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Preface

This book was written in response to the growing demand for a text that provides a unified
treatment of complex valued adaptive filters, both linear and nonlinear, and methods for the
processing of both complex circular and complex noncircular signals. We believe that this is
the first attempt to bring together established adaptive filtering algorithms in C and the recent
developments in the statistics of complex variable under the umbrella of powerful mathematical
frameworks of CR (Wirtinger) calculus and augmented complex statistics. Combining the
results from the authors’ original research and current established methods, this books serves
as a rigorous account of existing and novel complex signal processing methods, and provides
next generation solutions for adaptive filtering of the generality of complex valued signals.
The introductory chapters can be used as a text for a course on adaptive filtering. It is our hope
that people as excited as we are by the possibilities opened by the more advanced work in this
book will further develop these ideas into new and useful applications.

The title reflects our ambition to write a book which addresses several major problems
in modern complex adaptive filtering. Real world data are non-Gaussian, nonstationary and
generated by nonlinear systems with possibly long impulse responses. For the processing of
such signals we therefore need nonlinear architectures to deal with nonlinearity and non-
Gaussianity, feedback to deal with long responses, and adaptive mode of operation to deal
with the nonstationary nature of the data. These have all been brought together in this book,
hence the title “Complex Valued Nonlinear Adaptive Filters”. The subtitle reflects some more
intricate aspects of the processing of complex random variables, and that the class of nonlinear
filters addressed in this work can be viewed as temporal neural networks. This material can
also be used to supplement courses on neural networks, as the algorithms developed can be
used to train neural networks for pattern processing and classification.

Complex valued signals play a pivotal role in communications, array signal processing,
power, environmental, and biomedical signal processing and related fields. These signals are
either complex by design, such as symbols used in data communications (e.g. quadrature
phase shift keying), or are made complex by convenience of representation. The latter class
includes analytic signals and signals coming from many important modern applications in mag-
netic source imaging, interferometric radar, direction of arrival estimation and smart antennas,
mathematical biosciences, mobile communications, optics and seismics. Existing books do not
take into account the effects on performance of a unique property of complex statistics – com-
plex noncircularity, and employ several convenient mathematical shortcuts in the treatment of
complex random variables.

Adaptive filters based on widely linear models introduced in this work are derived rigor-
ously, and are suited for the processing of a much wider class of complex noncircular signals
(directional processes, vector fields), and offer a number of theoretical performance gains.

http://www.it-ebooks.info/


xiv Preface

Perhaps the first time we became involved in practical applications of complex adaptive fil-
tering was when trying to perform short term wind forecasting by treating wind speed and
direction, which are routinely processed separately, as a unique complex valued quantity. Our
results outperformed the standard approaches. This opened a can of worms, as it became ap-
parent that the standard techniques were not adequate, and that mathematical foundations and
practical tools for the applications of complex valued adaptive filters to the generality of com-
plex signals are scattered throughout the literature. For instance, an often confusing aspect
of complex adaptive filtering is that the cost (objective) function to be minimised is a real
function (measure of error power) of complex variables, and is not analytic. Thus, standard
complex differentiability (Cauchy-Riemann conditions) does not apply, and we need to resort
to pseudoderivatives. We identified the need for a rigorous, concise, and unified treatment of
the statistics of complex variables, methods for dealing with nonlinearity and noncircularity,
and enhanced solutions for adaptive signal processing inC, and were encouraged by our series
editor Simon Haykin and the staff from Wiley Chichester to produce this text.

The first two chapters give the introduction to the field and illustrate the benefits of the
processing in the complex domain. Chapter 1 provides a personal view of the history of
complex numbers. They are truly fascinating and, unlike other number systems which were
introduced as solutions to practical problems, they arose as a product of intellectual exercise.
Complex numbers were formalised in the mid-19th century by Gauss and Euler in order to
provide solutions for the fundamental theorem of algebra; within 50 years (and without the
Internet) they became a linchpin of electromagnetic field and relativity theory. Chapter 2
offers theoretical and practical justification for converting many apparently real valued signal
processing problems into the complex domain, where they can benefit from the convenience of
representation and the power and beauty of complex calculus. It illustrates the duality between
the processing inR2 andC, and the benefits of complex valued processing – unlikeR2 the field
of complex numbers forms a division algebra and provides a rigorous mathematics framework
for the treatment of phase, nonlinearity and coupling between signal components.

The foundations of standard complex adaptive filtering are established in Chapters 3–7.
Chapter 3 provides an overview of adaptive filtering architectures, and introduces the back-
ground for their state space representations and links with polynomial filters and neural net-
works. Chapter 4 deals with the choice of complex nonlinear activation function and addresses
the trade off between their boundedness and analyticity. The only continuously differentiable
function in C that satisfies the Cauchy-Riemann conditions is a constant; to preserve bound-
edness some ad hoc approaches (also called split-complex) employ real valued nonlinearities
on the real and imaginary parts. Our main interest is in complex functions of complex vari-
ables (also called fully complex) which are not bounded on the whole complex plane, but are
complex differentiable and provide solutions which are generic extensions of the correspond-
ing solutions in R. Chapter 5 addresses the duality between gradient calculation in R2 and
C and introduces the so called CR calculus which is suitable for general functions of com-
plex variables, both holomorphic and non-holomorphic. This provides a unified framework
for computing the Jacobians, Hessians, and gradients of cost functions, and serves as a basis
for the derivation of learning algorithms throughout this book. Chapters 6 and 7 introduce
standard complex valued adaptive filters, both linear and nonlinear; they are supported by
rigorous proofs of convergence, and can be used to teach a course on adaptive filtering. The
complex least mean square (CLMS) in Chapter 6 is derived step by step, whereas the learning
algorithms for feedback structures in Chapter 7 are derived in a compact way, based on CR
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Preface xv

calculus. Furthermore, learning algorithms for both linear and nonlinear feedback architectures
are introduced, starting from linear IIR filters to temporal recurrent neural networks.

Chapters 8–11 address several practical aspects of adaptive filtering, such as adaptive step-
sizes, dynamical range extension, and a posteriori mode of operation. Chapter 8 provides a
thorough review of adaptive step size algorithms and introduces the general normalised gradi-
ent descent (GNGD) algorithm for enhanced stability. Chapter 9 gives solutions for dynamical
range extension of nonlinear neural adaptive filters, whereas Chapter 10 explains a posteriori
algorithms and analyses them in the framework of fixed point theory. Chapter 11 rounds up
the first part of the book and introduces fractional delay filters together with links between
complex nonlinear functions and number theory.

Chapters 12–15 introduce linear and nonlinear adaptive filters based on widely linear models,
which are suited to deal with complex noncircularity, thus providing theoretical and practical
adaptive filtering solutions for the generality of complex signals. Chapter 12 provides a com-
prehensive overview of the latest results (2008) in the statistics of complex random signals,
with a particular emphasis on complex noncircularity. It is shown that the standard complex
Gaussian model is inadequate and the concepts of noise, stationarity, multicorrelation, and
multispectra are re-introduced based on the augmented statistics. This has served as a basis for
the development of the class of ‘augmented’ adaptive filtering algorithms, starting from the
complex least square (ACLMS) algorithm through to augmented learning algorithms for IIR
filters, recurrent neural networks, and augmented Kalman filters. Chapter 13 introduces the
augmented least mean square algorithm, a quantum step in the adaptive signal processing of
complex noncircular signals. It is shown that this approach is as good as standard approaches for
circular data, whereas it outperforms standard filters for noncircular data. Chapter 14 provides
an insight into the duality between complex valued linear adaptive filters and dual channel real
adaptive filters. A correspondence is established between the ACLMS and the dual channel real
LMS algorithms. Chapter 15 extends widely linear modelling in C to feedback and nonlinear
architectures. The derivations are based onCR calculus and are provided for both the gradient
descent and state space (Kalman filtering) models.

Chapter 16 addresses collaborative adaptive filtering in C. It is shown that by employing
collaborative filtering architectures we can gain insight into the nature of a signal in hand, and
a simple test for complex noncircularity is proposed. Chapter 17 introduces complex empirical
mode decomposition (EMD), a data driven time-frequency technique. This technique, when
used for preprocessing complex valued data, provides a framework for “data fusion via fission”,
with a number of applications, especially in biomedical engineering and neuroscience. Chapter
18 provides a rigorous statistical testing framework for the validity of complex representation.

The material is supported by a number of Appendices (some of them based on [190]), ranging
from the theory of complex variable through to fixed point theory. We believe this makes
the book self-sufficient for a reader who has basic knowledge of adaptive signal processing.
Simulations were performed for both circular and noncircular data sources, from benchmark
linear and nonlinear models to real world wind and radar signals. The applications are set
in a prediction setting, as prediction is at the core of adaptive filtering. The complex valued
wind signal is our most frequently used test signal, due to its intermittent, non-Gaussian
and noncircular nature. Gill Instruments provided ultrasonic anemometers used for our wind
recordings.
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1
The Magic of Complex Numbers

The notion of complex number is intimately related to the Fundamental Theorem of Algebra
and is therefore at the very foundation of mathematical analysis. The development of complex
algebra, however, has been far from straightforward.1

The human idea of ‘number’ has evolved together with human society. The natural numbers
(1, 2, . . . ∈ N) are straightforward to accept, and they have been used for counting in many
cultures, irrespective of the actual base of the number system used. At a later stage, for sharing,
people introduced fractions in order to answer a simple problem such as ‘if we catch U fish, I
will have two parts 2

5 U and you will have three parts 3
5 U of the whole catch’. The acceptance of

negative numbers and zero has been motivated by the emergence of economy, for dealing with
profit and loss. It is rather impressive that ancient civilisations were aware of the need for irra-
tional numbers such as

√
2 in the case of the Babylonians [77] and π in the case of the ancient

Greeks.2

The concept of a new ‘number’ often came from the need to solve a specific practical
problem. For instance, in the above example of sharing U number of fish caught, we need
to solve for 2U = 5 and hence to introduce fractions, whereas to solve x2 = 2 (diagonal of a
square) irrational numbers needed to be introduced. Complex numbers came from the necessity
to solve equations such as x2 = −1.

1A classic reference which provides a comprehensive account of the development of numbers is Number: The Language
of Science by Tobias Dantzig [57].
2The Babylonians have actually left us the basics of Fixed Point Theory (see Appendix P), which in terms of modern
mathematics was introduced by Stefan Banach in 1922. On a clay tablet (YBC 7289) from the Yale Babylonian
Collection, the Mesopotamian scribes explain how to calculate the diagonal of a square with base 30. This was
achieved using a fixed point iteration around the initial guess. The ancient Greeks used π in geometry, although the
irrationality of π was only proved in the 1700s. More information on the history of mathematics can be found in [34]
whereas P. Nahin’s book is dedicated to the history of complex numbers [215].

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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2 The Magic of Complex Numbers

1.1 History of Complex Numbers

Perhaps the earliest reference to square roots of negative numbers occurred in the work of
Heron of Alexandria3, around 60 AD, who encountered them while calculating volumes of
geometric bodies. Some 200 years later, Diophantus (about 275 AD) posed a simple problem
in geometry,

Find the sides of a right–angled triangle of perimeter 12 units and area 7 squared units.

which is illustrated in Figure 1.1. To solve this, let the side |AB| = x, and the height |BC| = h,
to yield

area = 1

2
x h

perimeter = x + h +
√

x2 + h2

In order to solve for x we need to find the roots of

6x2 − 43x + 84 = 0

however this equation does not have real roots.
A similar problem was posed by Cardan4 in 1545. He attempted to find two numbers a and

b such that

a + b = 10

a b = 40

A

12 units

7  sq. units

C

B

Figure 1.1 Problem posed by Diophantus (third century AD)

3Heron (or Hero) of Alexandria was a Greek mathematician and inventor. He is credited with finding a formula for
the area of a triangle (as a function of the perimeter). He invented many gadgets operated by fluids; these include a
fountain, fire engine and siphons. The aeolipile, his engine in which the recoil of steam revolves a ball or a wheel, is
the forerunner of the steam engine (and the jet engine). In his method for approximating the square root of a number
he effectively found a way round the complex number. It is fascinating to realise that complex numbers have been
used, implicitly, long before their introduction in the 16th century.
4Girolamo or Hieronimo Cardano (1501–1576). His name in Latin was Hieronymus Cardanus and he is also known
by the English version of his name Jerome Cardan. For more detail on Cardano’s life, see [1].
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History of Complex Numbers 3

These equations are satisfied for

a = 5 + √−15 and b = 5 − √−15 (1.1)

which are clearly not real.
The need to introduce the complex number became rather urgent in the 16th century. Several

mathematicians were working on what is today known as the Fundamental Theorem of Algebra
(FTA) which states that

Every nth order polynomial with real5 coefficients has exactly n roots in C.

Earlier attempts to find the roots of an arbitrary polynomial include the work by
Al-Khwarizmi (ca 800 AD), which only allowed for positive roots, hence being only a special
case of FTA. In the 16th century Niccolo Tartaglia6 and Girolamo Cardano (see Equation 1.1)
considered closed formulas for the roots of third- and fourth-order polynomials. Girolamo
Cardano first introduced complex numbers in his Ars Magna in 1545 as a tool for finding
real roots of the ‘depressed’ cubic equation x3 + ax + b = 0. He needed this result to provide
algebraic solutions to the general cubic equation

ay3 + by2 + cy + d = 0

By substituting y = x − 1
3b, the cubic equation is transformed into a depressed cubic (without

the square term), given by

x3 + βx + γ = 0

Scipione del Ferro of Bologna and Tartaglia showed that the depressed cubic can be solved
as7

x = 3

√√√√√−γ

2
+

√
γ2

4
+ β3

27
+ 3

√√√√√−γ

2
−

√
γ2

4
+ β3

27
(1.2)

For certain problem settings (for instance a = 1, b = 9, c = 24, d = 20), and using the
substitution y = x − 3, Tartaglia could show that, by symmetry, there exists

√−1 which has
mathematical meaning. For example, Tartaglia’s formula for the roots of x3 − x = 0 is given
by

1√
3

(
(
√−1)

1
3 + 1

(
√−1)

1
3

)

5In fact, it states that every nth order polynomial with complex coefficients has n roots in C, but for historical reasons
we adopt the above variant.
6Real name Niccolo Fontana, who is known as Tartaglia (the stammerer) due to a speaking disorder.
7In modern notation this can be written as x = (q + w)

1
3 + (q − w)

1
3 .
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4 The Magic of Complex Numbers

Rafael Bombelli also analysed the roots of cubic polynomials by the ‘depressed cubic’
transformations and by applying the Ferro–Tartaglia formula (1.2). While solving for the
roots of

x3 − 15x − 4 = 0

he was able to show that (
2 + √−1

)
+

(
2 − √−1

)
= 4

Indeed x = 4 is a correct solution, however, in order to solve for the real roots, it was necessary
to perform calculations in C. In 1572, in his Algebra, Bombelli introduced the symbol

√−1
and established rules for manipulating ‘complex numbers’.

The term ‘imaginary’ number was coined by Descartes in the 1630s to reflect his observation
that ‘For every equation of degree n, we can imagine n roots which do not correspond to any
real quantity’. In 1629, Flemish mathematician8 Albert Girard in his L’Invention Nouvelle en
l’Algèbre asserts that there are n roots to an nth order polynomial, however this was accepted
as self-evident, but with no guarantee that the actual solution has the form a + j b, a, b ∈ R.

It was only after their geometric representation (John Wallis9 in 1685 in De Algebra Tractatus
and Caspar Wessel10 in 1797 in the Proceedings of the Copenhagen Academy) that the complex
numbers were finally accepted. In 1673, while investigating geometric representations of the
roots of polynomials, John Wallis realised that for a general quadratic polynomial of the
form

x2 + 2bx + c2 = 0

for which the solution is

x = −b ±
√

b2 − c2 (1.3)

a geometric interpretation was only possible for b2 − c2 ≥ 0. Wallis visualised this solution
as displacements from the point −b, as shown in Figure 1.2(a) [206]. He interpreted each
solution as a vertex (A and B in Figure 1.2) of a right triangle with height c and side

√
b2 − c2.

Whereas this geometric interpretation is clearly correct for b2 − c2 ≥ 0, Wallis argued that for
b2 − c2 < 0, since b is shorter than c, we will have the situation shown in Figure 1.2(b); this

8Albert Girard was born in France in 1595, but his family later moved to the Netherlands as religious refugees. He
attended the University of Leiden where he studied music. Girard was the first to propose the fundamental theorem
of algebra, and in 1626, in his first book on trigonometry, he introduced the abbreviations sin, cos, and tan. This book
also contains the formula for the area of a spherical triangle.
9In his Treatise on Algebra Wallis accepts negative and complex roots. He also shows that equation x3 − 7x = 6 has
exactly three roots in R.
10Within his work on geodesy Caspar Wessel (1745–1818) used complex numbers to represent directions in a plane as
early as in 1787. His article from 1797 entitled ‘On the Analytical Representation of Direction: An Attempt Applied
Chiefly to Solving Plane and Spherical Polygons’ (in Danish) is perhaps the first to contain a well-thought-out
geometrical interpretation of complex numbers.
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b

2−c2bsqrt(

x

y

B

(a) Real solution

A (−b,0)

b

c

)

x

b

c

b

(−b,0)

B

(b) Complex solution

A

y

Figure 1.2 Geometric representation of the roots of a quadratic equation

way we can think of a complex number as a point on the plane.11 In 1732 Leonhard Euler
calculated the solutions to the equation

xn − 1 = 0

in the form of

cos θ + √−1 sin θ

and tried to visualise them as the vertices of a planar polygon. Further breakthroughs came with
the work of Abraham de Moivre (1730) and again Euler (1748), who introduced the famous
formulas

(cos θ + j sin θ)n = cos nθ + j sin nθ

cos θ + j sin θ = ejθ

Based on these results, in 1749 Euler attempted to prove FTA for real polynomials in Recherches
Sur Les Racines Imaginaires des Équations. This was achieved based on a decomposition a
monic polynomials and by using Cardano’s technique from Ars Magna to remove the second
largest degree term of a polynomial.

In 1806 the Swiss accountant and amateur mathematician Jean Robert Argand published
a proof of the FTA which was based on an idea by d’Alembert from 1746. Argand’s initial
idea was published as Essai Sur Une Manière de Représenter les Quantités Imaginaires Dans
les Constructions Géométriques [60, 305]. He simply interpreted j as a rotation by 90◦ and
introduced the Argand plane (or Argand diagram) as a geometric representation of complex
numbers. In Argand’s diagram, ±√−1 represents a unit line, perpendicular to the real axis.
The notation and terminology we use today is pretty much the same. A complex number

z = x + jy

11In his interpretation −√−1 is the same point as
√−1, but nevertheless this was an important step towards the

geometric representation of complex numbers.
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y

−y
= x − j yz*

Re{z}

Im{z}

z = x + j y

x

Figure 1.3 Argand’s diagram for a complex number z and its conjugate z∗

is simply represented as a vector in the complex plane, as shown in Figure 1.3. Argand
called

√
x2 + y2 the modulus, and Gauss introduced the term complex number and notation12

ı = √−1 (in signal processing we use j = ı = √−1). Karl Friedrich Gauss used complex
numbers in his several proofs of the fundamental theorem of algebra, and in 1831 he not only
associated the complex number z = x + jy with a point (x, y) on a plane, but also introduced
the rules for the addition13 and multiplication of such numbers. Much of the terminology
used today comes from Gauss, Cauchy14 who introduced the term ‘conjugate’, and Hankel
who in 1867 introduced the term direction coefficient for cos θ + j sin θ, whereas Weierstrass
(1815–1897) introduced the term absolute value for the modulus.

Some analytical aspects of complex numbers were also developed by Georg Friedrich
Bernhard Riemann (1826–1866), and those principles are nowadays the basics behind what
is known as manifold signal processing.15 To illustrate the potential of complex numbers in
this context, consider the stereographic16 projection [242] of the Riemann sphere, shown
in Figure 1.4(a). In a way analogous to Cardano’s ‘depressed cubic’, we can perform
dimensionality reduction by embedding C in R3, and rewriting

Z = a + j b, (a, b, 0) ∈ R3

12There is a simple trap, that is, we cannot apply the identity of the type
√

ab = √
a
√

b to the ‘imaginary’ numbers,

this would lead to the wrong conclusion 1 = √
(−1)(−1) = √−1

√−1, however
√−1

2 = √−1
√−1 = −1.

13So much so that, for instance, 3 remains a prime number whereas 5 does not, since it can be written as (1 − 2j)
(1 + 2j).
14Augustin Louis Cauchy (1789–1867) formulated many of the classic theorems in complex analysis.
15Examples include the Natural Gradient algorithm used in blind source separation [10, 49].
16The stereographic projection is a mapping that projects a sphere onto a plane. The mapping is smooth, bijective and
conformal (preserves relationships between angles).
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Figure 1.4 Stereographic projection and Riemann sphere: (a) the principle of the stereographic projec-
tion; (b) stereographic projection of the Earth (seen from the south pole S)

Consider a sphere � defined by

� =
{

(x, y, u) ∈ R3 : x2 + y2 + (u − d)2 = r2
}

, d, r ∈ R

There is a one-to-one correspondence between the points of C and the points of �, excluding
N (the north pole of �), since the line from any point z ∈ C cuts � \ {N} in precisely one point.
If we include the point ∞, so as to have the extended complex plane C ∪ {∞}, then the north
pole N from sphere � is also included and we have a mapping of the Riemann sphere onto the
extended complex plane. A stereographic projection of the Earth onto a plane tangential to the
north pole N is shown in Figure 1.4(b).

1.1.1 Hypercomplex Numbers

Generalisations of complex numbers (generally termed ‘hypercomplex numbers’) include the
work of Sir William Rowan Hamilton (1805–1865), who introduced the quaternions in 1843.
A quaternion 	q is defined as [103]

	q = q0 + q1ı + q2j + q3k (1.4)

where the variables ı, j, k are all defined as
√

¨
−1, but their multiplication is not commutative.17

Pivotal figures in the development of the theory of complex numbers are Hermann Gunther
Grassmann (1809–1877), who introduced multidimensional vector calculus, and James Cockle,

17That is: ıj = −jı = k, jk = −kj = ı, and kı = −ık = j.
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8 The Magic of Complex Numbers

who in 1848 introduced split-complex numbers.18 A split-complex number (also known as
motors, dual numbers, hyperbolic numbers, tessarines, and Lorenz numbers) is defined as [51]

z = x + jy, j2 = 1

In 1876, in order to model spins, William Kingdon Clifford introduced a system of
hypercomplex numbers (Clifford algebra). This was achieved by conveniently combining the
quaternion algebra and split-complex numbers. Both Hamilton and Clifford are credited with
the introduction of biquaternions, that is, quaternions for which the coefficients are complex
numbers. A comprehensive account of hypercomplex numbers can be found in [143]; in general
a hypercomplex number system has at least one non-real axis and is closed under addition and
multiplication. Other members of the family of hypercomplex numbers include McFarlane’s
hyperbolic quaternion, hyper-numbers, multicomplex numbers, and twistors (developed by
Roger Penrose in 1967 [233]).

1.2 History of Mathematical Notation

It is also interesting to look at the development of ‘symbols’ and abbreviations in mathematics.
For books copied by hand the choice of mathematical symbols was not an issue, whereas for
printed books this choice was largely determined by the availability of fonts of the early printers.
Thus, for instance, in the 9th century in Al-Khwarizmi’s Algebra solutions were descriptive
rather than in the form of equations, while in Cardano’s Ars Magna in the 16th century the
unknowns were denoted by single roman letters to facilitate the printing process.

It was arguably Descartes who first established some general rules for the use of mathemati-
cal symbols. He used lowercase italic letters at the beginning of the alphabet to denote unknown
constants (a, b, c, d), whereas letters at the end of the alphabet were used for unknown vari-
ables (x, y, z, w). Using Descartes’ recommendations, the expression for a quadratic equation
becomes

a x2 + b x + c = 0

which is exactly the way we use it in modern mathematics.
As already mentioned, the symbol for imaginary unit ı = √−1 was introduced by Gauss,

whereas boldface letters for vectors were first introduced by Oliver Heaviside [115]. More
details on the history of mathematical notation can be found in the two–volume book A History
of Mathematical Notations [39], written by Florian Cajori in 1929.

In the modern era, the introduction of mathematical symbols has been closely related with
the developments in computing and programming languages.19 The relationship between com-
puters and typography is explored in Digital Typography by Donald E. Knuth [153], who also
developed the TeX typesetting language.

18Notice the difference between the split-complex numbers and split-complex activation functions of neurons [152,
190]. The term split-complex number relates to an alternative hypercomplex number defined by x + jy where j2 = 1,
whereas the term split-complex function refers to functions g : C→ C for which the real and imaginary part of the
‘net’ function are processed separately by a real function of real argument f , to give g(net) = f (�(net)) + jf (�(net)).
19Apart from the various new symbols used, e.g. in computing, one such symbol is © for ‘copyright’.
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1.3 Development of Complex Valued Adaptive Signal Processing

The distinguishing characteristics of complex valued nonlinear adaptive filtering are related
to the character of complex nonlinearity, the associated learning algorithms, and some recent
developments in complex statistics. It is also important to notice that the universal function
approximation property of some complex nonlinearities does not guarantee fast and efficient
learning.

Complex nonlinearities. In 1992, Georgiou and Koutsougeras [88] proposed a list of re-
quirements that a complex valued activation function should satisfy in order to qualify
for the nonlinearity at the neuron. The calculation of complex gradients and Hessians
has been detailed in work by Van Den Bos [30]. In 1995 Arena et al. [18] proved the
universal approximation property20 of a Complex Multilayer Perceptron (CMLP), based
on the split-complex approach. This also gave theoretical justification for the use of
complex neural networks (NNs) in time series modelling tasks, and thus gave rise to temporal
neural networks. The split-complex approach has been shown to yield reasonable performance
in channel equalisation applications [27, 147, 166], and in applications where there is no strong
coupling between the real and imaginary part within the complex signal. However, for the com-
mon case where the inphase (I) and quadrature (Q) components have the same variance and
are uncorrelated, algorithms employing split-complex activation functions tend to yield poor
performance.21 In addition, split-complex based algorithms do not have a generic form of their
real-valued counterparts, and hence their signal flow-graphs are fundamentally different [220].
In the classification context, early results on Boolean threshold functions and the notion of
multiple-valued threshold function can be found in [7, 8].

The problems associated with the choice of complex nonlinearities suitable for nonlinear
adaptive filtering in C have been addressed by Kim and Adali in 2003 [152]. They have
identified a class of ‘fully complex’ activation functions (differentiable and bounded almost
everywhere in C such as tanh), as a suitable choice, and have derived the fully complex back-
propagation algorithm [150, 151], which is a generic extension of its real-valued counterpart.
They also provide an insight into the character of singularities of fully complex nonlinearities,
together with their universal function approximation properties. Uncini et al. have introduced a
2D splitting complex activation function [298], and have also applied complex neural networks
in the context of blind equalisation [278] and complex blind source separation [259].

Learning algorithms. The first adaptive signal processing algorithm operating completely in
C was the complex least mean square (CLMS), introduced in 1975 by Widrow, Mc Cool and
Ball [307] as a natural extension of the real LMS. Work on complex nonlinear architectures,
such as complex neural networks (NNs) started much later. Whereas the extension from real
LMS to CLMS was fairly straightforward, the extensions of algorithms for nonlinear adaptive
filtering fromR intoC have not been trivial. This is largely due to problems associated with the

20This is the famous 13th problem of Hilbert, which has been the basis for the development of adaptive models for
universal function approximation [56, 125, 126, 155].
21Split-complex algorithms cannot calculate the true gradient unless the real and imaginary weight updates are mutually
independent. This proves useful, e.g. in communications applications where the data symbols are made orthogonal
by design.
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10 The Magic of Complex Numbers

choice of complex nonlinear activation function.22 One of the first results on complex valued
NNs is the 1990 paper by Clarke [50]. Soon afterwards, the complex backpropagation (CBP)
algorithm was introduced [25, 166]. This was achieved based on the so called split-complex23

nonlinear activation function of a neuron [26], where the real and imaginary parts of the net
input are processed separately by two real-valued nonlinear functions, and then combined
together into a complex quantity. This approach produced bounded outputs at the expense of
closed and generic formulas for complex gradients. Fully complex algorithms for nonlinear
adaptive filters and recurrent neural networks (RNNs) were subsequently introduced by Goh
and Mandic in 2004 [93, 98]. As for nonlinear sequential state estimation, an extended Kalman
filter (EKF) algorithm for the training of complex valued neural networks was proposed in
[129].

Augmented complex statistics. In the early 1990s, with the emergence of new applications in
communications and elsewhere, the lack of general theory for complex-valued statistical signal
processing was brought to light by several authors. It was also realised that the statistics in C
are not an analytical continuation of the corresponding statistics in R. Thus for instance, so
called ‘conjugate linear’ (also known as widely linear [240]) filtering was introduced by Brown
and Crane in 1969 [38], generalised complex Gaussian models were introduced by Van Den
Bos in 1995 [31], whereas the notions of ‘proper complex random process’ (closely related24

to the notion of ‘circularity’) and ‘improper complex random process’ were introduced by
Neeser and Massey in 1993 [219]. Other important results on ‘augmented complex statistics’
include work by Schreier and Scharf [266, 268, 271], and Picinbono, Chevalier and Bondon
[237–240]. This work has given rise to the application of augmented statistics in adaptive
filtering, both supervised and blind. For supervised learning, EKF based training in the frame-
work of complex-valued recurrent neural networks was introduced by Goh and Mandic in 2007
[95], whereas augmented learning algorithms in the stochastic gradient setting were proposed
by the same authors in [96]. Algorithms for complex-valued blind separation problems in
biomedicine were introduced by Calhoun and Adali [40–42], whereas Eriksson and Koivunen
focused on communications applications [67, 252]. Notice that properties of complex signals
are not only varying in terms of their statistical nature, but also in terms of their ‘dual univari-
ate’, ‘bivariate’, or ‘complex’ nature. A statistical test for this purpose based on hypothesis
testing was developed by Gautama, Mandic and Van Hulle [85], whereas a test for complex
circularity was developed by Schreier, Scharf and Hanssen [270]. The recent book by Schreier
and Scharf gives an overview of complex statistics [269].

Hypercomplex nonlinear adaptive filters. A comprehensive introduction to hypercomplex
neural networks was provided by Arena, Fortuna, Muscato and Xibilia in 1998 [17], where
special attention was given to quaternion MLPs. Extensions of complex neural networks include

22We need to make a choice between boundedness for differentiability, since by Liouville’s theorem the only
continuously differentiable function on C is a constant.
23The reader should not mistake split-complex numbers for split-complex nonlinearities.
24Terms proper random process and circular random process are often used interchangeably, although strictly speak-
ing, ‘properness’ is a second-order concept, whereas ‘circularity’ is a property of the probability density function, and
the two terms are not completely equivalent. For more detail see Chapter 12.
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neural networks whose operation is based on the geometric (Clifford) algebra, proposed by
Pearson [230]. The Clifford MLPs are based on a variant of the complex activation function
from [88], where the standard product of two scalar variables is replaced by a special product
of two multidimensional quantities [17, 18].

A comprehensive account of standard linear and nonlinear adaptive filtering algorithms in C,
which are based on the assumption of second-order circularity of complex processes, can be
found in Adaptive Filter Theory by Simon Haykin [113]. Complex-valued NNs in the context of
classification and pattern recognition have been addressed in an edited book and a monograph
by Akira Hirose [119, 120], and in work by Naum Aizenberg [6, 7], Igor Aizenberg [4, 5] and
Tohru Nitta [221].

The existing statistical signal processing algorithms are based on standard complex statistics,
which is a direct extension of real statistics, and boils down to exactly the same expressions as
those in R, if we

� Remove complex conjugation whenever it occurs in the algorithm;
� Replace the Hermitian transpose operator with the ordinary transpose operator.

This, however, applies only to the rather limited class of circular complex signals, and such
solutions when applied to general complex data are suboptimal.

This book provides a comprehensive account of so-called augmented complex statistics, and
offers solutions to a general adaptive filtering problem in C.
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2
Why Signal Processing in the
Complex Domain?

Applications of adaptive systems normally use the signal magnitude as the main source of
information [227]. Real world processes with the ‘intensity’ and ‘direction’ components (radar,
sonar, vector fields), however, require also the phase information to be considered. In the
complex domainC, this phase information is accounted for naturally, and this chapter illustrates
the duality between the processing in R and C for several classes of real world processes. It
is shown that the advantages of using complex valued solutions for real valued problems arise
not only from the full utilisation of the phase information (e.g. time-delay converted into a
phase shift), but also from the use of different algebra and statistics.

2.1 Some Examples of Complex Valued Signal Processing

Fourier analysis. Perhaps the most frequently used form of complex valued modelling of real
valued data is the Fourier series, introduced in 1807 by Joseph Fourier, whereby a real function
f (t) is represented as1

f (t) =
∞∑

n=−∞
cne

jωnt (2.1)

where coefficients {cn} are calculated as

cn = 1

T

∫ t2

t1

f (t)e−jωntdt

and T = t2 − t1 is the period of function f (t).

1This is the more compact complex form of the original expressions. In his Théorie Analytique de la Chaleur (1822),
Fourier showed how the conduction of heat in solid bodies may be analysed in terms of infinite mathematical series.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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14 Why Signal Processing in the Complex Domain?

Phasor representation of harmonic signals. Another classical example comes from elec-
tronics, where complex numbers are used in signal analysis as a convenient description for
periodically varying signals. For a sinusoidal signal x(t) = |x| cos(ωt + �), the phasor, or
complex amplitude, is defined as

X = |x| ej� ↔ x(t) = �{Xejωt} = |x| cos(ωt + �) (2.2)

The absolute value |x| is interpreted as the amplitude and the argument � = arg(x) as the
phase of a sine wave of given frequency. Using the phasor representation of the voltage
v(t) = V cos(ωt + �v) → Vej�v and current i(t) = I cos(ωt + �i) → Iej�i , we can extend
the concept of resistance to AC circuits, where the complex impedance

Z = V
I

ej(�v−�i) ↔ Z(jω) = R + jωL + 1

jωC
= |Z(jω)| ej�(ω)

describes not only the relative magnitudes of the voltage and current, but also their phase
difference �(ω) = tan−1(ωL − 1

ωC
/R), that is, the angle between the dissipative part of the

impedance (real resistance R) and the frequency-dependent imaginary part of the impedance
(ωL − 1/ωC).

It may not be immediately obvious that it is complex numbers Z ∈ C, rather than two-
dimensional vectors (R, ωL − 1/ωC) ∈ R2, that are appropriate for this purpose. It is the
convenience of dealing with the phase information and the computational power of complex
algebra that makes it so, and such phase information is best visualised through the notion of
phasor, a rotating vector in C.

Complex step derivative approximation. Finite differencing formulas are commonly used
for estimating the value of a derivative of a function, one such example is the first-order
approximation

f ′(x0) = f (x0 + h) − f (x0)

h
+ O(h) (2.3)

where h is the finite difference interval and the truncation error isO(h). We can obtain a simpler
and more accurate estimate of the first derivative using complex calculus [204, 280]. Using
the first Cauchy–Riemmann equation (Chapter 5, Equation 5.6) and function f (x + jy) =
u(x, y) + jv(x, y), and noting that the real valued f (x) is obtained for y = 0, we have (for
more detail see Chapter 5)

∂u(x, y)

∂x
= ∂v(x, y)

∂y
= lim

h→0

v(x + j(y + h)) − v(x + jy)

h
⇒ ∂f

∂x
≈ 
{f (x + jh)}

h
(2.4)

Unlike the real valued derivative approximation (Equation 2.3), the complex step derivative
approximation (Equation 2.4) does not involve a difference operation and we can choose very
small stepsizes h with no loss of accuracy due to subtractive cancellation.

To assess the error in the approximation (2.4), following the original derivation by Squire
and Trapp [280], replace f (x0 + h) in Equation (2.3) with f (x0 + jh) and apply a Taylor series
expansion, to give

f (x0 + jh) = f (x0) + jhf ′(x0) − 1

2!
h2f ′′(x0) − 1

3!
jh3f (3)(x0) + · · · (2.5)

http://www.it-ebooks.info/


Some Examples of Complex Valued Signal Processing 15

Take the imaginary parts on both sides of Equation (2.5) and divide by h to yield2

f ′(x0) = 
{f (x0 + jh)}
h

+ O(h2) (2.6)

that is, by using complex variables to estimate derivatives of real functions, the accuracy is
increased by an order of magnitude.

Analytic signals. One convenient way to obtain the phase and instantaneous frequency infor-
mation from a single channel recording x is by means of an analytic extension of a real valued
signal. The basic idea behind analytic signals is that due to the symmetry of the spectrum, the
negative frequency components of the Fourier transform of a real valued signal can be discarded
without loss of information. For instance, a real valued cosine wave x(t) = cos(ωt + φ), can be
converted into the complex domain by adding the phase shifted ‘phase-quadrature’ component
y(t) = sin(ωt + φ) as an imaginary part, to give

z(t) = x(t) + jy(t) = ej(ωt+φ) (2.7)

The cosine and sine have spectral components in both the positive and negative frequency
range, whereas their analytic counterpart z(t) = ej(ωt+φ) has only one spectral component in
the positive frequency range. Clearly, the phase-quadrature component can be generated from
the in-phase component by a phase shift by π/2, and the original real valued signal x(t) is
simply the real part of the analytic signal z(t).

Since an arbitrary signal can be represented as a weighted sum of orthogonal harmonic
signals, the analytic transform also applies to any general signal, however, instead of a sim-
ple phase shift (Equation 2.7) we need to employ a filter called the Hilbert transform, to
give

z = x + jH(x) = x + jy (2.8)

where H(·) denotes the Hilbert transform [218].
The Hilbert transform performs a time domain filtering operation in the form of the convo-

lution of signal x(t) with the impulse response of the Hilbert filter h(t) = 1/(πt), that is

y(t) = H (x(t)) = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ) s(t − τ) dτ

2For more detail on O notation see Appendix F.
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Table 2.1 The XOR operation

x1 x2 x1 ⊕ x2

1 1 1
1 −1 −1
−1 1 −1
−1 −1 1

hence, the transfer function of a Hilbert filter3 is given by

H(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e+jπ/2, for ω < 0

0, for ω = 0

e−jπ/2, for ω > 0

The operator H(·) is an all–pass filter (see Section 11.4), given by

H(f ) = −jsgn(f ), |H(f )| = 1, ∠H(f ) = −π

2
sgn(f )

which introduces a phase shift of −π/2 at positive frequencies and +π/2 at negative fre-
quencies. The analytic signal can also be expressed in terms of the polar coordinates

z(t) = A(t)ej�(t) where A(t) = |z(t)|, �(t) = arg(z(t)) (2.9)

where A(t) is called the amplitude envelope and �(t) the instantaneous phase of the signal
z(t). An insight into the time–frequency characteristics is provided via so-called ‘instantaneous
frequency’, that is, the first derivative of the phase of an analytic signal [128].

Classification and nonlinear separability. One example illustrating the usefulness of complex
valued representation in neural network classification problems is the XOR problem. For binary
variables x1, x2 ∈ {−1, 1}, the XOR operation x1 ⊕ x2 performs the mapping shown in Table
2.1. This problem is nonlinearly separable in R only when using networks with more than one
neuron. On the other hand, this is possible to achieve in C with a single neuron.4 For instance,
the complex nonlinearity at a neuron given by (see also Figure 2.1)

P(z) =
{

1, 0 ≤ arg(z) < π/2 or π ≤ arg(z) < 3π/2

−1, π/2 ≤ arg(z) < π or 3π/2 ≤ arg(z) < 2π
(2.10)

3In the discrete time we have

H(ω) =
{

e+jπ/2, −π ≤ ω < 0

e−jπ/2, 0 ≤ ω < π

whereas the impulse response takes values h[k] = 0 for k even, and h[k] = 2/πk for k odd.
4Example provided by Igor Aizenberg.

http://www.it-ebooks.info/


Some Examples of Complex Valued Signal Processing 17

j

−11

1−1

Im

Re1

Figure 2.1 Nonlinear mapping at a complex neuron performed by function P(z) given in (2.10). The
quarter-planes in the C plane are mapped on the discrete set of numbers {−1, 1}

splits the complex plane into four parts. In order to transform the pairs (x1, x2) into
{1 + j, . . . ,−1 − j}, we can linearly combine the variables x1 and x2 with the weighting
coefficients w = [w1, w2] = [

1, j
]
, to give

z = w1x1 + w2x2 (2.11)

From Equation (2.11), depending on the combination of x1 and x2, variable z takes four discrete
values {1 + j, 1 − j, −1 + j, −1 − j }, which when passed through P(z) from Equation (2.10),
give the correct XOR solution, as shown in Figure 2.1 and Table 2.2.

Modelling of three-dimensional problems in C. Convenience of complex representations
of some three-dimensional problems may be illustrated by the example of stereographic
projections5 [242] (see also Figure 1.4a), where there is a one-to-one correspondence between
the points ofC \ ∞ and the points on sphere 	 ∈ R3 (excluding the north pole N); the line be-
tween N and any point z ∈ C cuts 	 \ {N} in precisely one point. Figure 2.2 shows the mapping
of the points on a circle on sphere 	 onto a curve in the complex plane C. In general, the point

Table 2.2 The complex valued realisation of the XOR problem

x1 x2 z P(z)

1 1 1 + j 1
1 −1 1 − j −1
−1 1 −1 + j −1
−1 −1 −1 − j 1

5Angle-preserving (conformal) projections are preferred for ‘navigation’ applications, such as in the Smith chart,
which is of considerable use in transmission line theory. Other applications of stereographic projections include those
in crystallography and in photography (fisheye lenses).
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Figure 2.2 Stereographic projections and Riemann sphere. Left: stereographic projection of a circle;
right: geometric interpretation

(X, Y, Z) on the Riemann sphere corresponds to the point (x, y) ∈ C, such that [206]

X = x

x2 + y2 + 1
, Y = y

x2 + y2 + 1
, Z = x2 + y2

x2 + y2 + 1
(2.12)

¨This type of projection is in fact a Mobius transformation (see Chapter 11), and has found
numerous applications, such as those in quantum mechanics (photon polarisation states), and
in relativity theory, where the Riemann sphere is used to model the celestial sphere.6 One
much more obvious application is in cartography, where the charts of 3D surfaces (such as the
Earth) are produced as 2D projections, similarly to the situation in Figure 2.2. The distance
between two points on a curved space such as the sphere is called a geodesic (the shortest path
between two points). This term obviously comes from geodesy, as the shortest route between
two points on the surface of the Earth.7

2.1.1 Duality Between Signal Representations in R and C

Figure 2.3(a) summarizes the duality between the processing in R and C and can be explained
as follows:

� The nature of purely real and complex signals is obvious: real signals are magnitude-only
whereas complex signals comprise both magnitude and phase components;

� Phase only signals are real signals formed from the phase of a complex signal or from the
phase of an analytic signal (Equation 2.8);

� Dual univariate signals are the real and imaginary component of a complex signal that
are processed separately as real valued quantities.

6Ptolemy (ca AD 125) was first to plot the positions of heavenly bodies on the ‘celestial sphere’, his method is called
stereographic projection.
7It is important to notice that the shortest route on a sphere is a segment of the great circle; when mapped onto the
plane, in general, this is not a straight line (see Figure 2.2).
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Figure 2.3 Duality between signal processing in R and C

In order to transform a real signal (say coming from an array of sensors [200]) into its complex
valued counterpart, it is often convenient to make use of the delay (or phase) associated with
the time of arrival of the real valued signal (or vector field) at sensors (see also Figure 2.8a and
Figure 2.11). Another interesting scenario is the ‘complex to phase only’ transformation for
phase-only signal processing; this is very practical in cases where the magnitude of the signal
has little or no variation [227, 285].

In the ‘mirroring’ approach, the extension fromR toC is performed by producing a complex
signal z from two real valued processes x and y, as

z = x + jy

This approach is convenient for the detection of synchronisation within multichannel record-
ings, as shown in Section 2.4.1. Alternatively, for every time instant k, we may connect x(k)
and x(k + 1), to obtain a complex vector z(k), as shown in Figure 2.3(b).

2.2 Modelling in C is Not Only Convenient But Also Natural

The examples above illustrate that in practical applications we encounter complex processes
in two general cases:

� Real–life quantities that are naturally described by complex numbers;
� Real–life quantities which although real, are best understood through complex analysis.

In other words, in engineering and computing, complex quantities are produced either by
design or by convenience of representation, as shown in Figure 2.4.

� Signals made complex by design include symbols used in data communications; for in-
stance in the quadrature phase shift keying (QPSK) constellation, the symbols are located
on the unit circle in the Z plane, so that they can be transmitted with the same energy
(Figure 2.4a);
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Figure 2.4 Examples of complex signals: (a) by design; (b) by convenience of representation

� By convenience of representation, for instance, a general real valued bandpass8 signal x(t)
has a complex valued lowpass equivalent9 z(t), that is

x(t) = A(t) cos (ωct + �(t)) ↔ z(t) = A(t)ej�(t) ⇔ x(t) = �{z(t)ejωct}
(2.13)

where A(t) is the amplitude, �(t) the phase, and ωc the modulation (carrier) frequency
(see Figure 2.4b and also Figure 2.8b). Alternatively, an equivalent lowpass equivalent
can be obtained by Hilbert transform, as shown in Equation (2.8).

2.3 Why Complex Modelling of Real Valued Processes?

Complex valued representations may not have direct physical relevance (only their real parts
do), but they can provide a general and mathematically more tractable framework for the
analysis of several important classes of real processes. Two aspects of this duality between real
and complex valued processes are particularly important:

� The importance of phase (time delay) information (communications, array signal process-
ing, beamforming);

� The advantages arising from the simultaneous modelling of the ‘intensity’ and ‘direction’
component of vector field processes in C (radar, sonar, vector fields, wind modelling).

2.3.1 Phase Information in Imaging

While the phase information in 1D signals is subtly hidden, in 2D signals such as images, the
role of the phase of a signal is more obvious10 [227]. To illustrate this, consider a scenario

8A signal whose bandwidth is much smaller than its centre frequency, for instance an AM signal.
9Notice similarity with phasors (2.2), except that lowpass equivalent signals are functions of time, whereas phasors
are not. Lowpass equivalent signals can therefore represent general bandpass signals, whereas phasors represent only
sinusoidal signals.
10The importance of the phase spectrum is intimately related with the nonlinearity within a signal [83, 144]. The
‘linear’ properties of a signal are the mean and variance (or equivalently the covariance and power spectrum), whereas
the ‘nonlinear’ signal properties are related to higher-order statistical moments and phase spectra.
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Figure 2.5 Surrogate images. Top: original images I1 and I2; bottom: images Î1 and Î2 generated by
exchanging the amplitude and phase spectra of the original images

similar to that in the surrogate data generation method in nonlinear time series analysis.11 The
top panel in Figure 2.5 shows two greyscale images denoted by I1 (wheel) and I2 (child); the
2D Fourier transform is applied and the phase spectra of I1 and I2 are swapped to give

S1(x, y) = |F(I1)| ej∠F(I2)

S2(x, y) = |F(I2)| ej∠F(I1) (2.14)

Thus, spectrum S1 has the magnitude spectrum of I1 and phase spectrum of I2, whereas
spectrum S2 has the magnitude spectrum of I2 and phase spectrum of I1. The bottom panel
of Figure 2.5 shows the situation after the inverse Fourier transform is applied to S1 and S2 to
obtain respectively Î1 and Î2. Observe that image Î1, for which the magnitude spectrum is that

11There, to produce a ‘surrogate’ signal which has the same statistics as the original, the phase spectrum of the original
signal is randomised and the surrogate is obtained from the inverse Fourier transform of the correct amplitude spectrum
and randomised phase spectrum of the original signal [83].
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Figure 2.6 Wind recordings: a) complex–valued representation; b) wind lattice

of the wheel and phase spectrum is that of the child, is recognised as a child (and vice versa
for Î2); this clearly shows that for the human visual system the information is predominantly
encoded in the phase.

In some situations, it is therefore convenient to consider images based on their complex
valued representation [14, 15]. One way to achieve this would be to consider a greyscale or
‘intensity’ image

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22

..

· · · a2m

. ...
. . .

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.15)

where for an image with n intensity levels, elements aij take values from {0, 1, . . . , n − 1}.
Alternatively, these elements can be modelled as nth (complex) roots on the unit circle in the
Z-plane, thus giving a complex valued, phase described, representation of the image. A review
of the benefits of complex valued modelling of real valued processes can be found in [195].

2.3.2 Modelling of Directional Processes

Consider a class of processes with ‘intensity’ and ‘direction’ components, such as wind, radar,
sonar, or sensor array measurements. Figure 2.6 represents a wind measurement12 as a vector

12The wind signal used was obtained from readings from the Iowa (USA) Department of Transport http://mesonet.
agron.iastate.edu/request/awos/1min.php database.
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(a) Dual univariate model
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(b) Complex model

Figure 2.7 Modelling of wind profile: dual univariate vs complex model. Original signal (dashed line)
and one step ahead prediction (solid line)

v(t) = v(t)ejd(t) of its speed v(t) and direction d(t) components, in the N − E coordinate
system, together with the distribution of wind speeds over various directions. Despite the clear
interdependence between the wind speed and direction (from the wind lattice in Figure 2.6b,
the distribution of significant wind speeds is in the range of 190◦ to 340◦), in most practical
applications, these are treated as independent real quantities, that is, as dual univariate time
series, hence introducing error in both the models of wind dynamics and associated forecasts.
In the polar representation, the wind speed v corresponds to the modulus, and the direction d

to the angle of a complex vector v. In the Cartesian representation, we may exploit the natural
coupling between the real and imaginary part in order simultaneously to track the changes in
the dynamics of both the speed and direction component of wind.

Figure 2.7 illustrates the performance gain obtained by using the complex wind model,
when applied to wind forecasting. The dual univariate approach (see Figure 2.3a) is based on
the modelling of speed and direction as two independent real valued processes; the outputs
of those univariate models are then combined into a single complex quantity at the output.
Clearly, the dual univariate approach (Figure 2.7a) was not able to track the wind dynamics,
whereas a complex model Figure 2.7b), which simultaneously modelled the wind speed and
direction, exhibited excellent performance.13

2.4 Exploiting the Phase Information

An important class of problems which benefits from complex representation is in array signal
processing [200]. One such application is in beamforming, where the phase and the amplitude
of the received array signals are normally modelled as complex quantities [292]. Figure 2.8(a)

13The simulations were based on two separate real FIR filters trained with LMS (for the dual univariate case) and a
complex FIR filter trained with complex LMS (for the complex representation).
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shows a simple beamformer for narrowband signals, for which the output y(t) is given by

y(t) =
M−1∑
m=0

xm(t) wm (2.16)

where xm(t) and wm, m = 0, 1, . . . , M−1 are respectively the mth received array signal and
the corresponding filter coefficient. The received array signals are made complex valued
with the help of a quadrature receiver (in order to separate them and convert into baseband,
see Equation 2.13), as shown in Figure 2.8(b), where ω is the centre frequency of the received
bandpass signal x(t) [291]. The in-phase output I(t) becomes the real part of the complex
lowpass equivalent signal, whereas the quadrature component Q(t) is the imaginary part.

2.4.1 Synchronisation of Real Valued Processes

Another recent application where complex domain processing of real data has significant
potential is the design of Brain Computer Interface (BCI). In the design of brain prosthetics,
a major problem in the processing information from a microarray of electrodes which are
implanted into the cortex of the brain is the modelling of neuronal spiking activity. Whereas
this is very difficult to solve in R (due only partly to high levels of noise), the synchronisation
of spike events is straightforward to model in C. An approach for converting multichannel
real valued sequences of spiking neuronal recordings (point processes coming from implanted
microarrays into the brain cortex) into their complex–valued counterparts is elaborated in
[296]. The main underlying idea is to code the spike events of interest as complex processes,
where the phase encodes the interspike interval.

For illustration, consider two artificially generated real valued point (spiky) processes x1
and x2 [130], depicted in Figure 2.9(a), which are contaminated by independent realisations of
white Gaussian noise and are shifted by ten samples. We can convert the spike synchronisation
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Figure 2.9 Synchronisation of neural point processes

problem into one of phase matching by first constructing the complex signal

z = x1 + jx2 (2.17)

The noise introduces spurious spikes at multiple time intervals, which affects the temporal
structures of the original signals. In order to detect the synchronised spike events, a complex
extension of Empirical Mode Decomposition (EMD) was employed [9, 196]. The spike syn-
chrony detected is shown in Figure 2.9(b), where the time, frequency, and the spike synchrony
(calculated using the phase coherence value [286]) between the signals x1 and x2 are respec-
tively represented by the x, y, and z (colour-coded) axes. For more detail on empirical mode
decomposition see Chapter 17.

2.4.2 Adaptive Filtering by Incorporating Phase Information

In several applications of adaptive filtering, such as those in data communications (MPSK,
QPSK) the information is encoded in the phase and the amplitude is kept constant. However,
because signal propagation causes distortion, when performing adaptive filtering (for instance
for adaptive equalisation), both the magnitude and phase of the received symbols should be con-
sidered. For instance, the Least Mean Phase Least Mean Square (LMP–LMS) algorithm [285]
deals simultaneously with the magnitude and phase, and is given by

J(w) = k1 E
∣∣∣
d − xTw

∣∣∣2︸ ︷︷ ︸
LMS

+k2 E
∣∣∣
∠d − ∠xTw

∣∣∣m︸ ︷︷ ︸
LMP

(2.18)

where x is the input signal, d is the teaching signal,w are the filter coefficients, m ∈ {1, 2}, and
k1 and k2 are mixing coefficients. Cost function (2.18) simultaneously minimises a measure
of both the phase and magnitude error, resulting in the weight update

w(k + 1) = w(k) + μ1e(k)x∗(k) + μ2∠e(k)
jx∗(k)

y∗(k)
, (2.19)

where y denotes the output of the filter, and μ1 and μ2 are positive learning rates.
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Figure 2.10 Adaptive noise cancelling adaptive filtering configuration

Other real valued adaptive filtering problems that can be converted into the complex domain
include the standard noise cancellation adaptive filtering configuration, shown in Figure 2.10.
The primary input is the useful signal corrupted by additive noise, whereas the reference in-
put is any noise correlated with the noise within the primary input. In [308] it was shown
that the scheme from Figure 2.10 outperforms the standard noise cancellation scheme in
Electroencephalogram (EEG) applications. By means of the phase shift of π/2 within the
filter, a complex reference input z = x1 + jx2 (see Figure 2.3) can be produced and noise
cancellation may be performed by the complex LMS algorithm, given by [307]

w(k + 1) = w(k) + μe(k)x∗(k) (2.20)

2.5 Other Applications of Complex Domain Processing
of Real Valued Signals

Complex valued representations have been instrumental to the advances in diverse fields of
electronics, physics and biomedicine. Some of the applications which have benefited greatly
from this approach include

� Magnetic Source Imaging (MRI, fMRI, and MEG). A magnetic resonance imaging (MRI)
signal is acquired as a quadrature signal, by means of two orthogonally placed detectors
and is then Fourier transformed for further processing [253]. Standard approaches for the
enhancement of MRI images consider only the magnitude spectra of such images. The
phase information, however, can be obtained as a function of the difference in magnetic
susceptibility between a blood vessel and the surrounding tissue as well as from the ori-
entation of the blood vessel with respect to the static magnetic field. Recent results by
Calhoun and Adali [40–42] illustrate the benefits of incorporating both the magnitude
and phase information into the processing of functional MRI (fMRI) data. Magnetoen-
cephalography (MEG) is a noninvasive neurophysiological technique that measures the
magnetic fields generated by neuronal activity of the brain. By Fourier transforming the
MEG data, they can be conveniently analysed in C [276]. In addition, the electric and
magnetic field at a neuron are orthogonal and obey the Maxwell equations, this facilitates
the combined analysis of the electroencephalogram (EEG) and MEG [315].

� Interferometric radar. Electromagnetic wave imaging technology such as Synthetic
Aperture Radar (SAR) has a wide range of applications since the relatively long
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wavelength used enables reduced absorption and scattering by clouds and smoke. Most
such radar systems use electromagnetic waves whose coherence is high so that they can
obtain both the phase (altitude) and amplitude information (airplane/satellite surface ob-
servation radars). The high coherence, however, brings problems of interference and noise,
such as speckles. The restoration and clustering of images of the reflected waves can be
conveniently cast as a complex valued problem, as shown in work by Akira Hirose [120,
121, 282].

� Direction of arrival (DoA) estimation and smart antennas. These are major problems in
array signal processing [319], which are traditionally solved by maximum likelihood or
linear prediction methods. It has been shown, however, that DoA estimation is a complex
valued optimisation problem [137, 138]. Thus for instance, in the research monograph by
A. Manikas [200], the role of differential geometry as an analytical tool in array processing
and array communications is highlighted and this theoretical framework is extended to
complex spaces.

� Mathematical biosciences. In functional genomics, problems such as temporal classifica-
tion of confocal images of expression patterns of genes can be solved by neural networks
with multivalued neurons (MVN). MVNs are processing elements with complex valued
weights and high functionality which have proved to be efficient in image recognition
problems [4]. The goal of temporal classification is to obtain groups of embryos
which are indistinguishable with respect to the temporal development of expression
patterns.

� Transform domain signal processing. In adaptive filtering and elsewhere, it is often
beneficial to process data in a transform domain, for instance, by means of the Discrete
Fourier Transform (DFT) or Discrete Cosine Transform (DCT) [113]. This way, the real
valued input is effectively pre-whitened in the complex domain; this then speeds up the
convergence of the adaptive filtering algorithms employed [149]. This is particularly
convenient in separation of real valued convolutive mixtures, where the idea is to perform
the Fourier transform of the observed mixtures, in order to convert real convolution
into complex multiplication [231]. This way, the problem is transformed into source
separation of complex instantaneous mixtures, for which there are many established
algorithms [49].

� Mobile communications and interference cancellation in broadcasting. In digital data
transmission, the working algorithms are almost always derived in C. This way, both the
data model and the channel model are complex functions of complex variables [113],
and signal detection, channel estimation and equalisation are all performed in C; one
such algorithm for blind channel equalisation is the constant modulus algorithm (CMA)
[89]. In interference cancellation applications in broadcasting, real valued signals do not
satisfy some of the requirements,14 whereas complex polyphase sequences (elements of
which are roots of unity) are naturally suited for this purpose.

� Homomorphic filtering. Homomorphic filtering is particularly suited for real valued
multiplicative models and for processes where the dynamical range of the signal is large
[232, 318]. Homomorphic filters are based on a combination of a logarithmic input layer

14The reference signal should have a flat spectrum, the autocorrelation only at zero–lag, and the signal energy should
be as large as possible [302].
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Figure 2.11 A simplified model of seismic wave propagation

and an exponential output layer, these are connected by adaptive weights. Since the
logarithm in R does not exist for signal values x ≤ 0, it is convenient to employ complex
logarithms on analytic inputs z = x + jH(x) to obtain log(z) = log(|z|) + j arg(z),
perform complex filtering, and then convert the outputs back to the real domain.

� Optics and seismics. Reflections and refractions introduce both the attenuation of the
amplitude and phase shifts, as illustrated on a simplified diagram of the propagation
of seismic waves through two layers of soil, shown in Figure 2.11. Figure 2.11 shows
a pneumatic drill producing a pulse that approximates the Dirac function, the signals
received at sensors S1 and S2 are altered both in terms of the filtering through the soil
and phase change (soil impulse response). These are best modelled simultaneously in C.

� Fractals and complex iterated maps. Fractals are self-similar infinitely repeating15 mathe-
matical objects, that is, the parts of the object are similar to the whole. This self-similar
structure implies that fractals are scale-invariant, and we cannot distinguish a small part
from the larger structure [176]. Approximate fractals are easily found in nature,16 exam-
ples include clouds, snowflakes, crystals, mountain ranges, lightning, river networks, and
systems of blood and pulmonary vessels. Applications of fractal modelling include the
analysis of medical tissues [43], signal and image compression [75], seismology [257], vir-
tual environments design, and music and art applications. For more detail see Appendix P.

� Other applications. Complex valued processing has found applications in other areas,
including the analysis of cyclostationary processes [80, 131], semiconductor design [277],
chaos engineering [3, 208], acoustic microscopy [36], stochastic mechanics [229], and nu-
clear physics [81, 202]. In addition, in applied fields complex analysis is used to compute
certain real valued improper integrals, for instance by contour integration [206, 218].

15Complex extensions of Newton’s iteration

xi+1 = xi − f (xi)

f ′(xi)

have attracted considerable interest, but are not straightforward. For instance, Newton’s method fails for the function
f (z) = z2 + 1 if the initial guess is a real number (see Appendix P).
16These objects display self-similar structure over an extended, but finite, scale range.
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2.6 Additional Benefits of Complex Domain Processing

In addition to the examples of complex domain processing of real valued signals introduced
so far, signal processing in C possesses several distinctive features which are not present in R.
These include:

� More powerful statistics. Although it is often assumed that the statistics in C is a straight-
forward extension17 of the statistics in R, some recent results in complex statistics have
exploited complex circularity and introduced the notions of proper (E{xxT} = 0) and
improper (E{xxT} /= 0) complex random variables [219]. This gives us more degrees of
freedom and hence greater potential for improved performance and resolution, compared
with the standard modelling inC. To derive so called augmented learning algorithms, con-
sider a complex vector x and its conjugate to produce the augmented vector xa = [x; x∗].
To illustrate the benefits of using the augmented complex statistics, Table 2.3 shows the
improved quantitative performance of an augmented over a standard learning algorithm18

for the task of one step ahead adaptive prediction of a stable complex AR(4) process and
complex valued radar data.19 For more detail see Chapter 12.

� Complex nonlinearity. Apart from the dual univariate approach (Figure 2.3a) which ap-
plies mainly to processes where the real and imaginary part are predominantly independent
and linear in nature), ways to introduce nonlinearity inC include the so called split-complex
and fully complex approach [152]. Within the split-complex approach, a pair of real valued
nonlinear activation functions is employed to separately process the real and imaginary
components of the net input net(k) = xT(k)w(k). Such a split-complex activation function
is given by

f (net) = fR(�(net)) + jfI (
(net)) (2.21)

where fR = fI are real functions of real variable. Fully complex functions are standard
complex functions of complex variables, such as the complex tanh. Owing to the intricate
properties of complex nonlinearities in C (only a constant is continuously differentiable),
this gives us the opportunity to trade between boundedness and differentiability of complex
nonlinear activation functions when designing learning algorithms. For more detail see
Chapter 4.

Table 2.3 Comparison of prediction gains Rp [dB] for the various classes of signals

Rp [dB] Standard algorithm Augmented algorithm

Linear AR(4) process 3.22 4.10
Radar (low) 11.40 13.57
Radar (high) 4.56 5.41

17Normally, simply replace (·)T by the Hermitian (·)H in the corresponding statistical expressions.
18We used the complex real time recurrent learning (CRTRL) [93] as a standard complex algorithm and the augmented
CRTRL (ACRTRL) [96] as the corresponding algorithm based on augmented complex statistics.
19Radar (high) is referred to as ‘high sea state data’ and radar (low) is referred to as ‘low sea state data’. The data used
in simulations are publicly available from http://soma.ece.mcmaster.ca/ipix.
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Figure 2.12 Visualisation of complex function z → �(z) = sinh(z). Top panel: the real and imaginary
part; Bottom panel: the magnitude and phase functions

Figure 2.13 Panels (a), (b), and (c): Visualisation of the complex function f (z) = z/(1 + z3) by colour
coding. Panel (d): Function f (z) = 1/(z2 + 1)
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� Simultaneous modelling of heterogeneous variables and data fusion. When dealing with
processes with intensity and direction components, such as the wind field from Figure 2.6,
complex domain modelling not only provides a simultaneous and compact representation
of the wind speed and direction, but also it performs sequential data fusion. The wind
speed and direction are of different natures (heterogeneous data) and by virtue of complex
valued representation they are naturally fused into a single quantity [192].

� Visualisation. Unlike the real valued functions which are represented as two-dimensional
graphs, complex functions are represented by four-dimensional graphs (two axes for the
real and imaginary part of the argument and two axes for the real and imaginary part of
the evaluated function). To visualise complex functions we therefore either consider the
amplitude and phase (both 3D graphs with a complex argument) separately, or we perform
colour coding of a three-dimensional graph to suggest the fourth dimension. Figure 2.12
shows the sinh(z) function plotted in terms if its real and imaginary part (top panel) and as
a modulus–phase plot (bottom panel). A colour-coded visualisation of complex functions
f (z) = z/(z2 + 1) and f (z) = 1/(z2 + 1) is illustrated in Figure 2.13. The phase of the
complex number is represented by the hue and the absolute value by the lightness of the
colour.

� Compact and natural mathematical representation. When dealing with complex numbers,
we think of a + jb as an entire thing on its own, and all the standard rules of algebra are
satisfied. For instance, a complex number can be represented in matrix form as

a + jb →
[

a −b

b a

]
= a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]

¨

(2.22)

A comprehensive account of matrix representation of complex numbers and the repre-
sentation of complex mappings by Mobius transformations is provided in Chapter 11,
whereas Appendix A illustrates some differences between basic operations in R and C.

It is fitting to end this Chapter with the quote from Richard Penrose’s The Road to Reality: A
Complete Guide to the Laws of the Universe [233].

We shall find that complex numbers, as much as reals, and perhaps even more, find a
unity with nature that is truly remarkable. It is as though Nature herself is as impressed
by the scope and consistency of the complex–number system as we are ourselves, and
has entrusted to these numbers the precise operations of her world at its minutest scales.
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3
Adaptive Filtering Architectures

The architecture of a digital filter underpins its capacity to represent the dynamic properties of
an input signal and hence its ability to estimate some future value. Linear filtering structures
are very well established in digital signal processing and are classified either as finite impulse
response (FIR) or infinite impulse response (IIR) digital filters [225]. FIR filters are generally
realised without feedback, whereas IIR filters1 utilise feedback to limit the number of param-
eters necessary for their realisation. There is an intimate link between the architecture of an
adaptive filter and a stochastic model it represents:

� In statistical signal modelling, FIR filters are also known as moving average (MA) filters
and IIR filters are named autoregressive (AR) or autoregressive moving average (ARMA)
filters;

� Nonlinear filter architectures can be readily formulated by including a nonlinear operation
in the output stage of an FIR or an IIR filter. These represent examples of nonlinear moving
average (NMA), nonlinear autoregressive (NAR), or nonlinear autoregressive moving
average (NARMA) structures [28];

� The model of an artificial neuron comprises a linear FIR filter whose coefficients are
termed synaptic weights (or simply weights), and has a zero-memory nonlinearity;

� Different neural network architectures are designed by the combination of multiple neu-
rons with various interconnections. Feedforward neural networks have no feedback within
their structure; recurrent neural networks, on the other hand, exploit feedback and hence
have the ability to model rich nonlinear dynamics [190].

The foundations for linear estimators of statistically stationary signals are found in the work
of Yule [320], Kolmogorov [154], and Wiener [309]. The later studies of Box and Jenkins [33]
and Makhoul [175] are built upon these fundamentals. This chapter provides a brief overview
of linear and nonlinear, both feedforward and feedback, adaptive filtering architectures, for
which learning algorithms will be presented throughout this book.

