

Trim Size: 170mm x 244mm Walker ffirs.tex V3 - 01/19/2016 3:03 P.M. Page i�

� �

�

Electronic Structure Calculations on Graphics
Processing Units

Trim Size: 170mm x 244mm Walker ffirs.tex V3 - 01/19/2016 3:03 P.M. Page ii�

� �

�

Trim Size: 170mm x 244mm Walker ffirs.tex V3 - 01/19/2016 3:03 P.M. Page iii�

� �

�

Electronic Structure
Calculations on

Graphics Processing
Units

From Quantum Chemistry to Condensed
Matter Physics

Editors

ROSS C. WALKER

San Diego Supercomputer Center and Department of Chemistry
and Biochemistry, University of California, San Diego, USA

and

ANDREAS W. GÖTZ

San Diego Supercomputer Center, University of California,
San Diego, USA

Trim Size: 170mm x 244mm Walker ffirs.tex V3 - 01/19/2016 3:03 P.M. Page iv�

� �

�

This edition first published 2016

© 2016 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse
the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs
and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs
and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book,
they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding
that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for
damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional
should be sought

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment
modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental
reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or
instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or
indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make. Further, readers should be aware that
Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.
No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall
be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data applied for.

ISBN: 9781118661789

A catalogue record for this book is available from the British Library.

Cover Image: Courtesy of the Editors

Set in 9/11pt, TimesLTStd by SPi Global, Chennai, India.

1 2016

http://www.wiley.com

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page v�

� �

�

Contents

List of Contributors xiii
Preface xvii
Acknowledgments xix
Glossary xxi
Abbreviations xxv

1. Why Graphics Processing Units 1
Perri Needham, Andreas W. Götz and Ross C. Walker

1.1 A Historical Perspective of Parallel Computing 1
1.2 The Rise of the GPU 5
1.3 Parallel Computing on Central Processing Units 7

1.3.1 Parallel Programming Memory Models 7
1.3.2 Parallel Programming Languages 8
1.3.3 Types of Parallelism 9
1.3.4 Parallel Performance Considerations 10

1.4 Parallel Computing on Graphics Processing Units 12
1.4.1 GPU Memory Model 12
1.4.2 GPU APIs 12
1.4.3 Suitable Code for GPU Acceleration 13
1.4.4 Scalability, Performance, and Cost Effectiveness 14

1.5 GPU-Accelerated Applications 15
1.5.1 Amber 15
1.5.2 Adobe Premier Pro CC 18
References 19

2. GPUs: Hardware to Software 23
Perri Needham, Andreas W. Götz and Ross C. Walker

2.1 Basic GPU Terminology 24
2.2 Architecture of GPUs 24

2.2.1 General Nvidia Hardware Features 25
2.2.2 Warp Scheduling 25
2.2.3 Evolution of Nvidia Hardware through the Generations 26

2.3 CUDA Programming Model 26
2.3.1 Kernels 27
2.3.2 Thread Hierarchy 27
2.3.3 Memory Hierarchy 29

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page vi�

� �

�

vi Contents

2.4 Programming and Optimization Concepts 30
2.4.1 Latency: Memory Access 30
2.4.2 Coalescing Device Memory Accesses 31
2.4.3 Shared Memory Bank Conflicts 31
2.4.4 Latency: Issuing Instructions to Warps 32
2.4.5 Occupancy 32
2.4.6 Synchronous and Asynchronous Execution 33
2.4.7 Stream Programming and Batching 33

2.5 Software Libraries for GPUs 34
2.6 Special Features of CUDA-Enabled GPUs 35

2.6.1 Hyper-Q 35
2.6.2 MPS 35
2.6.3 Unified Memory 35
2.6.4 NVLink 36
References 36

3. Overview of Electronic Structure Methods 39
Andreas W. Götz

3.1 Introduction 39
3.1.1 Computational Complexity 40
3.1.2 Application Fields, from Structures to Spectroscopy 41
3.1.3 Chapter Overview 41

3.2 Hartree–Fock Theory 42
3.2.1 Basis Set Representation 43
3.2.2 Two-Electron Repulsion Integrals 44
3.2.3 Diagonalization 45

3.3 Density Functional Theory 46
3.3.1 Kohn–Sham Theory 46
3.3.2 Exchange-Correlation Functionals 47
3.3.3 Exchange-Correlation Quadrature 49

3.4 Basis Sets 49
3.4.1 Slater-Type Functions 49
3.4.2 Gaussian-Type Functions 50
3.4.3 Plane Waves 51
3.4.4 Representations on a Numerical Grid 52
3.4.5 Auxiliary Basis Sets 52

3.5 Semiempirical Methods 53
3.5.1 Neglect of Diatomic Differential Overlap 53
3.5.2 Fock Matrix Elements 54
3.5.3 Two-Electron Repulsion Integrals 54
3.5.4 Energy and Core Repulsion 55
3.5.5 Models Beyond MNDO 56

3.6 Density Functional Tight Binding 56
3.7 Wave Function-Based Electron Correlation Methods 57

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page vii�

� �

�

Contents vii

3.7.1 Møller–Plesset Perturbation Theory 59
3.7.2 Coupled Cluster Theory 59
Acknowledgments 60
References 61

4. Gaussian Basis Set Hartree–Fock, Density Functional Theory, and
Beyond on GPUs 67
Nathan Luehr, Aaron Sisto and Todd J. Martínez

4.1 Quantum Chemistry Review 68
4.1.1 Self-Consistent Field Equations in Gaussian Basis Sets 68
4.1.2 Electron–Electron Repulsion Integral Evaluation 71

4.2 Hardware and CUDA Overview 72
4.3 GPU ERI Evaluation 73

4.3.1 One-Block-One-Contracted Integral 74
4.3.2 One-Thread-One-Contracted Integral 75
4.3.3 One-Thread-One-Primitive Integral 75
4.3.4 Comparison of Contracted ERI Schemes 76
4.3.5 Extensions to Higher Angular Momentum 77

4.4 Integral-Direct Fock Construction on GPUs 78
4.4.1 GPU J-Engine 79
4.4.2 GPU K-Engine 81
4.4.3 Exchange–Correlation Integration 85

4.5 Precision Considerations 88
4.6 Post-SCF Methods 91
4.7 Example Calculations 93
4.8 Conclusions and Outlook 97

References 98

5. GPU Acceleration for Density Functional Theory with Slater-Type
Orbitals 101
Hans van Schoot and Lucas Visscher

5.1 Background 101
5.2 Theory and CPU Implementation 102

5.2.1 Numerical Quadrature of the Fock Matrix 102
5.2.2 CPU Code SCF Performance 103

5.3 GPU Implementation 105
5.3.1 Hardware and Software Requirements 105
5.3.2 GPU Kernel Code 106
5.3.3 Hybrid CPU/GPU Computing Scheme 108
5.3.4 Speed-Up Results for a Single-Point Calculation 110
5.3.5 Speed-Up Results for an Analytical Frequency Calculation 110

5.4 Conclusion 112
References 113

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page viii�

� �

�

viii Contents

6. Wavelet-Based Density Functional Theory on Massively Parallel Hybrid
Architectures 115
Luigi Genovese, Brice Videau, Damien Caliste, Jean-François Méhaut, Stefan
Goedecker and Thierry Deutsch

6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional
Theory Implementations 115

6.2 Operators in Wavelet Basis Sets 117
6.2.1 Daubechies Wavelets Basis and Convolutions 117
6.2.2 The Kohn–Sham Formalism 119
6.2.3 Three-Dimensional Basis 120
6.2.4 The Kinetic Operator and the Local Potential 121
6.2.5 Poisson Solver 122

6.3 Parallelization 123
6.3.1 MPI Parallel Performance and Architecture Dependence 123

6.4 GPU Architecture 124
6.4.1 GPU Implementation Using the OpenCL Language 125
6.4.2 Implementation Details of the Convolution Kernel 126
6.4.3 Performance of the GPU Convolution Routines 128
6.4.4 Three-Dimensional Operators, Complete BigDFT Code 128
6.4.5 Other GPU Accelerations 132

6.5 Conclusions and Outlook 132
6.5.1 Evaluation of Performance Benefits for Complex Codes 132
References 133

7. Plane-Wave Density Functional Theory 135
Maxwell Hutchinson, Paul Fleurat-Lessard, Ani Anciaux-Sedrakian, Dusan
Stosic, Jeroen Bédorf and Sarah Tariq

7.1 Introduction 135
7.2 Theoretical Background 136

7.2.1 Self-Consistent Field 136
7.2.2 Ultrasoft Pseudopotentials 138
7.2.3 Projector Augmented Wave (PAW) Method 138
7.2.4 Force and Stress 139
7.2.5 Iterative Diagonalization 140

7.3 Implementation 143
7.3.1 Transformations 143
7.3.2 Functionals 145
7.3.3 Diagonalization 145
7.3.4 Occupancies 147
7.3.5 Electron Density 147
7.3.6 Forces 147

7.4 Optimizations 148
7.4.1 GPU Optimization Techniques 148
7.4.2 Parallel Optimization Techniques (Off-Node) 150
7.4.3 Numerical Optimization Techniques 151

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page ix�

� �

�

Contents ix

7.5 Performance Examples 151
7.5.1 Benchmark Settings 151
7.5.2 Self-Consistent Charge Density 154
7.5.3 Band Structure 156
7.5.4 AIMD 157
7.5.5 Structural Relaxation 158

7.6 Exact Exchange with Plane Waves 159
7.6.1 Implementation 160
7.6.2 Optimization 162
7.6.3 Performance/Examples 163

7.7 Summary and Outlook 165
Acknowledgments 165
References 165
Appendix A: Definitions and Conventions 168
Appendix B: Example Kernels 168

8. GPU-Accelerated Sparse Matrix–Matrix Multiplication for Linear
Scaling Density Functional Theory 173
Ole Schütt, Peter Messmer, Jürg Hutter and Joost VandeVondele

8.1 Introduction 173
8.1.1 Linear Scaling Self-Consistent Field 173
8.1.2 DBCSR: A Sparse Matrix Library 177

8.2 Software Architecture for GPU-Acceleration 177
8.2.1 Cannon Layer 178
8.2.2 Multrec Layer 179
8.2.3 CSR Layer 179
8.2.4 Scheduler and Driver Layers 179

8.3 Maximizing Asynchronous Progress 180
8.3.1 CUDA Streams and Events 180
8.3.2 Double Buffered Cannon on Host and Device 181

8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications 183
8.4.1 Small Matrix Multiplication Performance Model 183
8.4.2 Matrix-Product Algorithm Choice 183
8.4.3 GPU Implementation: Generic Algorithm 184
8.4.4 Auto-Tuning and Performance 186

8.5 Benchmarks and Conclusions 186
Acknowledgments 189
References 189

9. Grid-Based Projector-Augmented Wave Method 191
Samuli Hakala, Jussi Enkovaara, Ville Havu, Jun Yan, Lin Li, Chris O’Grady
and Risto M. Nieminen

9.1 Introduction 191

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page x�

� �

�

x Contents

9.2 General Overview 193
9.2.1 Projector-Augmented Wave Method 193
9.2.2 Uniform Real-Space Grids 195
9.2.3 Multigrid Method 195

9.3 Using GPUs in Ground-State Calculations 196
9.3.1 Stencil Operations 198
9.3.2 Hybrid Level 3 BLAS Functions 198
9.3.3 Parallelization for Multiple GPUs 199
9.3.4 Results 200

9.4 Time-Dependent Density Functional Theory 202
9.4.1 GPU Implementation 202
9.4.2 Results 203

9.5 Random Phase Approximation for the Correlation Energy 203
9.5.1 GPU Implementation 204
9.5.2 Performance Analysis Techniques 205
9.5.3 Results 206

9.6 Summary and Outlook 207
Acknowledgments 208
References 208

10. Application of Graphics Processing Units to Accelerate Real-Space
Density Functional Theory and Time-Dependent Density Functional
Theory Calculations 211
Xavier Andrade and Alán Aspuru-Guzik

10.1 Introduction 212
10.2 The Real-Space Representation 213
10.3 Numerical Aspects of the Real-Space Approach 214
10.4 General GPU Optimization Strategy 216
10.5 Kohn–Sham Hamiltonian 217
10.6 Orthogonalization and Subspace Diagonalization 221
10.7 Exponentiation 222
10.8 The Hartree Potential 223
10.9 Other Operations 224
10.10 Numerical Performance 225
10.11 Conclusions 228
10.12 Computational Methods 228

Acknowledgments 229
References 229

11. Semiempirical Quantum Chemistry 239
Xin Wu, Axel Koslowski and Walter Thiel

11.1 Introduction 239
11.2 Overview of Semiempirical Methods 240
11.3 Computational Bottlenecks 241
11.4 Profile-Guided Optimization for the Hybrid Platform 244

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page xi�

� �

�

Contents xi

11.4.1 Full Diagonalization, Density Matrix, and DIIS 244
11.4.2 Pseudo-diagonalization 246
11.4.3 Orthogonalization Corrections in OM3 248

11.5 Performance 249
11.6 Applications 251
11.7 Conclusion 252

Acknowledgement 253
References 253

12. GPU Acceleration of Second-Order Møller–Plesset Perturbation Theory
with Resolution of Identity 259
Roberto Olivares-Amaya, Adrian Jinich, Mark A. Watson and
Alán Aspuru-Guzik

12.1 Møller–Plesset Perturbation Theory with Resolution of Identity
Approximation (RI-MP2) 259
12.1.1 Cleaving General Matrix Multiplies (GEMMs) 262
12.1.2 Other MP2 Approaches 262

12.2 A Mixed-Precision Matrix Multiplication Library 263
12.3 Performance of Accelerated RI-MP2 266

12.3.1 Matrix Benchmarks 266
12.3.2 RI-MP2 Benchmarks 269

12.4 Example Applications 270
12.4.1 Large-Molecule Applications 270
12.4.2 Studying Thermodynamic Reactivity 271

12.5 Conclusions 273
References 273

13. Iterative Coupled-Cluster Methods on Graphics Processing Units 279
A. Eugene DePrince III, Jeff R. Hammond and C. David Sherrill

13.1 Introduction 279
13.2 Related Work 280
13.3 Theory 281

13.3.1 CCD and CCSD 281
13.3.2 Density-Fitted CCSD with a t1-Transformed Hamiltonian 282

13.4 Algorithm Details 284
13.4.1 Communication-Avoiding CCD Algorithm 284
13.4.2 Low-Storage CCSD Algorithm 285
13.4.3 Density-Fitted CCSD with a t1-Transformed Hamiltonian 286

13.5 Computational Details 287
13.5.1 Conventional CCD and CCSD 287
13.5.2 Density-Fitted CCSD 290

13.6 Results 290
13.6.1 Communication-Avoiding CCD 290
13.6.2 Low-Storage CCD and CCSD 292
13.6.3 Density-Fitted CCSD 293

Trim Size: 170mm x 244mm Walker ftoc.tex V3 - 01/08/2016 11:04 A.M. Page xii�

� �

�

xii Contents

13.7 Conclusions 295
Acknowledgments 296
References 296

14. Perturbative Coupled-Cluster Methods on Graphics Processing Units:
Single- and Multi-Reference Formulations 301
Wenjing Ma, Kiran Bhaskaran-Nair, Oreste Villa, Edoardo Aprà, Antonino
Tumeo, Sriram Krishnamoorthy and Karol Kowalski

14.1 Introduction 302
14.2 Overview of Electronic Structure Methods 303

14.2.1 Single-Reference Coupled-Cluster Formalisms 303
14.2.2 Multi-Reference Coupled-Cluster Formulations 306

14.3 NWChem Software Architecture 308
14.4 GPU Implementation 309

14.4.1 Kepler Architecture 310
14.4.2 Baseline Implementation 312
14.4.3 Kernel Optimizations 312
14.4.4 Data-Transfer Optimizations 315
14.4.5 CPU–GPU Hybrid Architecture 315

14.5 Performance 315
14.5.1 CCSD(T) Approach 316
14.5.2 MRCCSD(T) Approaches 317

14.6 Outlook 319
Acknowledgments 320
References 320

Index 327

Trim Size: 170mm x 244mm Walker fbetw.tex V3 - 01/08/2016 10:37 A.M. Page xiii�

� �

�

List of Contributors

Ani Anciaux-Sedrakian, Mechatronics, Computer Sciences and Applied Mathematics Division, IFP
Energies nouvelles, Rueil-Malmaison Cedex, France

Xavier Andrade, Department of Chemistry and Chemical Biology, Harvard University, Cambridge,
MA, USA

Edoardo Aprà, William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific
Northwest National Laboratory, Richland, WA, USA

Alán Aspuru-Guzik, Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA, USA

Jeroen Bédorf, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Kiran Bhaskaran-Nair, William R. Wiley Environmental Molecular Sciences Laboratory, Battelle,
Pacific Northwest National Laboratory, Richland, WA, USA

Damien Caliste, Université Grenoble Alpes, INAC, Grenoble, France, and CEA, INAC, Grenoble,
France

A. Eugene DePrince III, Department of Chemistry and Biochemistry, Florida State University,
Tallahassee, FL, USA

Thierry Deutsch, Université Grenoble Alpes, INAC, Grenoble, France, and CEA, INAC, Grenoble,
France

Jussi Enkovaara, Department of Applied Physics, Aalto University, Espoo, Finland; CSC – IT
Center for Science Ltd, Espoo, Finland

Paul Fleurat-Lessard, Laboratoire de Chimie, Université de Lyon, ENS Lyon, Lyon, France;
ICMUB, Université de Bourgogne Franche-Comté, Dijon, France

Luigi Genovese, Université Grenoble Alpes, INAC, Grenoble, France, and CEA, INAC, Grenoble,
France

Trim Size: 170mm x 244mm Walker fbetw.tex V3 - 01/08/2016 10:37 A.M. Page xiv�

� �

�

xiv List of Contributors

Stefan Goedecker, Institut für Physik, Universität Basel, Basel, Switzerland

Andreas W. Götz, San Diego Supercomputer Center, UCSD, La Jolla, CA, USA

Samuli Hakala, Department of Applied Physics, Aalto University, Espoo, Finland

Jeff R. Hammond, Leadership Computing Facility, Argonne National Laboratory, Argonne,
IL, USA

Ville Havu, Department of Applied Physics, Aalto University, Espoo, Finland

Maxwell Hutchinson, Department of Physics, University of Chicago, Chicago, IL, USA

Jürg Hutter, Institute of Physical Chemistry, University of Zürich, Zürich, Switzerland

Adrian Jinich, Department of Chemistry and Chemical Biology, Harvard University, Cambridge,
MA, USA

Axel Koslowski, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

Karol Kowalski, William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific
Northwest National Laboratory, Richland, WA, USA

Sriram Krishnamoorthy, Computational Sciences and Mathematics Division, Pacific Northwest
National Laboratory, Richland, WA, USA

Lin Li, SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory,
Menlo Park, CA, USA

Nathan Luehr, Department of Chemistry and the PULSE Institute, Stanford, CA, USA; SLAC
National Accelerator Laboratory, Menlo Park, CA, USA

Wenjing Ma, Institute of Software, Chinese Academy of Sciences, Beijing, China

Todd J. Martínez, Department of Chemistry and the PULSE Institute, Stanford, CA, USA; SLAC
National Accelerator Laboratory, Menlo Park, CA, USA

Jean-François Méhaut, Université Joseph Fourier – Laboratoire d’Informatique de Grenoble –
INRIA, Grenoble, France

Peter Messmer, NVIDIA, Zürich, Switzerland; NVIDIA Co-Design Lab for Hybrid Multicore
Computing, Zürich, Switzerland

Perri Needham, San Diego Supercomputer Center, UCSD, La Jolla, CA, USA

Trim Size: 170mm x 244mm Walker fbetw.tex V3 - 01/08/2016 10:37 A.M. Page xv�

� �

�

List of Contributors xv

Risto M. Nieminen, Department of Applied Physics, Aalto University, Espoo, Finland

Chris O’Grady, SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator
Laboratory, Menlo Park, CA, USA

Roberto Olivares-Amaya, Department of Chemistry, Princeton University, Princeton, NJ, USA

Hans van Schoot, Scientific Computing & Modeling NV, Theoretical Chemistry, Vrije Universiteit,
Amsterdam, The Netherlands

Ole Schütt, Department of Materials, ETH Zürich, Zürich, Switzerland

C. David Sherrill, Center for Computational Molecular Science and Technology, Georgia Institute
of Technology, Atlanta, GA, USA; School of Chemistry and Biochemistry, Georgia Institute of Tech-
nology, Atlanta, GA, USA; School of Computational Science and Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Aaron Sisto, Department of Chemistry and the PULSE Institute, Stanford, CA, USA; SLAC National
Accelerator Laboratory, Menlo Park, CA, USA

Dusan Stosic, Department of Computer Science, Federal University of Pernambuco, Recife, Brazil

Sarah Tariq, NVIDIA Corporation, Santa Clara, CA, USA

Walter Thiel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

Antonino Tumeo, Computational Sciences and Mathematics Division, Pacific Northwest National
Laboratory, Richland, WA, USA

Joost VandeVondele, Department of Materials, ETH Zürich, Zürich, Switzerland

Brice Videau, Université Joseph Fourier – Laboratoire d’Informatique de Grenoble – INRIA,
Grenoble, France

Oreste Villa, Nvidia, Santa Clara, CA, USA

Lucas Visscher, Amsterdam Center for Multiscale Modeling (ACMM), Theoretical Chemistry, VU
University Amsterdam, Amsterdam, The Netherlands

Ross C. Walker, San Diego Supercomputer Center, UCSD, La Jolla, CA, USA; Department of Chem-
istry and Biochemistry, UCSD, CA, USA

Mark A. Watson, Department of Chemistry, Princeton University, Princeton, NJ, USA

Xin Wu, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

Jun Yan, SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator
Laboratory, Menlo Park, CA, USA

Trim Size: 170mm x 244mm Walker fbetw.tex V3 - 01/08/2016 10:37 A.M. Page xvi�

� �

�

Trim Size: 170mm x 244mm Walker fpref.tex V3 - 01/08/2016 11:06 A.M. Page xvii�

� �

�

Preface

The last decade has seen tremendous growth in the use of graphics processing units (GPUs) for
numerical simulations, spanning all fields of science. Originally designed for use as coprocessors in
graphics applications and visualizations, GPUs have made their way into both mainstream computing
platforms and many of the most powerful supercomputers. While substantial effort has gone into the
hardware design of GPUs, their potential for scientific computation has only been realized due to the
concurrent development of specialized programming approaches and the redesign of the underlying
numerical algorithms for massively parallel processors.

Electronic structure calculations are computationally intensive, and the field has a long history of
pushing the envelope in high-performance computing. This tradition has continued with the rise of
GPUs. Many researchers have invested significant effort in developing software implementations that
exploit the computational power of GPUs. This book pays tribute to these developments by collating
these efforts into a single reference text.

We have designed this book to provide an introduction to the fast-growing field of electronic struc-
ture calculations on massively parallel GPUs. The target audience is graduate students and senior
researchers in the fields of theoretical and computational chemistry, condensed matter physics, and
materials science, who are looking for an accessible overview of the field, as well as software devel-
opers looking for an entry point into GPU and hybrid GPU/CPU programming for electronic structure
calculations. To this end, the book provides an overview of GPU computing, a brief introduction to
GPU programming, the essential background in electronic structure theory, and the latest examples
of code developments and applications for the most widely used electronic structure methods.

We have tried to include all widely used electronic structure methods for which GPU imple-
mentations have been developed. The text covers all commonly used basis sets including local-
ized Gaussian- and Slater-type basis functions, plane waves, wavelets, and real-space grid-based
approaches. Several chapters expose details on strategies for the calculation of two-electron inte-
grals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field
equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within
density functional theory. Other chapters focus on semiempirical methods and correlated wave func-
tion methods including density-fitted second-order Møller–Plesset perturbation theory and both iter-
ative and perturbative single- and multireference coupled-cluster methods.

We have enjoyed the steep learning curve that has accompanied the editing of this book, and we
trust that you, the reader, will find it an engaging and useful reference.

Ross C. Walker and Andreas W. Götz
August 2015

La Jolla, USA

Trim Size: 170mm x 244mm Walker fpref.tex V3 - 01/08/2016 11:06 A.M. Page xviii�

� �

�

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xix�

� �

�

Acknowledgments

We would like to thank everybody who has made a contribution to this book, either directly or indi-
rectly. This includes our friends and families for their continuous support. Our special thanks go to the
dedicated people at Wiley who guided us in our role as editors and worked hard for this book to see
the light of day. In particular, we thank our primary contacts Sarah Keegan, Sarah Higginbotham, and
Rebecca Ralf. We are also grateful to Dorathy Steve and her team at SPi for copy-editing. This book
would never have been possible without the excellent contributions of the many individual authors
who contributed to its content. We are grateful that they accepted to write chapters for this book and
we would like to thank all for their patience during the editing period.

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xx�

� �

�

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxi�

� �

�

Glossary

The following provides a details glossary of GPU and GPU programming related terms. It is biased
towards NVIDIA GPUs and the CUDA programming model. However, AMD GPUs use similar
concepts and hardware implementations. For instance, the equivalent of a CUDA warp on NVIDIA
hardware is called a wavefront on AMD hardware. This is not meant to be an exhaustive list of
terms but rather is designed to provide the reader with a brief description of the various GPU-related
technical terms that appear in this book.

Bandwidth The inverse of the time that is required to transfer one byte of data. Usually measured
in GB/s.

Block A set of threads that can share data and communicate during execution on the GPU. Data across
blocks cannot be synchronized. A block executes on a single SM. To optimize the performance, the
block-size needs to be adjusted to the problem and the hardware (e.g., available shared memory). The
number of threads in a block is limited to 1024 on the Kepler architecture. Thread blocks are created
and executed in units of a warp; thus, the number of threads should be a multiple of the warp size (32
currently). A thread block has its block ID within its grid.

Cache Fast memory that is used to reduce latency for global memory access. On NVIDIA GPUs
with Kepler architecture, the SMs share a cache of 1.5 MB size. This can be considered L2 cache
since each SM has an L1 cache that is called shared memory.

Constant memory Fast read-only memory that can be written by the host and accessed by all SMs.
Only a limited amount of constant memory is available.

Device The GPU including its processor and memory. The device cannot operate on data that is
located on the host.

Global memory The memory that is available on the GPU. Comparable to main memory on the
host. Data access to global memory is cached but is slow compared to other memory classes on
the GPU due to higher latency. Compared to host memory, the global device memory supports high
data bandwidth. On current NVIDIA hardware with Kepler architecture, the data path is 512 bits
wide; thus, 16 consecutive 32-bit words can be fetched in a single cycle. As a consequence, there is
considerable bandwidth degradation for strided memory access. For instance, a stride-two access will
fetch 512 bits but use only half of them. There is less device memory than host memory, at present
up to 12 GB on NVIDIA Tesla K40. Global memory can be accessed by the host for data transfers
between the host and the device. Global memory is persistent between kernel launches.

Grid A set of blocks that maps to the streaming multiprocessors on the GPU and execute a kernel.
The order of execution of the blocks on a GPU is not deterministic. In the Kepler architecture, 16
blocks can be active at the same time in a single multiprocessor.

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxii�

� �

�

xxii Glossary

Host The CPU and its main memory. The host cannot operate on data that is located on the device.
A program running on the host can transfer data to/from the device and launch kernels on the device.

Kernel A function that executes in parallel on the GPU. NVIDIA GPUs are programmed as a
sequence of kernels that are launched by the host program. By default, a kernel completes execution
before the start of the next kernel with an implicit synchronization barrier. Usually, kernels execute
a sufficiently large number of thread blocks to occupy all SMs of a GPU. However, the Kepler archi-
tecture supports simultaneous execution of multiple independent kernels at the same time. Kernel
launches execute multiple threads that are arranged in a grid of blocks.

Latency The time it takes from the issue of a memory operation to the arrival of the first bit. Usually
measured in μs.

Latency hiding Techniques to deal with high latency of data transfer between the host and device or
access to global device memory. For example, a device memory operation issued by threads in a warp
will take very long due to latency on the order of hundreds of clock cycles. CPU architectures make
use of a cache memory hierarchy to reduce latency; however, this is not effective on GPUs, which
are designed for throughput computing. GPUs instead deal with this latency by using a high degree
of multithreading. At a given point in time, up to 64 warps can be active on each multiprocessor in
the Kepler architecture. While one warp is waiting for a memory operation to complete, the control
unit switches to another warp. Thus, all cores can continue computing if the parallelism on each SM
is sufficiently large.

Local memory Slow memory that is located off-chip and has the same latency as global memory. It
is used to hold automatic variables for cases in which there is not sufficient register memory available.
Variables stored in local memory are private to each thread.

Register memory Very fast on-chip memory faster than shared memory. Used to store local variables
that are private to each thread. On the Kepler architecture, a thread can access up to 255 32-bit
registers; however, there is only a total of 65,536 32-bit registers on an SM. Ideally, all local variables
used by a thread reside in registers on chip. The limited number of registers thus limits the number of
concurrent threads. Memory intensive kernels can move data to local memory (this is termed register
spillage) with adverse effect on performance due to high latency of local memory.

Register spillage Term used if memory intensive kernels require more storage than is available in
registers thus moving data to local memory, which usually has detrimental effect on performance.

Shared memory Shared memory on NVIDIA GPUs is a fast on-chip memory, essentially a pro-
grammable L1 cache attached to each SM. It has low latency and high bandwidth with speed that is
close to that of registers. On NVIDIA Kepler architecture, the shared memory is 64 KB for each SM
and can be configured as 25%, 50% or 75% software managed cache with the remainder as hardware
data cache. Data stored in shared memory can be accessed by all threads in the same thread block
and persists only for the lifetime of the execution of a block. Since it is a limited resource per SM,
its use limits the number of blocks that can be concurrently executed. The host cannot access shared
memory.

SIMD Single instruction multiple data. A SIMD processing unit executes single instructions on
multiple data. Branching is not possible.

SIMT Single instruction multiple threads. Model for data parallel computing on GPUs. Each core
in an SM can execute a sequential thread but all cores in a group called warp execute the same
instruction at the same time similar to classical SIMD processors. Branching is possible, but for
conditional operations some of the cores in a warp are disabled resulting in no-ops.

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxiii�

� �

�

Glossary xxiii

Stream Sequence of commands that execute in order. Multiple Streams can be used to execute
kernels simultaneously or to overlap kernel execution with memory copies between host and device.

Streaming Multiprocessor (SM) Set of processing cores (ALUs) on a GPU that have access to
a common shared memory space. SMs on the NVIDIA GK110 chip, for example, contain 192
single-precision cores and 64 double-precision cores. Groups of 16 cores execute operations of a
group of threads in a warp in lockstep. A maximum of 64 warps (2048 threads) can be active at
the same time on an SM (see also Latency Hiding). These warps can belong to a maximum of 16
different thread blocks. SMs operate at approximately 1 GHz clock speed, thus at a lower speed than
typical CPUs.

Texture memory Read-only memory that can be written by the host. Texture memory resides
in device global memory but is cache-optimized for certain read operations, for example,
two-dimensional arrays.

Thread (software) In the context of GPU programming, a thread is a sequence of instructions to
be executed by a GPU processing element. On a GPU, threads are grouped into blocks and threads
within a block are executed in lockstep in sizes of a warp. Each thread thus executes an instance of a
kernel. Each thread has thread block and grid ID within its threads block and grid, a program counter,
registers, and per-thread private memory available.

Warp Lock-step unit on a GPU. Threads within a warp execute in lock-step, that is in SIMD fashion.
However, branching is allowed. Each warp should access a single cache line. A warp always consists
of a subset of threads of a block. A warp consists of 32 threads (this number has remained constant
so far but is subject to change). On a Kepler SM, a warp takes two cycles to execute one integer or
single-precision floating point instruction on each group of 16 cores. At most 4 of the 12 groups of
cores in a Kepler SM can execute double-precision instructions concurrently. At most 2 of the 12
groups of cores can concurrently execute intrinsic and transcendental functions.

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxiv�

� �

�

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxv�

� �

�

Abbreviations - Scientific

ACFDT adiabatic connection fluctuation-dissipation theorem

AETRS approximate enforced time-reversal symmetry

AM1 Austin Model 1

AMBER Assisted Model Building with Energy Refinement

AO atomic orbital

BOINC Berkeley Open Infrastructure for Network Computing

BZ Brillouin zone

CC Coupled cluster

CCD Coupled cluster doubles

CCSD Coupled cluster singles doubles

CCSD(T) CCSD with perturbative triples

CD Cholesky Decomposition

CIS Configuration interaction singles

CMS Complete model space

DIIS Direct inversion in the iterative subspace

DF Density Fitting

DFT Density functional theory

ERI Electron-electron repulsion integral

GF Generating functional (moment expansion)

GGA Generalized gradient approximation

GTO Gaussian type orbital

HS Hilbert space

KS Kohn-Sham

LCAO Linear combination of atomic orbitals

LDA Local Density Approximation

Trim Size: 170mm x 244mm Walker flast.tex V3 - 01/08/2016 10:44 A.M. Page xxvi�

� �

�

xxvi Abbreviations - Scientific

LMP2 Local second order Møller-Plesset perturbation theory

MBPT Many-body perturbation theory

MRMBPT Multi-reference many-body perturbation theory

MD Molecular Dynamics

MNDO Modified neglect of diatomic overlap

MO molecular orbital

MP2 second order Møller-Plesset perturbation theory

MRCC Multi-reference Coupled Cluster

MRCI Multi-reference configuration interaction

MRMBPT Multi-reference many-body perturbation theory

NCPP Norm-conserving pseudopotential

NDDO Neglect of diatomic differential overlap

OMx Orthogonalization method x (x=1,2,3)

PAO Projected Atomic Orbital

PM3 Parametric method 3

RLP Reference-level Parallelism

STO Slater type orbital

TDDFT Time-dependent density functional theory

TDHF Time-dependent Hartree-Fock theory

TDKS Time-dependent Kohn-Sham

TCE Tensor Contractor Engine

HF Hartree-Fock

PAW Projector-augmented wave

PWDFT Plane-wave DFT

PQ Pair quantity

RMM-DIIS residual minimization-direct inversion in the iterative subspace

RPA Random phase approximation

SCF Self-consistet field

SRCC Single Reference Coupled Cluster

USPP Ultra-soft pseudopotential

XC exchange-correlation

ZDO zero differential overlap

Trim Size: 170mm x 244mm Walker flast3.tex V2 - 01/08/2016 10:44 A.M. Page xxvii�

� �

�

Abbreviations - Technical

APPML Accelerated Parallel Processing Math Libraries

ARMCI Aggregate Remote Memory Copy Interface

AVX Advanced Vector Extensions

BLAS Basic linear algebra subroutines

CPU Central processing unit

CUBLAS CUDA Basic linear algebra subroutines

DAG Directed acyclic graph

DBCSR Distributed blocked compressed sparse row (software library)

DP Double precision

DRAM Dynamic random access memory

DSL Domain Specific Language

FFTW Fastest Fourier Transform in the West (software library)

FLOPS Floating point operations per second

FPGA Field programmable gate array

GEMM General Matrix Multiply

DGEMM General Matrix Multiply in Double Precision

MGEMM General Matrix Multiply in Mixed Precision

SGEMM General Matrix Multiply in Single Precision

GA Global arrays (programming standard)

GPU Graphics processing unit

GSL GNU Scientific Library

HPC High performance computing

ISA Instruction Set Architecture

LAPACK Linear algebra package

MAGMA Matrix algebra on GPU and multicore architectures (software library)

Trim Size: 170mm x 244mm Walker flast3.tex V2 - 01/08/2016 10:44 A.M. Page xxviii�

� �

�

xxviii Abbreviations - Technical

MPI Message passing interface

MPS Multi-process server (Nvidia)

NUMA Non-Uniform Memory Architecture:w

OpenACC Open accelerators (programming standard)

OpenCL Open computing language (programming standard)

OpenMP Open multi-processing

OS Operating System

PCIe PCI express, Peripheral component interconnect express

PG Processor Group

RAM Random access memory

SFU Special Function Unit

SIMD Single instruction multiple data

SIMT Single instruction multiple threads

SM Streaming multiprocessor

SMP Symmetric multiprocessing

SP Single precision

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 1�

� �

�

1
Why Graphics Processing Units

Perri Needham1, Andreas W. Götz2 and Ross C. Walker1,2

1San Diego Supercomputer Center, UCSD, La Jolla, CA, USA
2Department of Chemistry and Biochemistry, UCSD, La Jolla, CA, USA

1.1 A Historical Perspective of Parallel Computing

The first general-purpose electronic computers capable of storing instructions came into existence in
1950. That is not to say, however, that the use of computers to solve electronic structure problems had
not already been considered, or realized. From as early as 1930 scientists used a less advanced form of
computation to solve their quantum mechanical problems, albeit a group of assistants simultaneously
working on mechanical calculators but an early parallel computing machine nonetheless [1]. It was
clear from the beginning that solutions to electronic structure problems could not be carried forward
to many-electron systems without the use of some computational device to lessen the mathematical
burden. Today’s computational scientists rely heavily on the use of parallel electronic computers.

Parallel electronic computers can be broadly classified as having either multiple processing ele-
ments in the same machine (shared memory) or multiple machines coupled together to form a cluster/
grid of processing elements (distributed memory). These arrangements make it possible to perform
calculations concurrently across multiple processing elements, enabling large problems to be broken
down into smaller parts that can be solved simultaneously (in parallel).

The first electronic computers were primarily designed for and funded by military projects to assist
in World War II and the start of the Cold War [2]. The first working programmable digital computer,
Konrad Zuse’s Z3 [3], was an electromechanical device that became operational in 1941 and was used
by the German aeronautical research organization. Colossus, developed by the British for cryptanal-
ysis during World War II, was the world’s first programmable electronic digital computer and was
responsible for the decryption of valuable German military intelligence from 1944 onwards. Colossus
was a purpose-built machine to determine the encryption settings for the German Lorenz cipher and

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 2�

� �

�

2 Electronic Structure Calculations on Graphics Processing Units

Figure 1.1 Photograph taken in 1957 at NASA featuring an IBM 704 computer, the first commercially
available general-purpose computer with floating-point arithmetic hardware [4]

read encrypted messages and instructions from paper tape. It was not until 1955, however, that the
first general-purpose machine to execute floating-point arithmetic operations became commercially
available, the IBM 704 (see Figure 1.1).

A common measure of compute performance is floating point operations per second (FLOPS).
The IBM 704 was capable of a mere 12,000 floating-point additions per second and required
1500–2000 ft2 of floor space. Compare this to modern smartphones, which are capable of around
1.5 GIGA FLOPS [5] thanks to the invention in 1958 and a subsequent six decades of refinement
of the integrated circuit. To put this in perspective, if the floor footprint of an IBM 704 was instead
covered with modern-day smartphones laid side by side, the computational capacity of the floor
space would grow from 12,000 to around 20,000,000,000,000 FLOPS. This is the equivalent of every
person on the planet carrying out roughly 2800 floating point additions per second. Statistics like
these make it exceptionally clear just how far computer technology has advanced, and, while mobile
internet and games might seem like the apex of the technology’s capabilities, it has also opened
doorways to computationally explore scientific questions in ways previously believed impossible.

Computers today find their use in many different areas of science and industry, from weather
forecasting and film making to genetic research, drug discovery, and nuclear weapon design. Without
computers many scientific exploits would not be possible.

While the performance of individual computers continued to advance the thirst for computational
power for scientific simulation was such that by the late 1950s discussions had turned to utilizing
multiple processors, working in harmony, to address more complex scientific problems. The 1960s
saw the birth of parallel computing with the invention of multiprocessor systems. The first recorded
example of a commercially available multiprocessor (parallel) computer was Burroughs Corpora-
tion’s D825, released in 1962, which had four processors that accessed up to 16 memory modules
via a cross switch (see Figure 1.2).

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 3�

� �

�

Why Graphics Processing Units 3

Figure 1.2 Photograph of Burroughs Corporation’s D825 parallel computer [6]

This was followed in the 1970s by the concept of single-instruction multiple-data (SIMD) proces-
sor architectures, forming the basis of vector parallel computing. SIMD is an important concept in
graphics processing unit (GPU) computing and is discussed in the next chapter.

Parallel computing opened the door to tackling complex scientific problems including modeling
electrons in molecular systems through quantum mechanical means (the subject of this book).
To give an example, optimizing the geometry of any but the smallest molecular systems using
sophisticated electronic structure methods can take days (if not weeks) on a single processor element
(compute core). Parallelizing the calculation over multiple compute cores can significantly cut down
the required computing time and thus enables a researcher to study complex molecular systems in
more practical time frames, achieving insights otherwise thought inaccessible. The use of parallel
electronic computers in quantum chemistry was pioneered in the early 1980s by the Italian chemist
Enrico Clementi and co-workers [7]. The parallel computer consisted of 10 compute nodes, loosely
coupled into an array, which was used to calculate the Hartree–Fock (HF) self-consistent field
(SCF) energy of a small fragment of DNA represented by 315 basis functions. At the time this
was a considerable achievement. However, this was just the start, and by the late 1980s all sorts of
parallel programs had been developed for quantum chemistry methods. These included HF methods
to calculate the energy and nuclear gradients of a molecular system [8–11], the transformation
of two-electron integrals [8, 9, 12], the second-order Møller–Plesset perturbation theory [9, 13],
and the configuration interaction method [8]. The development of parallel computing in quantum
chemistry was dictated by developments in available technologies. In particular, the advent of
application programming interfaces (APIs) such as the message-passing interface (MPI) library [14]
made parallel computing much more accessible to quantum chemists, along with developments in
hardware technology driving down the cost of parallel computing machines [10].

While finding widespread use in scientific computing until recently, parallel computing was
reserved for those with access to high-performance computing (HPC) resources. However, for
reasons discussed in the following, all modern computer architectures exploit parallel technology,
and effective parallel programming is vital to be able to utilize the computational power of modern
devices. Parallel processing is now standard across all devices fitted with modern-day processor
architectures. In his 1965 paper [15], Gordon E. Moore first observed that the number of transistors
(in principle, directly related to performance) on integrated circuits was doubling every 2 years (see
Figure 1.3).

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 4�

� �

�

4 Electronic Structure Calculations on Graphics Processing Units

1971 1980 1990 2000

Date of introduction

6809

8088

80186

80286

68000

8086

8085

6800

8080

8008

4004

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6
AMD K6-III
AMD K7

Atom
Barton

AMD K8

Cell
Core 2 Duo

Core i7 (Quad)
Six-Core Opteron 2400

8-core POWER7
10-Core Xeon Westmere-EX

16-Core SPARC T3

Itanium 2

Pentium 4

Curve shows transistor

count doubling every

2 years

Microprocessor Transistor Counts 1971–2011 & Moore’s Law

2,600,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

2300

T
ra

n
s
is

to
r

c
o
u
n
t

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

POWER6
Itanium 2 with 9 MB cache

AMD K10

Quad-core z196
Quad-Core Itanium Tukwila
8-Core Xeon Nehalem-EX

MOS 6502

RCA 1802

Z80

2011

Figure 1.3 Microprocessor transistor counts 1971–2011. Until recently, the number of transistors on
integrated circuits has been following Moore’s Law [16], doubling approximately every 2 years

Since this observation was announced, the semiconductor industry has preserved this trend by
ensuring that chip performance doubles every 18 months through improved transistor efficiency
and/or quantity. In order to meet these performance goals the semiconductor industry has now
improved chip design close to the limits of what is physically possible. The laws of physics dictate
the minimum size of a transistor, the rate of heat dissipation, and the speed of light.

“The size of transistors is approaching the size of atoms, which is a fundamental
barrier” [17].

At the same time, the clock frequencies cannot be easily increased since both clock frequency
and transistor density increase the power density, as illustrated by Figure 1.4. Processors are already
operating at a power density that exceeds that of a hot plate and are approaching that of the core of a
nuclear reactor.

In order to continue scaling with Moore’s Law, but keep power densities manageable, chip manu-
facturers have taken to increasing the number of cores per processor as opposed to transistors per core.
Most processors produced today comprise multiple cores and so are parallel processing machines by
definition. In terms of processor performance, this is a tremendous boon to science and industry;
however, the increasing number of cores brings with them increased complexity to the program-
mer in order to fully utilize the available compute power. It is becoming more and more difficult
for applications to achieve good scaling with increasing core counts, and hence they fail to exploit
this technology. Part of this problem stems from the fact that CPU manufactures have essentially

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 5�

� �

�

Why Graphics Processing Units 5

1.5 µ 1 µ 0.7 µ 0.5 µ 0.35 µ 0.25 µ 0.18 µ 0.13 µ 0.1 µ 0.07 µ

Rocket

nozzle
Sun’s

surface

Pentium µ processor

Pentium Pro µ processor

Pentium III µ processor
Hot plate

i386

10

1

100

W
a
tt
s
/c

m
2

1000

i486

Pentium II µ processor

Nuclear reactor

Figure 1.4 Illustration of the ever-increasing power density within silicon chips, with decreasing gate
length. Courtesy Intel Corporation [18]

taken serial (scalar) architectures and their associated instructions sets and attempted to extend them
to a multicore regime. While this is well tolerated for single-digit core counts, once the number of
cores hits double digits the complexity of having to keep track of how the data are distributed across
multiple independent cores, which requires communication between local cache memories, quickly
leads to performance bottlenecks. This complexity has, to date, limited the number of cores and, ulti-
mately, the performance available in traditional CPUs. In the next section we discuss an alternative
to multicore programming that utilizes the massively parallel (SIMD) architecture of GPUs.

1.2 The Rise of the GPU

The concept of using a specialized coprocessor to supplement the function of the central process-
ing unit originated in the 1970s with the development of math coprocessors. These would handle
floating-point arithmetic, freeing the CPU to perform other tasks. Math coprocessors were common
throughout the 1980s and early 1990s, but they were ultimately integrated into the CPU itself. The
theme of using a coprocessor to accelerate specific functions continued however, with video acceler-
ators being the most common example. These GPUs would free the CPU from much of the complex
geometric math required to render three-dimensional (3D) images, and their development was cat-
alyzed by the computer gaming industry’s desire for increasingly realistic graphics.

Beyond the math coprocessor of the 1980s, coprocessors have been routinely used in scientific
computation as a means of accelerating mathematically intensive regions of code. More recent
examples include ClearSpeed’s accelerator boards, which combined hundreds of floating point units
on a single PCI card, and field-programmable gate arrays (FPGAs), which can be reconfigured to
accelerate a specific computational problem. These accelerator technologies, while exploited by
some, have not found widespread use in the general scientific computing arena for a number of
reasons, the main one being their cost. However, one coprocessor technology that has succeeded in
being adopted by the wider scientific computing community is the GPU. The reasons for this are
many, but probably the overriding reason for their widespread adoption is that they are ubiquitous
and cheap. GPUs have been an integral part of personal computers for decades. Ever since the
introduction of the Voodoo graphics chip by 3DFX in 1996, the entertainment industry has been
the major driving force for the development of GPUs in order to meet the demands for increasingly
realistic computer games. As a result of the strong demand from the consumer electronics industry,
there has been significant industrial investment in the stable, long-term development of GPU

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 6�

� �

�

6 Electronic Structure Calculations on Graphics Processing Units

20122012 20112011 20102010 20092009 20082008 20132013

Nvidia GPU Nvidia GPU

(a) (b)

1600 400

300

200

100

0

1200

800

400

0

×86 CPU ×86 CPU

M1060

Westmere Westmere

P
e

a
k
 G

F
lo

p
/s

M
e

m
o

ry
 b

a
n

d
w

id
th

 (
G

B
/s

)K40

K40K20

K20
M2090

M2050
M2050

Nehalem Nehalem

Ivy

bridge
Sandy

bridge

Ivy

bridge
Sandy

bridge

M2090

M1060

Figure 1.5 Peak floating-point operations per second (a) and memory bandwidth (b) for Intel CPUs and
Nvidia GPUs. Reproduced from [19]

technology. Nowadays, GPUs have become cheap and ubiquitous and, because their processing
power has substantially increased over the years, they have the potential, when utilized efficiently,
to significantly outperform CPUs (see Figure 1.5).

GPUs are thus very attractive hardware targets for the acceleration of many scientific applica-
tions including the subject of this book, namely electronic structure theory. GPUs with significant
computing power can be considered standard equipment in scientific workstations, which means that
they either are already available in research labs or can be purchased easily with new equipment.
This makes them readily available to researchers for computational experimentation. In addition,
many compute clusters have been equipped with large numbers of high-end GPUs for the sole pur-
pose of accelerating scientific applications. At the time of writing, the most powerful supercomputer
that is openly accessible to the scientific community draws the majority of its peak computational
performance from GPUs.

The nature of GPU hardware, however, originally made their use in general-purpose computing
challenging because it required extensive three-dimensional (3D) graphics programming experience.
However, as discussed in the following, the development of APIs for general-purpose scientific com-
puting has reduced this complexity such that an extensive range of scientific problems is making use
of GPU acceleration in an economically efficient manner. GPU-accelerated computing is now a broad
but still advancing area of research and development that is capable of providing scalable supercom-
puting power at a fraction of the cost and, potentially, a fraction of the software development effort
(depending on the application).

GPUs were originally designed for computer graphics, which require repeated evaluation of pixel
values and little else. For example, branching is not required in rendering 3D images and therefore
in place of sophisticated cache hierarchies, branch prediction hardware, pipeline controllers, and
other complex features, GPUs instead have hundreds to thousands of simplistic cores. GPUs are
fundamentally parallel, with each core computing as an individual thread, making them ideal for
data decompositions with few dependencies between threads. For fine-grained parallel workloads,
GPUs can thus provide a substantial amount of computing power. As can be seen from Figure 1.5,
they provide, largely by the difference in memory bandwidth, a means to improve the performance
of a suitable code far beyond the limits of a CPU.

The scientific community has leveraged this processing power in the form of general-purpose (GP)
computation on GPUs, sometimes referred to as GPGPU. GPGPUs were specifically designed to tar-
get HPC applications incorporating additional features into GPUs, such as caching technology, and
support for double-precision arithmetic. The success of early GPGPU efforts was such that these
features are now considered standard in almost all GPUs, and indeed many modern computer games

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 7�

� �

�

Why Graphics Processing Units 7

actually make use of the GPGPU functionality to compute game physics. The traditional approach to
computing on a GPU is as an accelerator, or coprocessor, working in conjunction with the CPU. The
GPU executes specific functions within the code (known as kernels), which are deemed suitable for
parallelization on a GPU. A GPU operates a SIMD instruction set, whereby an instruction is issued to
many cores in a single instance. The lightweight nature of a GPU core makes it ideally suited to par-
allelize compute-intensive code with few data dependencies because, once the instruction is issued,
cores cannot diverge along different code paths. If branching occurs on cores issued with the same
instruction, some cores will stall until the execution paths converge. This artifact of GPU hardware is
what sets them apart from CPU architectures. It enables calculation of multiple data elements in one
instance, provided the code design allows it. However, that is not to say that CPUs do not make use of
SIMD, but rather GPUs implement it on a much larger scale. For example, the latest GPU in Nvidia’s
Tesla range, Tesla K40, boasts 2880 GPU cores and has the capacity to launch multiple threads per
core, which can be quickly switched in and out with minimal overhead, whereas the latest CPU in
the Intel® Core™ product family, Intel® Core™ i7-4930K processor, comprises six cores capable
of spawning two threads per core. The CPU makes use of SIMD to carry out multiple operations
per thread; in this case, each thread is a 256-bit SIMD instruction in the form of AVX. In principle,
the CPU can therefore execute 96 (256-bit/32-bit× 12 threads) single-precision floating-point opera-
tions per clock cycle, although in reality it is effectively half of this since the two threads per core are
time-sliced. A GPU therefore can potentially process hundreds, if not thousands, of data elements
in a single instance as opposed to a mere 48 on a CPU. However, it cannot be emphasized enough
how important the GPU code design is in order to take advantage of this potential performance, often
requiring a rethinking of the underlying mathematical algorithms. The purpose of this book is to
highlight such rethinking within the framework of electronic structure theory.

1.3 Parallel Computing on Central Processing Units

Before entering into the world of GPU programming it is important to cement some key concepts
that lie at the heart of parallel programming. Parallel programming requires substantially more con-
sideration than serial programming. When parallelizing computer code it cannot be presumed that
all parallel processing elements have access to all the data in memory or indeed that memory updates
by one element will automatically propagate to the others. The locality of data to a processing ele-
ment is dependent on the setup of the computer system being used and the parallel programming
memory model, which is the first concept to be discussed in this section. Following this are the lan-
guage options available to the programmer that are best suited to a specific programming model and
also a discussion of the different types of parallelism to consider when breaking down a problem
into smaller parallel problems. It is also beneficial to be aware of the factors that may affect the
performance of a parallel program and how to measure the performance and efficiency of a parallel
program, which will be the final topics discussed. For a more detailed exposition than presented
in the following, we refer the reader to the excellent text book on HPC by Hager and Wellein,
which also covers aspects of computer architecture and serial code optimizations in addition to
parallelization [20].

1.3.1 Parallel Programming Memory Models

In parallel computing, there are two main memory models: the shared memory model and the dis-
tributed memory model. Each model brings with it different implications at both the hardware and
software level. In hardware, the shared memory model is exactly that – multiple processors share a
single address space in memory. The distributed memory model refers to segregated memory, where

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 8�

� �

�

8 Electronic Structure Calculations on Graphics Processing Units

each processor has its own private address space, be it a physically private memory space or a portion
of a larger memory.

In shared memory all processors have access to all addresses in memory making communi-
cation between processors potentially very fast. However, problems arise when more than one
processor requires access to the same memory address, resulting in potential race conditions, a
situation – discussed in more detail later in this chapter – where the result of a computation is a
function of which of the threads computes the answer first, and communication overhead in keeping
the data stored in different memory caches coherent. In distributed memory all processors have
access only to their own memory address space and so communication between processors becomes
the bottleneck. If a process requires data that is not stored in its private memory space the process
first has to find which processor’s private memory the data is stored in before it can be transferred via
an interconnect. Consequently, shared memory systems are deemed more suited to fewer processor
counts, as performance falls off with increasing numbers of processors as a result of explosion of
cache coherency overhead. Neither memory model is ideal. In practice, most modern-day parallel
computers use a mixture of the two types of memory model. Many scientific computing clusters
utilize a hybrid memory model, with shared memory nodes coupled together with an interconnect
providing a distributed memory model.

1.3.2 Parallel Programming Languages

An Application Programming Interface (API) fundamentally is a means of communicating with a
computer. Communication with a computer is layered and can be easily imagined as a metaphorical
onion. At the very core of the onion is binary. Zeros and 1’s represent the switch states of transistors
on a piece of silicon. Binary allows these switch states to represent real numbers. The next layer of
the onion is machine code. A small number of very basic operations instruct the CPU what to do
with the real numbers. The layer after that is assembly, which is similar to machine code except with
slightly more human-friendly operations enabling manipulation of the real numbers with more ease.
And so it goes on. The larger the onion, that is, the more the layers of communication, the easier
it is for a programmer to express his/her computational problem because with each added layer the
language becomes closer and closer to human communication. These language layers are known as
APIs and can be deemed high-level (outer layers of a large onion) or lower level (layers close to the
core). The two most widely used APIs for expressing parallel CPU code are MPI (Message Passing
Interface) [14] and OpenMP (Open Multi-Processing) [21]. MPI is a library called upon from exist-
ing CPU code. The library is language-independent, which means it can be called from code written
in any compatible programming language, that is, C, C++, or Fortran. MPI enables point-to-point
and collective communication between processors in a system and is primarily designed for use with
a distributed memory system, but it can also be used within a shared memory setting. OpenMP is pri-
marily a set of compiler directives that can be called from within C/C++ and Fortran code. OpenMP
is designed primarily for shared memory programming, although OpenMP 4.0 supports a “target
directive” for running across devices that do not share memory spaces and exhibits a multithreaded
paradigm to distribute work across processors. OpenMP is considered a higher level parallel pro-
gramming API than MPI, as the runtime environment and the compiler do most of the work. The
programmer can do as little as specify which sections of code require parallelizing through the use of
a directive and let the API do the rest of the work. MPI requires more thought, as the programmer is
responsible for keeping track of data in memory and explicitly passing data between processors. How-
ever, one benefit from this added degree of difficulty when using MPI is that it forces the programmer
to think about data locality and so can lead to more efficient, higher performing code.

Other APIs used in parallel programming are high-performance Fortran (HPF), POSIX threads,
and Unified Parallel C (UPC), to name a few; however, they are beyond the scope of this textbook.

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 9�

� �

�

Why Graphics Processing Units 9

1.3.3 Types of Parallelism

One key consideration when parallelizing code is how to distribute the work across processors. The
two main types of decomposition are task parallelism and data parallelism. Task parallelism involves
deconstructing code into separate, independent tasks/calculations able to be computed on different
processors concurrently. Each processor is responsible for executing its own set of instructions using
the same or different data as other processes. Figure 1.6 shows a simple example of a four-task pro-
gram. Task B is dependent on Task A, therefore they are executed sequentially. Task C is independent
of both A and B, therefore they can be executed concurrently; Task D is dependent on the completion
of Tasks B and C, therefore it is executed on their completion.

Data parallelism involves decomposing a dataset across processors, and each processor executing
the same instructions but on different data. Data parallelism is synonymous with SIMD architecture.
There are many different strategies for data parallelism, for example, static where the data are decom-
posed into chunks and distributed across processors at compile time and each processor carries out
all operations on the same chunk of memory initially allocated, and dynamic parallelism where a load
balancer hands out work on a per-request basis. A more detailed description of data decomposition
strategies is beyond the scope of this chapter and so will not be discussed further.

Similar to the parallel memory models, a combination of both types of parallelism can often be the
most fruitful where performance is concerned. It can be beneficial to employ both types of parallelism,
for example, decomposing code into tasks across multiple compute nodes and further decomposing
the data for each task across multiple processors within a compute node. By doing this, multiple
levels of parallelism can be exploited, making better use of the available computer architecture.

The ease and extent by which an algorithm can be broken up into separate tasks/calculations
is known as the granularity. Fine-grained parallelism describes algorithms that can be subdivided
into many small calculations. These types of algorithm are said to be more easily parallelized but
can require more synchronization/communication between parallel processes. On the contrary,
coarse-grained parallelism is the subdivision of an algorithm into fewer larger tasks/calculations.
These types of algorithm do not benefit from as much parallelism, that is, scale to small processor

START

TASK A

TASK B

TASK C

TASK D

END

Figure 1.6 Directed acyclic graph demonstrating the decomposition of four tasks across two processors

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 10�

� �

�

10 Electronic Structure Calculations on Graphics Processing Units

counts, but can benefit from fewer overheads as a result of reduced communication. Algorithms that
can be subdivided into many small tasks (similar to fine-grained parallelism) yet do not carry large
communication overheads (similar to coarse-grained parallelism) are said to be embarrassingly
parallel (although the term naturally parallel might be a better description) and are the easiest
applications to parallelize.

1.3.4 Parallel Performance Considerations

1.3.4.1 Speedup

Before parallelizing code, it is important to realistically predict the potential for performance
improvement. A common measure is speedup (S), which is given by

S(n) = T(1)
T(n)

, (1.1)

where T(1) is the execution time of the original algorithm and T(n) is the execution time of the new
algorithm on n processors/cores/threads.

1.3.4.2 Amdahl’s Law and Gustafson’s Law

Amdahl’s and Gustafson’s laws provide a guideline for speedup after parallelizing code. Effectively
a simplification of a concept, familiar to all chemists, known as a rate-determining step, they show
that the serial portion of a parallel program is always the limiting factor in speedup. There are slight
subtleties between the two laws; Amdahl presumes a fixed problem size, whereas Gustafson pre-
sumes increasing problem size with increasing numbers of processors. Amdahl’s Law, named after
the computer architect Amdahl [22], was introduced in 1967 and is defined by

T(n) = T(1)
(
𝛽A + 1

n

(
1 − 𝛽A

))
, (1.2)

S(n) = T(1)

T(1)
(
𝛽A + 1

n

(
1 − 𝛽A

)) = 1

𝛽A + 1

n
(1 − 𝛽A)

, (1.3)

where 𝛽A is the fraction of the algorithm that is non-parallelizable, that is, the fraction of the total
run time T(1) that the serial program spends in the non-parallelizable part. As can be seen from
Amdahl’s equation, as the number n of processors increases, the speedup becomes limited by the
serial code fraction 𝛽A. However, Amdahl’s Law is rather simplistic, as it makes assumptions such as
the number of processes used throughout the parallel portions of the code is a constant; the parallel
portion achieves linear speedup (i.e., the speedup is equal to the number of processes); and the parallel
portion scales perfectly, to name a few. However, the most important assumption made was that the
serial and parallel workloads remain constant when increasing the number of processors. This is true
for many scientific problems, particularly those involving integrals over time.

However, some applications are problem-size-bound rather than time-bound, such as weather mod-
eling and graphics rendering, and given more processors, the size of the problem is usually increased
to fill the void. Gustafson attempted to remedy this shortcoming in 1988 by defining parallel speedup
by a new equation [23], sometimes referred to as “scaled speedup”:

T(1) = (n − 𝛽G(n)(n − 1))T(n), (1.4)

S(n) = n − 𝛽G(n)(n − 1), (1.5)

where 𝛽G is again the non-parallelizable fraction, but now defined as the fraction of the total time T(n)
that the parallel program spends in serial sections if run on n processors. The two different definitions

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 11�

� �

�

Why Graphics Processing Units 11

of speedup in terms of processor count n and serial code fraction 𝛽 can lead to confusion. However,
one has to keep in mind that for a given problem size, 𝛽G depends on the number of processors, as
indicated in Eqs. (1.4) and (1.5). Equations (1.3) and (1.5) are actually equivalent with the following
relation between the different definitions of the serial code fraction, as can be derived from Eqs. (1.2)
and (1.4):

𝛽A = 1

1 + (1−𝛽G)n
𝛽G

. (1.6)

In the application of Eq. (1.5), one typically assumes that 𝛽G remains constant with increasing
processor number. In other words, Gustafson’s Law states that exploiting the parallel power of a large
multiprocessor system requires a large parallel problem. Gustafson’s Law thus allows for expansion
of the parallel portion of an algorithm but still makes all the same assumptions as Amdahl’s Law.
Either way, the serial code will ultimately become the bottleneck as the core count increases. It is
thus essential for effective parallel programming that all serial aspects of the compute portion of the
code are removed. If a section of the algorithm is serial, even though representing only a tiny fraction
of the total compute time, it is necessary to rethink the approach to remove this serial bottleneck if
one wishes to scale across the thousands of cores in GPUs. For example, if 99% of code is parallel
and it is run on 100 cores with ideal scaling, the remaining 1% that is serial will take over 50% of
the total compute time. If one then runs the same calculation on 1000 cores, again assuming ideal
scaling, the serial portion now consumes over 90% of the total compute time.

1.3.4.3 Race Conditions

Coding in parallel requires the programmer to consider the possible order of execution for multiple
processes at any one time. It is important to be aware of some possible scenarios that may happen
during execution with multiple processes.

Scenario 1: Process A relies on the result of a calculation carried out by process B. This is known
as a dependency, more specifically a data dependency. Process A cannot continue to execute until
process B has calculated the result. If it does, the answer will be incorrect since it does not have
valid data from B. A solution would be to introduce synchronization between the processes prior
to the operation that carries the dependency, or, alternatively, design a new parallel algorithm that
eliminates the dependency.

Scenario 2: Process A and process B are both adding a number to the same variable X in memory.
Process A and process B both take the current value of X as 5 and begin to add their result to the
variable. Process A does X= 5+ 2, whereas process B does X= 5+ 1. Depending on which process
is quicker at putting the new value of X back in memory, the result will be either 7 or 6. However, the
desired value of X in memory is actually 8. This is known as a race condition. One solution would be
to make use of a lock, which ensures that only one process can access any one variable at any time,
thereby preventing a race condition by creating mutual exclusion of variable X. The use of a lock is
often discouraged however, since it introduces serialization into the code. Various tricks can be used
to circumvent this, such as the lock-free, warp-synchronized, approach used by the GPU version of
the AMBER MD software discussed later (see Section 1.5.1).

1.3.4.4 Communication Metrics

While it might be possible to perfectly parallelize an algorithm, this does not necessarily mean that the
algorithm will be executed at the theoretical limit of the hardware’s performance. The reason for this
is that all algorithms ultimately require some form of communication between each process (unless
embarrassingly parallel). Some might require the reduction of a set of calculations, for example, a
summation executed in parallel, while others might require comparison between values or the sharing
of variables describing the system’s state, for example, the coordinates of a set of atoms, between

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 12�

� �

�

12 Electronic Structure Calculations on Graphics Processing Units

processes. There are two major aspects to communication that determine how costly, in terms of time,
the sharing of data between processes is. Bandwidth is a measure of the amount of data that can be
communicated in a given timeframe, a.k.a. bit rate, that is, gigabytes per second. When measuring
performance, the actual bandwidth (known as the throughput) can be compared with the theoretical
bandwidth capability of the hardware to gauge the efficiency of communicating data. Latency is
another metric to measure the performance of data movements; however, it is more concerned with the
time it takes to communicate data rather than the amount of data it can communicate. Throughput and
latency essentially measure the same thing: data communication efficiency. In simple terms, latency
is the time taken to establish a communication channel, and bandwidth is the amount of data per unit
time that can be sent along the channel. Algorithms that rely on large numbers of small packets of
data will typically be latency-bound, while algorithms that send large packets of data infrequently will
typically be bandwidth-bound. Since the design of parallel hardware typically involves a balancing
act between bandwidth and latency, some algorithms will naturally perform better on certain types
of hardware than others.

1.4 Parallel Computing on Graphics Processing Units

This section follows much the same order of concepts/theory as the previous section; however, it does
so in the context of GPUs. First to be discussed is the memory model of GPUs. Following this will
be a discussion of the available APIs and their compatible hardware, code suitability, and, finally, a
discussion of scalability, performance and cost effectiveness.

1.4.1 GPU Memory Model

The memory model of a system equipped with GPU coprocessors does not easily fall into either
of the distinct categories shared or distributed, as both the CPU(s) and the GPU(s) have their own
memory spaces. The data required by a GPU in order to accelerate offloaded code from the CPU
has to be accessible to the GPU. This involves the transferring of data from the CPU to the GPU,
similar to the transfer of data from process to process in a distributed memory system. Once the
data are on the GPU, the memory model is quite different. The main memory on a GPU, referred
to as global memory, is accessible and visible to all cores/threads. This reflects the shared memory
model. However, as a GPU has multiple memory locations (each with varying capacity, bandwidth,
and latency depending on the proximity to the compute cores), the shared memory model is not
consistent as one steps through the memory hierarchy. The memory hierarchy of a GPU will be
discussed in more detail in Chapter 2. Taking advantage of the memory hierarchy is one of the key
goals when writing GPU code and is crucial in achieving good performance. A GPU offers a hybrid
memory platform giving the programmer control of data locality.

1.4.2 GPU APIs

At present there are two main APIs available to program GPUs: OpenCL and CUDA. A higher level
GPU programming option, OpenACC, is also available, which is a collection of directives and pro-
grams, logically equivalent to OpenMP, that allows the compiler to analyze sections of code and
automatically map loops onto parallel GPU cores. In this textbook, most examples and concepts
will be discussed in terms of the CUDA programming paradigm, with some chapters making use
of OpenCL. CUDA is freeware-supported, at the time of writing, only by Nvidia GPU hardware,
whereas OpenCL is a cross-platform standard available and compatible on many different copro-
cessor architectures, not just GPUs. CUDA is a series of extensions to the C, C++, and Fortran

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 13�

� �

�

Why Graphics Processing Units 13

programming languages. This has the benefit of reducing the programming effort, as it is not formally
required that algorithms be rewritten in order to run on a GPU, only modified to include the CUDA
syntax. However, it is worth noting that the majority of algorithms need to be modified in order to
execute efficiently on the many-core architecture of a GPU. Therefore, redesigning algorithms may
be unavoidable for many applications to get the most performance out of a GPU as highlighted in
the following. OpenCL offers a lower level set of extensions to the C programming language, pro-
viding the programmer with more control of the hardware. The programming model is very similar
to CUDA’s, once the terminology is stripped away. For instance, in the CUDA programming model,
a thread is the sequence of instructions to be executed by a CUDA core, whereas in the OpenCL
programming model a thread is termed a work-item. There are many pros and cons to both GPU API
options; however, a discussion of these is beyond the scope of this textbook, and the choice of API is
left to the programmer’s preference. For ease of writing, the main focus of this chapter and the next
will be CUDA, given its wide use in GPU quantum chemistry codes.

1.4.3 Suitable Code for GPU Acceleration

As GPUs were originally designed for applications involving graphics rendering, the lack of sophis-
ticated hardware limited the number of applications suitable for acceleration using the historical
GPU hardware design. The first programmers to attempt general-purpose applications on a GPU had
the arduous task of representing their calculations as triangles and polygons. Although modern GPU
hardware design has become more forgiving to the general-purpose application, it is still necessary to
ensure that an algorithm is suited to the hardware in addition to considering Amdahl’s or Gustafson’s
Law in order to achieve a performance gain.

Usually, only a selection of the entire code will be suitable for GPU execution, as illustrated
in Figure 1.7. The rest of the code is executed on the CPU as normal, although the cost of trans-
ferring data between CPU and GPU often means that it is desirable to execute as much of the
compute-intensive code as possible on the GPU.

Careful consideration of the desired code for porting is required before any development proceeds.
Code that has been poorly assessed with respect to the hardware could see no performance improve-
ment or even a performance decrease after porting to GPU, compared with running the entire code on
a CPU. One aspect to consider is the SIMT (single-instruction, multiple-thread) architecture of GPUs
and how that reflects on code suitability. Threads on a GPU are spawned in blocks (and on Nvidia
hardware executed in batches of 32 termed warps), which are logically mapped to the physical GPU

Figure 1.7 Illustration of a GPU working in conjunction with a CPU as work is offloaded and computed
on a GPU concurrently with CPU execution [24]

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 14�

� �

�

14 Electronic Structure Calculations on Graphics Processing Units

cores. The threads are designed to be lightweight and are scheduled with no overhead. The hardware
does not execute the threads in a block independently. Instead, all threads execute the same instruc-
tions, and conditional branching can thus be detrimental to performance because it holds up an entire
block of threads. Because of the nature of the threads working concurrently within a thread block, it
is beneficial to reduce the number of idle threads by creating many more threads than there are phys-
ical compute cores on the GPU. Communication between threads is also limited and can be a source
of poor performance. Therefore, fine-grained parallel problems, such as those that are data-parallel
with few dependencies between data elements and few divergent branches, most successfully exploit
a GPU’s hardware.

Another consideration when assessing a code’s suitability for GPU acceleration is memory access
latency and bandwidth. Memory access latency is a large overhead when porting to a GPU, as the
GPU cannot access memory on the CPU at the same speed as the local GPU memory, and vice versa.
Data have to be explicitly transferred, or some form of unified addressing has to be used, both of
which introduce overheads. The bandwidth between the GPU and the CPU memory is much lower
than the bandwidth between CUDA cores and GPU memory. For example, the theoretical global
memory bandwidth for the Nvidia Tesla K40 card is 288 GB/s, and the theoretical unidirectional
bandwidth between the CPU and the GPU is only 16 GB/s (PCIe Gen 3× 16). Memory access through
the PCIe interface also suffers from latencies on the order of several thousand instruction cycles. As
a result, transferring data between the CPU and the GPU can cause a bottleneck in performance.
Arithmetic-intensive code is required in order to hide the memory access latency with calculations.
Well-suited code will have a high degree of arithmetic intensity, a high degree of data reuse, and a
small number of memory operations to reduce the overhead of data transfers and memory accesses.

An additional method of hiding the memory access latency is to run code of a large problem size.
In order to reduce the start-up costs of allocating and freeing memory when transferring data from
CPU to GPU, it is beneficial to send one large data packet as opposed to several smaller data packets.
This means that the performance of code with a large problem size will be affected less by the start-up
costs of CPU–GPU data transfer, as a proportion of the overall execution time, compared to code with
a smaller problem size incurring the same start-up costs.

A desirable feature of a code, where not all compute-intensive regions have been ported to the
GPU, is the ability to be able to overlap code execution on both the CPU and the GPU. One aim
when parallelizing any code is to reduce the amount of idle processor time. If the CPU is waiting for
kernels to be executed on a GPU, and there are CPU-intensive portions, then the performance of the
code will suffer as the CPU spends time idling.

1.4.4 Scalability, Performance, and Cost Effectiveness

The GPU’s design makes it highly scalable, and in most cases effortlessly scalable, as the creation,
destruction, and scheduling of threads are done behind the scenes in hardware. The programmer need
not get bogged down with processor counts when planning a decomposition strategy. Algorithms can
be decomposed according to the number of data elements, as opposed to the number of processors in
a system, making applications effortlessly scalable to thousands of processor cores and tens of thou-
sands of concurrent threads. The programmer need only concern himself/herself with the granularity
of the decomposition strategy. The programming model abstracts multiple levels of parallelism from
the hardware: that is, on the thread level, fine-grained data parallelism can be achieved, whereas on
the kernel level a problem can be divided into more coarse-grained tasks. The ported GPU program
will then scale to any number of processors at runtime. Not only does this result in a highly scalable
programming/architectural model but it also lessens the difficulty for the programmer in designing
scalable algorithms.

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 15�

� �

�

Why Graphics Processing Units 15

The main reason for using a GPU is to boost a program’s performance. This can be done using
multiple CPUs (as mentioned earlier), however, the scope for performance improvement using a GPU
is often far greater for many applications due to the larger memory bandwidth of GPUs. The potential
for performance improvement is demonstrated in the next section using two applications that have
seen large performance improvements after GPU acceleration (see Section 1.5).

The way the performance of GPU-accelerated programs is assessed is crucial in providing end
users with realistic speedups. Obviously it is beneficial to compare the performance of a GPU with
a single CPU, but what about multiple CPUs? As the traditional approach to parallelizing code is
through multiple CPU cores, it seems only fair that a comparison of these two parallel implemen-
tations (GPU vs multicore) should be made in order to assess the real gain from using a GPU. One
important factor to include in a performance comparison with multiple CPUs is the cost effectiveness
of the improvement. The cost effectiveness of using a GPU depends largely on the type of applica-
tion and the scalability of the algorithm to many processor counts. Buying time on supercomputers
can be costly, and building your own supercomputer is unfeasible for the majority. A GPU puts the
processing power of a compute cluster within the reach of anyone willing to spend the time mod-
ifying the code. Not only do GPUs provide supercomputing power to desktop computers, but they
also do it affordably thanks to their energy efficiency. It is no coincidence that the top 10 computers
on the Green500 list (a list that ranks the world’s supercomputers by energy efficiency) published
in November 2013 contain Nvidia GPUs, as the performance per watt of a GPU is very desirable in
comparison with a traditional CPU.

