen-
erating higher resolution information of the 3D model. Tessellation, also known as
a subdivision technique, is a well researched field in computer graphics and had
been adopted widely in many interactive rendering applications because of the visual
acuity it provides. However, only recently has graphics hardware provided sufficient
support for tessellation-based techniques in applications [30].

We introduce our modelling framework via experiments in two interactive render-
ing applications that use subdivision techniques in rendering load control. We aim to
establish the fundamental validity of a system-based approach to modelling the ren-
dering processes in applications similar to those selected in these experiments. Since
rendering tasks are inherently complex in real-world applications, we provide a sys-
tematic extension from a single-input–single-output (SISO) model of the rendering
process to a multiple-input–single-output (MISO) model that more closely resembles
a broader class of applications. We hope that this progression along with the system
modelling principles and fundamental considerations related to 3D rendering will
enable readers to appreciate the value of this framework and acquire the necessary
knowledge for its implementation.

Current research in rendering workload characterisation [16,17] and rendering
time estimation [18,19] strives to profile the attributes of rendering without providing
a systematic way to control the process. Often, the user is expected to arrive at some
form of a primitive control strategy based on profile information. This often requires
several attempts to re-evaluate control strategy and ad hoc refinement steps are often
needed to remove major rendering bottlenecks.

This motivated us to attempt to utilise a systems perspective to model the render-
ing process. In this chapter, we demonstrate that accurate models can be obtained
via our data-driven framework and extend this framework by introducing the use of
a controller that can track and regulate frame rates with guaranteed performance.
In comparison with other work, our research offers the following benefits:

•	 Our framework does not require the pre-processing of the 3D content
utilised in other research [20,21,22]. Its performance is not limited to static
pre-processed geometry and scenes.

•	 Our approach leverages hardware-accelerated technology (tessellation) that
provides smooth transitions in geometry scaling unlike techniques that may
generate visual hysteresis [21,22,23].

•	 The outputs of the derived rendering models exhibit very high accuracy
when compared to actual rendering process outputs.

•	 When the derived rendering model is used in conjunction with a suit-
able controller, the closed-loop system can produce guaranteed frame
rates. The self-correction process occurs entirely online during runtimes
unlike current techniques that may require repetitive and labour-intensive
offline evaluation.

17Linear Model Analysis of Real-Time Rendering

3.2.1 �C ontrol-Centric Definition for Rendering Time Control

In contrast to previous research on interactive and time-critical rendering [20,22,24],
we define rendering time control as a mechanism that should produce stable frame
rates very close to the user-defined target instead of fluctuating below it. To date, much
research on rendering time control has focused loosely on keeping the time required
to render each frame within a certain budget and ignoring the quality of the control or
the fluctuations resulting from the technique. This leads to two consequences.

The first implies that the times allocated to perform other tasks in an interactive appli-
cation such as logic computation, collision detection, and animation will not be consistent.
In some cases, “starvation” of other processes that require CPU or GPU resources may
occur. This is detrimental to the effectiveness of visual simulation applications in which
external devices that require CPU cycles are tightly coupled to the rendering process.

Second, weak frame rate control leads to suboptimal resource use. For example,
an object rendered at 15 FPS that achieves acceptable visual quality should not be
rendered at 25 FPS unless allowed by the user for valid reasons. This requirement is
especially critical in interactive applications and systems with tight resource control
policies such as in game consoles [25,26] and portable devices where sustainable
and guaranteed performance is vital because processor time must be allocated for
related non-graphics computations. In contrast, applying control engineering leads to
analysis of system attributes such as output overshoot, settling time, and steady-state
errors that constitute a better qualitative framework for performance monitoring.
We feel that this is a more powerful outcome than the current research focus on
frame rate control.

3.2.2 �C hallenges in Using Heuristics

Heuristics usually refers to an experience-based speculative formulation of a solution
to a problem. Much research in the area of rendering performance control has been
based on heuristics and analytical models [22,23,24,27]. As Gobbetti and Bouvier
noted [24]:

“…Static heuristics are not adaptive and are therefore inherently unable to produce
uniform frame rates….”

Leukbe describes the difficulty in modelling the rendering process in his book on
level of detail (LoD) for 3D graphics [28]:

“…a predictive scheduler estimates the complexity of the frame about to be rendered…
this approach is substantially more complicated to implement…because it requires an
accurate way to model how long the specific hardware will take to render a given set
of polygons.”

The challenge in establishing reliable heuristics is straightforward. Driven by com-
mercial demand and innovation, computer graphics hardware and software continue
to change at unprecedented rates. In confirmation of this fact, Dumont et al. [29]

18 Real-Time Rendering

stated that given the complexity of real-rendering applications today, heuristics may
fail in controlling rendering time. Haines [13] also describes this trend:

“Perhaps one of the most exciting elements of computer graphics is that some of the
ground rules change over time. Physical and perceptual laws are fixed, but what was
once an optimal algorithm might fall by the wayside due to changes in hardware, both
on the CPU and GPU. This gives the field vibrancy: we must constantly re-examine
assumptions, exploit new capabilities, and discard old ways.”

Based on these findings, dissecting the rendering process into distinct compo-
nents that contribute to rendering cycle time is no trivial task. Tack et al. [18] did not
consider overhead time in their performance model because of the complexity and
additional costs it represented. The heuristics proposed in Wimmer and Wonker’s
work [19] varied in performance for different applications. This implies that unless
an application is specially built to fit into their proposed framework it may not be
easy to achieve stable frame rates across a broader range of applications.

Heuristics ignore non-linearity in their formulation, that is, they assume that func-
tional relationships are always linear. This is unrealistic in practical applications
because of the underlying hardware. Our experiments have shown that the time taken
to render a vertex varies at different total processed vertex counts. The work of Lakhia
et al. on interactive rendering [22] demonstrated that texture size has a non-linear rela-
tionship with the time taken to render a 3D object. Finally, heuristics face the same
challenges as other frame rate control mechanisms in terms of balancing qualitative
requirements such as visual hysteresis [23] and rendering performance.

3.2.3 � Purpose of Workload Characterisation and Analysis

Apart from heuristics in the quest to limit rendering time, researchers also analysed
rendering workloads with the goal of identifying and eradicating bottlenecks at
runtime. Kyöstilä et al. [16] created a debugger and system analyser for graphics
applications running on mobile hardware. Monfort and Grossman [17] attempted to
characterise the rendering workloads of 3D computer games via a specially devel-
oped tool. In recent years, major graphics hardware vendors have provided software
toolkits that allow low level access to their hardware for debugging and in-depth
analysis of graphics workload with the goal of optimising performance of interactive
applications during runtime.

However, workload characterisation and analysis are not adaptive mechanisms that
will bring about stable frame rates. They are helpful only for tracing bottlenecks and
manifesting an application’s rendering workload profile. To utilise these mechanisms
for runtime performance, the process usually involves (1) identification of the problem
(such as the cause of a bottleneck) during runtime followed by (2) manual effort to
eradicate the bottleneck offline and then re-run the same scenario. This approach does
not guarantee performance when the application use or 3D scene content changes.
Since interactive rendering usually causes dynamic changes to visual content, the
approach of using workload characterisation and tuning is not generally robust.

19Linear Model Analysis of Real-Time Rendering

3.3 � CASE FOR DATA-DRIVEN MODELLING

In system identification, we approach the problem of modelling a dynamic sys-
tem from the observable data generated by its input and output. The case for using
data-driven modelling is especially compelling for real-time rendering because the
process is inherently complex. Rendering is a computer system process that thus
raises considerations at both the hardware and software levels. Furthermore, unlike
mechanical systems or chemical processes, no physical laws or intuitive functional
relationships can be applied easily to achieve high accuracy.

Considering the real-time rendering process as a black box does not necessar-
ily imply high risk of inappropriate modelling of the system as long as reasonable
assumptions are based on a priori understanding of the system and can be reinforced
from experiment results. In this book, we approach the challenge of modelling a ren-
dering system by considering the expanded scopes of both single and multiple inputs.
We also consider the output of the rendering process in terms of measurable quanti-
ties and the benefit of registering them as system outputs. This chapter discusses the
inputs and outputs considered in system modelling and their eventual roles in system
model representations.

To proceed with the modelling process, we first establish the relationship between
the input and output of a system. This means that we must define and qualify the set
of inputs and outputs before proceeding to identify their relationship. In the context
of a real-time rendering application, it is reasonable to associate the geometry used
for construction of 3D objects with the input to the rendering system and the output
with the frame rate since empirical data indicate that they have an inverse relation-
ship. Furthermore, in system identification, the input variables must be modifiable
by the user in a straightforward manner. This is different from research in workload
characterisation and heuristics where the defined variables are quantities such as
hardware level parameters and processing time that cannot be changed by a user
during runtime.

3.3.1 � Basis for Selection of System Variables

With reference to the data flow in the computer graphics rendering pipeline shown in
Figure 2.3 in Chapter 2, the inputs to the rendering process are obtained from mem-
ory resources (rectangle at far right) of the computer system. These inputs consist of
various types of data ranging from geometry information to textures (image-related
information) and rendering routines such as shader programs.

In order to define a set of variables to describe a rendering system, the input and
output variables must be easily measurable. Furthermore, it is imperative that the
input variables are controllable so that control actions can be implemented properly.
Based on these criteria, we investigated the available performance counters with
common low level graphics rendering profiler toolkits that included Microsoft’s PIX.
Table 3.1 shows a set of performance counters commonly used in many computer
graphics applications.

Since many performance counters fall into the same category and are derivatives
of one another, we chose the lowest denomination or most primitive variable in each

20 Real-Time Rendering

selected category. To illustrate, the input geometry to the rendering pipeline may
include lines, triangle fans, strips, and polygons. These are different input formats
that share the same basis—3D geometry data. Hence the natural choice as the input
variable of a rendering system should be the vertex count.

In addition to finding the appropriate variable by using its simplified form, another very
important characteristic that determines suitability is whether a variable can be changed
easily. For example, the batch counts and batch sizes of indexed buffers can impact the
performance of a rendering system. However, little can be done to control these variables
during an application runtime because these batches of vertices are predefined.

Finally, the resolution at which the selected variable may be adjusted affects the
quality of the system model as well. The ideal case would involve a variable that
allows fine resolution changes. For example, since the number of vertices is used
as an input variable of a rendering system, it may be difficult to obtain an accurate
model when this number can be varied only in limited steps.

One reason for this limitation is the underlying geometry LoD mechanism that
controls the resolution of a 3D object with a certain topological objective and algo-
rithm. The discrete LoD technique is an example of such a mechanism. Figure 3.1
illustrates the progressive variation (in steps) in the number of vertices that describe
a 3D object. Conversely, other techniques such as progressive meshes and geometry
tessellation allow 3D geometry variation at fine resolution levels. These techniques
are preferred in comparison to the approaches cited earlier.

So far we have discussed guidelines for inputs to the rendering system. As for the
output of the rendering system, the performance metric of primary concern to a user
of real-time computer graphics is widely accepted as the frame rate (inverse of the
time required to render one frame or image in a sequence) and quality of the gener-
ated imagery. The frame rate has a significant impact on the quality of the visual

TABLE 3.1
Performance Counters in DirectX
Direct3D Counter Description Official Name

FPS (#) D3D FPS

Frame time in milliseconds D3D frame time

Driver time in milliseconds D3D time in driver

Triangle count (#) D3D triangle count

Triangle count instanced (#) D3D triangle count instanced

Batch count (#) D3D batch count

Locked render targets count (#) D3D locked render targets count

AGP/PCIE memory used in integer MB (#) D3D agpmem MB

AGP/PCIE memory used in bytes (#) D3D agpmem bytes

Video memory used in integer MB (#) D3D vidmem MB

Video memory used in bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Source:	 NVPerfKit documentation from www.nvidia.com

21Linear Model Analysis of Real-Time Rendering

experience offered by a real-time rendering application. While the quality of the
generated imagery may be important to the user, the interactive experience is usu-
ally dominated by the application response rather than the quality of the generated
imagery. Furthermore, quality is a subjective notion that complicates the adequacy
of any useful metric.

3.4 � LINEAR SYSTEM MODEL REPRESENTATION
FOR REAL-TIME RENDERING

This section describes the modelling process applied to the real-time rendering
system and the derivation of the mathematical models for various types of rendering
applications. Using the system identification methodology, we demonstrate that lin-
ear time-invariant models can be obtained from the input and output data collected
from experiments conducted using sample rendering applications.

A basic relationship between the input and output of a system may be expressed
as a linear difference equation as follows.

y t a y t a y t n b u t n b u t nn a k n ka b()+ −()+… −() = −()+…+ − −1 11 nn e tb +()+1 () 	 (3.1)

where:

a1 … ana and b1 … bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −()1 and y t na−() are the previous outputs on which the current output depends.
u t nk−() and u t n nk b− − +()1 are the previous inputs on which the current output

depends.
na is the number of poles of the system or the order of the system.
nb represents the number of zeroes plus one.
nk denotes delay in the system.
e(t) equals noise.

An alternative way to represent Equation (3.1) in a more compact manner is the ARX
model described below:

	 A q y t B q u t n e tk() () = () −()+ () 	 (3.2)

Image

Vertices ~5500 ~2880 ~1580 ~670 140
Maximum detail,
for closeups.

Minimum detail,
very far objects.Notes

FIGURE 3.1  Visual effect of varying vertex count for 3D object in discrete steps. (Source:
http://en.wikipedia.org/wiki/Level_of_detail#A_discrete_LOD_example)

22 Real-Time Rendering

where q is the delay operator and A(q) and B(q) are represented as:

	 A q a a qn
n

s
s() = + + +− −1 1

1q � 	 (3.3)

	 B q b b q b qn
n

b
b() = + +…+− − +

1 2
1 1 	 (3.4)

and q is known as the backward shift operator defined by q–1u(t) = u(t – 1). Figure 3.2
shows a graphical representation of an ARX model. In the context of this research,
u(t) and y(t) may be taken as the input vertex count and output frame rate, respec-
tively. For compact notation, the following vectors are used:

	 θ = … … a a b b1 n 1 na b

T
	 (3.5)

	 φ t() =
− −()− −()…− −()

−()… − − +()
y t y t y t n

u t n u t n n

a

k k b

1 2

1













T

	 (3.6)

From Equations (3.5) and (3.6), Equation (3.2) can be expressed as:

	 y t() = φT t()θ 	 (3.7)

Alternatively, we can use the following notation to highlight the dependency of y(t)
on the set of parameters in θ:

	 ˆ |y t θ() = φT t()θ 	 (3.8)

We want to compute the set of parameters θ by using the least square method and
the criterion function:

	

V Z
N N

N

N

t

N

θ θ ϕ, ˆ |() () ()[] = () (= − −
=

∑1 1

2

1 1

2

2

1

y t y t y t tT))[]
=

∑ θ 2

1t

N

	 (3.9)

with the objective to get:

	

θ θ ϕ ϕ ϕ
θ

�
N

LS

N

NV Z t= =() 









=

−

∑arg , () () (min t tT

t

N

1

1

)) ()y t

t

N

=

∑
1

	 (3.10)

φ

φ φ φ

+ A(q)B(q)
u(t)

1

e(t)

y(t)

FIGURE 3.2  ARX model structure.

23Linear Model Analysis of Real-Time Rendering

where ZN = [y(1), u(1), y(2), u(2) …, y(N), and u(N)] are the set of recorded inputs
and outputs over a time interval of 1≤ t ≤ N. Since the parameters of the model are
encapsulated in the vector θ, solving Equation (3.10) gives us their numerical values.

Alternatively, a model may be represented in the state–space format whereby the
inputs, outputs, and state variables are expressed as vectors and the differential and
algebraic equations are written in matrix form. This format provides a convenient
and compact way to model and analyse systems with multiple inputs and outputs.
The state–space representation of a discrete time-invariant dynamic system model is
described by the equations below.

	
x k Ax k Bu k Ke k+() = ()+ ()+ ()1 	 (3.11)

	
y k Cx k Du k() = ()+ () 	 (3.12)

where x(k) is the state vector, y(k) is the system output, u(k) the system input, and e(k)
the stochastic error. A, B, C, D, and K are the system matrices. The derivation of the
system matrices can be found in common system modelling and control engineering
textbooks such as [1].

Although many model structures are used in the system identification field
we consider primarily the two structures described in this section because of the
advantages they offer in comparison to other model structures. The ARX model
structure offers computational efficiency in polynomial estimation. It is thus pref-
erable in many situations, particularly when model order is high. On the other
hand, state–space equations provide mathematical constructs that leverage linear,
first-order derivative variables that allow convenient computation even for systems
involving multiple-input–multiple-output systems.

3.5 � EXPERIMENTS

This section discusses two experiments conducted to derive the system model of
rendering processes and one experiment illustrating the use of a derived model in a
control system.

3.5.1 �E xperiment 1: Single-Input–Single-Output (SISO) System

To illustrate how our modelling framework may be applied, we select two applica-
tions that make use of geometry subdivision techniques for rendering 3D objects
with high visual details. These two applications are taken from a popular 3D graph-
ics rendering toolkit (NVIDIA DirectX SDK) designed to help software developers
exploit this subdivision technique in current computer hardware. The choice of the
two applications is based on the current trend [30] for subdivision techniques in
many application domains. The objective was to show that our framework can gener-
ate system models that describe the selected rendering applications accurately.

In Experiment 1, we wanted to establish a SISO rendering system model based
on a sample interactive rendering application. The input and output variables were
chosen as the input geometry (number of vertices) and frame rate, respectively. We
selected the N-patch tessellation application (Figure 3.3) from DirectX SDK that

24 Real-Time Rendering

allows a user to set the tessellation segment values interactively to see the effect on
the 3D object and the frame rate. To simulate the rendering quality in practical appli-
cation, we modified the system for this experiment to load an environment map and
apply different shading effects on 3D objects. The application was developed to allow
easy configuration—a feature that makes it applicable for massive model rendering.

We collected two sets of data including the vertex input values and frame rates over
six tessellation segments. The first set of data consisted of inputs between 120,000
and 920,000 vertices and frame rates (outputs) between 122 and 24 FPS over approxi-
mately 3,500 consecutive rendered frames. The second set consisted of 7,000 ren-
dered frames with the same input and output variables. Approximately 5,200 frames
were used to derive the model; the remaining frames were used for validation.

In addition to deploying the modelling framework on this application, we
extended the validation of the framework to a computer game with highly complex
3D rendering. Figure 3.4 is a screenshot of the “Crysis” computer game (© Crytek).
A total of 22,000 frames of input and output data were collected using Microsoft’s
PIX performance profiling toolkit. The first 20,000 frames were used to derive the
model and the remaining frames served as validation data.

3.5.2 �E xperiment 2: Multiple-Input–Single-Output (MISO) System

Since interactive rendering applications involve complicated processes, we extended
our modelling framework to support multiple inputs in Experiment 2. In contrast to
previous research [20,21,24] that did not focus on shading (an important aspect of
3D rendering), we demonstrated through Experiment 2 that more than one property
may be captured by our framework. In particular, we developed a shader program
that accepts a numeric value between 1 and 6 to control the quality of the surface

FIGURE 3.3  (See colour insert.) Screenshot of hardware tessellation sample application
from DirectX SDK adapted with Stanford Dragon model in Experiments 1 and 2.

25Linear Model Analysis of Real-Time Rendering

shading of the 3D object in the application (Figure 3.3). From a causal system per-
spective, this variable is selected because of its independence from the geometry
input variable. No tight coupling exists between the shader complexity variable used
in the raster stage of the rendering pipeline and the input geometry typically used in
the pre-rasterisation stage.

In the data collection process in Experiment 2, we manipulated the vertex input
to the rendering process by changing the tessellation segments and the shader com-
plexity values at various tessellation levels. The corresponding frame rate changes
were registered. Of the 14,000 frames collected, 12,000 frames were used for
model derivation and the remainder for validation. From Experiment 2, the derived
model allowed us to extrapolate the framework to support multiple inputs in more
complicated rendering processes.

3.5.3 �E xperiment 3: Control Framework Using System Model

The objective was to construct a simple control framework using a system model
derived from the aforementioned modelling process. We selected another appli-
cation from the DirectX toolkit that used a progressive mesh control mechanism
(Figure 3.5). The technique is similar to geometry tessellation and has been adopted
widely in many interactive graphics applications to achieve fine resolution control
of a 3D object’s geometry. After a model of the rendering process was derived, we
introduced the concept of a controller to manage the input to the rendering pro-
cess to produce a rendering framework that offered stability and conformed to a
user-defined frame rate.

In Experiment 3, we collected 60,000 frames of data; 50,000 were used for model
derivation and the remainder for validation of the system model. The input data

FIGURE 3.4  (See colour insert.) Screenshot of application in Experiment 1.

26 Real-Time Rendering

ranged from 38,000 to 45,000 vertices and the frame rate (output) between 330 and
400 FPS (see Figure 3.13).

After we obtained the rendering system model in MATLAB®, we exported it to
Simulink® for control system design. In Simulink, we constructed a feedback loop
and introduced a PID controller to correct the error between the simulated model
output and the user-defined performance target (frame rate). In a similar way, this
architecture may be implemented in interactive rendering software to achieve a con-
stant frame rate.

All experiments were run on a desktop computer with an Intel Core2 Quad CPU
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics
processor hardware (with 4 GB video memory) on a 64-bit Windows 7 operating
system. Since the experiments were run on a generic Windows PC, we were aware
of the system processes that may have shared the computing resources during data
collection. To best preserve the integrity of the experiment data, changes of inputs
to the rendering process were introduced programmatically rather than via mouse
input. The system identification toolbox [31] in MATLAB/Simulink was used for
modelling rendering processes in all the experiments.

3.6 � RESULTS

3.6.1 �E xperiment 1

Using the sample application from DirectX SDK as shown in Figure 3.3, we can
observe from Figure 3.6 that as the input vertex count increases due to greater
tessellation, the frame rate decreases. This relationship is further plotted in Figure 3.7
where the impact on frame rate due to vertex count increase is shown.

FIGURE 3.5  (See colour insert.) Screenshot of application in Experiment 3.

27Linear Model Analysis of Real-Time Rendering

0 500 1000 1500 2000 2500 3000 3500
0

25
50
75

100
125
150

Frame

Fr
am

e R
at

e (
FP

S)
Output

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10
×105

Frame

Ve
rt

ex
 C

ou
nt

Input

FIGURE 3.6  Input and output profiles of application in Experiment 1.

1 2 3 4 5 6 7 8 9
×105

0

20

40

60

80

100

120

140

Vertex Count (Input)

Fr
am

e R
at

e/
FP

S
(O

ut
pu

t)

Frame Rate vs Vertex Count

FIGURE 3.7  Steady-state frame time and vertex count relationship in Experiment 1.

28 Real-Time Rendering

For an ideal linear system, the hardware’s processing capability should remain
unchanged at all operation ranges. This means that the time taken to process every
vertex should be constant. However, we can see in Figure 3.7 a non-linear trend in
vertex processing time as vertex count increases. The relationship may be approxi-
mated with multi-linear segments that fit the curve shown in the same figure. With
this prior knowledge of the model, we proceed with model identification based on
data measured in Experiment 1.

The simulated output of the derived model is shown in Figure 3.8. Note that the
derived model produced reasonably accurate results in comparison to measured data
with a maximum error less than 5 FPS in steady-state and best fit value of 84%. The
best fit computation is:

	

Best Fit
y y
y y

| |
|

ˆ
= − −

−






1
1

	 (3.13)

where y is the measured output, ŷ is the simulated output, and y is the mean of
y. A 100% value corresponds to a perfect fit. This result validates our hypoth-
esis that the range is approximately linear. The model parameters are estimated
in MATLAB using the system identification toolbox; the values are provided in
Table 3.2.

In the second part of Experiment 1, we modelled the rendering of computer game
software as shown in Figure 3.4. Figure 3.9 shows the measured and simulated out-
puts of the system. It is noteworthy that the environment to be modelled becomes

5600 5800 6000 6200 6400 6600 6800 7000 7200
90

95

100

105

Frame

Fr
am

e R
at

e (
FP

S)
Measured and Simulated Output

5600 5800 6000 6200 6400 6600 6800 7000 7200
1.2

1.4

1.6

1.8

2

×105

Frame

Ve
rt

ex
 C

ou
nt

Vertex Count (Input)

Simulated output
Measured output

FIGURE 3.8  Measured and simulated output of rendering application in Experiment 1.

29Linear Model Analysis of Real-Time Rendering

more difficult as shown in the varying output levels compared to the first experi-
ment. The actual data captured consist of more spikes due to interruptions from
other computer processes and the data must be filtered so that a reasonable model
can be derived. Nevertheless, through the proposed approach, we are able to obtain
a system model that produced output with an error less than 4 FPS. The parameters
of this model are presented in Table 3.3.

3.6.2 �E xperiment 2

We extended our modelling framework for rendering to consider more than one
input. Based on selected combinations of two input variables (vertex count and
shader value), we generated steady-state output responses of three settings as shown
in Figure 3.10. Each graph in the figure indicates the steady-state input–output rela-
tionship exhibited by the system based on a certain combination of the values of the
two inputs. The profiles of the measured inputs and outputs of the actual rendering
are shown in Figure 3.11. A comparison of the simulated model and the measured

TABLE 3.2
Parameters of ARX Model in Experiment 1

Parameter Calculation

A(q) 1 – 2.444 q–1 + 2.001 q–2 – 0.5565 q–3 + 4.21e – 006 q–4 + 0.1708 q–5

– 0.4541 q–6 + 0.2823 q–7

B(q) –2.375 × 10–7 q–1 + 3.072 × 10–7 q–2 – 2.84 × 10–7 q–3 – 3.156 × 10–7 q–4

– 1.18 × 10–7 q–5 + 1.263 × 10–6 q–6 – 6.156 × 10–7 q–7

Operating point u = 1.5331 × 105, y = 98.261

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
6
8

10
12
14
16
18

Measured and Simulated Output

Fr
am

e R
at

e/
FP

S
(O

ut
pu

t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

×106

Frame

Ve
rt

ic
es

 (I
np

ut
)

Measured output
Simulated output

FIGURE 3.9  Error between measured and simulated output of application in Experiment 1.

30 Real-Time Rendering

TABLE 3.3
Parameters of State Space Model in Experiment 1	

x1 x2 x3 x4 x5

A x1 0.99984 –0.0057622 0.0037499 –0.00077957 0.0038575

x2 0.0055967 0.99989 –0.011718 0.0050316 0.0021258

x3 –0.0037656 0.011556 0.99982 0.010514 –0.0002729

x4 0.00092734 –0.0051813 –0.010446 0.99965 –0.024729

x5 –0.0035811 –0.0020073 0.00024635 0.024629 0.98977

x6 –0.00046382 0.0023359 –0.0002931 –0.0015093 –0.040291

x7 0.00070039 8.827e–005 0.00030079 –0.00013185 –0.0090756

x8 0.0010839 –0.0010905 0.0004099 0.00070348 –0.0029228

x9 0.0027148 0.0029469 0.0012923 –0.00086137 –0.007816

x6 x7 x8 x9

x1 –0.00011395 –0.0017801 0.00070025 0.0010708

x2 0.00016522 –0.00052253 1.6105e–005 –2.5063e–006

x3 –1.3826e–005 1.2645e–005 1.5497e–006 –3.1376e–007

x4 –0.0020448 0.0045989 0.00012686 –7.5176e–006

x5 0.068805 0.26254 –0.033504 –0.022596

x6 1.0012 –1.3995 0.28977 –0.179

x7 0.091242 0.48047 –0.049181 –0.16667

x8 –0.28184 0.43031 0.18121 –0.94739

x9 0.63828 –2.6907 0.44516 0.19954

u1

B x1 –5.4522e–007

x2 9.7623e–008

x3 6.6177e–009

x4 –1.0667e–006

x5 –1.0271e–005

x6 2.1522e–005

x7 0.00016518

x8 0.00089275

x9 0.00023178

x1 x2 x3 x4 x5

C y1 –138.38 5.7191 –3.9296 –20.813 –0.72794

x6 x7 x8 x9

y1 0.054266 –0.044465 –0.097836 –0.05148

u1

D y1 0

u1

K x1 3.2518

x2 0.84349

x3 –3.5836

31Linear Model Analysis of Real-Time Rendering

output is shown in Figure 3.12. We can observe that the simulated output tracks
the measured output very closely—generally less than 2 FPS. Table 3.4 illustrates
model parameters.

In Figure 3.11, the top and middle diagrams show the variations of the inputs to
the rendering system while the bottom diagram shows the corresponding changes
in the output. It can be seen that both inputs are varying during the experiment
and none is held constant. This is to ensure that the data captured is representative
of a MISO system model. In Figure 3.12, the top diagram shows the compari-
son of the output of the system model derived from the experiment data and the
actual measured output. It can be observed that the simulated model output is very

1 2 3 4 5 6 7
×105

0

100

200

300

400

500

600

Vertex Count

Fr
am

e R
at

e

Frame Rate vs Vertex Count (at various Shader Complexity Values)

Shader complexity = 2
Shader complexity = 4
Shader complexity = 6

FIGURE 3.10  (See colour insert.) Steady-state outputs of the system based on selected
combinations of two input variables.

TABLE 3.3 (Continued)
Parameters of State Space Model in Experiment 1	

u1

x4 –21.457

x5 18.773

x6 –1.8395

x7 –0.85923

x8 –0.89561

x9 1.1259

Operating
point

u = 1.4552 × 106, y = 14.6932

32 Real-Time Rendering

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000
50
60
70
80
90

100
110
120
130
140
150

Frame

Fr
am

e R
at

e (
FP

S)
Measured Frame Rate (Output)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000
0

0.5

1

1.5

2

2.5

3
×105

Frame

Ve
rt

ex
 C

ou
nt

Vertex Count (Input 1)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000
50
60
70
80
90

100
110
120
130
140
150

Frame

y1

Input and Output Signals

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000
3

3.5

4

4.5

5

5.5

6

Frame

Sh
ad

er
 V

al
ue

Shader Value (Input 2)

(b)

FIGURE 3.11  Profiles of two inputs and output of rendering system in Experiment 2.

33Linear Model Analysis of Real-Time Rendering

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
×104

85

90

95

100

105

110

115

120

Frame

Fr
am

e R
at

e (
FP

S)
Measured and Simulated Model Output

Simulated output
Measured output

(a)

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
×104

×104

2

2

2

2

2
×105

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6
3.5

4

4.5

5

5.5

Frame

Input 1 − Vertex count

Input 2 − Shader value

(b)

FIGURE 3.12  Measured and simulated outputs of MISO rendering system in Experiment 2.

34 Real-Time Rendering

close to the actual measured data signalling a highly accurate system model. The
diagrams in the middle and bottom are snapshots of the inputs corresponding to
this measured output.

3.6.3 �E xperiment 3

The objective was to adapt our modelling framework to another application and
more importantly demonstrate the possibility of constructing a control system that
provides stable frame rates based on this system model. Again, we first derived
the rendering process model using experiment data collected from the applica-
tion. Figure 3.13 illustrates a profile of this data. After a suitable system model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×104

300

350

400

450

Fr
am

e R
at

e (
FP

S)

Frame Rate (Output)

3.5

3.75

4

4.25

4.5
×104

Frame

Ve
rt

ex
 C

ou
nt

Vertex Count (Input)

FIGURE 3.13  Profiles of input and output of rendering system in Experiment 3.

TABLE 3.4
Parameters of ARX Model in Experiment 2

Parameter Calculation

A(q) 1 – 1.937 q–1 + 1.019 q–2 – 0.2182 q–3 + 0.1363 q–4

B1(q) –4.702 × 10–5 q–1 + 4.257 × 10–5 q–2 + 5.496 × 10–5 q–3 – 5.051 × 10–5 q–4

B2(q) 2.918 q–1 – 8.402 q–2 + 7.855 q–3 – 2.37 q–4

Operating point u1 = 1.7839 × 105, u2 = 4.3704, y = 109.0672

35Linear Model Analysis of Real-Time Rendering

was derived, we compared the output of the model with the actual measured data
as shown in Figure 3.14. Similar to the comparison of the outputs in Figure 3.12,
it can be observed that the simulated model produced an error rate less than 5 FPS
throughout the simulated range. Table 3.5 illustrates model parameters.

Subsequently, we imported this model into Simulink and constructed a PID-based
controller system as shown in Figure 3.15. We present the performance of this con-
trol system based on its tracking a pre-defined output level as shown in Figure 3.16.
Note that the rendering system output follows the user-defined reference very closely
at steady state and within a very short time without overshoot or oscillation.

To further validate our control framework, we replaced the system model with the
actual rendering process in a separate test. The PID controller block was executed

0 1000 2000 3000 4000 5000 6000
345

350

355

360

365

370

Frame

Fr
am

e R
at

e
Measured and Simulated Output

0 1000 2000 3000 4000 5000 6000
4.1

4.15

4.2

4.25
×104

Frame

Ve
rt

ex
 C

ou
nt

Vertex Count (Input)

Simulated output
Measured output

FIGURE 3.14  Measured and simulated rendering system output in Experiment 3.

TABLE 3.5
Parameters of ARX Model in Experiment 3

Parameter Calculation

A(q) 1 – 4.159 q–1 + 5.814 q–2 – 1.659 q–3 – 3.322 q–4 + 3.158 q–5 – 0.8321 q–6

B(q) 1.007 × 10–5 q–1 – 5.033 × 10–5 q–2 + 0.0001007 q–3 – 0.0001008 q–4

+ 5.045 × 10–5 q–5 – 1.011 × 10–5 q–6

Operating point u = 4.1809 × 104, y = 356.7121

36 Real-Time Rendering

on a different computer and communicated with the rendering process via a network
link using the transmission control protocol (TCP). The purpose of such a modi-
fied design was to avoid the interference and loading of the rendering process from
MATLAB computation. The output of this experiment is shown in Figure 3.17.