1FIR filters can be represented by IIR filters, however, in practice it is not possible to represent an arbitrary IIR filter
with an FIR filter.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
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3.1 Linear and Nonlinear Stochastic Models

A general linear stochastic model is described by a difference equation with constant coeffi-
cients, given by

y(k) =
p∑

i=1

aiy(k − i) +
q∑

j=1

bjn(k − j) + b0n(k) (3.1)

where y(k) is the output, n(k) are samples of doubly white Gaussian noise with zero mean and
unit variance, ai, i = 1, 2, . . . , p are the AR (feedback) coefficients, and bj, j = 0, 1, . . . , q

are the MA (feedforward) coefficients. Such a model is termed autoregressive moving average
ARMA(p,q), where p is the order of the autoregressive, or feedback, part of the structure,
and q is the order of the moving average, or feedforward, substructure. Due to the feedback
present within this filter, the impulse response, namely the values of y(k), k ≥ 0, when n(k) is
a discrete time impulse, is infinite in duration (IIR).

The general ARMA form of Equation (3.1) can be simplified by removing the feedback
terms to yield

y(k) =
q∑

j=1

bjn(k − j) + b0n(k) (3.2)

Such a model is termed moving average MA(q), and has a finite impulse response which is
identical to the parameters bj, j = 0, 1, . . . , q. In digital signal processing, a filter based on
this model is therefore named a finite impulse response (FIR) filter.

Alternatively, Equation (3.1) can be simplified by removing the delayed inputs, to yield an
autoregressive AR(p) model given by

y(k) =
p∑

i=1

aiy(k − i) + n(k) (3.3)

which also has infinite impulse response.
The most straightforward way to test stability is to exploit the Z-domain representation of

the transfer function of Equation (3.1), that is

H(z) = Y (z)

E(z)
= b0 + b1z

−1 + · · · + bqz
−q

1 − a1z−1 − · · · − apz−p
= N(z)

D(z)
(3.4)

To guarantee stability, the p roots of the denominator polynomial of H(z), must lie within the
unit circle in the z-plane, |z| < 1.

Nonlinear stochastic models are formally obtained by applying a nonlinear function to the
corresponding linear stochastic models, that is

NMA(q) y(k) = �
(
b1n(k − 1) + · · · + bqn(k − q)

) + b0n(k)

NAR(p) y(k) = �
(
a1y(k − 1) + · · · + apy(k − p)

) + b0n(k)

NARMA(p,q) y(k) = �
(
a1y(k − 1) + · · · + apy(k − p) + b1n(k − 1)

+ · · · + bqn(k − q)
) + b0n(k) (3.5)

where the nonlinearity �(·) typically has isolated singularities, as explained in Chapter 4.
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3.2 Linear and Nonlinear Adaptive Filtering Architectures

For the modelling of statistically nonstationary signals, the coefficients of the ARMA and
NARMA functional expressions can be made adaptive, thus representing feedforward and
feedback adaptive filters. For convenience, we will consider these filters in the prediction
setting.

The input–output relationship for a linear adaptive FIR filter is given by

y(k) =
M∑

m=1

wm(k)x(k − m) = xT (k)w(k) (3.6)

wherew(k) = [w1(k), . . . , wM(k)]T are filter coefficients and the tap input vector is given by
x(k) = [x(k − 1), . . . , x(k − M)]T . The input–output relationship for an IIR adaptive filter,
shown in Figure 3.1(a), is given by

y(k) =
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) = aT(k)y(k) + bT(k)x(k) (3.7)

where a and b are coefficient vectors and y is a vector of delayed feedback. The standard FIR
filter is obtained upon removing the feedback.

...
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b2(k)
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aN(k)
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b1(k)
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Σ
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y(k−1)
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...

(a) Adaptive IIR filter
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(b) Recurrent perceptron as a nonlinear IIR filter

Figure 3.1 Linear and nonlinear adaptive infinite impulse response filters (in the prediction setting)
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Figure 3.2 Model of an artificial neuron

The input–output expressions for a nonlinear FIR filter (dynamical perceptron) and a non-
linear IIR filter (recurrent perceptron) are respectively given by

y(k) = �

(
M∑

m=1

wm(k)x(k − m)

)

y(k) = �

(
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m)

)
(3.8)

Figure 3.1(b) shows a block diagram of such a NARMA(M,N) recurrent perceptron. Depending
on the application, an external input set to unity, called the bias, may also be included. A
nonlinear FIR filter is obtained upon removing the feedback.

The basic building block of larger nonlinear structures – neural networks – is an artificial
neuron, shown in Figure 3.2, which is functionally similar to the nonlinear FIR adaptive filter
described above. The net input net(k) is also called the activation, and the nonlinearity � the
nonlinear activation function. The bias input is set to unity and reflects a biological motivation
for this architecture.

3.2.1 Feedforward Neural Networks

A multilayer feedforward neural network is shown in Figure 3.3. It consists of a number of
interconnected neurons, for which the bias input can be removed from the neuron architecture
(Figure 3.2) and included externally to the whole network. For successful operation, the inputs
to the multilayer feedforward neural network must capture sufficient information about the
time evolution of the underlying discrete time random signal. The simplest situation is to have
time-delayed versions of the input signal, i.e. x(k − i), i = 1, 2, . . . , M, commonly termed a
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Figure 3.3 Multilayer feedforward neural network

tapped delay line,2 which provides the network with short-term memory. For the prediction
application only a single output is assumed.

For other applications, such as classification, where the input is not temporal (a tap delay
line), we typically have more than one output neuron. Notice the outputs of each layer are
connected only to the inputs of the adjacent layer. The nonlinearity inherent in the network is
due to the overall action of all the activation functions of the neurons within the structure.

3.2.2 Recurrent Neural Networks

Two ways to include recurrent connections in neural networks are activation feedback and
output feedback,3 as shown respectively in Figures 3.4(a) and 3.4(b). The blocks labelled
‘linear dynamical system’ comprise delays and multipliers, hence providing linear combination
of their input signals.

The output of the activation feedback scheme can be expressed as

net(k) =
M∑
i=1

wx,i(k)x(k − i) +
N∑

j=1

wn,j(k)net(k − j)

y(k) = �
(
net(k)

)
(3.9)

where wx,i and wn,j correspond respectively to the weights associated with x and net.

2The optimal length of the tap delay line is closely related to delay space embedding [214].
3These schemes are closely related to the state space representations of neural networks. A comprehensive account
of canonical forms and state space representation of general neural networks is given in [64].
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Figure 3.4 Recurrent neural network architectures

The input–output function of the output feedback scheme can be expressed as

net(k) =
M∑
i=1

wx,i(k)x(k − i) +
N∑

j=1

wy,j(k)y(k − j)

y(k) = �
(
net(k)

)
(3.10)

where wy,j correspond to the weights associated with the delayed outputs.
The provision of feedback introduces longer-term memory to recurrent neural networks –

it is the feedback, together with the nonlinearity within the network, that makes RNNs so
powerful for the modelling of nonlinear dynamical systems [214]. Figure 3.5 shows an RNN
with one output neuron; in classification applications we may have as many output neurons as
the number of classes.

An example of an RNN for which the feedback is also provided in hidden layers is the Elman
RNN, whereas the Jordan RNN has both local and global feedback.

3.2.3 Neural Networks and Polynomial Filters

Nonlinear system identification has been traditionally based upon the Kolmogorov approxima-
tion theorem which states that a neural network with a hidden layer can approximate an arbitrary
function (nonlinear system). The problem, however, is that inner functions in Kolmogorov’s
formula, although continuous, are non-smooth.

Another convenient form of nonlinear systems is the bilinear (truncated Volterra) system,
described by

y(k) =
N∑

j=1

ciy(k − j) +
N−1∑
i=0

N∑
j=1

bi,jy(k − j)x(k − i) +
N−1∑
i=0

aix(k − i) (3.11)
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Figure 3.5 A recurrent neural network with local and global feedback

This is a powerful nonlinear model which can approximate arbitrarily well a large class of
nonlinear systems. An example of a recurrent neural network that realises the bilinear model
given by

y(k) = c1y(k − 1) + b0,1x(k)y(k − 1) + b1,1x(k − 1)y(k − 1) + a0x(k) + a1x(k − 1)
(3.12)

is depicted in Figure 3.6. As seen from Figure 3.6, multiplicative synapses have to be introduced
in order to represent the bilinear model.

3.3 State Space Representation and Canonical Forms

It is often convenient to consider the analysis of adaptive filters in terms of state space, as it is
always possible to rewrite a nonlinear input–output model in a state space form, whereas for
any given state space model an I–O model may not exist. This is of fundamental importance
when only a limited number of data samples is available. Figure 3.7 shows a canonical form
of an RNN, where state vector is denoted by s(k) = [s1(k), s2(k), . . . , sN (k)]T, and a vector of
M external inputs is given by x(k) = [x(k − 1), x(k − 2), . . . , x(k − M)]T.

For a recurrent neural network, the state evolution and network output equations are given
by

s(k + 1) = �
(
s(k),x(k)

)
ŷ(k) = �

(
s(k),x(k)

)
(3.13)

http://www.it-ebooks.info/


40 Adaptive Filtering Architectures

X

y(k−1)

Σ
y(k)

x(k−1)

x(k)

z−1

z−1

b0,1

b1,1

c1

a1

a0

X

Figure 3.6 Recurrent neural network representation of the bilinear model

inputs

external

variables

state

Static

Feedforward

Network

x(k−1)

y(k)

unit
delays

x(k−M)

s (k−1)

s (k)

Figure 3.7 Canonical form of a recurrent neural network

where � and � are vector valued nonlinear mappings. A particular choice of N minimal state
variables is not unique, therefore several canonical forms may exist [235].

To summarise:

� Linear and nonlinear adaptive filtering architectures have been introduced as realisations
of standard stochastic ARMA and NARMA models;

� A model of an artificial neuron has been introduced and it has been shown how multiple
neurons can be connected to form a neural network;
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� Recurrent neural networks (RNN), that is, networks with feedback, have been demon-
strated to be able to model complex nonlinear dynamics and several of their architectures
have been introduced;

� Finally, it has been shown that the analysis of adaptive filters can be cast into a state space
form.
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4
Complex Nonlinear Activation
Functions

Central to the development of complex nonlinear adaptive filters is their ability to perform
universal function approximation. To select a nonlinear function in C to approximate another
function to a desired degree of accuracy, and at the same time to make it suitable for non-
linear adaptive filtering applications, it would appear advantageous to consider continuous,
bounded, and analytic functions. However, by Liouville’s theorem (see Appendix B), the only
function which is analytic everywhere in C is a constant. Hence it is not possible to use di-
rectly an analytic continuation of real valued functions for this purpose, and we need to restrict
ourselves to a subset of the complex plane, where we can choose between boundedness and
differentiability. This chapter deals with these issues and provides a comprehensive account
of nonlinear activation functions used in complex valued nonlinear adaptive filters and neural
networks.

4.1 Properties of Complex Functions

We are particularly interested in complex functions that have a derivative in a neighbourhood of
a point z0 ∈ C, as this would ensure smoothness of the approximation. A complex derivative1

is defined in Equation (5.3) in Chapter 5. The notion of an analytic function requires some
attention, as shown below [206].

� Analyticity at a point. The function f is said to be analytic at z0 ∈ C if it has a derivative
at each point in some neighbourhood of z0;

� Analyticity on a set. If f is analytic at each point in a set S ⊂ C, then we say that f is
analytic on S;

1Although differentiability implies continuity, the reverse is not true.
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� Analyticity onCCC. If f is analytic in the finite complex plane (everywhere except z = ∞),
then f is said to be entire. An entire function can be represented by a Taylor series
which has an infinite radius of convergence – some examples of entire functions are ez

and trigonometric functions.

Analytic functions are also called regular functions or holomorphic functions. It is shown in
Chapter 5 that for a function f (z) = u(x,y) + jv(x,y) to be analytic on a region S ⊂ C, the
Cauchy–Riemann equations need to be satisfied, that is

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
(4.1)

The analysis of analytic functions is very convenient through their Taylor and Laurent series
representation.

Taylor series representation. For a function f (z) which in analytic at z = α, the series

f (z) = f (α) + f ′(α)(z − α) + f ′′(α)

2!
(z − α)2 + · · · =

∞∑
n=1

f (n)(α)

n!
(z − α)n−1 (4.2)

is called the Taylor series for function f at point α. When α = 0, the series (4.2) is called
the Maclaurin series for function f [206]. Taylor series representations for several important
functions expanded around α = 0 are given below.

ez = 1 + z + z2

2!
+ z3

3!
+ · · · + zn

n!
+ · · ·

sin z = z − z3

3!
+ z5

5!
− · · · + (−1)n−1 z2n−1

(2n − 1)!
+ · · ·

cos z = 1 − z2

2!
+ z4

4!
+ · · · − (−1)n−1 z2n−2

(2n − 2)!
+ · · ·

ln(1 + z) = z − z2

2
+ z3

3
− · · · + (−1)n−1 zn

n!
+ · · · (4.3)

Expansions for ez, sin z and cos z are defined on |z| < ∞, whereas the expansion for ln(1 + z)
is defined on |z| < 1.

Laurent series representation. Functions which are analytic in an open annulus2

A(R1, R2, α) = {z : R1 < |z − α| < R2}, illustrated in Figure 4.1, have the Laurent series
representation

f (z) =
∞∑

n=−∞
cn(z − α)n =

−1∑
n=−∞

cn(z − α)n +
∞∑

n=0

cn(z − α)n (4.4)

2For instance, function f (z) = ez

z
is not analytic for z = 0, but it is analytic for |z| > 0, and its Taylor series repre-

sentation is f (z) = 1/z + 1 + z/2! + z2/3! + · · · .
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Figure 4.1 Left: disk DR(α) with center α and radius R. Right: annulus A(R1, R2, α) with center α and
radii R1 and R2

where the coefficients of the principal part c−n and the coefficients of the analytic part cn are
given by

c−n = 1

2πj

∮
C1

f (z)

(z − α)−n+1 dz cn = 1

2πj

∮
C2

f (z)

(z − α)n+1 dz (4.5)

and C1 and C2 are respectively concentric circles (contours) with center at α, radii R1 and R2,
and a counterclockwise orientation.

4.1.1 Singularities of Complex Functions

Points at which a complex function is not analytic are called singular points, for instance, the
function f (z) = 2/(1 − z) is not analytic at z = 1. There are several types of singularities of
complex function, which can be roughly grouped into:

� Isolated singularities. Point α ∈ C is called an isolated singularity if the function f :
C→ C is not analytic at α, but there exists a real number R > 0 such that f is analytic
anywhere in the punctured disk3 DR(α) \ {α} = D∗

R(α).
� Branch points. A branch of a multiple valued function f (z) is any single valued function

that is continuous and analytic in some domain. For instance, branches of the function
f (z) = √

z =
√

rejθ , in a region defined by r > 0, −π < θ ≤ π, are f1(z) = √
rejθ/2 and

f2(z) = −√
rejθ/2; point z = 0 is common to both the branch cuts and is called a branch

point.
� Singularities at infinity. If the nature of singularity of f (z) at z0 = ∞ is the same as that

for f (w) = f (1/z) at w0 = 1/z0, this type of singularity is called singularity at infinity.

3Functions with isolated singularities have a Laurent series representation, since the punctured disk D∗
R(α) is equivalent

to the annulus A(0, R, α) (see Figure 4.1).
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Table 4.1 Isolated singularities

Removable singularity. If f (z) is not defined at z = α, but limz→α f (z) exists, then z = α is called a
removable singularity and f (α) is defined as f (α) = limz→α f (z). For example, consider the function
f (z) = sin z/z and its Taylor series expansion

f (z) = sin z

z
= 1

z

(
z − z3

3!
+ z5

5!
− z7

7!
+ · · ·

)
= 1 − z2

3!
+ z4

5!
− z6

7!
+ · · ·

This function has a singularity at z = 0, which can be ‘removed’ by defining f (0) = 1, as shown in
its Taylor series expansion. For removable singularities, the coefficients of the principal part of the
Laurent series cn = 0, n = −1, −2, . . . all vanish

Pole. If the principal part of the Laurent series expansion of function f (z) has a finite number n of
nonzero terms c−1, . . . , c−n, that is

f (z) =
∞∑

k=−n

ck(z − α)k

then we say that f (z) has a pole of order n at z = α. For example, function

f (z) = sinz

z5
= 1

z4
− 1

3! z2
+ 1

5!
− z2

7!
+ · · ·

has a pole of order n = 4 at z = 0

Essential singularity. Any singularity which is not a removable singularity or a pole is an essential
singularity. In this case the principal part of the Laurent expansion has infinitely many terms. For
example, function

f (z) = e
1
z = 1 + 1

z
+ 1

2! z2
+ 1

3! z3
+ 1

4! z4
+ · · · =

∞∑
n=0

1

n! zn

has an essential singularity at z = 0

Classification of isolated singularities. Of particular interest in nonlinear adaptive filtering are
isolated singularities, which can be classified into poles, removable singularities, and essential
singularities. As the point α ∈ C is an isolated singular point if the disk DR(α) encloses no
other singular point, we can distinguish between the three classes of isolated singularities based
on the properties of their Laurent series representation on an annulus A(0, R, α), as shown in
Table 4.1.

4.2 Universal Function Approximation

Learning an input–output relationship from examples using a neural network can be treated
as the problem of approximating an unknown function from a set of data points [241]. The
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universal approximation ability of temporal neural networks makes them suitable for nonlinear
adaptive filtering applications [190].

4.2.1 Universal Approximation in R

The problem of approximation of a function of n variables by a linear combination of func-
tions of k < n variables is known as the 13th problem of Hilbert [172]. The existence of the
solution is provided by Kolmogorov’s theorem, which in the neural network community was
first recognised by Hecht-Nielsen [116] and Lippmann [168]. The first constructive proof of
universal function approximation ability of neural networks was given by Cybenko [56]. Based
on the analysis of the denseness of nonlinear functions in the space where the original function
resides, this result shows that if σ is a continuous discriminatory function,4 then finite sums of
the form (wn, bn, n = 1, . . . , N are coefficients)

g(x) =
N∑

n=1

wnσ(aT
nx+ bn) (4.6)

are dense5 in the space of continuous functions defined on [0, 1]N . Since every bounded and
measurable sigmoidal function is discriminatory, a multilayer neural network can be used to
learn an arbitrary function [56].

Funahashi [79] showed that an arbitrary continuous function can be approximated to any de-
sired accuracy by a three-layer multilayer perceptron (MLP) with bounded and monotonically
increasing activation functions within hidden units. Kuan and Hornik [159] extended the class
of nonlinear activation functions allowed, and proved that a neural network can approximate
simultaneously both a function and its derivative. Kurkova [161] addressed universal func-
tion approximation by a superposition of nonlinear functions within the constraints of neural
networks, whereas Leshno et al. [165] relaxed the conditions for the activation function to a
‘locally bounded piecewise continuous’ (not a polynomial).

Based on the above results, for a neural network with N neurons, its activation functions
σn(xn), n = 1, . . . , N should be sigmoid functions for which the desired properties are given
in Table 4.2. For more detail on the properties of nonlinear activation functions in R see
Appendix D.

4Function σ(·) is discriminatory if for a Borel measure μ on [0, 1]N ,
∫

[0,1]N
σ(aTx+ b)dμ(x) = 0, ∀a ∈ RN,

∀b ∈ R implies that μ = 0. The functions Cybenko considered had limits

σ(t) =
{

1, t → ∞
0, t → −∞

This justifies the use of the sigmoid (S - shaped) functions, such as σ(x) = 1/1 + e−βx, in neural networks for universal
function approximation.
5The denseness ensures that for any continuous function f defined on [0, 1]N and any ε > 0, there is a g(x) defined
in Equation (4.6), for which |g(x) − f (x)| < ε for all x ∈ [0, 1]N .

http://www.it-ebooks.info/


48 Complex Nonlinear Activation Functions

Table 4.2 Properties of real valued nonlinear activation functions

a) σn(xn) is a continuously differentiable function, to ensure the existence of the gradient
b) dσn(xn)

dxn
> 0 for all xn ∈ R, to enable gradient descent based learning

c) σn(R) = (an, bn), an, bn ∈ R, an /= bn, to ensure that the function is bounded
d) σ ′

n(xn) → 0 as xn → ±∞, to reduce the effect of artifacts in adaptive learning
e) A sigmoidal function σn should have only one inflection point, preferably at xn = 0, ensuring that

σ ′
n(xn) has a global maximum, thus providing the existence of the solution for NN based learning [107]

f) σn should be monotonically nondecreasing and uniformly Lipschitz, that is, there exists a constant
L > 0 such that ‖ σn(x1) − σn(x2) ‖≤ L ‖ x1 − x2 ‖, ∀x1, x2 ∈ R, or in other words

σn(x1) − σn(x2)

x1 − x2
≤ L, ∀x1, x2 ∈ R, x1 /= x2

This property facilitates the use of NNs as iterative maps (see Appendix P).

4.3 Nonlinear Activation Functions for Complex Neural Networks

To illustrate the link between universal function approximation in R and C, consider again the
approximation

f (x) =
N∑

n=1

cnσ(x − an) (4.7)

Obviously, different choices of function σ will give different approximations; an exten-
sive analysis of this problem is given in [312]. Upon swapping the variables x → 1/x, the
approximation formula (4.7) becomes (see Appendix E)

f (x) = z

N∑
n=1

cn

z + αn

(4.8)

which is a partial fractional expansion with poles αn and residuals cn. Notice, however, that
both αn and cn are allowed to be complex.

As the function approximation formula (4.8) has singularities (also supported by Liouville’s
theorem), complex valued nonlinear activation functions of a neuron cannot be obtained di-
rectly by analytic continuation of real valued sigmoids. To this end, a density6 theorem [18]
provides theoretical justification for the use of complex MLPs with non–analytic activation
functions for universal function approximation.

For a complex nonlinear function to be suitable for an activation function of a complex
neuron, it should be analytic in the finite complex plane, except for a limited number of singu-
larities, for instance, a complex logistic function 
(z) = 1/1 + e−z = u + jv has singularities
at 0 ± j(2n + 1)π, n ∈ Z (see also Figure E.1 in Appendix E).

6The denseness conditions can be considered a special case of the Stone–Weierstrass theorem [55].
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Table 4.3 Desired properties of complex valued nonlinear activation functions

i) 
 is nonlinear in x and y

ii) 
(z) is bounded ⇒ u and v are bounded
iii) Partial derivatives ux, uy, vx, vy exist and are bounded (see Chapter 5)
iv) To guarantee continuous learning, uxvy /= vxuy, except when ux =

0, vx = 0, uy /= 0, vy /= 0 and uy = 0, vy = 0, ux /= 0, vx /= 0

Following on the similar analysis for real activation functions, it has been shown that for a
function


(z) = u(x,y) + jv(x,y)

to be a candidate for a complex valued nonlinear activation function [88, 152], it should satisfy
the conditions given in Table 4.3.

As no function satisfies all the conditions in Table 4.3 on C, in practical applications we
need to choose between boundedness and differentiability [152].

4.3.1 Split-complex Approach

A simple way to ensure that the output of a complex neuron

y(k) = 

(
net(k)

) = 

(
netr(k) + jneti(k)

) = σr

(
netr(k)

) + jσi

(
neti(k)

)
(4.9)

is bounded is to apply a real valued nonlinear activation function separately to the real and
imaginary part of the complex net input net(k). Depending on the basic form of a complex
number, the two possibilities for split complex nonlinearity are:

� Real–imaginary split-complex nonlinearities (RISC). To deal with signals which exhibit
symmetry around the real and imaginary axes, it is convenient to define split-complex
nonlinearities in terms of their real and imaginary parts [118, 119];

� Amplitude–phase split-complex nonlinearities (APSC). A complex nonlinearity expressed
by its magnitude and phase is symmetric about the origin, this makes it suitable for
processes which exhibit rotational symmetry [120, 121].

Split-complex nonlinear functions, however, are not analytic – they do not satisfy the Cauchy–
Riemann equations and hence their use in nonlinear adaptive filtering is application specific.

Real–imaginary split-complex approach. In this approach, a split-complex nonlinearity
comprises two identical real valued nonlinear activation functions [27, 166], that is


(z) = σr(u(x,y)) + jσi(v(x,y)) = σ(u) + jσ(v), σ(u), σ(v) : R→ R (4.10)

whereby the real and imaginary parts of the net input are processed separately. Function σ

can be any suitable real valued nonlinear activation function, as outlined in Section 4.2.1 and
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Figure 4.2 Real–imaginary split-complex logistic function 
(z) = σ(
) + jσ(�) = 1
1+e−β
 + j 1

1+e−β�

Appendix D. Figure 4.2 shows the magnitude and phase functions for the split-complex logistic
function – notice the symmetry of the magnitude function in Figure 4.2(a).

Amplitude–phase split-complex approach. Examples for this class of functions are the
activation function introduced by Georgiou and Koutsougeras [88], given by


(z) = z

c + |z|/r
(4.11)

and the activation function proposed by Hirose [118], given by


(z) = tanh(|z|/m)ej arg(z) (4.12)

where c, r, and m are real positive constants. Figure 4.3(a) illustrates the rotational symmetry
of the magnitude function of Equation (4.11), which maps the complex plane onto an open
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Figure 4.3 Amplitude–phase split-complex function (Equation 4.11)
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disk DR(0) = {z : |z| < R}. Due to their radial mapping, in the APSC approach the processing
is limited to magnitude variations. Thus, these functions are not capable of learning the phase
relationship between the input and desired signal, and are not suitable for restoring phase
distortion, for example.

Dual–univariate approach. The dual–univariate approach splits the complex input into its
real and imaginary part and processes them separately using real valued adaptive filters, both
linear and nonlinear [156, 213] (see also Figure 14.2a). Since during the processing there is
no mixing between the real and imaginary parts of the input, this approach achieves reason-
able performance only when the real and imaginary parts of the complex input signal are
independent.

4.3.2 Fully Complex Nonlinear Activation Functions

This is the most general case, where the nonlinear activation function 
 is a complex func-
tion of a complex variable, whose value is calculated using complex algebra. To illustrate
fully complex nonlinearities, consider a net input to a neuron net(k) = netr(k) + jneti(k),
given by

net(k) =
N∑

n=1

wn(k)x(k − n + 1) =
N∑

n=1

(
wr

n(k) + jwi
n(k)

)(
xr(k − n + 1) + jxi(k − n + 1)

)

= (
xT

r (k)wr(k) − xT
i (k)wi(k)︸ ︷︷ ︸

netr(k)

) + j
(
xT

r (k)wi(k) + xT
i (k)wr(k)︸ ︷︷ ︸

neti(k)

)
(4.13)

The net input is passed through a general fully complex nonlinear activation function 
 to
produce the output

y(k) = 
(net(k)) = φ(netr(k), neti(k)) + jψ
(
netr(k), neti(k)

)
(4.14)

where φ(netr(k), neti(k)) and ψ(netr(k), netr(k)) are two–dimensional.
To enable gradient based learning, function 
(v(k)) must be holomorphic, that is, it must

satisfy the Cauchy–Riemann equations [203]

∂φ
(
netr(k), neti(k)

)
∂netr(k)

= ∂ψ
(
netr(k), neti(k)

)
∂neti(k)

and

∂φ
(
netr(k), neti(k)

)
∂neti(k)

= −∂ψ
(
netr(k), neti(k)

)
∂netr(k)

Although, at first, this requirement seems rather stringent, the choice of fully complex activation
functions is very rich, as for them the condition (iv) from Table 4.3 is irrelevant. For instance,
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Figure 4.4 Magnitude and phase for the tan(z) activation function

as proposed in [152], we can employ the class of Elementary Transcendental Functions (ETF),
which includes:

� Circular functions (Figure 4.4 illustrates function tan(z) and sin(z) is shown in Figure E.2
in Appendix E)


(z) = tan(z), 
′(z) = sec2(z) (4.15)


(z) = sin(z), 
′(z) = cos(z) (4.16)

� Inverse circular functions (function arcsin(z) is shown in Figure E.3 in Appendix E)


(z) = arctan(z), 
′(z) = (1 + z2)−1 (4.17)


(z) = arcsin(z), 
′(z) = (1 − z2)−1/2 (4.18)

� Hyperbolic functions (function sinh(z) is shown in Figure E.4 in Appendix E)


(z) = tanh(z), 
′(z) = sech2(z) (4.19)


(z) = sinh(z), 
′(z) = cosh(z) (4.20)

� Inverse hyperbolic functions (function arctanh(z) is shown in Figure 4.5)


(z) = arctanh(z), 
′(z) = (1 − z2)−1 (4.21)


(z) = arcsinh(z), 
′(z) = (1 + z2)−1/2 (4.22)

Table E.1 in Appendix E comprises elementary transcendental functions and their associated
type of singularity.
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Figure 4.5 The inverse hyperbolic function arctanh(z)

4.4 Generalised Splitting Activation Functions (GSAF)

This class of activation functions, proposed in [295], are a hybrid between the split-complex
and fully complex approach, in the sense that they have a form of a split-complex activation
function, and yet satisfy the Cauchy–Riemann conditions. Figure 4.6 illustrates the generalised
splitting approach–the flow of information between the real and imaginary channel is achieved
using bidimensional splines to form functions u(x,y) and v(x,y) (for instance the Catmull–
Rom cubic spline [45]). The use of splines ensures that the Cauchy–Riemann conditions are
satisfied, whereas the boundedness is preserved by the split-complex nature of this approach.

4.4.1 The Clifford Neuron

The Clifford neuron is a special case of a standard neuron, whereby all the operations are
performed based on Clifford algebra. The standard scalar product in the calculation of the net
function net(k) = wT(k)x(k) is replaced by the Clifford (or geometric) product, given by

wTx + θ ⇒ w · x + w ∧ x + θ (4.23)

Σ

v(x,y)

u(x,y)
(u,v)Φ

jy

x

y

x

z=x+jy

Figure 4.6 Generalised splitting activation function: u(x,y) and v(x,y) are built using adaptive
bidimendionnal splines [295]
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¨

where the symbol ∧ denotes the outer vector product.Clifford algebras form a basis for hyper-
complex neural networks [230], for more detail see Appendix C.

4.5 Summary: Choice of the Complex Activation Function

Early extensions of temporal neural networks to the complex domain used analytic continuation
of standard activation functions inR, such as the complex logistic function [166] and complex
tanh function [50], whereas neural networks for classification were based on split-complex
activation functions [120] and multivalued neurons [5].

For universal function approximation and nonlinear adaptive filtering in C, it has been
shown that an ideal nonlinear activation function of a neuron should be both bounded and
differentiable. This is, however, not possible as Liouville’s theorem [255] states:

The only bounded differentiable (analytic) functions defined over the entire field of
complex numbers are constants.

Ways to partially circumvent these contrasting requirements include:

� Using complex nonlinear functions which are bounded almost everywhere in C, allowing
for isolated singularities (the fully complex approach).

� Admitting only functions which are bounded in the entire complex plane (the split-complex
approach). These functions do not obey the Cauchy–Riemann conditions and both the real
valued functions σr and σi in Equation (4.9) can be chosen individually.

� Separating the signal flow for the real and the imaginary parts of the input, and processing
them either as independent data streams (dual univariate approach), or combining them
using differentiable bivariate real functions, thus providing differentiability (generalised
splitting activation functions).

In nonlinear adaptive filtering applications, differentiability is a prerequisite to designing learn-
ing algorithms. If all the variables within such filters are standardised so as not to approach
singular points, the class of fully complex functions are the preferred choice as the Cauchy–
Riemann equations facilitate gradient based learning. In addition, the algorithms derived based
on the fully complex approach are generic extensions of the corresponding algorithms for real
valued adaptive filters.

Chapter 11 presents a Mobius transformation framework for the analysis of mappings
(nesting, invertibility) performed by fully complex nonlinearities, whereas Chapter 6 presents
gradient based learning algorithms for a class of finite impulse response nonlinear adaptive
filters with fully complex nonlinear activation functions (dynamical perceptron).
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The design of adaptive learning algorithms is based on the minimisation of a suitable objective
(cost) function, typically a function of the output error of an adaptive filter. This optimisation
problem is well understood for real valued adaptive filters where, for instance, the steepest
descent approach is based on the iteration

w(k + 1) = w(k) − μ∇wJ(k)

wherew(k) is the vector of filter coefficients, μ is a parameter (learning rate) and J = 1
2e2(k)

is the cost function, a quadratic function of the output error of the filter.
Although a formalism similar to that used for real valued adaptive filters can also be used

for complex valued adaptive filters, notice that in this case the cost function J(k) = 1
2 |e(k)|2 =

1
2e(k)e∗(k) = 1

2 (e2
r + e2

i ) is a real valued function of complex variable, which gives rise to
several important issues:

� Standard complex differentiability is based on the Cauchy–Riemann equations and
imposes a stringent structure on complex holomorphic functions;

� Cost functions are real functions of complex variable, that is J : C �→ R, and so they
are not differentiable in the complex sense, the Cauchy–Riemann equations do not apply,
and we need to develop alternative, more general and relaxed, ways of calculating their
gradients;

� It is also desired that these generalised gradients are equivalent to standard complex
gradients when applied to holomorphic (analytic) functions.

This chapter provides an overview of complex differentiability for both real valued and
complex valued functions of complex variables. The concepts of complex continuity, differenti-
ability and Cauchy–Riemann conditions are first introduced; this is followed by more general
R-derivatives. The duality between gradient calculation in R and C is then addressed and the
so called CR calculus is introduced for general functions of complex variables. It is shown
that theCR calculus provides a unified framework for computing the Jacobians, Hessians, and
gradients of cost functions. This chapter will serve as a basis for the derivation of learning
algorithms throughout this book.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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5.1 Continuous Complex Functions

Complex analyticity and singularities of complex functions have been introduced in Section 4.1
and Section 4.1.1. To address complex continuity, consider complex functions f : D �→ C,
D ⊂ C

f (z) = f (x, y) = u(x, y) + jv(x, y) = (
u(x, y), v(x, y)

)
(5.1)

Limits of complex functions are defined similarly to those in R, limz→z0 f (z) = ς that is, for
any ε > 0 there exists δ > 0 such that |f (z) − ς| < ε when 0 < |z − z0| < δ.

To define a continuous complex function we need to show that at any z0 ∈ D

lim
z→z0

f (z) = f (z0) (5.2)

5.2 The Cauchy–Riemann Equations

For a complex function f (z) = u + jv, to be differentiable at z, limit (5.3) must converge to a
unique complex number no matter how �z → 0. In other words, for f (z) to be analytic, the
limit

f ′(z) = lim
�x→0,�y→0

[
u (x + �x, y + �y) + jv (x + �x, y + �y)

] − [
u(x, y) + jv(x, y)

]
�x + j�y

(5.3)
must exist regardless of how �z approaches zero.

It is convenient to consider the two following cases [206, 218]

Case 1: �y = 0 and �x → 0, which yields

f ′(z) = lim
�x→0

[
u (x + �x, y) + jv (x + �x, y)

] − [
u(x, y) + jv(x, y)

]
�x

= lim
�x→0

u (x + �x, y) − u(x, y)

�x
+ j

v (x + �x, y) − v(x, y)

�x

= ∂u(x, y)

∂x
+ j

∂v(x, y)

∂x
(5.4)

Case 2: �x = 0 and �y → 0, which yields

f ′(z) = lim
�y→0

[
u (x, y + �y) + jv (x, y + �y)

] − [
u(x, y) + jv(x, y)

]
j�y

= lim
�y→0

u (x, y + �y) − u(x, y)

j�y
+ v (x, y + �y) − v(x, y)

�y

= ∂v(x, y)

∂y
− j

∂u(x, y)

∂y
(5.5)
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For continuity (Section 5.1), the limits from Case 1 and Case 2 must be identical, which
yields

∂u(x, y)

∂x
= ∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y
(5.6)

that is, the expressions for the Cauchy-Riemann equations. Therefore, for a function f (z) :
C �→ C to be holomorphic (analytic in z), the partial derivatives ∂u(x, y)/∂x, ∂u(x, y)/∂y,
∂v(x, y)/∂x, and ∂v(x, y)/∂y, must not only exist – they must also satisfy the Cauchy–Riemann
(C–R) conditions. This imposes a great amount of structure on holomorphic functions, which
may prove rather stringent in practical applications. To avoid this, a more relaxed defini-
tion of a derivative is introduced in Section 5.3, based on the duality between the spaces C
and R2. A comprehensive account of complex vector and matrix differentiation is given in
Appendix A.

The Jacobian matrix of a complex function f (z) = u + jv, where z = x + jy, is given by

J =
[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
(5.7)

If z and f ′(z) were vectors in R2, say z = [x, y], dz = [dx, dy], and df (z) = [du, dv], they
would have to satisfy

df (z) = f ′(z) dz = dz f ′(z)

As the multiplication in the complex domain is commutative, and a 2 × 2 dimensional Jacobian
matrix J = f ′(z) cannot premultiply a row vector dz, in general function f ′(z) cannot lie in
the same space as z and f (z), and hence the Jacobian matrix cannot be an arbitrary matrix. We
have already shown (see also Chapters 12 and 11) that special 2 × 2 matrices, such as[

1 1

−1 1

]
and

[
x y

−y x

]

are algebraically isomorphic with complex variables. These matrices commute only with the
matrices of their own kind, and hence the Jacobian matrix in Equation (5.7) has to be of this
kind too, thus conforming with the Cauchy–Riemann equations.

5.3 Generalised Derivatives of Functions of Complex Variable

In practical applications, we often need to perform optimisation on complex functions which
are not directly analytic inC1. Frequently encountered complex functions of complex variable
which are not analytic include those which depend on the complex conjugate, and those which
use absolute values of complex numbers. For instance, the complex conjugate f (z) = z∗ is

1For instance, in the Wiener filtering problem, the aim is to find the set of coefficients which minimise the total error
power, a real function of complex variable. This function clearly has a minimum, but is not differentiable inC. Similar
problems arise in power engineering [100].
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not analytic, and the Cauchy–Riemann conditions are not satisfied, as can be seen from its
Jacobian

J =
[

1 0

0 −1

]
(5.8)

This is also the case with the class of functions which depend on both z = x + jy and z∗ =
x − jy, for instance

J(z, z∗) = zz∗ = x2 + y2 ⇒ J =
[

2x 2y

0 0

]
⇔ ∂u

∂x
/= ∂v

∂y

∂v

∂x
/= − ∂u

∂y

(5.9)
As a consequence, any polynomial in both z and z∗, or any polynomial depending on z∗ alone,
is not analytic. Therefore, our usual cost function J(k) = 1

2e(k)e∗(k) = 1
2 [e2

r + e2
i ], a real

function of a complex variable, is not analytic or differentiable in the complex sense, and
does not satisfy the Cauchy–Riemann conditions.

The Cauchy–Riemann conditions therefore impose a very stringent structure on functions
of complex variables, and several attempts have been made to introduce more convenient
derivatives. As functions of complex variable

f (z) ↔ g(x, y) (real valued bivariate)

can also be viewed as functions of its real and imaginary components, it is natural to
ask whether the rules of real gradient calculation may be somehow applied. This way,
we may be able to replace the stringent conditions of the standard complex derivative
(C-derivative) of a holomorphic function f : C→ C with the more relaxed conditions of
a real derivative (R-derivative) of bivariate function g(x, y) : R2 → R

2. For convenience, we
would like the R-derivative to be equivalent to the C-derivative when applied to holomorphic
functions.

Based on our earlier examples of nonanalytic functions f (z) = z∗ and f (z) = |z|2 = zz∗,
observe that:-

� A function f (z) can be non-holomorphic in the complex variable z = x + jy, but still be
analytic in real variables x and y, as for instance, f (z) = z∗ and f (z) = zz∗ = x2 + y2;

� Both f (z) = z∗ and f (z) = zz∗ are holomorphic in z for z∗ = const, and are also holo-
morphic in z∗ when z = const.

The main idea behindCR calculus (also known as Wirtinger calculus2 [313]) and Brandwood’s
result [35], is to introduce so-called conjugate coordinates, a concept applicable to any complex
valued or real valued function of a complex variable, whereby a complex function is formally
expressed as a function of both z and z∗, that is3

f (z) = f (z, z∗) = �{f } + j
{f } = u(x, y) + jv(x, y) = g(x, y) (5.10)

2Wirtinger’s result has been used largely by the German speaking DSP community [78].
3For an excellent overview we refer to the lecture material ‘The Complex Gradient Operator and the CR Calculus’,
(ECE275CG-F05v1.3d) by Kenneth Kreutz–Delgado.
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Notice that g(x, y) is a real bivariate function associated with the complex univariate function
f (z), and that the total differential of the function g(x, y) can be expressed as

dg(x, y) = ∂g(x, y)

∂x
dx + ∂g(x, y)

∂y
dy

We then have

dg(x, y) = ∂u(x, y)

∂x
dx + j

∂v(x, y)

∂x
dx + ∂u(x, y)

∂y
dy + j

∂v(x, y)

∂y
dy

and the variable swap

dz = dx + jdy dz∗ = dx − jdy

dx = 1

2

[
dz + dz∗] dy = 1

2j

[
dz − dz∗]

yields

dg(x, y) = 1

2

[
∂u(x, y)

∂x
+ ∂v(x, y)

∂y
+ j

(∂v(x, y)

∂x
− ∂u(x, y)

∂y

)]
dz

+ 1

2

[
∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ j

(∂v(x, y)

∂x
+ ∂u(x, y)

∂y

)]
dz∗

The differential dg(x, y) now becomes

dg(x, y) = 1

2

[
∂g(x, y)

∂x
− j

∂g(x, y)

∂y

]
dz + 1

2

[
∂g(x, y)

∂x
+ j

∂g(x, y)

∂y

]
dz∗

and hence the differential of the complex function f (z) can be written as

df (z) = df (z, z∗) = ∂f (z)

∂z
dz + ∂f (z)

∂z∗ dz∗

5.3.1 CR Calculus

Using the above formalism [158], for a function f (z) = f (z, z∗) = g(x, y), where f can be
either complex valued or real valued, we can formally4 introduce the R-derivatives:-

� The R-derivative of a real function of a complex variable f = f (z, z∗) is given by

∂f

∂z
∣∣∣
z∗=const

= 1

2

(∂f

∂x
− j

∂f

∂y

)
(5.11)

where the partial derivatives ∂f/∂x and ∂f/∂y are true (non–formal) partial derivatives of
the function f (z) = f (z, z∗) = g(x, y);

4As z is not independent of z∗ this is only a formalism; a similar formalism has been used to introduce the augmented
complex statistics in chapter 12.
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� The conjugate R-derivative (R∗-derivative) of a function f (z) = f (z, z∗) is given by

∂f

∂z∗ ∣∣∣
z=const

= 1

2

(∂f

∂x
+ j

∂f

∂y

)
(5.12)

◦ For these generalised derivatives, it is assumed that z and z∗ are mutually independent,
that is

∂z

∂z
= ∂z∗

∂z∗ = 1
∂z

∂z∗ = ∂z∗

∂z
= 0

Then, the R-derivatives can be straightforwardly calculated by replacing

x = (z + z∗)/2 y = −j(z − z∗)/2

and using the chain rule, as shown above;
� The R-derivatives can be expressed in terms of g(x, y) = f (z, z∗) as

∂f (z, z∗)

∂z
= 1

2

(∂g(x, y)

∂x
− j

∂g(x, y)

∂y

) ∂f (z, z∗)

∂z∗ = 1

2

(∂g(x, y)

∂x
+ j

∂g(x, y)

∂y

)

In other words, the analyticity of f (z) = f (z, z∗) with respect to both z and z∗ indepen-
dently is equivalent to the R-differentiability of g(x, y);

� As a consequence, in terms of R-derivatives, function f (z) has two stationary points, at
∂f (z, z∗)/∂z = 0 and ∂f (z, z∗)/∂z∗ = 0.

Thus, although real functions of complex variable are not differentiable in C (the C-derivative
does not exist), they are generally differentiable in both x and y and theirR-derivatives do exist.

5.3.2 Link between R- and C-derivatives

When considering holomorphic complex functions of complex variables in light of the
CR-derivatives [158], we can observe that:-

� If a function f = f (z, z∗) = g(x, y) = u(x, y) + jv(x, y) is holomorphic, then the
Cauchy–Riemann conditions are satisfied, that is, ∂u(x, y)/∂x = ∂v(x, y)/∂y and
∂v(x, y)/∂x = −∂u(x, y)/∂y, and

R− derivative
1

2

[
∂f

∂x
− j

∂f

∂y

]
= 1

2

[
∂u

∂x
+ j

∂v

∂x
− j

∂u

∂y
+ ∂v

∂y

]

= 1

2

[
2
∂u

∂x
+ 2j

∂v

∂x

]
= f ′(z)

R
∗ − derivative

1

2

[
∂f

∂x
+ j

∂f

∂y

]
= 1

2

[
∂u

∂x
+ j

∂v

∂x
+ j

∂u

∂y
− ∂v

∂y

]
= 0

that is, for holomorphic functions theR∗-derivative vanishes and theR-derivative is equiv-
alent to the standard complex derivative f ′(z);

� In other words, if an R-differentiable function f (z, z∗) is independent of z∗, then the
R-derivative of f (z) is equivalent to the standard C-derivative;
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� Since for a complex holomorphic function f (z) the R∗-derivative vanishes (∂f (z)/∂z∗ =
0), we can state an alternative, generalised, form of the Cauchy–Riemann conditions as

∂f (z)

∂z∗ = 0 (5.13)

Thus, holomorphic functions are essentially those which can be written without z∗ terms.

Therefore, the R-derivatives are a natural generalisation of the standard complex derivative,
and apply to both holomorphic and nonholomorphic functions. We say that complex functions
are real analytic (R-analytic) over R2 if they are both R-differentiable and R∗-differentiable
[158, 250].

Based on the CR-derivatives, rules of complex differentiation can be obtained by replacing
dz = dx + jdy and dz∗ = dx − jdy. Several of these rules are listed below.

∂f ∗(z)

∂z∗ =
(

∂f (z)

∂z

)∗

∂f ∗(z)

∂z
=

(
∂f (z)

∂z∗

)∗

df (z) = ∂f (z)

∂z
dz + ∂f (z)

∂z∗ dz∗ differential

∂f (g(z))

∂z
= ∂f

∂g

∂g

∂z
+ ∂f

∂g∗
∂g∗

∂z
chain rule (5.14)

In the particular case of cost functions, for instance, the nonholomorphicf (z, z∗) : C× C �→ R

given by f (z) = zz∗ = x2 + y2 = g(x, y), the R∗-derivative

1

2

[
∂g(x, y)

∂x
+ j

∂g(x, y)

∂y

]
= x + jy = z = ∂f (z, z∗)

∂z∗ |z=const
=

(
∂f ∗(z, z∗)

∂z |z∗=const

)∗

(5.15)
that is, for a real function of complex variable we have

(
∂f

∂z

)∗
= ∂f

∂z∗ (5.16)

It is important to highlight again that for general holomorphic complex functions of complex
variable f (z) : C �→ C

∂f (z)

∂z
= ∂fr(z)

∂x
+ j

∂fi(z)

∂x︸ ︷︷ ︸
C−derivative

/= ∂f (z)

∂z∗ |z=const.
= 1

2

[ ∂f (z)

∂x
+ j

∂f (z)

∂y︸ ︷︷ ︸
R∗−derivative

]
= 0 (5.17)

and that in this case the R∗-derivative vanishes.
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For instance, for a holomorphic, C-differentiable, function f (z) = z = x + jy, we have

C − derivative f ′(z) = 1

R
∗ − derivative

1

2

[∂(x + jy)

∂x
+ j

∂(x + jy)

∂y

]
= 0

R − derivative
1

2

[∂(x + jy)

∂x
− j

∂(x + jy)

∂y

]
= 1

5.4 CR-derivatives of Cost Functions

In complex valued adaptive signal processing, it is common to perform optimisation based on
scalar functions of complex variables. These are typically quadratic functions of the output
error of an adaptive filter, for instance

J(k) = 1

2
|e(k)|2 = 1

2
e(k)e∗(k) (5.18)

that is, J(e, e∗) : C �→ R, where the error e(k) is a function of the vector of filter parameters
w(k) = wr(k) + jwi(k), e(k) = d(k) − xT (k)w(k), and the symbols d(k) and x(k) denote
respectively the teaching signal and the tap input vector. We have shown in Equation (5.9) that
such functions are not holomorphic, hence the Cauchy–Riemann conditions are not satisfied,
and their C-derivative is not defined. However, J(k) is differentiable in both the wr(k) and
wi(k), and to find its stationary points (extrema), both the R- and R∗-derivatives must vanish;
this is the essence of Brandwood’s result [35].

5.4.1 The Complex Gradient

We shall now provide a step by step derivation of the expressions for gradients of cost functions,
as their understanding is critical to the derivation of adaptive filtering algorithms in C. Our
aim is to show that

∇wJ(k) = ∂J(k)

∂w(k)
= ∂J(k)

∂wr(k)
+ j

∂J(k)

∂wi(k)
(5.19)

To this end, recall that the relationship between the complex number z = x + jy and a com-
posite real variable ω = (a, b) ∈ R2 is described by5 (also shown in chapters 11 and 12)

[
zk

z∗
k

]
= J

[
xk

yk

]
=

[
1 j

1 −j

] [
xk

yk

]

5We have introduced the relationship between the real and complex gradients and Hessians based on the work by Van
Den Bos [30]. As points where the gradient vanishes (stationary points) give us the location of the extrema of the
cost function, and the Hessian helps to differentiate between the minimum and maximum, it is important to provide
further insight into their calculation.
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whereas the relationship between the composite real vector ω = [x1, y1, . . . , xN, yN ]T

∈ R2N×1 and the “augmented” complex vector v = [
z1, z

∗
1, . . . , zN, z∗

N

]T ∈ C2N×1 is given
by

v = Aω (5.20)

where the matrixA = diag(J, . . . , J) ∈ C2N×2N is block diagonal. Thus, we have

ω = A−1v = 1

2
AHv = 1

2
ATv∗ (5.21)

To establish a relation between the R- and C-derivatives, consider a Taylor series expansion
of a real function f (ω) around ω = 0, given by

f + ∂f

∂ωT
ω + 1

2!
ωT ∂2f

∂ω∂ωT
ω + · · · (5.22)

where the vector ∂f/∂ω is called the gradient. The connection between the real and complex
gradient is then given by

∂f

∂ωT
ω = 1

2

∂f

∂ωT
AHv ⇒ ∂f

∂v
= 1

2
A∗ ∂f

∂ω
⇒ ∂f

∂ω
= AT ∂f

∂v
(5.23)

that is, the real and complex gradient are related by a linear transformation. For illustration,
consider the elements of the gradient vector ∂f/∂v, that is, ∂f/∂z and ∂f/∂z∗. From
Equations (5.11) and (5.12), we then immediately have

R− derivative:
∂f

∂zn

= 1

2

(
∂f

∂xn

− j
∂f

∂yn

)

R
∗ − derivative:

∂f

∂z∗
n

= 1

2

(
∂f

∂xn

+ j
∂f

∂yn

)
(5.24)

For the particular case of cost functions, real functions of complex variable, we have(
∂f

∂zn

)∗
=

(
∂f

∂z∗
n

)
∂f

∂v∗ =
(

∂f

∂v

)∗

and also from Equation (5.23)

∂f

∂ω
= AH ∂f

∂v∗ (5.25)

These relationships are very useful in the derivation of the learning algorithms in the steepest
descent setting, and especially when addressing their convergence.6

6Relationships between complex random variables and composite real random variables in terms of their respective
probability density functions are given in chapter 12 and Appendix A.
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5.4.2 The Complex Hessian

To establish the CR relationships in terms of second order derivatives, consider the quadratic
term in the Taylor series expansion (TSE) in Equation (5.22), given by

1

2!
ωTHω where H = ∂2f

∂ω ∂ωT
(5.26)

Using the substitution (5.21), this can be rewritten as

1

2!
vHGv where G = ∂2f

∂v∗ ∂vT
= 1

4
AHAH (5.27)

thus, giving the relation between the real HessianH and the complex HessianG.
As A−1 = 1

2A
H and therefore I = AA−1 = 1

2AA
H , the characteristic equation for the

eigenvalues of the complex HessianG is given by

G− λI = 1

4
A

(
H− 2λI

)
AH (5.28)

The roots of G− λI are the same as the roots of H− 2λI, and therefore the eigenvalues of
the complex Hessian λc

n and the eigenvalues of the real Hessian λr
n are related as

λr
n = 2λc

n, n = 1, . . . , N (5.29)

An important consequence is that the conditioning of the matricesG andH is the same – this
is very useful when studying the relationship between complex valued algorithms and their
counterparts in R2.

In the particular case of the Newton type of optimisation, the real and complex Newton steps
are given by

Real: H�ω = − ∂f

∂ω
Complex: G�v = − ∂f

∂v∗ (5.30)

where ∂f/∂ω and ∂f/∂v∗ denote respectively the real gradient and the conjugate of the complex
gradient.

5.4.3 The Complex Jacobian and Complex Differential

Based on Equation (5.14), the differential of the complex valued vector function F can now
be defined as

dF (z, z∗) = ∂F (z, z∗)

∂z
dz+ ∂F (z, z∗)

∂z∗
dz∗ (5.31)

where z = [z1, . . . , zN ]T and z∗ = [z∗
1, . . . , z

∗
N ]T , and

F (z, z∗) = [f1(z, z∗), . . . , fN (z, z∗)]T (5.32)
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whereas the complex Jacobians J = ∂F (z, z∗)/∂z and Jc = ∂F (z, z∗)/∂z∗ are defined as

J =

⎡
⎢⎢⎢⎢⎣

∂f1
∂z1

. . .

..

∂f1
∂zN

. . . .
...

∂fN

∂z1
· · · ∂fN

∂zN

⎤
⎥⎥⎥⎥⎦ and Jc =

⎡
⎢⎢⎢⎢⎣

∂f1
∂z∗

1
. . .

∂f1
∂z∗

N

..

. . . .
...

∂fN

∂z∗
1

· · · ∂fN

∂z∗
N

⎤
⎥⎥⎥⎥⎦ (5.33)

Notice that for holomorphic functions J∗ /= Jc, whereas for real functions of complex variable
J∗ = Jc. The complex differential of a real function of complex variable thus becomes

dF (z, z∗) = Jdz+ J∗dz∗ = 2�{
Jdz

} = 2�{
J∗dz∗

}
(5.34)

The chain rule from Equation (5.14) can also be extended to the vector case as

∂F (g)

∂z
= ∂F

∂g

∂g

∂z
+ ∂F

∂g∗
∂g∗

∂z
and

∂F (g)

∂z∗
= ∂F

∂g

∂g

∂z∗
+ ∂F

∂g∗
∂g∗

∂z∗
(5.35)

5.4.4 Gradient of a Cost Function

As C-derivatives are not defined for real functions of complex variable, generalised gradient
operators can be defined based on the R- and R∗-derivatives in Equations (5.11–5.12) with
respect to vectors z = [z1, . . . , zN ]T and z∗ = [z∗

1, . . . , z
∗
N ]T , that is

R− derivative:
∂

∂z
= 1

2

[
∂

∂x
− j

∂

∂y

]

R
∗ − derivative:

∂

∂z∗
= 1

2

[
∂

∂x
+ j

∂

∂y

]
(5.36)

where z = x+ jy and z∗ = x− jy and the elements of the gradient vectors ∂/∂z and ∂/∂z∗
are given by

∂

∂zn

= 1

2

[
∂

∂xn

− j
∂

∂yn

]
and

∂

∂z∗
n

= 1

2

[
∂

∂xn

+ j
∂

∂yn

]
(5.37)

Thus, in expressing the gradient of a scalar function with respect to a complex vector, the
derivatives are applied component–wise, for instance, the gradient of J(e, e∗) with respect to
the complex weight vector w = [w1, . . . , wN ]T is given by

∇wJ(e, e∗) = ∂J(e, e∗)

∂w
=

[
∂J(e, e∗)

∂w1
, . . . ,

∂J(e, e∗)

∂wN

]T

(5.38)

Therefore, to optimise a real function J with respect to a complex valued parameter vectorw,
two conditions must be satisfied

∂J(e, e∗)

∂w
= 0 and

∂J(e, e∗)

∂w∗ = 0 (5.39)
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To determine the extrema of real valued cost functions, apply the rules of complex differenti-
ation from Equation (5.31) to the first term of the Taylor series expansion in Equation (5.22),
to yield

�J(e, e∗) =
[

∂J

∂w

]T

�w +
[

∂J

∂w∗

]T

�w∗ = 2�
{[

∂J

∂w

]H

�w∗
}

= 2�
{[

∂J

∂w∗

]T

�w∗
}

Observe that, although the set of stationary points of the gradient has two solutions ∂J/∂w and
∂J/∂w∗, since df (z) = df (z, z∗) = dg(x, y) and

dg(x, y) = ∂g(x, y)

∂x
dx + ∂g(x, y)

∂y
dy

the differential df vanishes only if the R-derivative is zero, and the maximum change of the
cost function J(e, e∗) is in the direction of the conjugate gradient. It is therefore natural to
express the gradient of the cost function with respect to the filter parameter vector as

∇wJ = 2
∂J

∂w∗ = ∂J

∂wr
+ j

∂J

∂wi
(5.40)

as this reflects the direction of the maximum change of the gradient.
The stochastic gradient based coefficient update of an adaptive filter can now be expressed

as

w(k + 1) = w(k) − μ∇wJ(k)

where

wr(k + 1) = wr(k) − μ
∂J(k)

∂wr(k)
and wi(k + 1) = wi(k) − μ

∂J(k)

∂wi(k)
(5.41)

For the particular case of a complex linear FIR filter, described in chapter 3, the cost function
J = 1

2e(k)e∗(k) needs to be minimised with respect to the filter coefficient vectorw(k), where
e(k) = d(k) − xT (k)w(k), and x(k) is the input vector. The stochastic gradient algorithm for
the weight update (complex LMS) thus can be expressed as

w(k + 1) = w(k) − μ
∂ 1

2e(k)e∗(k)

∂w∗ = w(k) + μe(k)x∗(k) (5.42)

Derivatives and differentials with respect to complex vectors and matrices are given in
Table A.1–A.3 in Appendix A.

Summary: This chapter has introduced elements of CR calculus for general functions of
complex variable. Particular topics include:-

� Complex continuity, differentiability, and the derivation of Cauchy–Riemann equations.
It has been shown that the Cauchy–Riemann equations provide a very elegant tool to
calculate derivatives of complex holomorphic functions, however, they also impose a
great amount of structure on such functions;

� It has been shown that typical cost functions used in adaptive filtering are real functions
of complex variables, and as such they do not obey the Cauchy–Riemann conditions. To
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deal with this problem, the R-derivatives, that is, generalised derivatives which apply to
both complex functions of complex variables and real functions of complex variables have
been introduced;

� Relationships between the complex (C-derivatives) and R-derivatives have been estab-
lished, and a generalised Cauchy–Riemann condition has been introduced;

� An insight into the calculation of complex Jacobians and Hessians has been provided and
their relation with the corresponding Jacobians and Hessians in R2 has been established;

� TheCR calculus has been applied to compute gradients of real functions of complex vari-
able, and the complex steepest descent method has been introduced within this framework.
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6
Complex Valued Adaptive Filters

This Chapter presents algorithms for the training of linear and nonlinear feedforward complex
adaptive filters. Stochastic gradient learning algorithms are introduced for:

� linear transversal adaptive filters
� fully complex feedforward adaptive filters
� split-complex feedforward adaptive filters
� dual univariate adaptive filters

and are supported by convergence studies and simulations.

As adaptive filtering in the complex domain gives us more degrees of freedom than
processing in the real domain, there are several equivalent formulations for the operation
of such filters. For instance, the operation of the Complex Least Mean Square (CLMS) algo-
rithm for transversal adaptive filters (adaptive linear combiner) in its original form [307] is
given by

y = xT(k)w(k) = wT(k)x(k) → �w(k) = μe(k)x∗(k) (6.1)

and two other frequently used forms are

y = wH(k)x(k) = xT(k)w∗(k) → �w(k) = μe∗(k)x(k) (6.2)

and

y = xH(k)w(k) = wT(k)x∗(k) → �w(k) = μe(k)x(k) (6.3)

The formulations (Equations 6.1–6.3) produce identical results and can be transformed from
one into another by deterministic mappings. In the convergence analysis, the most convenient
form will be used.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5

http://www.it-ebooks.info/


70 Complex Valued Adaptive Filters

6.1 Adaptive Filtering Configurations

Figure 6.1 shows the block diagram of an adaptive filter as a closed loop system consisting
of the filter architecture, which can be linear, nonlinear, feedforward or feedback, and the
control algorithm. At every time instant k, the coefficients of the filter w(k) are adjusted
based on the output from the control algorithm, thus providing a closed loop adaptation. The
optimisation criterion within the control algorithm is a function of the instantaneous output
error e(k) = d(k) − y(k), where d(k) is the desired response, y(k) is the filter output, and x(k)
is the input signal.

The simplest adaptive filter is a feedforward linear combiner shown in Figure 6.2. The output
of this adaptive finite impulse response (FIR) filter of length N is given by

y(k) =
N∑

n=1

wn(k)x(k − n + 1) = xT(k)w(k) (6.4)

where w(k) = [w1(k), . . . , wN (k)]T, x(k) = [x(k), . . . , x(k − N + 1)]T, and symbol (·)T de-
notes the vector transpose operator.

We distinguish between four basic adaptive filtering configurations:

� System identification configuration, Figure 6.3(a). In order to model the time varying
parameters of an unknown system, the adaptive filter is connected in parallel to the system
whose parameters are to be estimated. The unknown system and the adaptive filter share
the same input x(k), whereas the output of the unknown system serves as a desired response
for the adaptive filter. This configuration is used typically in echo cancellation in acoustics
and communications.

� Noise cancellation configuration, Figure 6.3(b). In this configuration, the noisy input
s(k) + N0(k) serves as a ‘desired’ response, whereas the ‘reference input’ is an external
noise source N1(k) which is correlated with the noise N0(k). The output of the filter y(k)

_

Algorithm
Control

Filter

Signal

Input

+

(k)w

y(k)
e(k)

d(k)x(k)

Adaptive System

Coefficients

Error

Σ

Response

Desired

Comparator

Figure 6.1 Block diagram of an adaptive filter as a closed loop system

http://www.it-ebooks.info/


Adaptive Filtering Configurations 71

(k)

−1−1z−1z−1z

N3

z
x(k)

w (k)1 w2(k)

x(k−1) x(k−2)

w (k)

x(k−N+1)

y(k)

w

Figure 6.2 Linear adaptive filter

provides an estimate of the noise N̂0(k), which is then subtracted from the primary input
s(k) + N0(k) to produce a denoised signal ŝ(k). This scheme is used in numerous noise
cancellation applications in acoustics and biomedicine.

� Inverse system modelling configuration, Figure 6.4(a). The goal of inverse system
modelling is to produce an estimate of the inverse of the transfer function of an unknown
system. To achieve this, the adaptive filter is connected in series with the unknown system.
The desired signal is the input signal delayed, due to signal propagation and the operation
in discrete time. Typical applications of this scheme are in channel equalisation in digital
communications and in control of industrial plants.

� Adaptive prediction configuration, Figure 6.4(b). In this configuration, the goal is to
predict the value of the input signal M steps ahead, that is, to produce an estimate x̂(k + M),
where M is the prediction horizon. The desired response (teaching signal) is the M steps
ahead advanced version of the input signal. The range of applications of adaptive prediction
are numerous, from quantitative finance to vehicle navigation systems.

Prediction is at the core of adaptive filtering and most of the simulations in this book will
be conducted in the one step ahead adaptive prediction setting. In this case, the output of the
linear adaptive filter from Figure 6.2 can be written as

y(k) =
N∑

n=1

wn(k)x(k − n) = xT(k)w(k) (6.5)

Input
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System Output
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(a) System identification
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+
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(b) Noise cancellation

Figure 6.3 Adaptive filtering configurations
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Figure 6.4 Adaptive filtering configurations

where the input in the filter memory (tap input vector) is x(k) = [x(k − 1), . . . , x(k − N)]T

and the weight vector (vector of adaptive filter coefficients) isw(k) = [w1(k), . . . , wN (k)]T.

Wiener filter. Consider a linear feedforward filter with fixed coefficients w, for which the
optimisation task is to minimise the error criterion (cost function)

J(w) = E
[|e(k)|2] = E

[
e(k)e∗(k)

] = E
[
e2
r (k) + e2

i (k)
]

(6.6)

This is a ‘deterministic’ function of the weight vector w, and represents the estimated power
of the output error. The aim is to find an ‘optimal’ vector with fixed coefficients wo which
minimises J(w). The Wiener filter provides a block solution which produces the best estimate
of the desired signal in the mean square sense – for stationary input signals this solution is
optimal in terms of second order statistics.

It is convenient to analyse the mean square error (Equation 6.6) using the description (Equa-
tion 6.2), where e(k) = d(k) −wHx(k). Upon evaluating Equation (6.6), we have1

E
[
e(k)e∗(k)

] = E
[(

d(k) −wHx(k)
)(

d(k) −wHx(k)
)∗] (6.7)

= E
[
d(k)d∗(k) − wHx(k)d∗(k) −wTx∗(k)d(k) +wHx(k)wTx∗(k)

]
Due to the linearity of the statistical expectation operator E[·], we have

E
[
e(k)e∗(k)

] = E
[ |d(k)|2 ] − wHE

[
x(k)d∗(k)

] −wTE
[
x∗(k)d(k)

] + wHE
[
x(k)xH(k)

]
w

= σ2
d −wHp− pHw +wHRw (6.8)

where σ2
d = E[|d(k)|2] is the power of the desired response, R = E

[
x(k)xH(k)

]
denotes the

complex valued input correlation matrix, p = E
[
d∗(k)x(k)

]
is the crosscorrelation vector be-

tween the desired response and the input signal, subscripts (·)r and (·)i denote respectively the
real and imaginary part of the complex number, (·)∗ is the complex conjugation operator, and
(·)H is the Hermitian transpose operator.

1Based on the identity aTb = bTa, we havewTx∗(k) = xH(k)w andwTp∗ = pHw.

http://www.it-ebooks.info/


The Complex Least Mean Square Algorithm 73

We can solve for the optimal weight vector wo by differentiating Equation (6.8) with respect
to w and setting the result to zero, that is2

∇wJ(w) = 2Rw − 2p = 0 (6.9)

which gives the Wiener–Hopf solution3

wo = arg min
w

J(w) = R−1p (6.10)

The minimum achievable mean square error is calculated by replacing the optimal weight
vector (Equation 6.10) back into Equation (6.8), to give [308]

Jmin = J(wo) = σ2
d − pHR−1p (6.11)

To emphasise that the cost function (Equation 6.6) is quadratic in w and hence has a global
minimum Jmin for w = wo, we can rewrite Equation (6.8) as

J(w) = Jmin + (w − wo)H R (w − wo) (6.12)

Notice that the mean square error J(w) comprises two terms – the minimum achievable mean
square error Jmin and a term that is quadratic in the weight error vector v = w −wo, which for
the Wiener solutionw = wo vanishes. The weight error vectorv is also called the misalignment
vector, and plays an important role in the analysis of adaptive filtering algorithms.

For nonstationary data the optimal weight vector is time varying, and hence the Wiener
solution is suboptimal.

6.2 The Complex Least Mean Square Algorithm

Due to the block nature of the Wiener solution and the requirement of stationarity of the input,
together with a possibly prohibitively large correlation matrix, this algorithm is not suitable
for real world real time applications. One way to mitigate this problem is to make use of
the parabolic shape of the ‘error surface’ defined by J(w) = E[|e(k)|2]. As the convexity of
the error surface guarantees the existence of the solution, we can reach the optimal solution
w = wo recursively, by performing ‘steepest descent’ towards the minimum Jmin = J(wo),
that is

w(k + 1) = w(k) − μ∇wJ(w) (6.13)

where μ is the stepsize, a small positive constant.