1.5 GPU-Accelerated Applications

Many real-word applications have already experienced massive performance improvements from
GPU acceleration. Scientific domains benefiting from GPU technology include the defense indus-
try, oil and gas, oceanography, medical imaging, and computational finance [25, 26]. This section
showcases two GPU applications, in wildly different fields, not included in the later chapters of this
book, providing additional motivation for parallelizing code on GPUs. The first to be discussed is the
classical molecular dynamics (MD) software package Amber, and the second is the rendering and
video-editing package Adobe Premiere(R) Pro Creative Cloud (CC).

1.5.1 Amber

Amber [27] is a software suite for molecular dynamics (MD) simulations for biomolecules, which can
be used to study how biomolecules behave in solution and in cell membranes. It is used extensively,
among others, in the drug discovery to determine the mechanism by which various drugs inhibit
enzyme reactivity.

After porting and optimizing in CUDA for Nvidia hardware, the GPU implementation of the
PMEMD molecular dynamics engine in the Amber software package is now the fastest simulation
engine in the world on commodity hardware. For a simulation of the enzyme dihydrofolate reductase
(DHFR), illustrated in Figure 1.8, containing approximately 23,500 atoms, it used to take, in 2009,
one of the fastest supercomputers in the world to simulate ∼50 ns in one day. That is one full day of
computer simulation for a mere 50 billionth of a second in the life of a biomolecule. Today, 5 years
on, with a single desktop containing four Nvidia Tesla Kepler K40 or similar GPUs, an aggregate
throughput of over 1 μs/day can be achieved. The GPU code design takes advantage of a patented
approach to lock-free computing via the use of warp-level parallelism [28], which applies algorithmic

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 16�

� �

�

16 Electronic Structure Calculations on Graphics Processing Units

Figure 1.8 Cartoon representation of the dihydrofolate reductase enzyme in water (23,508 atoms)

tricks to eliminate the need for locks in parallel pairwise calculations. It also reduces the CPU–GPU
data transfer overhead by carrying out the entire simulation on the GPU, communicating back to the
CPU just for I/O, and uses PCIe peer-to-peer communication to eliminate CPU and motherboard
chipset overhead when running across multiple GPUs. In order to achieve the best performance
out of the Nvidia Kepler, Quadro, and GeForce series of GPUs, a mixed precision model, termed
SPFP [29], was implemented to capitalize on the single-precision and integer atomic performance of
the hardware without sacrificing simulation accuracy. The result is supercomputing capability that
is accessible for every researcher at minimal cost – fundamentally advancing the pace of research
involving MD simulation.

Example performance data for Amber v14 is shown in Figure 1.9, where the 90,906-atom blood
clotting protein, FactorIX, has been simulated on various hardware. Amber 14 running on a single
K40 GPU achieves a throughput of almost 40 ns/day, while using four K40 GPUs in tandem it can
obtain a throughput on a single simulation of almost 74 ns/day. Compare this to the 5.6 ns/day achiev-
able from running on two Intel Xeon E5-2670 CPUs (16 CPU cores), and the benefit of using GPUs
to run Amber becomes obvious. A single GeForce GTX Titan Black (a gaming card that retails at
around $1000) obtains over 42 ns/day and is thus capable of over 7× the performance of a single (16
cores) CPU node.

In addition to raw performance, there are also cost efficiency considerations for running
Amber 14 on GPU(s), which can be demonstrated using the same FactorIX benchmark. The cost
differential – considering for now just the acquisition costs and ignoring the running costs – between
a high-end GPU workstation and the equivalent CPU-only cluster required to obtain the same
performance is a factor of approximately 45×. This factor can be calculated, for example, by
considering a GPU workstation consisting of a single node with four GTX Titan Black cards, costing
approximately $7000, and the hardware specification of a CPU-only cluster required to obtain
equivalent performance. The GPU workstation can achieve an aggregate throughput on four Fac-
torIX simulations of 168 ns/day (42 ns/day per simulation). To obtain equivalent performance using

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 17�

� �

�

Why Graphics Processing Units 17

80.0070.0060.00

Performance (ns/day)

8x AMD FX-8150

2xE5-2670 CPU (16 cores)

1X GTX Titan Black

2X GTX Titan Black

1X K40

2X K40

4X K40

50.0040.0030.0020.00

39.38

1.60

10.000.00

55.93

73.67

42.06

57.42

5.6

Figure 1.9 Computational performance of classical molecular dynamics simulations with the CPU and
GPU versions of Amber on varying hardware configurations measured in nanosecond per day. The results
are for a standard benchmark (FactorIX enzyme in explicit solvent, 90,906 atoms, NVE ensemble, 2 fs time
step) [30]

CPU-based hardware, consisting of dual 8 core CPU nodes, requires a high-end QDR Infiniband
interconnect between nodes and a total of 16 nodes per simulation (256 cores), since scaling across
multiple nodes is never linear due to communication overhead, for a total cluster size of 64 nodes (for
the four individual simulations). The cost of such a cluster, at the time of writing, is approximately
$320,000.

Not only does using GPUs for MD simulations have a positive impact on acquisition costs but
it also greatly reduces running costs, a substantial fraction of which, for large CPU clusters, is the
cost of power. Saving in power also translates into more environmentally friendly computing. As
mentioned in Section 1.4, a GPU is more energy efficient than a CPU, helping to promote greener
science. To illustrate, compare a single FactorIX simulation running on a single Nvidia GeForce GTX
Titan Black GPU against the same simulation running on a dual-socket Intel E5-2670 system. The
Titan-Black GPU is rated at 250 W peak power consumption, but this does not include overhead in
the node itself, such as case fans, hard drives, and the CPU idle power. Measuring the total node
power consumption for the FactorIX simulation gives a power draw of approximately 360 W for a
throughput of 42.06 ns/day. This equates to a power consumption of ∼0.20 kW h/ns of simulation.
If, instead, one uses the Dual E5-2670 CPUs in this system, then the measured power consumption
is approximately 359 W per node, with a single node yielding a throughput of 5.6 ns/day giving a
power consumption of ∼1.54 kW h/ns of simulation. In this example, the GPU version of AMBER
provides a 7.7× improvement in power efficiency.

In conclusion, the GPU-accelerated Amber MD program enables faster simulations or
longer simulation times than on a CPU at greater power efficiencies. It includes the majority
of the MD functionality that is available on a CPU but at a fraction of the financial and
environmental cost.

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 18�

� �

�

18 Electronic Structure Calculations on Graphics Processing Units

1.5.2 Adobe Premier Pro CC

Adobe Premier Pro CC is a GPU-accelerated software suite used primarily to edit videos offering
interactive, real-time editing and rendering. Adobe teamed up with Nvidia to create high-speed func-
tionality though the use of Nvidia GPU cards and the CUDA programming platform. Included in the
Adobe Premier Pro CC are features such as debayering (process of converting a Bayer pattern color
filter array image from a single sensor to a full RGB image), feathered masking (applying a mask to
a frame), and master clips effects (allowing cutting, sticking, and reordering of frames). Figure 1.10
shows the performance data for rendering a high-definition (HD) video with the complex Mercury
Playback Engine at a resolution of 720p on Nvidia Quadro GPUs, with respect to a Dual Intel Xeon
E5 processor (16 cores in total). The cost of the graphics cards range from around $500 for a Quadro
K2000, offering nearly a 5× speed-up, to $5000 for a Quadro K6000, capable of rendering over 16×
faster.

What is even more impressive about the GPU-accelerated Adobe suite is the speed at which
ray-traced 3D scenes can be rendered through their After Effects CC product. By equipping a desk-
top with a single Quadro K6000, the user can benefit from ∼28× speedup when compared to using
a Dual Intel Xeon E5 processor (16 cores in total) alone (see Figure 1.11). If the user happens to
have an additional $5000 to spend on computer hardware, his or her 3D ray tracing workflow can be
completed nearly 40× faster.

It is no surprise that a graphics rendering package such as the Adobe Premier Pro CC suite can
achieve performance improvements of such a magnitude from GPU acceleration, given that the
original design of a GPU was for such purposes. However, this serves as a great showcase of the capa-
bilities of GPUs and their ability to accelerate applications in a way that is affordable to the masses.
The purpose of this book is to explore in detail the successes that have been achieved and survey the
current state of the art in accelerating electronic structure calculations on GPUs.

Adobe Premier Pro CC Performance Adobe Mercury Playback Engine

Performance acceleration (x-times)

0 5 10 15 20 25

Dual Xeon

Quadro K2000

Quadro K4000

Quadro K5000

Quadro K6000

Quadro K5000 + Tesla K20

2x Quadro K5000

2x Quadro K6000

Figure 1.10 Performance acceleration for Adobe Mercury Playback Engine on GPUs. System configu-
ration: Adobe Premier Pro CC, Windows 7 – 64-bit, Dual Intel Xeon E5 2687 W 3.10 GHz CPUs (16
total cores). Test consists of HD video workflow with complex Mercury Playback Engine effects at 720p
resolution. Results based on final output render time comparing noted GPU to CPU [31]

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 19�

� �

�

Why Graphics Processing Units 19

Dual Xeon

Quadro K2000

Quadro K4000

Quadro K5000

2x Quadro K5000

2x Quadro K6000

0 5 10 15

Performance acceleration (x-times)

Adobe After Effects CC Performance 3D Ray Tracing

20 25 30 35 40

Quadro K5000 +

Tesla K20

Quadro K6000

Figure 1.11 Performance data for Adobe After Effect CC Engine on GPUs. System configuration: Adobe
After Effects CC, Windows 7 – 64-bit, Dual Intel Xeon E5 2687 W 3.10 GHz CPUs (16 total cores). Test
consists of live After Effect CC scenes with 3D layer, comparing time to render ray-traced 3D scene on
noted GPU versus CPU [32]

References

1. Bolcer, J.D. and Hermann, R.B. (2007) The Development of Computational Chemistry in the
United States, Reviews in Computational Chemistry, John Wiley & Sons, Inc., pp. 1–63.

2. Rojas, R. and Hashagen, U. (eds) (2002) The First Computers: History and Architectures, MIT
Press, Cambridge, MA, USA.

3. Rojas, R. (1997) Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing, 19 (2), 5–16.

4. Hahn, M. IBM Electronic Data Processing Machine 2010. Available from: http://grin.hq
.nasa.gov/ABSTRACTS/GPN-2000-001881.html (accessed 7 August 2014).

5. Garg, R. Exploring the Floating Point Performance of Modern ARM Chips. Available from:
http : // www.anandtech.com / show/6971/exploring-the-floating-point-performance-of-modern-
arm-processors (accessed 12 May 2014).

6. Weik, M.H. (1964) Burroughs D825, Ballistic Research Laboratories, Aberdeen Proving
Ground, Maryland.

7. Clementi, E., Corongiu, G., Chin, J.D.S., and Domingo, L. (1984) Parallelism in quantum-
chemistry – Hydrogen-bond study in DNA-base pairs as an example. International Journal of
Quantum Chemistry, 18, 601–618.

8. Guest, M., Harrison, R., van Lenthe, J., and van Corler, L.H. (1987) Computational chemistry
on the FPS-X64 scientific computers. Theoretica Chimica Acta, 71 (2–3), 117–148.

9. Colvin, M., Whiteside, R., and Schaefer, H.F. III (1989) Quantum chemical methods for
massively parallel computers, in Methods in Computational Chemistry, vol. 3 (ed S. Wilson),
Plenum, NY, p. 167.

http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001881.html
http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001881.html
http://www.anandtech.com/show/6971/exploring-the-floating-point-performance-of-modern-arm-processors
http://www.anandtech.com

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 20�

� �

�

20 Electronic Structure Calculations on Graphics Processing Units

10. Janssen, C.L. and Nielsen, I.M.B. (2008) Parallel Computing in Quantum Chemistry, CRC Press,
Taylor & Francis Group, Boca Raton.

11. Dupuis, M. and Watts, J.D. (1987) Parallel computation of molecular-energy gradients on the
loosely coupled array of processors (Lcap). Theoretica Chimica Acta, 71 (2–3), 91–103.

12. Whiteside, R.A., Binkley, J.S., Colvin, M.E., and Schaefer, H.F. III (1987) Parallel algorithms
for quantum chemistry. 1. Integral transformations on a hypercube multiprocessor. Journal of
Chemical Physics, 86 (4), 2185–2193.

13. Watts, J.D. and Dupuis, M. (1988) Parallel computation of the Moller–Plesset 2nd-order
contribution to the electronic correlation-energy. Journal of Computational Chemistry, 9 (2),
158–170.

14. MPI: A Message-Passing Interface Standard Version 3.0, Message Passing Interface
Forum, September 21, 2012. Available from: http://www.mpi-forum.org (accessed 12
September 2014).

15. Moore, G.E. (1998) Cramming more components onto integrated circuits (Reprinted from Elec-
tronics, pp. 114–117, April 19, 1965). Proceedings of the IEEE, 86 (1), 82–85.

16. Simon, W.G.. Transistor Count and Moore’s Law 2011. Available from: http://commons
.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
(accessed 12 August 2014).

17. Dubash, M. (2005) Moore’s Law is Dead, says Gordon Moore. Available from: http://news
.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-
moore/ (accessed 12 August 2014).

18. Mandy, P. (2011) Microprocessor Power Impacts, Intel.
19. Xu, D., Williamson, M.J., and Walker, R.C. (2010) Advancements in molecular dynamics simu-

lations of biomolecules on graphical processing units. Annual Reports in Computational Chem-
istry, Vol. 6, 2–19.

20. Hager, G. and Wellein, G. (2011) Introduction to High Performance Computing for Scientists
and Engineers, CRC Press, Taylor & Francis Group, Boca Raton.

21. The OpenMP API Specification for Parallel Programming. Available from: http://openmp
.org/wp/openmp-specifications/ (accessed 13 September 2014).

22. Amdahl, G.M. (1967) Validity of Single-Processor Approach to Achieving Large-Scale Comput-
ing Capability. Proceedings of AFIPS Conference, Reston (VA), pp. 483–485.

23. Gustafson, J.L. (1988) Reevaluating Amdahl’s law. Communications of the ACM, 31 (5),
532–533.

24. Nvidia Corporation (2014) What is GPU Computing?. Available from: http://www.nvidia
.com/object/what-is-gpu-computing.html (accessed 12 August 2014).

25. Hwu, W.-M.W. (ed.) (2011) GPU Computing Gems – Emerald Edition, Morgan Kaufmann,
Burlington, MA, USA.

26. Hwu, W.-M.W. (ed.) (2012) GPU Computing Gems – Jade Edtion, Morgan Kaufmann, Waltham,
MA, USA.

27. Case, D.A., Babin, V., Berryman, J.T., et al. 2014 AMBER 14. University of California, San
Francisco. Available from: http://ambermd.org (accessed 17 October 2014).

28. Le Grand, S. (2012) Computer-Readable Medium, Method and Computing Device for N-body
Computations Using Parallel Computation Systems. Google Patents.

29. Le Grand, S., Götz, A.W., and Walker, R.C. (2013) SPFP: Speed without compromise – A mixed
precision model for GPU accelerated molecular dynamics simulations. Computer Physics Com-
munications, 184 (2), 374–380.

http://www.mpi-forum.org
http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.nvidia.com/object/what-is-gpu-computing.html/
http://www.nvidia.com/object/what-is-gpu-computing.html/
http://ambermd.org

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 21�

� �

�

Why Graphics Processing Units 21

30. Walker, R.C. (2014) Amber 14 NVIDIA GPU Acceleration Support: Benchmarks. Available
from: http://ambermd.org/gpus/benchmarks.htm (accessed 12 August 2014).

31. Nvidia Corporation (2014) Adobe Premier Pro CC. Available from: http://www.nvidia
.com/object/adobe-premiere-pro-cc.html (accessed 17 August 2014).

32. Nvidia Corporation (2014) Adobe After Effects CC. Available from: http://www.nvidia
.com/object/adobe-premiere-pro-cc.html (accessed 17 August 2014).

http://ambermd.org/gpus/benchmarks.htm
http://www.nvidia.com/object/adobe-premiere-pro-cc.html
http://www.nvidia.com/object/adobe-premiere-pro-cc.html
http://www.nvidia.com/object/adobe-premiere-pro-cc.html
http://www.nvidia.com/object/adobe-premiere-pro-cc.html

Trim Size: 170mm x 244mm Walker c01.tex V3 - 01/27/2016 3:11 P.M. Page 22�

� �

�

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 23�

� �

�

2
GPUs: Hardware to Software

Perri Needham1, Andreas W. Götz1 and Ross C. Walker1,2

1San Diego Supercomputer Center, UCSD, La Jolla, CA, USA
2Department of Chemistry and Biochemistry, UCSD, La Jolla, CA, USA

When programming GPUs, a thorough understanding of how the programming model is abstracted
from the hardware is imperative to achieving good performance. This chapter discusses the archi-
tectural design of GPUs, programming models and how they map to hardware, and basic GPU
programming concepts. This is followed by an overview of the currently available GPU-accelerated
software libraries as well as design features of modern GPUs that simplify their programming and
make attaining good performance easier.

It is beyond the scope of this book to teach details of how to program GPUs. For a grounding in
GPU programming, we recommend reviewing the reference manuals and programming guides (along
with associated training textbooks) for the various platforms available. Good introductions are given
in the following text books: CUDA By example – An introduction to general-purpose GPU program-
ming by J. Sanders & E. Kandrot and Programming Massively Parallel Processors – A hands-on
approach by D. B. Kirk & W. M. W. Hwu.

At the time of writing, there are multiple different approaches to programming GPUs with CUDA
[1, 2], OpenCL [3] and OpenACC [4] being the most popular. In the later chapters of this book,
examples are given of the use of all these approaches. However, covering all of these methods
and the differences in GPU hardware between manufacturers (e.g., AMD and Nvidia) is beyond
the scope of this book. The underlying considerations about parallel constructs, diverse memory
models, and CPU-to-GPU communication are the same regardless of which programming model or
GPU platform is used. For the purposes of providing a concise introduction to GPU programming
in a way that can be easily followed by someone who is not familiar with many-core program-
ming, we will confine our discussion here to the most common approach to GPU programming.
At the time of writing, this means the use of the CUDA programming language on Nvidia GPU
hardware.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 24�

� �

�

24 Electronic Structure Calculations on Graphics Processing Units

2.1 Basic GPU Terminology

Before going into the details on GPU architecture and programming, it is important to first clarify
some of the terminology used throughout this chapter. For a more thorough list of terminology, refer
to the glossary at the beginning of this book.

Host – the CPU that the GPU is coupled to.
Device – the GPU coprocessor that is coupled to a CPU.
Cores – the processing elements of a GPU (or CPU) that execute a sequence of instructions (thread).
SM or streaming multiprocessor – responsible for running GPU kernels and comprises a subset of the

total GPU cores, registers for each residing core, a shared memory, texture cache, constant cache,
L1 cache, and warp schedulers. A GPU is organized into multiple streaming multiprocessors
(SMs).

Thread – a set of instructions to be executed sequentially by a GPU (or CPU) processing element
(compute core).

Warp – a set of 32 SIMD threads (as currently implemented in CUDA-enabled architecture) that
execute the same instructions simultaneously in hardware. Instructions are issued to and scheduled
for execution on an entire warp of threads at a time, which step through the instructions in lockstep.

Kernel – a procedure that is executed on the SMs of a GPU, typically by thread counts in the region
of tens of thousands in parallel. Instructions of a kernel are scheduled in groups of a warp in a
single-instruction multiple-thread (SIMT) manner.

2.2 Architecture of GPUs

As illustrated in Figure 2.1, GPU architecture differs from CPU architecture in that in place of a
few processing cores with sophisticated hardware, that is, multilevel caching technologies, prefetch-
ing, and branch prediction, there are thousands of simplistic compute cores that operate in lock
step. This so-called SIMT model is reminiscent of traditional SIMD architectures in CPUs, but

Accelerated computing

Multi-core plus many-cores

CPU

Optimized for

serial tasks

GPU accelerator

Optimized for many parallel

tasks

3–10× + Compute

Throughput

7× Memory bandwidth

5× Energy efficiency

Figure 2.1 General overview of CPU–GPU hardware configuration. Picture adaptation courtesy of
Nvidia Corporation

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 25�

� �

�

GPUs: Hardware to Software 25

allows for branch divergence between threads, making programming easier. This architecture makes
GPUs optimal for many data-parallel tasks, as they offer substantially higher compute throughput
as well as very high memory bandwidth by virtue of the ability to vectorize loads/stores from/to
memory.

2.2.1 General Nvidia Hardware Features

A GPU device is connected to a host via the peripheral component interconnect express (PCIe)
bus, and data are passed between host memory and device memory as illustrated in Figure 2.2.
The GPU is partitioned into streaming multiprocessors (SMs) where each SM contains GPU cores,
double-precision unit(s), special function units, registers, and a multithreaded instruction unit for
scheduling warps. A warp is an important concept when optimizing GPU code. At the time of writ-
ing, a warp represents a group of 32 threads that are scheduled to execute together and operate in
lock step. The concept of a warp will be discussed in more detail shortly. Each SM operates by a
SIMT paradigm, whereby the SM issues one set of instructions to a warp of threads for concurrent
execution on different data elements.

In addition to the global memory on the device, there are four other types of on-chip memory
accessible to each GPU SM. Each thread has access to local memory, which is part of the dynamic
random access memory (DRAM) and is private to each thread. Each SM also has access to a small
amount (48 KB per SM in Nvidia K40 GPUs [1]) of high-speed shared memory accessible to the
threads spawned on that SM and them alone. Constant memory and texture memory are artifacts
of programming for graphical applications and provide small read-only memory locations with fast
complementary caches. It is important to keep in mind that global memory accesses while providing
high bandwidth incur long latencies on the order of several hundred clock cycles. This also holds for
local memory, which is used by memory-intensive kernels if the amount of register memory required
by a thread exceeds that available (255× 32 bit values on Nvidia K40 GPUs [1]). Some modern
GPUs are also equipped with a small amount of L1 and L2 cache, which is used to speed up memory
accesses to global/local memory.

2.2.2 Warp Scheduling

CUDA-enabled GPUs execute instructions in a SIMT manner, whereby a block of threads is grouped
into warps by a scheduler. At the time of writing, a warp comprises 32 threads. All threads of a warp
start at the same instruction to execute in parallel with the other threads in a warp. The warp scheduler

Figure 2.2 Illustration highlighting the movement of data between memory locations on the host and the
device. Picture adaptation courtesy of Nvidia Corporation

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 26�

� �

�

26 Electronic Structure Calculations on Graphics Processing Units

issues one common instruction to be executed by all threads in a warp at a time. Ensuring blocks of
threads are a multiple of 32 (a warp) prevents underpopulation of warps and therefore idle cores.
The SIMT offers not only thread-level parallelism but also instruction-level parallelism, ensuring
that instructions are pipelined to the cores in a constant stream by scheduling the next instruction to
an active warp of threads. Threads are able to branch and diverge away from other threads, as each
thread keeps track of its own instruction address and register state; however, divergent branching will
cause all other threads in a warp to be idled (masked to null operations, no-ops) until the divergent
branch is complete and threads are back on the same execution path. For this reason, a GPU is used
most effectively when there are no divergent branches, that is, conditional statements, in a warp of
threads and hence no idle cores waiting for threads to catch up.

2.2.3 Evolution of Nvidia Hardware through the Generations

The evolution of Nvidia GPU hardware can be tracked by compute capability (c.c.), which is a major
and minor revision number linked to core architecture design. GPUs with the same major revision
number are of the same hardware generation. Minor revision numbers reflect incremental improve-
ments to the core architecture, that is, new features. For a complete explanation of the differences
between compute capabilities, refer to the CUDA Programming Guide [1].

The architectural design of the latest generation Nvidia hardware (Kepler – compute capability 3.x)
is shown in diagrammatic form in Figure 2.3. Each SM is equipped with registers, shared memory
(SMEM), read-only and L1 instruction and data cache. All SMs have access to an L2 cache, which
is responsible for reducing the latency of global memory accesses.

2.3 CUDA Programming Model

In the CUDA programming model, functions within the code are offloaded to the GPU as kernels.
The workload of each kernel is decomposed into N independent workloads, which are then executed

Kepler memory hierarchy

SM-0 SM-1 SM-N

Registers Registers Registers

L1 SMEM
Read
only L1

L2

Global memory

SMEM
Read
only

L1 SMEM
Read
only

Figure 2.3 Nvidia Kepler architecture memory model. Global memory and L2 cache can be accessed by
all SMs. L1 cache and shared memory (SMEM) are accessible to threads running on the same SM. Picture
adaptation courtesy of Nvidia

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 27�

� �

�

GPUs: Hardware to Software 27

in parallel by N threads, where N is typically of the order of several thousands. Threads and mem-
ory locations are structured into hierarchies that map logically to the underlying hardware. In order
to extract the most performance out of a GPU, a solid understanding of the programming model
is needed. In the following description, the CUDA programming model is logically sectioned into
kernels, thread hierarchy, memory hierarchy, and warp scheduling.

2.3.1 Kernels

A kernel is a function to be executed in parallel by N threads on a GPU. A pre-existing function
call in C, C++, or Fortran code is easily modified to execute on a GPU. The syntax is the same
across different programming languages. To launch a kernel in C for CUDA a declaration specifier
__global__ marks the function to be executed in parallel on a GPU along with specialist execution
configuration syntax in the kernel call to spawn threads, ≪<dimGrid,dimBlock≫> (see Figure 2.4).

The execution configuration syntax (in triple angle brackets) specifies the number of threads to be
launched, including information on how the threads will be mapped to the hardware. The first variable
in the execution configuration defines the number of blocks, and the second variable the number of
threads in a block. In the example of Figure 2.4, one block with N threads would be launched. We
will explain this further after discussing the thread hierarchy in the following.

An important characteristic of a kernel call is its asynchronous nature. When the host’s execution
path hits a kernel call, the runtime library spawns the requested number of threads on the device for
execution of the device function. While this is going on, control is immediately passed back to the
host. The host is free to continue on its execution path and will only wait for the device to complete
kernel execution if explicit synchronization is requested. Asynchronous and synchronous execution
will be discussed in Section 2.4.

2.3.2 Thread Hierarchy

Threads are organized into blocks of threads within a grid of threadblocks (Figure 2.5).

Figure 2.4 Example of C for CUDA kernel code and kernel launch code. The declaration specifier
__global__ marks the kernel for execution on the GPU, while the execution configuration (grid and block
size) is contained in triple angle brackets

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 28�

� �

�

28 Electronic Structure Calculations on Graphics Processing Units

Figure 2.5 Thread hierarchy. Blocks of threads are configured into a grid of thread blocks that logically
map to the underlying GPU hardware with blocks being executed on individual SMs. Picture adaptation
courtesy of Nvidia [1]

The number of threads spawned at launch time is usually dictated by the problem size or number of
processors, but many more threads can be created than there are compute cores in hardware, and this
is in fact necessary to achieve good performance. This configuration allows data structures, such as
matrices and vectors, to be easily mapped to hardware. It also makes the code amenable to different
hardware configurations with different numbers of SMs and compute cores and thus future-proof.

Blocks of threads can have up to three dimensions, as can a grid of threadblocks. This enables
each element of a three-dimensional array to be mapped to an individual thread either in a block or
in a grid, promoting fine-grained data parallelism. The size and shape of a block of threads and/or
a grid of threadblocks can be specified at execution configuration using the intrinsic type dim3. For
example, one would specify a two-dimensional block with ndimx by ndimy threads using the syntax:
dim3 threadsPerBlock(ndimx, ndimy).

Threads within a thread block can be easily indexed in device code by a convenient
three-component vector built into the CUDA programming language – threadIdx. For example, for

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 29�

� �

�

GPUs: Hardware to Software 29

two-dimensional thread blocks (see Figure 2.5), each thread can access its thread indices within a
block as tx= threadIdx.x for the x-dimension and as ty= threadIdx.y for its y-dimension. A similar
three-component vector is also supplied for indexing blocks in a grid and is used in exactly the same
manner – blockIdx. These built-in vectors allow for local indexing of threads in a block and can be
easily used to calculate a thread’s ID tid within a block as

tid = tx + ty × ndimx + tz × ndimx × ndimy (2.1)

where tx, ty, and tz are the thread index in the x-, y-, and z-dimension, respectively, and ndimx, ndimy,
and ndimz are the number of threads in the respective dimension of a block, also referred to as the
extent of a dimension.

To determine the global index of a thread in a grid is also straightforward and just requires the
block ID in the corresponding dimension:

global x = blockIdx.x × ndimx + threadIdx.x (2.2)

and is equivalent for x- and y-dimension. Using Thread(0, 0) in Block(1, 1) from Figure 2.5 as an
example, the global indices are global_x= 1× 4+ 0= 4 and global_y= 1× 3+ 0= 3. These variables
can then be used to calculate the thread’s global thread ID by switching the extent of a block in any
given dimension with the extent of a grid in any given dimension in Eq. (2.1). So, it is possible to
identify a thread in four ways: local index, local ID, global index, and global ID.

There are restrictions on the total number of threads in a block of threads. Threads within the
same thread block are executed on the same SM. Communication between threads in the same block
is made possible through the use of shared memory (which is the equivalent of an L1 cache) and
synchronization statements. However, the requirement that all threads in a block have to be on the
same SM does create a restriction on the number of threads in a block. Currently, a maximum of
1024 threads per block are allowed due to the resources available to each SM [1]. Since threads in a
thread block are executing in lockstep in units of a warp, the block size should be a multiple of the
warp size to avoid threads being masked to null operations (no-ops) and thus wasting resources.

2.3.3 Memory Hierarchy

To expand on what was introduced above, there are five separate memory spaces that CUDA GPU
threads have access to: global memory, constant memory, texture memory, shared memory, and local
memory. These memory spaces differ in their size and locality, that is, whether they are accessible
by the host or not and whether all threads can access them, as shown in Table 2.1. Memory access
latencies differ by several orders of magnitude, which needs to be accounted for when program-
ming. The programmer has control over managing global, constant, texture, and shared memory;
however, data are allocated to local memory by the compiler. Memory is managed through calls to
the CUDA runtime library. Memory transfers between the host and the device are performed in the
host code. These transfers are rather slow with latencies on the order of several thousand instruction
cycles.

Local memory is managed by adjusting the number of registers being used per core at compile
time. It is private to each thread and therefore lasts the lifetime of the thread. Shared memory is
managed in device code and is private to each block of threads; therefore it has the same lifetime of
the thread block. Threads within the same block can communicate through the use of shared memory
and synchronization statements. Constant memory and texture memory are managed in host code;
they are read-only memory spaces and both have a lifetime of the application. Global memory is
allocated and deallocated by the host, can be accessed by all threads, and has the lifetime of the
application unless it is explicitly deallocated in the host code.

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 30�

� �

�

30 Electronic Structure Calculations on Graphics Processing Units

Table 2.1 Memory hierarchy in the CUDA programming model detailing the
location, lifetime, and privacy of the five memory spaces

Memory Location Lifetime Privacy

Global Device memory accessed
via L2 cache

Application/
deallocation

All threads

Constant
(read-only)

Device memory accessed
via constant cache

Application/
deallocation

All threads

Texture
(read-only)

Device memory accessed
via texture cache

Application/
deallocation

All threads

Shared Shared memory on
each SM

Kernel Private to each
block of threads

Local Device memory accessed
via L2 cache

Thread Private to each
thread

2.4 Programming and Optimization Concepts

GPU programming adds new concepts to the fundamentals of parallel programming. GPU program-
ming can be broken down into two stages: porting and optimization. The first task for the programmer
should be to get the CPU code running on a GPU and giving the correct results, although the effort
required in later stages can be reduced if the code is not just naively ported but, instead, the algorithm
and approach is carefully tailored to match the GPU architecture. This initial porting process results
in GPU portions of the program. Once the GPU code has been validated, the code needs to be opti-
mized in order to fully utilize a GPU’s hardware and squeeze as much performance out as possible.
There are three key strategies for improving code performance on GPU architectures that need to be
considered during porting and optimization:

Increasing parallel efficiency – achieving the maximum parallel execution in order to fully utilize the
GPU architecture by ensuring a program exposes as much parallelism as possible.

Improving memory throughput – making the best use of the different memory locations on a GPU in
order to reduce or hide memory access latency.

Improving instruction throughput – feeding the cores with a constant flow of instructions in order to
reduce the amount of time cores spend idle.

In this section, GPU programming concepts are introduced, and an explanation of how they can
be managed in order to influence performance, with respect to the three strategies outlined above, is
given.

2.4.1 Latency: Memory Access

Memory access latency varies from one memory location to another. The highest latency memory
access is data transfers between the host and the device, which is on the order of thousands of clock
cycles. On the GPU global memory and local memory are the slowest memory locations, as they
reside in device memory (DRAM) that has the highest latency of several hundred clock cycles (and
lowest bandwidth). Constant memory and texture memory also reside in device memory but as they
come armed with their own cache, accesses can be as fast as constant/texture cache latency, which
can be considerably quicker than global device memory accesses. As shared memory is on-chip,
it is the fastest programmer-managed memory location. There is also an on-chip L1 cache and L2
cache on devices of compute capability 2.x and higher, which offer lower latency/higher bandwidth
memory accesses [1]. The latency/bandwidth of these memory locations varies from architecture to
architecture, so exact numbers are not given here.

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 31�

� �

�

GPUs: Hardware to Software 31

In order to maximize memory throughput, it is important not only to reduce the amount of
host–device data transfers and utilize as much on-chip low latency/high bandwidth memory as
possible but also to organize/access data in memory accordingly, as explained in the following.

To reduce host–device data transfers, one can try porting intermediate CPU code between GPU
kernels. This can sometimes reduce data transfers between the host and device, in which case, even if
porting the CPU code does not impact performance the reduction in data transfers might. Other meth-
ods of reducing data transfer overheads are using page-locked host memory and mapped page-locked
memory.

Effective utilization of on-chip memory can mean transferring data from global memory to shared
memory. For example, if an array is to be used multiple times by a block of threads, it may benefit
performance if the threads load the array into shared memory – each thread fetches a portion of the
array from global memory to the shared memory space. Thread synchronization must occur after
data fetch to ensure that all threads have finished and hence the entire array is in shared memory. The
threads are then free to operate on the shared memory array, benefiting from lower latency. However,
this is worthwhile only if the elements of the array are to be used multiple times, as the performance
of the initial transfer of data to shared memory is still limited by the latency/bandwidth of device
memory. Once threads have completed working on the array, it can be transferred back to device
memory in the same way. It may be necessary to synchronize threads prior to the transfer to ensure
that all threads have finished updating the array. Read-only data can also be placed in constant or
texture memory spaces to gain from their lower latency/higher bandwidth cache.

2.4.2 Coalescing Device Memory Accesses

To understand the concept of coalesced device memory accesses, one must first understand how
data are accessed in memory. A data transaction can be of size 32, 64, or 128 bytes. The size of a
data transaction depends on the amount of data requested, the location of the data in memory, and the
compute capability of the device. Memory addresses of a single data transaction can span a maximum
of 128 consecutive bytes of device memory. When a warp (or half-warp) of threads requests data
from device memory, the request is coalesced into as few transactions as possible so as to increase
the throughput of the data access. It is beneficial to performance to assist in reducing the number
of memory transactions per data request as much as possible. The ability of a device to coalesce
memory accesses varies between the different compute capabilities. The rules on coalescing memory
accesses become more relaxed for devices of higher compute capabilities. Details of the coalescing
behavior of each architecture can be found in the CUDA programming guide [1]. Coalescing memory
requests into as few data transactions as possible can dramatically improve the performance of a
GPU program. Aligning memory accesses and organizing data in memory accordingly can ensure
that device memory reads/writes are coalesced.

2.4.3 Shared Memory Bank Conflicts

The efficiency of shared memory is reliant on there being no bank conflicts. Banks are equally sized
sections of shared memory, which are accessed simultaneously by the threads in a half warp. Bank
conflicts are where more than one memory address request points to the same bank of shared memory.
In this eventuality, the memory accesses are serialized, with significant effects on performance. An
exception is if more than one thread of a warp requests data in the same memory location in a shared
memory bank, which results in a broadcast of some form dependent on the compute capability of
the device. The memory banks are organized into words that vary in size depending on the compute
capability of the device. Figure 2.6 shows a half-warp of threads ideally accessing 16 consecutive
banks in shared memory.

Reducing bank conflicts is the key to achieving high shared memory throughput and taking advan-
tage of the on-chip low latency/high bandwidth.

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 32�

� �

�

32 Electronic Structure Calculations on Graphics Processing Units

Shared memory banks

Threads in a halp-warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.6 Half-warp of threads accessing 16 shared memory banks

2.4.4 Latency: Issuing Instructions to Warps

The number of clock cycles a warp scheduler takes to issue an instruction to a warp varies depending
on a device’s compute capability and the instruction being issued. This is known as the latency.
In the interest of keeping each streaming multiprocessor as busy as possible, that is, utilizing a
GPU to its fullest by increasing parallel efficiency, the latency involved in issuing an instruction
should be hidden. To achieve this, all warp schedulers must issue an instruction to a warp on
every clock cycle of the latency period, completely hiding the latency period. This relies on their
warps being ready to execute on every clock cycle, creating a direct link between the number of
warps and parallel efficiency. The number of warps in a kernel is controlled through the number of
threads and blocks declared by the execution configuration on kernel launch and are measured by
occupancy.

2.4.5 Occupancy

The ratio of the number of active warps to the maximum number of warps on an SM is known as the
occupancy. Calculating the occupancy offers the programmer some insight into the parallel efficiency
of a given execution configuration, that is, whether or not a GPU is being used to its maximum.
Achieving the optimum occupancy is a balancing act since one needs to ensure that each thread in a
block has enough resources, preventing register spillages, that is, data overflowing from registers into
high latency/low bandwidth device (local) memory, while keeping the multiprocessor busy enough to
maximize instruction throughput through thread-level parallelism. It is not always beneficial to have
too high an occupancy ratio. The optimal level of occupancy can be dependent on whether a kernel is
memory bandwidth-bound. The more bandwidth bound a kernel, the more likely a higher occupancy
will benefit, as increasing the number of active warps on a multiprocessor gives the scheduler the
opportunity to hide expensive device (global) memory accesses behind computation. Too low an
occupancy ratio for a bandwidth-bound kernel will result in poor performance. On the other hand,
if a kernel is not bandwidth-bound because it has a high compute to data ratio, a high occupancy
ratio could have an adverse effect on performance due to more register spills, divergent branches,
and additional instructions. Factors that may affect the number of active warps on a multiprocessor
are the following:

• Amount of shared memory required per block of threads – shared memory is a limited on-chip
resource, so only as many warps can be active on a multiprocessor as there is shared memory
available.

• Register usage – as with shared memory, there are only a limited number of registers on each
SM. This has a daisy-chain effect on the number of warps able to be scheduled at any one time.
The compiler attempts to find a balance between the number of active warps on an SM and
the amount of register usage/spillage. It is possible to control register usage by the compiler
flag maxrregcount or through launch bounds (hints to the compiler to assist in optimal
register usage).

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 33�

� �

�

GPUs: Hardware to Software 33

• Number of threads in a block – an SM is limited to 16 active blocks of threads at any one time
(Kepler architecture) [1]; therefore having a small number of threads per block may be detrimental
to performance, as it could result in a low occupancy ratio and the total number of threads on a
SM not saturating the hardware.

As each application is unique, there is no exact execution configuration that will produce the
optimal occupancy for every code. An occupancy calculator is available from Nvidia [5], which can
aid in choosing the right configuration for a particular code. Experimentation with varying numbers of
threads per block, blocks per grid, maximum register counts, and amount of shared memory allocation
is recommended to fine-tune the performance of a kernel/application.

2.4.6 Synchronous and Asynchronous Execution

Synchronization of threads can be crucial in preventing race conditions and out-of-order memory
reads/writes and in maintaining the accuracy of a kernel. However, it can also harm performance by
reducing instruction throughput and parallel efficiency as threads become idle. There are two main
types of synchronization:

__syncthreads() – a function call in device code that causes all threads in a block of threads to
synchronize.

cudaDeviceSynchronize() – a function call in host code that causes all threads on the device to
synchronize.

The device code synchronization step (__syncthreads()) might be used in the case where two
threads in a block of threads need to communicate. The host code synchronization step (cudaDe-
viceSynchronize()) might be used if there is a dependency between two data elements that is seen by
two different blocks of threads. It is in the interest of performance that as few synchronization func-
tions are used as possible, particularly the global synchronization function in host code. An algorithm
should be mapped to the CUDA programming model so that threads needing to communicate with
each other reside in the same block where possible to reduce the overheads of placing data back
in the high-latency/low-bandwidth global memory between kernel calls and the overhead of kernel
invocation after global synchronization.

Asynchronous execution can be employed to help expose as much parallelism as possible. At the
application level, asynchronous functions or streams (streams are discussed below) can be used to
maximize concurrent host–device execution, for instance, copying data to the device asynchronously
enabling the CPU to overlap computation with data transfers. At the device level, asynchronous
functions can be used to squeeze as much parallelism as possible out of an SM by feeding it with
multiple kernels, giving the warp scheduler plenty of options when issuing the next instruction to
an active warp. Invocation of multiple kernels executing concurrently on a GPU is possible only on
devices of compute capability 2.x and higher [1].

2.4.7 Stream Programming and Batching

A stream is an in-order sequence of instructions to be executed on a GPU. Multiple streams of
instructions can be created. The order in which different streams execute is not sequential, enabling
asynchronous concurrent execution of kernels and functions. On devices of compute capability 2.x
and higher, multiple kernels can be launched concurrently through the use of streams [6]. If two
streams are launched, the warp scheduler has the option of issuing the next instruction from stream
1 if there is idle hardware while executing stream 0. The reason why hardware might be idle when
executing stream 0 could be that some threads in the stream have finished executing the kernel and
are waiting for the other threads to “catch-up,” or the number of threads launched in stream 0 did

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 34�

� �

�

34 Electronic Structure Calculations on Graphics Processing Units

not saturate the hardware. Streams can be used to batch small, independent operations so as to fully
utilize the hardware. This adds an additional tool for the scheduler to hide latency, which can help in
maximizing instruction throughput and increasing parallel efficiency.

Batching is a method of bundling together operations to create one larger operation from two or
more smaller operations. For example, if one has five matrices, each of size 5× 5, finding the inverse
of each matrix is an (N3) problem. This is in the microsecond timescale and will not provide enough
work for a GPU to hide the start-up costs of invoking several smaller kernels and fetching data from
memory. Batching all the independent, small matrix inverse operations into one larger matrix inverse
maximizes GPU utilization so as to yield better performance.

The CUDA Programming Guide [1] and Best Practices Guide [7] are excellent resources for dis-
covering programming and optimization conventions that will improve the performance of a GPU
application. The extent by which performance is improved when applying any of the above techniques
or concepts is application-dependent. It is worth measuring the performance of a GPU applica-
tion/kernel in order to deduce the limiting factor, that is, bandwidth-bound or compute-bound. An
optimization used to improve memory throughput, for example, moving data to on-chip shared mem-
ory, may not service a compute-bound application and can result in much programming effort for little
performance reward. Tools such as the CUDA Profiler [8] can assist in identifying the bottlenecks in
a code and should be used alongside metrics such as theoretical bandwidth and speedup to assess the
efficiency of a GPU implementation.

2.5 Software Libraries for GPUs

As general-purpose GPU technology matures, an increasing number of GPU-accelerated software
libraries and functions are becoming available to the programmer. These allow an application to bene-
fit from GPU acceleration by calling functions in the libraries that have already been optimized for the
target architecture, reducing the effort for the programmer. Scientific codes that already make use of
libraries such as BLAS [9–11] and LAPACK [12] for linear algebra can easily call a GPU-accelerated
version of a routine by linking to the accelerated library and modifying the arguments as required.
There are dozens of GPU-accelerated libraries available at https://developer.NVIDIA.com/
gpu-accelerated-libraries. Some of the more useful libraries for computational chemistry
applications are the following:

• cuBLAS [13] – a completely accelerated, freely available version of the Basic Linear Algebra
Subroutines (BLAS) library offering very high performance on Nvidia GPUs. The Nvidia CUDA
BLAS library (cuBLAS) supports all data types, that is, single precision, double precision,
complex, and double complex, concurrent streams, multiple GPUs, and batching of some
operations such as matrix–matrix multiplications. cuBLAS offers batch mode, which enables
a programmer to specify that the solutions to multiple small independent matrix operations be
provided simultaneously.

• cuFFT [14] – Fast Fourier transforms are frequently used in many scientific applications and are a
means of converting a function from real (time) to reciprocal space (frequency) and vice versa. The
Nvidia CUDA Fast Fourier Transform library (cuFFT) offers freely available, GPU-accelerated
FFT functions capable of performing up to 10× faster through the use of a divide-and-conquer
decomposition strategy.

• cuSPARSE [15] – The Nvidia CUDA Sparse Matrix library (cuSPARSE) offers freely available,
GPU-accelerated, sparse matrix, basic linear algebra subroutines capable of improving perfor-
mance significantly as compared to popular CPU based implementations.

• CULA [16] – CULA is a CUDA-enabled GPU-accelerated linear algebra software library that
is distributed as CULA Basic, CULA Premium, or CULA Commercial. Each distribution offers

https://developer.NVIDIA.com/gpu-accelerated-libraries
https://developer.NVIDIA.com/gpu-accelerated-libraries

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 35�

� �

�

GPUs: Hardware to Software 35

different levels of functionality, features, and support at varying prices starting at free for CULA
Basic (limited to single-precision data types). The programmer can choose between using a lower
level version of a specific function, offering more control to the programmer at the price of higher
programming effort, or a higher level version, whereby the function call takes care of all the GPU
requirements behind the scenes.

• MAGMA [17] – an open-source software library from the developers of LAPACK and
ScaLAPACK offering GPU-accelerated linear algebra routines for heterogeneous systems. It
is capable of multiple-precision arithmetic and supports hybrid many-/multi-core CPUs and
multiple Intel Xeon Phi accelerator cards or GPUs. This library interfaces to current LAPACK
and BLAS packages and standards for ease of programming.

2.6 Special Features of CUDA-Enabled GPUs

GPU technology is still an emerging field in the world of HPC with a steep growth curve, the benefit
of which is fast-paced innovation and improvement of features. Some of the more recent GPU fea-
tures available at the time of writing are Hyper-Q technology, Multi-Process Service (MPS), Unified
Memory, and NVLink.

2.6.1 Hyper-Q

Hyper-Q technology allows kernels to be launched on a single GPU from multiple CPU processes at
any one time by increasing the number of “connections” to a GPU from 1 (compute capability 2.x and
lower) to 32 (compute capability 3.x and above). This feature is designed to enhance the performance
of CUDA streams and enable the use of multiple MPI processes. Programs that use streams can often
be limited by something called false sharing. False sharing is where the scheduler underestimates the
number of independent instructions able to be executed concurrently as a consequence of multiple
independent streams being queued into a single pipeline. The multiple “connections” of Hyper-Q aid
in reducing the false sharing behavior by allowing streams to remain in separate pipelines so that the
scheduler is more likely to recognize independent instructions for concurrent execution.

2.6.2 MPS

MPS is a client–server runtime implementation of the CUDA API, which enables multiple MPI pro-
cesses to execute kernels and carry out data transfers on a single GPU through the use of Hyper-Q
technology. The server

• Enables multiple MPI processes to launch kernels on a GPU, reducing idle hardware.
• Reduces storage and scheduling resource usage by allocating a single copy of data on a GPU

accessible to all MPI processes.
• Extends the lifetime of scheduling resources of a single MPI process to eliminate the overhead of

swapping resources every time a new MPI process is scheduled.

2.6.3 Unified Memory

Unified memory is a feature of CUDA 6, which eliminates the need to explicitly allocate data on a
GPU and transfer it between the CPU and GPU. A single pointer can be used by the CPU and the
GPU to address shared data, as the hardware carries out all the data migration behind the scenes,
making GPU programming much simpler, as separate GPU data arrays do not need to be created.
This is done through a pool of managed memory shared by a CPU and GPU (Figure 2.7).

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 36�

� �

�

36 Electronic Structure Calculations on Graphics Processing Units

Unified memory

Developer view today

System

memory

GPU memory Unified memory

Developer view with

unified memory

Figure 2.7 Visual representation of unified memory. Host and device memory is presented as a single
address space. This makes programming easier, but since memory copies still happen behind the scenes,
performance can be lower compared to explicitly managed memory. Picture adaptation courtesy of Nvidia
Corporation

Unified memory removes some of the complexity from programming and can be as quick as local
data accesses on a GPU. It is worth noting, however, that the use of asynchronous memory copies and
programming at a lower level is more than likely faster than using unified memory. Unified memory
is designed to open up GPU programming to a wider audience by simplifying code development.

2.6.4 NVLink

The final special feature to be discussed is NVLink, which is the first interconnect designed specif-
ically for GPUs. At the time of writing, NVLink was not yet available, having been announced
only in March 2014. NVLink promises a high-speed interconnect between CPU and GPU, allow-
ing 5–12 times the bandwidth capabilities of the fastest interconnect currently on the market, and
enables GPU–GPU connection, making data sharing between multiple GPUs faster and more effi-
cient. One of the largest bottlenecks in a GPU application is the rate at which data can be transferred
between the host and the device. This advancement in GPU technology will hopefully reduce the
data transfer bottleneck and thus improve data throughput.

References

1. NVIDIA (2014) CUDA C Programming Guide 2007–2014. Available from: http://docs
.nvidia.com/cuda/cuda-c-programming-guide (accessed 01 September 2015).

2. NVIDIA (2014) CUDA Runtime API: API Reference Manual 2014. Available from: http://
docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf (accessed 01 September 2015).

3. Khronos (2014) The OpenCL Specification 2014. Available from: https://http://www
.khronos.org/registry/cl/ (accessed 01 September 2015).

4. OpenACC (2014) The OpenACCTM Application Programming Interface 2013. Available from:
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf (accessed 01
September 2015).

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
https://http://www.khronos.org/registry/cl/
https://http://www.khronos.org/registry/cl/
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 37�

� �

�

GPUs: Hardware to Software 37

5. NVIDIA (2014) CUDA Occupancy Calculator Spreadsheet. Available from: http://
developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator
.xls (accessed 01 September 2015).

6. Rennich, S. (2014) CUDA C/C++ Streams and Concurrency: NVIDIA; 2011. Available from:
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrency
Webinar.pdf (accessed 01 September 2015).

7. NVIDIA (2014) CUDA: Best Practices Guide 2007–2014. Available from: http://docs
.nvidia.com/cuda/cuda-c-best-practices-guide/index.html (accessed 01
September 2015).

8. NVIDIA (2014) CUDA: Profiler User’s Guide 2014. Available from: http://docs.nvidia
.com/cuda/profiler-users-guide/index.html (accessed 01 September 2015).

9. Dongarra, J. (2002) Basic linear algebra subprograms technical forum standard. International
Journal of High Performance Applications and Supercomputing, 16 (1), 1–111.

10. Dongarra, J. (2002) Basic linear algebra subprograms technical forum standard. International
Journal of High Performance Applications and Supercomputing, 16 (2), 115–199.

11. Blackford, L.S., Daniel, J., Dongarra, J. et al. (2002) An updated set of basic linear algebra
subprograms (BLAS). ACM Transactions on Mathematical Software, 28 (2), 135–151.

12. Anderson, E., Bai, Z., Bischof, C. et al. (1999) LAPACK User’s Guide, 3rd edn, Society for
Industrial and Applied Mathematics, Philadelphia, PA.

13. NVIDIA (2014) CUBLAS Library User Guide 2014. Available from: http://docs.nvidia
.com/cuda/pdf/CUBLAS_Library.pdf (accessed 01 September 2015).

14. NVIDIA (2014) CUFFT User Guide 2014. Available from: http://docs.nvidia.com/
cuda/pdf/CUFFT_Library.pdf (accessed 01 September 2015).

15. NVIDIA (2014) CUSPARSE Library 2014. Available from: http://docs.nvidia.com/
cuda/pdf/CUSPARSE_Library.pdf (accessed 01 September 2015).

16. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis, E.J. 2010 CULA: Hybrid
GPU Accelerated Linear Algebra Routines. SPIE Defense and Security Symposium (DSS).

17. Lab IC (2014) Software Distribution of MAGMA Version 1.4 2013. Available from: http://
icl.cs.utk.edu/magma/ (accessed 01 September 2015).

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrency

Trim Size: 170mm x 244mm Walker c02.tex V3 - 01/08/2016 9:36 A.M. Page 38�

� �

�

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 39�

� �

�

3
Overview of Electronic Structure

Methods

Andreas W. Götz
San Diego Supercomputer Center, UCSD, La Jolla, CA, USA

This chapter provides a concise overview of electronic structure methods that are widely used
for applications in chemistry, physics, biology, and materials science. The discussion includes
Hartree–Fock and density functional theory, semiempirical methods, and wave-function-based
electron correlation methods. We present the essential theoretical background of each method,
discuss common choices of basis sets that are used to discretize the equations, and point out strengths
and weaknesses of the different approaches. The computational effort and its scaling with problem
size strongly depends on the electronic structure method, and we highlight the computational
bottlenecks with special emphasis on implementations on graphics processing units in later sections
of this book.

3.1 Introduction

It is hard to overstate the importance of electronic structure theory for all branches of science that
are concerned with matter at the nanometer scale since it is the interaction between the electrons
that determines the properties of the matter that surrounds us, from isolated molecules to materials.
As a consequence, electronic structure calculations are widely used in chemistry, physics, biology,
and materials science for the analysis and prediction of the structure and thermodynamical properties
of molecules and solids as well as their interaction with electromagnetic fields and radiation [1–5].
Because of the significant advances in theoretical methods, numerical approximations, as well as
computer hardware, electronic structure methods are now routinely employed both in basic science
and in applied research in numerous industries. The value of electronic structure methods was rec-
ognized in 1998 with award of the Nobel Prize in chemistry to Kohn “for his development of the

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 40�

� �

�

40 Electronic Structure Calculations on Graphics Processing Units

density-functional theory” [6] and John A. Pople “for his development of computational methods in
quantum chemistry” [7].

At the basis of electronic structure methods lies the Born–Oppenheimer approximation, which
separates the motion of electrons and atomic nuclei. The task is then reduced to describing the motions
of the electrons for a given configuration of nuclei, that is, to solve the electronic Schrödinger equation
and find the electronic wave function for the system under consideration. If relativistic effects are
important, then the Dirac equation needs to be solved in place of the Schrödinger equation. However,
in this book we will not discuss the Dirac equation or other methods and approximations to take
relativistic effects into account [8]. This chapter gives an overview of the most common theoretical
approaches to solve the electronic Schrödinger equation. Later chapters of this book explain in detail
how graphics processing units (GPUs) are used in practical implementations of these methods.

3.1.1 Computational Complexity

For many-electron systems, analytical solutions to the Schrödinger equation are not known, and
one has to resort to numerical approximations. The same complexity that precludes the exact
analytical solution of the Schrödinger equation, however, also results in highly unfavorable scaling
of computational effort and the required resources such as random access memory or disk storage.
For example, the computational demand of exact calculations with the full configuration interaction
(CI) method grows exponentially with the size of the system. Approximations that represent a
reasonable compromise between efficiency and accuracy are thus needed to carry out electronic
structure calculations on sizable molecules. This chapter presents the theoretical background of the
most important approximations. Additional details and references can be found in standard quantum
chemistry and electronic structure theory text books [9–11].

A hierarchy of well-controlled approximations that do not sacrifice the predictive power of
the parameter-free nature of quantum mechanical calculations but exhibit polynomial rather than
exponential scaling is routinely available [10]. Among these are popular wave function-based quan-
tum chemical methods such as Møller–Plesset perturbation theory [12] and coupled cluster theory
[13, 14], both of which are extensively discussed in terms of massively parallel implementations on
GPUs in later chapters of this book. These so-called ab initio methods (ab initio because they do not
rely on parameterizations) exhibit a scaling of computational complexity of at least (N5), where N
denotes system size, meaning that applications to many interesting problems are still out of reach.

Partly owing to this steep scaling of ab initio wave function-based methods, density functional
theory (DFT) [15–17] is established as the most popular electronic structure theory, which, in its
Kohn–Sham formulation, replaces the complicated many-electron Schrödinger equation with a set
of self-consistent one-electron equations with a formal scaling of computational effort of (N3), or
(N4) if exact exchange is included. Many different implementations of density functional methods
exist, usually focusing on either finite molecular systems or condensed phase systems and solids.
Several examples for these cases that exploit GPUs are discussed in later chapters.

Finally, semiempirical quantum chemistry methods [18] and density functional tight binding
(DFTB) [19, 20] introduce additional approximations and thus have to rely on extensive parameteri-
zations. As a consequence, they are computationally extremely efficient and exhibit low quadratic
scaling for computing the Hamiltonian.

Much effort has been devoted to improving the parameterizations, and thus fidelity of these
approximate electronic structure methods, as well as to reduce both the prefactor and the effective
scaling of ab initio and density functional methods. Because of the “near-sightedness” of matter
[21, 22], in principle, linear scaling with system size is achievable, at least for insulating materials
with a sufficiently large bandgap or gap between highest occupied and lowest unoccupied molecular
orbitals (MOs). In combination with the advancements in computer hardware that we have witnessed

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 41�

� �

�

Overview of Electronic Structure Methods 41

over the last decades, not least the development of massively parallel GPU processors, the future is
thus bright for electronic structure theory and its application to an ever-increasing range of fields.

3.1.2 Application Fields, from Structures to Spectroscopy

The electronic wave function depends parametrically on the position of the nuclei, and in the
Born–Oppenheimer approximation the nuclei move on the potential energy surfaces, which are
the solutions of the electronic Schrödinger equation. Thus, it is possible to use electronic structure
methods to find equilibrium molecular structures, which are stationary points on this surface. Hence,
one of the most common applications is to map reaction mechanisms that connect these stationary
points through thermal or photochemical processes [11]. Since both the electronic ground state and
electronically excited states are accessible within most of the aforementioned electronic structure
methods, it is possible to model many important processes that involve transitions between these
electronic states. Application fields include spectroscopy and processes that involve charge transfer
and separation such as biological light harvesting or artificial photosynthesis and solar cells [4, 5].

Among the many spectra that are nowadays routinely accessible are vibrational infrared (IR) and
Raman spectra, nuclear magnetic resonance (NMR) spectra including chemical shifts and J cou-
pling constants, electronic paramagnetic resonance (EPR) spectra, and electronic spectra including
absorption and emission spectra, to name a few [4, 5, 11, 23, 24]. Importantly, electronic struc-
ture calculations make it not only possible to predict properties of molecules and materials but
also enable the interpretation and understanding in terms of structural features of molecules and
materials that lead to desired properties. This enables a rational design of molecules and materials
with specific properties, such as improved homogeneous or heterogeneous catalysts, enzymes for
biocatalysis, drugs, semiconductors, fuel cells, or donor–acceptor materials for light harvesting in
solar cells.

3.1.3 Chapter Overview

This chapter gives a concise overview of the methods that are most widely used for electronic struc-
ture calculations, with a bias toward approaches that are common in molecular quantum chemistry
as opposed to computational solid-state physics. It covers the background and relevant details for
all approaches that are included in the following chapters of the book but omits other important
approaches such as quantum Monte Carlo (QMC) [25–27], explicitly correlated R12/F12 Methods
[28], or many-body Green’s function methods for electronic excitations [29], for which there are no
GPU ports at the time of writing or which could not be covered in the remainder of the book.

Our presentation starts with Hartree–Fock (HF) and DFT methods. Although these methods are
conceptually different, the working equations are essentially identical, and most practical implemen-
tations use in fact the same code structure for both. DFT is undoubtedly the work horse of electronic
structure calculations both in chemistry and materials science due to its favorable combination of
low computational cost and good accuracy. While HF solutions to the electronic structure problem
in general do not lead to quantitatively useful results, HF theory is important as the starting point
for accurate wave function-based electron correlation methods, which we cover later in the chapter.
We also summarize common ways of numerically representing the electron density and wave func-
tion, using either analytical basis functions or discrete numerical representations. The choice of the
basis naturally has a significant effect on the required numerical methods and approaches that are
used to achieve good computational scaling and, in turn, the algorithms that can be used for efficient
implementations on GPUs. We also cover semiempirical approaches, which, as mentioned previ-
ously, make approximations that render these methods computationally efficient compared to HF or
DFT. We use atomic units throughout this chapter.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 42�

� �

�

42 Electronic Structure Calculations on Graphics Processing Units

3.2 Hartree–Fock Theory

As mentioned, electronic structure methods aim at solving the Schrödinger equation for
many-electron systems within the Born–Oppenheimer approximation:

ĤΨ = EΨ, (3.1)

where Ĥ is the nonrelativistic, time-independent electronic Hamiltonian, and Ψ the corresponding
wave function. The Hamiltonian includes the kinetic energy operator and describes the interaction
among all elementary particles (electrons and nuclei) and external electromagnetic fields. If the
Hamiltonian contains fields that are time-dependent, then the time-dependent Schrödinger equation
has to be solved.

HF theory [9–11] is based on the assumption that the electronic wave function can, to a good
approximation, be described in terms of a single Slater determinant Φ, that is, an antisymmetrized
product of orthogonal molecular spin orbitals or single-particle wave functions 𝜓i. Importantly, this
wave function ansatz satisfies the Pauli exclusion principle. For brevity of discussion, we will assume
the so-called restricted (closed shell) Hartree–Fock (RHF) theory, in which each orbital 𝜓i is doubly
occupied with a pair of spin-up and spin-down electrons that share the same probability density in real
space. Extension to open-shell systems with an odd number of electrons or otherwise unpaired elec-
trons and nonzero spin density is straightforward within either the restricted open-shell Hartree–Fock
(ROHF) or unrestricted Hartree–Fock (UHF) formalism.

Assuming a Slater determinant as wave function, the expectation value of the energy becomes
[9–11]

ERHF = 2
occ∑

i

⟨i|ĥ|i⟩ + 2
occ∑
ij

(ii| jj) −
occ∑
ij

(ij|ij), (3.2)

where we have introduced the one-electron operator

ĥ = −1
2
∇2 + 𝑣ext(r) (3.3)

that contains the kinetic energy operator −1∕2∇2 and the external potential 𝑣ext due to Coulomb
interaction of the electrons with the nuclei and other external fields. We use following shorthand
notation for the one-electron integrals:

⟨i|ĥ|i⟩ =
∫

dr 𝜓i(r)ĥ𝜓i(r), (3.4)

and define the shorthand notation for the two-electron repulsion integrals (ERIs) via

(ij|kl) =
∫

drdr′
𝜓i(r)𝜓j(r)𝜓k(r′)𝜓l(r′)

|r − r′| . (3.5)

The summations in the equations above run over all n∕2 doubly occupied orbitals of an n-electron
system. The first term on the right-hand side of Eq. (3.2) contains the kinetic energy of the electrons
and the interaction energy between the electrons and the nuclei and other external electric fields.
The second term is the classical Coulomb repulsion among all electrons, while the third term is the
exchange energy, which is due to the antisymmetry of the wave function.

Minimizing the HF energy (3.2) with respect to variations in the orbitals under the constraint that
the orbitals remain orthonormal leads to the single-particle Hartree–Fock equations, which replace
the complicated many-body Schrödinger equation:

F̂𝜓i = 𝜖i𝜓i. (3.6)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 43�

� �

�

Overview of Electronic Structure Methods 43

F̂ is the closed-shell Fock operator,

F̂ = ĥ +
occ∑

j

(
2Ĵj − K̂j

)
, (3.7)

where we have defined the Coulomb and exchange operators

Ĵj𝜓i(r) = ∫
dr′𝜓j(r

′)𝜓j(r
′)𝜓i(r), (3.8)

K̂j𝜓i(r) = ∫
dr′𝜓j(r

′)𝜓i(r
′)𝜓j(r). (3.9)

The eigenvalues 𝜖i of the HF equations (3.6) are Lagrange multipliers that guarantee orthonormality
of the orbitals 𝜓i and can be interpreted as molecular orbital energies. The n∕2 orbitals with the
lowest eigenvalues are the orbitals that are occupied with n electrons and thus represent the ground
state wave function, while the unoccupied or virtual orbitals spanning the remainder of the Hilbert
space do not have a direct meaning but are of relevance for correlated wave function-based electronic
structure methods and methods that describe excited electronic states.

Hartree–Fock theory is a mean-field theory since the solutions to the HF equations, the single-
particle orbitals 𝜓i, describe the motion of a single electron (or pair of electrons in the case of RHF
theory) in the field of all other electrons. The interaction with all other electrons is encoded in the
Coulomb and exchange operators, both of which, and thus also the Fock operator, depend on the
orbitals 𝜓i that are the solutions of the HF equations. As a consequence, the HF equations have to
be solved iteratively until self-consistency is reached, that is, until the orbitals that define the Fock
operator are identical to the solutions of the Fock equations. For this reason, the HF equations are
also often referred to as self-consistent field (SCF) equations.

3.2.1 Basis Set Representation

For practical applications, a numerical representation of the orbitals 𝜓i is required, and a variety
of choices is possible and in use, as discussed in greater detail in the following and throughout
some of the later chapters of this book. In brief, plane waves (see Chapters 7 and 9) are commonly
employed for calculations under periodic boundary conditions, but other choices are possible, includ-
ing wavelets (see Chapter 6) and real-space discretizations on a numerical grid (see Chapter 9). While
numerical grids can also be used for finite systems (see Chapter 10), it is most common for finite
molecular systems to expand the orbitals using localized, atom-centered analytical basis functions
that are Gaussian functions (see Chapter 4) or, less frequently, Slater type functions (see Chapter 5).
In a basis set representation the molecular orbitals are expanded as

𝜓i(r) =
∑
𝜇

c𝜇i𝜙𝜇(r), (3.10)

where c𝜇i are the molecular orbital expansion coefficients and {𝜙𝜇} is the basis set. Within this rep-
resentation, the HF equations turn into a set of nonlinear, general eigenvalue equations, which can be
written in matrix form as

FC = SC𝜖, (3.11)

where F is the matrix representation of the Fock operator in the expansion basis, C collects the expan-
sion coefficients for all orbitals in its columns, 𝜖 is the diagonal matrix of orbital eigenvalues, and the
overlap matrix S is the metric of the basis set that arises in the general case of non-orthogonal basis
functions and is unity otherwise. These equations are now amenable for efficient implementation in
computer programs.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 44�

� �

�

44 Electronic Structure Calculations on Graphics Processing Units

In line with the definition of the Fock operator F̂ in Eq. (3.7), the Fock matrix elements are given as
a sum of one-electron contributions (kinetic energy and external potential) and two-electron Coulomb
and exchange contributions:

F = h + J − 1
2

K, (3.12)

h𝜇𝜈 =
⟨
𝜇
||||−

1
2
∇2 + 𝑣ext

|||| 𝜈
⟩
, (3.13)

J𝜇𝜈 =
∑
𝜅𝜆

P𝜅𝜆 (𝜇𝜈|𝜅𝜆) , (3.14)

K𝜇𝜈 =
∑
𝜅𝜆

P𝜅𝜆 (𝜇𝜅|𝜈𝜆) , (3.15)

where

P𝜇𝜈 = 2
occ∑

i

c𝜇ic𝜈i (3.16)

are elements of the density matrix that can be used to express the electron density in terms of the
basis functions

𝜌(r) =
∑
𝜇𝜈

P𝜇𝜈𝜙𝜇(r)𝜙𝜈(r). (3.17)

The notation for the one-electron integrals and ERIs has been defined in Eqs. (3.4) and (3.5), but now
the integrals are over basis functions and not MOs.

There are two major computational bottlenecks in HF calculations. These are the evaluation of
the Fock matrix elements as defined in Eqs. (3.12)–(3.15), and solution of the SCF equations from
Eq. (3.11). The latter requires diagonalization of the Fock matrix, which scales cubically with sys-
tem size and eventually dominates the computational cost for very large calculations. In this case,
alternative ways to solve the SCF equations that do not rely on matrix diagonalization must be
employed [30, 31].

3.2.2 Two-Electron Repulsion Integrals

The computational cost for calculating the Fock matrix elements is dominated by the evaluation of
the ERIs (𝜇𝜈|𝜅𝜆), which are required for the Coulomb and exchange contributions, see Eqs. (3.14)
and (3.15). The ERIs are four-index quantities

(𝜇𝜈|𝜅𝜆) =
∫

drdr′
𝜙𝜇(r)𝜙𝜈(r)𝜙𝜅(r′)𝜙𝜆(r′)

|r − r′| (3.18)

and formally there are (N4) ERIs that need to be evaluated during an HF calculation. Because of
the sheer number of ERIs, storage in memory is not an option. Instead, so-called direct SCF methods
recompute the ERIs during each iteration of the SCF cycle and contract them with the density matrix
elements to directly obtain the corresponding Coulomb and exchange contributions to the Fock matrix
[9–11].

For large, spatially extended systems, most of the ERIs are zero or negligible, which can be effi-
ciently exploited to reduce the number of ERIs that have to be computed. This leads to an effective
scaling of (N2) for most practical calculations. The reason for this asymptotic scaling with local,
atom-centered basis sets consisting of Gaussian-type functions (GTFs), Slater-type functions (STFs),
or numerical atomic orbitals is easy to understand. These basis functions decay to zero at large dis-
tances from their origin. As a consequence, an overlap density 𝜌𝜇𝜈 = 𝜙𝜇𝜙𝜈 , that is, the product of two

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 45�

� �

�

Overview of Electronic Structure Methods 45

basis functions, will always be negligible for pairs of basis functions whose origins are sufficiently far
away from each other. Any ERI with a negligibly small overlap density can then safely be discarded
from the calculation. This is typically exploited quantitatively by using the Schwarz inequality

(𝜇𝜈|𝜅𝜆) ≤ (𝜇𝜈|𝜇𝜈)1∕2(𝜅𝜆|𝜅𝜆)1∕2, (3.19)

which provides an upper bound for the magnitude of ERIs and has proven successful and reliable for
integral prescreening in electronic structure calculations. The ERIs required for prescreening using
the Schwarz inequality are two-index quantities and thus not numerous and can be conveniently
precomputed before solving the SCF equations. As can be seen from Eqs. (3.14) and (3.15), the Fock
matrix contribution of an ERI will also be negligible if the corresponding density matrix elements
are sufficiently small. Direct SCF implementations exploit thus the sparsity of the density matrix in
combination with Schwarz integral screening.

While each ERI in principle contributes to both the Coulomb and exchange contributions to
the Fock matrix, it is in fact beneficial to separate the calculation of the Coulomb matrix elements
J𝜇𝜈 and the exchange matrix elements K𝜇𝜈 and to exploit the different nature of the Coulomb and
exchange interactions. This leads to linear scaling methods [22, 32], that is, implementations that
show effective (N) scaling in the asymptotic limit of large systems. Important progress with respect
to the Coulomb problem has been achieved, for example, by generalization of the fast multipole
method to Gaussian charge distributions (overlap densities as defined above), which was shown to
lead to linear scaling [33, 34]. For nonmetallic systems with a large gap between highest occupied
and lowest unoccupied molecular orbitals, the density matrix decays exponentially. This has led to
the development of (N) methods that exploit the fast decaying nature of the exchange interaction
[35, 36]. Using these algorithmic advances for linear scaling evaluation of the Fock matrix, SCF
calculations with hundreds to thousands of atoms have become possible.

The importance of the algorithmic advances that enable low-scaling SCF calculations cannot
be understated. Nevertheless, many systems of interest simply do not fall into the linear scaling
regime. For this reason, and in order to reduce the prefactor of linear scaling computations of the
Fock matrix, efficient algorithms and software implementations to compute the ERIs will always
be required. Tremendous effort has been made over the last decades to develop highly efficient
CPU-based algorithms that require a minimum of floating-point operations for the calculation of
ERIs with Gaussian basis sets. In Chapter 4 of this book, Luehr, Sisto, and Martínez demonstrate
how GPU architectures can, instead, be efficiently exploited to compute Gaussian basis set ERIs in
a massively parallel manner.

3.2.3 Diagonalization

As mentioned previously, the matrix eigenvalue equation (3.11) is usually solved by diagonaliza-
tion of the Fock matrix. For small matrices, this is an efficient approach since in this case (with
exception of semiempirical methods) the numerical work to compute the Fock matrix is significantly
larger than its diagonalization. However, algorithms for the diagonalization of dense matrices scale
as (N3) and thus invariably will start to dominate the computational effort of an SCF calculation if
efficient prescreening techniques and linear scaling algorithms are employed for the calculation of
the Fock matrix. In addition, it is almost trivial to make use of parallel processing when computing
contributions to the Fock matrix, while this is much more difficult for matrix diagonalization. As a
result, methods have been developed to replace the diagonalization step by procedures with a more
favorable scaling behavior for the update of the orbitals, for example, based on direct density matrix
optimizations with conjugate gradient algorithms [30, 31]. In Chapter 8, Schütt et al. demonstrate
how GPUs can be exploited in algorithms for orbital updates that achieve linear scaling computational
effort for large systems using sparse matrix algebra.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 46�

� �

�

46 Electronic Structure Calculations on Graphics Processing Units

3.3 Density Functional Theory

The roots of DFT [15, 16, 37–40] can be traced back to work by Thomas and Fermi in the late
1920s who used models for the electronic structure of atoms that depend only on the electron
density [41, 42]. Similarly, the Hartree–Fock–Slater or X𝛼 method [43] replaces the nonlocal,
orbital-dependent exchange term of the Hartree–Fock method by the approximate local exchange
potential of Dirac [44], which is very simple and given by 𝜌1∕3. The basis for modern DFT, however,
is the Hohenberg–Kohn theorems [45], later generalized by Levy, which prove that all properties
of a many-electron system are functionals of the ground-state electron density. This means that, in
place of solving the complicated many-electron Schrödinger equation, the ground-state energy can
be obtained by minimizing the functional of the total electronic energy with respect to variations
in the electron density. Unfortunately, this energy functional is not known, and it has proven
difficult to develop functionals of the electron density that are sufficiently accurate for practical
applications. This holds, in particular, for the density functional of the kinetic energy, a problem
that already plagued the Thomas–Fermi approach. Thus, while the Hohenberg–Kohn theorems give
a sound justification for DFT, the importance of this theory would not have risen above that of the
Thomas–Fermi model if it was not for the work of Kohn and Sham.