Note from Figure 3.17 that the actual rendering application tracks the pre-defined
reference level accurately as in the previous case. The steady-state error is negligible
(less than 1% of the reference value), further reinforcing the validity of our system
model and control framework.

3.7 � DISCUSSION

One challenge we faced in this research was the stability of frame rates during data
collection. We noted that frame rates on certain computers fluctuated even with-
out changes in input geometry or user-controlled events such as mouse movement

0 0.5 1 1.5 2 2.5 3
×104

0

50

100

150

200

250

300

350

400

Frame

Fr
am

e R
at

e (
FP

S)

Simulated Reference Tracking with Controller

Reference
Controlled Output

FIGURE 3.16  Simulated reference tracking with PID controller.

Subtract

+
– Scope

Idmodel

n4s2

Discrete PID
Controller

PID(z)
Constant

370

FIGURE 3.15  (See colour insert.) SISO control system in Experiment 3.

37Linear Model Analysis of Real-Time Rendering

and keyboard input. Furthermore, in our analysis of the dynamics of the rendering
process, we observed various step-like interruptions in the frame rate changes that
persisted for a certain period. We attribute this phenomenon to hardware or software
operations such as driver wait states and memory transport delays. Furthermore,
current tools available to us do not allow access to sufficiently low-level operations
to identify these interruptions and irregularities.

As indicated in previous research [32,33,34], common performance metrics in
interactive rendering affect mainly frame rate and image quality. In this research,
frame rate was selected over image quality because it is well known that computation
at image level is resource intensive [29] and assessment of image quality metrics may
be subjective. Furthermore, research indicates that frame rates exert greater impact
on user perception and response [35,36,37] in many applications.

As noted in previous research [24,27] that reactive rendering time control tech-
niques cannot deal well with abrupt changes in scene load because the resultant
oscillations in frame rates may negatively affect the user experience. We have shown
in this research that our data-driven modelling framework provides an important
basis for application of a control strategy that generates stable frame rates without
noticeable oscillation. These are the benefits of employing system modelling and
control techniques in the real-time computer graphics domain.

3.7.1 �C omparison with Other Estimation Techniques

Many application developers may intuitively perceive the real-time rendering process
as linear and thus use simplistic mathematical models to estimate its performance.
In this section, we validate the accuracy of our data-driven modelling framework by
comparing its outputs with those of two other intuitive estimation models based on a

0 1000 2000 3000 4000 5000
330
340
350
360
370
380

Fr
am

e R
at

e (
FP

S)
Measured Output

0 1000 2000 3000 4000 5000
4

4.1
4.2
4.3
4.4
4.5

×104

Frame

Ve
rt

ex
 C

ou
nt

Vertex Count (Input)

FIGURE 3.17  Reference tracking with actual rendering application.

38 Real-Time Rendering

general relationship between the input and output of the rendering system. They are
formulated mathematically as shown in Equation (3.14):

	
t k mframe vc= × 	 (3.14)

where tframe is the time taken to render a frame and mvc is the rendering load repre-
sented by the total number of vertices used in rendering the 3D scene. In the first
formulation, we want to express k as a factor estimated from all the training data.
In the second formulation, k is expressed as an average of the previous n rendered
frames. Based on this formulation, we may represent Equation (3.14) as a single
best-fitting line segment expressed as:

	
f x p x p() = +1 2 	 (3.15)

where f(x) is the function describing the line segment, p1 is the gradient of the line
and p2 is the vertical axis intercept. Hence k in (3.14) and p1 from above may be
associated directly as:

	
k p= 1 	 (3.16)

Using the curve fitting technique from the MATLAB toolbox, we obtain the line
segment for the operating range in Experiment 1 with p1 as 5.166 × 10–8. With refer-
ence to the experiment data in Figure 3.7, given the input vertex count of 120,000,
the estimated frame time using the value of p1 is 0.0061992 s. This translates to a
frame rate of 161.3111. However, the measured frame rate is approximately 104,
yielding the error from this formulation as 57 FPS—in stark contrast to our model’s
output that is much more accurate. Over the entire tested range, the error between
our model’s output and the measured output is less than 5 FPS.

Next, we want to compare our system model with another that takes into account
the k factor for previous frames instead of a single k factor for estimating frame
time at any input point. Mathematically, this second model can be expressed as the
n-moving average s given a sequence ai i

N{ } =1 taking the average of n terms.

	

s
n

a
j i

i n

j=
=

+ −

∑1
1

	 (3.17)

Therefore, each term a in the context of Equation (3.17) is the k factor estimated
from a window of x number of frames. This gives us a set of values for k over the test
range. The final value of k used for estimating the frame time corresponding to the
experiment data is averaged over the number of predecessor sets. With reference to
Figure 3.7, the following are obtained:

	 1.	The moving average of the gradient with a window of one frame is
7.1423 × 10–4. The estimated frame rate at a steady-state vertex count

39Linear Model Analysis of Real-Time Rendering

input of 120,000 is 85.7076 FPS. However, the measured frame rate is
approximately 104. Hence the error is approximately 18.3 FPS.

	 2.	The moving average of the gradient with a window of 200 frames is
7.0482 × 10–4. The estimated frame rate at a steady-state vertex count input
of 120,000 is 84.578. However, the measured frame rate is approximately
104. Hence the error is approximately 19.4 FPS.

	 3.	The moving average of the gradient with a window of 500 frames is
6.6301 × 10–4. The estimated frame rate at a steady-state vertex count input
of 120,000 is 79.56. However, the measured frame rate is approximately
104. Hence the error is approximately 24.44 FPS.

The above results obtained from the second frame time estimation technique show
errors approximately four to six times larger than the output from the system model
using our proposed approach. In brief, our modelling framework out-performs both
the first and second estimation techniques.

3.8 � SUPERPOSITION IN 3D RENDERING SYSTEM MODEL

The system models derived in the previous sections are based on a specific configu-
ration of the rendering state machine. In this section, we want to further investigate
and extend the proposition of a system model for the rendering process that may be
broken down further into multiple system models. In the context of real-time render-
ing, this may be explained as the dissection of a rendering process into its constituent
components. Why is this important? The formulation of a rendering process system
model if proven to adhere to the principle of superposition is pivotal for gaining the
following benefits:

•	 The output of a combination of rendering processes can be determined
without additional modelling.

•	 A suitable controller can be designed for each constituent rendering process
model. This provides greater flexibility and accuracy in controlling the out-
put of the combined rendering process.

At this juncture, we want to establish the validity that each constituent process sys-
tem model contributes to the combined rendering system model. A hypothesis in
componentised modelling of 3D rendering based on the principle of superposition
is proposed.

3.8.1 � Principle of Superposition

In system theory, the net response at a given place and time caused by two or more
stimuli for linear systems is the sum of the responses that would have been caused
by each stimulus individually. Thus, if input A produces response X and input B
produces response Y, input (A + B) produces response (X + Y). Mathematically, for
all linear systems, y = F(x) where x is some sort of stimulus (input) and y is some

40 Real-Time Rendering

sort of response (output), the superposition of stimuli yields a superposition of the
respective responses such that:

	 F x x x F x F x F xn1 2 3 1 2+ +…+() = ()+ ()+…+ () 	 (3.18)

Using the same principle, we propose that the overall rendering function of an appli-
cation is equivalent to the sum of the individual functions of the batch jobs lined in
the render queue. To further illustrate, consider a 3D scene with n 3D objects, each
with polygon count xn. The total number of polygons X would be:

	 X x
m

n

m=
=

∑
1

	 (3.19)

Based on the principle of superposition in Equation (3.19), we draw the parallel
analogy that the time taken to render all objects in a scene is equivalent to the sum
of the time taken to render each of the individual 3D objects in the scene as given by
the following equation:

	 F X f x
m

n

m() =
=

∑
1

() 	 (3.20)

where F is the system model of the parent rendering process and f denotes the system
model of the separate rendering processes, all obtained through black-box modelling.
The assumptions associated with this hypothesis are:

•	 State changes and context switch overheads between rendering the 3D
objects are negligible.

•	 All objects render within the linear range of the rendering model of the
application.

•	 The application’s rendering process is largely partitioned by its content as well.

3.8.2 �E xperiment

To validate our hypothesis, we designed an experiment. A 3D rendering application
able to display multiple and different types of objects in a single scene was selected.
Each type of object was to be rendered in a different way and the number of objects
of a type were to be changed during runtime by a user-specified variable. At any time
during a run, one or more categories of objects could be rendered.

The application was first set to run with display of only a certain type of object.
A data set was defined to consist of a frame rate (output) and total number of
objects/triangle count (input) of a type of object. A series of data sets were collected
over various object counts within a certain range allowed in the application. The
purpose of this step was to collect data so that the rendering process involving one
type of object could be modelled.

41Linear Model Analysis of Real-Time Rendering

Step 2 was run again with another type of object and the same types of data were
collected. This process was repeated for all types of objects in the 3D scene to enable
us to derive the system models for rendering all types of objects separately.

Finally, the application was run with all types of objects displayed and data
sets collected by varying the object counts for all the objects. The purpose of this
step was modelling the full application so that the overall system model could be
compared with the sum of the individual system models obtained in steps 1 and 2.

3.8.2.1 � Test Application
A test application was adopted from the NVIDIA DirectX 9.5 SDK. This sample
application demonstrated rendering using the hardware instancing technique. The
3D scene in this application consisted of three types of objects (rocks only, space-
ships only, and both rocks and spaceships as shown in Figure 3.18). The test applica-
tion allowed the user to switch off the rendering for any type of object and change
the number of objects (for each type) to be rendered as well.

Our data collection procedure started by setting the application to render only one
type of object (rocks). The triangle count (input) and frame rate (output) data pairs
were collected over multiple object counts within the allowed range. The application
then ran with only spaceships displayed. The same data pairs were then collected
for a range of object counts. Subsequently, the application was run with both types
of objects and the same data collection process. The intent was to constrain the
rendering process to specific types of objects so that we could perform black-box
modelling to develop the respective system models.

FIGURE 3.18  (See colour insert.) Screenshot of test application in superposition experiment.

42 Real-Time Rendering

3.8.3 �S imulation

By using the MATLAB system identification toolbox and the collected data, we
generated the following ARX models for the rendering process:

Model A: only rocks
Model B: only spaceships
Model C: both rocks and spaceships

Figure 3.19 compares the outputs of the measured and system models from the
rendering process for rocks only. Figure 3.20 presents the same comparison of
rendering only for spaceships. Finally, the output of Model C is compared with the
measured data in Figure 3.21.

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10,000
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Frame

Ti
m

e (
m

s)
Measured and Predicted Output

Measured output
Predicted output

FIGURE 3.19  Measured output and predicted output from Model A.

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7
×104

0

5

10

15

20

25

30

Frame

Ti
m

e (
m

s)

Measured and Predicted Output

Measured output
Predicted output

FIGURE 3.20  Measured output and predicted output from Model B.

43Linear Model Analysis of Real-Time Rendering

We can observe from these figures that the outputs from the derived system
models match closely with the actual measured outputs from the rendering process.
Model A’s output has a mean error of less than 0.2 ms over a validation range of
10,000 frames. Model B’s output mean error is approximately 3 ms for 17,000 frames.
Figure 3.21 indicates that the mean error from Model C’s output is approximately
1 ms over 11,000 frames which may be considered very low.

Recall from Section 3.8.1 the description of the principle of superposition based
on Equations (3.18) and (3.19). The accuracy of the derived system models allowed
us to proceed further with validating the principle of superposition by comparing the
sum of the individual output of Models A and B with the output of Model C as shown
in Equation (3.18) based on the same input data.

From Figure 3.22, we can see that the outputs from Models A and B follow that of
Model C very closely. From the experiment data, the peak error is less than 3 ms and

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
×104

2

3

4

5

6

7

8

9

10

Frame

Measured and Predicted Output

Predicted output
Measured output

FIGURE 3.21  Measured output and predicted output from Model C.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

Frame

Ti
m

e (
m

s)

Output of Model C versus the Output from Models A and B

Output of Model C
Output of Models A and B

FIGURE 3.22  Comparison of outputs from Model C and summed outputs of Models A and B.

44 Real-Time Rendering

the mean error is approximately 1 ms for 2,000 frames. The parameters of the three
rendering application system models are presented in Tables 3.6 to 3.8.

3.8.4 �S ummary

In this section, we proposed the compliance of the rendering process to the principle
of superposition and validated this hypothesis systematically via experiments. This

TABLE 3.7
Parameters of ARX Model B in Superposition Experiment

Parameter Calculation

A(q) 1 – 3.008 (+ –0.000723) q–1 + 3.023 (+ –0.001451) q–2 – 1.015 (+ –0.0007297) q–3

B(q) 0.0001093 (+ –4.514 × 10–6) q–8 – 0.0004042 (+ –1.786 × 10–5) q–9

+ 0.0005572 (+ –2.66 × 10–5) q–10 – 0.0003383 (+ –1.767 × 10–5) q–11

+ 7.605 × 10–5 (+ –4.42x10–6) q–12

Operating point u = 2.3494 × 105, y = 17.5628

TABLE 3.8
Parameters of ARX Model C in Superposition Experiment

Parameter Calculation

A(q) 1 – 6.471 (+ –0.007594) q–1 + 18.07 (+ –0.04455) q–2 – 28.26 (+ –0.1099) q–3

+ 26.77 (+ –0.1459) q–4 – 15.38 (+ –0.11) q–5 + 4.969 (+ –0.04464) q–6

– 0.6968 (+ –0.007617) q–7

B(q) 1.233 × 10–6 (+ –3.072 × 10–7) q–9 – 6.191 × 10–6 (+ –1.516 × 10–6) q–10

+ 1.25 × 10–5 (+ –3.01 × 10–6) q–11 – 1.269 × 10–5 (+ –3.006 × 10–6) q–12

+ 6.483 × 10–6 (+ –1.51 × 10–6) q–13 – 1.332 × 10–6 (+ –3.05 × 10–7) q–14

Operating point u = 1.6427 × 105, y = 25.2834

TABLE 3.6
Parameters of ARX Model A in Superposition Experiment

Parameter Calculation

A(q) 1 – 4.984 (+ –0.001374) q–1 + 9.943 (+ –0.005488) q–2 – 9.925 (+ –0.008229) q–3

+ 4.958 (+ –0.005488) q–4 – 0.9914 (+ –0.001374) q–5

B(q) 9.906 × 10–14 (+ –1.729 × 10–13) q–1

Operating point u = 1.1526 × 105, y = 22.0855

45Linear Model Analysis of Real-Time Rendering

investigation leads to the conclusion that the summation of separate rendering pro-
cess outputs (frame rates) is equivalent to the output of a single system model using
the combined inputs. In terms of research significance, an accurate system model
can be built upon by the concatenation of separate constituent rendering processes.
This is particularly useful when devising a system model for a complicated render-
ing process is difficult. Furthermore, this principle provides a user with additional
flexibility to manipulate application rendering at a higher resolution.

3.8.5 �A dditional Notes

With reference to Equations (3.18) and (3.19), it is important to note that the math-
ematical representation of the system model f is not unique even though it produces
the same stable state output given a same set of input and rendering states. This
is because the dynamics of the rendering system will vary at different operating
(input and output) ranges.

3.9 � CONCLUSION

In this chapter, we demonstrated in a systematic manner how our proposed
data-driven modelling framework can produce accurate linear models of real-time
rendering for a variety of applications. We illustrated the extensibility of our frame-
work to handle multiple inputs and validated the accuracy of the resultant model.
More importantly, we validated the case by which the models produced by such
a framework are ultimately useful in the context of interactive rendering with the
introduction of a controller. Finally, our control system is able to eliminate the frame
rate oscillation problem found in typical reactive scheduling frameworks.

Our framework is designed to work on polygonal-based rendering pipelines found
in commodity graphics hardware and it leverages geometry subdivision as a primary
basis for process modelling. As a future research endeavour, we will try to expand
the scope of the model variables for various types of rendering processes wherever
appropriate and possible.

At this juncture, our work is largely based on the subdivision of a single large
mesh. This is useful for applications involving a single object of interest such as
massive model rendering and computer-aided design. However it can be extended to
support multiple progressive meshes in more elaborate applications such as games.

47

4 Modelling Non-Linear
Rendering Processes

4.1 � INTRODUCTION

The real-time rendering process is inherently non-linear [38]. This can be understood
from the fact that computer systems on which software runs are constructed using
electronic components that exhibit non-linear material properties. Consequently,
using a single linear model to describe the behaviour of a non-linear system would
be inadequate. In this chapter, we describe an approach by which this non-linear
characteristic can be captured sufficiently with appropriate system models using
advanced techniques in soft computing.

4.2 � BACKGROUND

4.2.1 �S ystem Modelling with Neural Networks

In system identification, it is often necessary to begin with the assumption that
the underlying model is linear and then apply the appropriate model structures
described above. However, an actual system may not always exhibit linear char-
acteristics throughout an operating range. For example, research conducted by
Hook and Bigos [38] showed that the time required to process a single vertex varies
even when parameters such as rendering states and display resolution are fixed.
Therefore, it is useful to conduct a comprehensive analysis to better understand the
dynamics of a system.

In this research, we introduce the application of artificial neural networks (ANNs)
to model the non-linearity in the real-time rendering process. Soft computing tech-
niques based on the artificial neuron proposed by McCulloch and Pitts [39] spread
widely into many other fields of study in recent decades. The distinctive nature of the
artificial neurons in various network configurations provided the capability to model
both linear and non-linear systems with good accuracy.

The first artificial neuron proposed by McCulloch and Pitts mimicked the func-
tioning of biological neurons through a multiple-input–single-output model. The
artificial neuron is essentially a processing unit that sums the weighted values of its
inputs to produce an intermediate output that is then fed as an input to an activation
function that produces the final output. An ANN is formed with layers of inter
connected neurons and is frequently used to simulate the functions of many systems.

Figure 4.1(a) illustrates the structure of the artificial neuron. ANNs must be
trained to capture the characteristics of the systems they model. Training algorithms

48 Real-Time Rendering

for neural networks such as the back-propagation [40] and Levenberg-Marquardt [41]
methods were developed to compute the weights and biases for inputs.

We adopted neural networks in our research for modelling the rendering pro-
cess because of their ability to capture information from complex, non-linear,
multi-variate systems without the need to assume underlying data distribution or
mathematical models. In recent years, the popularity of using multi-layer percep-
tion networks has increased due to their successes in real-world applications such as
pattern recognition and control applications.

Dynamic neural networks use memory and recurrent feedback connections to
capture temporal patterns in data. Waibel et al. [42] introduced the distributed time
delay neural network (DTDNN) for phoneme recognition. An extension of this
network structure gives the flexibility to have tapped delay line memory at the input
to the first layer of a static feed-forward network and throughout the network as well.
For general discussion, a two-layer DTDNN is presented in Figure 4.2.

The choice of using ANNs to model a computing process such as real-time
rendering may be explained easily. First, the dynamics of an ANN arising from delay
units within its structure provides an inferred correspondence with the architecture
of current computing hardware. To illustrate, a delay usually occurs in embedded
circuits when data are transferred between the processor and memory units.

F

p1

p2

p3

w1

w2

w3

n Y

b

f2

f1

F2

F1

a1

a2

a3

a4

w12

w11
w22

w21

w32
w31

w42 w41

W22

W21

W12

W11 y1

y2

Σ

(b)

(a)

FIGURE 4.1  (a) Perceptron neuron. (b) Multi-layer perceptron network (MLP).

49Modelling Non-Linear Rendering Processes

Second, the ANN’s layered network structure makes it easy to extend by cascading
ANNs together for modelling modular systems. For example, to model a compli-
cated system it may be possible to break down the process into modelling individual
subsystems using simple ANNs and then joining them together. This is certainly
applicable in the context of computer software since modern programming para-
digms emphasise modularity and object-oriented principles.

4.2.2 �S ystems Modelling with Fuzzy Logic

Fuzzy set theory and fuzzy control have been implemented successfully in many
technical fields. The primary benefit offered by the fuzzy control paradigm is its
ability to emulate human control based on linguistic variables and a set of intuitive
expert rules used as a decision or inference system. In comparison to conventional
control techniques, the advantages of the fuzzy control paradigm are twofold.

First, it imposes no requirement for a mathematical model of the system to be
controlled. This is especially important and useful as it may be difficult to derive
certain process models due to their complex dynamics and some systems cannot
be modelled using first principles. Second, the fuzzy controller works on relatively
straightforward computation and can be developed to handle non-linear processes
empirically in practice without the need for complicated mathematics.

In addition, fuzzy logic is tolerant of imprecise data. Systems with reliable perfor-
mance can be built using fuzzy logic that leverages the experiences of experts. In direct
contrast to neural networks that use training data and generate system models, fuzzy
logic allows a user to rely on the experiences of humans who understand the system.

Furthermore, fuzzy logic can be blended with conventional control techniques.
In many cases, fuzzy systems augment them and simplify other implementations.
Finally, fuzzy logic is based on natural language that provides a strong basis for human
communication. As a result, fuzzy logic is easy to use. These advantages translate to its
appeal as a practical solution to real world control problems involving implementation.

W1

B1

d1U + F1

Inputs Layer 1

W2

B2

d2 + F2

Layer 2

y

x1
x2X1́

FIGURE 4.2  Two-layer distributed time delay neural network with time delays at inputs of
each layer. The notations with their respective meaning or representative are:

U, the input layer
d, the delay
Wn, where W is the weight and n represents the nth layer
Bn where B is the bias and n represents the nth layer
Fn, where F is the firing function and n represents the nth layer
y, the output of the network

50 Real-Time Rendering

In general, a fuzzy inference system (Figure 4.3) consists of five functional com-
ponents:

	 1.	A fuzzification process that transforms discrete values (inputs) into various
degrees of membership with linguistic values

	 2.	A rule base containing a set of fuzzy if–then rules
	 3.	A set of membership functions of the fuzzy sets used in the rule base
	 4.	A decision-making process that performs fuzzy inference operations on

the rules
	 5.	A defuzzification process that maps fuzzy results from the inference engine

to a crisp output

The process for fuzzy reasoning performed by a fuzzy inference system is as follows.

	 1.	Fuzzify the input values by comparing the input variable with the member-
ship function to obtain their corresponding membership values.

	 2.	Combine the membership values of all the premise components to find the
firing strength of each rule.

	 3.	Generate the consequent results from each rule depending on the firing
strength.

	 4.	Defuzzify the results by aggregating the qualified consequents to produce
the final crisp value.

The development of a fuzzy control system begins with the two key components:
(1) the input–output membership functions describing the properties of the system
(fuzzy sets) based on linguistic variables and (2) the rule-base that relates the
input–output sets. Given an antecedent and consequent relationship between an
input y to a SISO system’s output u using linguistic descriptions of their properties,
the calculation may be represented as

	 IF y Y THEN u Uj j ∈ ∈ 	 (4.1)

Fuzzification Defuzzification

Decision making

Knowledge Base

Database Rule base

Input Output

FIGURE 4.3  (See colour insert.) Fuzzy inference system.

51Modelling Non-Linear Rendering Processes

In each universe of discourse, Ui and Yi and ui and yi take on values with correspond-
ing linguistic variables ui

� and yi
� that describe the characteristics of the variables.

Suppose Ai
j� denotes the jth linguistic value of the ui

� linguistic variable defined over
the universe of discourse Ui. If we assume that many linguistic values are defined
in Ui, the linguistic variable ui

� that takes on the elements from the set of linguistic
values may be denoted by Equation (4.2).

	 A A j Ni i
j

i
� �= = …{ } : , , ,1 2 	 (4.2)

In the same manner, we can consider that Bi
j� to denote the jth value of the linguistic

variable yi
� defined over the universe of discourse Yi. yi

� may be represented by ele-
ments taken from the set of linguistic values denoted by the following equation.

	 B B p Mi i
p

i
� �= = …{ } : , , ,1 2 	 (4.3)

Given a condition where all the premise terms are used in every rule and a rule is
formed for each possible combination of premise elements, we have rule set with Ni

number of rules that can be expressed as:

	
i

n

i nN N N N
=

∏ = ⋅ ⋅ ⋅
1

1 2 … 	 (4.4)

Based on the membership functions, the conversion of a crisp input value into its
corresponding fuzzy value is known as fuzzification. The defuzzification of the
resultant fuzzy set from the inference system to a quantifiable value may be done
using the centroid (centre of gravity) method [43]. The principle is to select the value
in the resultant fuzzy set such that it would lead to the smallest error on average
given any criterion. To determine y*, the least square method can be used and the
square of the error is accompanied by the weight of the grade of the membership
function µB u(). Therefore, the defuzzified output y* may be obtained by finding a
solution to the following equation.

	 y y y y du
y

B
* *argmin

*
= () −()∫µ

2
	 (4.5)

Differentiating with respect to y* and equating the derivative to zero yields:

	 y
y y dy

y dy

Y
B

Y
B

* =
()

()
∫
∫

µ

µ
	 (4.6)

which gives the value of the abscissa of the centre of gravity of the area below the
membership function µB u().

52 Real-Time Rendering

4.3 � EXPERIMENTS
In this section, we describe the experiments conducted to model two real-time ren-
dering applications. The approaches are premised upon the neural network and fuzzy
modelling techniques mentioned in Section 4.2. In all experiments, empirical data
consisting of the per-frame triangle count and frame rate were collected from the two
different applications running on a Pentium IV, 3.2 GHz processor with 2 GB RAM
and NVIDIA’s GeForce 6800 graphics board.

In the data collection process, the user is free to move the camera view to simulate
common navigation patterns or object manipulation in virtual environments. This
action is designed so that a wide range of polygon loads and a good combination of
rendering features may be captured. All applications rendered the animated frames
in real time according to the input of the user.

4.3.1 �T ime Delay Neural Network

To illustrate the applicability of time delay neural networks in modelling the render-
ing process, we selected two applications with different levels of complexity. The
first application was developed to encompass most common rendering parameters in
applications such as textures, fog, lighting, animation, shader effects, and moderate
depth complexity. It consisted of a scene populated by hundreds of instances of a
3D object (a virtual character with a certain surface shading effect) appearing with
an animated landscape. A screenshot of this application is provided in Figure 4.4.

In contrast to the more controlled environment in the first experiment, the appli-
cation in the second experiment was taken from a popular game software system
called “Serious Sam 2”© (2KGames, www.croteam.com). The test case was selected
for its complex rendering functions and scene composition. Figure 4.5 is a screenshot
of this software.

In the second experiment, a certain game environment was selected based on
the level of complexity and the rendering statistics were collected. To capture the
low-level data used in the real-time rendering processes, we used Microsoft’s DirectX
tool, PIX Performance Analyzer [44], and utilities from NVIDIA’s NVPerfKit [45].
The MATLAB® Neural Network Plant Identification Tool [46] was utilised for
modelling the rendering process.

In accordance to the system identification methodology described in Chapter 3, a
neural network was first selected as the model structure. The collected data were fed
into the neural network to train it to generate an accurate mapping of the relationship
between the input triangle count and the output frame rate. Different neural network
structures and parameters were tested to determine the best fitting model. This
process continued iteratively until the performance objective (a numeric quantity
describing the difference between the predicted and actual frame rates) was met. The
same procedure was repeated for both experiments.

4.3.2 �A daptive Neuro-Fuzzy Inference System (ANFIS)

In addition to neural networks, we introduced the concept of using fuzzy system
modelling for real-time rendering in Section 4.2.2. In Experiment 3, we adopted the
adaptive neuro-fuzzy inference system (ANFIS) to achieve this objective.

53Modelling Non-Linear Rendering Processes

FIGURE 4.4  (See colour insert.) Screenshot of application in Experiment 1.

FIGURE 4.5  (See colour insert.) Screenshot of application in Experiment 2.

54 Real-Time Rendering

The adaptive neuro-fuzzy inference system was introduced by Jang [47]. It is
essentially a fuzzy inference system implemented in the framework of adaptive net-
works. The proposed architecture utilises a learning procedure of the adaptive net-
work which is a superset of general feed-forward neural networks with supervised
learning capability.

Based on this adaptive design, the outputs of the framework depend on parameters
pertaining to the nodes involved and the learning rule specifies how the parameters
should change to minimise a prescribed error metric. The back-propagation algorithm
or least square method may be used in such computation. The relative advantage is
that this technique is capable of automatically constructing an input–output map-
ping based on both human knowledge and experimental data. Figure 4.6 presents the
design of a basic ANFIS.

The mathematics behind the ANFIS architecture is described as follows. First,
we assume a given adaptive network with L layers and k nodes in the Kth layer. We
use the notation (k, i) to describe the node at the ith position of the Kth layer with its
node function Oi

k. In neural networks, node output is determined by the input signals
and the note parameter set. Hence we denote this output by yi

k:

	 y O O O a b ci
k

i
k

i
k

k
k= … …()−
−
−1
1
1, , , , , 	 (4.7)

where a, b, c… are the parameters of this node. Next, assuming the given data has
P entries, the error metric for the pth entry may be defined as the sum of squared errors:

	 E T Op

m

L

m p m p
L= −()

=
∑

1

2
, , 	 (4.8)

Tm,p is the mth component of the pth target output vector, and Om p
L

, is the mth compo-
nent of the actual output vector produced by the presentation of the pth input vector.
The overall error measure is given by:

	 E E
p

P

p=
=

∑
1

	 (4.9)

x1

x2

y1

y2

Input
Vector

Output
Vector

FIGURE 4.6  Adaptive network.

55Modelling Non-Linear Rendering Processes

The learning procedure using gradient descent over the parameter space requires error
rates to be computed for the pth training data and for each node’s output O given by:

	
∂
∂

= − −()E

O
T Op

i p
L i p i p

L

,
, ,2 	 (4.10)

The error rate for the internal node at (k, i) can be derived using the chain rule:

	
∂
∂

= ∂
∂

∂
∂

=

+

+

+

∑E

O

E

O

O

O
p

i p
k

m

k
p

m p
k

m p
k

i p
k

, ,

,

,1

1

1

1

	 (4.11)

where 1 ≤ k ≤ L − 1. Given α as a parameter of the given adaptive network, we have

	
∂
∂

= ∂
∂

∂
∂

∈
∑E E

O
Op

O S

p

α α*
*

*

	 (4.12)

where S is the set of nodes whose outputs depend on α. We can get the derivative of
the overall error measure E with respect to α with Equation 4.13.

	
∂
∂

= ∂
∂

=
∑E Ep

p

P
p

α α
1

	 (4.13)

Furthermore, we can describe the update formula for α as Equation 4.14.

	 Δα
α

= − ∂
∂

n
E

	 (4.14)

in which n is the learning rate.
Equations (4.6 to 4.14) describe the structure and learning process of the adaptive

network. In an ANFIS architecture, this network should be functionally equivalent
to a fuzzy inference system. To illustrate this mapping, consider a simple case of an
ANFIS system with two inputs x1 and x2 and one output, y. Suppose the rule-base
contains two fuzzy IF-THEN rules. Then we may write

Rule 1: IF x1 is A1 and x2 is B1, THEN f1 = p1x1 + q1x2 + r1

Rule 2: IF x1 is A2 and x2 is B2, THEN f2 = p2x1 + q2x2 + r2

where A and B are antecedents and f is the output of the neuron (node) in the same
layer, p, q and r are the parameters specific to the node. In the adaptive network,
the membership function describing an antecedent can be denoted by the following
node function.

	 O xi Ai
1 = ()µ 	 (4.15)

56 Real-Time Rendering

where x is the input to the node i, A the linguistic label (antecedent) associated with
this node function. In terms of the choice of membership function characteristics,
Jang [47] proposes the typical bell-shaped function, which is adopted in this research
and found to be adequate with minor adjustments.

For practical applications, the modelling approach using ANFIS is similar to many
system identification techniques. First, a hypothetical parameterised model structure
that relates the inputs to membership functions to rules to outputs to membership
functions is selected. Thereafter, a set of input-output data collected from an experi-
ment is used for the ANFIS training. A portion of the same set of data is reserved
for validation of the derived system model. In an iterative manner, the FIS model can
be trained to emulate the data presented to it by modifying the membership function
parameters according to a chosen error criterion.

4.4 � EXPERIMENT RESULTS

4.4.1 �T ime Delay Neural Networks

The neural network used to model the first application consisted of a MLP network
with two layers, six units, and three delay units in each of the input and output chan-
nels. The second neural network differed and contained just four delay units in both
the input and output channels. The neural network used to model the first application
is shown in Figure 4.7.

In Figure 4.8, the diagrams at top right and bottom right show the measured and
predicted output frame rates of the application and neural network, respectively. The
difference between them is shown in the graph at bottom left. The graph in the top
left corner shows the input (triangle count per frame) to the neural network model

1

p{1}

TDL

Delays 1

weight

IW{1,1}

TDL

Delays 2
2

a{2}

3

a{1}

weight
+
+
+

LW{1,2}

TDL

Delays 3

weight

LW{2,1}

bias

netsum

+
+

netsum purelin

Layer 1

Layer 2

tansig

b{1} 1

a{1}

2

a{2}

3

y{1}

bias

b{2}

FIGURE 4.7  Neural network in Experiment 1.

57Modelling Non-Linear Rendering Processes

over the test period. The mean difference between the frame rates generated by the
neural network model and the actual application was 0.00455.

In the same order, the graphs for the second experiment using the game are shown
in Figure 4.9. The neural network was able to model closely the characteristics of
the rendering process in the second application with a mean difference of 0.00896
in frame rate. All networks were trained using the Levenberg-Marquardt algorithm
over 200 epochs for over 5,000 frame samples.