2The aim is to minimise the output error power, hence the cost function is a real function of complex variable, and
does not have a derivative directly inC. We can, however use theCR calculus to find ∇wJ , as explained in Chapter 5.
3For stationary inputs the correlation matrix R is almost always positive semidefinite, that is, uHRu ≥ 0 for every
nonzero u, and therefore nonsingular and invertible.
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The complex least mean square (CLMS) algorithm, introduced in 1975 [307], performs
‘stochastic gradient descent’, whereby all the statistical quantities in the Wiener filtering prob-
lem are replaced by their instantaneous estimates, to give4

E
[|e2(k)|] → 1

2
|e2(k)|

E
[
x(k)xH(k)

] → x(k)xH(k)

E
[
x(k)d(k)

] → x(k)d(k) (6.14)

The ‘stochastic’ cost function

J(k) = 1

2
|e(k)|2 (6.15)

is now time varying, and based on Equation (6.13) the weight vector update can be expressed
as

w(k + 1) = w(k) − μ∇wJ(k)|w=w(k) (6.16)

The gradient of the cost function with respect to the complex valued weight vector w(k) =
wr(k) + jwi(k) can be expressed as5

∇wJ(k) = ∇wr J(k) + j∇wiJ(k) = ∂J(k)

∂wr(k)
+ j

∂J(k)

∂wi(k)
(6.17)

As the output error of the linear adaptive filter in Figure 6.2 is given by

e(k) = d(k) − xT(k)w(k)

the gradient with respect to the real part of the complex weight vector can be evaluated as

∇wr J(k) = 1

2

∂
[
e(k)e∗(k)

]
∂wr(k)

= 1

2
e(k)∇wr e

∗(k) + 1

2
e∗(k)∇wr e(k) (6.18)

where

∇wr e(k) = −x(k) ∇wr e
∗(k) = −x∗(k)

The real part of the gradient of the cost function is then obtained as

∇wr J(k) = −1

2
e(k)x∗(k) − 1

2
e∗(k)x(k) (6.19)

4For convenience, the cost function is scaled by 1
2 . This makes the weight updates easier to manipulate, and does not

influence the result, as this factor will be cancelled after performing the derivative of the squared error term.
5We have already calculated this gradient in Section 5.4.4, using the R∗-derivative – see Equation (5.42). In this
Chapter, we provide a step by step derivation of CLMS – CR calculus will be used to simplify the derivation of
learning algorithms for feedback filters in Chapters 7 and 15.
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Similarly, the gradient of the cost function with respect to the imaginary part of the weight
vector can be calculated as

∇wiJ(k) = j

2
e(k)x∗(k) − j

2
e∗(k)x(k) (6.20)

By combining Equations (6.19) and (6.20) we obtain the gradient term in Equation (6.16) in
the form

∇wJ(k) = ∇wr J(k) + j∇wiJ(k) = −e(k)x∗(k)

Finally, the stochastic gradient adaptation for the weight vector can be expressed as

w(k + 1) = w(k) + μe(k)x∗(k), w(0) = 0 (6.21)

This completes the derivation of the complex least mean square (CLMS) algorithm [307].
Two other frequently used formulations for the CLMS are

y = wH(k)x(k) → w(k + 1) = w(k) + μe∗(k)x(k) (6.22)

and

y = xH(k)w(k) → w(k + 1) = w(k) + μe(k)x(k) (6.23)

The above three formulations for CLMS are equivalent; forms (6.22) and (6.23) are sometimes
more convenient for matrix manipulation.

6.2.1 Convergence of the CLMS Algorithm

To illustrate that for stationary signals the CLMS converges to the optimal Wiener solution,
consider the expected value for the CLMS update

w(k + 1) = w(k) + μE
[
e(k)x∗(k)

]
(6.24)

which has converged when w(k + 1) = w(k) = w(∞), that is, when the iteration (6.24)
reaches its fixed point6 [199, 256], and the weight update �w(k) = μE[e(k)x∗(k)] = 0. This
is achieved for7

0 = E
[
d∗(k)x(k)

] − E
[
x(k)xH(k)

]
w(k) ⇐⇒ Rw = p (6.25)

that is, for the Wiener solution. The condition E[e(k)x∗(k)] = 0 is called the ‘orthogonality
condition’ and states that the output error of the filter and the tap input vector are orthogonal
(e ⊥ x) when the filter has converged to the optimal solution.

6For more detail see Appendix P, Appendix O, and Appendix N.
7Upon applying the complex conjugation operator and settingw∗ = w.
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It is of greater interest, however, to analyse the evolution of the weights in time. As with any
other estimation problem, we need to analyse the ‘bias’ and ‘variance’ of the estimator, that is:

� Convergence in the mean, to ascertain whether w(k) → wo when k → ∞;
� Convergence in the mean square, in order to establish whether the variance of the weight

error vector v(k) = w(k) −wo(k) approaches Jmin as k → ∞.

The analysis of convergence of linear adaptive filters is made mathematically tractable if
we use so called independence assumptions, such that the filter coefficients are statistically
independent of the data currently in filter memory, and {d(l), x(l)} is independent of {d(k), x(k)}
for k /= l.

Convergence in the mean. For convenience, the analysis will be based on the form (6.23).
We can assume without loss in generality that the desired response

d(k) = xH(k)wo + q(k) (6.26)

where q(k) is complex white Gaussian noise, with zero mean and variance σ2
q , which is uncor-

related with x(k). Then, we have

e(k) = xH(k)wo + q(k) − xH(k)w(k)

w(k + 1) = w(k) + μx(k)xHwo − μx(k)xH(k)w(k) + μq(k)x(k)

Subtracting the optimal weight vectorwo from both sides of the last equation, the weight error
vector v(k) = w(k) −wo can be expressed as8

v(k + 1) = v(k) − μx(k)xH(k)v(k) + μq(k)x(k) (6.27)

Applying the statistical expectation operator to both sides of Equation (6.27) and employing
the independence assumptions, we have

E[v(k + 1)] = (
I− μE[x(k)xH(k)]

)
E[v(k)] + μE[q(k)x(k)] = (

I− μR
)
E[v(k)] (6.28)

Unless the correlation matrix R is diagonal, there will be cross–coupling between the coef-
ficients of the weight error vector. Since R is Hermitian and positive semidefinite, it can be
rotated into a diagonal matrix by a unitary transformation9

R = Q�QH (6.29)

where � = diag (λ1, λ2, . . . , λN ) is a diagonal matrix comprising the real and positive eigen-
values of the correlation matrix, Q is the matrix of the corresponding eigenvectors, and
λ1 ≥ λ2 ≥ · · · ≥ λN .

8The same result can be obtained from the original formulation (6.21) where d(k) = xT(k)wo + q(k), based on
�w(k) = μx∗(k)e(k), and using the identity x∗(k)xT(k) = x(k)xH(k).
9The eigenvectors may be chosen to be orthonormal in which caseQ is unitary.
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Rotating the weight error vectorv(k) by the eigenmatrixQ, that is, v′(k) = Qv(k), decouples
the evolution of its coefficients. This rotation allows us to express the so called ‘modes of
convergence’ solely in terms of the corresponding eigenvalues of the correlation matrix10

v′(k + 1) = (I − μ�) v′(k) (6.30)

Since (I − μ�) is diagonal and the nth component of v′ represents the projection of the vector
v(k) onto the nth eigenvector ofR, every element of v′(k) evolves independently, and Equation
(6.30) converges to zero if |1 − μλn| < 1. As the fastest mode of convergence corresponds to
the maximum eigenvalue λmax, the condition for the convergence in the mean of the CLMS
algorithm becomes11

0 < μ <
2

λmax
≈ 2

tr[R]
(6.31)

The trace of the input correlation matrix is equal to the product of the filter length and input
signal power, and so an easier to estimate bound on the learning rate is given by

0 < μ <
2

NE
[|x(k)|2|] (6.32)

Convergence in the mean square. To evaluate the mean square error, the CLMS must con-
verge in the mean, and hence its learning rate must obey 0 < μ < 2/λmax. As the filter co-
efficients begin to converge in the mean, they start fluctuating around their optimum values,
defined by wo. This is due to the ‘stochastic’ gradient approximation used for the update of
w(k), that is, the use of instantaneous estimates for the statistical moments within CLMS, as
shown in Equation (6.14). As a result, the mean square error ξ(k) = E[|e(k)|2] exceeds the
minimum mean square error Jmin (6.11) by an amount referred to as the excess mean square
error, denoted by ξEMSE(k), that is [110]

ξ(k) = Jmin + ξEMSE(k) (6.33)

The excess mean square error depends on second-order statistical properties of the desired
response, input, and weight error vector. The plot showing time evolution of the mean square
error is called the learning curve.

For convergence, it is of principal importance to preserve the asymptotic boundedness12 of
the mean square error ξ(k). Based on Equation (6.12) and the signal model (6.26), the minimum
mean square error is Jmin = σ2

q , which gives13

ξ(k) = σ2
q + E

[
vH(k)Rv(k)

] = σ2
q + tr

[
RK(k)

]
(6.34)

10Modes of convergence are defined as vn(k + 1) = (1 − μλn)vn(k), n = 1, . . . , N. As vn(k + 1) = (1 − λn)kvn(0),
we require |1 − μλn| < 1.
11Using the identity λmax ≤

∑
(diagonal elements ofR) = tr[R].

12For more detail on asymptotic stability, see Appendix O.
13Using the identity E[vH(k)Rv(k)] = tr[RK(k)] = tr[K(k)R].
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where the weight error correlation matrixK(k) = E[v(k)vH(k)] and ξEMSE(k) = tr[RK(k)].
Since the correlation matrix R is bounded, the CLMS will converge in the mean square if
the elements ofK(k) remain bounded as k → ∞. To analyseK(k) we can multiply Equation
(6.27) by vH (k), to give

v(k + 1)vH(k + 1) = v(k)vH(k) − μx(k)xH(k)v(k)vH(k) − μv(k)vH(k)x(k)xH(k)

+ μ2q(k)q∗(k)x(k)xH(k) + μ2x(k)xH(k)v(k)vH(k)x(k)xH(k) + xt(k)

(6.35)

where variable xt(k) comprises the crossterms. Owing to the independence assumptions, the
cross-terms vanish upon the application of the statistical expectation operator, and

E
[
x(k)xH(k)v(k)vH(k)

] = RK(k)

E
[
v(k)vH(k)x(k)xH(k)

] = K(k)R

E
[
x(k)xH(k)v(k)vH(k)x(k)xH(k)

] = RK(k)R+Rtr[RK(k)]

E
[|q(k)|2x(k)xH(k)

] = σ2
qR (6.36)

to yield14

K(k + 1) = K(k) − μ
(
RK(k) +K(k)R

)
+ μ2

(
RK(k) + tr[RK(k)]

)
R+ μ2σ2

qR

(6.37)

Evaluation of the excess mean square error based on Equation (6.37) is rather mathematically
demanding, however, similarly to the analysis of convergence in the mean, sinceR is Hermitian
and positive semidefinite, it can be rotated into a diagonal matrix by a unitary transformation15

R = Q�Q−1. Then, sincev′(k) = Qv(k), the rotated weight error correlation matrix becomes

K̃(k) = QK(k)QH (6.38)

To simplify the analysis of Equation (6.37), consider a white iid16 input for which R = σ2
xI,

to yield

K̃(k + 1) = (
1 − μσ2

x

)2
K̃(k) + μ2σ4

x tr[K̃(k)]I+ μ2σ2
qσ2

xI (6.39)

Since K̃(k) is a correlation matrix, for every element κmn(k) ∈ K̃(k), we have

|κmn(k)|2 ≤ κmm(k)κnn(k) (6.40)

14We use the property that for zero mean, complex, jointly Gaussian x1, x2, x3, x4, the Gaussian Moment Factoring
Theorem states that E

[
x1x

H
2 x3x

H
4

]
= x1x

H
2 · x3x

H
4 + x1x

H
4 2 x3. For a detailed analysis, we refer to [62, 76, 127].· xH

15Here, � = diag (λ1, λ2, . . . , λN ) is a diagonal matrix comprising the real and positive eigenvalues of the correlation
matrix, Q is the matrix of the corresponding eigenvectors, and λ1 ≥ λ2 ≥ · · · ≥ λN .
16Independent identically distributed.
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Thus, for convergence of Equation (6.39) it is sufficient to look only at the evolution of the
diagonal elements of K̃(k); the recursion for the calculation of these coefficients is provided
in the classic result by Horowitz and Senne [127]. Consider a vector comprising the diagonal
elements of K̃(k), given by

s(k) = [κ11(k), . . . , κNN (k)]T

Then, from Equation (6.39) we have

s(k + 1) =
[(

1 − μσ2
x

)2
I+ μ2σ4

x11
T
]
s(k) + μ2σ2

qσ2
x1 (6.41)

where 1 is an N × 1 vector of ones. In the steady state, s(k + 1) = s(k) = s(∞), and Equation
(6.41) can be expressed as

s(∞) = μσ2
q1

2I− μσ2
x

(
I+ 11T

) (6.42)

We can use the matrix inversion lemma17 [110] to find the inverse of the denominator of
Equation (6.42), to give

κpp(∞) = μσ2
q

1
2−μσ2

x

1 − μ
∑N

n=1
σ2

x

2−μσ2
x

p = 1, . . . , N (6.43)

The steady state excess mean square error ξEMSE(∞) = tr[RK(∞)] = tr[K(∞)R] now be-
comes

ξEMSE(∞) = σ2
xs

T(∞)1 = σ2
q

∑N
n=1

μσ2
x

2−μσ2
x

1 − ∑N
n=1

μσ2
x

2−μσ2
x

(6.44)

It is convenient to assess the performance of adaptive filters in terms of the misadjustment

M = ξEMSE(∞)

ξmin
= ξEMSE(∞)

σ2
q

(6.45)

From Equations (6.34) and (6.43), for small μ the expression for misadjustment simplifies
into

M = μ

1
2 tr[R]

1 − 1
2μtr[R]

= μ
σ2

xN

2 − μσ2
xN

≈ 1

2
μσ2

xN (6.46)

17The form of the matrix inversion lemma used states that for a positive definite N × N matrixA, scalar a, and N × 1
vector a, we have

(
A+ aaaH

)−1 = A−1 − aA−1aaHA−1

1 + aaHA−1a
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For convergence in the mean square, the misadjustment must remain bounded and positive,
that is 1 − 1

2μtr[R] > 0. Thus, the mean square error ξ(k) converges asymptotically to ξ(∞) =
Jmin = σ2

q for

0 < μ <
2

tr[R]
= 2

σ2
xN

(6.47)

For mathematical tractability, the above bound on the learning rate has been derived for a
white iid input. In practical applications this bound is considerably lower, and depends on the
condition number of the input correlation matrix ν = λmax/λmin, or equivalently on the flatness
of the power spectrum of the input.

From Equation (6.46), as the misadjustment is directly proportional to the stepsize μ, the
requirements of fast convergence and good steady state properties of an adaptive filtering
algorithm are contradictory. An algorithm will have fast initial convergence for a large μ,
whereas it will converge to the optimal solution for a small μ. For the same learning rate
μ, shorter filters will exhibit lower misadjustment. Chapter 8 introduces adaptive filters with
variable learning rates, which can cope better with the requirements of fast initial convergence
and low misadjustment.

6.3 Nonlinear Feedforward Complex Adaptive Filters

Following on the derivation of the CLMS algorithm, we shall now introduce stochastic gradient
learning algorithms for training feedforward nonlinear filters, for which a generic block diagram
is shown in Figure 6.5. The nonlinearity 
(·) can be from any class addressed in Chapter 4.

To simplify the notation, the output of the filter in Figure 6.5, can be expressed as

y(k) = 

(
xT(k)w(k)

) → 
(k) = u
(
σ(k), τ(k)

) + jv
(
σ(k), τ(k)

) = u(k) + jv(k)

xT (k)w(k) → σ(k) + jτ(k) (6.48)

6.3.1 Fully Complex Nonlinear Adaptive Filters

As fully complex nonlinearities are complex functions of complex variables, the Complex
Nonlinear Gradient Descent (CNGD) algorithm for training this class of filters can be derived
similarly to the derivation of CLMS. If 
(k) is analytic on a region in C, then based on the

z

Φ y(k)

(k)wN

x(k−N+1)
−1z−1z

3(k)w

x(k−2)

(k)2w

x(k−1)

1(k)w

−1z
x(k)

−1

Figure 6.5 Nonlinear adaptive filter
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cost function

J(k) = 1

2
|e(k)|2 (6.49)

we have

∇wJ(k) = ∂J(k)

∂wr(k)
+ j

∂J(k)

∂wi(k)
= ∇wr J(k) + j∇wiJ(k)

where

∇wr J(k) = 1

2
e(k)∇wr e

∗(k) + 1

2
e∗(k)∇wr e(k)

∇wiJ(k) = 1

2
e(k)∇wi e

∗(k) + 1

2
e∗(k)∇wi e(k) (6.50)

Since the output error of the linear adaptive filter in Figure 6.2 can be expressed as

e(k) = d(k) − 

(
xT(k)w(k)

)
and the partial derivatives for the ‘net input’ net(k) = xT (k)w(k) from Equation (6.48) are

∂σ(k)

∂wr(k)
= xr(k)

∂σ(k)

∂wi(k)
= −xi(k)

∂τ(k)

∂wr(k)
= xi(k)

∂τ(k)

∂wi(k)
= xr(k) (6.51)

Thus, the gradients with respect to the real and parts of the weight vector in Equation (6.50)
become

∂J(k)

∂wr(k)
= −er(k) [uσ(k)xr(k) + uτ(k)xi(k)] − ei(k) [vσ(k)xr(k) + vτ(k)xi(k)] (6.52)

∂J(k)

∂wi(k)
= −er(k) [−uσ(k)xi(k) + uτ(k)xr(k)] − ei(k) [−vσ(k)xi(k) + vτ(k)xr(k)] (6.53)

where uσ = ∂u/∂σ, uτ = ∂u/∂τ, vσ = ∂v/∂σ, vτ = ∂v/∂τ exist and are bounded.
By employing the Cauchy–Riemann equations (see Chapter 5), we have

uσ(k) = vτ(k) uτ(k) = −vσ(k) (6.54)

and the gradient ∇wJ(k) = ∇wr J(k) + j∇wiJ(k) simplifies into

∇wJ(k) = −x∗(k)
[
er(k)

(
uσ(k) − jvσ(k)

) + ei(k)
(
vσ(k) + juσ(k)

)]
= −x∗(k)

[

′∗(k)er(k) + j
′∗(k)ei(k)

]
= −x∗(k)
′∗(k)e(k) (6.55)

where, for convenience, 
′(xT(k)w(k)) = 
′(k).
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Finally, the weight update for the complex nonlinear gradient descent (CNGD) algorithm for
training fully complex nonlinear adaptive filters is given by

w(k + 1) = w(k) + μe(k)
′∗(k)x∗(k), w(0) = 0 (6.56)

¨

The nonlinear nature of the filter is reflected in the first derivative of a fully complex nonlinearity
within the update. This weight update has the same generic form as CLMS (Equation 6.21)
and hence it degenerates into CLMS for a linear 
. Properties of the class of fully complex
nonlinear functions are given in Chapter 4 and Appendix E, whereas their representation as
Mobius transformations is addressed in Chapter 11.

6.3.2 Derivation of CNGD using CR calculus

The complex nonlinear gradient descent algorithm can be alternatively derived using the CR
calculus. From Equation (5.40), the gradient of the cost function is calculated along the con-
jugate direction of the weights, that is ∇wJ = 2∂J(k)/∂w∗(k).

For most nonlinear activation functions used in this work18

∂
∗/∂net = ∂
/∂net∗ = 

′ ∗

∂net∗(k)/∂w∗(k) = x∗(k) (6.57)

Thus ∇wJ(k) = −e(k)
′∗(k)x∗(k) and we obtain the algorithm (6.56).

Convergence of feedforward nonlinear adaptive filters. Because of the effects of nonlin-
earity, it is difficult to derive directly the conditions for convergence of fully complex adaptive
feedforward filters. However, for a contractive 
, an approximate analysis can be conducted
based on the contraction mapping theorem (see Appendix P) [190], and the convergence anal-
ysis in Section 6.2.1. We shall next analyse the mean weight vector convergence for fully
complex feedforward adaptive filters.

We can express, without loss in generality, the desired response as

d(k) = 
(xT(k)wo) + q(k) (6.58)

where q(k) is complex Gaussian noise with variance σ2
q , uncorrelated with x(k). The instanta-

neous output error and the weight update can now be expressed as

e(k) = 

(
xT(k)wo

) + q(k) − 

(
xT(k)w(k)

)
w(k + 1) = w(k) + μq(k)
′∗(k)x∗(k) − μ
′∗(k)x∗(k)

[



(
xT(k)w(k)

) − 

(
xT(k)wo

)]
(6.59)

If 
 is a contraction,19 then the term in the square brackets can be approximated as (recall that
C is not an ordered field – see Appendix A)

|
(
xT(k)w(k)

) − 

(
xT(k)wo

)| ≤ γ|xT(k)(w(k) −wo)| = β|xT(k)v(k)| (6.60)

18In addition, for the class of elementary transcendental functions, which are typical fully complex nonlinear activation
functions used in this work, we have (
′)∗ = (
∗)′ = 
′∗.
19By the contraction mapping theorem |
(b) − 
(a)| ≤ γ|b − a|, γ < 1, a, b ∈ S ⊂ C (see Appendix P).

http://www.it-ebooks.info/


Nonlinear Feedforward Complex Adaptive Filters 83

Subtract the optimal weight vector wo from both sides of Equation (6.59) and for simplicity
ignore the modulus in Equation (6.60) to obtain the recursion for the weight error vector

v(k + 1) = v(k) − μβ
′∗(k)x∗(k)xT(k)v(k) + μq(k)
′∗(k)x∗(k) (6.61)

For 
 a contraction, its first derivative |
′(k)| < 1 and can be replaced by a constant γ < 1.
Upon applying the statistical expectation operator and using the independence assumptions
(q ⊥ x)

E
[|v(k + 1)|] ≤ ∣∣∣

I− μβγE[x(k)xH(k)]
∣∣∣
E

[|v(k)|] (6.62)

Similarly to Equation (6.32), the modes of convergence for Equation (6.62) are dominated
by the largest eigenvalue of R = E[x(k)xH(k)], and for a white iid input the bound on the
learning rate which preserves convergence in the mean is

0 < μ <
2

α ‖ x(k) ‖2
2

(6.63)

where α is a positive parameter derived from the first derivative of 
.

6.3.3 Split-complex Approach

This class of filters has the same general architecture as fully complex feedforward adaptive
filters shown in Figure 6.5. As has been shown in Chapter 4, we differentiate between the real–
imaginary and amplitude–phase split-complex approaches. The former is suitable for signals
which exhibit symmetry around the real and imaginary axes, and the latter is best suited for
rotational processes.

Real–imaginary split-complex approach (RISC). Split-complex nonlinear activation func-
tions were originally introduced for complex neural networks employed for binary classifica-
tion [166] and nonlinear equalisation in communications [27]. The output of a feedforward
nonlinear adaptive filter with a RISC nonlinearity is given by

y(k) = 
(xT(k)w(k)) = 

(
net(k)

) = σ
(
netr(k)

) + jσ
(
neti(k)

)
(6.64)

where the real and imaginary parts of the complex net input net(k) are processed separately
by real valued sigmoid functions σ. Figure 6.6 shows one such nonlinearity – a hyperbolic
tangent split complex activation function.

As the gradients with respect to the real and imaginary parts of the output are calculated
independently – in the same way as in real valued nonlinear adaptive filters, the weight update
in the RISC approach becomes

w(k + 1) = w(k) + μ
(
er(k)σ′(netr(k)

) + jei(k)σ′(neti(k)
))
x∗(k) (6.65)

Amplitude–phase split-complex approach (APSC). Examples include filters with the output
nonlinearity proposed by Georgiou and Koutsougeras [88], given by


(z) = z

c + |z|/r
(6.66)
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Figure 6.6 Real–imaginary split-complex function 
(z) = tanh(u) + j tanh(v)

and filters based on the output nonlinearity introduced by Hirose [118], given by


(z) = tanh(|z|/m)ej arg(z) (6.67)

where c, r, and m are real positive constants. The filter output for the class of APSC nonlin-
earities has a general form

y(k) = 

(
xT(k)w(k)

) = 

(
net(k)

) = σ
(|net(k)|)ej arg(net(k)) (6.68)

for which the update becomes (for ejϕ = ej arg(net(k)))

w(k + 1) = w(k) + μx∗(k)ejϕ
[
� {

e(k)σ′(|net(k)|)ejϕ
} + j�

{
1

|net(k)|e(k)σ(|net(k)|)ejϕ
}]

(6.69)

where the symbols �{·} and �{·} denote respectively the real and imaginary part of a complex
number.

Boundendess vs differentiability. The output of split-complex nonlinear adaptive filters is
bounded by virtue of the saturation type real valued nonlinearities within the activation func-
tions. However, split-complex functions are not differentiable in the complex sense, and hence
the stochastic gradient learning algorithms for RISC and APSC adaptive filters do not have the
same generic form as CLMS.

6.3.4 Dual Univariate Adaptive Filtering Approach (DUAF)

The dual univariate approach deals with complex data by splitting the input signal into its
real and imaginary parts and treating them as independent real valued quantities [156, 213],
as shown in Figure 6.7. Dual univariate filters therefore perform suboptimally when dealing
with complex valued signals with rich nonlinear behaviour and coupling between the real and
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imaginary parts. However, they are simple and fast, and can be used for processes for which
the real and imaginary part are not heavily correlated.

Any real valued adaptive filter can be used for the x and y channel, these can be linear,
nonlinear, feedforward or recurrent [190], and the two channels do not have to share the same
filter. In the simplest case, the weight vectors wx(k) and wy(k) are updated using standard
LMS, to give

wx(k + 1) = wx(k) + μex(k)x(k)

wy(k + 1) = wy(k) + μey(k)y(k) (6.70)

where the corresponding instantaneous output errors are

ex(k) = dx(k) − x̂(k) ey(k) = dy(k) − ŷ(k) (6.71)

6.4 Normalisation of Learning Algorithms

The weight update �w(k) within stochastic gradient learning algorithms is proportional to the
input vector x(k), which causes gradient noise amplification for large magnitudes of the input.
For instance, within the CLMS algorithm, we have �w(k) = μe(k)x∗(k). Learning algorithms
can be made independent of the input signal power by normalising their updates, as shown
below.

Normalised CLMS (NCLMS). Observe from Equation (6.32) that for the convergence of
CLMS in the mean square, the bound on the stepsize is given by

0 < μ <
2

σ2
xN
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and that the input signal power σ2
x can be estimated as20

σ2
x = E

[|x(k)|2] ≈ 1

N

N∑
n=1

|x(k − n)|2 = 1

N
xH(k)x(k)

which leads to the following bound on the stepsize

0 < μ <
2

xH(k)x(k)
(6.72)

This stepsize can be incorporated into the CLMS, to give the normalised CLMS (NCLMS)
algorithm

w(k + 1) = w(k) + η

‖ x(k) ‖2
2

e(k)x∗(k) (6.73)

where 0 < η < 2. The effective stepsize

μ(k) = η

‖ x(k) ‖2
2

(6.74)

is time varying, it alters the magnitude, but not the direction of the estimated gradient vector
and greatly reduces the gradient noise, resulting in faster convergence as compared with CLMS
[110].

Another, albeit approximate, way to perform normalisation of stochastic gradient learning
algorithms for feedforward adaptive filters is to find the stepsize which minimises the error
e(k + 1) based on its Taylor series expansion [187, 190, 279], given by

e(k + 1) = e(k) +
N∑

n=1

∂e(k)

∂wn(k)
�wn(k) +

N∑
n=1

N∑
m=1

∂e2(k)

∂wn(k)∂wm(k)
�wn(k)�wm(k) + · · ·

(6.75)
For the CLMS (in the prediction setting x(k) = [x(k − 1), . . . , x(k − N]T) the second- and
higher-order terms in Equation (6.75) vanish, and

∂e(k)

∂wn(k)
= −x(k − n) �wn(k) = μe(k)x∗(k − n)

which gives

e(k + 1) = e(k)
[
1 − μ ‖ x(k) ‖2

2

]
The error e(k + 1) is zero for e(k) = 0 (trivial solution), and for

μ(k) = 1

‖ x(k) ‖2
2

(6.76)

that is, the stepsize of NCLMS.

20For convenience, we consider the prediction setting, where x(k) = [x(k − 1), . . . , x(k − N)]T.
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Normalised CNGD. Similarly to NCLMS, the CNGD algorithm for fully complex nonlinear
adaptive filters can be normalised based on the Taylor series expansion (6.75), where

∂e(k)

∂wn(k)
= −
′(k)x(k − n) �wn(k) = μe(k)
′∗(k)x∗(k − n)

This gives the following ‘optimal’ learning rate for the complex nonlinear gradient descent
algorithm

μ(k) = 1

|
′(k)|2 ‖ x(k) ‖2
2

(6.77)

Finally, the normalised complex nonlinear gradient descent (NCNGD) algorithm can be ex-
pressed as

w(k + 1) = w(k) + η

|
′(k)|2 ‖ x(k) ‖2
2

e(k)
′∗(k)x∗(k) (6.78)

This alternative derivation of optimal stepsizes is only approximate – strictly speaking the nor-
malisation should be based on the minimisation of the a posteriori error21 d(k)−xT(k)w(k + 1)
[61, 248].

6.5 Performance of Feedforward Nonlinear Adaptive Filters

Simulations have been conducted to illustrate:

� performance comparison between the linear CLMS and the fully complex, split complex,
and dual univariate approaches;

� learning curves, showing convergence of learning algorithms when processing linear and
nonlinear signals;

� performance comparison within the class of fully complex filters, for all the elementary
transcendental functions used as nonlinearities.

Simulations were performed in a one step ahead prediction setting, on a linear AR(4) signal
given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k) (6.79)

where n(k) is zero mean complex valued white Gaussian noise with variance σ2
n = 1, together

with benchmark nonlinear Lorenz and Ikeda series, and a segment of real world wind data
(speed and direction) recorded by an ultrasonic anemometer.22 The Lorenz, Ikeda, and wind
signals were made complex valued by convenience of representation, as explained in Section
2.2; for instance, for the complex wind vector we have v(k) = v(k)ejφ(k), where v denotes the
wind speed and φ(k) direction.

21For more detail see Chapter 10 and Appendix M.
22These datasets are described in detail in Chapters 8 and 13.
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Table 6.1 Prediction performance (in Rp [dB]) for the fully complex (FCAF), real–imaginary
split-complex (RISC), linear CLMS, and dual univariate (DUAF) adaptive filters

AR(4) Lorenz Ikeda Wind

FACF 2.5222 15.2475 1.2364 10.2217
RISC 2.4969 14.4656 1.1535 9.8896
CLMS 2.5224 14.5456 1.1967 9.8939
DUAF 1.6528 11.7529 –0.3072 8.7353

The quantitative performance criterion was the prediction gain

Rp = 10 log
σ2

y

σ2
e

[dB] (6.80)

For the AR(4) and Ikeda series, the results were averaged over 200 independent simulations,
whereas for the complex Lorenz and wind signal single trial simulations were performed. In
all cases, the filter tap length was N = 4, the signals were standardised to zero mean and
maximum magnitude |x|max = 0.8, and the learning rate was μ = 0.01.

Table 6.1 shows the prediction performance for all the feedforward adaptive filtering archi-
tectures considered. The data were 1000 samples long, and Rp was calculated over the last
100 samples. The fully complex filter used the complex tanh as the output nonlinearity and
exhibited the best performance for nonlinear signals, whereas for the linear AR(4) process its
performance was similar to that of CLMS. The performances of the split complex filter, which
used the real tanh, and the CLMS were similar. The dual univariate approach had the worst
performance, as by design, it did not take into account the correlation between the real and
imaginary channel of complex quantities.

Figure 6.8 shows learning curves for the linear CLMS, nonlinear CNGD, DUAF, and nor-
malised CLMS (NCLMS). This was achieved by averaging 200 independent simulations in a
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Figure 6.8 Learning curves for one step ahead prediction of a linear and nonlinear signal
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Table 6.2 Prediction performance (in Rp [dB]) for the fully complex filter and all elementary transcen-
dental functions

tan sin arctan arcsin tanh sinh arctanh arcsinh

AR(4) 4.8968 4.9318 4.9057 4.9149 4.8955 4.9052 4.8820 4.8855
Lorenz 15.4061 16.9497 16.7381 16.0620 16.9510 16.0966 15.3699 16.9214
Ikeda 2.1739 2.3037 2.3361 2.2226 2.3383 2.2332 2.1846 2.3187
Wind 11.2484 11.7029 10.7832 12.0004 11.2454 11.9136 11.4867 11.5850

one step ahead prediction setting, for the linear AR(4) model (6.79) and nonlinear Ikeda map.
Figure 6.8(a) illustrates that, for the linear signal, the fully complex nonlinear filter trained by
CNGD performed similarly to CLMS, DUAF exhibited slightly inferior performance, whereas
the NCLMS outperformed all the other algorithms. For the nonlinear Ikeda map, however, the
CNGD had considerable performance advantage over DUAF, and approached the performance
of NCLMS, as shown in Figure 6.8(b).

In the second set of simulations, only the fully complex nonlinearities were considered and
the prediction performances were evaluated over the last 1000 samples of 6000 sample long
datasets, and for all the elementary transcendental functions, as shown in Table 6.2. As the
filters exhibited similar performances for all the fully complex nonlinearities, for convenience,
we will most frequently use the tanh function.

6.6 Summary: Choice of a Nonlinear Adaptive Filter

The linear adaptive filter shown in Figure 6.2 is a simple and powerful adaptive filtering
architecture. Its output is a linear combination of the inputs in filter memory and the set of
adaptive filter coefficients (filter weights). However, due to its linear nature, this filter may
perform suboptimally when processing nonlinear signals. To this end, we have introduced a
class of nonlinear adaptive filters which comprise the standard linear adaptive filter and the
output nonlinearity, as shown in Figure 6.5. This structure, called a nonlinear adaptive filter
or a dynamical perceptron, is also a basic building block for neural networks. Properties and
convergence of linear and nonlinear complex adaptive filters have been analysed, and their
performance has been illustrated for both signals complex by design and by convenience of
representation.

To summarise:

� The complex least mean square (CLMS) algorithm has been introduced for training com-
plex linear adaptive filters, and its convergence in the mean and in the mean square has
been addressed.

� Two classes of complex nonlinear adaptive filters have been introduced – fully complex
and split-complex, together with the dual univariate approach.

� When selecting a nonlinear function at the output of a complex nonlinear adaptive filter, we
need to choose between differentiability (fully complex) and boundedness (split-complex);
this choice depends on the application – split-complex filters are more commonly used in
neural networks for classification, whereas fully complex filters are a more natural choice
in nonlinear adaptive filtering.
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� Nonlinear adaptive filters based on fully complex nonlinearities retain the same generic
form in their updates as linear adaptive filters, and provide the most consistent perfor-
mance.

� When using fully complex filters we often need to standardise inputs; to allow for more
freedom in the processing of general complex signals, Chapter 9 introduces nonlinear
adaptive filters with an adaptive amplitude of nonlinearity.

� For best performance, the learning rate should be large at the beginning of the adaptation
– for fast convergence, and small in the steady state – for good misadjustment. These are
contradictory requirements, and to deal with these issues filters with a variable stepsize
are introduced in Chapter 8.

� Learning algorithms in this chapter have been introduced based on standard complex
statistics and are optimal when processing circular signals, that is, signals with rotation
invariant distributions. However, when processing noncircular data (see Chapter 12), it is
more appropriate to use so called widely linear models, which take into account both the
covariance C = E[x(k)xH(k)] and pseudocovariance P = E[x(k)xT(k)] functions. One
such adaptive filtering algorithm is the augmented CLMS (ACLMS), introduced in
Chapter 13.

Chapter 7 extends the class of feedforward nonlinear adaptive filters to allow feedback. Feed-
back architectures are very useful when modelling systems with long impulse responses which
would require long feedforward filters.
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Adaptive Filters with Feedback

Real world signals are, in general, nonlinear, nonstationary, and generated by systems with long
impulse responses. For their efficient modelling, then, it is natural to consider architectures
with:

� nonlinearity, in order to cater for the possibly nonlinear signal natures;
� feedback, to make it possible to model systems with long impulse responses and memory,

together with processes with long time dependencies;
� adaptive coefficient update, to be able to cope with nonstationarity.

This chapter introduces training algorithms for complex valued adaptive filters with feedback,
as a natural extension of standard feedforward adaptive filters, introduced in Chapter 6. Our
emphasis is on nonlinear adaptive filters, and so learning algorithms will be developed for
temporal problems.

Due to the necessity for online adaptive mode of operation, the learning algorithms will be
developed based on direct gradient calculation,1 and for the following architectures:

� Linear Infinite Impulse Response (IIR) adaptive filters. These are standard linear adaptive
filters, equipped with feedback – this makes them perfectly suited for adaptive filtering
applications when memory is a main concern, for instance, to represent Autoregressive
Moving Average (ARMA) models.

� Recurrent perceptrons and Recurrent Neural Networks (RNN). A recurrent perceptron can
be considered an IIR filter equipped with output nonlinearity (see Chapter 4), hence making
it suitable to represent Nonlinear ARMA (NARMA) models. An RNN is a generalisation
of a recurrent perceptron, it has multiple output and hidden neurons, is fully connected,
and can have both local and global feedback [190].

The analysis is performed using CR calculus; this greatly simplifies the derivation of learning
algorithms and allows us to develop generic expressions for the update of the sensitivity terms
within the algorithms.

1No backpropagation networks will be considered.
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7.1 Training of IIR Adaptive Filters

An infinite impulse response (IIR) adaptive filter (for convenience, the architecture is pre-
sented in the prediction configuration) is shown in Figure 7.1. It consists of a feedforward
tap input delay line comprising the external input x(k) = [x(k − 1), . . . , x(k − M)]T, de-
layed feedback y(k) = [y(k − 1), . . . , y(k − N)]T, and the corresponding adaptive filter coef-
ficients b(k) = [b1(k), . . . , bM(k)]T and a(k) = [a1(k), . . . , aN (k)]T, all complex valued. The
IIR adaptive filtering architecture can be used within all the four standard adaptive filtering con-
figurations addressed in Section 6.1, that is, system identification, inverse system modelling,
noise cancellation, and prediction.2

The output y(k) of the adaptive IIR filter in Figure 7.1 is given by3

y(k) =
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) = aT(k)y(k) + bT(k)x(k) (7.1)

...

1a

Na

Mb

2b

1b

Σ

−1z

z−1

−1z

z−1

−1z

y(k−1)

y(k−N)

x(k−M)

x(k−2)

x(k)

x(k−1)

Input

Output

y(k)

(k)

(k)

(k)

(k)

(k)

...

Figure 7.1 An adaptive infinite impulse response (IIR) filter (in the prediction setting)

2A comprehensive account of adaptive IIR filters can be found in the work by Regalia, Shynk, and Johnson [136, 248,
274], whereas a recursive algorithm for the training of complex valued adaptive IIR filters was introduced by Shynk
[275]. The derivation of an output–error learning algorithm for complex valued adaptive IIR filters presented in this
Chapter is based on [190, 275].
3This equation is written for the prediction setting. Depending on the application, we may also have the term b0(k)x(k),
and the second sum would start from m = 0. The adaptive IIR filter in a system identification configuration is also
referred to as a Model Reference Adaptive System (MRAS) in the control literature.
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and reflects the autoregressive moving average (ARMA) nature of this architecture. The output
of an IIR filter in Equation (7.1) can be expressed in a more compact form as

y(k) = B(k, z−1)

1 − A(k, z−1)
x(k) (7.2)

The input–output relation for IIR filters can have alternative forms corresponding to those
in Equations (6.1–6.3) for linear adaptive FIR filters. For consistency, and without loss
in generality, we will develop learning algorithms based on the input–output relationship
(Equation 7.1).

7.1.1 Coefficient Update for Linear Adaptive IIR Filters

The adaptive IIR architecture can be used as a generic adaptive filter in Figure 6.1, and the
output error and cost function can be defined in the same way as those for FIR filters, that is

e(k) = d(k) − y(k)

J(k) = 1

2
|e(k)|2 = 1

2
e(k)e∗(k) (7.3)

In the stochastic gradient descent setting, we wish to update the filter weights

w(k) = [b1(k), . . . , bM(k), a1(k), . . . , aN (k)]T (7.4)

recursively, based on

w(k + 1) = w(k) − μ∇wJ(k)|w=w(k) (7.5)

Function J(k) is a real function of complex variable, and its gradient is calculated using
R-derivatives,4 as shown in Section 5.3.1. This allows us to write the above update in an
expanded form

wr(k + 1) = wr(k) − μ∇wr J(k)

wi(k + 1) = wi(k) − μ∇wiJ(k) (7.6)

where the overall weight vector of the IIR filter, and the gradients with respect to the real and
imaginary parts of the weights are given by

w(k) = wr(k) + jwi(k)

∇wr J(k) =
[

∂J(k)

∂br
1(k)

, . . . ,
∂J(k)

∂br
M(k)

,
∂J(k)

∂ar
1(k)

, . . . ,
∂J(k)

∂ar
N (k)

]T

∇wiJ(k) =
[

∂J(k)

∂bi
1(k)

, . . . ,
∂J(k)

∂bi
M(k)

,
∂J(k)

∂ai
1(k)

, . . . ,
∂J(k)

∂ai
N (k)

]T

(7.7)

4The gradient of the cost function is calculated as ∇wJ = ∂J/∂wr + j∂J/∂wi.
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The ‘compound’ gradient

∇wJ(k) = ∇wr J(k) + j∇wiJ(k) (7.8)

can now be expressed as5

∇wJ(k) = −1

2
e∗(k)

[∇wr y(k) + j∇wiy(k)
] − 1

2
e(k)

[∇wr y∗(k) + j∇wiy∗(k)
]

(7.9)

Denote ‘sensitivities’

π◦(k) = 1

2

[∇wr y(k) + j∇wiy(k)
]

π�(k) = 1

2

[∇wr y∗(k) + j∇wiy∗(k)
]

(7.10)

Due to the feedback in the IIR filtering architecture, these sensitivities are not straightforward
to compute. We shall now derive a recursive expression for π�(k) and show that π◦(k) = 0.

Calculation of π◦(k). The elements of the vector π◦(k) = [π◦
1(k), . . . , π◦

N+M(k)]T are ef-
fectively the R∗-derivatives6 (Equation 5.12). As the filter output y(k) is a standard complex
function of complex variable, itsR∗-derivatives are zero (see Section 5.3.2) and thus π◦(k) = 0.
Alternatively, it is straightforward to show that for every wn(k) ∈ w(k)

π◦
n(k) = 1

2

[
∂yr(k)

∂wr
n(k)

+ j
∂yi(k)

∂wr
n(k)

+ j
∂yr(k)

∂wi
n(k)

− ∂yi(k)

∂wi
n(k)

]
= 0 (7.11)

as the output y(k) is a complex function of complex variable (7.1), and admits the use of the
Cauchy–Riemann equations

∂yr(k)

∂wr
n(k)

= ∂yi(k)

∂wr
i (k)

and
∂yi(k)

∂wr
n(k)

= − ∂yr(k)

∂wi
n(k)

to give π◦
n(k) = 0 and π◦(k) = 0.

Calculation of π�(k). From Equation (7.10), the sensitivities π�
n(k) ∈ π�(k) are given by

π�
n(k) = 1

2

[
∂yr(k)

∂wr
n(k)

− j
∂yi(k)

∂wr
n(k)

+ j
∂yr(k)

∂wi
n(k)

+ ∂yi(k)

∂wi
n(k)

]
= ∂yr(k)

∂wr
n(k)

− j
∂yi(k)

∂wr
n(k)

= ∂y∗(k)

∂wn(k)

(7.12)

5The gradient with respect to the real part of the weight vector ∇wr J(k) = − 1
2

[
e∗(k)∇wr y(k) + e(k)∇wr y∗(k)

]
,

whereas for the gradient with respect to the imaginary part of the weight vector we have ∇wi J(k) = − 1
2[

e∗(k)∇wi y(k) + e(k)∇wi y∗(k)
]

, and thus J = −e∗(k)π◦(k) − e(k)π�(k).
6Recall that the R-derivative is given by ∂f/∂z = 1

2

[
∂f
∂x

− j
∂f
∂y

]
, the R

∗-derivative by ∂f/∂z∗ = 1
2[

(∂f/∂x) + j(∂f/∂y)
]

, and that for a holomorphic function theR-derivative is equal to the standard complex derivative,
whereas the R∗-derivative vanishes.
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which gives

π�(k) =
[
∂y∗(k)

∂b1(k)
, . . . ,

∂y∗(k)

∂bM(k)
,
∂y∗(k)

∂a1(k)
, . . . ,

∂y∗(k)

∂aN (k)

]T

(7.13)

In this compact form, the sensitivites are now standard complex partial derivatives, as both
y∗(k) and wn(k) are complex functions of complex variable. It is, however, convenient to
evaluate them starting from Equation (7.10), that is, based on Wirtinger calculus,7 to give

∂y∗(k)

∂br
m(k)

= x∗(k − m) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂br
m(k)

∂y∗(k)

∂bi
m(k)

= −jx∗(k − m) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂bi
m(k)

∂y∗(k)

∂ar
n(k)

= y∗(k − n) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂ar
n(k)

∂y∗(k)

∂ai
n(k)

= −jy∗(k − n) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂ai
n(k)

(7.14)

The above expressions for the sensitivites are with respect to the past values of the output
y∗(k − 1), . . . , y∗(k − N) and the current values of the filter coefficients an(k) and bm(k), and
do not admit recursive calculation. It is, however, reasonable to assume that for a sufficiently
small learning rate μ, the filter coefficients will exhibit little variation,8 that is

w(k − 1) ≈ w(k − 2) ≈ · · · ≈ w(k − N) ≈ w(k − N) (7.15)

Using this assumption, we have

∂y∗(k)

∂br
m(k)

= x∗(k − m) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂br
m(k − l)

∂y∗(k)

∂bi
m(k)

= −jx∗(k − m) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂bi
m(k − l)

∂y∗(k)

∂ar
n(k)

= y∗(k − n) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂ar
n(k − l)

∂y∗(k)

∂ai
n(k)

= −jy∗(k − n) +
N∑

l=1

a∗
l (k)

∂y∗(k − l)

∂ai
n(k − l)

(7.16)

7Starting from y∗(k) =
∑M

m=1 b∗
m(k)x∗(k − m) +

∑N

n=1 a∗
n(k)y∗(k − n).

8This approximation is particularly good for a small feedback order N, for more detail see [190, 248, 274, 293].
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which enables a recursive update of the sensitivities as, for instance, terms ∂y∗(k − l)/
∂br

m(k − l) can be considered delayed versions of the term ∂y∗(k)/∂br
m(k), and thus π�

bm(k)(k) =
x∗(k − m) + l=1 a∗

l (k)π�
bm(k)(k − m).

∑N

For compactness, we can define the overall input vector to an adaptive IIR filter as a con-
catenation of the external inputs and feedback, that is9

u(k) = [
x(k − 1), . . . , x(k − M), y(k − 1), . . . , y(k − N)

]T (7.17)

The recursive update for the sensitivities is now obtained in the form

π�
n(k) = u∗

n(k) +
N∑

l=1

w∗
l+M(k)π�

n(k − l), π�
n(0) = 0, n = 1, . . . , M + N (7.18)

and a recursive algorithm for training linear complex valued IIR adaptive filters becomes

w(k + 1) = w(k) + μe(k)π�(k) (7.19)

The weight update is along the direction of the the conjugate gradient of the cost function.
This also corresponds to the direction providing the maximum rate of gradient change, and
conforms with the result obtained by the CR calculus in Section 5.4.4. The learning algorithm
(Equation 7.19) has the same generic form as that for FIR filters, and simplifies into the CLMS
when the feedback is removed. It also simplifies into the corresponding algorithm for real
valued adaptive IIR filters [190] when all the inputs are real valued.

7.1.2 Training of IIR filters with Reduced Computational Complexity

Computation of the sensitivities involves significant computational complexity. However, the
expression for sensitivities allows for significant simplification [275, 293]. Denote

θ(k) = π�
a1

(k) = ∂y∗(k)

∂a1(k)

ψ(k) = π�
b1

(k) = ∂y∗(k)

∂b1(k)
(7.20)

The assumption (7.15) allows us to write

θ(k − n) ≈ π�
an

(k) n = 1, . . . , N

ψ(k − m) ≈ π�
bm

(k) m = 1, . . . , M

and

π�(k) = [ψ(k − 1), . . . , ψ(k − M), θ(k − 1), . . . , θ(k − N)]T (7.21)

9Thus, for instance, u2(k) = x(k − 2) or uM+1(k) = y(k − 1), which correspond to the weights w2(k) = b2(k) and
wM+1(k) = a1(k).
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This new vector of sensitivities offers much reduced computational complexity and memory
requirements, and can replace the standard sensitivities in the update of the IIR adaptive filter
(Equation 7.19).

7.2 Nonlinear Adaptive IIR Filters: Recurrent Perceptron

The recurrent perceptron can be viewed as an adaptive IIR filter equipped with output nonlin-
earity, as shown in Figure 7.2. This architecture may also have an optional bias input, set to
(1 + j), revealing its link with recurrent neural networks, as it can be regarded as a recurrent
neural network with one neuron (for more detail see [190] and Chapter 3). It is convenient
to consider the bias input as an (M + 1)th external input with constant value (1 + j), and an
associated filter weight bM+1(k).

The output of a recurrent perceptron is thus given by

y(k) = �

(
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) + (1 + j)bM+1(k)

)
= �

(
net(k)

)
(7.22)

indicating its suitability to represent Nonlinear ARMA (NARMA) models. Notice that the net
input has the same functional expression as the output of an IIR filter, that is, net(k) = yIIR(k).
The overall input vector to a recurrent perceptron and the weight vector are given respectively
by

u(k) = [
x(k − 1), . . . , x(k − M), 1 + j, y(k − 1), . . . , y(k − N)

]T

w(k) = [
b1(k), . . . , bM+1(k), a1(k), . . . , aN (k)

]T (7.23)
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Φ
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Figure 7.2 A recurrent perceptron (nonlinear IIR filter) in the prediction setting
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The expressions for the cost function and weight update are the same as those in Equations
(7.3–7.7) for the IIR case, giving

∇wJ(k) = −e∗(k)π◦(k) − e(k)π�(k) (7.24)

To evaluate the gradient of the cost function we therefore first need to calculate the sensitivities
of the output with respect to the filter coefficients, given by

π◦(k) = 1

2

[∇wr y(k) + j∇wiy(k)
]

π�(k) = 1

2

[∇wr y∗(k) + j∇wiy∗(k)
]

(7.25)

Calculation of π◦(k). From the analysis of the corresponding term for the linear IIR filter, the
sensitivities π◦

n(k) = 0, n = 1, . . . , N + M + 1, since they representR∗-derivatives of a holo-
morphic complex valued function y(k). Alternatively, we can use the Cauchy–Riemann equa-
tions ∂yr(k)/∂wr

n(k) = ∂yi(k)/∂wr
i (k) and ∂yi(k)/∂wr

n(k) = −∂yr(k)/∂wi
n(k), to show that10

π◦
n(k) = 1

2

[
∂yr(k)

∂wr
n(k)

+ j
∂yi(k)

∂wr
n(k)

+ j
∂yr(k)

∂wi
n(k)

− ∂yi(k)

∂wi
n(k)

]
= 0 (7.26)

Calculation of π�(k). Although these have the same form as the corresponding sensitivities for
the IIR filter, the evaluation of terms ∂y∗(k)/∂wn(k) needs some attention, as y = �(net(k)) is
a nonlinear function of the net input. Let us first convert theR∗-derivative of y∗(k) in Equation
(7.25) into the corresponding C-derivative, that is

π�
n(k) = 1

2

[
∂yr(k)

∂wr
n(k)

− j
∂yi(k)

∂wr
n(k)

+ j
∂yr(k)

∂wi
n(k)

+ ∂yi(k)

∂wi
n(k)

]
= ∂yr(k)

∂wr
n(k)

− j
∂yi(k)

∂wr
n(k)

= ∂y∗(k)

∂wn(k)

(7.27)

A direct evaluation of ∂y∗(k)/∂wn(k) = ∂�∗(net(k))/∂wn(k) is not straightforward. However,
as explained in Chapter 4, most nonlinear activation functions belong the the class of elementary
transcendental functions, for which

�∗(z) = �(z∗) (7.28)

Thus, for instance for the complex tanh(z) = (ez − e−z)/(ez + e−z) function, we have11

tanh∗(z) = ex−jy − e−x+jy

ex−jy + e−x+jy
= ez∗ − e−z∗

ez∗ + e−z∗ = tanh(z∗) (7.29)

10Similarly to the calculation for the term π�
n, and following the corresponding calculations for the linear IIR filter, we

can show that π◦
n(k) = �′(net(k))

(∑N

l=1 wl+M+1(k)π◦
n(k − l)

)
. This is an unforced difference equation, initialised

with zero, and π◦
n vanishes. Alternatively, as this recursion does not have a driving term, it will decay to zero. See also

Appendix N and Appendix O.
11We can also write �∗(z) = �(z∗) for any function for which the Taylor series expansion has real coefficients, see
[167] and Section 4.1.
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Now, the sensitivities π�
n(k) can be expressed as (bearing in mind that (y∗(net) = y(net∗))

∂y∗(k)

∂wn(k)
= ∂y(k)

∂net∗(k)

∂net∗(k)

∂wn(k)
(7.30)

The term ∂net∗(k)/∂wn(k) can be calculated in the same way as the conjugate sensitivities for
the linear IIR filter in Equations (7.13–7.18), to give

∂y(k)

∂net∗(k)
= �′∗(net(k)

)
∂net∗(k)

∂wn(k)
= u∗

n(k) +
N∑

l=1

w∗
l+M+1(k)π�

n(k − l)

π�
n(k) = �′∗(net(k))

(
u∗

n(k) +
N∑

l=1

w∗
l+M+1(k)π�

n(k − l)

)
(7.31)

The weight update for a recursive algorithm for the training of nonlinear IIR filters (recurrent
perceptron) is therefore given by

w(k + 1) = w(k) + μe(k)π�(k) (7.32)

This algorithm simplifies into the corresponding algorithm for complex IIR filters
(Equation 7.19) upon the removal of the nonlinearity, and into the CNGD algorithm for non-
linear feedforward filters when no feedback is present.

7.3 Training of Recurrent Neural Networks

Figure 7.3 shows a Williams–Zipser fully connected recurrent neural network (FCRNN), which
consists of N neurons, with M external inputs and a bias input, set to (1 + j). The network
has two distinct layers – the external input/feedback layer and a layer of processing elements
(neurons). We usually have the teaching signal available for only some of the outputs. In
Figure 7.3, y1(k), . . . , yL(k) correspond to output neurons, whereas yL+1(k), . . . , yN (k) cor-
respond to hidden neurons.

Let yn(k) denote the complex valued output of each neuron n = 1, . . . , N at time index k,
and x(k) the (M × 1) external complex valued input vector. The overall input to the network
I(k) represents a concatenation of the input and output vectors and the bias (1 + j), and is given
by12

I(k) = [x(k − 1), . . . , x(k − M), 1 + j, y1(k − 1), . . . , yN (k − 1)]T

= [I1(k), . . . , IM+N+1(k)]T = Ir(k) + jIi(k) (7.33)

Since the RNN in Figure 7.3 is fully connected, the weights connecting the input layer
and every neuron yn, (n = 1, . . . , N) form an (M + N + 1) × 1 dimensional weight vector

12Based on Figure 7.3, in the prediction setting considered here, x1(k) = x(k − 1), . . . , xM (k) = x(k − M).
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Figure 7.3 A fully connected recurrent neural network (FCRNN)

wn = [
wn,1, . . . , wn,M+N+1

]T. It is convenient to combine all the weights in an RNN within
a complex valued weight matrix W(k) = [w1(k), . . . ,wN (k)].

The output of every neuron in the network can be expressed as

yn(k) = �
(
netn(k)

) = yr
n(k) + jyi

n(k), n = 1, . . . , N (7.34)

where

netn(k) =
M+N+1∑

q=1

wn,q(k)Iq(k) (7.35)

is the net input at the nth neuron at time instant k and �(·) is a fully complex nonlinear activation
function of a neuron (see Chapter 4 and Appendix E).

The cost function for the training of complex recurrent networks is of the same form as that
for complex valued FIR filters, and for a networks with L output neurons, it is given by13

J(k) = 1

2

L∑
l=1

|el(k)|2 = 1

2

L∑
l=1

el(k)e∗
l (k) (7.36)

13In the case when only the first neuron is considered as the output neuron, as in simple nonlinear adaptive filtering
applications, the cost function becomes the standard J(k) = 1

2 e(k)e∗(k).

http://www.it-ebooks.info/


Training of Recurrent Neural Networks 101

A direct stochastic gradient learning algorithm for training RNNs is called the Real Time
Recurrent Learning (RTRL) [93, 190, 311]. Using stochastic gradient adaptation, we have
(n = 1, . . . , N, q = 1, . . . , M + N + 1)

wn,q(k + 1) = wn,q(k) + 	wn,q(k) = wn,q(k) − μ∇wn,qJ(k)|wn,q=wn,q(k) (7.37)

where μ is the learning rate. Since the errors can be calculated only for the output neurons
y1(k), . . . , yL(k), following the same procedure as for the recurrent perceptron, we have

∇wn,qJ(k) = ∂J(k)

∂wr
n,q(k)

+ j
∂J(k)

∂wi
n,q(k)

= −
L∑

l=1

[
el(k)π�l

n,q(k) + e∗
l (k)π◦l

n,q(k)
]

(7.38)

where for every output neuron yl, l = 1, . . . , L we have the sensitivities

π◦l(k) = 1

2

[∇wr
l
yl(k) + j∇wi

l
yl(k)

]
π�l(k) = 1

2

[∇wr
l
y∗(k) + j∇wi

l
y∗(k)

]
(7.39)

Following the analysis in Equations (7.26–7.31), we have π◦l(k) = 0, l = 1, . . . , L whereas
the recursive update for the sensitivities π�l

n,q(k) becomes14

π�l
n,q(k) = �′∗

l

(
netl(k)

) ⎡
⎣ N∑

p=1

w∗
l,M+1+p(k)π�p

n,q(k − p) + δnlI
∗
q (k)

⎤
⎦ , π�p

n,q(0) = 0 (7.40)

where

δnl =
{

1, n = l

0, n /= l
(7.41)

is the Kronecker delta.
Finally, the complex real time recurrent learning (CRTRL) algorithm for the training of

complex valued recurrent neural networks performs the weight update given by [93]

wn,q(k + 1) = wn,q(k) + μ

L∑
l=1

el(k)π�l
n,q(k) (7.42)

This degenerates to the recursive algorithm for the training of a complex recurrent perceptron,
in the case of an RNN with one neuron.

14We use the symbol �l to highlight that every neuron within an RNN can have different nonlinearity.

http://www.it-ebooks.info/


102 Adaptive Filters with Feedback

7.3.1 Other Learning Algorithms and Computational Complexity

The CRTRL algorithm has been developed for temporal problems, however, it can be applied
to RNNs operating in different settings, for instance, for classification. The CRTRL algorithm
is rather computationally demanding, and its complexity is O(N4), however, the required
memory size remains constant and will not increase with the length of the training sequence,
thus making it suitable for real time processing. Computational complexity can be significantly
reduced by the approximation (7.21), and without significant loss in performance.

The memory requirements and computational complexity of complex valued neural
networks differ from those of real valued neural networks. A complex addition is roughly
equivalent to two real additions, whereas a complex multiplication can be represented as four
real multiplications and two additions or three multiplications and five additions.15

Other frequently used learning algorithms for training RNNs include the backpropagation
through time (BPTT) and recurrent backpropagation (RBP) algorithms [111], and their variants.

7.4 Simulation Examples

To provide insight into the performance of feedback adaptive filtering architectures, two sets
of simulations were conducted:

� performance comparison between a complex RNN trained with the CRTRL with a
fully complex nonlinearity (FCRTRL) and a CRTRL with a split-complex nonlinearity
(SCRTRL);16

� performance comparison between an RNN, IIR, and FIR filter trained respectively by
CRTRL, recursive algorithm for adaptive IIR filters, and CGND and CLMS.

The test signals included a complex stable linear AR(4) process given by

r(k) = 1.79r(k − 1) − 1.85r(k − 2) + 1.27r(k − 3) − 0.41r(k − 4) + n(k) (7.43)

with doubly white17 complex white Gaussian noise (CWGN) n(k) ∼ N(0,1) as the driving
input, and the complex benchmark nonlinear input signal given by

x(k) = x(k − 1)

1 + x2(k − 1)
+ r3(k) (7.44)

together with a segment of a real world wind signal, made complex by convenience of
representation. The quantitative measure of performance was the standard prediction gain
Rp = 10 log σ2

y/σ2
e .

15There are two ways to perform a complex multiplication: (i) (a + jb)(c + jd) = (ac − bd) + j(bc + ad); and (ii)
(a + jb)(c + jd) = a(c + d) − d(a + b) + j (a (c + d) + c (b − a)).
16The split-complex RTRL (SCRTRL) can be derived similarly to the derivation of split-complex nonlinear feedfor-
ward filters in Section 6.3.3.
17The real and imaginary components of CWGN are mutually independent sequences having equal variances so that
σ2 = σ2

r + σ2
i .
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Figure 7.4 Performance of fully complex and split complex CRTRL for one step ahead prediction of
a linear and nonlinear benchmark signal

Fully complex vs split-complex CRTRL. In the first set of simulations, the nonlinearity at
the neuron was chosen to be the logistic sigmoid function, given by

�(x) = 1

1 + e−βx
(7.45)

the slope was chosen to be β = 1 and learning rate μ = 0.01. The complex RNN had N = 2
neurons with L = 1 output neuron, and a tap input length of M = 4. Figures 7.4(a) and 7.4(b)
show respectively the learning curves (averaged over 100 independent trials) for the FCRTRL
and SCRTRL performing adaptive prediction of complex coloured (7.43) and nonlinear (7.44)
signals. The fully complex approach showed superior performance for both the inputs; after
5000 iterations the performance improvement over SCRTRL was roughly 3 [dB] for the linear
and 6 [dB] for the nonlinear signal. The performances of FCRTRL and SCRTRL were next
compared on single trial complex wind data. Figures 7.5(a) and 7.5(b) illustrate the tracking
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Figure 7.5 Performance comparison between FCRTRL and SCRTRL for the one step ahead prediction
of a complex wind signal. Solid line: original wind signal; dotted line: predicted signal
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Table 7.1 Prediction gains Rp for linear and nonlinear adaptive filters

Signal Nonlinear N1 (7.44) AR4(7.43) Wind

Rp (dB) for linear FIR filter – CLMS 1.87 2.99 4.89
Rp (dB) for nonlinear FIR filter – CNGD 2.50 3.10 5.11
Rp (dB) for linear adaptive IIR filter 2.91 3.50 5.25
Rp (dB) for fully connected RNN – CRTRL 3.76 3.54 6.12

abilities of FCRTRL and SCRTRL; the FCRTRL achieved much improved prediction perfor-
mance over the SCRTRL.

Performance of RNN vs other architectures. For the simulations, the nonlinearity at the
neurons was chosen to be the fully complex tanh function

�(x) = eβx − e−βx

eβx + e−βx
(7.46)

with slope β = 1. The complex recurrent neural network (Figure 7.3) had N = 3 neurons, with
L = 1 output neuron. For the IIR filter (Figure 7.1), the order of feedback was N = 3. In all
cases, the length of the external tap input delay line was M = 5. The signals were standardised
to zero mean and maximum magnitude |x|max = 0.8, and the learning rate was μ = 0.1. The
performances of FIR and IIR filters (both linear and nonlinear) and RNNs used as nonlinear
adaptive filters were compared, based on the complex valued LMS (CLMS), complex valued
NGD (CNGD), recursive algorithm for adaptive IIR filters, and CRTRL. Table 7.1 comprises
the performances for the complex linear AR(4) process (7.43), complex benchmark nonlinear
signal N1 (7.44), and a segment of complex wind signal.

For the nonlinear benchmark signal N1, it is expected that the nonlinear RNN would out-
perform the linear IIR and FIR filters. This is confirmed in Table 7.1, as the CRTRL algorithm
exhibited the best prediction gain for the nonlinear signal, followed by the linear adaptive
IIR filter, nonlinear FIR filter (CNGD), and the linear FIR filter trained by CLMS. Similar
observations can be made for the simulations on the real world complex wind signal.

To summarise:

� Feedback adaptive filtering architectures have potential advantages over their feedforward
counterparts, as they are naturally suited to model systems with memory, signals with long
term correlations, and long impulse responses.

� The linear infinite impulse response (IIR) adaptive filtering architecture has been intro-
duced, and it is shown that it is suitable for the representation of autoregressive moving
average (ARMA) models.

� It has been shown that, due to the presence of feedback, a recursive learning algorithm
for training such IIR filters is rather computationally complex, however, it also needs very
few feedforward and feedback tap input delay elements to model processes for which
standard finite impulse response (FIR) filters would require a large filter length.
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� A recurrent perceptron is introduced both as a nonlinear feedback adaptive filter (IIR filter
with output nonlinearity) and as a recurrent neural network (RNN) with only one neuron;
it has also been shown that it can represent nonlinear ARMA (NARMA) models.

� A fully complex recurrent neural network has been introduced, and a direct gradient
algorithm for its training, called the complex valued real time recurrent learning (CRTRL),
has been rigorously derived for fully complex nonlinear activation functions of neurons.

� It has been shown that the use of theCR calculus allows us to unify and greatly simplify the
derivation of learning algorithms, and that the learning algorithms for IIR filters, recurrent
perceptron, and RNNs have the same generic form.

� The performance of complex RNNs has been evaluated against IIR filters and both linear
and nonlinear FIR filters; it has been shown that they offer improved modelling capabilities
and performance, especially for nonlinear signals with rich dynamics. As real world signals
are typically nonlinear, nonstationary and with long correlations, and systems have long
impulse responses, nonlinear feedback models emerge as a natural processing framework,
computational complexity permitting.
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Filters with an Adaptive Stepsize

Standard adaptive filtering algorithms typically experience convergence problems when pro-
cessing nonlinear and nonstationary signals, and signals with large dynamical ranges and
ill-conditioned tap input autocorrelation matrices. To help circumvent this problem, it is con-
venient to employ Variable Stepsize (VSS) algorithms, these are based on two simultaneous
unconstrained optimisation procedures – one used for the weight vector update and the other
for the update of the adaptive learning rate.

Consider a stochastic gradient weight update for a nonlinear adaptive finite impulse response
filter (Figure 8.1), given by

w(k + 1) = w(k) + μ(k)e(k)�′∗(k)x∗(k), �′∗(k) = �′∗(xT(k)w(k)
)

(8.1)

The parameter μ is a (possibly adaptive) stepsize and is critical to the convergence. To intro-
duce a variable stepsize into this class of algorithms, we shall extend the corresponding VSS
approaches for real valued adaptive filters, for which a number of gradient adaptive stepsize
LMS algorithms have been developed [13, 24, 180, 207]. These include:

� Gradient adaptive stepsize (GASS) algorithms based on the minimisation of ∇μJ , such
as the algorithms introduced by Benveniste [24], Ang and Farhang [13] and Mathews and
Xie [207] (see Appendix K).

� Algorithms based upon a regularisation of the normalised LMS (NLMS) update, where
the regularisation factor ε(k) is made adaptive. One such approach is the generalised
normalised gradient descent (GNGD) algorithm [180] and its variants [47].