3.3.1 Kohn–Sham Theory

Kohn and Sham had the ingenious idea to obtain the real, interacting electron density from an aux-
iliary system of noninteracting electrons with an electron density that is identical to that of the real
system. The wave function for such a system of noninteracting electrons is a Slater determinant built
from the eigenfunctions 𝜓i of a single-particle Hamiltonian (similar to HF theory). In Kohn–Sham
(KS) theory [46], the total electronic energy is given as

E[𝜌] = Ts[𝜌] + ∫
dr𝜌(r)𝑣ext(r) +

1
2 ∫

dr dr′
𝜌(r)𝜌(r′)
|r − r′| + Exc[𝜌], (3.20)

where the various terms represent, in order, the kinetic energy of the KS system of noninteracting
electrons, the interaction between the electrons and the external potential of nuclei and other fields,
the Hartree energy arising from the Coulomb interaction of the electron density, and the remainder
of the total energy, which is referred to as exchange-correlation (xc) energy Exc. The electron density
is given in terms of the occupied orbitals

𝜌(r) = 2
occ∑

i

|𝜓i(r)|2, (3.21)

where, as before in the section on HF theory, we have assumed a closed-shell n electron system
with n∕2 doubly occupied orbitals. The functional of the kinetic energy of noninteracting electrons
is given as

Ts[𝜌] = 2
occ∑

i

⟨
𝜓i

||||−
1
2
∇2

||||𝜓i

⟩
. (3.22)

This noninteracting kinetic energy is different from the exact kinetic energy of the real system;
however, it is a convenient and fairly good approximation. The remainder of the exact kinetic energy
is taken into account as part of the xc energy Exc.

Variational minimization of this total energy functional with respect to the electron density under
the constraint that the orbitals remain orthonormal leads to the single-particle KS equations

F̂KS𝜓i = 𝜖i𝜓i (3.23)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 47�

� �

�

Overview of Electronic Structure Methods 47

with the KS single-particle Hamiltonian

F̂KS = −1
2
∇2 + 𝑣ext(r) + 𝑣H(r) + 𝑣xc(r). (3.24)

Here,

𝑣H(r) = ∫
dr′

𝜌(r′)
|r − r′| (3.25)

and

𝑣xc(r) =
𝛿Exc[𝜌]
𝛿𝜌(r)

(3.26)

are the Hartree potential and the xc potential, respectively. The KS Hamiltonian looks similar to the
Fock operator in HF theory, but the xc potential is a local potential, whereas the exchange operator
in HF theory is orbital-dependent and nonlocal. The single-particle KS equations (3.23) look decep-
tively simple, but the full many-body nature is reflected in the fact of our incomplete knowledge of
the xc energy density functional.

In basis set representation the KS Hamiltonian becomes

FKS = h + J + Vxc, (3.27)

where the one-electron matrix elements h𝜇𝜈 and Coulomb matrix elements J𝜇𝜈 are the same as in HF
theory (see Eqs. (3.13) and (3.14)), and the matrix elements of the xc potential are

Vxc,𝜇𝜈 = ⟨𝜇|𝑣xc|𝜈⟩. (3.28)

Thus, it is straightforward to implement DFT into an HF program by replacing the HF exchange
energy and operator with the xc energy and potential.

3.3.2 Exchange-Correlation Functionals

For the KS method to be successful, good approximations to the exchange-correlation energy Exc

are required [47]. For many years, the local density approximation (LDA) was the most widely used
scheme. Within the LDA, the xc energy is expressed as

ELDA
xc [𝜌] =

∫
dr𝜖xc(𝜌(r)), (3.29)

where 𝜖xc is the xc energy density of a homogeneous electron gas, which is accurately known from
QMC calculations [48]. The xc functional can be divided into exchange and correlation contributions
according to

ELDA
xc [𝜌] = ELDA

x [𝜌] + ELDA
c [𝜌]. (3.30)

In the case of LDA, the Dirac exchange energy functional is used for Ex. Several expressions exist
for the correlation contribution, with popular versions due to Vosko, Wilk, and Nusair (VWN) [49]
or Perdew and Wang (PW92) [50]. For practical purposes, all LDA functionals are nearly equivalent.
The LDA approximation works well in the limit of slowly varying densities, and became popular
with condensed-matter physicists who found that LDA gave good descriptions of bulk solids and
surfaces, but it was never widely adopted by quantum chemists.

The situation changed with introduction of the generalized gradient approximation (GGA), which
supplements the LDA functional with a term that depends on the gradient of the electron density:

EGGA
xc [𝜌] =

∫
dr𝜖xc(𝜌(r),∇𝜌(r)). (3.31)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 48�

� �

�

48 Electronic Structure Calculations on Graphics Processing Units

The introduction of GGA corrections to the LDA made DFT popular among chemists since
GGA functionals like BLYP, consisting of the exchange contribution by Becke (B88)[51] and
the correlation contribution by Lee, Yang and, Parr (LYP) [52], provided sufficient accuracy for
quantitative analysis of chemical bonds. Many other GGA functionals are available, and new ones
continue to appear. Some of these functionals contain empirical parameters that are optimized to
reproduce reference data from experiments or high-level calculations, while others are obtained from
physical constraints such that they incorporate key features of the –exchange-correlation energy.

Several newer density functionals depend on additional variables beyond the electron density
and its gradient. Meta-GGA functionals add dependence on the kinetic energy density 𝜏 of the KS
system:

EMGGA
xc [𝜌] =

∫
dr𝜖xc(𝜌(r),∇𝜌(r), 𝜏(r)), (3.32)

𝜏(r) =
occ∑

i

|∇𝜓i(r)|2. (3.33)

Meta-GGAs are examples of functionals that are implicit density functionals, since the KS orbitals
𝜓i implicitly depend on the electron density.

A rather important development was the introduction of hybrid xc functionals in 1993 by Becke
[53]. In hybrid functionals, a portion of the explicitly density-dependent DFT exchange is replaced
by the orbital-dependent HF exact-exchange energy:

Ehybrid
xc = aEexact

x + (1 − a)EDFT
x + EDFT

c . (3.34)

A mixing coefficient of a ≈ 1∕4 was found to work well in many cases, and this choice is also backed
by theoretical considerations. This value is used in the nonempirical PBE0 [54] functional, which is
successfully employed for applications to ground- and excited-state properties. The importance of
hybrid functionals is also reflected in the fact that the B3LYP [55] hybrid functional has been the
most widely used density functional in computational chemistry over the last two decades [39, 40].

Employing exact exchange leads to a partial cancellation of the self-interaction error inherent to
local or semilocal density functionals and improves the description of charge transfer and Rydberg
excitations in time-dependent density functional theory (TDDFT) schemes [40]. It is worth pointing
out that the exact exchange part of standard hybrid functionals is usually implemented using the
nonlocal, orbital-dependent HF potential and as such is not the KS exact exchange. The local KS
exact exchange potential, instead, can be obtained with the so-called optimized effective potential
methods, with important consequences in particular for unoccupied KS orbitals [56]. However, the
occupied orbitals obtained with standard implementations of hybrid functionals are close to true KS
orbitals.

More recently, range-separated hybrid functionals, also termed long-range corrected functionals,
have been introduced. In these functionals, for example, CAM-B3LYP [57], the exact exchange is
screened as a function of the interelectronic distance. As a consequence, long-range charge transfer
excitations for which GGAs or regular hybrid functionals fail are well described.

For obvious reasons, all density functionals discussed so far are not able to correctly describe
long-range dispersion that decays as −C6∕R6. Instead, the asymptotic interactions decay
exponentially. To correct for this deficiency, ad hoc empirical dispersion corrections in form
of pair potentials have been introduced. These empirical corrections work rather well. Numerical
results obtained, for example, with Grimme’s DFT-D methodology [58] for binding energies in
weakly interacting systems are excellent. Several nonempirical dispersion models that do not rely
on London-type pairwise corrections have also been developed, including those by Tkatchenko and
Scheffler [59], and applications of DFT dispersion methods are rapidly growing.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 49�

� �

�

Overview of Electronic Structure Methods 49

3.3.3 Exchange-Correlation Quadrature

In general, the dependence of the xc functionals on the electron density 𝜌, its gradient ∇𝜌, and the
kinetic energy density 𝜏 is very complicated. As a consequence, it is impossible to analytically solve
the xc integrals required to obtain the xc energy Exc and the matrix elements of the xc potential Vxc,𝜇𝜈 .
Instead, a numerical integration grid is employed to integrate the xc potential 𝑣xc and the xc energy
density 𝜖xc. This is a set of points ri and nonnegative weights 𝜔i such that

∫
drf (r) ≈

∑
i

𝜔i f (ri). (3.35)

The xc energy is thus obtained from numerical quadrature as

EMGGA
xc ≈

∑
i

𝜔i𝜖
MGGA
xc (𝜌(ri),∇𝜌(ri), 𝜏(ri)). (3.36)

The integrand is usually partitioned over atomic points using a weight scheme with further decom-
position into radial and angular components of each atomic contribution [60, 61]. The formal scaling
of the computational cost for the setup of an integration grid with such a weight scheme is (N3). The
numerical quadrature itself scales as (N3) because the number of atomic-based grid points grows
linearly with system size N and, as can be seen from Eq. (3.17), contributions need to be evaluated for
each pair of basis functions. In practice, linear scaling quadrature and construction of the integration
grid are possible using appropriate screening techniques that take the sparseness of the density matrix
and local nature of basis functions into account [62]. Nevertheless, numerical quadrature constitutes
a major computational bottleneck. Algorithms for efficient numerical xc quadrature on GPUs are
discussed in Chapters 4 and 5.

If Slater-type basis functions are employed, three- and four-center ERIs of Eq. (3.18) cannot be
computed analytically. In this case, the electron density is expanded in an auxiliary basis, which is
sometimes referred to as density fitting. As explained in Chapter 5, the Hartree energy and matrix
elements of the Hartree potential are then computed by numerical quadrature of the Hartree poten-
tial [63] within this auxiliary basis. HF exchange integrals with STFs can also be evaluated from a
combination of density fitting and numerical quadrature on the xc integration grid [64].

3.4 Basis Sets

The choice of basis {𝜙𝜇} to expand the orbitals 𝜓i and electron density 𝜌 is of paramount importance,
because this determines both the numerical accuracy and computational cost of electronic structure
methods. Atom-centered local basis functions are most popular for nonperiodic systems such as
molecules or metal clusters, while plane-wave basis sets are mostly used for electronic structure
calculations of periodic systems including metals, silicates, zeolithes, and molecular crystals.
Alternatively, it is possible to use real-space representations on a discrete grid both for molecular
and periodic systems.

3.4.1 Slater-Type Functions

Atom-centered Slater-type functions (STFs) have the functional form

𝜙STF
𝜁nlm(r) = Nrn−1e−𝜁rYm

l (𝜃, 𝜑), (3.37)

where n is the principal quantum number, Ym
l is a spherical harmonic of the angular momentum

quantum number l and magnetic quantum number m, and N is a normalization constant. The radial

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 50�

� �

�

50 Electronic Structure Calculations on Graphics Processing Units

part is an exponential function, which makes STFs the natural solutions to the atomic Schrödinger
equation for a single electron, displaying both a cusp at the nucleus and, more importantly, the correct
asymptotic decay. The exponential dependence also guarantees a fairly rapid convergence of orbitals
in molecular simulations with increasing number of basis functions. This is in contrast to GTFs,
which require a larger set of basis functions to represent the orbitals and the electron density with the
same quality.

Basis sets that contain the minimum number of functions required to describe all electrons of
neutral atoms are called minimal basis sets or single zeta basis sets. Such basis sets are useful at
best for qualitative purposes. To increase the flexibility of the basis set and achieve a good repre-
sentation of molecular orbitals, the number of basis functions needs to be multiplied, leading to
double-zeta, triple-zeta, quadruple-zeta basis sets, and so on. In addition, polarization functions,
that is, additional basis functions with higher angular momentum quantum numbers, are required
to appropriately describe the deformation of the atomic electron densities upon bond formation and
due to electron–electron interactions. Specially tailored basis sets may be required to compute cer-
tain molecular properties. For instance, computation of NMR J coupling constants requires a highly
accurate representation of the electron density in vicinity of the nuclei. High-quality Slater basis sets
for DFT calculations are available [65].

A major disadvantage of STFs is that no analytical solutions to the three- and four-center ERIs
of Eq. (3.18) are known. They are thus primarily used for atomic and diatomic systems when high
accuracy is desired. STFs are also used in semiempirical methods where all three- and four-center
integrals are neglected. DFT methods that are based on STFs circumvent the need to explicitly com-
pute these ERIs using density-fitting approximations as outlined in the section on auxiliary basis sets
and explained in more detail in Chapter 5.

3.4.2 Gaussian-Type Functions

Atom-centered Gaussian-type functions (GTFs) are the most widely used basis functions for quantum
chemistry applications [66]. Their functional form is given as

𝜙GTF
𝜁nlm(r) = Nr(2n−2−l)e−𝜁r2

Ym
l (𝜃, 𝜑) (3.38)

or, in the case of Cartesian GTFs, as

𝜙GTF
𝜁 lxlylz

(r) = Nxlx yly zlz e−𝜁r2
. (3.39)

Because of the dependence on r2 in the exponential of the radial part, Gaussian basis sets do not
display a cusp at the nucleus and decay too rapidly far from the nucleus, thus poorly representing the
tail of the wave function. This is usually compensated for by using a large number of basis functions
with a range of different exponents 𝜁 . In order to keep the computational cost lower, several GTFs
are frequently contracted according to

𝜙CGTF
nlm (r) =

∑
i

ai𝜙
GTF
𝜁inlm(r) (3.40)

into a single basis function with fixed coefficents ai, which better represents the radial solutions of
the atomic Schrödinger equation. A very large number of high-quality basis sets is available for a
wide range of applications with DFT and ab initio wave function methods.

The popularity of Gaussian basis sets is due to the Gaussian product Theorem [67] according to
which the product of two GTFs yields a different GTF with origin between the original GTFs. If we
define

G𝛼A(r) = e−𝛼|r−RA| (3.41)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 51�

� �

�

Overview of Electronic Structure Methods 51

for a spherical Gaussian with origin at RA, then

G𝛼A(r)G𝛽B(r) = KABG𝛾C(r) (3.42)

with

𝛾 = 𝛼 + 𝛽,

RC = (𝛼RA + 𝛽RB)𝛾
−1,

KAB = e−𝛼𝛽𝛾
−1|RA−RB|2 . (3.43)

As a consequence, at most two-center ERIs have to be evaluated since using the Gaussian product
theorem any three- or four-center ERIs can be expressed in terms of a two-center ERI. Many differ-
ent algorithms have been developed to efficiently calculate integrals using Gaussian basis sets, and
Chapter 4 deals with algorithms and implementations for GPUs.

3.4.3 Plane Waves

For electronic structure calculations of periodic systems, the most widely used approach is to employ
a plane wave basis, that is, to represent the orbitals, the electron density, and other quantities in
terms of their Fourier expansions. According to Bloch’s theorem, the KS orbitals of a system with
periodic external potential can be written as a product of a cell-periodic part and a wave-like part
with periodicity of the underlying lattice:

𝜓nk(r) = eik⋅runk(r), (3.44)

where k is a Brillouin zone sample or k-point [17, 68]. Taking into account its periodicity, the
wave-like part is expanded as a set of plane waves

unk(r) =
1√
Ω

∑
j

cjnkeigj⋅r, (3.45)

where gj are vectors of the reciprocal lattice, and Ω is the unit cell volume. The number of basis
functions is controlled by a single parameter, namely the energy cutoff Ecut. Only expansion coeffi-
cients cjnk related to plane waves with a kinetic energy 1∕2(k + gj) < Ecut are retained. This allows
easy and systematic control of the quality of a plane wave basis set.

An inherent advantage of plane waves is that they are independent of the atomic positions and thus
do not suffer from basis set superposition errors like localized basis sets. On the downside, because
of their implicit periodicity, they are not well suited for applications to nonperiodic systems. How-
ever, electronic structure calculations of isolated molecules are possible by placing the molecule
at the center of a periodic supercell that is sufficiently large for the interactions of molecules in
neighboring cells to be negligible. Plane wave basis sets are usually used in combination with Pseu-
dopotentials [69, 70] or the projector-augmented wave (PAW) method [71] such that the plane waves
have to describe only the valence orbitals and valence electron density. Expanding core orbitals and
the features of other orbitals close to the atomic nuclei would otherwise require a very large num-
ber of plane waves, that is, a very large energy cutoff. Despite this, many functions are required to
expand the orbitals, which renders the solution of the KS equations via full diagonalization impracti-
cal. Instead, iterative schemes such as conjugate gradient or Davidson algorithms [72] are employed
during which the full matrix representation of the Hamiltonian is never built. Chapter 7 of this book
deals with corresponding techniques and their implementation on GPUs.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 52�

� �

�

52 Electronic Structure Calculations on Graphics Processing Units

3.4.4 Representations on a Numerical Grid

In place of localized basis functions or plane waves, electronic structure calculations can also employ
real-space discretizations on a numerical grid [73–75]. In this case, physical quantities such as the
orbitals and the electron density are explicitly represented via their numerical values at the grid points,
while operators such as the Laplacian of the kinetic energy are approximated via finite differences.
The simplest approach is to use uniform grids [74], while nonuniform grids can be employed to
reduce the number of points in regions of space that require lower resolution. Similar to plane wave
methods, grid-based implementations usually employ pseudopotentials or related approaches such
as the PAW method [71] to circumvent the problem of representing the nuclear Coulomb potential
and the complicated shape of the core orbitals near the nuclei.

An advantage of numerical grids is that the discretization error can be controlled systematically by
increasing the number of grid points. This is harder to achieve with localized basis sets based on GTFs
or STFs, where the choice of basis typically requires considerable experience by the user. Real-space
grids obviously are well suited for parallelization, and GPU implementations of grid-based ground-
and excited-state DFT methods are discussed in Chapters 9 and 10.

3.4.5 Auxiliary Basis Sets

As mentioned previously, three- and four-center ERIs cannot be computed if STFs are employed as
the orbital basis set. In this case, an auxiliary basis set {𝜂𝛼} of STFs is used to expand the electron
density [63] according to

𝜌(r) ≈
∑
𝛼

d𝛼𝜂𝛼(r). (3.46)

The Hartree potential of Eq. (3.25) can then be analytically computed on the points of a numerical
integration grid and the corresponding contributions to the energy and matrix elements of the KS
potential obtained by numerical quadrature, as explained in more detail in Chapter 5.

Without going into great details, such auxiliary basis expansions are widely used also with Gaus-
sian basis sets and for HF theory and wave function-based electron correlation methods [76, 77].
These methods are sometimes referred to as density fitting or resolution of the identity (RI) methods.
In brief, the four-index ERIs of Eq. (3.18) can, in general, be approximated as

(𝜇𝜈|𝜅𝜆) ≈ ∑
𝛼𝛽

(𝜇𝜈|𝛼)[J−1]𝛼𝛽(𝛽|𝜅𝜆), (3.47)

where the two-index quantity [J−1] is the inverse of the Coulomb metric evaluated in the auxiliary
basis

J𝛼𝛽 = ∫
dr dr′

𝜂𝛼(r)𝜂𝛽(r′)
|r − r′| . (3.48)

The three-index ERIs (𝜇𝜈|𝛼) thus project the basis function products 𝜙𝜇𝜙𝜈 onto the space spanned
by the auxiliary basis set {𝜂𝛼}. A variety of other closely related approaches to approximate the
four-index ERIs through three-index intermediates are available, including the pseudospectral
[78, 79] and Cholesky decomposition [76, 80, 81] techniques.

The auxiliary basis sets used in density fitting have to be optimized both for the corresponding
orbital basis set and for the specific application. For instance, the requirements to the auxiliary basis
set in DFT methods are different than those in ab initio wave function methods. For DFT, only the
electron density 𝜌 needs to be well approximated, while in the latter case the auxiliary basis needs to
represent more complicated functions such as the orbital products 𝜓i𝜓a between occupied and virtual
molecular orbitals.

Significant speedups are obtained using density-fitting approaches in HF and DFT calculations for
small to medium sized molecules in which linear scaling techniques are not yet efficient. Similarly,

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 53�

� �

�

Overview of Electronic Structure Methods 53

the computational cost of wave function-based methods can be significantly reduced. For instance, the
computational cost of second order Møller–Plesset perturbation theory (MP2) is dominated by the
(N5) integral transformation from atomic into molecular orbital basis. This four-index transfor-
mation can be avoided by density fitting methods [82], which, instead, require transformation of
three-index quantities, leading to an effective computational effort of (N4). Chapter 12 of this book
presents approaches to accelerate the required linear algebra operations on GPUs.

3.5 Semiempirical Methods

Semiempirical electronic structure methods [18] are SCF methods that derive from Hartree–Fock
theory by introducing several approximations that render them computationally extremely effi-
cient. These approximations were initially introduced several decades ago because of lack of
computing power. However, semiempirical methods are still in wide use nowadays, in particular for
large-scale simulations or long-timescale molecular dynamics simulations that are out of reach for
ab initio wave function theory or DFT methods. Semiempirical models are efficient since they use
valence-only minimal basis sets and neglect many of the integrals that contribute to the Fock matrix.
To compensate for these approximations, the remaining integrals are parameterized to achieve good
results for geometries, bond enthalpies, and other small-molecule properties. By way of construc-
tion, semiempirical methods thus include the correlation energy and relativistic effects through
their parameterizations and can achieve accuracies that far surpass Hartree–Fock theory and rival
correlated wave function methods if applied to problems that fall within the scope of their parame-
terization. While semiempirical models have been parameterized for transition metals, most reliable
parameterizations are applicable only to main group elements. A common procedure to improve
the accuracy of simulations is to train parameter sets that accurately represent specific aspects of
molecular systems, for example, barriers of a specific reaction type [83]. This, of course, means
that one needs to be very careful when using these parameterizations since they are valid only for
simulations that fall within the scope of the reference models that were used to derive the parameters.

3.5.1 Neglect of Diatomic Differential Overlap

The most popular semiempirical methods in use nowadays are based on the modified neglect of
diatomic overlap (MNDO) [84] model. As in HF theory, the wave function is a single Slater determi-
nant of molecular orbitals 𝜓i, but restricted to valence electrons and expanded in terms of a minimal
basis of STFs {𝜙𝜇}, see Eqs. (3.10) and (3.37). MNDO is restricted to s- and p-type Slater functions,
that is, an l value of 0 or 1, respectively. This effectively limits the elements that can be accurately
described to the first and second row of the periodic table. An extension to d-type functions is available
with the MNDO/d [85, 86] method, which enables simulations with a wider range of elements.

The decisive simplification in these semiempirical methods is the neglect of diatomic differential
overlap (NDDO) approximation [87]

𝜙𝜇A
𝜙𝜈B

∶= 𝛿AB𝜙𝜇A
𝜙𝜈B

, (3.49)

where the subscript A indicates the atom on which a basis function is located. Although in reality
this is not the case, the NDDO approximation implies that we are working in an orthogonal basis,
and hence the overlap matrix becomes a unit matrix

S = 𝟏, (3.50)

and the SCF equations reduce to a simple eigenvalue problem

FC = C𝜖. (3.51)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 54�

� �

�

54 Electronic Structure Calculations on Graphics Processing Units

3.5.2 Fock Matrix Elements

As a consequence of the NDDO approximation, the Fock matrix elements contain at most two-center
ERIs and are given as

F𝜇A𝜈A
= h𝜇A𝜈A

+
∑
𝜅A𝜆A

P𝜅A𝜆A

[
(𝜇A𝜈A|𝜅A𝜆A) −

1
2
(𝜇A𝜅A|𝜈A𝜆A)

]
(3.52a)

+
∑

B

∑
𝜅B𝜆B

P𝜅B𝜆B
(𝜇A𝜈A|𝜅B𝜆B),

F𝜇A𝜈B
= h𝜇A𝜈B

− 1
2

∑
𝜅A𝜆B

P𝜅A𝜆B
(𝜇A𝜅A|𝜈B𝜆B), (3.52b)

where h𝜇𝜈 are elements of the one-electron core Hamiltonian and the density matrix elements P𝜇𝜈
and ERIs (𝜇𝜈|𝜅𝜆) are as defined before.

The one-center core Hamiltonian matrix elements are given as

h𝜇A𝜈A
= 𝛿𝜇A𝜈A

U𝜇A𝜇A
+
∑
B≠A

VB
𝜇A𝜈A

. (3.53)

Here, U𝜇𝜇 parametrizes the one-center matrix elements of the kinetic energy operator and the inter-
action with the atomic core, that is, ⟨𝜇A| − (1∕2)∇2 + VA|𝜇A⟩. The interaction with cores on other
atoms, that is, ⟨𝜇A|VB|𝜈A⟩, is given by VB

𝜇A𝜈A
and is expressed in terms of two-center ERIs

VB
𝜇A𝜈A

= −ZB(𝜇A𝜈A|sBsB), (3.54)

where ZB is the charge of the core of atom B. By core we mean an atom including its nucleus and all its
electrons up to the valence shell, that is, all electrons that are not treated explicitly by semiempirical
methods.

The two-center core Hamiltonian matrix elements are given as

h𝜇A𝜈B
= 𝛽𝜇A𝜈B

S𝜇A𝜈B
, (3.55)

where 𝛽AB are called resonance integrals, which essentially parametrize the two-center matrix
elements of the kinetic energy operator and the interaction with the cores of all atoms,
⟨𝜇A| − (1∕2)∇2 +

∑
CVC|𝜈B⟩, while the distance dependence is given via the overlap integrals

S𝜇A𝜈B
= ⟨𝜇A|𝜈B⟩, which are evaluated analytically. This seems inconsistent with the NDDO approx-

imation, Eq. (3.49), according to which all basis functions are orthogonal and hence the overlap
matrix is unity. However, the resonance integrals of Eq. (3.55) are necessary to obtain useful results.
Indeed, it can be shown that otherwise no covalent bonding would arise in this model.

In MNDO, the resonance integrals are expressed in terms of atomic parameters (as opposed to
diatomic or pair parameters, which would depend on specific atom pairs):

𝛽𝜇A𝜈B
=
𝛽𝜇A

+ 𝛽𝜈B

2
, (3.56)

where 𝛽𝜇A
is a parameter characteristic of the Slater function 𝜙𝜇A

on atom A.

3.5.3 Two-Electron Repulsion Integrals

What remains is to specify the way in which the ERIs of Eqs. (3.52a), (3.52b), and (3.54) are eval-
uated. None of the ERIs is evaluated analytically, which is another reason for the computational
efficiency of semiempirical methods.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 55�

� �

�

Overview of Electronic Structure Methods 55

The one-center ERIs are parameterized with numerical values that are much smaller than the ana-
lytical values. It is commonly assumed that this implicitly accounts for electron correlation. One
usually distinguishes Coulomb and exchange integrals:

(𝜇A𝜇A|𝜈A𝜈A) = g𝜇𝜈, (3.57a)

(𝜇A𝜈A|𝜇A𝜈A) = h𝜇𝜈. (3.57b)

All other one-center ERIs are zero due to symmetry.
The two-center ERIs (𝜇A𝜈A|𝜅B𝜆B) represent the interaction energy between the charge distributions

𝜙𝜇A
𝜙𝜈A

and 𝜙𝜅B
𝜙𝜆B

. These charge distributions are expanded [84–86] in terms of multipole moments
Mlm with order l and orientation m, which are represented by an appropriate configuration of 2l point
charges of magnitude 1∕2l separated by a distance Dl. The two-center ERIs are then evaluated in terms
of semiempirical, classical multipole–multipole interactions between these multipole moments

(𝜇A𝜈A|𝜅B𝜆B) =
∑
l1l2

lmin∑
m=−lmin

[MA
l1m,M

B
l2m], (3.58)

where lmin is the lower of the two multipole moments l1 and l2 in the summation and, using the
Klopman–Ohno formula, with

[MA
l1m,M

B
l2m] =

1
2l1+l2

cA
l1mcB

l2m

2l1∑
i

2l2∑
j

[R2
ij + (𝜌A

l1
+ 𝜌B

l2
)2]−1∕2. (3.59)

Here, Rij is the distance between the point charges. The additive terms 𝜌A
l1

and 𝜌B
l2

are chosen such that,
at vanishing interatomic distance (RAB → 0), the ERIs reduce to the corresponding one-center inte-
grals in the monoatomic case. The factors cA

l1m and cB
l2m ensure that at infinite separation (RAB → ∞)

the classical limit of the multipole interactions (which is exact for nonoverlapping charge distribu-
tions) is recovered. Details can be found in Refs [85, 86].

3.5.4 Energy and Core Repulsion

The total electronic energy is given as

Eel =
1
2

∑
𝜇𝜈

P𝜇𝜈(h𝜇𝜈 + F𝜇𝜈) (3.60)

and the total energy is
Etot = Eel +

∑
A<B

Ecore
AB , (3.61)

where Ecore
AB is the repulsion energy between the cores of an atom pair AB.

Aiming at a balance between electrostatic attractions and repulsions within a molecule, the core
repulsion, like the core-electron attraction of Eq. (3.54), is treated in terms of the corresponding
two-center ERIs

Ecore
AB = ZAZB(sAsA|sBsB)[1 + fAB(RAB)], (3.62)

where RAB = |RA − RB| is the interatomic distance. The function fAB is an effective atom-pair poten-
tial that attempts to compensate for errors introduced by the treatment of the core–electron attraction

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 56�

� �

�

56 Electronic Structure Calculations on Graphics Processing Units

and core repulsion according to Eqs. (3.54) and (3.62). This term essentially tries to account for Pauli
repulsion, that is, prevents atoms from getting too close to each other. It therefore is repulsive at short
distances and vanishes in the limit of infinite interatomic distance.

3.5.5 Models Beyond MNDO

Most successful semiempirical models are based on the NDDO approximation and are derived from
the MNDO model. For example, the popular AM1 [88] and PM3 [89] models differ only in the
parameters and the form that has been chosen for the core repulsion in Eq. (3.62). Another difference
between MNDO and AM1/PM3 is that the former uses identical exponents for s- and p-type basis
functions while the latter lifts this restriction.

More recently, orthogonalization corrections have been introduced to rectify some of the problems
that plague NDDO approaches. These semiempirical methods of the OMx family [90–92] account for
the lack of Pauli exchange repulsion in the Fock matrix, leading to numerical results that are generally
superior to AM1 or PM3. Common to all semiempirical methods is that the calculation of the Fock
matrix requires little computational work such that practically all simulations are dominated by the
Fock matrix diagonalization. Chapter 11 of this book discusses in detail how GPUs can be exploited
to accelerate the computationally most demanding linear algebra operations, taking as example the
OM3 method.

3.6 Density Functional Tight Binding

DFTB is an approximate method based on the Kohn–Sham formulation of DFT. It is derived from
a Taylor series expansion of the KS–DFT total energy [19, 20]. Similar to semiempirical quantum
chemistry methods, DFTB employs a valence-only minimal basis set and neglects a variety of inte-
grals. This, and the fact that the integrals are tabulated, leads to a computationally very efficient
method. As is the case for semiempirical methods, the computational bottleneck is the diagonal-
ization of the Hamiltonian matrix. While DFTB is not discussed in the remainder of this book, we
include a short overview here for the sake of completeness.

In DFTB, the electron density is written in terms of a reference electron density 𝜌0, which per-
turbed by some density fluctuation, 𝜌 = 𝜌0 + 𝛿𝜌. The electronic energy up to third order in the density
fluctuation can then be written as

EDFTB3[𝜌0 + 𝛿𝜌] =2
∑

i

⟨𝜓i|Ĥ[𝜌0]|𝜓i⟩ + Exc[𝜌
0]

− 1
2 ∫

drdr′
𝜌0(r)𝜌0(r′)
|r − r′| −

∫
dr 𝑣xc[𝜌

0]𝜌0(r) (3.63)

+ 1
2 ∫

dr dr′
(

1
|r − r′| +

𝛿2Exc[𝜌]
𝛿𝜌(r)𝛿𝜌(r′)

|||||𝜌0

)
𝛿𝜌(r)𝛿𝜌(r′)

+ 1
6 ∫

dr dr′ dr′′
𝛿3Exc[𝜌]

𝛿𝜌(r)𝛿𝜌(r′)𝛿𝜌(r′′)

|||||𝜌0

𝛿𝜌(r)𝛿𝜌(r′)𝛿𝜌(r′′).

The models that are obtained from this expansion are termed DFTB, DFTB2, and DFTB3, depending
on the terms that are retained. DFTB2 also used to be referred to as self-consistent-charge DFTB
(SCC-DFTB), since the density fluctuation 𝛿𝜌 has to be obtained from an SCF procedure.

The density fluctuation is expanded in terms of atomic contributions, which in turn are expressed
via a multipole expansion of which only the monopole term is kept. The atomic charge density

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 57�

� �

�

Overview of Electronic Structure Methods 57

fluctuations 𝛿qA are thus expressed in terms of the Mulliken charges ΔqA. With several other approx-
imations in place, the DFTB3 energy is finally written as [20, 93]

EDFTB3 =
∑
𝜇𝜈

P𝜇𝜈H
0
𝜇𝜈 +

1
2

∑
AB

ΔqAΔqB𝛾
h
AB (3.64)

+ 1
3

∑
AB

Δq2
AΔqBΓAB + 1

2

∑
AB

V rep
AB .

The KS orbitals are expanded in a valence-only minimal basis set {𝜙𝜇} of Slater-type confined
atomic Orbitals [94]. The expansion coefficients are determined from the KS equations, with Hamil-
tonian matrix elements given as

HDFTB3
𝜇𝜈 = H0

𝜇𝜈 + S𝜇𝜈
∑

C

ΔqC

[1
2
(𝛾h

AC + 𝛾h
BC) +

1
3
(ΔqAΓAC + ΔqBΓBC)

+
ΔqC

6
(ΓAC + ΓBC)

]
. (3.65)

In above equations, the tight-binding matrix elements neglect three-center elements

H0
𝜇𝜈 =

⟨
𝜇
||||−

1
2
∇2 + Veff

A + Veff
B

|||| 𝜈
⟩
, 𝜇 ∈ {A}, 𝜈 ∈ {B}, (3.66)

and the effective potentials Veff
A are parameterized for each atom type. The Hamiltonian matrix ele-

ments H0
𝜇𝜈 and the overlap matrix elements S𝜇𝜈 are precalculated and tabulated for relevant pairwise

interatomic distances. The short-range pairwise repulsive potentials V rep
AB are typically parameterized

by comparison to reference DFT data, but they can also be fitted to empirical data [20]. The ana-
lytical function 𝛾AB parameterizes the interaction between the charge density fluctuations 𝛿qA and
𝛿qB, which reduces to the standard Coulomb interaction between the partial charges ΔqA and ΔqB

in the limit of large separation. At short range, it describes the effective on-site electron–electron
interaction, which evaluates to the Hubbard parameter UA (or atomic chemical hardness) and thus
implicitly takes the xc contribution to the second-order term into account [20]. The superscript h
indicates a reparameterization of this term specifically for DFTB3, as opposed to DFTB2. Finally,
the third-order terms that are parameterized with the function ΓAB describe the change in chemical
hardness of an atom depending on its charge and thus contain the chemical hardness derivative Ud

A
as parameter [20].

Since DFTB is an approximation to DFT, it also inherits many of its limitations, including the
fact that it does not account for long-range dispersion forces. However, parameterizations have been
developed to include these effects via empirical pair potentials [19, 20, 95]. Similar to semiempirical
methods, DFTB parameters are not available for the complete periodic table and are not transferable
for all types of applications. Several specific parameterizations are available for organic or biolog-
ical molecules or for applications in materials science [20]. These have been successfully used to
model a broad range of systems ranging from molecules to solids. Because of the approximations out-
lined above, the computational efficiency of DFTB is comparable to that of semiempirical methods,
enabling large-scale simulations that are out of reach with DFT.

3.7 Wave Function-Based Electron Correlation Methods

In Hartree–Fock theory, the wave function is approximated as a single Slater determinant Φ, effec-
tively replacing the exact many-electron interaction with an average interaction that does not describe
the instantaneous Coulomb repulsion between electrons. This is a remarkably good approximation

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 58�

� �

�

58 Electronic Structure Calculations on Graphics Processing Units

but, in general, not useful for quantitative calculations and can even lead to qualitatively incorrect
results.

The error that is inherent to the HF approximation is quantified as correlation energy, which is
defined as the difference between the HF energy and the exact nonrelativistic energy. Since a Slater
determinant satisfies the antisymmetry of the wave function, HF theory accounts for Fermi corre-
lation, that is, correlation between the spin coordinates of the electrons, which gives rise to the
HF exchange term. The motion of the electrons is also correlated through instantaneous Coulomb
repulsions, which is the Coulomb correlation that is missing in HF theory. Wave function-based
electron correlation methods, or ab initio methods, are based on HF theory and improve upon the
HF mean-field approximation by adding many-electron corrections to recover the missing electron
correlation in a systematic way [9–11].

Coulomb correlation can be introduced by expanding the wavefunction as a linear combination of
Slater determinants:

Ψ = a0Φ +
∑

i

aiΦi. (3.67)

In general, the leading term in this expansion is the HF determinant, that is, the coefficient a0 is
close to 1. The other determinants can be represented in terms of excited HF determinants, in which
occupied orbitals of the HF determinant are replaced with virtual (unoccupied) orbitals. Electron
correlation methods differ in how they calculate the coefficients for the excited determinants.

In the configuration interaction (CI) method, the coefficients are determined by variational min-
imization. If all excited determinants are included, this is referred to as full CI, which is the exact
solution of the nonrelativistic Schrödinger equation of a many-electron system for a given basis set.
Since the number of excited determinants grows factorially with the size of the basis set, the expan-
sion is usually truncated at a certain level of excitations. The resulting methods are then called CISD
(single and double excitations), CISDT (including triple excitations), and so forth. CISD scales as
(N6), while CISDT scales as (N8), rendering these methods quickly untractable. The CI approach
has several drawbacks and has largely been replaced by very successful coupled-cluster methods. A
major drawback of CI methods is that they are not size-extensive and as a result recover a diminishing
fraction of the electron correlation with increasing molecular size.

Multi-reference methods have to be employed in cases in which a single Slater determinant leads
to a qualitatively wrong description of the electronic ground state. The inadequacy of a single Slater
determinant to describe an electronic state is usually referred to as static correlation as opposed to
dynamical correlation. This is an artificial but useful division of the correlation energy. In the case of
static correlation, the major part of the correlation energy can be captured by adding only a few deter-
minants. In multi-configuration self-consistent field (MCSCF) methods, such a limited CI expansion
is used to take static correlation into account while variationally optimizing both orbital and CI coef-
ficients. The most widely used multi-reference method is the complete active space self-consistent
field (CASSCF) method [96, 97]. Perturbation theory or any other electron correlation method can be
used in combination with a multi-reference wave function to capture dynamical correlation effects,
leading, for example, to the CASPT2 [98] method, which uses many-body perturbation theory with
a CASSCF reference wave function. The main drawback of MCSCF methods is that the selection of
the configurations to be included in the reference wave function is not straightforward and requires
considerable expertise on side of the user.

In what follows, we assume that a single Slater determinant Φ provides a good zeroth-order
description of the electronic ground state.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 59�

� �

�

Overview of Electronic Structure Methods 59

3.7.1 Møller–Plesset Perturbation Theory

One of the most popular and computationally least expensive ab initio electronic structure methods is
the second-order Møller–Plesset perturbation theory (MP2) [12]. For compounds that do not contain
transition metals, MP2 equilibrium geometries are of comparable quality to DFT. However, MP2
includes long-range correlation effects such as dispersion, which density functionals are not able to
capture.

The basis for many-body perturbation theory is a subdivision of the electronic Hamiltonian into
a reference part Ĥ0 for which the solutions are known and a perturbation operator V̂ . In case of
Møller–Plesset perturbation theory, the reference is chosen to be the sum of Fock operators from
Hartree–Fock theory:

Ĥ =
∑

i

F̂i + V̂ . (3.68)

With this partitioning, the perturbation operator is the difference between the exact electron–electron
interactions and the HF mean-field potential. The zero-order wave function is the HF determinant,
and it is easy to show that the zero-order energy plus first-order correction yields the HF energy,
EHF = E0 + E(1). The first perturbation correction beyond the HF solution that contributes to the cor-
relation energy is thus given by the second-order energy [9–11]. It involves a sum over doubly excited
determinants, which for a closed-shell system can be expressed as

E(2) =
∑
ijab

(ia|jb)[2(ia|jb) − (ib|ja)]
𝜖i + 𝜖j − 𝜖a − 𝜖b

, (3.69)

where i, j and a, b are occupied and virtual (unoccupied) spatial molecular orbitals, respectively, and
𝜖i are the orbital energies. The molecular orbital integrals are obtained via integral transformation as

(ia|jb) = ∑
𝜇𝜈𝜅𝜆

c𝜇ic𝜈ac𝜅jc𝜆b(𝜇𝜈|𝜅𝜆), (3.70)

where the ERIs (𝜇𝜈|𝜅𝜆) in atomic orbital basis have been defined in Eq. (3.18).
The computational cost of canonical MP2 calculations is dominated by the (N5) integral trans-

formation of Eq. (3.70). As outlined in the section on basis sets, density fitting or RI approximations,
that is, expansion of molecular orbital products into an auxiliary basis, are routinely employed to
reduce the scaling of this integral transformation to (N4) without sacrificing accuracy. Chapter 12
describes approaches to accelerate RI–MP2 calculations by performing the computationally intensive
matrix multiplications on GPUs.

3.7.2 Coupled Cluster Theory

In coupled cluster theory [13, 14], the wave function is written in form of an exponential ansatz:

Ψ = eT̂Φ, (3.71)

where the cluster operator T̂ is given by

T̂ =
∑

n

T̂n. (3.72)

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 60�

� �

�

60 Electronic Structure Calculations on Graphics Processing Units

The cluster operators T̂n generate all nth excited Slater determinants

T̂1 =
∑

ia

ta
i a†

aai, (3.73)

T̂2 =
∑
ij,ab

tab
ij a†

aa†
bajai,

where ai and a†
a are annihilation and creation operators, respectively, and ta

i and tab
ij are the cluster

amplites that need to be determined.
Using the coupled cluster wave function from Eq. (3.71), the Schrödinger equation can be

written as
ĤeT̂Φ = EeT̂Φ. (3.74)

In order to derive working equations, the Schrödinger equation is pre-multiplied by the inverse of the
exponential operator e−T̂ . Left projection by the reference wave function leads to an expression for
the energy:

E = ⟨Φ|e−T̂ ĤeT̂ |Φ⟩, (3.75)

while left projection by the excited determinants leads to expressions for the determination of the
cluster amplitudes. The single and double excitation amplitudes, for example, are obtained from

⟨Φa
i |e−T̂ ĤeT̂ |Φ⟩ = 0, (3.76)

⟨Φab
ij |e−T̂ ĤeT̂ |Φ⟩ = 0.

The result is a set of nonlinear equations that need to be solved in an iterative manner, for example,
using the Jacobi method.

Practical applications truncate the cluster operator at a given level, most commonly at double
excitations, which leads to the coupled cluster singles doubles (CCSD) method [99]. The CCSD
equations involve tensor contractions that scale up to (N6) with system size. Taking advantage of
the relationship between coupled cluster theory and many-body perturbation theory, it is possible
to construct perturbation-based corrections to account for higher excitation contributions. Undoubt-
edly the most popular method is CCSD(T) [100], which adds corrections for triple excitations to
CCSD and scales as (N7) with system size. CCSD(T) is currently considered as the gold standard
of quantum chemistry because of its high accuracy for a wide range of problems. However, because
of the steep computational scaling with system size, its application range remains limited to rather
small molecules. Efficient algorithms and software implementations that optimally exploit parallel
computer hardware are thus essential to extend the reach of coupled cluster calculations.

More details on coupled cluster theory, the required tensor contractions, and strategies for
optimization of GPU implementations are described in the last two chapters of this book. Chapter 13
deals with iterative CCD and CCSD methods including density fitting approximations, while the
focus of Chapter 14 is noniterative triples corrections for both single- and multi-reference wave
functions.

Acknowledgments

Support by the National Science Foundation (award CHE-1416571) is gratefully acknowledged.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 61�

� �

�

Overview of Electronic Structure Methods 61

References

1. Clary, D.C. (2006) Quantum chemistry of complex systems. Science, 314, 265–266.
2. Carter, E.A. (2008) Challenges in modeling materials properties without experimental input.

Science, 321, 800–803.
3. Reiher, M. (ed.) (2007) Atomistic Approaches in Modern Biology, Topics in Current Chemistry,

Springer-Verlag, Heidelberg.
4. Grunenberg, J. (ed.) (2010) Computational Spectroscopy, Wiley-VCH Verlag GmbH,

Weinheim.
5. Comba, P. (ed.) (2011) Modeling of Molecular Properties, Wiley-VCH, Weinheim, Germany.
6. Kohn, W. (1999) Nobel Lecture: electronic structure of matter – wave functions and density

functionals. Rev. Mod. Phys., 71, 1253–1266.
7. Pople, J.A. (1999) Nobel lecture: quantum chemical models. Rev. Mod. Phys., 71, 1267–1274.
8. Reiher, M. and Wolf, A. (2009) Relativistic Quantum Chemistry, Wiley-VCH Verlag GmbH,

Weinheim.
9. Szabo, A. and Ostlund, N.S. (1996) Modern Quantum Chemistry, Dover Publications, New

York.
10. Helgaker, T., Jørgensen, P. and Olsen, J. (2000) Molecular Electronic-Structure Theory, John

Wiley & Sons, Ltd, West Sussex.
11. Jensen, F. (2007) Introduction to Computational Chemistry, John Wiley & Sons, Ltd,

Chichester.
12. Møller, C. and Plesset, M.S. (1934) Note on an approximation treatment for many-electron

systems. Phys. Rev., 46, 618–622.
13. Čížek, J. (1966) On the correlation problem in atomic and molecular systems. Calculation of

wavefunction components in Ursell type expansion using quantum field theoretical methods. J.
Chem. Phys., 45, 4256.

14. Crawford, T. and Schaefer, H. III (2000) An introduction to coupled cluster theory for compu-
tational chemists, in Reviews of Computational Chemistry, vol. 14, Chapter 2 (eds K. Lipkowitz
and D. Boyd), VCH Publishers, New York, pp. 33–136.

15. Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford
University Press, Oxford.

16. Koch, W. and Holthausen, M.C. (2000) A Chemist’s Guide to Density Functional Theory,
Wiley-VCH Verlag GmbH, Weinheim.

17. Martin, R.M. (2004) Electronic Structure: Basic Theory and Practical Methods, Cambridge
University Press, Cambridge.

18. Thiel, W. (2014) Semiempirical quantum-chemical methods. WIREs Comput. Mol. Sci., 4,
145–157.

19. Seifert, G. and Joswig, J.O. (2012) Density-functional tight binding - an approximate
density-functional theory method. WIREs Comput. Mol. Sci., 2, 456–465.

20. Elstner, M. and Seifert, G. (2014) Density functional tight binding. Philos. Trans. R. Soc.
London, Ser. A, 372, 20120483.

21. Kohn, W. (1996) Density functional and density matrix method scaling linearly with the number
of atoms. Phys. Rev. Lett., 76, 3168–3171.

22. Goedecker, S. (1999) Linear scaling electronic structure methods. Rev. Mod. Phys., 71,
1085–1123.

23. Autschbach, J. and Ziegler, T. (2003) Double perturbation theory: a powerful tool in computa-
tional coordination chemistry. Coord. Chem. Rev., 238–239, 83–126.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 62�

� �

�

62 Electronic Structure Calculations on Graphics Processing Units

24. Neese, F. (2009) Prediction of molecular properties and molecular spectroscopy with density
functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev., 253,
526–563.

25. Ceperley, D. and Alder, B. (1986) Quantum Monte Carlo. Science, 231, 555–560.
26. Foulkes, W.M.C., Mitas, L., Needs, R.J. and Rajagopal, G. (2001) Quantum Monte Carlo sim-

ulations of solids. Rev. Mod. Phys., 73, 33–83.
27. Lüchow, A. (2011) Quantum Monte Carlo methods. WIREs Comput. Mol. Sci., 1, 388–402.
28. Kong, L., Bischoff, F.A. and Valeev, E.F. (2012) Explicitly correlated R12/F12 methods for

electronic structure. Chem. Rev., 112, 75–107.
29. Onida, G., Reining, L. and Rubio, A. (2002) Electronic excitations: density-functional versus

many-body Green’s-function approaches. Rev. Mod. Phys., 74, 601–659.
30. Challacombe, M. (1999) A simplified density matrix minimization for linear scaling

self-consistent field theory. J. Chem. Phys., 110, 2332–2342.
31. Salek, P., Høs, S., Thøgersen, L., Jørgensen, P., Manninen, P., Olsen, J. and Jansík, B. (2007)

Linear-scaling implementation of molecular electronic self-consistent field theory. J. Chem.
Phys., 126, 114110.

32. Ochsenfeld, C., Kussmann, J. and Lambrecht, D.S. (2007) Linear-scaling methods in quantum
chemistry, in Reviews in Computational Chemistry, vol. 23 (eds K.B. Lipkowitz and T.R.
Cundari), John Wiley & Sons, Inc., New York, pp. 1–82.

33. White, C., Johnson, B., Gill, P. and Head-Gordon, M. (1994) The continuous fast multipole
method. Chem. Phys. Lett., 230, 8–16.

34. Strain, M.C., Scuseria, G.E. and Frisch, M.J. (1996) Achieving linear scaling for the electronic
quantum Coulomb problem. Science, 271, 51.

35. Schwegler, E. and Challacombe, M. (1996) Linear scaling computation of the Hartree-Fock
exchange matrix. J. Chem. Phys., 105, 2726–2734.

36. Ochsenfeld, C., White, C.A. and Head-Gordon, M. (1998) Linear and sublinear scaling
formation of Hartree-Fock-type exchange matrices. J. Chem. Phys., 109, 1663–1669.

37. Fiolhais, C., Nogueira, F. and Marques, M.A.L. (2003) A Primer in Density Functional Theory,
Lecture Notes in Physics, Springer-Verlag, Berlin.

38. Perdew, J.P. and Ruzsinszky, A. (2010) Fourteen easy lessons in density functional theory. Int.
J. Quantum Chem., 110, 2801–2807.

39. Burke, K. (2012) Perspective on density functional theory. J. Chem. Phys., 136, 150901.
40. Becke, A.D. (2014) Perspective: fifty years of density-functional theory in chemical physics.

J. Chem. Phys., 140, 18A301.
41. Thomas, L.H. (1927) The calculation of atomic fields. Proc. Cambridge Philos. Soc., 23, 542.
42. Fermi, E. (1927) Un metodo statistico per la determinazione di alcune proprietá dell’ atomo.

Rend. Accad. Lincei, 6, 602.
43. Slater, J.C. (1951) A simplification of the Hartree-Fock method. Phys. Rev., 81, 385–390.
44. Dirac, P.A.M. (1930) Note on exchange phenomena in the Thomas atom. Proc. Cambridge

Philos. Soc., 26, 376.
45. Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Phys. Rev., 136, B864–B871.
46. Kohn, W. and Sham, L. (1965) Self-consistent equations including exchange and correlation

effects. Phys. Rev., 140, A1133–A1138.
47. Perdew, J.P. and Schmidt, K. (2001) Jacob’s ladder of density functional approximations for

the exchange-correlation energy. AIP Conf. Proc., 577, 1–20.
48. Ceperley, D.M. and Alder, B.J. (1980) Ground state of the electron gas by a stochastic method.

Phys. Rev. Lett., 45, 566–569.
49. Vosko, S., Wilk, L. and Nusair, M. (1980) Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 63�

� �

�

Overview of Electronic Structure Methods 63

50. Perdew, J.P. and Wang, Y. (1992) Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B, 45, 13244–13249.

51. Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymp-
totic behavior. Phys. Rev. A, 38, 3098–3100.

52. Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density. Phys. Rev. B, 37, 785–789.

53. Becke, A.D. (1993) Density-functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys., 98, 5648–5652.

54. Adamo, C. and Barone, V. (1999) Toward reliable density functional methods without
adjustable parameters: the PBE0 model. J. Chem. Phys., 110, 6158–6170.

55. Stephens, P., Devlin, F.J., Chabalowski, C.F. and Frisch, M.J. (1994) Ab-initio calculation
of vibrational absorption and circular-dichroism spectra using density-functional force-fields.
J. Phys. Chem., 98, 11623–11627.

56. Görling, A., Ipatov, A., Götz, A.W. and Heßelmann, A. (2010) Density-Functional theory with
orbital-dependent functionals: exact-exchange Kohn-Sham and density-functional response
methods. Z. Phys. Chem., 224, 325–342.

57. Yanai, T., Tew, D.P. and Handy, N.C. (2004) A new hybrid exchange-correlation func-
tional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 393,
51–57.

58. Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) A consistent and accurate Ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.
J. Chem. Phys., 132, 154104.

59. Tkatchenko, A. and Scheffler, M. (2009) Accurate molecular van der Waals interactions from
ground-state electron density and free-atom reference data. Phys. Rev. Lett., 102, 6–9.

60. Becke, A.D. (1988) A multicenter numerical integration scheme for polyatomic molecules. J.
Chem. Phys., 88, 2547–2553.

61. Treutler, O. and Ahlrichs, R. (1995) Efficient molecular numerical integration schemes. J.
Chem. Phys., 102, 346–354.

62. Stratmann, R.E., Scuseria, G.E. and Frisch, M.J. (1996) Achieving linear scaling in
exchange-correlation density functional quadratures. Chem. Phys. Lett., 257, 213–223.

63. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A.,
Snijders, J.G. and Ziegler, T. (2001) Chemistry with ADF. J. Comput. Chem., 22, 931–967.

64. Watson, M.A., Handy, N.C. and Cohen, A.J. (2003) Density functional calculations, using
Slater basis sets, with exact exchange. J. Chem. Phys., 119, 6475–6481.

65. van Lenthe, E. and Baerends, E.J. (2003) Optimized Slater-type basis sets for the elements
1–118. J. Comput. Chem., 24, 1142–1156.

66. Jensen, F. (2013) Atomic orbital basis sets. WIREs Comput. Mol. Sci., 3, 273–295.
67. Boys, S.F. (1950) Electronic wave functions I. A general method of calculation for the stationary

states of any molecular system. Proc. R. Soc. London Ser. A, 200, 542–554.
68. Ashcroft, N.W. and Mermin, N. (1976) Solid State Physics, Harcourt College Publishers, Fort

Worth, TX.
69. Kleinman, L. and Bylander, D. (1982) Efficacious form for model pseudopotentials. Phys. Rev.

Lett., 48, 1425–1428.
70. Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formal-

ism. Phys. Rev. B, 41, 7892–7895.
71. Blöchl, P.E. (1994) Projector augmented-wave method. Phys. Rev. B, 50, 17953–17979.
72. Davidson, E.R. (1975) The iterative calculation of a few of the lowest eigenvalues and corre-

sponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17, 87–94.
73. Becke, A.D. (1989) Basis-set-free density-functional quantum chemistry. Int. J. Quantum

Chem., 36, 599–609.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 64�

� �

�

64 Electronic Structure Calculations on Graphics Processing Units

74. Chelikowsky, J.R., Troullier, N. and Saad, Y. (1994) Finite-difference-pseudopotential method:
electronic structure calculations without a basis. Phys. Rev. Lett., 72, 1240–1243.

75. Beck, T.L. (2009) Real-space and multigrid methods in computational chemistry, in Reviews
in Computational Chemistry (eds K.B. Lipkowitz and T.R. Cundari), John Wiley & Sons, Inc.,
New York, pp. 223–285.

76. Weigend, F., Kattannek, M. and Ahlrichs, R. (2009) Approximated electron repulsion inte-
grals: Cholesky decomposition versus resolution of the identity methods. J. Chem. Phys., 130,
164106.

77. Sherrill, C.D. (2010) Frontiers in electronic structure theory. J. Chem. Phys., 132, 110902.
78. Friesner, R.A., Murphy, R.B., Beachy, M.D., Ringnalda, M.N., Pollard, W.T., Dunietz, B.D.

and Cao, Y. (1999) Correlated ab initio electronic structure calculations for large molecules. J.
Phys. Chem. A, 103, 1913–1928.

79. Murphy, R.B., Cao, Y., Beachy, M.D., Ringnalda, M.N. and Friesner, R.A. (2000) Efficient
pseudospectral methods for density functional calculations. J. Chem. Phys., 112, 10131–10141.

80. Beebe, N.H.F. and Linderberg, J. (1977) Simplifications in the generation and transformation
of two-electron integrals in molecular calculations. Int. J. Quantum Chem., 12, 683–705.

81. Koch, H., de Merás, A.S. and Pedersen, T.B. (2003) Reduced scaling in electronic structure
calculations using Cholesky decompositions. J. Chem. Phys., 118, 9481–9484.

82. Feyereisen, M.W., Fitzgerald, G. and Komornicki, A. (1993) Use of approximate integrals in
ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett., 208, 359–363.

83. Gonzalez-Lafont, A., Truong, T.N. and Truhlar, D.G. (1991) Direct dynamics calculations
with neglect of diatomic differential overlap molecular orbital theory with specific reaction
parameters. J. Chem. Chem., 95, 4618–4627.

84. Dewar, M. and Thiel, W. (1977) Ground states of molecules. 38. The MNDO method. Approx-
imations and parameters. J. Am. Chem. Soc., 99, 4899–4907.

85. Thiel, W. and Voityuk, A.A. (1992) Extension of the MNDO formalism to d orbitals: integral
approximations and preliminary numerical results. Theor. Chim. Acta, 81, 391–404.

86. Thiel, W. and Voityuk, A.A. (1996) Extension of the MNDO formalism to d orbitals: integral
approximations and preliminary numerical results. Theor. Chim. Acta, 93, 315.

87. Pople, J.A., Santry, D.P. and Segal, G.A. (1965) Approximate self-consistent molecular orbital
theory. I. Invariant procedures. J. Chem. Phys., 43, S129.

88. Dewar, M., Zoebisch, E., Healy, E. and Stewart, J. (1985) AM1: a new general purpose quantum
mechanical molecular model. J. Am. Chem. Soc., 107, 3902–3909.

89. Stewart, J.J.P. (1989) Optimization of parameters for semiempirical methods I. Method. J. Com-
put. Chem., 10, 209–220.

90. Kolb, M. and Thiel, W. (1993) Beyond the MNDO model: methodical considerations and
numerical results. J. Comput. Chem., 14, 775–789.

91. Weber, W. and Thiel, W. (2000) Orthogonalization corrections for semiempirical methods.
Theor. Chem. Acc., 103, 495–506.

92. Tuttle, T. and Thiel, W. (2008) OMx-D: semiempirical methods with orthogonalization and
dispersion corrections. Implementation and biochemical application. Phys. Chem. Chem. Phys.,
10, 2159–2166.

93. Gaus, M., Cui, Q. and Elstner, M. (2012) DFTB3: extension of the self-consistent-charge
density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput., 7, 931–948.

94. Eschrig, H. (1989) Optimized LCAO Method and Electronic Structure of Extended Systems,
Springer-Verlag, Berlin.

95. Zhechkov, L., Heine, T., Patchkovskii, S., Seifert, G. and Duarte, H.A. (2005) An efficient
a posteriori treatment for dispersion interaction in density-functional-based tight binding. J.
Chem. Theory Comput., 1, 841–847.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 65�

� �

�

Overview of Electronic Structure Methods 65

96. Siegbahn, P.E.M. (1981) The complete active space SCF (CASSCF) method in a
Newton-Raphson formulation with application to the HNO molecule. J. Chem. Phys.,
74, 2384.

97. Olsen, J. (2011) The CASSCF method: a perspective and commentary. Int. J. Quantum Chem.,
111, 3267–3272.

98. Andersson, K., Malmqvist, P.-A. and Roos, B.O. (1992) Second-order self-consistent perturba-
tion theory with a complete field reference function. J. Chem. Phys., 96, 1218–1226.

99. Purvis, G.D. and Bartlett, R.J. (1982) A full coupled-cluster singles and doubles model: the
inclusion of disconnected triples. J. Chem. Phys., 76, 1910.

100. Raghavachari, K., Trucks, G.W., Pople, J.A. and Head-Gordon, M. (1989) A fifth-order pertur-
bation comparison of electron correlation theories. Chem. Phys. Lett., 589, 37–40.

Trim Size: 170mm x 244mm Walker c03.tex V3 - 01/08/2016 9:38 A.M. Page 66�

� �

�

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 67�

� �

�

4
Gaussian Basis Set Hartree–Fock,
Density Functional Theory, and

Beyond on GPUs

Nathan Luehr1,2, Aaron Sisto1,2 and Todd J. Martínez1,2

1Department of Chemistry and the PULSE Institute, Stanford, CA, USA
2SLAC National Accelerator Laboratory, Menlo Park, CA, USA

In this chapter, we discuss the GPU acceleration of Hartree–Fock (HF), density functional theory
(DFT), and time-dependent density functional theory (TDDFT) methods within Gaussian basis sets.
As mentioned in Chapter 3, self-consistent field (SCF) methods such as HF and DFT contain two
principal bottlenecks. The first stems from the calculation of the Hamiltonian matrix elements, which
requires evaluation of electron–electron repulsion integrals (ERIs). Formally, for a basis set contain-
ing N functions, a total of (N4) ERIs must be evaluated. In the asymptotic limit of large systems,
efficient screening of negligibly small ERIs can reduce this number to (N2) or, for certain insulating
systems, even (N) [1–5]. In the case of DFT, the numerical quadrature of the exchange–correlation
(XC) potential is also a time-consuming trask. The second bottleneck results from diagonalization
of the N×N Hamiltonian matrix into its eigenvectors and eigenvalues. Eigensolvers applied to dense
matrices run with a complexity of (N3). However, using sparse matrix algebra it is possible, again
in asymptotically large systems, to achieve (N) scaling for the orbital/density update, which is usu-
ally addressed by diagonalization [6–8]. Thus, formal asymptotic analysis is of limited use since the
dominant bottleneck results from prefactors rather than scaling exponents. Empirically, for systems
up to at least 10,000 basis functions, integral evaluation dominates the SCF runtime, and therefore
the present chapter focuses primarily on the GPU acceleration of ERI evaluation.

Numerous ERI evaluation schemes have been developed for use in traditional CPU codes. For very
high angular momentum, Rys quadrature methods [9] may provide an advantage on GPUs due to their
smaller memory footprint [10–12]. For low angular momentum functions, we find little performance
difference between the Rys and the simpler McMurchie–Davidson [13] approach, and prefer the
simplicity of the latter for discussions in this chapter.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 68�

� �

�

68 Electronic Structure Calculations on Graphics Processing Units

4.1 Quantum Chemistry Review

Chapter 3 contains a general overview of electronic structure methods including HF and DFT meth-
ods. Space does not permit full derivations of these methods, nor is an in-depth description of various
ERI evaluation algorithms possible in this book. These can be found elsewhere [14–16]. Here, we
provide brief overviews in order to put the subsequent discussion of GPU acceleration into context.
Unless otherwise noted, we assume a spin-restricted wave function ansatz and atomic units through-
out the chapter.

4.1.1 Self-Consistent Field Equations in Gaussian Basis Sets

A primitive Gaussian function is defined as follows:

𝜒 i(
−→r) = N(−→r x − xi)

ni (−→r y − yi)
li (−→r z − zi)

mi exp(−𝛼i|−→r − −→
R i|2). (4.1)

Here, r is the three-dimensional electronic coordinate, N is a normalization constant, Ri = (xi, yi, zi)
is the primitive’s Cartesian center (usually coinciding with one of the atoms in the molecule), and
𝛼i is an exponent determining the spatial extent of the function. The nonnegative integers ni, li, and
mi fix the function’s angular momentum, and their sum 𝜆i = ni + li +mi gives the primitive’s total
angular momentum. Functions with 𝜆 = 0, 1, 2 are termed, s-, p-, and d-functions, respectively. The
set of (𝜆 + 1)(𝜆 + 2)∕2 primitive functions sharing a common center, exponent, and total momentum
is referred to as a shell. In order to more closely approximate the solutions to the atomic Schrödinger
equation, several primitive functions (centered on the same atom) are combined together into a con-
tracted basis function using fixed contraction weights c𝜇i:

𝜙𝜇(
−→r) =

∑
i

c𝜇i𝜒 i(
−→r). (4.2)

These contracted basis functions will be referred to as atomic orbitals (AOs) in the following.
The AOs themselves are combined by linear contraction into molecular orbitals (MOs), each of

which is related to the one-particle spatial probability distribution for an electron in the system:

𝜃i(
−→r) =

N∑
𝜇

C𝜇i𝜙𝜇(
−→r). (4.3)

The MO coefficients C𝜇i are free parameters, and their determination is the primary objective of the
SCF procedure. In order to describe an n-electron system, the one-electron MOs are combined with
spin functions in a Slater determinant:

Ψ(−→x 1,
−→x 2, … ,

−→x n) =
1√
n!

|||||||||

𝜓1

(−→x 1

)
𝜓2(

−→x 1) · · · 𝜓n(
−→x 1)

𝜓1(
−→x 2) 𝜓2(

−→x 2) · · · 𝜓n(
−→x 2)

⋮ ⋮ ⋱ ⋮
𝜓1(

−→x n) 𝜓2(
−→x n) · · · 𝜓n(

−→x n)

|||||||||
. (4.4)

For the spin-restricted case in which two electrons occupy each spatial orbital, the spin orbitals
(depending on both spatial and spin electronic degrees of freedom) can be defined as follows (where
𝜎k is the spin degree of freedom for the kth electron):

𝜓2n−1(
−→x k) = 𝜃n(

−→r k)𝛼(𝜎k), (4.5)

𝜓2n(
−→x k) = 𝜃n(

−→r k)𝛽(𝜎k).

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 69�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 69

The energy of the wave function Ψ representing n electrons in a system containing A fixed atomic
nuclei (each with charge Za and located at position Ra) is derived from the expectation value of the
electronic Hamiltonian Ĥ:

Ĥ =
n∑
i

⎛
⎜⎜⎝

A∑
a

Za

|||
−→r i −

−→
R a
|||
−

∇2
i

2
+ 1

2

∑
j≠i

1

|−→r i −
−→r j|

⎞
⎟⎟⎠

(4.6)

ERHF =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ = 2

n∕2∑
i

⟨𝜃i|ĥ|𝜃i⟩ + 2
n∕2∑
i,j

(𝜃i𝜃i|𝜃j𝜃j) −
n∕2∑
i,j

(𝜃i𝜃j|𝜃i𝜃j). (4.7)

Here the MOs are assumed, without loss of generality, to be orthonormal.

⟨𝜃i|𝜃j⟩ = 𝛿ij. (4.8)

The one-electron core Hamiltonian operator ĥ accounts for electron–nuclear attraction and electron
kinetic energy:

ĥ(−→r) =
A∑
a

Za

|−→r − −→
R a|

− ∇2

2
(4.9)

and the ERIs account for pairwise interactions between electrons.

(𝜃i𝜃j|𝜃k𝜃l) = ∫
d3−→r 1∫

d3−→r 2

𝜃∗i (
−→r 1)𝜃j(

−→r 1)𝜃∗k (
−→r 2)𝜃l(

−→r 2)

|−→r 1 −
−→r 2|

. (4.10)

For Kohn–Sham DFT, a similar energy expression is obtained by using the determinant to describe
noninteracting pseudo-particles whose total density matches the ground-state electron density:.

𝜌(−→r) = 2
n∕2∑

i

|𝜃i(
−→r)|2. (4.11)

In this case, components of the Hartree–Fock energy provide good approximations for the DFT
kinetic energy and classical electron repulsion. An additional exchange–correlation functional EXC

corrects for the relatively small energetic effects of electron exchange and correlation as well as errors
from approximating the kinetic energy as that of the Kohn–Sham determinant:

EDFT = 2
n∕2∑

i

⟨𝜃i|ĥ|𝜃i⟩ + 2
n∕2∑
i,j

(𝜃i𝜃i|𝜃j𝜃j) + EXC[𝜌]. (4.12)

Given the exact exchange–correlation functional EXC[𝜌], Eq. (4.12) would provide the exact
ground-state energy. Unfortunately, the exact functional is not known in any computationally feasi-
ble form. In practice, a variety of approximate functionals are often employed. For simplicity, we
focus on the remarkably successful class of generalized gradient approximation (GGA) functionals.
These take the form of an integral over a local XC kernel, which depends only on the total density
and its gradient:

EXC[𝜌] = ∫
fxc(𝜌(r),∇𝜌(r))d

−→r . (4.13)

To calculate the HF or DFT ground-state electronic configuration, we vary the MO coefficients C𝜇i to
minimize ERHF or EDFT under the constraint of Eq. (4.8) that the MOs remain orthonormal. Functional
variation ultimately results in the following conditions on the MO coefficients:

F(P)C=ESC. (4.14)

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 70�

� �

�

70 Electronic Structure Calculations on Graphics Processing Units

Here, P is the density matrix represented in the AO basis:

P𝜇𝜈 =
n∑
i

C𝜇iC
∗
𝜈i. (4.15)

E is a diagonal matrix of MO energies (formally, this matrix is the set of Lagrange multipliers enforc-
ing the constraint that all the molecular orbitals remain orthonormal, i.e., Eq. (4.8)); S is the AO
overlap matrix

S𝜇𝜈 = ⟨𝜙𝜇|𝜙𝜈⟩ (4.16)

and F(P) is the nonlinear Fock operator, defined slightly differently for HF and DFT as follows:

FHF
𝜇𝜈 (P) = h𝜇𝜈 +

N∑
𝜆𝜎

P𝜆𝜎[2(𝜇𝜈|𝜎𝜆) − (𝜇𝜆|𝜈𝜎)], (4.17)

FDFT
𝜇𝜈 (P) = h𝜇𝜈 + 2

N∑
𝜆𝜎

(𝜇𝜈|𝜎𝜆)P𝜆𝜎 + VXC
𝜇𝜈 , (4.18)

where h is the core Hamiltonian from Eq. (4. 9) now in the AO basis:

h𝜇𝜈 =

⟨
𝜙𝜇

|||||||

A∑
a

Za

|||
−→r 1 −

−→
R a
|||
− ∇2

2

|||||||
𝜙𝜈

⟩
(4.19)

and the two-electron ERIs are defined in the AO basis as follows:

(𝜇𝜈|𝜆𝜎) =
∫

d3−→r 1∫
d3−→r 2

𝜙∗
𝜇(
−→r 1)𝜙𝜈(

−→r 1)𝜙∗
𝜆
(−→r 2)𝜙𝜎(

−→r 2)

|−→r 1 −
−→r 2|

=
∑
i∈𝜙𝜇

∑
j∈𝜙𝜈

∑
k∈𝜙𝜆

∑
l∈𝜙𝜎

c∗
𝜇ic𝜈jc

∗
𝜆kc𝜎l∫

d3−→r 1∫
d3−→r 2

𝜒∗
i (
−→r 1)𝜒 j(

−→r 1)𝜒∗
k (
−→r 2)𝜒 l(

−→r 2)

|−→r 1 −
−→r 2|

=
∑
i∈𝜙𝜇

∑
j∈𝜙𝜈

∑
k∈𝜙𝜆

∑
l∈𝜙𝜎

c∗
𝜇ic𝜈jc

∗
𝜆kc𝜎l[ij|kl]. (4.20)

Note that we use round braces to refer to ERIs involving contracted basis functions and square braces
to refer to primitive ERIs. Also, to specify that the ith primitive is restricted to members of the 𝜇th
atomic orbital, we use the notation i ∈ 𝜙𝜇 . Finally, for DFT, VXC is determined by functional differ-
entiation of the exchange–correlation energy expression:

VXC
𝜇𝜈 =

⟨
𝜃𝜇

||||
𝛿EXC

𝛿𝜌

|||| 𝜃𝜈
⟩

. (4.21)

Because the HF and DFT Fock operators are nonlinear, Eq. (4.14) cannot be solved in a closed
form; instead, an iterative approach is used. Starting from some guess for the density matrix P, the
Fock matrix is constructed and then diagonalized to obtain a matrix of approximate MO orbitals, C.
The MO coefficients C are then used to construct an improved guess for the density matrix using
Eq. (4.15), and the process is repeated until F and P converge to stable values.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 71�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 71

4.1.2 Electron–Electron Repulsion Integral Evaluation

The generation and contraction of ERIs into the Fock matrix is the main bottleneck in finite-basis SCF
algorithms, and therefore our primary focus in the present chapter. Here, we provide mathematical
background which will be useful when considering the implementation of ERIs on GPUs in subse-
quent sections. Efficient ERI evaluation begins by invoking the Gaussian product theorem, which
allows a product of two primitive Gaussian functions located at different centers to be combined into
a single Gaussian centered at a point

−→
P between the original centers [17]:

Ωij = e−𝛼i(
−→r −−→Ri)2 e−𝛼j(

−→r −−→Rj)2 = Kije
−𝜂ij(

−→r −−→Pij)2 ,

𝜂ij = 𝛼i + 𝛼j,

Kij = e
−

𝛼i𝛼j
𝛼i+𝛼j

(−→Ri−
−→
Rj)2
,

−→
P ij =

𝛼i

−→
R i + 𝛼j

−→
R j

𝛼i + 𝛼j

. (4.22)

This reduces each four-center primitive ERI to a simpler two-center problem:

[ij|kl] = [Ωij|Ωkl]. (4.23)

Following the McMurchie–Davidson scheme for ERI evaluation, each primitive pair is exactly
expanded in a basis of Hermite Gaussians {Λt} [13]:

Ω[ij] =
∑
t=0

E[ij]
t Λt. (4.24)

The expansion coefficients E[ij]
t differ for each primitive pair 𝜒 i𝜒 j and are calculated from simple

recurrence relations [13]. The primitive ERI then becomes

[ij|kl] =
∑

p

∑
q

E[ij]
p E[kl]

q [Λp|Λq]. (4.25)

The Hermite ERIs [Λp|Λq] are efficiently calculated by recurrence relations starting from the Boys
function Fn(x) [13]:

Fn(x) = ∫

1

0
t2ne−xt2 dt. (4.26)

Although the Fock matrices of Eqs. (4.17) and (4.18) involve contributions from N4 ERIs, many
individual terms may be neglected. Because each AO basis function is localized in space, a pair dis-
tribution Ωij will approach zero exponentially as the distance between primitive functions increases.
Thus, an AO ERI (𝜇𝜈|𝜎𝜆) will be nonnegligible only if 𝜇 is centered near 𝜈 and 𝜆 is near 𝜎. For large
systems, this reduces the number of integrals to a more manageable N2. In order to efficiently identify
significant ERIs, a Schwarz inequality can be applied to either contracted or primitive integrals [18]:

|(𝜇𝜈|𝜆𝜎)| ≤ (𝜇𝜈|𝜇𝜈)1∕2(𝜆𝜎|𝜆𝜎)1∕2. (4.27)

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 72�

� �

�

72 Electronic Structure Calculations on Graphics Processing Units

4.2 Hardware and CUDA Overview

While Chapter 2 provided an introduction to the concept of GPU programming, we believe it is useful
to the reader to briefly repeat some of the essential points as they pertain to GPU acceleration of ERI
evaluation. As mentioned previously, each GPU is a massively parallel device, containing thousands
of execution cores. However, the performance of these processors results not only from the raw width
of execution units but also from a hierarchy of parallelism that forms the foundation of the hardware
architecture and, in the case of Nvidia hardware, is ingeniously exposed to the programmer through
the CUDA programming model [19]. Developers must understand and respect these hierarchical
boundaries if their programs are to run efficiently on GPUs.