4.4.2 �ANFIS Model

In Experiment 3, 120,000 input and output data pairs, each consisting of a vertex
count and frame rate, were collected. Figure 4.10 is a screenshot of the 3D rendering
application. Eighty thousand data pairs were used for training the ANFIS and the
remaining data pairs for validation. We used the ANFIS tool from the MATLAB
Fuzzy Logic Toolbox for the design and training of the fuzzy inference system.

The ANFIS model output was compared with the user-defined reference out-
put in Figure 4.11. We can observe from the figure that the output of the ANFIS
model closely follows the reference output. The error over the entire duration of the

2.2
Input×105

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0 100 200 300 400 500 600 700

180
Plant Output

160

140

120

100

80

60

40

20

0 100 200 300 400 500 600 700

2
Error

1.5

1

0.5

0

–0.5

–1
0 100 200 300 400 500 600 700

180
NN Output

160

140

120

100

80

60

40

2020

0 100 200 300 400
Time (s)Time (s)

500 600 700

FIGURE 4.8  Data collected from Experiment 1.

58 Real-Time Rendering

10 ×104 Input

9

8

7

6

5

4

3

2 0 50 100 150 200 250 300 350 400

160

Plant Output

140

120

100

80

60

40

20

0 50 100 150 200 250 300 350 400

0.6
Error

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8 0 50 100 150 200 250 300 350 400

160

NN Output

140

120

100

80

60

40

20

0 50 100 150 200
Time (s)Time (s)

250 300 350 400

FIGURE 4.9  Data collected from Experiment 2.

FIGURE 4.10  (See colour insert.) Screenshot of rendering application in Experiment 3.

59Modelling Non-Linear Rendering Processes

experiment was less than 5 FPS. A delay registered in the experiment results may be
attributed to the latency between the connected peripherals in the experiment setup.

4.5 � DISCUSSION

The common objective of our tests was to derive an accurate system model of the
rendering processes. While it may seem ideal to have a single model for all appli-
cations, a single model is impractical because various rendering applications have
different dynamics and vary in the numbers of components contributing to the final
render time.

For example, applications differ in the types and numbers of processes such as net-
work communication, application logic, and input–output computations. Hence it is not
a trivial task to derive a universal model for all rendering applications. Furthermore, a
generalised model would not necessarily be useful because it might not provide a user
with a set of components that could be used easily in the rendering process.

Another benefit from using soft computing techniques such as neural networks
and fuzzy systems is that they provide greater convenience for modelling wider
operating ranges compared to using linear model structures. They eliminate the
need to conduct several tedious data collection procedures over an operating range.

Furthermore, when a satisfactory model is derived, there is no need to re-train the
neural network or ANFIS unless the construct of the application changes. As to speed
of modelling, the training of our neural networks typically required fewer than 3 min-
utes for a dataset of approximately 5,000 data points on a mid-end desktop computer.

0 2 4 6 8 10 12 14 16
×104

355

360

365

370

375

380

385

390

395

400

405

Frame

Fr
am

e R
at

e (
FP

S)
Measured Output vs User Reference Levels

Reference
Measured output

FIGURE 4.11  Measured and reference output from ANFIS in Experiment 3.

60 Real-Time Rendering

Finally, we provide the mathematical basis by which even linear models can be
derived from the non-linear models obtained from empirical data in Section 4.6.

4.6 � LINEARISED APPROXIMATION FROM NON-LINEAR MODELS

This section introduces linearisation of a non-linear system model (at a particular
operating point) such as the ANN described previously. The need to extract linear
properties of a non-linear model often arises because many systems function largely
in a specific range instead of spanning an entire operating range. Furthermore, it is
easier to work with linear systems due to the mathematics involved. With reference
to Figure 4.7, it is possible to envision how a non-linear function may be approxi-
mated by a series of linear segments over different ranges.

We provide the mathematical derivation for linearisation of a DTDNN below.
The linearised model takes the form of state space [8] equations that are common
in many system identification and control studies. In addition to their maturity in
the field of mathematics, state space equations provide mathematical constructs that
leverage linear, first-order derivative variables that are convenient for both computa-
tion and extension. For linear systems, the state space equations are:

	 x k Ax k Bu k Ke k+() = ()+ ()+ ()1 	 (4.16)

	 y k Cx k Du k() = ()+ () 	 (4.17)

where x(k) is the state vector, y(k) is the system output, u(k) the system input, and
e(k) the stochastic error. A, B, C, D, and K are the system matrices.

Equations (4.16) and (4.17) describe the relationship of the internal states, input,
and output of the system. The state variables are denoted by x1 and x2 while the input
and output of the neural network are u and y, respectively. Wi denotes the weights
assigned at the neurons on layer i while Bi refers to the corresponding bias value on
the same layer. The triggering function at each layer of the neural network is denoted
by Fi, which typically may be linear, sigmoid, or threshold in nature.

Unit time delays were introduced at the input stage of each layer, as denoted by
the di blocks. Since the time delays relate to the dynamics of the neural network, the
related equations are presented with a time step variable k that indicates its corre-
spondence in terms of implementation in digital systems such as computers.

	 x k u k1 1+() = () 	 (4.18)

	 x k F W x k B2
1 1

1
11+() = ()+() 	 (4.19)

	 y k F W x k B() = ()+()2 2
2

2 	 (4.20)

61Modelling Non-Linear Rendering Processes

The linearised approximation of the model at an operating (trim) point is:

	 Δ Δ Δx k A x k B u k+() = ()+1 () 	 (4.21)

	 Δ Δ Δy k C x k D u k() = ()+ () 	 (4.22)

where Δx1, Δx2, Δu, and Δy are small deviations:

	 Δx k x k x trim1 1 1() = ()− 	 (4.23)

	 Δx k x k x trim2 2 2() = ()− 	 (4.24)

	 Δu k u k utrim() = ()− 	 (4.25)

	 Δy k y k ytrim() = ()− 	 (4.26)

with

	 x utrim trim1 = 	 (4.27)

	 x F W u Btrim trim2
1 1 1= +() 	 (4.28)

	 y F W x Btrim trim= +()2 2
2

2 	 (4.29)

	 C
x

F x u x ytrim trim= ∂
∂

()2 , | , 	 (4.30)

	 D
u

F x u x utrim trim= ∂
∂

()2 , | , 	 (4.31)

From the above equations, we have:

	 Δy k y k y
d

dx
F W x k Btrim() = ()− = ()+{ }

2

2 2
2

2() 	 (4.32)

and

	 A d
dx

F W x B
 B

trim
= +{ }

















=









0 0

0
1
0

1

1 1
1

1()
,  	 (4.33)

62 Real-Time Rendering

This linearised model representation of the rendering process makes it possible for
a user to design a control system in which the output of this system model can be
driven to produce the stable frame rates required in interactive applications.

4.7 � CONCLUSION

This chapter described approaches to modelling the non-linear real-time rendering
process. Since linear models cannot fully capture the characteristics of certain ren-
dering processes and typically cover a larger operating range, we proposed the use of
neural networks and the fuzzy inference system. The application of these techniques
was demonstrated in experiments with various rendering processes. The results indi-
cate that both techniques are capable of producing accurate system models from the
measured data.

63

5 Model-Based Control

5.1 � INTRODUCTION

Research in real-time computer graphics focuses on trading speed of rendering for
image quality but does not address the problem of frame rate stability—a critical
component of the user experience. Common techniques offer “best effort” solutions
to achieve interactive frame rates without any performance guarantee. Consequently,
the onus of finding an optimal solution is left to the application developer if not
totally forsaken. In the absence of a feasible solution, investments in many inter-
active applications such as those from the training, visualisation, and simulation
domains may not yield adequate results. Previous research [48,49] has shown the
importance of maintaining interactive frames in these applications.

Control engineering is a mature field of study with myriad applications in vari-
ous systems that affect our daily lives. Its efficiency when applied to electrical and
mechanical systems in fields as varied as aerospace, defence, communications, and
manufacturing equipment has been proven in numerous industries [50,51] around the
world. Little research relates the adaptation of control theory to real-time computer
graphics rendering. However, in recent years, we noted observable momentum of
cross-disciplinary research in control theory and computer systems [2,7,52,54].

In this chapter, we introduce the concepts of control theory and demonstrate rel-
evant techniques as mechanisms for achieving sustainable performance in real-time
computer graphics rendering.

5.2 � CONTROL SYSTEM PERSPECTIVE OF
COMPUTER GRAPHICS RENDERING PROCESS

We consider the computing environment for real-time rendering to consist of a
homogeneous infrastructure consisting of both hardware and software. A simple
representation of the rendering system is shown in Figure 5.1.

The rendering process is modelled as the plant in control taxonomy. Its basic func-
tionality is to process a stream of inputs such as 3D geometry and other rendering data
to create a series of images in real time. Other processes running in the same comput-
ing environment may periodically share the memory and CPU time thereby creating
interruptions that may be represented as disturbances. Furthermore, the rendering
system can receive input from user interaction with the computing environment.

To meet the goal of consistent and sustainable frame rates from the output of the
plant, we introduce a controller as an extension of the system shown in Figure 5.1.

64 Real-Time Rendering

Figure 5.2 depicts a feedback control system in which this controller is adopted to
regulate input to the plant to achieve a certain performance objective.

In this configuration, the rendering process produces a series of images, each in
a certain amount of time (frame time) and this plant output is compared with a pre-
defined performance metric through a data feedback channel for every cycle of a ren-
dered frame. To make the comparison of the output of the plant and the performance
objective useful, these two data streams must be expressed in the same unit of mea-
surement. Typically, the time taken to render one frame of image or its mathematical
inverse (frame rate) is the measurement unit. The error between the two quantities
is passed to the controller that subsequently generates a control action for the plant.

One interesting point is that the performance objective may be predefined by a
user or dynamically set by a more elaborate system that measures quality of service
(QoS) in the computing environment. Furthermore, this closed-loop feedback con-
trol system provides corrective action even when disturbance from the computing
environment occurs.

5.2.1 �C ontrol System Architectures for Real-Time Rendering

A prudent and imperative step in control system design is understanding the plant
characteristics to be controlled. Real world systems and processes seldom display
linear characteristics over their operating ranges because the physical nature of
materials used creates non-linearity in integrated systems.

Real-time rendering is also complex because of the numerous inputs and configu-
ration settings. A plant with varying dynamics would justify the use of an adaptive
controller to meet system performance objectives. In Figure 5.3, a QoS component

Plant
(Rendering Process)

u Output, y

Disturbance, d

Controller

Performance
objective, r

Error, e

Computing
environment

FIGURE 5.2  (See colour insert.) Closed-loop feedback control system.

Plant
(Rendering Process)Input, u Output, y

Disturbance, d

Computing
environment

FIGURE 5.1  (See colour insert.) Rendering process from system perspective.

65Model-Based Control

is introduced as an additional evaluation step to compute qualitative performance in
addition to evaluating plant output only.

Furthermore, a model estimator (Figure 5.3) may be used to provide periodic
assessments of plant dynamics so that an appropriate control strategy can be com-
puted and implemented to meet performance requirements. This approximation of
the plant model forms an important basis to allow a designer to make decisions about
changing control parameters or introducing new control laws into a control system.
Astrom and Wittenmark’s research on adaptive control [53] provides insight into
controller design based on a plant with uncertain parameters and dynamics.

The advantage of the control system described in Figure 5.3 lies in the flexibility
of controller design that is not fixed and whose parameters do not need to be known
at design time. While elaborate control system designs may be considered plausible
solutions to the frame rate inconsistency problem in computer graphics rendering,
they may not always be computationally effective for use in real-time applications
due to their complexity.

An intuitive step to circumvent this problem is to design a control system in
a modularised manner and treat the plant and control as separate subsystems.
This architecture provides greater flexibility for the controller and plant because
computing resources are dedicated to each subsystem and any disturbance arising
from controller-related computation would not affect plant operation. The feedback
data channel and feed-through from the controller to the plant can be achieved by
network communication. The design of this modular control system is presented
in Figure 5.4.

An additional consideration for the design shown in Figure 5.4 is the data trans-
port overhead arising from the inter-subsystem communication. In typical control
engineering applications, this can be modelled analogously as delays from actuators
and sensors. These delay components are illustrated as components of the commu-
nication channels in Figure 5.4.

In summary, we have provided a systematic and progressive introduction of the control
system perspective for the real-time rendering. We also presented a high level overview
of the various control system architectures and relevant implementation considerations.

Plant
(Rendering Process)

Model Estimator

u

M

C

Output, y

Disturbance, d

Controller

Controller
Designer

Performance
objective, r

Error, e

Computing
environment

QoS
Evaluator

FIGURE 5.3  (See colour insert.) Rendering system with adaptive controller and quality of
service feedback.

66 Real-Time Rendering

5.2.2 �C ontrol System Performance Concepts
Applicable to Real-Time Rendering

The value of incorporating control principles in real-time rendering would be better
appreciated by highlighting important concepts pertaining to control system design.
These performance objectives are the premises by which the control systems are vali-
dated for their effectiveness at the design level. Since exhaustive coverage of this topic
is beyond the scope of this chapter, we focus the discussion on certain characteristics.

Stability—A system is inherently stable if it is not easily perturbed by small
variations (disturbances) introduced when it is at equilibrium state. Stability is a
system property that may be best described by the bounded-input–bounded-output
(BIBO) signal processing nomenclature. One example is a rendering system
designed to run at a user-defined frame rate when the controller works in a way that
small load variations sent to the rendering process do not result in unstable frame
rates at the output end.

Controllability—In control theory, it is possible to consider state and output con-
trollability. For brevity and in the context of real-time rendering, we extract the basic
underlying concept—the ability to manipulate or steer the output based on an admis-
sible set of rendering inputs within a specific time window.

Observability—Observability and controllability are mathematical terms for the
same problem. The observability of a system refers to how well its internal states
may be inferred by knowledge of its outputs and inputs. In simpler terms, a system
is observable if the behaviour or current values of its states can be determined by
analysing its outputs and inputs. Both observability and controllability criteria
reinforce a system with clear requirements for stable operation.

Robustness—Not all systems can handle large and unpredictable plant fluc-
tuations. The robustness of a system is its ability to operate under such situations
to achieve its objectives or allow its performance to degrade gracefully without
catastrophic failure. Apart from resilience to fluctuating operating conditions, a
real-time rendering application generally does not incur significant cost or damage
to its environment even when it fails.

Plant
(Rendering Process)

Model Estimator

u

M

C

Output, y

Disturbance, dDisturbance, d

Controller

Controller
Designer

Controller Subsystem Plant Subsystem

Error, e

Computing
environment

QoS
Evaluator

TDTD

Performance
objective, r

FIGURE 5.4  (See colour insert.) Modular adaptive control system for real-time rendering.

67Model-Based Control

While real-time rendering may be considered similar to other computing pro-
cesses such as Web service, database queries, and network communication, it has
distinctively different task handling properties. In the work of Hellerstein et al.
[54], the tasks of feedback control are piecewise in nature and may be scheduled
according to changes in system loading. However, real-time rendering involves a
series of interdependent tasks (pipeline stages) that cannot be chosen selectively
for processing. Therefore task scheduling algorithms are not applicable to this pro-
cess because each rendered frame must follow a sequential order to create visual
animation effects.

5.3 � PID CONTROL AND TUNING

PID controllers [55] have accumulated a long history since the industrial revolu-
tion and are known to operate in more than 80% of the world’s control systems.
The fundamental PID control algorithm works on simple structures and produces
good performance without the need for heavy computation. This means that PID
controllers are inherently fast and easy to design, operate, and maintain. The PID
control action in a closed-loop feedback system takes a parallel mode form as shown
in Equation (5.1).

	 u t K e t K e d K
d
dt

e tp i

t

d() = ()+ () + ()∫
0

τ τ 	 (5.1)

At the implementation level, a PID controller’s discrete form may be expressed as
Equation (5.2)

	 u n K e n K e k K e n e np i

k

n

d() = ()+ ()+ ()− −()
=

∑
0

1() 	 (5.2)

where

	 K
K T

T
K

K T

T
i

p

i
d

p d= =,

where u(n) is the control action and Tp, Ti, and Td denote the time constants of the
proportional, integral, and derivative terms, respectively.

For a PID controller to be effective, we see from Equation (5.2) that the gain
values of the controller must be set correctly. The process of determining these
parameters is known as controller tuning. A comprehensive summary of the tech-
niques for tuning the PID controller is provided in Reference [55]. For our system,
the PID controller is tuned using the Robust Response Time Tuning Algorithm from
the MATLAB® Control Design Toolbox [56].

68 Real-Time Rendering

5.3.1 �I mplementing PID Control for Rendering Process

With reference to Figure 5.2, the implementation of a PID controller-based render-
ing system follows the same design with the controller block represented by a PID
controller. The plant handles the rendering process. The procedure for obtaining the
rendering process model is described in Chapters 3 and 4.

In this section, we discuss the introduction of a PID controller in a simulation
environment and also use the controller in the rendering process. Figure 5.5 shows
the design of the closed-loop PID control system adopted in this research. At the
output, the numerical value of the frame rate is tapped and sent to a comparator that
computes the difference between this output and a predefined frame rate. The error
data are sent to the PID controller.

With reference to Equation (5.2), the control action is computed based on the e(n)
input and the PID controller’s internal structure parameters (gain values). The con-
trol action generated by the controller regulates the input to the plant such that the
frame rate eventually tracks the predefined target.

As mentioned in Section 5.2, it is common for other non-rendering processes to
co-exist in the same computing environment. Processes from the operating system
kernel may create minor disturbances of rendering because they share memory and
CPU resources. Even though the modelling process for the rendering application
does not account for such disturbances, the PID control action is expected to nullify
them and continue to keep the frame rate stable.

If a large disturbance is introduced into the system through some unknown pro-
cess, the rendering application may suffer a huge momentary fluctuation in its frame
rate. In this case, the PID controller may not be able to correct the error and thus
allow the rendering process to swing beyond the controllable operating range.

We constructed the PID control system for the rendering process in MATLAB
as shown in Figure 5.5. The key components are the PID controller block, the plant
block, and the interlinking communication channels. In a simulation environment,
we assume that the data transfer has zero latency because the control system is exe-
cuted by the same computer in the same memory space. However, when the plant
model is swapped with the actual rendering process, this assumption may not be
suitable because of network latency and communication overhead that can affect the
performance of the control system.

The difference between the two simulation environments is that both the plant
and the controller run on the same computer. The second environment has both func-
tions reside in different computers connected via a local area network (LAN). The
communication blocks in the control system use the transmission control protocol
(TCP) to send packet data over the network from the source to the destination loca-
tion between the controller and plant. This network communication protocol was
selected because of the guaranteed delivery mechanism to ensure that data streams
between the plant and controller will not be dropped for every rendered frame.

In addition to the mutual loading problem caused by the plant and controller pro-
cesses, the Windows operating system poses the limitation of multitasking in the
graphical user interface (GUI) environment. This limitation prevents one applica-
tion window from receiving prioritised CPU time if it does not receive the focus

69Model-Based Control

co
nt

ro
l a

ct
io

n

Tr
im

 le
ve

l f
or

 3
80

 F
PS

 is
 4

.4
e4

4.
4e

4

To
 W

or
ks

pa
ce

1

co
nt

ro
l a

ct
io

n

To
W

or
ks

pa
ce

Sy
st

em

Su
bt

ra
ct

1

+ –

St
ep

Si
ne

Se
nd

 C
on

tr
ol

 A
ct

io
n

Si
m

U
dp

Cl
ie

nt
3

Sc
al

in
g

Fa
ct

or

0.
75

Sa
tu

ra
tio

n1

Sa
tu

ra
tio

n

S−
Fu

nc
tio

n2

by
te

vi
ew

Re
fe

re
nc

e
FP

S

40
0

Re
fe

re
nc

e
Sw

itc
h

Pr
od

uc
t

Pl
an

t O
ut

pu
t v

s
Re

fe
re

nc
e

M
at

rix
Co

nc
at

en
at

e

Fr
om

Pl
an

t

O
ut

1

O
ut

2

O
ut

3

FP
S

Er
ro

r D
ua

l P
ID

sy
st

em

In
1

In
2

O
ut

1

O
ut

2

D
at

a T
yp

e
Co

nv
er

sio
n

ui
nt

8

ui
nt

32
ui

nt
8

Co
nt

ro
l O

ut
pu

t

Co
ns

ta
nt

2

1

CA

of

 B
yt

es
to

 S
en

d

16

++

×

FI
G

U
R

E
5.

5 
PI

D
 c

on
tr

ol
 s

ys
te

m
 in

 M
A

T
L

A
B

.

70 Real-Time Rendering

and restricts the plant and controller to execute in unison. This constraint made it
imperative for our control system to be implemented across machines dedicated to
the plant and controller processes separately.

To ensure that the PID controller is configured optimally, its gain values must
be set correctly. Section 5.3 introduced the tuning process that is required before
any PID controller can be employed. We tuned our PID controller using the Robust
Response-Time Tuning Algorithm in MATLAB. Figures 5.6(a) and (b) illustrate the
graphical user interface for this PID controller tuner.

The MATLAB/Simulink® PID controller block offers two key benefits for
controller design. First, it integrates with the control design toolbox to provide
closed-loop feedback analysis for linear systems. The resultant plots are very use-
ful for analysis of various-system related considerations such as stability, frequency
response, and step response. Second, along with the GUI shown in Figure 5.6, the

(a)

FIGURE 5.6  (See colour insert.) (a) Setting PID controller gain values in MATLAB.
(b) Interactive graphical user interface in MATLAB/Simulink for tuning PID controller.

71Model-Based Control

user has the flexibility to manually overwrite the PID parameters for trials to
obtain better system performance. As a result, the PID controller design process
is greatly accelerated.

5.3.2 �D ata Preprocessing in PID Control System

It is common that raw data values obtained from experiments can vary from very
small fractions to extremely large numbers. For example, in real-time rendering, the
geometry (vertices) required for the construction of a 3D object can yield numerical
values ranging from a few thousand to hundreds of thousands. Computations involv-
ing very large or small numbers may be difficult because of the data format required
to represent them precisely. Consequently modelling errors may occur and cause
further errors in the controller design phase.

To avoid this problem, prescaling and normalisation of numerical values are often
done. In a simulation environment, internal scaling can improve control system
performance significantly. However, the trade-off is that the scaled values may not
always be directly indicative of real world data values.

The scaling issues are relevant to data structures internal to the system model and
the controller. In implementing a PID control system, an amplifier is usually adopted
so that controller tuning process can be simplified using smaller numerical values.
An amplifier is shown in Figure 5.5 as the multiplier block that resides at the output
of the PID controller.

(b)

FIGURE 5.6  (Continued)

72 Real-Time Rendering

5.3.3 �G ain Scheduling for Non-Linear Rendering Process Models

As mentioned in Chapter 4, the real-time rendering process exhibits non-linearity
characteristics. Prior research [38] demonstrates that the time taken to render a
vertex differs with changing rendering loads. Figure 5.7 (originally Figure 3.7 from
Chapter 3) is reproduced here and clearly shows this property.

We can observe from the figure that a single line segment approximation of the
system’s input–output relationship is inadequate. One approach to the challenge of
designing a control strategy to counter this problem is to resolve the non-linearity
at a piecewise level. In other words, we can approximate the system’s input–output
relationship with a series of line segments at selected operating points instead of
using a single line across an entire operating range.

Each line segment represents a region whereby the plant may be modelled using
linear model structures. Thereafter a suitable PID controller can be designed and intro-
duced to achieve the desired performance for a delta region near a particular operat-
ing point. It is important to note the intention of Figure 5.7 is not to dictate or convey
the number of segments to use for any particular application. It is produced to verify
the existence of non-linearity in the rendering process. In practice, the number of
linear segments to use is dependent and specific to the user’s modelling requirements.

Because numerous combinations of line segments can approximate the curve
shown in Figure 5.7, we can approach this optimal allocation of line segments to
describe the non-linear input–output relationship as a constrained optimisation

1 2 3 4 5 6 7 8 9
×105

0

20

40

60

80

100

120

140

Vertex Count (Input)

Fr
am

e R
at

e/
FP

S
(O

ut
pu

t)
Frame Rate vs Vertex Count

FIGURE 5.7  Steady-state frame time and vertex count relationship shown in Experiment 1.

73Model-Based Control

problem with a minimal number of line segments. First, we present this non-linear
relationship represented by a polynomial model:

	 y p xi
n i

i

n

= + −

=

+

∑ 1

1

1

, u x uN0 ≤ ≤ 	 (5.3)

where (n + 1) is the order of the polynomial and n is the degree of the polynomial.
The order denotes the number of coefficients to be fit, and the degree represents the
highest power of the predictor variable. Since straight line segments are used to fit
the curve, the degree of the polynomial is chosen as 1. The objective is to derive a
series of line segments that fulfill the approximation of this relationship by:

	 y

a b x

a b x

a b x

u x u

u x

N N N

=

+
+

+










≤ ≤
≤

1 1 1

2 2 2

0 1

1

,
,

...
,

≤≤

≤ ≤−

u

u x uN N

2

1

...
	 (5.4)

where the variables a and b minimise the following equation:

	

F a a a b b b u u u

f x

N N N1 2 1 2 1 2 1, ,..., , , ,..., , ,...,, −()

= ())− −()
−

∫∑
=

a b x dxj j
u

u

j

N

j

j

11

2 	
(5.5)

The right side of the equation represents the least square error of the approximation.
The different approaches to solving this problem are offered in previous research by
Stone [58], Bellman [59], and Chan and Chin [60].

From the linear ranges derived, the corresponding input–output data set is used
for model identification. The model structure is represented by the state–space [57]
Equations [(5.6) and (5.7)]. The parameters of this system model structure may be
obtained using the subspace algorithm (N4SID) [1].

	 x k Ax k Bu k+() = ()+ ()1 	 (5.6)

	 y k Cx k Du k() = ()+ () 	 (5.7)

Based on the non-linear operation characteristics of the rendering process, a single
PID controller would be inadequate to provide reasonable control performance over
the entire operating range. Therefore we approach the problem by scheduling dif-
ferent gain values for the PID controller according to the respective linear operating
ranges (Figure 5.8). In this design, the configuration of the PID controller can be
stored in a look-up table so that the relevant values may be set into the PID controller

74 Real-Time Rendering

N
ot

e:
Se

tti
ng

 si
m

ila
r s

am
pl

e t
im

e f
or

 al
l b

lo
ck

s w
ill

 av
oi

d
sim

ul
at

io
n

er
ro

rs
.

Se
t s

am
pl

e t
im

e o
f s

w
itc

h−
ca

se
 b

lo
ck

 to
 0

 to
 m

at
ch

 P
ID

 co
nt

ro
lle

r

�
is

co
nt

ro
lle

r i
s j

us
t t

o
br

in
g

th
e o

ut
pu

t t
o

a p
re

de
fin

ed
 le

ve
l

to
 si

m
ul

at
e i

ni
tia

l c
on

di
tio

n.

y

u

To
 W

or
ks

pa
ce

1

y
To

 W
or

ks
pa

ce

u

Sw
itc

h
Ca

se

u1

ca
se

 [
29

0
29

1
29

2
...

]:

ca
se

 [
32

1
32

2
32

3
...

]:

ca
se

 [
39

1
39

2
39

3
...

]:

Su
m

+–

Pl
an

t

??
?

PI
D

S3

ca
se

: {
 }

In
1

O
ut

1

PI
D

S2

ca
se

: {
 }

In

1
O

ut
1

PI
D

S1

ca
se

: {
 }

In
1

O
ut

1

PI
D

−S
3

P(
z)

M
an

ua
l S

w
itc

h

Co
ns

ta
nt

38
0

FI
G

U
R

E
5.

8 
G

ai
n

sc
he

du
li

ng
 P

ID
 c

on
tr

ol
 s

ys
te

m
.

75Model-Based Control

as it traverses the different operating ranges. Such an implementation may be realised
in MATLAB/Simulink as shown in Figure 5.8.

Since the PID gain values may differ greatly over the entire operating range,
scheduling these values directly into the PID controller may cause some unexpected
jitter at the border where the switch takes place. This jitter is typically manifested
as a disruption to the control mechanism and may create some inconsistencies in
plant output. A common technique to reduce the effect of this jitter is to adopt linear
interpolation between the controller’s gain values.

5.3.4 �N eural PID Control

The PID controller is computationally straightforward and effective. The challenge
lies in tuning its gain parameters, especially when it is difficult to derive a system
model. In the previous section, we examined the use of a combination of separately
tuned PID controllers. The goal is to create a control system that works over a large
operating range and is resilient to the effects of the system’s non-linear characteristics.

In this section, we investigate a technique that does not require the cascading of PID
controllers and eliminates the effort to tune them separately. This technique also allows
a single PID controller to be continuously tuned online while the system operates.

Artificial neural networks (ANNs) are well known to be capable of memory
retention and learning through their adaptive nature of modelling non-linear func-
tions. By utilising an artificial neuron to learn and adaptively tune a PID controller
in the single neuron adaptive PID (SNPID) control algorithm [64], it is possible to
achieve continuous control with good performance over a substantially large oper-
ating range. Figure 5.9 illustrates the SNPID control system design. Recall from
Section 5.3 that the discrete incremental PID controller may be expressed as:

	 u k K e k K e k K e k e kp i

k

n

d() = ()+ ()+ ()− −()
=

∑
0

1() 	 (5.8)

where u(k) is the output of the controller and Kp, Kd, and Ki are the proportional gain,
derivative gain, and integration gain, respectively. e(k) is the error between the refer-
ence and system outputs that serves as input to the controller. In the SNPID control
implementation [64], we have the output of the neuron given by the following equation.

	 Y X WT= 	 (5.9)

Rendering
ProcessK

Reference OutputError, e State
Converter

x1

x2

x3

w3

w2

w1

FIGURE 5.9  Single neuron PID control system.

76 Real-Time Rendering

where Y is the output of the neuron, X represents the internal states of the neuron,
and W denotes weights assigned to each neural connection given as X x x x= (, ,)1 2 3
and W w w w T= (, ,)1 2 3 , respectively. In the SNPID controller configuration, the adap-
tive weights wi are analogous to the conventional PID gains, Kp, Ki, and Kd. From
Equation (5.8), the output of the SNPID controller is further expressed as

	 u k K w k x k
i

i i() =
=
∑

0

3

() () 	 (5.10)

where K is the gain value of the neuron. Note that the input to the neuron at time k is
given by the following equations.

	 x k e k e k1 1() = ()− −() 	 (5.11)

	 x k e k2 () = () 	 (5.12)

	 x k e k e k e k3 2 1 2() = ()− −()+ −() 	 (5.13)

The errors at time k, (k – 1), (k – 2), etc., are represented by e(k), e(k – 1), (k – 2), etc.
where:

	 e k r k y k() = ()− () 	 (5.14)

Hence the single neuron PID control law may be expressed as:

	 u k u k K w k x k
i

i i() = −()+ ′
=
∑1

0

3

() () 	 (5.15)

whereby the weights are determined by the Hebb learning algorithm described
below from Equations (5.16) to (5.19).

	 ′ = ()
()

=∑
w k

w k

w k
i

i

i
i

()

1

3 	 (5.16)

	 w k w k e k u k e k e k1 1 11 1 2 1() = −()+ () −() ()− −()ρ () 	 (5.17)

	 w k w k e k u k e k e k2 2 21 1 2 1() = −()+ () −() ()− −()ρ () 	 (5.18)

	 w k w k e k u k e k e k3 3 31 1 2 1() = −()+ () −() ()− −()ρ () 	 (5.19)

77Model-Based Control

Experiment—To compare the performances of the SNPID and PID controllers,
we created a MATLAB simulation consisting of a closed-loop feedback system using
the system model derived in Experiment 3 from Chapter 3, Section 3.5.3. The system
first ran with the SNPID controller, then with the PID controller over the same dura-
tion of 15,000 frames. During the simulation, we allowed the system output to stabi
lise before a new reference was set. In contrast to previous modelling experiments,
we wanted to validate the performance of the SNPID controller over a large operat-
ing range. To achieve this, we deliberately set the reference changes in bigger steps.

Simulation results—Figure 5.10 presents the simulated system outputs from
the SNPID and PID controllers. Figure 5.11 shows their respective and correspond-
ing control actions. Figure 5.10 indicates that the SNPID controller provides faster
response than the PID controller with almost no overshoot at the system output. The
SNPID controller was approximately two times faster than the PID controller in
reaching new steady-state references.

5.4 � EXPERIMENTS

In this section, we present the details of the experiments conducted to validate the
control framework described in this chapter. The objective was to demonstrate the
implementation of a closed-loop feedback control system involving the real-time
rendering process with the plant and PID controller. The rendering process to be
controlled was the same as the application mentioned in Chapter 3. Figure 5.12 is
a screenshot of the application. The details on deriving the system model and its
parameters are also provided in Chapter 3.

Using the derived linear model, we first described two experiments in MATLAB:
one executed fully in a simulation environment and the other an actual rendering
process. In the actual rendering experiment, the plant and controller run on sepa-
rate computers as described in Section 5.2.1. Two sets of data were collected. Each

400

350

300

250

200

Fr
am

e R
at

e (
FP

S)

150

100

50

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Graph of PID and SNPID System Outputs

Frame
9000 10,000 11,000 12,000 13,000

Reference
SNPID system output
PID system output

14,000 15,000

FIGURE 5.10  Comparison of system outputs using SNPID and PID controllers.

78 Real-Time Rendering

captured the same input (vertex count) and output (frame rate) quantities of the ren-
dering process. The third experiment dealt with the application of the gain schedul-
ing control system described in Section 5.3.3 in a simulated environment.

All experiments were run on a desktop computer with an Intel Core 2 Quad CPU
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics pro-
cessor hardware (with 4 GB video memory) on a 64-bit Windows 7 operating system.
The system identification toolbox was used for deriving the linear models of the
rendering processes. The control design toolbox was used for the design and analysis
of the feedback control systems.