� Heuristic approaches, based for instance on imposing hard constraints on the lower and
upper bounds for the stepsize, superimposing regression on the stepsize sequence [2],
reducing the computational complexity by employing sign algorithms [68], and employing
graded updates [210].

This chapter introduces gradient adaptive stepsize algorithms for both linear and nonlinear
complex valued adaptive filters [97]. It is shown that this improves the speed of convergence
and stability of such filters, albeit at a cost of increased computational complexity. Analysis

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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Figure 8.1 A nonlinear FIR filter with nonlinearity �

is supported by simulations on both benchmark and real world nonlinear and nonstationary
data.

8.1 Benveniste Type Variable Stepsize Algorithms

To introduce an adaptive stepsize into nonlinear FIR filters (Figure 8.1) in C, based on the
weight update (Equation 8.1) we may perform a standard stochastic gradient adaptation,
given by

μ(k) = μ(k − 1) − ρ∇μJ(k)|μ=μ(k−1) (8.2)

where parameter ρ is the stepsize. Based on the standard cost function J(k) = 1
2 |e(k)|2 =

1
2e(k)e∗(k), the gradient ∇μJ(k) is calculated from

∇μJ(k) = 1

2

[
e(k)

∂e∗(k)

∂μ(k − 1)
+ e∗(k)

∂e(k)

∂μ(k − 1)

]
(8.3)

The main issue in the derivation of the gradient adaptive stepsize algorithms is the calculation of
the partial derivatives ∂e∗(k)/∂μ(k − 1) and ∂e(k)/∂μ(k − 1) from Equation (8.3). For instance,
to calculate the term ∂e∗(k)/∂μ(k − 1), we need to evaluate

∂e∗(k)

∂μ(k − 1)
= ∂er(k)

∂μ(k − 1)
− j

∂ei(k)

∂μ(k − 1)
(8.4)

For a fully complex analytic nonlinear activation function �(net(k)) = �(k), by using the
Cauchy–Riemann equations (see Chapter 5), this yields

∂e∗(k)

∂μ(k − 1)
= −xH (k)�′∗(k)

∂w∗(k)

∂μ(k − 1)
(8.5)

By a similar calculation, the second gradient term in Equation (8.3) ∂e(k)/∂μ(k − 1) becomes

∂e(k)

∂μ(k − 1)
= −xT (k)�′(k)

∂w(k)

∂μ(k − 1)
(8.6)
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For simplicity, denote1

ψ(k) = ∂w(k)

∂μ(k − 1)
≈ ∂w(k)

∂μ(k)

Similarly to gradient adaptive stepsize (GASS) real valued adaptive filters given in
Appendix K, we introduce three algorithms within the class of algorithms based on ∂J/∂μ

based on different ways to evaluate of the ‘sensitivity’ term ψ(k), (for more detail see [97]).

Benveniste type VSS algorithm (BVSS) [24]. Based on the weight update (Equation 8.1),
calculate

ψ(k) = ψ(k − 1) + ∂μ(k − 1)

∂μ(k − 1)
e(k − 1)�′∗(k − 1)x∗(k − 1)

+ μ(k − 1)
∂e(k − 1)

∂μ(k − 1)
�′∗(k − 1)x∗(k − 1) + μ(k − 1)e(k − 1)

∂�′∗(k − 1)

∂μ(k − 1)
x∗(k − 1)

The last term can be neglected, to give (compare with Equation K.9 in Appendix K)

ψ(k) =
[
I − μ(k − 1)

∣∣∣
�′(k − 1)

∣∣∣
2x∗(k − 1)xT(k−1)

]
ψ(k − 1) + e(k − 1)�′∗(k − 1)x∗(k − 1)

= �(k)ψ(k − 1) + e(k − 1)�′∗(k − 1)x∗(k − 1) (8.7)

This approach effectively performs filtering of noisy instantaneous gradients e(k − 1)
�′∗(k − 1)x∗(k − 1), where the term within the square brackets, �(k), determines the proper-
ties of such a filter. Based on the stepsize adaptation in Equation (8.2), the BVSS algorithm
becomes

μ(k) = μ(k − 1) + ρ

2

[
e(k)�′∗(k)xH (k)ψ∗(k) + e∗(k)�′(k)xT(k)ψ(k)

]
(8.8)

Farhang–Ang type VSS algorithm (FVSS) [13]. To simplify the BVSS update, replace the
time varying term in the square brackets in Equation (8.7) by a constant 0 < α < 1. With this
simplification, the sensitivity term ψ(k) becomes

ψ(k) = αψ(k − 1) + e(k − 1)�′∗(k − 1)x∗(k − 1) (8.9)

This way, the noisy instantaneous gradients e(k − 1)�′∗(k − 1)x∗(k − 1) are filtered with a
low pass filter with a fixed coefficient α.

Mathews type VSS algorithm (MVSS) [207]. By setting α = 0, calculation of the sensitivity
term in Equation (8.9) can be further simplified, to obtain the MVSS algorithm, for which

ψ(k) = e(k − 1)�′∗(k − 1)x∗(k − 1) (8.10)

is based only on the noisy instantaneous estimates of the gradient from Equation (8.6).

1For more details on GASS approaches for real valued filters, see Appendix K.
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Table 8.1 Gradients within the VSS algorithms and their complexities

Algorithm Sensitivity term ψ(k) = ∂w(k)/∂μ(k) Multiplications

BVSS (8.7) ψ(k) = �(k)ψ(k − 1) + e(k − 1)�′∗(k − 1)x∗(k − 1) 12

FVSS (8.9) ψ(k) = αψ(k − 1) + e(k − 1)�′∗(k − 1)x∗(k − 1), 0 < α < 1 9

MVSS (8.10) ψ(k) = e(k − 1)�′∗(k − 1)x∗(k − 1) 8

Table 8.2 Gradients within the VSS algorithms for linear adaptive filters

Algorithm Sensitivity term ψ(k) = ∂w(k)/∂μ(k)

BVSS ψ(k) = �(k)ψ(k − 1) + e(k − 1)x∗(k − 1)

FVSS ψ(k) = αψ(k − 1) + e(k − 1)x∗(k − 1), 0 < α < 1

MVSS ψ(k) = e(k − 1)x∗(k − 1)

Table 8.1 summarizes the three VSS algorithms and their associated computational com-
plexities. These VSS algorithms have been derived for nonlinear adaptive filters in C, their
counterparts for linear adaptive filters can be obtained by removing the terms associated with
nonlinearity �. Thus, for instance, for MVSS we have

ψ(k) = e(k − 1)x∗(k − 1)

μ(k) = μ(k − 1) + ρ

2

[
e(k)xH (k)e∗(k − 1)x(k − 1) + e∗(k)xT (k)e(k − 1)x∗(k − 1)

]
(8.11)

Weight gradients for the GASS updates for linear adaptive filters2 are given in Table 8.2.

8.2 Complex Valued GNGD Algorithms

Based on the standard weight update (Equation 8.1), adaptive learning rates η(k) for the CLMS,
normalised CLMS (CNLMS), and normalised complex nonlinear gradient descent (CNNGD)
algorithms are given by

η(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ for CLMS,
μ

‖x(k)‖2
2 +ε

for CNLMS,

μ

|�′(k)|2 ‖x(k)‖2
2 +ε

for CNNGD

(8.12)

where ε is a regularisation parameter used to prevent divergence for close to zero inputs.

2In BVSS for linear filters, �(k) = I − μ(k − 1)x∗(k − 1)xT(k − 1).
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The class of GASS algorithms performs ‘linear’ updates which depend upon estima-
tors of ∂J(k)/∂μ. This is achieved by making the stepsize (amplification factor) within the
weight update gradient adaptive. These algorithms are based on two coupled unconstrained
optimisation procedures (for weights and the stepsize), which can affect their robustness to the
initial values of the parameters (especially in the case of MVSS).

Another approach would be to introduce additional robustness and stability based on the
Generalised Normalised Gradient Descent (GNGD) algorithm [180], which performs a ‘non-
linear’ update of the learning rate by making the regularisation term ε in the denominator
of the CNLMS stepsize gradient adaptive. For simplicity, we shall first derive the complex
GNGD (CGNGD) algorithm for linear adaptive filters in C. Following the approach from
[180], consider a regularised CNLMS update

w(k + 1) = w(k) + η(k)e(k)x∗(k)

η(k) = μ

‖x(k)‖2
2 +ε(k)

(8.13)

where ε(k) is an adaptive regularisation parameter. Based on the cost function

J(k) = 1

2
e(k)e∗(k) = 1

2
|e(k)|2

we shall perform stochastic gradient adaptation of the adaptive regularisation parameter

ε(k) = ε(k − 1) − ρ∇ε J(k)|ε=ε(k−1) (8.14)

The gradient ∇εJ(k)|ε=ε(k−1) can be evaluated as

∇εJ(k)|ε=ε(k−1) = 1

2

[
e(k)

∂e∗(k)

∂ε(k − 1)
+ e∗(k)

∂e(k)

∂ε(k − 1)

]
(8.15)

where the corresponding partial derivatives3 are

∂er(k)

∂ε(k − 1)
= ∂er(k)

∂wr(k)

∂wr(k)

∂η(k − 1)

∂η(k − 1)

∂ε(k − 1)
+ ∂er(k)

∂wi(k)

∂wi(k)

∂η(k − 1)

∂η(k − 1)

∂ε(k − 1)

∂ei(k)

∂ε(k − 1)
= ∂ei(k)

∂wr(k)

∂wr(k)

∂η(k − 1)

∂η(k − 1)

∂ε(k − 1)
+ ∂ei(k)

∂wi(k)

∂wi(k)

∂η(k − 1)

∂η(k − 1)

∂ε(k − 1)
(8.16)

3Since ∂e(k)/∂ε(k − 1) = ∂er(k)/∂ε(k − 1) + j∂ei(k)/∂ε(k − 1) and ∂e∗(k)/∂ε(k − 1) = ∂er(k)/∂ε(k − 1) − j∂ei(k)/
∂ε(k − 1).
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The complex generalised normalised gradient descent (CGNGD) algorithm can now be sum-
marised as4

w(k + 1) = w(k) + η(k)e(k)x∗(k)

η(k) = μ

‖x(k)‖2
2 +ε(k)

ε(k) = ε(k − 1) − ρμ
� {

e(k)e∗(k − 1)xH (k)x(k − 1)
}

[‖x(k − 1)‖2 + ε(k − 1)
]2 (8.17)

where �{·} denotes the real part of a complex quantity.

8.2.1 Complex GNGD for Nonlinear Filters (CFANNGD)

To introduce the GNGD stepsize adaptation into the class of complex valued nonlinear FIR
filters (dynamical perceptron from Figure 8.1 for which the stepsize is given in Equation 8.12),
the gradient

∇ε J(k)|ε=ε(k−1) = ∂J(k)

∂ε(k − 1)
= 1

2

[
e(k)

∂e∗(k)

∂ε(k − 1)
+ e∗(k)

∂e(k)

∂ε(k − 1)

]
(8.18)

is calculated similarly to that in the CGNGD. After expanding the partial derivatives of the
error similarly to those in Equation (8.16), and using the Cauchy–Riemann equations, that is

∂e∗(k)

∂ε(k − 1)
= −xH(k)

∂w∗(k)

∂ε(k − 1)
�′∗(net(k)

)
∂e(k)

∂ε(k − 1)
= −xT(k)

∂w(k)

∂ε(k − 1)
�′(net(k)

)
(8.19)

the weight gradient with respect to the adaptive regularisation parameter ε(k) is obtained in
the form (for a detailed derivation see Appendix L)

∂w(k)

∂ε(k − 1)
= − e(k)�′∗(net(k)

)
x∗(k)[|�′ (net(k − 1))|2 ‖x(k − 1)‖2

2 + ε(k − 1)
]2 (8.20)

The variant of CGNGD for nonlinear adaptive filters is termed the complex valued fully adaptive
normalised nonlinear gradient descent (CFANNGD), and can be summarised as [106, 108]

e(k) = d(k) − �
(
net(k)

) = d(k) − �(k)

net(k) = xT(k)w(k)

4For a full derivation see Appendix L.
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η(k) = 1

|�′(k)|2 ‖x(k)‖2
2 + ε(k)

ε(k) = ε(k − 1) − ρμ
�

{
e(k)e∗(k − 1)�′∗ (k)�′(k − 1)xH(k)x(k − 1)

}
[|�′ (net(k − 1))|2 ‖x(k − 1)‖2

2 + ε(k − 1)
]2 (8.21)

8.3 Simulation Examples

In all the experiments, the order of the adaptive FIR filters (both linear and nonlinear) was
chosen to be M = 4, with the slope of the nonlinear complex tanh function β = 1. Simulations
were undertaken by averaging 200 independent trials on the prediction of both complex valued
benchmark coloured and nonlinear signals, as well as single trial real-life signals (complex
valued radar and two sets of wind data), given below.

L1. Linear complex stable AR(4) process, given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k) (8.22)

N1. Complex nonlinear benchmark signal [216]

y(k) = y2(k − 1)(y(k − 1) + 2.5)

1 + y2(k − 1) + y2(k − 2)
+ n(k − 1) (8.23)

N2. Complex nonlinear benchmark signal [216]

y(k) = y(k − 1)

1 + y2(k − 1)
+ n3(k) (8.24)

Wind. The wind measurements were sampled at 50 Hz for a interval of 1 h. The measure-
ments were recorded at 1 and 17 m above ground level. The measurements at different
heights yielded different wind dynamics. The wind vector can be expressed in the complex
domain C as v(t)ejθ(t) = vEast(t) + jvNorth(t). Here, the two wind components, the speed
v and direction θ, which are of different natures, are modelled as a single quantity in a
complex representation space.

IPIX radar. The samples correspond to the sea clutter signal captured by the McMaster
IPIX Radar at OHGR (Osborne Head Gunnery Range), Dartmouth, Nova Scotia, Canada,
on a cliff facing the Atlantic Ocean. The dataset used is referred to as ‘high sea state data’
(hi.zip)5 and contains magnitude and phase of the sea clutter signal collected in November
1993.

The driving noise n(k) in Equations (8.22 – 8.24) was complex doubly white noise (CDWN)
with zero mean and unit variance, that is n(k) = nr(k) + jni(k) where nr(k), ni(k) ∼ N(0, 1).

5Publicly available from http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html.
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Table 8.3 Prediction gain Rp for standard CNGD and VSS CNGD algorithms

Algorithm Parameters L1 N1 N2 Wind (1m) Wind (17m) Radar

CNGD μ(0) = 0.05 5.010 3.22 1.91 7.89 9.55 10.15

BVSS μ(0) = 0.05, ρ = 0.0002 6.61 4.65 5.09 17.55 14.41 15.51

FVSS α = 0.95, μ(0) = 0.05, ρ = 0.0002 6.27 4.12 5.09 17.26 14.00 14.31

MVSS μ(0) = 0.05, ρ = 0.0002 4.01 2.90 1.88 8.10 9.78 13.14

The real and imaginary components of CDWN were therefore mutually statistically indepen-
dent sequences and with equal variances so, that σ2

n = σ2
nr

+ σ2
ni

.
The measurement used to assess the performance was the prediction gain, given by [114]

Rp = 10 log10

(
σ2

x

σ̂2
e

)
dB (8.25)

where σ2
x denotes the variance of the input signal x(k), and σ̂2

e denotes the estimated variance
of the forward prediction error e(k).

Table 8.3 compares prediction gains of a nonlinear adaptive filter trained by the CNGD and
the GASS VSS algorithms. In conformance with the analysis, in all the cases, the BVSS had
best performance, followed by the FVSS, whereas MVSS and standard CNGD usually had
similar performances. Improvement in the performance when using the VSS class of algorithms
is especially noticeable for signals made complex by convenience of representation (columns
6–8 in Table 8.3).

Figure 8.2 illustrates the convergence of the class of GASS algorithms for prediction of
the coloured signal (Equation 8.22). The BVSS and FVSS exhibited fastest convergence, as
illustrated in Figure 8.2(a), whereas MVSS had similar behaviour to CNGD. Figure 8.2(b)
illustrates the evolution of the corresponding stepsizes – BVSS showed its robust nature by
having smoothest convergence of its stepsize, whereas the MVSS, due to its instantaneous
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(a) Learning curves for linear input (8.22)
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Figure 8.2 Performance of GASS algorithms for the linear signal (Equation 8.22)
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Figure 8.3 Performance of GASS algorithms for the nonlinear signal (Equation 8.24)

estimates of the weight gradient, experienced problems with outliers and instability (e.g. around
sample number 350). This is also reflected in the values of the prediction gain in the third column
in Table 8.3.

In the next set of experiments, simulations from Figure 8.2 were repeated for the nonlinear
input (Equation 8.24). Figure 8.3(a) shows that BVSS and FVSS had fastest convergence, and
their performance was similar. In the steady state, the BVSS and FVSS converged to the same
solution as CNGD. The initial convergence of MVSS was faster, however, its steady state error
was larger than that of CNGD. This also illustrates the sensitivity of MVSS to the choice of
initial parameters and its relative instability as compared to BVSS and FVSS. Figure 8.3(b)
illustrates the evolution of the stepsize parameter for the learning curves from Figure 8.3(a).
Again, the BVSS and FVSS stepsizes settled whereas the MVSS stepsize was fluctuating (see
also prediction gains for signals N1 and N2 in Table 8.3).

To illustrate the robustness of the BVSS algorithm to variations in its parameters,
Figure 8.4(a) shows the variation of the prediction gain Rp (8.25) for a range of initial values
of μ(0) and ρ(0), for prediction of a wind signal. Owing to the rigorous derivation of BVSS,
the choice of initial values did not have significant effect on the performance. This robustness
is less pronounced for the simplified versions – the FVSS and MVSS algorithms. Figure 8.4(b)
provides insight into the behaviour of the corresponding learning rates.

Figure 8.5 compares the performances of CGNGD and CNLMS;6 the initial values used for
the CGNGD simulations were ρ = 0.15 and ε(0) = 0.1. Figure 8.5(a) illustrates the CGNGD
exhibiting faster convergence than CNLMS and similar steady state performance, for relatively
small values of the learning rate μ. To illustrate the excellent stability of CGNGD, the critical
condition of nearly vanishing inputs (for which NLMS diverges) was generated by setting the
value of the stepsize close to the NLMS stability bound (μ = 1.9) – the CGNGD converged
faster and had better steady state properties. Figure 8.5(b) shows learning curves for a similar
experiment on the nonlinear signal (8.24). The stepsize was set to μ = 2, for which the CGNGD
was stable and converged, whereas CNLMS diverged.

6The performance of CFANNGD is illustrated in Figure 9.4 of Chapter 9.
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Figure 8.4 Performance of the BVSS, FVSS, and MVSS algorithms on prediction of wind signal
(17 m). (a) Dependence on initial values of the parameters; (b) evolution of μ(k)

To summarise:

� It has been recognised that a fixed stepsize, which governs the speed of convergence
and steady state error of stochastic gradient algorithms, is not an optimal choice for
nonstationary environments and signals with ill–conditioned tap input correlation matrix.
To that end several variable stepsize (VSS) algorithms have been proposed.

� Ideally, we want an algorithm for which the speed of convergence is fast and the steady
state error is small when operating in a stationary environment, whereas in a nonstationary
environment the algorithm should change the learning rate according to the dynamics of
the input signal, so as to achieve as good a performance as possible.
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Figure 8.5 Learning curves for CNLMS and CGNGD for the linear signal L1 (Equation 8.22) and
the nonlinear signal N2 (Equation 8.24). Left: μ = 0.01 for top curves and μ = 1.9 for bottom curves;
right: μ = 2
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� Two classes of VSS algorithms have been introduced: those based on stochastic gradient
adaptation of the stepsize parameter (GASS) and those based on making the regularisation
parameters within the CNLMS algorithm gradient adaptive (CGNGD).

� The analysis has been conducted for nonlinear finite impulse response adaptive filters
(dynamical perceptron) with a fully complex activation function. The linear counterparts
of the BVSS, GVSS, MVSS, and CFANNGD algorithms are obtained by removing the
terms within the updates which contain the nonlinearity �.

� The adaptive stepsize algorithms derived in this chapter can be extended to recurrent neural
networks in a generic way. The corresponding algorithms for infinite impulse filters (IIR)
inC are obtained by removing the effects of nonlinearity �, whereas by removing feedback
we arrive at the algorithms for nonlinear FIR filters.

� Chapter 9 illustrates how to deal with signals with large dynamical ranges in a different
way–by making the magnitude of the complex nonlinear activation function gradient
adaptive.
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9
Filters with an Adaptive
Amplitude of Nonlinearity

Real world signals are typically nonstationary and nonlinear, and therefore their dynamical
range is not known beforehand. Hence, nonlinear adaptive filters based on a fixed nonlinear-
ity may be inappropriate for some applications.1 One way to circumvent this problem is by
dynamical range reduction, described below. Another way to match the dynamics of the input
with the nonlinearity within the filter is to equip nonlinear adaptive filters with an adaptive
amplitude of the nonlinearity [92, 105, 108, 294]. This also helps to circumvent problems that
arise from dynamical range reduction by estimate subtractions, such as the accumulation of
errors. This chapter introduces learning algorithms with an adaptive amplitude of nonlinearity
for both the feedforward and feedback nonlinear adaptive filters.

9.1 Dynamical Range Reduction

Dynamical range reduction is a method whereby a preprocessor dynamically transforms the
range of the external input process so as to make it fit the range of filter nonlinearity. In the
output stage, the filter is then equipped with a post-processor which performs dynamical range
extension, in order to recover the original range of the process in hand.

There are several ways to perform dynamical range reduction [170]:

� Range reduction by estimate subtraction is shown in Figure 9.1 and includes
◦ Range reduction by differencing, which is based on simple differentiation given by

xd(k) = x(k) − x(k − 1) (9.1)

1This problem is usually alleviated by standardising the input to a certain range and variance (see Appendix G),
however, this requires prior knowledge about the process in hand.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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Figure 9.1 Schemes for dynamical range reduction based on estimate subtraction

This method is very simple, but requires careful initialisation.
◦ Range reduction by linear prediction, whereby the signal with a reduced range xp(k)

is generated as

xp(k) = x(k) − x̂(k) (9.2)

where x̂(k) denotes the prediction of x(k).
The method of range reduction by differencing is, in fact, a special case of range reduction
by prediction, where the prediction is based on a so called ‘persistent’ estimate, that is,
x̂(k) = x(k − 1) [91].

� Range reduction by homomorphic transformation comprises both the dynamic range re-
duction and extension [226, 260]. A two-layer homomorphic neural network (HNN) ar-
chitecture is shown in Figure 9.2 (the homomorphic layer is within the frame). The layer
of log(·) functions reduces the dynamical range of the input, the so modified inputs are
first combined adaptively in a linear fashion and their range is then extended by a layer of
exponential functions and a linear output layer.

The remainder of this chapter will discuss another method, the use of filters with an adaptive
amplitude of nonlinearity.
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Figure 9.2 Homomorphic neural network

http://www.it-ebooks.info/


FIR Adaptive Filters with an Adaptive Nonlinearity 121

9.2 FIR Adaptive Filters with an Adaptive Nonlinearity

To make nonlinear adaptive FIR filters in C (see Figure 8.1) suitable for the processing of
signals with unknown dynamics, the amplitude of the analytic nonlinear activation function
can be made adaptive according to [294]

�
(
net(k)

) = �
(
xT(k)w(k)

) = λ(k)�
(
xT(k)w(k)

) = λ(k)
(
u(k) + jv(k)

)
, λ ∈ R+ (9.3)

whereλ(k) denotes an adaptive amplitude of the nonlinearity�
(
xT(k)w(k)

)
, and�

(
xT(k)w(k)

)
is the activation function with unit amplitude. For the logistic sigmoid function we have

�
(
net(k), η, λ(k)

) = λ(k)

1 + e−βnet(k) (9.4)

where net(k) ∈ C. Thus, for λ(k) = 1 we have �(k) = �(k). A stochastic gradient update for
the adaptive amplitude from (9.3) is given by

λ(k + 1) = λ(k) − ρ∇λJ(k)|λ=λ(k) (9.5)

where

∇λJ(k)|λ=λ(k) = 1

2

[
e∗(k)

∂e(k)

∂λ(k)
+ e(k)

∂e∗(k)

∂λ(k)

]
(9.6)

is the gradient of the cost function with respect to the amplitude of the activation function
λ(k), and ρ ∈ R the stepsize of the algorithm, a small constant. Noticing that both λ(k) and
J(k) = 1

2e(k)e∗(k) are real valued, we have

∂e(k)

∂λ(k)
= ∂er(k)

∂λ(k)
+ j

∂ei(k)

∂λ(k)
= ∂

[
dr(k) − λ(k)u(k)

]
∂λ(k)

+ j
∂
[
di(k) − λ(k)v(k)

]
∂λ(k)

= −u(k) − jv(k) = −�(k) (9.7)

Similarly to the derivation of ∂e(k)/∂λ(k), the second term ∂e∗(k)/∂λ(k) from Equation (9.6)
is given by

∂e∗(k)

∂λ(k)
= −(

u(k) − jv(k)
) = −�

∗
(k) (9.8)

Since the adaptive amplitude of nonlinearity λ(k) ∈ R+, its update has the form

λ(k + 1) = λ(k) + ρ

2

∣∣∣∣e∗(k)�
(
xT(k)w(k)

) + e(k)�
∗(xT(k)w(k)

)∣∣∣∣ (9.9)
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This adaptive amplitude of nonlinearity can be also used in conjunction with any of the standard
stochastic gradient learning algorithms. For instance, a normalised CNGD algorithm equipped
with an adaptive amplitude of nonlinearity can be expressed as

e(k) = d(k) − �
(
xT(k)w(k)

)
�

(
xT(k)w(k)

) = λ(k)�
(
xT(k)w(k)

)
w(k + 1) = w(k) + η(k)e(k)�′∗(xT(k)w(k)

)
x∗(k)

η(k) = 1∣∣∣
�′(xT (k)w(k)

)∣∣∣2 ‖x(k)‖2
2 + ε

λ(k + 1) = λ(k) + ρ

2

∣∣∣∣e∗(k)�
(
xT (k)w(k)

) + e(k)�
∗(xT (k)w(k)

)∣∣∣∣
9.3 Recurrent Neural Networks with Trainable Amplitude
of Activation Functions

Assume that every neuron l = 1, . . . , N in an RNN is equipped with a nonlinearity for which
the amplitude is made adaptive, that is

yl(k) = �
(
netl(k)

) = λl(k)�
(
netl(k)

)
, l = 1, . . . , N (9.10)

where2

netl(k) = IT(k)wl(k) (9.11)

The symbol λl(k) denotes the adaptive amplitude of the nonlinearity at the lth neuron, whereas
�

(
netl(k)

)
denotes the nonlinearity with a unit amplitude. Thus, if λl = 1 it follows that

�
(
netl(k)

) = �
(
netl(k)

adaptive amplitude at the lth neuron is calculated based on [294]

)
. For an RNN with N output neurons, the update for the gradient

λl(k + 1) = λl(k) − ρ∇λl(k)J(k), l = 1, . . . , N (9.12)

where ∇λl(k)J(k) denotes the gradient of the cost function with respect to the amplitude of the
activation function λ, ρ is the stepsize, and the cost function is given by

J(k) = 1

2

N∑
l=1

|el|2 (k) (9.13)

From Equation (9.13), the gradient ∇λl(k)J(k) can be obtained as

∇λl(k)J(k) = ∂J(k)

∂λl(k)
=

N∑
l=1

el(k)
∂el(k)

∂λl(k)
= −

N∑
l=1

el(k)
∂yl(k)

∂λl(k)
(9.14)

2The overall input to the network I(k) represents the concatenation of the feedback vector y(k), external input x(k),
and bias input (1 + j), as shown in Section 7.3.
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where

∂yl(k)

∂λl(k)
= �

(
IT(k)wl(k)

) + λl(k)�
′(IT(k)wl(k)

) × ∂
[
IT(k)wl(k)

]
∂λl(k)

= �
(

IT(k)wl(k)︸ ︷︷ ︸
netl(k)

) + λl(k)�
′( IT(k)wl(k)︸ ︷︷ ︸

netl(k)

) × ∂

∂λl(k)

( p+N+1∑
n=1

wl,n(k)In(k)
)

(9.15)

Since ∂λl(k − 1)/∂λl(k) = 0, the second term in Equation (9.15) vanishes, to give

∇λl(k)J(k) = ∂J(k)

∂λl(k)
= −

N∑
l=1

el(k)�
(
netl(k)

)
(9.16)

We next consider the following three cases:

� Case 1: Common adaptive nonlinearity for all the neurons. In this case λl(k)=λ(k) for all
l = 1, . . . , N and Equation (9.12) becomes [92]

λ(k + 1) = λ(k) + ρ

∣∣∣∣∣∣∣
N∑

l=1

el(k)�
(
netl(k)

)∣∣∣∣∣∣∣ (9.17)

� Case 2: Common adaptive nonlinearity for each layer. Since a fully connected recurrent
network has two layers, assume that the output layer consists of M output neurons and
the hidden layer contains the remaining (N − M) neurons. This way, we have [90]

yl(k) = �
(
netl(k)

) =
{

λ1(k)�
(
netl(k)

)
, l = 1, . . . , M

λ2(k)�
(
netl(k)

)
, l = M + 1, . . . , N

(9.18)

where

λ1(k + 1) = λ1(k) + ρ

∣∣∣∣∣∣∣
M∑
l=1

el(k)�
(
netl(k)

)∣∣∣∣∣∣∣ , l = 1, . . . , M

λ2(k + 1) = λ2(k) + ρ

∣∣∣∣∣∣∣
N∑

l=M+1

el(k)�
(
netl(k)

)∣∣∣∣∣∣∣ , l = M + 1, . . . , N (9.19)

� Case 3: Different λl(k) for each neuron in the network. This is the most general case where
every neuron is equipped with an adaptive amplitude of nonlinearity, that is

yl(k) = �
(
netl(k)

) = λl(k)�
(
netl(k)

)
λl(k + 1) = λl(k) + ρ

∣∣∣
el(k)�

(
netl(k)

)∣∣∣
, l = 1, . . . , N (9.20)
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9.4 Simulation Results

In all the experiments, the amplitudes of the inputs were scaled to be within the range [0,0.1]
and the nonlinearity was chosen to be the complex logistic sigmoid function, given by

�
(
xT(k)w(k), β, λ(k)

) = λ(k)

1 + e−βxT(k)w(k)
(9.21)

with slope β = 1.
Simulations were undertaken by averaging 200 independent trials on prediction of both

complex valued benchmark (coloured, Equation 8.22) and nonlinear, (Equation 8.23) signals
as well as real world wind signals.3 The measurement used to assess the performance was
the prediction gain Rp = 10log10(σ2

x/σ̂2
e )(dB). Simulations are provided for both the FIR and

recurrent nonlinear adaptive filters.

Nonlinear FIR filter. In all the experiments, the order of the nonlinear adaptive filter was
chosen to be L = 4, learning rate μ = 0.001, and an initial amplitude λ(0) = 0.1. The stepsize
for the adaptive amplitude was chosen to be ρ = 0.01. The best choice of the regularisation
factor ε for the CNNGD and CFANNGD4 algorithms was ε = 0.15. Figure 9.3 illustrates
the dependence of the prediction gain Rp on initialisation of the adaptive amplitude λ(0) and
regularisation factor ε(0), whereas Figure 9.4 shows convergence curves for the prediction of
nonlinear input (Equation 8.23). From Figure 9.4, the algorithms equipped with an adaptive
amplitude of nonlinearity converged faster and had better steady state properties. Figure 9.5(a)
shows the behaviour of λ(k) on prediction of a synthetic complex valued nonlinear input (16.3),

Figure 9.3 Prediction gain as a function of the initial amplitude of nonlinearity λ(k) and the initial value
of the regularisation parameter ε(k), for prediction of nonlinear signal (Equation 8.23)

3Publicly available from “http://mesonet.agron.iastate.edu/”.
4See Section 8.2.1 in Chapter 8 for reference to these algorithms.
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Figure 9.4 Comparison of standard algorithms with algorithms equipped with an adaptive amplitude
of nonlinearity (CAANGD and CAANNGD) and those with a gradient adaptive stepsize (CFANNGD)
for prediction of nonlinear signal (Equation 8.23)

the amplitude of the nonlinearity clearly adapts according to the dynamics of the input, leading
to improved performance.

Complex RNNs. In all the experiments, the RNN had N = 5 neurons with the length of
the external tap input L = 7 and first order feedback, learning rate μ = 0.1, and an ini-
tial amplitude of nonlinearities λ(0) = 1. The stepsize for the adaptive amplitude was cho-
sen to be ρ = 0.15. Figure 9.5(b) shows that that the amplitude λ(k) within the AACRTRL
followed the dynamics of the input, leading to improved performance. Figure 9.6 shows
learning curves for the CRTRL and AACRTRL algorithms for both the coloured and non-
linear input. In both cases, the AACRTRL algorithm, equipped with an adaptive ampli-
tude of nonlinearity, outperformed the CRTRL algorithm and exhibited faster convergence.
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Figure 9.5 Evolution of the adaptive amplitude λ(k) for two classes of complex nonlinear adaptive
filters
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Figure 9.6 Comparison between the standard CRTRL algorithm and the AACRTRL algorithm for
the three cases of adaptive amplitude:- common adaptive nonlinearity for the whole network; common
adaptive nonlinearity for every network layer; individual adaptive amplitude of nonlinearity for every
neuron

The quantitative performance results for the RNNs equipped with an adaptive amplitude of
nonlinearity are summarised in Table 9.1. The case with an individual adaptive amplitude of
nonlinearity at every neuron performed marginally best, but was also most demanding in terms
of computational complexity.

To summarise:

� Performance of nonlinear adaptive filters depends on the range of the input; to circumvent
this problem input signals are usually first standardised (see Appendix G).

� Standardisation of input is not realistic in the online adaptive mode of operation, and
methods for dynamical range reduction based on the subtraction of a signal estimate
from its original value are commonly employed. These methods, however, suffer from the
accumulation of differencing and integration errors.

� Alternatively, dynamical range reduction and extension can be achieved based on a hor-
momorphic transform [226, 260]; this method operates in an automated manner, however
the log–exp transformation may be quite sensitive.

Table 9.1 Prediction gain Rp for there CRTRL based adaptive amplitude algorithms

Different learning algorithms Nonlinear N1 (8.23) Linear L1 (8.22)

CRTRL with fixed amplitude of nonlinearity 4.012 3.845
CRTRL with common adaptive nonlinearity 5.562 4.724
CRTRL with ‘layer-by-layer’ adaptive nonlinearity 5.771 4.837
CRTRL with neuron-by-neuron adaptive nonlinearity 5.723 4.891
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� To make nonlinear adaptive filters in C more efficient in nonstationary environments and
for signals with large dynamics, the nonlinearities within such filters are equipped with
an adaptive amplitude.

� Three different algorithms with an adaptive amplitude of nonlinearity are considered:
a common nonlinear activation function with a common adaptive amplitude for all the
neurons; a common nonlinearity with a common adaptive amplitude per network layer;
individual adaptive amplitude of nonlinearity for every neuron in the network.

� It is shown that this class of algorithms has the potential to outperform the standard
algorithms for a variety of benchmark and real world signals. This is achieved at little
expense in terms of computational complexity.
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10
Data-reusing Algorithms for
Complex Valued Adaptive Filters

The class of data-reusing (DR) algorithms is based on a posteriori error adaptation and ex-
hibits in general better convergence than standard a priori error based algorithms [190].
This is achieved in a fixed point iteration-like fashion by reusing the external input data
while performing a posteriori weight update iterations.1 By combining the recursive mode
of learning based on the a priori output error and iterative mode of learning based on the
a posteriori errors, data-reusing algorithms effectively operate between the time instants2

k and (k + 1). In this chapter, we introduce the class of data-reusing algorithms for complex
valued adaptive filters, both feedforward and recurrent. The error bounds and convergence
conditions are provided for both the case of contractive and of expansive complex activation
functions.3

10.1 The Data-reusing Complex Valued Least Mean Square
(DRCLMS) Algorithm

Data-reusing (DR) algorithms are modifications of standard algorithms whereby at every dis-
crete time instant, k, after the ‘recursive’ standard update, the available desired response d(k)
and input vector x(k) are reused in order to refine the estimate of the filter coefficients (weights)
[261]. Such updates are known as a posteriori updates.4 Following the approach from [254],

1For more detail on a posteriori mode of learning, see Appendix M.
2Another class of algorithms which operate this way are fractional delay filters, see Chapter 11.
3A meromorphic complex valued activation function � is a contraction if |�(a + b)| < |�(a) + �(b)|. Function �

is an expansion if |�(a + b)| > |�(a) + �(b)|. For more detail see Appendix P.
4For real valued adaptive filters this is elaborated in Appendix M.
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Figure 10.1 Time alignment within the data-reusing (a posteriori) approach

the weight update in the data-reusing complex valued LMS (CLMS) algorithm can be written as

wt+1(k) = wt(k) + μet(k)x∗(k) (10.1)

et(k) = d(k) − xT(k)wt(k), t = 1, . . . , L (10.2)

where w1(k) = w(k), wL+1(k) = w(k + 1) and t represents the order of data-reuse iteration.
For L = 1, Equations (10.1) and (10.2) boil down to the standard CLMS algorithm, given in
Chapter 6. Time alignment for the a priori and a posteriori mode of operation is shown in
Figure 10.1. In conformance with the analysis in [254], we can express the final DR weight
update from (10.1) as

w(k + 1) = wL+1(k) = wL(k) + μeL(k)x∗(k)

= wL−1(k) + μ
(
eL−1(k) + eL(k)

)
x∗(k)

= w(k) + μ

L∑
t=1

et(k)x∗(k). (10.3)

To establish relationship between the a priori the a posteriori error (see also Appendix M),
consider t = 2, that is

e2(k) = d(k) − xT(k)w2(k)

= d(k) − xT(k)
[
w1(k) + μe1(k)x∗(k)

]
= e1(k)

[
1 − μxT(k)x∗(k)

]
(10.4)

Consequently, the tth DR error can be expressed as

et(k) = e(k)
[
1 − μxT(k)x∗(k)

]t−1
, t = 1, . . . , L (10.5)
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and the total error after L data reusing iterations
∑L

t=1 et(k) is given by

L∑
t=1

et(k) =
L∑

t=1

e(k)
[
1 − μxT (k)x∗(k)

]t−1

=
e(k)

[
1 − (

1 − μxT (k)x∗(k)
)L

]
μxT (k)x∗(k)

. (10.6)

Finally, the DR weight update for L iterations of the DRCLMS algorithm becomes [135, 254,
261]

w(k + 1) = w(k) + 1 − [
1 − μxT(k)x∗(k)

]L

xT(k)x∗(k)
e(k)x∗(k). (10.7)

More detail on the class of a posteriori and data-reusing algorithms and a geometric interpre-
tation of their convergence can be found in Appendix M and Appendix P.

Simulations. Figure 10.2 shows the learning curves for CLMS and DRCLMS with L = 1,
L = 3, and L = 10. For convenient visualisation, the learning rate was chosen to be μ = 0.001.
There were 100 independent trials averaged on the prediction of complex valued coloured
(Equation 8.22) and nonlinear (Equation 8.23) input. The speed of convergence improved with
the order of DR iterations, approaching the NCLMS algorithm in the limit (for L → ∞), as
illustrated in Appendix M.

10.2 Data-reusing Complex Nonlinear Adaptive Filters

We now extend the class of DR algorithms to complex nonlinear adaptive filters realised
as a dynamical perceptron. The principle of data-reusing relies on the updated weight vector
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Figure 10.2 Performance of CLMS and data-reusing CLMS (DRCLMS) with L = 1, 3, and 10 for
prediction of a coloured input (Equation 8.22) and nonlinear input (Equation 8.23)
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w(k + 1) being available before the next input vector x(k + 1) (as shown in Figure 10.1). Simi-
larly to the derivation of the DRCLMS algorithm, a complex data-reusing nonlinear gradient
descent (CDRNGD) algorithm can be expressed as5

et(k) = d(k) − �
(
xT(k)wt(k)

)

wt+1(k) = wt(k) + μ�′∗(xT(k)wt(k)
)
et(k)x∗(k) (10.8)

where

w1(k) = w(k), wL+1(k) = w(k + 1) (10.9)

andLdenotes the number of data reusing iterations. ForL = 1 the DRCNGD algorithm reduces
to the standard complex nonlinear gradient descent (CNGD) algorithm. From the analysis for
the linear filter in Section 10.1 it follows that the final DR weight update becomes

w(k + 1) = wL+1(k)

= wL(k) + μ�′∗(xT(k)wL(k)
)
eL(k)x∗(k)

= w(k) + μ

L∑
t=1

et(k)�′∗(xT(k)wt(k)
)
x∗(k) (10.10)

The instantaneous data-reusing output error can be expressed as [109]

et(k) = d(k) − �
(
xT(k)wt(k)

)
= et−1(k) −

[
�

(
xT(k)wt(k)

) − �
(
xT(k)wt−1(k)

)
︸ ︷︷ ︸

term depending on the nature of �

]
. (10.11)

From Equation (10.11), the performance of the data-reusing approach depends critically on
whether the complex nonlinear activation function of a neuron is a contraction6 or an expansion
[190].

10.2.1 Convergence Analysis

To analyse the performance of the DR algorithm, it is important to establish the relationship
between the a priori error e(k) and a posteriori error et(k). A detailed analysis for real valued
nonlinear filters is provided in [63, 182, 184, 189, 190]. Premultiplying (10.8) by xT(k) and
applying the nonlinear activation function � on either side, we have

�
(
xT(k)wt+1(k)

) = �
[
xT(k)wt(k) + μet(k)�′∗(xT(k)wt(k)

)
xT (k)x∗(k)

]
(10.12)

5Symbol (·)′∗ denotes
{

(·)′
}∗

, for instance, �′∗ =
{

�′}∗
. Similarly �′′∗ =

{
�′′}∗

.
6For more detail, see Appendix P.
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Subtract the teaching signal d(k) from both sides of (10.8), to give the sequence7

|et+1(k)| >
∣∣∣
1 − μ(k)�′∗(xT(k)wt(k)

)
xT(k)x∗(k)

∣∣∣ |et(k)| (10.13)

Here it is assumed that the value of �′∗(xT(k)wt(k)
)
, t = 1, 2, . . . , L does not change

significantly during successive iterations. Then, after L iterations of Equation (10.13), we
have

|eL+1(k)| >

∣∣∣∣[1 − μ(k)�′∗(xT(k)w(k)
)
xT(k)x∗(k)

]L
∣∣∣∣ |e(k)| (10.14)

which is the lower bound for the data reusing output error for a contractive nonlinear activation
function. For the error in Equation (10.14) to be monotonically decreasing, the absolute value of
the term

[
1 − μ(k)�′∗(xT(k)w(k)

)
xT(k)x∗(k)

]
must be less than unity. In that case, the whole

procedure is a fixed point iteration (see Appendix P). This gives the following constraint on
the learning rate

0 < μ(k) <
1∣∣∣

�′∗(xT(k)w(k)
)
xT(k)x∗(k)

∣∣∣ (10.15)

Simulations. Figure 10.3 shows the averaged learning curves of the DRCNGD algorithm for a
nonlinear FIR filter with a contractive activation function. The nonlinearity at the neuron was
the logistic sigmoid function, given by

�(β, x) = 1

1 + e−βx
, x ∈ C, β ∈ R+ (10.16)
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Figure 10.3 Performance of CNGD and data-reusing CNGD (DRCNGD) with L = 1, 3, and 10 for
prediction of a coloured input (Equation 8.22) and nonlinear input (Equation 8.23)

7We use the absolute values since C is not an ordered field (see Appendix A).
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The slope was β = 1 for contractive �, and the learning rate was chosen to be μ = 0.001,
in order to obtain a clear visualization of the performance of the algorithms. The data-reusing
algorithm exhibited faster convergence than the standard algorithm (L = 1) for both types
of input signals. The performance of this algorithm improves with order of the data-reusing
iterations, and in the limit, for large L, it approaches the normalised version of the CNGD
algorithm.

10.3 Data-reusing Algorithms for Complex RNNs

This analysis is based on the complex real time recurrent learning (CRTRL) algorithm for a
recurrent perceptron, given in Section 7.3. The data-reusing weight update for this case can be
written as [179, 190].

wt+1(k) = wt(k) + μet(k)π�
t (k) (10.17)

et(k) = d(k) − �
(
IT(k)wt(k)

)
, t = 1, . . . , L (10.18)

where the overall input to the network I(k) represents the concatenation of the feedback
vector y(k), external input x(k), and bias input (1 + j). The index t denotes the tth iteration
of Equations (10.17) and (10.18), π�

t (k) is the vector of sensitivities for the kth recursion and
tth iteration, and μ is the learning rate. The weight update iteration starts with w1(k) = w(k)
(standard a priori update) and ends with wL+1(k) = w(k + 1).

From Equation (10.17), for t = L, we have the final data-reusing weight update

w(k + 1) = wL+1(k) = wL(k) + μeL(k)π�
L(k)

= wL−1(k) + μeL−1(k)π�
L−1(k) + μeL(k)π�

L(k)

= w(k) +
L∑

t=1

μet(k)π�
t (k) (10.19)

The instantaneous error at the output neuron can be evaluated as

et(k) = d(k) − �
(
IT(k)wt(k)

)
= [

d(k) − �
(
IT(k)wt−1(k)

)] − [
�

(
IT(k)wt(k)

) − �(IT(k)wt−1(k)
)]

= et−1(k) −
[
�

(
IT(k)wt(k)

) − �
(
IT(k)wt−1(k)

)
︸ ︷︷ ︸

term depending on the nature of �

]
(10.20)

The convergence of the DR iterations depends on the contractive/expansive notive of the terms
in the square brackets.

Simulations. Figure 10.4 shows the learning curves of the DRCRTRL algorithm for a recur-
rent perceptron (nonlinear Infinite Impulse Response (IIR) filter) with a contractive activation
function for both coloured (Equation 8.22) and nonlinear (Equation 8.23) inputs. The learn-
ing rate was μ = 0.001 and the nonlinearity was the complex tanh with slope β = 1. The
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Figure 10.4 Performance of CRTRL and data-reusing CRTRL (DCRTRL) for prediction of coloured
input (Equation 8.22) and nonlinear input (Equation 8.23) for a contractive nonlinear activation
function

DRCRTRL algorithm converged faster than the standard CRTRL algorithm (L = 1) for both
types of inputs. The performance of this algorithm improves with the order of data-reusing
iterations and saturates for large L, approaching the normalised RTRL [187]. As desired, the
advantages of the data reusing strategy were more pronounced for the ‘difficult’ nonlinear
signal in Figure 10.4(a).

Figure 10.5 shows the performance of the data-reusing CRTRL algorithm for a recurrent
perceptron with an expansive activation function (tanh with slope β = 8). The error curve
does not converge and grows unbounded, the divergence is more emphasised with the order of
data-reusing iteration.
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Figure 10.5 Performance of CRTRL and data-reusing CRTRL (DCRTRL) for prediction of coloured
input (Equation 8.22) and nonlinear input (Equation 8.23) for an expansive nonlinear activation
function

http://www.it-ebooks.info/


136 Data-reusing Algorithms for Complex Valued Adaptive Filters

To summarise:

� Data reusing algorithms aim at refining the weight update by exploiting the relationship
between the a priori and a posteriori error and by reusing the external input.

� This is achieved by combining the standard, recursive, mode of operation with the iterative,
a posteriori, mode of operation, for more detail see Appendix G and Appendix M.

� There is a close relationship between the dynamics of learning and the properties of the
nonlinearity of nonlinear adaptive filters in C; this facilitates the use of fixed point theory
in the analysis of DR algorithms.

� Due to the stochastic nature of the net input net(k), the effect of the expansive nonlinearity
�(βnet(k)) is more pronounced for DR algorithms, (see Figure 10.5(b)).

� Although the convergence of nonlinear filtering algorithms is well understood for strictly
contractive and strictly expansive functions [148, 190, 256], in real world environments,
there is a need to consider situations where the nature of nonlinearity � is randomly
changing between contraction and expansion.

� For a rigorous analysis of nonlinear DR algorithms, we need to use random contraction
mapping theorems [46, 164].
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¨Complex Mappings and Mobius

Transformations

¨

¨

¨

It is often convenient to use matrix notation to represent complex processes, since this gives us
the opportunity to use established tools from matrix theory and linear algebra for problem
solving. Mobius transformations are amongst the most fundamental mappings in C, and
provide a formalism for dealing with a range of problems described in matrix notation –
from brain mapping to relativity theory. This framework also helps to explain the mappings
performed by complex valued nonlinear adaptive filters, and provides insight into their compo-
sitions (nesting), fixed points and invertibility. Our aim is to highlight links between the matrix
description of complex processes, Mobius transformations, Riemann sphere, and mappings
performed by complex neural networks. We also show that all-pass filters, the most versatile
building blocks in signal processing, are Mobius transformations, and illustrate their use within
fractional delay filters (FDF); these can be used to fine-tune digital filters by splitting the unit
time delay between signal samples.

11.1 Matrix Representation of a Complex Number

A complex number z = a + jb, can be expressed in an equivalent matrix notation as

a + jb →
[

a −b

b a

]
= a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]
(11.1)

which implies

1 ↔
[

1 0

0 1

]
and j ↔

[
0 −1

1 0

]

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
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Thus for instance

|z|2 = z z∗ = det(z) =
∣∣∣∣∣∣∣ a −b

b a

∣∣∣∣∣∣∣ = a2 + b2

The analysis of hypercomplex processes can also benefit from their matrix representation.
There are, for instance, two ways of representing a quaternion (see also Appendix C)

�q = q0 + q1ı + q2j + q3k ∈ H

in the matrix form (symbol H denotes the set of quaternions). For complex numbers

z = q0 + j q1, w = q2 + j q3

a quaternion can be represented by a 2 × 2 complex matrix

�q ↔
[

z w

−w∗ z∗

]
=

[
q0 + j q1 q2 + j q3

−q2 + j q3 q0 − j q1

]

where the quaternion addition and multiplication correspond to matrix addition and matrix
multiplication. Quaternions can be also represented as 4 × 4 real-valued matrices in the form
of

⎡
⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤
⎥⎥⎥⎥⎦

where, for instance, the conjugate of a quaternion corresponds to the transpose of the above
matrix. A split-complex number in the matrix form can be expressed as

[
a b

b a

]

In the same way, matrix representations can be extended to other hypercomplex numbers, such
as octonions

a + bı0 + cı1 + dı2 + eı3 + fı4 + gı5 + hı6 ∈ O

since each triplet of bases (ık, ıl, ım), k, l, m = 0, . . . , 6, k /= l /= m behaves like a quaternion
(ı, j, k).

The matrix representation of complex numbers is very straightforward and elegant and allows
us to use the established results from matrix theory in order to solve problems in the complex
domain. Thus, for instance, a sum of two complex numbers z1 = a1 + jb1 and z2 = a2 + jb2,
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can be represented as1

[
a1 −b1

b1 a1

]
+

[
a2 −b2

b2 a2

]
=

[
a1 + a2 −(b1 + b2)

b1 + b2 a1 + a2

]
↔ z1 + z2 (11.2)

Similarly, the product of complex numbers z1 z2 can be represented in the matrix form as

[
a1 −b1

b1 a1

]
×

[
a2 −b2

b2 a2

]
=

[
a1a2 − b1b2 −(b1a2 + a1b2)

b1a2 + a1b2 a1a2 − b1b2

]
↔ z1 × z2 (11.3)

whereas rotation2 of a complex quantity by an angle θ can be represented as

z1 = zejθ ↔
[

a −b

b a

]
×

[
cos θ − sin θ

sin θ cos θ

]
=

[
a cos θ − b sin θ −(b cos θ + a sin θ)

b cos θ + a sin θ a cos θ − b sin θ

]

(11.4)

and is visualised in Figure 11.1.
From Equations (11.1) and (11.4) the matrix representation3 of j and z∗ are rotations, and

complex multiplication corresponds to the simultaneous amplification and rotation (amplitwist
[218]). Finally, for a nonzero complex number z, its inverse z−1 = 1/z can be expressed in the

Figure 11.1 Complex rotation and multiplication

1The matrix representation of complex numbers also facilitates the use of software tools, such as Matlab.
2In matrix theory, a rotation matrix A is a real square matrix for which ATA = I, and det(A) = 1. For instance,
matrix

A =
[

0 −1

1 0

]

corresponds to planar rotation by π/2.
3Operator j represents a rotation by π/2.
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matrix form as ⎡
⎢⎣

a

a2 + b2

b

a2 + b2

−b

a2 + b2

a

a2 + b2

⎤
⎥⎦ ↔ z−1

Matrix notation can be also used in conjunction with augmented complex statistics (see
Chapter 12), to represent widely linear models. The standard → augmented complex
variable transformation can be expressed as

z → za ↔
[

z

z∗

]
=

[
1 j

1 −j

] [
x

y

]
(11.5)

whereas in the case of complex valued signals, we have4

z → za ↔
[
z

z∗

]
=

[
I j I

I −j I

] [
x

y

]
(11.6)

¨

¨

¨

11.2 The Mobius Transformation

We next show that some aspects of complex valued nonlinear adaptive filters can be further
formalised within the framework of Mobius transformations.5

Definition 1 (Mobius mapping [16]). Let a, b, c, and d denote four complex constants
with the restriction that ad /= bc. The function

w = f (z) = az + b

cz + d
(11.7)

¨is called a Mobius transformation, bilinear transformation, or linear fractional transforma-
tion.6

The condition ad /= bc is necessary, since for complex variables z1 and z2,

f (z1) − f (z2) = (ad − bc)(z1 − z2)

(cz1 + d)(cz2 + d)

4To make this transform unitary, we may scale by 1/
√

2, to give(
1√
2

[
I j I

I −j I

])
×

(
1√
2

[
I j I

I −j I

]H
)

= I.

¨
¨

¨

¨ ¨ ¨

5Augustus Ferdinand Mobius was a German mathematician who held a chair in theoretical astronomy at Leipzig.
He is best known for his discovery of the Mobius strip, a one-sided surface formed by giving a rectangular strip a
half-twist and then joining the ends together. Interestingly, the Mobius strip has found a commercial application as a
conveyor belt, allowing for the surface of the belt to last longer.
6Mobius transformations should not be confused with Mobius transforms (in number theory) or Mobius functions
(multiplicative functions in number theory and combinatorics).
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¨

¨

¨ ¨
¨

Figure 11.2 Geometric interpretation of the mapping performed by the bilinear transformation
(Equation 11.8). Left: the complex plane; right: the image of the complex plane and the mapping onto
the Riemann sphere (for clarity scales are not matched)

is constant for ad − bc = 0. Mobius transformations are also called homographic transforma-
tions, bilinear transformations, or fractional linear transformations.

The Mobius transformation has the following properties:

� It is analytic everywhere except for the pole at z = −d/c;
� The mapping is one-to-one and onto a half plane, and vice versa;
� The inverse of a Mobius transformation is also a Mobius transformation;
� The Mobius transformation does not determine the coefficients a,b,c,d uniquely, that is,

if ϕ ∈ C
¨

¨

\ {0}, then coefficients ϕa, ϕb, ϕc, ϕd correspond to the same transformation;
� Every Mobius transformation (except f (z) = z) has one or two fixed points z∗, that is,

points7 for which f (z∗) = z∗ [16].

One classical example of Mobius transformations is the so called bilinear transform, used in
the design of digital filters, given by

s → 2

T

1 − z−1

1 + z−1 (11.8)

where T is the sampling period, and s and z are respectively the complex variable associated
with the Laplace and Z transform. This is a conformal mapping which converts a transfer
function of an analogue filter to a transfer function of a linear, shift-invariant digital filter.
The jω axis8, Re[s]= 0, in the s-plane is mapped onto the unit circle |z| = 1, whereas the
left-hand side half-plane in the s domain, Re[s]< 0, is mapped onto the inside of the unit
circle in the z plane (|z| < 1). Figure 11.2 illustrates the mapping of a plane performed by the

7These can be calculated to be

z∗
1,2 = (a − d) ±

√
(a − d)2 + 4bc

2c

For c = 0, we have only one fixed point z∗ = −b/(a − d).
8We use both Re[·] and �{·} to denote the real part of a complex quantity, and Im[·] and 	{·} to denote the imaginary
part of a complex quantity.
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¨

¨

bilinear transform, and the one-to-one correspondence between this mapping and the Riemann
sphere.9

11.3 Activation Functions and Mobius Transformations

Observe that

(i) The map g : C→ C, with g(z) = ez is holomorphic on C;
(ii) The sigmoidal nonlinear activation function f (z) of a neuron is holomorphic and con-

formal.

Thus, for instance, by matching the coefficients associated with the equal powers of z

in the complex tanh function to those in a general form of the Mobius transformation
(Equation 11.7), we have

1 − e−βnet

1 + e−βnet
= az + b

cz + d
(11.9)

¨and for z = e−βnet , the complex tanh is a Mobius transformation, with [178]

a = −1, b = 1, c = 1, d = 1 (11.10)

Since the condition ad − bc /= 0 is also satisfied, the hyperbolic tangent activation function is
a Möbius transformation and holomorphic. So too is the logistic function

σ(z) = 1

1 + e−β z
(11.11)

for which

a = 0, b = 1, c = 1, d = 1, and ad − bc /= 0

¨

Following upon this result, it was further established in [65] that

The sigmoidal transformation f (z) performed by a neuron in a neural network on a
complex signal z = α + jβ is a Möbius transformation.

Examples of the complex logistic and tanh mappings are shown in Figure 11.3, whereas
Figure 11.4 illustrates the correspondence between the Mobius mappings from Figure 11.3
and the Riemann sphere.

9Another conformal mapping from C to C is the Schwarz–Christoffel transformation, which maps the upper half
plane 	{s} > 0 onto a simply connected domain D in the z-plane (polygon). For instance,

z = f (s) = B + A

∫ (
1√

s + 1
√

s
√

s − 1

)
ds

will map the upper half plane from the s domain onto a square in the z domain [54, 206].
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(a) Complex plane (b) Complex logistic

¨

(c) Complex tanh

Figure 11.3 Geometric view of the mappings performed by the complex logistic and tanh functions
(for clarity scales are not matched)

We can consider a Mobius transformation as a composition of a sequence of simpler
transformations

� translation f (z) = z + d/c
� inversion g(z) = 1/z
� dilation and rotation h(z) = −(ad−bc)

c2 z

¨

� translation k(z) = z + ac

that is, the Mobius transformation can be expressed as

az + b

cz + d
= k(z) ◦ h(z) ◦ g(z) ◦ f (z)

(a) Logistic function as a Möbius mapping (b) Function tanh as a Möbius mapping

Figure 11.4 Geometric view of the mapping performed by the complex logistic (Equation 11.11) and
tanh functions (Equation 11.9), and the corresponding mappings onto the Riemann sphere (for clarity
scales are not matched)
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¨Mobius transformations may be also be seen as stereographic projections from a plane to
a sphere, followed by a rotation and inverse stereographic projection (see Figures 2.2 and
Figure 11.4).

We can now associate the matrix

A =
[

a b

c d

]

¨ ¨

¨

(11.12)

with the Mobius transformation. Since a Mobius transformation remains unchanged if all
the coefficients (a, b, c, d) from Equation (11.7) are multiplied by the same nonzero con-
stant, we can normalise A to yield det(A) = ad − bc = 1. The condition ad − bc /= 0 from
Equation (11.7) is equivalent to a nonzero determinant of this matrix (nonsingular matrix).
The matrix A then becomes unique up to the sign, and this allows us to express the Mobius
transformation from Equation (11.7) as

f (z) ↔ A z (11.13)

¨If F and G are matrices associated with Mobius transformations f and g, then the composition
(nesting) f ◦ g can be expressed as the matrix product F G, that is

f (g(x)) = f ◦ g ↔ F G

¨

(11.14)

To analyse an n–dimensional nested nonlinear system, as examplified by a feedforward or
recurrent neural network with hidden neurons, we can use the notion of a modular group
[16]. In order to show that the set of all Mobius transformations forms a modular group under
composition, we must show the existence of the identity and inverse transformations.

The identity transformation

f (z) = z = 1z + 0

0z + 1

¨
is described by the identity matrix I, which is the neutral element of the group. The inverse
matrix A−1 is associated with the Mobius inverse

f−1(z) = dz − b

−cz + a
(11.15)

¨

¨

Now, we can state that [178, 218]

The set of all Mobius transformations of the form f (z) = (az + b)/(cz + d), where
a, b, c, d are integers and ad − bc = 1 forms a modular group under composition, and
is denoted by 
.

It can be proved [16] that the modular group10 
 is generated by a composition of two simple
transformations:

� translation Tz = z + 1;

z
.� inversion Sz = − 1

10The modular Mobius group is also an automorphism of the Riemann sphere, and under certain conditions it is a Lie
group.
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In the matrix form, it can be shown that:
The modular group 
 is generated by the two matrices

T =
[

1 1

0 1

]
and S =

[
0 −1

1 0

]
(11.16)

and every A ∈ 
 can be expressed in the form

A = T n1ST n2S · · · ST nk (11.17)

where ni, i = 1, . . . , k are integers.

Thus, for instance,

A =
[

4 9

11 25

]
↔ ST−3ST−4ST 2

however, in general, this solution is not unique.
The modular group is central to the theory of fractals and iterated function systems (see

Appendix P).

Example 1. Show that the matrix form of the input–output transfer function of two cascaded
nonlinear elements (neurons) belongs to a modular group 
.

Solution. For cascaded nonlinear elements (neurons), their transfer functions are nested11 and
not multiplied. From Equation (11.14) we have a composition of the two nonlinear mappings

h1(z) = a1z + b1

c1z + d1
and h2(z) = a2z + b2

c2z + d2
,

that is

h1 ◦ h2 = a1
a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1
= (a1a2 + b1c2) z + a1b2 + b1d2

(a2c1 + c2d1) z + b2c1 + d1d2
(11.18)

¨If the Mobius mappings performed by h1 and h2 are respectively described by matrices

H1 =
[

a1 b1

c1 d1

]
and H2 =

[
a2 b2

c2 d2

]

11The nesting process is explained in Chapter 3.

http://www.it-ebooks.info/


146 ¨Complex Mappings and Mobius Transformations

we have

h1(z) ◦ h2(z) ⇔ (H1 × H2) z =
([

a1 b1

c1 d1

]
×

[
a2 b2

c2 d2

])
z

=
[

a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

]
z = H z (11.19)

¨which belongs to the modular group 
 of compositions of Mobius transformations. �

¨
This proves that the global I/O relationship in a neural network may be formalised within

the framework of Mobius transformations, for more detail see [16, 65, 178].

¨11.4 All-pass Systems as Mobius Transformations

All-pass filters, described by the transfer function

H(z) = z−1 − p∗

1 − pz−1 , z, p ∈ C, |p| < 1

¨

(11.20)

are a fundamental building block in signal processing. Their applications include those in
multimedia signal processing [273], seismic processing [225], array processing [138], and
also in the modelling of nonuniform time delays in digital filters [32]. A detailed overview of
all–pass filters can be found in [249].

Matching the coefficients associated with the powers of z in the transfer function of an
all-pass filter (Equation 11.20) with those in a general form of the Mobius transformation
(Equation 11.7), we have

z−1 − p∗

1 − pz−1 = −p∗z + 1

z − p
= az + b

cz + d
(11.21)

¨Therefore, the first-order all-pass filter is a Mobius transformation given by

A =
[

−p∗ 1

1 −p

]
, ad − bc /= 0, |p| /= 1 (11.22)

Since for first-order all-pass sections the pole p is always real, fixed points of this mapping are
at z1 = ±1. This corresponds to ω = 0 and ω = π in frequency, that is, to the minimum and
maximum of the group delay [178].

To model cascaded all-pass systems, we can define a finite Blaschke product as [22, 201,
206]

f (z) = λ

n∏
j=1

(
z − aj

1 − a∗
j z

)
(11.23)
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¨where |aj| < 1, j = 1, . . . , n and |λ| = 1. This is a composition of Mobius transformations,12

and as such it has a fixed point (see Section 11.2). For example, a second-order all-pass system,
given by

H(z) = −p1z + 1

z − p1

−p2z + 1

z − p2
⇔

[
−p1 1

1 −p1

]
×

[
−p2 1

1 −p2

]
(11.24)

is such a Blaschke product.

11.5 Fractional Delay Filters

In numerous applications (audio, music, time delay estimation), it is not only the sampling
frequency, but also the actual sampling instants that are of crucial importance. Fractional delay
filters (FDF) provide a very useful building block that can be used for fine–tuning of sampling
instants [162]. Typical examples include:

� digital audio, where, e.g. for sampling rate conversion between 44.1 kHz and 48 kHz, at
every time instant an FDF can be used to compute output signal samples at a different
delay value;

� communications, where continuous-time pulse sequences arrive with different propagation
delays, but should be sampled exactly at the middle of each pulse, that is, the sampling
frequency and sampling instants must be synchronised;

� synthetic musical instruments, where propagation delays in musical resonators (tubes,
guitar body) can make instrument sound out of tune; discretisation of differential equations
describing acoustic vibrations should be based on changing the sampling instants online.

The transfer function of a tap delay line is given by

G(z) =
M∑

m=0

θmz−m (11.25)

where θm are filter coefficients and filter memory is of length M; for the modelling of long
channels (e.g. strong resonances) a significant amount of memory is required. An ideal frac-
tional delay element should be a digital version of a continuous time delay line; all-pass filters
are particularly well suited to such approximation since their magnitude response is unity at
all frequencies.

Using the first-order all-pass filter from Equation (11.20), the transfer function of a fractional
delay filter becomes a weighted sum of transfer functions of all-pass filters, given by

G(z) =
M∑

m=0

θm

(
z−1 − p∗

1 − pz−1

)m

(11.26)

12In fact, both the numerator and denominator term in Equation (11.23) are Klein terms f1(z) = z + a : M1 =
{{1, a}, {0, 1}} and f2(z) = 1/(az + 1) : M2 = {{0, 1}, {a, 1}}.
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Essentially, FDFs are interpolators which approximate signal values in between the sample
points k and (k + 1) by a linear combination of sample values on either side of the desired
‘fractional’ sampling instant. The memory of an FDF (Equation 11.26) depends on the value
of pole p – the closer |p| to the unit circle the longer the tail of the impulse response. The
transfer function (Equation 11.26) can also be expressed in a ‘nested’ form as

θ̃0 +
(

θ̃1 +
(

θ̃2 ×
[

−p∗ 1

1 −p

]
+ · · · + θ̃M ×

[
−p∗ 1

1 −p

])
· · ·

)
×

[
−p∗ 1

1 −p

¨

]

(11.27)

thus providing a link between Mobius transformations and fractional delay filters. Design of
FDFs requires careful selection of the underlying all-pass building blocks so as to form an
orthonormal basis.13 Examples include Legendre [234] and Laguerre [205, 299] filters which
have real poles, and Kautz [146, 228] filters for which the poles are complex.
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Figure 11.5 The magnitude and phase response of the resonance of a classical guitar (solid line) and
its approximation using an FIR filter of order 256 (dotted line) and a Kautz filter with nine taps (dashed
line)

13To ensure real valued output, complex poles must exist in conjugate pairs.
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The Kautz filter approximates any transfer function by a linear combination of all-pass com-
ponents

H(z) =
M/2∑
m=0

(
θ2mK2m(z) + θ2m+1K2m+1(z)

)
(11.28)

where K2m and K2m+1 are respectively the transfer functions of the even and odd all-pass taps,
given by

K2m(z) = κ0(z, ζ)Am(z)

K2m+1(z) = κ1(z, ζ)Am(z)

and

κ0(z, ζ0) = |1 + ζ0|
√

1 − ζ0ζ
∗
0

2

z−1 − 1

(1 − ζ0z−1)(1 − ζ∗
0z−1)

,

κ1(z, ζ1) = |1 − ζ1|
√

1 − ζ1ζ
∗
1

2

z−1 + 1

(1 − ζ1z−1)(1 − ζ∗
1z−1)

,

A(z, ζi) = (1 − ζiz
−1)

(z−1 − ζ∗
i )

(z−1 − ζi)

(1 − ζ∗
i z−1)

where the poles of the all-pass blocks are denoted by ζi, i = 0, . . . , M. For ζ ∈ R, Kautz filters
degenerate into Laguerre filters, while for ζ = 0 they become standard FIR filters.