At the lowest level, the CUDA programmer writes a small procedure – called a kernel in
“CUDA-speak” – that is to be executed by tens of thousands of individual threads in parallel.
Although each CUDA thread is logically autonomous, the hardware does not execute each thread
independently. Instead, instructions are scheduled for groups of 32 threads, called warps, in a
single-instruction multiple-thread (SIMT) manner. Every thread in a warp executes the same
instruction stream, with threads masked to null operations (no-ops) for instructions in which they do
not participate.

Warps are grouped into larger blocks of up to 1024 threads. Blocks are assigned to local groups
of execution units called streaming multiprocessors (SMs). The SM provides hardware-based
intra-block synchronization methods, and a small on-chip shared memory is often used for
intra-block communication. CUDA blocks can be indexed in one, two, or three dimensions at the
convenience of the programmer.

At the highest level, blocks are organized into a CUDA grid. As with blocks, the grid can have up
to three dimensions. In general, the grid contains many more blocks and threads than the GPU has
physical execution units. When a grid is launched, a hardware scheduler streams CUDA blocks onto
the processors. By breaking a task into fine-grained units of work, the GPU can be kept constantly
busy, maximizing performance.

As highlighted in Chapter 2 in CUDA, the memory is also structured hierarchically. The host
(CPU) memory usually provides the largest space, but can only be accessed through the PCIe inter-
face, which suffers from latencies on the order of several thousand instruction cycles. The GPU’s
main (global) memory provides several gigabytes of high-bandwidth memory capable of more than
250 GB/s of sustained throughput. In order to enable this bandwidth, global memory accesses incur
long latencies, on the order of >500 clock cycles. Global memory operations are parallelized in
a SIMT-friendly manner in which the natural width of the memory controller allows simultane-
ous access by all threads of a warp as long as those threads target contiguous memory locations.
Low-latency, on-chip memory is also available. Most usefully, each block can use up to 64 KB of
shared memory for intrablock communication, and each thread has up to 255 local registers in which
to store intermediate results.

Consideration of the basic hardware design suggests the following basic strategies for maximizing
the performance of GPU kernels:

1. Launch many threads, ideally one to two orders of magnitude more threads than the GPU has
execution cores. For example, a Tesla K20 with 2496 cores may not reach peak performance
until at least (105) threads are launched. Having thousands of processors will be an advantage
only if they are all saturated with work. All threads are hardware-scheduled, making them very
lightweight to create, unlike host threads. Also, the streaming model ensures that the GPU will
not execute more threads than it can efficiently schedule. Thus oversubscription will not throttle
performance. Context switches are also instantaneous, and this is beneficial because they allow
a processor to stay busy when it might otherwise be stalled, for example, waiting for a memory
transaction to complete.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 73�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 73

2. Keep each thread as simple as possible. Threads with smaller shared memory and register foot-
prints can be packed more densely onto each SM. This allows the schedulers to hide execution
and memory latencies by increasing the chance that a ready-to-execute warp will be available on
any given clock cycle.

3. Decouple the algorithm to be as data-parallel as possible. Synchronization between threads always
reduces the effective concurrency available to the GPU schedulers, and should be minimized. For
example, it is often better to recompute intermediate quantities rather than build shared caches,
sometimes even when the intermediates require hundreds of cycles to compute.

4. Maintain regular memory access patterns. On the CPU this is done temporally within a single
thread; on the GPU it is more important to do it locally among threads in a warp.

5. Maintain uniform control flow within a warp. Because of the SIMT execution paradigm, all threads
in the warp effectively execute every instruction needed by any thread in the warp. Pre-organizing
work by expected code-path can eliminate divergent control flow within each warp and improve
performance.

These strategies have well-known analogs for CPU programming; however, the performance
penalty resulting from their violation is usually much more severe in the case of the GPU. The
tiny size of GPU caches relative to the large number of in-flight threads defeats any possibility
of cushioning the performance impact of nonideal programming patterns. In such cases, the task
of optimization goes far beyond simple FLOP minimization, and the programmer must consider
tradeoffs from each of the above considerations on his design.

4.3 GPU ERI Evaluation

Turning now to the task of GPU acceleration, we first consider the simplified problem of evaluating
contracted ERIs within a basis of s-functions. For such functions, a primitive ERI can be evaluated
as follows:

[ij|kl] =
𝜋3KijKkl

𝜂ij𝜂kl

√
𝜂ij + 𝜂kl

F0

(
𝜂ij𝜂kl

𝜂ij + 𝜂kl

|||
−→
P ij −

−→
P kl

|||
2
)

, (4.28)

where F0 is the Boys function of Eq. (4.26), and K, 𝜂, and
−→
P are primitive pair quantities (PQs)

defined in Eq. (4.22).
A convenient way to organize ERI evaluation is to contract unique pairs of atomic orbitals

{𝜙𝜇𝜙𝜈|𝜇 ≤ 𝜈} into a vector of dimension N(N − 1)∕2. A generalized outer product of this vector
with itself then produces a matrix whose elements are quartets {𝜙𝜇𝜙𝜈, 𝜙𝜆𝜙𝜎|𝜇 ≤ 𝜈, 𝜆 ≤ 𝜎}, each
representing a (bra|ket) integral. Because of (bra|ket) = (ket|bra) symmetry, only the upper triangle
of the integral matrix needs be computed. Such an ERI matrix is illustrated in the left half of
Figure 4.1.

In applying the CUDA model, it is not difficult to break up the task of ERI evaluation into indepen-
dent units of work. Natural divisions occur between each contracted ERI (𝜇𝜈|𝜆𝜎) and at a finer grain
between primitive integrals [ij|kl]. Because of the quantity of available parallel work, there are many
possible strategies to map ERIs onto GPU threads. We describe three broadly representative schemes
[12, 20]. The first assigns a CUDA block to evaluate each contracted ERI and maps a two-dimensional
(2D) CUDA grid onto the 2D ERI grid, shown in Figure 4.1. The threads within each block work
together to compute a contracted integral in parallel. We term this the one-block-one-contracted inte-
gral (1B1CI) scheme. The second strategy assigns entire contracted integrals to individual CUDA
threads. This coarser decomposition we term the one-thread-one-contracted integral (1T1CI) strategy.
The final decomposition strategy maps each thread to a single primitive integral (1T1PI) and ignores
boundaries between primitives belonging to different AO contractions. A second reduction step is
then employed to sum the final contracted integrals from their constituent primitive contributions.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 74�

� �

�

74 Electronic Structure Calculations on Graphics Processing Units

Figure 4.1 Schematic of one-block one-contracted Integral (1B1CI) mapping. Cyan squares on left rep-
resent contracted ERIs each mapped to the labeled CUDA block of 64 threads. Orange squares show
mapping of primitive ERIs to CUDA threads (green and blue boxes, colored according to CUDA warp)
for two representative integrals, the first a contraction over a single primitive ERI and the second involving
34 =81 primitive contributions. (See insert for colour representation of this figure)

4.3.1 One-Block-One-Contracted Integral

Figure 4.1 shows a schematic representation of the 1B1CI mapping. Each cyan square represents a
contracted integral that we wish to calculate. The CUDA block responsible for each contracted ERI is
labeled within the square. Lower triangular blocks, labeled idle in Figure 4.1, would compute redun-
dant integrals due to (bra|ket) = (ket|bra) symmetry. These blocks exit immediately and, because
of the GPU’s efficient thread scheduling, contribute minimally to the overall execution time. Each
CUDA block is made up of 64 worker threads arranged in a single dimension. Blocks are represented
by orange rectangles in Figure 4.1. The primitive integrals are mapped cyclically onto the threads,
and each thread collects a partial sum in an on-chip register.

The first thread computes and accumulates integrals 1, 65, and so on, while the second thread
handles integrals 2, 66, and so on. After all primitive integrals have been evaluated, a block-level
reduction produces the final contracted integral.

PQs for bra and ket primitive pairs {𝜒 i𝜒 j|𝜒 i ∈ 𝜙𝜇, 𝜒 j ∈ 𝜙𝜈} are precomputed on the host and
stored in vectors sorted by a combined AO index 𝜇𝜈. This allows fetches from neighboring threads
to be coalesced when fetching input for each primitive ERI. To fully satisfy CUDA coalescence
constraints, the primitive PQs are packed into multiple arrays of CUDA vector types, for example, a
float4 array for

−→
P x,

−→
P y,

−→
P z, and 𝜂 and an additional float array for K values.

Two cases deserving particular consideration are illustrated in Figure 4.1. The upper thread block
shows what happens for very short contractions, in the extreme case a single primitive. Since there is
only one primitive to compute, all threads other than the first will sit idle. A similar situation arises in
the second example. Here, an ERI is calculated over four AOs, each with contraction length 3, which
works out to a total of 81 primitive integrals. In this case, none of the 64 threads is completely idle.
However, some load imbalance is still present, since the first 17 threads compute a second integral,
while the remaining warps, threads 18–31, execute unproductive no-op instructions. It should be
noted that threads 32–63 do not perform wasted instructions because the entire warp skips the second
integral evaluation. Thus, “idle” CUDA threads do not always map to idle execution units. Finally,
as contractions lengthen, load imbalance between threads in a block will become negligible in terms
of the runtime, making the 1B1CI strategy increasingly efficient.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 75�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 75

4.3.2 One-Thread-One-Contracted Integral

In the 1T1CI strategy, each thread loops over all primitives within a contraction, accumulating the
sum in a local register. A schematic representation is shown in Figure 4.2. There the contracted
integrals are again represented by cyan squares, but each CUDA block, represented by red outlines,
now handles multiple contracted integrals rather than just one. In order to achieve optimal memory
performance, the primitive PQs for each AO pair are interleaved so that fetches of primitive bra and
ket pairs from neighboring threads request contiguous addresses. The 2D blocks shown in Figure 4.2
are given dimensions 4× 4 for illustrative purposes. In practice, blocks sized at least 16× 16 threads
should be used. Because threads within the same warp execute in SIMT manner, warp divergence
will result whenever neighboring ERIs involve contractions of different lengths. To eliminate these
imbalances, the bra and ket PQ arrays must be sorted by contraction length so that blocks handle
ERIs of uniform contraction length.

4.3.3 One-Thread-One-Primitive Integral

The 1T1PI strategy is illustrated in Figure 4.3. This approach provides the finest grained parallelism
of the mappings we consider. It is similar to the 1B1CI in that contracted ERIs are again broken
up between multiple threads. Here, however, the primitives are distributed to CUDA blocks without
considering the contraction of which they are members. In Figure 4.3, cyan squares represent 2D
CUDA blocks of dimension 16× 16, and red lines represent divisions between contracted integrals.
Because the block size is not an even multiple of the contraction length, the primitives computed
within the same block will, in general, contribute to multiple contracted ERIs. This approach results
in perfect load balancing (for primitive evaluation), since each thread does exactly the same amount
of work. It is also notable in that 1T1PI imposes few constraints on the ordering of primitive pairs,
since they no longer need to be grouped or interleaved by parent AO indices. However, the advantages
of the 1T1PI scheme are greatly reduced if we also consider the subsequent reduction step needed
to produce the final contracted ERIs. These reductions involve inter-block communication and, for
highly contracted basis sets, can prove more expensive than the ERI evaluation itself.

Figure 4.2 Schematic of one-thread one-contracted Integral (1T1CI) mapping. Cyan squares represent
contracted ERIs and CUDA threads. Thread indices are shown in parentheses. Each CUDA block (red
outlines) computes 16 ERIs, with each thread accumulating the primitives of an independent contraction,
in a local register. (See insert for colour representation of this figure)

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 76�

� �

�

76 Electronic Structure Calculations on Graphics Processing Units

Figure 4.3 Schematic of one-thread one-primitive integral (1T1PI) mapping. Cyan squares represent
two-dimensional tiles of 16× 16 primitive ERIs, each of which is assigned to a 16× 16 CUDA block as
labeled. Red lines indicate divisions between contracted ERIs. The orange box shows assignment of prim-
itive ERIs to threads (gray squares) within a block that contains contributions to multiple contractions.
(See insert for colour representation of this figure)

4.3.4 Comparison of Contracted ERI Schemes

We now turn to a practical evaluation of the acceleration schemes presented above. We consider the
evaluation of ERIs for a system made up of 64 hydrogen atoms arranged in a 4× 4× 4 cubic lattice
with a separation of 0.74 Å between nearest neighbors. Table 4.1 compares execution times for each
method along with timings for GPU-related overheads, such as memory transfers between host and
device memories.

Two basis sets are considered. The 6-311G basis represents a low contraction limit in which most
(two-thirds) of the AOs include a single primitive component. Here, the 1T1PI mapping provides the
best performance. At such a minimal contraction level, very few ERIs must be accumulated between
block boundaries, minimizing required inter-block communication. The 1T1CI method is a close
second, since for small contractions it represents a parallel decomposition that is only slightly coarser
than the ideal 1T1PI scheme. The 1B1CI scheme, on the other hand, is a distant third. This is due
to its poor load balancing discussed above. For the 6-311G basis, over 85% of the contracted ERIs
involve nine or fewer primitive ERI contributions. Thus, the vast majority of the 64 threads in each
block do no work.

It should be noted that simply transferring ERIs between host and device can take longer than the
ERI evaluation itself, especially in the case of low basis set contraction. This means that, for efficient

Table 4.1 Runtime comparison for evaluating ERIs of 64 H atom lattice using 1B1CI, 1T1CI, and 1T1PI
methods

GPU1B1CI GPU1T1CI GPU1T1PI CPU PQ
Pre-calc

GPU–CPU
Transfer

GAMESS

6-311G 7.086 0.675 0.428 0.009 0.883 170.8
STO-6G 1.608 1.099 2.863 0.012 0.012 90.6

Times are given in seconds. All GPU calculations were run on an Nvidia 8800 GTX. CPU precalculation records time
required to build pair quantities prior to launching GPU kernels. GPU–CPU transfer provides the time required to copy
the completed ERIs from device to host memory. Timings for the CPU-based GAMESS program running on an Opteron
175 CPU are included for comparison.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 77�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 77

GPU implementations, ERIs can be re-evaluated from scratch faster than they can be fetched from
host memory, and much faster than they can be fetched from disk.

The STO-6G basis provides a sharp contrast. Here each contracted ERI includes 64 or 1296 prim-
itive ERI contributions. As a result, for the 1T1PI scheme the reduction step becomes much more
involved, in fact requiring more time than primitive ERI evaluation itself. This illustrates a key prin-
ciple that organizing communication is often just as important as minimizing arithmetic instructions
when optimizing performance. The 1T1CI scheme performs similar to the 6-311G case. The fact
that all ERIs now involve uniform contraction lengths provides a slight boost, since it requires only
60% more time to compute twice as many primitive ERIs compared to the 6-311G basis. The 1B1CI
method improves dramatically, as every thread of every block is now saturated with 20 or 21 primi-
tive ERIs.

4.3.5 Extensions to Higher Angular Momentum

A few additional considerations are important for extension to basis functions of higher angular
momentum. For nonzero angular momentum functions, shells contain multiple functions. Within
the McMurchie–Davidson scheme, all integrals within an ERI shell depend on the same intermediate
Hermite integral values [Λp|Λq]. Thus, it is advantageous to have each thread compute an entire shell
of primitive integrals. For example, a thread computing a primitive ERI of class [sp|sp] is responsible
for a total of nine functions.

The performance of GPU kernels is quite sensitive to the memory requirements of each thread.
As threads use more memory, the total number of concurrent threads resident on each SM decreases.
Fewer active threads, in turn, reduce the GPU’s ability to hide execution latencies and lowers through-
put performance. Because all threads in a grid reserve the same memory footprint, a single grid
handling both low and – more complex – high angular momentum integrals will apply the worst case
memory requirements to all threads. To avoid this, separate kernels must be written for each class of
integral.

Specialized kernels also provide opportunities to further optimize each routine and reduce memory
usage, for example, by unrolling loops or eliminating conditionals. This is particularly important for
ERIs involving d- and higher angular momentum functions, where loop overheads become nontrivial.
For high angular momentum integrals, it is also possible to use symbolic algebra libraries to generate
unrolled kernels that are optimized for the GPU [21].

Given a basis set of mixed angular momentum shells, we could naively extend any of the decom-
position strategies presented above as follows. First, build the pair quantities as prescribed, without
consideration for angular momentum class. Then launch a series of ERI kernels, one for each momen-
tum class, assigning a compute unit (either block or thread depending on strategy being extended) to
every ERI in the grid. Work units assigned to ERIs that do not apply to the appropriate momentum
class could exit immediately. This strategy is illustrated for a hypothetical system containing four
s-shells and one p-shell in Figure 4.4a. Each square represents a shell quartet of ERIs, that is, all
ERIs resulting from the combination of the various angular momentum functions within each of the
included AO shells. The elements are colored by total angular momentum class, and a specialized
kernel evaluates elements of each color. The problem with this approach is that the number of integral
classes increases rapidly with the maximum angular momentum in the system. Thus, the inclusion of
d-shells would already result in the vast majority of the threads in each kernel exiting without doing
any work. A better approach is illustrated in Figure 4.4b. Here, we have sorted the bra and ket pairs
by the angular momenta of their constituents: ss, then sp, and last pp. As a result, the ERIs of each
class are localized in contiguous subgrids, and kernels can be dimensioned to exactly cover only the
relevant integrals.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 78�

� �

�

78 Electronic Structure Calculations on Graphics Processing Units

(a) (b)

Figure 4.4 ERI grids colored by angular momentum class for a system containing four s-shells and one
p-shell. Each square represents all ERIs for a shell quartet. (a) Grid when bra and ket pairs are ordered by
simple loops over shells. (b) ERI grid for same system with bra and ket pairs sorted by angular momentum,
ss, then sp, then pp. Each integral class now handles a contiguous chunk of the total ERI grid. (See insert
for colour representation of this figure)

4.4 Integral-Direct Fock Construction on GPUs

We now consider the contributions of ERIs to the Fock matrix in Eq. (4.17):

G𝜇𝜈(P) =
N∑
𝜆𝜎

P𝜆𝜎[2(𝜇𝜈|𝜎𝜆) − (𝜇𝜆|𝜈𝜎)]. (4.29)

Because the ERIs remain constant from one SCF iteration to the next, it used to be common practice
to form G from precomputed integrals. However, for systems containing thousands of basis functions,
ERI storage quickly becomes impractical. The integral-direct approach, pioneered by Almlof [22],
avoids the storage of ERIs by recomputing them on the fly during each formation of the Fock matrix.

Beyond capacity constraints, the direct approach offers performance advantages over conventional
algorithms based on integral storage. As observed previously, ERIs can sometimes be recalculated
faster than they can be recalled from storage (even when this storage is high-speed random access
memory). As advances in instruction throughput continue to outpace those for communication band-
widths, the balance will shift further in favor of integral-direct algorithms. Another advantage results
from the knowledge of the density matrix during Fock construction. This allows the direct approach
to augment the Schwarz bound with density matrix information

|(𝜇𝜈|𝜆𝜎)P𝜆𝜎| ≤ (𝜇𝜈|𝜇𝜈)1∕2(𝜆𝜎|𝜆𝜎)1∕2|P𝜆𝜎|, (4.30)

in order to identify and eliminate more insignificant integrals than is possible for precomputed ERIs.
In the case of the GPU, additional advantages can be achieved by abandoning the construction of
contracted ERIs (𝜇𝜈|𝜆𝜎) in favor of direct construction of Fock elements G𝜇𝜈 from Gaussian primitive
functions. These longer contractions simplify the parallel structure of the algorithm and improve GPU
performance.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 79�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 79

To minimize the number of integrals that must be evaluated, the symmetry of real-valued ERIs

(𝜇𝜈|𝜆𝜎) = (𝜆𝜎|𝜇𝜈) = (𝜈𝜇|𝜆𝜎) = (𝜈𝜇|𝜎𝜆) (4.31)

is often exploited in order to compute only unique integrals where 𝜇 ≤ 𝜈, 𝜆 ≤ 𝜎, and 𝜇𝜈 ≤ 𝜆𝜎, where
𝜇𝜈 and 𝜆𝜎 are compound indices corresponding to the element numbers in an upper triangular matrix.
Each ERI is then combined with various density elements and scattered into multiple locations in the
Fock matrix. This reduces the number of ERIs that must be evaluated by a factor of 8 compared to a
naïve implementation. However, gathering inputs from the density matrix introduces irregular mem-
ory access patterns, and scattering outputs to the Fock matrix creates dependencies between ERIs.
GPU performance is extremely sensitive to these considerations, so that even an eightfold reduction
in work is easily swamped by an even larger performance slowdown. It is helpful to start from a naïve,
but completely parallel algorithm, and then exploit ERI symmetry only where it provides a practical
benefit. To this end, G𝜇𝜈 in Eq. (4.29) is evaluated in separate Coulomb

J𝜇𝜈 =
N∑
𝜆𝜎

(𝜇𝜈|𝜎𝜆)P𝜆𝜎 (4.32)

and exchange

K𝜇𝜈 =
N∑
𝜆𝜎

(𝜇𝜆|𝜈𝜎)P𝜆𝜎 (4.33)

contributions.

4.4.1 GPU J-Engine

The strategies for handling ERIs developed above provide a good starting point for the evaluation
of the Coulomb operator in Eq. (4.32) [23]. The shift from individual ERIs to larger contractions of
primitive ERIs

J𝜇𝜈 =
∑
𝜒 i∈𝜙𝜇
𝜒 j∈𝜙𝜈

∑
𝜆
𝜎

∑
𝜒k∈𝜙𝜆
𝜒 l∈𝜙𝜎

c∗
𝜇ic𝜈jc

∗
𝜆kc𝜎l[ij|kl]P𝜆𝜎 (4.34)

can be visualized by noting that all integrals across any row of the ERI grids discussed above con-
tribute to the same element J𝜇𝜈 .

As with simple ERI evaluation, the first step is to enumerate basis shell pairs 𝜙𝜇𝜙𝜈 for bra and ket.
Because J𝜇𝜈 is symmetric, it is sufficient to compute its upper triangle, and only bra pairs where 𝜇 ≤ 𝜈

need to be considered. Also for ket pairs, the terms (𝜇𝜈|𝜆𝜎)P𝜆𝜎 and (𝜇𝜈|𝜎𝜆)P𝜎𝜆 are equal, and both
contribute to the same Coulomb element. Thus, symmetry again allows a reduction to ket pairs where
𝜆 ≤ 𝜎. For a basis including s, p, and d shells, sorting the pairs by angular momentum class results in a
total of six pair classes, ss, sp, sd, pp, pd, and dd, and 36 specialized kernels. It is not possible to exploit
the final class of ERI symmetry (𝜇𝜈|𝜆𝜎) = (𝜆𝜎|𝜇𝜈) without introducing dependencies between rows
of the ERI grid and, as a result, performance sapping inter-block communication. Thus, ignoring
integrals neglected by screening, the J-Engine nominally computes N4/4 integrals.

Each included shell pair is expanded by iterating over primitive pairs {ij|𝜒 i ∈ 𝜙𝜇, 𝜒 j ∈ 𝜙𝜈} and

appending PQ data to bra and ket arrays. Along with the usual
−→
P , 𝜂, and K quantities, we also precom-

pute, for the bra, a Schwarz contribution Bbra
ij = (ij|ij)1∕2 and Hermite expansion coefficients {E[ij]

p },
where

[ij| = ∑
p

E[ij]
p [Λp|. (4.35)

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 80�

� �

�

80 Electronic Structure Calculations on Graphics Processing Units

For ket pairs, a density-weighted Schwarz contribution Bket
ij = (ij|ij)1∕2|Pij|max is stored such that the

full density-weighted Schwarz bound can be efficiently evaluated as follows:

|(ij|kl)Pkl| ≤ Bbra
ij Bket

kl = (ij|ij)1∕2(kl|kl)1∕2|Pkl|max. (4.36)

Here, the max is taken over all functions in the shell pair. For ket PQs, the corresponding block of the
density matrix is also transformed to the Hermite basis and incorporated into the Hermite coefficients
to produce the combined {D[ij]

p } [24]:

|ij]P𝜆𝜎 =
∑

p

E[ij]
p P𝜆𝜎p |Λp] =

∑
p

D[ij]
p |Λp]. (4.37)

The generalized outer product of these bra and ket PQ vectors represents all primitive integrals
needed to evaluate the Coulomb matrix. This structure is illustrated in the left half of Figure 4.5, where
each pixel represents a primitive ERI and is colored according to the magnitude of the Schwarz bound
for that integral. Before mapping the grid of primitive ERIs to CUDA compute units, it is important
to consider the pattern of ERI magnitudes within the ERI matrix of Figure 4.5. Before evaluating an
ERI, its Schwarz bound is formed by the product Bbra

ij Bket
kl . If the bound falls below the ERI threshold,

ε ≈ 10−11, the ERI is deemed insignificant and no further evaluation is performed. If the primitives are
ordered arbitrarily, as in Figure 4.5a, skipped and evaluated integrals will be interspersed among the
threads of each warp. As a result, neglecting integrals offers almost no performance advantage, since
all cores in the warp are occupied to compute the non-negligible elements. A solution is to sort the
primitive bra and ket arrays for each angular momentum class by decreasing Schwarz contributions
Bbra|ket

ij . This results in the grid shown in Figure 4.5b, where significant integrals are localized in the

upper left corner of each grid. Because the bounds Bbra|ket
ij rapidly decrease with increasing ij distance,

the number of bra and ket pairs grows linearly with the size of the system, and the total number of
significant ERIs will be only N2, a tremendous reduction from the full set of N4 integrals.

In addition to removing warp divergence when computing significant ERIs, the sorted PQs can
also be exploited to completely avoid examining bounds for most negligible integrals. After sorting

|ss
)

|sp
)

|p
p) |ss

)
|sp

)
|p
p)

(ss|

(sp|

(pp|

(ss|

1.0

1.0e–3

(b)(a)

1.0e–6

1.0e–9

(sp|

(pp|

Presorted integral grid

Figure 4.5 Organization of ERIs for Coulomb formation. Rows and columns correspond to primitive
bra and ket pairs, respectively. Each ERI is colored according to the magnitude of its Schwarz bound.
Data are derived from calculation on ethane molecule. Figure (a) obtained by arbitrary ordering of pairs
within each angular momentum class and suffers from load imbalance because large and small integrals
are computed in neighboring cells, and (b) that sorts bra and ket primitives by Schwarz contribution
within each momentum class, providing an efficient structure for parallel evaluation (See insert for colour
representation of this figure)

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 81�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 81

the primitives, the bound is guaranteed to decrease scanning across any row or down any column. As
a result, once one negligible integral has been located, all others in that row or column can be skipped
as well. To take advantage of this, the algorithm must assign work units to scan rows or columns of
the ERI grid. Rows are more convenient, since contributions from all ERIs in a row contribute to
a single Coulomb element. This allows individual ERIs to be efficiently calculated from PQs and
accumulated in local registers to produce primitive Coulomb contributions as follows:

J[ij] = [ij|∑
kl

|kl]P𝜆𝜎 =
∑

p

E[ij]
p

∑
q

D[kl]
q [p|q]. (4.38)

Here it is implicitly assumed that 𝜒 k ∈ 𝜙𝜆 and 𝜒 l ∈ 𝜙𝜎 . In practice, it is convenient to postpone the
final summation over the p index until after primitives are contracted into AOs. Thus, a handful of
Coulomb values in the Hermite basis, {J[ij]

p }, are collected for each ERI row:

J[ij]
p =

∑
q

D[kl]
q [p|q]. (4.39)

After the kernel executes, the intermediate values J[ij]
p are copied to the host where a final reduction

into Coulomb elements is performed:

J𝜇𝜈 =
∑

p

E[ij]
p

∑
𝜒 i∈𝜙𝜇
𝜒 j∈𝜙𝜈

J[ij]
p . (4.40)

The dimension of the CUDA work units assigned to each row is a matter of optimization. Perhaps
the simplest approach would execute 1D blocks, assigning each thread to an entire row in Figure 4.5.
This approach limits the total number of threads to the number of bra primitives, which for small
systems is insufficient to saturate the thousands of cores on the GPU. Also, because a vertical 1D
block spans a wide range of Schwarz ERI bounds, the top thread will encounter its first negligible
ERI many columns after the bottom thread. For the intervening span of columns, many threads sit
idle. A square block, on the other hand, should minimize divergence. Based on empirical tests, a
block dimension of 8× 8 was chosen. The eight threads in each row of a block cooperate to compute
interleaved ERI elements across a row of the ERI grid. Once all rows in the block find negligible
ERIs, block-level reductions are performed to sum final outputs for each row. Figure 4.6 illustrates
the algorithm.

4.4.2 GPU K-Engine

The GPU-based construction of the exchange operator in Eq. (4.33) follows a similar approach to that
employed in the GPU J-Engine algorithm [23]. Here we highlight the adjustments that are required to
accommodate the increased complexity of exchange which results from the split of the output index
𝜇𝜈 between the bra and ket. As a result, rows of the bra-by-ket ERI grid do not contribute to a single
matrix element but scatter across an entire row of the K matrix. Additionally, symmetry among the
ERIs is more difficult to exploit in K since symmetric pairs, for example, (𝜇𝜆|𝜈𝜎) ↔ (𝜇𝜆|𝜎𝜈), now
contribute to multiple matrix elements. The split of the density index 𝜆𝜎 between bra and ket also
precludes the pre-contraction of density elements into the ket PQs.

The complications above can be naïvely removed by changing the definitions of bra and ket to the
so-called physicist notation, where pairs include a primitive from each of two electrons:

(𝜇𝜆|𝜈𝜎) = ⟨𝜇𝜈|𝜆𝜎⟩. (4.41)

With such 𝜇𝜈 and 𝜆𝜎 pairs, a GPU algorithm analogous to the J-Engine could easily be developed.
Unfortunately, the new definitions of bra and ket also affect the pairwise Schwarz bound, which now

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 82�

� �

�

82 Electronic Structure Calculations on Graphics Processing Units

Figure 4.6 Schematic representation of a J-Engine kernel for one angular momentum class, for example,
(ss|ss). Cyan squares represent significant ERI contributions. Sorted bra and ket vectors are represented by
triangles to the left and above the grid. The path of a 2× 2 block as it sweeps across the grid is shown in
orange. The final reduction across rows of the block is illustrated within the inset to the right. (See insert
for colour representation of this figure)

becomes the following:

⟨𝜇𝜈|𝜇𝜈⟩1∕2⟨𝜆𝜎|𝜆𝜎⟩1∕2 = (𝜇𝜇|𝜈𝜈)1∕2(𝜆𝜆|𝜎𝜎)1∕2. (4.42)

As the distance R between 𝜙𝜇 and 𝜙𝜈 increases, the quantity (𝜇𝜇|𝜈𝜈) decays slowly as 1∕R compared
to e−R2

for (𝜇𝜈|𝜇𝜈). This weaker bound means that all N4 ERIs would need to be examined, leading
to a severe performance reduction compared to the N2 Coulomb algorithm. Thus, the scaling advan-
tages of the 𝜇𝜆∕𝜈𝜎 pairing are very much worth maintaining, even at the cost of reduced hardware
efficiency.

The K-Engine begins with the now-usual step of enumerating AO shell pairs 𝜙𝜇𝜙𝜆. Because the
𝜙𝜇𝜙𝜆 and 𝜙𝜆𝜙𝜇 pairs contribute to different matrix elements, symmetry cannot be exploited without
introducing dependencies between exchange outputs. Neglecting symmetry, AO pairs are constructed
for both 𝜇 ≤ 𝜆 and 𝜇 > 𝜆 pairs. As with Coulomb evaluation, the pairs are separated by angular
momentum class, and different kernels are tuned for each type of integral. Inclusion of 𝜇 > 𝜆 pairs
requires additional pair and kernel classes compared to the J-Engine, since, for example, kernels
handling ps pairs are distinct from those handling sp pairs.

The J-Engine ordering of bra and ket primitive pairs would leave contributions to individual K ele-
ments scattered throughout the ERI grid. In order to avoid inter-block communication, it is necessary
to localize these exchange contributions. This can be accomplished by sorting the primitive pairs by
the 𝜇 index, so that the ERIs contributing to each element, K𝜇𝜈 , form a contiguous tile in the ERI
grid. This is illustrated in Figure 4.7. Within each segment of 𝜇 pairs, primitive PQs are additionally

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 83�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 83

Figure 4.7 Schematic of a K-Engine kernel. Bra and ket PQ arrays are represented by triangles to the
left and above the grid. The pairs are grouped by 𝜈 and 𝜆 index and then sorted by bound. The paths
of four blocks are shown in orange, with the zigzag pattern illustrated by arrows in the top right. The
final reduction of an exchange element within a 2×2 block is shown to the right. (See insert for colour
representation of this figure)

sorted by Schwarz contributions (𝜇𝜆|𝜇𝜆)1∕2, so that significant integrals are concentrated in the top
left of each 𝜇𝜈 tile.

Since the density index is split between bra and ket, density information cannot be included in
the primitive expansion coefficients or Schwarz contributions. Instead, additional vectors are packed
for each angular momentum class: Pss, Psp, and so on. The packed density is ordered by shell pair
and organized into CUDA vector types to allow for efficient fetching. For example, each entry in the
Psp block contains three elements: spx, spy, and spz, packed into a float4 (assuming single precision)
vector type. The maximum overall density element in a shell pair, |P𝜆𝜎|max, is also precomputed for
each shell pair in order to minimize memory access when computing the exchange Schwarz bound.

|(𝜒𝜇𝜒𝜆|𝜒𝜈𝜒𝜎)P𝜆𝜎| ≤ [𝜒𝜇𝜒𝜆|𝜒𝜇𝜒𝜆]1∕2[𝜒𝜈𝜒𝜎|𝜒𝜈𝜒𝜎]1∕2|P𝜆𝜎|max. (4.43)

To map the exchange to the GPU, a 2D CUDA grid is employed in which each block computes a
single K𝜇𝜈 element, and is thus assigned a tile of the primitive ERI grid. Each CUDA block passes
through its tile of [𝜇 · · · |𝜈 · · ·] primitive integrals in a zig-zag pattern, computing one primitive shell
per thread. Ordering pairs by bound allows a block to skip to the next row as soon as the boundary
of insignificant integrals is located. As with the J-Engine, the uniformity of ERI bounds within each
block is maximized by dimensioning square 2D CUDA blocks. Figure 4.7 shows a 2× 2 block for
illustrative purposes, but a block dimension of at least 8× 8 would be used in practice. When all signif-
icant ERIs have been evaluated, a block-level reduction is used to compute the final exchange matrix
element. This reduction represents the only inter-thread communication required by the K-Engine

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 84�

� �

�

84 Electronic Structure Calculations on Graphics Processing Units

algorithm and detracts negligibly from the overall performance. The K-Engine approach is similar to
the 1B1CI ERI scheme above. However, because each block is responsible for thousands of primitive
ERIs, exchange evaluation does not suffer from the load imbalance observed for the 1B1CI algorithm.

The structure of the ERI grid allows neighboring threads to fetch contiguous elements of bra and
ket PQ data. Access to the density matrix is more erratic, because it is not possible to order pairs within
each 𝜇𝜈 tile simultaneously by the Schwarz bound and the 𝜆 or 𝜎 index. As a result, neighboring
threads must issue independent density fetches, which are in principle scattered across the density
matrix. In practice, once screening is applied, most significant contributions to an element K𝜇𝜈 arise
from localized 𝜆𝜎 blocks, where 𝜆 is near 𝜇 and 𝜎 is near 𝜈. Thus, CUDA textures can be used to
ameliorate the performance penalty imposed by the GPU on nonsequential density access.

Another difficulty related to the irregular access of density elements is that the density-weighted
Schwarz bounds for primitive ERIs in Eq. (4.43) are not strictly decreasing across each row or down
each column of a 𝜇𝜈 tile. As a result, the boundary between significant and negligible ERIs is not
as sharply defined as in the Coulomb case. Yet, using the density to preempt integral evaluation in
exchange is critical. This can be appreciated by comparison with the Coulomb operator, in which the
density couples only to the ket pair. Since, in general, both the density element P𝜆𝜎 and the Schwarz
bound (𝜆𝜎|𝜆𝜎)1∕2 decrease as the distance r𝜆𝜎 increases, density-weighting the Coulomb Schwarz
bound has the effect of making the already small (𝜆𝜎|𝜆𝜎)1∕2 terms even smaller. In exchange, on
the other hand, the density couples the bra and ket so that small density matrix elements can reduce
otherwise large bounds and greatly reduce the number of ERIs that need to be evaluated. In fact,
for large insulator systems, we expect the total number of non-negligible ERIs to reduce from N2

Coulomb integrals to N exchange ERIs.
In order to incorporate the density into the ERI termination condition, the usual exit threshold ε

is augmented by an additional guard multiplier G=∼10−5. Each warp of 32 threads then terminates
ERI evaluation across each row of the ERI tile when it reaches a contiguous set of primitive ERIs,
where the following holds for every thread:

[𝜒𝜇𝜒𝜆|𝜒𝜇𝜒𝜆]1∕2[𝜒𝜈𝜒𝜎|𝜒𝜈𝜒𝜎]1∕2|P𝜆𝜎|max < G𝜀. (4.44)

In principle, this nonrigorous exit condition could neglect significant integrals in worst case sce-
narios. However, in practice, empirical tests demonstrate that the exit procedure produces the same
result obtained when density information is not exploited and results in a considerable performance
improvement.

For SCF calculations, the density and exchange matrices are symmetric. In this case, we need only
compute the upper triangle of the matrix elements. This amounts to exploiting (𝜇𝜈|𝜆𝜎) ↔ (𝜆𝜎|𝜇𝜈)
ERI symmetry, and means that we nominally calculate N2/2 ERIs. This is 4 times more ERIs than are
generated by traditional CPU codes that take full advantage of the eightfold ERI symmetry. However,
comparisons at the level of FLOPs are too simplistic when analyzing the performance of massively
parallel architectures. In the present case, freeing the code of inter-block dependencies boosts GPU
performance more than enough to compensate for a fourfold work increase.

For insulating systems, the AO density matrix elements P𝜇𝜈 will rapidly decay to zero with increas-
ing distance r𝜇𝜈 . This can be exploited to prescreen the exchange elements K𝜇𝜈 , for which the sum in
Eq. (4.33) will be small. Perhaps the simplest approach is to impose a simple distance cutoff so that
K𝜇𝜈 is approximated as follows:

K𝜇𝜈 =
⎧
⎪⎨⎪⎩

N∑
𝜆𝜎

(𝜇𝜆|𝜈𝜎)P𝜆𝜎 if r𝜇𝜈 < RMASK

0 otherwise

. (4.45)

This is effective because, if 𝜇 is far from 𝜈, then either 𝜆 is far from 𝜎 and P𝜆𝜎 is zero, or one
of the 𝜇𝜆 or 𝜈𝜎 bounds will be zero. The mask condition is trivially precomputed for each element

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 85�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 85

K𝜇𝜈 and packed in a bit mask, 1 indicating that the exchange element should be evaluated and 0
indicating that it should be skipped. Each block of CUDA threads checks its mask at the beginning
of the exchange kernel, and blocks that are assigned a zero bit exit immediately. As will be shown
for practical calculations in the following, this distance mask greatly reduces the number of ERIs
evaluated by the K-Engine.

A potential problem with the simple distance mask is that RMASK is basis set and system-
dependent. For example, the range at which the density matrix decays depends on the energy gap
between the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO).
Also, diffuse functions in the basis sets will increase the distance at which the 𝜇𝜆-Schwarz bound
becomes negligible.

These limitations can be overcome by employing the Schwarz bound to produce a rigorous bound
on the full exchange matrix elements as follows:

K𝜇𝜈 =
N∑
𝜆𝜎

(𝜇𝜆|𝜈𝜎)P𝜆𝜎 ≤
N∑
𝜆𝜎

(𝜇𝜆|𝜇𝜆)1∕2P𝜆𝜎(𝜈𝜎|𝜈𝜎)1∕2. (4.46)

Casting the AO Schwarz bounds as a matrix Q

Q𝜇𝜈 = (𝜇𝜈|𝜇𝜈)1∕2 (4.47)

the following rigorous bound on the density matrix can be derived [25]:

K𝜇𝜈 ≤ (QPQ)𝜇𝜈 . (4.48)

For large systems, the matrix products can easily be computed in sparse algebra. Then, a bit mask is
constructed to neglect all matrix elements K𝜇𝜈 for which (QPQ)𝜇𝜈 < 𝜏MASK and the kernels are called
just as in the distance mask case.

4.4.3 Exchange–Correlation Integration

After ERIs, the evaluation of the exchange–correlation potential represents a second major bottleneck
for DFT calculations. For clarity we limit our consideration here to the acceleration of GGA-type
functionals using GPUs. Our implementation is very similar to that reported by Yasuda [26]. In
the general spin-polarized case, where 𝜌𝛼 ≠ 𝜌𝛽 , Eqs. (4.13) and (4.21) for the exchange–correlation
energy and potential become the following:

EXC =
∫

fxc(𝜌𝛼(
−→r), 𝜌𝛽(

−→r), 𝛾𝛼𝛼(
−→r), 𝛾𝛼𝛽(

−→r), 𝛾𝛽𝛽 (
−→r))d3−→r , (4.49)

VXC𝛼
𝜇𝜈 =

∫

[
𝜕fxc

𝜕𝜌𝛼
𝜙𝜇𝜙𝜈 +

(
2
𝜕fxc

𝜕𝛾𝛼𝛼
∇𝜌𝛼 +

𝜕fxc

𝜕𝛾𝛼𝛽
∇𝜌𝛽

)
⋅ ∇(𝜙𝜇𝜙𝜈)

]
d3−→r , (4.50)

where an equation analogous to Eq. (4.50) is used for VXC𝛽
𝜇𝜈 , and 𝛾 represents the gradient invariants

as follows:
𝛾𝜎𝜎′ (

−→r) = ∇𝜌𝜎(
−→r) ⋅ ∇𝜌𝜎′ (

−→r). (4.51)

Typical XC kernel functions fxc are not amenable to analytical integration; thus, instead,
a quadrature grid is employed to evaluate Eqs (4.49) and (4.50). Because molecular potentials
exhibit discontinuous cusps near each nucleus, molecular quadrature grids are typically constructed
by superposing spherical grids centered at each atom. One common and efficient approach combines
the Euler–Maclaurin radial and Lebedev angular quadratures for each atomic grid. Thus, integration

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 86�

� �

�

86 Electronic Structure Calculations on Graphics Processing Units

around an atom centered at −→a might be performed as follows, where Ei and Lj represent radial and
angular weights respectively, p is a combined ij index, and 𝜆p = EiLj:

∫
f (−→r)d3−→r ≈

∑
i

∑
j

EiLj f (−→a + −→r ij) =
∑

p

𝜆p f (−→a + −→r p). (4.52)

Each atomic grid independently integrates over all ℝ3 but is most accurate in the region of its own
nucleus. In forming molecular grids, quadrature points from different atomic grids must be weighted
to normalize the total sum over all atoms and to ensure that each atomic quadrature dominates in
the region around its nucleus. An elegant scheme introduced by Becke [27] accomplishes this by
defining a spatial function 𝑤a(

−→r) for each atomic quadrature a, which gives the weight assigned to
that quadrature in the region of −→r . All double counting is avoided by constraining the weight function
so that ∑

a

𝑤a(
−→r) = 1 (4.53)

holds for all −→r . Also, constructing 𝑤a(
−→r) so that it is near unity in the region of the ath nucleus

causes each atomic quadrature to dominate in its most accurate region. The final quadrature is then
evaluated as follows:

∫
f (−→r)d3−→r ≈

∑
a

∑
p

𝑤a(
−→
R a +

−→r p)𝜆p f (−→R a +
−→r p) =

∑
a

∑
p

𝑤ap𝜆p f (−→r ap). (4.54)

The calculation of the Becke quadrature weights 𝑤ap, itself a computationally involved task, is
performed through the following equations:

𝑤np =
Pn(

−→r np)∑
m

Pm(
−→r np)

,

Pa(
−→r) =

∏
b≠a

s(𝜇ab),

𝜇ab(
−→r) =

|−→R a −
−→r | − |−→R b −

−→r |
|−→R a −

−→
R b|

=
−→r a −

−→r b

−→
R ab

, (4.55)

s(𝜇) = 1
2
(1 − g(𝜇)),

g(𝜇) = p(p(p(𝜇))),

p(𝜇) = 3
2
𝜇 − 1

2
𝜇3.

As with ERIs, the problem is easily parallelized, since the weight for each one of the ∼106 grid points
is independent of all the others. Thus, the grid weights are easily accelerated on the GPU, with a single
CUDA thread assigned to each grid point. Because 0 ≤ s(𝜇) ≤ 1, the evaluation of each Pm(

−→r np)
can be terminated as soon as the running product becomes negligibly close to zero. Furthermore, if
the numerator Pn(

−→r np) is zero, then the denominator need not even be evaluated. These early exit
conditions greatly accelerate the algorithm, but also introduce warp divergence on the GPU because
neighboring threads break out of loops at different iterations. Organizing the grid points into spatial
bins and sorting by atomic quadrature index ensures that neighboring threads follow similar execution
paths. The resulting weights for many quadrature points are negligible, and these are removed from

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 87�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 87

the grid. Finally, the Becke and spherical weights are multiplied and the atomic labels are dropped
to form the final set of quadrature points and weights:

𝑤ap𝜆p → 𝜔i, (4.56)

−→r ap →
−→r i.

Once the grid has been established, the density and its gradient at each grid point are needed in
order to evaluate the XC kernel. For an AO alpha-spin density matrix, these are evaluated as follows:

𝜌𝛼(
−→r) =

∑
𝜇,𝜈

P𝛼𝜇𝜈𝜙𝜇(
−→r)𝜙𝜈(

−→r), (4.57)

∇𝜌𝛼(
−→r) =

∑
𝜇,𝜈

P𝛼𝜇𝜈𝜙𝜇(
−→r)∇𝜙𝜈(

−→r). (4.58)

As a result of the exponential decay of the basis functions 𝜙𝜇 , the sum for each grid point −→r need
only include a few significant AOs. These are efficiently identified by spatially binning the significant
primitive pair distributions, which are determined as

{𝜒 i𝜒 j|𝜀ao < max
−→r
𝜒 i(

−→r)𝜒 j(
−→r)Pmax

𝜇𝜈 , 𝜒 i ∈ 𝜙𝜇, 𝜒 i ∈ 𝜙𝜈}, (4.59)

where εao is some small threshold. The primitive lists and quadrature points are then copied to the
GPU, where each thread computes the sums of Eqs. (4.57) and (4.58) for a single grid point. The
primitive pairs are sorted by increasing exponent within each spatial bin. As a result, the entire bin
may be skipped after the first negligible point-primitive pair combination has been reached. As in
the evaluation of quadrature weights, the spatial binning of grid points minimizes warp divergence
by ensuring that neighboring threads share identical sets of significant basis functions. The same
procedure is repeated for the beta density in spin-polarized calculations.

Next, the density at each quadrature point is used to evaluate the XC-kernel function and its various
derivatives on the grid. Thus the following values are computed for each grid point:

ai = 𝜔ifxc(𝜌𝛼(
−→r i), 𝜌𝛽(

−→r i), 𝛾𝛼𝛼(
−→r i), 𝛾𝛼𝛽(

−→r i), 𝛾𝛽𝛽(
−→r i)),

bi = 𝜔i

𝜕fxc(
−→r i)

𝜕𝜌𝛼
, (4.60)

ci = 𝜔i

(
2
𝜕fxc

(−→r i

)

𝜕𝛾𝛼𝛼
∇𝜌𝛼 +

𝜕fxc(
−→r i)

𝜕𝛾𝛼𝛽
∇𝜌𝛽

)
.

This step has a small computational cost and can be performed on the host without degrading per-
formance. This is desirable as a programming convenience because implementing various density
functionals can be performed without editing CUDA kernels and because the host provides robust
and efficient support for various transcendental functions needed by some density functionals. Dur-
ing this step, the kernel values ai are also summed to evaluate the total exchange–correlation energy
per Eq. (4.49).

The final step is to construct the AO matrix elements for the exchange–correlation potential. This
task is again performed on the GPU. For all non-negligible primitive pair distributions {𝜒 i𝜒 j|𝜀ao <

max
−→r
𝜒 i(

−→r)𝜒 j(
−→r), 𝜒 i ∈ 𝜙𝜇, 𝜒 j ∈ 𝜙𝜈}, the pair quantities Kij,

−→
P ij, and 𝜂ij from Eq. (4.22) are packed

into arrays and transferred to device memory. The grid point positions −→r i are spatially binned and

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 88�

� �

�

88 Electronic Structure Calculations on Graphics Processing Units

transferred to the GPU with corresponding values bi and ci. A single CUDA kernel then performs the
summation

Ṽ𝜇𝜈 =
∑

i

𝜙𝜇(
−→r i)

(
bi

2
𝜙𝜈

(−→r i

)
+ ci∇𝜙𝜈(

−→r i)
)

=
∑

i

∑
k∈𝜇

∑
l∈𝜈

c𝜇kc𝜈l𝜒 k(
−→r i)

(
bi

2
𝜒 l

(−→r i

)
+ ci∇𝜒 l(

−→r i)
)

(4.61)

and the final matrix elements are computed as follows:

VXC
𝜇𝜈 = Ṽ𝜇𝜈 + Ṽ𝜈𝜇 . (4.62)

The calculation is configured on a 2D matrix in which each row corresponds to a primitive pair 𝜒k𝜒 l,
and each column is associated with a single grid point. The CUDA grid is configured as a 1D grid of
2D blocks, similar to the GPU J-Engine described earlier. A stack of blocks spanning the primitive
pairs sweeps across the matrix. Because the points are spatially binned, entire bins can be skipped
whenever a negligible point-primitive pair combination is encountered. As in the Coulomb algorithm,
each row of threads across a CUDA block cooperates to produce a matrix element in the primitive
basis Ṽkl. These are copied to the host where the final contraction into AO matrix elements takes
place.

4.5 Precision Considerations

ERI values span a wide dynamic range from ∼103 Ha all the way [28] down to ∼10−10, below which
ERIs can be neglected while maintaining chemical accuracy. In order to represent values across the
resulting range of 13 decimal orders, 64-bit double-precision floating-point arithmetic is required.
With the advent of hardware-based double-precision CPU instructions in the 1980s, it became stan-
dard practice to use double precision uniformly for all floating-point operations in quantum chemistry
calculations. In fact, for various architectural and algorithmic reasons, single-precision arithmetic
offered only a slight performance advantage and was, thus, largely abandoned in quantum chem-
istry programs. However, as a result of their pedigree in graphics and multimedia applications, for
which reduced precision is adequate, GPU designs have emphasized single-precision performance.
In fact, the earliest GPGPU codes for quantum chemistry had to make do with minimal (or even
no) double-precision support on the device [10, 12, 20, 28]. Modern architectures, such as Nvidia’s
recent Kepler GPUs, continue to provide a significant performance advantage of at least 3.5× to
single-precision operations. With the development of vectorized instruction sets, even CPUs now
offer single precision a 2:1 performance advantage over double precision. Beyond operation through-
put, single-precision operands halve the memory footprint and bandwidth requirements of a kernel.
This is extremely important for massively parallel architectures where the large number of in-flight
threads makes on-chip memories premium resources. As a result, it is advantageous to design algo-
rithms that perform as many operations as possible in single precision [29, 30]. In the bandwidth-
and instruction-limited cases, this would provide up to a twofold speedup. Of course, care must be
exercised to ensure that adequate precision is provided to guarantee robust and correct results.

In practice, all finite precision operations introduce some error. Certain operations, such as taking
differences between nearly equal values or accumulating tiny elements into much larger sums, greatly
amplify this error. Consider the following sum between two decimal numbers, each represented with
seven decimal digits of precision.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 89�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 89

1 . 3 6 7 8 0 2 ×103

+ 4 . 7 2 2 1 5 8 ×10−4

In order to carry out this addition, the processor must first shift the numbers to a common exponent
(for simplicity, assume intermediate operations are carried out without loss of precision).

1 . 3 6 7 8 0 2 0 0 0 0 0 0 0 ×103

+ 0 . 0 0 0 0 0 0 4 7 2 2 1 5 8 ×103

1 . 3 6 7 8 0 2 4 7 2 2 1 5 8 ×103

The intermediate sum is not seven-digit-representable. Truncation to the nearest representable
number results in the removal of the gray digits and produces a final result (in black) that is identical
to the first operand. An algorithm requiring many such additions would accumulate significant errors.

Although there are algorithms to increase the precision of summation without using higher preci-
sion at all [31], the most robust solution to this accumulation problem is to perform the addition in
higher precision. The same operation at 14-digit precision might look like the following after shifting
to a common exponent:

1 . 3 6 7 8 0 2 1 6 7 0 2 5 1 0 0 0 0 0 0 0 ×103

+ 0 . 0 0 0 0 0 0 4 7 2 2 1 5 8 3 9 2 4 8 2 3 ×103

1 . 3 6 7 8 0 2 6 3 9 2 4 0 9 3 9 2 4 8 2 3 ×103

The addition no longer results in disastrous error. However, because the final result is still trun-
cated to the 14 digits in black, the digits in gray have no impact on the operation. Notably, the same
result would have been obtained if the smaller number had used its 7-digit rather than 14-digit repre-
sentation. This can be important if the operands considered here were themselves produced through
many prior operations.

This situation is exactly obtained when ERIs are accumulated into the Coulomb and exchange
matrices. The vast majority of these ERIs are orders of magnitude smaller than the few largest val-
ues. These small ERIs, readily identified by Schwarz bound, can be computed in single precision
and accumulated into the Fock matrix with a single double-precision ADD operation. A separate
set of double-precision ERI kernels are then used to compute large ERI contributions [30]. Using
bound-sorted pair lists for Coulomb and exchange kernels automatically segregates the double- and
single-precision ERIs. This is shown for the Coulomb case in Figure 4.8 and results in minimized
warp divergence within both single- and double-precision kernels:

J[ij]
p =

∑
q

⎧
⎪⎨⎪⎩

(
E[ij]

p D[kl]
q [Λp|Λq]

){32}
if
√
[ij|ij][kl|kl]|Pkl|max < 𝜏prec

(
E[ij]p D[kl]

q [Λp|Λq]
){64}

if
√
[ij|ij][kl|kl]|Pkl|max

≥ 𝜏prec
. (4.63)

In splitting the work, it is important that bounds be deterministic and identical when evaluated in
double- and single-precision kernels to avoid skipping or double counting ERIs near the boundary.
This is not entirely trivial for inexact finite-precision operations. For example, neither single-nor

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 90�

� �

�

90 Electronic Structure Calculations on Graphics Processing Units

|ss
)

|sp
)

|p
p)

|ss
)

|sp
)

|p
p)

(ss|

(sp|

(pp|

(ss|

DBL

(a) (b)

SGL

1.0

1.0e–3

1.0e–6

1.0e–9

(sp|

(pp|

Figure 4.8 Organization of double- and single-precision workloads within Coulomb ERI grids. As in
Figure 4.5, rows and columns correspond to primitive bra and ket pairs. (a) Each ERI is colored according
to the magnitude of its Schwarz bound. (b) ERIs are colored by required precision. Yellow ERIs require dou-
ble precision, while those in green may be evaluated in single precision. Blue ERIs are neglected entirely.
(See insert for colour representation of this figure)

double-precision products are exactly commutative, so a ⋅ b ≠ b ⋅ a. Thus, when evaluating the
Schwarz bound, it is important to maintain the same level of precision and order of operations.

Next, it must be determined how large 𝜏prec can be set while maintaining sufficient precision. This
is best answered by empirical study [30]. Figure 4.9 shows results for some representative test systems
treated with a range of precision thresholds. The relative errors in final RHF energies averaged over
the test systems are shown for various basis sets and values of 𝜏prec. Mixed precision calculations
provide an effective precision that is intermediate between double and single precision. The error is
very well behaved on the log–linear plot so that a safe empirical bound is readily constructed. This
is shown as the black line in Figure 4.9, whose equation is as follows:

Error(𝜏) < 2.0 × 10−6
𝜏0.7. (4.64)

By inverting Eq. (4.64), an appropriate precision can be selected for any desired relative error in
the final energy. This allows a safe level of precision to be selected at the start of the SCF without
pessimistically requiring that every operation be performed in slower double-precision arithmetic. It
is further possible to vary the precision level during the course of an SCF calculation. This dynamic
precision approach is suggested by viewing the SCF as an iterative correction procedure that improves
an initially approximate density at each step. At each iteration, 𝜏prec must be chosen so that errors
resulting from finite precision do not overwhelm whatever other errors exist in the density. In this
way, the precision error can be reduced at the same rate as the density matrix converges ultimately
to the point where full double-precision quality is obtained. The error present in the density matrix
at each iteration can be approximated from the convergence criteria. A good choice is the maximum
element of the commutator, SPF–FPS, where F and P are the Fock and density matrices and S is the
AO overlap matrix.

Table 4.2 summarizes the efficiency of the dynamic precision approach. In all cases the error is
well controlled such that final energies match full double-precision results to within the convergence
threshold of 10−5 Ha. Also, the use of reduced precision in early SCF iterations has no discernable
effect on the number of SCF iterations required to reach convergence. In terms of performance, the
dynamic precision approach consistently exceeds a 2× speedup over double precision. This is note-
worthy since, in terms of theoretical peak performance, the Tesla C2050 GPU used for these tests

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 91�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 91

10–6

10–7

10–8

10–9

10–10

10–11

10–12

10–13

10–14

M
e

a
n

 a
b

s
o

lu
te

 r
e

la
ti
ve

 e
rr

o
r

10–810–10 10–6 10–4

τprec

10–2
5 × 6 Nanotube

STO-3G

6-31G

6-311G

Bound

Ascorbic acid
Cyanobacterial toxin

Lactose

Neurokinin A
100

Figure 4.9 Relative error in final energies versus precision threshold 𝜏prec for various basis sets. Test
molecules are shown on the right. Each point is averaged over the five test systems. Error bars represent 2
standard deviations above the mean. The black line shows the empirical error bound of Eq. (4.64)

Table 4.2 Dynamic precision performance for RHF calculations on various molecules using the 6-31G
basis set

System Atoms BFS GPUs Time (s) Iters Final energy |ΔE| Speedup

Ascorbic acid 20 124 1 1.47 12 −680.6986414386 1.2E−07 2.0
Lactose 45 251 1 6.83 10 −1290.0883461502 1.4E−07 2.2
Cyano toxin 110 598 1 66.23 13 −2492.3971987780 4.9E−07 2.3
Neurokinin A 157 864 1 146.75 14 −4091.3672646454 9.7E−08 2.3
5×6 Nanotube 386 3320 8 1138.49 15 −13793.7293926019 1.1E−07 2.7
Crambin 642 3597 8 741.23 12 −17996.6562927786 2.3E−07 1.8
Ubiquitin 1231 6680 8 7418.08 18 −29616.4426380779 4.5E−07 2.0
T-cadherin EC1 1542 8404 8 10592.68 16 −36975.6726052678 3.4E−07 2.0

Columns list number of atoms in each system, number of AO orbitals in basis, number of Tesla C2050 GPUs employed
in each calculation, time in seconds for entire SCF energy evaluation using dynamic precision, number of iterations
required to converge the maximum matrix element of SPF–FPS to 10−5 a.u., final dynamic precision energies in Hartree,
absolute difference between dynamic and double precision final energies in Hartree, and the total speedup for the SCF
calculation running dynamic precision over double precision.

offers only a 2:1 advantage for single precision. Theoretical peaks are only one factor in determining
overall performance. As noted above, single-precision intermediates also require smaller register
footprints than double-precision values. This allows the compiler to produce more efficient code for
single precision kernels and accounts for much of the advantage enjoyed by single-precision ERI
kernels.

4.6 Post-SCF Methods

Although the GPU J- and K-Engines were developed above in the context of SCF acceleration, these
algorithms can also be applied more generally to calculate properties and implement post-SCF meth-
ods. Extension to Coulomb and exchange gradient integrals, for example, is straightforward and

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 92�

� �

�

92 Electronic Structure Calculations on Graphics Processing Units

follows the same principles developed in detail above [32]. As a more interesting example, we con-
sider a GPU-accelerated implementation of the configuration interaction singles (CIS) and TDDFT
algorithms [33]. Full reviews of these methods can be found elsewhere [34]. The basic working
equations for TDDFT can be written in the following matrix notation:

(
A B
B A

)(
X
Y

)
= −𝜔

(
𝟏 𝟎
𝟎 −𝟏

)(
X
Y

)
. (4.65)

Here, X and Y are vectors representing transition amplitudes, and 𝜔 is the excitation energy. Appli-
cation of Eq. (4.65) for Hartree–Fock theory results in the time-dependent Hartree–Fock (TDHF)
method, where the operators A and B are defined as follows:

Aai,bj = 𝛿ij𝛿ab(𝜀a − 𝜀i) + (𝜃i𝜃a|𝜃j𝜃b) − (𝜃i𝜃j|𝜃a𝜃b), (4.66)

Bai,bj = (𝜃i𝜃a|𝜃b𝜃j) − (𝜃i𝜃b|𝜃a𝜃j). (4.67)

For TDDFT, the operators are defined similarly, but the Coulomb-like ERI is replaced by a functional
derivative of the exchange correlation potential:

Aai,bj = 𝛿ij𝛿ab(𝜀a − 𝜀i) + (𝜃i𝜃a|𝜃j𝜃b) + (𝜃i𝜃j| fxc|𝜃a𝜃b), (4.68)

Bai,bj = (𝜃i𝜃a|𝜃b𝜃j) + (𝜃i𝜃b| fxc|𝜃a𝜃j), (4.69)

(𝜃i𝜃j| fxc|𝜃a𝜃b) = ∫ ∫
𝜃i(

−→r 1)𝜃j(
−→r 1)

𝛿2Exc

𝛿𝜌(−→r 1)𝛿𝜌(
−→r 2)

𝜃a(
−→r 2)𝜃b(

−→r 2). (4.70)

In the above equations, ERIs are written in terms of molecular orbitals that result from a prior SCF
calculation. Subscripts i and j refer to occupied orbitals, while a and b index virtual orbitals. Spin
is neglected for clarity. Using the Tamm–Dancoff approximation (TDA), the B matrix is set to zero.
This results either in CIS for TDHF or in TDA–TDDFT for TDDFT:

AX=𝜔X. (4.71)

This equation is efficiently solved using iterative diagonalization algorithms such as Davidson’s
method [35]. Such algorithms solve the eigenvalue problem through a series of matrix vector products
between A and trial eigenvectors:

(AX)bj =
∑

ia

[𝛿ij𝛿ab(𝜀a − 𝜀i) + (𝜃i𝜃a|𝜃j𝜃b) − (𝜃i𝜃j|𝜃a𝜃b)]Xia. (4.72)

In order to apply the J- and K-Engine algorithms, these products can be carried out in the AO basis
using the following transformations:

∑
ia

[(𝜃i𝜃a|𝜃j𝜃b) − (𝜃i𝜃j|𝜃a𝜃b)]Xia =
∑
𝜇𝜈

C𝜇jC𝜈bF𝜇𝜈 , (4.73)

F𝜇𝜈 =
∑
𝜆𝜎

T𝜆𝜎[(𝜇𝜈|𝜆𝜎) − (𝜇𝜆|𝜈𝜎)], (4.74)

T𝜆𝜎 =
∑

ia

XiaC𝜆iC𝜎a. (4.75)

Here, T is a nonsymmetric transition density expressed in the AO basis. The dominant computational
step is the construction of F, which is analogous to computing two-electron contributions to the

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 93�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 93

SCF Fock matrix. Because the matrix T is nonsymmetric, two small adjustments to the algorithms
developed above are required. For the J-Engine, it is sufficient to symmetrize the transition density:

T̃𝜇𝜈 =
1
2
(T𝜇𝜈 + T𝜈𝜇). (4.76)

However, for a nonsymmetric density, the exchange matrix itself becomes nonsymmetric. As a result,
the K-Engine must be called twice to handle both the upper and lower triangles of F. Thus, ignor-
ing screening, the excited-state exchange contribution nominally calculates all N4 ERIs. However,
the transition density T𝜆𝜎 contains only a single electron and is much more sparse than the total
ground-state density. This allows the K-Engine to neglect many more ERIs for the excited state and
ultimately allows the excited state K-build to outperform its ground-state analog.

4.7 Example Calculations

Here we illustrate the practical application of the GPU algorithms discussed previously in real-world
calculations. All GPU calculations described in the following were carried out using the TeraChem
quantum chemistry package. To elucidate the computational scaling of our GPU implementation
with increasing system size, we consider two types of systems: First, linear alkene chains ranging in
length between 25 and 707 carbon atoms provide a benchmark at the low-dimensional limit. Second,
cubic water clusters containing between 10 and 988 molecules provide a dense three-dimensional
test system, which is more representative of most condensed phase systems of interest. Examples of
each system type are shown in Figure 4.10.

For each system, a restricted B3LYP calculation was performed on a single Tesla M2090 GPU
using the 6-31G basis set. Figure 4.11 shows the timing breakdown during the first SCF iteration for
the J-Engine, K-Engine, linear algebra (LA), and DFT exchange–correlation potential. For the water
clusters, the K-Engine and distance-masked K-Engines were tested in separate runs, and are both pro-
vided for comparison. A conservative screening distance of 8 Å was chosen for the distance-masked
K-Engine. Exponents resulting from a power fit of each series are provided in the legend.

The linear algebra time is dominated by the diagonalization of the Fock matrix, which scales
visibly worse than the Fock formation routines. For large systems, diagonalization will clearly

(n)

Figure 4.10 One-dimensional alkene and three-dimensional water-cube test systems. Alkene lengths vary
from 24 to 706 carbon atoms and water cubes range from 10 to nearly 850 water molecules. A uniform
density is used for all water boxes

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 94�

� �

�

94 Electronic Structure Calculations on Graphics Processing Units

1000
0 0

200

400

600

800

1000

50

100

150

200

250

300

350

J (N1.99
)

K (N1.51
)

LA (N2.99
)

SCF (N1.93
)

DFT (N1.58
)

2000 2000 4000 6000 8000 1 × 10
4

1.2 × 10
43000 4000

No of basis functions

T
im

e
 (

s
)

T
im

e
 (

s
)

No of basis functions

5000 6000 7000 8000

J (N2.11
)

K (N1.54
)

K (N1.32
)

(mask)

LA (N3.07
)

DFT (N1.37
)

SCF (N1.86
)

SCF (N1.94
)

(mask)

(a) (b)

Figure 4.11 First SCF iteration timings in seconds for (a) linear alkenes and (b) cubic water clusters. Total
times are further broken down into J-Engine, K-Engine, distance-masked K-Engine, linear algebra (LA), and
DFT exchange–correlation contributions. For water clusters, total SCF times are shown for both the naïve
and distance-masked (mask) K-Engine. All calculations were performed using a single Tesla M2090 GPU
and the 6-31G basis set. Power fits show scaling with increasing system size, and the exponent for each
fit is provided in the legend. (See insert for colour representation of this figure)

become the principal bottleneck. This is especially true for low-dimensional systems, where the
Fock formation is particularly efficient due to the sparsity of the density matrix. However, for the
more general 3D clusters, linear algebra remains a small contribution to the total time past 10,000
basis functions. If the more efficient masked K-Engine can be employed, the crossover point, at
which linear algebra becomes dominant, shifts to about 8000 basis functions.

Although the time per basis function is lower for the alkene test series, the overall scaling is con-
sistent with the water box calculations. This behavior is good evidence that we have penetrated the
asymptotic regime of large systems, where the dimensionality of the physical system should impact
the prefactor rather than the exponent. That we easily reach this crossover point on GPUs is itself
noteworthy. Even more noteworthy is the fact that the K-Engine exhibits sub-quadratic scaling with-
out imposing any of the assumptions or bookkeeping mechanisms such as neighbor lists common
among linear scaling exchange algorithms [2, 5, 36, 37]. The further imposition of a simple distance
mask on exchange elements provides an effective linear scaling approach for insulating systems. The
scaling of the SCF with the masked K-Engine further exemplifies the impact of the linear algebra
computation on the overall efficiency. The N3 scaling of LA becomes significantly more dominant in
large systems as J- and K-Engines become more efficient. The validity of the distance-based exchange
screening approximation was confirmed by comparing the final converged absolute SCF energies of
each water cluster calculated with and without screening. The absolute total electronic energy is accu-
rate to better than 0.1 mHartree in all systems considered, which is well within the accuracy required
for chemical purposes.

Our GPU J-Engine scales quadratically with system size, which compares well with our scaling
analysis above. Further acceleration would require modification of the long-range Coulomb potential,

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 95�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 95

for example, by factorization into a multipole expansion [38]. Extrapolating beyond Figure 4.11, this
may become necessary for water clusters beyond 12,000 basis functions, when the J-Engine finally
becomes the dominant component in Fock formation. As for DFT, the GPU exchange–correlation
methods exhibit linear scaling, matching the scaling efficiency that has been achieved in CPU codes
but, as demonstrated below, with much greater performance.

Parallelizing Fock construction over multiple GPUs is trivially accomplished by splitting the
CUDA grids into equal chunks in the y-dimension. For small systems, this strategy is inefficient
because it doubles the latency involved in transferring data between the host and device and in
launching GPU kernels. For large systems, such latencies become negligible compared to the kernel
execution times, and this splitting strategy becomes increasingly efficient, as shown in Figure 4.12.

The scaling efficiency of a code provides a useful check on the quality of the algorithm and
its implementation. However, the absolute performance is of much greater importance for practi-
cal applications. To assess the GPU’s overall usefulness for quantum chemistry, we again use our
water box test cases treated at the B3LYP and 6-31G level of theory. Rather than a single GPU,
we now employ four cards, across two GPU architectures: the Tesla M2090 and newer GTX Titan.
Notably, a 1533-atom single-point energy calculation on a cubic water cluster required only 2.47 h
for the entire SCF process, and ab initio dynamics, requiring thousands of single-point evaluations
of multiple excited states, are feasible up to at least 2876 basis functions comprising the nanostar
dendrimer discussed below.

As a point of comparison, the same calculations were carried out using the CPU implementation
available in the GAMESS program. Parameters such as integral neglect thresholds and SCF con-
vergence criteria were matched as closely as possible to the previous GPU calculations. The CPU
calculation was also parallelized over all eight CPU cores available in a dual Xeon X5680 3.33 GHz
server. Figure 4.13 shows the speedup of the GPU implementation relative to GAMESS for the first
SCF iteration including both Fock construction and diagonalization, the latter of which is performed
in both codes on the CPU. Performance is similar between the two GPU models on small structures

1

0.9

0.8

0.7

0.6

0.5
0 1000

P
a
ra

lle
l
e
ff
ic

ie
n
c
y

2000 3000 4000 5000 6000 7000

K

J

DFT

Figure 4.12 Multi-GPU parallel efficiency for J-Engine, K-Engine, and exchange–correlation Fock forma-
tion based on first iteration time for water clusters, run on 2 M2090 GPUs

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 96�

� �

�

96 Electronic Structure Calculations on Graphics Processing Units

No of basis functions

100

400×

speedup

T
im

e
 (

s
)

10
1

10

100

1000

10,000

100,000

GAMESS

M2090

GTX Titan

Figure 4.13 Total SCF time of TeraChem on eight CPUs and four GPUs, relative to GAMESS on eight
CPUs for water clusters

for both alkenes and water clusters. However, GTX Titan exhibits a markedly larger speedup above
100 orbitals and reaches 400× at the largest systems examined. During Fock construction, the CPU
cores are left idle in our GPU implementation. It is also possible to reserve some work for the CPU
[39], but given the performance advantage of the GPU implementation, this would offer only a very
small performance improvement.

Dynamical and excited-state properties of large molecules both in gas and condensed phases are
of interest in a wide range of scientific fields. Furthermore, theoretical studies of large chromophores
in protein and solvent environments are necessary to understand complex reaction mechanisms and
macroscopic behavior of many biological systems. GPU quantum chemistry methods are poised to
make quantitative studies of such systems accessible for the first time. Here, the absorption spec-
trum of a large light-harvesting phenylacetylene dendrimer is calculated using 300 K, ground-state
ab initio molecular dynamics (AIMD), using ground-state DFT, for conformational sampling and
linear response TDDFT for calculation of single-point excitation energies. Calculations were con-
ducted using a range-corrected hybrid exchange–correlation functional (𝜔PBEh) with a 6-31G basis
set. This dendrimer, named the nanostar, was first synthesized by Moore and coworkers [40], and
the optical properties were characterized therein. However, this is the first time the optical absorption
spectrum has been calculated for the full macromolecule over the relevant excitation energy range. To
converge the detailed structure of the optical absorption spectrum shown in Figure 4.14, single-point
TDDFT excitations including the 20 lowest excited states were sampled every 20 fs across a 50-ps
MD trajectory. This resulted in approximately 2500 individual excited-state calculations on top of
250,000 ground-state calculations constituting the time steps of the MD trajectory.

Comparison to experimental spectra shows excellent agreement in the relative positions of the two
high-energy absorption peaks and absolute excitation peak maxima within 1.0 eV of experiments.
The lowest energy peak, at ∼2.70 eV experimentally (calculated at 3.28 eV), is attributed to excita-
tion centered on the perylene core. The next higher energy peaks are attributed to the conjugated

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 97�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 97

0.41

eV

Aexp Bexp

A

B

0.58 eV

3.0 3.5 4.0

Energy (eV)

A
b

s
o

rp
ti
o

n

4.5 5.0 5.5

Figure 4.14 Absorption spectrum of the nanostar dendrimer with peripheral chromophore absorption
peaks calculated (A, B) in vacuum and measured experimentally (Aexp, Bexp) at 300 K in hexane

branch segments, differing in energy due to different degrees of excitonic delocalization associated
with branch lengths. The two peaks labeled A, B in the spectrum are compared to the experimental
measurement at 300 K. The absolute energies between the corresponding calculated and experimen-
tal absorption peaks differ by 0.7 eV (a consequence of imperfections in the exchange–correlation
function used), and the A–B energy differences stand in excellent agreement, indicating that energy
gaps between singly excited states are relatively well described within TDDFT. These results show
the potential of GPUs to enable new pathways to the prediction and discovery of optical properties
in macromolecules.