60
SN

PI
D

 C
on

tr
ol

 In
pu

t

40

20

0

–20
0 1000 2000 3000 4000 5000 6000 7000

Frame

Graph of PID and SNPID Control Input

8000 9000 10,000 11,000 12,000 13,000 14,000 15,000

0
×104

PI
D

 C
on

tr
ol

 In
pu

t

–1

–2

–3

–4
0 1000 2000 3000 4000 5000 6000 7000

Frame
8000 9000 10,000 11,000 12,000 13,000 14,000 15,000

FIGURE 5.11  Control input from SNPID and PID controller.

FIGURE 5.12  (See colour insert.) Screenshot of application with PID control.

79Model-Based Control

5.5 � RESULTS

5.5.1 �S imulation Environment

The results of the first experiment are shown in Figures 5.13 and 5.14. Based on
Figure 5.13, the objective was to allow the controller to track a higher reference
level. The rendering process was allowed to stabilise at approximately 360 FPS
before triggering of a new reference level of 410. The PID controller took approxi-
mately 2,500 frames (6 s) to reach the target reference level. Furthermore, almost
no overshooting was observed. A small amount (fewer than 5 FPS) of tracking error
was noted. At a high frame rate of 400 FPS, this error can be regarded as negligible.

The PID control system was then tested for its ability to track a lower reference
level (380 FPS) from an initially higher frame rate (400 FPS). The results are shown
in Figure 5.14. Tracking was very accurate (error rate below 3 FPS) and no oscilla-
tion arose from the control action.

5.5.2 �C ontrol System with Actual Rendering Process

The results of the second experiment in which the plant model is replaced by the
actual rendering process are presented in Figures 5.15 and 5.16.

In the first part of the second experiment, the rendering process was allowed to
stabilise at 350 FPS before a trigger changed the reference level to 390 FPS. The PID
control action took approximately 25,000 frames to reach a stable frame rate close
to the reference level. The steady-state error was approximately 5 FPS. In the second
part of the same experiment, the control system was allowed to track a 380 FPS

420
410
400
390
380
370
360
350

1.22 1.225 1.23 1.235
Frame

Simulated Input and Output of Rendering Process

1.24 1.245 1.25

Fr
am

e R
at

e (
FP

S)

–1.5

–2

–2.5

–3

–3.5

–4
1.22 1.225 1.23 1.235

Frame
1.24 1.245 1.25

×105

×105

×104

Sc
al

ed
 C

on
tr

ol
 In

pu
t (

Ve
rt

ic
es

)

FIGURE 5.13  Reference tracking using PID controller (low to high).

80 Real-Time Rendering

420

400

380

360

340

320
1.26 1.261 1.262 1.263 1.264

Frame

Simulated Input and Output of Rendering Process

1.265 1.266 1.267 1.268

Output

Input

Fr
am

e R
at

e (
FP

S)

1

0

–1

–2

–3
1.26 1.261 1.262 1.263 1.264

Frame
1.265 1.266 1.267 1.268

Sc
al

ed
 C

on
tr

ol
 In

pu
t

×105

×105

×104

FIGURE 5.14  Reference tracking using PID controller (high to low).

400
390
380
370
360

Fr
am

e R
at

e (
FP

S)

350
340

0.5 1 1.5 2
Frame

Measured Input and Output of Rendering Process
(PID controller, reference: 400 FPS)

2.5 3 3.5

Output

Input

4

4.8
×104

4.7
4.6
4.5
4.4

N
um

be
r o

f V
er

tic
es

4.3
4.2
4.1

0.5 1 1.5 2
Frame

2.5 3 3.5 4
×105

340 ×105

FIGURE 5.15  Reference tracking using PID controller (to higher FPS).

81Model-Based Control

reference level lower than its initial reference rate (400 FPS). We can see that the
controller takes approximately the same time (25,000 frames) to bring the frame rate
down to the lower reference level.

Both phases of the second experiment showed consistency in plant response
time and the control action was able to track the reference level eventually. This
indicates that the system model representation is reasonably accurate and that the
PID controller was tuned adequately to work with the actual rendering process.

5.5.3 �G ain Scheduling Control System

With reference to Section 5.3.3 covering the application of PID control over an oper-
ating range involving non-linear characteristics, we wanted to validate the applica-
bility of the gain scheduling control strategy in such a scenario. First, an extended
operating range was selected and divided into three segments as shown in Table 5.1.
We modelled the rendering process within these segments at various operating
points. A corresponding controller was designed at every operating range and its
parameters were preset into the PID controller shown in Figure 5.8 for the purpose

405
400
395
390
385

Fr
am

e R
at

e (
FP

S)

380
375

0 2 4 6
Frame

Measured Input and Output of Rendering Process (PID controller, reference: 380 FPS)

8 10 12

Output

×104

4.75
×104

4.7

4.65

4.6

4.55

N
um

be
r o

f V
er

tic
es

4.5
0 2 4 6

Frame
8 10 12

Input

×104

FIGURE 5.16  Reference tracking using PID controller (to lower FPS).

TABLE 5.1
Linear Operating Ranges

Linear Range Reference Approximate Frame Rate Range

1 390–450

2 389–325

3 324–280

82 Real-Time Rendering

of switching the PID gain values as the controller processed output errors across the
extended operating range.

The first objective of the rendering system was tracking a predefined level at
340 FPS. This is an output level in Operation Range 2 from Table 5.1. Figure 5.14
indicates that the controller can bring the output to this level quickly with no over-
shoot and track the level steadily. Thereafter, we wanted to observe the controller’s
ability to track a new reference level in a different operation range. We set the new
reference output level to 390 FPS (Operation Range 1 in Table 5.1). The new reference
output level was set while the control system was running.

Figure 5.17 shows the tracking of a new reference level with some overshoot. To
drive the output toward the target reference level, the control action caused the input
to the plant to take a steep dip that indicates an abrupt over-correction. Nevertheless,
the rendering process output was still brought to the desired reference level with
negligible error (fewer than 2 FPS).

5.6 � CONCLUSION

In this chapter, we introduced the concept of using control principles to track
real-time rendering performance. The controller design was based on a closed-loop
feedback system with a plant model. Although no restrictions were imposed on the
controller design, we utilised the PID algorithm as the control strategy in a real-time
rendering application.

Since real-time rendering is inherently non-linear, we provided a solution to
control this process from a piecewise approach by approximating a large operat-
ing range by grouping smaller linear ones. We also introduced the neural-assisted

450
400
350
300
250
200
150

Fr
am

e R
at

e (
FP

S)

100
50

0
0 0.5 1 1.5

Frame

Simulated Output

2 2.5 3

0
–2
–4
–6

Pr
e-

sc
al

ed
 In

pu
t (

Ve
rt

ic
es

)

–8
–10
–12

0 0.5 1 1.5
Frame

Input

2 2.5 3

×105

×104

×105

FIGURE 5.17  Simulated output with gain scheduling PID controller.

83Model-Based Control

PID control technique which is a superior approach to the conventional PID control
design. It does not require manual tuning of its gain parameters and constitutes a
viable solution for achieving performance targets in real-time rendering

In summary, we have shown by our experiments that the PID controller is effective
in keeping the output of a rendering process close to the user defined performance
target for linear rendering system models and when gain scheduling is adopted for
larger operating ranges.

85

6 Model-Less Control

6.1 � INTRODUCTION

In this chapter we consider a different perspective for controlling the rendering
process. While conventional data-driven system identification strategies may be
adopted to derive a rendering process model, the result may not necessarily imply
that an accurate model can be derived without resolving certain technical challenges
in data processing.

To circumvent such problems, this chapter investigates an approach to control-
ling the rendering process by allowing the user to exploit a priori information about
the rendering process without the need for an explicit rendering model by using
a soft computing method known as fuzzy control. The fundamentals of fuzzy set
theory and the mathematics for a conventional fuzzy inference system are provided
in Section 4.2.2 in Chapter 4.

6.2 � FUZZY CONTROL SYSTEM

The construction of a fuzzy logic control system is relatively similar to the PID
control system described in Chapter 5. Based on the same architecture described by
Figure 5.2 in that chapter, we introduce the fuzzy controller is used in place of the
PID controller. As in the case of the PID controller in which the quantity of the input
to the plant is varied directly, no strict rule applies to the selection of the input to a
fuzzy control system. Certain fuzzy control systems such as applications for tem-
perature and process control utilise the rate of change of the input to the plant instead
of the numerical value of the quantity. In this research, the rate and the direction of
change (increase or decrease of vertex count) are used.

The design of a fuzzy control system consists of two phases. First, we develop
the fuzzy control system in a simulation environment where the plant model is used.
After the control system is validated to work correctly, we replace the plant model
with the actual rendering process as done in previous experiments.

Unlike a PID control system, a fuzzy logic controller functions on linguistics
variables instead of numerical values. As described in Section 4.2.2, a fuzzy logic
system is defined primarily by the type or structure of the controller, the rule base,
and the membership functions of the input and output of the process to be con-
trolled (Figure 6.1). In this research, we adopted the Mamdani fuzzy model. The rule
base was constructed based on a straightforward inverse input–output relationship
between the frame rate and the rate of change of vertex count. This fuzzy inference
rule set is shown in Table 6.1.

The fuzzy logic toolbox in Simulink®/MATLAB® provides comprehensive
tools such as the rule editor and membership function editor to accelerate the

86 Real-Time Rendering

implementation of fuzzy control. Figure 6.2 illustrates the graphical user interface
that allows the creation of membership functions, the set-up of the rule base, and
several other parameters that may be changed.

Fuzzy logic deals with non-crisp values. Thus the approach to tuning fuzzy logic
controller parameters relies on heuristics and iterative processes that allow easy
observation of the effects on simulation performance from changes in fuzzy con-
troller parameters. Some parameters that may be changed include the membership
function and the membership input and output ranges.

The fuzzy logic toolbox provides a step-through functionality in simulation
time. This allows a user to observe how a defuzzified decision is derived by view-
ing the fuzzified inputs and how they are combined to produce the output via the
firing function. This tool is important for helping a user decide the appropriate
membership function to use by analysing the output of the fuzzy controller over a
series of steps.

6.3 � ADAPTIVE NEURAL FUZZY CONTROL

We described the basic structure of the type of fuzzy inference system in a sys-
tematic manner. In brief, it consists of multi-tier relationships that first map input

Trim point
4.4e4 gives 380fps

4.4e4

To Workspace2

RefVsOutputTo Workspace

InputToPlant

To Plant

In1

In2

Switch

Subtract

+
–

Reference

370

Plant Output vs
Reference

Fuzzy Logic
Controller

From Plant

Out1
Out2
Out3 Error

Control
Output

Add

+
+

Feedback FPS

Plant Output

Feedback Input

FIGURE 6.1  Fuzzy control system in Simulink/MATLAB.

TABLE 6.1
Fuzzy Inference Rule Set

If Then

fps_error IS High vertex_count IS DecreaseHigh

fps_error IS Low vertex_count IS IncreaseHigh

87Model-Less Control

characteristics to their membership functions. Thereafter, each input membership
function is mapped to rules that are correlated to a set of output characteristics.
Finally the output is determined by traversing the relationship between the output
characteristics and the output membership functions such that a crisp or single-valued
output is produced.

One key element in a fuzzy control system is the use of fixed membership func-
tions that were chosen arbitrarily. In other words, the applied fuzzy inference is
applied only to systems whose rule structures are essentially predetermined by the
user’s understanding and interpretation of the characteristics of the variables in the
system model.

Nevertheless, it is possible that collection of input and output data is available for
modelling but it is not clear to the user whether a predetermined model structure may
be appropriate based on the characteristics of the variables in the system. In certain
modelling situations, it may not be possible to discern the correct membership func-
tions to adopt by simply observing input and output data. Based on these scenarios,
we approached the model-less control problem by using the adaptive neuro-fuzzy
inference technique.

In brief, the neuro-adaptive learning technique that performs similarly to neural
networks provides a method for a fuzzy modelling procedure to learn information from
an input–output data set. By using the fuzzy logic toolbox in Simulink/MATLAB,
it is possible to compute the membership function parameters that best allow the
associated fuzzy inference system to track the given input–output data.

FIGURE 6.2  (See colour insert.) Configuring fuzzy controller in Simulink/MATLAB.

88 Real-Time Rendering

In contrast to the fuzzy controller design process in which the user selects the
membership functions, the adaptive neuro-fuzzy inference system (ANFIS) is
capable of constructing a fuzzy system whose membership function parameters are
tuned via a back-propagation algorithm alone or in combination with a least squares
method by using a specific input–output dataset. In other words, the resultant ANFIS
embodies the modelling of the plant process through the construction of membership
functions and their inherent relationships. Figures 6.3 and 6.4 show the graphical
user interface of the ANFIS tool in Simulink/MATLAB.

The process of constructing an ANFIS control system is similar to constructing
a fuzzy controller except that the plant model is not used explicitly. From the same
input–output data set collected, a portion is allocated for training while the rest is
used for validation. After the ANFIS parameters such as the numbers of inputs,
outputs, and membership functions are set by the user, the software computes the
ANFIS structure that may be imported into a simulation environment for testing
with the actual process. Figure 6.5 illustrates the control system design.

6.4 � EXPERIMENT

We designed two experiments to validate our control system framework using
a fuzzy controller. As in the previous chapter’s experiments, our first experiment
was performed in a fully synthetic simulation environment. The second experiment
involved switching the plant with the actual rendering process.

FIGURE 6.3  (See colour insert.) ANFIS editor graphical user interface in Simulink/MATLAB.

89Model-Less Control

The fuzzy rule-set used in these experiments is shown in Table 6.1. The selection
of an appropriate membership function is non-automatic and we begin with a generic
non-linear segment of a parabolic curve. The next step is testing the fuzzy controller with
the actual rendering process over several iterations to ensure that both the gradient of the
selected range and membership enrollment (curve) functions are suitable to perform
the tracking function correctly. The membership functions are shown in Figure 6.6.

FIGURE 6.4  (See colour insert.) Neural network model structure in ANFIS.

Trim point
4.4e4 gives 380fps

4.4e4

To Workspace2

RefVsOutputTo Workspace

InputToPlant

To Plant

In1

In2

Switch

Subtract

+
–

Reference

370

Plant Output vs
Reference

Fuzzy Logic
Controller

From Plant

Out1
Out2
Out3 Error

Control
Output

Add

+
+

Feedback FPS

Plant Output

Feedback Input

FIGURE 6.5  Using ANFIS for controlling real-time rendering process.

90 Real-Time Rendering

The fps_error fuzzy variable is set at ±40 FPS from the operating point of 400
FPS while the vertex_count variable is set at ±4,000 vertices. The fuzzy control
system follows the design in Figure 6.7.

All experiments were run on a desktop computer with an Intel Core 2 Quad CPU
at 3 GHz, with 8 GB of main memory and NVIDIA GeForce GT 320 graphics
processor hardware (4 GB video memory) on a 64-bit Windows 7 operating system.
The fuzzy logic toolbox was used to generate the fuzzy inference system and fuzzy
controller design.

−40 −30 −20 −10 0
fpserr

10 20 30 40

0

0.2

0.4

0.6

0.8

1

D
eg

re
e o

f M
em

be
rs

hi
p

abovehigh belowhigh
Input Membership Functions

abovehigh
belowhigh

(a)

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

Output Membership Functions

Vertex Count

D
eg

re
e o

f M
em

be
rs

hi
p

increasehigh decreasehighincreasehigh
decreasehigh

(b)

FIGURE 6.6  Input and output membership functions.

91Model-Less Control

6.5 � RESULTS

6.5.1 �S imulation

Figures 6.8 and 6.9 show results from both parts of the experiment using a fuzzy
controller to track frame rate level changes. In both scenarios, the controller was
capable of varying the input to the plant so that its output followed the reference level
closely. However, the fuzzy controller took longer to perform this task as indicated
by the output response times in both parts of this experiment.

6.5.2 �F uzzy Control System with Rendering Process

In the second experiment, the rendering process was allowed to stabilise at 400 FPS
before the new reference level of 370 FPS was set as shown in Figure 6.10. The fuzzy

y

Trim point
4.4e4 gives 380fps

− scaled value is −1.7e4

−1.7e4

To Workspace1

simin

To
Workspace

simout
SubtractReference

+
–

410

Idmodel

arx222

Fuzzy Logic
Controller

Error

Control Output

Add

+
+

FIGURE 6.7  Fuzzy logic control system.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
×104

350
360
370
380
390
400

Frame

Fr
am

e R
at

e (
FP

S)

Simulated Input and Output of Rendering Process

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
×104

−1.8
−1.75

−1.7
−1.65

−1.6
−1.55

×104

Frame

Sc
al

ed
 C

on
tr

ol
 In

pu
t

(V
er

tic
es

)

Output

Input

FIGURE 6.8  Reference tracking using fuzzy controller (high to low).

92 Real-Time Rendering

logic controller was able to reduce the frame rate after adjusting the load of the ren-
dering process. This adjustment took place over approximately 9,000 frames with an
observable error of about 3 FPS.

In Figure 6.11, the frame rate increases from 370 FPS to a target of 400 FPS.
Again, the fuzzy logic controller can reduce the load and track the new reference

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
×104

360

370

380

390

400

Frame

Fr
am

e R
at

e (
FP

S)
Simulated Input and Output of Rendering Process

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
×104

−1.85
−1.8

−1.75
−1.7

−1.65
−1.6

×104

Frame

Sc
al

ed
 C

on
tr

ol
 In

pu
t

(V
er

tic
es

)

Output

Input

FIGURE 6.9  Reference tracking using fuzzy controller (low to high).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×105

×105

360

370

380

390

400

410

Frame

Fr
am

e R
at

e (
FP

S)

Measured Input and Output of Rendering Process

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.35

4.4

4.45

4.5

4.55
×104

Frame

N
um

be
r o

f V
er

tic
es

Input

Measured output
Reference

FIGURE 6.10  Reference tracking using fuzzy controller (to lower FPS).

93Model-Less Control

frame rate with an approximate error of 5 FPS. The response for this action takes
approximately 4,000 frames—fewer than required by the previous control action.
However, in terms of tracking accuracy, the error can be observed as slightly
larger than the one shown in Figure 6.10. In both figures, some fluctuations of
input to the rendering process are observed. This can be explained by the scaling
computation used in the control framework and the resolution of the computer
program data structures.

In addition to comparing differences in controller designs, another objective of
using the ANFIS controller was to determine its robustness for handling variations
in user-defined references. Figure 6.12 depicts examples of such variations. Note
that the variations may span over an operating point or zone where the rendering
process may be approximated by a linear model. The ability of the ANFIS controller
to maintain the plant output close to the changing reference levels in such a scenario
indicates that it is inherently capable of controlling non-linear rendering processes.

6.6 � DISCUSSION

Figure 6.11 indicates that the rendering process output tracks the user set reference
only after a short delay. This can be explained by the experiment set-up involving
network communication. Since the plant and controller communicate via a network
connection, transport delays arising when data are sent between the plant and the
controller are expected.

While such delays are minimised via an isolated network infrastructure, it should
be noted that data transport within computer systems is not instantaneous. Such

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×105

370

380

390

400

Frame

Fr
am

e R
at

e (
FP

S)
Measured Input and Output of Rendering Process

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×105

4.32

4.34

4.36

4.38

4.4

4.42
×104

Frame

N
um

be
r o

f V
er

tic
es

Input

Reference
Measured output

FIGURE 6.11  Reference tracking using fuzzy controller (to higher FPS).

94 Real-Time Rendering

delays could be caused by different CPU utilisation and wait states or transports
between memory storage locations.

The impact of delay on a control system should not affect a system’s ability to
track user-defined performance targets noticeably. If a delay does affect the overall
effectiveness of a control system, its effect should be modelled as part of the system
as well. A detailed investigation into the intricacies of delay is beyond the scope of
this book. Our experiment yielded satisfactory results and further work on more
elaborate distributed control systems may further extend this research.

6.7 � CONCLUSION

The focus of this chapter is controlling real-time rendering via a model-less approach
defined as no need for devising a formal mathematical representation of a rendering
process plant model by which a rigorous system identification procedure is to be
carried out. We provided a framework for model-less control of real-time rendering
using a conventional fuzzy controller and adaptive neuro-fuzzy inference system.

The experiments showed that both techniques are capable of yielding good results
without plant models. More importantly, we demonstrated that a model-less control
framework can be extended to support a wider operating range where non-linear
characteristics of the rendering process may appear.

0 2 4 6 8 10 12 14 16
×104

355

360

365

370

375

380

385

390

395

400

405

Frame

Fr
am

e R
at

e (
FP

S)
Measured Output vs User Reference Levels

Reference
Measured output

FIGURE 6.12  Continuous reference tracking using ANFIS controller.

95

7 Applications, Challenges,
and Possibilities

In this chapter, we examine further the details of the implementation of control tech-
nology for computer graphics introduced in this book. The objective is to provide
insights into practical aspects of designing such systems that we believe will allow
this book to serve as a useful resource to practitioners in the control engineering and
computer graphics fields.

7.1 � SYSTEM ARCHITECTURES

The plant and controller system architecture described throughout this book may be
realised in several forms, depending on the application and performance require-
ments. We classify the forms in broad terms into three categories:

	 A.	Plant and controller in the same computer in the same process (different
execution threads)

	 B.	Plant and controller in the same computer and in separate processes
	 C.	Plant and controller in separate computers

As a quick primer, a process in computer programming terminology is the execution
of an instance of an application. A thread is a single path of execution within a pro-
cess. In addition, a process (essentially an application) can spawn and use multiple
threads. Since a process can consist of multiple threads, a thread is commonly clas-
sified as a lightweight process. Often, the essential differentiating point between a
thread and a process is the nature of the task assigned to be accomplished.

Traditionally, developers use threads for smaller and specialised tasks such as net-
work communication and to achieve parallelism in application design. In contrast,
processes are used for heavyweight tasks and involve broader scopes encompassing
most other subtasks of an application. Another important fact is that threads within
the same process share the same memory address space, whereas processes do not.
This implies faster execution for threads because it allows them to read from and write
to the same data structures, facilitating speedier communications between them.

In Configuration A, the controller is built into the rendering application. With this
architecture, the implementation of the controller’s design must follow the program-
ming language by which the rendering application is developed. In other words, the
developer must use the same programming language as the rendering application
to code the controller. Since the plant and controller are compiled and built into the
same binary, this configuration provides fast speed for runtime execution.

96 Real-Time Rendering

However, this configuration also demands separation of the plant and controller
into different execution threads because the rendering process must run asynchro-
nously and in tandem with the controller thread. A common mistake in structuring
the code is to have the controller implemented in the same process. The results may
be significantly slower frame rates due to hogging of CPU time by the controller
when it shares a CPU time slice with the plant.

In Configuration B, the plant and controller execute as separate process within
the same machine. A simple illustration is the use of two applications to realise this
architecture, for example, using a specialised controller application that can com-
municate with the rendering application in real time. This is usually done via inter-
process or network communications within the local computer.

Since rendering processes vary in complexity and computational requirements,
Configuration C provides a system architecture that decouples the plant and controller.
This means that the controller can execute properly even if the plant computer is
not suitable for running run both processes. Furthermore, Configuration C allows
the control system to run without subjecting each process to the limitations of the
underlying operating system (e.g., application window handling) and helps minimise
the effects of kernel process disturbances on the control system. We conducted the
experiments described in this chapter using Configuration C because:

•	 The controller was designed and simulated in Simulink®/MATLAB® and
run as part of the main Simulink/MATLAB application.

•	 Due to development practices, MATLAB provided several useful graph-
ing windows for debugging and performance monitoring. Configuration B
could not be adopted because the Windows operating system does not sup-
port multiple visible windows with equal CPU usage priority—at least not
with MATLAB application windows and our rendering application. Using
Configuration B for our control system implementation would have kept the
controller or plant from running properly.

•	 By using separate and dedicated computers for the controller and plant, we
circumvented the above problems.

A noteworthy point at this juncture is that our conduct of experiments using
Configuration C does not suggest that the other two configurations are not useful.
The adoption of any configuration depends on the system designer’s choice of the
optimal way to devise a control system based on application requirements, nature of
system, components to be used, and time and effort available.

Figure 7.1 is a timing diagram of our plant (rendering) application. Note that a
thread is created for network communication at the beginning of the application
and kept running until the end of the application’s life. The intent is to prevent the
fetching and sending of data from and to a remote computer from bogging down
the main rendering process. After the application initialises all required resources,
the network communication thread works with the main process rendering loop at
every frame to ensure that the control action is parsed and put into effect as needed.
In addition, the controller also receives feedback information—essentially the frame
rate from the plant for processing.

97Applications, Challenges, and Possibilities

7.1.1 �S oftware Design

One key requirement for implementing a control system involving a real-time ren-
dering application is that code level access is a primary task for the system to achieve
the following:

	 1.	A form of interprocess or shared memory communication can be established
between the rendering application and the controller.

	 2.	 Input and output data points from selected variables can be tapped.
	 3.	A form of rendering load control can be implemented.

Figure 7.2 shows a high-level componentised view of the rendering application used in
the experiments in this chapter. In addition to the main rendering components, other

Main Process

Instantiate local
memory for
variables()

Create network
Send/Receive threads

Create device
rendering and
I/O callback

functions

Receive: network listen
Send: send data (output)

Initialize application
and create rendering

window

Frame rate

Main rendering
loop

Rendering input
changes

Network
Processes

FIGURE 7.1  The timing diagram of the rendering application used in the control system.

98 Real-Time Rendering

essential software modules include the network communication and level-of-detail
(LoD) control blocks. LoD blocks are just example and may well be replaced with
other blocks capable of varying the rendering load to alter system output.

The layered structure of the design in Figure 7.2 illustrates a service-oriented
approach; each layer makes use of the service offered by the layer below it. While the
network communication and LoD changer blocks interact with the main application
(real-time rendering process), the main application makes use of the rendering API
residing in the operating system. Furthermore, the rendering API then utilises the
computer hardware to perform the final rendering functions that lead to the genera-
tion of visible pixels on a display device.

To exemplify the application design shown in Figures 7.1 and 7.2, we draw a
direct reference to this architecture with the C++ code of the application used in
Experiment 3 in Section 3.6.3 (see also Annex A). The following correspondences to
the architecture are highlighted:

	 1.	Two threads instead of one, each dedicated to sending data and receiv-
ing data from the network as shown by SendDataThreadFunction and
ReceiveDataThreadFunction.

	 2.	The LoD changer block is synonymous with SetTriangleCount, SetShader-
Complexity, and SetNumVertices functions.

	 3.	The application makes use of the DirectX-rendering API to provide
hardware-accelerated rendering in real time.

Possible architectural abstractions—So far, we described implementation
designs for the controller at the application level, that is, the controller is in either
process or thread form. Despite this, it is certainly possible to have different abstrac-
tions for the implementation of the controller:

	 1.	The controller may be implemented as an API for users to integrate directly
into their existing real-time rendering application.

	 2.	The controller may be integrated into the LoD function in rendering
applications. The appeal of this implementation is that the user has no
need to handle programming interfaces; the control mechanism is fully
automated. One possibility is to have the controller deeply embedded in
short programs that are loaded into the graphics processor during run-
time [1].

Network
Communication LoD Changer Application (“Plant”)

Rendering API

Hardware

FIGURE 7.2  (See colour insert.) The high-level design of the rendering application.

99Applications, Challenges, and Possibilities

7.2 � SOFTWARE AND HARDWARE
PERFORMANCE CONSIDERATIONS

The process of establishing a valid control system for a real-time rendering applica-
tion requires special attention beginning from data collection and pre-processing
and proceeding to system level moderation. We provide a list of the key hardware
and software considerations below.

7.2.1 �D ata Integrity

When a non-real-time operating system is used, it is inevitable for kernel processes
to introduce disturbance to the rendering system output. Consequently, the data col-
lected for system identification may contain spikes and occasional data points that do
not follow the trend of the change in data direction. If such data are used for system
identification directly, the result would be greater difficulty in deriving an accurate
system model. Therefore, it is imperative to use a number of de-noising, filtering, and
de-trending tools to preprocess data before the system identification step.

7.2.2 � Plant–Controller Communication Latency

When network communication is involved as it is in Configurations B and C
(described in Section 7.1), it is important to consider the network latency that may
arise from closed-loop feedback data movement. For Configuration B, even if the
interprocess communication is handled via a loop-back network communication, the
latency would be negligible because of the local network hardware. In contrast, this
assumption deviates more with Configuration C because of real data routing latency
across network switches and other physical media. To minimise latency, the set-up
should include a high-speed switch and local area isolated network. This arrange-
ment was used in all our experiments.

From a software implementation perspective, the selected communication proto-
col plays an important role in system performance. In typical network communica-
tion arrangements the transmission control protocol (TCP) or universal datagram
protocol (UDP) may be used. Configuration B would demonstrate a negligible differ-
ence between these options since performance is largely driven by hardware.

However, this is not true for systems using Configuration C. If the network con-
necting the plant and controller cannot be isolated for certain reasons, it would be
better to use TCP as the mode of communication because it guarantees lossless
delivery. Conversely, if a network is unlikely to be congested, UDP can be a good
choice because it provides better speed.

7.2.3 �D ata Structures and Handling

For optimised transmission efficiency, it is always advantageous to use simple data
structures. Complex data structures should be avoided to prevent data marshalling
issues that may arise due to incompatibility in machine-specific hardware. Also, it is
a good practice to utilise a single network communication channel for sending and

100 Real-Time Rendering

one for receiving data as much as possible so that CPU utilisation and contextual
switch overhead are optimised.

For performance reasons, data should be sent only when a change occurs. This
latch-on technique allows both the plant and controller to run more efficiently with-
out the need to waste CPU processing time or face network latency as long as the last
sent or received value is valid.

Finally, data trim points are critical and necessary because they prevent spikes in
data value due to conversion or other errors from destabilising the control system.
If they are not implemented, the rendering process may produce unexpected out-
comes such as substantial fluctuations in frame rates due to erroneous computation
by the controller.

7.2.4 �C omplexity of Control Algorithm

As described in Chapters 5 and 6, a number of control strategies may be adopted and
a system designer has the prerogative to select the best candidate based on applica-
tion requirements. Nevertheless, it is important to consider the complexity of the
selected control algorithm because the time taken for a compute cycle of this algo-
rithm may be excessively long and thus affect the effectiveness of the control system.

The same control algorithm may require a different computing time because of
the software environment on which it runs. For example, the controller operated
in the Simulink/MATLAB environment is somewhat slower than a controller con-
verted to an executable binary targeted to run in a real-time environment.

7.3 � APPLICATIONS OF RENDERING CONTROL SYSTEMS

The benefits of applying control engineering in real-time computer graphics render-
ing were mentioned earlier. In this section, a list of application domains will allow
readers to understand and appreciate the spectrum of usage with this technology.
While this list embodies the broad categories of real-time rendering applications, the
technology is certainly not limited by the list.

Computer-aided design and manufacturing (CAD and CAM)—The 3D data
sets used in this application domain represent a huge market. The introduction of a
control system for such applications will allow users to view data sets even on mobile
devices that require little computing power. This application can increase productiv-
ity and improve communication when data are moved around.

Computer games and virtual communication—The 3D virtual communica-
tion market is growing in the education and corporate services segments. As social
networking continues to grow, 3D interactive applications such as games and virtual
worlds remain key proponents to online communications. We see the integration of
control techniques in real-time rendering as a technology that improves the quality
of service of such network communications.

Virtual reality (VR)—These applications aim to create realistic virtual environ-
ment that resembles the real world. These applications include product and medical
visualisation, scientific uses, military simulation, technical training and support, and
3D sales and marketing software. With increasing demand for higher returns on

101Applications, Challenges, and Possibilities

investments for real-time rendering applications, the technology described in this
book can address this requirement by delivering consistent performance in various
application settings.

Mixed reality (MR) and rich media—The Internet has evolved into a rich-media
communication channel in recent years. Mixed reality (MR) applications blend both
virtual and real objects together to create believable and informative worlds. The
confluence of these subjects has generated interesting applications and products that
require some form of interactive 3D rendering.

A key advantage offered by the control-assisted rendering technology described
in this book offers is the deployment of these types of applications over a wide range
of computer platforms and human–computer interfaces.

7.3.1 �E xtension of Control System Framework

Control engineering principles have been widely adopted around the world.
Control techniques have been adopted across a spectrum of applications includ-
ing flight dynamics, temperature control, and mechanical systems. We believe the
modelling and control system framework described in this book can be extended
beyond real-time polygonal rendering (surface shading) to other forms of rendering
such as:

Volume rendering [10]
Image-based rendering [61]
Real-time transcoding and compression of video streams [62,63]

7.4 � CONVERGENCE WITH FUTURE TECHNOLOGY

Key technology innovation in recent years created several interesting and promising
opportunities for control engineering with real-time computer graphics rendering.
We provide a summary of the advances and their future prospects below.

7.4.1 �G reater Computing Parallelism

The advent of the graphical processing unit (GPU) impelled the quality of real-time
computer graphics to progress by leaps and bounds. Today it is typical for a com-
puter to have both a CPU and a GPU dedicated to graphics related task processing.
From a control system architectural perspective, this provides a straightforward path
to mapping of a controller to the CPU and a plant to the GPU. The benefit of the
arrangement is more robust parallel processing and stability in the control system.

7.4.2 �I ncreased Use of Mobile Devices

Decreasing manufacturing costs and sleeker hardware designs flooded the global
consumer market with portable and powerful mobile devices. The average time a
consumer spends using mobile devices has risen significantly as a result of technology
innovations and costs of ownership.