The modelling capabilities of Kautz filters are illustrated in Figure 11.5, where approxima-
tions of the frequency response of the resonance of a classical guitar are calculated using an
FIR filter of order 256 and a Kautz filter of order 9. A relatively short Kautz filter was able to
provide a very good approximation, whereas a long FIR filter failed to deliver.
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The emergence of new applications of complex statistical signal processing has highlighted
problems related to the standard theory of complex stochastic processes; these include:

� Although the complex Gaussian model is commonly used and is well understood [101,
110, 113, 211, 316], not many theoretical results are available for the generality of complex
random variables and signals;

� In general, a complex random vector z and its conjugate z∗ are correlated, hence the
covariance matrix

C = cov(z) = E
[
zzH]

(12.1)

does not completely describe the second order statistics of z, and another quantity

P = pcov(z) = E
[
zzT]

(12.2)

called the pseudocovariance [219, 239] or complementary covariance [268], needs to be
taken into account;

� The probability density function of Gaussian complex random variables has a form similar
to that for real Gaussian variables only for proper, or second order circular, random
processes z for which the pseudocovariance E

[
zzT

]
vanishes. However, general complex

random processes are improper, that is, they are correlated with their complex conjugates,1

and E
[
zzT

]
/= 0;

� The notion of a proper complex process is closely related to the notion of a circular com-
plex process, however, ‘properness’ is a second order statistical property and circularity
is a property of the probability density function. Properness therefore does not reveal
anything about the actual multivariate signal distribution.

1For illustration, consider a random variable z = zr + jzi. Then zz∗ = z2
r + z2

i and zzT = z2
r − z2

i + 2jzrzi. Upon

applying the statistical expectation operator, E
[
zz∗] > 0 (unless z = 0 + j0), whereas E

[
zzT

]
= E[z2

r ] − E[z2
i ] +

2jE[zrzi] vanishes only if zr and zi are uncorrelated and with the same variance.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
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Therefore, to access the information contained in the pseudocovariance, second order statistical
modelling inC should examine joint statistical properties of z and z∗, that is, it should be based
on the ‘augmented’ random vector za = [

zT, zH
]T

and the associated augmented complex
statistics. Standard statistical signal processing approaches, however, implicitly assume second
order circularity of the complex signals [5, 17, 110, 113, 120], resulting in suboptimal solutions.

This chapter reviews the theory of complex random variables and signals with a particular
emphasis on complex circularity and augmented complex statistics, giving new perspective
to the notions of white noise and autoregressive modelling in C. This is then combined with
estimation theory in Chapter 13, in order to introduce widely linear mean square estimation
(WLMSE) and the augmented CLMS (ACLMS), a widely linear extension of the standard
CLMS.

12.1 Complex Random Variables (CRV)

Complex random variables (CRV) arise as special cases of bivariate real random variables,
and despite the ubiquity of complex random processes, their analysis is often parameterised
in terms of the distribution of the real and imaginary components2 [224], rather than per-
formed directly in C. When dealing with complex random variables, we can therefore
either:

� consider a complex random variable Z = X + jY as a two-dimensional ‘composite’ real
random variable (RRV) (X, Y ) ∈ R2; this way complex numbers are nothing else but pairs
of real numbers and the theory of complex variables loses most of its appeal;

� develop tools for statistical analysis directly in C.

Standard second-order statistical approaches for the analysis of complex signals are straight-
forward extensions from the corresponding approaches in R. Thus, for instance, for a random
variable Z and random vector z, we have the following correspondence

R C

cZ = cov(Z) = E
[
Z2

]
−→ E

[
ZZ∗] (12.3)

C = cov(z) = E
[
zzT

] −→ E
[
zzH

]
(12.4)

Consequently, the concepts of mean square error, linear regression, and Wiener filtering can
be readily extended from R to C.

There are, however, several difficulties with this approach:

2This is because, technically speaking, a vector in C can be represented by a vector in R2, however, much of the
power, beauty, and simplicity of complex representation would be lost [268].
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� For Z = X + jY, X, Y ∈ R, the cumulative distribution F and probability density
function (pdf) f

FX(x) = P(X ≤ x) FY (y) = P(Y ≤ y)

fX(x) = d

ds
FX(s)|s=x fY (y) = d

ds
FY (s)|s=y (12.5)

specify the probability distribution for Z, however, the expressions (12.5) do not apply
directly to complex random variables, since the field of complex numbers is not an ordered
set, and the relation ≤ is meaningless in C (see Appendix A);

� Complex variable Z and its conjugate Z∗ are related by a deterministic transformation,
and we cannot assign a probability density function to Z and Z∗ independently.3

12.1.1 Complex Circularity

Circularity is intimately related to rotation in the geometric sense; a random variable Z is said
to be circular if its statistical properties are ‘invariant under a rotation’. For a complex random
variable Z, rotation by angle φ is achieved by multiplication by ejφ, giving Zφ = Zejφ (see
Figure 11.1).

A circular complex random variable (CCRV) can be therefore defined as [53]

A complex random variable Z is called circular if for any angle φ both Z and Zejφ, that
is its rotation by angle φ, have the same probability distribution.

This means that the statistics of second order circular signals are invariant to phase transfor-
mations.4

Design of Complex Circular Random Variables

For convenience, we shall describe the generation process of a circular random variable Z =
ρ cos(θ) + jρ sin(θ) in the polar coordinate system. The circular symmetry of the probability
density function is then described by fZ(ρ, θ) = fZ(ρ, θ − φ), and Z can be generated as
follows [11]:

1. Generate a real valued random variable ρ with an arbitrary pdf f (ρ). This determines the
properties of the complex random variable Z;

2. Generate another real valued random variable θ, which is uniformly distributed on [0, 2π]
and independent of ρ;

3. Construct5 Z = X + jY as

X = ρ cos(θ), Y = ρ sin(θ) (12.6)

3Although for mathematical tractability it is sometimes assumed that Z and Z∗ are not algebraically linked [11].
4The covariance cZ = cov(Z) = E[ZZ∗] = E[ZejφZ∗e−jφ] is always invariant under rotation, whereas pseudoco-
variance pcov(Z) is invariant under rotation for circular signals.
5This way we effectively combine two independent real random processes, hence the pseudocovariance vanishes and
the signal in hand is circular.
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Figure 12.1 Realisations of 2000 samples of circular complex random variables

Figure 12.1 illustrates shapes of the probability distributions for the so generated uniform
and Gaussian complex circular variables.

12.1.2 The Multivariate Complex Normal Distribution

Following the approach from [31], we shall now introduce a multivariate Generalised Com-
plex Normal Distribution (GCND), a first step towards building statistical signal processing
algorithms which account for the noncircularity of a signal.

The standard multivariate complex normal distribution (CND) [316], given by

f (z) = 1

πN detZ
e−zHZ−1z, z = [z1, . . . , zN ]T, zi = xi + jyi, xi, yi ∈ R, i = 1, . . . , N

(12.7)

has been widely used in complex valued signal processing. Apart from the standard requirement
of positive semidefiniteness, the covariance matrix of this distribution

Z = E
[
(z− E[z])(z− E[z])H] forE[z]=0⇐⇒ E

[
zzH]

(12.8)

satisfies a number of other restrictions,6 that is, (12.7) describes effectively a real multivariate
distribution of the composite real vector

w = [
x1, y1, . . . , xN, yN

]T
, w ∈ R2N×1 (12.9)

6This is because the complex normal distribution was introduced as a straightforward extension of the real valued one
for the analysis of I − Q signals, which are by their nature circular (see Figure 2.8b).
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for which the covariance matrix (Equation 12.8) satisfies the conditions (see also Equation
(12.33)

E[xkxl] = E[ykyl] ⇒ var(xk) = var(yk) (12.10)

E[xkyl] = −E[xlyk] ⇒ cov(xk, yk) = 0 ∀xk, yl, k, l = 1, . . . , N

(12.11)

The first condition (Equation 12.10) implies that the variance of xk is equal to the variance of
yk, whereas the second condition that the covariance cov(xk, yk) = E[xkyk] = 0 implies7

E[zkzl] = 0 (12.12)

This significantly restricts the freedom in the choice of allowable covariance matrices of the
real and imaginary parts of zn, and therefore the probability density function (Equation 12.7) is
suitable only for the modelling of complex second-order circular random variables (CCRV),
for which the conditions (12.10) and (12.11) are satisfied.

Generalised complex normal distribution. To obtain a mathematical expression for the nor-
mal distribution for general complex stochastic signals, we start from a complex stochastic
variable

zk = xk + jyk, xk ∈ N(0, σ2
x ), yk ∈ N(0, σ2

y ), n = 1, . . . , N (12.13)

and a composite real random vector w ∈ R2N×1, given in Equation (12.9), for which the
covariance matrix is given by

W = cov(w) = E
[
wwT]

(12.14)

and for which the real multivariate normal distribution can be expressed as

f (w) = 1

(2π)N
√

det(W)
e− 1

2w
TW−1w (12.15)

As already shown in Equation (11.5), the mapping between the composite real variable wk =
(xk, yk) ∈ R2 and the complex variable zk and its complex conjugate z∗

k can be expressed as
(to make J a unitary matrix, we may scale by 1/

√
2)

[
zk

z∗
k

]
= J

[
xk

yk

]
=

[
1 j

1 −j

] [
xk

yk

]

7Since

E[zkzl] = E[(xk + jyk)(xl + jyl)] = E[xkxl − ykyl︸ ︷︷ ︸
= 0 by (12.10)

] + JE[xkyl + xlyk︸ ︷︷ ︸
= 0 by (12.11)

] .
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For convenience, the ‘augmented’ complex vector v ∈ C2N×1 can be introduced as

v = [
z1, z

∗
1, . . . , zN, z∗

N

]T

v = Aw (12.16)

where matrixA = diag(J, . . . , J) ∈ C2N×2N is block diagonal and transforms the composite
real vector w into the augmented complex vector v, for which the covariance matrix

V = cov(v) = E[vvH ] = AWAH (12.17)

To obtain a generalised multivariate complex normal distribution, we need to replace the terms
w, det(W), andwTW−1w in (12.15) by the corresponding expressions in terms of v, that is
[31]

w = A−1v = 1

2
AHv

det(W) =
(

1

2

)2N

det(V)

wTW−1w = vHV−1v (12.18)

The multivariate generalised complex normal distribution (GCND) can now be expressed as
[31]

f (v) = 1

πN
√

det(V)
e− 1

2v
HV−1v (12.19)

and has been derived without any restriction8 on the covariance matrixW of the composite
real vector w (except nonsingularity).

The standard multivariate complex normal distribution (CND) (Equation 12.7) can be ob-
tained from the generalised complex multivariate normal distribution as a special case, by
applying restrictions (12.10) and (12.11). So too can the univariate complex normal distribu-
tion (for N = 1, and z = x + jy), that is

f (z) = 1

πσ2
z

e
− zz∗

σ2
z = 1

πσ2
z

e
− |z|2

σ2
z (12.20)

Augmented complex observation. The augmented complex observation is given in Equation
(12.16), however, in this work we most often use a slightly rearranged augmented complex

8The generalised complex multivariate normal distribution assumes that the complex variable and its complex con-
jugate have a joint probability density, however, the complex conjugation operator is a deterministic mapping from
Z to Z∗. Also, due to C not being an ordered set (only lexicographic ordering is readily available, see Appendix A),
the problem of general complex cumulative and probability density functions still remains widely open. One recent
attempt to introduce density functions which can be interpreted directly in Z can be found in [224].
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vector za, given by9

za = [
z1, . . . , zN, z∗

1, . . . , z
∗
N

]T = [
zT , zH

]T
(12.21)

To convert the expressions derived for the augmented vector v (Equation 12.16) to the corre-
sponding expressions for za, we may employ a permutation matrix10 P ∈ R2N×2N , to give

za = Pv
det(V) = det(Za) = (det(Z))2 (12.22)

where Za = cov(za); the permutation matrixP provides therefore a deterministic transforma-
tion from v to za, and all the expressions derived for v hold also for za.

Generally, characterisation of complex processes in terms of signal distribution is difficult
(since C is not an ordered field, see also Appendix A), and in practical applications we need
to resort to the description in terms of the moments, cumulants and characteristic functions, as
shown in Section 12.2.

12.1.3 Moments of Complex Random Variables (CRV)

To provide a full statistical description (first-, second-, and higher-order moments) of CRVs,
consider the characteristic function11 (for more detail, see [11, 12, 113, 243])

�Z,Z∗ (w, w∗) = E

[
exp

(
j
Z∗w + Zw∗

2

)]
(12.23)

where w = u + jv and w∗ = u − jv are complex variables and E[·] is the ensemble mean.
Similarly to the real case, to obtain the statistical moments of Z, we can apply Taylor series
expansion (TSE) to the characteristic function (12.23), to yield

E

[
exp

(
j
Z∗w + Zw∗

2

)]
=

∞∑
n=1

1

n!

jn

2n

n∑
p=0

b(n, p)wn−pw∗p
E

[
Z∗n−p

Zp
]

(12.24)

where b(n, p) are binomial coefficients. From Equation (12.24), for a given order n, there are
(n + 1) different moments12 E[Z∗n−pZp]. For example, for n = 2, we have three different
moments: E[Z2], E[ZZ∗], and E[Z∗2]; for real random variables, all these moments are equal.

9Both z and z∗ are column vectors.
10All the elements of this matrix are either zero or unity, and there is precisely one nonzero element in every row and
column ofP. In addition,P is an orthogonal matrix, that is,PT = P−1 and |det(P)| = 1.
11This is a 2D FFT of a 2D probability density function.
12Practically speaking, there are only m = (floor(n/2) + 1) correlation functions required for a complete nth-order
description, since e.g. E[Z∗2] is a deterministic transformation of E[Z2].
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Moments of an arbitrary order n can be derived from the characteristic function �Z,Z∗ as13

E
[
Z∗n−p

Zp
]

= 2n

jn

∂n�Z,Z∗ (0, 0)

∂wn−p∂w∗p
. (12.25)

The corresponding (n + 1) cumulants of order n can be derived from the so called ‘second’
characteristic function


Z,Z∗ (w, w∗) = log
(
�Z,Z∗ (w, w∗)

)
(12.26)

and are given by (see also Footnote 12)

Cum
[
Z∗, . . . , Z∗︸ ︷︷ ︸

n−p

, Z, . . . , Z︸ ︷︷ ︸
p

] = Cum
[
Z∗n−p

, Zp
]

= 2n

jn

∂n
Z,Z∗ (0, 0)

∂wn−p∂w∗p
(12.27)

Cumulants, then:

a) provide a measure of independence of complex random variables;
b) for Gaussian complex random variables, cumulants of order n ≥ 2 vanish;
c) joint cumulants of two statistically independent complex random variables are zero;
d) property c) implies that for two statistically independent random variables S, T ∈ C

Cum [S + T ] = Cum [S] + Cum [T ] (12.28)

that is, cumulants of the sum of two independent random variables are equal to the sum
of cumulants of those variables.

Moments and cumulants in the multidimensional case using tensorial notation are addressed
in [11].

12.2 Complex Circular Random Variables

The notion of ‘circularity’ has been commonly used to characterise Gaussian complex random
variables (second-order circularity) [101, 211], however, for rigorous statistical description
of circularity, we also need to involve general signal distributions and higher-order statistics
(HOS). The property of circularity can be expressed equivalently in terms of the probability
density function (pdf), characteristic function, and cumulants, as follows:

� Circularity in terms of the probability density function. A complex random variable Z is
circular if its pdf is a function of only the product zz∗, that is14

pZ,Z∗ (z, z∗) = pZφ,Z∗
φ
(zφ, z∗

φ) (12.29)

13It is assumed that w and w∗ are independent variables, a common and convenient assumption in the literature.
14This also implies that the pdf of a circular complex random variable is function of only the modulus of z.
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and for Gaussian CCRVs we obtain the classical result [101] (see also Equation 12.20)

pZ,Z∗ (z, z∗) = 1

πσ2
z

e−zz∗/σ2
z (12.30)

where σ2
z denotes the variance of the CRV and Zφ = Zejφ (see also Section 12.1.1).

� Circularity in terms of the characteristic function. A complex random variable Z is circular
if its (first or second) characteristic function depends only on the product ww∗, that is15

�Zφ,Z∗
φ
(w, w∗) = �Z,Z∗ (we−jφ, w∗ejφ) (12.31)

� Circularity in terms of the cumulants. A complex random variable Z is circular if the only
nonzero moments16 and cumulants are those that have the same power in Z and Z∗, that
is

Cum[Z2] = 0, Cum[Z4] = 0, . . . Cum[Z2p] = 0, . . . (12.32)

Gaussian circularity. From Equation (12.32), for a zero mean circular Gaussian random
variable Z = X + jY , we have

E[Z2] = E[X2] − E[Y2] + jE[XY ] = 0 (12.33)

and to test for circularity, it is therefore sufficient to verify that for X, Y ∈ N(0, σ2)

E[X2] = E[Y2] and E[XY ] = 0 (12.34)

that is, X and Y have the same power and are not correlated. This has already been shown
in Equations (12.10) and (12.11), starting from the standard complex multivariate normal
distribution.

12.3 Complex Signals

A natural extension of the theory of complex random variables is to the analysis of complex
signals. Mathematical tools for the analysis of complex stationary signals include multicor-
relations and multispectra, whereas the analysis of nonstationary signals is typically based
on higher-order time–frequency distributions. A low-rank approximation of improper com-
plex random vectors is provided in [266], and its applications in Wiener filtering are given
in [267]. In [270] a generalised likelihood ratio test for impropriety of complex signals
is proposed. A comprehensive introduction to higher-order signal analysis tools, together

15Equations (12.29) and (12.31) apply for any circular distribution. The dependence on the product zz∗ is more obvious
for distributions in their expanded form, like the Gaussian in Equation (12.30).
16Partial derivatives in Equation (12.27) are nonzero only when they are of the same order in w and w∗.
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with numerous examples, is provided in [12]. An account of second-order circularity for a
generalised single-sideband modulator is provided in [268], whereas some applications in the
areas of telecommunications and information theory are outlined in [219].

12.3.1 Wide Sense Stationarity, Multicorrelations, and Multispectra

For a complex signal z(t), the multicorrelation of order (p + q) is defined as (for more detail
see [12, 113, 243])

Cz,p+q,p(t) = Cum[z(t0), . . . , z(tp−1), z∗(tp), . . . , z∗(tp+q−1)] (12.35)

where index t = {t0, . . . , tp+q−1}, q refers to the conjugated and p to the nonconjugated terms.
Statistical properties of multicorrelations are in direct relation to the corresponding properties
of cumulants, that is

� multicorrelations are multilinear;
� for Gaussian signals multicorrelations are equal to zero for (p + q) > 2.

Thus, if the random variables z(t0), . . . , z(tp+q−1) are statistically independent, that is signal
z is white in the strict sense, all the multicorrelations vanish, except those with the same index
ti in both z and z∗.

Complex stationarity. If zn = [z(t1), . . . , z(tn)]T ∈ Cn is an n-dimensional induced vector of
the complex signal z(t), then [12]

� We say that signal z(t) is stationary if the statistics of all the induced random vectors zn
are invariant under the time shift operation.

� Signal z(t) is said to be stationary of order k if the pdf of zn is invariant under the time
shift operation for all n ≤ k.

Alternatively, the property of stationarity can be expressed in terms of the multicorrelation of
order (p + q) as

Cz,p+q,p(t+ τ) = Cz,p+q,p(τ) ∀p, q such that p + q ≤ n and ∀τ (12.36)

In other words, for stationary complex signals, the multicorrelation is no longer
(p + q)-dimensional but (p + q − 1)-dimensional, and is a function of only time lag
τ = (τ1, . . . , τp+q−1), that is

Cz,p+q,p(τ) = Cum[z(t), z(t + τ1), . . . , z(t + τp−1), z∗(t − τp), . . . , z∗(t − τp+q−1)]

(12.37)

The multispectrum of order (p + q) is the Fourier transform (FT) of the corresponding multi-
correlation, that is

Sz,p+q,p(ν) =
∫

Cz,p+q,p(τ) exp(−j2πτTν)dτ (12.38)

Extensions of these results to cross-multicorrelations and cross-multispectra and to various
other classes of multidimensional signals are straightforward and can be found in [12].
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12.3.2 Strict Circularity and Higher-order Statistics

We shall now extend the definition of circularity for complex random variables from Section
12.2 to that for general complex valued signals.

� We say that a signal z(t) is circular of order n if the induced vectors zm =
[z(t1), . . . , z(tm)]T ∈ Cm of order m ≤ n are circular.

� For a circular complex random vector of order n, moments of the order lower or equal
to n vanish when the number of their conjugated terms is different from that of the
nonconjugated terms, that is

∀p,q Cz,p+q,p(τ) = 0 for p + q ≤ n and p /= q. (12.39)

Alternatively, in the frequency domain, the condition of complex circularity can be expressed
as:

� A complex signal is strictly circular, that is, circular for all orders n, if the only nonzero
multispectra are Sz,2,0(ν), Sz,2,1(ν) and Sz,2,2(ν). If the signal is also analytic, the only
nonzero multispectrum is Sz,2,1(ν).

Thus, for instance, for band-limited signals (see Chapter 2), the only nonzero multispectra are
of the type Sz,2p,p(ν).

12.4 Second-order Characterisation of Complex Signals

Analysis of signals in terms of their second-order structure or cumulant properties, rather than
in terms of density functions is very convenient, as this helps to avoid having to assign a
density to a complex quantity. As has already been shown, a unique feature of second-order
statistical analysis in C is that, in order to use the full statistical information, we need to
examine properties of both the covariance and pseudocovariance function, that is, to consider
so-called augmented statistics.

The analysis presented is a natural extension of the analysis of random variables from
Section 12.2, and reveals the intimate relationship between second-order stationarity, correla-
tion structure, and circularity of complex random signals.

12.4.1 Augmented Statistics of Complex Signals

For a discrete time zero mean complex signal z(k), its second-order statistics are usually
described by the covariance function, defined by17

cz(k1, k2) = E[z(k1)z∗(k2)] (12.40)

17Note that Equations (12.40) and (12.41) are 2D functions evaluated for two time indexes k1 and k2 using standard
(scalar) signal representation, unlike (12.49) which uses a vector signal representation.
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Following on from the analysis of complex random variables, to entirely describe the second-
order statistics of z(k), we need to introduce another function called pseudocovariance [219]
or complementary covariance [268], given by

pz(k1, k2) = E[z(k1)z(k2)] (12.41)

In various instances the pseudocovariance pz(k1, k2) is equal to zero and can be disregarded.18

However, in general, the pseudocovariance (Equation 12.41) is nonzero, and to describe the
second-order statistics of complex signals completely, it is necessary to consider both their
‘proper’ (12.40) and ‘improper’ (12.41) characteristics,19 that is, to ‘augment’ the standard
complex statistics.

We shall now define the properties of statistical stationarity and orthogonality of general
complex signals in light of augmented complex statistics.

Orthogonality of random vectors. Two zero mean complex random vectors z1 and z2 are
uncorrelated (or orthogonal if they are zero mean), if 20

cov(zz, z2) = pcov(z1, z2) = 0 (12.42)

The joint Gaussianity and uncorrelatedness in C therefore imply statistical independence.

Stationarity of complex signals. Complex stationarity, defined in the usual way in terms of
the shift invariance of the statistics of induced random vectors, has already been introduced
in Section 12.3.1 however, for rigour, statistical stationarity in C must be considered both in
terms of the covariance and pseudocovariance functions, as follows:

� A complex signal z(k) is said to be wide sense stationary (WSS) if its mean is constant
and its covariance cz(k1, k2) (Equation 12.40) is only a function of the lag τ = k1 − k2.
Wide sense stationarity does not imply any condition on the pseudocovariance pz(k1, k2)
(12.41).

� A complex signal z(k) is said to be second-order (SO) stationary if it is wide sense
stationary and if its pseudocovariance pz(k1, k2) (Equation 12.41) depends on only the
time lag τ.

Whereas for real valued signals, the concepts of wide sense stationarity and second order
stationarity are equivalent, for complex signals, wide sense stationarity does not imply second
order stationarity.

Since for the generality of complex signals, the covariance and pseudocovariance functions
are not independent, the augmented covariance matrix exhibits a special matrix structure, and
to satisfy the restriction of non-negative definiteness, relationships between the covariance and
pseudocovariance matrices need to be established in both the Fourier and time domain.

18This is the case with the analytic signal of any stationary process, and more generally, for any circular signal, such
as those in communications [237].
19The covariance and pseudocovariance are not arbitrary functions, e.g. cz is non-negative definite and pz is symmetric
[239].
20One may argue that uncorellatedness should be defined only in terms of cov, not pcov. In that case, in C the joint
Gaussianity and uncorrelatedness is not sufficient for statistical independence between z1 and z2.
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Augmented Complex Statistics in the Fourier Domain

It is often convenient to consider second-order statistical properties of a signal in the Fourier
domain, since this provides insight into the properties of power spectra. As has already been
seen, for stationary signals the pseudocorrelation function pz(τ) is symmetric, hence its Fourier
transform

Rz(ν) = F{pz(τ)}
is also symmetric, that is

Rz(ν) = Rz(−ν) (12.43)

whereas the Fourier transform of the covariance function


z(ν) = F{cz(τ)} (12.44)

represents the power spectrum of z(k).
Following the approach from [236, 239], to illustrate the properties of augmented complex

signals in the Fourier domain, consider a 2 × 1 dimensional augmented complex random vector

za(k) = [z(k), z∗(k)]T (12.45)

for which the covariance function is the 2 × 2 dimensional matrix E[za(k)zaH(k − τ)]. The
Fourier transform


z(ν) = F
{

E[za(k)zaH(k − τ)]
}

=
[

z(ν) Rz(ν)

R∗
z (ν) 
z(−ν)

]
(12.46)

is called the spectral matrix of za(k) or spectral covariance matrix, and contains all the infor-
mation necessary for the second-order description of z(k). The spectral covariance matrix is
non-negative definite (NND) [236], hence its diagonal elements and the determinant det(
z(ν))
are non-negative. From (12.46), for Rz(ν) to be the spectral pseudocovariance function of a
complex signal z(k) with power spectrum 
z(ν), due to the symmetric nature of Rz(ν), it has
to satisfy [239]

|Rz(ν)|2 ≤ 
z(ν)
z(−ν) (12.47)

Based on Equation (12.47), the necessary condition for nonstationary complex signals
becomes

|Rz(ν1, ν2)|2 ≤ 
z(ν1, −ν1)
z(ν2, −ν2). (12.48)

Time domain counterparts of relations (12.47) and (12.48) are given below.

Augmented Complex Statistics in the Time Domain

It has already been shown that for a zero mean complex vector z(k) = x(k) + jy(k) ∈ Cn, its
covariance C and pseudocovariance P matrices are given by

C = E[z(k)zH(k)] and P = E[z(k)zT(k)] (12.49)

http://www.it-ebooks.info/


164 Augmented Complex Statistics

Similarly to the analysis of augmented complex signals, we can consider the augmented com-
plex vector21 za(k) = [

zT(k), zH(k)
pseudocovariance matrix can be combined into an augmented covariance matrix, denoted by

]T
(see also Equation 12.21), for which the covariance and

Ca and given by [268]

Ca = cov
(
za(k)

) = E
[
za(k)zaH (k)

]
=

[
C P
P∗ C∗

]
(12.50)

The time domain counterpart of condition (12.47) is therefore that the Schur complement

C∗ − PHC−1P (12.51)

is non-negative definite [238].
The augmented covariance matrixCa provides a complete second order statistical description

of a general complex valued signal, and belongs to a matrix algebra22

W =
{[

h1(t1, t2) h2(t1, t2)

h∗
2(t1, t2) h∗

1(t1, t2)

]}
(12.52)

where h1, h2 : [0, T ]2 → C. The matrix algebra W is closed under addition, multiplication,
and inversion. It is also closed under multiplication with a real scalar, but not with a complex
scalar.

12.4.2 Second-order Complex Circularity

We have already seen that the covariance functions for the random vector z(k) and its rotated
version z(k)ejφ are equal for all φ, however, the pseudocovariance functions for z(k) and
z(k)ejφ are equal only if the pseudocovariance vanishes. Circularity, in terms of the properties
of induced vectors and multispectra, has already been addressed in Section 12.3.2, however,
to define second-order circularity we need to consider properties of both the covariance and
pseudocovariance functions:

� A complex valued random vector z(k) is called second-order circular, proper [219], or
circularly symmetric, if its pseudocovariance matrix P vanishes, that is, the second-order
statistics are completely characterised by the covariance matrix C. Otherwise, vector z(k)
is called noncircular or improper;

� For proper random vectors, the augmented covariance matrix Ca (Equation 12.50) is diag-
onal, or equivalently, the spectral covariance matrix 
z(ν) (Equation 12.46) is diagonal.
Complex valued random vectors z1(k) and z2(k) are called jointly proper (jointly second-
order circular), if the composite random vector having z1(k) and z2(k) as subvectors is
proper [219].

21This is typically the case in adaptive filtering applications where the vector z(k) is the ‘tap input vector’, that is the
segment of signal z(k) in the filter memory.
22For more detail see [268, 271].
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Figure 12.2 Geometric view of circularity via ‘real–imaginary’ scatter plots: (a) circular AR(4) signal;
(b) noncircular chaotic signal; (c) noncircular wind signal

It is important to notice that

� complex Gaussianity is preserved by linear transformations;
� circularity is also preserved by linear transformations;
� in general, complex Gaussianity and orthogonality of two zero mean random signals do

not imply statistical independence, unlike for real valued Gaussian signals.

Complex Circularity: Some Examples

To further illustrate the complex circularity, Figure 12.2 presents the real-imaginary (� − 
)
scatter diagrams for three signals: (a) complex linear autoregressive AR(4) process driven
by complex white Gaussian noise (complex circular); (b) the first two coordinates of the
Ikeda map (noncircular signal); (c) complex wind signal (intermittent and noncircular for the
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Figure 12.3 Circularity via ‘covariance–pseudocovariance’ plots: (a) circular complex white Gaussian
noise (b) circular complex AR(4) process; (b) noncircular complex Ikeda map
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(a) Covariance and pseudocovariance functions for raw complex wind data
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(b) Covariance and pseudocovariance functions for wind data averaged over 10 samples

Figure 12.4 Second-order statistical properties of complex wind data for different wind regimes (‘low’,
‘medium’, ‘high’): (a) illustrates the covariance and pseudocovariance for the original data, whereas (b)
shows statistical properties for data averaged over 10 samples
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(a) Covariance and pseudocovariance functions for wind data averaged over 20 samples
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(b) Covariance and pseudocovariance functions for wind data averaged over 60 samples

Figure 12.5 Second-order statistical properties of complex wind data for different wind regimes (‘low’,
‘medium’, ‘high’): (a) illustrates the covariance and pseudocovariance for data averaged over 20 samples,
whereas (b) shows statistical properties for data averaged over 60 samples
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segment analysed). From the shapes of these signal distributions, the autoregressive signal
clearly exhibits a circularly symmetric distribution, which is not the case for the Ikeda and
wind signals.

The covariance and pseudocovariance of the second-order circular complex white Gaussian
noise and the AR(4) process from Figure 12.2(a) (see also Equation 13.44), together with
those for the noncircular Ikeda map (see Equation 13.46), are illustrated in Figure 12.3. From
Figure 12.3(a), the covariance of the complex WGN is nonzero only for lag m = 0, whereas
the pseudocovariance vanishes. Since the AR(4) process was generated by passing circular
white Gaussian noise though a stable autoregressive linear filter, the covariance function of
such a process is nonzero, whereas the pseudocovariance function vanishes, as shown in Figure
12.3(b). This conforms with the analysis of second-order circular processes and illustrates that
circularity is preserved under linear transformations; the small values of the pseudocovariance
in the bottom panel of Figure 12.3(b) and Figure 12.3(a) are due to the artifacts caused by the
finite lengths of the AR(4) process and the driving white Gaussian noise. On the other hand, the
complex Ikeda map is strongly noncircular, hence both the covariance and pseudocovariance
functions should be taken into account when modelling such a process. Indeed, Figure 12.3(c)
shows that the pseudocovariance function for the complex Ikeda signal does not vanish.

To further illustrate the second-order circularity properties for a ‘complex by conve-
nience of representation’ wind dataset (see also Figure 13.5a), Figure 12.4 shows the co-
variance and pseudocovariance functions for three wind regimes with different dynamics
(‘low’, ‘medium’, and ‘high’) for the original data and data averaged over 10 samples;
Figure 12.5 shows the covariance and pseudocovariance functions for data averaged over 20
and 60 samples. Observe that the larger the dynamical changes in the data, the more emphasised
the pseudocovariance.

Properties, related to their second-order circularity, of some complex valued signals commonly
encountered in practical applications are listed below (for further reading see [269]).

� Signal z(t) ∈ Cn is second-order circular if its pseudocovariance pz(k1, k2) = 0; as a
consequence, real valued signals cannot be circular.

� The equivalent lowpass signal (see Figure 2.4(b)) corresponding to a wide sense stationary
real signal is always proper.

� Since thermal noise is usually assumed to be wide sense stationary, the equivalent lowpass
(complex valued) representation of such noise is proper.

� In general, nonstationary complex random signals are improper, and therefore analytic
signals constructed from nonstationary real signals are also improper.

� Most signals made complex by convenience of representation are improper (radar, sonar,
beamforming), together with some artificial signals, such as in the case of Binary Phase
Shift Keying (BPSK) modulation.
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Widely Linear Estimation
and Augmented CLMS (ACLMS)

It has been shown in Chapter 12 that the full-second order statistical description of a general
complex valued process can be obtained only by using the augmented complex statistics, that
is, by considering both the covariance and pseudocovariance functions. It is therefore natural
to ask how much we can gain in terms of the performance of statistical signal processing
algorithms by doing so. To that end, this chapter addresses linear estimation for both circular
and noncircular (proper and improper) complex signals; this is achieved based on a finite
impulse response (FIR) system model and for both the second-order regression modelling
with fixed coefficients (autoregressive modelling) and for linear adaptive filters for which the
filter coefficients are adaptive. Based mainly on the work by Picinbono [239, 240] and Schreier
and Scharf [268], Sections 13.1 – 13.3 show that for general complex signals (noncircular),
the optimal linear model is the ‘widely linear’ (WL) model, which is linear both in z and z∗.
Next, based on the widely linear model, for adaptive filtering of general complex signals, the
augmented complex least mean square (ACLMS) algorithm is derived, and by comparing the
performances of ACLMS and CLMS, we highlight how much is lost by treating improper
signals in the conventional way.

13.1 Minimum Mean Square Error (MMSE) Estimation in C

The estimation of one signal from another is at the very core of statistical signal processing, and
is illustrated in Figure 13.1, where {z(k)} is the input signal, z(k) = [z(k − 1), . . . , z(k − N)]T

is the regressor vector in the filter memory, d(k) is the teaching signal, e(k) is the instantaneous
output error, y(k) is the filter output1, and h = [h1, . . . , hN ]T ∈ CN×1 is the vector of filter
coefficients.

1For prediction applications d(k) = z(k) and y(k) = ẑL(k), where the subscript ‘L’ refers to the standard
linear estimator.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
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Coefficient vector

(a) Standard linear filtering model

(k)

z

y(k)=

(k)
Σ

*.)(

WLẑh
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Figure 13.1 Complex linear estimators

A solution that minimises the mean squared (MS) error is linear regression [110, 113]

ẑL(k) = E[y(k)|z(k)] ⇔ y(k) = hTz(k) (13.1)

which estimates a scalar random variable y (real or complex) from an observation vector z(k),
and is linear in z if both y and z are zero mean, and jointly normal. To perform this linear
regression, we need to decide on the order N of the system model (typically a finite impulse
response (FIR) system), and also on how to measure best fit of the data (error criterion).
The estimator chooses those values of h which make z(k) closest to d(k), where closeness is
measured by an error criterion, which should be reasonably realistic for the task in hand and
it should be analytically tractable. Depending on the character of estimation, the commonly
used error criteria are:

� Deterministic error criterion, given by

J = min
h

∑
k

|e(k)|p =
∑

k

(
d(k) − y(k)

)p (13.2)

which for p = 2 is known as the Least Squares (LS) problem, and its solution is known
as the Yule–Walker solution (the basis for autoregressive (AR) modelling in C), given by
[33]

h = R−1r (13.3)

whereR is the input correlation matrix and r = E[z(k)z∗(k)].
� Stochastic error criterion, given by

J = min
h

E{|e(k)|p} (13.4)
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For p = 2 this optimisation problem is known as the Wiener filtering problem, for which
the solution is given by Wiener–Hopf equations2

h = R−1
z,zrd,z (13.5)

where Rz,z is the tap input correlation matrix and rd,z is the cross-correlation vector
between the teaching signal and the tap input.

From (13.1) and (13.5), the output of the linear estimator is given by

y(k) = ẑL(k) =
(
R−1
z,zrd,z

)T
z(k) (13.6)

A stochastic gradient based iterative solution to this problem, which bypasses the require-
ment of piece-wise stationarity of the signal is the complex least mean square (CLMS)
algorithm [307].

13.1.1 Widely Linear Modelling in C

As shown in Chapter 12, for complete second-order statistical description of general complex
signals we need to consider the statistics of the augmented input vector (in the prediction
setting)

za(k) = [
z(k − 1), . . . , z(k − N), z∗(k − 1), . . . , z∗(k − N)

]T = [
zT(k), zH(k)

]T
(13.7)

Thus, a linear estimator in C should be linear in both z and z∗, that is

ẑWL(k) = y(k) = hTz(k) + gTz∗(k) = qTza(k) (13.8)

where h and g are complex vectors of filter coefficients and q = [
hT,gT

]T
. Statistical

moments of random variable y(k) in Equation (13.8) are defined by the corresponding mo-
ments of the augmented input za(k), and the signal model (Equation 13.8) is referred to as a
wide sense linear or widely linear (WL) estimator [239, 240, 271], depicted in Figure 13.1(b).

From Equations (13.6) and (13.8), the optimum widely linear coefficient vector is given by

q = [
hT,gT]T = C−1

a rd,za (13.9)

where Ca is the augmented covariance matrix given in Equation (12.50) and rd,za is the cross-
correlation vector between the augmented input za(k) and the teaching signal d(k). The widely
linear MMSE solution can now be expressed as

y(k) = ẑWL(k) = qTza(k) =
(
C−1

a rd,za

)T
za(k) =

⎛
⎝[

C P
P∗ C∗

]−1 [
Cd,z

Pd,z

]⎞
⎠

T [
z(k)

z∗(k)

]

(13.10)

2To indicate the block nature of the solution, a piece-wise stationary segment of the data is considered.
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The widely linear signal model therefore utilises information from both the covariance C and
pseudocovariance P matrices (given in Equation 12.49) and from ordinary crosscorrelations
Cd,z and Pd,z, and as such it is suitable for the estimation of general complex signals. In the
special case when the complementary statistics vanish, that is P = 0 and Pd,z = 0, the widely
linear estimator (Equation 13.8) degenerates into the standard linear estimator (Equation 13.1).

Practical applications of wide sense linear filters are only emerging, this is due to the fact
that almost all existing applications assume circularity (explicitly or implicitly), however,
this assumption cannot be generally accepted. A stochastic gradient based iterative solution
to the widely linear estimation problem, which caters for nonstationary signals is called the
augmented CLMS (ACLMS) and is introduced in Section 13.4.

13.2 Complex White Noise

Central to the autoregressive modelling and prediction is the concept of white noise;3 a wide
sense stationary signal z(k) is said to be white if its power spectrum �(ν) is constant, or equiv-
alently, if its covariance function cz is a Dirac delta function, that is (see also Equation 12.44)

cz(m) = czδ(m) ⇔ �z(ν) = const

The concept of white noise is inherited from the analysis of real random variables, however, the
fact that the power spectrum of a wide sense stationary white noise is constant does not imply
any constraint on the pseudocovariance4 pz or spectral pseudocovariance Rz(ν) = F{pz} (see
also Equation 12.43).

It has been shown in Section 12.4.1 that spectral covariance �z(ν) and spectral pseudoco-
variance Rz(ν) of a second-order stationary complex signal z need to satisfy

�z(ν) ≥ 0

Rz(ν) = Rz(−ν)

|Rz(ν)|2 ≤ �z(ν)�z(−ν) (13.11)

In other words, for a second-order stationary white noise signal we have [239]

cz(m) = czδ(m)

|Rz(ν)|2 ≤ �z(ν)�z(−ν) = c2
z (13.12)

It is often implicitly assumed that the spectral pseudocovariance function Rz(ν) of a second-
order white signal vanishes, however, this would only mean that such white signal is circular
[239].

� A second-order circular white noise signal is characterised by a constant power spectrum
and vanishing spectral pseudocovariance function, that is, �z(ν) = const and Rz(ν) = 0.
The real and imaginary parts of circular white noise are white and uncorrelated.

3Whiteness, in terms of multicorrelations, has already been introduced in Section 12.3.1.
4It can even be nonstationary.
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Since the concept of whiteness is intimately related with the correlation structure of a
signal (only instantaneous relationships are allowed, that is, there is no memory in the
system), whiteness can also be defined in the time domain. One special case of a second-
order white signal, which is a direct extension of the real valued white noise, is called
doubly white noise.

� A second-order white signal is called doubly white, if

cz(m) = czδ(m)

pz(m) = pzδ(m) (13.13)

where the only condition on the pseudocovariance function is |pz| ≤ cz. The spectral
covariance and pseudocovariance functions of doubly white noise are then given by [239]

�w(ν) = cw and Rw(ν) = pw (13.14)

13.3 Autoregressive Modelling in C

The task of autoregressive (AR) modelling is, given a set of data, to find a regression of order p

which approximates the given dataset. The standard autoregressive model in C takes the same
form as the AR model for real valued signals, that is

z(k) = h1z(k − 1) + · · · + hpz(k − p) + w(k) = hTz(k), h ∈ CN×1 (13.15)

where {z(k)} is the random process to be modelled and {w(k)} is white Gaussian noise (also
called the driving noise),h = [

h1, . . . , hp

]T and z = [
z(k − 1), . . . , z(k − p)

]T. If the driving
noise is assumed to be doubly white, we need to find the coefficient vectorh and the covariance
and pseudocovariance of the noise which provide best fit to the data in the minimum mean
square error sense. Equivalently, in terms of the transfer function H(ν), we have (for more
detail see [239])

|H(ν)|2 = �(ν)

pwH(ν)H(−ν) = R(ν) ⇔ |R(ν)|2 = |pw|2�(ν)�(−ν) (13.16)

In autoregressive modelling, it is usually assumed that the driving noise has zero mean and unit
variance, and we can assume cw = 1, which then implies5 |pw| ≤ 1. Then, linear autoregressive
modelling (based on the deterministic error criterion, Equation 13.2) has a solution only if both
Equations (13.11) and (13.16) are satisfied. This happens, for instance, when R(ν) = 0 and
pw = 0, that is, when the driving noise is white and second-order circular, which is the usual
assumption in standard statistical signal processing literature [110, 113]. In this case, the
solution has the same form as in the real case [33], that is

h = R−1r (13.17)

whereR = E
[
z(k)zH(k)

]
and r = E

[
z(k)z∗(k)

]
.

5The pseudocovariance pw can even be a complex quantity, hence the modulus operator.
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Thus, a general complex signal cannot be modelled by a linear filter driven by doubly white
noise.

13.3.1 Widely Linear Autoregressive Modelling in C

The widely linear autoregressive (WLAR) model in C is linear in both z and z∗, that is

z(k) =
p∑

i=1

hiz(k − i) +
p∑

i=1

giz
∗(k − i) + h0w(k) + g0w

∗(k)

= hTz(k) + gTz∗(k) + [h0, g0]wa(k) (13.18)

and has more degrees of freedom and hence potentially improved performance over the standard
linear model. The gain in performance, however, depends on the degree of circularity of the
signal at hand. Autoregressive modelling is intimately related to prediction, that is (since
E[w(k)] = 0)

ẑWL(k) = E
[
hTz(k) + gTz∗(k) + [h0, g0]wa(k)

]

ˆ

= hTz(k) + gTz∗(k) = qTza(k) (13.19)

When the driving noise w is circular, the widely linear model has no advantage over the standard
linear model, whereas for noncircular signals we expect improvement in the performance
proportional to the degree of noncircularity within the signal.

13.3.2 Quantifying Benefits of Widely Linear Estimation

The goal of widely linear estimation is to find coefficient vectors h and g that minimise the
mean squared error E[|d(k) − y(k)|2] of the regression

y = hTz+ gTz∗ (13.20)

Following the approach from [240], to find the solution, apply the principle of orthogonality
to obtain6

E[ŷ∗z] = E[y∗z], and E[ŷ∗z∗] = E[y∗z∗] (13.21)

and replace ŷ in (13.21) with its widely linear estimate (13.20), to yield7

Ch+ Pg = u (13.22)

P∗h+ C∗g = v∗ (13.23)

where C and P are defined in (12.49), u = E[y∗z], and v = E[yz].

6We have (y − ŷ) ⊥ z and (y − ŷ) ⊥ z∗, and as a consequence the orthogonality can be expressed in terms of expec-
tations, as given in Equation (13.21).
7For convenience of the derivation, in Equations (13.22) and (13.28) the expression z(k) = hTz(k) + gTz∗(k) is
replaced by z(k) = hHz(k) + gHz∗(k). This is a deterministic transformation and does not affect the generality of the
results.
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From Equations (13.22) and (13.23), the coefficient vectors that minimise the MSE of the
widely linear model (Equation 13.8) are given by

h = [C − PC−1∗P∗]−1[u− PC−1∗
v∗] (13.24)

g = [C∗ − P∗C−1P]−1[v∗ − P∗C−1u] (13.25)

and the corresponding widely linear mean square error (WLMSE) e2
WL is given by

e2
WL = E[|y|2] − (hHu+ gHv∗) (13.26)

whereas the mean square error (LMSE) e2
L obtained with standard linear estimation is given

by

e2
L = E[|y|2] − uHC−1u (13.27)

The advantage of widely linear estimation over standard linear estimation can be illustrated by
comparing the corresponding mean square estimation errors δe2 = e2

L − e2
WL, that is

δe2 = [v∗ − P∗C−1u]H[C∗ − P∗C−1P]−1[v∗ − P∗C−1u] (13.28)

Due to the positive definiteness of the term [C∗ − P∗C−1P] from Equation (13.28)

δe2 is always non-negative;

δe2 = 0 only when [v∗ − P∗C−1u] = 0.
that is, widely linear estimation outperforms standard linear estimation for general complex
signals; the two models produce identical results for circular signals.

Exploitation of widely linear modelling promises several benefits, including:

� identical performance for circular signals and improved performance for noncircular
signals;

� in blind source separation we may be able to deal with more sources than observations;
� improved signal recovery in communications modulation schemes (BPSK, GMSK);
� different and more realistic bounds on minimum variance unbiased (MVU) estimation;
� improved ‘direction of arrival’ estimation in augmented array signal processing;
� the analysis of augmented signal processing algorithms benefits from special matrix struc-

tures which do not exist in standard complex valued signal processing.

13.4 The Augmented Complex LMS (ACLMS) Algorithm

We now consider the extent to which widely linear mean square estimation has advantages over
standard linear mean square estimation in the context of linear adaptive prediction. To answer
this question, consider a widely linear adaptive prediction model for which the tap input z(k)
to a finite impulse response filter of length N at the time instant k is given by

z(k) = [z(k − 1), z(k − 2), . . . , z(k − N)]T (13.29)
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Within widely linear regression, the augmented tap input delay vector za(k) = [zT(k),
zH(k)]T is ‘widely linearly’ combined with the adjustable filter weights h(k) and g(k) to
form the output8

y(k) =
N∑

n=1

[
hn(k)z(k − n) + gn(k)z∗(k − n)

] ⇐⇒ y(k) = hT(k)z(k) + gT(k)z∗(k)

(13.30)

where h(k) and g(k) are the N × 1 column vectors comprising the filter weights at time instant
k, and y(k) is the estimate of the desired signal d(k).

For adaptive filtering applications,9 similarly to the derivation of the standard complex least
mean square (CLMS) algorithms, we need to minimise the cost function [113, 307]

J(k) = 1
2 |e(k)|2 = 1

2

[
e2
r (k) + e2

i (k)
]
, with e(k) = d(k) − y(k) (13.31)

where er(k) and ei(k) are the respectively the real and imaginary part of the instantaneous
output error e(k). For simplicity, consider a generic weight update in the form10

�wn(k) = −μ∇wnJ(k) = −μ
∂J(k)

∂wn(k)
= −μ

(
∂J(k)

∂wr
n(k)

+ j
∂J(k)

∂wi
n(k)

)
(13.32)

where wn(k) = wr
n(k) + jwi

n(k) is a complex weight and μ is the learning rate, a small positive
constant. The real and imaginary parts of the gradient ∇wnJ(k) can be expressed respectively
as

∂J(k)

∂wr
n(k)

= er(k)
∂er(k)

∂wr
n(k)

+ ei(k)
∂ei(k)

∂wr
n(k)

= −er(k)
∂yr(k)

∂wr
n(k)

− ei(k)
∂yi(k)

∂wr
n(k)

(13.33)

∂J(k)

∂wi
n(k)

= er(k)
∂er(k)

∂wi
n(k)

+ ei(k)
∂ei(k)

∂wi
n(k)

= −er(k)
∂yr(k)

∂wi
n(k)

− ei(k)
∂yi(k)

∂wi
n(k)

. (13.34)

Similarly to Equations (13.33) and (13.34), the error gradients with respect to the elements of
the weight vectors h(k) and g(k) of the widely linear variant of CLMS can be calculated as

8For consistent notation, we follow the original derivation of the complex LMS from [307].
9The widely linear LMS (WLLMS) and widely linear blind LMS (WLBLMS) algorithms for multiple access inter-
ference suppression in DS-CDMA communications were derived in [262].
10We here provide a step by step derivation of ACLMS. The CR calculus (see Chapter 5) will be used in Chapter 15
to simplify the derivations for feedback and nonlinear architectures.
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∂J(k)

∂hr
n(k)

= −er(k)
∂yr(k)

∂hr
n(k)

− ei(k)
∂yi(k)

∂hr
n(k)

= −er(k)zr(k − n) − ei(k)zi(k − n) (13.35)

∂J(k)

∂hi
n(k)

= −er(k)
∂yr(k)

∂hi
n(k)

− ei(k)
∂yi(k)

∂hi
n(k)

= er(k)zi(k − n) − ei(k)zr(k − n) (13.36)

∂J(k)

∂gr
n(k)

= −er(k)
∂yr(k)

∂gr
n(k)

− ei(k)
∂yi(k)

∂gr
n(k)

= −er(k)zr(k − n) + ei(k)zi(k − n) (13.37)

∂J(k)

∂gi
n(k)

= −er(k)
∂yr(k)

∂gi
n(k)

− ei(k)
∂yi(k)

∂gi
n(k)

= −er(k)zi(k − n) − ei(k)zr(k − n) (13.38)

giving the updates

�hn(k) = −μ
∂J(k)

∂hn(k)
= −μ

(
∂J(k)

∂hr
n(k)

+ j
∂J(k)

∂hi
n(k)

)

= μ
[(

er(k)zr(k − n) + ei(k)zi(k − n)
) + j

(
ei(k)zr(k − n) − er(k)zi(k − n)

)]
= μe(k)z∗(k) (13.39)

�gn(k) = −μ
∂J(k)

∂gn(k)
= −μ

(
∂J(k)

∂gr
n(k)

+ j
∂J(k)

∂gi
n(k)

)

= μ
[(

er(k)zr(k − n) − ei(k)zi(k − n)
) + j

(
er(k)zi(k − n) + ei(k)zr(k − n)

)]
= μe(k)z(k) (13.40)

These weight updates can we written in vector form as

h(k + 1) = h(k) + μe(k)z∗(k) (13.41)

g(k + 1) = g(k) + μe(k)z(k) (13.42)

To further simplify the notation, we can introduce an augmented weight vector wa(k) =[
hT(k),gT(k)

]T
, and rewrite the ACLMS in its compact form as [132, 194]

wa(k + 1) = wa(k) + μe(k)za∗(k) (13.43)

where the ‘augmented’ instantaneous error11 is e(k) = d(k) − zaT(k)wa(k). This completes
the derivation of the augmented CLMS (ACLMS) algorithm, a widely linear extension of
standard CLMS.

The ACLMS algorithm has the same generic form as the standard CLMS, it is simple to
implement, yet it takes into account the full available second-order statistics of complex valued
inputs (noncircularity).

11The output error itself is not augmented, but it is calculated based on the linear combination of the augmented input
and weight vectors.

http://www.it-ebooks.info/


178 Widely Linear Estimation and Augmented CLMS (ACLMS)

13.5 Adaptive Prediction Based on ACLMS

Simulations were performed for a 4-tap (4 taps of h and 4 taps of g) FIR filter trained with
ACLMS and the performances were compared to those of standard CLMS for a range of both
synthetic and real world data, denoted by DS1 – DS4. The synthetic benchmark signals were
a linear circular complex AR(4) process and two noncircular chaotic series,12 whereas wind
was used as a real world dataset.

DS1. Linear AR(4) process (‘AR4’), given by [180]

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k) (13.44)

where n(k) is a complex, white Gaussian noise with variance σ2 = 1.
DS2. Wind (‘wind’), containing wind speed and direction data averaged over one minute.13

DS3. Lorenz Attractor (‘lorenz’), is a nonlinear, three-dimensional, deterministic system given
by the coupled differential equations [173]

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz (13.45)

where (typically) σ = 10, β = 8/3, ρ = 28.
DS4. Ikeda Map (‘ikeda’), described by [104]

x(k + 1) = 1 + u (x(k) cos[t(k)] − y(k) sin[t(k)])

y(k + 1) = u (x(k) sin[t(k)] + y(k) cos[t(k)]) (13.46)

where u is a parameter (typically u = 0.8) and

t(k) = 0.4 − 6

1 + x2(k) + y2(k)
. (13.47)

Both batch14 and online15 learning scenarios were considered, and the standard prediction gain

Rp = 10 log
σ2

y

σ2
e

was used as a quantitative measure of performance.

Batch learning scenario. Learning curves for the batch learning scenario are shown in the
left-hand part of Figure 13.2. The dotted lines correspond to the learning curves of the CLMS
algorithm, whereas the solid lines correspond to those of the ACLMS algorithm. For ‘AR4’

12The two chaotic time series are generated by coupled difference equations, and were made complex by ‘convenience
of representation’, that is, by taking the x and y components from Equations (13.45) and (13.46) and building a complex
signal z(k) = x(k) + jy(k).
13The data used are from AWOS (Automated Weather Observing System) sensors obtained from the Iowa Department
of Transportation. The Washington (AWG) station was chosen, and the dataset analysed corresponds to the wind speed
and direction observed in January 2004. This dataset is publicly available from http://mesonet.agron.iastate.edu/
request/awos/1min.php.
14For 1000 epochs with μ = 0.001 and for 1000 data samples; for more detail on batch learning see Appendix G.
15With μ = 0.01 and for 1000 samples of DS1 – DS4.
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signal (strictly circular) and ‘wind’ signal (almost circular for the given averaging interval and
data length), there was almost no difference in performances of CLMS and ACLMS. A com-
pletely different situation occurred for the strongly noncircular ‘lorenz’ (see also Figure 12.2)
and ‘ikeda’ signals. After the training, the prediction gains for the ACLMS algorithm were
respectively about 3.36 (for ‘lorenz’) and 2.24 (for ‘ikeda’) times bigger than those of the cor-
responding CLMS algorithm. These results are perfectly in line with the background theory,
that is, for noncircular signals, the minimum mean square error solution is based on augmented
complex statistics.

Online learning scenario. Learning curves for adaptive one step ahead prediction are shown
in Figure 13.2 (right), where the solid line corresponds to the real part of the original ‘lorenz’
signal, the dotted line represents the prediction based on CLMS, and the dashed line corresponds
to the ACLMS based prediction. For the same filter setting, ACLMS was able to track the
desired signal more accurately than CLMS.

Figure 13.2 also shows that the more noncircular the signal in question, the greater
the performance advantage of ACLMS over CLMS, which conforms with the analysis in
Section 13.3.2.
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Figure 13.2 Comparison of the ACLMS and standard CLMS. Left: Prediction gains Rp for signals
DS1 – DS4. Right: Tracking performance for the Lorenz signal; solid line represents the original signal,
dotted line the CLMS based prediction, and dashed line the ACLMS based prediction
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(b) Prediction using ACLMS

Figure 13.3 The original signal (solid line) and one step ahead prediction (dashed line)

13.5.1 Wind Forecasting Using Augmented Statistics

In the first experiment, adaptive one step ahead prediction of the original wind signal16

was performed for a N = 10 tap FIR filter trained with CLMS and ACLMS. The time wave-
forms of the original and predicted signal are shown in Figure 13.3, indicating that the ACLMS
was better suited to the statistics of the wind signal considered. A segment from Figure 13.3
is enlarged in Figure 13.4, showing the ACLMS being able to track the changes in wind
dynamics more accurately than CLMS.
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(b) Prediction using ACLMS

Figure 13.4 The original signal (solid line) and one step ahead prediction (dashed line)

16IOWA wind data averaged over 3 hours (see Footnote 13), which facilitates Gaussianity and widely linear modelling.
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Figure 13.5 Performance of CLMS and ACLMS for different wind regimes. Thick lines correspond to
ACLMS and thin lines to CLMS

In the second experiment, tracking performances of CLMS and ACLMS were investigated
over a long period of time. Figure 13.5 shows the modulus of complex wind measurements
recorded over one day at a sampling frequency of 50 Hz, and the performances of CLMS and
ACLMS for the wind regimes denoted (according to the wind dynamics) by ‘low’, ‘medium’
and ‘high’. The prediction was performed on the raw data, and also on the data averaged over
2 and 10 seconds, and in all the cases, due to the noncircular nature of the considered wind
data, the widely linear ACLMS outperformed standard CLMS.

To summarise:

� For nonlinear and noncircular signals (chaotic Lorenz and Ikeda maps), and signals with
a large variation in the dynamics (‘high’ wind from Figure 13.5), the augmented statistics
based modelling exhibited significant advantages over standard modelling for both the
batch and online learning paradigms;

� For signals with relatively mild dynamics (linear ‘AR4’, heavily averaged wind from
Figure 13.3, and the ‘medium’ and ‘low’ regions from Figure 13.5), the widely linear
model outperformed the standard complex model; the improvement in the performance,
however, varied depending on the degree of circularity within the signal;

� In practical applications, the pseudocovariance matrix is estimated from short segments
of data in the filter memory and in the presence of noise; such estimate will be nonzero
even for circular sources, and widely linear models are a natural choice.

It is therefore natural to ask whether it is possible to design a rigorous statistical testing
framework which would reveal the second-order circularity properties of the ‘complex by
convenience’ class of signals, a subject of Chapter 18.
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14
Duality Between Complex Valued
and Real Valued Filters

The duality between the fields of real numbers and complex numbers is usually addressed in
terms of the relation between a complex number z = x + jy and a number (x, y) ∈ R2, which
can be expressed as

z =
[

1 0

0 j

] [
x

y

]
(14.1)

Similarly, the mapping between a ‘composite’ real variable w = (x, y) ∈ R2 and the complex
variable z and its complex conjugate z∗ can be expressed as[

z

z∗

]
= J

[
x

y

]
=

[
1 j

1 −j

] [
x

y

]
⇔

[
x

y

]
= 1

2

[
1 1

−j j

] [
z

z∗

]
(14.2)

These mappings can help to establish relations between the statistics in R2 and C. A deeper
insight into this problem is given in Chapter 12, where some unique properties of complex
probability distributions (such as complex circularity) are highlighted, whereas the benefits
of signal processing in the complex domain are summarised in Chapter 2. Chapter 13 intro-
duces learning algorithms for widely linear adaptive filters which are suitable for processing
noncircular signals; one such example is the augmented complex least mean square (ACLMS)
algorithm.

Since the mappings (Equations 14.1 and 14.2) establish a one to one correspondence between
the points in C and R2, it is natural to consider the duality between learning algorithms for
the corresponding adaptive filters in this context. In this chapter, an insight into the duality
between adaptive filters in R2 and C is provided based on linear finite impulse response (FIR)
filters trained by dual channel real least mean square (DCRLMS), complex least mean square
(CLMS), and ACLMS algorithms. This is supported by simulation results for both circular
and noncircular benchmark and real world data.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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ˆ

14.1 A Dual Channel Real Valued Adaptive Filter

Consider a dual channel real adaptive filter (DCRAF) in the prediction setting, shown in
Figure 14.1. The operation of such a filter is described by (for more detail see [23])

x̂(k) = aT(k)x(k) + bT(k)y(k)

y(k) = cT(k)x(k) + dT(k)y(k) (14.3)

where a,b, c,d ∈ RL×1 are column vectors of filter coefficients, L denotes the filter length,
x̂(k) and ŷ(k) are the predictions of channels x(k) and y(k) and

x(k) = [x(k − 1), . . . , x(k − L)]T

y(k) = [
y(k − 1), . . . , y(k − L)

]T

are the past samples from the x and y channel contained in the filter memory. In the predic-
tion setting, the teaching signals for the x and y channel are respectively dx(k) = x(k) and
dy(k) = y(k).

The output errors at the x and y channel of the DCRAF are defined as

ex(k) = dx(k) − x̂(k) = x(k) − aT(k)x(k) − bT(k)y(k)

ey(k) = dy(k) − ŷ(k) = y(k) − cT(k)x(k) − dT(k)y(k) (14.4)

whereas the cost function used for the calculation of filter coefficient updates is given by

J = J (a,b, c,d) = 1

2

(
e2
x(k) + e2

y(k)
)

(14.5)

y

__ ΣΣ
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Figure 14.1 A dual channel real valued adaptive filter (DCRAF). Solid lines illustrate the signal flow
graph; broken lines illustrate signal flow in the filter coefficient update. The filter outputs are generated
based on a linear combination of the x and y channel

http://www.it-ebooks.info/


A Dual Channel Real Valued Adaptive Filter 185

j

z

_

_

Σ
^

Coefficient vector

Coefficient vector

Re

Im

x(k)

y(k)

wx

yw

z(k)

Σ

Σ
d

x

(k)y

d (k)

e

e

x

y(k)

(k)

x(k)
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Figure 14.2 A dual univariate real valued adaptive filter (DUAF) and a widely linear complex adaptive
filter (WLCAF). Solid lines illustrate the signal flow graph; broken lines illustrate signal flow in the filter
coefficient update

Stochastic gradient updates for the coefficient vectors from (14.3) now become1

a(k + 1) = a(k) − μa∇Ja|a=a(k) b(k + 1) = b(k) − μb∇Jb|b=b(k)

c(k + 1) = c(k) − μc∇Jc|c=c(k) d(k + 1) = d(k) − μd∇Jd|d=d(k) (14.6)

Since neither x(k) nor y(k) are generated through the filter, the past samples from channels
x and y contained in the filter memory do not depend on the filter coefficients (similar to the
equation error model for feedback filters [190]). With this in mind, coefficient updates of the
dual channel real LMS (DCRLMS) algorithm are calculated similarly to the standard LMS
and are given by2

a(k + 1) = a(k) + μex(k)x(k)

b(k + 1) = b(k) + μex(k)y(k)

c(k + 1) = c(k) + μey(k)x(k)

d(k + 1) = d(k) + μey(k)y(k) (14.7)

A comparison with a rather simplistic dual univariate approach, shown in Figure 14.2(a) (see
also Chapter 6) and described by

x̂(k) = wT
x (k)x(k) ŷ(k) = wT

y (k)y(k)

ex(k) = dx(k) − x̂(k) ey(k) = dy(k) − ŷ(k)

wx(k + 1) = wx(k) + μex(k)x(k)

wy(k + 1) = wy(k) + μey(k)y(k) (14.8)

1Stepsizes μa, μb, μc, μd correspond to the updates of the coefficient vectors a(k),b(k), c(k),d(k).
2For convenience, μa = μb = μc = μd = μ. Alternatively, we can have different learning rates associated with errors
ex(k) and ey(k), that is μx = μa = μb and μy = μc = μd .
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shows that, similarly to complex adaptive filters,3 the dual channel real adaptive filter from
Figure 14.1 combines the information from both the x and y channels in order to produce filter
output, whereas the dual univariate adaptive filter processes the real and imaginary channel
independently.

The dual univariate LMS algorithm from (14.8) therefore performs adequately only if the
real and imaginary parts of a complex process are not correlated (see Chapter 12).

14.2 Duality Between Real and Complex Valued Filters

To compare the operation of adaptive filters inR2 andC, we shall first rewrite the mathematical
description of the standard complex valued adaptive filter and widely linear complex valued
adaptive filter so as to have a form similar to that of DCRAF from Equation (14.3). This is
then followed by a comparison of the corresponding learning algorithms.

14.2.1 Operation of Standard Complex Adaptive Filters

The output of a complex adaptive FIR filter is given by

ẑ(k) = hT(k)z(k), z(k) = [z(k − 1), . . . , z(k − L)]T = x(k) + jy(k) (14.9)

or in an expanded form as

ˆx̂(k) + jy(k) = (
hT

r (k) + jhT
i (k)

)(
x(k) + jy(k)

)
or

ˆ

x̂(k) = hT
r (k)x(k) − hT

i (k)y(k)

y(k) = hT
i (k)x(k) + hT

r (k)y(k) (14.10)

where h ∈ CL×1 is a column vector of filter coefficients. A comparison with the DCRAF from
Figure 14.1 and Equation (14.3) shows that the outputs of the two filters are equivalent for

a(k) = hr(k) b(k) = −hi(k)

c(k) = hi(k) d(k) = hr(k) (14.11)

that is, for fixed coefficient vectors, the standard complex valued filter can be considered a
constrained version of the dual channel real filter.

In order to compare the dynamics of the corresponding weight updates, we shall cast the
standard complex least mean square algorithm, given by [307]

h(k + 1) = h(k) + μe(k)z∗(k) (14.12)

3The widely linear adaptive filter is shown in Figure 14.2(b), it simplifies into a standard complex valued filter for
g = 0, see also Chapter 12.
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into the same form as the DCRLMS (Equation 14.7), that is (for convenience denote e(k) =
er(k) + jei(k) = ex(k) + jey(k))

hr(k + 1) = hr(k) + μ
[
ex(k)x(k) + ey(k)y(k)

]
hi(k + 1) = hi(k) + μ

[
ey(k)x(k) − ex(k)y(k)

]
(14.13)

A comparison between Equations (14.13) and (14.7) shows that, unlike the DCRLMS, the
real and imaginary parts of the filter coefficient vector (hr(k) and hi(k)) are updated based
on both the errors from the x and y channels and the tap inputs x(k) and y(k). The complex
least mean square and the dual channel real least mean square are therefore, in general, totally
different [322]. However, for a doubly white circular input, the complex correlation matrix
is equal to the sum of correlation matrices of the real and imaginary part of the complex
input. Hence, its eigenvalues are twice the eigenvalues of the correlation matrix of the real (or
imaginary) part and the CLMS and DCRLMS converge to the same solution, with the CLMS
converging twice faster.