4.8 Conclusions and Outlook

Massively parallel architectures provide tremendous performance for electronic structure and AIMD
calculations using atom-centered Gaussian basis sets. As shown above, speedups of several orders
of magnitude are possible for large systems. This is surprising in light of the fact that, in terms
of peak theoretical performance, GPUs enjoy a mere 4–8-fold performance advantage over recent
CPUs. Clearly, many CPU ERI codes achieve only a fraction of peak performance. Correlated elec-
tronic structure methods, such as coupled cluster or RI-MP2, provide a good point of contrast. These
methods are usually formulated in terms of linear algebra routines, which have received extensive
assembly-level optimization and achieve a high percentage of peak performance on modern CPUs.
Thus when ported to GPUs, the speedups are quite modest, on the order of 4–6× [41–46].

What is most important about GPU speedups may not be the raw performance but the fact that this
performance is achieved from codes written in high-level languages. Given the complexity of ERI
evaluation, it is unlikely that integral codes will ever gain the benefit of nonportable, hand-optimized
assembly. This limits CPU ERI codes to a fraction of the total theoretical performance. On the other
hand, the GPU is able to achieve a much higher portion of peak performance despite the fact that
our ERI routines are expressed essentially in C. Perhaps the future will see CPU hardware adjusting
to this new paradigm for streaming processors and offering much improved performance for many
scientific applications. Indeed, we believe the availability of the CUDA framework for CPUs would
be a significant step toward this improved performance.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 98�

� �

�

98 Electronic Structure Calculations on Graphics Processing Units

GPUs enable ab initio calculations to be performed on systems with hundreds of atoms as a matter
of routine, enabling first-principles MD on entire proteins [47, 48] and other materials of interest. As
a result, DFT calculations are beginning to invade applications that were feasible only for semiem-
pirical or even empirical force fields only a few years ago. The GPU acceleration can be combined
with many other acceleration techniques, such as multiple time scale integration in AIMD [49], to
further increase the molecular sizes and time scales which are computationally feasible.

Moving beyond SCF calculations, electronic structure codes have traditionally abandoned the
atomic orbital basis with its inefficient ERI evaluation, depending instead on highly efficient lin-
ear algebra routines. Highly efficient integral codes, however, open the door to improved AO-direct
methods, which will greatly increase the size of systems that can be treated with correlated methods.

References

1. Challacombe, M. and Schwegler, E. (1997) Linear scaling computation of the Fock matrix. Jour-
nal of Chemical Physics, 106 (13), 5526–5536.

2. Burant, J.C., Scuseria, G.E., and Frisch, M.J. (1996) A linear scaling method for Hartree–Fock
exchange calculations of large molecules. Journal of Chemical Physics, 105 (19), 8969–8972.

3. Schwegler, E. and Challacombe, M. (1996) Linear scaling computation of the Hartree–Fock
exchange matrix. Journal of Chemical Physics, 105 (7), 2726–2734.

4. Schwegler, E., Challacombe, M., and HeadGordon, M. (1997) Linear scaling computation of the
Fock matrix. 2. Rigorous bounds on exchange integrals and incremental Fock build. Journal of
Chemical Physics, 106 (23), 9708–9717.

5. Ochsenfeld, C., White, C.A., and Head-Gordon, M. (1998) Linear and sublinear scaling forma-
tion of Hartree–Fock-type exchange matrices. Journal of Chemical Physics, 109 (5), 1663–1669.

6. Daw, M.S. (1993) Model for energetics of solids based on the density-matrix. Physical Review
B, 47 (16), 10895–10898.

7. Li, X.P., Nunes, R.W., and Vanderbilt, D. (1993) Density-matrix electronic-structure method
with linear system-size scaling. Physical Review B, 47 (16), 10891–10894.

8. Rubensson, E.H., Rudberg, E., and Salek, P. (2008) Density matrix purification with rigorous
error control. Journal of Chemical Physics, 128 (7), 074106

9. Rys, J., Dupuis, M., and King, H.F. (1983) Computation of electron repulsion integrals using the
Rys quadrature method. Journal of Computational Chemistry, 4 (2), 154–157.

10. Yasuda, K. (2008) Two-electron integral evaluation on the graphics processor unit. Journal of
Computational Chemistry, 29 (3), 334–342.

11. Asadchev, A., Allada, V., Felder, J. et al. (2010) Uncontracted Rys quadrature implementation of
up to G functions on graphical processing units. Journal of Chemical Theory and Computation,
6 (3), 696–704.

12. Ufimtsev, I.S. and Martinez, T.J. (2008) Quantum chemistry on graphical processing units. 1.
Strategies for two-electron integral evaluation. Journal of Chemical Theory and Computation,
4 (2), 222–231.

13. McMurchie, L.E. and Davidson, E.R. (1978) One-electron and 2-electron integrals over Carte-
sian Gaussian functions. Journal of Computational Chemistry, 26 (2), 218–231.

14. Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford
University Press, Oxford.

15. Szabo, A. and Ostlund, N.S. (1982) Modern Quantum Chemistry, McGraw Hill, New York.
16. Helgaker, T., Jørgensen, P., and Olsen, J. (2000) Molecular Electronic-Structure Theory, Wiley,

New York.
17. Boys, S.F. (1950) Electronic wave functions. 1. A general method of calculation for the station-

ary states of any molecular system. Proceedings of the Royal Society of London A, 200 (1063),
542–554.

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 99�

� �

�

Gaussian Basis Set Hartree–Fock, Density Functional Theory, and Beyond on GPUs 99

18. Whitten, J.L. (1973) Coulombic potential-energy integrals and approximations. Journal of
Chemical Physics, 58 (10), 4496–4501.

19. NVIDIA (2013) CUDA C Programming Guide. In Design Guide [Online] NVIDIA Corporation,
docs.nvidia.com (accessed 7 March 2014).

20. Ufimtsev, I.S. and Martinez, T.J. (2008) Graphical processing units for quantum chemistry. Com-
puting in Science and Engineering, 10 (6), 26–34.

21. Titov, A.V., Ufimtsev, I., Martinez, T., and Dunning, T.H. (2010) Calculating molecular integrals
of d and higher angular momentum functions on GPUs. Abstracts of Papers of the American
Chemical Society, 240.

22. Almlof, J., Faegri, K., and Korsell, K. (1982) Principles for a direct SCF approach to LCAO-MO
ab initio calculations. Journal of Computational Chemistry, 3 (3), 385–399.

23. Ufimtsev, I.S. and Martinez, T.J. (2009) Quantum chemistry on graphical processing units.
2. Direct self-consistent-field implementation. Journal of Chemical Theory and Computation,
5 (4), 1004–1015.

24. Ahmadi, G.R. and Almlof, J. (1995) The Coulomb operator in a Gaussian product basis. Chem-
ical Physics Letters, 246 (4–5), 364–370.

25. Kussmann, J. and Ochsenfeld, C. (2013) Pre-selective screening for matrix elements in
linear-scaling exact exchange calculations. Journal of Chemical Physics, 138 (13), 134114

26. Yasuda, K. (2008) Accelerating density functional calculations with graphics processing unit.
Journal of Chemical Theory and Computation, 4 (8), 1230–1236.

27. Becke, A.D. (1988) A multicenter numerical-integration scheme for polyatomic-molecules.
Journal of Chemical Physics, 88 (4), 2547–2553.

28. Levine, B. and Martinez, T.J. (2003) Hijacking the playstation2 for computational chemistry.
Abstracts of Papers of the American Chemical Society, 226 (U426).

29. Asadchev, A. and Gordon, M.S. (2012) Mixed-precision evaluation of two-electron integrals by
Rys quadrature. Computer Physics Communications, 183 (8), 1563–1567.

30. Luehr, N., Ufimtsev, I.S., and Martinez, T.J. (2011) Dynamic precision for electron repulsion
integral evaluation on graphical processing units (GPUs). Journal of Chemical Theory and Com-
putation, 7 (4), 949–954.

31. Kahan, W. (1965) Further remarks on reducing truncation errors. Communications of the ACM,
8 (1), 40.

32. Ufimtsev, I.S. and Martinez, T.J. (2009) Quantum chemistry on graphical processing units. 3.
Analytical energy gradients, geometry optimization, and first principles molecular dynamics.
Journal of Chemical Theory and Computation, 5 (10), 2619–2628.

33. Isborn, C.M., Luehr, N., Ufimtsev, I.S., and Martinez, T.J. (2011) Excited-state electronic
structure with configuration interaction singles and Tamm–Dancoff time-dependent density
functional theory on graphical processing units. Journal of Chemical Theory and Computation,
7 (6), 1814–1823.

34. Dreuw, A. and Head-Gordon, M. (2005) Single-reference ab initio methods for the calculation
of excited states of large molecules. Chemical Reviews, 105 (11), 4009–4037.

35. Davidson, E.R. (1975) Iterative calculation of a few of lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices. Journal of Computational Physics, 17 (1), 87–94.

36. Schwegler, E. and Challacombe, M. (1999) Linear scaling computation of the Fock matrix. IV.
Multipole accelerated formation of the exchange matrix. Journal of Chemical Physics, 111 (14),
6223–6229.

37. Neese, F., Wennmohs, F., Hansen, A., and Becker, U. (2009) Efficient, approximate and parallel
Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock
exchange. Chemical Physics, 356 (1–3), 98–109.

38. White, C.A. and Head-Gordon, M. (1994) Derivation and efficient implementation of the fast
multipole method. Journal of Chemical Physics, 101 (8), 6593–6605.

http://docs.nvidia.com

Trim Size: 170mm x 244mm Walker c04.tex V3 - 01/09/2016 10:25 A.M. Page 100�

� �

�

100 Electronic Structure Calculations on Graphics Processing Units

39. Asadchev, A. and Gordon, M.S. (2012) New multithreaded hybrid CPU/GPU approach to
Hartree–Fock. Journal of Chemical Theory and Computation, 8 (11), 4166–4176.

40. Devadoss, C., Bharathi, P., and Moore, J.S. (1996) Energy transfer in dendritic macromolecules:
Molecular size effects and the role of an energy gradient. Journal of the American Chemical
Society, 118 (40), 9635–9644.

41. Olivares-Amaya, R., Watson, M.A., Edgar, R.G. et al. (2010) Accelerating correlated quantum
chemistry calculations using graphical processing units and a mixed precision matrix multipli-
cation library. Journal of Chemical Theory and Computation, 6 (1), 135–144.

42. Vogt, L., Olivares-Amaya, R., Kermes, S. et al. (2008) Accelerating resolution-of-the-identity
second-order Moller–Plesset quantum chemistry calculations with graphical processing units.
Journal of Physical Chemistry A, 112 (10), 2049–2057.

43. DePrince, A.E. and Hammond, J.R. (2011) Coupled cluster theory on graphics processing units
I. The coupled cluster doubles method. Journal of Chemical Theory and Computation, 7 (5),
1287–1295.

44. Bhaskaran-Nair, K., Ma, W.J., Krishnamoorthy, S. et al. (2013) Noniterative multireference cou-
pled cluster methods on heterogeneous CPU–GPU systems. Journal of Chemical Theory and
Computation, 9 (4), 1949–1957.

45. DePrince, A.E., Kennedy, M.R., Sumpter, B.G., and Sherrill, D.C. (2014) Density-fitted singles
and doubles coupled cluster on graphics processing units. Molecular Physics, 112, 844–852.

46. Ma, W.J., Krishnamoorthy, S., Villa, O., and Kowalski, K. (2011) GPU-based implementations of
the noniterative regularized-CCSD(T) corrections: Applications to strongly correlated systems.
Journal of Chemical Theory and Computation, 7 (5), 1316–1327.

47. Kulik, H.J., Luehr, N., Ufimtsev, I.S., and Martinez, T.J. (2012) Ab Initio quantum chemistry for
protein structures. Journal of Physical Chemistry B, 116 (41), 12501–12509.

48. Ufimtsev, I.S., Luehr, N., and Martinez, T.J. (2011) Charge transfer and polarization in sol-
vated proteins from ab initio molecular dynamics. Journal of Physical Chemistry Letters, 2 (14),
1789–1793.

49. Luehr, N., Markland, T.E., and Martinez, T.J. (2014) Multiple time step integrators in ab initio
molecular dynamics. Journal of Chemical Physics, 140, 084116.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 101�

� �

�

5
GPU Acceleration for Density

Functional Theory with Slater-Type
Orbitals

Hans van Schoot1 and Lucas Visscher2

1Scientific Computing & Modeling NV, Theoretical Chemistry,
Vrije Universiteit, Amsterdam, The Netherlands

2Amsterdam Center for Multiscale Modeling (ACMM), Theoretical Chemistry,
VU University Amsterdam, Amsterdam, The Netherlands

In this chapter, we describe the GPU acceleration of density functional theory (DFT) calculations with
Slater-type orbital (STOs) as developed for the Amsterdam Density Functional (ADF) program. This
implementation is focused on accelerating the numerical integration step in ADF, which consumes
the majority of CPU time in the existing implementation.

5.1 Background

DFT has become the workhorse of quantum chemistry and is widely used to optimize molecular
structures, investigate reaction energies and barriers, and calculate molecular response properties
[1–3]. Most implementations of DFT developed for molecular systems use atom-centered basis func-
tions, typically with Gaussian-type orbitals (GTOs), as these facilitate the evaluation of Coulomb
interactions (see Chapter 4). The ability to analytically calculate two-electron integrals thereby out-
weighs disadvantages of the Gaussian orbital approach such as their wrong decay at long distance
and slow convergence with respect to representation of the nuclear cusp [4]. An interesting alterna-
tive is to use STOs, which decay exponentially with the distance from the nucleus and mirror more
closely the exact electronic wave function. This leads to a faster convergence with basis set size

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 102�

� �

�

102 Electronic Structure Calculations on Graphics Processing Units

and, therefore, the possibility to use smaller basis sets [5]. The well-known disadvantage of using
STO basis sets lies in the evaluation of multicenter two-electron integrals for which no analytical
expressions are available. These integrals are therefore to be avoided by using density fitting and
numerical integration techniques, placing more emphasis on the accuracy of the fitting approach
and the employed integration grid. The latter is, however, also employed to evaluate matrix elements
of the exchange-correlation (XC) potential, a function that is typically more difficult to integrate than
the relatively smooth Coulomb potential. Compared to a GTO implementation, the STO approach
is therefore computationally competitive for nonhybrid functionals because the bulk of the work is
related to numerical integration of the XC functional and (for large systems) diagonalization of the
Fock matrix, which are steps that are common to both approaches.

In this chapter, we will focus on the ADF [6–8] GPU implementation for numerical integration,
although the discussed algorithm should also be applicable for the evaluation of the XC energy
expression and derivatives thereof in programs with Gaussian basis sets. In this step, we find an
almost linear scaling of the computational cost with the number of grid points, which in turn depends
on the desired numerical accuracy in the calculation. All calculations are always done in double preci-
sion, as single-precision integration generates too much numerical noise to be of use in the employed
integration scheme.

The ADF program is written in Fortran and has been under continuous development since the
1970s. This has resulted in a very large number of features, adaptation to parallel architectures using
MPI, and well-optimized CPU code for most of the computationally intensive parts of the calcula-
tions. This makes ADF a difficult target for GPU acceleration because the code is clearly too large
to write a GPU implementation from scratch and, moreover, does not allow porting just a few key
routines to the GPU. With this in mind, we decided to focus on accelerating the evaluation of the
Coulomb and exchange-correlation Fock matrix elements by moving the numerical integration to
the GPU in a hybrid computing scheme that allows GPUs and CPUs to work together. We thereby
need to target multiple numerical integration routines that specialize in, for example, evaluating the
Fock matrix in the self-consistent field (SCF) cycles or in the iterative solution of the time-dependent
density functional theory (TDDFT) equations. These routines are all slightly different but can utilize
a similar hybrid computing design.

5.2 Theory and CPU Implementation

In this section, we will first summarize the DFT and SCF approach that is used in ADF, before
discussing in more detail the CPU implementation, which was the starting point for the GPU adap-
tation. An introduction to DFT and SCF procedures in the quantum chemical context can be found
in Chapter 3 or standard textbooks (see, e.g., [9] or [10]) The original implementation of the linear
scaling SCF method in ADF is described in detail elsewhere [11] and has since then remained largely
intact while allowing for accommodating various new developments such as analytical frequencies
[12] and various molecular properties [13].

5.2.1 Numerical Quadrature of the Fock Matrix

The key algorithm that is used in all calculations is the determination of molecular orbitals and the
electron density matrix using an SCF procedure. For nonhybrid DFT calculations, superposing the
electron densities of the fragments from which a molecule is built forms a good starting density
(by default atoms, but molecular fragments may also be used). For hybrid DFT, in which also a
starting guess for the orbitals is required, one uses a superposition of fragment density matrices for
orthonormalized orbitals. In both cases, a sufficiently converged result is typically obtained in a few
tens of SCF iterations.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 103�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 103

The most time-consuming part in the SCF iterations is the construction of the Fock matrix. The
Fock matrix elements are calculated via three-dimensional (3D) numerical integration [14] using
(5.1), with {𝜙} representing the basis set and V(r1) representing the potential energy operator con-
taining both the Coulomb and exchange-correlation potential:

F𝜇𝜈 ← ∫
𝜙𝜇(r1)V(r1)𝜙𝜈(r1)dr1 ≈

NG∑
k

Wk𝜙𝜇(rk)V(rk)𝜙𝜈(rk). (5.1)

Because the number of matrix elements F𝜇𝜈 scales quadratically with the number of atomic orbitals
NAO, and the number of integration points NG scales linearly, the cost of this step formally increases
cubically with system size. Neglecting integration grid points in which one or more of the contributors
to the integrand become negligibly small reduces this unfavorably high scaling. While this approx-
imation can strongly reduce the number of floating-point operations that should be carried out, and
ideally reduce the scaling with system size to linear in the asymptotic limit, it also introduces checking
and branching in the algorithm, thereby possibly affecting the peak performance that can be attained.
Such undesired side effects are minimized by operating as much as possible on entire batches of grid
points, keeping an easy-to-optimize simple algorithm in the innermost parts of the code.

To reduce the number of operations as much as possible, we can rewrite the second part of Eq. (5.1)
by combining the weighting factor Wk and the value of the potential Vk into a weighted potential
value Ok = WkV(rk). These weighted potential values can be reused for every combination of 𝜇 and
𝜈, simplifying the integration to

F𝜇𝜈 ←
∑

k

𝜙𝜇kOk𝜙𝜈k. (5.2)

Equation (5.2) can be rewritten as a matrix–matrix multiplication by introducing an auxiliary matrix
A𝜈k = Ok𝜙𝜈k. Use of this auxiliary matrix then also reduces the number of operations needed to eval-
uate the full Fock matrix to NAONG + 2N2

AONG; this is demonstrated in Example 5.1.

Example 5.1 Using a temporary array to reduce the operations needed to create the Fock matrix.

do iBasis = 1, naos ! naos is the number of basis functions
! prepare the temporary array by multiplying the operator with basis function i
do kGrid = 1, nGrid ! nGrid is the number of grid points

temp(kGrid) = operat(kGrid)*basval(kGrid,iBasis)
end do
do jBasis = 1, naos

! loop over all gridpoints, and multiply temp with basis function j
do kGrid = 1, nGrid

FockMat(jBasis,iBasis) += temp(kGrid) * basval(kGrid,jBasis)
end do

end do
end do •

5.2.2 CPU Code SCF Performance

A common element shared by the many different types of calculations possible with the ADF pro-
gram is the determination of the Kohn–Sham orbitals for a given fixed molecular structure. For these
so-called single-point calculations, the computational cost can be split into three major parts: prepa-
ration for the SCF (∼5–15%), the SCF cycles (70–80%), and the total bonding energy calculation
(∼15%).

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 104�

� �

�

104 Electronic Structure Calculations on Graphics Processing Units

Table 5.1 Timing details for a single-point DFT calculation on the budesonide molecule (C25H34O6),
using a Becke-type grid, the TZ2P basis set, the GGA BLYP functional, and the frozen cores “small”
setting in ADF

Creating Fock matrix (focky)

Integration
grid accuracy

Total
time

SCF
cycle

Total
focky

Numerical
integration

Generate
potentials

Other

Computational cost in seconds
Normal 136.8 100.7 82.0 47.1 23.5 11.4
Good 274.7 197.2 179.1 115.6 47.4 16.1
Very good 710.8 544.0 518.7 338.2 145.5 35.0
Percentage of total time
Normal 100% 74% 60% 34% 17% 8%
Good 100% 72% 65% 42% 17% 6%
Very good 100% 77% 73% 48% 20% 5%

The calculation was performed on a 12-core Intel Xeon E5-2620 running at 2.0 GHz.

Most of the time in the SCF cycle, as shown in Table 5.1, is spent on calculating the Fock matrix,
and the largest part of the Fock matrix calculation is spent in the numerical integration routine. For
high grid accuracies, the numerical integration of the Fock matrix elements covers almost 50% of the
computational cost.

Because the Fock matrix is Hermitian (real-symmetric for calculations without inclusion of
spin–orbit coupling), only half of the matrix elements are calculated using the symmetry F𝜇𝜈 = F𝜈𝜇
to obtain the complete matrix. This reduces the computational cost and memory footprint by a factor
of 2, but makes the loops over the atomic orbitals slightly more involved. For the loops over the grid
points, a partitioning in batches of 128 points is used to optimize cache memory usage and allows
for easy parallelization with MPI. Every MPI process works on its own set of batches, minimizing
the need for communication between CPU cores and cluster nodes. Because batches of grid points
always contain spatially localized points, it is possible to employ distance cutoffs to speed up the
calculation. This is done by evaluating only the matrix elements over the subset of basis functions
that have sufficiently large values in this batch and ignoring all functions that have values close to
zero in the batch [8]. The number of these active basis functions, NAct.O, depends on the geometry
of the system, the basis set, and the atom types in the system, and it will approach a constant value
for large systems. For typical systems treated with ADF, NAct.O is in the range of 300–700 basis
functions, and using these distance effects will give a speed-up factor of 10 or more, as the number
of operations needed to evaluate the full Fock matrix is reduced to NAct.ONG + 2N2

Act.ONG.
While it is most efficient to discard functions already before entering the inner loops of the algo-

rithm, it is possible to obtain additional speedups by considering the combination of two functions
that enter the integral in Eq. (5.1). If the product of the maximum values of 𝜙𝜇 and 𝜙𝜈 in the current
batch of grid points is smaller than a threshold T, |max(𝜙𝜇)max(𝜙𝜈)| < T , their contribution to the
Fock matrix element F𝜇𝜈 can be neglected. While this is a minor speedup compared to the locality
effects used to select the basis functions per batch of grid points, the check requires negligible time
because these maximum values are already available from the basis functions selection routine.

The contraction of Eq. (5.2) can, in principle, be done as a matrix multiplication by using
vendor-optimized libraries, but this creates an extra overhead for a relatively small number of
operations in each matrix multiplication (due to all the optimizations related to linear scaling
cutoffs). The current Fortran code attains roughly 4.5 billion floating-point operations per second
(GFLOPS) on a single core of a Xeon E5-2620 CPU for which the MKL DGEMM shows a peak
performance of about 14 GFLOPS. This higher speed of the library routine can for our purposes,

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 105�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 105

however, be obtained only by discarding some of the optimizations mentioned above, which would
result in more flops to be carried out and a worse overall performance.

For the specific example shown in Table 5.1, a single-point calculation on budesonide, more than
half of the computational time is used to create the Fock matrix by the routine focky. Of the steps
done in focky, 18% goes into calculating the GGA potential in the integration grid, 9% is spent on
calculating the Coulomb potential, and 65% is spent on the numerical integration (Eq. (5.2)) itself.
The remaining time is spent on combining the results from different CPU cores into a single matrix.

The numerical integrations performed in the analytical frequencies code of ADF are similar to
the one described above. The program then needs to calculate geometrical derivatives of the Fock
matrix. This requires generation of a full perturbed Fock matrix, because this matrix needs no longer
be Hermitian or real-symmetric. This shifts the emphasis more toward the integration step, a trend
that is strengthened by the partial reuse of operator and basis values in the grid for each geometrical
derivative. Two Fortran modules M_bas and M_bas_mat contain a number of routines for calculating
different combinations of basis functions and their derivatives. M_bas is the lower level module that
offers routines for generating basis values and numerical integration, while M_bas_mat is the higher
level module for calculating Fock matrices by calling routines from M_bas and some other modules.

When calculating analytical frequencies, ∼65% of the computational cost is inside a routine
called f1u1_ai_gga, which calculates the Fock matrix derivatives shown in Eq. (5.3). It spends about
80–85% of its time on the numerical integration, and the remaining 15–20% goes into generating
the values of the operator and basis functions (and their derivatives) on the grid:

F(1)
𝜈𝜇 ←

∑
k

x,y,z∑
d

Wk

[
∇d𝜙𝜇

(
rk

)]
Vd

(
rk

)
𝜙𝜈

(
rk

)
. (5.3)

This integration is very similar to the one used in focky (Eq. (5.1)), and is optimized using the same
linear scaling and operation-efficiency arguments.

5.3 GPU Implementation

In this section, we will first identify the hardware and software requirements for accelerating the ADF
package with GPUs. We then describe the CUDA code we developed for the numerical integration
and analyze its performance, followed by a description of the hybrid computational scheme used to
accelerate ADF. Finally, we compare the performance of the GPU-accelerated ADF code with the
reference CPU code for real simulations.

5.3.1 Hardware and Software Requirements

As mentioned in the previous section, we need GPU devices with high double-precision (DP) per-
formance, as single precision would generate too much numerical noise. The Nvidia Fermi Tesla
series, consisting of the C2050/2075 and M2090 models, were one of the first GPUs with a high DP
peak performance (∼500 GFLOPs). The next generation is called Kepler and, at the time of writing,
has three Tesla models, the K10, K20, and the K40. The K10 has over 4.5 TFLOPs single-precision
performance but only ∼190 GFLOPs of DP performance. The K20 and K40 are aimed at double
precision and achieve over 1000 GFLOPs of DP performance, while a six-core Intel Xeon E5-2620
manages only ∼90 GFLOPs. The current CUDA code for GPU acceleration in ADF was developed
on the C2050 and C2075 Tesla devices, but it also runs on the newer K20 and K40.

The LAPACK routine DGEMM for matrix multiplications as implemented in the Nvidia cuBLAS
library achieves ∼300 GFLOPs on the Fermi Tesla generation, which is ∼60% of the theoretical

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 106�

� �

�

106 Electronic Structure Calculations on Graphics Processing Units

peak performance. This DGEMM code is highly optimized, so for a home-made implementation
with CUDA we cannot expect to achieve similar speeds. Half of the DGEMM performance on Fermi
is therefore a reasonable target for our CUDA kernels, and further optimization would be useful only
after porting other parts of the focky routine to the GPU.

The reasoning for not using standard BLAS libraries to solve Eq. (5.1) on the CPU also applies
to the GPU, and determines the features needed for the CUDA kernels. The kernel should calculate
only half of the Fock matrix if it is symmetric, and it should use distance cutoffs to reduce the number
of active basis functions in a batch of integration grid points. The threshold check to skip specific
combinations of basis functions inside a batch of grid points will introduce branching at warp level
on the GPU, something that should be avoided. Because the contributions of these combinations are
negligible by definition, we simply omit the check in the GPU kernel.

The kernels should be tuned for high performance with a relatively small problem size, because the
number of active basis functions (functions that have a value higher than the threshold in at least one
of the points in an integration batch) is usually not very large. The number of active basis functions
is system dependent, but typically ∼25–50% of the total basis functions. The total number of basis
functions for the budesonide molecule (C25H34O6) with a TZ2P basis set is 1338, giving us an estimate
of 300–700 active basis functions per integration batch for this example. The small problem size
means that only a relatively small grid of CUDA threads can be created, making the usual practice of
hiding memory latency behind the large number of other threads inefficient. CUDA kernels that do not
use a large number of threads are called low-occupancy kernels, and they are sometimes much faster
than high-occupancy kernels [15]. The low-occupancy kernels are tuned to take maximum advantage
of the available shared and register memory, and reaching the best performance comes down to finding
the best balance between the number of values calculated per thread, the amount of pre-caching,
and the size of the CUDA blocks. Low-occupancy kernels therefore generally need modifications to
obtain high performance on a new generation of CUDA devices, because the proportions between
the hardware resources have changed.

5.3.2 GPU Kernel Code

Figure 5.1 shows a schematic representation of the CUDA kernel and wrapper routine used to offload
the numerical integration in focky. The GPU kernel splits the calculation into batches of eight grid
points to fit in shared memory, and pre-fetches the values used in the next iteration during the calcu-
lation loop to hide the global memory latency. Every thread calculates four values of the Fock matrix
in the calculation loop to increase the available time for pre-fetching. The kernel transposes one set
of basis function values to prevent shared memory bank conflicts in the calculation loop. Because
the GPU calculates the Fock matrix without the use of an auxiliary matrix, the number of operations
needed to evaluate the full Fock matrix is 3N2

Act.ONG.
The kernel is called from a C wrapper routine that takes care of the host-to-device memory transfers

and synchronization between the host and device. The wrapper routine pads the basis functions array
because the kernel accepts only multiples of 16 basis functions as input. This reduces the complexity
of the CUDA kernel and also the amount of registers used on the GPU. The wrapper routine uses
asynchronous copy operations to send data to the device to allow overlapping of computation and
memory transfers for different MPI threads sharing the GPU.

It is important to optimize the kernel for a realistic problem size (300–700 active basis functions
for the budesonide test system) instead of focusing on peak performance. Table 5.2 shows the per-
formance of the current kernel for various problem sizes and different GPU devices. The timings are
collected outside of the wrapper routine and thus include the time required for memory transfers.
The transfer of the results from the device to the host is not taken into account, because it needs to
be performed only after all batches of grid points are finished.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 107�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 107

C Wrapper routine CUDA kernel (8x8 threads per block) Calculation loop

Loop (k) over 8 gridpoints

Load weighted potential value

in register: op = O[k]

-A1 and A2 are transposed to

prevent bank conflicts

Calculate 4 results:

result1 += B1[ty][k]*op* A1[k][tx]

result2 += B2[ty][k]*op* A1[k][tx]

result3 += B1[ty][k]*op* A2[k][tx]

result4 += B2[ty][k]*op* A2[k][tx]

Calculate grid size from the number

of active basis functions in the block

(16×16 basis functions per block)

CudaEventSync to confirm all previous

host to device transfers are done

Launch CUDA kernel

Return to ADF code

Store results in global memory

index array is used to map active

basis func. to full Fock matrix

Synchronize threads

Perform calculation loop

Synchronize threads

Write basis values from

registers to shared memory

(transpose one set of basis values)

Loop to split the calculation

into blocks of 8 gridpoints

All threads load 2×2 basis values

from global memory in registers

(8 gridpoints of data combined)

CUDA eventRecord marker

after host to device transfers

Asynchronous copy to device:
- active basis functions

- basis functions index array

- operator values array

Load basis values for next cycle
from global memory to registers
- hide latency behind calc loop
- skipped during last iteration

Figure 5.1 Schematic representation of the CUDA kernel and wrapper routine for the numerical integra-
tion of Fock matrix elements

Table 5.2 Speed of the GPU kernel in GFLOPS on Nvidia Fermi and
Kepler Tesla hardware

NAO 300 500 700 1400 4000
C2050/C2075 67 95 109 123 134
K20 71 121 173 222 262
K40 (boost) 78 133 191 298 (352) 348 (408)

The kernel is optimized for the 300–700 active basis functions (NAO) range, and
not for peak performance.

If the kernel is compiled with 16× 16 threads per CUDA block instead of the current 8× 8, it
achieves a slightly larger top speed of around 155 GFLOPS on Fermi Tesla hardware. However, doing
this reduces the performance in the region of 300–700 basis functions by ∼10%, making the 8× 8
threads per block a better choice. The kernel has not yet been retuned for the Kepler architecture, but
performs reasonably well on both the K20 and K40 devices. The performance difference between
K20 and K40 comes from the larger number of SMX units and the higher clock frequency on the
K40. The boost state on K40 allows the device to automatically increase the clock frequency when
the power usage is below the maximum, providing 17% speedup for sufficiently large calculations.

The GPU performance shown in Table 5.2 should not be directly compared with the performance of
the CPU code (which reaches ∼5.6 GFLOPs on a single CPU core), because the CPU routine needs
less floating-point operations to compute the Fock matrix elements due to the use of an auxiliary
matrix as explained in Section 5.2.2. Figure 5.2 shows the performance of the GPU code relative
to the CPU version, based on the time needed to calculate the Fock matrix for different numbers of
active basis functions in batches of integration grid points.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 108�

� �

�

108 Electronic Structure Calculations on Graphics Processing Units

50

Relative performance of the numerical integration routine on GPU

K40 with boost clocks

K40

K20

C2050

CPU

45

40

35

30

25

20

15

10

5

0
0

R
e
la

ti
ve

 s
p
e
e
d
 c

o
m

p
a
re

d
 t
o
 1

 C
P

U
 c

o
re

150 300 450 600 750

Number of active basis functions in the block

900 1050 1200 1350 1500

Figure 5.2 Comparison of the time required by the GPU and CPU code for computing contributions to
the Fock matrix through numerical integration

5.3.3 Hybrid CPU/GPU Computing Scheme

As explained in Section 5.2.2, the calculation of the Fock matrix is partitioned into batches of grid
points to allow for easy parallelization with MPI. There are no dependencies in the calculations of
different batches, except for the summation of the results into the final Fock matrix. Figure 5.3 shows
a hybrid computing scheme in which both the CPU and GPU work simultaneously on the calculation
of the Fock matrix. The CPU calculates the values of basis functions, the Coulomb potential, and the
XC potential at the grid points, which is followed by the GPU performing the numerical integration.
Because the results of the GPU calculation are not needed to start the next batch, the CPU can continue
working on the next batch while the GPU processes the numerical integration. The GPU stores the
numerical integration results on the device, and they are transferred back to the host memory after
all batches have been computed.

The ratio between numerical integration work and calculating the basis function and operator
values on the grid depends on the calculation settings such as grid accuracy, basis set size, and the
molecular system, but is ∼2:1 for most simulations. It can be lower in cases such as graphene sheets,
or higher for dense metal clusters with large basis sets, but test calculations on two organic molecules
and two metal clusters with various settings showed this 2:1 ratio. So if the GPU code is twice as fast
as the CPU, the time needed to perform the numerical integration will be completely hidden behind
the remaining CPU code, removing the integration bottleneck. When ADF runs in parallel on N CPU
cores and uses M GPUs in the machine, the GPU code needs to be roughly 2N/M times faster than
a single CPU core to completely hide the GPU time behind other CPU work. Figure 5.2 can now
be used to identify how many CPU cores can share the available GPUs to perform the numerical
integration in the background.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 109�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 109

Focky routine: CPU part

Loop over all blocks of

gridpoints assigned to this MPI task

Calculate values on the grid for:

Combine values of XC,

coulomb and grid point weight

into a single array

GPU Wrapper routine:

send data to device & launch kernel

After loop: copy results from

device to host & MPI combine

End focky

Accumulate results

in GPU memory

Numerical integration

to calculate Fock matrix

GPU part

- XC functional

- basis set

- Coulomb potential

Figure 5.3 Schematic representation of the hybrid CPU/GPU algorithm for the MPI parallel Fock matrix
calculation

The real application performance is slightly better than the speedup shown in Figure 5.2, because
there are no dependencies between GPU kernels from different MPI threads. This allows the hard-
ware to overlap the communication to the device from one MPI thread with the computation time
of another. This effect is not very large on the Fermi Tesla hardware due to serialization on the sin-
gle queue, leading to artificial dependencies. This was solved by the introduction of HyperQ with
the Kepler K20, which upgraded the scheduler to a 32-channel queue system. This allows all MPI
threads to use a separate hardware queue on the device, making it possible to run multiple integration
kernels and memory transfers simultaneously. The kernel concurrency virtually increases the prob-
lem size the device is working on, meaning that the device will obtain speeds similar to a problem
of double the size when working on four kernels simultaneously. Figure 5.2 shows that a single K20
GPU (∼27× faster) is indeed sufficient to perform the numerical integration work for 12 CPU cores,
and a K40 with boost clocks should be sufficient for up to 20 CPU cores.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 110�

� �

�

110 Electronic Structure Calculations on Graphics Processing Units

Table 5.3 CPU timings for a GPU-accelerated single-point DFT calculation on the budesonide molecule
(C25H34O6) using a Becke-type grid, a TZ2P basis set, the GGA BLYP functional, and the frozen cores
“small” setting in ADF

Creating Fock matrix (focky)

Integration
grid accuracy

Total
time

SCF
cycle

Total
focky

Numerical
integration

Generate
potentials

Other

Computational cost in seconds
Normal 94.1 56.3 36.7 3.0 24.3 9.4
Good 170.7 86.3 67.7 6.7 49.0 12.0
Very good 375.7 194.5 170.6 14.7 132.5 23.4

Speed-up factor compared to CPU-only calculation
Normal 1.45 1.79 2.24
Good 1.61 2.29 2.64
Very good 1.89 2.80 3.04

The calculation was performed on 12 cores of the Intel Xeon E5-2620 CPU and a single Nvidia K40.

5.3.4 Speed-Up Results for a Single-Point Calculation

Table 5.3 shows the results of the test calculations with GPU acceleration enabled, as well as the
speedup when compared to the CPU timings from Table 5.1. The hybrid computing scheme clearly
performs as planned, as almost no time is spent on numerical integration. The small part that remains
is mostly the overhead of the wrapper routine handling the memory transfers.

We can now also estimate the minimum average speedup of the numerical integration: the 12 CPU
cores needed 338.2 s (Table 5.1) to perform the numerical integration on the “very good” grid setting,
where the K40 used at most 170.6 s to perform the calculation. This makes the K40 1.98 times faster
when compared to 12 CPU cores, or 23.8 times faster when compared to a single core. If we compare
this number to the K40 curve in Figure 4.2, knowing that the average block in the calculation has
between 300 and 700 active basis functions, we can conclude that the HyperQ feature works and
multiple blocks are computed concurrently on the device.

5.3.5 Speed-Up Results for an Analytical Frequency Calculation

A large part of the computational cost during an analytical frequency calculation is spent on numerical
integration (see Section 5.2.2). These calculations can also be GPU-accelerated using a hybrid scheme
similar to the one used for the Fock matrix formation during the SCF. The most expensive part is the
numerical integration of derivative Fock matrix elements, Eq. (5.3), which can be performed with
a slightly modified kernel that includes a loop over the geometric derivatives of the basis functions.
This method was chosen for ease of implementation, but requires the GPU to perform 3 × (3N2

Act.ONG)
operations to calculate the full derivative Fock matrix. The CPU code uses an auxiliary matrix
(Eq. (5.4)), and thus only needs 5NAct.ONG + 2N2

Act.ONG operations to calculate the derivative Fock
matrix:

A𝜇k =
x,y,z∑

d

Okd𝜙𝜇kd. (5.4)

Because the GPU code does not use the auxiliary matrix, it is less efficient when compared to the
CPU code, meaning that we will only see good acceleration if the ratio of CPU cores to GPU devices
is small. A calculation with two CPU cores and two GPUs (a K20 and a K40) will give an estimation
of the speedup that could be obtained with a realistic production setup (6–8 cores per GPU), if the
GPU kernel is rewritten to use an auxiliary matrix.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 111�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 111

2 4 6

Number of CPU cores used

Timings and speed-up for the analytical frequency calculation

8 10 12

CPU

Speed-up (right axis)

18,000

15,000

12,000

9000

T
im

e
 i
n

 s
e

c
o

n
d

s

6000

3000

0

S
p

e
e

d
-u

p

1.00

1.25

1.50

1.75

2.00

2.25

2.50

CPU and 2 GPUs

Figure 5.4 Timings and speedup for the calculation of Hessian matrix elements for an analytical fre-
quency calculation on the budesonide molecule (C25H34O6) with BLYP/TZ2P and frozen core setting
“small,” using a Becke grid quality of “good” in ADF

Figure 5.4 shows the timings and speedup for an analytical frequency calculation on the budes-
onide molecule (C25H34O6) using a TZ2P basis set, the GGA BLYP functional, the frozen cores
“small” setting, and a Becke grid quality “good” in ADF. The calculation is performed for only 3 of
the 65 atoms, creating a partial Hessian, and Figure 5.4 shows only the timings for the loop over the
atomic nuclei, because this loop will take ∼98% of the total calculation time for a full Hessian. The
timings are thus representative for a full frequency calculation. Figure 5.4 shows a 2.16× speedup
when using only 2 CPU cores (6 CPU cores per GPU), and a 1.70× speedup when using 12 CPU
cores (6 cores per GPU).

The calculations in the frequencies code are accelerated using the same hybrid scheme as explained
in Section 5.3.3. The only difference is the ratio between numerical integration and calculation of
the operator and basis function (derivative) values on the grid, which is ∼4:1 for the f1u1_ai_gga
routine. This gives a possible speedup factor of 5, which is slightly higher when compared to the
focky routine. However, the number of CPU cores that share a GPU needs to be lower; otherwise the
numerical integration cannot be hidden behind CPU work, reducing the possible speedup.

The timings and speedup of the f1u1_ai_gga routine are shown in Figure 5.5. When only two CPU
cores are used, all numerical integration work performed on the two GPUs is hidden behind other
CPU work, giving a 4.43× speedup. The estimated 5× possible speedup is not achieved because of
the increased overhead of the wrapper routine, which reorders the input arrays on the CPU before
sending them to the GPU. This is necessary to enable coalesced data fetches from global memory
in the numerical integration kernel, something that is otherwise difficult to achieve with the current
data structure used in the ADF gradients code. The speedup reduces to 2.66× when using 12 CPU
cores, showing that there is still room for improvement with the current GPU acceleration scheme.

Bringing the auxiliary matrix scheme to GPU would be a good way to reduce the number of oper-
ations required in each integration grid batch and at the same time solve the data structure problem.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 112�

� �

�

112 Electronic Structure Calculations on Graphics Processing Units

10,000

8750

7500

5000

2500

3750

6250

1250

0
2 4 6

Number of CPU cores used

8 10 12
1.00

2.00

1.50

2.50

3.00

3.50

4.00

4.50

5.00

CPU

CPU and 2 GPUs

Speed-up (right axis)

T
im

e
 i
n
 s

e
c
o
n
d
s

S
p
e
e
d
-u

p

Timings and speed-up for the f1u1_ai_gga routine

Figure 5.5 Timings and speedup for the calculation of matrix elements of the Fock matrix derivatives (rou-
tine f1u1_ai_gga) required for analytical frequency calculation. Test system is the budesonide molecule
(C25H34O6) with BLYP/TZ2P and frozen core setting “small,” using a Becke grid quality of “good” in ADF

5.4 Conclusion

DFT calculations with STOs as implemented in the ADF software package were accelerated using
a low-occupancy CUDA kernel for the numerical integration of Fock matrix elements, aimed at
obtaining good performance for relatively small problem sizes. The kernel achieved almost 50% of
the DGEMM performance on the Tesla Fermi architecture (134 GFLOPS), and was portable enough
to run twice as fast on K20 (262 GFLOPS) and thrice faster on K40 (408 GFLOPS).

A hybrid computational scheme was developed to offload the heavy numerical work to the GPU,
keeping the CPU working at the same time. The balance in workload between CPU and GPU causes
the numerical integration bottleneck to disappear if the number of CPU cores per GPU is not too
large. The accelerated ADF code was shown to be 1.45–1.89 times faster for single-point calcula-
tions, depending on the grid accuracy settings, and 1.70–2.16 times faster for frequency calculations,
depending on the ratio of CPU cores to GPU devices.

Software packages with a large amount of legacy code, such as ADF, can be difficult targets for
GPU acceleration, as it is impossible to port them entirely to GPUs within a reasonable amount
of time. The hybrid scheme described here can be a good solution for such cases, offering decent
speedup without sacrificing any of the features that make the code unique.

GPU acceleration in ADF is work in progress with plenty of room for improvement. In the near
future, we hope to optimize the frequencies code and extend the acceleration to functionals beyond
GGAs and other property calculations.

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 113�

� �

�

GPU Acceleration for Density Functional Theory with Slater-Type Orbitals 113

References

1. Kohn, W., Becke, A.D. and Parr, R.G. (1996) Density functional theory of electronic structure.
Journal of Physical Chemistry A, 100 (31), 12974–12980.

2. Neese, F. (2009) Prediction of molecular properties and molecular spectroscopy with density
functional theory: From fundamental theory to exchange-coupling. Coordination Chemistry
Reviews, 253 (5–6), 526–563.

3. Cohen, A.J., Mori-Sánchez, P. and Yang, W. (2012) Challenges for density functional theory.
Chemical Reviews, 112 (1), 289–320.

4. Kutzelnigg, W. (2013) Expansion of a wave function in a Gaussian basis. I. Local versus global
approximation. International Journal of Quantum Chemistry, 113 (3), 203–217.

5. Güell, M., Luis, J.M., Solà, M. and Swart, M. (2008) Importance of the basis set for the spin-state
energetics of iron complexes. Journal of Physical Chemistry A, 112 (28), 6384–6391.

6. ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,
http://www.scm.com (accessed 07 September 2015).

7. Te Velde, G., Bickelhaupt, F.M., Baerends, E.J. et al. (2001) Chemistry with ADF. Journal of
Computational Chemistry, 22 (9), 931–967.

8. Fonseca Guerra, C., Snijders, J., Te Velde, G. and Baerends, E. (1998) Towards an order-N DFT
method. Theoretical Chemistry Accounts, 99 (6), 391–403.

9. Cramer, C.J. (2004) Essentials of Computational Chemistry: Theories and Models,
John Wiley & Sons, p. 628.

10. Jensen, F. (2007) Introduction to Computational Chemistry, 2nd edn, John Wiley & Sons,
Chichester.

11. Fonseca Guerra, C., Visser, O., Snijders, J.G. te Velde, G. and Baerends, E.J. (1995) Paral-
lelisation of the Amsterdam Density Functional Program. In: Methods and Techniques for
Computational Chemistry, E. Clementi and C. Corongiu, eds, pp. 303–395, STEF, Cagliari.
https://www.scm.com/Doc/metecc.pdf.

12. Wolff, S.K. (2005) Analytical second derivatives in the Amsterdam density functional package.
International Journal of Quantum Chemistry, 104 (5), 645–659.

13. Nicu, V.P., Neugebauer, J., Wolff, S.K. and Baerends, E.J. (2008) A vibrational circular dichroism
implementation within a Slater-type-orbital based density functional framework and its applica-
tion to hexa- and hepta-helicenes. Theoretical Chemistry Accounts, 119 (1–3), 245–263.

14. Franchini, M., Philipsen, P.H.T. and Visscher, L. (2013) The Becke fuzzy cells integration
scheme in the Amsterdam density functional program suite. Journal of Computational
Chemistry, 34 (21), 1819–1827.

15. Volkov V. 2010 Better performance at lower occupancy. Proceedings of the GPU Technology
Conference, GTC; http://people.sc.fsu.edu/∼gerlebacher/gpus/better_performance_at_lower
_occupancy_gtc2010_volkov.pdf

http://www.scm.com
https://www.scm.com/Doc/metecc.pdf
http://people.sc.fsu.edu/~gerlebacher/gpus/better_performance_at_lower_occupancy_gtc2010_volkov.pdf
http://people.sc.fsu.edu/%E2%88%BCgerlebacher/gpus/better_performance_at_lower

Trim Size: 170mm x 244mm Walker c05.tex V3 - 01/19/2016 3:00 P.M. Page 114�

� �

�

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 115�

� �

�

6
Wavelet-Based Density Functional

Theory on Massively Parallel Hybrid
Architectures

Luigi Genovese1, Brice Videau2, Damien Caliste1, Jean-François Méhaut2,
Stefan Goedecker3 and Thierry Deutsch1

1Université Grenoble Alpes, INAC, F-38000 Grenoble, France, and CEA, INAC,
F-38000 Grenoble, France

2Université Joseph Fourier – Laboratoire d’Informatique de Grenoble – INRIA,
Grenoble, France

3Institut für Physik, Universität Basel, Basel, Switzerland

In this chapter, we describe the GPU acceleration of density functional theory (DFT) calculations
based on wavelet basis sets as realized in the BigDFT code. Daubechies wavelets have not been
traditionally used for DFT calculations, but they exhibit properties that make them attractive for both
accurate and efficient DFT simulations. Here we explain how an existing MPI parallel wavelet-based
DFT implementation can benefit from the computational power of GPUs by offloading numerically
intensive operations to GPUs.

6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional
Theory Implementations

Quantum mechanics and electromagnetism are widely perceived as leading to a “first-principles”
approach to materials and nanosystems: given appropriate software implementations and sufficiently
powerful hardware, it is possible to calculate properties without resorting to any adjustable parame-
ters. In the 1980s, it became clear that, indeed, numerous material properties such as total energies,
electronic structure, and the related dynamic, dielectric, mechanical, magnetic, and vibrational prop-
erties, can be obtained with an accuracy that can be considered as truly predictive.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 116�

� �

�

116 Electronic Structure Calculations on Graphics Processing Units

As described in Chapter 3, DFT in its Kohn–Sham (KS) single-particle approach [1] is at present
the most widely used methodology for electronic structure calculations. In the recent years, the KS
formalism has been proven to be one of the most efficient and reliable first-principles methods for
predicting material properties and processes that exhibit a quantum mechanical behavior. The com-
bination of high accuracy and relatively simple form of most common exchange-correlation (XC)
functionals make KS-DFT probably the most powerful tool for ab initio simulations of the proper-
ties of matter. As a consequence, the computational machinery of DFT calculations has been widely
developed during the last decade, giving rise to a plethora of DFT codes. DFT calculations have thus
become increasingly common, with application domains including solid-state physics, chemistry,
materials science, biology, and geology.

From a computational point of view, one of the most important characteristics of a DFT code
is the set of basis functions used to express the KS orbitals. The domain of applicability of a code
is tightly connected to this choice. For example, a nonlocalized basis set such as plane waves (see
Chapter 7) is highly suitable for electronic structure calculations of periodic and/or homogeneous
systems such as crystals or solids. It is much less efficient in expanding localized information, which
has a wider range of components in the reciprocal space, leading to high memory requirements. For
this reason, DFT codes based on plane waves are not convenient for simulating inhomogeneous or
isolated systems such as molecules.

A distinction should also be made between codes that use systematic and nonsystematic basis
sets. A systematic basis set allows the calculation of the exact solution of the KS equations with
arbitrarily high precision as the number of basis functions is increased. In other words, the numerical
precision of the results is related to the number of basis functions used to expand the KS orbitals.
With such a basis set it is thus possible to obtain results that are free of errors related to the choice
of the basis, eliminating a source of uncertainty. A systematic basis set allows thus the calculation of
the exact solution of a particular XC functional. On the other hand, an example of a nonsystematic
set is provided by Gaussian-type basis functions (see Chapter 4), for which over-completeness may
be achieved before convergence. Such basis sets are more difficult to use, since the basis set must
be carefully tuned by hand, which sometimes requires preliminary knowledge of the system under
investigation. This is the most important weakness of this popular basis set.

In 2005, the EU FP6-STREP-NEST BigDFT project funded a consortium of four European labo-
ratories (L_Sim, CEA Grenoble; Basel University, Switzerland; Louvain-la-Neuve University, Bel-
gium; and Kiel University, Germany) with the aim of developing a novel approach for DFT calcu-
lations based on Daubechies wavelets. Rather than simply building a DFT code from scratch, the
objective of this 3-year project was to test the potential benefit of a new formalism in the context of
electronic structure calculations.

As a matter of fact, Daubechies wavelets exhibit a set of properties that make them ideal for a
precise and optimized DFT approach. In particular, they are systematic and thus provide a reliable
basis set for high-precision results, whereas their locality (both in real and reciprocal space) improves
the efficiency and the flexibility of the treatment. Indeed, a localized basis set allows the optimization
of the number of degrees of freedom for a required accuracy [2], which is highly desirable given the
complexity and inhomogeneity of the systems under investigation nowadays. Moreover, an approach
based on localized functions makes it possible to explicitly control the nature of the boundaries of
the simulation domain, which allows considering complex environments such as mixed boundary
conditions and/or systems with a net charge.

As outlined in Chapter 1, the possibility of using graphics processing units (GPUs) for scientific
calculations has raised much interest in the past few years. A technology that was initially devel-
oped for home PC hardware has rapidly evolved in the direction of programmable parallel streaming
processors. The features of these devices, in particular the very low price to performance ratio,
together with the relatively low energy consumption, make them attractive platforms for intensive
scientific computations. Many scientific applications have been recently ported to GPUs, including,
for example, molecular dynamics [3], quantum Monte Carlo [4], and finite element methods [5].

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 117�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 117

The numerical operations of the BigDFT code are well suited for GPU acceleration. On one hand,
the computational nature of 3D separable convolutions allows writing efficient routines that benefit
the computational power of GPUs. On the other hand, the parallelization scheme of the BigDFT
code is optimal in this sense: GPUs can be used without affecting the nature of the communications
between the different MPI processes.

In what follows, we give an overview of typical numerical operations in BigDFT that were ported
to GPUs and discuss the effect of GPU acceleration of some code sections on the overall code
performance.

6.2 Operators in Wavelet Basis Sets

Wavelet basis sets have not been widely used for electronic structure calculations. Most of the efforts
so far have been devoted to their use for all-electron calculations. Since this basis set is not very
common, we here explain its use in the context of KS-DFT calculation. For an exhaustive presen-
tation of how wavelet basis sets can be used for numerical simulations, we refer the reader to the
work by Goedecker [6]. In what follows, we summarize the main properties of Daubechies wavelets,
with a special focus on the representation of the objects (wave functions and operators) involved in
the KS-DFT formalism. We will first start by illustrating the principles of a one-dimensional (1D)
Daubechies wavelets basis.

6.2.1 Daubechies Wavelets Basis and Convolutions

Every wavelet family comprises a scaling function 𝜙, and a second function 𝜓 , properly called a
wavelet. Figure 6.1 illustrates the least asymmetric Daubechies wavelet family of order 2m = 16,
the basis set that is used at present in the BigDFT code. These functions feature a compact support
[1 − m,m] and are smooth; and therefore are localized in Fourier space as well. A basis set is simply
generated by the integer translates of the scaling and wavelet functions, with arguments measured

–1.5

–1

–0.5

0

0.5

1

1.5

–6 –4 –2 0

x
2 4 6 8

ϕ(x)

ψ(x)

Figure 6.1 Least asymmetric Daubechies wavelet family of order 2m = 16. Note that both the scaling
function 𝜙(x) and the wavelet 𝜓(x) are different from zero only within the interval [1 − m,m]

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 118�

� �

�

118 Electronic Structure Calculations on Graphics Processing Units

in units of the grid spacing h. For instance, a 1D domain of extension L, centered at x = 0, can be
spanned by the following set of N scaling functions:

⟨x|𝜙i⟩ ≡ 𝜙i(x) =
1√
h
𝜙

(x
h
− i

)
, i = −N∕2, … ,N∕2, (6.1)

where h = L∕(N − 1) is the (uniform) grid spacing. The basis set can be completed by the addition
of the translates of the wavelet functions 𝜓i. These functions form an orthogonal basis set:

⟨𝜙i|𝜙j⟩ = 𝛿ij = ⟨𝜓i|𝜓j⟩, ⟨𝜙i|𝜓j⟩ = 0. (6.2)

The most important feature of any wavelet basis set is related to the concept of multiresolution.
This feature builds upon the following scaling equations (or “refinement relations”):

𝜙(x) =
√

2
∑

j

hj 𝜙(2x − j); 𝜓(x) =
√

2
∑

j

gj 𝜙(2x − j), (6.3)

which relate the wavelet representation at some resolution to that at twice the given resolution, and
so on. According to the standard nomenclature, the sets of the hj and gj = (−1) jh−j coefficients are
called low- and high-pass filters, respectively. A wavelet family is therefore completely defined by
its low-pass filter. In the case of Daubechies-2m wavelets, j ∈ [1 − m,m].

The representation f (x) of a function in the above-defined basis set is given by

f (x) =
N∕2∑

i=−N∕2

ci𝜙i(x) +
N∕2∑

i=−N∕2

di𝜓i(x), (6.4)

where the expansion coefficients are formally given by ci ≡ ⟨𝜙i| f ⟩, di ≡ ⟨𝜓i| f ⟩. Using the refinement
Eq. (6.3), one can map the basis appearing in Eq. (6.4) to an equivalent one including only scaling
functions on a finer grid of spacing h∕2.

The multiresolution property plays a fundamental role also for the wavelet representation of differ-
ential operators. For example, it can be shown that the exact matrix elements of the kinetic operator

Ti−j ≡ −1
2 ∫

dx 𝜙i(x)𝜕
2𝜙j(x) (6.5)

are equal to the entries of an eigenvector of a matrix, which solely depends on the low-pass filter [6].
Daubechies-2m wavelets exhibit m vanishing moments, thus any polynomial of degree less than

m can be represented exactly by an expansion over the sole scaling functions of order m. For higher
order polynomials, the error is (hm), that is, vanishingly small as soon as the grid is sufficiently fine.
Hence, the difference between the representation of Eq. (6.4) and the exact function f is decreasing as
hm. The discretization error due to Daubechies-2m wavelets is therefore controlled by the grid spac-
ing. Among all the orthogonal wavelet families, Daubechies wavelets feature the minimum support
length for a given number of vanishing moments.

Given a potential V known numerically on the points {xk} of a uniform grid, it is possible to
identify an effective approximation for the potential matrix elements Vij ≡ ⟨𝜙j|V|𝜙i⟩. It has been
shown [2, 7] that a quadrature filter {𝜔k} can be defined such that the matrix elements given by

Vij ≡ ⟨𝜙j|V|𝜙i⟩ =
∑

k

𝜔k−i V(xk) 𝜔k−j (6.6)

yield excellent accuracy with the optimal convergence rate (h2m) for the potential energy. The same
quadrature filter can be used to express the grid point values of a (wave) function given its expansion

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 119�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 119

coefficients in terms of scaling functions:

f (xk) =
∑

i

ci 𝜔k−i + (hm); (6.7)

ci =
∑

k

f (xk) 𝜔k−i + (hm). (6.8)

As a result, the potential energy can be equivalently computed either in real space or in the wavelet
space; that is ⟨ f |V| f ⟩ = ∑

kf (xk)V(xk)f (xk) ≡
∑

ijciVijcj. The quadrature filter elements can therefore
be considered as the most reliable transformation between grid point values f (xk) and scaling function
coefficients ci, as they provide exact results for polynomials of order up to m − 1 and do not alter the
convergence properties of the basis set discretization. The filter {𝜔k} is of length 2m and is defined
unambiguously by the moments of the scaling functions (which in turn depend only on the low-pass
filter) [8].

Using the above formulae, the (so far 1D) Hamiltonian matrix Hij = Tij + Vij can be constructed.
Note that, in contrast to other discretization schemes (finite differences, DVR, plane waves, etc.), in
the wavelet basis set neither the potential nor the kinetic terms have diagonal representations. Instead,
Ĥ is represented by a band matrix of width 2m.

6.2.2 The Kohn–Sham Formalism

In the KS formulation of DFT, the KS wave functions |Ψi⟩ are eigenfunctions of the KS Hamiltonian
(see also Chapter 3), with pseudopotential Vpsp:

(
−1

2
∇2 + VKS[𝜌] + Vpsp

)
|Ψi⟩ = 𝜖i|Ψi⟩. (6.9)

The KS potential VKS[𝜌] is a functional of the electronic density of the system:

𝜌(r) =
orbitals∑

i=1

n(i)
occ|Ψi(r)|2, (6.10)

where n(i)
occ is the occupation of orbital i.

The KS potential VKS[𝜌] = VH[𝜌] + Vxc[𝜌] + Vext contains the Hartree potential VH , solution of the
Poisson’s equation∇2VH = −4𝜋𝜌, the XC potential Vxc, and the external ionic potential Vext acting on
the electrons. In the BigDFT code, the pseudopotential term Vpsp is of the form of norm-conserving
GTH–HGH pseudopotentials [9–11], which have a local and a nonlocal term, Vpsp = Vlocal + Vnonlocal.
The KS Hamiltonian can then be written as the action of three operators on the wave function:

(
−1

2
∇2 + VL + Vnonlocal

)
|Ψi⟩ = 𝜖i|Ψi⟩, (6.11)

where VL = VH + Vxc + Vext + Vlocal is a real-space-based (local) potential, and Vnonlocal comes from
the pseudopotentials.

As usual in a KS-DFT calculation, the application of the Hamiltonian is a part of a self-consistent
cycle needed for minimizing the total energy. In addition to the usual orthogonalization routine, in
which scalar products ⟨Ψi|Ψj⟩ should be calculated, another operation that is performed on wave
functions in the BigDFT code is the preconditioning. This is calculated by solving the Helmholtz
equation (

−1
2
∇2 − 𝜖i

)
|g̃i⟩ = |gi⟩, (6.12)

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 120�

� �

�

120 Electronic Structure Calculations on Graphics Processing Units

where |gi⟩ is the gradient of the total energy with respect to the wave function |Ψi⟩, of energy 𝜖i. The
preconditioned gradient |g̃i⟩ is found by solving Eq. (6.12) by a preconditioned conjugate gradient
method.

The complete Hamiltonian contains also the nonlocal part of the pseudopotential which, thanks
to the orthogonality of Daubechies wavelets, can directly be applied in the compressed form.
A schematic of all these operations is depicted in Figure 6.3.

6.2.3 Three-Dimensional Basis

For a 3D description, the simplest basis set is obtained by a set of products of equally spaced scaling
functions on a grid of spacing h′:

𝜙i,j,k(r) = 𝜙(x∕h′ − i) 𝜙(y∕h′ − j) 𝜙(z∕h′ − k). (6.13)

In other words, the 3D basis functions are a tensor product of 1D basis functions. Note that we are
using a cubic grid, where the grid spacing is the same in all directions, but the following description
can be straightforwardly applied to general orthorombic grids.

The basis set of Eq. (6.13) is equivalent to a mixed basis set of scaling functions on a twice coarser
grid of grid spacing h = 2h′:

𝜙0
i,j,k(r) = 𝜙(x∕h − i) 𝜙(y∕h − j) 𝜙(z∕h − k) (6.14)

augmented by a set of seven wavelets

𝜙1
i,j,k(r) = 𝜓(x∕h − i) 𝜙(y∕h − j) 𝜙(z∕h − k),

𝜙2
i,j,k(r) = 𝜙(x∕h − i) 𝜓(y∕h − j) 𝜙(z∕h − k),

𝜙3
i,j,k(r) = 𝜓(x∕h − i) 𝜓(y∕h − j) 𝜙(z∕h − k),

𝜙4
i,j,k(r) = 𝜙(x∕h − i) 𝜙(y∕h − j) 𝜓(z∕h − k), (6.15)

𝜙5
i,j,k(r) = 𝜓(x∕h − i) 𝜙(y∕h − j) 𝜓(z∕h − k),

𝜙6
i,j,k(r) = 𝜙(x∕h − i) 𝜓(y∕h − j) 𝜓(z∕h − k),

𝜙7
i,j,k(r) = 𝜓(x∕h − i) 𝜓(y∕h − j) 𝜓(z∕h − k).

This equivalence follows from the fact that, from Eq. (6.3), every scaling function and wavelet on a
coarse grid of spacing h can be expressed as a linear combination of scaling functions at the fine grid
level h′, and vice versa.

A KS wave function Ψ(r) can thus be expanded in this basis:

Ψ(r) =
∑

i1 ,i2 ,i3

c0
i1 ,i2 ,i3

𝜙0
i1 ,i2 ,i3

(r) +
∑

j1 ,j2 ,j3

7∑
𝜈=1

c𝜈j1 ,j2 ,j3𝜙
𝜈

j1 ,j2 ,j3
(r). (6.16)

The sums over i1, i2, i3 (j1, j2, j3) run over all grid points where scaling functions (wavelets) are
centered. These points are associated with regions of low and high resolution levels, respectively.

In a simulation domain, there are three categories of grid points: those that are closest to the atoms
(“fine region”) carry 1D (3D) scaling function and seven (3D) wavelets; those that are further from
the atoms (“coarse region”) carry only one scaling function, corresponding to a resolution which is
half that of the fine region; and those that are even further away (“empty region”) carry neither scaling
functions nor wavelets. To determine these regions of different resolution, we construct two spheres
around each atom a; a small one with radius R f

a = 𝜆 f ⋅ r f
a , and a large one with radius Rc

a = 𝜆c ⋅ rc
a

(Rc
a > R f

a). The values of r f
a and rc

a are fixed for each atom type, whereas 𝜆 f and 𝜆c can be specified

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 121�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 121

Figure 6.2 Simulation grid points

by the user in order to control the accuracy of the calculation. The fine (coarse) region is then given
by the union of all the small (large) spheres, as shown in Figure 6.2. Hence in BigDFT the basis set is
controlled by three user-specified parameters: systematic convergence of the total energy is achieved
by increasing the values of 𝜆c and 𝜆f while reducing the value of h.

6.2.4 The Kinetic Operator and the Local Potential

For the pure fine scaling function representation described in Eq. (6.13), the result of the application
of the kinetic energy operator on this wave function has the expansion coefficients ŝi′

1
,i′

2
,i′

3
, which are

related to the original coefficients si′
1
,i′

2
,i′

3
by a convolution

ŝi′
1
,i′

2
,i′

3
= 1

2

∑
j′
1
,j′

2
,j′

3

Ki′
1
−j′

1
,i′

2
−j′

2
,i′

3
−j′

3
sj′

1
,j′

2
,j′

3
, (6.17)

where
Ki1 ,i2 ,i3

= Ti1
𝛿i2
𝛿i3

+ 𝛿i1
Ti2
𝛿i3

+ 𝛿i1
𝛿i2

Ti3
, (6.18)

and Ti are the filters of the 1D second derivative in Daubechies scaling functions basis (Eq. (6.5)),
which can be computed analytically.

The potential VL is defined in real space, in particular on the points of the finer grid of spacing
h′. The application of the local potential in Daubechies basis consists of the basis decomposition of
the function product VL(r)Ψ(r). As explained in the literature [2, 7], the simple evaluation of this
product in terms of the point values of the basis functions is not precise enough. A better result
may be achieved by performing a transformation to the wave function coefficients, which allows the
calculation of the values of the wave functions on the fine grid, via a smoothed version of the basis
functions. This is the so-called magic filter transformation, which can be expressed as follows:

Ψ(ri′
1
,i′

2
,i′

3
) =

∑
j′
1
,j′

2
,j′

3

𝜔i′
1
−j′

1
𝜔i′

2
−j′

2
𝜔i′

3
−j′

3
sj′

1
,j′

2
,j′

3
(6.19)

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 122�

� �

�

122 Electronic Structure Calculations on Graphics Processing Units

and allows expressing the potential application with higher accuracy. In other words, the point values
of a given wave function |Ψ⟩ are expressed as if Ψ(r) would be the smoothest function that has
the same Daubechies expansion coefficients of |Ψ⟩. This procedure guarantees the highest precision
((h16) in the potential energy) and can be computationally expressed by a 3D separable convolution
in terms of the filters 𝜔i. After application of the local potential (pointwise product), a transposed
magic filter transformation can be applied to obtain Daubechies expansion coefficients of VL|Ψ⟩.

The above-described operations must be combined together for the application of the local Hamil-
tonian

(
− 1

2
∇2 + VL(r)

)
, which is depicted in Figure 6.3. The complete Hamiltonian contains also

the nonlocal part of the pseudopotential which, thanks to the orthogonality of Daubechies wavelets,
can be directly applied in the compressed form. All the other operations can also be performed in the
compressed form. In particular, the overlap matrices needed for the orthogonality constraints, and
their manipulations, are implemented by suitable applications of the BLAS and LAPACK routines.

6.2.5 Poisson Solver

The local potential VL can be obtained from the local density 𝜌 by solving Poisson’s equation and
by calculating the exchange–correlation potential Vxc[𝜌]. These operations are performed via a Pois-
son solver based on interpolating scaling functions [12], which is a basis set tightly connected with
Daubechies functions, optimal for electrostatic problems, and which allows for mixed boundary con-
ditions. A description of this Poisson solver can be found in [13–15].

3D separable

convolutions

| 2ψ〉

|ψ〉

V(x)

Vxc(x)Vloc(x)

VH (x)

ρ(x)

Vnl|ψ〉

|Hψ〉

V(x) ψ(x)

Figure 6.3 Schematic representation of the application of the Hamiltonian in the BigDFT formalism

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 123�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 123

6.3 Parallelization

Two data distribution schemes are used in the parallel version of our program. In the orbital distribu-
tion scheme, each processor works on one or a few orbitals. The processor holds its scaling function
coefficients and wavelet coefficients. In the coefficient distribution scheme (see Figure 6.4), each
processor holds a certain subset of the coefficients of all the orbitals. Most of the operations, such
as applying the Hamiltonian on the orbitals and the preconditioning, are done in the orbital distri-
bution scheme. This has the advantage that we do not have to parallelize these routines with MPI.
The calculation of the Lagrange multipliers that enforce the orthogonality constraints onto the gra-
dient as well as the orthogonalization of the orbitals is done in the coefficient distribution scheme
(Figure 6.4). Switching back and forth between the orbital distribution scheme and the coefficient
distribution scheme is done by the MPI global transposition routine MPI_ALLTOALL(V). For par-
allel computers where the cross-sectional bandwidth [16] scales well with the number of processors,
this global transposition does not require much CPU time. Another time-consuming communication
is the global reduction sum required to obtain the total charge distribution from the partial charge
distribution of the individual orbital.

In the parallelization scheme of the BigDFT code, another level of parallelization was added via
the OpenMP directive. In particular, all the convolutions and the linear algebra part can be executed
in the multi-threaded mode. This adds further flexibility to the parallelization scheme. Several tests
and improvements have been made to stabilize the behavior of the code in a multilevel MPI/OpenMP
parallelization. At present, optimal performance can be reached by associating one MPI process per
CPU (socket), or even one MPI process per compute node, depending on the network and MPI library
performances. This has been possible also thanks to recent improvements of the OpenMP implemen-
tation of the compilers.

6.3.1 MPI Parallel Performance and Architecture Dependence

The parallellization scheme of the code has been continuously tested since its first version. Since MPI
communications do not interfere with calculations, as long as the computational workload is more
demanding than the time required for the communication, the overall efficiency remains high, also
for simulations with a large number of processors [17].

We have evaluated the amount of time spent for a given operation on a typical run. To do this,
we have profiled the different sections of the BigDFT code for parallel calculations. In Figure 6.5,
we show the percentage of time that is dedicated to the operations described above for runs with
two different architectures: the French CCRT Titane platform (Bull Novascale R422), and the Swiss

(a) (b)

1

2

3

4

5

MPI 0 MPI 1 MPI 2

1

2

3

4

5

MPI 0

MPI 1

MPI 2

Figure 6.4 Orbital (a) and coefficient (b) distribution schemes

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 124�

� �

�

124 Electronic Structure Calculations on Graphics Processing Units

Efficiency (%) Time (s) Other CPU

Conv LinAlg Comms

(a) (b)

16

100

P
e
rc

e
n
t

S
e
c
o
n
d
s
 (

lo
g
.
s
c
a
le

)

Number of cores

24 32 48 64 96 144 192 288 576

1000

100

10

1

90

80

70

60

50

40

30

20

10

0

CCRT Titane (Nehalem, Infiniband) CSCS Rosa (Opteron, Cray XT5)

16 24 32 48 64

Number of cores

96 144 192 288 576

S
e
c
o
n
d
s
 (

lo
g
.
s
c
a
le

)

1

10

100

1000100

90

80

70

60

50

P
e
rc

e
n
t

40

30

20

10

0

Figure 6.5 Comparison of the performance of BigDFT on different platforms. Runs on the CCRT machine
are worse in scalability but better in absolute performance per compute core than runs on the CSCS
machine (1.6–2.3 times faster)

Rosa Cray XT5 system. The latter shows better performance for the communication, and thus better
scalability. However, in terms of absolute performance per compute core (“time-to-solution”), the
former is 2 times faster. This is mainly related to better performance of the linear algebra libraries
(Intel MKL compared to Istanbul linear algebra) and of the processor. These benchmarks are taken
for a run of the BigDFT code with the same input files (a relatively small benchmark system of 128
atoms of ZnO), starting form the same sources. It is worth pointing out that, in this case, Figure 6.5
shows that parallel efficiency is not always a useful parameter to evaluate the performance of a code.

6.4 GPU Architecture

An overview of GPU architecture and introduction to GPU programming is provided in the first two
chapters of this book. As explained in those chapters, GPUs are quite different from CPUs in many
aspects, and understanding the peculiarities of their architecture is essential to write efficient GPU
code. Here we first reiterate a few central points that are important to keep in mind before explain-
ing details of the algorithms that are used to accelerate DFT calculations with wavelets basis using
GPUs and analyzing the performance of the code in comparison to the CPU-based MPI/OpenMP
implementation.

The first particularity of GPUs is that they are coprocessors controlled exclusively by a CPU. GPUs
cannot be used alone and must have a CPU associated with them, thus forming a so-called hybrid
architecture. GPUs can only access data that lie in their dedicated memory.1 Data must be explicitly
copied by the programmer between CPU memory and GPU memory. The GPU and the CPU are
typically connected through the PCI-express link, which has a relatively small bandwidth and high
latency.

In a GPU, execution units are organized into groups that form a multiprocessor. All the execution
units in a multiprocessor share a control unit, so they perform the same instruction at the same time. To
exploit the highly parallel nature of the processors, GPU programs use fine-grained threads or tasks.
These are quite different from CPU threads, which are typically used when programming in parallel
environments like OpenMP. In a GPU, the strategy is to have many more threads than execution units

1 However, the specifications are continuously evolving and configurations with common memory may become a standard in the
near future.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 125�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 125

while assigning each thread a very small amount of work. As the GPU can switch threads without
cost, it can hide the latency of the operations of one thread by processing other threads while waiting.

Memory access is also particular in GPUs. CPUs only have one type of memory and rely on
caches to speed up the access to it. GPUs do not always have a cache, but instead they have a fast
local memory shared by all the execution units in a multiprocessor. This local or private memory
must be explicitly used by the programmer to store data that needs to be accessed frequently. Main
memory access also needs to be done carefully. The memory bandwidth is higher than for a CPU,
but latency is also higher. Moreover, to obtain maximum memory transfer rates, the execution units
in a multiprocessor must access sequential memory locations.

In summary, the following rules of thumb need to be followed when developing a GPU
implementation:

• Because of the high latency of the communication, the programmer should try to limit the data
transfer between CPU and GPU as much as possible.

• The calculation workload should be parallelized in many little chunks, which perform the same
operations on different data.

• Data locality is of great importance to achieve good performance, since different multiprocessors
have different local memories.

• Memory access patterns should be as regular and homogeneous as possible.