102 Real-Time Rendering

Nevertheless, these devices are still constrained by limited local storage space
and less powerful processors than those used in desktop systems. The widespread
use of mobile devices provides a tremendous opportunity for the installation of cer-
tain adaptive control mechanisms to improve the quality of service of applications.
This is an active field of research.

7.4.3 � Vast Improvements in Internet Infrastructure

As the availability of high-speed Internet connection increases globally, the com-
munication overheads of computers and devices reduce correspondingly. In control
system design, this implies significant reductions in latency for closed-loop feedback
communications. The improvements represented by Configuration C discussed in
Section 7.1 may lead to scalable control system architectures to be implemented
across networks and physical locations.

7.5 � ECONOMIC AND PRODUCTIVITY IMPACTS

While the technicalities of integrating control engineering with real-time computing
have been presented extensively in this book, we feel that the economic and pro-
ductivity impacts should be emphasised as well. In broad terms and drawing from
experiences in industrial fields where control engineering played a significant part,
we provide a brief summary below.

7.5.1 �E nhanced Product Lifespan

As data requirements grow rapidly, hardware processing power may not be able to
keep pace in many situations. To illustrate, CAD and CAM applications utilise 3D
object data extensively. However, an investment in a computer system may yield
decreasing productivity as data size scales.

By using adaptive control techniques with level-of-detail management, the work
scope of a computer can be expanded significantly, thus prolonging its life as a
productive tool. Furthermore, a lengthened product life allows a system to remain
useful over a longer period, thus allowing better cost amortisation and lowering the
total cost of ownership of computer graphics systems.

7.5.2 �I ncreased Productivity

The increasing complexity of designs of many products requires exchanges of design
information among various stakeholders in the production pipeline. The advantage
of virtual prototyping is that early analysis and insights derived from such activities
can help engineers understand the potential pitfalls and test various ideas without
incurring the high costs of producing physical prototypes.

In addition to enhanced product lifespan, another benefit is the increased pro-
ductivity resulting from better use of controlled systems in general. For example,
without adaptive real-time rendering, a user would waste precious time generating
images. This problem becomes especially acute when real-time visualisation is an

103Applications, Challenges, and Possibilities

integral part of a design and/or manufacturing process. The introduction of a control
mechanism can alleviate the display frame rate latency issue and help users become
more productive. A direct benefit is a shorter time to market for a product that helps
businesses better respond to changing market conditions.

7.5.3 �N ew Products and Markets

Recent market research and trends indicate that the digital media industry is growing
at a phenomenal rate.* The forecast remains very positive, driven largely by stronger
economies and great demand for digital content around the world. Interactive
real-time rendering applications that form a substantial part of digital continue will
continue remain relevant for many years.

We believe the technology proposed in this book can lead to many new products
that address the needs of various segments of the digital media market. From a
socioeconomical perspective, the technology may generate employment and service
businesses. It is our hope that adaptive control will serve as a critical component of
real-time rendering in the near future.

*	 3D CAD Software Market in the APAC Region 2011–2015. http://www.technavio.com/content/3d-
cad-software-market-apac-region-2011-2015. Gartner Forecast: Enterprise Software Markets World-
wide 2008–2013, 1Q09 http://www.gartner.com/DisplayDocument?ref=g_search&id=913424&subref
=simplesearch

105

8 Conclusion

8.1 � PERFORMANCE ANALYSIS

In this section, we provide a qualitative and quantitative analysis on the experiment
results of previous research in comparison to that from our proposed framework.
The analysis is primarily based on three characteristics of the rendering perfor-
mance—the frame rate stability, transient response and adaptive tracking capability.

Prior to discussing the analysis, it is known generally that the performance of
different techniques is best compared by applying them in the same test data-set
or environment. However, this cannot be easily accomplished in this research
because we are not simply comparing an improvement to an existing technique or
algorithm but introducing, establishing and validating a novel rendering architec-
ture. First, the subject matter deals with a 3D rendering approach (polygon-based)
which is vastly different compared with other techniques such as image-based and
volumetric rendering. This means that the rendering setup and data format cannot
be shared or used across the platforms. Second, apart from software configuration
certain research spanning interactive 3D rendering techniques surveyed in this book
relies on specialized hardware [69,82,85,91] or they work on distributed environ-
ments [61,62,67,72] which contrasts greatly with our rendering framework’s setup.
Therefore we deem the comparison to be adequate by referencing the qualitative
and quantitative differences (frame rate stability, transient response and adaptive
tracking capability) between the experiment results from previous research and
our work.

8.1.1 �F rame Rate Stability

One of the key qualitative metric considered in this research which is important in
real-time 3D rendering is frame rate stability. A stable frame rate does not only bring
about steady visual display that allows positive user experience, it also carries the
benefit of optimised resource usage. This can lead to more effective utilisation of
the computer’s processor cycles compared to a “best-effort” technique that does not
guarantee a stable frame rate.

From Figure 8.1, it is evident that Pouderoux and Marvie’s technique of stream-
ing 3D terrain data using strip masks [78] did not generate persistently stable frame
rates. Gobbetti and Bouvier’s multi-resolution technique [88] to control frame rate
produces very coarse results as shown in Figure 8.2. The lack of strong adherence
to target frame rates is probably most apparent in Jeschke et al.’s [77] research on
using imposters as a means to improve frame rates. It is evident from the experiment
data as shown in Figure 8.3 that this type of approach is not adaptive in nature and it

106 Real-Time Rendering

ascribes to the “best-effort” design. Paravati et al.’s [66] adaptive control system did
not deliver stable frame rates as well as shown in Figure 8.4 rather the depicted frame
rates bear an oscillatory behavior after some steady-state equilibrium.

From a quantitative perspective, all the aforementioned research produced errors
in frame rates of more 100% from the target value.

For the purpose of comparison and clarity, we reproduce Figure 5.12 and 5.13
below as Figures 8.5 and 8.6. It can be seen that our proposed modelling and control
framework creates absolutely stable frame rates with less than 3% error.

8.1.2 �T ransient Response

The transient response of a 3D rendering application refers to the quality of its transi-
tion as the frame rate changes from one steady-state level to another typically due to
changing performance objective. This quality is particularly important at low frame

120

120

100

100

80

80

60

60

60

40

40

40

20

20

20
0

0 10 30 50
Time (seconds)

6040200 10 30 50

Time (seconds)

700

600

500

400

300

200

100

0 0

FPS
Target FPS

Polygons

Fp
s

1000

750

500

250

0

Ki
lo

 tr
ia

ng
le

s
Ki

lo
 b

yt
es

Ti
le

s a
m

ou
nt

Downloadings
Loaded tiles

Rendered tiles

FIGURE 8.1  Experiment results from Pouderoux and Marvie’s research [78].

107Conclusion

M
ea

su
re

d
t(d

isp
la

y)

M
ea

su
re

d
t(fr

am
e)

Pr
ed

ic
te

d
t(fr

am
e)

M
ea

su
re

d
t(o

pt
im

iz
e)

t(d
es

ire
d)

t(o
pt

im
iz

e)
Pr

ed
ic

te
d

t(c
ul

l)

15
0

12
5

10
0 75 50 25 0

Time

A
C

Fr
am

e

FI
G

U
R

E
8.

2 
E

xp
er

im
en

t r
es

ul
ts

 f
ro

m
 G

ob
be

tt
i a

nd
 B

ou
vi

er
’s

 m
ul

ti
-r

es
ol

ut
io

n
te

ch
ni

qu
e

[8
8]

.

108 Real-Time Rendering

rate transitions because it can severely affect the user experience due to the “display
stuttering” that occurs. With reference to the diagrams in Figure 8.7, Zheng et al.
[76] showed in their experiment results that their algorithm in handling distributed
rendering produces frame rate accuracies close to the targets. This is however done
with bumpy transitions and as depicted in the diagram on the left, there are even
oscillations after an initial steady-state.

In contrast to the results shown in Figure 8.7, our fuzzy controller system produces
tracking with improved transitions as shown in Figures 5.12, 5.13 (now Figures 8.5
and 8.6) and 6.11 in Chapter 6. There are no sporadic oscillations with large ampli-
tude after the output attains a steady-state level.

8.1.3 �A daptive Tracking Capability

While research in interactive 3D rendering purports accurate tracking to a perfor-
mance objective, what is often not presented is the ability of the technique to adapt to
changing performance objectives. We illustrate a practical example where an appli-
cation that may draw considerable computer hardware processing power can benefit
from a longer run-time if the display frame rate can be adaptively changed according

60

55

50

45

0

5

10

15

30

25

20

35

40

1 401 801 1201 1601 2001 2401
Frame

Without impostor

30ms (1 MB)

25ms (2 MB)

20ms (6 MB)

15ms (18 MB)

10ms (103 MB)

Env. maps (233 MB)

Fr
am

e t
im

e (
m

s)

FIGURE 8.3  Experiment results from Jeschke et al.’s approach [77] with usage of imposters.

109Conclusion

(a
) a

da
pt

at
io

n
to

 ch
an

gi
ng

 n
et

w
or

k
co

nd
iti

on
s

(b
) a

da
pt

at
io

n
to

 ch
an

gi
ng

 ta
rg

et
 fr

am
e r

at
e

FI
G

U
R

E
8.

4 
E

xp
er

im
en

t r
es

ul
ts

 f
ro

m
 P

ar
av

at
i e

t a
l’s

 a
da

pt
iv

e
co

nt
ro

l t
ec

hn
iq

ue
 [6

6]
.

110 Real-Time Rendering

to power levels. For instance, it can start with a default 60 FPS when power is full
and change progressively until it reaches 20 FPS at very low power levels. A mecha-
nism like this enhances the usability of the application across a wide operating range
but calls for a technique that is robust and flexible enough to support it.

Figure 8.8 shows Li and Shen’s research output in time-critical multi-resolution
volume rendering [80]. Their algorithm improves the quality of the output which

420
410
400
390
380
370
360
350

1.22 1.225 1.23 1.235
Frame

Simulated Input and Output of Rendering Process

1.24 1.245 1.25

Fr
am

e R
at

e (
FP

S)

–1.5

–2

–2.5

–3

–3.5

–4
1.22 1.225 1.23 1.235

Frame
1.24 1.245 1.25

×105

×105

×104

Sc
al

ed
 C

on
tr

ol
 In

pu
t (

Ve
rt

ic
es

)

FIGURE 8.6  Reference tracking using PID controller (low to high).

FIGURE 8.5  Screenshot of application in our experiment.

111Conclusion

Se
qu

en
tia

l m
et

ho
d

Pa
ra

lle
l m

et
ho

d
Se

qu
en

tia
l m

et
ho

d
Pa

ra
lle

l m
et

ho
d

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0

0.
07

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01 0

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0

(a
)

(b
)

Fr
am

es
0

20
40

60
80

10
0

12
0

14
0

16
0

18
0

Fr
am

es

Frames time(s)

Frames time(s)

FI
G

U
R

E
8.

7 
E

xp
er

im
en

t r
es

ul
ts

 f
ro

m
 Z

he
ng

 e
t a

l’s
 w

or
k

on
 r

en
de

ri
ng

 la
rg

e
3D

 m
od

el
s

on
li

ne
.

112 Real-Time Rendering

16 14 12 10 8 6 4
0

50
15

0
20

0
Fr

am
es

0
50

15
0

20
0

Fr
am

es
(c

)
Fe

ed
ba

ck
 al

go
rit

hm
(d

)
O

ur
 al

go
rit

hm

Frames rate

16 14 12 10 8 6 4

Frames rate

FI
G

U
R

E
8.

8 
E

xp
er

im
en

t r
es

ul
ts

 f
ro

m
 L

i a
nd

 S
he

n’
s

re
se

ar
ch

 [1
0]

 o
n

ti
m

e-
cr

iti
ca

l m
ul

ti-
re

so
lu

tio
n

vo
lu

m
e

re
nd

er
in

g
us

in
g

3D
 te

xt
ur

e
m

ap
pi

ng
 h

ar
dw

ar
e.

113Conclusion

uses the feedback algorithm. However, it only presents to the reader a single frame
rate objective.

Similarly, the experiment results from Yoon et al’s work [81] on interactive
view-dependent rendering of massive models show improved frame rates but only
with oscillations and unstable frame rates. There is no depiction in Figure 8.9 of any
adaptive capability in handling discrete frame rate level changes.

Another example that shows frame rate improvement is found in Figure 8.10 from
Scherzer, Yang, and Mattausch’s research [69] on exploiting temporal coherence
in real-time rendering. The output from their technique is compared against other
approaches but there is no information on the technique’s handling of frame rate
level transitions and the corresponding transient response.

Our proposed control system for 3D rendering however produces fast and direct
transitions from one steady-state transition to another as shown in Figure 6.12 in
Chapter 6. The small amount of delay in the tracking is due to the implementation of
the controller and plant which involves network communication.

8.2 � SUMMARY

In this book, we described an intelligent real-time rendering system based on our
research in the fields of control engineering, system identification, and real-time
computer graphics. We introduced a novel control system framework using a
closed-loop feedback design with the rendering process—the plant to be controlled.
The salient areas of this research were the detailed process steps for deriving system
models for the real-time rendering process. The techniques were not discussed in
previous research. We devised models that can capture both linear and non-linear
characteristics of the rendering process.

VDR with Occlusion Culling20

15

10

5

0
0 50 100 150 200 250 300

Frame number

VDR without Occlusion Culling

1/
Fr

am
e t

im
e (

=f
ps

)

FIGURE 8.9  Quick-VDR: Interactive View-Dependent Rendering of Massive Models,
Yoon et al. [81].

114 Real-Time Rendering

Furthermore, we investigated and developed control frameworks using model-based
and model-less approaches for real-time rendering. The frameworks discussed apply
to conventional PID controls for linear processes, piecewise linear controls, and the
use of soft computing techniques such as neuro-fuzzy control for setting up systems
without formal model definitions.

Our experiments show that it is possible to model real-time rendering accurately.
We performed further experiments that validated the performance of our control
system utilising both PID and fuzzy controllers in different arrangements.

8.3 � FUTURE WORK

We hope our research will inspire appreciation for and wider adoption of theoretic
controls for computer graphics applications. Based on the initial objectives we set
and met in our research, we hope that future work that may generate interest in some
related topics.

First, a global geometry manager for rendering software would be desirable for
handling 3D scenes involving many different objects. More specifically, a managing
device could resemble the common hierarchical scene graph by which objects and
sub-objects are organised in a contextually meaningful manner. The function of this
geometry manager is to provide better resolution control for the geometry load of
a 3D scene by determining which objects must scaled appropriately based on their
geometric constructs.

Time (ms)
12

11

10

9

8

7

6

5

4

3

2

1
800 900 1000 1100 1200 1300

Frame

VFC

CHC

NOHC

CHC++

FIGURE 8.10  Experiment results from Scherzer, Yang, and Mattausch’s [69] research on
exploiting temporal coherence in real-time rendering.

115Conclusion

Certain visual-based criteria may serve as guidelines determining the extent to
which individual 3D objects should be scaled. In other words, the manager will act
as a “middle man” between the control action and the rendering process, distribut-
ing the effects of the control action in an elegant way to change individual objects
within the 3D scene. This would extend the utility of the proposed control system
framework to a larger pool of applications.

The next possible extension to this research is investigating other input variables
to the plant that may be used in the control system framework. Although it may be
difficult to find many variables that are easily accessible from the rendering pipeline
and able to be changed at reasonable resolution rates, it may be possible to introduce
certain user-defined input parameters specific to certain applications. For example
instead of computer graphics rendering pipeline inputs, the control system frame-
work may include hardware-related resources such as memory and CPU utilisation
that can impact rendering process performance. Also, recent advancements in com-
puter graphics hardware and techniques may expose new input variables that may be
considered in future control system frameworks.

The experiments we conducted focused largely on verification of the key con-
cepts of introducing control principles in real-time computer graphics rendering. As
a result, the simulation environment construct was performed using available test
software. For practical applications, generic libraries should be developed so that inte-
gration into different real-time rendering software can be achieved easily. However,
this proposal can involve significant time for code verification and optimisation of
runtime efficiency.

117

Annex A: Sample Applications

A.1 � OVERVIEW

The functionalities of the two sample applications used in the experiments described
in this book are detailed below. They were used as the main rendering processes that
were modified for implementation of a closed-loop feedback control system.

A.2 � PROGRESSIVEMESH SAMPLE*

This ProgressiveMesh sample shows how an application can use the D3DX progres-
sive mesh functionality to simplify meshes for faster rendering. It is a specialised mesh
object that can increase or decrease its geometry complexity, thereby providing flex-
ibility when drawing a mesh so that performance can be maintained at a steady level.
This feature is useful when providing LoD support. (Note: The simplification algorithm
used to generate progressive meshes is based on Hugues Hoppe’s Siggraph papers.)

A.3 � HOW SAMPLE WORKS

The functionalities of progressive meshes are provided by ID3DXPMesh. The mesh
interface is similar to ID3DXMesh with additional methods for managing complex-
ity. To generate a progressive mesh, call D3DXGeneratePMesh. The progressive
mesh can be used just like a regular mesh. To render it, a sample loops through its
materials and calls ID3DXBaseMesh::DrawSubset to send the geometry subset to
the device. To adjust the level of detail (LoD) of the progressive mesh, the sample
calls ID3DXPMesh::SetNumVertices and passes it the desired number of vertices.
A progressive mesh will simplify or enhance its geometry to match the number of
vertices as closely as possible.

The sample also shows an optimisation technique for progressive meshes by
trimming multiple meshes. Trimming limits the maximum and minimum num-
ber of vertices or faces a progressive mesh can have. The sample divides the range
(maximum to minimum) of the progressive mesh vertices into ten sub-ranges. After
the sub-ranges are computed, the sample creates ten progressive meshes by calling
ID3DXPMesh::ClonePMeshFVF on the original mesh. Then the sample calls
ID3DXPMesh::TrimByVertices on each progressive mesh using a different sub-range.

After setting the range of vertices, the sample calls ID3DXPMesh::Optimize
BaseLOD to optimise the mesh vertex and index buffers. When a user changes the
vertex count, the new vertex count is checked against the range of the optimised
progressive mesh set, and the mesh whose range contains the desired vertex count is
selected by calling ID3DXPMesh::SetNumVertices.

*	 Documentation reproduced from Microsoft DirectX SDK 2009.

118 Annex A

The advantage of multiple meshes over a single mesh is that adjusting LoD is
more efficient. The performance load of changing LoD is directly proportional
to the difference in complexity (represented by vertex count in this sample).
Simplifying a mesh by reducing the number of vertices by 10 takes less time than
reducing the vertex count by 100. That is why this sample achieves better perfor-
mance by trimming several progressive meshes, each of which covers a smaller
LoD range.

A.4 � TESSELLATION SAMPLE*

This sample demonstrates mesh tessellation in Microsoft Direct3D. Mesh tessel-
lation subdivides mesh triangles to yield a mesh with finer geometry details that
produces better results even with per-vertex lighting. Mesh tessellation is often used
to implement LoD where meshes closer to the viewer are rendered with more details
and more distant meshes are rendered with less detail.

A.5 � HOW SAMPLE WORKS

The sample can run in one of two modes: hardware or software tessellation. The
user can set the tessellation level to different values and see how the mesh changes
in reaction to the level adjustment.

When running in hardware tessellation mode, the sample tessellates the mesh by
setting the Device.NPatchMode property that sets the number of tessellation seg-
ments into which the device will tessellate each mesh segment. For instance, speci-
fying 3.0 will cause each original segment in the input mesh to be tessellated into
three segments. Tessellation happens in real-time, after the mesh draw calls in the
render loop.

When running in software tessellation mode, the sample does not rely on the
hardware to handle on-the-fly tessellation. The sample must process the mesh and
obtain the desired detail level before rendering it. The code achieves this by calling
Mesh.TessellateNPatches to take an input mesh and a segment count and then output
another mesh that represents the tessellated version of the input mesh. The sample
can then render this tessellated mesh using any standard mechanism.

A.6 � SAMPLES
//———
//Program modified by Gabriyel Wong from EnhancedMesh example from
//Microsoft DirectX 9 SDK
//Additional components added: network communication, tessellation and
//rendering quality controls.
//Author: Gabriyel Wong
//Original code copyrights Microsoft.
//———

*	 Documentation reproduced from Microsoft DirectX SDK 2009.

119Annex A

#include “DXUT.h”
#include “DXUTcamera.h”
#include “DXUTsettingsdlg.h”
#include “SDKmisc.h”
#include “resource.h”
#include “skybox.h”
#include “XNet.h”
#include <iostream>
#include <fstream>
#include <time.h>

//#define DEBUG_VS //Uncomment this line to debug vertex shaders
//#define DEBUG_PS //Uncomment this line to debug pixel shaders

#define NUM_TONEMAP_TEXTURES	 5	 //Number of stages in the 3x3
down-scaling of average luminance
textures

#define NUM_BLOOM_TEXTURES	 2
#define RGB16_MAX	 100

enum ENCODING_MODE
{
	 FP16,
	 FP32,
	 RGB16,
	 RGBE8,
	 NUM_ENCODING_MODES
};

enum RENDER_MODE
{
	 DECODED,
	 RGB_ENCODED,
	 ALPHA_ENCODED,
	 NUM_RENDER_MODES
};

struct TECH_HANDLES
{
	 D3DXHANDLE XRay;
	 D3DXHANDLE SimpleLighting;
	 D3DXHANDLE SpecularLighting;
	 D3DXHANDLE ToonEffect;
	 D3DXHANDLE Reflect;
	 D3DXHANDLE ReflectSpecular;
};

struct SCREEN_VERTEX
{
	 D3DXVECTOR4 pos;
	 D3DXVECTOR2 tex;
	 static const DWORD FVF;
};

const DWORD SCREEN_VERTEX::FVF = D3DFVF_XYZRHW | D3DFVF_TEX1;

120 Annex A

//———
//Global variables
//———
IDirect3DDevice9*	 g_pd3dDevice;		 //Direct3D device
LPCWSTR	 g_Models[6] = {	L”Models\\dragon.x”,
		 L”Models\\engine.x”,
		 L”Models\\audi.x”,
		 L”Models\\skull.x”};
DWORD	 g_ModelCount = 6;
DWORD	 g_DwShaderFlags = 0;
DWORD	 g_CurrentModel = 0;
CSkybox	 g_Skybox;
ID3DXFont*	 g_pFont = NULL;	 //Font for drawing text
ID3DXSprite*	 g_pTextSprite = NULL;	//Sprite for batching draw

text calls
ID3DXEffect*	 g_pEffect = NULL;	 //D3DX effect interface
CModelViewerCamera	 g_Camera;	 //A model viewing camera
IDirect3DTexture9*	 g_pDefaultTex = NULL;	//Default texture for

texture-less material
bool	 g_bShowHelp = true;	 //If true, it renders the UI

control text
CDXUTDialogResourceManager g_DialogResourceManager;//manager for

shared resources of dialogs
CD3DSettingsDlg	 g_SettingsDlg;	 //Device settings dialog
CDXUTDialog	 g_HUD;	 //dialog for standard

controls
CDXUTDialog	 g_SampleUI;	 //dialog for sample specific

controls
ID3DXMesh*	 g_pMeshSysMem = NULL;	//system memory version of

mesh, lives through
resise’s

ID3DXMesh*	 g_pMeshEnhanced = NULL;	//vid mem version of mesh
that is enhanced

UINT	 g_dwNumSegs = 1;	 //number of segments per edge
(tesselation level)

D3DXMATERIAL*	 g_pMaterials = NULL;	 //pointer to material info in
m_pbufMaterials

LPDIRECT3DTEXTURE9*	g_ppTextures = NULL;	 //array of textures, entries
are NULL if no texture
specified

DWORD	 g_dwNumMaterials = NULL;	 //number of materials
D3DXVECTOR3	 g_vObjectCenter;	 //Center of bounding sphere

of object
FLOAT	 g_fObjectRadius;	 //Radius of bounding sphere

of object
D3DXMATRIXA16	 g_mCenterWorld;	 //World matrix to center the

mesh
ID3DXBuffer*	 g_pbufMaterials = NULL;	//contains both the

materials data and the
filename strings

ID3DXBuffer*	 g_pbufAdjacency = NULL;	//Contains the adjacency
info loaded with the mesh

bool	 g_bUseHWNPatches = true;
bool	 g_bWireframe = false;
PDIRECT3DSURFACE9	 g_pMSRT = NULL;	 //Multi-Sample float render

target

121Annex A

PDIRECT3DSURFACE9	 g_pMSDS = NULL;	 //Depth Stencil surface for
the float RT

LPDIRECT3DTEXTURE9	 g_pTexRender;	 //Render target texture
LPDIRECT3DTEXTURE9	 g_pTexBrightPass;	 //Bright pass filter
LPD3DXMESH	 g_pMesh;
LPDIRECT3DTEXTURE9	 g_apTexToneMap[NUM_TONEMAP_TEXTURES]; //Tone

mapping calculation
textures

LPDIRECT3DTEXTURE9	 g_apTexBloom[NUM_BLOOM_TEXTURES]; //Blooming
effect intermediate texture

bool	 g_bBloom;	 //Bloom effect on/off
ENCODING_MODE	 g_eEncodingMode;
RENDER_MODE	 g_eRenderMode;
TECH_HANDLES	 g_aTechHandles;
TECH_HANDLES*	 g_pCurTechnique;
bool	 g_bShowText;
double	 g_aPowsOfTwo[257];	 //Lookup table for log

calculations
bool	 g_bSupportsR16F = false;
bool	 g_bSupportsR32F = false;
bool	 g_bSupportsD16 = false;
bool	 g_bSupportsD32 = false;
bool	 g_bSupportsD24X8 = false;
bool	 g_bUseMultiSample = false; //True when using

multisampling on a
supported back buffer

D3DMULTISAMPLE_TYPE	g_MaxMultiSampleType = D3DMULTISAMPLE_NONE;
		 //Non-Zero when g_

bUseMultiSample is true
DWORD	 g_dwMultiSampleQuality = 0;
		 //Used when we have

multisampling on a
backbuffer

IDirect3DCubeTexture9* g_pCubeTexture = NULL;
int	 g_CurrentCubeTexture = 1;
LPCWSTR	 g_CubeTextures[16] = {	L”Light Probes\\street.dds”, L”Street”,
		 L”Light Probes\\castle.dds”, L”Castle”,
		 L”Light Probes\\park.dds”, L”Park”,
		 L”Light Probes\\night.dds”, L”Night”,
		 //L”Light Probes\\ParkLow.dds”, L”Park

Low”,
		 //L”Light Probes\\Park.dds”, L”Park

High”,
		 //L”Light Probes\\CreekLow.dds”,

L”Creek Low”,
		 //L”Light Probes\\VasaLow.dds”, L”Vasa

Low”,
		 //L”Light Probes\\Vasa.dds”, L”Vasa

High”
};

float	 g_fModelReflectivity = 0.75f;
CHAR*	 g_Techniques[] = {“XRay”, “SimpleLighting”,
“SpecularLighting”, “ToonEffect”, “Reflect”, “ReflectSpecular”,};
LPCWSTR	 g_TechniqueNames[] = {L”X-Ray”, L”Diffuse Lighting”,
L”Specular Lighting”, L”Toon Effect”,
L”Reflection + Diffuse”, L”Reflection + Specular”};

122 Annex A

int	 g_CurrentTechnique = 0;
int	 g_OriginalNumFaces = 0;

//———
//UI control IDs
//———
#define IDC_TOGGLEFULLSCREEN	 1
#define IDC_TOGGLEREF	 3
#define IDC_CHANGEDEVICE	 4
#define IDC_FILLMODE	 5
#define IDC_SEGMENTLABEL	 6
#define IDC_SEGMENT	 7
#define IDC_HWNPATCHES	 8
#define IDC_CUBETEXTURELABEL	 9
#define IDC_CUBETEXTURE	 10
#define IDC_MODELREFLECTIVITYLABEL	 11
#define IDC_MODELREFLECTIVITY	 12
#define IDC_ACTIVEEFFECTLABEL	 13
#define IDC_ACTIVEEFFECT	 14

//———
//Forward declarations
//———
bool CALLBACK IsDeviceAcceptable(D3DCAPS9* pCaps, D3DFORMAT
AdapterFormat, D3DFORMAT BackBufferFormat, bool bWindowed,
void* pUserContext);
bool CALLBACK ModifyDeviceSettings(DXUTDeviceSettings*
pDeviceSettings, void* pUserContext);
HRESULT CALLBACK OnCreateDevice(IDirect3DDevice9* pd3dDevice, const
D3DSURFACE_DESC* pBackBufferSurfaceDesc,
void* pUserContext);
HRESULT CALLBACK OnResetDevice(IDirect3DDevice9* pd3dDevice, const
D3DSURFACE_DESC* pBackBufferSurfaceDesc,
void* pUserContext);
void CALLBACK OnFrameMove(double fTime, float fElapsedTime, void*
pUserContext);
void CALLBACK OnFrameRender(IDirect3DDevice9* pd3dDevice, double
fTime, float fElapsedTime, void* pUserContext);
LRESULT CALLBACK MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam, bool* pbNoFurtherProcessing, void* pUserContext);
void CALLBACK KeyboardProc(UINT nChar, bool bKeyDown, bool bAltDown,
void* pUserContext);
void CALLBACK OnGUIEvent(UINT nEvent, int nControlID, CDXUTControl*
pControl, void* pUserContext);
void CALLBACK OnLostDevice(void* pUserContext);
void CALLBACK OnDestroyDevice(void* pUserContext);

void InitApp();
HRESULT LoadMesh(IDirect3DDevice9* pd3dDevice, WCHAR* strFileName,
ID3DXMesh** ppMesh);
void RenderText();
HRESULT GenerateEnhancedMesh(IDirect3DDevice9* pd3dDevice, UINT
cNewNumSegs);

//Use compile symbol NETWORK_CONTROL to set network configuration
#ifdef NETWORK_CONTROL

123Annex A

//Threading info
#define MAX_THREADS 2
#define BUF_SIZE 255

DWORD WINAPI SendDataThreadFunction(LPVOID lpParam);
DWORD WINAPI ReceiveDataThreadFunction(LPVOID lpParam);

void ErrorHandler(LPTSTR lpszFunction);

//Sample custom data structure for threads to use.
//This is passed by void pointer so it can be any data type
//that can be passed using a single void pointer (LPVOID).
typedef struct MyData {
	 int val1;
	 int val2;
} MYDATA, *PMYDATA;

MyDataStruct ds, dr;

DWORD WINAPI SendDataThreadFunction(LPVOID lpParam)
{
		 XNet* xnet = new XNet();
		 xnet->init(CLIENT, 64000, UDP, “localhost”);
		 while(1) //Keep the thread alive
		 {
			 xnet->sendData(ds);
			 printf(“SendDataThreadFunction:%f\n”, ds.data[0]);
		 }
	 return 0;
}

DWORD WINAPI ReceiveDataThreadFunction(LPVOID lpParam)
{
		 XNet* xnet = new XNet();
		 xnet->init(SERVER, 64001, UDP);
		 while(1) //Keep the thread alive
		 {
			 dr.data[0] = xnet->receiveData().data[0];
			 dr.data[1] = xnet->receiveData().data[1];
		 }
	 return 0;
}

PMYDATA	 pDataArray[MAX_THREADS];
DWORD	 dwThreadIdArray[MAX_THREADS];
HANDLE	 hThreadArray[MAX_THREADS];
#endif

std::ofstream logfile;
//———
//Entry point to the program. Initialises everything and goes into a
//message processing loop. Idle time is used to render the scene.
//———
int main(void)
{
	 logfile.open (“data.log”);
	 long startTime = time(NULL);

124 Annex A

#ifdef NETWORK_CONTROL
	 //Since rendering application is C++, and the system is SISO/MISO,
	 // there is only one data channel to send back to controller, i.e. y.
	 //Note data type and container size.
	 ds.data[0] = 999;	 //Initialization value
	 ds.data[1] = 999;

	 //Clear receive buffer
	 dr.data[0] = 999;
	 dr.data[1] = 999;

	 for(int i = 0; i<MAX_THREADS; i++)
	 {
		 //Allocate memory for thread data.
		 pDataArray[i] = (PMYDATA) HeapAlloc(GetProcessHeap(),
HEAP_ZERO_MEMORY, sizeof(MYDATA));

		 if(pDataArray[i] = = NULL)
		 {
			 //If the array allocation fails, the system is out of memory
			 //so there is no point in trying to print an error message.
			 //Just terminate execution.
				 ExitProcess(2);
		 }

		 //0 - Send, 1 - Receive
		 if (i = = 0)
		 {
			 hThreadArray[i] = CreateThread(
				 NULL,	 //default security attributes
				 0,	 //use default stack size
				 SendDataThreadFunction,	 //thread function name
				 pDataArray[i],	 //argument to thread function
				 0,	 //use default creation flags
				 &dwThreadIdArray[i]);	 //returns the thread identifier
		 }

		 if (i = = 1)
		 {
			 hThreadArray[1] = CreateThread(
				 NULL,		 //default security attributes
				 0,		 //use default stack size
				 ReceiveDataThreadFunction,	 //thread function name
				 pDataArray[1],	 //argument to thread function
				 0,		 //use default creation flags
				 &dwThreadIdArray[1]);	 //returns the thread identifier
		 }

		 //Check the return value for success.
		 //If CreateThread fails, terminate execution.
		 //This will automatically clean up threads and memory.

		 if (hThreadArray[i] = = NULL)
		 {
				 printf(“Error creating thread...!\n”);
			 ExitProcess(3);
		 }

125Annex A

	 }//End of main thread creation loop.