14.2.2 Operation of Widely Linear Complex Filters

Widely linear estimators are introduced with the aim to utilise complete second-order statistical
information within the signal in hand (see Chapter 13). To achieve this, a widely linear complex
adaptive filter (WLCAF) from Figure 14.2(b) should be linear in both z and z∗, that is

ẑ(k) = hT(k)z(k) + gT(k)z∗(k) = qT(k)za(k) (14.14)

where the so-called augmented input vector is given by

za(k) = [
z(k − 1), . . . , z(k − L), z∗(k − 1), . . . , z∗(k − L)

]T = [
zT(k), zH(k)

]T
(14.15)

whereas h(k) ∈ CL×1 and g(k) ∈ CL×1 are vectors of filter coefficients, and q(k) =[
hT (k),gT (k)

]T
.

To compare the outputs of the widely linear complex filter and the dual channel real adaptive
filter, rewrite Equation (13.8) to have the same form as Equation (14.3), to give

x̂(k) = (
hr(k) + gr(k)︸ ︷︷ ︸

a(k)

)T
x(k) + (

gi(k) − hi(k)︸ ︷︷ ︸
b(k)

)T
y(k)

ŷ(k) = (
hi(k) + gi(k)︸ ︷︷ ︸

c(k)

)T
x(k) + (

hr(k) − gr(k)︸ ︷︷ ︸
d(k)

)T
y(k) (14.16)

that is, the conditions for the outputs of the corresponding filters to be identical.
The weight updates for the ACLMS algorithm (see Chapter 13) are given by

h(k + 1) = h(k) + μhe(k)z∗(k)

g(k + 1) = g(k) + μge(k)z(k) (14.17)
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To compare the updates of the augmented complex least mean square and the dual channel
real least mean square algorithms, rewrite the output error of the widely linear filter e(k) =
z(k) − ẑ(k) = er(k) + jei(k) = ex(k) + jey(k) as

ex(k) = er(k) = x(k) − x̂(k)

ey(k) = ei(k) = y(k) − ŷ(k) (14.18)

For μh = μg = μ, the ACLMS update can be cast into the same form as the updates for
DCRLMS (Equation 14.7), to give

hr(k + 1) = hr(k) + μ
[
ex(k)x(k) + ey(k)y(k)

]
hi(k + 1) = hi(k) + μ

[
ey(k)x(k) − ex(k)y(k)

]
gr(k + 1) = gr(k) + μ

[
ex(k)x(k) − ey(k)y(k)

]
gi(k + 1) = gi(k) + μ

[
ey(k)x(k) + ex(k)y(k)

]
(14.19)

From Equation (14.16) and (14.7), the corresponding weight updates

�a(k) = 1

2

(
�hr(k) + �gr(k)

)
�b(k) = 1

2

(
�gi(k) − �hi(k)

)
�c(k) = 1

2

(
�hi(k) + �gi(k)

)
�d(k) = 1

2

(
�hr(k) − �gr(k)

)
(14.20)

The dual channel real adaptive filter and the widely linear complex adaptive filter, trained with
the corresponding learning algorithms DCRLMS and ACLMS, are therefore equivalent when
the stepsize of the DCRLMS is twice the stepsize of ACLMS. From Equations (5.20) and
(5.26–5.29), for the correlation matrix of the bivariate real input

Rωω − λωI = 1

4
AH [Ca − 2λωI]A = 0

that is, the eigenvalues of the augmented complex covariance matrix are twice the eigenvalues
of the bivariate real correlation matrix. This is then reflected in the modes of convergence
and stability bounds, and the ACLMS converges twice as fast as the DCRLMS for the same
learning rate.

14.3 Simulations

To verify the performance of the Dual Univariate LMS (DULMS), Dual Channel Real LMS
(DCRLMS), Complex LMS (CLMS) and Augmented CLMS (ACLMS), in all the experiments,
the order of the adaptive FIR filter was chosen to be L = 4, and the learning rate was set to
μ = 0.05. The measurement used to assess the performance was the standard prediction gain
(6.80). Simulations were undertaken by averaging independent trials on prediction of:

� Stochastic complex valued coloured AR(4) process, given in Equation (13.44), driven by
◦ circular white Gaussian noise (CWGN) characterised by a constant power spectrum and

vanishing spectral pseudocovariance function, that is, �z(ν) = const and Rz(ν) = 0,
generated as in Section 12.1.1;

◦ doubly white noise (DWN), given in Equation (13.13);
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Table 14.1 Comparison of prediction gains Rp [dB] for the various classes of signals

Algorithm AR4 (DWN) AR4 (CWGN) Ikeda Lorenz Wind-medium

DULMS 5.8518 5.5666 −0.3910 18.2365 6.5284
DCRLMS 5.8423 5.5588 3.9733 21.1833 7.1528
CLMS 6.6380 6.2664 2.4278 20.7674 7.4499
ACLMS 6.6096 6.2465 4.0330 23.2565 7.9914

� Synthetic benchmark Ikeda process, given in Equation (13.46), and synthetic Lorenz
chaotic series (x and y dimension), given in Equation (13.45), with the initial values
x(0) = 5, y(0) = 5 and z(0) = 20;

� Single trial two-dimensional real world wind signal described in Figure 13.5.

Table 14.1 summarises the prediction gains for DCRLMS, DULMS, CLMS and ACLMS,
and the above classes of signals. As expected, the dual univariate least mean square (DULMS)
algorithm had performance similar to those of other algorithms under consideration only for
complex valued AR(4) signals driven by a doubly white and circular Gaussian noise. The
complex least mean square algorithm had similar performance to that of the dual channel real
least mean square for most of the test signals, whereas the augmented complex least mean
square algorithm had the best performance. However, the performances of DCRLMS and
ACLMS were identical for μDCRLMS = 2μACLMS.

Figure 14.3 further illustrates the relationship between the prediction gain and the learn-
ing rates associated with the x and y channel within the DCRLMS algorithm. Parameter
μx = μa = μb was the learning rate used in the updates of coefficient vectors a(k) and b(k),
whereas μy = μc = μd was the learning rate used in the updates of coefficient vectors c(k)
and d(k) (see also Footnote 2).

Figure 14.4 illustrates the relationship between the prediction gain and the learning rates μh

and μg associated with the updates of coefficient vectors h(k) and g(k) within the ACLMS
algorithm (Equation 14.17).
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Figure 14.3 Relationship between the prediction gain and learning rates μx = μa = μb and μy = μc =
μd within DCRLMS (14.7) for prediction of noncircular Lorenz and wind signals
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Figure 14.4 Relationship between the prediction gain and learning rates μh and μg of the updates of
coefficient vectors h and gwithin ACLMS (14.17) for prediction of noncircular Lorenz and wind signals

A comparison between Figures 14.3(a) and 14.4(a) shows that for DCRLMS, variations in
the learning rate μx had little effect on the performance, whereas for ACLMS the performance
improved with an increase in both the learning rates μh and μg. The ACLMS is therefore better
suited to revealing any intricate properties of the signal generating mechanism in C (complex
circularity).
To summarise:

� The dual univariate mode of operation (Figure 14.2a) is simple but only effective when the
real and imaginary channel of a complex process are uncorrelated or weakly correlated
(see Table 14.1).

� The updates for the real and imaginary parts of the weight vector within CLMS are based
on both the real and imaginary errors and the real and imaginary parts of the input, thus
taking into account the statistical dependence between the real and imaginary channels.

� The CLMS performs at least as well as DCRLMS for circular complex signals, whereas
for noncircular processes it is suboptimal (in which case its widely linear extension – the
ACLMS – is used).

� The dual channel real adaptive filter from Figure (14.1) is effectively the same filter
as the widely linear complex adaptive filter (Figure 14.2b); the corresponding learning
algorithms DCRLMS and ACLMS are also equivalent when the stepsize of DCRLMS is
twice the stepsize of ACLMS (14.20).

� The updates for the filter coefficient vectors hr(k), hi(k), gr(k), gi(k) within ACLMS use
the information from both the real and imaginary channel, that is ex(k), ey(k),x(k),y(k)
(Equation 14.19). This means that the statistical dependence between the real and imagi-
nary channel is taken into account, and the physics of the underlying processes (circularity)
is catered for naturally. This gives the ACLMS potential advantages over DCRLMS, es-
pecially in noisy environments and when using individual learning rates for the coefficient
vectors.

� Although it is possible to establish the duality between linear adaptive filters in the real
and complex domain (DCRAF and WLCAF), the natures of nonlinearity in R2 and C are
fundamentally different (for instance the only continuously differentiable function in C is
a constant), and so complex nonlinear filters based on augmented statistics are a natural
choice for the processing of the generality of complex valued signals.
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15
Widely Linear Filters
with Feedback

This chapter introduces ‘augmented’ algorithms for the training of adaptive filters with
feedback, based on the widely linear autoregressive moving average (WL-ARMA) model
and the augmented complex statistics discussed in Chapter 12. The algorithms are based on
CR calculus and are derived along the lines of the Augmented Complex Least Mean Square
(ACLMS) algorithm presented in Chapter 13. Two classes of such algorithms are introduced:

� Algorithms based on a direct gradient calculation. The stochastic gradient algorithm for
training adaptive IIR filters and Complex Real Time Recurrent Learning (CRTRL) algo-
rithm for recurrent neural networks (RNNs), derived in Chapter 7, are now reintroduced in
the framework of augmented complex statistics. Since the augmented CRTRL (ACRTRL)
algorithm is a direct gradient algorithm for nonlinear feedback architectures, it simplifies
into an augmented recursive algorithm for the training of infinite impulse response (IIR)
adaptive filters when the neurons within complex RNNs are linear; it further degenerates
into ACLMS when there is no feedback present.

� Algorithms based on nonlinear sequential state estimation. Both the augmented complex
valued Kalman filter (ACKF) and the augmented complex valued extended Kalman filter
(ACEKF) algorithms are derived for the training of complex valued RNNs. The ACRTRL
algorithm is used to compute the Jacobian matrix within the update of augmented Kalman
filter based algorithms [95]. The ‘unscented’ versions of Kalman filtering algorithms
(UKF) for complex RNNs are then presented in order to provide better approximations of
the higher-order terms, which are neglected due to the linearisation within the extended
Kalman filter (EKF); the UKF algorithms have been shown to be accurate, at least up to
the second statistical moment [139, 301] (compared with first-order for the EKF).

For generality, the analysis is conducted for fully complex nonlinear activation functions of
neurons. Similarly to the results in Chapter 13, it is shown that algorithms within this class offer
improved performance over standard algorithms for noncircular complex signals, whereas for
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circular signals their performances are similar to those of standard algorithms. For more detail
on ARMA modelling of widely linear systems we refer to [217].

15.1 The Widely Linear ARMA (WL-ARMA) Model

The widely linear ARMA (WL-ARMA) and widely linear nonlinear ARMA (WL-NARMA)
model are respectively given by1

y(k) =
N∑

n=1

any(k − n) +
M∑

m=1

bmx(k − m) +
N∑

n=1

αny
∗(k − n)

+
M∑

m=1

βmx∗(k − m) + b0x(k) + β0x
∗(k) (15.1)

y(k) = �

(
N∑

n=1

any(k − n) +
M∑

m=1

bmx(k − m) +
N∑

n=1

αny
∗(k − n)

+
M∑

m=1

βmx∗(k − m)

)
+ b0x(k) + β0x

∗(k)

These models are made widely linear to include the augmented complex input and feedback
vectors given by

xa(k) = [x(k − 1), . . . , x(k − M), x∗(k − 1), . . . , x∗(k − M)]T

ya(k) = [y(k − 1), . . . , y(k − N), y∗(k − 1), . . . , y∗(k − N)]T (15.2)

together with the ‘driving’ input xa(k) = [x(k), x∗(k)]T and the corresponding fixed filter
coefficients, all complex valued. This allows us to cater for second-order noncircular (im-
proper) signals and serves as a basis for the development of augmented recursive algorithms
for linear and nonlinear complex valued adaptive filters with feedback.

15.2 Widely Linear Adaptive Filters with Feedback

The coefficients of the widely linear models with memory in Equation (15.1) can be made
adaptive, to give the input–output expressions for the corresponding linear and nonlinear

1The term widely linear refers to ‘widely linear in the parameters’. Hence within the WL-NARMA model, the
nonlinearity �(·) is applied to the WL-ARMA term, similarly to the standard NARMA models.
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adaptive filters2 in the form

y(k) =
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) +
N∑

n=1

αn(k)y∗(k − n)

+
M∑

m=1

βm(k)x∗(k − m) (15.3)

y(k) = �

(
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) +
N∑

n=1

αn(k)y∗(k − n)

+
M∑

m=1

βm(k)x∗(k − m)

)

Adaptive filters with feedback will be analysed in the prediction setting, thus, the terms in
Equation (15.1) associated with m = 0 are dropped. This does not influence the generality of
the results as, if required, these terms can be straightforwardly included in the weight update
equations.

Denote the overall input vector to an augmented feedback filter by

u(k) = [
x(k − 1), . . . , x(k − M), y(k − 1), . . . , y(k − N),

x∗(k − 1), . . . , x∗(k − M), y∗(k − 1), . . . , y∗(k − N)
]T (15.4)

and the overall weight vector by

w(k) = [
b1(k), . . . , bM(k), a1(k), . . . , aN (k), β1(k), . . . , βM(k), α1(k), . . . , αN (k)]T (15.5)

The output error for an IIR filter and a recurrent perceptron (NARMA filter, see Section 7.2)
are given by

Augmented IIR Filter: e(k) = d(k) − y(k) = d(k) − uT(k)w(k)

Recurrent Perceptron: e(k) = d(k) − y(k) = d(k) − �
(
uT(k)w(k)

)
(15.6)

where d(k) is the teaching signal, and �(k) a nonlinear activation function, typically an
elementary transcendental function given in Chapter 4.

Based on the standard cost function

J(k) = 1

2
|e(k)|2 = 1

2
e(k)e∗(k) = 1

2

[
e2
r + e2

i

]
(15.7)

the filter weights are updated based on the stochastic gradient, that is

w(k + 1) = w(k) − μ∇wJ(k) (15.8)

2For convenience, the bias terms within the recurrent perceptron architecture (1 + j) and (1 − j) are omitted. These
are a part of the external input vector and can be included by adding one more term in xa(k) in Equation (15.2).
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where μ is the learning rate. We aim at minimising the error power – thus the cost function
is a real function of real variables and does not admit minimisation directly in C, as it is not
C-differentiable. Chapters 5 and 7 show that we can optimise these functions based on CR
calculus and the use of R-derivatives, given below

R- derivative
1

2

[
∂f

∂x
− j

∂f

∂y

]

R
∗- derivative

1

2

[
∂f

∂x
+ j

∂f

∂y

]
(15.9)

Recall that for holomorphic functions theR∗-derivative vanishes and theR-derivative is equiv-
alent to the standard complex derivative f ′(z).

We shall now highlight some differences between the analysis of standard feedback filters and
widely linear feedback filters. These arise mainly due to the additional complex conjugate terms
within the input–output models (Equation 15.3), which makes their outputs not differentiable
directly in C. In terms of complex differentiability, observe that:

� The cost function (Equation 15.7) is a real function of complex variables, and its gradient
is calculated using the R∗-derivative, as

∇wJ(k) = ∇wr J(k) + j∇wiJ(k) (15.10)

� The output y(k) is a complex function of complex variables {x, x∗, y, y∗}, and is
thus not C-differentiable – its derivatives will therefore be computed based on
R

∗-derivatives;
� The nonlinear activation function �(·) is a complex function of complex variable, it has
C-derivatives, and the Cauchy–Riemann equations hold. In addition, for the class of
elementary transcendental functions

�∗(z) = �(z∗) and
(
�∗)′ = (

�′)∗ = �′∗ (15.11)

The gradient of the cost function ∇wJ(k) can be therefore written as

∇wJ(k) = −e∗(k)π◦(k) − e(k)π�(k)

where

π◦(k) = 1

2

[
∂y(k)

∂wr(k)
+ j

∂y(k)

∂wi(k)

]
π�(k) = 1

2

[
∂y∗(k)

∂wr(k)
+ j

∂y∗(k)

∂wi(k)

]
(15.12)

that is, the terms ∂y/∂w and ∂y∗/∂w within the gradient are calculated using theR∗-derivatives.
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15.2.1 Widely Linear Adaptive IIR Filters

It has been shown in Section 7.1.1 that the sensitivities π◦(k) within the update of standard IIR
adaptive filter vanish, whereas the sensitivities π�(k), are calculated based on

y∗(k) =
N∑

n=1

a∗
n(k)y∗(k − n) +

M∑
m=1

b∗
m(k)x∗(k − m) +

N∑
n=1

α∗
n(k)y(k − n)

+
M∑

m=1

β∗
m(k)x(k − m) (15.13)

However, as the output y(k) for widely linear IIR filters is not C-differentiable, both the terms
π◦(k) and π�(k) need to be evaluated again.

Calculation of sensitivities π◦ (k) and π� (k). Consider, for instance, two particular cases

π◦
an

(k) = 1

2

[
∂y(k)

∂ar
n(k)

+ j
∂y(k)

∂ai
n(k)

]
and π◦

βm
(k) = 1

2

[
∂y(k)

∂βr
m(k)

+ j
∂y(k)

∂βi
m(k)

]
.

These can be evaluated as

∂y(k)

∂ar
n(k)

= y(k − n) +
N∑

l=1

al(k)
∂y(k − l)

∂ar
n(k)

+
N∑

l=1

αl(k)
∂y∗(k − l)

∂ar
n(k)

∂y(k)

∂ai
n(k)

= jy(k − n) +
N∑

l=1

al(k)
∂y(k − l)

∂ai
n(k)

+
N∑

l=1

αl(k)
∂y∗(k − l)

∂ai
n(k)

∂y(k)

∂βr
m(k)

= x∗(k − m) +
N∑

l=1

al(k)
∂y(k − l)

∂βr
m(k)

+
N∑

l=1

αl(k)
∂y∗(k − l)

∂βr
m(k)

∂y(k)

∂βi
m(k)

= jx∗(k − m) +
N∑

l=1

al(k)
∂y(k − l)

∂βi
m(k)

+
N∑

l=1

αl(k)
∂y∗(k − l)

∂βi
m(k)

(15.14)

Using the assumption, also used in standard adaptive IIR filters, that for small μ, for every
element of w(k) in (15.5) we have

w(k − 1) ≈ w(k − 2) ≈ · · · ≈ w(k − M) ≈ w(k − N) (15.15)
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This admits a recursive computation of the sensitivities in the form

π◦
an

(k) = 1

2

[
N∑

l=1

al(k)

(
∂y(k − l)

∂ar
n(k − l)

+ j
∂y(k − l)

∂ai
n(k − l)

)

+
N∑

l=1

αl(k)

(
∂y∗(k − l)

∂ar
n(k − l)

+ j
∂y∗(k − l)

∂ai
n(k − l)

)]

=
N∑

l=1

an(k)π◦
an

(k − l) +
N∑

l=1

αn(k)π�
αn

(k − l)

π◦
βm

(k) = 1

2

[
N∑

l=1

al(k)

(
∂y(k − l)

∂βr
m(k − l)

+ j
∂y(k − l)

∂βi
m(k − l)

)

+
N∑

l=1

αl(k)

(
∂y∗(k − l)

∂βr
m(k − l)

+ j
∂y∗(k − l)

∂βi
m(k − l)

)]

=
N∑

l=1

al(k)π◦
βm

(k − l) +
N∑

l=1

αl(k)π�
βm

(k − l) (15.16)

Thus, for every element wq(k) ∈ w(k), q = 1, . . . , 2M + 2N in (15.5), we can write

π◦
wq

(k) =
N∑

l=1

al(k)π◦
wq

(k − l) +
N∑

l=1

αl(k)π�
wq

(k − l) (15.17)

Similarly, for the π�
wq

terms we have

π�
wq

(k) = u∗(k − q) +
N∑

l=1

a∗
l (k)π�

wq
(k − l) +

N∑
l=1

α∗
l (k)π◦

wq
(k − l) (15.18)

Although the updates for the terms π◦
wq

represent unforced difference equations, they are also
coupled with the terms π�

wq
and hence do not vanish, unlike in the case of the standard complex

valued adaptive IIR filters. Expressions (15.17) and (15.18), together with (15.7) and (15.12)
complete the derivation of a recursive algorithm for the update of augmented complex valued
adaptive IIR filters.

15.2.2 Augmented Recurrent Perceptron Learning Rule

For a recurrent perceptron (see Figure 7.2b), the sensitivities of the output to the filter weights
can be calculated based on the corresponding sensitivities for the augmented IIR filter in
Equations (15.17) and (15.18). The output of a recurrent perceptron is y(k) = �(net(k)),
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that is

y(k) = �

(
N∑

n=1

an(k)y(k − n) +
M∑

m=1

bm(k)x(k − m) +
N∑

n=1

αn(k)y∗(k − n)

+
M∑

m=1

βm(k)x∗(k − m)

)
(15.19)

where net(k) has the same form as the output of the augmented IIR filter3. Function �(·) is
typically a fully complex activation function, and is C-differentiable, whereas the net input
net(k) is a function of both x, y and x∗, y∗ and has only R∗-derivatives. We will consider the
class of nonlinearities which obeys the properties (Equation 15.11). The sensitivities within an
adaptive steepest gradient algorithm for the adaptation of a recursive perceptron thus become

π◦
wq

(k) = �′(net(k)
) (

N∑
l=1

al(k)π◦
wq

(k − l) +
N∑

l=1

αl(k)π�
wq

(k − l)

)

π�
wq

(k) = �′∗(net(k)
) (

u∗(k − q) +
N∑

l=1

a∗
l (k)π�

wq
(k − l) +

N∑
l=1

α∗
l (k)π◦

wq
(k − l)

)
(15.20)

15.3 The Augmented Complex Valued RTRL (ACRTRL) Algorithm

The overall ‘augmented’ input to a Recurrent Neural Network (RNN) Ia(k) (see Figure 7.3 in
Chapter 7) can be expressed as

Ia(k) = [IT(k), IH(k)]T

= [x(k − 1), . . . , x(k − M), 1 + j, y1(k − 1), . . . , yN (k − 1),

x∗(k − 1), . . . , x∗(k − M), 1 − j, y∗
1(k − 1), . . . , y∗

N (k − 1)]T (15.21)

where for every neuron in the network

yn(k) = �
(
netn(k)

)
, n = 1, . . . , N (15.22)

and

netn(k) =
2(M+N+1)∑

q=1

wn,q(k)Ia
q (k) (15.23)

3But for a possible bias term.
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is the augmented net input to nth neuron at time instant k and the vector of filter weights
belonging to the nth neuron

wn(k) = [
bn,1(k), . . . , bn,M+1(k), an,1(k), . . . , an,N (k),

βn,1(k), . . . , βn,M+1(k), αn,1(k), . . . , αn,N (k)
]T

= [
wn,1, . . . , wn,2(M+N+1)

]T (15.24)

It is convenient to combine all the weights in an RNN within a complex valued weight matrix
W(k) = [w1(k), . . . ,wN (k)].

The error signals are available only for the L output neurons, thus the cost function, weight
update, and the gradient of the cost function are given by

J(k) = 1

2

L∑
l=1

e(k)e∗(k)

w(k + 1) = w(k) − μ∇wJ(k)

∇wn,qJ(k) = ∂J(k)

∂wr
n,q

+ j
∂J(k)

∂wi
n,q

= −1

2

L∑
l=1

[
el(k)

∂y∗
l (k)

∂wn,q(k)
+ ∂yl(k)

∂wn,q(k)
e∗
l (k)

]

= −
L∑

l=1

el(k)π�l
wn,q

(k) −
L∑

l=1

e∗
l (k)π◦l

wn,q
(k) (15.25)

Based on the sensitivities for recurrent perceptrons, the sensitivities within the augmented
CRTRL (ACRTRL) algorithm for the training of recurrent neural networks are given by

π◦l
wn,q

(k) = �′
l

(
netl(k)

) ⎡
⎣ N∑

p=1

al,p(k)π◦p
wn,q

(k − p) +
N∑

p=1

αl,p(k)π�p
wn,q

(k − p)

⎤
⎦ (15.26)

π�l
wn,q

(k) = �′
l
∗(netl(k)

) ⎡
⎣ N∑

p=1

a∗
l,p(k)π�p

wn,q
(k − p) +

N∑
p=1

α∗
l,p(k)π◦p

wn,q
(k − p) + δnlI

a∗
q (k)

⎤
⎦

where δnl is the Kronecker delta function and the sensitivities are initialised with zero initial
conditions.

15.4 The Augmented Kalman Filter Algorithm for RNNs

Amongst recursive filters in the domain of second-order statistics, Kalman filters are optimal
sequential state estimators for nonstationary signals [112, 141]. They have also been used in
several modern applications, including state estimation for car navigation systems [193, 223],
parameter estimation for time series modelling [245], and the training of neural networks [112,
139, 246]. To discuss Kalman filter based algorithms for the training of complex valued RNNs,
we shall first introduce an augmented state space model and the corresponding updates for the
Kalman filter. Similarly to ACLMS and ACRTRL, these updates have the same generic form as
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the standard updates. Due to the augmentation all the vectors have two times the size and matri-
ces four times the size of the corresponding vectors and matrices within the standard algorithm.

Consider a general state space model, given by [112]

xk+1 = Fk+1xk + ωk

yk = Hkxk + νk (15.27)

where xk are the states to be estimated and yk is the system output (usually one or a subset of
the states). Variables ωk and vk are independent, zero mean, complex valued Gaussian noise
processes with covariance matrices Qk and Rk respectively, and F and H are the transition and
measurement matrices. The augmented state space model can be written as

xa
k+1 = Fa

k+1xa
k + ωa

k

ya
k = Ha

kxa
k + νa

k (15.28)

where xa
k = [

xT
k , xH

k

]T
, ya

k = [
yT
k , yH

k

]T
, Fa

k = [
Fk, F∗

k

]
, Ha

k = [
Hk, H∗

k

]
, ωa

k = [
ωT

k , ωH
k

]T
and

νa
k = [

νT
k , νH

k

Ra

]T
. The augmented equivalents of Qk and Rk are denoted respectively by Qa

k and

k .

To initialise the algorithm for the time instant k = 0, set

x̂a
0 = E

[
xa

0

]
,

P0 = E
[(

xa
0 − E

[
xa

0

]) (
xa

0 − E
[
xa

0

])T
]

(15.29)

The updates within the Kalman filtering algorithms are given below4

State estimate propagation:

x̂a−
k = Fa

k,k−1x̂a−
k−1 (15.30)

Error covariance propagation:

P−
k = Fa

k,k−1Pk−1(Fa
k,k−1)H + Qa

k−1 (15.31)

Kalman gain matrix:

Gk = P−
k (Ha

k)H [
Ha

kPk(Ha
k)H + Ra

k

]−1
(15.32)

State estimate update:

x̂a
k = x̂a−

k + Gk

(
ya
k − Ha

k x̂a−
k

)
(15.33)

Error covariance update:

Pk = (
I − GkHa

k

)
P−

k (15.34)

This completes the description of the augmented complex valued Kalman filter (ACKF).

4For clarity, we use notation similar to that from [112].
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15.4.1 EKF Based Training of Complex RNNs

To establish a mathematical framework for Kalman filter based training of complex RNNs,
consider a nonlinear state space model5

wa
k+1 = wa

k + ωa
k

ya
k = h(wa

k, ua
k) + νa

k (15.35)

where h(·) is a nonlinear operator associated with observations, wa
k is an augmented weight

vector of the network, ua
k is the overall input vector to the network, and ya

k is the augmented
vector of observations. From the first expression in Equation (15.35), the complex weights
within RNN are modelled as random walk. The idea behind the Extended Kalman Filter
(EKF) is to linearise the state space model (Equation 15.35) locally (for every time instant
k) based on a truncated Taylor series expansion around h [70, 102]. Once such a local linear
model is obtained, standard ACKF updates (Equations 15.30–15.34) can be applied.

The Augmented Complex Extended Kalman Filtering Algorithm (ACEKF) for the training
of complex RNNs can now be summarised as [95]

Gk = P−
k (Ha

k)H [
Ha

kP−
k (Ha

k)H + Ra
k

]−1

ŵa
k = ŵa−

k + Gk

[
ya
k ˆ− h(wa−

k , ua
k)

]
Pk = (

I − GkHa
k

)
P−

k + Qa
k (15.36)

and is initialised by

ŵa
0 = E [w0]

P0 = E
[(

wa
0 − E

[
wa

0

]) (
wa

0 − E
[
wa

0

])T
]

(15.37)

The augmented Jacobian6 matrix Ha
k of the partial derivatives of h is computed using the

augmented CRTRL algorithm [93] (using fully complex nonlinearities). The Kalman gain
matrix Gk is a function of the estimated error covariance matrix Pk, the Jacobian matrix Ha

k

and a global scaling matrix Ha
kP−

k (Ha
k)H + Ra

k .

15.5 Augmented Complex Unscented Kalman Filter (ACUKF)

Since the higher-order terms within the Taylor series expansion in the EKF model are often
not negligible, the EKF is prone to accumulating error over time (Equation 15.36). To help
solve this problem, the unscented Kalman filter (UKF) [139, 301] has been proposed, whereby
nonlinear transforms are used to propagate the signal statistics. This way, the information from
higher-order moments of non–Gaussian processes is accounted for, and the approximations

5EKF based algorithms have proven successful for the training of real valued temporal neural networks [181, 222].
6Matrix Ha

k is the matrix of partial derivatives of the augmented output ya
k

with respect to the weights.
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within the UKF scenario are accurate, at least up to second-order statistical moments7 [139].
Within the CUKF, a series of so-called complex valued sigma vectors, that is, vectors selected
to be representatives of the probability distribution, are used to calculate the cross-correlation
between the error in the estimated state and error in the estimated observations, as well as the
correlation matrix of the error.

Within the CUKF framework, the information about the distributions of complex random
variables is propagated through the system model (Equation 15.35) using (2L + 1) weighted
particles, where L is the dimension of the state space of the system. The weighting for every
such particle is given by

W(m)
0 = λ

L + λ
,

W(c)
0 = λ

L + λ
+ 1 − α2 + β,

W(m)
n = W(c)

n = λ

2(L + λ)
, n = 1, . . . , 2L

ˆ

(15.38)

where λ = α2(L + κ) − L is a scaling parameter, α is set to a small value (typically of order
10−3) and is related to the spread of the sample points around the mean, κ is usually set to 0,
whereas parameter β incorporates knowledge from prior distributions (in the case of complex
valued Gaussian distributions, the optimal value is β = 2).

15.5.1 State Space Equations for the Complex Unscented Kalman Filter

The CUKF effectively aims at evaluating the Jacobian matrix within CEKF through the
so-called sigma-point propagation, hence not requiring any analytical calculation of the deriva-
tive. The complex valued weight vector within the network8 and the error covariance matrix
are initialised as

w0 = E[w], P0 = E
[
(w − ŵ0) (w − ŵ0)T]

(15.39)

whereas the sigma-point calculation is given by [301]

Sk = (L + λ)(Pk + Qk)

Wk =
[
ŵk, ŵk +

√
Sk, ŵk −

√
Sk

]
(15.40)

ˆ

These sigma-point estimates are then passed through a nonlinear function h, that is

Yk = h (Wk, xk)

yk = h (wk, xk) (15.41)

7The standard EKF is accurate only up to first-order statistics due to the first-order linearisation in the truncated Taylor
series expansion.
8The ACUKF training is derived for a general case of RNNs. The algorithms can be straightforwardly simplified to
IIR and FIR filters, by removing nonlinearity or feedback.
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to yield the measurement update equations for the CUKF in the form

Pyy,k =
2L∑
n=0

Wc
n

((
Yn,k − yk

) (
Yn,k − yk

)T
)

+ Rk

Pwy,k =
2L∑
n=0

Wc
n

((
Wn,k − ŵk

) (
Wn,k − ŵk

)T
)

ˆ

(15.42)

Finally, the filter update recursions for the complex unscented Kalman filter are given by

yy,kKk = Pwy,kP−1

wk+1 = ŵk + Kkek

Pk+1 = Pk − KkPyy,kKH
k (15.43)

where the estimation error ek = dk − yk, and dk is the desired output vector.
The conceptual differences between CUKF and complex valued EKF [95] are relatively

minor, but result in significant theoretical and practical advantages. For instance, the use of
sigma vectors (Equation 15.40) to improve the estimation of the statistical properties of the
signal in hand facilitates the processing of non-Gaussian processes, typically found in real
world applications.

15.5.2 ACUKF Based Training of Complex RNNs

Consider the augmented state space model

wa
k+1 = wa

k + ωa
k

ya
k = h(wa

k, xa
k) + νa

k (15.44)

with the augmented complex variables as in the ACKF model. The augmented covariance ma-
trices of zero mean complex valued Gaussian noise processes ω and ν are denoted respectively
by Qa

k and Ra
k . After the state augmentation, based on (15.38) the (4L + 1) weighted particles

for the augmented complex valued mean and covariance estimation become

W (m)
0 = λ

2L + λ
,

W (c)
0 = λ

2L + λ
+ 1 − α2 + β,

W (m)
n = W (c)

n = λ

2(2L + λ)
, n = 1, . . . , 4L

where λ = α2(2L + κ) − 2L is a scaling parameter.

http://www.it-ebooks.info/


Simulation Examples 203

ˆ

The following expressions summarise the augmented CUKF for the training of complex valued
RNNs

wa
0 = E[wa]

P0 = E
[(

wa − ŵa
0

) (
wa − ŵa

0

)T
]

Sa
k = (2L + λ)(Pa

k + Qa
k)

Wk =
[
ŵk, ŵk +

√
Sk, ŵk −

√
Sk

]
Wa

k = [Wk,W
∗
k] (15.45)

whereby, based on Equations (15.43) and (15.44), the recursive updates within ACUKF are
given by

Ya
k = h

(
Wa

k, xa
k

)
ya
k = h

(
ŵa

k, xa
k

)
Pa

yy,k =
4L∑
n=0

Wc
n

((
Ya

n,k − ya
k

) (
Ya

n,k − ya
k

)T
)

+ Ra
k

Pa
wy,k =

4L∑
n=0

Wc
n

((
Wa

n,k − ŵa
k

) (
Wa

n,k − ŵa
k

)T
)

Ka
k = Pa

wy,k{Pa
yy,k}−1

ŵa
k+1 = ŵa

k + Ka
kea

k

Pa
k+1 = Pa

k − Ka
kPa

yy,k{Ka
k}H (15.46)

These expressions simplify straightforwardly into the corresponding learning algorithms for
IIR and FIR filters.

15.6 Simulation Examples

For the simulations, the nonlinearity at the neurons was chosen to be the complex tanh function

�(x) = eβx − e−βx

eβx + e−βx
(15.47)

with slope β = 1. In all the simulations the complex recurrent neural network (Figure 7.3)
had N = 3 neurons and tap input length of p = 5. The signals used in simulations were the
same as those described in Chapter 8, and the quantitative measure of the performance was
the standard prediction gain Rp = 10 log σ2

y/σ2
e .

In the first set of experiments, the performance of standard CRTRL was compared with
that of ACRTRL for the one step ahead prediction of a complex radar signal. Conforming
with the analysis in Chapter 12, Figure 15.1 shows that the ACRTRL algorithm was able to
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Figure 15.1 Prediction of the complex valued radar signal using CRTRL and ACRTRL

track the noncircular radar signal better than the standard CRTRL. In the next experiment,
performances of the ACEKF and ACUKF algorithms were compared for the prediction of the
complex AR(4) (Equation 8.22) and wind signals. Figure 15.2 illustrates that in both cases the
prediction based on ACUKF nearly coincided with the original signal, whereas the ACEKF
based prediction exhibited larger prediction errors. In the last set of simulations, shown in
Figure 15.3, the performances of ACUKF and ACEKF were compared for the prediction of a
segment of radar data; whereas both the algorithms were able to track the radar signal well,
the ACUKF had better accuracy. Table 15.1 provides a comparison of the prediction gains Rp

(dB) for all the algorithms introduced in this Chapter. In all the cases, the algorithms based on
augmented complex statistics outperformed standard algorithms, clearly indicating the benefits
of widely linear estimation. As expected, the Kalman filter based algorithms performed better

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Number of iterations (k)

ℜ
 {A

R
4 

S
ig

na
l}

actual signal
ACEKF estimate
ACUKF estimate

(a) Prediction of the complex AR(4) signal
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Figure 15.2 Performance comparison between ACUKF and ACEKF for the complex circular AR(4)
signal (Equation 8.22) and the noncircular complex wind signal; symbol � denotes the real part of a
complex signal
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Table 15.1 Prediction gains Rp [dB] for the various classes of signals

Signal Nonlinear N1 (8.23) AR4(8.22) Wind Radar

Rp (dB) (ACRTRL) 5.81 4.10 9.99 9.45
Rp (dB) (standard CRTRL) 3.76 3.54 6.12 7.22
Rp (dB) (ACEKF) 6.24 4.77 11.65 10.58
Rp (dB) (standard CEKF) 5.55 3.98 10.24 9.02
Rp (dB) (ACUKF) 7.45 6.12 12.22 11.13
Rp (dB) (standard CUKF) 6.75 4.50 9.35 9.78
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Figure 15.3 Performance comparison of ACUKF and ACEKF for the complex radar signal

than the direct gradient based CRTRL algorithms, and the algorithm based on the unscented
transformation outperformed the extended Kalman filter based algorithm.

To summarise:

� The class of widely linear adaptive feedback filters has been introduced, and learning
algorithms for adaptive IIR filters (adaptive WL-ARMA model) and recurrent perceptron
(adaptive WL-NARMA model) have been introduced for the processing of both circular
and noncircular complex valued signals.

� This has been achieved based onCR calculus, as the filter outputs are based on augmented
inputs and do not admit differentiation directly in C.

� The augmented complex valued real time recurrent learning (ACRTRL), augmented
complex valued extended Kalman filter (ACEKF) and augmented complex valued
unscented Kalman filter (ACUKF) algorithms have been introduced for the training of
complex recurrent neural networks (RNNs).

� It has been shown that the training of complex RNNs in the nonlinear sequential state
space estimation framework [112] improves their performance. However, this comes at
the expense of significantly increased computational complexity compared with direct
gradient algorithms (ACRTRL).

http://www.it-ebooks.info/


16
Collaborative Adaptive Filtering

Statistical, hypothesis based, techniques for the assessment of the nature of real world signals
(linear, nonlinear, stochastic, deterministic – see Figure 18.2), such as the complex delay vector
variance (CDVV) method described in Chapter 18 and the circularity test by Schreier et al.
[270], are mathematically rigorous and very useful. However, they can only operate on piece-
wise stationary signals and in an off-line manner, whereas signal modality tracking should be
performed in an online adaptive fashion. This is particularly important in adaptive prediction
applications, where the information about the change in the nature of the signal in hand can
be used to aid the performance of the predictor. This chapter introduces a class of online
algorithms for signal modality characterisation (nonlinearity, circularity). This is achieved in a
collaborative adaptive filtering framework where two filters of different natures are combined in
a convex manner, hence guaranteeing the existence of a solution as long as one of the subfilters
is stable. It is shown that this provides improvement in the performance (convergence, steady
state properties), and that the evolution of the adaptive convex mixing parameter within this
structure reflects the changes in the modality of the processed signal.

16.1 Parametric Signal Modality Characterisation

An intuitive way to judge whether the signal in question is predominantly linear or not is
to perform prediction by two adaptive filters of different natures, for instance, a linear and
nonlinear filter, and to compare the output errors. The degree of nonlinearity of a signal is then
assessed based on a normalised ratio of the output errors of the linear and nonlinear filter [212].
Figure 16.1 illustrates the estimation of the degree of signal nonlinearity using a third-order
Volterra system as the nonlinear filter and an FIR filter trained by the NLMS algorithm as a
linear filter. The system input y(k) was generated from a linear filtered noise signal u(k) which
was then passed through a nonlinear function F (·), as

u(k) = 0.5x(k) + 0.25x(k − 1) + 0.125x(k − 2) (16.1)

y(k) = F (u(k); k) + n(k) (16.2)

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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Figure 16.1 Estimated degree of signal nonlinearity for an input nature alternating between linear and
nonlinear

where x(k) are i.i.d. and uniformly distributed over the range [−0.5, 0.5] and n(k) ∼
N (0, 0.0026). Function F (u(k); k) defines the degree of nonlinearity within different segments
of signal y(k), ranging from purely linear, to quadratic and cubic, that is

F
(
u(k); k

) =

⎧⎪⎨
⎪⎩

u3(k), for 10000 < k ≤ 20000

u2(k), for 30000 < k ≤ 40000

u(k), at all other times

(16.3)

The generated signal y(k) is shown in the first trace of Fig. 16.1, the second and third traces show
respectively the residual estimation errors of the linear system and Volterra system, whereas
the bottom trace shows the estimated degree of signal nonlinearity (index NLD close to zero
indicates a linear signal whereas NLD close to unity indicates a nonlinear signal). Although
this approach was able to correctly identify the differences in signal nonlinearity between the
original linear signal u(k), its square u2(k), and cube u3(k), there are also some limitations
which prevent its direct extension to the complex domain. These include:

� The linear and nonlinear filter operate independently, making the results crucially depen-
dent on the choice of filter parameters;

� In the complex domain, there are several types of nonlinearity (split-complex, fully com-
plex) and we should check both for the linear vs nonlinear nature of the signal and for the
type of nonlinearity that best models the signal;

� The only continuously differentiable function inC is a constant (by Liouville’s theorem –
see Appendix B); nonlinear functions exhibit several different types of singularities (es-
sential, removable, isolated) and complex Volterra filters may not be best suited for all
these scenarios;

� Prediction errors of the subfilters can be compared only if both of the subfilters converge,
this is not always guaranteed.
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To overcome these limitations, a flexible method based on collaborative adaptive filtering is
next introduced [198].

16.2 Standard Hybrid Filtering in R

The hybrid filtering configuration shown in Figure 16.2 was originally introduced with the
aim of improving the performance of standard adaptive filtering algorithms [19]. It is based
on the convex combination of two adaptive FIR subfilters denoted by filter1 and filter2, which
operate in a collaborative fashion. The subfilters are updated independently, based on the local
instantaneous output errors e1(k) and e2(k), and their respective outputs y1(k) = xT(k)w1(k)
and y2(k) = xT(k)w2(k) are combined in a convex manner to give the overall output of the
hybrid filter

y(k) = λ(k)y1(k) + (
1 − λ(k)

)
y2(k) (16.4)

Depending on the value of the convex mixing parameter λ, 0 ≤ λ ≤ 1, the overall output of
the hybrid filter y(k) spans the range

[
y1(k), y2(k)

]
, as illustrated in Figure 16.3.

The idea behind the hybrid filtering architecture is as follows: assume that filter1 exhibits
fast convergence, but a large steady state error, and that filter2 is slowly converging and with
a small steady state error. For fast convergence, the hybrid filter should favour the fast filter1
in the beginning of the adaptation (λ(k) → 1), whereas for good steady state properties, after
the filters converge, the output of the hybrid filter should be dominated by the slow filter2
(λ(k) → 0). For the prediction setting, this is illustrated in Figure 16.4, based on a hybrid
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Figure 16.2 A general hybrid filtering architecture

yx + (1−λ)yλx

Figure 16.3 Convex combination of points x and y on a line in R, for 0 ≤ λ(k) ≤ 1
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Figure 16.4 Learning curves for nonlinear signal (Equation 16.12)

filter with one linear subfilter trained with a very fast generalised normalised gradient descent
(GNGD) algorithm [180] and the other linear subfilter trained by a slow LMS [197]. As desired,
the learning curve follows the learning curve of the GNGD trained subfilter in the beginning
of the adaptation (until about sample number 350), whereas after convergence, it approaches
the learning curve of the LMS trained subfilter.

The mixing parameter λ is updated using stochastic gradient descent, based on the overall
output error e(k) and the cost function J(k) = 1

2e2(k), that is

λ(k + 1) = λ(k) − μλ∇λJ(k)|λ=λ(k)

λ(k + 1) = λ(k) + μλe(k)
(
y1(k) − y2(k)

)
(16.5)

where μλ is the learning rate. To ensure that the combination of adaptive filters is a convex
function, it is critical that λ(k) remains within the range 0 ≤ λ(k) ≤ 1. This is usually achieved
through the use of a sigmoid function as a post–nonlinearity to bound λ(k) [19, 74]. Since, in
order to detect the changes in the nature of a signal, our primary interest is not in the overall
performance of the filter, but in the dynamics of the mixing parameter λ, the use of a nonlinear
sigmoid function would interfere with true values of λ(k). A hard limit on the set of allowed
values for λ(k) is therefore implemented; for more detail, see [133, 134].

16.3 Tracking the Linear/Nonlinear Nature of Complex Valued Signals

Consider a collaborative hybrid filtering architecture consisting of one linear and one nonlinear
complex adaptive filter, shown in Figure 16.5. At every time instant k, the output of the hybrid
filter is generated as a convex combination of the output of the nonlinear subfilter yNL(k) and
the output of the linear subfilter yL(k), that is

y(k) = λ(k)yNL(k) + (
1 − λ(k)

)
yL(k) (16.6)
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Figure 16.5 Convex combination of a linear and nonlinear complex adaptive filter

where yNL(k) = xT(k)wNL(k), yL(k) = xT(k)wL(k), the corresponding weight vectors are
wNL(k) and wL(k), and the common input vector x(k) = [x1(k), . . . , xN (k)]T. The constituent
subfilters are updated by their respective output errors eNL(k) and eL(k), using a common
desired signal d(k), whereas the mixing parameter λ(k) is updated based on the overall output
error e(k). To preserve the convexity of the output of the hybrid filter from Figure 16.5, the
parameter λ(k) is kept real, and is updated as

λ(k + 1) = λ(k) − μλ�
{∇λJ(k)|λ=λ(k)

}
(16.7)

For the standard cost function J(k) = 1
2 |e(k)|2 [307], the stochastic gradient update of the

mixing parameter λ(k) is calculated from

∇λJ(k)|λ=λ(k) = 1

2

{
e(k)

∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}
(16.8)

yielding (strictly speaking the operator �{·} is not needed)

λ(k + 1) = λ(k) + μλ�
{
e(k)

(
yNL(k) − yL(k)

)∗} (16.9)

16.3.1 Signal Modality Characterisation in C

To illustrate the ability of the collaborative hybrid filtering approach to track the nature of
complex valued signals, consider two linear and two nonlinear benchmark signals:

L1. Linear complex stable AR(1) process, given by

y(k) = 0.9y(k − 1) + n(k) (16.10)
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L2. Linear complex stable AR(4) process, given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k) (16.11)

N1. Complex nonlinear benchmark signal [216]

y(k) = y(k − 1)

1 + y2(k − 1)
+ n3(k) (16.12)

N2. Complex nonlinear benchmark signal [216]

y(k) = y2(k − 1)(y(k − 1) + 2.5)

1 + y(k − 1)2 + y(k − 2)2 + n(k − 1) (16.13)

with complex doubly white circular Gaussian noise (CWGN) n(k) ∼ N (0, 1) as the driv-
ing input. The CWGN can be expressed as n(k) = nr(k) + jni(k). The real and imaginary
components of CWGN are mutually independent sequences with equal variances, so that
σ2

n = σ2
nr

+ σ2
ni

.

Detection of the nature of complex signals. In all the simulations, both subfilters were N = 10
taps long, and the simulations were performed in the prediction setting. The linear filter was
trained by CLMS, whereas the nonlinear filter was trained by the Complex Nonlinear Gradient
Descent (CNGD) algorithm [105], based on the fully complex logistic activation function,1

given by

�(z) = 1

1 + e−βz
β ∈ R+, z ∈ C (16.14)

As illustrated in Figure 16.6, for the two nonlinear signals N1 and N2, the mixing parameter
λ(k) converged to unity, favouring the nonlinear subfilter with the output yNL(k), whereas
for the linear signals L1 and L2, the mixing parameter converged to zero, thus illustrating
the ability of the hybrid filter to detect the linear vs. nonlinear nature of the complex input.
For best performance, the stepsize μλ was about 20 times larger than that of the constitutive
subfilters.

The same experiment was repeated for the normalised versions of the learning algorithms,
that is, the CNLMS for the linear subfilter, CNNGD [177] for the nonlinear subfilter, and NLMS
for the adaptation of λ(k); the evolution of the mixing parameter λ is shown in Figure 16.6(b).
The normalised versions of the algorithms were less sensitive to the changes in the relative
values of step sizes, and also converged faster.

Tracking the modality of complex signals. To investigate the possibility of online tracking
of the nature of nonstationary signals with large dynamical changes, consider a synthetic
signal consisting of alternating segments of 200 samples of linear and nonlinear benchmark
signals. The same hybrid filter setting as in the previous example was used (CLMS and CNGD,
Figure 16.6), and the evolution of the mixing parameter λ for the signal pairs L1–N1 and L2–N2
is shown in Figure 16.7. The behaviour of the mixing parameter λ(k) clearly reflects the changes

1See Chapter 4.
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Figure 16.6 Evolution of the convex mixing parameter λ for linear inputs L1 (Equation 16.10), L2
(Equation 16.11), and nonlinear inputs N1 (Equation 16.12) and N2 (Equation 16.13), for a N = 10–tap
hybrid filter

in the signal nature, with the high values λ ≈ 0.8 and λ ≈ 0.9 for the respective nonlinear
segments N1 and N2, and the low values λ ≈ 0.2 for the linear segments L1 and L2; the smooth
transitions between the low and high values of λ are due to the sequential nature of learning.

To speed up convergence and make the hybrid filter less sensitive to the choice of filter
parameters, we next consider normalised collaborative learning, whereby CNLMS and
CNNGD are used for the training of the subfilters within the hybrid filter from Figure 16.5
and NLMS for the update of the mixing parameter λ(k). Segments of linear and nonlinear
data alternating every 100 and 200 samples were considered, and the dynamics of the mixing
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Figure 16.7 Evolution of the mixing parameter λ for the input nature alternating every 200 samples
(based on a convex combination of CLMS and CNGD)
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Figure 16.8 Evolution of the mixing parameter λ(k) for normalised collaborative learning; the signal
nature is alternating between linear L2 and nonlinear N2 every 100 samples (left) and every 200 samples
(right) (based on a convex combination of CNLMS and CNNGD)

parameter λ(k) is shown respectively in Figure 16.8(a) and (b). A comparison with the results
from Figure 16.7 shows that the normalised collaborative learning exhibits faster convergence
and spans a wider range of the values of the mixing parameter λ. Note the decreasing trend
in the values of λ(k) when tracking the linear signal, indicating the excellent tracking ability.
The range of the values of λ(k) for the signal with alternating 100 samples of data of different
natures was smaller than that for 200 alternating samples, however, it was still possible to
differentiate between the linear and nonlinear nature of the complex data.

16.4 Split vs Fully Complex Signal Natures

As has already been shown in Chapter 4, the notion of nonlinearity inC is quite different from
that in R. It is therefore not sufficient to check only for the linear vs nonlinear nature of the
complex signal. If the signal is judged nonlinear, we also need to establish the particular type
of nonlinearity best suited to the signal in question. When it comes to nonlinear adaptive filters
inC, we usually differentiate between the fully complex and split-complex nonlinearity within
such filters. To test for the split- fully complex nature of a signal, we can employ a hybrid
filter where the two subfilters are based on the split-complex and fully complex activation
functions (SC-FC hybrid filter), as shown in Figure 16.9. The output of such a hybrid filter can
be expressed as

y(k) = λ(k)yfully(k) + (
1 − λ(k)

)
ysplit(k) (16.15)

Values of λ(k) approaching unity will indicate a predominantly fully complex nature of the
signal in hand, whereas values of λ approaching zero will indicate a predominantly split-
complex nature. To preserve the convexity (and hence the existence of the solution) of the output
from Figure 16.9, the mixing parameter λ(k) is kept real, and is hard-bounded to 0 ≤ λ(k) ≤ 1.
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Figure 16.9 Collaborative learning based on a hybrid combination of a fully complex and split-complex
(SC-FC) nonlinear filter

The update for λ(k) is calculated based on

λ(k + 1) = λ(k) − μλ∇λJ(k)|λ=λ(k)

∇λJ(k)|λ=λ(k) = 1

2

{
e(k)

∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}
(16.16)

yielding the stochastic gradient update

λ(k + 1) = λ(k) + μλ�
{
e(k)

(
yfully(k) − ysplit(k)

)∗} (16.17)

Performance on synthetically generated data. The ability of the SC-FC hybrid filter to
differentiate between the split complex and fully complex nature of a signal is illustrated on
the strongly nonlinear, fully complex, Ikeda map signal (Equation 13.46). Following the results
from [297], the fully complex nonlinearity was the logistic sigmoid function

�(z) = 1

1 + e−βz
z ∈ C (16.18)

whereas the split-complex nonlinearity was a real valued logistic function (see Appendix D)

�(z) = 1

1 + e−βzr
+ j

1

1 + e−βzi
z ∈ C (16.19)

and in both cases the slope of the activation function was β = 1. The filter length was set to
N = 10 and all the filters operated in a one step ahead prediction setting.

The nonlinear nature of the Ikeda signal (assessed using the hybrid filter from Figure 16.5),
as indicated by the value of the mixing parameter λ(k) approaching unity, is illustrated in
Figure 16.10(a), whereas its fully complex nature, indicated by λ(k) → 1 in the FC-SC setting,
is illustrated in Figure 16.10(b). Since the Ikeda map is strongly nonlinear and fully complex

http://www.it-ebooks.info/


216 Collaborative Adaptive Filtering

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations  (k)

V
a
ri
a
tio

n
 o

f 
λ 

(k
) 

V
a
ri
a
tio

n
 o

f 
λ 

(k
) 

(a) Linear vs. nonlinear nature of Ikeda map

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations  (k)

(b) Split–vs. fully–complex nature of Ikeda map

Figure 16.10 Linear vs nonlinear and fully vs split-complex nature of Ikeda map

by design, Figure 16.10 confirms the potential of the collaborative hybrid filtering approach
for the modality characterisation of complex signals.

16.5 Online Assessment of the Nature of Wind Signal

We next investigate the degree of nonlinearity and the split- versus fully complex nature of
the intermittent and nonstationary ‘complex by convenience of representation’ wind signal
recorded over 24 hours in an urban environment.2 The recording started at 2.00 pm and lasted
for approximately 24 hours. Using the collaborative filtering architectures from Figures 16.5
and 16.9, the linear vs nonlinear and split- vs fully complex nature of this dataset is illustrated
in Figure 16.11. Although the wind changed its nature over the 24 h period [117], it was pre-
dominantly nonlinear, as illustrated by the high values of the convex mixing parameter λ(k) in
Figure 16.11(a). The nature of nonlinearity was strongly fully complex, as indicated by the high
values of the mixing parameter λ in the split- vs fully complex test shown in Figure 16.11(b).
Although the online signal modality test is not as accurate as the hypothesis based tests
[85, 191], and should be taken in relative rather than in absolute terms, the results conform
with the rigorous hypothesis testing based statistical analysis in Chapter 18.

16.5.1 Effects of Averaging on Signal Nonlinearity

Wind recordings are very noisy and in practical applications the data are first averaged to reduce
the effects of noise. When performing wind modelling for renewable energy applications, there
are several reasons for employing prediction at different scales within a wind farm (WF) [117]:

� To predict the expected production of electricity: for large WFs this is typically achieved
by using medium-range weather forecasts (several hours or longer).

2The wind dataset was recorded at the Institute for Industrial Science, University of Tokyo, Japan.
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Figure 16.11 Tracking the degree of nonlinearity and the split- vs fully complex nature of a 24 h wind
recording

� For the control of wind turbines, where short-term wind prediction (one or several steps
ahead) is used to aid the control mechanism.

� To avoid damages to wind turbines caused by gusts: this is usually achieved based on a
combination of short-term wind modelling (several steps ahead) and some sort of finite
state machine.

� To improve the efficiency of a WF: this is achieved by adjusting the yaw of the blades and
the direction of WTs so as to face the direction of the wind. This should be performed
based solely on the modelling of the wind field (speed and direction), since the output
power of a WT is proportional to the cube of the incident wind speed.

Since averaging is closely related to Gaussianity and linearity, it is interesting to investigate
the effect that averaging has on the nature of the wind data. For that purpose, the 24 h data
recording, also analysed in Figure 16.11, was used and the nonlinearity test was performed for
data averaged over 5 and 10 samples. The results of simulations are shown in Figure 16.12.
Compared with the nonlinearity analysis of raw data from Figure 16.11(a), the nature of the
wind dataset exhibits an increase in the degree of linearity with the order of averaging, as
indicated by the corresponding decrease in values of λ(k) in Figure 16.12. This also confirms
that linear modelling is adequate for heavily averaged nonlinear data, as shown in [191].

16.6 Collaborative Filters for General Complex Signals

The analysis and simulations in the preceding sections show that the benefits of using convex
combinations of adaptive filters include:

� improved performance over either of the constituent subfilters, together with guaranteed
stability, as long as one of the subfilters is stable;
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Figure 16.12 The effect of averaging on the degree of nonlinearity of wind

� insight into the nature of the signal at hand (linear, nonlinear, split-complex, fully compex)
by monitoring the evolution of the convex mixing parameter λ(k) within the hybrid filtering
architecture.

We will next illustrate that collaborative adaptive filtering, based on a combination of a standard
and widely linear subfilter, is suitable for the processing of the generality of complex valued
signals. The evolution of the mixing parameter also provides a convenient online test for
complex circularity. This is achieved at a little expense in terms of computational complexity.

16.6.1 Hybrid Filters for Noncircular Signals

It has been shown in Chapters 13 and 14 that

� The Complex Least Mean Square (CLMS) algorithm converges faster than its widely
linear counterpart the Augmented Complex Least Mean Square (ACLMS) algorithm; this
is due to the CLMS using half the number of coefficients compared with ACLMS;

� Both the CLMS and ACLMS converge to the same steady state solution for circular
complex signals, whereas ACLMS exhibits improved performance for noncircular signals.

A hybrid filtering architecture, shown in Figure 16.13, which consists of two FIR adaptive
filters trained by CLMS and ACLMS, can therefore be used to provide fast initial convergence
and improved steady state properties, compared with the individual subfilters.

Similarly to Equation (16.9), the update of the convex mixing paramter λ(k) from
Figure 16.13 can be expressed as3

λ(k + 1) = λ(k) + μλ�
{
e(k)

(
yACLMS(k) − yCLMS(k)

)∗} (16.20)

3Recall that the weight update for the CLMS is given by wCLMS(k + 1) = wCLMS(k) + μe(k)x∗(k), whereas that for
the ACLMS is wa

CLMS(k + 1) = wa
CLMS(k) + μe(k)xa∗

(k).
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Figure 16.13 Convex combination of FIR adaptive filters inC trained by a widely linear (ACLMS) and
standard (CLMS) adaptive filtering algorithm

To illustrate the benefits of using the hybrid filter in Figure 16.13, simulations were conducted
on a synthetic circular AR(4) process (Equation 13.44) and strongly noncircular Ikeda map
(Equation 13.46). Learning curves for CLMS, ACLMS, and the hybrid filter for the prediction
of Ikeda map are shown in Figure 16.14(a). Conforming with the analysis, CLMS exhibited
faster initial convergence than ACLMS, and ACLMS had a lower steady state error. As
desired, the learning curve of the hybrid filter closely followed the CLMS learning curve in
the beginning of adaptation (up to about the time instant 1000), whereas it approached the
ACLMS learning curve closer to the steady state (roughly after the time instant 2000).
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Figure 16.14 Left: performances of CLMS, ACLMS, and hybrid filter for a noncircular signal; right:
evolution of λ(k) for a circular and noncircular signal
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Table 16.1 Prediction gains (dB) for the CLMS, ACLMS and hybrid filter

AR(4) ‘Calm’ wind ‘High’ wind

CLMS 5.25 7.03 3.26
ACLMS 4.73 6.87 4.35
Hybrid 5.66 7.33 4.48

Quantitative performances (in terms of the prediction gain Rp) for the CLMS, ACLMS, and the
hybrid filter, for the circular AR(4) signal and noncircular wind segments (see Figure 18.1) are
shown in Table 16.1. In all the cases, the hybrid filter outperformed the constitutive subfilters.

16.6.2 Online Test for Complex Circularity

Similarly to the online tests for signal nonlinearity, the hybrid filter in Figure 16.13 can be
used to test for complex circularity. Figure 16.14(b) shows the evolution of the convex mixing
parameter λ(k) from (Equation 16.20) for the prediction of the circular AR(4) process and
the strongly noncircular Ikeda map. Observe that for the noncircular Ikeda map, the ACLMS
subfilter dominated the output of the hybrid filter, as indicated by the values of λ(k) approaching
unity. For the circular AR(4) signal, after the faster initial convergence of CLMS, both ACLMS
and CLMS subfilters converged to the same steady state error, as illustrated by λ(k) → 0.5.

To summarise:

� Due to the adaptive and collaborative mode of operation, hybrid filters have great potential
in the processing of nonlinear and nonstationary data.

� To test for signal modality, the subfilters within a hybrid filter are typically of different
natures, e.g. linear and nonlinear. As a rule of thumb, fully complex nonlinearity is general
enough to test for the lack of linear data nature.

� It has been shown that a hybrid filter, consisting of both widely linear ACLMS and standard
CLMS trained subfilters, can be used for adaptive filtering of the generality of complex
valued signals. It will have as fast initial convergence as CLMS, whereas its steady state
properties will be similar or better than those of the subfilter most suited to the signal in
hand.

� Such a hybrid filter may also be used for online testing for circularity of real world complex
valued signals, as illustrated in Figure 16.14(b).

� Unlike the hypothesis based statistical tests [83, 191], which operate on a block by block
basis, the tests based on collaborative learning operate in an online adaptive manner. Such
tests can be incorporated into supervised or semiblind forecasting and predictive control
strategies, even though they can be taken only in relative terms.
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Adaptive Filtering Based on EMD

The performance of adaptive filtering algorithms depends strongly on the amplitude range
and correlation structure of the input signal. Two frequently used approaches which help to
improve the speed of convergence and stability of adaptive filtering algorithms are:

� Normalisation, which is performed by dividing the weight update by an instantaneous
estimate of the tap input power, thus making an adaptive filter independent of the signal
power [308];

� Transform domain filtering, whereby the signal is first transformed into a ‘transform
domain’, typically by applying the Fast Fourier Transform (FFT) or the Discrete Cosine
Transform (DCT) [69, 149], to produce a decorrelated data sequence, thus improving
convergence.

Whereas normalisation in learning algorithms is well established [190, 308], transform
domain filtering uses a range of techniques, each of which requires its own assumption and
trade-offs. For instance, Fourier based techniques use linear superposition of trigonometric
functions to represent the signal, and require rather strong assumptions of piece-wise station-
arity and periodicity. Such transforms are typically applied to real valued data, which is then
processed using complex adaptive filters.

Two of most important features in the interpretation of real world data are the time scale
and amplitude distribution – therefore, so as best to use this information, the set of bases in
transform domain representations should be:

� complete, for mathematical tractability and in order to provide good accuracy;
� orthogonal, to reduce spectral leakage and maintain a non-negative signal power;
� local, to have excellent resolution in frequency;
� adaptive, to be able to deal with nonlinear and nonstationary data.

This chapter presents a class of complex Empirical Mode Decomposition (EMD) algorithms,
a fully data driven technique suitable for a time–frequency representation of complex valued
nonlinear and nonstationary processes [9, 128, 196, 251]. The local and adaptive nature of

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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EMD facilitates the time–frequency representation at the level of instantaneous frequency,
whereas the orthogonality of adaptive empirical modes preserves the physical meaning of the
components. The benefits of using complex EMD algorithms in conjunction with complex
adaptive filtering are illustrated in a nonlinear adaptive prediction setting.

17.1 The Empirical Mode Decomposition Algorithm

Empirical mode decomposition [128] is a technique to adaptively decompose a signal, by
means of a process called the sifting algorithm, into a finite set of oscillatory components called
intrinsic mode functions (IMFs), which represent the oscillation modes (scales) embedded in
the data. The real valued EMD algorithm decomposes an arbitrary signal x(k) into a sum of
IMFs {Ci(k)}, i = 1, . . . , M and the residual r(k), that is

x(k) =
M∑
i=1

Ci(k) + r(k) (17.1)

The residual r(k) is the last IMF and its physical meaning is the trend within the signal. To
provide a meaningful time–frequency representation at the level of instantaneous frequency,
the oscillatory modes should have the following properties:

� The upper and lower envelope are symmetric – at every point the mean value of the upper
and lower envelope is zero;

� The number of zero crossings and the number of extrema are equal or they differ at most
by one.

The first condition ensures that the instantaneous frequency derived from EMD will not have
local fluctuations due to the asymmetry of the envelopes and IMFs can be interpreted as
AM functions, whereas the second condition resembles a ‘narrowband’ requirement which
guarantees the existence of a local oscillatory mode and hence high accuracy in the time–
frequency domain.

The sifting algorithm. The IMFs are extracted from a real world signal x(k) by means of an
iterative algorithm called the sifting algorithm, described in Table 17.1.

Table 17.1 The sifting algorithm within the real valued EMD

1. Connect the local maxima of x(k) with a spline U to form the upper envelope of the signal; connect
the local minima of x(k) with a spline L to form the lower envelope of the signal

2. Subtract the mean envelope m = (U + L)/2 from the signal to obtain a proto-IMF
3. Repeat Step 1 and Step 2 until the resulting signal is a proper IMF (meets the design criteria above)
4. Subtract the IMF from the signal x(k), the residual is regarded as a new signal, that is, r(k) → x(k),

and the process is repeated from Step 1
5. The sifting process is completed when the residual of Step 4 is a monotonic function.
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Step 3 in Table 17.1 is checked indirectly, by evaluating a stoppage criterion (the standard
deviation of IMFs) given by

T∑
k=0

|hn−1(k) − hn(k)|2
h2

n−1(k)
≤ SD (17.2)

where hn(k) and hn−1(k) represent two successive sifting iterates. The parameter SD is set
empirically and usually has the value 0.2–0.3.

17.1.1 Empirical Mode Decomposition as a Fixed Point Iteration

The sifting process within EMD can be viewed as an iterative application of a nonlinear operator
T , defined as

hn+1 = T [hn] = hn − mn(hn) (17.3)

where hn denotes the result of the nth iteration of the sifting process and mn is the nth local
mean signal (depending on hn). If T [·] is a contractive operator, since by definition IMFs have
a zero local mean, the iteration (Equation 17.3) is a fixed point iteration and has a solution

hn = T [hn] (17.4)

that is, IMFs can be considered as fixed points1 of the iteration hn+1 = T [hn].
In theory, the iteration (Equation 17.3) could converge in one step, however, due to the spline

approximation within the sifting algorithm and the artifacts (hidden scales) introduced by it,
spurious extrema may be generated after every round of sifting. To deal with this problem,
the sifting operation is carried out until the empirical stoppage criterion (Equation 17.2) is
satisfied.2

To be able to interpret the stoppage criterion as a metric (as required by the Contraction
Mapping Theorem, see Appendix P) we can modify Equation (17.2) to ensure d(hn, hn−1) =
d(hn−1, hn), for instance

d1(hn, hn−1) =
T∑

k=0

|hn−1(k) − hn(k)|2
T

(17.5)

or

d2(hn, hn−1) =
T∑

k=0

|hn−1(k) − hn(k)|2
|hn−1(k) + hn(k)|2 (17.6)

1For more detail on contraction mappings and fixed point iteration, see Appendix P.
2A low value of SD, that is, sifting to the extreme, would remove all the amplitude modulation from the signal which
would result in purely frequency modulated components (IMFs). This is not desired as IMFs would not have physical
meaning [128].
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This will enable to test for the Lipschitz continuity of the series h1, . . . , h∞, and may hence
be used to determine:

� The existence of IMFs, through the examination of the series h1, . . . , h∞ and the use of
CMT [164];

� Uniqueness, speed of convergence, and properties of the class of signals for which the
sifting process converges.