6.4.1 GPU Implementation Using the OpenCL Language

A major issue concerning GPU programming is that the programming paradigms are sensitive to
different architectures. In other words, a code should be reprogrammed to run on a different GPU. Dif-
ferent vendors provide programming languages suitable to their specific architecture, and the CUDA
architecture and programming language of Nvidia [18] is undoubtedly the most advanced in terms
of functionality and maturity.

We initially developed our GPU acceleration with CUDA [19]. However, when the OpenCL spec-
ification was released, we ported our code to this language. At the time of writing, the OpenCL
BigDFT code is better optimized and complete than the older CUDA version.

OpenCL is an open standard defined by the Khronos Group [20]. It is aimed at cross-platform par-
allel computing, and GPUs are among the several types of devices defined by the OpenCL standard.
The GPU device in OpenCL consists of several address spaces and a set of multiprocessors. OpenCL
is aimed at data-parallel tasks and describes the work to be performed in terms of work groups that
are composed of work items. When executing an OpenCL function (termed kernel), work items exe-
cute the same code. The difference between work items from different work groups is the visibility
of the address spaces. The four address spaces are global, local, private, and constant. Each of these
address spaces corresponds to a specific usage and has distinct characteristics. The global address
space is shared among every work group. This address space is usually large, as it corresponds to
the device on-board RAM. Accessing this address space is expensive, as latency is high, and should
be done linearly rather than randomly as contiguous accesses can be coalesced into a single access.
Synchronization using global memory can be achieved through the use of atomic operations but is
expensive and should be avoided. The local address space is shared among all work items of a work
group. Local memory is very fast (compared to global), and is organized in banks. Read and writes
to local memory are simultaneous as long as they access different memory banks. Read operations
are also simultaneous if work items read from the same address. Multiprocessors have only a small
amount of shared memory, so it should be used wisely. Access to private memory is restricted to one
work item, and is used for local variables and parameters. Constant memory is visible by all work
groups, and is optimized for simultaneous reading from all work items. Content of constant memory
cannot be modified after initialization.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 126�

� �

�

126 Electronic Structure Calculations on Graphics Processing Units

It must be pointed out that, while OpenCL code can be executed without changes on different
platforms (a GPU, a CPU, or other OpenCL supported device), this does not necessarily mean that
the code optimized for one platform will run efficiently on other platforms. However, the appeal
of a multiplatform language is evident: as OpenCL kernels are compiled on board and at runtime,
the application has the freedom to choose the optimal kernel implementation that is available. This
means that a single executable is able to be executed in parallel environments in which the machines
contain different accelerators. As an example, we have executed a test run with BigDFT on two Intel
Nehalem quad-core machines with one GPU each, one Nvidia Fermi and one ATI Radeon HD 2600
XT. Performance results are summarized in Table 6.1. The code runs as expected, exploiting both
MPI parallelism and acceleration by the GPUs according to the particular behavior of the archi-
tecture. Clearly, different architectures have different features, and the compute kernels should be
optimized in a different way for each. For the time being, the Nvidia optimized kernels are used in
BigDFT, even for the ATI runs. However, since OpenCL kernels are compiled at runtime, some typ-
ical parameters can be extracted before generating the OpenCL binaries. This includes parameters
such as the maximum number of threads per kernel execution (CUDA blocks), which are extracted
at compilation time. The code execution thus becomes really heterogeneous, that is, each machine
has at the end a different binary code.

6.4.2 Implementation Details of the Convolution Kernel

Since the convolution filters are separable, it can be shown that all the fundamental BigDFT convo-
lutions can be brought to the following 1D kernel:

Kp(I, a) =
∑

j

fjGp−1(a, I − j) + 𝛼Kp−1(a, I) ∀a, I , (6.20)

possibly combined with a data transposition Gp(I, a) = Gp−1(a, I). The filter fj and the coefficient 𝛼
are equal to Tj and 1 for the kinetic operator and 𝜔j and 0 for the magic filter, respectively.

From the GPU parallelism point of view, there is a set of N independent convolutions to be
computed. Each of the lines of n elements to be transformed is split in chunks of size Ne. Each
multiprocessor of the graphic card computes a group of N𝓁 different chunks and parallelizes the cal-
culation on its computing units. The upper panel of Figure 6.6 shows the data distribution on the grid
of blocks during the transposition. Input data (upper left panel) are ordered along the N-axis, while
output (upper right panel) is ordered in n-axis direction, see Eq. (6.20). When executing the GPU con-
volution kernel, each block (i, j) of the execution grid is associated with a set of N𝓁 (N-axis) times Ne

(n-axis) elements. The size of the data feed to each block is identical (so as to avoid block-dependent
treatment); hence when N and n are not multiples of N𝓁 and Ne, some data treated by different blocks
may overlap. This is indicated by the filled patterns in the figure. The light gray filling behind the
block with the label (i, j) indicates the portion of data that needs to be copied to the shared memory
for treating the data in this block.

The lower panel shows the data arrangement in shared memory for a given block. The number
of lines N𝓁 is chosen to be a divisor of the half-warp size. Data are then treated in units of the

Table 6.1 Parallel run of BigDFT on a hybrid heterogeneous architecture

MPI + 1 1 + 4 + 1 + 4 + 4 + 4 +
Nvidia (NV)/ATI NV NV ATI ATI NV + ATI
Execution time (s) 6200 300 160 347 197 109
Speedup 1 20.7 38.8 17.9 31.5 56.9

Two quad-core Intel Nehalem nodes are connected to two different GPU cards, one ATI and one Nvidia.
The system is a four-carbon atom surface supercell with 52 k-points

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 127�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 127

N

Ne

Ne

n

(0, 0) (0, 1)

(0, 0)

(0, 1)

(1, 0)

INPUT

DATA COPY

warpSize/2

(*, 0)

(*, Nt– 1)

(*, Nt– 1)

(*, 0)

(*, 1)

CALC

(1, 0) (i, j)

L

Ne

U

Ne

OUTPUT

Figure 6.6 Upper panel: Data distribution for 1D convolution+transposition on the GPU. See Section
6.4.2 for details. Lower panel: Reproduction of the portion of the input data highlighted in gray in the
upper panel

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 128�

� �

�

128 Electronic Structure Calculations on Graphics Processing Units

warpSize, which is the number of threads that can be executed simultaneously (in CUDA termi-
nology). The thread index has (warpSize/2,Nt) elements, with Nt ≤ 16 (left panel). Each group
of threads (∗, i) of the half-warp i treats a definite number of elements, either for copying the data
(center panel) or for performing the calculation (right panel). This data arrangement ensures that bank
conflicts during shared memory access are avoided. For calculating the convolution, two buffers of
sizes N𝓁L and N𝓁U must be created in shared memory.

In order to achieve the best performance with the GPU, it is strongly recommended to transfer
data from the global to the shared memory of the multiprocessors. The shared memory must contain
buffers to store the data needed for the convolution computations. The desired boundary conditions
(periodic in our case) are implemented in shared memory during the data transfer. Each thread com-
putes the convolution for a subset of Ne elements associated with the block. This data distribution is
illustrated in Figure 6.6.

6.4.3 Performance of the GPU Convolution Routines

We have evaluated the performance of the GPU port of the 1D convolutions needed for the wavelet
implementation of the local Hamiltonian operators and their 3D counterpart. For these evaluations,
we used a computer with an Intel Xeon Processor X5472 (3 GHz) and a Nvidia Tesla S1070 card. The
CPU version of BigDFT is highly optimized with optimal loop-unrolling and compiler options. The
CPU code is compiled with the Intel Fortran Compiler (10.1.011) and the most aggressive compiler
options (-O2 -xT). With these options, the magic filter convolutions run at about 3.4 GFLOPS, simi-
lar to what we have shown above. All benchmarks are performed with double-precision floating-point
numbers.

The GPU versions of the 1D convolutions are 1–2 orders of magnitude faster than their CPU
counterparts. We can then achieve an effective performance rate of the GPU convolutions of about
40 GFLOPS, by also considering the data transfers in the card. We are not close to peak performance
since, on GPU, due to transpositions, a considerable fraction of time is still spent in data transfers
rather than in calculations. This happens because data should be transposed between the input and
the output array, and the arithmetic needed to perform convolutions is not heavy enough to hide
the latency of all the memory transfers. However, we will later show that these results are really
satisfactory for our purposes.

The performance graphs for the above-mentioned convolutions, together with the compression–
decompression operator, are presented in Figure 6.7 as a function of the size of the corresponding
3D array. In addition, all required linear algebra operations can be executed on the GPU thanks to
the CUBLAS routines or dedicated OpenCL kernels.

To build a three-dimensional operation, one must chain the corresponding one-dimensional GPU
kernels 3 times. In this way, we obtain the three-dimensional wavelet transformations as well as the
kinetic operator and the magic filter transformation (direct and transposed). The GPU speedup of
the local density construction as well as the application of the local Hamiltonian and of the pre-
conditioning operation is shown on the right in Figure 6.7 as a function of the compressed wave
function size.

6.4.4 Three-Dimensional Operators, Complete BigDFT Code

Let us now examine the overall performance of the code. In Figure 6.8 we present an optimal case
for GPU acceleration. For this example, most of the operations can be GPU-accelerated. The overall
speedup of the full code due to GPUs is of about one order of magnitude and scaling with MPI
processes is good, making it possible to achieve a speedup of two orders of magnitude using multiple
nodes as compared to a single node run. This is really encouraging for challenging simulations on
bigger hybrid machines.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 129�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 129

K
in

e
tic

M
a
g
icfilte

r_
re

ve
rse

M
a
g
icfilte

r

M
a
g
icfilte

r_
g
ro

w

M
a
g
icfilte

r_
sh

rin
k

K
in

e
tic_

k

A
n
a
lysis

S
yn

th
e
sis

S
yn

th
e
sis_

g
ro

w

A
n
a
lysis_

sh
rin

k

U
n
co

m
p
re

ss

C
o
m

p
re

ss

Kernels

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

G
P

U
 s

p
e

e
d

u
p

 (
D

o
u

b
le

-p
re

c
is

io
n

)

Wave function size (MB)

Locden
Locham
Precond

0

10

20

30

40

50

60

70
R

a
ti
o

 t
o

 C
P

U
Performances of CPU versus Nvidia versus AMD

CPU
Nvidia

AMD

Figure 6.7 Left panel: Speedup for the GPU version of the fundamental operations on the wave functions.
Right panel: Double-precision speedup for the GPU version of the 3D operators used in the BigDFT code
as a function of the single wave function size

In Figure 6.9, simulations of different sizes have been run under different conditions. In particular,
what has been tested is the response of the code in the case of an under-dimensioned calculation,
where the amount of communication is of the same order as the computation. This may happen if the
simulated system is too small, or if the ratio between the runtime GFLOPS of the computations and
the cross-sectional bandwidth of the network is high.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 130�

� �

�

130 Electronic Structure Calculations on Graphics Processing Units

(a)

(b)

0

20

40

60

80

100

0 20 40 60 80 100

S
p

e
e

d
u

p

Number of MPI proc

Ideal
CPU+MPI
GPU

GPU added 2 4 8

Speedup (SU) 5.3 9.8 11.6

MPI equiv. 44 80 96

Acceler. Eff. 1 .94 .56

P
e

rc
e

n
t

0

10

20

30

40

50

60

70

80

90

100

1
6

-T
-C

P
U

1
2

8
-T

-C
P

U

1
6

-T
-G

P
U

1
2

8
-T

-G
P

U

1
6

-K
-C

P
U

1
2

8
-K

-C
P

U

1
6

-K
-G

P
U

1
2

0
-K

-G
P

U

1
2

8
-K

-G
P

U
R

ic
h

S
p

e
e

d
u

p

MPI proc–Machine–Acceleration

Comms
LinAlg
Conv

Potential
Other
Speedup

C 4 atoms, 164 K points, Todi versus keeneland

(GPU accelerated)

20

40

60

80

100

120

Figure 6.8 (a) Speedup of the BigDFT code for a four-carbon-atom supercell (graphene) with 164
K-points. The calculation is performed with eight MPI processes on the CEA-DAM INTI machine, based
on Westmere processors and Nvidia Fermi. For each run, the number of equivalent MPI processes is indi-
cated, given that the parallel efficiency of this run is 98%. Also, the efficiency of the GPU acceleration is
presented.(b) Speedup of the same run on different hybrid architectures in combination with MPI runs

0

20

40

60

80

100

1 2 4 6 8 10 12 14 16 1 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

P
e
rc

e
n
t

S
p
e
e
d
u
p

Number of atoms

IBLIS, ZnO systems, 8 atoms per process

Comms
LinAlg
Conv

CPU
Other
Speedup

Hybrid code (rel.)CPU code

Figure 6.9 Relative speedup of the hybrid DFT code with respect to the equivalent pure CPU run.
Different runs for simulations of increasing system size have been performed on an Intel X5472 3 GHz
(Harpertown) machine, with a Fermi GPU card

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 131�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 131

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 2048 4096 8192

20

40

60

80

100

120

P
e
rc

e
n
t

S
p
e
e
d
u
p

Number of cores

Run analysis, strong scaling

0

10

20

30

40

50

60

70

80

90

100

8–8 16–8 32–8 64–8 256–8

5

10

15

20

25

30

P
e
rc

e
n
t

S
p
e
e
d
u
p

Number of MPI tasks–OMP threads

Todi CSCS, CPU only

0

10

20

30

40

50

60

70

80

90

100

256–0 256–32 512–0 512–64

2

4

6

8

10

12

14

16

18

20

P
e
rc

e
n
t

S
p
e
e
d
u
p

Number of Cores–Number of GPU

CSCS Todi, benefit of GPU usage

Comms
LinAlg
Conv

Potential
Other
Speedup

Efficiency (%)

Comms
LinAlg
Conv

Potential
Other
Speedup

Efficiency (%)

Comms
LinAlg
Conv

Potential
Other
Speedup

0

10

20

30

40

50

60

70

80

90

100

6
4
–
0

1
2
8
–
0

2
5
6
–
0

2
5
6
–
3
2

5
1
2
–
0

5
1
2
–
3
2

1
0
2
4
–
1
2
8

2
0
4
8
–
0

20

40

60

80

100

120

P
e
rc

e
n
t

S
p
e
e
d
u
p

Number of Cores–Number of GPU

Todi CSCS, resources usage

Comms
LinAlg
Conv

Potential
Other
Speedup

Figure 6.10 Massively parallel runs for a cobalt metalloporphyrin on graphene sheet (265 atoms system)
with surfaces BC. In the bottom panel, the simulations have been accelerated with Kepler GPU cards.
Interesting speedups can be achieved

Another interesting benchmark for a cobalt metalloporphyrin on a graphene surface, with and
without GPU acceleration, is presented in Figure 6.10. In any case, the code appears to have a robust
behavior even under nonoptimal conditions for the GPU acceleration. This is interesting because, for
a basic usage, the end user is not required to understand in depth the optimal dimensioning of the
simulated system for a given architecture.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 132�

� �

�

132 Electronic Structure Calculations on Graphics Processing Units

6.4.5 Other GPU Accelerations

At present, our code accelerates not only the convolutions. We have already anticipated that BigDFT
linear algebra operations can be ported to GPUs either explicitly (via OpenCL) or by using the
CUBLAS library. In addition, the fast Fourier transforms (FFTs) used for the Poisson solver have
recently been accelerated by a dedicated kernel based on the CuFFT library [15]. This is of great
importance for advanced features such as the evaluation of the exact exchange operator. Strategies of
automatic code generation at runtime for OpenCL FFTs are under investigation.

6.5 Conclusions and Outlook

DFT calculations using a wavelet basis set have been implemented for CPU and hybrid GPU/CPU
systems in the BigDFT code, which is routinely used for production runs with applications in both
physical and chemical sciences. In Table 6.2 we present the advantages of accelerating the BigDFT
code in a multilevel parallelization framework, by giving the number of steps (and thus timescales)
that are accessible in one day for an ab initio molecular dynamics simulations of 32 water molecules.
Exploiting the power of GPUs on top of MPI and OpenMP parallelization significantly extends the
accessible timescales.

As presented in this chapter, the numerical operations required for DFT calculations with wavelet
basis sets are well suited for GPU acceleration. Indeed, on one hand the computational nature of
3D separable convolutions allows us to write efficient routines that benefit from the computational
power of GPUs. On the other, the parallelization scheme of the BigDFT code is optimal in this sense:
GPUs can be used without affecting the nature of the communications between the different MPI
processes. This is in the same spirit of the multilevel MPI/OpenMP parallelization. Porting criti-
cal code sections to GPUs has been achieved within Kronos’ OpenCL standard, which allows for
multi-architecture acceleration. We therefore have at hand a multilevel parallelized code, combin-
ing MPI, OpenMP, OpenCL, and CUDA (the latter used for the FFT and linear algebra), which can
work on state-of-the-art hybrid supercomputers. Thanks to the use of OpenCL, even heterogeneous
architectures with different types of GPU accelerators can be exploited.

6.5.1 Evaluation of Performance Benefits for Complex Codes

Based upon our experience, we can express some general guidelines that should be of interest to
someone who might want to use GPUs for scientific computing. For a code with the complexity of
BigDFT, the evaluation of the benefits of using a GPU-accelerated code must be performed at three
different levels.

Initially, one has to evaluate the effective speedup provided by the GPU kernels with respect to the
corresponding CPU routines that perform the same operations. This is the “bare” speedup, which, of
course, for a given implementation depends of the computational power provided by the device. It

Table 6.2 Effect of MPI and OpenMP (OMP) parallelization and GPU acceleration on the complete
molecular dynamics of 32 H2O molecules

MPI*OMP + GPU 1*1 32*1 64*1 128*1 32*6 128*6 128*1 + 128

SCF iteration (s) 170 7.2 3.8 2.0 1.5 .44 .30
Force evaluation (s) 2,210 93.6 49.4 26.0 19.5 5.72 3.92
AIMD steps/day 40 923 1,749 3,323 4,430 15,104 22,040
MD ps/day 0.02 0.461 0.874 1.661 2.215 7.552 11.02

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 133�

� �

�

Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures 133

has to be kept in mind that vendors who do not know about the details of the full code are able to
provide only bare speedups. For BigDFT, such results can be found in Figure 6.7.

At the second level, the “complete” speedup has to be evaluated; the performance of the complete
hybrid CPU/GPU code should be analyzed with respect to execution on the reference CPU imple-
mentation. Clearly, this depends on the actual importance of the ported routines in the context of the
whole code (i.e., following Amdahl’s Law). This is the first reliable result of the actual performance
enhancement of the GPU porting of the code. For a hybrid code that originates from a serial CPU
program, this is the last level of evaluation.

However, for a parallel code, there is still another step that has to be evaluated. This is the behavior
of the hybrid code in a parallel (or massively parallel) environment. Indeed, for parallel runs the
picture is complicated by two aspects. The first is the management of the extra level of communication
that is introduced by the PCI-express bus, which may interact negatively with the underlying code
communication scheduling (MPI or OpenMP, for example). The second is the behavior of the code
for a number of GPU devices, which is lower than the number of CPU processes that are running.
In this case, the GPU resource is not homogeneously distributed and the management of this fact
adds an extra level of complexity. The evaluation of the code at this stage yields the “user-level”
speedup, which is the actual time-to-solution speedup, and thus the only speedup that is of relevance
for practical purposes.

We believe these rules of thumb will be be useful for any developer of complex codes like the ones
typically used in scientific computing nowadays.

References

1. Kohn, W. and Sham, L. (1965) Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140, A1133–A1138.

2. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A. et al. (2008)
Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem.
Phys., 129 (1), 014109.

3. Yang, J., Wang, Y. and Chen, Y. (2007) {GPU} accelerated molecular dynamics simulation of
thermal conductivities. J. Comput. Phys., 221 (2), 799–804.

4. Anderson, A.G., Goddard, W.A. III and Schröder, P. (2007) Quantum Monte Carlo on graphical
processing units. Comput. Phys. Commun., 177 (3), 298–306.

5. Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S.H.M., Grajewski, M.
et al. (2007) Exploring weak scalability for {FEM} calculations on a GPU-enhanced cluster.
Parallel Comput., 33 (10–11), 685–699.

6. Goedecker, S. (1998) Wavelets and their Application for the Solution of Partial Differential
Equations in Physics, Presses Polytechniques Universitaires et Romandes, Lausanne.

7. Neelov, A.I. and Goedecker, S. (2006) An efficient numerical quadrature for the calculation of
the potential energy of wavefunctions expressed in the Daubechies wavelet basis. J. Comput.
Phys., 217 (2), 312–339.

8. Johnson, B.R., Modisette, J.P., Nordlander, P.J. and Kinsey, J.L. (1999) Quadrature integration
for orthogonal wavelet systems. J. Chem. Phys., 110 (17), 8309–8317.

9. Goedecker, S., Teter, M. and Hutter, J. (1996) Separable dual-space Gaussian pseudopotentials.
Phys. Rev. B, 54, 1703–1710.

10. Hartwigsen, C., Goedecker, S. and Hutter, J. (1998) Relativistic separable dual-space Gaussian
pseudopotentials from H to Rn. Phys. Rev. B., 58, 3641–3662.

11. Krack, M. (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-
correlation functionals. Theor. Chem. Acc., 114 (1–3), 145–152.

Trim Size: 170mm x 244mm Walker c06.tex V3 - 01/09/2016 10:25 A.M. Page 134�

� �

�

134 Electronic Structure Calculations on Graphics Processing Units

12. Deslauriers, G. and Dubuc, S. (1989) Symmetric iterative interpolation processes. Constr.
Approx., 5 (1), 49–68.

13. Genovese, L., Deutsch, T., Neelov, A., Goedecker, S. and Beylkin, G. (2006) Efficient solution
of Poisson’s equation with free boundary conditions. J. Chem. Phys., 125 (7), 074105.

14. Genovese, L., Deutsch, T. and Goedecker, S. (2007) Efficient and accurate three-dimensional
Poisson solver for surface problems. J. Chem. Phys., 127 (5), 054704.

15. Dugan, N., Genovese, L. and Goedecker, S. (2013) A customized 3D {GPU} Poisson solver for
free boundary conditions. Comput. Phys. Commun., 184 (8), 1815–1820.

16. Goedecker, S. and Hoisie, A. (2001) Performance Optimization of Numerically Intensive Codes,
SIAM Publishing Company, Philadelphia, PA.

17. Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S. and Méhaut, J.F. (2011)
Daubechies wavelets for high performance electronic structure calculations: the BigDFT
project. C. R. Mécanique., 339 (2–3), 149–164.

18. Nvidia CUDA Programming Guide, http://www.nvidia.com/object/cuda_home.html
(accessed 18 September 2015).

19. Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.F., Neelov, A. and Goedecker, S. (2009) Density
functional theory calculation on many-cores hybrid central processing unit-graphic processing
unit architectures. J. Chem. Phys., 131 (3), 034103.

20. Khronos Group (2009) The OpenCL Standard, http://www.khronos.org/opencl/
(accessed 18 September 2015).

http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 135�

� �

�

7
Plane-Wave Density Functional

Theory

Maxwell Hutchinson1, Paul Fleurat-Lessard2,3, Ani Anciaux-Sedrakian4, Dusan Stosic 5,
Jeroen Bédorf 6 and Sarah Tariq7

1Department of Physics, University of Chicago, Chicago, IL, USA
2Laboratoire de Chimie, Université de Lyon, ENS Lyon, Lyon, France

3ICMUB, Université de Bourgogne Franche-Comté, Dijon, France
4Mechatronics, Computer Sciences and Applied Mathematics Division, IFP Energies

nouvelles, Rueil-Malmaison Cedex, France
5Department of Computer Science, Federal University of Pernambuco, Recife, Brazil

6Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
7NVIDIA Corporation, Santa Clara, CA, USA

In this chapter, we describe how density functional theory (DFT) calculations with plane-wave (PW)
basis sets can be accelerated using GPUs. We review the steps that are required to obtain the elec-
tronic structure of condensed-phase systems using a plane-wave basis set both for standard, explicit
density functionals and hybrid functionals with exact exchange. We then discuss the numerical imple-
mentation of the different energy components as well as ionic forces and stress tensors with an eye
towards GPU and more general coprocessor architectures. Specific optimizations for GPUs suitable
for hybrid multicore and multi-GPU platforms are discussed along with code samples. Benchmarks
for typical simulation setups for energy, band structure, ab initio molecular dynamics and structure
relaxations demonstrate the performance improvements that can be achieved with GPUs.

7.1 Introduction

DFT [1, 2] is one of the most widely used techniques for computing the electronic structure in physics
[3] and chemistry, [4–7] and in particular of condensed matter systems. DFT implementations are
realized on a variety of bases [3], which can be broadly categorized as orbital-like or grid-like. Orbital

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 136�

� �

�

136 Electronic Structure Calculations on Graphics Processing Units

bases, most commonly linear combinations of atomic orbitals (LCAO) [8], attempt to concisely
represent the Hilbert space using physically motivated, atom-centered monoelectronic functions, for
example, model solutions of the Schrödinger equation. Their primary advantages are their small
size and sparse overlap, which facilitate the development of low-order methods. However, they run
the risk of poorly representing unexpected processes in regions not covered by model solutions [9].
Grid bases, either in real or reciprocal space, systematically resolve the Hilbert space. Their primary
advantage is uniform convergence. However, they are much larger than orbital bases and are often
nonlocal. If the primary representation of wavefunctions is on a reciprocal grid, then the basis is
referred to as planewave (PW).

Plane-wave density functional theory (PWDFT) is one of the most popular schemes for performing
electronic structure calculations of condensed matter systems. In PWDFT, the kinetic energy operator
is expressed as a diagonal matrix in plane-wave space (g-space), while the local potential is expressed
as a diagonal matrix in real space (r-space). In most cases, pseudopotentials are used to smooth the
wavefunctions near atom centers, reducing the required number of planewaves (g-vectors) at the cost
of a low-rank nonlocal potential.

The combined r-space and g-space representation of the Hamiltonian necessitates the use of
matrix-free eigensolvers that rely on the action of the Hamiltonian on a vector |𝜙⟩, H|𝜙⟩, rather
than the elements of the Hamiltonian, ⟨r1|H|r2⟩ or ⟨g1|H|g2⟩. In computing the action on a vector
|𝜙⟩, fast Fourier transforms (FFTs) are used to switch between r-space, ⟨r|𝜙⟩, and g-space, ⟨g|𝜙⟩,
representations of the vector |𝜙⟩. The nonlocal potential is defined on subspaces that, in realspace, do
not grow with the overall system size. This makes the action of the Hamiltonian formally O(n log n),
instead of O(n2) as for a general matrix. This is the key feature of the PWDFT method.

Implementations of PWDFT can be further categorized by the type or types of pseudopotentials
that they employ. Modern pseudopotentials come in three popular varieties: norm-conserving pseu-
dopotentials (NCPP) [10], ultra-soft pseudopotentials (USPP) [11, 12], and projector-augmented
wave (PAW) [13]. NCPPs only add a dense low-rank term to the Hamiltonian, making them the
simplest. USPPs significantly reduce the grid resolution necessary to converge the electron density,
but require the introduction of a nontrivial overlap matrix, which generalizes the eigenproblem and
adds charge density dependence to the nonlocal potential. PAW is a generalization of USPP to arbi-
trary projector forms, but is very similar in practice and provides only modest improvements to the
rate of grid convergence.

There are many implementations of PWDFT, including Quantum Espresso [14], VASP [15],
CASTEP [16, 17], and Qbox [18, 19]. This chapter will draw examples from the GPU ports
of VASP.

7.2 Theoretical Background

7.2.1 Self-Consistent Field

Kohn–Sham DFT is fundamentally an eigenproblem: Ĥ𝜓 = 𝜖𝜓 , where Ĥ is the Hamiltonian opera-
tor, 𝜓 is a single-particle wavefunction, and 𝜖 is the energy eigenvalue of 𝜓 . In the pseudopotential
framework, the Hamiltonian takes the form

Ĥ = T̂ + V̂ loc + V̂nl, (7.1)

where T̂ = − 1

2
∇2 is the kinetic energy operator, V̂nl is the nonlocal potential, and V̂ loc is the local

potential due to both ion–electron and electron–electron interactions.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 137�

� �

�

Plane-Wave Density Functional Theory 137

Bloch’s theorem decomposes the wavefunctions as

unk =
1√
Ω

∑
j

cjnkeigj⋅r, 𝜓nk = eik⋅runk =
1√
Ω

∑
j

cjnkei(k+gj)⋅r, (7.2)

where n is an index to order the wavefunctions, the vector k is a Brillouin zone (BZ) sample or
k-point, g is a g-vector of a planewave, and Ω is the volume of the unit cell. For clarity’s sake, the
normalization factor Ω−1 will be omitted in the following. Using this decomposition, the Hamiltonian
is diagonal with respect to the k-point. The k-dependent Hamiltonian is defined as a function of the
k-block of the full Hamiltonian:

Ĥ(k) = e−ik⋅rĤeik⋅r, (7.3)

which converts the eigenproblem into:

Ĥ(k)unk = 𝜖nkunk ⋅ (7.4)

Writing in the bases reveals the k-point dependence:

H(k) = |g⟩T(k)⟨g| + e−ik⋅r|r⟩V loc⟨r|eik⋅r + e−ik⋅r|𝛽′⟩Vnl⟨𝛽|eik⋅r (7.5)

where H(k) is a representation of the operator Ĥ(k), g runs over the plane-wave basis, r runs
over the real-space basis, and 𝛽, 𝛽′ run over the pseudopotential projectors. The k-dependence of
the local potential cancels. The k-dependence of the kinetic energy has a simple analytic form. The
k-dependence of the nonlocal potential is wrapped into the projectors as 𝛽(k). This results in the
expression for the k-dependent Hamiltonian:

H(k) =
||||g
⟩1

2
|g + k|2

⟨
g
|||| + |r⟩V loc⟨r| + |𝛽′(k)⟩Vnl⟨𝛽(k)|. (7.6)

The local potential is a functional, V loc[𝜌(r)], of the electron density:

𝜌(r) ≡ ⟨r|𝜌|r⟩ = ∑
nk

fnk⟨r|unk⟩⟨unk|r⟩ (7.7)

where fnk ≡ fnk[𝜖], the occupancy, is a function of the entire eigenvalue spectrum 𝜖nk. Therefore, the
electron density depends explicitly on all unk and 𝜖nk. The occupancy is a decreasing function in n,
which is nonzero for only the order ne lowest eigenpairs, where ne is the number of electrons. The
functionals used to produce the local and nonlocal potentials contain nonlinear terms. The applica-
tion of the functionals themselves is generally not performance-critical, so they will not be further
described here.

Explicitly including the dependence on dynamical variables yields

(|g + k|2 + V loc[𝜌[u, 𝜖]] + Vnl)|unk⟩ = 𝜖nk|unk⟩. (7.8)

To resolve the cyclic dependence on the eigenpairs (u, 𝜖), a self-consistent technique is employed:
the calculation begins with a guess of the electron density 𝜌, produces the resulting Hamiltonian,
diagonalizes that Hamiltonian, and uses the resulting wavefunctions and energies to refine the density.
This back and forth operation between diagonalizing the Hamiltonian and producing a better estimate
of the density continues until the electron density converges. Because there are decaying errors in
the density from iteration to iteration, the diagonalization at each step need not be complete. This
motivates the use of an iterative diagonalization scheme.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 138�

� �

�

138 Electronic Structure Calculations on Graphics Processing Units

7.2.2 Ultrasoft Pseudopotentials

In order to reduce the number of plane waves, actual calculations resort to pseudopotentials: close to
each ion, the exact wavefunction is replaced by pseudo-wavefunctions centered on the ion.

The radial part of the pseudo-wavefuntions is nodeless. These pseudo-wavefunction are localized
in r-space and will be denoted by {|𝜃i⟩}. Projection on these pseudo-wavefunctions are denoted by
{⟨𝛽i|}, which are the dual vectors of {|𝜃i⟩}. The 𝛽i functions of each type of atom are defined with
respect to the displacement from an atomic center and vanish outside of a core region:

𝛽i(r) = 𝛽(r − Ri), 𝛽(r > rc) = 0,

where Ri is the position of the ion that 𝛽i is centered around and rc is the cut-off radius.
With USPPs, the tensor Q connects diagonal real-space 2-tensors, such as the density 𝜌, to pairs

of projectors [20]:

⟨𝜓|r⟩⟨r|𝜓 ′⟩ → ∑
r′
⟨𝜓|r′⟩

(⟨
r′|r⟩ ⟨r|r′⟩ +∑

i,j

⟨r′|𝛽i⟩Qi,j(r)⟨𝛽j|r′⟩
)
⟨r′|𝜓 ′⟩, (7.9)

where 𝜓,𝜓 ′ are arbitrary vectors. Integrating over r yields an overlap matrix

S = I +
∑

i,j

|𝛽i⟩Qi,j⟨𝛽j|, (7.10)

which defines the inner product ⟨𝜙|𝜓⟩ → ⟨𝜙|S|𝜓⟩, where Qi,j =
∑

rQi,j(r). The eigenproblem is
therefore generalized to

H(k)|unk⟩ = 𝜖nkS|unk⟩. (7.11)

The change in inner product leads to an additional term in the charge density:

⟨r|𝜌|r⟩ = ∑
n,k

fnk

(⟨
r|unk

⟩ ⟨unk|r⟩ +
∑

i,j

⟨unk|𝛽i⟩Qi,j(r)⟨𝛽j|unk⟩
)

(7.12)

It also leads to the density-dependent nonlocal potential Vnl[𝜌[u, 𝜖]], which adds to the cyclic depen-
dence of Eq. (7.8). In the USPP scheme, Vnl is

Vnl =
∑

i,j

|𝛽i⟩Di,j[𝜌]⟨𝛽j|, (7.13)

where the matrix Di,j depends on the density 𝜌.
The rest of this chapter operates with the generality of USPP. The NCPP expressions are recov-

ered by letting Q → 0, which implies S → I and reduces the generalized eigenvalue problem to a
standard one.

7.2.3 Projector Augmented Wave (PAW) Method

The PAW scheme [13] is a generalization of the USPP scheme [12] introduced in Section 7.2.2.
In the PAW scheme, the wavefunction is related to smooth pseudo-wavefunctions by a linear
transformation [13]:

|𝜓⟩ = |𝜓̃⟩ +∑
i

(|𝜙i⟩ − |𝜙̃i⟩)⟨p̃i|𝜓̃⟩, (7.14)

where the 𝜙 are generally taken to be solutions to the radial Schrödinger equation for an isolated
atom and tildes mark pseudo-quantities. Computationally, and USPP take very similar forms. The
relationship between the two is discussed more formally in the literature [12]. Here, we maintain
consistency with the notation used for USPPs by letting p̃ ≡ 𝛽.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 139�

� �

�

Plane-Wave Density Functional Theory 139

7.2.4 Force and Stress

Forces are computed by differentiating the total energy function with respect to ionic positions:

F𝜇
a = −𝜕E[𝜌]

𝜕R𝜇a
, (7.15)

where 𝜇 indexes the spatial components and a indexes the atomic centers.
The total energy is equal to the sum of the electronic energy from the Hamiltonian in Eq. (7.1) and

the electrostatic energy due to the ions. This last term will be denoted by U{RI}:

Etot({f }, {u}, {RI}) =
1

Nk

∑
n,k

fnk⟨unk|T + Vnl|unk⟩ + 1
2 ∫ ∫

dr dr′
𝜌(r)𝜌(r′)
|r − r′|

+ Exc[𝜌] + ∫
dr V loc

ion(r)𝜌(r) + U{RI}, (7.16)

where the local potential is separated into its electron–electron Coulombic (Hartree), electron–
electron exchange–correlation, and electron–ion Coulombic contributions. Let us introduce Veff(r),
Dion

i,j , and the onsite density 𝜌i,j:

Veff(r) =
𝜕Etot

𝜕𝜌
= V loc

ion(r) + ∫
dr′

𝜌(r′)
|r − r′| +

𝜕Exc[𝜌]
𝜕𝜌

, (7.17)

Dion
i,j = Di,j + ∫

dr Veff(r)Qi,j(r), (7.18)

𝜌i,j =
∑
n,k

fnk⟨unk|𝛽i⟩⟨𝛽j|unk⟩. (7.19)

Using these definitions, the total energy can be written as

Etot({ f }, {u}, {RI}) =
1

Nk

∑
n,k

fnk⟨unk|T|unk⟩

+
∫

dr Veff (r)𝜌(r) +
1

Nk

∑
i,j

Di,j𝜌i,j + U{RI}. (7.20)

leading to the following expression for the forces:

F𝜇
a = −

𝜕U{RI}
𝜕R𝜇a

−
∫

dr
𝜕V loc

ion(r)
𝜕R𝜇a

𝜌(r)

−
∫

drVeff(r)
∑

i,j

𝜕Qi,j(r)
𝜕R𝜇a

𝜌i,j

−
∑

i,j

Dion
i,j

∑
n,k

fnk

[⟨
unk|

𝜕𝛽i

𝜕R𝜇a

⟩
⟨𝛽j|unk⟩ + ⟨unk|𝛽i⟩

⟨
𝜕𝛽j

𝜕R𝜇a
|unk

⟩]
, (7.21)

where we have used

𝜕𝜌(r)
𝜕R𝜇a

=
∑
n,k

fnk

∑
i,j

𝜕Qi,j(r)
𝜕R𝜇a

⟨𝛽i|unk⟩⟨unk|𝛽j⟩ + Qi,j(r)
𝜕(⟨𝛽i|unk⟩⟨unk|𝛽j⟩)

𝜕R𝜇a
. (7.22)

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 140�

� �

�

140 Electronic Structure Calculations on Graphics Processing Units

Another interesting quantity is the stress tensor. Let us denote by a𝟏, a𝟐, and a𝟑 the unit cell lattice
vectors. We combine them in h = [a𝟏, a𝟐, a𝟑]. With these notations, the stress components are

𝜎𝜇𝜈 = − 1
Ω

∑
s

𝜕Etot

𝜕h𝜇s

hT
s𝜈 (7.23)

where 𝜇 and 𝜈 denote the Cartesian indices.
As the interaction energy between electrons and ions depends only on their distances, one can

recast the previous equation into [3]

𝜎𝜇𝜈 = −

⟨
Ψ
||||||

∑
p

1
2mp

∇p,𝜇∇p,𝜈 −
1
2

∑
p≠p′

(
rpp′

)
𝜇
(rpp′)𝜈

|rp − rp′ |
𝜕V
𝜕rpp′

||||||
Ψ

⟩
, (7.24)

where the sum over p and p′ runs over all particles (nuclei and electrons) and (rpp′)𝜇 is the 𝜇 Cartesian
coordinate of rpp′ , the vector joining particles p and p′.

The pseudopotentials introduce a dependence on the wavefunctions. The number of wavefunction
terms grows with the system size, so the computation of those terms dominates the cost of computing
forces and stresses.

Efficient evaluation of the stress tensor will not be further discussed here. Interested readers are
redirected to, for example, [3] or [21].

7.2.5 Iterative Diagonalization

In the self-consistent scheme, the Hamiltonian itself is converging along with the charge density.
Therefore, each self-consistent iteration does not require the exact diagonalization of the Hamiltonian
so long as the eigensolutions are converging as quickly as the Hamiltonian. Furthermore, we are
interested in the lowest Ne eigenvalues and associated eigenfunctions, as only the Ne ≿ ne lowest
eigenfunctions contribute to the charge density. Directly diagonalizing the Hamiltonian would be a
waste of effort.

Iterative procedures provide an elegant solution to this problem: the eigenproblem can be solved
in a subset (generally called the expansion set) [22] that is much smaller than the plane-wave basis.
Any eigensolutions of the full problem will also be eigensolutions in the expansion space. There exist
several common iterative approaches for PWDFT:

• the conjugate gradient algorithm [23, 24],
• the blocked Davidson scheme [25–28], and
• the residual minimization scheme with direct inversion in iterative subspace (RMM-DIIS)

[15, 22, 29].

Thorough reviews of commonly used iterative methods can be found in Refs [15, 22].
The expansion set is built iteratively so that the eigenvectors and eigenvalues in the expansion

space are the best approximations of the eigenvectors and eigenvalues in the full space. One usually
distinguishes the blocked algorithms that work on many bands at the same time from the unblocked
algorithms that optimize each band sequentially. In either case, the key step is to compute the vectors
that are added to the expansion set to ensure that the lowest eigensolutions of the expansion set
converge to the actual eigensolutions. Let us denote by |𝜙̂n⟩ the approximation of the eigenvector
|𝜙n⟩. A central quantity of most iterative schemes is the residual vector |R(𝜙̂n)⟩:

|R(𝜙̂n)⟩ = (H − 𝜖appS)|𝜙̂n⟩,

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 141�

� �

�

Plane-Wave Density Functional Theory 141

where 𝜖app is the approximation of the eigenvalue, defined as the Rayleigh quotient

𝜖app =
⟨𝜙̂n|H|𝜙̂n⟩
⟨𝜙̂n|S|𝜙̂n⟩

. (7.25)

The perfect correction to 𝜙̂n is thus

|𝛿𝜙n⟩ = −(H − 𝜖appS)−1|R(𝜙̂n)⟩. (7.26)

because

|R(𝜙̂n + 𝛿𝜙n)⟩ = 0. (7.27)

However, computing (H − 𝜖appS)−1 is as complex as directly diagonalizing H, so one has to resort to
approximate inverses:

|𝛿𝜙n⟩ ≈ K|R(𝜙̂n)⟩, (7.28)

where K is called the preconditioning matrix and building |𝛿𝜙n⟩ from the residual vector |R(𝜙̂n)⟩ is
called the preconditioning. For PWDFT, K is usually diagonal and therefore easy to compute and
apply. There are many specific approaches [29–31], which will not be further discussed here.

7.2.5.1 Conjugate Gradient (CG)

The sequential conjugate gradient approach is an unblocked scheme in which the expansion set is
restricted to only two vectors for each eigenfunction. Consider the minimization of eigenfunction
n. At each iteration, the new vector, called the search vector for CG, is chosen to be orthogonal to
the previous one. The Hamiltonian is then directly diagonalized in the expansion space composed
of the approximate eigenvector |𝜙̂n⟩ and the search vector | fn⟩, producing a revised approximate
eigenvector |𝜙̂′

n⟩. A new search direction is then constructed:

| f ′n⟩ = |P(𝜙̂′
n)⟩ +

⟨P(𝜙̂′
n)|R(𝜙̂′

n)⟩
⟨P(𝜙̂n)|R(𝜙̂n)⟩

| fn⟩, (7.29)

where |P(𝜙̂n)⟩ is the orthogonalized, preconditioned residual vector:

|P(𝜙̂n)⟩ =
(

1 −
∑

m

||𝜙m

⟩ ⟨𝜙m|S
)

K(H − 𝜖appS)|𝜙̂n⟩, (7.30)

where m runs over the previously computed lower energy eigenvectors. This orthogonalization is
necessary to ensure that all bands do not converge to the eigenvector associated with the lowest
eigenvalue.

7.2.5.2 Blocked Davidson

In the blocked Davidson scheme, a single expansion set, {|𝜑i⟩}, is used to compute all the lowest
eigenvectors concurrently. The first step of each iteration is to construct the Hamiltonian and overlap
matrices in the expansion space.

Ĥi,j = ⟨𝜑i|H|𝜑j⟩, Ŝi,j = ⟨𝜑i|S|𝜑j⟩. (7.31)

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 142�

� �

�

142 Electronic Structure Calculations on Graphics Processing Units

The resulting expansion space eigenproblem is then solved directly to produce trial vectors and
Rayleigh quotients. Diagonalizing the Hamiltonian in the expansion set is called the Rayleigh–Ritz
Scheme [32] or “subspace rotation.”

Ĥ𝜙̂n = 𝜖appŜ𝜙̂n. (7.32)

The residuals of the trial vectors with the lowest Rayleigh quotients are then computed in the full
space. Based on the norm of the residual or the difference in the Rayleigh quotient from the last
iteration, some or all of the residuals are preconditioned and added to the next expansion set.

The expansion set grows with each iteration, but only needs to be strictly larger than the desired
number of eigenvectors. Therefore, many schemes limit the size of the expansion set to some small
multiple of the number of desired eigenvectors [15, 29]. When adding preconditioned residuals would
expand the set beyond that limit, the trial vectors with the highest Rayleigh quotients are removed to
make room.

The blocked Davidson method does not require explicit orthonormalization because the trial vec-
tors are always orthogonal in both the expansion space and the full space.

7.2.5.3 RMM-DIIS

The RMM-DIIS method optimizes one band at a time, but can be parallelized over bands. It is based
on the original work of Pulay [33] applied here to minimize the norm of the residual vector. In this
scheme, the expansion set is called the iterative subspace following Pulay. The iterative subspace
consists of the previous approximations of the eigenvectors {|𝜙̂i

n⟩}, where the n index is over eigen-
vectors and the i index is over iterations. Each iteration begins by constructing a trial vector |𝜙̂′

n⟩ as
a linear combination of the previous approximate eigenvectors:

|𝜙′
n⟩ =

∑
i

|𝜙̂i
n⟩𝛼i. (7.33)

The coefficients 𝛼i are chosen in order to minimize the relative norm of the residual vector:

𝜖 =
⟨R(𝜙′

n)|R(𝜙′
n)⟩

⟨𝜙′
n|S|𝜙′

n⟩
. (7.34)

The residual can be expanded with respect to the residuals of the previous eigenvectors:

|R(𝜙′
n)⟩ =

∑
i

|R(𝜙̂i
n)⟩𝛼i (7.35)

creating an eigensystem

∑
j

⟨R(𝜙̂i
n)|R(̂𝜙j

n)⟩𝛼j = 𝜖
∑

j

⟨𝜙̂i
n|S|𝜙̂j

n⟩𝛼j, (7.36)

where the lowest eigenvector becomes the trial vector |𝜙′
n⟩. A linear combination of the trial vector

and its preconditioned residual is then added as the next approximate eigenvector: |𝜙̂i+1
n ⟩ = |𝜙′

n⟩ +
𝜆K|R(𝜙′

n)⟩. The size of the step 𝜆 is an important factor for the convergence properties of the algorithm
[29, 33].

As the RMM-DIIS does not include the explicit orthogonalization of the CG approach or the
implicit orthogonalization of blocked Davidson, the band residual minimization is very fast. This also
allows easy parallelization of this scheme for bands, as applying the RMM-DIIS scheme to one band
does not require information from the other bands. However, because the final vectors are not forced to
be orthogonal, applying only a few steps of RMM-DIIS can result in linear dependence. This requires

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 143�

� �

�

Plane-Wave Density Functional Theory 143

an additional orthogonalization step at the end of the procedure that will involve communications
between all computational units.

The scheme has another disadvantage: approximate eigenvectors converge to the nearest eigen-
vector, so the initialization step is critical. One solution is to append a small number of Davidson
steps to the random initialization. Davidson is very robust and strictly orthogonal, so it will separate
the estimates of the eigenvectors.

Additionally, each self-consistent diagonalization step is performed in the following order:

1. direct diagonalization in the space of initial approximate eigenfunctions,
2. RMM-DIIS minimization, and
3. explicit orthonormalization of eigenfunctions.

The subspace rotation is employed to separate the approximate eigenfunctions to lower the risk of
two wavefunctions converging to the same eigenvector. Orthonormalization is added to ensure that
the wavefunctions used to build the density do not overlap, which would invalidate the expression
for the charge density given in Eq. (7.12). Even so, the RMM-DIIS approach is generally the most
efficient scheme for large eigenproblems.

7.3 Implementation

Each iteration of the self-consistent solution of the eigenproblem Eq. (7.8) has four main steps. Begin-
ning with an estimate of the density, 𝜌

1. Apply functionals to 𝜌 to produce V loc.
2. Compute eigenvalues, 𝜖nk, and eigenfunctions, unk, of H.
3. Use 𝜖nk to produce occupancies fnk.
4. Use unk and fnk to produce 𝜌.

And after the self-consistent solution converges
5. Compute forces and stresses.

Note that in the case of insulators the occupancies are known a priori, so step 3 can be omitted. The
first step is not generally performance-critical. The computation of forces and stresses are optional,
dependent on the application (e.g., molecular dynamics or relaxation).

7.3.1 Transformations

Before describing the details of these steps, it will be useful to discuss common components: the
Fourier transformation and the projection.

7.3.1.1 Fourier Transforms

The Fourier transform used in PWDFT is slightly different from the conventional unitary discrete
Fourier transform. The first difference is that the Fourier basis is defined as only the g-vectors that
lie within an inscribed sphere, offset by the k-point:

{|g⟩ ∶ |g + k|2 < Ecut}. (7.37)

This follows from the physical argument that the contribution of a mode to the wavefunctions should
be related to its kinetic energy, with higher energy modes being less represented. Note as well that the
transformation does not include the k offset implicit in the g-vectors. Thus before taking real-space
inner products, one must be sure that they are either at the same k-point or that a factor of exp [i(k1 −
k2) ⋅ r] is added explicitly.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 144�

� �

�

144 Electronic Structure Calculations on Graphics Processing Units

The second difference is that r-space must be sampled at a higher resolution, at least by a factor of
2, to faithfully represent the potential. These two differences lead to an overall inverse transformation
that has three steps: pad, transform, interpolate. Note that the r-space representation is thus about
(2)36∕𝜋 ≈ 15 times larger than g-space.

To take advantage of the reduced number of g-vectors, many PWDFT codes have implemented
their own parallel 3D FFTs on top of 1D and 2D standard library calls. That way, the unused corners
of g-space do not need to be communicated during the transpose steps. If targeting a single-socket
system, it is recommended that full 3D FFTs are used instead, and many codes will fall back to it
automatically. For parallel FFTs across many GPU nodes, the behavior of the CPU implementation
can be mimicked, but scalability will suffer because of the relatively strong compute performance
of the GPU-enabled nodes. To mitigate this, one should set up the run to process each band on the
smallest possible number of nodes, which may require reducing the number of bands that are con-
currently processed. Putting different bands from the same k-point in different memory spaces can
also cause problems because of the need for inner products between test functions, which will be
discussed shortly.

7.3.1.2 Projection

Projection is the process of computing the inner products ⟨𝛽(k)|𝜙nk⟩, where 𝛽 are the pseudopotential
projectors, and k is a k-point. The projectors connect to a space of pseudo-wavefunctions, 𝜃, with the
completeness relation:

Ii =
∑

l

|𝜃i,l⟩⟨𝛽i,l|, (7.38)

where Ii denotes identity only in the pseudo-wave space of ion i, and l indexes angular momentum.
Projection can be done in either r-space or g-space. In g-space, the projection is computed as:

⟨𝛽(k)|𝜙nk⟩ =
∑

g

⟨𝛽|g⟩⟨g|𝜙nk⟩. (7.39)

The matrix representation ⟨g|𝛽(k)⟩ is dense, so projection is a matrix–vector product. Technically,
this corresponds to a LAPACK call of the ZGEMV(‘C’, ...) function, that has been ported to the
GPU [34].

In r-space, each projector is nonzero only within a sphere centered at an ionic center. Let those
r-space basis vectors for which the projector is non-zero be {r′i}. Including the ion and angular
momentum indices

⟨𝛽(k)i,l|𝜙nk⟩ =
∑
r,r′

i

⟨𝛽i,l(0)|r′i⟩⟨r′i |r⟩ei(k⋅r)⟨r|𝜙nk⟩, (7.40)

where the sums over ri are independent of total system size, and exp [i(k ⋅ r)] is included because the
real-space projectors are defined at k = 0. The transformation described by ⟨r′i |r⟩ is best described
as a gather operation, as it collects r-space data that is distributed noncontiguously in memory. The
angular momentum components on each atom share r-space subsets, so the number of gathers is the
number of ions, not the total number of projectors. An example kernel implementing the projection
is found in Listing 1.

The inverse transformation in r-space has a similar form:

⟨r|𝜙̃nk⟩ =
∑
i,l,r′

i

e−i(k⋅r)⟨r|r′i⟩⟨r′i |𝛽i,l⟩⟨𝜃i,l|𝜙nk⟩. (7.41)

Here, the transformation ⟨r|r′i⟩ is a scatter operation, with similar issues to the gather. An example
kernel implementing the inverse projection can be found in Listing 2.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 145�

� �

�

Plane-Wave Density Functional Theory 145

Both methods of projection are equally valid methodologically, so the choice is purely based on
performance. The advantage of the more complex r-space projection is the independence on total
system size. The disadvantages are that (1) r-space is about 15 times larger to begin with, and (2)
gather operations can be inefficient on memory designed for sequential access.

7.3.2 Functionals

For nontrivially sized systems, the construction of the potentials V loc and Vnl are not performance-
critical. They consist of O(n) operations applied to the charge density and two Fourier transforms
used for a Poisson solve. Section 7.6 provides an indirect treatment under the constraint a = b, which
specifies the two particle potential in exact exchange to a single particle Coulomb potential. It omits
the exchange–correlation functional.

7.3.3 Diagonalization

The Hamiltonian is block-diagonal with respect to the index k, as seen in Eq. (7.6). Each k-point is
an independent eigenproblem, and can be parallelized over freely. In the rest of this subsection, we
will omit the k label.

Only the n ≈ ne eigenfunctions corresponding to the lowest eigenvalues are generally required, as
only they will correspond to nonzero occupancies. Implementing fast iterative matrix diagonalization
is one of the key points to attaining a high performance and robust computation. Common choices
were described in Section 7.2.5.

All solvers require the implementation of the action H|𝜙⟩ and an inner product ⟨𝜙′|𝜙⟩, for arbitrary
test functions |𝜙⟩, |𝜙′⟩. In some cases, it may be easier to compute ⟨𝜙′|H|𝜙⟩ in a single step, rather
than ⟨𝜙′|(H|𝜙⟩), so we will treat this as a special case.

In PWDFT codes, the test functions are generally stored in the g-space, ⟨g|𝜙⟩. Evaluating
the action of the Hamiltonian further requires the r-space, ⟨r|𝜙⟩, and 𝛽-space representations,
⟨𝛽|𝜙⟩. If there is sufficient memory, these quantities can be computed once per test function and
stored for reuse. This is frequently done for ⟨𝛽|𝜙⟩, because it is much smaller than ⟨g|𝜙⟩. The
r-space representation can be a factor of 48∕𝜋 larger than the g-space representation, so it is
less frequently stored. The r-space and g-space representations are complete, so inner products
can be computed in either r-space or g-space. Because of the larger size of r-space, g-space is
always preferable. Inner products should be blocked together into matrix–matrix products whenever
possible.

7.3.3.1 Kinetic Energy

The action of the kinetic energy T̂ consists in a simple multiplication of the test function by the vector
|g + k|2. If the g-vectors are in order, this can be easily done by computing |g + k|2 in the kernel based
on the indices. If the g-vectors are out of order, then one should first precompute a vector |g + k|2,
and then perform an element-wise vector product.

As element-wise products are bandwidth-bound, it should be used carefully to reduce loads. For
example, when computing the kinetic energy of a set of test functions |𝜙i⟩, then a loop over prod-
ucts will reload the prefactors and thus reduce the performance. A better approach is to cast this
operation into a matrix–matrix multiplication, where the first matrix is diagonal. Although BLAS
does not include such an operation, cuBLAS does as ZDGMM [34]. Furthermore, the prefactor here
is real while the test function is complex. Thus, a custom kernel can load reals for half the band-
width. Finally, the operation can be performed in-place. Such a kernel is found in Listing 3. This
functionality is not currently available in standard libraries.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 146�

� �

�

146 Electronic Structure Calculations on Graphics Processing Units

7.3.3.2 Local Potential

To compute the action of the local potential, ⟨r|V loc|𝜙⟩, the same operation is performed in r-space,
with V(r) replacing |g + k|2 as the prefactor. Again, a single test function corresponds to an
element-wise product while a set of test functions is a ZDGMM call or custom kernel. As in the
kinetic energy case, the prefactors are real. If the desired result is in g-space, then the r-space action
should be Fourier-transformed.

7.3.3.3 Nonlocal Potential

The nonlocal potential in the projector space is either diagonal, in the case of NCPP, or
block-diagonal, in the case of USPP. For NCPP, the action of the nonlocal potential proceeds
as for the kinetic and local terms, but with a sum over the projections. For USPP, the blocks
correspond to atoms, so the action looks like

⟨𝜃i,l|Vnl|𝜙⟩ = ∑
l′
⟨𝜃i,l|Vnl|𝜃i,l′⟩⟨𝛽i,l′ |𝜙⟩. (7.42)

The l, l′ angular momentum indices take a small set of values, about 10, so these matrix products
are very small and simply looping over matrix–matrix calls is likely to be kernel-launch-bound. If
batched calls, discussed in greater depth in Chapter 2, are available, they should be used. Otherwise,
a custom kernel can achieve moderate performance, such as the one given in Listing 4.

As with the kinetic and local potential, the nonlocal potential is real. If the desired result is in
g-space but the r-space projection was used, the result can be added to ⟨r|V|𝜙⟩ prior to the Fourier
transformation back to g-space, removing the need for an additional Fourier transform.

In the case of USPPs, the action of the overlap matrix, S|𝜙⟩, is needed. This is computed as the
nonlocal potential, but for an overlap operator Qi,j, and then added to the identity:

S|𝜙⟩ = |𝜙⟩ +∑
i,l,l′

|𝛽i,l⟩Qi,l,l′⟨𝛽i,l′ |𝜙⟩, (7.43)

where Q has the same structure as Vnl. If both H|𝜙⟩ and S|𝜙⟩ must be computed, the projections
⟨𝛽|𝜙⟩ can be reused to great effect.

Expansion-set techniques. In all the iterative methods, there will be direct solutions of small eigen-
problems expressed in the expansion set. They can be solved on the GPU using libraries, such as
MAGMA [35]. When their size is small, they can be low performance. Fortunately, in that case, they
contribute little to the overall run time of the method.

For RMM-DIIS, the final orthonormalization can be performed efficiently using a Cholesky
decomposition. First, the overlap matrix S(i, j) = ⟨𝜓i|𝜓j⟩ is computed. Next, the overlap matrix
is decomposed as S = LU, which can be performed using LAPACK or MAGMA. Finally, the
orthonormalized orbitals are given by |𝜓̄⟩ = U−1|𝜓⟩, where the inverse can also be evaluated using
LAPACK or MAGMA.

The eigenproblems in subspace methods are built with the matrix elements ⟨𝜙′|H|𝜙⟩ and, in the
case of USPP and PAW, ⟨𝜙′|S|𝜙⟩. In this case, the inner product can be split into different bases:

⟨𝜙′|H|𝜙⟩ =∑
g

⟨𝜙′|g⟩⟨g|T|g⟩⟨g|𝜙⟩

+
∑

r

⟨𝜙′|r⟩⟨r|V loc|r⟩⟨r|𝜙⟩

+
∑

i,j

⟨𝜙′|𝛽i⟩⟨𝜃i|Vnl|𝜃i′⟩⟨𝛽i′ |𝜙⟩, (7.44)

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 147�

� �

�

Plane-Wave Density Functional Theory 147

where ⟨𝜃| are the duals of |𝛽⟩. If the projections ⟨𝛽|𝜙⟩ and ⟨𝛽|𝜙′⟩ are stored, this method can reuse
them to avoid a transformation back to g-space or a scatter–gather. If the r-space representations ⟨r|𝜙⟩
are stored, this method can reuse them to avoid an FFT. The benefit is mitigated, however, by the large
size of r-space, generally resulting in a slower method for small and medium sized problems.

7.3.4 Occupancies

The occupancies, or weights, of the wavefunctions are computed as a function of the entire energy
spectrum over all the k-points. This computation is not expensive and should be performed on the
CPU using existing code. It does, however, effectively introduce a synchronization step between
diagonalization and building the electron density. If necessary, this synchronization can be partially
avoided by making the safe assumption that the lowest energy bands are fully occupied. That is, for
some percentage of the bands, 𝛼, assume that fn,k = 1∀n < 𝛼ne. This assumption should be made
conservatively and exposed to the user, as there are exceptions.

Note that this step is unnecessary for insulators: the occupancies of the ne wavefunctions with
lowest energy at each k-point are unity and the rest are zero.

7.3.5 Electron Density

After the occupancies are formed, the plane-wave contribution to the electron density, the first term
of Eq. (7.12), is computed by Fourier-transforming the wavefunctions back to r-space and squaring
them element-wise, weighted by their occupancy:

⟨r|𝜌|r⟩ = ∑
nk

fnk

||||||

∑
g

⟨r|g⟩ ⟨g|unk⟩
||||||

2

. (7.45)

Low-occupancy wavefunctions can be ignored entirely. On the CPU side, this is done by cycling the
loop over wavefunctions for small occupancies. On GPUs, it can be beneficial to transform multiple
wavefunctions concurrently, so wavefunctions with non-negligible weight should be contiguous in
memory. Listing 5 shows a schematic kernel for this task. The behavior of the occupancies is governed
by the smearing. For Gaussian and Fermi–Dirac smearing, fn+1,k < fn,k, so the memory is already
contiguous. For Methfessel–Paxton [36] and Marzari–Vanderbilt [37] smearing, this is not always
the case and rearrangement may be necessary.

For ultrasoft and PAW calculations, the second term of Eq. (7.12), the ultrasoft or augmentation
charge must be added. Because the projection ⟨𝛽i|unk⟩ is much smaller than the r-space wavefunctions
⟨r|unk⟩, this term is inexpensive relative to the plane-wave contribution. Therefore, we will not discuss
it in depth here. The augmentation charge in its two-particle form is discussed in Section 7.6.1. The
one-particle form needed here is recovered by equating the two band indicies, a = b, in Eq. (7.54).

7.3.6 Forces

The expressions for forces given in Eq. (7.21) are easily computed in the Fourier space. The elec-
trostatic nuclear interaction is a low-cost operation and will not be discussed here. In g-space, the
derivative of the local potential is diagonal:

∫
dr
𝜕V loc

ion(r)
𝜕R𝜇a

𝜌(r) =
∑

g

igV loc
ion(g)𝜌(g), (7.46)

where V loc
ion(g) and 𝜌(g) are the Fourier transforms of the vector representations V loc

ion(r) and 𝜌(r), respec-
tively. Computationally, this is very similar to the local energy evaluation described in Section 7.3.3,
but only only a single vector 𝜌(g) and with a complex potential −gV(g).

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 148�

� �

�

148 Electronic Structure Calculations on Graphics Processing Units

The derivatives of the Qi,j are computed similarly using its Fourier transform Qi,j(g).
The last terms are the projections ⟨unk|𝛽i⟩ and their derivatives:

⟨
unk

||||
𝜕𝛽i

𝜕R𝜇a

⟩
=
∑

g

ig⟨𝛽i|g⟩⟨g|unk⟩. (7.47)

Evaluating the derivative terms can be done using the same strategies as those used to compute the
projection in Section 7.3.1. Real-space projection will require the Fourier transformation of g⟨g|𝛽i⟩
back to real space, but this needs to be computed only once for the entire calculation.

7.4 Optimizations

Two key issues in developing high-performance implementations for heterogeneous architectures are

1. maximizing the occupancy of the GPU, and
2. minimizing the high cost of transferring data between the GPU and CPU node(s).

The first issue boils down to expressing enough parallelism to feed the tens of thousands of GPU
threads. The second issue is addressed by keeping data resident on the GPU for as long as possi-
ble. This can mean porting many intermediate, non-performance-critical methods to the GPU and
carefully choosing and designing low-communication algorithms.

7.4.1 GPU Optimization Techniques

As explained in Chapters 1 and 2, the GPU is a massively parallel architecture capable of running
several tens of thousands of threads concurrently. In order to use the GPU to its full potential, we
need to express computations as large enough tasks so that every thread has work to do.

Nearly every step in PWDFT involves a loop over bands. The easiest way to generate large,
GPU-ready tasks is to group bands together and express computations on those larger groups. We call
those groups blocks and this technique blocking. The example kernels given in Section 7.3 all block
over a single band index, seen by loops of size nband. Blocking can be especially effective when the
constituent calculations share data. For example, the action of the kinetic energy is an element-wise
multiplication by the same |g + k|2 vector for every band. Sharing this data allows the application to
read fewer memory and hence have higher arithmetic intensity and higher performance.

Sometimes, blocking over a single index, such as bands, is not enough. This could be because
the number of available bands is small or the amount of work per band is small. The projection is
a good example of the latter: the number of arithmetic operations per ion per band is 100 and does
not scale with the problem size. In order to fully occupy the GPU, multiple ions must be processed
concurrently as well.

Each ion requires a different scatter/gather of the band data, so parallelizing is not as simple as
adding a band index. The next solution would be to use streaming to concurrently execute multiple
kernels, with each kernel working on a single ion. The newest Nvidia GPUs (Kepler at the time
of writing) support up to 32 concurrent kernels executing on a device, so this can be an effective
source of added parallelism. Kernels issued in the same stream have implicit first-in first-out (FIFO)
dependency ordering, but the ordering between kernels in different streams needs to be enforced
through the use of explicit synchronization. In this case, the data dependence is intra-ion, so each ion
is assigned to a stream. If starting from unstreamed code, adding streams often requires the expansion
of temporary buffers to handle more data in-flight.

GPU kernel launches are not free, and if launching the kernel to the GPU takes more time than the
duration of the kernel, streams will offer no acceleration. More generally, the kernel launch latency
cuts into stream performance if each streamed kernel is not long-lived. The amount of work per ion

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 149�

� �

�

Plane-Wave Density Functional Theory 149

GPU

GPU
GPU

CPUCPU

CPU
CPU computations

CPU computationsCPU computations

Action(1)

Action(1)

Action(2)

Action(2)

Action(3)

Action(3)

Action(4)

Action(4) A (4)

A (3)

A (2)

A (1) A (1) A (1) A (1)

A (2) A (2) A (2)

A (3) A (3) A (3)

A (4) A (4) A (4)

t

t t

Stream #3

Stream #3 Stream #3

Device

synchronize

Device

synchronize

Device

synchronize

Batched

kernels

Kernel

launch

overhead

(a)

(b) (c)

Figure 7.1 Schematic representation of three approaches for porting loops on GPUs: (a) asynchronous
kernel launches; (b) streaming kernel launches; and (c) batched kernel launches

per band is fixed, so if the number of bands is not increasing, then the projection kernels duration
will frequently be near or even below the launch latency.

In order to hide the launch latency for such small kernels, we can use batching: a process where
we launch a single kernel that internally differentiates into multiple tasks. In the case of projection,
the loop over ions would be pushed into the kernel. In a sense, batching is a more complex version
of blocking where the tasks do not generally share data. It should be mentioned that batching custom
kernels can lead to messy and inefficient code. Fortunately, the cuFFT and cuBLAS libraries include
batched versions of the most popular kernels, which help sensure the performance of the kernels.
These library routines generally impose homogeneous problem sizes across elements of the batch,
so zero-padding is sometimes necessary if the batches span ionic types.

Figure 7.1 depicts both streaming and batching, which are more thoroughly described in Section
2.4. In addition to the projection, streams and batches can be used to improve the occupancy of the
nonlocal action and some parts of RMM-DIIS diagonalization.

7.4.1.1 Reduce Communication Cost to/from the GPU

While GPUs feature fast on-chip memory (the latest K40 GPUs have 288 GB/s of bandwidth to the
global memory), any data that has to travel between the CPU and GPU currently has to go through
the PCIe bus, which is relatively low bandwidth (PCIe gen 3, e.g., has a theoretical maximum of 16
GB/s per direction). Hence, in order to achieve the full performance advantage of the GPU, we need
to minimize the cost of the transfer of data between the GPU and the CPU. There are a couple of
strategies to reduce the time spent waiting for data transfers.

• Reduce the need to copy data back and forth between the GPU and CPU by porting additional
functions to the GPU, even if the computation of the functions themselves is not a bottleneck.

• Overlap data transfers with computations using streams and asynchronous memory copies.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 150�

� �

�

150 Electronic Structure Calculations on Graphics Processing Units

Figure 7.2 Using multiple process accelerated by GPUs communicating with MPI. (See insert for colour
representation of this figure)

The direct diagonalization of the RMM eigenproblem is an example of a computationally inex-
pensive operation that should be ported to prolong GPU data residency. The expansion set for each
band generally has only a few vectors, resulting in very small eigenproblems that have no impact on
overall performance. There is one such eigenproblem per band per RMM-DIIS iteration, so copying
data from and to the GPU memory space each time would be prohibitively expensive. To prevent
these frequent and costly data movements, MAGMA routines should be used, even though they are
highly inefficient for such small problem sizes.

7.4.2 Parallel Optimization Techniques (Off-Node)

7.4.2.1 Multiple Host CPUs and Multiple GPUs

In order to address larger physical systems, one needs to deal with platforms composed of multiple
GPUs and multicore CPUs. There are two general parallel setups:

1. Each GPU receives kernels from exactly one CPU process
2. Each GPU receives kernels from multiple CPU processes

The first setup can be further divided into the case where only one CPU process runs per GPU and
the case where many CPU processes run per GPU, but only one is designated for kernel launch. As
we will see, recent improvements to the GPU runtime have all but deprecated the latter setup.

There are two advantages to a one-process-per-GPU setup. First, this setup minimizes the number
of messages that must be sent between processes, which reduces the overall share of the communica-
tion time. These messages can be seen in Figure 7.2. Because GPU-enabled nodes are generally much
more arithmetically capable than CPU-only counterparts, GPU implementations are more sensitive
to the communication overhead. Using streams to overlap communication and computation can help
mitigate this effect. Second, this setup maximizes the potential for blocking and batching by dividing
the data as little as possible. GPU can run only a fixed number of kernels concurrently, presently 32.
If the problem is decomposed beyond the point at which 32 kernels occupy the device, then further
parallelism will reduce occupancy and degrade performance.

There are two advantages to a multiple processes per the GPU setup. The first is that using multiple
processes will accelerate the CPU portion of the work. For PWDFT, we have described how to port the
majority of the workload, so this is less of an issue. The second advantage is implicit streaming with
the multiprocess server (MPS). MPS allows kernels from different CPU processes to run concurrently.
By default, each CPU process submits kernels to a different stream, so using multiple processes is
like streaming over the entire calculation, excepting barriers. This can be a quick and easy way to
improve GPU occupancy without writing streams or batches into the code.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 151�

� �

�

Plane-Wave Density Functional Theory 151

7.4.3 Numerical Optimization Techniques

7.4.3.1 Mixed Precision

PWDFT has traditionally been performed entirely in double precision, as are most scientific numer-
ical methods. However, the sensitivity to numerical precision is present only in certain parts of the
method. For example, the accumulation of the electron density, Eq. (7.45), is a sum of small numbers
into a much larger one, and is therefore susceptible to numerical roundoff errors. On the other hand,
the diagonal parts of the action of the Hamiltonian are sum-less, and thus require much fewer digits of
precision. Furthermore, the subspace diagonalization steps at the beginning of the self-consistent iter-
ation are expected to produce only approximate solutions in a small number of iterations, diminishing
the importance of numerical stability.

We can group the steps into three categories: insensitive, sensitive, and situational.

Insensitive Situational Sensitive
Kinetic energy Fourier transformation Density accumulation
Local potential Projection (Orthonormalization)

Subspace diagonalization (early) Subspace diagonalization (late)

It is the authors’ opinion that the insensitive steps can be freely cast to single precision, the situational
steps should provide a switch to the user, and the sensitive steps should not be altered. The VASP
implementation of exact exchange performs Fourier transformations in single precision by default
and has yet to experience an accuracy issue [38]. Fourier transforms were selected as a testbed due
to their combination of high overall cost and relative code isolation.

7.5 Performance Examples

The steps above have been ported to the GPU in the Quantum Espresso [39] and VASP codes with
a special focus on the block Davidson algorithm [40] or the RMM-DIIS one [41]. In this work, we
have used a new GPU acceleration of VASP based on the CPU version 5.3.5 [42]. Our RMM-DIIS
work has been further optimized, and all steps of the block Davidson algorithm have been ported to
GPU. Moreover, this version also includes the GPU acceleration of the exact exchange part of VASP
from one of us [38].

7.5.1 Benchmark Settings

7.5.1.1 Timed Sections

The runtime of the calculation is divided into categories based on the steps discussed in Section 7.3:

• Fourier: transform between r-space and g-space.
• Projection: computation of ⟨𝛽|𝜓⟩.
• T̂ and V: action of the kinetic energy and local potential.
• Nonlocal: action of the non-local potential.
• Sub diag: sub-space diagonalization, including orthonormalization.
• 𝝆-sum: sum of electron density, but not transformation.

7.5.1.2 Node Configuration

The examples are demonstrated on the Nvidia PSG cluster. Each node contains two 10-core Intel Ivy-
Bridge CPUs, 128 GB of RAM, and four Nvidia Tesla K40m GPUs. The CPUs are clocked at 3 GHz

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 152�

� �

�

152 Electronic Structure Calculations on Graphics Processing Units

and have 60 GB/s peak memory bandwidth.1 The GPUs have 1.43 TFlop/s peak double-precision
performance and 288 GB/s peak memory bandwidth (see also Chapter 1).

However, to better approximate common production configurations at the time of writing, we
under-subscribe the node slightly: we only use eight CPU cores and one GPU per socket. When
using both sockets, the two GPUs are selected from different PCIe busses to avoid contention.

Consider the maximum theoretically achievable speedup, or just max speedup, based on the raw
hardware and assuming an optimal CPU implementation. GPU ports running near the max speedup
should be considered successful and are unlikely to be further accelerated. When the max speedup
is exceeded, it indicates a suboptimal CPU implementation. For compute-bound operations, the max
speedup is 7.4× faster for a GPU than eight CPU cores on our test system. For memory-bound oper-
ations, the max speedup is 4.8×. Switching to single precision on the GPU (but keeping double
precision on CPU) improves the compute- and memory-bound max speedup to 22.1× and 9.6×,
respectively.

The cluster is equipped with Intel compilers at version 14, the CUDA toolkit at version 6.0, and
runs the Nvidia multi-processes server (MPS). Version 1.4.1 of the MAGMA library was used [35].

7.5.1.3 Runtime Configuration

We run the code on six hardware configurations:

• Single core, no GPU.
• Single socket, no GPU.
• Dual socket, no GPU.
• Single core, single GPU.
• Single socket, single GPU.
• Dual socket, dual GPU.

The configurations with more CPU cores than GPUs are constrained to use eight or fewer CPU
processes per GPU, specified in the tables for each calculation. It is worth emphasizing that GPU
performance is generally optimized using four CPU processes.

7.5.1.4 Types of Runs

We illustrate the performance of GPU implementations of PWDFT in several contexts: the band
structure of bulk silicon (see Figure 7.3); ab initio molecular dynamics (AIMD) of bulk gold
(see Figure 7.4); and structural relaxation of elemental boron (see Figure 7.5). The self-consistent

Figure 7.3 4 × 4 × 4 supercell of crystalline Si

1 http://ark.intel.com/products/75279/Intel-Xeon-Processor-E5-2690-v2-25M-Cache-3_00-GHz.

http://ark.intel.com/products/75279/Intel-Xeon-Processor-E5-2690-v2-25M-Cache-3_00-GHz

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 153�

� �

�

Plane-Wave Density Functional Theory 153

Figure 7.4 Gold MD snapshot at 1600 K

Figure 7.5 Boron in hR105 (𝛽-rhombohedral) structure

calculation of the charge density is the first step of all PWDFT calculations. Band structure calcu-
lations take the self-consistent charge density as an input and then compute the energy eigenvalues
on a larger set of k-points, generally arranged in high symmetry paths. AIMD consists of a series of
self-consistent calculations interspersed with the classical motion of the ions. Structural relaxation
consists of a series of self-consistent calculations interspersed with small perturbations of the ionic
structure.