	 //Wait until all threads have terminated.
	 WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);

	 //Close all thread handles and free memory allocations.
	 for(int i = 0; i<MAX_THREADS; i++)
	 {
		 CloseHandle(hThreadArray[i]);
		 if(pDataArray[i] ! = NULL)
		 {
			 HeapFree(GetProcessHeap(), 0, pDataArray[i]);
			 pDataArray[i] = NULL; //Ensure address is not reused.
		 }
	 }
#endif

	 //Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
	 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

	 //Set the callback functions
	 DXUTSetCallbackD3D9DeviceAcceptable(IsDeviceAcceptable);
	 DXUTSetCallbackD3D9DeviceCreated(OnCreateDevice);
	 DXUTSetCallbackD3D9DeviceReset(OnResetDevice);
	 DXUTSetCallbackD3D9FrameRender(OnFrameRender);
	 DXUTSetCallbackD3D9DeviceLost(OnLostDevice);
	 DXUTSetCallbackD3D9DeviceDestroyed(OnDestroyDevice);
	 DXUTSetCallbackMsgProc(MsgProc);
	 DXUTSetCallbackKeyboard(KeyboardProc);
	 DXUTSetCallbackFrameMove(OnFrameMove);
	 DXUTSetCallbackDeviceChanging(ModifyDeviceSettings);

	 //Initialize DXUT and create the desired Win32 window and Direct3D
	 //device for the application
	 DXUTSetCursorSettings(true, true);//Show the cursor and clip it when
in full screen
	 InitApp();
	 DXUTInit(true, true);//Parse the command line and show msgboxes
	 DXUTSetHotkeyHandling(true, true, true); //handle the default
hotkeys
	 DXUTCreateWindow(L”Enhanced Mesh - N-Patches”);
	 DXUTCreateDevice(true, 1366, 768);
	 DXUTMainLoop();

	 //Perform any application-level cleanup here. Direct3D device
	 //resources are released within the appropriate callback functions
	 //and therefore don’t require any cleanup code here.

		 logfile << “Duration(sec): “ << time(NULL) - startTime << std::endl;
		 logfile.close();
	 return DXUTGetExitCode();
}

126 Annex A

//———
//Initialize the app
//———
void InitApp()
{
	 g_pFont = NULL;
	 g_pEffect = NULL;
	 g_bShowHelp = true;
	 g_bShowText = true;

	 g_pMesh = NULL;
	 g_pTexRender = NULL;

	 g_bBloom = TRUE;
	 g_eEncodingMode = RGBE8;
	 g_eRenderMode = DECODED;

	 g_pCurTechnique = &g_aTechHandles;

	 for(int i = 0; i < = 256; i++)
	 {
		 g_aPowsOfTwo[i] = powf(2.0f, (float)(i - 128));
	 }

	 ZeroMemory(g_apTexToneMap, sizeof(g_apTexToneMap));
	 ZeroMemory(g_apTexBloom, sizeof(g_apTexBloom));
	 //ZeroMemory(g_aTechHandles, sizeof(g_aTechHandles));

	 //Initialize dialogs
	 g_SettingsDlg.Init(&g_DialogResourceManager);
	 g_HUD.Init(&g_DialogResourceManager);
	 g_SampleUI.Init(&g_DialogResourceManager);

	 g_HUD.SetCallback(OnGUIEvent); int iY = 10;
	 g_HUD.AddButton(IDC_TOGGLEFULLSCREEN, L”Toggle full screen”, 35, iY,
125, 22);
	 g_HUD.AddButton(IDC_TOGGLEREF, L”Toggle REF (F3)”, 35, iY + = 24,
125, 22);
	 g_HUD.AddButton(IDC_CHANGEDEVICE, L”Change device (F2)”, 35, iY + =
24, 125, 22, VK_F2);

	 g_SampleUI.SetCallback(OnGUIEvent); iY = 10;
	 g_SampleUI.AddComboBox(IDC_FILLMODE, 10, iY, 150, 24, L’F’);
	 g_SampleUI.GetComboBox(IDC_FILLMODE)->AddItem(L”(F)illmode: Solid”,
(void*)0);
	 g_SampleUI.GetComboBox(IDC_FILLMODE)->AddItem(L”(F)illmode:
Wireframe”, (void*)1);
	 g_SampleUI.AddStatic(IDC_SEGMENTLABEL, L”Number of segments: 1”, 10,
iY + = 30, 150, 16);
	 g_SampleUI.AddSlider(IDC_SEGMENT, 10, iY + = 14, 150, 24, 1, 10, 1);
	 g_SampleUI.AddCheckBox(IDC_HWNPATCHES, L”Use hardware N-patches”,
10, iY + = 26, 150, 20, true, L’H’);

		 g_SampleUI.AddStatic(IDC_CUBETEXTURELABEL, L”Skymap Texture:”,
10, iY + = 26, 150, 16);
		 g_SampleUI.AddComboBox(IDC_CUBETEXTURE, 10, iY + = 14, 150, 24);

127Annex A

		 for(int i = 1; i < 16; i + = 2)
		 {
			 g_SampleUI.GetComboBox(IDC_CUBETEXTURE)->
AddItem(g_CubeTextures[i], (void*)i);
		 }

		 g_SampleUI.AddStatic(IDC_MODELREFLECTIVITYLABEL, L”Model
Reflectivity : 30”, 10, iY + = 35, 150, 16);
		 g_SampleUI.AddSlider(IDC_MODELREFLECTIVITY, 10, iY + = 14, 150,
24, 0, 100, 30);
		 g_SampleUI.AddStatic(IDC_ACTIVEEFFECTLABEL, L”Active Shader”, 10,
iY + = 26, 150, 16);
		 g_SampleUI.AddComboBox(IDC_ACTIVEEFFECT, -10, iY + = 14, 170, 24);
		 for(int i = 0; i < 6; ++i)
		 {
			 g_SampleUI.GetComboBox(IDC_ACTIVEEFFECT)->
AddItem(g_TechniqueNames[i], (void*)i);
		 }
}

//———
//Rejects any D3D9 devices that aren’t acceptable to the app by
//returning false
//———
bool CALLBACK IsDeviceAcceptable(D3DCAPS9* pCaps, D3DFORMAT
AdapterFormat, D3DFORMAT BackBufferFormat, bool bWindowed, void*
pUserContext)
{
	 //Skip backbuffer formats that don’t support alpha blending
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 if(FAILED(pD3D->CheckDeviceFormat(pCaps->AdapterOrdinal,
pCaps->DeviceType, AdapterFormat, D3DUSAGE_QUERY_POSTPIXELSHADER_
BLENDING, D3DRTYPE_TEXTURE, BackBufferFormat)))
		 return false;

	 //Must support pixel shader 2.0
	 if(pCaps->PixelShaderVersion < D3DPS_VERSION(2, 0))
		 return false;

	 return true;
}

//———
//Before a device is created, modify the device settings as needed
//———
bool CALLBACK ModifyDeviceSettings(DXUTDeviceSettings*
pDeviceSettings, void* pUserContext)
{
	 assert(DXUT_D3D9_DEVICE = = pDeviceSettings->ver);

	 HRESULT hr;
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 D3DCAPS9 caps;

	 V(pD3D->GetDeviceCaps(pDeviceSettings->d3d9.AdapterOrdinal,
pDeviceSettings->d3d9.DeviceType, &caps));

128 Annex A

	 //Turn vsync off
	 pDeviceSettings->d3d9.pp.PresentationInterval =
D3DPRESENT_INTERVAL_IMMEDIATE;
	 g_SettingsDlg.GetDialogControl()->
GetComboBox(DXUTSETTINGSDLG_PRESENT_INTERVAL)->SetEnabled(false);

	 //If device doesn’t support HW T&L or doesn’t support 1.1 vertex
	 //shaders in HW then switch to SWVP.
	 if((caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) = = 0 ||
		 caps.VertexShaderVersion < D3DVS_VERSION(1, 1))
	 {
		 pDeviceSettings->d3d9.BehaviourFlags =
D3DCREATE_SOFTWARE_VERTEXPROCESSING;
	 }

	 //Debugging vertex shaders requires either REF or software vertex
	 //processing and debugging pixel shaders requires REF.
#ifdef DEBUG_VS
	 if(pDeviceSettings->d3d9.DeviceType ! = D3DDEVTYPE_REF)
	 {
		 pDeviceSettings->d3d9.BehaviourFlags & =
~D3DCREATE_HARDWARE_VERTEXPROCESSING;
		 pDeviceSettings->d3d9.BehaviourFlags & = ~D3DCREATE_PUREDEVICE;
		 pDeviceSettings->d3d9.BehaviourFlags | =
D3DCREATE_SOFTWARE_VERTEXPROCESSING;
	 }
#endif
#ifdef DEBUG_PS
	 pDeviceSettings->d3d9.DeviceType = D3DDEVTYPE_REF;
#endif
	 //For the first device created if its a REF device, optionally
	 //display a warning dialog box
	 static bool s_bFirstTime = true;
	 if(s_bFirstTime)
	 {
		 s_bFirstTime = false;
		 if(pDeviceSettings->d3d9.DeviceType = = D3DDEVTYPE_REF)
			 DXUTDisplaySwitchingToREFWarning(pDeviceSettings->ver);
	 }

	 return true;
}

//———
//Generate a mesh that can be tesselated.
//———
HRESULT GenerateEnhancedMesh(IDirect3DDevice9* pd3dDevice, UINT
dwNewNumSegs)
{
	 LPD3DXMESH pMeshEnhancedSysMem = NULL;
	 LPD3DXMESH pMeshTemp;
	 HRESULT hr;

	 if(g_pMeshSysMem = = NULL)
		 return S_OK;

129Annex A

	 //if using hw, just copy the mesh
	 if(g_bUseHWNPatches)
	 {
		 hr = g_pMeshSysMem->CloneMeshFVF(D3DXMESH_WRITEONLY |
D3DXMESH_NPATCHES | (g_pMeshSysMem->GetOptions() & D3DXMESH_32BIT),
g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
		 if(FAILED(hr))
			 return hr;
	 }
	 else //Tesselate the mesh in software
	 {
		 //Create an enhanced version of the mesh, will be in sysmem since
		 //source is
		 hr = D3DXTessellateNPatches(g_pMeshSysMem, (DWORD*)g_
pbufAdjacency->GetBufferPointer(), (float)dwNewNumSegs, FALSE,
&pMeshEnhancedSysMem, NULL);
		 if(FAILED(hr))
		 {
			 //If the tessellate failed, there might have been more
			 //triangles or vertices than can fit into a 16bit mesh,
			 //so try cloning to 32bit before tessellation

			 hr = g_pMeshSysMem->CloneMeshFVF(D3DXMESH_SYSTEMMEM |
D3DXMESH_32BIT, g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
			 if(FAILED(hr))
				 return hr;

			 hr = D3DXTessellateNPatches(pMeshTemp,
(DWORD*)g_pbufAdjacency->GetBufferPointer(), (float)dwNewNumSegs, FALSE,
&pMeshEnhancedSysMem, NULL);
			 if(FAILED(hr))
			 {
				 pMeshTemp->Release();
				 return hr;
			 }
			 pMeshTemp->Release();
		 }

		 //Make a video memory version of the mesh
		 //Only set WRITEONLY if it doesn’t use 32bit indices, because
		 //those often need to be emulated, which means that D3DX needs
		 //read-access.
		 DWORD dwMeshEnhancedFlags = pMeshEnhancedSysMem->GetOptions() &
D3DXMESH_32BIT;
		 if((dwMeshEnhancedFlags & D3DXMESH_32BIT) = = 0)
			 dwMeshEnhancedFlags | = D3DXMESH_WRITEONLY;
		 hr = pMeshEnhancedSysMem->CloneMeshFVF(dwMeshEnhancedFlags,
g_pMeshSysMem->GetFVF(), pd3dDevice, &pMeshTemp);
		 if(FAILED(hr))
		 {
			 SAFE_RELEASE(pMeshEnhancedSysMem);
			 return hr;
		 }

		 //Latch in the enhanced mesh
		 SAFE_RELEASE(pMeshEnhancedSysMem);
	 }

130 Annex A

	 SAFE_RELEASE(g_pMeshEnhanced);
	 g_pMeshEnhanced = pMeshTemp;
	 g_dwNumSegs = dwNewNumSegs;

	 return S_OK;
}

HRESULT LoadEffect(IDirect3DDevice9* pd3dDevice, LPCWSTR effect)
{
		 HRESULT hr;

		 SAFE_RELEASE(g_pEffect);

		 //Read the D3DX effect file
	 WCHAR str[MAX_PATH];
	 V_RETURN(DXUTFindDXSDKMediaFileCch(str, MAX_PATH, effect));

	 //If this fails, there should be debug output as to
	 //they the.fx file failed to compile
	 V_RETURN(D3DXCreateEffectFromFile(pd3dDevice, str, NULL, NULL,
g_DwShaderFlags, NULL, &g_pEffect, NULL));
		 return S_OK;
}

HRESULT LoadMesh(IDirect3DDevice9* pd3dDevice, DWORD meshIndex)
{
	 HRESULT hr;
	 WCHAR wszMeshDir[MAX_PATH];
	 WCHAR wszWorkingDir[MAX_PATH];
	 IDirect3DVertexBuffer9* pVB = NULL;

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
		 SAFE_RELEASE(g_ppTextures[i]);
	 SAFE_DELETE_ARRAY(g_ppTextures);
	 SAFE_RELEASE(g_pMeshSysMem);
	 SAFE_RELEASE(g_pbufMaterials);
	 SAFE_RELEASE(g_pbufAdjacency);
		 SAFE_RELEASE(g_pMeshEnhanced);

	 //Load the mesh
		 V_RETURN(DXUTFindDXSDKMediaFileCch(wszMeshDir, MAX_PATH,
g_Models[meshIndex]));
	 V_RETURN(D3DXLoadMeshFromX(wszMeshDir, D3DXMESH_SYSTEMMEM,
pd3dDevice, &g_pbufAdjacency, &g_pbufMaterials, NULL,
&g_dwNumMaterials, &g_pMeshSysMem));
		 g_OriginalNumFaces = g_pMeshSysMem->GetNumFaces();
	 //Initialize the mesh directory string
	 WCHAR* pwszLastBSlash = wcsrchr(wszMeshDir, L’\\’);
	 if(pwszLastBSlash)
		 *pwszLastBSlash = L’\0’;
	 else
		 StringCchCopyW(wszMeshDir, MAX_PATH, L”.”);

	 //Lock the vertex buffer, to generate a simple bounding sphere
	 hr = g_pMeshSysMem->GetVertexBuffer(&pVB);
	 if(FAILED(hr))
		 return hr;

131Annex A

	 void* pVertices = NULL;
	 hr = pVB->Lock(0, 0, &pVertices, 0);
	 if(FAILED(hr))
	 {
		 SAFE_RELEASE(pVB);
		 return hr;
	 }

	 hr = D3DXComputeBoundingSphere((D3DXVECTOR3*)pVertices,
g_pMeshSysMem->GetNumVertices(),
D3DXGetFVFVertexSize(g_pMeshSysMem->GetFVF()), &g_vObjectCenter,
&g_fObjectRadius);
	 pVB->Unlock();
	 SAFE_RELEASE(pVB);

	 if(FAILED(hr))
		 return hr;

	 if(0 = = g_dwNumMaterials)
		 return E_INVALIDARG;

	 D3DXMatrixTranslation(&g_mCenterWorld, -g_vObjectCenter.x,
-g_vObjectCenter.y, -g_vObjectCenter.z);

	 //Change the current directory to the.x’s directory so
	 //that the search can find the texture files.
	 GetCurrentDirectory(MAX_PATH, wszWorkingDir);
	 wszWorkingDir[MAX_PATH - 1] = L’\0’;
	 SetCurrentDirectory(wszMeshDir);

	 //Get the array of materials out of the returned buffer, allocate a
	 //texture array, and load the textures
	 g_pMaterials = (D3DXMATERIAL*)g_pbufMaterials->GetBufferPointer();
	 g_ppTextures = new LPDIRECT3DTEXTURE9[g_dwNumMaterials];

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
	 {
		 WCHAR strTexturePath[512] = L””;
		 WCHAR* wszName;
		 WCHAR wszBuf[MAX_PATH];
		 wszName = wszBuf;
		 MultiByteToWideChar(CP_ACP, 0, g_pMaterials[i].pTextureFilename, -1,
wszBuf, MAX_PATH);
		 wszBuf[MAX_PATH - 1] = L’\0’;
		 DXUTFindDXSDKMediaFileCch(strTexturePath, 512, wszName);
		 if(FAILED(D3DXCreateTextureFromFile(pd3dDevice, strTexturePath,
&g_ppTextures[i])))
			 g_ppTextures[i] = NULL;
	 }
	 SetCurrentDirectory(wszWorkingDir);

	 //Make sure there are normals, which are required for the
	 //tessellation enhancement.
	 if(!(g_pMeshSysMem->GetFVF() & D3DFVF_NORMAL))
	 {
		 ID3DXMesh* pTempMesh;

132 Annex A

		 V_RETURN(g_pMeshSysMem->CloneMeshFVF(g_pMeshSysMem->GetOptions(),
g_pMeshSysMem->GetFVF() | D3DFVF_NORMAL, pd3dDevice, &pTempMesh));
		 D3DXComputeNormals(pTempMesh, NULL);

		 SAFE_RELEASE(g_pMeshSysMem);
		 g_pMeshSysMem = pTempMesh;
		 }

		 V_RETURN(GenerateEnhancedMesh(pd3dDevice, g_dwNumSegs));

		 return S_OK;
}

bool SetTriangleCount(double k)
{
		 unsigned int segmentCount = (int)sqrt((float)k/
(float)g_OriginalNumFaces);
		 unsigned int targetFaceCount = 0;

		 unsigned int faceCount = g_OriginalNumFaces * (segmentCount *
segmentCount);
		 unsigned int faceCount2 = g_OriginalNumFaces * ((segmentCount + 1)
* (segmentCount + 1));

		 if (abs((int)(faceCount - k)) < abs((int)(faceCount2 - k)))
		 {
			 targetFaceCount = faceCount;
		 }
		 else
		 {
			 targetFaceCount = faceCount2;
		 }

		 g_dwNumSegs = (int)sqrt((float)targetFaceCount/(float)g_
OriginalNumFaces);

		 GenerateEnhancedMesh(g_pd3dDevice, g_dwNumSegs);

	 WCHAR wszBuf[256];
	 //StringCchPrintf(wszBuf, 256, L”Number of segments:%u”, g_dwNumSegs);
	 g_SampleUI.GetStatic(IDC_SEGMENTLABEL)->SetText(wszBuf);
		 g_SampleUI.GetSlider(IDC_SEGMENT)->SetValue(g_dwNumSegs);

		 return true;
}

bool SetShaderComplexity(double k)
{
		 unsigned int shaderlevel = (unsigned int)(k);
		 if (shaderlevel > 5)
			 return false;
		 g_CurrentTechnique = shaderlevel;
		 g_SampleUI.GetComboBox(IDC_ACTIVEEFFECT)->SetSelectedByData((void*)
shaderlevel);
		 return true;
}

133Annex A

void LoadCubeTexture(LPCWSTR FileName)
{
	 WCHAR strPath[MAX_PATH];
	 DXUTFindDXSDKMediaFileCch(strPath, MAX_PATH, FileName);

		 IDirect3DCubeTexture9* cubeTexture;

	 D3DXCreateCubeTextureFromFileEx(g_pd3dDevice, strPath, D3DX_DEFAULT,
1, 0, D3DFMT_A16B16G16R16F, D3DPOOL_MANAGED, D3DX_FILTER_NONE,
D3DX_FILTER_NONE, 0, NULL, NULL, &cubeTexture);

		 SAFE_RELEASE(g_pCubeTexture);

		 g_pCubeTexture = cubeTexture;
}

inline float GaussianDistribution(float x, float y, float rho)
{
	 float g = 1.0f/sqrtf(2.0f * D3DX_PI * rho * rho);
	 g * = expf(-(x * x + y * y)/(2 * rho * rho));

	 return g;
}

//Auxiliary helper functions
inline int log2_ceiling(float val)
{
	 int iMax = 256;
	 int iMin = 0;

	 while(iMax - iMin > 1)
	 {
		 int iMiddle = (iMax + iMin)/2;

		 if(val > g_aPowsOfTwo[iMiddle])
			 iMin = iMiddle;
		 else
			 iMax = iMiddle;
	 }

	 return iMax - 128;
}

inline VOID EncodeRGBE8(D3DXFLOAT16* pSrc, BYTE** ppDest)
{
	 FLOAT r, g, b;

	 r = (FLOAT)*(pSrc + 0);
	 g = (FLOAT)*(pSrc + 1);
	 b = (FLOAT)*(pSrc + 2);

	 //Determine the largest colour component
	 float maxComponent = max(max(r, g), b);

134 Annex A

	 //Round to the nearest integer exponent
	 int nExp = log2_ceiling(maxComponent);

	 //Divide the components by the shared exponent
	 FLOAT fDivisor = (FLOAT)g_aPowsOfTwo[nExp + 128];

	 r/= fDivisor;
	 g/= fDivisor;
	 b/= fDivisor;

	 //Constrain the colour components
	 r = max(0, min(1, r));
	 g = max(0, min(1, g));
	 b = max(0, min(1, b));

	 //Store the shared exponent in the alpha channel
	 D3DCOLOUR* pDestColour = (D3DCOLOUR*)*ppDest;
	 *pDestColour = D3DCOLOUR_RGBA((BYTE)(r * 255), (BYTE)(g * 255), (BYTE)
(b * 255), nExp + 128);
	 *ppDest + = sizeof(D3DCOLOUR);
}

//———
inline VOID EncodeRGB16(D3DXFLOAT16* pSrc, BYTE** ppDest)
{
	 FLOAT r, g, b;

	 r = (FLOAT)*(pSrc + 0);
	 g = (FLOAT)*(pSrc + 1);
	 b = (FLOAT)*(pSrc + 2);

	 //Divide the components by the multiplier
	 r/= RGB16_MAX;
	 g/= RGB16_MAX;
	 b/= RGB16_MAX;

	 //Constrain the colour components
	 r = max(0, min(1, r));
	 g = max(0, min(1, g));
	 b = max(0, min(1, b));

	 //Store
	 USHORT* pDestColour = (USHORT*)*ppDest;
	 *pDestColour++ = (USHORT)(r * 65535);
	 *pDestColour++ = (USHORT)(g * 65535);
	 *pDestColour++ = (USHORT)(b * 65535);

	 *ppDest + = sizeof(UINT64);
}

HRESULT RetrieveTechHandles()
{
	 DWORD dwNumTechniques = sizeof(TECH_HANDLES)/sizeof(D3DXHANDLE);

	 CHAR strBuffer[MAX_PATH] = {0};

	 D3DXHANDLE* pHandle = (D3DXHANDLE*)&g_aTechHandles;

135Annex A

	 for(UINT t = 0; t < dwNumTechniques; t++)
	 {
		 StringCchPrintfA(strBuffer, MAX_PATH - 1, “%s”, g_Techniques[t]);

		 *pHandle++ = g_pEffect->GetTechniqueByName(strBuffer);
	 }

	 return S_OK;
}

//———
//Create any D3D9 resources that will live through a device reset
//(D3DPOOL_MANAGED) and aren’t tied to the back buffer size
//———
HRESULT CALLBACK OnCreateDevice(IDirect3DDevice9* pd3dDevice, const
D3DSURFACE_DESC* pBackBufferSurfaceDesc, void* pUserContext)
{
	 HRESULT hr;

	 V_RETURN(g_DialogResourceManager.OnD3D9CreateDevice(pd3dDevice));
	 V_RETURN(g_SettingsDlg.OnD3D9CreateDevice(pd3dDevice));

	 g_pd3dDevice = pd3dDevice;

	 D3DCAPS9 d3dCaps;
	 pd3dDevice->GetDeviceCaps(&d3dCaps);
	 if(!(d3dCaps.DevCaps & D3DDEVCAPS_NPATCHES))
	 {
		 //No hardware support. Disable the checkbox.
		 g_bUseHWNPatches = false;
		 g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetChecked(false);
		 g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetEnabled(false);
	 }
	 else
		 g_SampleUI.GetCheckBox(IDC_HWNPATCHES)->SetEnabled(true);

	 //Initialize the font
	 V_RETURN(D3DXCreateFont(pd3dDevice, 15, 0, FW_BOLD, 1, FALSE,
DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, L”Arial”, &g_pFont));
	 g_DwShaderFlags = D3DXFX_NOT_CLONEABLE;
#if defined(DEBUG) || defined(_DEBUG)
		 g_DwShaderFlags | = D3DXSHADER_DEBUG;
	 #endif
#ifdef DEBUG_VS
		 g_DwShaderFlags | = D3DXSHADER_FORCE_VS_SOFTWARE_NOOPT;
	 #endif
#ifdef DEBUG_PS
		 g_DwShaderFlags | = D3DXSHADER_FORCE_PS_SOFTWARE_NOOPT;
	 #endif

		 V_RETURN(LoadMesh(pd3dDevice, g_CurrentModel));
		 V_RETURN(LoadEffect(pd3dDevice, L”EnhancedMesh.fx”));

	 RetrieveTechHandles();

136 Annex A

	 //Determine which encoding modes this device can support
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 DXUTDeviceSettings settings = DXUTGetDeviceSettings();

		 LoadCubeTexture(g_CubeTextures[0]);
	 V_RETURN(g_Skybox.OnCreateDevice(pd3dDevice, 50, g_pCubeTexture,
L”skybox.fx”));

	 //Create the 1x1 white default texture
	 V_RETURN(pd3dDevice->CreateTexture(1, 1, 1, 0, D3DFMT_A8R8G8B8,
D3DPOOL_MANAGED, &g_pDefaultTex, NULL));

	 D3DLOCKED_RECT lr;
	 V_RETURN(g_pDefaultTex->LockRect(0, &lr, NULL, 0));
	 *(LPDWORD)lr.pBits = D3DCOLOUR_RGBA(255, 255, 255, 255);
	 V_RETURN(g_pDefaultTex->UnlockRect(0));

	 //Setup the camera’s view parameters
	 D3DXVECTOR3 vecEye(0.0f, 0.0f, -5.0f);
	 D3DXVECTOR3 vecAt (0.0f, 0.0f, -0.0f);
	 g_Camera.SetViewParams(&vecEye, &vecAt);

	 return S_OK;
}

//———
//Create any D3D9 resources that won’t live through a device reset
//(D3DPOOL_DEFAULT) or that are tied to the back buffer size
//———
HRESULT CALLBACK OnResetDevice(IDirect3DDevice9* pd3dDevice,
const D3DSURFACE_DESC* pBackBufferSurfaceDesc, void* pUserContext)
{
	 HRESULT hr;
	 int i = 0;

	 V_RETURN(g_DialogResourceManager.OnD3D9ResetDevice());
	 V_RETURN(g_SettingsDlg.OnD3D9ResetDevice());

	 g_Skybox.OnResetDevice(pBackBufferSurfaceDesc);

	 if(g_pFont)
		 V_RETURN(g_pFont->OnResetDevice());
	 if(g_pEffect)
		 V_RETURN(g_pEffect->OnResetDevice());

	 D3DFORMAT fmt = D3DFMT_UNKNOWN;
	 switch(g_eEncodingMode)
	 {
		 case FP16:
			 fmt = D3DFMT_A16B16G16R16F; break;
		 case FP32:
			 fmt = D3DFMT_A16B16G16R16F; break;
		 case RGBE8:
			 fmt = D3DFMT_A8R8G8B8; break;
		 case RGB16:
			 fmt = D3DFMT_A16B16G16R16; break;
	 }

137Annex A

	 hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width,
pBackBufferSurfaceDesc->Height, 1, D3DUSAGE_RENDERTARGET, fmt,
D3DPOOL_DEFAULT, &g_pTexRender, NULL);
	 if(FAILED(hr))
		 return hr;

	 hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width/8,
pBackBufferSurfaceDesc->Height/8, 1, D3DUSAGE_RENDERTARGET,
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_pTexBrightPass, NULL);
	 if(FAILED(hr))
		 return hr;

	 //Determine whether we can and should support a multisampling on the
HDR render target
	 g_bUseMultiSample = false;
	 IDirect3D9* pD3D = DXUTGetD3D9Object();
	 if(!pD3D)
		 return E_FAIL;

	 DXUTDeviceSettings settings = DXUTGetDeviceSettings();

	 g_bSupportsD16 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal,
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D16)))
	 {
		 if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
fmt, D3DFMT_D16)))
		 {
			 g_bSupportsD16 = true;
		 }
	 }
	 g_bSupportsD32 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal,
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D32)))
	 {
		 if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
fmt, D3DFMT_D32)))
		 {
			 g_bSupportsD32 = true;
		 }
	 }
	 g_bSupportsD24X8 = false;
	 if(SUCCEEDED(pD3D->CheckDeviceFormat(settings.d3d9.AdapterOrdinal,
settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, D3DFMT_D24X8)))
	 {
		 if(SUCCEEDED(pD3D->CheckDepthStencilMatch(settings.d3d9.
AdapterOrdinal, settings.d3d9.DeviceType, settings.d3d9.AdapterFormat,
fmt, D3DFMT_D24X8)))
		 {
			 g_bSupportsD24X8 = true;
		 }
	 }

138 Annex A

	 D3DFORMAT dfmt = D3DFMT_UNKNOWN;
	 if(g_bSupportsD16)
		 dfmt = D3DFMT_D16;
	 else if(g_bSupportsD32)
		 dfmt = D3DFMT_D32;
	 else if(g_bSupportsD24X8)
		 dfmt = D3DFMT_D24X8;

	 if(dfmt ! = D3DFMT_UNKNOWN)
	 {
		 D3DCAPS9 Caps;
		 pd3dDevice->GetDeviceCaps(&Caps);

		 g_MaxMultiSampleType = D3DMULTISAMPLE_NONE;
		 for(D3DMULTISAMPLE_TYPE imst = D3DMULTISAMPLE_2_SAMPLES; imst < =
D3DMULTISAMPLE_16_SAMPLES;
			 imst = (D3DMULTISAMPLE_TYPE)(imst + 1))
		 {
			 DWORD msQuality = 0;
			 if(SUCCEEDED(pD3D->CheckDeviceMultiSampleType(Caps.AdapterOrdinal,
Caps.DeviceType, fmt, settings.d3d9.pp.Windowed, imst, &msQuality)))
			 {
				 g_bUseMultiSample = true;
				 g_MaxMultiSampleType = imst;
				 if(msQuality > 0)
					 g_dwMultiSampleQuality = msQuality - 1;
				 else
					 g_dwMultiSampleQuality = msQuality;
			 }
		 }

		 //Create the Multi-Sample floating point render target
		 if(g_bUseMultiSample)
		 {
			 const D3DSURFACE_DESC* pBackBufferDesc =
DXUTGetD3D9BackBufferSurfaceDesc();
			 hr = g_pd3dDevice->CreateRenderTarget(pBackBufferDesc->Width,
pBackBufferDesc->Height, fmt, g_MaxMultiSampleType,
g_dwMultiSampleQuality, FALSE, &g_pMSRT, NULL);
			 if(FAILED(hr))
				 g_bUseMultiSample = false;
			 else
			 {
				 hr = g_pd3dDevice->CreateDepthStencilSurface(pBackBufferD
esc->Width, pBackBufferDesc->Height, dfmt, g_MaxMultiSampleType,
g_dwMultiSampleQuality, TRUE, &g_pMSDS, NULL);
				 if(FAILED(hr))
				 {
					 g_bUseMultiSample = false;
					 SAFE_RELEASE(g_pMSRT);
				 }
			 }
		 }
	 }

139Annex A

	 //For each scale stage, create a texture to hold the intermediate
	 //results of the luminance calculation
	 int nSampleLen = 1;
	 for(i = 0; i < NUM_TONEMAP_TEXTURES; i++)
	 {
		 fmt = D3DFMT_UNKNOWN;
		 switch(g_eEncodingMode)
		 {
			 case FP16:
				 fmt = D3DFMT_R16F; break;
			 case FP32:
				 fmt = D3DFMT_R32F; break;
			 case RGBE8:
				 fmt = D3DFMT_A8R8G8B8; break;
			 case RGB16:
				 fmt = D3DFMT_A16B16G16R16; break;
		 }

		 hr = pd3dDevice->CreateTexture(nSampleLen, nSampleLen, 1,
D3DUSAGE_RENDERTARGET, fmt, D3DPOOL_DEFAULT, &g_apTexToneMap[i], NULL);
		 if(FAILED(hr))
			 return hr;

		 nSampleLen * = 3;
	 }

	 //Create the temporary blooming effect textures
	 for(i = 0; i < NUM_BLOOM_TEXTURES; i++)
	 {
		 hr = pd3dDevice->CreateTexture(pBackBufferSurfaceDesc->Width/8,
pBackBufferSurfaceDesc->Height/8, 1, D3DUSAGE_RENDERTARGET,
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_apTexBloom[i], NULL);
		 if(FAILED(hr))
			 return hr;
	 }

	 //Create a sprite to help batch calls when drawing many lines of text
	 V_RETURN(D3DXCreateSprite(pd3dDevice, &g_pTextSprite));

	 V_RETURN(GenerateEnhancedMesh(pd3dDevice, g_dwNumSegs));

	 if(g_bWireframe)
		 pd3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
	 else
		 pd3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);

	 //Setup the camera’s projection parameters
	 float fAspectRatio = pBackBufferSurfaceDesc->Width/(FLOAT)
pBackBufferSurfaceDesc->Height;
	 g_Camera.SetProjParams(D3DX_PI/4, fAspectRatio, 0.1f, 1000.0f);
	 g_Camera.SetWindow(pBackBufferSurfaceDesc->Width,
pBackBufferSurfaceDesc->Height);

	 g_HUD.SetLocation(pBackBufferSurfaceDesc->Width - 170, 0);
	 g_HUD.SetSize(170, 170);