17.1.2 Applications of Real Valued EMD

A time–frequency representation of a signal is produced by applying the Hilbert transform
H[·] to each IMF Ci(k), i = 1, . . . , M, to generate a set of analytic signals which have the
IMFs as their real part and their Hilbert transforms as the imaginary part. Equation (17.1) can
therefore be augmented to its analytic form given by

X(t) =
M∑
i=1

ai(t) · ej θi(t) (17.7)

where the trend r(t) is omitted, due to its overwhelming power and lack of oscillatory behaviour.
This form of EMD has a time-dependent amplitude ai(t), whereas the phase function θi(t)

provides additional computational power. The quantity

fi(t) = dθi

dt
(17.8)

represents the instantaneous frequency [52]; by plotting the amplitude ai(t) versus time t

and frequency fi(t), a Time–Frequency–Amplitude (TFA) representation of the entire signal,
called the Hilbert–Huang Spectrum (HHS), is obtained. It is this combination of the concept
of instantaneous frequency and EMD that makes the framework so powerful as a signal
decomposition tool.

Consider a signal which consists of two added sine waves with different frequencies, shown
in the first row of Figure 17.1(a). By using EMD, the signal is decomposed into the intrinsic
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Figure 17.1 Empirical mode decomposition of two added sinewaves
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Figure 17.2 Application of EMD for the denoising of real world blood volume signal. The denoised
blood volume is constructed by fusion of IMFs C7–C9

mode functions C1 and C2, and the residual (the last IMF) R3. The Hilbert–Huang spec-
trum of the IMFs is shown in Figure 17.1(b). The frequencies of the sine waves compris-
ing the original signal are clearly visible in the time–frequency spectrum in Figure 17.1(b).
Figure 17.1 illustrates that EMD first identifies the highest local frequency oscillation within a
signal; every subsequent IMF exhibits oscillations at a lower frequency, whereas the residual
is either the mean trend or a constant.

Figure 17.2 illustrates the application of EMD to the estimation of blood volume signal
during heart surgery. A sensor in the human heart records both the blood flow (a slow sine wave
with drifts due to sensor movement) and the superimposed high frequency electrocardiogram
(ECG). The goal is to extract a pure blood volume signal. Since the ECG and blood volume
are statistically coupled, standard signal processing techniques (both supervised and blind)
are bound to fail. By EMD, it has been possible to identify the IMFs in Figure 17.2(a) which
represent the denoised blood volume (IMFs C7–C9). The original noisy blood volume (dotted
line) and the denoised blood volume (solid line) are shown in Figure 17.2(b).

17.1.3 Uniqueness of the Decomposition

To this point the analysis of EMD has been based on the following assumptions:

� The signal in hand has at least one minimum and one maximum;
� The time scales are defined as the time interval between the two consecutive extremum

points;
� If the signal is monotonic, that is, with no extrema, but with inflection points, such a signal

can be differentiated several times to facilitate EMD.

The fully data driven, empirical nature of EMD, as described above, gives it clear advantages
but also compromises the uniqueness of the decomposition. Signals with similar statistics
often yield different decompositions, both in terms of the number and properties of IMFs.
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Figure 17.3 Illustration of mode mixing for a sinusoid corrupted by two different realisations of white
Gaussian noise W1 and W2. EMD produced a different number of intrinsic mode functions, M = 7 in (a)
and M = 8 in (b). The original sinusoid is located in different modes: C4 in (a) and C3 + C4 in (b). For
convenience C5 : r = ∑M

i=5 Ci + r

This is manifested by so-called mode mixing, whereby two or more IMFs have the same
oscillatory modes. To provide further insight into mode mixing, consider a noisy sinusoid U,
corrupted by two different realisations, W1 and W2, of additive white Gaussian noise with
the same statistical properties. The M = 7 extracted IMFs for the first case are shown in
Figure 17.3(a). The original sinusoid corresponds to the fourth IMF C4, whereas the noise is
contained within the IMFs C1 and C2. Figure 17.3(b) shows the results of performing EMD
on the same sinusoid corrupted by W2, resulting in M = 8 IMFs. In addition to a different
number of IMFs as compared with the first case, mode mixing occurred – the signal of interest
is contained within two IMFs: C3 and C4.

The issue of mode mixing can be addressed by performing EMD over a number of inde-
pendent realisations of WGN (Ensemble EMD [317]), however, this still does not guarantee
a unique number of extracted IMFs. For a meaningful physical interpretation of multidimen-
sional sources (for example the real and imaginary channel of a complex vector), the number
of IMFs in all the channels should be the same.

The problem of uniqueness is addressed in Section 17.3; to this end we first need to introduce
complex extensions of EMD.

17.2 Complex Extensions of Empirical Mode Decomposition

The main issue in multivariate extensions of EMD is that of envelope interpolation, as this relies
on finding the extrema within the signal. Since C is not an ordered field (see Appendix A), it
is not possible to find the local extrema directly, and several algorithms have been introduced
to circumvent this problem. These include:

� The complex EMD algorithm [284] proposed by Tanaka and Mandic effectively applies
real valued EMD to the signals corresponding to the positive and negative frequency
component of the spectrum of analytic signals.
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� The rotation invariant complex EMD (RIEMD) [9] defines the extrema as the points where
the angle of the first derivative of the signal changes its sign. Since all the operations are
performed directly in C, this method provides a single set of complex IMFs.

� The bivariate EMD [251] is an extension of RIEMD, whereby envelope curves are obtained
by projecting a bivariate signal in multiple directions and interpolating their extrema.

17.2.1 Complex Empirical Mode Decomposition

The first method to ‘complexify’ EMD was introduced in 2007, termed Complex Empirical
Mode Decomposition [284]. The method is based on the inherent relationship between a
complex signal and the properties of the Hilbert transform. The idea behind this approach is
rather intuitive – a complex signal has a two-sided, asymmetric spectrum and can be converted
into a sum of two analytic signals by first separating the positive and negative frequency
components of the spectrum and then converting back into the time domain. Standard EMD is
subsequently applied to the two derived signals.

More precisely, by processing a complex valued signal x(k) for which the spectrum is X(ejw)
with the filter given by

H(ejw) =
{

1, 0 < ω ≤ π

0, −π < ω ≤ 0
(17.9)

two analytic signals X+(ejw) and X−(ejw), which correspond to the positive and the negative
frequency parts of X(ejw) are generated. The subsequent application of the Inverse Fourier
Transform (IFT) yields sequences x+(k) and x−(k); standard real valued EMD can then be
applied to the real parts of x+(k) and x−(k), to give

x+(k) =
M+∑
i=1

xi(k) + r+(k), x−(k) =
−M−∑
i=−1

xi(k) + r−(k) (17.10)

where symbols M+ and M− denote respectively the number of IMFs for the positive and the
negative frequency parts. The resulting two sets of IMFs are combined to form a complex
valued signal

x(k) =
i=M+∑

i=−M−,i /= 0

xi(k) + r(k) (17.11)

The ith complex IMF is therefore defined as

Ci(k) =
{

xi(k) + jH[xi(k)], i = 1, . . . , M+,

{xi(k) + jH[xi(k)]}∗, i = −M−, . . . ,−1
(17.12)

Although it has a straightforward mathematical derivation and preserves the dyadic filter bank
property of EMD when processing complex noise [284], there is no guarantee that the positive
and negative parts of the signal will yield equal numbers of IMFs. This makes the physical
interpretation of the results difficult.
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17.2.2 Rotation Invariant Empirical Mode Decomposition (RIEMD)

A critical aspect of the derivation of EMD in C is the definition of an extremum. In [9] it was
proposed to use the locus where the angle of the first-order derivative (with respect to time)
changes sign; this way it can be assumed that a local maximum will be followed by a local
minimum (and vice versa). This criterion is equivalent to the extrema of the imaginary part of
the signal, that is

∠Ż(t) = 0 ⇒ ∠{ẋ(t) + j · ẏ(t)} = 0

⇒ tan−1 ẏ(t)

ẋ(t)
= 0 ⇒ ẏ(t) = 0 (17.13)

where Z(t) is a complex signal (for convenience we here use a continuous time index t). The
cubic spline interpolation is then performed directly inC, to obtain complex valued envelopes,
which are then averaged to obtain the local mean. Unlike the original CEMD [284], this method
yields a single set of complex valued IMFs, and is a natural extension of real valued EMD. To
illustrate RIEMD, consider a set of wind3 speed and direction measurements, which have been
made complex by convenience of representation (see Chapter 2). Figure 17.4(a) shows the
‘wind rose’ for the original wind signal, whereas Figure 17.4(b) illustrates the contribution of
the sixth and seventh IMF (C6 + C7). It is clear that the complex IMFs have physical meaning
as they reveal the dynamics of the original signal at different scales.

17.2.3 Bivariate Empirical Mode Decomposition (BEMD)

The bivariate EMD algorithm [251] calculates local mean envelopes based on the extrema
of both (real and imaginary) components of a complex signal, thus yielding more accurate
estimates than RIEMD. The algorithm effectively sifts rapidly rotating signal components from
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(a) A complex wind signal
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(b) Sum of the sixth and seventh complex IMF

Figure 17.4 A complex wind signal analysed by the Rotation Invariant Complex EMD

3Publicly available from http://mesonet.agron.iastate.edu/request/awos/1min.php.
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Table 17.2 The bivariate EMD (BEMD) algorithm [251]

1. Obtain N signal projections, {pθn
}N
n=1, by projecting the complex signal z(t) by means of a unit

complex number ejθn , in the direction of θn, to obtain

pθn
= �(

ejθnz(t)
)
, n = 1, . . . , N (17.14)

where θn = 2nπ/N

2. Find the locations {tnj }N
n=1 of the maxima of {pθn

}N
n=1

3. Interpolate (using spline interpolation) between the maxima [tnj , z(tnj )], to obtain the envelope curves
{Uθn

}N
n=1

4. Calculate the mean, m(t), of all the envelope curves
5. Subtract m(t) from the input signal z(t) to yield an ‘oscillatory’ component, that is, d(t) = z(t) − m(t).

The stopping criterion is the same as for real EMD.

the slowly rotating ones and employs the same complex cubic spline interpolation scheme as
RIEMD. The operation of BEMD is summarised in Table 17.2.

Bivariate EMD [251] operates in a similar fashion to rotation invariant EMD: by projecting
the signal in N directions, the approach finds extrema in several directions and constructs a 3D
tube by interpolating them. The local mean (centre of the tube) can be found as the barycentre
of the N points or as the intersection of straight lines passing through the middle of the
tangents.

Figure 17.5 illustrates the process of finding the local mean of a complex signal using
RIEMD and BEMD. In both cases, envelopes are calculated in multiple directions, and are
then averaged to obtain the local mean. The local mean estimate obtained by BEMD is more
accurate than that using RIEMD, as it employs more directions to calculate the envelopes. This
is illustrated around point 50 on the X-axis, where RIEMD could not estimate the true local
mean, whereas BEMD was able to correctly differentiate between a local minimum and local
maximum. For N = 2 BEMD and RIEMD are equivalent.

(a) Local mean estimation using RIEMD (N = 2) (b) Local mean estimation using BEMD (N = 4)
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Figure 17.5 Local mean estimation using RIEMD and BEMD

http://www.it-ebooks.info/


230 Adaptive Filtering Based on EMD

10 20 30 40 50 60 70 80 90 100
−4

0

4

U

10 20 30 40 50 60 70 80 90 100
−4

0

4

C
1

10 20 30 40 50 60 70 80 90 100
−4

0

4

C
2

10 20 30 40 50 60 70 80 90 100
−4

0

4

C
3

10 20 30 40 50 60 70 80 90 100
−4

0

4

Time Index

C
4
:r

10 20 30 40 50 60 70 80 90 100
−4

0

4

V

10 20 30 40 50 60 70 80 90 100
−4

0

4

C
2

0 20 40 60 80 100
−4

0

4

C
1

10 20 30 40 50 60 70 80 90 100
−4

0

4

C
3

10 20 30 40 50 60 70 80 90 100
−4

0

4

Time Index

C
4
:r

(b) Imaginary part of the complex IMFs of U + V(a) Real part of the complex IMFs of U +  V

Figure 17.6 Uniqueness of the scales for RIEMD and BEMD

17.3 Addressing the Problem of Uniqueness

Both RIEMD and BEMD solve the problem of uniqueness by operating directly on the complex
signal, as the algorithms produce the same number of IMFs for the real and imaginary part. To
illustrate the ability of RIEMD and BEMD to produce ‘common scales’ within complex valued
IMFs, Figure 17.6 shows IMFs for the signals U + j V , for which the real and the imaginary
part, U and V , are obtained from a set of three sine waves. Common to both U and V are
the frequencies of two of the sinusoids, although their amplitude and phase were different. A
third high-frequency sinusoid was added to U only. Clearly, U and V have a different number
of oscillatory modes, however, by virtue of BEMD the number of IMFs for U is equal to the
number of IMFs for V . The high-frequency sinusoid, contained only in U, is shown in the
real part of the first IMF in Figure 17.6(a). The common frequency scales are clearly visible
in IMFs C2 and C3. Thus, if mode mixing occurs this does not pose a problem as it occurs
simultaneously in the real and imaginary part of a complex IMF.

17.4 Applications of Complex Extensions of EMD

EMD can be considered within so-called data fusion via fission framework [193], whereby
the signal is first decomposed into a number of orthogonal components (fission), and then,
depending on the application, the most relevant components are recombined to produce an
enhanced signal (fusion), as shown in Figure 17.7(a). The standard way to use EMD in this
context is to apply a binary mask to the set of IMFs, for instance, in the denoising application in
Figure 17.2, IMFs C7–C9 are identified as information bearing components and are summed
up to produce the denoised blood volume signal.

Nonlinear adaptive prediction. The use of a binary mask to identify the information bear-
ing IMFs within EMD is not suitable for nonstationary processes. To make full use of
EMD as a preprocessing step, it should be followed by an adaptive combiner, as shown in
Figure 17.7(b). Any adaptive filtering architecture: linear, nonlinear, feedforward, or feedback

http://www.it-ebooks.info/


Applications of Complex Extensions of EMD 231

Σ

RestorationDecomposition

IMFM

IMF1

W1

WM

...

...
Input Output

(a) Data fusion via fission

C

... window

time

Empirical Mode

Decomposition

Adaptive

Filtering

Input Output

N

1

M

C

C

2

(b) EMD as a preprocessing technique

Figure 17.7 Application of EMD in the signal preconditioning stage

can be employed. By design the IMFs are locally orthogonal which helps with the speed of
convergence4 of adaptive filtering algorithms, whereas the locality of complex EMD makes
this approach suitable for a generality of nonlinear and nonstationary complex valued signals
[171]. Adaptive filtering can be performed across all the IMFs for a fixed time instant, or in a
block fashion for a time window of length N.

To illustrate the performance, consider the task of one step ahead prediction of the complex
wind signal [194], for which BEMD was used to obtain M = 11 complex IMFs. In the adaptive
filtering stage, the normalised CLMS (NCLMS) algorithm was applied and the size of the
temporal window was chosen to be N = 3, to give an overall block of M × N = 33 data
points. For a fair comparison, the filter length for the standard NCLMS algorithm was selected
as L = 33. The prediction gain for the real part of the signal was Rp = 23 dB for the BEMD-
NCLMS case and Rp = 18.4 dB when only NCLMS was applied. For the imaginary part of
the wind signal these values were Rp = 22 dB for BEMD-NCLMS and Rp = 17.8 dB for
NCLMS. Figure 17.8 illustrates the tracking performance of NCLMS and BEMD-NCLMS
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Figure 17.8 Tracking performance of BEMD-NCLMS and NCLMS

4In theory, since the IMFs are locally orthogonal, even a linear filter should perform well for the generality of signals.
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Table 17.3 Prediction gains Rp (dB) for standard and EMD enhanced algorithms

CLMS NCLMS CNGD CRTRL ACRTRL

8.41 10.99 12.39 13.21 14.68

BEMD-CLMS BEMD-NCLMS BEMD-CGND BEMD-CRTRL BEMD-ACRTRL

11.06 13.20 13.13 15.01 16.66

algorithms for the complex wind signal; BEMD-NCLMS produced estimates which are better
aligned with the original signal than those produced by the NCLMS.

In the next experiment, several complex adaptive filtering architectures, ranging from a
linear feedforward filter through to a multilayer nonlinear recurrent neural network, were used
to perform one step ahead prediction on a segment of raw wind data. The performances were
compared with the corresponding performances for the EMD-preprocessed data. The prediction
gain was calculated directly in C, the number of complex IMFs and hence the length of the
tap input delay line was M = 10, and recurrent neural networks had three neurons. Table 17.3
shows that the performance improved with the complexity of the algorithm, with the linear
CLMS having worst performance and the augmented nonlinear CRTRL (ACRTRL) performing
best. Also, due to the local orthogonality of IMFs, optimal learning rates for the decorrelated
signals were on the average an order of magnitude larger.

To summarise:

� Empirical Mode Decomposition (EMD) demonstrates a considerable strength in the anal-
ysis of nonlinear and nonstationary real world data, providing a framework for information
‘fusion’ by performing signal ‘fission’ into its oscillatory components.

� The extension of EMD to the complex domain C enables the modelling of amplitude–
phase relationships within multichannel data, and also helps with the problems of ‘mode
mixing’ and the uniqueness of the decomposition.

� Due to the local orthogonality of intrinsic mode functions, complex extensions of EMD
can be used as a preprocessing step in adaptive filtering applications.

� As signal decorrelation is achieved directly in C, this helps increase the speed of conver-
gence and accuracy of complex valued adaptive filtering algorithms.
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18
Validation of Complex
Representations – Is This
Worthwhile?

So far we have addressed some inherent properties of complex processes, such as complex
nonlinearity (Chapter 4), augmented complex statistics (Chapter 12), and topological proper-
ties of complex mappings (Chapter 11). It seems clear that complex valued models will be
more advantageous the greater the coupling between the real and imaginary components of
a process – that is, the more ‘complex’ the process. This is borne out by empirical evidence
(Chapter 12) where it is shown that the relative benefit of complex valued modelling is related
to the degree of coupling between the speed and direction components of the wind profile. In
addition, signal dynamics and the degree of averaging, which affect the component coupling,
will have a major influence on the choice of an appropriate signal model. Again wind data
provide an example; the areas denoted by A, B and C in Figure 18.1 correspond respectively
to ‘high’, ‘medium’ and ‘low’ dynamics.

It has been shown in Chapter 13 that the use of widely linear model is justified only if
there is a statistical evidence that the signal in hand is not second-order circular. However,
the pseudocovariance matrix is estimated from the data available, and such estimate will, in
general, be nonzero, although the actual source is circular. Since we are mostly interested in
‘complex by convenience of representation’ signals (see Chapter 2), it would appear vital to
establish a rigorous statistical testing framework which would reveal whether the complex
representation is worthwhile – that is, does it offer theoretical and practical advantages over
the bivariate1 or dual univariate signal models?

Following on from the Delay Vector Variance (DVV) technique for statistical testing for
signal nonlinearity [83, 86], one such statistical test for the ‘complex nature’ of real-world
processes [85] is the ratio of statistical differences between realisations under the null hypo-
thesis of ‘linear bivariate’ and ‘linear circular.’

1For convenience, we use the term ‘bivariate’ to denote the ‘real valued bivariate’ signals.

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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Figure 18.1 Wind speed recording over one day. Regions A, B, and C correspond to different wind
regimes (high, medium, and low)

18.1 Signal Modality Characterisation in R

Signal modality characterisation is becoming an increasingly important area of multidisci-
plinary research and considerable effort has been put into devising efficient algorithms for this
purpose. Research in this area started in physics in the mid 1990s [303], but its applications in
machine learning and signal processing are only recently becoming apparent [84]. As changes
in the signal nature between, say, linear and nonlinear and deterministic and stochastic can re-
veal information (knowledge) which is critical in certain applications (e.g. health conditions),
the accurate characterisation of the nature of signals is a key prerequisite to choosing a signal
processing framework.

By the ‘nature’ of a signal we refer to the following fundamental properties: [82, 83, 265]:

P1. Linear (strict definition) – a linear signal is generated by a linear time-invariant system,
driven by white Gaussian noise.

P2. Linear (commonly adopted) – property P1 is relaxed somewhat by allowing the ampli-
tude distribution of the signal to deviate from the Gaussian distribution (a linear signal
from P1 is measured by a static, possibly nonlinear, observation function).

P3. Nonlinear – a signal that does not meet the criteria P1 or P2 is considered nonlinear.
P4. Deterministic (predictable) – a signal is considered deterministic if it can be precisely

described by a set of equations.
P5. Stochastic – a signal that is not deterministic.2

2The Wold decomposition theorem [314] states that any discrete stationary signal can be decomposed into its determin-
istic and stochastic (random) component, which are uncorrelated. This theorem forms the basis for many prediction
models, since the presence of a deterministic component imposes a bound on the performance of these models.
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Figure 18.2 A variety of signal modalities spanned by the properties ‘stochastic’ and ‘nonlinear’.
Classes of signals for which the generating mechanisms are well understood are ‘Chaos’, ‘ARMA’, and
‘NARMA’

The range of real world signals spanned by their linear vs nonlinear and deterministic vs
stochastic natures is illustrated in Figure 18.2 (modified from [263]). It is interesting that the
classes of signals which are well established and understood, such as the linear stochastic
autoregressive moving average (ARMA) models and nonlinear deterministic chaotic signals,
are at the opposite corners of Figure 18.2. Real world signals, however, are likely to belong to
the areas denoted by (a), (b), (c) or ‘?’, since they are recorded in noisy3 environments and by
nonlinear sensors; these are major signal classes about which we know little or nothing.

18.1.1 Surrogate Data Methods

The concept of ‘surrogate data’ was introduced by Theiler et al. [287], and has been extensively
used in the context of statistical testing for signal nonlinearity; more detail on surrogate data
methods can be found in [144, 265, 288, 290]. Hypothesis testing assesses a fundamental
property of signal (say nonlinearity) by generating a large number, say 100, of independent
linear realisations of the original signal (surrogates) and comparing the ‘test statistic’ for the
surrogates against that of the original signal.

The basic principle of hypothesis based statistical testing for signal nonlinearity4 can be
summarised in the following steps:

N1. Establish a null hypothesis H0, e.g. the signal is generated by a linear stochastic system
driven by white Gaussian noise.

N2. Generate a number of independent surrogates, which are linear realisations of the
original signal.

3The environment is also typically statistically nonstationary, and the signal modality changes with time, say from (a)
to (b), or from ARMA to Chaos (heart rates, epileptic seizures), which may, e.g. indicate a health hazard.
4The analysis of the nonlinearity of a signal can often provide insights into the nature of the underlying signal
production system. However, care should be taken in interpreting the results, since the assessment of nonlinearity
within a signal does not necessarily imply that the underlying signal generation system is nonlinear: the input signal
and system (transfer function) nonlinearities are confounded.
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Figure 18.3 Surrogates generated based on the Fourier transform

N3. Establish a discriminating criterion between the linear and nonlinear signal, the so
called test statistic.

N4. Based on the number of rejections of the null hypothesis from N1, the nature of the
original signal is judged linear or nonlinear.

Since surrogate data are linear realisations of the original signal, they can be generated in
many ways, for instance by ARMA modelling. It is, however, much more desirable to have
nonparametric generation methods for surrogate data. By definition (P1 and P2), the property
of signal linearity is derived from the second-order statistics (mean, variance, autocorrelation or
equivalently amplitude spectrum), and hence for a linear signal the phase spectrum and higher-
order statistics (HOS) are irrelevant; one simple way to generate a number of surrogates is based
on the Fourier transform (FT surrogates), as illustrated in Figure 18.3. The FT surrogates are
generated by simply performing the inverse Fourier transform of a signal generated from the
original amplitude spectrum and the randomised phase spectrum; this method, however, is not
suitable for signals described by P2.

A reliable surrogate data method, capable of generating surrogates for data observed through
a static nonlinearity, is the ‘iterative Amplitude Adjusted Fourier Transform’ (iAAFT) method
[264]; it has been shown to produce superior results compared with other available surrogate
data generation methods [160, 265].

The iAAFT method can be summarised as follows:

S1. Let {|Sk|} be the Fourier amplitude spectrum of the original time series s, and {ck} the
amplitude sorted version of the original time series

Repeat:

S2. At every iteration j generate two additional series:

(i) r(j), which has the same distribution as the original signal
(ii) s(j), which has the same amplitude spectrum as the original signal

Starting with r(0), a random permutation of the time samples of the original time series:

1. Compute the phase spectrum of r(j−1) → {φk}
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Figure 18.4 Block diagram for the Delay Vector Variance (DVV) method

2. Compute s(j) as the inverse transform of {|Sk| exp(j φk)}
3. Compute r(j) as obtained by rank-ordering s(j) so as to match {ck}

Until error convergence.

18.1.2 Test Statistics: The DVV Method

A convenient test statistic,5 which makes use of some notions from nonlinear dynamics and
chaos theory (embedding dimension and phase space) is the Delay Vector Variance (DVV)
method [83]. It is based upon examining the local predictability of a signal in phase space, which
when combined with the surrogate data methodology allows one to examine simultaneously
the determinism and nonlinearity within a signal.

The signal flow within the DVV method is illustrated in Figure 18.4. For a given embedding
dimension m, the DVV method can be summarised as follows [83, 84, 86]:

D1. The mean, μd, and standard deviation, σd, are computed over all pairwise Euclidean
distances between delay vectors (DVs), ‖x(i) − x(j)‖ (i /= j).

D2. The sets of ‘neighbouring’ delay vectors �k(rd) are generated such that �k(rd) =
{x(i)| ‖x(k) − x(i)‖ ≤ rd}, that is, sets which consist of all DVs that lie closer to x(k)
than a certain distance rd, taken from the interval [max{0, μd − ndσd}; μd + ndσd],

5Apart from the surrogate methods, other established methods for detecting the nonlinear nature of a signal include
the Deterministic versus Stochastic (DVS) plot [44] and δ–ε Method [145].
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for example, Ntv uniformly spaced distances, where nd is a parameter controlling the
span over which to perform the DVV analysis.

D3. For every set �k(rd), the variance of the corresponding targets, σ2
k (rd), is computed.

The average over all sets �k(rd), normalised by the variance of the time series, σ2
x ,

yields the target variance σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k (rd)

σ2
x

(18.1)

As a rule of thumb, we only consider a variance measurement valid, if the set �k(rd)
contains around No = 30 DVs, since having too few points for computing a sample
variance yields unreliable estimates of the true (population) variance.

As a result of the standardisation of the distance axis, the resulting ‘DVV plots’ (target vari-
ance, σ∗2(rd) as a function of the standardised6 distance, (rd − μd)/σd) are straightforward to
interpret:

� The presence of a strong deterministic component will lead to small target variances
σ∗2(rd) for small spans rd .

� The minimal target variance, σ∗2
min = minrd [σ∗2(rd)], is a measure for the amount of noise

which is present in the time series (the prevalence of the stochastic component).
� At the extreme right, the DVV plots smoothly converge to unity, since for maximum spans,

all DVs belong to the same universal set, and the variance of the targets is equal to the
variance of the time series.

To illustrate the operation of the DVV method, consider a linear AR(4) signal [190], given
by

x(k) = 1.79 x(k − 1) − 1.85 x(k − 2) + 1.27 x(k − 3) − 0.41 x(k − 4) + n(k) (18.2)

and a benchmark nonlinear signal [216], given by

z(k) = z(k − 1)

1 + z2(k − 1)
+ x3(k) (18.3)

where x(k) denotes the AR(4) signal defined above and n(k) ∼ N(0, 1).
Averaged DVV plots, computed over 25 iAAFT-based surrogates for these two benchmark

signals are shown respectively in Figure 18.5(a) and (b). Since the AR(4) is linear, and sur-
rogates are also linear by design, the DVV curves for the original and averaged surrogates
are very close (Figure 18.5a). This is not the case with the DVV curves for the original and
averaged surrogates for the nonlinear signal in Figure 18.5(b), which are far apart, indicating
that the linear surrogates were not able to model the nonlinear nature of the signal.

Due to the standardisation of the distance axis, these plots can be conveniently combined in
a scatter diagram, where the horizontal axis corresponds to the DVV plot of the original time

6Note that we use the term ‘standardised’ in the statistical sense, namely as having zero mean and unit variance.
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Figure 18.5 Signal modality characterisation. The DVV plots for the original and surrogates are
obtained by plotting the target variance as a function of standardised distance

(a) DVV scatter diagram
 for the AR(4) signal (18.2)
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 for the nonlinear signal (18.3)

Figure 18.6 The DVV scatter diagrams obtained by plotting the target variance of the original data
against the mean of the target variances of the surrogate data

series, and the vertical to that of the surrogate time series. If the averaged surrogate time series
yield DVV plots similar to that of the original time series, the DVV scatter diagram coincides
with the bisector line, and the original time series is judged to be linear, as illustrated in Figure
18.6(a). Conversely, as shown in Figure 18.6(b), the DVV scatter diagram for a nonlinear signal
deviates from the bisector line.

18.2 Testing for the Validity of Complex Representation

When testing for the suitability of the complex valued signal representation, one convenient
null hypothesis H0 would be that the time series is generated by a linear circular complex valued
process, followed by a (possibly nonlinear) static observation function, h(·) which operates on
the moduli of the complex valued time samples.

http://www.it-ebooks.info/


240 Validation of Complex Representations – Is This Worthwhile?

To cater for complex valued signals, a straightforward extension of the (real valued) bivariate
iAAFT-method [265] would be to match the amplitude spectrum of the surrogate and the
amplitude spectrum of the original complex valued signal. Then, the signal distribution of the
original needs to be imposed on the surrogates in the time domain (step S3 in the iAAFT-
procedure). This can be achieved by rank-ordering the real and imaginary parts of the complex
valued signal separately, as this is in line with the notion of circularity. However, in practice,
for complex valued signals it is more important to impose equal empirical distributions on the
moduli of the samples, rather than on the real and imaginary parts separately. This way, the
empirical distribution of the moduli is (approximately) identical to that of the original signal,
thus retaining signal circularity (if present). This approach will be adopted in the derivation of
the statistical test for the validity of complex valued representations.

Similar to the real valued iAAFT case, during the computation of complex iAAFT (CiAAFT)
surrogates, {|Sk|} denotes the Fourier amplitude spectrum of the original time series s; for every
iteration j, three additional time series are generated:

� the ‘modulus sorted’ version of the complex valued original time series s, denoted
by {ck};

� a time series with the same distribution (in terms of moduli) as the original complex valued
time series s, denoted by r(j);

� a time series which has the amplitude spectrum identical to that of the original time series
s, but not necessarily the same distribution of the moduli, denoted by s(j).

The CiAAFT procedure is summarised below; the iteration starts with r(0), a random
permutation of the original complex valued time samples.

Repeat:

C1. Compute the phase spectrum of r(j−1) → {φk}
C2. Compute s(j) as the inverse transform of {|Sk| exp(j φk)}
C3. Rank-order the real and imaginary parts of r(j) to match the real and imaginary parts

of {ck}
C4. Rank-order the moduli of r(j) to match the corresponding modulus distribution of {ck}

Until error convergence

Figure 18.7 illustrates the results of the statistical testing for the complex nature of (fully
complex by design) Ikeda map. Figure 18.7(b) shows that the bivariate approach (although
two-dimensional) was not able to preserve the state space properties of Ikeda map, whereas the
surrogate realisation based on CiAAFT (Figure 18.7c) was much better suited for this purpose.

18.2.1 Complex Delay Vector Variance Method (CDVV)

The extension of the Delay Vector Variance method into the complex domain is straightforward.
For a given embedding dimension m and a resulting time delay embedding representation
(i.e., a set of complex valued delay vectors (DV), s(k) = [sk−m, . . . , sk−1]T), a measure of
unpredictability, σ∗2(rd), is computed for a standardised range of degrees of locality, rd, similar
to the real case described in Section 18.1.2. Since for both the bivariate and complex time
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Figure 18.7 Judging the validity of complex representation of the Ikeda map time series denoted by
z = �(z) + j �(z): (a) the original signal; (b) realisation using bivariate iAAFT surrogates; (c) realisation
using complex iAAFT surrogates; (d) DVV plots for the Ikeda map (thick solid line), iAAFT surrogate
(think dashed line), and CiAAFT surrogate (thin solid line)

series, a delay vector is generated by concatenating time delay embedded versions of the two
dimensions (real and imaginary), the complex valued and real valued bivariate versions of the
DVV method provide equivalent results, and the variance of such variables is computed as the
sum of the variances of each variate, that is7

σ∗2
s (rd) = σ∗2

s,r(rd) + σ∗2
s,i (rd)

where σ∗2
s,r(rd) denotes the target variance for the real part of the original signal s, and σ∗2

s,i (rd)
denotes that for the imaginary part.

7Note that by augmenting the delay vectors within the DVV method, that is, by computing the Euclidean distances
between the augmented delay vectors, would not make any difference. This is due to the deterministic relationship
between a complex delay vector z(k) and its complex conjugate z∗(k) (see Chapter 12).
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Test for the validity of complex valued representation. To test for the potential benefits of
complex valued representations, rather than comparing the original time series to the surrogates,
it is convenient to compare the surrogates generated under the fundamentally different null
hypotheses of:

� a linear bivariate time series, denoted by Hb
0 , for which the surrogates are generated using

the (real valued) bivariate iAAFT [265];
� a linear and complex valued time series, denoted by Hc

0 , for which the surrogates are
generated using the CiAAFT method [85].

The DVV method can be used to characterise the natures of the two different realisations.
A statistically different characterisation means that the two null hypotheses lead to different
realisations of the original signal. Since the difference between the null hypotheses is the
property of circularity in the linearisations of the original signal, a statistical difference can
be interpreted as an indication of the presence of circularity in the original signal, which is
retained in the CiAAFT realisations, and not in the iAAFT realisations. This test can be used
to justify a complex valued representation over a dual univariate one.

The complex DVV based statistical test for the validity of the complex valued representation
can now be summarised as follows:

T1. Generate M CiAAFT surrogates and produce the averaged DVV plot denoted by D0;
T2. Generate N bivariate iAAFT surrogates and produce the corresponding DVV plots,

denoted by {Db};
T3. Generate N CiAAFT surrogates and produce the corresponding DVV plots, denoted

by {Dc};
T4. Compare

(
D0 − {Db}) and

(
D0 − {Dc}).

To perform T4 in a statistical manner, the (cumulative) empirical distributions of rootmean-
square distances between {Db} and D0, and between {Dc} and D0, are compared using a
Kolmogorov–Smirnoff (K-S) test. This way, the different types of linearisations (bivariate {Db}
from T2, and complex valued {Dc} from T3) are compared with the ‘reference’ linearisation,
that is, D0 from T1. If the two distributions of test statistics are significantly different at a
certain confidence level α, say 95%, the original time series is judged complex valued [85].

A DVV plot of a complex signal is obtained by plotting the target variance, σ∗2(rd), as a
function of the standardised distance (rd − μd)/σd . The DVV plots for a 1000 sample reali-
sation of the Ikeda map and the iAAFT and CiAAFT surrogates (using m = 3 and nd = 3)
are shown in Figure 18.7(d). Figure 18.8 illustrates the convergence of CiAAFT surrogates
when modelling the Ikeda map, and their behaviour in the presence of noise. The conver-
gence curve is uniform and the CiAAFT iteration settles after about 30 iterations, as shown in
Figure 18.8(a). Since the complex white Gaussian noise used in simulations was ‘doubly white’
(see Section 13.2), bivariate iAAFT surrogates provided a suitable model. Figure 18.8(b) shows
the rejection ratios of the CDVV method for the Ikeda map contaminated with complex WGN
(CWGN) over a range of power levels. The complex Ikeda map and CWGN had equal vari-
ances, and the noisy signal Ikedanoisy was generated according to

Ikedanoisy = Ikedaoriginal + γn × CWGN (18.4)
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Figure 18.8 Behaviour of CiAAFT surrogates for the example of Ikeda map. Left: convergence. Right:
behaviour in the presence of noise; parameter γn indicates the ratio between the standard deviation of the
complex Ikeda map and that of the additive white Gaussian noise – see (Equation 18.4)

where γn denotes the ratio of standard deviations between the Ikeda map signal and CWGN.
As expected, with an increase in noise power, the validity of complex valued representation
of noisy Ikeda map was less pronounced, as illustrated by a downwards trend of the curve in
Figure 18.8(b).

18.3 Quantifying Benefits of Complex Valued Representation

To test for the benefits of complex valued representation of real valued processes, consider wind
data recorded over 24 hours, shown in Figure 18.1. Areas denoted by A, B, and C correspond
respectively to the ‘high’, ‘medium’ and ‘low’ dynamics of wind. It is expected that the larger
the changes in wind dynamics (‘high’) the greater the advantage obtained by the complex
valued representation of wind (see also Chapter 12). For relatively mild and slowly changing
wind dynamics, it is expected that the complex valued modelling should not exhibit significant
performance advantage over, say, the dual univariate one. Also, it is expected that the complex
(and nonlinear) nature of wind would be less pronounced with increased averaging of the raw
data.8

Table 18.1 illustrates the rejection ratios9 for the null hypothesis of ‘no difference between
bivariate and complex linearisations’, that is, for the bivariate nature of wind data from Figure
18.1, for different wind regimes and degrees of averaging.10 Also, there are stronger indications
of a complex valued nature when the wind is averaged over shorter intervals, as represented

8This is closely related to circularity and augmented complex statistics addressed in Chapter 12.
9Each result was obtained by performing the complex DVV test 100 times, and by counting the number of rejections
of the null hypothesis.
10As expected (see Figure 2.6), there is a significant component dependence within the complex valued wind signal
representation, as indicated by the rejection ratio of the null hypothesis (of a bivariate nature) being significantly
greater than zero.
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Table 18.1 Rejection rates (the higher the rejection rate the greater the benefit of complex valued
representation) for the wind signal from Figure 18.1

Wind signal Region A% Region B% Region C%

Averaged over 1 s 96 80 71

Averaged over 10 s 90 74 62

Averaged over 60 s 83 69 58

by the respective percentage values of the ratio of the rejection of the null hypothesis of a real
bivariate nature.

18.3.1 Pros and Cons of the Complex DVV Method

This chapter illustrates the importance and usefulness of statistical testing for the fundamental
nature of data (nonlinearity, determinism, complex valued nature). This can provide additional
knowledge which can be exploited when choosing a signal processing model best suited to
the data. Indeed, following from the signal modality characterisation for real valued data from
Figure 18.2, the complex surrogates and complex DVV method enable us to test whether the
complex valued representation of real world data is worthwhile.

Despite being well founded mathematically and extremely useful, these tests suffer from draw-
backs, such as:

� Surrogate and DVV tests can only be performed in an off-line block manner;
� The DVV and surrogate data based tests are only applicable for quasistationary data

segments (since we need to calculate the embedding parameters and compute the Fourier
transform, these operation only apply to stationary data);

� Due to the requirement of piece-wise stationarity, it is possible to mistake the property of
nonstationarity for nonlinearity;

� Hypothesis testing methods are not readily suitable for real time mode of operation, they
can, however, operate in near real time on overlapping data windows.

Some of these issues have been addressed in Chapter 16, where online tests for the
characterisation of the nature of complex valued data are introduced.
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Appendix A
Some Distinctive Properties
of Calculus in C

Differences between real and complex algebra require us to revisit some basic notions from
function analysis and topology in C.

Ordering of numbers. A field can be ordered if and only if no sum of squares of nonzero
elements is zero [16]. Since j and 1 are both nonzero, and j2 + 1 = 0, the field of complex num-
bers C cannot be an ordered field. We can, however, introduce ‘order’ in C by lexicographical
(or dictionary) ordering [304], denoted by �. Then

(a, b) � (c, d) ⇔ a < c or a = c and b < d

and for instance

(0, 1) � (1, 0) (0, 0) � (1, 0) (0, 0) � (0, 1)

This ordering, however, does not posses the Archimedean property, that is, there is no positive
integer n, such that (1, 0) � n(0, 1).

Complex probability distribution. It is usually assumed that it is not possible to assign
probability distributions to complex quantities, sinceC is not an ordered field, and expressions
for the cumulative and probability density function

FX(x) = P(X ≤ x)

fX(x) = ∂

∂x
FX(x)

make no sense. Whereas, it is possible to define

fZ(x + jy) = fX,Y (x, y)

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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or

fX,Y (x, y) = fX,Y

(
1

2
(z + z∗),

1

2j
(z − z∗)

)
= g(z, z∗)

these ‘distributions’ are not correct, since for instance knowing z we also know z∗ and thus
g(z, z∗) is a degenerate distribution. Some recent work by S. Olhede [224] addresses the issue
of probability density functions for complex random variables, and introduces a class of such
functions which are interpretable in z and z∗. This way, it is possible to state the properties of
(CRV) in terms of their density, and to parameterise them in terms of the mean, covariance,
and pseudocovariance matrix.

Complex mean. There are many ways to define the mean of real numbers, for instance

Arithmetic A = a + b

2

abGeometric G =
√

Heronian H = 1

3

(
a +

√
ab + b

)

Harmonic M = 2
1
a

+ 1
b

Power P =
(

an + bn

2

) 1
n

When a and b are positive real numbers, it is easy to show that min {a, b} ≤ M ≤ G ≤ H ≤
A ≤ max {a, b}.

A complex mean can be defined as [272]

A complex mean is a function m : C+ × C+ → C
+ such that min {|a|, |b|} ≤ |m(a, b)| ≤

max {|a|, |b|}, and ∀a ∈ C+, m(a, a) = a, where C+ = {x + jy|x, y > 0}. A complex
mean m is said to be homogeneous if ∀t ∈ R, t ≥ 0, and a, b ∈ C+, m(ta, tb) = tm(a, b).

It can be shown [272] that when applied to complex numbers, the arithmetic mean, Heronian
mean, and power mean do not satisfy the above definition. It is only the geometric mean
m(a, b) = √

ab that is symmetric, homogeneous and satisfies the collinearity property.

Sign of complex numbers. When coding in Matlab, unlike for the real numbers, where the
sign function returns 1 if the element is greater than zero, 0 if it equals zero, and −1 if it is less
than zero, for a complex number z = x + jy

sign(z) = z

|z|
where |z| is the complex modulus of z1.

1In Matlab, for nonzero complex X, sign(X) = X/abs(X).
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The basic arithmetic operations on complex numbers are defined as follows

(a + jb) + (c + jd) = (a + c) + j(b + d)

(a + jb) − (c + jd) = (a − c) + j(b − d)

(a + jb)(c + jd) = (ac − bd) + j(bc + ad)

a + jb

c + jd
= a + jb

c + jd
× c − jd

c − jd

= ac + bd

c2 c2+ d2 + j
bc − ad

+ d2 (A.1)

Complex conjugate. The complex conjugate is produced by changing the sign of the imag-
inary part of a complex number z = x + jy. For example, the conjugate2 of the complex
number z = x + jy (where x and y are real numbers) is z = z∗ = x − jy. It is common to
view complex numbers as points in a plane in the Cartesian coordinate system. The com-
plex conjugation then corresponds to mirroring of a complex number over the x-axis (see
Figure A.1), whereas in the polar form, the complex conjugate of z = rejθ is z = re−jθ . Thus,
in most practical settings, if a solution to a problem is the complex number z, so too is its
complex conjugate z; one such case are the roots of a quadratic polynomial.

For two complex numbers z and w, properties of the complex conjugation operator are:

Im

θ

θ

r

r

x 0 

-y

Re

z = x+jy

z = x-jy

y 

¯

Figure A.1 Geometric representation of z and its conjugate z in the complex plane

2The complex conjugate of z ∈ C is commonly denoted by z∗ or z. For convenience, we will use the symbol z in the
rest of this appendix.
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1. The complex conjugate operator is distributive for complex addition and substraction,
that is

(z + w) = z + w

and

(z − w) = z − w

2. The complex conjugate operator is distributive for complex multiplication and division,
that is

zw = z w

and

z̄

w
= z̄

w
, if w /= 0 (A.2)

3. The function �(z) = z from C to C is continuous. Notice that function �(z) is not
holomorphic since it reverses the orientation, whereas holomorphic functions preserve
orientation.

Generalisations of complex conjugates. The conjugate of a quarternion a + bı + cj + dk ∈
H is a − bı − cj − dk ∈ H. It is also possible to introduce the notion of conjugation in vector
spaces V ⊆ C. In this context, any (real) linear transformation � : V → V that satisfies

1. � /= jdV , the identity function on V
2. �2 = jdV

3. �(zv) = z�(v) for all v ∈ V, and z ∈ C

is called a complex conjugation. One typical example is the conjugate transpose operation for
complex matrices.

Complex continuous functions. Consider a function f : D �→ C where D ⊆ C. For z ∈ C,
we have,

f (z) = f (x, y) = u(x, y) + jv(x, y) = (
u(x, y), v(x, y)

)
(A.3)

Limits of complex functions are defined in the same way as in elementary calculus, that is

lim
z→z0

f (z) = ς (A.4)

For a given an ε > 0 there exists a δ > 0 such that |f (z) − ς| < ε when 0 < |z − z0| < δ. For
a complex function continuous at z ∈ C, we then have

lim
z→z0

f (z) = f (z0) (A.5)
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Table A.1 Classification of functions

Function type Scalar variables Vector variables Matrix variables
z, z∗ ∈ C z, z∗ ∈ CN×1 Z, Z∗ ∈ CN×Q

Scalar function f (z, z∗) f (z, z∗) f (Z, Z∗)
f ∈ C f : C× C→ C f : CN×1 × CN×1 → C f : CN×Q × CN×Q → C

Vector function f (z, z∗) f (z, z∗) f (Z, Z∗)
f ∈ CM×1 f : C× C→ C

M×1 f : CN×1 × CN×1 → C
M×1 f : CN×Q × CN×Q → C

M×1

Matrix function F (z, z∗) F (z, z∗) F (Z, Z∗)
F ∈ CM×P F : C× C→ C

M×P F : CN×1 × CN×1 → C
M×P F : CN×Q × CN×Q → C

M×P

that is, f is continuous at z0. If the function is continuous for all points z ∈ C, then function
f (z) is said to be continuous. To define the derivative of a complex function, the limit

lim
	z→0

f (z + 	z) − f (z)

	z
(A.6)

must converge to a unique value regardless of how 	z approaches 0 (see also Chapter 5).

Complex matrix differentiation. In parallel with the development of augmented complex
statistics, results have appeared concerning complex matrix differentiation. Thus, for instance,
in [58] Price’s theorem has been rederived based on the augmented complex random vector
za and the augmented complex covariance matrix Ca, to give a general result applicable for
improper random vectors.

Based on the work by Hjorungnes and Gesbert [122], Table A.1 gives classes of complex
functions, where scalar quantities (variables z or functions f ) are denoted by lowercase sym-
bols, vector quantities (variables z or functions f ) are denoted by lowercase boldface symbols,
and matrix quantities (variables Z or functions F ) are denoted by capital boldface symbols.

Table A.2 Complex differentials

Function Differential

A 0
αZ αdZ

AZZ A(dZ)B
Z0 + Z1 dZ0 + dZ1

Tr{Z} Tr{dZ}
Z0Z1 (dZ0)Z1 + Z0(dZ1)
Z0 ⊗ Z1 (dZ0) ⊗ Z1 + Z0 ⊗ (dZ1)
Z0 � Z1 (dZ0) � Z1 + Z0 � (dZ1)
Z−1 −Z−1(dZ)Z−1

det(Z) det(Z)Tr
{
Z−1dZ

}
ln(detZ) Tr

{
Z−1dZ

}
reshape(Z) reshape(dZ)
Z∗ dZ∗

ZH dZH
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Table A.3 Differentials and derivatives of complex functions

Derivative Derivative
Function with respect with respect Size of

type Differential to z, z, or Z to z∗, z∗, or Z∗ derivative

f (z, z∗) df = a0dz + a1dz∗ Dzf (z, z∗) = a0 Dz∗f (z, z∗) = a1 1 × 1
f (z, z∗) df = a0dz + a1dz∗ Dzf (z, z∗) = a0 Dz∗f (z, z∗) = a1 1 × N

f (Z, Z∗) df = vecT(A0)d vec(Z)+ DZf (Z, Z∗) = DZ∗f (Z, Z∗) = 1 × NQ

vecT (A1)d vec(Z∗) vecT (A0) vecT (A1)
f (Z, Z∗) df = Tr

{
AT

0 dZ + AT
1 dZ∗} ∂

∂Z∗ f (Z, Z∗) = A0
∂

∂Z
f (Z, Z∗) = A1 N × N

f (z, z∗) df = b0dz + b1dz∗ Dzf (z, z∗) = b0 Dz∗f (z, z∗) = b1 M × 1
f (z, z∗) df = B0dz + B1dz∗ Dzf (z, z∗) = a0 Dz∗f (z, z∗) = a1 M × N

f (Z, Z∗) df = β0d vec(Z) + β1d vec(Z∗) DZf (Z, Z∗) = β0 DZ∗f (Z, Z∗) = β1 M × NQ

F (z, z∗) d vec(F ) = c0dz + c1dz∗ DzF (z, z∗) = c0 Dz∗F (z, z∗) = c1 MP × 1
F (z, z∗) d vec(F ) = C0dz + C1dz∗ DzF (z, z∗) = C0 Dz∗F (z, z∗) = C1 MP × N

F (Z, Z∗) d vecF = ζ0d vec(Z)+ DZF (Z, Z∗) = ζ0 DZ∗F (Z, Z∗) = ζ1 MP × NQ

ζ1d vec(Z∗)

Table A.2 shows the differentials associated with the classes of complex functions from
Table A.1. Table A.3 lists the derivatives of the different types of function from Table A.1, this
is achieved based on the differentials from Table A.2.
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Appendix B
Liouville’s Theorem

Theorem 1. (Liouville). If for all z in C, function �(z) is analytic and bounded by some
value M, then �(z) is a constant.

Proof. Using the Cauchy integral formula, we have

�(a) = 1

2πj

∮
C

�(z)

z − a
dz (B.1)

where a, b ∈ C and C is a circle with centre a and radius r which contains a and b. It then
follows that

�(b) − �(a) = 1

2πj

∮
C

�(z)

z − b
dz − 1

2πj

∮
C

�(z)

z − a
dz

= b − a

2πj

∮
C

�(z)

(z − a)(z − b)
dz (B.2)

Notice that |z − a| = r and |z − b| = |z − a + a − b| ≥ |z − a| − |a − b| = r − |a − b|. We
can then choose r such that |a − b| < r/2, that is, r − |a − b| ≥ r/2. Since for all z ∈ C,
�(z) ≤ M, and the length of C is 2πr, we have

|�(b) − �(a)| = |b − a|
2π

∣∣∣∣∣∣∣∣∣
∮
C

�(z)

(z − a)(z − b)
dz

∣∣∣∣∣∣∣∣∣
≤ |b − a| M(2πr)

2π(r/2)r

= 2 |b − a| M
r

(B.3)

Thus, lim
r→∞ |�(b) − �(a)| = 0 and so �(a) = �(b), which implies that �(z) is a

constant. �
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Appendix C
Hypercomplex and Clifford
Algebras

C.1 Definitions of Algebraic Notions of Group, Ring and Field

Group. A Group (G, ∗) is a set G, together with a binary operator ∗, defined by the following
four axioms

1. Closure: ∀a, b ∈ G, a ∗ b ∈ G

2. Identity: ∃i ∈ G such that ∀a ∈ G a ∗ i = i ∗ a = a

3. Inverse: ∀a ∈ G, ∃b ∈ G, such that a ∗ b = b ∗ a = i

4. Associativity: ∀a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c)

Ring. A Ring (R, +, ×) is a set, R, equipped with two binary operators, + and × (commonly
interpreted as addition and multiplication), which satisfy the following axioms

1. (R, +) is a commutative group
2. (R − 0, ×) satisfies the closure, identity and associativity rules
3. Operations + and × satisfy the distributive law

A Ring exhibits properties of additive commutativity, additive associativity, additive identity,
additive inverse, multiplicative associativity, multiplicative identity.

Field. A Field (F, +, ×) is a set, F , together with two binary operators, + and ×, defined by
the following axioms

1. (F, +) is a group
2. (F − 0, ×) is also a group
3. Set F and operations + and ×, satisfy the distributive law
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254 Appendix C: Hypercomplex and Clifford Algebras

In other words, a Field is any set of elements which satisfies the axioms of addition and
multiplication.

C.2 Definition of a Vector Space

A vector space V over a field F is a set of elements such that ∀X, Y, Z ∈ V and any scalars
r, s ∈ F

� (V, +) is a commutative group with properties
◦ Closure: X + Y ∈ V

◦ Identity: there exists a zero element 0, such that X + 0 = X

◦ Inverse: X + (−X) = 0
◦ Associativity: (X + Y ) + Z = X + (Y + Z)
◦ Commutativity: X + Y = Y + X

� Scalar multiplication has properties
◦ Closure: rX ∈ V

◦ Associativity: r(sX) = (rs)X
◦ Distributivity of scalar sums: (r + s)X = rX + sX

◦ Distributivity of vector sums: r(X + Y ) = rX + rY

◦ Scalar multiplication identity: 1X = X

Basis of a Vector Space. For an n-dimensional vector space V , any n linear independent
vectors e1, e2, . . . , en form a basis for the vector space. Thus, for instance, e1 = (1, 0) and
e2 = (0, 1) form the basis for R2.

Coordinates of a vector. Any vector X ∈ V can be uniquely expressed as a linear combination
of basis vectors, that is, X = a1e1 + a2e2 + · · · + anen. The symbols a1, a2, . . . , an are called
coordinates of the vector X with respect to the basis {e1, e2, . . . , en}.

C.3 Higher Dimension Algebras

Complex Numbers. Consider a set of all ordered pairs of real numbers

R
2 = {z = (a, b) |a, b ∈ R} (C.1)

together with addition and multiplication operators defined for all z1 = (a1, b1), z2 =
(a2, b2) ∈ R2, given by

z1 + z2 = (a1 + a2, b1 + b2) (C.2)

z1 ⊗ z2 = (a1a2 − b1b2, a1b1 + a2b1) (C.3)

Then C = (R2, +, ⊗) is called the field of complex numbers.
The imaginary unit j can be expressed as j := (0, 1), and the relation j2 = −1 is then a direct

consequence of (C.3). Furthermore, the usual expression for a complex number z = a + jb is
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obtained from the identity

z = (a, b) = (a, 0) + (0, 1) ⊗ (b, 0) (C.4)

Multiplication of complex numbers is both associative and commutative. Moreover, for all
complex numbers z = (a, b) ∈ C \ (0, 0), we have

(a, b) ⊗ (a/(a2 + b2), b/(a2 + b2)) = (1, 0) (C.5)

Although the set of complex numbers C is primarily viewed as a field, it also comprises other
algebraic structures, that is, infinitely many subfields isomorphic to R; one obvious choice is

α : R→ C, a 	−→ (a, 0) (C.6)

For any λ ∈ R and any z = (a, b) ∈ C we then have

α(λ) ⊗ (a, b) = (λ, 0) ⊗ (a, b) = (λa, λb) (C.7)

This way, C becomes a real associative and commutative algebra of dimension 2 with (1, 0)
as the identity element.

C.4 The Algebra of Quaternions

Consider the linear space (R4, +, ·) with standard basis {1 := (1R, 0, 0, 0), ı := (0, 1R, 0, 0),
j := (0, 0, 1R, 0), k := (0, 0, 0, 1R)} and define a multiplication operator ⊗ according to
Table C.1.
ThenH = ((R4, +, ·), ⊗) is a real associative algebra of dimension 4, and is called the algebra
of quaternions. Obviously, ‘1’ is the identity element of H.

A quaternion q ∈ H can be written as

q = q0 + ıq1 + jq2 + kq3 (C.8)

where q0, q1, q2, q3 ∈ R. Analogously to C, the basis vectors {ı, j, k} are often named ‘imag-
inary units’, and obey the following rules

jk = −kj = ı kı = −ık = j ıj = −jı = k (C.9)

Observe that multiplication in H is not commutative and there exists no other real linear
structure inH. The multiplication of quaternions is however associative (see also Chapter 11).

Table C.1 Quaternions multiplication

⊗ 1 ı j k

1 1 ı j k

ı ı −1 k −j

j j −k −1 ı

k k j ı −1
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C.5 Clifford Algebras

There are many examples of Clifford algebras that arise naturally in mathematics, these include
Quarternions, Dirac and Pauli Spin algebras. For each natural number n there exists a Clifford
algebra of dimension 2n which can be thought of as an algebra with 2n−1 imaginary dimensions
which play a role similar to that of j = √−1 in C.

Let V be a real vector space equipped with a symmetric bilinear form Q. The Clifford
algebra Cliff(V, Q) is an associative algebra; if V is r–dimensional and Q is negative definite,
then the algebra Cliff(V, Q) is denoted by Cliff(r). Table C.2 summarises Clifford algebras
Cliff(r) for r < 8. Other Clifford algebras can be computed by e.g. making use of the Bott
periodicity, that is, Cliff(r + 8) = Cliff(r) ⊗ R. All real finite dimensional representations of
Clifford algebras can deduced from Table C.2, because a matrix algebra A[r] has a unique
irreducible representation, namely Ar.

A representation of a Clifford algebra in a Euclidean space is always assumed to be compat-
ible with the Euclidean inner product. Linear representations of the algebras C = Cliff(1) and
H = Cliff(2) in Rn are called respectively the complex and quaternionic algebras. It is worth
mentioning that all quaternions act conformally, not only as linear combinations of 1, ı, j, and
k, for more detail see [230].

Table C.2 Clifford algebras Cliff(r) for r < 8

r 0 1 2 3 4 5 6 7

Cliff(r) R C H H⊗H H[2] C[4] R[8] R[8] ⊗ R[8]
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Appendix D
Real Valued Activation Functions

Two most frequently used nonlinear activation functions in R are the logistics function whose
range is (0, 1) and the tanh function whose range is (−1, 1). In this Section we show simplified
ways to calculate the derivatives of these two functions.

D.1 Logistic Sigmoid Activation Function

The logistic function and its derivative are given by [190]

F (x, κ, β) = κ

1 + e−βx
(D.1)

and

F ′ (x, κ, β) =
∂
[

κ
1+e−βx

]
∂x

= κβe−βx(
1 + e−βx

)2 (D.2)

where κ denotes the amplitude and β determines the steepness of the slope of the logistic
function.
Letting g(x) = F (x, κ, β), we have

κ(
1 + e−βx

)2 = g2(x)

κ
and e−βx = κ

g(x)
− 1 (D.3)

which enables us to simplify the calculation of the first derivative of F (x, κ, β), as follows

F ′ (x, κ, β) = β
g2(x)

κ

[
κ

g(x)
− 1

]
= βg(x)

[
1 − g(x)

κ

]
(D.4)
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258 Appendix D: Real Valued Activation Functions

D.2 Hyperbolic Tangent Activation Function

Similarly to the case of the logistic function, for a hyperbolic tangent nonlinear activation
function given by

F (x, κ, β) = κ
eβx − e−βx

eβx + e−βx
(D.5)

and letting g(x) = F (x, κ, β), we can simplify the calculation of the first derivative of (D.5),
as follows

F ′ (x, κ, β) = β

κ

[
κ − g(x)

] [
κ + g(x)

]
(D.6)
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Appendix E
Elementary Transcendental
Functions (ETF)

As has been shown in Appendix B, the only continuously differentiable function in C, that is,
the only function without singularities, is a constant (by Liouville’s theorem). Nonlinearities
within nonlinear adaptive filters in C can therefore be either differentiable but unbounded
(fully complex) or bounded, but not differentiable (split complex and hybrid). The use of
fully complex nonlinearities facilitates the development of stochastic gradient based adaptive
filtering algorithms, where mathematical tractability is helped by the use of Cauchy–Riemann
equations. One such fully complex nonlinearity is shown in Figure E.1; observe the periodic
singularities of this function.

In order for learning algorithms not to be affected by singularities we typically standardise
(scale) the data, as shown in Appendix G.4. Scaling of the range of the input signal is necessary,
since, e.g. in function approximation problems we have

f (x) =
n∑

i=1

ciσ(x − ai) =
n∑

i=1

ci

1 + e−xeai
= ex

n∑
i=1

ci

1

ex + eai
(E.1)

which becomes

f (x) = z

n∑
i=1

ci

z + αi

= r(z) (E.2)

upon a change of variables z = ex and αi = eai . The rational function r(z) can be also expressed
as

r(z) =
n∑

i=1

ci

z + αi

= P(z)

Q(z)
, z ∈ C (E.3)
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Figure E.1 Magnitude plot of the complex logistic sigmoid function �(z) = 1/1 + ez

Recall that any analytic function σ : R→ R (such as the standard logistic sigmoid) has a
convergent power series expansion σ(x) = ∑∞

i=0 σi(x − a)i about a point a ∈ R. When we
substitute x with a complex number z = x + jy, we obtain a series

∑∞
i=0 σi(z − a)i, which

converges within a disc |z − a| < R, where symbol R denotes the radius of convergence of
power series. Coefficients ai correspond to the poles αi = eai , whereas scaling factors ci rep-
resent the residues of r(z) at eai [312].

Table E.1 shows some typical fully complex (differentiable but not bounded) ETFs and
their corresponding type of singularity [152]. Figures E.2–E.4 show respectively the sin(z),
arctan(z) and sinh(z) fully complex nonlinear activation functions.

Figure E.5 shows a ‘hybrid’, that is, a complex activation function which is differentiable in
its real and imaginary component, but not in C. This function belongs to the class of so called
split-complex activation functions, and can be written as

�(z) = tanh(zr) + j tanh(zi), z = zr + jzi, tanh : R→ R (E.4)

Table E.1 ETFs and their corresponding type of singularity

σ(z) d
dz

σ(z) Type of singularity

tan z sec2 z isolated
sin z cos z removable
arctan z 1

1+z2 isolated
arcsin z (1 − z2)−1/2 isolated
arccos z −(1 − z2)−1/2 removable
tanh z sech2z isolated
sinh z cosh z removable
arctanhz (1 − z2)−1 isolated
arcsinhz (1 + z2)−1 removable
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Figure E.2 The magnitude and phase plot for the sin(z) complex activation function
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Figure E.3 The magnitude and phase plot for the arctan(z) complex activation function
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Figure E.4 The magnitude and phase plot for the sinh(z) complex activation function
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Figure E.5 Complex activation function split − tanh(z)
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Figure E.6 Complex activation function proposed by Georgiou [88]

Despite the ease of implementation, this class of functions do not fully exploit the correlation
and coupling between the real and imaginary components of a complex process.

Alternatively, we can consider hybrid ‘synthetic’ nonlinearities, such as the activation func-
tion proposed in [88], given by

�(z) = z

c + 1
r
|z| (E.5)

and shown in Figure E.6 for C = 1 and r = 1. This function is both bounded and differentiable,
however, its magnitude and phase variations are rather limited.
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Appendix F
The O Notation and Standard
Vector and Matrix Differentiation

F.1 The O Notation

Definition F.1. Let functions f and g be mappings f, g : R+ → R
+. If there exist positive

numbers n0 and c such that f (n) ≤ cg(n) for all n ≥ n0, then so called “O notation” is
introduced as

f (n) = O (g(n)) (F.1)

An algorithm is said to run in polynomial time if there exists k ∈ Z such that [29]

T (s) = O(sk) (F.2)

F.2 Standard Vector and Matrix Differentiation

We denote vectors by lowercase bold letters and matrices by capital bold letters (see also
Chapter 1). Some vector and matrix differentiation rules frequently used in this book are

�

d
(
xTA

)
dx

= A

�

d
(
xTAy

)
dA

= xyT

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5

http://www.it-ebooks.info/


264 Appendix F: The O Notation and Standard Vector and Matrix Differentiation

�
d (Ax+ b)TC (Dx+ e)

dx
= ATC (Dx+ e) +DTCT (Ax+ b)

◦ d
(
xTAx

)
dx

= (
A+AT)

x

◦ d
(
xTx

)
dx

= 2x

�

d2
(
yTx

)
dx2 = 0

�
d2 (Ax+ b)C (Dx+ e)

dx2 = ATCD+DTCTA
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Appendix G
Notions From Learning Theory

The Error and the Error Function. The error at the output of an adaptive filter is defined as the
difference between the target (desired output) and the filter output, that is

e(k) = d(k) − y(k) (G.1)

The instantaneous error can be positive, negative or zero, and is hence not a suitable candidate
for the criterion (loss, cost, objective) function which is mimimised during the training. Error
functions are non-negative and are defined so that a decrease in the error function corresponds
to better quality of learning; one typical error function is given by

E(k) = 1

2
e2(k) (G.2)

and aims at minimising the power of the instantaneous error of the filter.

The Objective Function is a function that we wish to minimise during training. It can be the
same as the error function, but may also include other terms, for instance to penalise for high
computational complexity. One such case is the regularisation type cost function, given by
[289]

J(k) = 1

N

N∑
i=1

(
e2(k − i + 1) + G

(
‖ w(k − i + 1) ‖2

2

) )
(G.3)

where G is some linear or nonlinear function. We often use symbols E and J interchangeably
to denote the cost function.
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G.1 Types of Learning

Batch learning is also known as epochwise, or block learning, and is a common strategy for
off-line and classification applications. Weights are updated once the whole training set has
been presented, as follows

1. Initialise the weights
2. Repeat until some prescribed threshold

� pass all the training data through the adaptive system;
� sum the errors after each particular pattern has been presented;
� update the weights based upon the total error.

Real time adaptive learning, also known as incremental learning, on-line, or pattern learning,
operates as follows

1. Initialise the weights
2. Repeat

� pass one pattern through the adaptive system;
� perform the weight update.

Often, for adaptive systems which require initialisation, we perform batch learning in the
initialisation stage, and online learning while the system is running [186, 190].

Constructive learning allows for the change of the architecture or interconnections within
the adaptive system. Neural networks for which the topology changes over time are called
ontogenic neural networks [73]. Two basic classes of constructive learning are network growing
and network pruning. In the network growing approach, learning begins with a network with
no hidden units, and if the error is larger than some threshold, new hidden units are added to
the network and training resumes. One network growing algorithm is the so-called cascaded
correlation algorithm [123]. The network pruning strategy starts from a large network and if
the training error is smaller than some predetermined value, the network size is reduced until
the desired ratio between accuracy and network size is reached [247, 283].

G.2 The Bias–Variance Dilemma

An optimal filter performance should provide a compromise between the bias and the variance
of the estimation error. Consider the error measure

E
[(

d(k) − y(k)
)2

]
(G.4)

The term within the square brackets in Equation (G.4) will not change if we add and subtract
a dummy variable E

[
y(k)

]
; this yields [244]

E
[(

d(k) − y(k)
)2

]
= E

[
E

(
y(k)

) − d(k)
]2︸ ︷︷ ︸

squared bias

+E
[(

y(k) − E[y(k)]
)2

]
︸ ︷︷ ︸

variance

(G.5)
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The first term on the right-hand side of Equation (G.5) represents the squared bias term, whereas
the second term on the right-hand side represents the variance. Equation (G.5) shows that

� Teacher forcing (equation error) algorithms tend to produce biased estimates, since feed-
back is replaced by d(k) /= E[y(k)], which affects the first term of Equation (G.5) [190];

� Supervised (output error) algorithms tend not to produce biased estimates, but are prone to
producing estimates with larger variance for insufficient filter orders or suboptimal choice
of filter parameters (second term in Equation (G.5).