In all cases, the Brillouin zone integration was conducted with a k-point mesh generated with
the Monkhorst–Pack algorithm [43]. The atomic cores were described with the projector augmented
wave method [13] as implemented in VASP [12].

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 154�

� �

�

154 Electronic Structure Calculations on Graphics Processing Units

7.5.2 Self-Consistent Charge Density

The self-consistent computation is performed with a 4 × 4 × 4 k-point mesh. The generalized gradient
approximation was used in the formulation of Perdew and Wang PW91 [44, 45], with a plane-wave
cutoff energy at 245.4 eV. In order to compare the GPU acceleration for different system sizes, cal-
culations were conducted on three systems containing 128, 256, and 512 atoms. The 128 and 512
atom cases use the block Davidson diagonalizer. The 256 atom case is conducted with both the block
Davidson and RMM-DIIS diagonalizers for comparison. For the 512 atoms system, only three elec-
tronic steps were done to reduce the computation time. The block Davidson results are given in Tables
7.1–7.3 for 128, 256, and 512 atoms, respectively. The RMM-DIIS results for 256 atoms are given
in Table 7.4.

7.5.2.1 Profile

The costs using block Davidson are dominated by subspace diagonalization and Fourier transforms,
which take 45 and 30% of the single-core CPU time, respectively. The next most expensive step is
projection, at around 15%. The remaining costs can be considered insignificant.

Increasing the system size shifts effort further towards subspace diagonalization. This makes sense,
as diagonalization has the highest order complexity.

Table 7.1 Self-consistent electron density calculation of bulk Si with a supercell of 128 atoms using
block Davidson diagonalization (Nion = 128, Nband = 320, Npw = 216,000)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 1122.0 117.7 9.5 150.5 108.1 1.4 101.0 54.4 1.9
Projection 457.9 26.7 17.1 95.1 27.4 3.5 78.0 19.2 4.1
K and V 140.3 12.8 11.0 27.6 8.6 3.2 27.2 4.8 5.7
Nonlocal 6.6 7.6 0.9 1.3 2.0 0.7 1.0 2.0 0.5
Sub diag 1494.3 87.4 17.1 215.0 77.9 2.8 117.5 59.1 2.0
𝜌-sum 19.9 1.4 14.2 2.6 0.8 3.3 1.7 0.5 3.4
Other 68.8 36.0 1.9 57.7 61.6 0.9 30.8 57.7 0.5

Total 3309.7 289.6 11.4 549.7 286.4 1.9 357.2 197.7 1.8

Times in seconds, GPU speedup denoted by x.

Table 7.2 Self-consistent electron density calculation of bulk Si with a supercell of 256 atoms using
block Davidson diagonalization (Nion = 256, Nband = 644, Npw = 432,000)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 10,110.6 916.8 11.0 1,528.3 845.6 1.8 1,036.2 410.6 2.5
Projection 4,332.3 211.1 20.5 861.0 224.2 3.8 636.6 126.7 5.0
K and V 1,086.3 82.6 13.2 246.1 68.7 3.6 212.8 34.4 6.2
Non-local 52.1 57.2 0.9 9.7 15.0 0.6 7.2 14.9 0.5
Sub diag 23,469.1 889.8 26.4 3,351.2 769.5 4.4 1,652.0 587.3 2.8
𝜌-sum 160.6 10.0 16.1 23.4 6.4 3.7 18.2 3.9 4.7
Other 399.5 166.0 2.4 450.8 384.4 1.2 204.9 354.9 0.6

Total 39,610.6 2,333.5 17.0 6,475.0 2,313.8 2.8 3,769.6 1,532.7 2.5

Times in seconds, GPU speedup denoted by x.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 155�

� �

�

Plane-Wave Density Functional Theory 155

Table 7.3 Self-consistent electron density calculation of bulk Si with a supercell of 512 atoms using
block Davidson diagonalization (Nion = 512, Nband = 1284, Npw = 864,000)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 7,307.6 589.0 12.4 1,199.7 527.3 2.3 770.9 246.4 3.1
Projection 4,437.5 142.8 31.1 604.9 151.1 4.0 428.8 90.6 4.7
K and V 853.1 43.6 19.6 144.3 41.3 3.5 124.7 19.1 6.5
Nonlocal 34.7 34.8 1.0 5.6 9.0 0.6 4.3 8.8 0.5
Sub diag 34,050.8 542.7 62.7 3,958.2 432.4 9.2 1,779.5 260.8 6.8
𝜌-sum 46.3 2.5 18.5 7.0 1.8 3.9 5.0 1.0 5.0
Other 418.2 275.5 1.5 369.8 379.3 1.0 237.2 351.1 0.7

Total 47,148.1 1,630.9 28.9 6,289.6 1,542.2 4.1 3,350.5 977.8 3.4

Times in seconds, GPU speedup denoted by x.

Table 7.4 Self-consistent electron density calculation of bulk Si with a supercell of 256 atoms using
RMM-DIIS diagonalization (Nion = 256, Nband = 644, Npw = 432,000)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 10,760.5 1,001.3 10.7 1,692.6 611.1 2.8 1,182.0 284.7 4.2
Projection 4,487.8 201.6 22.3 722.6 215.5 3.4 552.2 107.1 5.2
K and V 2,448.8 107.7 22.7 401.9 394.6 1.0 320.2 159.6 2.0
Nonlocal 81.8 59.1 1.4 11.5 36.7 0.3 7.7 19.0 0.4
Sub diag 10,619.1 507.7 20.9 1,596.0 747.0 2.1 1,059.2 438.8 2.4
𝜌-sum 146.2 9.1 16.1 21.0 19.1 1.1 16.3 6.8 2.4
Other 734.2 568.8 1.3 473.3 635.8 0.7 236.9 469.2 0.5

Total 29,278.5 2,455.3 11.9 4,918.9 2,659.8 1.8 3,374.6 1,485.2 2.3

Times in seconds, GPU speedup denoted by x.

Switching from block Davidson to RMM-DIIS evens the distribution of costs between Fourier
transforms and subspace diagonalization at 35% each. Projection remains the next largest cost at
15%, followed by the local action at around half that.

7.5.2.2 Single-Socket

For the 128-atom system, single-socket GPU acceleration is 2×. The subspace diagonalization,
projection, and local action steps are about 3× faster but the Fourier transforms only exhibit 40%
improvement.

For the 256-atom system, single-socket performance with GPU improves to nearly 3×. The
improvement can be attributed to two factors: the performance-relevant sections each exhibit
improved performance and the overall effort in the calculation has shifted towards subspace
diagonalization, which performs better on the GPU than the Fourier transforms. Larger problems
will generally take greater advantage of the GPU both on a kernel by kernel basis and by spending
more time in highly efficient dense linear algebra.

Single-socket RMM-DIIS GPU performance trails block Davidson with respect to both absolute
time and the comparison to the CPU socket. The absolute time gap is around 5 min in favor of block
Davidson, compared to 25 min in favor of RMM-DIIS on the CPU. The difference is mostly in the effi-
ciency of the subspace diagonalization. The larger subspace problems in block Davidson do a better

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 156�

� �

�

156 Electronic Structure Calculations on Graphics Processing Units

job of occupying the GPU. This factor is mitigated somewhat by the shift of effort from subspace
diagonalization to Fourier transforms.

7.5.2.3 Scaling

Scaling of the GPU implementation over multiple GPUs is comparable to that of the CPU implemen-
tation over multiple cores. The 128- and 256-atom systems scale from one to two sockets at 72 and
75% efficiency, respectively, compared to 76 and 85% for the CPU. The Fourier transforms actually
scale nearly perfectly, improving their standing compared to the CPU significantly. However, MPI
communication involved in the redistribution over bands or plane waves in block Davidson drags the
subspace diagonalization and other sections down considerably.

By comparison, RMM-DIIS scales with 90% parallel efficiency on the GPU versus only 73% on
the CPU. This brings the dual-socket GPU advantage up from 1.8× to 2.3×. Further, the GPU imple-
mentation of RMM-DIIS outperforms block Davidson on two GPUs in absolute terms, in contrast
to the block Davidson advantage on a single GPU. The reason for this is the same as that for the
single-socket behavior: RMM-DIIS creates loosely coupled small subproblems, while block David-
son creates tightly coupled larger subproblems. On a single GPU, the larger subproblems in Davidson
achieve higher occupancy and therefore better performance. On multiple GPUs, the looser coupling
in RMM-DIIS improves the communication to computation ratio and therefore parallel efficiency.

7.5.3 Band Structure

The non-self-consistent computation receives the electron density from the self-consistent calcu-
lation, constructs the corresponding Hamiltonian, and performs a single diagonalization, steps 1
and 2, at each k-point along a path through the Brillouin zone. Because the non-self-consistent proce-
dure assumes an accurate starting density, the first and only diagonalization must be performed to high
accuracy, greatly increasing the number of subspace steps in comparison to the partial diagonalization
found in the self-consistent procedure. The runtime parameters for the band structure calculation are
identical to those of the self-consistent charge density calculation, other than the number of k-points.
The results are given in Table 7.5.

7.5.3.1 Profile

Overall, the non-self-consistent computation takes longer than the self-consistent counterpart but
distributes the runtime in very similar proportions to the self-consistent calculation.

Table 7.5 Non-self-consistent bulk Si band structure calculation (Nion = 128, Nband = 320,
Npw = 216,000)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 2934.0 210.1 14.0 375.6 201.1 1.9 251.5 97.4 2.6
Projection 1450.0 57.7 25.1 254.7 63.3 4.0 210.2 53.7 3.9
K and V 421.6 26.9 15.7 73.6 17.9 4.1 73.1 9.7 7.5
Nonlocal 18.3 16.0 1.1 3.3 4.3 0.8 2.5 4.4 0.6
Sub diag 3985.8 173.2 23.0 572.2 144.9 3.9 312.0 104.4 3.0
𝜌-sum 8.2 0.5 16.4 1.0 0.3 3.3 0.7 0.2 3.5
Other 148.1 49.4 3.0 133.9 129.5 1.0 66.4 130.1 0.5

Total 8966.0 533.8 16.8 1414.5 561.3 2.5 916.5 399.9 2.3

Times in seconds, GPU speedup denoted by x.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 157�

� �

�

Plane-Wave Density Functional Theory 157

7.5.3.2 Single-Socket

The GPU implementation performs better in the non-self-consistent calculation than before. The
GPU time is divided in similar proportions but the FFT, projection, and subspace diagonalization
outperform their self-consistent counterparts. The kernels are not parallelized over k-points, so that
the difference is unlikely to have had an effect. The longer path to convergence likely increased
the expansion set sizes, which therefore increased the size of the blocks and batches, improving
occupancy.

7.5.3.3 Scaling

The scaling is very similar to the self-consistent case: FFTs scale very well, but communication in
subspace diagonalization and other reduces the efficiency. The negative effects are somewhat lesser
than in the self-consistent case; for the same reason, the single-socket performance is better: larger
expansion set sizes improve the communication to computation ratios.

7.5.4 AIMD

Born–Oppenheimer MD is the classical movement of the ionic positions under forces derived from
the quantum solution of the electron density. It consists of alternating electronic minimization and
ionic motion steps, the former dominating the latter with respect to computational cost. To demon-
strate the implementations on AIMD, we consider 64 atoms of bulk gold at 1600 K. One full ionic
step is taken, using the RMM-DIIS diagonalizer for electronic minimization. The electronic mini-
mization is performed using a 4 × 4 × 4 k-point grid, with the PBE functional [46]. The plane-wave
cutoff energy was set at 229.9 eV. The results are given in Table 7.6.

7.5.4.1 Profile

Fourier transforms, subspace diagonalization, and projection are the dominant steps, taking 35%,
35%, and 15% of the runtime, respectively. The increase in importance of Fourier transforms and
the associated decrease for subspace diagonalization are due to the use of the faster RMM-DIIS
diagonalizer.

7.5.4.2 Single-Socket

Single-socket performance is 2× faster on the GPU than the CPU-only system. The Fourier trans-
forms, projection, and local action all exhibit better performance than in silicon, which is significant

Table 7.6 Ab-initio molecular dynamics of 64 gold atoms at 1600 K, seen in Figure 7.4 (Nion = 64,
Nband = 422, Npw = 110,592)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 2686.6 164.4 16.3 363.7 164.5 2.2 215.5 99.8 2.2
Projection 1160.1 77.9 14.9 211.6 53.6 4.0 141.3 42.8 3.3
K and V 604.4 37.5 16.1 89.3 22.2 4.0 63.3 14.8 4.3
Nonlocal 86.7 54.4 1.6 12 14.6 0.8 7.1 14.7 0.5
Sub diag 2495.6 208.9 12.0 433.9 160.7 2.7 312.1 120.1 2.6
𝜌-sum 51.7 4.1 12.6 6.7 1.9 3.5 3.4 1.4 2.4
Other 191.1 163.4 1.2 99.6 173.8 0.6 65.3 164.8 0.4

Total 7278.4 710.6 10.2 1216.8 591.3 2.1 808.1 458.4 1.8

Calculation takes only one step and uses the RMM-DIIS diagonalizer.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 158�

� �

�

158 Electronic Structure Calculations on Graphics Processing Units

given this problem’s smaller size. The subspace diagonalization, however, does not experience the
same performance gains as the Davidson diagonalizer used earlier because much less compute time
is spent on dense linear algebra operations, for example, matrix multiplications.

The projection, local action, nonlocal action, and 𝜌-sum sections all improve significantly when
multiple CPU cores are used with a single GPU. These operations are composed of many small
kernels, so the implicit streaming introduced by greater CPU-side parallelism improves occupancy,
as discussed in Section 7.4.2. This trend is present to a lesser degree in silicon, but is emphasized
here by the small size of the system.

7.5.4.3 Scaling

From one to two sockets, the GPU scales at 64% efficiency, compared to 75% for the CPU. The
GPU scaling is hampered by subspace diagonalization and projection, each of which only sees 25%
improvements with double resources. This is mostly because the problem size is small, which causes
both the CPU and GPU to scale poorly. The overall GPU advantage remains steady around 2×. Note
that the Fourier transforms scale just as well as for Si and it is the CPU that is makes up ground thanks
to the significantly increased number of bands.

7.5.5 Structural Relaxation

To demonstrate the implementations on structural relaxation, we consider the boron allotrope hR105.
In the next section, hybrid functionals are demonstrated on this structure. Because of the high cost of
hybrid functionals, this structure is chosen to be particularly small to make the hybrid calculations
tractable.

Structural relaxation is the minimization of the energy with respect to the ionic degrees of freedom.
As in MD, at each step of this process, forces are evaluated and used to update the ionic coordinates.
Depending on the complexity of the considered systems, many algorithms have been designed to
reduce the number of forces evaluations, ranging from the steepest descent that simply follow the
forces to the elaborate limited memory Broyden–Fletcher–Goldfarb–Shanno that make use of the
second derivative of the energy with respect to the ionic positions [47]. Because the ionic positions
converge to a minimization solution, the acceleration of the electronic minimization step due to charge
density reuse is even more pronounced than in MD.

The block Davidson algorithm was used for electronic minimization with the PBE functional [46].
A 2×2×2 k-point mesh and a plane-wave cutoff energy of 318.6 eV were used. The results are given
in Table 7.7.

7.5.5.1 Profile

The dominant steps are Fourier transformation, subspace diagonalization, and projection. Here, pro-
jection takes slightly longer and diagonalization slightly shorter than in the other examples presented

Table 7.7 Structural relaxation of hR105 boron (Nion = 105, Nband = 224, Npw = 110,592)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 442.2 42.6 10.4 61.7 33.8 1.8 34.0 26.4 1.3
Projection 279.9 20.8 13.5 57.9 19.5 3.0 44.9 16.7 2.7
K and V 40.0 6.0 6.7 6.9 3.1 2.2 7.4 6.8 1.1
Nonlocal 3.5 4.3 0.8 0.6 1.2 0.5 0.5 1.5 0.3
Sub diag 338.3 36.0 9.4 53.6 27.9 1.9 35.0 26.5 1.3
𝜌-sum 9.4 0.7 13.4 1.2 0.4 3.0 0.6 0.7 0.9
Other 73.8 63.0 1.1 32.5 47.2 0.7 20.9 41.6 0.5

Total 1187.0 173.4 6.8 214.5 133.1 1.6 143.2 120.2 1.2

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 159�

� �

�

Plane-Wave Density Functional Theory 159

above. This is due to the rapid electronic convergence at the end of the structural relaxation when
the ionic positions do not move much from ionic step to ionic step, which reduces the size of the
expansion sets and therefore subspace diagonalization.

7.5.5.2 Single-Socket

The single-socket performance is similar to that of silicon, but generally worse. For projections and
Fourier transforms, the degradation is due to there being half as many plane waves and therefore half
as much work to parallelize over. Some performance is recovered by running with multiple CPUs per
GPU, as in the case of gold. For subspace diagonalization, the rapid electronic convergence near the
end of the structural relaxation uses smaller expansion sets and therefore small subspace problems,
which are less efficient on the GPU.

7.5.5.3 Scaling

This system, with only 105 atoms and 110,592 plane waves, is simply not large enough to scale well.
Even so, the multi-GPU performance is commensurate with two CPU sockets.

7.6 Exact Exchange with Plane Waves

Traditionally, PWDFT has been employed with explicit density functionals. Recently, extensions to
hybrid functionals employing exact (Hartree–Fock-like) exchange have been made. In hybrid func-
tionals, the exchange energy Ex is approximated as a linear combination [3, 48] of an explicit density
functional, EEF

x and the exact Hartree–Fock exchange term EHF
x :

Ex = 𝛼EHF
x + (1 − 𝛼)EEF

x , (7.48)

where the explicit functional term can similarly be a linear combination of different explicit terms,
such as a local density or generalized gradient approximation. The Hartree–Fock exchange is
given by

Knk,mq = ∫
dr1 ∫

dr2

𝜓∗
nk(r1)𝜓∗

mq(r2)𝜓nk(r2)𝜓mq(r1)
|r1 − r2|

, (7.49)

EHF
x = 1

2

∑
nk
mq

fnk fmqKnk,mq, (7.50)

where fnk is the occupancy of the nth band of the kth reciprocal lattice point, and 𝜓 are the full
single-particle wavefunctions.

The double sum over reciprocal lattice samples and bands adds an order in N to the action of
the Hamiltonian, leading to an (N3 log N) PWDFT method. Therefore, in calculations involving
hybrid functionals, the computation of the Hartree–Fock exchange dominates the resource require-
ments. Furthermore, the iterative diagonalization method should emphasize minimization of the
number of Hamiltonian evaluations rather than orthonormalization, which is only (N3) with a
smaller prefactor. This encourages the use of the Davidson scheme rather than RMM-DIIS.

The wavefunction-dependent part of the action of the Hartree–Fock exchange operator is

⟨r| ̃K[b]|𝜓̃a⟩ = ⟨r|Va,b|r⟩⟨r|𝜓̃b⟩ +
∑

i,j

⟨r|𝛽i⟩Di,j[Va,b]⟨𝛽j|𝜓̃b⟩, (7.51)

⟨r|K̃|𝜓̃a⟩ =
∑

b

⟨r|K̃[b]|𝜓̃a⟩, (7.52)

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 160�

� �

�

160 Electronic Structure Calculations on Graphics Processing Units

where we have compressed the indices a ≡ (n, k), b ≡ (m, q). Va,b is a complex two-particle potential
given by

⟨r|Va,b|r⟩ = fb ∫

⟨r′|𝜌a,b|r′⟩
|r − r′| dr′ (7.53)

𝜌a,b is a two-particle density given by

⟨r|𝜌a,b|r⟩ = ⟨r|𝜓̃a⟩⟨𝜓̃b|r⟩ +
∑

i,j

Qi,j(r)⟨𝛽j|𝜓̃a⟩⟨𝜓̃b|𝛽i⟩ (7.54)

and D is a matrix functional of Va,b given by

Di,j[Va,b] =
∑

r

Qi,j(r)⟨r|Va,b|r⟩. (7.55)

We have written the sum over r′ as an integral in Eq. (7.53) to highlight it as a Poisson solve. As in
the case of USPPs, Q is the nontrivial part of the overlap matrix S − I, and D is a nonlocal potential
D[Va,b] ≡ Vnl

a,b.
The decomposition into a sum over K̃[b] characterizes Hartree–Fock exchange as an all wavefunc-

tion, or orbital-dependent, energy functional. It can be useful to think of the computation as being
over pairs of band indices a, b, akin to Eq. (7.50).

The Hartree–Fock exchange term in VASP [15, 49] has been ported to the GPU [38]. We use this
port to demonstrate the key features of exact exchange on the GPU.

7.6.1 Implementation

The computation of exact exchange can be divided into two phases: the construction phase and the
action phase of the two-particle potential. The construction phase produces the two-particle potential
in local and nonlocal forms, Eqs. (7.53) and (7.55), respectively. The action phase, Eq. (7.51), is the
same operation as the action of the conventional single-particle potentials from Section 7.2.1, the last
two terms of Eq. (7.6). The techniques presented in Section 7.3 can be reused. For that reason, this
section will focus on the construction of the two-particle potential.

7.6.1.1 Two-Sided Projection

As with conventional PWDFT, basis transformations are a large part of exact-exchange calculations.
Here, however, we are also interested in the projection of 2-tensor quantities using Qi,j(r), which was
introduced in Section 7.3.1. Qi,j(r) is a 2,2-tensor that connects diagonal real-space 1,1-tensors to
pairs of projections. The forward transformation is

Di,j[𝜙] =
∑

r

Qi,j(r)𝜙(r), (7.56)

where 𝜙 is an arbitrary diagonal real-space 1,1-tensor. The reverse transformation is

𝜙̂ab(r) =
∑

i,j

⟨r|r′⟩Qi,j(r
′)⟨𝛽i|𝜙a⟩⟨𝜙b|𝛽j⟩, (7.57)

where 𝜙a, 𝜙b are arbitrary vectors, and 𝜙̂ab is their transformation. We will call these two-sided pro-
jections the tensor projection and the procedure described in Section 7.3.1 vector projection.

While this procedure is formally correct, the tensor Q has additional structure that can be exploited
to factorize the computation. Considering that the i, j indices of the projectors run over angular

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 161�

� �

�

Plane-Wave Density Functional Theory 161

momenta, Q can be given additional indices that run over the total angular momentum LM of the
sum of individual angular momenta i and j:

𝜙̂ab(r) =
∑

i,j,L,M

⟨r|r′⟩QL,M
i,j (r′)⟨𝛽i|𝜙a⟩⟨𝜙b|𝛽j⟩. (7.58)

where QLM
i,j (r) has an analytic form that separates the i, j and r dependencies:

QLM
i,j (r) = qLM

i,j gL(|r − R|)YLM(r − R), (7.59)

where R is the position of the ionic center, qi,j are constants, and the YLM functions are the standard
spherical harmonics.

The reverse two-sided projection can be rewritten as

𝜙̂ab(r) =
∑

r′
⟨r|r′⟩

[∑
L,M

gL(|r′ − R|)YLM(r
′ − R)

(∑
i,j

qLM
i,j

⟨
𝛽i|𝜙a

⟩ ⟨𝜙b|𝛽j⟩
)]

. (7.60)

In this context, the two-sided reverse projection is broken into three steps: the transformation from
i, j-space to LM-space, the reverse projection from LM-space to r′-space, and the scatter from r′-space
to the full r-space. The forward two-sided projection can be treated similarly:

Di,j[𝜙] =
∑
L,M

qLM
i,j

[∑
r′

gL(|r′ − R|)YLM(r
′ − R)

(∑
r

⟨
r′|r⟩𝜙(r)

)]
, (7.61)

where we have simply reversed the individual steps.
The scatter/gather and projection from r′ to LM space is exactly of the vector projection from

Section 7.3.1. Therefore, we can reuse the vector projection kernels Listings 1 and 2. The QLM
ij fac-

torization has turned nested loops over (i, j, r) into sequential loops over (i, j) and (r) and facilitated
reuse of the vector projection code. For this reason, we will focus on this method of tensor projection:
that is, projection to LM and transformation from LM to i, j.

7.6.1.2 Two-Particle Pseudo-density

The first term in Eq. (7.54) is an element-wise product in real space. Much like the element-wise
products present in diagonal products for kinetic energy and local potential, this operation is
bandwidth-bound. The number of loads can be reduced by constructing multiple potentials in
blocks, which reuse the wavefunctions. This is demonstrated in Listing 6.

7.6.1.3 Two-Particle Augmentation Density

The second term in Eq. (7.54) is the two-particle reverse projection. Using the form of Eq. (7.60),
one need only compute the transformation given by qLM

i,j :

𝜌̂ab(LM) =
∑

i,j

⟨ub|𝛽i⟩qLM
i,j ⟨𝛽j|ua⟩. (7.62)

This is like computing a generalized inner product for each LM: ⟨ub|q(LM)|ua⟩. Fortunately, there
are only about 10 angular momentum indices i, j,LM per block of Q, so each inner product is small.
Further, qLM

i,j is real.
Because of the small size and mixed-type nature, this operation is hard to perform efficiently using

existing libraries. Instead, a custom kernel that blocks over |ua⟩ can achieve reasonable performance.
An example of such a kernel can be found in Listing 7.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 162�

� �

�

162 Electronic Structure Calculations on Graphics Processing Units

7.6.1.4 Two-Particle Local Potential

Given the two-particle density 𝜌a,b, the evaluation of the two-particle local potential Va,b is a Poisson
solve Eq. (7.53). The Poisson solve in real space is an element-wise product with the vector 1∕|G|2
in reciprocal space:

Vnk,mq(r) = fb

∑
g,r′

⟨r|g⟩
(⟨g|r′⟩ 𝜌nk,mq(r′)

|g + k − q|2
)
, (7.63)

where we have reintroduced the explicit n, k,m, q indices and let ⟨r|V|r⟩ ≡ V(r) and ⟨r′|𝜌|r′⟩ ≡ 𝜌(r′)
to simplify notation. As before, the FFT is used to pass from real to reciprocal space and back again,
⟨g|r⟩ and ⟨r|g⟩, respectively. Multiplication by the kernel takes the same form as the multiplication
by |g + k|2 in the kinetic energy or V loc(r) in the local potential. The custom kernel found in Listing
3 can be reused. The FFTs, of which there are 2N2

b , are very time consuming.

7.6.1.5 Two-Particle NonLocal Potential

The construction of the nonlocal two particle potential Da,b, Eq. (7.55), is the forward tensor
projection:

Di,j[Va,b] =
∑

r′
Qi,j(r

′)⟨r′|r⟩⟨r|Va,b|r⟩⟨r|r′⟩. (7.64)

As with the two-particle augmentation density, one can use the intermediate LM transformation to
factor the projection, as in Eq. (7.61). Using the forward vector projection to go from r-space to
LM-space, the remaining operation is

Di,j[Va,b] =
∑
LM

DLM[Va,b]q
LM
i,j , (7.65)

which is the inverse of Eq. (7.62). Computationally, this is a weighted sum over matrices. Because of
the small size and mixed type, a custom kernel is preferable over library calls. An example of such a
kernel can be found in Listing 8.

7.6.2 Optimization

The key feature of an efficient parallel implementation of exact exchange on the GPU is a flexi-
ble loop-blocking scheme. Such a scheme must facilitate the launch of large data-parallel kernels
to fully occupy a single GPU while providing sufficient decomposition for task parallelism over
multiple GPUs.

When inserted into an iterative diagonalizer, such as those discussed in Section 7.2.5, the action
of the exact-exchange operator must be computed on each band at each k-point. We use the decom-
position given by Eq. (7.52) to recognize this as computing the table of pairwise actions ⟨r|K̃[b]|𝜓̃a⟩
and then summing down the columns.

𝜓̃1 𝜓̃2 𝜓̃3 𝜓̃4 …

K̃[1] ⟨r|K̃[1]|𝜓̃1⟩ ⟨r|K̃[1]|𝜓̃2⟩ ⟨r|K̃[1]|𝜓̃3⟩ ⟨r|K̃[1]|𝜓̃4⟩ …
K̃[2] ⟨r|K̃[2]|𝜓̃1⟩ ⟨r|K̃[2]|𝜓̃2⟩ ⟨r|K̃[2]|𝜓̃3⟩ ⟨r|K̃[2]|𝜓̃4⟩ …
K̃[3] ⟨r|K̃[3]|𝜓̃1⟩ ⟨r|K̃[3]|𝜓̃2⟩ ⟨r|K̃[3]|𝜓̃3⟩ ⟨r|K̃[3]|𝜓̃4⟩ …
K̃[4] ⟨r|K̃[4]|𝜓̃1⟩ ⟨r|K̃[4]|𝜓̃2⟩ ⟨r|K̃[4]|𝜓̃3⟩ ⟨r|K̃[4]|𝜓̃4⟩ …
⋮ ⋮ ⋮ ⋮ ⋮
∑ ⟨r|K̃|𝜓̃1⟩ ⟨r|K̃|𝜓̃2⟩ ⟨r|K̃|𝜓̃3⟩ ⟨r|K̃|𝜓̃4⟩ …

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 163�

� �

�

Plane-Wave Density Functional Theory 163

We would like to block together elements of the double loop used to compute the table. The two
natural options are to block together rows or columns. As written, columns would seem to reuse |𝜓̃a⟩
when computing the action and accumulate into K̃|𝜓̃a⟩, making them the better choice. However, the
two-particle potentials in exact exchange are applied to the b-index wavefunction as opposed to the
a-index wavefunction for conventional potentials. That is, K̃[b]|𝜓̃a⟩ leads to potentials that act on
|𝜓̃b⟩, not |𝜓̃a⟩. Blocking by column will reuse the accumulation destination, while blocking by row
will reuse the b-index wavefunction when computing the action.

The general solution is to block in both: break each row into blocks, but process the blocks by
column.

𝜓̃1 𝜓̃2 𝜓̃3 𝜓̃4 …

K̃[1] ⟨r|K̃[1]|𝜓̃1⟩ ⟨r|K̃[1]|𝜓̃2⟩ ⟨r|K̃[1]|𝜓̃3⟩ ⟨r|K̃[1]|𝜓̃4⟩ …
K̃[2] ⟨r|K̃[2]|𝜓̃1⟩ ⟨r|K̃[2]|𝜓̃2⟩ ⟨r|K̃[2]|𝜓̃3⟩ ⟨r|K̃[2]|𝜓̃4⟩ …
K̃[3] ⟨r|K̃[3]|𝜓̃1⟩ ⟨r|K̃[3]|𝜓̃2⟩ ⟨r|K̃[3]|𝜓̃3⟩ ⟨r|K̃[3]|𝜓̃4⟩ …
K̃[4] ⟨r|K̃[4]|𝜓̃1⟩ ⟨r|K̃[4]|𝜓̃2⟩ ⟨r|K̃[4]|𝜓̃3⟩ ⟨r|K̃[4]|𝜓̃4⟩ …
⋮ ⋮ ⋮ ⋮ ⋮
∑ ⟨r|K̃|𝜓̃1⟩ ⟨r|K̃|𝜓̃2⟩ ⟨r|K̃|𝜓̃3⟩ ⟨r|K̃|𝜓̃4⟩ …

This scheme results in a blocked action and a local accumulation.
The indices a, b are composite indices over (n, k) and (m, q), respectively. Each pair of BZ indices,

(k, q), defines data that is common to the computation of the exchange between wavefunctions at
those BZ points, for example, the g-space vector |g + k − q|−2 and the phase factors exp [ik ⋅ r] and
exp [iq ⋅ r]. Further, PWDFT codes tend to colocate wavefunctions from the same k-point to facilitate
blocking and parallelism in conventional calculations. Therefore, it makes sense to parallelize fully
over the (k, q) pairs. This strategy conflicts with the aforementioned blocking scheme only if the
ideal block size is smaller than the number of wavefunctions per k-point. Such a situation generally
corresponds to a small, computationally cheap calculation, so it should not be the focus of a GPU
implementation.

The kernels provided in Section 7.6.1 are blocked over one band index: a. It should now be clear
why this corresponds to the aforementioned row-blocking scheme. The action kernels in Listings 3
and 4 need to be modified slightly to block over potentials instead of wavefunctions. Additionally,
the two-particle potentials are generally complex. These modifications are straightforward, and left
to the reader.

The optimizations described for the vector projection in Section 7.3.1 should be reused. Because
the LM ↔ i, j transformations given here batch over ions, the streams from vector projection must
be terminated. That is, the vector projection at all ions must be computed first, and then the transfor-
mation from LM to i, j (or vice versa). This separation is, of course, artificial and could be removed
by inlining the LM ↔ i, j transformation into the vector projection. We have not found this step nec-
essary, as the LM ↔ i, j transformation, timed as 𝝆a ,b and D[Va,b] in Section 7.6.3, are inexpensive
compared FFT and vector projection.

7.6.3 Performance/Examples

The techniques described in Sections 7.6.1 and 7.6.2 have been applied to the VASP code [38].
The profile categories used for the conventional calculation are not all appropriate for exact

exchange. The application of the exchange operator dominates the non-exchange action, subspace
diagonalization, and the 𝜌 sum. The construction of the two-particle densities and potential, along

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 164�

� �

�

164 Electronic Structure Calculations on Graphics Processing Units

Table 7.8 Structural relaxation of hR105 boron with exact exchange (Nion = 105, Nband = 224,
Npw = 110,592)

CPU cores/
GPUs

1/0 1/1 x 8/0 8/1 x 16/0 16/2 x

Fourier 14,669.1 492.8 29.8 2,116.0 235.5 9.0 1,151.2 215.7 5.3
Projection 6,429.1 934.2 6.9 1,262.0 957.4 1.3 690.4 550.5 1.3
𝜌a,b 1,233.5 220.5 5.6 208.8 119.3 1.7 117.9 116.9 1.0
Va,b 367.9 39.5 9.3 66.6 12.6 5.3 39.0 16.7 2.3
D[Va,b] 219.6 15.9 13.8 31.2 7.4 4.2 17.6 6.9 2.6
Action 789.4 194.1 4.1 145.3 53.6 2.7 83.6 74.1 1.1
Other 2,188.2 83.5 26.2 399.1 94.2 4.2 1,244.8 72.3 17.2

Total 25,896.6 1,980.5 13.1 4,228.9 1,480.0 2.9 2,344.4 1,053.0 2.2

Times in seconds, GPU speedup denoted by x.

with their action, is more informative. The projection category is extended to include the two-sided
projection. Fourier transforms are used to compute the two-particle potential, and continue to be a
major consumer of computational resources.

• Fourier: transform between r-space and g-space.
• Projection: computation of ⟨𝛽|𝜓⟩.
• 𝜌a,b: computation of two-particle density.
• Va,b: computation of two-particle local potential.
• D[Va,b]: transformation of two-particle nonlocal potential.
• Action: application of potentials to trial vector.

7.6.3.1 Setup

To demonstrate the performance of exact exchange on the GPU, we will revisit the boron structural
minimization calculation from Section 7.5.5, but with exact exchange. Exact exchange is significantly
more costly than conventional calculations, so only a single ionic step is taken. Further, a WAVE-
CAR file is used to initialize the wavefunctions, greatly accelerating self-consistent convergence and
therefore reducing the overall computational cost. In this case, only three electronic steps are needed.
The performance profile is given in Table 7.8.

7.6.3.2 Profile

Fourier transformation and projection are still the two dominant steps, consuming 60% and 25% of
the single-core CPU time, respectively. The computation of the two-particle density and the action
each take around 10% of the runtime. The balance is spent computing the two-particle local and
nonlocal potentials, which is reasonable given that those times exclude Fourier transformation and
projection.

7.6.3.3 Single-Socket

The FFT performs nearly 9× faster on the GPU than a CPU socket. Considering that the GPU
performs the FFT in single precision, this is very close to the 9.6× max speedup for mixed-precision
memory-bound computations. On the other hand, projection is only 1.3× faster on the GPU. The
performance with one and eight cores is comparable, and the projection is streamed, so this is
unlikely due to occupancy. More likely, the very sparse scatter/gather memory access patterns are
unable to take advantage of high-bandwidth coalesced memory accesses. The performance of the
two-particle density and action kernels is poor due to low occupancy. The two-particle potentials

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 165�

� �

�

Plane-Wave Density Functional Theory 165

perform reasonably well because of the large kernel size, but do not make up a significant fraction
of the overall run time.

7.6.3.4 Scaling

The Fourier transforms on the GPU scale favorably from one core to eight cores, considering that
the GPU resources are fixed. This indicates that the Fourier transforms from a single core are not
sufficient to saturate the GPU. Adding a second GPU doesn’t improve performance, so the Fourier
transformation for this problem likely fits within a single GPU.

Projection, on the other hand, does not scale from one to eight cores, but does scale with additional
GPUs. Adding a second GPU doubles the memory bandwidth for the scatter/gather, improving perfor-
mance by 1.7×. The other operations are too small to reasonably expect to benefit from spreading over
multiple GPUs. Fortunately, they take up only a small fraction of the overall runtime, so scalability
is predominantly limited by Fourier transforms.

7.7 Summary and Outlook

The principal steps taken to obtain the electronic structure of a system using a plane-wave basis
set have been reviewed for standard and hybrid DFT. Evaluation of the kinetic, local, and nonlocal
energy components has been detailed mathematically. The numerical implementation of the energy
components has been discussed, bearing in mind their use on GPGPU and more general coprocessor
architectures. The optimization of actual routines from PWDFT for GPU has been described with a
special focus on parallel optimization both on multi-CPU and multi-GPU platforms. Illustration of
this methodology to accelerate the plane-wave VASP code concludes our work: it has been shown
that with proper tuning, a single GPU is generally faster than 16 CPU cores. As the amount of compu-
tation increases, either by increasing the size of the simulated system or by using more costly hybrid
functionals, so does the efficiency of GPUs. Adding two GPUs to a dual socket node can improve
absolute performance by 2–3×.

The methods described in this chapter can provide a base for future implementations of PWDFT
on GPU and coprocessor architectures, but must be supplemented by deep profiling to account for
platform-specific resources, bandwidths, and latencies. GPU technology is progressing quickly, offer-
ing larger and faster memory, more processors, and increased functionality. The future thus promises
even better code performance on GPUs.

Acknowledgments

The authors would like to warmly thank S. Steinman, M. Widom, T. Guignon for thoughtful com-
ments, as well as all the members of the Nvidia VASP team, who continue to support and advance
VASP on the GPU.

References

1. Hohenberg, P. and Kohn, W. (1962) Inhomogeneous electron gas. Phys. Rev., 155, 1964.
2. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation

effects. Phys. Rev., 140, A1133–A1138.
3. Martin, R.M. (2004) Electronic Structure: Basic Theory and Practical Methods, Cambridge Uni-

versity Press.
4. Dedieu, A. (2000) Theoretical studies in palladium and platinum molecular chemistry. Chem.

Rev., 100 (2), 543–600.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 166�

� �

�

166 Electronic Structure Calculations on Graphics Processing Units

5. Cundari, T.R. (ed.) (2001) Computational Organometallic Chemistry, Marcel Dekker, New
York.

6. Sousa, S.F., Fernandes, P.A. and Ramos, M.J. (2007) General performance of density functionals.
J. Phys. Chem. A, 111 (42), 10439–10452.

7. Bachrach, S.M. (2007) Computational Organic Chemistry, Wiley-Interscience, Hoboken, NJ.
8. Slater, J. and Koster, G. (1954) Simplified LCAO method for the periodic potential problem.

Phys Rev., 94, 1498–1524.
9. Feenstra, R.M., Srivastava, N., Gao, Q., Widom, M., Diaconescu, B., Ohta, T. et al. (2013)

Low-energy electron reflectivity from graphene. Phys. Rev. B, 87 (4), 041406.
10. Hamann, D.R., Schlüter, M. and Chiang, C. (1979) Norm-conserving pseudopotentials. Phys.

Rev. Lett., 43, 1494–1497.
11. Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formal-

ism. Phys. Rev. B, 41, 7892–7895.
12. Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B, 59 (3), 11–19.
13. Blöchl, P.E. (1994) Projector augmented-wave method. Phys. Rev. B, 50 (24), 17953–17979.
14. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C. et al. (2009) QUAN-

TUM ESPRESSO: a modular and open-source software project for quantum simulations of
materials. J. Phys. Condens. Matter, 21 (39), 395502.

15. Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6 (1), 15–50.

16. Segall, M., Lindan, P.J., Probert, M., Pickard, C., Hasnip, P., Clark, S. et al. (2002)
First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens.
Matter, 14 (11), 2717.

17. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K. et al. (2005) First
principles methods using CASTEP. Z. Kristallogr., 220 (5–6), 567–570.

18. Gygi, F., Yates, R.K., Lorenz, J., Draeger, E.W., Franchetti, F., Ueberhuber, C.W. et al. (2005)
Large-scale first-principles molecular dynamics simulations on the Bluegene/l platform using the
Qbox code. Proceedings of the 2005 ACM/IEEE conference on Supercomputing, IEEE Com-
puter Society, p. 24.

19. Gygi, F. (2008) Architecture of Qbox: a scalable first-principles molecular dynamics code. IBM
J. Res. Dev., 52 (1.2), 137–144.

20. Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formal-
ism. Phys. Rev. B, 25 (23), 4228.

21. Marx, D. and Hutter, J. (2009) Ab Initio Molecular Dynamics: Basic Theory and Advanced
Methods, Cambridge University Press, New York.

22. Wood, D.M. and Zunger, A. (1985) A new method for diagonalising large matrices. J. Phys. A:
Math. Gen., 18 (9), 1343.

23. Teter, M.P., Payne, M.C. and Allan, D.C. (1989) Solution of Schrödinger’s equation for large
systems. Phys. Rev. B, 40, 12255–12263.

24. Bylander, D.M., Kleinman, L. and Lee, S. (1990) Self-consistent calculations of the energy bands
and bonding properties of B12C3. Phys. Rev. B, 42, 1394–1403.

25. Davidson, E.R. (1975) The iterative calculation of a few of the lowest eigenvalues and corre-
sponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17 (1), 87–94.

26. Davidson, E.R. (1978) in Report on the Workshop “Numerical Algorithms in Chemistry: Alge-
braic Methods” (eds C. Moler and I. Shavitt), University of California, Lawrence Berkeley
Laboratory, p. 15.

27. Liu, B. (1978) in Report on the Workshop “Numerical Algorithms in Chemistry: Algebraic Meth-
ods” (eds C. Moler and I. Shavitt), University of California, Lawrence Berkley Laboratory,
p. 49.

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 167�

� �

�

Plane-Wave Density Functional Theory 167

28. Davidson, E.R. (1983) in Methods in Computational Molecular Physics (eds G.H.F. Diercksen
and S. Wilson), Plenum Publishing Corporation, New York, p. 95.

29. Kresse, G. and Furthmüller, J. (1996) Efficient iterative schemes for Ab initio total-energy cal-
culations using a plane-wave basis set. Phys. Rev. B, 54 (16), 11169–11186.

30. Mostofi, A.A., Haynes, P.D., Skylaris, C.K. and Payne, M.C. (2003) Preconditioned iterative
minimization for linear-scaling electronic structure calculations. J. Chem. Phys., 119 (17),
8842–8848.

31. Teter, M.P., Payne, M.C. and Allan, D.C. (1989) Solution of Schrödinger’s equation for large
systems. Phys. Rev. B, 40, 12255–12263.

32. Parlett, B.N. (1980) The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ.
33. Pulay, P. (1980) Convergence acceleration of iterative sequences. The case of SCF iteration.

Chem. Phys. Lett., 73 (2), 393–398.
34. CUDA BLAS Library, Available from http://developer.nvidia.com/cublas (accessed

30 September 2015).
35. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J. et al. (2009) Numerical

linear algebra on emerging architectures: the PLASMA and MAGMA projects. J. Phys. Conf.
Ser., 180, 012037.

36. Methfessel, M. and Paxton, A. (1989) High-precision sampling for Brillouin-zone integration in
metals. Phys. Rev. B, 40 (6), 3616–3621.

37. Marzari, N., Vanderbilt, D., Vita, A.D. and Payne, M. (1999) Thermal contraction and disorder-
ing of the Al (110) surface. Phys. Rev. Lett., 82 (16), 3296–3299.

38. Hutchinson, M. and Widom, M. (2012) VASP on a GPU: application to exact-exchange calcu-
lations of the stability of elemental boron. Comput. Phys. Commun., 1, 1–5.

39. Spiga, F. and Girotto, I. (2012) phiGEMM: a CPU-GPU library for porting Quantum
ESPRESSO on hybrid systems. 20th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP).

40. Maintz, S., Eck, B. and Dronskowski, R. (2011) Speeding up plane-wave electronic-structure
calculations using graphics-processing units. Comput. Phys. Commun., 1, 1–7.

41. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T. and Fleurat-Lessard,
P. (2012) Accelerating VASP electronic structure calculations using graphic processing units. J.
Comput. Chem., 33 (32), 2581–2589.

42. Tariq, S., Bédorf, J., Stosic, D., Anciaux-Sedrakian, A., Hutchinson, M., Widom, M. et al. (2015)
GPU Acceleration of the Block Davidson, RMM-DIIS and Exact-Exchange algorithms of VASP,
to be submitted.

43. Monkhorst, H.J. and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Phys. Rev.
B, 13, 5188–5192.

44. Perdew, J.P. and Wang, Y. (1992) Accurate and simple analytic representation of the electron-gas
correlation energy. Phys. Rev. B, 45, 13244.

45. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. et al. (1992)
Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation
for exchange and correlation. Phys. Rev. B, 46, 6671–6687.

46. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation made
simple. Phys. Rev. Lett., 77, 3865–3868.

47. Nocedal, J. and Wright, S.J. (2006) Numerical Optimization, Springer Series in Operations
Research, 2nd edn, Springer-Verlag, New York.

48. Becke, A. (1993) A new mixing of Hartree-Fock and local density?functional theories. J. Chem.
Phys., 98 (2), 1372–1377.

49. Paier, J., Hirschl, R., Marsman, M. and Kresse, G. (2005) The Perdew-Burke-Ernzerhof
exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J.
Chem. Phys., 122 (23), 234102.

http://developer.nvidia.com/cublas

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 168�

� �

�

168 Electronic Structure Calculations on Graphics Processing Units

Appendix A: Definitions and Conventions
Ĥ Hamiltonian operator
T̂ Kinetic energy operator
H(k) k-Dependent Hamiltonian matrix
V̂ loc Local potential
V̂nl Non-local potential
Ψ̃ Pseudo-wavefunction (in PAW)
𝜙̂n Approximate wavefunction in iterative diagonalization
ne Number of electrons
Npw Number of plane waves
Nband Number of bands included in calculation
Ne Bands with non zero occupation. Ne ≿ ne

Ω Unit Cell Volume
fn,k Occupancy of monoelectronic wavefunction 𝜓nk

𝜓nk Monoelectronic wavefunction
unk Periodic part of the monoelectronic function. As the wavefunction 𝜓nk is closely related to

unk by the Bloch theorem, in the following, we will often use an approximate shortcut
and refer to unk as the wavefunction.

Appendix B: Example Kernels

We provide here reference implementations of common kernels in plane-wave DFT. These kernels
can be found in source form on Github.2.

static __global__ void proj_forward_k(cuDoubleComplex *phase ,
cuDoubleComplex *u_r ,
cuDoubleComplex *u_rp ,
int *perm ,
int size ,
int p_size ,
int nband

){
const int tdx = threadIdx .x + blockIdx.x * blockDim.x;
const int nthread = blockDim.x * gridDim.x;
int idx;
cuDoubleComplex phase_local ;

for (int i = tdx; i < p_size; i += nthread){
idx = perm[i] - 1;
phase_local = phase[i];
for (int j = blockIdx.y; j < nband; j += gridDim.y){

u_rp[i + j*p_size].x = phase_local .x * u_r[idx + j*u_size].x
- phase_local .y * u_r[idx + j*u_size].y;

u_rp[i + j*p_size].y = phase_local .x * u_r[idx + j*u_size].y
+ phase_local .y * u_r[idx + j*u_size].x;

}
}

}

Listing 1 Forward projection in real-space

2 https://github.com/maxhutch/pwdft_supplement.

https://github.com/maxhutch/pwdft_protect LY1	extbraceleft sprotect LY1	extbraceright upplement

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 169�

� �

�

Plane-Wave Density Functional Theory 169

static __global__ void proj_reverse_k(cuDoubleComplex *phase ,
cuDoubleComplex *u_r ,
cuDoubleComplex *u_rp ,
int *perm ,
int u_size ,
int p_size ,
int nband

){
const int tdx = threadIdx.x + blockIdx.x * blockDim.x;
const int nthread = blockDim.x * gridDim.x;
int ind;
cuDoubleComplex phase_l;

for (int i = tdx; i < p_size; i += nthread){
idx = perm[i] - 1;
phase_l = phase[i];
for (int j = blockIdx.y; j < nband; j += gridDim.y){

u_r[idx + j*u_size].x += phase_l.x * u_rp[i + j*p_size].x
+ phase_l.y * u_rp[i + j*p_size].y;

u_r[idx + j*u_size].y += phase_l.x * u_rp[i + j*p_size].y
- phase_l.y * u_rp[i + j*p_size].x;

}
}

}

Listing 2 Reverse projection in real-space

static __global__ diagonal_kernel(
double *g2_or_V ,
cuDoubleComplex *u,
int u_size ,
int num

){
const int tdx = threadIdx .x + blockIdx.x * blockDim.x;
const int nthread = blockDim.x * gridDim.x;

for (int i = tdx; i < u_size; i+= nthread){
for (int j = blockIdx.y; j < num; j+= gridDim.y){

u[i + j*u_size] = u[i + j*u_size] * g2_or_V[i];
}

}
}

Listing 3 Diagonal action kernel

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 170�

� �

�

170 Electronic Structure Calculations on Graphics Processing Units

static __global__ vnl_uspp_kernel(double *Vnl ,
/* <\beta_i|u_nk > */ cuDoubleComplex *betaU ,
/* <\beta_j|V^{nl}|u_nk > */ cuDoubleComplex *VnlBetaU ,

int nion ,
int N_l ,
int num

){
__shared__ Vnl_s[N_l*N_l];
cuDoubleComplex VnlBetaU_local;

// one block per ion
for (i = blockIdx .x; i < nion; i+= gridDim .x){

// Store Vnl in shared per block
for (j = threadIdx .x; j < N_l *N_l; j++)

Vnl_s[j] = Vnl[j + i * N_l * N_l];
__syncthreads();

// one thread per projection
for (j = threadIdx .x; j < N_l *num; += blockDim .x){

l1 = j % N_l ;
VnlBetaU_local = 0.;
for (l2 = 0; l2 < N_l; l2 ++){

VnlBetaU_local += Vnl[l1+N_l*l2] * betaU[l2 + i*N_l + (j/N_l)*nion*N_l];
}
VnlBetaU [l1 + i*N_l + (j/N_l)* nion*N_l] = VnlBetaU_local;

}
}

}

Listing 4 Nonlocal potential kernel

static __global__ square_sum_kernel(cuDoubleComplex *u_r ,
double *rho ,
double *occ ,
int size ,
int num

){
const int idx = threadIdx .x + blockIdx.x * blockDim.x;
const int nthreads = blockDim.x * gridDim.x;
double rho_l;

for (i = idx; i < size; i+=nthreads){
rho_l = 0.;
for (j = threadIdx.y; j < num; j+= blockDim.y){

rho_l += occ[j] *
(u_r[i+j*size].x * u_r[i+j*size].x
- u_r[i+j*size].y * u_r[i+j*size].y);

}
atomicAdd (rho + i, rho_l);

}
}

Listing 5 Density accumulation kernel

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 171�

� �

�

Plane-Wave Density Functional Theory 171

static __global__ void el_prod_k(
cuDoubleComplex *uA_r ,
cuDoubleComplex *uB_r ,
cuDoubleComplex *rhoAB ,
int n,
int nband

){
const int nthreads = blockDim.x * gridDim.x;
const int idx = threadIdx .x + blockIdx.x * blockDim.x;
cuDoubleComplex uA_l;

// Loop over spatial index
for (int i = idx; i < n; i+= nthreads){

uA_l = uA_r[i]; // load to register

// Loop over B
for (int j = blockIdx.y; j < nband; j+= gridDim.y){
// Compute <r_i|u_A > <u_B|r_i >
rhoAB[i+j*n].x = uB_r[i+j*n].x * uA_l.x + uB_r[i+j*n].y * uA_l.y;
rhoAB[i+j*n].y = uB_r[i+j*n].y * uA_l.x - uB_r[i+j*n].x * uA_l.y;

}
}

}

Listing 6 Plane-wave two-particle density kernel

static __global__ void IJ_trans_LM_k(
cuDoubleComplex *uA_b , //!< block of wavefunctions
cuDoubleComplex *uB_b , //!< one wavefunction
double * q_ijlm , //!< transformation matrix
cuDoubleComplex *rhoAB_lm , //!< output
int nion , //!< number of ions of this type
int ij_max , //!< lmmax for wavefunction of this type
int npro_w , //!< size of wavefunction projection
int lm_max , //!< lmmax for projectors of this type
int npro_p , //!< total projectors per band
int q_dim , //!< extent of first 2 dims of q
int nband //!< number of bands

){

cuDoubleComplex tmp;

cuDoubleComplex *uA_p , * rhoAB_p;
int i, j, a, lm , comp , band;

/* Blocks loop over bands */
for (band = blockIdx .x; band < nband; band += gridDim .x){

uA_p = uA_b + band * npro_w; rhoAB_p = rhoAB_lm + band * npro_p;
/* Threads loop over (ions , LM numbers) */
for (comp = threadIdx .x; comp < nion*lm_max; comp += blockDim .x){

a = comp / lm_max; lm = comp % lm_max;
/* Inner product < uB | q(LM) | uA > */
for (j = 0; j < ij_max; j++){

for (i = 0; i < ij_max; i++){
rhoAB_p [comp].x += q_ijlm[lm*Q_dim*Q_dim + j*Q_dim + i]

* (uA_p[a*ij_max + j].x * uB_b[a*ij_max + i].x
+ uA_p[a*ij_max + j].y * uB_b[a*ij_max + i].y
);

rhoAB_p [comp].y += q_ijlm[lm*Q_dim*Q_dim + j*Q_dim + i]
* (uA_p[a*ij_max + j].y * uB_b[a*ij_max + i].x
- uA_p[a*ij_max + j].x * uB_b[a*ij_max + i].y
);

}
}

}
}

}

Listing 7 i, j → LM transform

Trim Size: 170mm x 244mm Walker c07.tex V3 - 01/08/2016 9:51 A.M. Page 172�

� �

�

172 Electronic Structure Calculations on Graphics Processing Units

static __global__ void LM_trans_IJ_k(
cuDoubleComplex* Dij , //!< (i,j) non -local potential
cuDoubleComplex* Dlm , //!< (LM) non -local potential
double* q_ijlm , //!< q_{i,j}^{ LM} transformation
int nion , //!< number of ions of this type
int ij_max , //!< number of (i,j) angular momentum
int lm_max , //!< number of LM total angular momentum
int q_dim , //!< dimesion of D (q_dim >= ij_max)
int size_ij , //!< size of each band’s D_{i,j}
int size_lm , //!< size of each band’s D_{LM}
int nband //!< number of bands

){
cuDoubleComplex *Dlm_p , Dije;
int a, i, j, lm , k, band;

/* Blocks loop over bands */
for (band = blockIdx .x; band < nband; band += gridDim .x){

Dlm_p = Dlm + band * size_lm ;
for (a = 0; a < nion; a++){

/* Threads loop over i,j angular momenta (padded to q_dim) */
for (ij = threadIdx .x; ij < q_dim*ij_max; ij += blockDim .x){

Dije = Dij [ij + a * q_dim * q_dim + band*size_ij];
/* Weighted sum of q_ijlm */
for (lm = 0; lm < lm_max; lm ++){

Dije.x += Dlm_p[lm + a * lm_max + band * size_lm].x
* q_ijlm [ij + lm * q_dim * q_dim];

Dije.y += Dlm_p[lm + a * lm_max + band * size_lm].y
* q_ijlm [ij + lm * q_dim * q_dim];

}
Dij [ij + a * q_dim * q_dim + band*size_ij] = Dije;

}
}

}
}

Listing 8 LM → i, j transform

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 173�

� �

�

8
GPU-Accelerated Sparse

Matrix–Matrix Multiplication for
Linear Scaling Density Functional

Theory

Ole Schütt1, Peter Messmer2,3, Jürg Hutter4 and Joost VandeVondele1

1Department of Materials, ETH Zürich, Zürich, Switzerland
2NVIDIA, Zürich, Switzerland

3NVIDIA Co-Design Lab for Hybrid Multicore Computing, Zürich, Switzerland
4Institute of Physical Chemistry, University of Zürich, Zürich, Switzerland

This chapter discusses how GPUs can be exploited to accelerate sparse matrix–matrix multiplications
as required to solve the self-consistent field equations in linear scaling density functional theory cal-
culations. We present the DBCSR sparse matrix multiplication library and describe the algorithms
that are used to achieve maximum performance on distributed multicore and hybrid CPU/GPU archi-
tectures. Our numerical results demonstrate the efficiency of this linear scaling GPU-based imple-
mentation on supercomputers for very large simulations. This paves the way for scientific applications
based on three-dimensional models consisting of 10,000 atoms or more.

8.1 Introduction

8.1.1 Linear Scaling Self-Consistent Field

With the steady increase in computer power available, larger and larger systems are simulated using
electronic structure methods. These large simulations expose the asymptotic scaling of the traditional
algorithms used in electronic structure calculations. Many of the traditional algorithms have a cubic
or higher scaling with system size, effectively blocking the path to very large scale simulations.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 174�

� �

�

174 Electronic Structure Calculations on Graphics Processing Units

However, it is known that effective interactions are short-ranged for many systems, which can be
exploited in linear scaling methods [1, 2]. Consequently, much effort has been spent in developing
algorithms with a computational cost that scales linearly with system size. Originally, most appli-
cations and benchmarks of these methods were restricted to systems with a quasi-one-dimensional
structure, where the prefactor of linear scaling methods is very favorable. Now, the huge increase
in computational power and the refinement of the algorithms have made it possible to study sci-
entifically relevant three-dimensional (3D) systems. Basis sets of good quality and tight numerical
thresholds can be employed, essentially allowing an accuracy that is identical to that of the cubic
scaling methods.

For the important class of mean field methods, for example, Hartree–Fock and Kohn–Sham (KS)
density functional theory (DFT), linear scaling methods have to address the buildup of the Hamilto-
nian matrix (KS matrix) and the solution of the self-consistent field (SCF) equations (see Figure 8.1).
Many different algorithms for these two tasks have been proposed, and a detailed discussion can be
found in a recent review [2]. Here, we concentrate on methods for the solution of the KS equation,
that is, replacements for the KS matrix diagonalization, that directly calculate the one-particle den-
sity matrix and are implemented in the CP2K simulation package [3, 4]. The impact of such methods
on the computational cost of 3D systems can be inferred from the curves in Figure 8.2, where the
simulation times for the calculation of the electronic structure of bulk liquid water for conventional
cubically scaling and linear scaling methods are compared.

The most basic algorithm investigated is based on the matrix sign function, which can be defined as

sign(A) = A(A2)−(1∕2). (8.1)

For diagonalizable A, the eigenvectors of A are the eigenvectors of sign(A), with the eigenvalues of
sign(A) being−1 or+1 for negative or positive eigenvalues of A, respectively. Various simple iterative

Guess initial density ρ

Dense linear algebra

Sparse linear algebra

Calculate energy from ρ

S
C

F
 i
te

ra
ti
o
n

Calculate matrix H from ρ
Costs: (N), but dominates for small systems

Calculate

eigenvectors i of H
Costs: (N3) Calculate ρ directly as

matrix function of H
Costs: (N)

Calculate new density

ρ = ∑i ∣ i∣
2

Figure 8.1 Workflow for a self-consistent electronic structure calculation, illustrating both the use of tra-
ditional O(N3) as well as O(N) methods

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 175�

� �

�

Sparse Matrix Multiplication 175

7000

6000

5000

4000

3000

2000

1000

0

Matrix dimension

T
im

e
 (

s
e

c
o

n
d

s
)

Diagonalization: DZVP

Diagonalization: SZV

Linear scaling: DZVP

Linear scaling: SZV

0

100,000

200,000

300,000

400,000

500,000

Figure 8.2 Direct comparison of the time needed for calculations on bulk liquid water using linear scaling
and diagonalization-based SCF procedures. For matrices larger than 20,000 basis functions, a speedup is
observed (filtering threshold 10−5). Note that for linear scaling approaches, the time needed depends not
only on the matrix size but also on the sparsity pattern, and hence better quality basis sets typically have
a larger relative cost

algorithms are available to compute the matrix sign function [5], and these approaches have found
early application [6, 7]. These algorithms converge super-linearly and are numerically stable. The
simplest form, which only requires two matrix multiplies per iteration, is (I is the identity matrix)

Xn+1 =
1
2

Xn(3I − X2
n). (8.2)

For X0 = cA and c < ‖A‖−1, this iteration converges quadratically to X∞ = sign(A). The convergence
criterion employed terminates the iteration at Xn+1 if ‖I − X2

n‖F <
√
𝜖filter‖X2

n‖F , where ‖.‖F is the
Frobenius norm. Since the algorithm is quadratically convergent, near convergence each iteration
will approximately double the number of correct digits in the solution.

Linear scaling results from the fact that all matrix operations are performed on sparse matrices,
which have a number of nonzero entries per row that is independent of system size. In order to
retain sparsity during the iterations, a threshold (𝜖filter) is employed to set small entries to zero after
multiplication, thereby reducing the data volume and speeding up the following multiplies.

The density matrix P corresponding to a given Hamiltonian matrix H, overlap matrix S and chem-
ical potential 𝜇 can be computed as

P = 1
2
(I − sign(S−1H − 𝜇I))S−1. (8.3)

The important idempotency (PSPS = PS) and commutativity (SPH-HPS=0) conditions, equivalent to
wave function orthonormality, are automatically satisfied. The number of electrons Nel is determined
by the chemical potential 𝜇, and can be obtained from Nel = trace(PS). S−1 is computed conveniently
using S−1 = S−(1∕2)S−(1∕2) where the square root and inverse square root can be obtained from

sign

([
0 A
I 0

])
=
([

0 A(1∕2)

A−(1∕2) 0

])
. (8.4)

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 176�

� �

�

176 Electronic Structure Calculations on Graphics Processing Units

A stationary solution of the self-consistent equations can be obtained by a simple mixing approach:

Pn+1 =
1
2
(I − sign(S−1Ĥn − 𝜇nI))S−1,

Ĥn+1 = (1 − 𝛼)Ĥn + 𝛼Hn+1,

where 𝛼 is a mixing parameter between 0 and 1, and Ĥn, an auxiliary matrix. The fixed point implies
that Ĥn = Hn and thus SPnHn − HnPnS = 0. For each iteration, the total electronic energy (En) and
Hamiltonian matrix (Hn) are computed from the density matrix Pn. The value of the chemical potential
𝜇n is determined by bisecting a suitable interval until |trace(Pn+1S) − Nel| < 1

2
, for a given Nel. Note

that the trace(Pn+1S) is integer-valued unless finite accuracy is employed in the calculation of the
sign function. For a given SCF threshold (𝜖SCF), the convergence criterion employed is En − En−1 <

𝜖SCFNel.
More advanced algorithms that still use fix point iterations exist. They include the optimization

of the chemical potential [8] as part of the density matrix computation, and achieve faster conver-
gence by relaxing absolute trace conservation [9]. These methods represent a significant advantage
over the sign matrix iteration, if the chemical potential is not known in advance, as the cumbersome
bisection can be omitted. Also trace resetting (TRS) purification starts from a normalized Hamilto-
nian matrix (X0, eigenvalues in the interval [0, 1]). The algorithm then calls for iterations where the
update depends on the value of the quantity 𝛾n = (N − trace( (Xn)))∕trace((Xn)).

𝛾n Update

𝛾n > 𝛾max Xn+1 = 2Xn − X2
n

𝛾n < 𝛾min Xn+1 = X2
n

𝛾n ∈
[
𝛾min, 𝛾max

]
Xn+1 =  (Xn) + 𝛾n(Xn)

The choice of the polynomial functions  and  is not unique, but an efficient algorithm (TRS4)
is achieved by using

 (x) = x2(4x − 3x2), (8.5)

(x) = x2(1 − x)2. (8.6)

For this choice of polynomials the values for 𝛾min and 𝛾max are 0 and 6, respectively.
Another class of algorithms aims at a direct minimization of the energy functional, avoiding the

self-consistent mixing, and thus adding robustness. To achieve this, the constraints on the density
matrix have to be included into the algorithm. In the work of Li et al. [10] this was achieved by using
an extended energy functional. Helgaker et al. [11]. proposed a parameterization of the density matrix,
that conserves idempotency. Within this curvy-step method [12, 13], starting from an idempotent P0,
as obtained for example from the TRS method, one performs updates of the form

Pn+1 = e−ΔSPneΔS, (8.7)

where Δ is an anti-Hermitian matrix, Δ† = −Δ. This unitary transformation is evaluated using the
Baker–Campbell–Hausdorff expansion

Pn+1 = Pn + [Pn,Δ]S +
1
2
[[Pn,Δ]S,Δ]S +

1
6
[[[Pn,Δ]S,Δ]S,Δ]S + · · · , (8.8)

where the commutator within a nonorthogonal basis is

[X,Δ]S = XSΔ − ΔSX. (8.9)

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 177�

� �

�

Sparse Matrix Multiplication 177

In the minimization, the matrix elements of the curvy-step matrix Δ are the free variables and are
calculated from the energy gradient

𝜕E
𝜕Δ

= [H,Pn]S (8.10)

using, for example, a steepest descent, conjugate gradient, or a Newton–Raphson method.
All of the above algorithms have in common that matrix multiplication is the dominant operation.

The performance of the underlying sparse matrix multiplication routines is of paramount importance
for the overall computational efficiency.

8.1.2 DBCSR: A Sparse Matrix Library

The linear scaling SCF implementation in CP2K is centered around sparse matrix–matrix multipli-
cation [3, 4]. This choice is motivated by the fact that matrix multiplication is a basic primitive that
is suitable for a high performance parallel implementation. Furthermore, this operation can be used
to compute matrix functionals, such as, for example, inv, sqrt, sign, and exponential. Surprisingly, no
established software library is available that performs a parallel sparse matrix–matrix multiplication.
Such a library should, in the context of quantum chemistry, exploit the concept of sub-matrix blocks,
rather than individual elements for a description of the sparsity pattern. These sub-matrix blocks, also
named atomic blocks as they correspond to basis functions of an atom, are small (typical numbers
are 5, 13, 23), and exploiting them is key to achieve good performance. Furthermore, as most cal-
culations are currently performed near the cross-over regime between dense and sparse, the library
must be highly efficient for relatively high occupations (e.g., 50% non-zero elements), and 10,000s of
non-zeros per row, while optimal performance for very sparse matrices (<1–5% non-zero elements)
will become more important in the future. In order to address these needs, a general purpose sparse
matrix library has been developed [14]. This library is currently distributed as part of the CP2K pack-
age, but it is our aim to provide a general purpose sparse matrix library that can ultimately be made
available as a fully independent tool. The name of the library is DBCSR, which is an abbreviation
for Distributed Blocked Compressed Sparse Row or Distributed Blocked Cannon Sparse Recursive.
The full names emphasize the storage format or the multiplication algorithm, respectively. Data is
stored distributed over all processes, using a blocked variant of the compressed sparse row storage
format. The parallel algorithm to perform the matrix–matrix multiplication is based on the Cannon
scheme [15], which is optimal in the dense case, if memory is a limited resource. In particular, it
guarantees that communication per process decreases with increasing process count, and is free from
all-to-all communication. These properties guarantee strong scaling of the algorithm, and good per-
formance in the dense limit. Nevertheless, sparse matrix multiplication has O(N) flops and O(N) data,
and reaching peak performance is thus difficult. The ratio of flops to data does not depend on system
size, but rather on the number of non-zeros per row. The latter depends typically on the accuracy
of the calculation, such as tighter filtering thresholds and larger basis sets in our quantum chemical
applications. We refer to Ref. [14] for an in-depth discussion. In the following, we focus on those
aspects that are important in the context of GPU-acceleration, and on the recent developments that
have enabled a significant increase in accelerated performance.

8.2 Software Architecture for GPU-Acceleration

In this section, we outline the various layers of the DBCSR matrix multiplication architecture.
It has been designed to decouple the various steps of the calculation, and is schematically
shown in Figure 8.3. As we go down the layers, the granularity of the data becomes smaller and

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 178�

� �

�

178 Electronic Structure Calculations on Graphics Processing Units

Cluster

Node

GPU

Cannon
MPI parallelization

Multrec
Cache optimization

CSR
Stack generation

Scheduler
CPU/GPU load balancing

Host driver Cuda driver
fallback

LibsmmBLAS Libcusmm

Figure 8.3 A schematic representation of the software architecture employed in the GPU accelerated
DBCSR library. The various layers correspond to key steps in the matrix multiplication algorithm. While
the Cannon layer is essential for the parallelism between processes or on the cluster level, the lower layers
deal with parallelism and acceleration on the node level

the computational workload increases. The higher layers manage data transfers, optimize data
access, and enable asynchronous progress. These steps are essential to fully benefit from the high
performance that modern CPUs and GPUs offer.

8.2.1 Cannon Layer

The top-most layer deals with the parallelization of the matrix multiplication over the nodes of a
cluster, and enables good parallel performance by managing the message passing between MPI pro-
cesses. One MPI process can consist of several CPU threads, based on OpenMP, and can off-load to
a dedicated or shared GPU. For the MPI-parallelization, the sparse matrices are divided into large
sparse sub-matrices named panels. These panels are regular in shape, and by a suitable row and col-
umn permutation, the sparsity pattern has been homogenized so that all panels contain approximately
the same amount of data, which is favorable for load-balancing the calculations. These panels are dis-
tributed over a regular 2D grid of processes and Cannon’s algorithm [15] is used to communicate
these panels between processes in a regular and ordered fashion, according to “ticks” in the Can-
non metronome. In each tick of Cannon’s algorithm, each process sends and receives two panels,
multiplies the two panels that are available, and accumulates the results locally. As discussed below,
messages can be processed asynchronously, that is, be in transit over the network, while computation
takes place. The panel data are also uploaded to the GPU in this layer. Our approach to enable the
asynchronous message passing and uploads will be discussed in more detail below. The following,
lower layers deal with the node local multiplication of panels.

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 179�

� �

�

Sparse Matrix Multiplication 179

8.2.2 Multrec Layer

The multrec layer is a high level node-local layer that aims at optimizing memory access, in particular
by exploiting the deep cache hierarchy of modern processors. Indeed, even for a standard dense
matrix multiplication, optimal data reuse is essential to reach good performance. Usually, detailed
knowledge of the hardware architecture can be combined with the well known data-access pattern of a
dense matrix multiplication to optimally block matrices and to guarantee best cache reuse. However,
due to the unknown sparsity pattern and relatively complicated data structures, this approach is not
general enough in the sparse case. An alternative technique, also derived in the context of dense matrix
multiplication is therefore employed, which instead uses a recursive approach to matrix multiplication
[16]. Matrices are multiplied by recursively dividing the longest dimension of the matrix in two, until
sufficiently small matrix dimensions have been obtained and all the data fits fully into a low-level
cache. This cache-oblivious algorithm results in a near-optimal data access pattern for dense matrices,
without explicit knowledge of the cache hierarchy, and is easily adapted to the sparse case.

8.2.3 CSR Layer

The compressed sparse row layer, or CSR layer, determines from the CSR data which blocks have
to be multiplied. It is important to emphasize that the sparsity pattern of the result matrix is not fixed
or known a priori, so that this processes is driven by the right-hand side of the equation (C = AB).
In DBCSR, a two step approach, well suitable for GPUs, has been adopted. It separates perform-
ing the actual floating point operations from the indexing and book-keeping. The CSR layer per-
forms the latter, on the host, deferring flops to lower layers. During the indexing, lists of needed
block-multiplications, named “stacks” are generated, and passed on to the lower scheduling layers,
that is, are flushed, as soon as the limited space of a stack is exhausted, or the end of a Cannon tick
is reached. In order to allow for efficient processing, so-called homogeneous stacks are employed
for the most common block sizes, these contain entries that have all the same block-dimensions,
while a default stack contains the remaining cases. An important optimization has been introduced
in this layer namely on-the-fly filtering. This optimization employs precomputed matrix block norms
to decide if a given block product contributes to the final result significantly in comparison to the
sparsity threshold, and skips negligible multiplications. In actual applications, even for matrices that
are dense in data, this optimization can reduce the number of needed flops by a factor 2–4. The rel-
ative computational cost of the indexing operations depends strongly on the size of the basic blocks
employed in the application calling the DBCSR library. It is significant if blocks are as small as 5 × 5,
while it is clearly negligible if blocks are of size 23 × 23 or larger.

8.2.4 Scheduler and Driver Layers

The scheduler layer receives filled stacks and arranges for their processing by handing them off
to one of the drivers. The host-driver is employed for CPU-processing and the CUDA-driver for
GPU-processing. Both the host and device drivers are built on top of libraries that efficiently perform
small matrix multiplications, libsmm and libcusmm for host and device, respectively. libsmm has
been described in Ref. [14], while libcusmm is described in detail in a following section. Both libraries
are significantly more efficient than standard matrix multiplication libraries for the small matrix sizes
that are relevant for quantum chemical applications. The scheduler decides where the stack will be
processed, and is currently based on a very simple scheme. The GPU is queried using the event based
mechanism described below, and if buffer space is available on the GPU the stack will be handed
over to the CUDA-driver, otherwise the host-driver processes the stack. The amount of buffer space

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 180�

� �

�

180 Electronic Structure Calculations on Graphics Processing Units

made available on the device is thus a mechanism to tune the host-device load balancing. Following
this, the CUDA driver will check if highly tuned kernels are available in the libcusmm library for the
particular matrix sizes in the homogeneous stack. If so, the stack is shipped to the GPU for processing,
and otherwise is send to the host driver. The latter can deal with small matrix multiplications of all
sizes, ultimately falling back to an optimized BLAS library calling DGEMM.