140 Annex A

	 g_SampleUI.SetLocation(pBackBufferSurfaceDesc->Width - 170,
pBackBufferSurfaceDesc->Height - 350);
	 g_SampleUI.SetSize(170, 300);

	 return S_OK;
}

//———
//Handle updates to the scene. This is called regardless of which
//D3D API is used
//———
void CALLBACK OnFrameMove(double fTime, float fElapsedTime,
void* pUserContext)
{
	 IDirect3DDevice9* pd3dDevice = DXUTGetD3D9Device();

	 //Update the camera’s position based on user input
	 g_Camera.FrameMove(fElapsedTime);

	 pd3dDevice->SetTransform(D3DTS_WORLD, g_Camera.GetWorldMatrix());
	 pd3dDevice->SetTransform(D3DTS_VIEW, g_Camera.GetViewMatrix());

	 g_pEffect->SetValue(“g_vEyePt”, g_Camera.GetEyePt(),
sizeof(D3DXVECTOR3));
}

//———
//Render the scene using the D3D9 device
//———
void CALLBACK OnFrameRender(IDirect3DDevice9* pd3dDevice, double
fTime, float fElapsedTime, void* pUserContext)
{
	 //If the settings dialog is being shown, then
	 //render it instead of rendering the app’s scene
	 if(g_SettingsDlg.IsActive())
	 {
		 g_SettingsDlg.OnRender(fElapsedTime);
		 return;
	 }

	 HRESULT hr;
	 D3DXMATRIXA16 mWorld;
	 D3DXMATRIXA16 mWorldI;
	 D3DXMATRIXA16 mView;
	 D3DXMATRIXA16 mProj;
	 D3DXMATRIXA16 mWorldViewProjection;

	 //Clear the render target and the zbuffer
	 V(pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
D3DCOLOUR_ARGB(0, 0, 0, 0), 1.0f, 0));

	 //Render the scene
	 if(SUCCEEDED(pd3dDevice->BeginScene()))
	 {
#ifdef NETWORK_CONTROL
				 //Control actions

141Annex A

				 SetTriangleCount(dr.data[0]);
				 SetShaderComplexity(dr.data[1]);
#endif
				 //Get the projection & view matrix from the camera class
		 mWorld = *g_Camera.GetWorldMatrix();
		 mProj = *g_Camera.GetProjMatrix();
		 mView = *g_Camera.GetViewMatrix();

		 mWorldViewProjection = g_mCenterWorld * mWorld * mView * mProj;

		 g_Skybox.Render(&mWorldViewProjection);

	 //Update the effect’s variables. Instead of using strings, it would
	 //be more efficient to cache a handle to the parameter by calling
	 //ID3DXEffect::GetParameterByName
		 V(g_pEffect->SetMatrix(“g_mWorldViewProjection”,
&mWorldViewProjection));
		 V(g_pEffect->SetMatrix(“g_mWorld”, &mWorld));
		 V(g_pEffect->SetMatrix(“g_mWorldI”, &mWorldI));
		 V(g_pEffect->SetMatrix(“g_mView”, &mView));
		 V(g_pEffect->SetMatrix(“g_mProj”, &mProj));
			 V(g_pEffect->SetFloat(“g_fTime”, (float)fTime));
			 V(g_pEffect->SetFloat(“g_fModelReflectivity”,
g_fModelReflectivity));

		 if(g_bUseHWNPatches)
		 {
			 float fNumSegs;

			 fNumSegs = (float)g_dwNumSegs;
			 pd3dDevice->SetNPatchMode(fNumSegs);
		 }

		 UINT cPasses;

				 switch (g_CurrentTechnique)
				 {
				 case 0:
					 g_pEffect->SetTechnique(g_pCurTechnique->XRay);
					 break;
				 case 1:
					 g_pEffect->SetTechnique(g_pCurTechnique->SimpleLighting);
					 break;
				 case 2:
					 g_pEffect->SetTechnique(g_pCurTechnique->SpecularLighting);
					 break;
				 case 3:
					 g_pEffect->SetTechnique(g_pCurTechnique->ToonEffect);
					 break;
				 case 4:
					 g_pEffect->SetTechnique(g_pCurTechnique->Reflect);
					 break;
				 case 5:
					 g_pEffect->SetTechnique(g_pCurTechnique->ReflectSpecular);
					 break;
				 }
			 g_pEffect->SetTexture(“g_tCube”, g_Skybox.GetEnvironmentMap());

142 Annex A

		 V(g_pEffect->Begin(&cPasses, 0));
		 for(UINT p = 0; p < cPasses; ++p)
		 {
			 V(g_pEffect->BeginPass(p));

			 //set and draw each of the materials in the mesh
			 for(UINT i = 0; i < g_dwNumMaterials; i++)
			 {
				 V(g_pEffect->SetVector(“g_vDiffuse”,
(D3DXVECTOR4*)&g_pMaterials[i].MatD3D.Diffuse));
				 if(g_ppTextures[i])
				 {
					 V(g_pEffect->SetTexture(“g_txScene”, g_ppTextures[i]));
				 }
				 else
				 {
					 V(g_pEffect->SetTexture(“g_txScene”, g_pDefaultTex));
				 }
					 V(g_pEffect->CommitChanges());
				 g_pMeshEnhanced->DrawSubset(i);
			 }

			 V(g_pEffect->EndPass());
		 }
		 V(g_pEffect->End());

		 if(g_bUseHWNPatches)
		 {
			 pd3dDevice->SetNPatchMode(0);
		 }

		 RenderText();
		 V(g_HUD.OnRender(fElapsedTime));
		 V(g_SampleUI.OnRender(fElapsedTime));

		 V(pd3dDevice->EndScene());
	 }

#ifdef NETWORK_CONTROL
		 ds.data[0] = DXUTGetFPS(); //Sending the frame rate to the
Controller
		 //printf(“My FPS is:%f\n”, ds.data[0]);
#endif
}

//———
//Render the help and statistics text. This function uses the
//ID3DXFont interface for efficient text rendering.
//———
void RenderText()
{
	 //The helper object simply helps keep track of text position,
	 //and colour and then it calls pFont->DrawText(m_pSprite, strMsg, -1,
	 //&rc, DT_NOCLIP, m_clr);
	 //If NULL is passed in as the sprite object, then it will work
	 //however the pFont->DrawText() will not be batched together.
	 //Batching calls will improves performance.

143Annex A

	 CDXUTTextHelper txtHelper(g_pFont, g_pTextSprite, 15);

	 //Output statistics
	 txtHelper.Begin();
	 txtHelper.SetInsertionPos(5, 5);
	 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 1.0f, 0.0f, 1.0f));
	 txtHelper.DrawTextLine(DXUTGetFrameStats(DXUTIsVsyncEnabled()));
	 txtHelper.DrawTextLine(DXUTGetDeviceStats());

	 //Draw help
	 if(g_bShowHelp)
	 {
		 const D3DSURFACE_DESC* pd3dsdBackBuffer =
DXUTGetD3D9BackBufferSurfaceDesc();
		 txtHelper.SetInsertionPos(10, pd3dsdBackBuffer->Height - 15 * 9);
		 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 0.75f, 0.0f, 1.0f));
		 txtHelper.DrawTextLine(L”Controls (F1 to hide):”);

		 txtHelper.SetInsertionPos(40, pd3dsdBackBuffer->Height - 15 * 8);

			 txtHelper.DrawTextLine(L”F4: Load next mesh\n”
				 L”1,2,3,4,5,6: Load mesh\n”
				 L”Rotate mesh: Left click drag\n”
				 L”Rotate camera: right click drag\n”
				 L”Zoom: Mouse wheel\n”
				 L”Quit: ESC”);
	 }
	 else
	 {
		 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 1.0f, 1.0f, 1.0f));
		 txtHelper.DrawTextLine(L”Press F1 for help”);
	 }

		 float fps = DXUTGetFPS();
		 //Write to logfile
		 //logfile << fps << “ “ << g_pMeshEnhanced->GetNumVertices() <<
std::endl; //SISO
		 logfile << fps << “ “ << g_pMeshEnhanced->GetNumVertices()/*<< “
“ << g_CurrentTechnique*/<< std::endl; //MISO/MIMO

	 txtHelper.SetForegroundColour(D3DXCOLOUR(1.0f, 0.75f, 0.0f, 1.0f));
	 txtHelper.SetInsertionPos(10, 65);
	 txtHelper.DrawFormattedTextLine(L”NumSegs:%d\n”, g_dwNumSegs);
	 txtHelper.DrawFormattedTextLine(L”NumFaces:%d\n”,
(g_pMeshEnhanced = = NULL) ? 0 : g_pMeshEnhanced->GetNumFaces());
	 txtHelper.DrawFormattedTextLine(L”NumVertices:%d\n”,
(g_pMeshEnhanced = = NULL) ? 0 : g_pMeshEnhanced->GetNumVertices());
		 txtHelper.DrawFormattedTextLine(L”FPS:%f\n”, fps);

	 txtHelper.End();
}

//———
//Handle messages to the application
//———
LRESULT CALLBACK MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam, bool* pbNoFurtherProcessing, void* pUserContext)

144 Annex A

{
	 //Always allow dialog resource manager calls to handle global
	 //messages so GUI state is updated correctly
	 *pbNoFurtherProcessing = g_DialogResourceManager.MsgProc(hWnd, uMsg,
wParam, lParam);
	 if(*pbNoFurtherProcessing)
		 return 0;

	 if(g_SettingsDlg.IsActive())
	 {
		 g_SettingsDlg.MsgProc(hWnd, uMsg, wParam, lParam);
		 return 0;
	 }

	 //Give the dialogs a chance to handle the message first
	 *pbNoFurtherProcessing = g_HUD.MsgProc(hWnd, uMsg, wParam, lParam);
	 if(*pbNoFurtherProcessing)
		 return 0;
	 *pbNoFurtherProcessing = g_SampleUI.MsgProc(hWnd, uMsg, wParam,
lParam);
	 if(*pbNoFurtherProcessing)
		 return 0;

	 //Pass all remaining windows messages to camera so it can respond to
user input
	 g_Camera.HandleMessages(hWnd, uMsg, wParam, lParam);

	 return 0;
}

//———
//Handle key presses
//———
void CALLBACK KeyboardProc(UINT nChar, bool bKeyDown, bool bAltDown,
void* pUserContext)
{
		 IDirect3DCubeTexture9* pCubeTexture = NULL;
	 if(bKeyDown)
	 {
		 switch(nChar)
		 {
			 case VK_F1:
				 g_bShowHelp = !g_bShowHelp; break;
					 case VK_F4:
						 if (++g_CurrentModel = = g_ModelCount)
							 g_CurrentModel = 0;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘1’:
						 g_CurrentModel = 0;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘2’:
						 g_CurrentModel = 1;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;

145Annex A

					 case ‘3’:
						 g_CurrentModel = 2;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘4’:
						 g_CurrentModel = 3;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘5’:
						 g_CurrentModel = 4;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘6’:
						 g_CurrentModel = 5;
						 LoadMesh(DXUTGetD3D9Device(), g_CurrentModel);
						 break;
					 case ‘B’:
						 WCHAR strPath[MAX_PATH];

						 DXUTFindDXSDKMediaFileCch(strPath, MAX_PATH, L”Light
Probes\\uffizi_cross.dds”);
						 D3DXCreateCubeTextureFromFileEx(g_pd3dDevice, strPath,
D3DX_DEFAULT, 1, 0, D3DFMT_A16B16G16R16F, D3DPOOL_MANAGED,
D3DX_FILTER_NONE, D3DX_FILTER_NONE, 0, NULL,
							 NULL, &pCubeTexture);
						 g_Skybox.SetEnvironmentMap(pCubeTexture);
						 break;
					 case ‘N’:
						 SetShaderComplexity(4);
						 break;
		 }
	 }
}

//———
//Handles the GUI events
//———
void CALLBACK OnGUIEvent(UINT nEvent, int nControlID,
CDXUTControl* pControl, void* pUserContext)
{
		 int index;

	 switch(nControlID)
	 {
		 case IDC_TOGGLEFULLSCREEN:
			 DXUTToggleFullScreen(); break;
		 case IDC_TOGGLEREF:
			 DXUTToggleREF(); break;
		 case IDC_CHANGEDEVICE:
			 g_SettingsDlg.SetActive(!g_SettingsDlg.IsActive()); break;
		 case IDC_FILLMODE:
		 {
			 g_bWireframe = ((CDXUTComboBox*)pControl)->GetSelectedData()
! = 0;

146 Annex A

			 IDirect3DDevice9* pd3dDevice = DXUTGetD3D9Device();
			 pd3dDevice->SetRenderState(D3DRS_FILLMODE, g_bWireframe ?
D3DFILL_WIREFRAME : D3DFILL_SOLID);
			 break;
		 }
		 case IDC_SEGMENT:
			 g_dwNumSegs = ((CDXUTSlider*)pControl)->GetValue();
			 WCHAR wszBuf[256];
			 StringCchPrintf(wszBuf, 256, L”Number of segments:%u”,
g_dwNumSegs);
			 g_SampleUI.GetStatic(IDC_SEGMENTLABEL)->SetText(wszBuf);
			 GenerateEnhancedMesh(DXUTGetD3D9Device(), g_dwNumSegs);
			 break;
				 case IDC_HWNPATCHES:
					 g_bUseHWNPatches = ((CDXUTCheckBox*)pControl)-
>GetChecked();
					 GenerateEnhancedMesh(DXUTGetD3D9Device(), g_dwNumSegs);
					 break;
				 case IDC_CUBETEXTURE:
					 index = (int)((CDXUTComboBox*)pControl)->GetSelectedData();
					 LoadCubeTexture(g_CubeTextures[index - 1]);
					 g_Skybox.SetEnvironmentMap(g_pCubeTexture);
					 break;
				 case IDC_MODELREFLECTIVITY:
					 g_fModelReflectivity = (float)((CDXUTSlider*)pControl)-
>GetValue()/100.0f;
					 StringCchPrintf(wszBuf, 256, L”Model Reflectivity:%u”,
((CDXUTSlider*)pControl)->GetValue());
					 g_SampleUI.GetStatic(IDC_MODELREFLECTIVITYLABEL)-
>SetText(wszBuf);
					 break;
				 case IDC_ACTIVEEFFECT:
					 index = (int)((CDXUTComboBox*)pControl)->GetSelectedData();
			 g_CurrentTechnique = index;

			 break;
	 }
}

//———
//Release D3D9 resources created in the OnResetDevice callback
//———
void CALLBACK OnLostDevice(void* pUserContext)
{
	 g_DialogResourceManager.OnD3D9LostDevice();
	 g_SettingsDlg.OnD3D9LostDevice();

	 g_Skybox.OnLostDevice();

	 if(g_pFont)
		 g_pFont->OnLostDevice();
	 if(g_pEffect)
		 g_pEffect->OnLostDevice();

147Annex A

	 SAFE_RELEASE(g_pTextSprite);
	 SAFE_RELEASE(g_pMeshEnhanced);

	 SAFE_RELEASE(g_pMSRT);
	 SAFE_RELEASE(g_pMSDS);

	 SAFE_RELEASE(g_pTexRender);
	 SAFE_RELEASE(g_pTexBrightPass);

		 int i = 0;

	 for(i = 0; i < NUM_TONEMAP_TEXTURES; i++)
	 {
		 SAFE_RELEASE(g_apTexToneMap[i]);
	 }

	 for(i = 0; i < NUM_BLOOM_TEXTURES; i++)
	 {
		 SAFE_RELEASE(g_apTexBloom[i]);
	 }
}

//———
//Release D3D9 resources created in the OnCreateDevice callback
//———
void CALLBACK OnDestroyDevice(void* pUserContext)
{
	 g_DialogResourceManager.OnD3D9DestroyDevice();
	 g_SettingsDlg.OnD3D9DestroyDevice();
	 SAFE_RELEASE(g_pEffect);
	 SAFE_RELEASE(g_pFont);

	 for(UINT i = 0; i < g_dwNumMaterials; i++)
		 SAFE_RELEASE(g_ppTextures[i]);

	 SAFE_RELEASE(g_pDefaultTex);
	 SAFE_DELETE_ARRAY(g_ppTextures);
	 SAFE_RELEASE(g_pMeshSysMem);
	 SAFE_RELEASE(g_pbufMaterials);
	 SAFE_RELEASE(g_pbufAdjacency);
	 g_dwNumMaterials = 0L;

	 g_Skybox.OnDestroyDevice();
}

149

Annex B: Patent for
Application Method and
System for Adaptive Control
of Real-Time Computer
Graphics Rendering*

TITLE OF INVENTION

Method and System for Adaptive Control of Real-Time Computer Graphics Rendering

FIELD OF INVENTION

This invention provides a method for controlling real-time computer generated
graphics (known as rendering) such that it is able to achieve user-defined perfor-
mance objectives without the user’s intervention.

BACKGROUND OF INVENTION

Computer generated graphics is required in many interactive digital media appli-
cations today. The requirement for this process to be “real-time” is based upon
the need for adequate response to the user in a continuous feedback loop. One key
performance metric in interactive computer graphics systems is the time taken to
render one frame of the animation sequence. Current techniques in interactive ren-
dering do not guarantee consistent resource and time control in this respect. This
is inhibitive in many aspects of computer software related to real-time computer
graphics rendering.

In the present invention, a modelling framework is described for real-time com-
puter graphics rendering. This modelling framework forms the first part of the
entire method to control real-time computer graphics rendering. A control system
is described in the present context which consists of the aforementioned rendering
process model (also known as the “plant”) and a controller module. Based on this
method, the control system is capable of controlling the rendering process whether
it is implemented in the local computer hardware or a remote computer device via a
communication channel.

*	 U.S. Patent Office provisional application dated 13 July 2011, US61/507,486.

150 Annex B

SUMMARY OF INVENTION

The object of the present invention is to provide a method to control the rendering of
computer-generated graphics in real time for interactive applications.

In the present context, the rendering process refers to a set of computer program
routines that support the generation of a sequence of images such that they create
the impression of an animation. The rendering process is by convention a piece of
software that operates on input in the form of data structures which describe the
geometry of an object in 3D space and the quality of its visual appearance.

According to Figure B.1 the input to the rendering process may consist of one
element or a set of elements as long as each element is independent of the others and
each element exerts an observable influence on the output of the rendering process.
The output of the rendering process may consist of one element or a set of elements.
Both the input and output to the rendering process are measurable quantities. The
input to the rendering process is a variable or a set of variables that can be changed
during the execution of the application. The disturbance described in Figure B.1
refers to any auxiliary process that runs in the same environment as the rendering
process. For example, the operating system’s kernel processes run in the background
which is mandatory for the computer device to function normally.

In the context of Figure B.1, the rendering process model can be expressed as, but
is not limited to, a polynomial equation or a state space representation through an
iterative process that involves regressive computation of the rendering process’s pre-
vious input and outputs. The user defines the actual process input variables and out-
put quantities based on the desired performance objectives and the controller design.
More importantly, all input and output to the system must be measurable quantities.

In Figure B.2, the controller 201 is a module that may be implemented as a piece
of software or a computer program that executes a set of computer instructions which
is built into an embedded computer subsystem. The purpose of the controller is to
adjust the input to the plant (the rendering process) such that the output of the plant
202 can be driven to meet a certain performance objective. The controller receives
an input which is the difference between the user defined reference 203 and the cur-
rent output from the plant. The controller is typically designed with saturation limits
to prevent the system from swinging beyond normal operating range. The controller
design is not limited to any particular control algorithm or a combination of such
algorithms as long as the purpose of the controller is achieved. In the same spirit, the
controller and the plant implementation is not limited to any specific programming
language or software toolkit.

In Figure B.3 a deployment of the control system in a computer device is shown
with the key components as the shared memory 301, the controller 302 and the plant
303. The controller sends its control action to the rendering process (the plant) via the
shared memory where this value will thereafter be copied into the execution space
of the rendering process. Similarly, the rendering process will write the values from
its output into the same shared memory area where the controller will access, to
copy these values for the error computation. In the context of this invention, the data
access method is not limited to shared memory but variants of common memory

151Annex B

access methods provided by any operating system such as pipes or any inter-process
communication technique.

In Figure B.4, the control system is deployed in a distributed computing environ
ment where the controller 401 and the plant 402 (the rendering process) are executed in
different physical machine locations. In the context of this invention, the deployment
platform is not limited to any particular operating system or 3D rendering toolkit. The
controller and plant communication is realised through the external network infra-
structure 403 that may be instituted with wired or wireless connection capability.
The communication link 404 between the controller and the plant is driven by soft-
ware routines using suitable protocol-based transmission such as and not limited to
TCP and other IP-based standards. The software implementation supporting such a
communication method can be of the client-server or peer-to-peer or any other archi-
tecture as long as the objective for reliable data transmission is supported.

BRIEF DESCRIPTIONS OF FIGURES

The present invention will now be further described with reference to the figures,
wherein:

Figure B.1 illustrates the open-loop system model of the rendering process with
the input and output of the system and the inherent disturbance arising from other
processes that may be running in the computing environment.

Figure B.2 illustrates the closed-loop control system with feedback. The control-
ler is introduced to ensure that the error between the output and the performance
objective is eventually removed.

Figure B.3 illustrates the deployment of this control system in a single com-
puter device. Both the controller and plant are software processes that run in the
common/shared memory address space and communication between the controller
and plant is done via shared memory.

Figure B.4 illustrates the deployment of this control system in a remote/distributed
setting. In this scenario, the controller and the plant are running in separate and dif-
ferent computer machines. Communication between the controller and the plant is
done via the network infrastructure which links the two computers.

DETAILED DESCRIPTIONS OF FIGURES

The present invention provides a method for automatic control of the real-time com-
puter graphics rendering process such that it is able to consistently meet a certain per-
formance objective. This is particularly important in many interactive applications
where user’s input to the application is processed and the response (output of the
rendering process) is sent back to the user promptly. In cases where the rendering
process takes unduly long time, the generated animation sequence will look “laggy”
and thereby affect the user’s visual and usage experience of the application.

Figure B.1 illustrates the fundamental system concept of the rendering process 101.
Each rendering process can receive an input vector 102 and generates an output
vector 103. A vector may consist of one or more elements. Since the rendering pro-
cess is basically run on a computer device, there may be other processes that share

152 Annex B

the resources on the computer. The effect on the rendering process attributed by
these external processes is defined as the disturbance 104 to the system.

Figure B.2 illustrates schematically the fundamental control system in a closed-loop
configuration. The controller module 201 works on the error between the output 204
of the plant 202 and the reference 203 (performance objective). Depending on the
design, the computed output of the controller module 201 will be fed into the plant
202 such that the plant’s output may be regulated to the reference 203. This process
is iterative until the error between the plant’s output and the user-defined reference
diminishes to a negligible value.

Figure B.3 illustrates the control system in componentised form localised within
a computer device. The controller 301 and the plant 302 share the resources from
this computer device, such as memory, data bus, and main processor’s computation
bandwidth. The controller and plant are connected for data exchange via the main
memory using the shared memory 301 within the same execution space.

Figure B.4 illustrates the framework by which the control system is deployed in
a distributed computing environment. The controller 401 resides in a different com-
puter device from the plant 402 (the rendering process). The controller and the plant
are linked via an external network 403. The control action and the plant’s output are
routed via bidirectional digital channel data 404 over this network.

CONTROL DESIGN AND MECHANISM

Due to the complexity in modern computer graphics hardware, rendering processes
may not exhibit linear properties over certain operating ranges. The present invention
describes a design technique that yields a controller which is capable of handling such
non-linearity during the system’s operation. The approach consists of two strategies:

	 I.	PID gain scheduling
	 II.	Fuzzy control

The design process commences with collection of a qualified set of input–output
data pairs. The qualifications of the input and output variables are contingent
upon whether the quantities are both measureable and controllable. The data gen-
eration process involves selecting a range of inputs that are sufficient to drive the
dynamics of the rendering system. The derivation of the system model is based on
the system identification methodology where the model may be represented in a
linear auto-regressive (ARX) model or its corresponding state space representation.

I. � PID Gain Scheduling

After collecting the steady-state values of the input–output data, they are plotted
against each other as shown in Figure B.5. The example shows the output (frame rate)
is plotted against the input (vertex count). Empirically, the input–output relation-
ship is typically non-linear. The gain scheduling technique proposed in this inven-
tion requires piece-wise approximation of non-linear curves using straight line
segments. Each segment represents a linear region of operation by which linear

153Annex B

time-invariant dynamic models may be derived using the aforementioned system
identification technique.

To obtain the individual line segments for curves, we can describe this non-linear
relationship represented by a polynomial model:

	 y p xi
n i

i

n

= + −

=

+

∑ 1

1

1

, u x uN0 ≤ ≤ 	 (1)

where n is the degree of the polynomial and (n + 1) is the degree that gives the
highest power of the predictor variable. Since straight line segments are used to
fit the curve, the order of the polynomial is chosen as 1. The objective is to derive
a series of line segments which fulfills the approximation of this relationship by
the following:

	 y

a b x

a b x

a b x

u x u

u x u

N N

=

+
+

+










≤ ≤
≤ ≤

1 1

2 2

0 1

1 2

... ...
uu x uN N− ≤ ≤1

	 (2)

where the variables a and b are to be found that minimise the following equation (a
constrained optimisation problem):

	

F a a a b b b u u u

f x

N N N1 2 1 2 1 2 1, ,..., , , ,..., , ,...,, −()

= ())− −()
−

∫∑
=

a b x dxj j
u

u

j

N

j

j

11

2 	
(3)

and the right hand side of the equation represents the least square error of the
approximation.

Given the solution to the optimisation problem in Equation (3), the input–output
data pairs in each line segment shall be used for the derivation of the corresponding
system model which may be expressed as in the following state space representation
or its ARX model representation as shown in Equations (4), (5), and (6), respectively:

	 x k Ax k Bu k+() = ()+ ()1 	 (4)

	 y k Cx k Du k() = ()+ () 	 (5)

Here x is the state variable of the system, u is the input to the system, y is the output
of the system, and k is the time step. The ARX model representation is given by

	 y t a y t a y t n b u t n b u t nn a k n ka b()+ −()+… −() = −()+…+ − −1 11 nnb +()1 	 (6)

154 Annex B

where:

a1 … ana and b1… bnb are parameters to be estimated.
y(t) is the output of the system at time t.
y t −()1 … y t na−() are the previous outputs on which the current output depends.
u t nk−() … u t n nk b− − +()1 are the previous inputs on which the current output

depends.
na is the number of poles or the order of the system.
nb is the number of zeroes plus one.
nk is the delay in the system.

The proportional, integral, and derivative (PID) controller is well reputed for its adop-
tion in over 90% of the world’s real control systems. There are several advantages
in using the PID controller, namely its efficiency attributed by the relatively simpler
computation and the ease of implementation compared to other more elaborate con-
trol schemes. In brief, the PID control action in a closed-loop feedback system takes
the form (parallel mode):

	 u t K e t K e d K
d
dt

e tp i

t

d() = ()+ () + ()∫ τ τ
0

	 (7)

where K
K

T
i

p

i

= and K K Td p d= with Ti and Td as the time constants of the integral

and derivative controls. At the implementation level, the PID controller’s discrete
time form may be expressed as:

	 u n K e n
K T

T
e k

K T

T
e n e np

p

i k

n
p d() = ()+ ()+ ()− −()()

=
∑

0

1 	 (8)

where T is the sampling period and

	 K
K T

T
K

K T

T
i

p

i
d

p d= =,

where u(n) is the control action. The PID controller’s gain values may be derived
either empirically via trial and adjustments or by using the model derived in the
previous section in a closed-loop feedback system as shown in Figure B.2 with an
auto-tuning algorithm.

The derivation of both the system model and the PID controller is exercised
for each linear operation range corresponding to the line segments derived from
the solution to Equation (3). By cascading the series of PID controllers, an overall
control system may be derived as shown in Figure B.6. The object 601 represents
the cascaded PID controller array in which only one PID controller is active at
any time. The object 602 represents a switch agent that channels and activates the

155Annex B

appropriate PID controller based on the operating point of the rendering system.
Mechanisms may also be incorporated in to achieve the so-called bump-less trans-
fer that smooths the abrupt changes in the behaviour of the system when switching
among the controllers occurs.

II. �F uzzy Control (Model-Less Control)

The primary benefit offered by the fuzzy control paradigm is its ability to emu-
late human control based on linguistic variables and a set of intuitive expert rules
used as the decision or inference system. In comparison to conventional control
techniques, the advantages of the fuzzy control paradigm are twofold. First, there
is no requirement for a mathematical model of the system to be controlled. This
is especially important and useful as it may be difficult to derive certain process
models due to their complex dynamics and when some systems cannot be mod-
elled using first principles. Second, the fuzzy controller itself works on relatively
straightforward computation and it can be developed to handle non-linear processes
empirically in practice without the need for complicated mathematics. These advan-
tages translate to its appeal as a practical solution to real world control problems in
terms of implementation.

The development of fuzzy control system begins with the two key components:
the input–output membership functions describing the properties of the system
(fuzzy sets) based on linguistic variables and the rule base which relates the input–
output sets. Given an antecedent and consequent relationship between an input y to
a SISO system’s output u using linguistic descriptions of their properties, this may
be represented as:

	 IF y Y THEN u Uj j∈ ∈ 	 (9)

In each universe of discourse Ui and Yi, ui and yi exist taking on values with
corresponding linguistic variables ui

� and yi
� which describe the characteristics of

the variables. Suppose Ai
j� denotes the jth linguistic value of the linguistic variable ui

�
defined over the universe of discourse Ui. If the assumption that there exist many
linguistic values defined in Ui, then the linguistic variable ui

� which takes on the
elements from the set of linguistic values may be denoted by Equation (9).

	 A A j Ni i
j

i
� �= = …{ }: , , ,1 2 	 (10)

In the same manner, we can consider Bi
j� to denote the jth value of the linguistic

variable yi
� defined over the universe of discourse Yi. yi

� may be represented by
elements taken from the set of linguistic values denoted by the following equation:

	 B B p Mi i
p

i
� �= ={ }: , ,...,1 2 	 (11)

156 Annex B

Given a condition where all the premise terms are used in every rule and a rule is
formed for each possible combination of premise elements, then we have rule set
with Ni number of rules that can be expressed as:

	 N N N Ni

i

n

n

=
∏ = ⋅ ⋅ ⋅

1

1 2 ... 	 (12)

Given the membership functions, the conversion of a crisp input value into its cor-
responding fuzzy value is known as fuzzification. The defuzzification of the resul-
tant fuzzy set from the inference system to a quantifiable value may be done using
the centroid (centre of gravity) method. The principle is to select the value in the
resultant fuzzy set such that it would lead to the smallest error on average given any
criterion. To determine y* the least square method can be used and the square of
the error is accompanied by the weightage of the grade of the membership µB u().
Therefore, the defuzzified output, y* may be obtained by finding the solution to the
following equation.

	 y y y y du
y

B
U

* *arg min
*

= () −()∫ µ
2

	 (13)

Differentiating with respect to y* and equating the derivative to zero yields

	 y
y y dy

y dy

B
Y

B
Y

* =
()

()
∫
∫

µ

µ
	 (14)

which gives the value of the abscissa of the centre of gravity of the area below the
membership function µB u().

The derivation of the membership functions is based on intuitive recognition of
the fundamental relationship between input and output of the rendering system. In the
context of the present invention, for example, there is an inverse relationship between
the frame rate and the total number of vertices used in the rendering process.

Figure B.7 indicates how this relationship may be developed in the form of a com-
bination of sigmoid functions for both the input and output variables. The diagram 701
illustrates the membership functions used for the input variable. There are two function
curves used for the linguistic value of the FPS error input variable. The function curve
at the left is to describe the extent of high and the one at the right is used to describe the
extent of low. In a similar manner, the diagram 702 shows the membership functions
for the output variable, which is the vertex count. The rule base of the fuzzy inference
rule set relating the input and output membership functions is shown in object 703.

In the same spirit as the closed-loop control feedback system shown in Figure B.2,
a fuzzy controller-based rendering system may be constructed using the aforemen-
tioned approach and using the derived fuzzy controller as the controller block in
Figure B.2.

157Annex B

CLAIMS (PRELIMINARY)

	 1.	A method that defines correlation between the single or multiple inputs and
single or multiple outputs of the computer graphics rendering process via a
system’s approach whereby:

	 a.	 The inputs and outputs of the rendering process can be measured quanti-
tatively and the inputs can be varied in terms of their values by the user.

	 b.	 The inputs to the rendering process are independent of one another, but
the outputs are dependent on the inputs.

	 c.	 The inputs and outputs are related via mathematical expressions such as
dynamic polynomial equations and/or state space equations.

	 2.	A method for controlling user-defined parameters pertaining to the input(s)
and output(s) described to Claim (1) of the rendering system whereby:

	 a.	 The correlation described in Claim (1) is represented as a system model
and is used to determine the parameters in the controller design.

	 b.	 The controller may be designed by using model-based control design
approaches as well as by using model-free approaches.

	 3.	A method for establishing the communication channel between the rendering
process and the controller, whereby the following schemes may be implemented:

	 a.	 The control system is implemented in a single computer device/hardware
as the rendering process.

	 b.	 The control system is implemented over a network of computer devices/
hardware via a communication channel.

	 4.	A system for controlling real-time computer graphics rendering whereby:
	 a.	 The rendering process is able to meet user defined objectives without

human intervention
	 b.	 The rendering process continues to run “online” without the need to

stop or any manual effort to work on it “off-line”
	 c.	 The performance objectives are met consistently over a period of time

and are sustainable.