A thorough analysis of the bias/variance dilemma can be found in [87, 111].

G.3 Recursive and Iterative Gradient Estimation Techniques

In real time applications, at time instant k, the coefficient update w(k) → w(k + 1) must be
completed before the arrival of next input sample x(k + 1), making it possible to re-iterate the
weight update.Based on the relationship between the iteration index l and time index k, we
differentiate between

� purely recursive algorithms, which perform the standard update based on one gradient
iteration (coefficient update) per sampling interval k, that is, l = 1;

� a posteriori (data reusing) algorithms, which perform several coefficient updates per
sampling interval, that is, l > 1 [185].

G.4 Transformation of Input Data

Given that all the fully complex nonlinearities within complex valued nonlinear adaptive filters
have singularities, it is important to ensure that the range of input data matches the useful range
of the nonlinearity. There are several ways to modify the input data, these include

� normalisation, whereby each element of the input vector x(k) is divided by its squared
norm, that is,

xi(k) ∈ x(k) → xi(k)

‖ x(k) ‖2
2

;

� rescaling, that is, performing an affine transformation on the data;
◦ standardisation to zero mean and unit standard deviation, given by

mean =
∑

i Xi

N

std =
√∑

i(Xi − mean2

N − 1
(G.6)

the standardised input becomes Si = Xi − mean/std;
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◦ standardisation to a different ‘midrange’ and ‘range’. For instance, for midrange = 0
and range = 2, this is achieved as

midrange = maxi Xi + mini Xi

2
range = max

i
Xi − min

i
Xi

Si = Xi − midrange

range/2
(G.7)

� nonlinear transformation of the data can help when the dynamic range of the data is too
high. In that case, for instance, we typically apply the log function to the input data (this
is the basis for homomorphic neural networks [232]).
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Appendix H
Notions from Approximation
Theory

Definition H.1 [209]. Function σ : R→ R (not necessarily continuous) is called a Kolmo-
gorov function if, for any integer s ≤ 1, any compact set K ⊂ Rs, any continuous function
f : K → R and any ε > 0, there exists an integer N, numbers ck, tk ∈ R, and λk ∈ Rs, 1 ≤
k ≤ N (possibly depending upon s, K, f, ε), such that

sup
x∈K

∣∣∣∣∣∣∣f (x) −
N∑

k=1

ckσ(λkx − tk)

∣∣∣∣∣∣∣ < ε (H.1)

Definition H.2. The sigmoidal function σ(x) with properties

lim
x→−∞

σ(x)

xk
= 0 (H.2)

lim
x→−∞

σ(x)

xk
= 1 (H.3)

|σ(x)| ≤ K (1 + |x|)k , K > 0 (H.4)

is called the kth degree sigmoidal function (bounded on R by a polynomial of degree d ≤ k).

Therefore Kolmogorov functions cannot be polynomials.
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Theorem H.1. (Kolmogorov 1957 [155]). There exist increasing continuous functions
ψpq(x), on I = [0, 1] so that any continuous function f on In can be written in the form

f (x1, . . . , xn) =
2n+1∑
q=1

�q

⎛
⎝ n∑

p=1

ψpq(xp)

⎞
⎠ (H.5)

where �q are continuous functions of one variable.

This result asserts that every multivariate continuous function can be represented by a
superposition of a small number of univariate continuousfunctions (13th problem of Hilbert).

Theorem H.2. (Kolmogorov–Sprecher Theorem). For every integer n ≥ 2, there exists a
real monotonic increasing function ψ(x), for which ψ([0, 1]) = [0, 1], which depends on n

and satisfies the following property

For each preassigned number δ > 0, there exists a rational number ε, 0 < ε < δ, such
that every real continuous function of n variables, φ(x), defined on In, can be exactly
represented by

f (x) =
2n+1∑
j=1

χ

[
n∑

i=1

λiψ(xi + ε(j − 1)) + j − 1

]
(H.6)

where χ is a real and continuous function dependent upon f and λ is a constant indepen-
dent of f .

Since no constructive method for the determination of χ is known, a direct application of the
Kolmogorov–Sprecher theorem is rather difficult.

Theorem H.3. (Weierstrass Theorem). If f is a continuous real valued function on [a, b] ∈
R, then for any ε > 0, there exists a polynomial P on [a, b] ∈ R such that

|f (x) − P(x)| < ε, ∀x ∈ [a, b] (H.7)

In other words, any continuous function on a closed and bounded interval can be uniformly
approximated by a polynomial.

Definition H.3. Let 
 be a probability measure on Rm. For measurable functions f1, f2 :
R

m → R we say that f1 approximates f2 with accuracy ε > 0 and confidence δ > 0 in prob-
ability if



(
x ∈ Rm | |f1(x) − f2(x)| > ε

)
< δ (H.8)

We say that function f1 interpolates f2 on p examples x1, . . . , xp if f1(xi) = f2(xi), i =
1, . . . , p.

Definition H.4. The function f that satisfies the condition

|f (x) − f (y)| ≤ L|x − y|, x, y ∈ R, L = constant (H.9)

is called a Lipschitz function and L is called the Lipshitz constant.
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Definition H.5. A closure of a subset D of a topological space S, usually denoted by D̄, is the
set of points in S with the property that every neighbourhood of such a point has a nonempty
intersection with D.

The closure S̄ of a set S is the set of all points in S together with the set of all limit points of
S. A set S is closed if it is identical to its closure S̄.

Definition H.6. A subset D of a topological space S is called dense if D̄ = S.

If D is dense in S then each element of S can be approximated arbitrarily well by elements of
D. Examples are the set of rational numbers, which is denseR, and the set of polynomials that
is dense in the space of continuous functions.

Definition H.7. A compact set is one in which every infinite subset contains at least one limit
point. Every closed, bounded, finite dimensional set in a metric linear space is compact.

Definition H.8. A spline is an interpolating polynomial which uses information from neigh-
bouring points to obtain smoothness. A cubic spline is a spline constructed of piece-wise
third-order polynomials defined by a set of control points.
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Appendix I
Terminology Used in the Field
of Neural Networks

The field of artificial neural networks has developed in connection with many disciplines,
including neurobiology, mathematics, statistics, economics, computer science, engineering,
and physics. Consequently, the terminology varies from discipline to discipline. A neural
network is specified by its topology, constraints, initial state, and activation function. An
initiative from the IEEE Neural Networks Council to standardise the terminology has led to
several unifying definitions [66], given below.

Activation Function: algorithm for computing the activation value of a neurode as a function
of its net input. The net input is typically a sum of weighted inputs to the neurode.
Feedforward Network: network ordered into layers with no feedback paths. The lowest layer
is the input layer, the highest is the output layer. The outputs of a given layer are connected
only to higher layers, and the inputs come only from lower layers.
Supervised Learning: learning procedure in which a network is presented with a set of input
pattern – target pairs. The network can compare its output to the target and adapt itself according
to the learning rules.
Unsupervised Learning: learning procedure in which the network is presented with a set of
input patterns. The network then adapts itself according to the statistical associations within
the input patterns.

Fiesler [72] provides further clarification of the terminology.

� Neuron functions (or transfer functions) specify the output of a neuron, given its inputs
(this includes nonlinearity);

� Learning rules (or learning laws) define how weights (and offsets) are to be updated;
� Clamping functions determine if and when certain neurons will be insusceptible to incom-

ing information, that is, which neurons are to retain their present activation value;
� Ontogenic functions specify changes in the neural network topology.
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Table I.1 Terms related to learning strategies used in different communities

Signal processing System ID Neural networks Adaptive systems

Output error Parallel Supervised Unidirected
Equation error Series – parallel Teacher forcing Directed

Some terms frequently used in the areas of signal processing, system identification, neural
networks, and adaptive systems communities are summarised in Table I.1.
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Appendix J
Complex Valued Pipelined
Recurrent Neural Network
(CPRNN)

To process highly nonlinear real valued nonstationary signals, Haykin and Li introduced the
Pipelined Recurrent Neural Network (PRNN) [114], a computationally efficient modular non-
linear adaptive filter. Based on a concatenation of M modules, each consisting of FCRNNs
with N neurons, the PRNN exhibits improved ability to track nonlinearity as compared to
single RNNs, while maintaining low computational complexity (O(MN4) for the PRNN with
M modules compared with O((MN)4) for the FCRNN). The PRNN architecture also helps to
circumvent the problem of vanishing gradient, due to its spatial representation of a temporal
pattern, and feedback connections within the architecture [190]. This architecture has been
successfully employed for a variety of applications where complexity and nonlinearity pose
major problems, including those in speech processing, and communications [200]. More in-
sight into the PRNN performance is provided in [114, 190]. We now introduce the complex
valued PRNN (CPRNN) as an extension of the real PRNN [114], and derive the complex real
time recurrent learning (CRTRL) algorithm for CPRNNs.

J.1 The Complex RTRL Algorithm (CRTRL) for CPRNN

The CPRNN architecture contains M modules of FCRNNs (see Figure 7.3) connected in a
nested manner, as shown in Figure J.1. The (p × 1)–dimensional external complex valued sig-
nal vector sT (k) = [s(k − 1), . . . , s(k − p)] is delayed by m time steps (z−mI) before feeding
the module m, where z−m, m = 1, . . . , M denotes the m-step time delay operator, and I is the
(p × p) dimensional identity matrix. The complex valued weight vectors wl are embodied in
an (p + N + 1) × N dimensional weight matrix W = [w1, . . . , wN ]. All the modules oper-
ate using the same weight matrix W (a full mathematical description of the PRNN is given
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Figure J.1 Pipelined Recurrent Neural Network (PRNN)

in [114]). The following equations provide a mathematical description of the CPRNN,

yt,l(k) = �(nett,l(k)), t = 1, 2, . . . , M (J.1)

nett,l(k) =
p+N+1∑

n=1

wl,n(k)Pt,n(k),
l = 1, . . . , N

n = 1, . . . , p + N + 1
(J.2)

PT
t (k) = [

s(k − t), . . . , s(k − t − p + 1), 1 + j,

yt+1,1(k − 1), yt,2(k − 1), . . . , yt,N (k − 1)
]

for 1 ≤ t ≤ M − 1 (J.3)

PT
M(k) = [

s(k − M), . . . , s(k − M − p + 1), 1 + j,

yM,1(k − 1), yM,2(k − 1), . . . , yM,N (k − 1)
]

for t = M (J.4)

For simplicity we state that

yt,l(k) = �(nett,l(k)) = �r(nett,l(k)) + j�i(nett,l(k))

= ut,l(k) + jvt,l(k) (J.5)

The overall output of the CPRNN is y1,1(k), that is the output of the first neuron of the
first module. At every time instant k, for every module t, t = 1, . . . , M, the one step ahead
instantaneous prediction error et(k) associated with module t, is defined as

et(k) = s(k − t + 1) − yt,1(k) = er
t (k) + jei

t(k) (J.6)
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We can split the error term into its real and imaginary parts, to yield

er
t (k) = sr(k − t + 1) − ut,1(k), ei

t(k) = si(k − t + 1) − vt,1(k) (J.7)

Since the CPRNN consists of M modules, a total of M forward prediction error signals are cal-
culated. The cost function of the PRNN introduced in [114] can be modified to suit processing
in the complex domain, for instance

J(k) =
M∑
t=1

γt−1(k) |et(k)|2 =
M∑
t=1

γt−1(k)
[
et(k)e∗

t (k)
] =

M∑
t=1

γt−1(k)
[
(er

t )
2 + (ei

t)
2
]

(J.8)

represents a weighted sum of instantaneous squared errors from outputs of the CPRNN mod-
ules, where γ(k) is a (possible variable) forgetting factor. The forgetting factor, γ < 1 plays
a very important role in nonlinear adaptive filtering of nonstationary signals and is usually
set to unity for stationary signals. Since for gradient descent learning the aim is to minimise
Equation (J.8) along the entire CPRNN, the weight update for the nth weight at neuron l at the
time instant k is calculated as [94]

�wl,n(k) = −μ
∂

∂wl,n(k)

(
M∑
t=1

γt−1(k) |et(k)|2
)

(J.9)

Following the derivation of the CRTRL, for l = 1, . . . , N and n = 1, . . . , p + N + 1, the
weight update of every weight within the CPRNN can be expressed as

wl,n(k + 1) = wl,n(k) − μ∇wl,n
J(k)|wl,n=wl,n(k)

= wl,n(k) + μ

(
M∑
t=1

γt−1(k)et(k)
(
π

t,1
l,n(k)

)∗
)

= wl,n(k) + μ

(
M∑
t=1

γt−1(k)et(k)
{
�∗(nett,l(k))

}′

×
[ N∑

α=1

w∗
1,α+p+1(k)

(
π

t,α
l,n(k − 1)

)∗ + δlnP
∗
t,n(k)

])

ˆ

(J.10)

Notice that this weight update has the same generic form as the weight update for the real
valued PRNN [114].

J.1.1 Linear Subsection Within the PRNN

The linear subsection within the CPRNN consists of an FIR filter, shown in Figure J.2. The
complex valued least mean square (CLMS) algorithm is used to update the weights of this
filter, for which the output is given by

s(k) = wT
FIR(k)yout(k) (J.11)

http://www.it-ebooks.info/


278 Appendix J: Complex Valued Pipelined Recurrent Neural Network (CPRNN)

−1−1 −1

ŝ(k)

(k)FIR,qw(k)FIR,2w(k)FIR,1w

(k−q+1)outy(k−1)outyyout (k)
z z z z−1

Figure J.2 Linear adaptive FIR filter

where yout(k) �
[
yout(k), . . . , yout(k − q + 1)

]T is the output from the first CPRNN module

(y1,1(k)), wFIR(k) �
[
wFIR,1(k), . . . , wFIR,q(k)

]T is the complex weight vector and q denotes
the length of the filter. The error signal e(k) required for weight adaptation is obtained as the
difference between the desired response s(k) and the output of the filter ŝ(k), and is given by

e(k) = s(k) − ŝ(k) = s(k) − wT
FIR(k)yout(k) (J.12)

The CLMS weight update for the FIR filter from Figure J.2 is given by [307]

wFIR(k + 1) = wFIR(k) + μe(k)y∗
out(k) (J.13)

where μ is the learning rate.
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Appendix K
Gradient Adaptive Step Size
(GASS) Algorithms in R

Since its introduction, some 50 years ago, the Least Mean Square (LMS) algorithm [308] has
become the most frequently used algorithm for the training of adaptive finite impulse response
(FIR) filters. The LMS minimises the cost function J(k) = 1

2e2(k), and is given by [308]

e(k) = d(k) − xT(k)w(k) (K.1)

w(k + 1) = w(k) + μe(k)x(k) (K.2)

where e(k) denotes the instantaneous error at the output of the filter, d(k) is the desired signal,
x(k) = [x(k − 1), . . . , x(k − N)]T is the input signal vector, N is the length of the filter, (·)T is
the vector transpose operator, andw(k) = [w1(k), . . . , wN (k)]T is the filter coefficient (weight)
vector. The parameter μ is the stepsize (learning rate), which is critical to the performance,
and defines how fast the algorithm is converging.

Analysis and practical experience have shown that the presence of inputs with rich dynamics
and ill-conditioned input correlation matrix often leads to divergence of LMS. One modification
of LMS is the normalised LMS (NLMS) algorithm [113, 308], for which the adaptive learning
rate is given by

η(k) = μ

‖ x(k) ‖2
2 +ε

(K.3)

and the term ε is included to prevent divergence for close to zero input vector x(k).
The performance of both LMS and NLMS is affected by the inclusion of the ‘indepen-

dence’ assumptions in their derivation. To make this class of algorithms more robust and faster
converging, a number of gradient adaptive step size (GASS) algorithms have been proposed,
which include those by Benveniste [24], Mathews [207], and Farhang [13]. The aim is to ensure
dJ/dμ = 0, which leads to μ(∞) = 0 in the steady state. Another way of introducing more
robustness into the LMS update is to make the compensation term ε in the denominator of the
NLMS stepsize (Equation K.3) adaptive. One such algorithm is the Generalised Normalised
Gradient Descent (GNGD) algorithm [180].
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K.1 Gradient Adaptive Stepsize Algorithms Based on ∂J/∂μ

A gradient adaptive learning rate μ(k) can be introduced into the LMS algorithm (Equa-
tion K.2), based on

μ(k + 1) = μ(k) − ρ∇μJ(k)|μ=μ(k−1) (K.4)

where parameter ρ denotes the stepsize. The gradient ∇μJ(k)|μ=μ(k−1) can be evaluated as

∇μJ(k) = 1

2

∂e2(k)

∂e(k)

∂e(k)

∂y(k)

∂y(k)

∂w(k)

∂w(k)

∂μ(k − 1)
= −e(k)xT(k)

∂w(k)

∂μ(k − 1)
(K.5)

Denote γ(k) = ∂w(k)/∂μ(k − 1) to obtain a general update for the stepsize in the form

μ(k + 1) = μ(k) + ρe(k)xT(k)γ(k) (K.6)

Algorithms within this class differ, depending on the way they evaluate the term γ(k).

Benveniste’s update [24] is rigorous and evaluates the sensitivity γ(k) based on (K.2) as

∂w(k)

∂μ(k − 1)
= ∂w(k − 1)

∂μ(k − 1)
+ e(k − 1)x(k − 1) + μ(k − 1)

∂e(k − 1)

∂μ(k − 1)
x(k − 1)

+ μ(k − 1)e(k − 1)
∂x(k − 1)

∂μ(k − 1)
(K.7)

The last term in Equation (K.7) vanishes, since the inputx(k − 1) is independent of the learning
rate μ(k − 1), whereas the term ∂e(k − 1)/∂μ(k − 1) becomes

∂e(k − 1)

∂μ(k − 1)
= ∂

(
d(k − 1) − xT(k − 1)w(k − 1)

)
∂μ(k − 1)

= −xT(k − 1)
∂w(k − 1)

∂μ(k − 1)
(K.8)

The expression1 for the gradient ∇μJ(k) in (K.5) now becomes

∇μ(k−1)J(k) = −e(k)xT(k)γ(k)

γ(k) = [
I− μ(k − 1)x(k − 1)xT(k − 1)︸ ︷︷ ︸

filtering term

]
γ(k − 1) + e(k − 1)x(k − 1) (K.9)

The term in the square brackets represents a time-varying adaptive filter, which provides low
pass filtering of the instantaneous gradient e(k − 1)x(k − 1). This way, Benveniste’s update is
very accurate and robust to the uncertainties due to the noisy instantaneous gradients e(k − 1)
x(k − 1).

1For a small value of μ, assume μ(k − 1) ≈ μ(k) and therefore

∂w(k)

∂μ(k − 1)
≈ ∂w(k)

∂μ(k)
= γ(k)
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Algorithm by Farhang and Ang [13] is based on a recursive calculation of γ from Equation
(K.9) in the form

γ(k) = αγ(k − 1) + e(k − 1)x(k − 1), 0 ≤ α ≤ 1 (K.10)

that is, a time varying instantaneous filtering term in the square brackets in Equation (K.9) is
replaced by a lowpass filter with a fixed coefficient α. For each weight update wj(k), we then
have

γj(k) = αγj(k − 1) + e(k − 1)xj(k − 1)

Mathews’ algorithm [207] is a simplification of the algorithm by Farhang and Ang, where
α = 0, that is, it uses noisy instantaneous estimates of the gradient, resulting in the learning
rate update

μ(k + 1) = μ(k) + ρe(k)e(k − 1)xT(k)x(k − 1) (K.11)

K.2 Variable Stepsize Algorithms Based on ∂J/∂ε

The generalised normalised gradient descent (GNGD) algorithm [180] makes the regularisation
factor ε within the NLMS algorithm (Equation K.3) gradient adaptive, and is based on

ε(k + 1) = ε(k) − ρ∇ε(k−1)J(k)|ε=ε(k−1) (K.12)

Similarly to the GASS algorithms based on ∂J/∂μ, the gradient ∇ε(k−1)J(k)|ε=ε(k−1) can be
evaluated as

∂J(k)

∂ε(k − 1)
= ∂J(k)

∂e(k)

∂e(k)

∂y(k)

∂y(k)

∂w(k)

∂w(k)

∂ε(k − 1)
= −e(k)xT(k)

∂w(k)

∂ε(k − 1)
(K.13)

The partial derivative ∂w(k)/∂ε(k − 1) in Equation (K.13) now becomes

∂w(k)

∂ε(k − 1)
= ∂w(k − 1)

∂ε(k − 1)
− ηe(k − 1)x(k − 1)(‖ x(k − 1) ‖2

2 +ε(k − 1)
)2 + ∂e(k − 1)

∂ε(k − 1)
η(k − 1)x(k − 1)

∂e(k − 1)

∂ε(k − 1)
= ∂

[
d(k − 1) − xT (k − 1)w(k − 1)

]
∂ε(k − 1)

= −xT (k − 1)
∂w(k − 1)

∂ε(k − 1)
(K.14)

to give

∂w(k)

∂ε(k)
= [
I− η(k − 1)x(k − 1)xT(k − 1)

] ∂w(k − 1)

∂ε(k − 1)
− ηe(k − 1)x(k − 1)( ‖ x(k − 1) ‖2

2 +ε(k − 1)
)2

(K.15)
For simplicity, denote γ(k) = ∂w(k)/∂ε(k), to yield the update of the regularisation factor in
the form

ε(k + 1) = ε(k) + e(k)xT(k)γ(k) (K.16)
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Figure K.1 Learning curves for the GASS algorithms. Left: comparison between Benveniste’s,
Farhang’s, Mathews’ algorithms and GNGD for the prediction of the coloured signal (Equation 8.22).
Right: Comparison between GNGD and NLMS for prediction of the nonlinear signal (Equation 8.24),
for the stepsize μ = 2.1

In the standard GNGD algorithm [180], the term in the square brackets in Equation (K.15) is
set to zero, giving

ε(k + 1) = ε(k) − ρμ
e(k)e(k − 1)xT(k)x(k − 1)(‖ x(k − 1) ‖2

2 +ε(k − 1)
)2 (K.17)

Figure K.1(a) shows learning curves for the GASS algorithms (based on ∂J/∂μ) and the GNGD
algorithm (based on ∂J/∂ε) for prediction of the coloured AR(4) process (See Equation 8.22).
The GNGD exhibited fastest convergence, the algorithms by Benveniste and Farhang and Ang
had similar performance, whereas Mathews’ algorithm was slowest to converge. Figure K.1(b)
illustrates the excellent stability of GNGD compared with NLMS, for the prediction of non-
linear signal (See Equation 8.24). The learning rate was chosen to be μ = 2.1, for which the
NLMS diverged whereas GNGD converged.
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Appendix L
Derivation of Partial Derivatives
from Chapter 8

L.1 Derivation of ∂e(k)/∂wn(k)

The Cauchy–Riemann equations state that

∂er(k)

∂u(k)
= ∂ei(k)

∂v(k)
,

∂er(k)

∂v(k)
= −∂ei(k)

∂u(k)

and

∂u(k)

∂netr(k)
= ∂v(k)

∂neti(k)
,

∂v(k)

∂netr(k)
= − ∂u(k)

∂neti(k)

∂e(k)

∂wn(k)
= ∂ei(k)

∂wi
n(k)

− j
∂er(k)

∂wi
n(k)

(L.1)

Therefore

∂ei(k)

∂wi
n(k)

= ∂ei(k)

∂v(k)

[
∂v(k)

∂netr(k)

∂netr(k)

∂wi
n(k)

+ ∂v(k)

∂neti(k)

∂neti(k)

∂wi
n(k)

]

= ∂ei(k)

∂v(k)

[
∂v(k)

∂netr(k)
(−xi

n(k)) + ∂v(k)

∂neti(k)
xr
n(k)

]
(L.2)

and

∂er(k)

∂wi
n(k)

= ∂er(k)

∂u(k)

[
∂u(k)

∂netr(k)

∂netr(k)

∂wi
n(k)

+ ∂u(k)

∂neti(k)

∂neti(k)

∂wi
n(k)

]

= ∂er(k)

∂u(k)

[
∂u(k)

∂netr(k)
(−xi

n(k)) + ∂u(k)

∂neti(k)
xr
n(k)

]
(L.3)
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giving

∂e(k)

∂wn(k)
= ∂ei(k)

∂v(k)

[
∂v(k)

∂netr(k)
frac∂v(k)∂ neti(k)xr

n(k)

]

− j
∂er(k)

∂u(k)

[
∂u(k)

∂ netr(k)
(−xi

n(k)) + ∂u(k)

∂ neti(k)
xr
n(k)

]
(L.4)

From the above, we have

∂e(k)

∂wn(k)
= ∂ei(k)

∂v(k)

[
∂v(k)

∂ netr(k)
(−xi

n(k))

+ ∂v(k)

∂neti(k)
xr
n(k) + ∂u(k)

∂ netr(k)
(jxi

n(k)) + ∂u(k)

∂neti(k)
(−jxr

n(k))

]

= −
[

∂u(k)

∂ netr(k)
(xr

n + jxi
n(k)) + ∂v(k)

∂netr(k)
(−xi

n + jxr
n(k))

]

= −xn(k)

[
∂u(k)

∂ netr(k)
+ j

∂v(k)

∂netr(k)

]

= −�′(net(k)
)
xn(k) (L.5)

L.2 Derivation of ∂e∗(k)/∂ε(k − 1)

To calculate ∂e∗(k)/∂ε(k − 1), consider the real and imaginary part separately, that as

∂e∗(k)

∂ε(k − 1)
= ∂e∗

r (k)

∂ε(k − 1)
+ j

∂e∗
i (k)

∂ε(k − 1)
(L.6)

Knowing that

e∗(k) = d∗(k) − �∗( net(k)
) = d∗(k) − �∗ (

xT(k)w(k)
)

(L.7)

we have

e∗
r (k) = d∗

r (k) − u(k), e∗
i (k) = d∗

i (k) + v(k) (L.8)

which yields

∂e∗
r (k)

∂u(k)
= −1,

∂e∗
i (k)

∂v(k)
= 1 (L.9)

Using the Cauchy–Riemann equations

∂u(k)

∂netr(k)
= ∂v(k)

∂neti(k)
,

∂v(k)

∂netr(k)
= − ∂u(k)

∂neti(k)
(L.10)
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we have

∂e∗
r (k)

∂ε(k − 1)
= ∂e∗

r (k)

∂u(k)

[
∂u(k)

∂ netr(k)

(
∂netr(k)

∂wr(k)

∂wr(k)

∂ε(k − 1)
+ ∂netr(k)

∂wi(k)

∂wi(k)

∂ε(k − 1)

)

+ ∂u(k)

∂neti(k)

(
∂neti(k)

∂wr(k)

∂wr(k)

∂ε(k − 1)
+ ∂neti(k)

∂wi(k)

∂wi(k)

∂ε(k − 1)

)]

= ∂u(k)

∂netr(k)

(
−xr(k)

∂wr(k)

∂ε(k − 1)
+ xi(k)

∂wi(k)

∂ε(k − 1)

)

+ ∂u(k)

∂neti(k)

(
−xi(k)

∂wr(k)

∂ε(k − 1)
− xr(k)

∂wi(k)

∂ε(k − 1)

)
(L.11)

and

∂e∗
i (k)

∂ε(k − 1)
= ∂e∗

i (k)

∂v(k)

[
∂v(k)

∂ netr(k)

(
∂netr(k)

∂wr(k)

∂wr(k)

∂ε(k − 1)
+ ∂netr(k)

∂wi(k)

∂wi(k)

∂ε(k − 1)

)

+ ∂u(k)

∂ neti(k)

(
∂neti(k)

∂wr(k)

∂wr(k)

∂ε(k − 1)
+ ∂neti(k)

∂wi(k)

∂wi(k)

∂ε(k − 1)

)]

= ∂v(k)

∂netr(k)

(
−xr(k)

∂wr(k)

∂ε(k − 1)
+ xi(k)

∂wi(k)

∂ε(k − 1)

)

+ ∂v(k)

∂neti(k)

(
−xi(k)

∂wr(k)

∂ε(k − 1)
− xr(k)

∂wi(k)

∂ε(k − 1)

)
(L.12)

We can now combine the real and imaginary part of the partial derivative of the complex
conjugate of the instantaneous error with respect to the regularisation parameter ε(k), to obtain

∂e∗(k)

∂ε(k − 1)
= ∂u(k)

∂netr(k)

[
∂wr(k)

∂ε(k − 1)
(−xr(k) + jxi(k)) + ∂wi(k)

∂ε(k − 1)
(jxr(k) + xi(k))

]

+ ∂u(k)

∂neti(k)

[
∂wr(k)

∂ε(k − 1)
(−jxr(k) − xi(k)) + ∂wi(k)

∂ε(k − 1)
(−xr(k) + jxi(k))

]

= −
[

∂u(k)

∂netr(k)

(
∂wr(k)

∂ε(k − 1)
− j

∂wi(k)

∂ε(k − 1)

)

+ ∂u(k)

∂neti(k)

(
j

∂wr(k)

∂ε(k − 1)
+ ∂wi(k)

∂ε(k − 1)

)]
x∗(k)

= − ∂w∗(k)

∂ε(k − 1)

[
∂u(k)

∂ netr(k)
+ j

∂u(k)

∂ neti(k)

]
x∗(k) = − ∂w∗(k)

∂ε(k − 1)
�′∗(net(k)

)
x∗(k)

(L.13)

This finally yields

∂e(k)

∂ε(k − 1)
= − ∂w(k)

∂ε(k − 1)
�′(net(k)

)
x(k) (L.14)
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L.3 Derivation of ∂w(k)/∂ε(k − 1)

By a similar derivation, denote ψ = e(k − 1)�′∗ (k − 1)x∗(k − 1), to have

∂wr(k)

∂ε(k − 1)
= − ψr(k − 1)[|�′(net(k − 1))|2 ‖x(k − 1)‖2

2 + ε(k − 1)
]2 (L.15)

and

∂wi(k)

∂ε(k − 1)
= − ψi(k − 1)[|�′(net(k − 1))|2 ‖x(k − 1)‖2

2 + ε(k − 1)
]2 (L.16)
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Appendix M
A Posteriori Learning

In the Oxford Interactive Encyclopedia the notions of a priori and a posteriori are defined as

A priori is a term from epistemology meaning knowledge or concepts which can be
gained independently of all experience. It is contrasted with a posteriori knowledge, in
which experience plays an essential role.

Probably the oldest written study on a posteriori reasoning in logic was by Aristotle, sometime
between 343 BC and 323 BC [20], in his famous books Prior Analytics and Posterior Analytics.1

In the late sixteenth century, Galileo composed a manuscript, nowadays known as MS27 while
he was teaching at the University of Pisa, between 1589 and 1591 [300]. The manuscript was
based upon the canons introduced by Aristotle in Posterior Analytics, and includes Discourse
on Bodies on or in Water and Letters on Sunspots. He studied the role of foreknowledge and
demonstration in science in general.

A science can give a real definition of its total subject a posteriori only, because the
real definition is not foreknown in the science, therefore it is sought, therefore it is
demonstrable [300].

We know something either a posteriori or a priori, a posteriori through demonstration
of the fact, a priori through demonstration of the reasoned fact. A posteriori is referred
to as demonstration froman effect, or conjectural [300].

Two centuries after Galileo, in 1781, Immanuel Kant published his Critique of Pure Reason2

[142], where he highlighted limitations of a priori reasoning.

1Aristotle used the word Analytics to represent today’s meaning of Logic.
2A widely used reference is a 1929 translation by Norman Kemp Smith, then Professor of Logic and Metaphysics in
the University of Edinburgh.
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M.1 A Posteriori Strategies in Adaptive Learning

Consider a real valued data reusing LMS algorithm for an FIR filter, given by (see also
Chapter 10)

wi+1(k) = wi(k) + ηei(k)x(k), i = 1, . . . , L

ei(k) = d(k) − xT(k)wi(k) (M.1)

where w1(k) = w(k) and w(k + 1) = wL+1(k). For L = 1 equations (M.1) degenerate into
the standard LMS algorithm. Time alignment for the a priori and a posteriori mode of operation
is shown in Figure M.1. From Equation (M.1), it is obvious that the direction of the weight
update vector �wi(k) is the same as that of the input vector x(k) (colinear), this is depicted in
Figure M.2 [306].

Geometric interpretation of a posteriori learning. Figure M.3 provides a geometric interpreta-
tion of the operation of LMS, NLMS, and a posteriori (data reusing) LMS algorithms, where
the direction of vectors w is given by [261]

w(k) + span (x(k)) (M.2)

As the LMS algorithm is an approximative algorithm which uses instantaneous estimates
instead of statistical expectations, the output error of a filter is either positive (the weight

k
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Figure M.1 Time alignment within the data reusing (a posteriori) approach
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Figure M.2 Geometric view of the LMS weight update
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w (k)
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i−> 8

e (k) = 0
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i

i

Figure M.3 Comparison of error convergence between standard and data reusing algorithms

update falling short of the optimal weight update) or negative (the weight update exceeds the
optimal weight update), as illustrated in the top two diagrams of Figure M.3. A posteriori (data
reuse) algorithms start either from the case e(k) > 0 or e(k) < 0, and the iterative data reusing
weight updates approach the performance of normalised algorithms as the number of iterations
increases, as shown in the bottom right diagram of Figure M.3.
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Appendix N
Notions from Stability Theory

The following definitions are similar to those in [258], but are modified so as to suit this work.1

Consider the differential equation

ẋ = f (t,x), x(t0) = x0 (N.1)

Definition N.1 (Autonomous system). A system defined by Equation (N.1) is called au-
tonomous, or time–invariant, if f does not depend on t.

Definition N.2 (Linear system). The system (N.1) is said to be linear if f (t,x) = A(t)x for
some A : R+ → R

n×n.

In terms of the scale, properties of systems defined on a closed ball Bh ∈ Rn with radius h

centred at 0, can be considered

i) locally, if true for all x0 ∈ Bh;
ii) globally, if true for all x0 ∈ Rn;

iii) in any closed ball, if true for all x0 ∈ Bh, with h arbitrary;
iv) uniformly, if true for all t0 > 0.

Definition N.3 (Lipschitz function). Function f is said to be Lipschitz in x if, for some
h > 0, there exists L ≥ 0 such that

‖ f (t,x1) − f (t,x2) ‖≤ L ‖ x1 − x2 ‖ (N.2)

for all x1,x2 ∈ Bh, t ≥ 0. Constant L is called the Lipschitz constant.

1The roots of stability theory can be traced down to Alexander Mikhailovitch Lyapunov (1857–1918). He developed
the so–called Lyapunov’s Second Method in his PhD thesis The General Problem of the Stability of Motion in 1892.
Lyapunov was interested in the problem of equilibrium figures of a rotating liquid, a problem also addressed by
Maclaurin, Jacobi, and Laplace.
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Definition N.4 (Equilibrium). Point x is called an equilibrium point of Equation (N.1), if
f (t,x) = 0 for all t ≥ 0.

Definition N.5 (Stability). Point x = 0 is called a stable equilibrium point of Equation
(N.1) if, for all t0 ≥ 0 and ε > 0, there exists δ(t0, ε) such that

‖ x0 ‖< δ(t0, ε) ⇒ ‖ x(t) ‖< ε, ∀ t ≥ t0 (N.3)

where x(t) is the solution of (N.1), based on initial conditions x0 and t0.

Definition N.6 (Uniform stability). Point x = 0 is called a uniformly stable equilibrium
point of Equation (N.1) if, in the above definition δ can be chosen independent of t0. In other
words, the equilibrium point is not growing progressively less stable with time.

Definition N.7 (Asymptotic stability). Point x = 0 is called an asymptotically stable equi-
librium point if

a) x = 0 is a stable equilibrium point,
b) x = 0 is attractive, that is, for all t0 ≥ 0, there exists δ(t0), such that

‖ x0 ‖< δ ⇒ lim
t→∞ ‖ x(t) ‖ = 0 (N.4)

Definition N.8 (Uniform asymptotic stability). Point x = 0 is called a uniformly asymp-
totically stable equilibrium point of Equation (N.1) if

a) x = 0 uniformly stable
b) trajectory x(t) converges to 0 uniformly in t0.

These definitions address local stability (in the neighbourhood of the equilibrium point). The
following definition addresses Global Asymptotic Stability (GAS).

Definition N.9 (Global asymptotic stability). Point x = 0 is called a globally asymp-
totically stable equilibrium point of Equation (N.1), if it is asymptotically stable and
limt→∞ ‖ x(t) ‖ = 0, for all x0 ∈ Rn. Global uniform asymptotic stability is defined simi-
larly.

Definition N.10 (Exponential stability). Point x = 0 is called an exponentially stable
equilibrium point of Equation (N.1) if there exist m, α > 0 such that the solution x(t) satisfies

‖ x(t) ‖ ≤ m e−α(t−t0) ‖ x0 ‖ (N.5)

for all x0 ∈ Bh, t ≥ t0 ≥ 0. Constant α is called the rate of convergence.

In other words, GAS asserts that the system is stable for any x0 ∈ Rn, whereas the definition
of exponential stability is similar except that m and α may be functions of h.
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Appendix O
Linear Relaxation

O.1 Vector and Matrix Norms

Vector norms. For a vector x of length n

� 1–norm is defined as

‖ x ‖1=
n∑

i=1

|xi| (O.1)

� 2–norm is defined as

‖ x ‖2=
√√√√√ n∑

i=1

x2
i (O.2)

� ∞–norm is defined as

‖ x ‖∞= max
1≤i≤n

|xi| (O.3)

� p–norm is defined as

‖ x ‖p=
{

n∑
i=1

|xi|p
} 1

p

, ∀p ≥ 1 (O.4)
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Matrix norms.

� 1–norm is defined as

‖ A ‖1= max
1≤j≤n

{
n∑

i=1

|aij|
}

(O.5)

that is the ‘maximum absolute column sum’;

� 2–norm is defined as

‖ A ‖2 � square root of the largest eigenvalue of the matrix ATA (O.6)

� ∞–norm is defined as

‖ A ‖∞= max
1≤i≤n

⎧⎨
⎩

n∑
j=1

|aij|
⎫⎬
⎭ (O.7)

that is the ‘maximum absolute row sum’;

� Frobenius norm is defined as

‖ A ‖p =
⎛
⎝ m∑

i=1

n∑
j=1

|aij|p
⎞
⎠

1
p

which for p = 2 gives

‖ A ‖2
F =

m∑
i=1

n∑
j=1

∣∣∣
aij

∣∣∣2 = trace
(
ATA

) =
min{m,n}∑

i=1

σi (O.8)

The Frobenius norm is usually the largest of the matrix norms and is used as a bound when
analysing matrix equations.

O.2 Relaxation in Linear Systems

The problem of Global Asymptotic Stability (GAS) is important in the theory of linear systems
[21, 99, 113, 140, 163]. An autonomous system which is described by an Nth-order time-variant
difference equation

y(k) = aT(k)y(k − 1) = a1(k)y(k − 1) + · · · + aN (k)y(k − N) (O.9)
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should ideally represent a relaxation. System (O.9) can be written in a more general form

Y(k + 1) = A(k)Y(k) +B(k)u(k) (O.10)

which degenerates into system (O.9) when the exogenous input vectoru(k) = 0, ∀k > 0 [140,
163]. The vector–matrix form of the output of an autonomous system (O.9) now becomes⎡

⎢⎢⎢⎢⎢⎢⎣ ..

y(k + 1)

y(k)
.

y(k − N + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1(k) a2(k) · · · aN (k)

1 0

..

· · · 0
. ...

. . .
...

0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣ ..

y(k)

y(k − 1)
.

y(k − N)

⎤
⎥⎥⎥⎥⎥⎥⎦

or

Y(k + 1) = A(k)Y(k)

with

y(k + 1) = [1 0 · · · 0] Y(k + 1) (O.11)

For simplicity, we shall only consider systems of the form (O.9) for which the coefficient
vectora has constant coefficients. In that case, matrixA is a Frobenius matrix, which is a special
form of the companion matrix. The fundamental theorem of matrices [124, 310] states that
every matrixA can be reduced by a similarity transformation to a sum of Frobenius matrices
[48, 310]. It is therefore important to study stability of Equation (O.11) since the results can
easily generalise; for instance, the analysis of robust relaxation for nonlinear dynamical systems
uses this approach and can be found in [188].

Modes of convergence of linear autonomous systems are crucially dependent on the size
and norm of the coefficient vector a [183, 188]; this is illustrated in Figure O.1, where the solid
line illustrates uniform convergence, whereas the broken line illustrates oscillatory convergence

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

Number of Iteration

O
ut

pu
t y

(k
)

a=[0.2 0.15 0.05 0.2]

a=[0.7 0.1 0.05 0.05]

max(a)>1/N

max(a)<1/N

Figure O.1 Dependence of the mode of convergence on the coefficient vector. Solid line ‖ a(k) ‖> 1/N,
broken line ‖ a(k) ‖< 1/N
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(see also Appendix N). We can conclude that the system (O.11) with the constraint ‖ a(k) ‖1< 1
converges towards zero in the Fixed Point Iteration (FPI) sense, exhibiting linear convergence,
with the convergence rate ‖ a(k) ‖.

Stability result for i=1ai = 1. Consider the parameter vector a with constant coefficients,
∑∑∑m

that is, a = [a1, . . . , aN ]T, and ‖ a ‖1= 1. MatrixA from Equation (O.11) becomes a stochas-
tic matrix [99, 169, 281], since each of its rows is a probability vector, and Equation (O.11)
can be rewritten as

Y(k + 1) = AY(k) = A2Y(k − 1) = · · · = AkY(0) (O.12)

Since the product of two stochastic matrices is a stochastic matrix, there exists a unique fixed
vector t = [t1, . . . , tN ]T such that [99, 169]

tA = t (O.13)

Since vector t is also a probability vector, that is, ‖ t ‖1= 1, the iteration (O.12) converges to

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎣ ..

a1 a2 · · · aN

1 0 · · · 0
. ...

. . .
...

0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

k

k→∞−→

⎡
⎢⎢⎢⎢⎢⎢⎣ ..

t1 t2 · · · tN

t1 t2 · · · tN

. ...
. . .

...

t1 t2 · · · tN

⎤
⎥⎥⎥⎥⎥⎥⎦ (O.14)

Example. A university town has two pizza places. The statistics show that N = 5000 people
buy one pizza every week. Tony’s pizza place has the better pizza and 80% of people who buy
pizza at Tony’s return the following week. Mike’s pizza is not that good and only 40% of the
customers return the following week. Will Mike go bust?

Solution. We can describe the problem by a discrete autonomous dynamical system

xn+1 = Axn where A =
[

0.8 0.6

0.2 0.4

]

If we assume that initially half of the customers go to Tony’s and half to Mike’s, that is,
x0 = [2500, 2500]T, the above iteration gives

x1 =
[

3500

1500

]
,x2 =

[
3700

1300

]
,x3 =

[
3740

1260

]
,x4 =

[
3748

1252

]
,x5 =

[
3750

1250

]

The iteration converges very fast, and x6 = · · · = x∗ = x∞ = [3750, 1250]T. Clearly x∗ =
[3750, 1250]T is the fixed vector ofA, that is,Ax∗ = x∗.

The eigenvectors of the system matrix are v1 = [0.9487, 0.3162]T and v2 =
[−0.7071, 0.7071]T, and the eigenvalues λ1 = 1 and λ2 = 0.2. Notice that the elements of
v1 are related as 3 ÷ 1, the same as the ratio of Tony’s and Mike’s customers. Therefore, we
have reached an equilibrium, and Mike’s pizza place will not go bust.
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Figure O.2 State space convergence of relaxation Equation (O.9), for various combinations of the
elements of the coefficient vector a

O.2.1 Convergence in the Norm or State Space?

Let us now show that for the system (O.9) convergence in the norm does not imply convergence
in the geometric sense.

Notice first that process (O.9), described by a vector a = [a1, . . . , aN ]T with non–negative
constant coefficients, converges to [183]

(i) |y∞| = |∑N
i=1 tiy(k − i)| ≥ 0 for ‖ a ‖1= 1

(ii) y∞ = 0 for ‖ a ‖1< 1

from any finite initial state Y(0). Figure O.2 illustrates convergence in the geomet-
ric sense (state space) for various combinations of elements of the coefficient vector
a = [a1, a2]T.

Figure O.3 further depicts the need to consider the geometry of convergence; although the
relaxation (O.9) converged in all the norms, it did not converge in state space.
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Figure O.3 Convergence in the 2-norm, 1-norm and ∞-norm for the system from Figure O.2(d)
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Appendix P
Contraction Mappings, Fixed
Point Iteration and Fractals

The principle of contraction mapping, and the corresponding Contraction Mapping Theorems
(CMTs), have proved extremely useful in the analysis of nonlinear dynamical systems. We here
provide some background material. We shall first give the definition of a Lipschitz continuous
mapping.

Let X be a complete metric space with metric d containing a closed nonempty set �, and
let g : � → �. Function g is said to be Lipschitz continuous with Lipschitz constant γ ∈ R if

∀x, y ∈ � d
[
g(x), g(y)

] ≤ γ d(x, y)

We can differentiate between the following cases of Lipschitz continuity

a) for 0 ≤ γ < 1, g is a contraction mapping on �;
b) for γ = 1, g is a nonexpansive mapping;
c) for γ > 1, g is a Lipschitz continuous mapping on �.

We shall now state the Contraction Mapping Theorem (CMT) in R.

CMT, Banach (1922). Consider a continuous real valued function K : R→ R, such that

i) For every x from the interval [a, b], its image K(x) also belongs to the same interval
[a, b] (non–expansivity – see a) and b) above);

ii) There exists a positive constant γ < 1, such that (Lipschitz continuity)

|K(x) − K(y)| ≤ γ|x − y|, ∀x, y ∈ [a, b] (P.1)

Then the equation x = K(x) has a unique solution x∗ ∈ [a, b] and the iteration (fixed point
iteration (FPI))

xi+1 = K(xi) (P.2)

Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo P. Mandic and Vanessa Su Lee Goh
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-06635-5
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a

K(b)

b

K(a)

Figure P.1 The contraction mapping

converges to x∗ from any x0 ∈ [a, b].
Brower’s fixed point theorem gives a criterion for the existence of a fixed point [59, 157,

321].

Brower’s fixed point theorem. Let � = [a, b]N be a closed set of RN and f : � → � be a
continuous vector–valued function. Then f has at least one fixed point in �.

It is important to note that it is the underlying contraction mapping that provides the existence
and uniqueness of the solution of the fixed point iteration (P.2).

Existence. From (i) in CMT, due to the non–expansivity, we have a − K(a) ≤ 0 and
b − K(b) ≥ 0, as shown in Figure P.1. Then the Intermediate Value Theorem (IVT)
guarantees that there exists a solution x∗ ∈ [a, b] such that x∗ = K(x∗)

Uniqueness. If x̃ ∈ [a, b] is also a fixed point, (that is a solution of Equation P.2), then we
have

|x̃ − x∗| = |K(x̃) − K(x∗)| ≤ γ|x̃ − x∗| (P.3)

For K a contraction, the Lipschitz constant γ < 1, and there can be only one solution to
Equation (P.2), that is x̃ ≡ x∗

Convergence. For the ith iteration of Equation (P.2) we have

|xi − x∗| = |K(xi−1) − K(x∗)| ≤ γ|xi−1 − x∗| (P.4)

Thus |xi − x∗| ≤ γi|x0 − x∗| and limi→∞ γi = 0. The Lipshitz constantγ therefore defines

the rate of convergence towards the fixed point {xi} i→ x∗.

In practice, it is very difficult to find such γ , and the convergence is assessed by examining
whether

|K′(x)| ≤ γ < 1, ∀x ∈ (a, b) (P.5)

In order to examine the local convergence of the FPI (Equation P.2), we can make use of the
mean value theorem (MVT). By MVT, there exists a point ξ in the open interval (a, b), for
which

|K(x) − K(y)| = |K′(ξ)(x − y)| ⇔ |K′(ξ)||x − y| ≤ γ|x − y|, x, y ∈ [a, b] (P.6)

therefore for local convergence it is sufficient to examine the gradient of K in the neighbourhood
of x∗. For vector functions, the CMT can be extended to RN as follows [59].
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Let M be a closed subset of RN such that

i) Function K maps set M onto itself, that is, K : M → M
ii) There exists a positive constant γ < 1 such that, ∀x,y ∈ M

‖ K(x) −K(y) ‖≤ γ ‖ x− y ‖ (P.7)

Then the equation

x = K(x) (P.8)

has a unique solution x∗ ∈ M and the iteration

xi+1 = K(xi) (P.9)

converges to x∗ for any starting value x0 ∈ M (fixed point iteration).
The behaviour of state trajectories (orbits) in the vicinity of fixed points defines the character

of fixed points.

� For an asymptotically stable (or attractive) fixed point x∗ of a function K, there exists a
neighborhoodO(x∗) of x∗ such that limk→∞ K(xk) = x∗, for all xk ∈ O(x∗). In this case,
all the eigenvalues of the Jacobian of K at x∗ are less than unity in magnitude, and fixed
point x∗ is called an attractor.

� Eigenvalues of the Jacobian of K which are greater than unity in magnitude indicate that
K is an expansion, and the corresponding fixed point x∗ is called a repeller or repulsive
point.

� If some eigenvalues of the Jacobian of K are greater and some smaller than unity, x∗ is
called a saddle point.

One classical application of FPT is in the solution of equations, where

F (x) = 0 ⇔ x = K(x)

The next example shows how to set up such a fixed point iteration.

Example P.1 Find the roots of function F (x) = x2 − 2x − 3.

Solution. There are several ways to set up a fixed point iteration. The roots of F (x) = x2 −
2x − 3 are x1 = −1 and x2 = 3 and one way to find them is to rearrange

F (x) = 0 ⇔ x = K(x) = √
2x + 3

The FPI starting from x0 = 4 gives the sequence of iterates

x1 = 3.3116, x2 = 3.1037, x3 = 3.0344, x4 = 3.0114, . . . , x8 = 3.0001, x9 = 3.0000

where x∗ = 3 is a fixed point (also in the neighborhood of x∗ = 3, |K′(x)| < 1), and a solution
of the equation x2 − 2x − 3 = 0. The convergence of this fixed point iteration is illustrated in
Figure P.2.
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Figure P.2 Fixed point iteration for the roots of function F (x) = x2 − 2x − 3

By rearranging the problem of finding zeros of F in a different way, we may encounter the
other two characteristic cases, namely oscillatory convergence and divergence, as illustrated
in Figures P.3(a) and (b).

For the case of divergence depicted in Figure P.3(b), rearrange F (x) = 0 ⇔ x = K(x) =
(x2 − 3)/2. The value of the first derivative of K(x) is greater than unity for x > x∗ = 3, hence
an FPI starting from initial values x0 > 3 diverges. On the other hand, an FPI starting from
an initial value x0 < 3 would still converge to the fixed point x∗ = 3 (also by virtue of CMT).
Hence, fixed point x∗ = 3 is an unstable fixed point of function K = (x2 − 3)/2.
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(a) Oscillatory FPI for K (x ) = 3/(x−2)
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Figure P.3 Oscillatory convergence of FPI and the case of a repeller
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P.1 Historical Perspective

Evidence from clay tablets in the Yale University Babylonian collection suggests that iterative
techniques for finding square roots go back several thousand years [157]. One such clay tablet
is YBC 7289 (ca 1800–1600 BC), shown in Figure P.4(a), which explains how to calculate
the diagonal of a square with base 30. Figure P.4 illustrates the iteration procedure used by
the Babylonians.1 The Babylonians used a positional, sexagesimal (base 60) number system,
and on this tablet, the ‘chicken scratchings’ are the sexagesimal numerals, thus for instance,
as shown in Figure P.4(b), symbol V corresponds to ‘one’ and symbol < to ‘ten’ [77].

Figure P.4(c) shows a simplified diagram illustrating the mathematical operation explained
on YBC 7289; numbers on the diagonal give an approximation to

√
2 accurate to nearly six

decimal places

1 + 24

60
+ 51

602 + 10

603 ≈ 1.41421296 . . .

whereas 30
√

2 is calculated as (numbers along the bottom right base)

42 + 25

60
+ 35

602 ≈ 42.426389

geometrically via iteration of doubled squares.2

Figure P.4 The Babylonian iteration for calculating the diagonal of a square with base 30

1Images by Bill Casselman.
2Given that the Babylonians were most likely to use the knowledge of

√
2 in carpentry and construction, some recent

authors proposed a conjecture that the Babylonians used a method of successive approximations similar to Heron’s
method. If the procedure starts with a guess x, then the error is calculated e = x2 − 2, and the Babylonian iteration is
executed until the error is very small.
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In terms of modern mathematics, the Babylonians employed an iterator3

x = K(x) = x + 2
x

2
(P.10)

so that, for instance, successive applications of K(x), which start from x0 = 4.5, give [157]

x1 = K(x0) = 3

2
, x2 = K(x1) = 17

12
, x3 = K(x2) = 577

408
, . . .

as shown in Figure P.5. The point of intersection of curves K(x) and y = x can be found
analytically by solving

1

2

(
x + 2

x

)
= x

The solution has the value x = √
2, and is a fixed point of K and a solution of K(x) = x.

The Babylonian iteration can be used to calculate the square root of any number a, by
replacing 2 with ‘a’ in the iteration, that is

xi+1 = 1

2

(
xi + a

xi

)
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x

K
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Fixed Point

Figure P.5 The Babylonian iteration starting from x0 = 4.5

3Observe that x + 2/x = 2x ⇔ x2 − 2 = 0.
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Observe that the iteration converges when the mean value between xi and a/xi approaches
the limit x∗ = √

a. This is also a special case of Newton’s method.4

P.2 More on Convergence: Modified Contraction Mapping

Despite its mathematical elegance, fixed point iteration is not guaranteed to converge from any
initial condition. Let us illustrate this by an example.

Example P.2 Solve x2 = 3.

Solution. Consider the fixed point iteration

xi+1 = 3/xi

Starting the FPI from x0 = 1, we have the sequence x1 = 3, x2 = 1, x3 = 3, x4 = 1, . . ., which
does not converge.

To solve this problem consider a modified FPI

x − S x = T x − S x ↔ xi+1 − S xi+1 = T xi − S xi

and rewrite

x = (I − S)−1 (T x − S x) ↔ xi+1 = G(xi)

Choose5 S = −1 and start from x0 = 1, to obtain the iterates6

x0 = 1, x1 = 2, x2 = 1.67, x3 = 1.75, x4 = 1.727, x5 = 1.733, . . .

The iteration is now convergent.
It is clear that the local convergence of xi+1 = K(xi) towards a fixed point x∗ depends

critically on the gradient (Jacobian) of K near x∗. It is therefore natural to ask ourselves
whether can we modify the standard FPI to guarantee convergence for a much wider range of
initial conditions. One such result has been proposed in [71]. The modified FPI from the paper
by Ferrante et al. [71] can be presented as follows:

� assume f (·) is twice continuously differentiable;
� assume xi+1 = g (xi), the usual choice being g = f ;
� if the spectrum (eigenvalues) σ

[
J(x∗)

]
of the Jacobian

J(x) = ∂f

∂x
(x)

4For a differentiable function f , the Newton iteration can be expressed as

xi+1 = xi − f (xi)

f ′(xi)
.

5Notice S = 1 is not valid above.
6There are many methods which come as a consequence of the choice of S (Newton method).
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at x = x∗ is contained in the unit circle S = {z ∈ C : |z| < 1}, then the algorithm
xi+1 = f (xi) converges to x∗ from any point in a suitable neighborhood of x∗ (even
if the convergence is slow).

To guarantee convergence of xi+1 = g(xi) towards x∗, we need to ensure that

i) g(x∗) = x∗;

ii) σ
[

∂g
∂x

]
|x=x∗ ⊂ S (spectral norm);

ˆ

iii) g(·) can be formed from f (·) without a priori information about x∗.

Given a constant matrix K with eigenvalues in S, a simple function g satisfying i) and ii) is
the affine function shown in Figure P.6.

The affine function ĝ can be written as

g(x; K) = x∗ + K(x − x∗) = Kx + (I − K)x∗ (P.11)

This choice of function g requires previous knowledge of x∗, which can be obtained, for
instance, from f by applying a Taylor Series Expansion (TSE) around x∗, to give

f̂ (x) = f (x∗) + J(x∗)(x − x∗) = J(x∗)x + [
f (x∗) − J(x∗)x∗] = J(x∗)x + [

I − J(x∗)
]
x∗

and finally

x∗ = [
I − J(x∗)

]−1 [
f̂ (x) − J(x∗)x

]
(P.12)

Replacing x∗ into Equation (P.11) and using approximations x∗ → x and f̂ (x) → f (x), we
arrive at Ferrante’s solution

g(x; K) = Kx + (I − K) [I − J(x)]−1 [
f (x) − J(x)x

]
(P.13)

^
K

X*

y

g(x;K)

y=x
f(x)

x

Figure P.6 Illustration of Ferrante’s modified FPI method
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Observe that g(x) is independent of x∗ and therefore xi+1 = g(xi; K) converges to every fixed
point x∗ of f (x) starting from a suitable neighborhood of x∗. The next example illustrates the
power of the so modified fixed point iteration.7

Example P.3 Ensure convergence of the fixed point iteration for the scalar function

f (x) = 1

2
x3 − x + 1

for which the fixed points are x∗ = [−2.2143, 0.5392, 1.6751]T.

Solution. Since the derivative f ′(x) = 3
2x2 − 1 is not bounded, the convergence of standard

FPI not guaranteed a priori. To ensure convergence, apply (P.13), to yield (K → k > 1) and

g(x; K) = − (2 + k) x3 + 4kx + 2 (1 − k)

4 − 3x2

The size of the interval of attraction (basin of attraction, region of convergence), depends on
k. For instance, for k = 0

g(x; 0) = 2
1 − x3

4 − 3x2

Also, depending on the initial value x0, FPI can converge to any of the three fixed points.
Figure P.7 illustrates that indeed g(x∗) = f (x∗) ⇔ f (x) = x. For k = 2 we have quadratic
convergence and for x0 close to x∗, the fixed point is reached in only one step.

A comprehensive account of FPT background material can be found in [59, 157, 174, 321].
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Figure P.7 The modified fixed point iteration. Solid line: f (x), broken line: g(x)

7This example is adopted from [71].
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P.3 Fractals and Mandelbrot Set

Fractals are mathematical objects that obey self-similarity, that is, the parts of the object are
somehow self-similar to the whole. This self-similarity implies that fractals are scale invariant,
and we cannot distinguish a small part from the larger structure. Classical examples include
the Sierpinski triangle and the Koch snowflake, however, many phenomena in nature are self-
similar and scale invariant. Trees and ferns are fractal in nature and can be modelled using a
recursive algorithm [176].

Perhaps the most famous fractal is the classical Mandelbrot set M, a subset of the complex
plane, which despite its complicated structure is defined by a mathematical rule of sheer
simplicity, that is, as a fixed point iteration

z → z2 + c (P.14)

where c is a complex number. The iteration starts with z = 0 and continues as [233]

0, c, c2 + c, c4 + 2c3 + c2 + c, . . .

until

� z goes to infinity, and point c is coloured white;
� z wanders around in some restricted region, and point c is coloured black.

The black regions give us the Mandelbrot set. The Earth also exhibits fractal nature because
it shows self-similarity at many different scales (lightning, forest, ice shapes, fern, river and
mountain systems), for more detail see [37]. Examples of fractals and iterated maps are given
in Figure P.8.

Figure P.8 Examples of iterated maps. Top: Natural fractal; bottom: Mandelbrot set
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94, 98, 283

Cauchy integral, 251
Channel equalisation, 9, 27, 71
Circularity, see Complex circularity, 153
Clifford algebra, 8, 53, 255
Collaborative filtering, 217

hybrid filtering, 208, 210
online test for complex circularity, 220

Complex circularity, 29, 153, 183
examples, 165
properties, 158
random variables, 153
second order, 164
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Complex covariance matrix, 90, 151, 154, 171,
199, 202, 249

augmented complex statistics, 59, 151, 161,
191, 203

pseudocovariance, 90, 151, 153, 161, 171,
173, 233

Complex least mean square (CLMS) algorithm,
9, 69, 73, 102, 231

augmented CLMS (ACLMS), 175, 218
weight updates, 187

data-reusing form, 129
weight updates, 66, 75, 278
widely linear complex filter, 187

Complex matrix differentiation, 249
Complex multilayer perceptron (CMLP), 9
Complex nonlinear gradient descent (CNGD)

algorithm, 80, 87, 212
data-reusing form, 131
gradient adaptive stepsize algorithms, 107
normalised CNGD, 87, 110, 122, 212

Complex nonlinearity, see Activation functions,
190

Complex numbers
sign function, 246
basic arithmetic, 246
complex conjugate, 57, 194, 247
complex mean, 246
complex random variables, 152
higher dimension algebras, 254
history, 2
matrix representation, 138
ordering of numbers, 152, 245

Complex random variables, 63, 152,
201

Complex signals, 159
50 Hz wind data, 113
bivariate, 10, 233, 240

normal distribution, 155
wind data, 243

cross-multicorrelations, 160
dual univariate, 10
IPIX radar, 113
multicorrelations, 159
second order structure, 161

Complex white noise, 76, 152, 172
doubly white, 34, 102, 113

Constructive learning, 266
Continuous complex functions, 55,

248
Contraction mapping theorem, 299

Data-reusing, 129
contractive, 129

Delay vector variance (DVV), 237
complex case, 240

Deterministic vs stochastic (DVS) plots, 234,
237

Discrete cosine transform (DCT), 221
Dual channel

adaptive filters, 183, 185
DCRLMS algorithm, 185

Electroencephalogram (EEG), 26
Embedding dimension, 237, 240
Empirical mode decomposition (EMD)

algorithm, 221
as a fixed point operation, 222
bivariate EMD (BEMD), 228
complex EMD, 227
rotation invariant EMD (RIEMD), 227
sifting algorithm, 222

Equilibrium point, 292
Error criterion

deterministic, 72, 170
stochastic, 170

Error function, 265
Exponential stable, 292
Extended Kalman filter (EKF), 9

augmented complex EKF algorithm
(ACEKF), 200

Feedforward network
definition, 273
multilayer, 36

Finite impulse response (FIR) filter, 33, 70
learning algorithm, 183, 279
nonlinear filter, 33, 107

Fixed point
Brower’s theorem, 299
iteration, 75, 133, 223

Forgetting factor, 277
Fourier transform, 160, 162, 163, 236

DFT, 27
FFT, 221
inverse, 20, 227, 236
spectrum, 236

Fractals and Mandelbrot set, 308
complex iterated maps, 28
theory of fractals, 145

Frequency domain, 161
Frobenius matrix, 295
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Fully complex, see Activation functions, 260
Function definitions

bounded, 9, 47, 49, 81, 84, 259, 262
conformal, 142
differentiable, 9, 29, 47, 84, 194, 262
holomorphic, 44, 94, 142, 194, 248
meromorphic, 129

Gaussian complex RVs, 158
circular complex noise, 168
complex circular, 153
complex model, 10, 151

Generalised normalised gradient descent
(GNGD) algorithm, 209, 279, 281

complex GNGD (CGNGD), 110
nonlinear filter case (CFANNGD), 111

Gradient adaptive stepsize algorithms
see Complex nonlinear gradient descent

(CNGD), 107

Hilbert transform, 15
Hybrid filters, see Collaborative filtering, 207

Improper random vectors, 10, 29, 151, 159, 162,
169, 249

examples, 168
noncircular, 164

Infinite impulse response (IIR) filter, 34, 91
Intrinsic mode functions (IMFs), 221

Kolmogorov function, 269
Kolmogorov’s theorem, 38, 270
Kolmogorov–Smirnoff test, 242
Kolmogorov–Sprecher’s theorem, 270

Least mean square (LMS) algorithm
dual channel real LMS (DCRLMS), 185
dual univariate LMS (DULMS), 188
gradient adaptive step size (GASS), 279
hybrid filters, 208
normalised LMS (NLMS), 107, 279

Linear prediction, 27, 120
Linear regression, 152, 169

widely linear regression, 175
Liouville’s theorem, 9, 48, 208, 251, 259

singularities, 208, 259
Lipschitz function, 270, 291

Lipschitz constant, 300
Lipschitz continuity, 224, 299
Lipschitz continuous mapping, 299

¨

Lorenz equation, see attractors, 178
Lyapunov’s second method, 291

Mobius transformation, 18, 140
all pass systems, 146
properties, 140

Minimum mean square error (MMSE), 72, 73,
173

convergence, 77
Modular group, 144, 145

nesting, 145
CPRNN architecture, 275

Monotonic function, 222, 270

Neural networks
homomorphic, 268
hypercomplex, 10, 53
multivalued neurons (MVN), 27
ontogenic, 266, 273
terminology, 273

Neuron
clamping functions, 273

Noise cancellation, 26, 70
Null hypothesis, 235

Pattern learning, 266
Phase space, 237
Polar coordinates, 16, 153, 247

wind representation, 22
Power spectrum, 20, 80, 163, 172, 188
Prediction gain, 102, 113, 124, 178, 188
Probability density functions, 10, 151, 152, 155,

158, 245, 246
Proper random vectors, 162, 169

circular, 164
second order circular, 151

Properties of functions in C
differentiable, 56, 62
holomorphic, 57

Pseudocovariance, see Complex covariance
matrix, 246

Quaternions, 7
algebra, 255
conjugate, 138
matrix representation, 137
MLPs, 10

Real time recurrent learning (RTRL)
adaptive amplitude CRTRL (AACRTRL),

122
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Real time recurrent learning (RTRL)
(Continued)

augmented complex valued RTRL
(ACRTRL) algorithm, 197

complex RTRL (CRTRL) algorithm, 99, 275
data-reusing CRTRL, 134

Recurrent neural networks (RNNs)
complex valued pipelined (CPRNN), 275

Recursive algorithm, 91, 192, 267
Regularisation factor, 124, 281

Signal modality characterisation, 207, 211,
233

signal nonlinearity, 207, 216
statistical testing, 235

Signal nonlinearity, see Signal modality
characterisation, 207

Singularities, see Liouville’s theorem,
Activation functions, 259

Spectral matrix, 163, 164
components, 15
covariance, 172
pseudocovariance, 172, 188

Split complex nonlinearity, see Activation
functions, 260

State space representation, 37, 39, 297
Ikeda map, 240

Stochastic gradient learning, 10, 122, 171, 184,
210

Stochastic matrix, 296
Stochastic models, 34
Supervised learning, 220, 267, 273

Surrogate dataset, 20, 236
bivariate iAAFT, 239
complex iAAFT, 240
iterative Amplitude Adjusted Fourier

Transform (iAAFFT), 236

Unscented Kalman filter (UKF)
augmented complex UKF algorithm

(ACUKF), 200
Unsupervised learning, 273

Vanishing gradient, 275
Vector and matrix

differentiation, 263
norm, 293

Volterra system, 38, 207
filters, 208

Weierstrass theorem, 270
Weighted sum, 15, 147, 277
Wide sense stationary (WSS), 162, 168,

172
Widely linear, 171

autoregressive model, 174, 191
ACLMS algorithm, 220
adaptive filters, 10, 185, 187, 194
benefits, 175
estimator, 174
models, 139, 169, 171, 218, 233

Wiener filter, 71, 152, 171
Wind data analysis, 228
Wold decomposition, 234
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