	 5.	A method for designing the controller for the rendering system whereby:
	 a.	 A gain scheduling PID controller is used to control a large operating

range by cascading several PID controllers
	 b.	 Each PID controller’s gain parameters are derived using rendering

system models obtained from empirical data via the system identifica-
tion methodology

	 c.	 A fuzzy controller is used to control the rendering system without the
need for any predefined system model of the rendering process

	 d.	 The fuzzy controller’s membership functions and rule base are derived
from intuitive understanding of the relationship between the input and
output of the rendering system.

158 Annex B

Plant
(Rendering Process)Input, u Output, y

102

101

103

Computing
environment

104

e, d

FIGURE B.1  System model of open-loop rendering process.

Plant
(Rendering Process)Controller

Performance
objective, r

Error, e u Output, y

202
204

Computing
environment

203
201

FIGURE B.2  Closed-loop control system with feedback.

159Annex B

Rendering
Process

Controller
Module

302

301

Shared Memory

303

FIGURE B.3  Deployment in single computer device.

Controller

401 403
402

404

Rendering
Process

Network

FIGURE B.4  Deployment in distributed computer environment.

160 Annex B

y

u

To Workspace1

y
To Workspace

u

Switch Case

u1
case [290 291 292 ...]:
case [321 322 323 ...]:
case [391 392 393 ...]:

Sum

Plant

G

PIDS3

case: { }
In1 Out1

PIDS2

+

+
–

+
+

case: { }
In1 Out1

PIDS1

case: { }
In1 Out1

PID−S3

P(z)

Manual
Switch

Constant

380

602

601

FIGURE B.6  Control system.

450

400

350

Fr
am

e R
at

e (
FP

S)

300

250

3.2 3.4 3.6 3.8 4
Vertex Count

Frame Rate vs Vertex Count

×104
4.2 4.4 4.6 4.8

Frame rate vs vertex count
Single fit
Segment 1 fit
Segment 2 fit
Segment 3 fit

5

FIGURE B.5  Plot of steady-state values of input and output data.

161Annex B

–400
0

0.5

1
abovehigh belowhigh

–300 –200 –100 0
Input Variable “fpserr”

Membership Function Plots

100 200 300 400

701

(a)

–8000

702

0

0.5

1
increasehigh decreasehigh

–7000 –6000 –5000 –4000
Output Variable “vc”

Membership Function Plots

–3000 –2000 –1000 0

(b)

fps_error IS High

fps_error IS Low

703

vertex_count IS DecreaseHigh

If �en

Fuzzy Inference Rule Set

Vertex_count IS IncreaseHigh

(c)

FIGURE B.7  Relationship of input and output of rendering system.

163

Annex C: Neural PID
Control System Code

%Single Neural Adaptive PID Controller Code

clear all;
close all;

%Initialize key variables
% Neuron states
x = [0,0,0]’;
xP = 300.001;
xI = 0.85;
xD = 0.25;

% Neuron weights
wkp_1 = 0.50;
wki_1 = 0.50;
wkd_1 = 0.50;

error_1 = 0;
error_2 = 0;

refValue = 356;

y_1 = 0;y_2 = 0;y_3 = 0;
u_1 = 0;u_2 = 0;u_3 = 0;

%load n4s1
load model

%convert idss model to ss
H = ss(n4s1);

%take “measured” channel
plant = tf(H(1) + H(2));
ts = H.Ts;

%get direct form coefficients to use `direct form 1` in loop
b = plant.num{1};
a = plant.den{1};

%%%%%%%%%%%%%%%%%% First run executes based on SNPID %%%%%%%%%%%%%%%%%
for k = 1:15000
	 time(k) = k*ts;

	 if k< = 5000
	 % Reference
		 rin(k) = 356.0;

164 Annex C

	 elseif k< = 10000
		 rin(k) = 200;
	 else
		 rin(k) = 50;
	 end

	 try
		 u(k) = u_1+K*w*x; %Control law
	 catch
		 u(k) = 0;
	 end
	 % Plant model
	 yout(k) = b(1) * u(k) + b(2) * u_1 + b(3) * u_2 + b(4) * u_3 - a(2)
* y_1 - a(3) * y_2 - a(4) * y_3;
	 % Error
	 error(k) = rin(k)-yout(k);

%Adjusting Weight Value by hebb learning algorithm
M = 4;
if M = =1	 %No Supervised Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*u_1*x(1); %P
	 wki(k) = wki_1+xiteI*u_1*x(2); %I
	 wkd(k) = wkd_1+xiteD*u_1*x(3); %D
	 K = 0.06;
elseif M = =2	 %Supervised Delta learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1; %P
	 wki(k) = wki_1+xiteI*error(k)*u_1; %I
	 wkd(k) = wkd_1+xiteD*error(k)*u_1; %D
	 K = 0.12;
elseif M = =3	 %Supervised Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1*x(1); %P
	 wki(k) = wki_1+xiteI*error(k)*u_1*x(2); %I
	 wkd(k) = wkd_1+xiteD*error(k)*u_1*x(3); %D
	 K = 0.12;
elseif M = =4	 %Improved Heb learning algorithm
	 wkp(k) = wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1);
	 wki(k) = wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1);
	 wkd(k) = wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1);
	 K = 0.12;
end

	 x(1) = error(k)-error_1;	 %P
	 x(2) = error(k);	 %I
	 x(3) = error(k)-2*error_1+error_2;	 %D

	 wadd(k) = abs(wkp(k))+abs(wki(k))+abs(wkd(k));
	 w11(k) = wkp(k)/wadd(k);
	 w22(k) = wki(k)/wadd(k);
	 w33(k) = wkd(k)/wadd(k);
	 w = [w11(k),w22(k),w33(k)];

error_2 = error_1;
error_1 = error(k);

u_3 = u_2;u_2 = u_1;u_1 = u(k);

165Annex C

y_3 = y_2;y_2 = y_1;y_1 = yout(k);

wkp_1 = wkp(k);
wkd_1 = wkd(k);
wki_1 = wki(k);
end

%%
%%%%%%%%% Second run executes based on Matlab’s built-in PID %%%%%%%%%
load model
%convert idss model to ss
H = ss(n4s1);
%take “measured” channel
H = H(1);
ts = H.Ts;
%train pid
C = pidtune(H, ‘pi’);

plantWithPid = feedback(series(C, H), 1);
% rin->(+)->[C]—> [H]——>yout
% ^	 |
% |———————-|

%constant rin
%pid_rin = refValue * ones(1, length(time));
pid_rin = rin;
pid_yout = lsim(plantWithPid, pid_rin, time);
pid_error = pid_rin’ - pid_yout;

%to find pid’s output send rin-yout to pid
%rin-yout’ -> [pid] -> u
pid_u = lsim(C, pid_rin-pid_yout’, time);

%test original system with pid signal
%pid_yout2 = lsim(n4s1, pid_u, time);

%Output graphs
figure 1);
hold on;
plot(time,rin,’b’,time,yout,’r’);
plot(time,pid_rin,’k’,time,pid_yout,’k’);
xlabel(‘Frame’);ylabel(‘rin,yout’);
legend(‘rin’,’yout’, ‘pid yout’);

%Error graphs
figure 2);
plot(time,error,’r’, time, pid_error, ‘b’);
xlabel(‘Frame’);ylabel(‘error’);
legend(‘error’, ‘pid error’);

%SNPID control input
%figure 3);
%plot(time,u,’r’);
%xlabel(‘Frame’);ylabel(‘Control Input’);
%legend(‘u’, ‘pid u’);

166 Annex C

%PID control input
%figure 4);
%plot(time,pid_u,’g’);
%xlabel(‘Frame’);ylabel(‘Control Input’);
%legend(‘u’, ‘pid u’);

figure 5);
subplot(2,1,1);
plot(time,u,’r’);
xlabel(‘Frame’);ylabel(‘Control Input’);
subplot(2,1,2);
plot(time,pid_u,’g’);
xlabel(‘Frame’);ylabel(‘Control Input’);

167

References
	 1.	 L. Ljung, System Identifiation, 2nd Edition, Prentice Hall, 1999, ISBN 978-0136566953.
	 2.	 T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback Performance

Control in Software Services,” IEEE Control Systems Magazine, vol. 23(3), June 2003.
	 3.	 S. Abdelwahed, N. Kandasamy, S. Neema, “Online Control for Self-Management in

Computing Systems,” Real-Time and Embedded Technology and Applications Symposium,
IEEE, pp. 368, 2004.

	 4.	 B. Li, K. Nahrstedt, “A Control-based Middleware Framework for Quality of Service
Adaptations”, IEEE Journal of Selected Areas in Communication, Special Issue on
Service Enabling Platforms, vol. 17(9), pp. 1632–1650, Sept. 1999.

	 5.	 J. Hellerstein, S. Singhal, and Q. Wang, “Research challenges in control engineering of
computing systems”, IEEE Trans. on Network and Server Management, pp. 206–211,
Dec. 2009.

	 6.	 J. Hellerstein, Y. Diao, S. Parekh and D. Tilbury, Feedback Control of Computing
Systems, Wiley, 2004, ISBN-13: 978-0471266372.

	 7.	 T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu and X. Zhu, “Introduction to Control
Theory and its Application to Computing Systems”, Performance Modeling and
Engineering, Springer, pp. 185–215, 2008.

	 8.	 Y. Lu, T. Abdelzaher, C. Lu, L. Sha and X. Liu, “Feedback Control with Queueing-Theoretic
Prediction for Relative Delay Guarantees in Web Servers,” Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applications Symposium, Washington DC,
pp. 208–217, 2003.

	 9.	 C. Karamanolis, M. Karlsson, and X. Zhu, “Designing controllable computer systems”,
Proceedings of the 10th conference on Hot Topics in Operating Systems, Vol. 10, Berkeley,
CA, USA, 2005.

	 10.	 X. Li and H. Shen, “Adaptive Volume Rendering using Fuzzy Logic”, Proceedings
of Joint Eurographics-IEEE TCVG Symposium on Visualization, Springer-Verlag,
pp. 253–262, 2001.

	 11.	 Y. Kirihata, J. Leigh, C. Xiong and T. Murata, “A Sort-Last Rendering System Over an
Optical Backplane,” Proceedings of the 10th International Conference on Information
Systems Analysis and Synthesis, vol. 1, pp. 42–47, Orlando, Florida July, 2004.

	 12.	 D. Cohen-Or et al, “A Survey of Visibility for Walkthrough Applications,” IEEE
Transactions on Visualization and Computer Graphics, pp. 412–431, July, 2003.

	 13.	 E. Haines, “An Introductory Tour of Interactive Rendering”, IEEE Computer Graphics
and Applications, vol. 26(1), pp. 76–87, Jan./Feb. 2006.

	 14.	 T. Akenine-Moller, E. Haines and N. Hoffman, Real-time Rendering, 3rd Edition,
A.K. Peters, 1045 pages, 2008, ISBN 1568814240.

	 15.	 Microsoft Direct3D 11, http://msdn.microsoft.com/en-us/library/ff476340(VS.85).aspx
	 16.	 S. Kyöstilä, K.J. Kangas, and K. Pulli, “Tracy: A Debugger and System Analyzer For

Cross-Platform Graphics Development,” Proceedings of the 23rd ACM SIGGRAPH/
EUROGRAPHICS Symposium on Graphics Hardware, pp. 1–11, 2008.

	 17.	 J.R. Monfort and M. Grossman, “Scaling of 3D game engine workloads on modern
multi-GPU systems,” Conference on High Performance Graphics, pp. 37–46, 2009.

	 18.	 N. Tack, F. Morán, G. Lafruit, and R. Lauwereins, “3D Graphics Rendering Time
Modeling and Control for Mobile Terminals,” Proceedings of the Ninth International
Conference on 3D Web Technology, pp. 109–117, 2004.

	 19.	 M. Wimmer, and P. Wonka, “Rendering time estimation for real-time rendering,”
14th Eurographics Workshop on Rendering, vol. 44. pp. 118–129, 2003.

168 References

	 20.	 J.T. Klosowski, and C.T. Silva, “Rendering on a Budget: A Framework for Time-Critical
Rendering,” Proceedings of the Conference on Visualization, pp. 115–122, IEEE
Computer Society Press, 1999.

	 21.	 I. Wald, A. Dietrich, and P. Slusallek, “An Interactive Out-Of-Core Rendering Framework
for Visualizing Massively Complex Models,” ACM SIGGRAPH, Courses notes, 2005.

	 22.	 A. Lakhia, “Efficient Interactive Rendering of Detailed Models with Hierarchical Levels
of Detail”, 2nd International Symposium on 3D Data Processing, Visualization and
Transmission, pp. 275–282, Sept. 2004.

	 23.	 T.A. Funkhouser and C.H. S´Equin, “Adaptive Display Algorithm for Interactive Frame
Rates during Visualization of Complex Virtual Environments,” Proc. 20th Annual
Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH ’93),
pp. 247–254, 1993.

	 24.	 E. Gobbetti, and E. Bouvier, “Time-critical Multiresolution Scene Rendering,” Proc.
Conference on Visualization, pp. 123–130, 1999.

	 25.	 Microsoft Xbox 360 Technical Specifications, http://support.xbox.com/support/en/us/
xbox360/hardware/specifications/consolespecifications.aspx

	 26.	 Sony PlayStation Specifications, http://playstation.about.com/od/ps3/a/PS3SpecsDetails_3.
htm

	 27.	 N. Tack, F. Morán, G. Lafruit, and R. Lauwereins, “3D Graphics Rendering Time
Modeling and Control for Mobile Terminals,” Proceedings of the Ninth International
Conference on 3D Web Technology, pp. 109–117, 2004.

	 28.	 D. Luebke, B. Watson, J.D. Cohen, M. Reddy, and A, Varshney, Level of Detail for 3D
Graphics, Elsevier Science, 2002, ISBN-13: 978-0123991812.

	 29.	 R. Dumont, F. Pellacini and J.A. Ferwerda, “Perceptually-Driven Decision Theory
for Interactive Realistic Rendering,” ACM Transactions on Graphics, vol. 22(2),
pp. 152–181, Apr. 2003.

	 30.	 NVIDIA, DirectX 11 Tessellation—What It Is and Why It Matters, http://www.nvidia.
com/object/tessellation.html

	 31.	 MATLAB, The MathWorks Inc., http://www.mathworks.com
	 32.	 M. Claypool and K. Claypool, “Perspectives, Frame Rates and Resolutions: it’s all

in the Game,” Proc. 4th International Conference on Foundations of Digital Games,
pp. 42–49, 2009.

	 33.	 K. Claypool and M. Claypool, “On Frame Rate and Player Performance in First Person
Shooter Games,” Proc. Multimedia Systems, vol. 13(1), pp. 3–17, 2007.

	 34.	 P. Yuan, M. Green, and R.W. Lau, “A Framework for Performance Evaluation of
Real-Time Rendering Algorithms in Virtual Reality,” Proc. ACM Symposium on Virtual
Reality Software and Technology, pp. 51–58, 1997.

	 35.	 H.M. Sun, Y.C. Lin, and L. Shu, “The Impact of Varying Frame Rates and Bit Rates
on Perceived Quality of Low/High Motion Sequences with Smooth/Complex Texture,”
Proc. Multimedia Systems, vol. 14(1), pp. 1–13, 2007.

	 36.	 B. Watson, V. Spaulding, N. Walker and W. Ribarsky, “Evaluation of the Effects of
Frame Time Variation on VR Task Performance,” Proc. IEEE Virtual Reality Annual
International Symposium, p. 38, 1997.

	 37.	 R. Hawkes, S. Rushton, and M. Smyth, “Update Rates and Fidelity in Virtual Environments,”
Virtual Reality: Research, Applications and Design, vol 1(2), pp. 99–108, 1995.

	 38.	 B. Hook and A. Bigos, 3D Acceleration Demystified, Part II: The Benchmarks, http://
www.gamasutra.com/features/19970601/3d_acceleration_demystified.htm.

	 39.	 W. Mcculloch and W. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity”,
Bulletin of Mathematical Biophysics, pp. 115–133, 1943.

	 40.	 D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning Internal Representations by
Error Propagation”, vol. 1, MIT Press, Cambridge, MA, 1986.

169References

	 41.	 D.W. Marquardt, “An Algorithm for Leastsquares Estimation of Nonlinear Parameters”,
Journal of the Society for Industrial and Applied Mathematics vol. 11(1), pp. 431–444,
1963.

	 42.	 A. Waibel, T. Hanazawa, G. Hilton, K. Shikano, and K. J. Lang, “Phoneme recognition
using time-delay neural networks,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, pp. 328–339, 1989.

	 43.	 G. Chen, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC
Press, 328 pages, 2000, ISBN 9780849316586.

	 44.	 Microsoft DirectX—http://msdn.microsoft.com/en-US/directx/
	 45.	 NVIDIA PerfKit, http://developer.nvidia.com/object/nvperfkit_home.html
	 46.	 H. Demuth, M. Beale, Neural Network Toolbox for use with MATLAB—User’s Guide.

The Mathworks, USA, 1993.
	 47.	 J.R. Jang, “ANFIS: Adaptive-Network-based Fuzzy Inference Systems,” IEEE Trans. on

Systems, Man, and Cybernetics, vol. 23, pp. 665–685, May 1993.
	 48.	 W. Barfield and C. Hendrix, “The effect of update rate on the sense of presence within

virtual environments”, Virtual Reality, vol. 1(1), pp. 3–15, 1993.
	 49.	 J. Chen and J. Thropp, “Review of low frame rate effects on human performance”, IEEE

Transactions on Systems, Man and Cybernetics vol. 37(6) pp. 1063–1076, Nov. 2007.
	 50.	 S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology”,

Control Engineering Practice, vol. 11(7), pp. 733–764. Jul. 2003.
	 51.	 B. Wittenmark, “A survey of adaptive control applications”, Dynamic Modeling Control

Applications for Industry Workshop, IEEE Industry Applications Society, pp. 32–36,
1997.

	 52.	 M. Kokar, K. Baclawski and Y. Eracar, “Control Theory-Based Foundations of
Self-Controlling Software”, IEEE Intelligent Systems and their Applications, vol. 14(3),
pp. 37–45, 1999.

	 53.	 K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1994.

	 54.	 J. L. Hellerstein, Y. Diao, S. Parekh and D. Tilbury, Feedback Control of Computing
Systems. John Wiley and Sons., 2004, ISBN-13: 978-0471266372.

	 55.	 K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning, International
Society for Measurement and Control, 343 pages, 1995, ISBN 978-1556175169.

	 56.	 Automated Tuning of Simulink PID Controller, http://www.mathworks.com/help/toolbox/
slcontrol/gs/bs1qetr.html

	 57.	 R. J. Craddock, K Warwick, “The use of state space control theory for analyzing feed-
forward neural networks”, Dealing with Complexity: a Neural Network Approach,
Springer, 1998.

	 58.	 H. Stone, “Approximation of curves by line segments,” Math. Comp., vol. 15, pp. 40–47,
1961,

	 59.	 R. Bellman, “On the approximation of curves by line segments using dynamic program-
ming”. ACM Comm. vol. 4(6), pp. 284, June 1961.

	 60.	 W. S. Chan and F. Chin. 1992, “Approximation of Polygonal Curves with Minimum
Number of Line Segments”, In Proceedings of the Third International Symposium on
Algorithms and Computation, Springer-Verlag, London, UK, pp. 378–387, 1992.

	 61.	 L. McMillan and G. Bishop, “Plenoptic modeling: an image-based rendering system,”
In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques (SIGGRAPH ‘95), ACM, New York, NY, USA, pp. 39–46, 1995.

	 62.	 D. Seo and I. Jung, “Network-adaptive autonomic transcoding algorithm for seamless
streaming media service of mobile clients,” Multimedia Tools Appl. vol. 51(3), pp. 897–912,
Feb. 2011.

170 References

	 63.	 C. Li, G. Feng, W. Li, T. Gu, S. Lu, and D. Chen, “A resource-adaptive transcoding
proxy caching strategy,” In Proceedings of the 8th Asia-Pacific Web conference on
Frontiers of WWW Research and Development (APWeb’06), Springer-Verlag, Berlin,
Heidelberg, pp. 556–567, 2006.

	 64.	 H. Fang, X. Yu, “Design and Simulation of Neuron PID Controller,” International
Conference on Information Technology, Computer Engineering and Management
Sciences (ICM), 2011, vol. 1, pp. 80–82, 24–25 Sept. 2011

	 65.	 A. Niels et al., “An application framework for adaptive distributed simulation and 3D
rendering services”, Proceedings of the 11th ACM SIGGRAPH International Conference
on Virtual-Reality Continuum and its Applications in Industry (VRCAI ‘12) ACM, NY,
USA, pp. 103–110, 2012.

	 66.	 G. Paravati, A. Sanna, F. Lamberti, and L. Ciminiera, “An Adaptive Control System
to Deliver Interactive Virtual Environment Content to Handheld Devices” Mobile
Networking Applications, vol. 16(3), pp. 385–393. Jun. 2011.

	 67.	 N.A. Nijdam. S. Han, B. Kevelham, N. Magnenat-Thalmann, “A context-aware adap-
tive rendering system for user-centric pervasive computing environments,” 15th IEEE
Mediterranean Electrotechnical Conference, pp. 790–795, April 2010.

	 68.	 L. Hu, P.V. Sander and H. Hoppe, “Parallel View-Dependent Level-of-Detail Control,”
IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 5, pp. 718,
728, Sept.–Oct. 2010.

	 69.	 D. Scherzer, L. Yang, and O. Mattausch. “Exploiting temporal coherence in real-time
rendering”, ACM SIGGRAPH ASIA 2010 Courses (SA ‘10). ACM, NY, USA, Article
24, 26 pages, 2010.

	 70.	 Y. Huai, X. Zeng, P. Yu, J. Li, “Real-time rendering of large-scale tree scene,”
4th International Conference on Computer Science and Education, 2009. ICCSE ‘09,
pp. 748–752, 25–28 July 2009.

	 71.	 Z. Zheng, E. Prakash and T.K.Y. Chan, “Interactive View-Dependent Rendering over
Networks,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3,
pp. 576, 589, May–June 2008.

	 72.	 R.W.N Pazzi, A. Boukerche, T. Huang, “Implementation, Measurement, and Analysis of
an Image-Based Virtual Environment Streaming Protocol for Wireless Mobile Devices,”
IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 9, pp. 1894, 1907,
Sept. 2008.

	 73.	 Y. Gu and S. Chakraborty, “A Hybrid DVS Scheme for Interactive 3D Games,”
Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS ‘08.
IEEE, pp. 3–12, 22–24 April 2008.

	 74.	 A. Domingo et al., “Continuous LODs and Adaptive Frame-Rate Control for Spherical
Light Fields,” Geometric Modeling and Imaging, 2007. GMAI ‘07, vol., no., pp. 73, 78,
4–6 July 2007.

	 75.	 J. Kuo, G. R. Bredthauer, J. B. Castellucci, O.T. Von Ramm, “Interactive volume rendering
of real-time three-dimensional ultrasound images,” IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, vol. 54, no. 2, pp. 313–318, Feb. 2007.

	 76.	 Z. Zheng, T.K.Y. Chan, and P. Edmond, “Rendering of large 3D models for online enter-
tainment”, In Proceedings of the 2006 international conference on Game research and
development (CyberGames ‘06), Murdoch University, Australia, pp. 163–170. 2006.

	 77.	 S. Jeschke, M. Wimmer, H. Schumann, and W. Purgathofer, “Automatic impostor place-
ment for guaranteed frame rates and low memory requirements,” In Proceedings of the
2005 symposium on Interactive 3D graphics and games (I3D ‘05). ACM, NY, USA,
pp. 103–110, 2005.

171References

	 78.	 J. Pouderoux and J-E. Marvie, “Adaptive streaming and rendering of large terrains using
strip masks,” In Proceedings of the 3rd international conference on Computer graphics
and interactive techniques in Australasia and South East Asia (GRAPHITE ‘05). ACM,
NY, USA, pp. 299–306, 2005.

	 79.	 X. Li and Q. He, “Frame rate control in distributed game engine,” In Proceedings of the
4th international conference on Entertainment Computing (ICEC’05), Springer-Verlag,
Berlin, Heidelberg, pp. 76–87, 2005.

	 80.	 M. Wan, N. Zhang and H. Qu, A.E. Kaufman, “Interactive stereoscopic rendering of
volumetric environments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 10, no. 1, pp. 15–28, Jan.–Feb 2004.

	 81.	 S-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. “Quick-VDR: Interactive
View-Dependent Rendering of Massive Models,” In Proceedings of the conference
on Visualization ‘04 (VIS ‘04), IEEE Computer Society, Washington, DC, USA,
pp. 131–138, 2004.

	 82.	 N. Tack, F. Morn, G. Lafruit, and R. Lauwereins, “3D graphics rendering time modeling
and control for mobile terminals,” In Proceedings of the ninth international conference
on 3D Web technology (Web3D ‘04). ACM, New York, NY, USA, pp. 109–117, 2004.

	 83.	 R. Dumont, F. Pellacini, and J. A. Ferwerda, “Perceptually-driven decision theory for
interactive realistic rendering” ACM Trans. Graph. vol. 22(2), pp. 152–181, April 2003.

	 84.	 X. Li and H-W. Shen, “Time-critical multiresolution volume rendering using 3D texture
mapping hardware,” Proceedings IEEE/ACM SIGGRAPH Symposium on Volume
Visualization and Graphics, pp. 29, 36, Oct. 2002.

	 85.	 M. Grabner, “Smooth high-quality interactive visualization,” Spring Conference on
Computer Graphics, pp. 87, 94, 2001.

	 86.	 W-S. Lin; R. Lau, W.H. Kai Hwang; X. Lin; P.Y.S Cheung, “Adaptive parallel rendering
on multiprocessors and workstation clusters,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 12, no. 3, pp. 241, 258, Mar 2001

	 87.	 H. Qu, M. Wan, J. Qin, and A. Kaufman, “Image based rendering with stable frame
rates,” In Proceedings of the conference on Visualization ‘00 (VIS ‘00). IEEE Computer
Society Press, Los Alamitos, CA, USA, pp. 251–258, 2000.

	 88.	 E. Gobbetti and E. Bouvier, “Time-critical multiresolution scene rendering,” In
Proceedings of the conference on Visualization ‘99: celebrating ten years (VIS ‘99).
IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 123–130, 1999.

	 89.	 J. T. Klosowski and C. T. Silva, “Rendering on a budget: a framework for time-critical
rendering,” In Proceedings of the conference on Visualization ‘99: celebrating ten years
(VIS ‘99). IEEE Computer Society Press, Los Alamitos, CA, USA, 115–122. 1999

	 90.	 P. Ebbesmeyer, “Textured virtual walls achieving interactive frame rates during walk-
throughs of complex indoor environments,” Proceedings IEEE Virtual Reality Annual
International Symposium, pp. 220–227, 1998.

	 91.	 J. Sato, K. Hashimoto, Y. Shibata, “Dynamic rate control methods for continuous
media transmission,” Proceedings Twelfth International Conference on Information
Networking, (ICOIN-12), pp. 110, 115, 21–23 Jan 1998.

	 92.	 M. Zockler, D. Stalling and H.-C. Hege, “Interactive visualization of 3D-vector fields
using illuminated stream lines,” Visualization ‘96. Proceedings, pp. 107–113, Nov. 1
1996.

	 93.	 S. Belblidia, J.-P. Perrin and J.C. Paul, “Generating various levels of detail of architec-
tural objects for image-quality and frame-rate control rendering,” Computer Graphics
International, 1996. Proceedings, pp. 84–89, 24–28 Jun 1996.

	 94.	 S. Bryson and S. Johan, S, “Time management, simultaneity and time-critical computa-
tion in interactive unsteady visualization environments,” Visualization ‘96, pp. 255–261,
Nov. 1 1996.

172 References

	 95.	 T.L. Kunii and S. Nishimura, “Parallel polygon rendering on the graphics computer VC-1,”
Proceedings First Aizu International Symposium on Parallel Algorithms/Architecture
Synthesis, pp. 2–9, 15–17 Mar 1995.

	 96.	 T. Tamada, Y. Nakamura, S. Takeda, “An efficient 3D object management and interactive
walkthrough for the 3D facility management system,” 20th International Conference on
Control and Instrumentation, 1994. vol. 3, pp. 1937–1941, Sep 1994.

	 97.	 A. Dayal, C. Woolley, B.A. Watson and D. Luebke, “Adaptive frameless rendering”,
Proc. Eurographics Symposium on Rendering, pp. 265–275, 2005.

173

Publications and Achievements

PATENT APPLICATION

Method and System for Adaptive Control of Real-time Computer Graphics Rendering,
US Patent Office dated 13 July 2011, US61/507,486. (Supported by Nanyang Enterprise
and Innovation Office)

BOOK

G. Wong and J. Wang, Computer Graphics with Control Engineering, to be published by
Taylor and Francis, CRC Press. ISBN 978-1466583597.

BOOK CHAPTERS

G. Wong and J. Wang, “Intelligent Load Control Shader”, ShaderX7, Charles River
Media/Thomson, 2009, ISBN 978-1584505983, pp. 627-633, March 2009.

G. Wong and J. Wang, “A Fuzzy Control Approach to Managing Scene Complexity”,
Charles River Media/Thomson, Games Programming Gems 6, 2006, ISBN 1584504501,
pp. 305–314.

CONFERENCE PAPERS

G. Wong and J. Wang, “Control of Interactive Computer Graphics Rendering Process”, 9th IEEE
International Conference on Control & Automation (IEEE ICCA’11), December 2011,
Chile.

G. Wong and J. Wang, “Dynamics of 3D Polygonal Rendering”, IEEE R8 International
Conference on Computational Technologies in Electrical and Electronics Engineering,
SIBIRCON 2010, July 11–15, 2010, Irkutsk Listvyanka, Russia.

G. Wong and J. Wang, “Green Graphics: Feedback Control for Energy Efficient Rendering”,
International Conference on Computer Graphics and Interactive Techniques (ACM
SIGGRAPH Asia 2008), ISBN 978-1-60558-388-4, Singapore, 2008

G. Wong and J. Wang, “Control Theory based Real-time Rendering”, Proceedings of the
7th International Conference on Virtual Reality Continuum and its Applications in
Industry, VRCAI 2008, Singapore, December 8–9, 2008, ISBN 978-1-60558-335-8.

G. Wong and J. Wang, “Interactive Rendering of Dynamic Environment using PID Control”,
International Conference on Computer Graphics and Interactive Techniques (ACM
SIGGRAPH 2007), ISBN 978-1-59593-648-6.

G. Wong and J. Wang, “Modeling Real-time Rendering”, EUROGRAPHICS Conference 2006,
Vienna, Austria, ISSN 1017-4656, pp. 89–93.

G. Wong and J. Wang, “Efficient Level-of-Detail Management using Fuzzy Logic”,
International Conference on Computer Graphics and Interactive Techniques (ACM
SIGGRAPH 2005), ISBN 1-59593-100-7.

174 Publications and Achievements

ACHIEVEMENTS

Academic Research Grant Tier 1 (Grant number: RG26/09), NTU/Ministry of Education
Singapore.

Research fund support by Defense Science Organization, Singapore under grant DSOCL06184.
Microsoft Research Student Competition, 2005, Semi-finalist.

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

K18998

Computer GraphiCs
with Control enGineerinG

Computer GraphiCs
with Control enGineerinG

C
o

m
p

u
t

e
r

 G
r

a
p

h
iC

s
 w

ith
 C

o
n

t
r

o
l

 e
n

G
in

e
e

r
in

G

Gabriyel Wong
Jianliang Wang

Gabriyel Wong
Jianliang Wang

Wong
Wang

Real-Time
RendeRing

Real-Time
RendeRing

R
e

a
l

-T
im

e
 R

e
n

d
e

R
in

g

Consumers today expect extremely realistic imagery generated in real time for
interactive applications such as computer games, virtual prototyping, and sci-
entific visualisation. However, the increasing demands for fidelity coupled with
rapid advances in hardware architecture pose a challenge: how do you find opti-
mal, sustainable solutions to accommodate both speed of rendering and quality?
Real-Time Rendering: Computer Graphics with Control Engineering presents a
novel framework for solving the perennial challenge of resource allocation and the
trade-off between quality and speed in interactive computer graphics rendering.

Conventional approaches, mainly based on heuristics and algorithms, are largely
application specific, and offer fluctuating performance, particularly as applica-
tions become more complex. The solution proposed by the authors draws on
powerful concepts from control engineering to address these shortcomings. Ex-
panding the horizon of real-time rendering techniques, this book:

• Explains how control systems work with real-time computer graphics
• Proposes a data-driven modelling approach that more accurately represents

the system behaviour of the rendering process
• Develops a control system strategy for linear and non-linear models using

proportional, integral, derivative (PID) and fuzzy control techniques
• Uses real-world data from rendering applications in proof-of-concept experi-

ments
• Compares the proposed solution to existing techniques
• Provides practical details on implementation, including references to tools

and source code

This pioneering work takes a major step forward by applying control theory in the
context of a computer graphics system. Promoting cross-disciplinary research,
it offers guidance for anyone who wants to develop more advanced solutions for
real-time computer graphics rendering.

Computer Science and Engineering

CAT#K18998 cover.indd 1 9/2/13 8:37 AM

	Front Cover
	About the pagination of this eBook
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Preface
	Acknowledgements
	Summary
	Authors
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: Linear Model Analysis of Real-Time Rendering
	Chapter 4: Modelling Non-Linear Rendering Processes
	Chapter 5: Model-Based Control
	Chapter 6: Model-Less Control
	Chapter 7: Applications, Challenges, and Possibilities
	Chapter 8: Conclusion
	Annex A: Sample Applications
	Annex B: Patent for Application Method and System for Adaptive Control of Real-Time Computer Graphics Rendering�
	Annex C: Neural PID Control System Code
	References
	Publications and Achievements
	Back Cover