8.3 Maximizing Asynchronous Progress

Part of the challenge in writing efficient GPU-accelerated code is to exploit the asynchronous task
based programming model. Whereas on a homogeneous system typically all processors execute the
same program on different parts of the data in a lock-step fashion, on a hybrid system the CPU and
GPU complement each other, and are partially independent. In order to fully utilize such a system,
different programs need to be executed on the CPU and GPU. Typically, the host-CPU drives the
GPU-device by handing over tasks, and while the GPU is executing these tasks, the CPU can per-
form other tasks on its own. In the following subsections, our approach to enable this asynchronous
processing is explained.

8.3.1 CUDA Streams and Events

Once the host has submitted a task to the device, the CPU loses control over it and the GPU has
significant freedom to schedule the task execution. However, dependencies between tasks might be
present. For example, a task processing some data might depend on the completion of a prior task that
copies this data from the host to the device. These dependencies have to be made explicit by the pro-
grammer. As discussed in Chapter 2, the CUDA programming environment provides two powerful
mechanisms to enable further concurrency and to enforce dependencies: streams and events. Streams
are a simple mechanism to establish dependencies and to enable concurrency. Tasks submitted to
a given stream are processed in the order in which they are submitted, while tasks from different
streams can be processed in any order or concurrently. Using multiple streams is essential to overlap
computation with host-to-device or device-to-host transfers, and to enable concurrent task execu-
tion. Events can be used to express more general dependencies. Just like a task, an event can be
created and submitted to a stream, and is processed after the previous task submitted to the same
stream is completed. Furthermore, tasks can be submitted that wait for the completion of events
in other streams. These “waiting-tasks” will block a stream until the referred event has occurred,
and by submitting waiting-tasks prior to an actual task on the same stream, multiple cross-stream
dependencies can be enforced.

In Figure 8.4, the scheme that is employed in the DBCSR library is illustrated. Stack buffers are
transferred and processed in a number of independent streams, so that the stack buffer transfers can
overlap with computations in other streams, and that concurrent stack processing is possible. The
GPU can only process stacks if the panel and stack data is present, so that for each kernel depen-
dencies on the completed transfer of the A, B, and C panels, taking place in different streams, and
completion of the stack buffer transfer, in the same stream, must be present. Retaining the A, B, and C
panels on the device while stack buffer processing is in progress is enforced with additional events.
Notice that explicit synchronization between host and device is rarely needed, the host can query
events to make sure that, for example, stack buffers have been uploaded before they are overwritten
with new data. The host only has to wait for the device when the previous panel is still in use, and at
the very end when the final results are downloaded from the device.

The CUDA API allows for an unlimited number of streams, but these are mapped to a limited
number of hardware queues. Both the number of hardware queues and the mapping scheme are

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 181�

� �

�

Sparse Matrix Multiplication 181

A panel

B panel

C panel

Stack buffer 1

S
tr

e
a
m

s
host2dev

host2dev

set_zero

host2dev calc

Stack buffer 2
host2dev calc

dev2host

Queried before reusing host stack buffer

Time

Figure 8.4 Enabling concurrency and enforcing dependencies in DBCSR. Multiple streams are used to
transfer data from the host to the device, and to process independent stacks. Dependencies between the
streams, for example, a panel upload and stack calculations, and between host and device, for example,
device buffer reuse, are enforced using events

likely to change depending on the hardware and CUDA version. Unfortunately, mapping of otherwise
independent streams to the same hardware queue can lead to unwanted serialization. Therefore,
only a limited number of streams is created in DBCSR, specifically, two streams are exclusively
for host-to-device transfers, one for odd Cannon ticks and one for even ticks, while a configurable
but small (typically 2–4) number of streams is used for stack transfers and kernel launches. Finally,
“priority streams” are a recent CUDA feature that introduces some way for the programmer to influ-
ence scheduling of kernels. In DBCSR this feature is used to load balance between host threads.
In addition to generating stacks, occasionally a host thread will also process a stack. This happens
when a host thread has no more free stack buffers available, that is, when the device is busy. In
order to avoid that the device works on buffers of a thread that has finished its work already, and
a busy thread looses time processing stacks, stack buffers come in two flavors: priority buffers and
posterior buffers. A limited number of priority buffers is assigned to each thread, and mapped to
a stream with high priority, while the posterior buffers are mapped to streams with lower priority.
The effect of this is that the device will focus on doing the work for those threads that are actively
generating stacks, that is, writing them to the priority buffers, while the posterior buffers are han-
dled later. These buffers, as discussed below, are useful to overlap computation and communication
during message passing or host to device transfers. Good performance requires that the number of
priority buffers is tuned such that the device never idles if all threads are active and exclusively using
priority buffers.

8.3.2 Double Buffered Cannon on Host and Device

In a sparse matrix multiplication algorithm, both data movement and floating point operations can
contribute significantly to the total runtime. Maximum performance can only be achieved when the
corresponding resources are utilized in parallel. To accomplish this, a double buffered scheme has
been employed for both host and device. As shown in Figure 8.5, these two panel buffers are used in a
complementary fashion, while one buffer is used for the computation, the other buffer is overwritten
as part of a data transfer operation. Data transfer happens between MPI processes and between host

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 182�

� �

�

182 Electronic Structure Calculations on Graphics Processing Units

MPI send MPI receive

generate stacks

host

to

device process stacks

MPI send

generate stacks

host
to

device process stack

MPI receive MPI send MPI receive

generate stacks

host

to

device process stacks

Host

buffer 1

Device

buffer 1

Host

buffer 2

Device

buffer 2

Time

1. Cannon tick 2. Cannon tick 3. Cannon tick

Figure 8.5 Schematic representation of the double buffered Cannon algorithm, which illustrates how the
use of two host and two device buffers for the A and B panels enables overlapping of message passing,
host to device memory copies and computations. The ratio of the time needed for the important steps of
the algorithm, depends on the hardware and on the science problem at hand

and device, and thus double buffering is required for both operations. The host buffers are alternately
used for MPI-send and MPI-receive. Once a panel has been received on the host it is copied to the cor-
responding device buffer, using the asynchronous host-to-device copy operation. At the same time,
the CPU threads start to generate and fill stacks buffers. Stack buffers are transferred and processed
by the device as soon as the host-to-device panel copy has finished. Typically, the CPU threads can
generate the stacks faster than the GPU can process them, and a large number of stack buffer can be
outstanding. These outstanding stack buffers can be processed by the device while the MPI transfer
and the host to device copy of the next panel to the second buffer is taking place. Good performance
requires that the number of posterior buffers is tuned such that device never idles during these trans-
fers. A too large number of posterior buffers might lead to host threads waiting for the previous device
panel buffer to finished. In the last Cannon tick, posterior buffers are not employed, as threads and
device should finish roughly at the same time.

Fast device-to-host transfers require host-pinned memory. Since allocating host-pinned memory
and CUDA device memory are slow operations, and memory usage is hard to predict in the case
of varying sparsity patterns, memory-pools have been introduced that are persistent across sparse
multiplications and only allowed to grow. In our application, the gain in performance outweighs the
additional complexity and the fact that less memory is available for the rest of the application in
between matrix multiplications.

Finally, whereas the MPI standard specifies non-blocking versions of send and receive
(isend/irecv), actual implementations often perform the complete transfer in the corresponding
wait statements. We have found that this is in particular the case for multi-megabyte messages,
as is required for the panel transfers. To nevertheless overlap computation and communication, a
“communication thread” has been introduced in the OpenMP parallel version of the DBCSR library.
The master thread, which is responsible for all communication, is underloaded compared to the
other threads, and will, given the barrier free nature of the implementation, enter early in a polling
loop based on test_any to progress outstanding MPI communication. Tuning the load of the
master thread, message passing can be effectively overlapped with computation performed by the
other threads and the device.

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 183�

� �

�

Sparse Matrix Multiplication 183

8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications

The core computational kernel in DBCSR is the computation of stacks of small matrix multiplica-
tions. The result block matrix Cu,𝑣 is computed as the product of the block matrices Au,𝑤 and B𝑤,𝑣

according to
Cu,𝑣

i,j = Cu,𝑣
i,j +

∑
𝑤,k

Au,𝑤
i,k B𝑤,𝑣k,j , (8.11)

using superscripts to indicate the matrix block indices and subscripts to denote the matrix elements
in each of the block matrices. The sum over 𝑤 takes the sparsity pattern of A and B into account,
that is, the product will be omitted whenever either Au,𝑤 or B𝑤,𝑣 is absent, or their norms are small.
Furthermore, 𝑤 can only refer to those parts of A and B that are part of the panels of A and B that are
local to the node for a given tick of Cannon’s metronome. In a single stack, anywhere between one
and a few tens of products will be present for a given block Cu,𝑣. Note that this operation resembles
the batched DGEMM operation in CUBLAS, but that this library expects all C matrices in a single
batch to be different, and can thus not be used. In the following, the steps necessary to optimize these
products on GPUs are described.

8.4.1 Small Matrix Multiplication Performance Model

At first sight, matrix multiplication seems dominated by floating point operations, while memory
transfer is less important. This certainly is the case for large matrices, but not quite for the small
matrices required in the current context. It is therefore useful to look at the arithmetic intensity, which
we define to be the ratio of number of floating point operations versus number of bytes transferred
between memory and processing units. In order to perform the matrix multiplication, A and B will
need to be loaded from the device memory to the streaming multiprocessor (SM), while C might be
assumed present on the SM (favorable limit of a large number of contributions from the summation
over 𝑤), or might need to be loaded and stored as well. For the multiplication of an m × k by a k × n
matrices, the intensity is thus between 2mnk

8(mk+kn)
and 2mnk

8(mk+kn+2mn)
. In order to reach the favorable limit,

the DBCSR library might sort the stacks, such that C matrix access occurs in order, prior to hand-
ing them to the GPU. Given a K20X GPU with 1.3TFlops peak double precision performance and
250 GB/s peak bandwidth, an arithmetic intensity of at least 5.2 is needed to achieve peak perfor-
mance. With ECC turned on, a bandwidth of 180 GB/s is more realistically achievable for a kernel of
this complexity, so an arithmetic intensity of at least 7.2 is needed to reach peak performance. Mul-
tiplications of matrices smaller than 60 × 60 are thus necessarily limited by the memory bandwidth,
and this remains an important factor, even for significantly larger matrices. This clearly implies that
the optimization should focus on reaching optimal memory bandwidth usage. For selected sizes of
the small matrices encountered in CP2K applications, the arithmetic intensity, the reachable flop rate,
and the actually achieved performance are shown in Figure 8.6.

8.4.2 Matrix-Product Algorithm Choice

The first step in implementing the small matrix products is to pick the most appropriate algorithm.
Figure 8.7 shows two possible algorithms for computing the matrix product (C = C + AB). In the
canonical form, the result elements in C are computed using the inner product of rows of A and
columns of B, while an alternative algorithm is based on an outer product of columns of A and rows
of B. These two algorithms result in the same number of floating point operations, but the latter option

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 184�

� �

�

184 Electronic Structure Calculations on Graphics Processing Units

3.5

3.0

2.5

2.0

1.5

A
ri

th
m

e
ti
c
 i
n
te

n
s
it
y

G
F

L
O

P
S

1.0

0.5

0.0 0

100

200

300

400

500

600

5×
5×

5

13
×5

×5

5×
13

×5

5×
5×

13

13
×1

3×
5

13
×5

×1
3

5×
13

×1
3

13
×1

3×
13

13
×1

3×
26

13
×2

6×
13

26
×1

3×
13

13
×2

6×
26

26
×1

3×
26

26
×2

6×
13

23
×2

3×
23

24
×2

4×
24

26
×2

6×
26

Measured

Transfer of A, B, and 2 × C

Transfer of A, B

Figure 8.6 Minimum (dotted line) and maximum (solid line) arithmetic intensity for different matrix sizes
commonly employed in CP2K simulations, and the corresponding maximum possible flop rate. The per-
formance as obtained from individual kernel launches in a mini-app is shown as bars

A C

B

(a) (b)

CA

B

Figure 8.7 Inner-product (a) and outer-product (b) form of matrix multiplication. The yellow areas in C
indicate elements that can be computed independently by accessing the highlighted areas of A and B.
(See insert for colour representation of this figure)

exhibits significantly more parallelism in that it allows for computing an update for all elements of
C using a single column of A and a single row of B. An additional benefit of using outer products is
data locality, the outer product algorithm touches elements of A and B only once, while for the inner
products, when computing one row of C, one row of A and the entire matrix B needs to be accessed.
Based on the model developed in the previous section it is known that the kernel’s performance
for problem sizes of interest to CP2K will be limited by memory bandwidth. The outer products
algorithm is therefore preferred.

8.4.3 GPU Implementation: Generic Algorithm

The next step in the design of a kernel for small matrix products is to consider data locality. Ini-
tially, the A, B, and C matrices, as well as the product descriptors, the so-called stacks, are all located
in global memory on the GPU. Each entry in the stack describes one matrix–matrix product, thus

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 185�

� �

�

Sparse Matrix Multiplication 185

containing three pointers to the blocks in the A, B, and C panels. After the kernel has read a stack
entry, it fetches the matrices A and B, and updates the C matrix with the product of A and B. The
matrix sizes of interest correspond to typically 10–1000 elements per result matrix C, limiting the
degree of parallelism to a similar order. An appropriate choice is therefore to process a matrix product
using a single thread block. While this allows for efficient synchronization between the threads pro-
cessing one product, it requires appropriate safe-guards to avoid data races between multiple updates
of the same C matrix block. Multiple consecutive products updating the same result matrix C can be
processed by the same thread block, requiring fewer reads and writes of C from global memory. In
addition to reducing the number transfers of C between global memory and the SM, this also reduces
the probability of collisions that happen when multiple thread blocks update the same C matrix block
at the same time. On Kepler–Generation GPUs, atomic memory operations are efficient enough and
are hence used to prevent data races. In this context, the overhead of using atomics instead of regular
memory updates is on the order of 5%.

How a single thread block deals with the data is illustrated in Figure 8.8 and explained in the fol-
lowing. First, given that the elements of the result matrix C do not need to be shared between threads,
the ideal location to store C is registers. In order to increase instruction level parallelism per thread,
and given the large number of registers available per thread, a small tile (T) rather than a single result
matrix element is processed per thread. The optimal choice of tile dimensions (M × N) is determined
via auto-tuning as described later. Next, the elements of matrix A and B need to be accessed by mul-
tiple threads, thus making them ideal candidates to be stored in shared memory. In order to avoid that
shared memory utilization limits the number of concurrent thread-blocks (occupancy), a maximum
of 3 kB per thread-block can be used. For larger matrix blocks A and B, it is thus desirable to read
only parts into shared memory, we name these parts slabs. Using the outer product algorithm, these
matrix slabs only need to be read once per product. The optimal width (𝑤) of the slabs is also deter-
mined by auto-tuning. Given that matrices are stored in column major format, reading a slab of A still
leads to perfectly coalesced memory access. However, reading only a slab of matrix B can lead to
both significant memory access penalties and complex address computations. In order to avoid these

w

m PA

Pc

PB

A

B

k

n

w

M T

N

v
(a)

PB

PA

PC

T

Shared mem

Registers

(b)

A B C

A B C

s

Global mem

(c)

Figure 8.8 (a) Parameterization of the m × n × k-matrix product C = C + AB. Each thread computes an
M × N tile (T) of the result matrix C. In order to accommodate matrix sizes larger than the available shared
memory, matrices are processed in slabs (PA, PB), with an input slab width𝑤. In order to optimize the data
output, the matrices (PC) are written back using the output slab width 𝑣. (b) Close to the SM, registers are
used to store the C matrix tile, while slabs of A, B, and C are stored in shared memory. (c) GPU memory
stores all panel data, including the various blocks of A, B, C, and the stack buffers S. (See insert for colour
representation of this figure)

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 186�

� �

�

186 Electronic Structure Calculations on Graphics Processing Units

penalties it is therefore desirable to compute the product C = A(BT)T instead, resulting in perfectly
coalesced memory accesses with simple address computations for both A and B. Given that typically
each B matrix is used many times per Cannon tick, the cost of transposing the full panel of B’s once
after the upload in a separate kernel is negligible compared to the time savings due to more efficient
memory access and simplified address calculation. Finally, once the entire product is computed, and
only when the next stack entry refers to a different C block, the results are added to the correspond-
ing block in global memory. In order to ensure coalesced writes, an intermediate step is employed,
in which slabs of C (of width 𝑣) are first put in shared memory, and only then added using an atomic
compare-and-swap operation.

8.4.4 Auto-Tuning and Performance

The generic algorithm outlined above requires several parameters (M, N, 𝑤, and 𝑣), and finding an
optimal set of values is not always intuitive. Fetching larger panels of A and B tends to improve per-
formance, but at the same time will also increase the shared memory footprint and limit occupancy,
thus potentially limiting the amount of latency hiding. A similar effect occurs for the number of result
elements processed per thread: increasing this parameter improves the instruction level parallelism,
but at the same time this limits the number of thread blocks resident on each SM. Additionally, some
matrix sizes allow for significantly simplified versions of the general kernel and separate implemen-
tations were developed. In order to hide details of the tool chain, such as register allocation, that
are unknown or subject to change, an autotuning framework based on a small standalone bench-
mark application is used to find optimal parameters and implementations for each given set of block
dimensions m, n, k. It has been verified that the kernel performance in the small standalone benchmark
application is very similar to the one observed in full CP2K simulations.

Figure 8.6 shows the performance obtained in the mini-app for relevant block sizes and optimal
parameters. The performance is close to that estimated from the model based solely on memory
bandwidth considerations. For very small matrices, the measured performance starts to deviate from
the theoretically expected performance. We currently attribute this to the warp granularity of the
execution on the SM, but have not further optimized for these sizes as we expect that small matrix
sizes can just be handled on the CPU side if needed. Finally, for comparison, batched DGEMM in
CUBLAS (version 5.0) for a 23×23×23 problem runs at 132 GFLOPS on an Nvidia K20X, while
the current implementation in libcusmm achieves about 322 GFLOPS. For most of the small matrix
sizes of interest, a speedup in the range of 2–4× has been measured. This demonstrates the quality
of the generated kernels, and the appropriate choice of optimization techniques.

8.5 Benchmarks and Conclusions

In this final section, we illustrate the performance of the linear scaling GPU based implementation.
In doing so, we attempt to cover synthetic benchmarks, current application style simulations, as
well as very large scale simulations. Given the computational demands of these simulations, the
focus is on parallel application of CP2K. The latter calculations have been performed on a recent
hybrid architecture, a Cray XC30, which was installed in the fall of 2013 at CSCS, Switzerland.
This machine is named Piz Daint, and is currently the leading European computer in the Top500
list. It features 5272 hybrid compute nodes, with one Intel Xeon E5-2670 processor (8 core, Sandy
Bridge), and one Nvidia K20X per node. The nodes are connected with an Aries network based on
a dragonfly topology.

As a first demonstration of performance, we focus on two synthetic benchmarks of the
matrix–matrix multiplication of nearly dense matrices (occupied 50% or more), with favorable
block sizes (23 × 23). A single node CPU–GPU comparison is shown in Figure 8.9. In this case, the

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 187�

� �

�

Sparse Matrix Multiplication 187

350

300

250

200

150

100

50

0
2

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

4 6

Cores

GPU+CPU

CPU-only

8 10 12

Figure 8.9 Performance comparison of the multi-threaded DBCSR library based on 23 × 23 matrix
blocks, and was not using the MPI capabilities. The benchmark was run on a dual Sandy Bridge (E5-2620,
2.0 GHz, 6 cores) machine, equipped with one Nvidia Tesla K20 card

potential of the GPU is demonstrated, as it outperforms 12 Sandy Bridge cores by a significant factor.
Furthermore, increasing the number of CPU cores, the hybrid implementation displays improving
performance, showing that host-device sharing is effective. The CPU-only curve demonstrates good
parallel efficiency of the OpenMP code. Taking this benchmark to the scale of 5184 hybrid nodes, a
matrix of size 536, 544 × 536, 544, with 50% occupation, and 23 × 23 subblocks, can be multiplied
in approximately 36 seconds with a sustained machine performance in excess of 2 PFLOPS (nearly
400 GFLOPS per node). Thus, exploiting the fact that the matrices are 50% occupied, already
brings a speedup over a dense matrix multiplication. Indeed, assuming a dense parallel matrix
multiplication to run at 6.2 PFLOPS (the Linpack number for Piz Daint), such a calculation would
require 50 seconds. This performance illustrates the quality of the parallel implementation of the
sparse matrix code.

More important is application level performance for realistic simulation setups. In order to assess
this, we employ three benchmarks that are also part of the CP2K distribution, named amorph, H2O,
and TiO2. These describe an amorphous organic hole conducting material, bulk liquid water, and tita-
nium dioxide nanoparticles, respectively. Geometries are realistic, disordered, three-dimensional, and
with periodic boundary conditions. Basis sets are of double zeta quality (DZVP-MOLOPT-SR-GTH)
and include diffuse primitives, contraction based on molecular optimization makes them at the same
time accurate and suitable for linear scaling calculations in the condensed phase [17]. Since these
benchmarks are designed to run quickly on a relatively small number of compute nodes they have
reduced SCF counts. Key quantities and results are provided in Table 8.1. First, for the given basis
sets and thresholds, it shows that systems of approximately 10,000 atoms can be computed in minutes
using 169 nodes (only 4% of the national supercomputer). This paves the way for scientific applica-
tions based on models of this size, including geometry optimization and molecular dynamics based
relaxation. Second, this comparison at 169 nodes shows a speedup of 1.4–1.7 going from a traditional
homogeneous node to a hybrid node. In these cases, the GPU is processing most of the FLOPS. More
detailed analysis shows that for the amorph benchmark the small block sizes limit the speedup, while
the H2O testcase is already limited by MPI communication.

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 188�

� �

�

188 Electronic Structure Calculations on Graphics Processing Units

Table 8.1 Key quantities of three linear scaling benchmarks that are distributed with CP2K

Amorph H2O TiO2

Number of atoms 13,846 20,736 9786
Number of basis functions 133,214 158,976 169,624
Block sizes 5, 13 23 13, 26
Number of SCF steps in benchmark 2 2 1
Filtering threshold 10−6 10−6 10−5

Typical matrix occupation (%) 16 11 12
Run time on 169×2 SB (seconds) 372 275 446
Run time on 169×1 SB+ 1 K20X (seconds) 272 187 263
Performance ratio on 169 nodes 1.4 1.5 1.7
GPU FLOP (%) 92 99 88

The run time is provided for two setups, one in which 2 Sandy Bridge (SB) CPUs are present per node, and
a hybrid architecture in which 1 SB and 1 K20X GPU is present per node. Performance ratio compares
the run time between these setups, GPU FLOP (%) gives the percentage of FLOPS that is executed on the
GPU in the hybrid setup.

Figure 8.10 Aggregated nanoparticles in explicit solution (77,538 atoms) can be run on the Piz Daint
computer (5272 hybrid compute nodes) at approximately 122 seconds per SCF step

The largest system computed so far on the hybrid system Piz Daint is shown in Figure 8.10. It con-
sists of aggregated nanoparticles of TiO2 in an explicit acetonitrile solvent, as found in dye sensitized
solar cells, and consists of 77,538 atoms and 772,868 basis functions. For a filtering threshold of 10−6,
a matrix occupation of 4% is found. Running on 5184 nodes, a single SCF step takes approximately
122 seconds. Performance is roughly 30 GFLOPS per node, as the calculation is strongly dominated
by MPI communication. The GPUs perform 99.4% of the FLOPS.

To conclude, we have shown that linear scaling SCF calculations with good quality on large
three dimensional systems have become possible with good time to solution. As such, linear scaling
approaches on large models have become one of the many tools that atomistic simulation offers to
investigate an ever increasing range of physical systems. The progress can be attributed to an evo-
lution and interplay between hardware, algorithms, and implementations. The GPU work presented
here is a prime example. To harvest the raw power of GPUs, suitable algorithms had to be adopted
and a very careful implementation was needed. In particular, the asynchronous nature of the device
had to be taken into account at a sufficiently high level, and a library of highly optimized kernels
had to be created. This required a detailed understanding of the GPU device and the application

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 189�

� �

�

Sparse Matrix Multiplication 189

programming interface. Finally, good performance has been demonstrated on one of the largest GPU
based supercomputers worldwide. To further benefit from the GPU compute power, new message
passing algorithms are being developed.

Acknowledgments

The authors acknowledge Urban Borštnik, Florian Schiffmann, Florian Thöle, Jinwoong Cha, Valéry
Weber, Christiane Pousa Ribeiro, Iain Bethune (EPCC), Chris Mundy (PNNL), Nikolay Markovskiy
(NVIDIA), Neil Stringfellow (CSCS), Gilles Fourestey (CSCS), Alfio Lazzaro (Cray), and Roberto
Ansaloni (Cray) for their help with the implementation, discussions, and applications. J.V. acknowl-
edges financial support by the European Union FP7 in the form of an ERC Starting Grant under
contract no. 277910. Calculations were enabled by a grant of the Swiss National Supercomputer Cen-
tre (CSCS) under project IDs s238, s441, and h05. In preparation of this research, resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725,
have been used. The research leading to these results has received funding from the Swiss University
Conference through the High Performance and High Productivity Computing (HP2C) Programme.

References

1. Goedecker, S. (1999) Linear scaling electronic structure methods. Rev. Mod. Phys., 71 (4),
1085–1123.

2. Bowler, D.R. and Miyazaki, T. (2012) O(N) methods in electronic structure calculations. Rep.
Prog. Phys., 75 (3), 036503.

3. The CP2K developers group. 2013. CP2K is freely available from: http://www.cp2k.org/
(accessed 18 September 2015).

4. VandeVondele, J., Borstnik, U. and Hutter, J. (2012) Linear scaling self-consistent field cal-
culations with millions of atoms in the condensed phase. J. Chem. Theory Comput., 8 (10),
3565–3573.

5. Higham, N.J. (2008) Functions of Matrices: Theory and Computation, Society for Industrial and
Applied Mathematics, Philadelphia, PA.

6. Beylkin, G., Coult, N. and Mohlenkamp, M. (1999) Fast spectral projection algorithms for
density-matrix computations. J. Comput. Phys., 152 (1), 32–54.

7. Nemeth, K. and Scuseria, G. (2000) Linear scaling density matrix search based on sign matrices.
J. Chem. Phys., 113 (15), 6035–6041.

8. Palser, A. and Manolopoulos, D. (1998) Canonical purification of the density matrix in
electronic-structure theory. Phys. Rev. B, 58 (19), 12704–12711.

9. Niklasson, A.M.N., Tymczak, C.J. and Challacombe, M. (2003) Trace resetting density matrix
purification in O(N) self-consistent-field theory. J. Chem. Phys., 118 (19), 8611–8620.

10. Li, X., Nunes, R. and Vanderbilt, D. (1993) Density-matrix electronic-structure method with
linear system-size scaling. Phys. Rev. B, 47 (16), 10891–10894.

11. Helgaker, T., Larsen, H., Olsen, J. and Jorgensen, P. (2000) Direct optimization of the AO density
matrix in Hartree-Fock and Kohn-Sham theories. Chem. Phys. Lett., 327 (5–6), 397–403.

12. Shao, Y., Saravanan, C., Head-Gordon, M. and White, C. (2003) Curvy steps for density
matrix-based energy minimization: application to large-scale self-consistent-field calculations.
J. Chem. Phys., 118 (14), 6144–6151.

13. Salek, P., Host, S., Thogersen, L., Jorgensen, P., Manninen, P., Olsen, J. et al. (2007)
Linear-scaling implementation of molecular electronic self-consistent field theory. J. Chem.
Phys., 126 (11), 114110.

http://www.cp2k.org/

Trim Size: 170mm x 244mm Walker c08.tex V3 - 01/08/2016 9:56 A.M. Page 190�

� �

�

190 Electronic Structure Calculations on Graphics Processing Units

14. Borstnik, U., VandeVondele, J., Weber, V. and Hutter, J. (2014) Sparse matrix multiplication: the
distributed block-compressed sparse row library. Parallel Comput., 40, 47–58.

15. Cannon, L.E. (1969) A Cellular Computer to Implement the Kalman Filter Algorithm, Montana
State University, Bozeman, MT.

16. Chatterjee, S., Lebeck, A.R., Patnala, P.K. and Thottethodi, M. (2002) Recursive array layouts
and fast matrix multiplication. IEEE Trans. Parallel Distrib. Syst., 13 (11), 1105–1123.

17. VandeVondele, J. and Hutter, J. (2007) Gaussian basis sets for accurate calculations on molecular
systems in gas and condensed phases. J. Chem. Phys., 127 (11), 114105.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 191�

� �

�

9
Grid-Based Projector-Augmented

Wave Method

Samuli Hakala1, Jussi Enkovaara1,2, Ville Havu1, Jun Yan3, Lin Li3, Chris O’Grady3

and Risto M. Nieminen1

1Department of Applied Physics, Aalto University, Espoo, Finland
2CSC – IT Center for Science Ltd., Espoo, Finland

3SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator
Laboratory, Menlo Park, CA, USA

GPAW is a versatile open-source package for electronic structure simulations within density func-
tional theory (DFT). GPAW implements the projector-augmented-wave (PAW) method utilizing uni-
form real-space grids, and we describe here how the resulting algorithms can be accelerated by using
general-purpose graphics processing units (GPUs). In addition to standard DFT, the real-time form of
time-dependent DFT (TD-DFT) is implemented to utilize GPUs. For DFT and TD-DFT calculations,
we demonstrate speedups of up to 19 for simulations that use one GPU per regular CPU core. As a
specific feature, we discuss also how the computationally demanding random phase approximation
to the exchange-correlation energy can be accelerated by a factor of 40 using one GPU per CPU core.

9.1 Introduction

Density functional theory (DFT) [1, 2] is one of the most important theoretical tools for studying
atomic-scale properties in various condensed-matter systems, and also one of the largest consumers
of supercomputing resources. General-purpose graphics processing units (GPUs) are becoming a
promising option over traditional CPUs in speeding up various computer simulations, including
DFT-based methods. In this chapter, we discuss how GPUs are utilized in the open-source DFT
software package GPAW [3, 4].

As was discussed in Chapter 3, several numerical approximations have to be made when solving
the Kohn–Sham equations of DFT. The approximations can be related either to the treatment of

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 192�

� �

�

192 Electronic Structure Calculations on Graphics Processing Units

core electrons and the region close to atomic nuclei (all-electron vs. pseudopotential methods) or
to the discretization of the equations. Each numerical approximation has its own advantages and
disadvantages, and a large number of DFT software packages exist with varying numerical schemes.
A nonexhaustive list is given in the references of this chapter [5–17]. Details in the context of GPU
implementations can be found in this and other chapters of this book (Chapters 4–10 deal with DFT
implementations). The GPAW package uses the projector-augmented wave (PAW) method [18] for
treating the region near atomic nuclei; either uniform real-space grids, localized atomic orbitals or
plane waves can be used for discretizing the equations. The GPU implementation uses the real-space
grid mode, and as that is also the main working mode, we focus on real-space grid discretization in
this chapter.

The underlying idea in the PAW method is similar to the pseudopotential approximation; that is,
core electrons are considered frozen in their atomic configurations and valence electrons are rep-
resented with smooth functions (see also Chapter 7). However, the PAW method is formally an
all-electron (AE) method retaining information about the whole nodal structure of the wave functions,
and AE wave functions are available at any stage of the calculation. Compared to more conventional
norm-conserving or ultrasoft pseudopotentials, the PAW method offers a more reliable description
over the whole periodic table. Transferability problems with PAW potentials are normally less severe,
and as the pseudo-wave functions in the PAW are often smoother, fewer degrees of freedom are
needed for their representation.

Uniform real-space grids offer a relatively simple discretization for the Kohn–Sham equations
within the PAW formalism. Accuracy of the discretization can be improved systematically by decreas-
ing the spacing between the grid points, and with the typical grid spacings needed in the context of
the PAW method, the discretization is efficient. With real-space grids it is possible to flexibly treat
both periodic (bulk) and isolated (atoms, molecules, clusters) systems, as well as surfaces and wires
where some of the dimensions are periodic and some finite. Real-space grids enable the use of efficient
multigrid techniques, and they offer also good parallelization prospects, as information is typically
needed only from a few neighboring grid points. These local aspects of parallelization are especially
important when using multiple GPUs.

Standard DFT provides access only to the ground-state properties of the system. However, several
important physical quantities such as excitation energies and optical spectra are related to the excited
states of the system, which can be studied with time-dependent DFT (TD-DFT) [19]. GPAW has
several different implementations of TD-DFT, of which the real-time integration of time-dependent
Kohn–Sham equations can utilize GPUs.

The physical approximations in DFT are contained in the exchange-correlation (XC) functional.
The simplest XC approximations are the local density approximation (LDA) and the various
generalized-gradient approximations (GGAs). Despite their success in many physical systems,
biomolecules on metallic surfaces, as an example, are described poorly by LDA or GGA. An
improved description for these systems is given by the random phase approximation (RPA) to the
correlation part of the XC energy. RPA is, however, computationally time consuming, and GPUs
offer significant speedup for RPA calculations.

This chapter is organized as follows. First we give a general overview of the PAW method,
as well as of the discretization with uniform real-space grids in Section 9.2. We also discuss
one specific feature of the real-space algorithm, the multigrid method. The GPU implementation
for the ground-state calculations and associated results are presented in Section 9.3. Section 9.4
discusses real-time propagation TD-DFT and its GPU implementation, and RPA together with
the GPU implementation is presented in Section 9.5. Finally, we give a summary and outlook in
Section 9.6.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 193�

� �

�

Grid-Based Projector-Augmented Wave Method 193

9.2 General Overview

In this section we provide a short overview of the PAW method and discuss its implementation with
uniform real-space grids. We also present an overview of one of the key algorithms in our real-space
implementation, the multigrid method, which is used in the solution of the Poisson equation and in
the preconditioning of the Kohn–Sham eigenproblem. More detailed descriptions of the underlying
formalism and its implementation can be found in the original references of the PAW method [18]
and the GPAW implementation [3, 4]. Atomic units (ℏ = m = e = 1

4𝜋𝜖0
= 1) are used throughout the

chapter.

9.2.1 Projector-Augmented Wave Method

The Kohn–Sham equations describe the core and valence electrons on equal footing. However, chem-
ical environments affect mostly the valence electrons, and the core electrons remain in their atomic
configuration. Thus, for many physical properties it is sufficient to solve the equations explicitly
only for valence electrons. Because of the strong Coulomb interaction, the single-particle valence
wave functions vary strongly near the atomic nuclei. The PAW method provides a rigorous formal-
ism for working with smooth pseudo-valence wave functions, so that the resulting equations can be
discretized more easily, for example, with plane waves (see Chapter 7) or uniform real-space grids
(see also Chapter 10).

At the heart of the PAW formalism is a linear transformation between the AE wave function 𝜓n

and the smooth valence pseudo (PS) wave function 𝜓̃n:

𝜓n(r) = ̂ 𝜓̃n(r), (9.1)

where n is the electronic state index. The transformation operator ̂ is constructed in a manner such
that the AE wave functions are orthogonal to the core wave functions 𝜙a, core

i , which are fixed to their
reference shape in the isolated atom.

The transformation operator ̂ is defined in terms of atom-centered AE partial waves 𝜙a
i (r), the

corresponding smooth partial waves 𝜙̃a
i (r), and projector functions p̃a

i (r) as

̂ = 1 +
∑

a

∑
i

(|𝜙a
i ⟩ − |𝜙̃a

i ⟩)⟨p̃a
i |, (9.2)

where atom a is at the position Ra. The atom-centered AE partial waves and smooth PS partial waves
are equal outside the atom-centered augmentation spheres of radii ra

c :

𝜙a
i (r) = 𝜙̃a

i (r), |r − Ra| > ra
c . (9.3)

The projector functions are localized inside the augmentation spheres and are orthogonal to the PS
partial waves:

⟨p̃a
i1
|𝜙̃a

i2
⟩ = 𝛿i1i2

. (9.4)

The projectors and partial waves are constructed from an AE calculation for a spherically symmet-
ric atom, and the index i in Eq. (9.2) refers to the principal and angular momentum quantum numbers
in an isolated atom. Given a complete set of atom-centered partial waves and projectors, the PAW
transformation is exact. In practical calculations, two functions per angular momentum is typically
enough.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 194�

� �

�

194 Electronic Structure Calculations on Graphics Processing Units

The pseudo-electron density can be defined as

ñ(r) =
∑

n

fn|𝜓̃n(r)|2 +
∑

a

ña
c(r), (9.5)

where fn are the occupation numbers between 0 and 2, and ña
c is a smooth PS core density equal to

the AE core density na
c outside the augmentation sphere. Using the atomic density matrix Da

i1i2

Da
i1i2

=
∑

n

⟨𝜓̃n|p̃a
i1
⟩fn⟨p̃a

i2
|𝜓̃n⟩. (9.6)

it is possible to define one-center expansions of the AE and PS densities:

na(r) =
∑
i1 ,i2

Da
i1i2
𝜙a

i1
(r)𝜙a

i2
(r) + na

c(r) (9.7)

and
ña(r) =

∑
i1 ,i2

Da
i1i2
𝜙̃a

i1
(r)𝜙̃a

i2
(r) + ña

c(r), (9.8)

respectively. Finally, from ñ, na, and ña, the AE density can be constructed in terms of a smooth part
and atom-centered corrections:

n(r) = ñ(r) +
∑

a

(na(r) − ña(r)). (9.9)

Similar to the electron density, in the PAW formalism the expectation value of any local (or semilocal)
operator can be obtained in terms of a smooth part and atom-centered corrections:

⟨Ô⟩ = Õ +
∑

a

ΔOa. (9.10)

The Hamiltonian operator in the PAW formalism has the form

Ĥ = −1
2
∇2 + 𝑣̃ +

∑
a

∑
i1i2

|p̃a
i1
⟩ΔHa

i1i2
⟨p̃a

i2
|, (9.11)

where ΔHa
i1 i2

are the atom-centered PAW corrections to the Hamiltonian. The smooth effective poten-
tial has the form

𝑣̃ = 𝑣̃coul + 𝑣̃xc +
∑

a

𝑣̄a, (9.12)

where the PAW-specific terms 𝑣̄a compensate for the incompleteness of the partial waves and pro-
jectors. The Coulomb potential satisfies the Poisson equation

∇2𝑣̃coul = −4𝜋𝜌̃, (9.13)

where the pseudo-charge density 𝜌̃ also contains the so-called compensation charges for electrostatic
decoupling of different augmentation spheres [3, 20]. The XC potential 𝑣̃xc is the normal semilocal
function evaluated with the pseudo-electron density ñ.

The PS wave functions are not orthonormal as such, but with respect to the overlap operator Ŝ:

⟨𝜓̃n|Ŝ|𝜓̃m⟩ = 𝛿nm, (9.14)

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 195�

� �

�

Grid-Based Projector-Augmented Wave Method 195

where

Ŝ = ̂
†
̂ = 1 +

∑
a

∑
i1i2

|p̃a
i1
⟩ΔSa

i1i2
⟨p̃a

i2
|, (9.15)

ΔSa
i1i2

= ⟨𝜙a
i1
|𝜙a

i2
⟩ − ⟨𝜙̃a

i1
|𝜙̃a

i2
⟩. (9.16)

As a result, in the PAW formalism, the Kohn–Sham eigenvalues 𝜖n and the PS wave functions are
obtained from a generalized eigenproblem

Ĥ𝜓̃n = 𝜖nŜ𝜓n. (9.17)

9.2.2 Uniform Real-Space Grids

The Poisson equation and the Kohn–Sham equations in the PAW formalism can be discretized con-
veniently with a uniform real-space grid. Physical quantities such as the wave functions, densities,
and potentials are represented by their values at the grid points. The atom-centered partial waves
and projector functions are represented on radial grids, and all the integrals involving only them are
evaluated on this grid. For the operations that involve both atom-centered and extended functions,
the localized functions are represented on the same uniform grid within the atomic spheres as the
extended functions.

Both the Kohn–Sham Hamiltonian and the Poisson equation contain the Laplacian, which is eval-
uated with finite differences:

∇2f (r) =
3∑
𝛼=1

N∑
n=−N

b𝛼cN
n f (r + nh𝛼) + (h2N). (9.18)

The grid spacing vectors are defined as h𝛼 = a𝛼∕N𝛼; b𝛼 = 1∕h2
𝛼 and cN

n are the Nth order finite differ-
ence coefficients for the second derivative expansion. The accuracy of the discretization is defined by
the grid spacings h𝛼 (typically a single value is used for all three Cartesian directions) and the order
of the finite-difference stencil.

The three indices designating a point in the real-space grid G𝛼 = 1,N𝛼 can be condensed into a
single G index, so that, for example, the discretized PS wave functions are 𝜓̃n(r) ≈ 𝜓̃nG, and the
Hamiltonian operator is

HGG′ = −1
2

LGG′ + 𝑣eff,G𝛿GG′ +
∑
i1i2

pa
i1GΔHa

i1i2
pa

i2G′ , (9.19)

where LGG′ is the finite-difference stencil for the Laplacian. The resulting matrix is sparse, and it is
never stored explicitly. Instead, one evaluates the operation of Hamiltonian into wave functions, that
is, matrix free matrix–vector products.

9.2.3 Multigrid Method

The multigrid method [21, 22] is a general method for solving partial differential equations by using
a hierarchy of discretizations. The underlying idea is that many simple relaxation methods show
different convergence rates for the long and short wavelength components of the error. Short wave-
lengths can be treated efficiently with fine discretization, while long wavelengths can be treated with
coarser discretization; and by moving between discretization levels it is possible to converge all the
components of the error efficiently.

Generally, multigrid algorithms contain three parts: a smoothing operation for removing error com-
ponents relevant for the discretization level; a restriction operation for moving from fine discretization
to a coarser one; and an interpolation operation for moving from coarse discretization to a finer one.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 196�

� �

�

196 Electronic Structure Calculations on Graphics Processing Units

Smooth h = h0

h = 2h0

h = 4h0

Restrict Interpolate

Interpolate

Smooth

Smooth

Restrict

Figure 9.1 Multigrid V-cycle with three levels

As an example, the solution of the Poisson equation with the multigrid method proceeds as follows:

1. Perform a few iterations of the Jacobi method on the original real-space grid (smoothing).
2. Move to a 2× coarser grid (restrict).
3. Perform a few iterations of the Jacobi method on the coarser grid (smoothing).
4. Repeat Steps 2 and 3 until lowest resolution level is reached. In many multigrid algorithms the

coarsest level is solved exactly, but in our case an approximate solution is sufficient.
5. Move back to the 2× finer grid (interpolate).
6. Perform a few iterations of the Jacobi method on the finer grid (smoothing).
7. Repeat Steps 5 and 6 until the original resolution level is reached.

This so-called multigrid V-cycle is illustrated in Figure 9.1.
In addition to the Poisson equation, GPAW uses the multigrid method in the preconditioning of

the iterative eigensolver.

9.3 Using GPUs in Ground-State Calculations

GPAW is implemented using a combination of the Python and C-programming languages. Generally,
high-level algorithms are implemented with Python, while the numerically intensive operations are
implemented in C or utilize libraries. The goal of the GPU-accelerated implementation was to keep
all the high-level algorithms identical and only make changes to low-level code [23]. We use the
PyCUDA [24] toolkit to enable the use of GPU in the Python code and several custom CUDA kernels
[25] to speed up the GPAW C-extensions. Most of the basic dense linear algebra operations are done
with Nvidia’s CUBLAS library. We have used GPUs to speed up most of the performance-critical
parts of the self-consistent field (SCF) iteration. All our calculations use double-precision arithmetic.

Figure 9.2 shows a flowchart of a typical SCF loop in ground-state calculations. The most
computationally expensive parts are construction of the Hamiltonian, subspace diagonalization,
iterative updating of wave functions, and orthonormalization. The wave functions are stored in a
four-dimensional array where each value corresponds to a point in the coarse 3D real space grid
for a wave function of a particular electronic state. They consume most of the memory required for
the calculation. The low bandwidth of the PCI-Express connection between the host and the device
can be a significant bottleneck in the calculations. To combat that, we make an initial guess for the
wave functions using the CPU and then transfer them to the GPU and only transfer them back after
the SCF iteration has converged. Thus, all the computations that operate on the wave functions are
entirely performed on the GPUs. The electron densities are stored in a dense 3D array. These are
transferred between the GPU and the CPU depending on where they are needed at that point of the
computation.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 197�

� �

�

Grid-Based Projector-Augmented Wave Method 197

Construct the

hamiltonian H

Check

convergence

Update and mix

densities ρ

Initial guess for

n, ρ
Subspace

diagonalize n

Calculate

residuals and

update n

Orthonormalize

n

Figure 9.2 Flowchart of the SCF loop

For the Hamiltonian operator, the most time-consuming parts are the calculation of the Hartree and
XC potentials. The Hartree potential is solved from the Poisson equation using a multigrid solver as
described in Section 9.2.3. The basic operations are finite-difference stencils for the Laplace operator,
and restriction and interpolation between coarser and finer grids. We have created custom CUDA
kernels for all these operations. At the start of the Poisson solver, we transfer the grids containing the
charge density and the initial guess for the potential to the device. We then iterate the solution on the
GPU using CUDA kernels for the stencil operations, which are described in more detail later on.

The XC potential is calculated on the CPU using an external LibXC library [26]. It is a reusable
library containing hundreds of different functional, and it is used by several different codes. We use
a separate Python thread for XC calculations. This allows us to overlap the Poisson solver, which is
done mainly on the GPU and the computation of XC potential on the CPU.

In the PAW method, one needs to often calculate integrals between atom-centered localized func-
tions multiplied by functions spanning the whole coarse grid such as the projector-wave function
integrals ⟨p̃a

i |𝜓̃n⟩. In the GPU version, we have written custom CUDA kernels for the integration.
The code is parallelized over a batch of grids, localized functions, and coarse grid points inside the
augmentation sphere. For each thread located in the coarse grid inside the sphere, we use the secant
method to search for the corresponding value of the localized function. We then multiply it by the
function value at the grid point. The result is stored in shared memory. We then perform a paral-
lel reduction in shared memory for each thread block and store the result in a temporary array. The
same reduction kernel used for dot products is then called to complete the global reduction for each
localized function.

The iterative updating of the eigenvectors (RMM-DIIS algorithm) is performed entirely on the
GPUs. The basic operation is applying the Hamiltonian to the wave functions, which includes
the finite-difference stencil for the Laplace operator. The multigrid preconditioner is very similar
to the Poisson equation involving in addition to difference stencils also restriction and interpo-
lation between coarser and finer grids. The PAW corrections to the Hamiltonian involve also
projector–wave function integrals.

The computationally most intensive parts of subspace diagonalization and orthonormalization are
matrix–matrix operations, which are performed using hybrid functions simultaneously on CPUs and
GPUs, as will be described later on in more detail. In addition, the Hamiltonian operator and the

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 198�

� �

�

198 Electronic Structure Calculations on Graphics Processing Units

overlap operator are applied to the wave functions on the GPU. The Cholesky decomposition (in
orthonormalization) and dense matrix diagonalization (in subspace diagonalization) are performed
on the CPU using Scalapack.

9.3.1 Stencil Operations

Various stencil operations take up a large part of the execution time in the grid-based code, and
we use CUDA kernels to accelerate these. The GPU versions of 3D finite difference, restriction,
interpolation, and Jacobi relaxation kernels all use a similar approach and process the grid slice by
slice [27]. Global memory read redundancy is reduced by performing the calculations from shared
memory. Each YZ-slice of the grid is divided into 2D thread blocks. Each thread reads one grid
point from the global memory to the shared memory. Also, data required for the stencil halos is
added to shared memory. Each thread then calculates the stencil operator for one grid point. For the
YZ-slice, data is read from the shared memory. Data required for the X-axis calculations is stored in
registers for each thread. The working slice is then moved along the X-axis of the grid to completely
process the grid. Our implementation automatically generates custom CUDA kernels for each order-k
stencil from a single C source code base. All operations support real and complex grids and finite
and periodic boundary conditions.

The stencils are applied either to the dense grids or to the coarse grid wave functions. Since the
same operation is normally performed on all the wave functions, we have implemented batching ver-
sions of most of our kernels, which allow us to update a block of grids simultaneously on a GPU.
Especially with multigrid methods and small grid sizes, this increases the output bandwidth con-
siderably. When comparing single GPU to single CPU core, the speedups for stencil operations are
typically between 10 and 40 depending on the grid size.

9.3.2 Hybrid Level 3 BLAS Functions

A few BLAS level 3 matrix–matrix computations consume a large part of the time in subspace
diagonalization and orthonormalization. As subspace diagonalization and orthonormalization scale
cubically with the number of atoms in system, they dominate the total computing time in large sys-
tems. Generally, the matrix–matrix operations are computationally bound, and they can be split into
independent sub-problems which require very little communication between each other. Thus, we
have developed hybrid routines that perform part of the computation in the CPU and part in the GPU.

A BLAS dgemm (or zgemm in the complex case) routine performs a matrix–matrix multiplication
C = 𝛼A ⋅ B + 𝛽C, where 𝛼 and 𝛽 are scalars and A, B, and C are matrices with dimensions of m × k,
k × n, and m × n. In GPAW, the dimensions of the matrices are usually number of wave functions
times number of wave functions or number of wave functions times the number of grid points where
the latter matrix is several times larger than the first one. We can now divide the A and C matrices
into C1, C2, A1, and A2 [

C1

C2

]
= 𝛼

[
A1

A2

]
[B] + 𝛽

[
C1

C2

]
(9.20)

and use CUBLAS gemm on the GPU to calculate C1, and simultaneously, BLAS gemm on the CPU to
calculate C2. The matrices are initially stored on the device memory. We need to transfer the matrices
A2, B, and C2 to host memory, perform the calculation, and then transfer the C2 matrix back to GPU
memory. On the GPU side, we use several CUDA streams to overlap the CUBLAS calculations and
the matrix transfers between host and the device.

In order to distribute the workload effectively and to minimize the total computational time, we
need to know the relative speed of gemm (matrix multiplies) on the GPU and the CPU, as well as

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 199�

� �

�

Grid-Based Projector-Augmented Wave Method 199

the time required for data transfers across the PCI-Express bus. These can be measured using CUDA
events on the GPU. Based on the measurements, we can calculate the average computational and
transfer time per output unit. From these we can solve the optimal split value so that the GPU gemm
time equals the sum of the transfer times and the CPU gemm time.

Each time the hybrid gemm routine is called, we calculate new values for the average times per
unit and use them to update previously calculated and stored values. Approximately similar matrix
sizes get grouped together. A small benchmark matrix multiplication is run when the routine is called
for the first time to get initial values. During the SCF iteration, the split ratio should converge to an
optimal value. Alternatively to splitting A and C row-wise as in Eq. (9.20), it is also possible to
split B and C matrices column-wise. In the hybrid gemm routine, we choose either the row-wise or
column-wise split, based on which we minimize the total transfer costs.

For the dsyr2k BLAS routine (zher2k in the complex case), we can perform the decomposition
as follows:

[
C
]
=
[
C1

]
+
[
C2

]
= 𝛼

[
A1| A2

] [BH
1

BH
2

]
+ 𝛼

[
B1| B2

] [AH
1

AH
2

]
+ 𝛽

[
C
]

. (9.21)

Now we can calculate C1 on the GPU:

C1 = 𝛼
(
A1BH

1 + B1AH
1

)
+ 𝛽C. (9.22)

At the same time, we transfer A2 and B2 asynchronously to the host and then compute on the CPU:

C2 = 𝛼
(
A2BH

2 + B2AH
2

)
. (9.23)

We then transfer the resulting matrix C2 to the device and calculate C. As before, we can estimate
and update the optimal decomposition parameters. The hybrid dsyrk and zherk functions can be
thought of as simplified versions of this.

9.3.3 Parallelization for Multiple GPUs

In GPAW, the high-level parallelization of the code is done with the MPI (message passing inter-
face). Multiple GPUs can be used by domain decomposition of the real-space grid or by parallelizing
over k-points or spins. Domain decomposition for the finite-difference stencils, restriction, and inter-
polation as well as PAW integration operations involves communication with the nearest neighbor
domains. A robust way that is compatible with all MPI libraries is to do the data transfers between
the host and the device manually. This means that we move the data from the device memory to the
main memory, then transfer the data to the destination node using MPI, and then move the data from
the main memory to the device memory in the destination node. On an individual GPU card, the
sends in boundary exchange are done in order, one boundary region at a time. This is to ensure the
correctness of results. The receives can happen in any order, but they have to be done for the previous
boundary regions before we can send data from the current boundary. The MPI transfers are always
done asynchronously. The memory copies between host and device are done either synchronously or
asynchronously depending on the size of the boundary regions. With asynchronous transfers, we can
overlap sends and receives but the individual transfers have a larger initial overhead.

On large grids we overlap computation with communications. This means that we perform stencil
calculations in the middle part of the grid, and at the same time exchange boundary regions with
neighboring nodes. We also use batching to combine several small transfers into a few large ones.
We also support using CUDA-aware MPI implementations where all the transfers are handled by the
MPI library.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 200�

� �

�

200 Electronic Structure Calculations on Graphics Processing Units

9.3.4 Results

We evaluated the performance and scalability of our code by comparing the ground-state DFT cal-
culation times between the GPU and the CPU versions of the code using different simulation setups.
For benchmarking purposes, only a fixed number of SCF iterations (usually 10) were performed for
each system, and the average time for a single SCF iteration was used as the metric to compare the
performance. For small systems, testing was performed with the Triton cluster at Aalto University,
which has nine GPU nodes connected to an Infiniband network. Each node has two Intel Xeon X5650
processors and two GPU cards (Nvidia Tesla M2090).

Table 9.1 shows results of benchmarks obtained on the Triton cluster. We performed ground-state
calculation with several different carbon nanotubes consisting of 120, 260, and 380 atoms. The small-
est simulations with 120 atoms used a single GPU. To demonstrate the effect of the hybrid BLAS
functions, we used either one CPU core or all six cores of the Xeon X5650 CPU. Using the threaded
BLAS library on the CPU also speeds up other parts of the code that are calculated entirely on the
CPU. To be able to fully assess the impact of GPU acceleration, we benchmarked the same simula-
tions without GPU using one and six MPI processes (see Table 9.1(b)). For the 250-atom nanotube
we used 4 GPUs and 4 or 24 CPU cores, and for the 380-atom nanotube we employed 8 GPUs and 8
or 48 CPU cores. In the GPU-accelerated version, the use of hybrid BLAS functions yields an addi-
tional performance improvement between 8% and 31% depending on the system size. Overall, the
speedups between the GPU-accelerated version of the code and the CPU version are between 11.1
and 14.0 when using an equal number of CPU cores and GPUs, and from 3.3 to 4.0 when using all
the available recources (CPU cores) during the CPU-only runs.

A larger test for weak scaling of the GPU-accelerated code was performed with the CURIE super-
computer based in France, which has a large hybrid GPU partition with 144 nodes connected to a
Infiniband network. Each node has two Intel Xeon E5640 processors and two Nvidia Tesla M2090
GPU cards. Bulk silicon with periodic boundary conditions was selected as a test system. The num-
ber of atoms in the test system was increased concurrently with the MPI tasks. The size of the system
varied from 8 MPI tasks, 383 atoms, and 1532 wave functions with grid size of 108 × 108 × 80 to 256
tasks, 2047 atoms, and 8188 wave functions with grid size of 216 × 216 × 108. The largest system

Table 9.1 Performance for ground-state calculations of carbon nanotubes of different lengths (times in
seconds, speedup denoted as S-up)

Atoms/bands 120/480 260/1040 380/1520

(a) GPU accelerated ground state calculation
CPU cores/GPUs 1/1 6/1 S-up 4/4 24/4 S-up 8/8 48/8 S-up

Orthonormalization 1.99 1.38 1.44 3.79 2.84 1.33 5.91 4.57 1.29
DSYRK 0.90 0.52 1.73 0.97 0.84 1.16 1.22 1.03 1.18
DGEMM 0.66 0.60 1.10 1.68 1.44 1.17 2.54 2.14 1.19
Subspace diag. 3.29 2.53 1.30 7.32 5.89 1.24 15.3 10.5 1.44
DSYR2K 1.64 1.08 1.52 1.78 1.53 1.16 2.21 1.93 1.15
DGEMM 0.60 0.54 1.10 1.52 1.29 1.18 2.31 1.91 1.21
Total (SCF) 10.3 9.03 1.14 18.1 16.7 1.08 32.7 25 1.31

(b) CPU-only ground-state calculation
CPU cores 1 6 4 24 8 48

Total (SCF) 114 29.7 3.85 253 59.7 4.24 363 100 3.63

GPU speedup 11.1 3.29 14.0 3.57 11.1 4.00

(a) GPU accelerated simulations with either one CPU core per GPU or using hybrid BLAS functions and all available
CPU cores.
(b) CPU-only simulations, multicore speedup, and total speedup using GPU acceleration.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 201�

� �

�

Grid-Based Projector-Augmented Wave Method 201

required ∼ 1.3 TB of memory for the calculations. The performance, speedups, and scaling behavior
of the CPU and GPU versions of the code are shown in Figure 9.3. The scalability and the perfor-
mance of the multi-GPU code seems to be very good and consistent even on massive systems using
256 GPUs. The achieved total speedups using one GPU per CPU core varied from 15 to 19.

151515

0

5

10

15

S
p
e
e
d
-u

p 20

25

30

27

407 452

791

1122
1262

Weak scalability of bulk silicon (GPU vs. CPU)

1444

29 45 58 69 96

0

200

400

600

800

1000

1200

1400

1600

Bulk silicon GPU speed-ups

(a)

(b)

T
im

e
/o

n
e
 i
te

ra
ti
o
n
 (

s
)

MPI tasks, # Atoms

1818
19

Si(383)

8 GPUs

Si(3
83

) 8
 G

PU
s

Si(5
11

) 1
6

G
PU

s

Si(7
99

) 3
2

G
PU

s

Si(1
15

1)
 6

4
G

PU
s

Si(1
53

5)
 1

28
 G

PU
s

Si(2
04

7)
 2

56
 G

PU
s

8
C
or

es

16
 C

or
es

32
 C

or
es

64
 C

or
es

12
8

C
or

es

25
6

C
or

es

Si(511)

16 GPUs

Si(799)

32 GPUs

Si(1151)

64 GPUs

Si(1535)

128 GPUs

Si(2047)

256 GPUs

Other

Subspace diag.

RMM-DIIS other
Precondition

Orthonormalization

Poisson

SCF-iteration GPU
SCF-iteration CPU

Poisson

Orthonormalization

Precondition

RMM-DIIS other

Subspace diag.

Other

SCF-iteration

Figure 9.3 (a) Weak scaling performance of the CPU and GPU versions of the program using bulk Si
systems. (b) The achieved speedups with GPU acceleration. The GPU runs used one CPU core per GPU.
(See insert for colour representation of this figure)

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 202�

� �

�

202 Electronic Structure Calculations on Graphics Processing Units

9.4 Time-Dependent Density Functional Theory

Excited states and the effects of time-dependent potentials are generally beyond the scope of standard
DFT. TD-DFT [28] is a popular method for investigating these properties. In the time propagation
scheme, the time-dependent Kohn–Sham equations can be described as

iℏ
𝜕

𝜕t
𝜓n(t) = H(t)𝜓n(t). (9.24)

This can be transformed to the PAW formalism in the same way as the ground-state equations [29].
The time-depended AE wave functions 𝜓n(t) are replaced by smooth PS wave functions 𝜓̃n(t), and
the time-dependent equations can then be written as

iℏŜ
𝜕

𝜕t
𝜓̃n(t) = Ĥ(t)𝜓̃n(t), (9.25)

where the PAW overlap operator is Ŝ = ̂
†
̂ and the PAW time-dependent Hamiltonian is Ĥ(t) =

̂
†H(t)̂ . The transformation operator  is assumed to be time-independent.
GPAW uses a semi-implicit Crank–Nicolson (SICN) method with a predictor and a corrector step

to propagate the wave functions. In the predictor step, the Hamiltonian is assumed to be constant
during the time step, and the predicted wave functions 𝜓̃pred

n (t + Δt) are solved from the equation
(

Ŝ + Δt
2ℏ

iĤ(t)
)
𝜓̃

pred
n (t + Δt) =

(
Ŝ − Δt

2ℏ
iĤ(t)

)
𝜓̃n(t) + (Δt2). (9.26)

The predicted Hamiltonian Ĥpred(t + Δt)) is then calculated using the predicted wave functions. We
can approximate the Hamiltonian in the middle of the time step now as

Ĥ
(

t + Δt
2

)
= 1

2
(Ĥ + Ĥpred(t + Δt)), (9.27)

which is then used to obtain the propagated wave functions 𝜓̃n(t + Δt) in the corrector step:
(

Ŝ + Δt
2ℏ

iĤ
(

t + Δt
2

))
𝜓̃n(t + Δt) =

(
Ŝ − Δt

2ℏ
iĤ

(
t + Δt

2

))
𝜓̃n(t) + (Δt3). (9.28)

The equations are discretized using uniform real-space grids in the same way as the ground-state
solution. The predictor equation (9.26) and the corrector equation (9.28) involve complex symmetric
matrices, and a conjugate gradient method is used to solve them.

A linear absorption spectrum can be calculated by applying a weak delta function pulse of a dipole
field to the system and then letting the wave functions evolve freely. The optical spectrum is obtained
from the Fourier transformation of the time evolution of the dipole moment vector.

9.4.1 GPU Implementation

The computationally most time-consuming part of the SICN algorithm in GPAW is the conjugate
gradient solver for complex symmetric matrices that is used both in the predictor and in the correc-
tor steps. The most important operation is the application of the Hamiltonian operator to the wave
functions, which involves the finite difference Laplacian as well as projector wave function integrals.
Another significant portion is the updating of the time-dependent Hamiltonian. A lot of the high level
code is shared between the time propagator code and the ground-state code. In the GPU-accelerated
version, all heavy computations are performed with GPUs.

To conserve memory and to speedup computations on the GPU, we use a batching version of
the propagator code. The predictor and the corrector steps are calculated simultaneously for a block
of wave functions. A copy of the wave functions is stored in the host memory at the start of the

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 203�

� �

�

Grid-Based Projector-Augmented Wave Method 203

Table 9.2 Bulk Au time-propagation example

Atoms/bands 48/268 96/536 144/804

CPU cores/GPUs 1∕0 1∕1 S-up 4∕0 4∕4 S-up 8∕0 8∕8 S-up

Apply operators 30.4 2.83 10.7 31.9 2.79 11.4 35.0 3.51 9.97
Conjugate gradient 1190 106 11.2 1270 109 11.7 1380 136 10.1
Update operators 19.9 8.44 2.36 139 18.7 7.43 387 14.7 26.3
Propagation 1250 119 10.5 1450 132 11.0 1820 156 11.7

The times are averages for one propagation step in seconds, and the comparison is between equal numbers of GPUs and
CPU cores.

propagator step and then transferred back block by block to the GPU when it is needed. This is done
to avoid storing several copies of the wave function matrices in the limited GPU memory. Batching
is also used in the conjugate gradient solver. The same CUDA kernels and libraries used in the DFT
code are reused in the TD-DFT code.

The GPU TD-DFT code is parallelized in the same way as the ground-state code: that is, with
domain decomposition over real-space grids. As the parallelization over electronic states is trivial in
time-propagation TD-DFT, we have also implemented band parallelization.

9.4.2 Results

Table 9.2 shows an example time-propagation calculation performed on the Vuori cluster at CSC,
Finland, consisting of Intel Xeon X5650 CPUs and Nvidia Tesla M2050 GPUs. Bulk gold systems
are excited with a weak delta kick, and wave functions are propagated with an SICN propagator. The
computation is performed with three different systems using 1–8 MPI tasks. Parallelization is done
with a combination of domain decomposition and band parallelization. The smallest system has 48
gold atoms with 268 bands in the calculation, and the largest one has 144 atoms with 804 bands.

The computations are performed either using GPUs or CPUs. From the results we can see that the
vast majority of time in both the CPU and GPU versions is spent in the conjugate gradient solver.
Updating the operator also includes some functions (e.g., the XC potential), which are computed
entirely on the CPU and which can consume a significant portion of time for small systems. Overall,
the achieved speedups (using one GPU per CPU core) in the tested systems vary between 10.5 and
11.7. The scalability of the GPU-accelerated code is comparable to that of the original CPU code.

9.5 Random Phase Approximation for the Correlation Energy

As material simulations and predictions using DFT methods advance, DFT with semilocal
density-based XC functionals face huge challenges in describing systems with long-range van
der Waals interactions, strong correlation, localization, and so on. Climbing the so-called Jacob’s
ladder for XC functionals, one goes beyond density-based into orbital-based XC functionals. Exact
exchange (EXX) includes the exchange interaction between orbitals and is self-interaction-free.
However, EXX (or Hartree–Fock) alone has repulsion that is too strong and gives, for example,
HOMO–LUMO values for molecules and band gaps for solids that are too large. Typical hybrid XC
functionals take into account 20-30% of the EXX contribution, plus other semilocal XC contributions.
However, the amount of the EXX included is empirical. Correlation using the RPA is orbital-based
and fully nonlocal. As RPA is derived from the adiabatic connection fluctuation-dissipation theorem
(ACFDT), EXX and RPA work naturally together, with 100% of EXX included and without any
empirical parameters. EXX+RPA has been shown to systematically improve lattice constants [30],

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 204�

� �

�

204 Electronic Structure Calculations on Graphics Processing Units

atomization and cohesive energies [31], formation enthalpies [32], adsorption sites and energies
[33–35], reaction barriers [36], structural phase transitions [37], and polymorphic energy ordering
[38] for a wide range of systems that have ionic, covalent, or van der Waals interactions [39–42].

Similar to many other beyond-DFT orbital-based calculations, the RPA method is exceptionally
computationally demanding. The challenges are twofold: First, it involves, per calculation, summa-
tions over large basis sets and hundreds to thousands of virtual orbitals, both of which are truncated
above a certain energy. Second, the method scales as (N4), where N is the number of electrons.
Methods that have been used to reduce the computational burden of RPA so far include reducing or
eliminating the number of virtual orbitals by using approximations [43, 44]; more rigorous pertur-
bation theory [45–47], or Green’s functions; and range-separated RPA to achieve faster convergence
[48]. Here, we address high computational burden by using GPUs without making any approxima-
tions or methodology change to the RPA method [49]. It is interesting, although beyond the scope of
this article, to explore the combination of GPU and other improvements to the RPA method.

According to the ACDFT theory, the RPA correlation energy Ec
rpa, represented with a plane-wave

basis set, is written as

Ec
rpa = ∫

∞

0

d𝜔
2𝜋 ∫BZ

dqTr{ ln [1 − 𝑣G(q)𝜒
0
GG′ (q, i𝜔)] + 𝑣G(q)𝜒

0
GG′ (q, i𝜔)}, (9.29)

where q is a wave vector within the Brillouin zone (BZ), G is a reciprocal space lattice vector the
size of which is defined by a cutoff energy Ecut, 𝜔 is the frequency, and 𝑣 is the Coulomb interaction
kernel. The noninteracting response function 𝜒0 is

𝜒0
GG′ (q, i𝜔) =

2
Ω

BZ∑
k

∑
nn′

fnk − fn′k+q

i𝜔 + 𝜖nk − 𝜖n′k+q

nnk,n′k+q(G)n∗
nk,n′k+q(G

′), (9.30)

where
nnk,n′k+q(G) ≡ ⟨𝜓nk|e−i(q+G)⋅r|𝜓n′k+q⟩ (9.31)

is the charge density matrix, and Ω is the volume of the unit cell. The occupations fnk, Kohn–Sham
eigenvalues 𝜖nk, and eigenstates 𝜓nk for band n at wave vector k are obtained from a ground-state
DFT calculation, which can be performed in any basis supported by GPAW (i.e., real-space grids,
plane waves, or localized orbitals).

9.5.1 GPU Implementation

In the actual numerical implementation, the frequency integration over 𝜔 in Eq. (9.29) is carried out
using 16 Gauss–Legendre points following the procedure from Ref. [40]. The integration over the BZ
is discretized using Monkhorst–Pack k-points, the size of which depends on whether one calculates
metals or semiconductors and is on the order of 101–103. By exploiting the q-mesh symmetry, the
integration is reduced to a summation over the irreducible BZ (IBZ) : ∫BZ →

∑
IBZ𝑤q, where 𝑤q is

the weight for a specific q vector. The number of G vectors is on the order of 102–103, making the 𝜒0

matrix size difficult to store in the 2–3 GB of memory typically available on GPU cards at present.
As a result, the q index is looped over, and for each q the 𝜒0(𝜔,G,G′) matrix is evaluated as (the
pair of indices in the parentheses indicate the size of the matrix)

𝜒0(i𝜔,G,G′) =
∑

k,n,u⊂n′
A(u, i𝜔)n(u,G)n∗(u,G′), (9.32)

where u is a subset of index n′, and n(u,G) is a matrix, with each column representing a vector n(G) in
Eq. (9.31) at a particular n, n′, and k. In practice, the n′ index is looped over the subset u, and for each
electron–hole pair at (n,k) and (n′,k + q), the n(G) vector is calculated according to Eq. (9.31), and

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 205�

� �

�

Grid-Based Projector-Augmented Wave Method 205

stored as a column in the matrix n(u,G). When all the matrix elements of the n(u,G) are calculated, a
zherk routine in the BLAS or CUBLAS library is called and the result is added to the 𝜒0(i𝜔,G,G′)
matrix. Such a process is repeated for all the k, n, and u indices until the summations are complete.
Similar to all the other physical quantities in the PAW method, the calculation of n(G) consists of a
smooth pseudo-part and an atom-centered PAW part. The details on how to evaluate n(G) in the PAW
method can be found in Refs [49, 50].

The calculation of the 𝜒0(i𝜔,G,G′) matrix is parallelized by dividing the summation onto the
processors of each node using MPI. Since each processor computes its own set of n(u,G), there is no
communication during the calculations. Thus, MPI communications are only required at the begin-
ning of the calculation, to setup and distribute indices, and so on, and at the end of the calculation,
to sum up the 𝜒0 matrix on each processor. Linear scaling with both CPU and GPU count is thus
expected. The 𝜒0 matrix is also stored in parallel if necessary.

The response function code has been entirely moved to the GPU (no “thunking”). The GPU port
was done in three steps. In the first step, all the BLAS and FFTW routines were replaced with
CUBLAS and batched CuFFT routines. In the second step, the finite difference stencil code on CPU,
in the case of q → 0, was reformulated using CuFFT. In the third step, we wrote customized CUDA
kernels for the rest of the code. This included obtaining and transforming wave functions using sym-
metry operations, mapping wave functions between the 3D FFT grid and reduced planewave grid
defined by a cutoff radius, as well as the PAW corrections to the n(G). The size of the code is roughly
6000 lines of python and 1000 lines of C/CUDA (many GPAW functions are reused and not counted
here). The source code is available for download.1

9.5.2 Performance Analysis Techniques

To study the performance of the code, we have used the Nvidia “nvvp” profiling tool. As shown in
Figure 9.4, the GPU is typically well utilized during RPA calculations, but there is a period where the
GPU goes idle, waiting for the CPU. There are three labeled lines in the plot. “CPU kernel launches”
shows various CUDA kernel launches, with the labeled brown boxes showing kernel launches that do
not immediately return, indicating that the CPU is blocked waiting for the GPU. The “CPU routine
markers” line was produced by inserting nvvp “range markers” in the code to indicate which CPU
routines were running at which time. The “GPU utilization” line shows that the GPU is idle between
17.5 and 18.5 ms.

cudaDeviceSynchronize

memcp…

cugemv wfs_read_disk wfs_get

cudaMemcpycudaMemc.

15.5 ms 16 ms 16.5 ms 17 ms 17.5 ms 18 ms 18.5 ms

Others_3wfs_…

CPU kernel
launches

CPU routine
markers

GPU
utilization

Figure 9.4 Output of the Nvidia nvvp profiling tool for a portion of an RPA Li2O calculation

1 https://trac.fysik.dtu.dk/projects/gpaw/browser/branches/rpa-gpu-expt.

https://trac.fysik.dtu.dk/projects/gpaw/browser/branches/rpa-gpu-expt

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 206�

� �

�

206 Electronic Structure Calculations on Graphics Processing Units

During the idle period, the CPU is reading wave functions from disk (routine wfs_read_disk
in the “CPU routine markers” line). Performance of the code could, in principle, be improved by
prefetching these wave functions before launching the cudaDeviceSynchronize call, which
blocks the CPU at ∼15 ms. Such an overlap between CPU and GPU work would be possible because
there are no dependencies between the new wave function data fetched and the results calculated
from preceding wave function data.

9.5.3 Results

Figure 9.5 shows the speedup for a test system N2/Ru(0001) surface with 14 atoms in the unit cell.
These results were obtained running on a system with two 6-core Intel X5650 CPUs and eight Nvidia
C2075 GPUs. The speedup for a few representative functions is shown as black lines, and the total
speedup is shown in red. As the number of u increases, the speedup of most functions plateaus.
Some of them, such as zherk and our customized kernel (“paw_P_ai, ” “mapG, ” and so on), trans-
form themselves from being memory-bound to being compute/latency-bound: the number of kernel
launches is reduced, reducing the kernel launch overhead, and the cudaMemcpy is executed with a
larger amount of data per copy. For large Nu, the FFT operations, employed by calling the CuFFT
library in a batched manner, gain the least speedup (12), compared to FFTW. This is not surprising
since FFT operations are highly nonlocalized. The CUBLAS zherk routine gains a speedup of 27
compared to MKL blas. The maximum speedup of 36 for zherk is not achieved here because we did
not choose a large enough system to stress the GPUs; instead we chose a system that was more scien-
tifically interesting. Our own customized kernels “mapG” and “paw_P_ai” gain the most significant
speedup by parallelizing over as many indices as possible using GPU threads. For example, in the

0

90

50 100 150

Nu

200 250

paw_P_ai
×3

mapG

zherk

get_wfs

fft

80

70

60

50

40

30

20

10

Total q → 0

Total q ≠ 0

0

S
p
e
e
d
 u

p

Figure 9.5 Speedup (eight GPUs vs. eight CPU cores) as a function of the number of the u (Nu) for
some representative functions such as get wave functions (“get_wfs”), mapping wave functions between
the 3D FFT grid and reduced planewave grid (“mapG”), PAW corrections (“paw_P_ai”), batched CUFFT

(“fft”), and CUBLAS (“zherk” routine). For a full list of the GPU ported functions, refer to Ref. [49]. The test
system is a N2/Ru(0001) surface, modeled with four layers of Ru in a

√
3 ×

√
3 unit cell. The speedup

(timing) information comes from a summation of 1 k-point (per core), 5 occupied, and 1486 unoccupied
bands with an energy cutoff 150 eV. The total speedups (“Total”) in the optical limit (q → 0) and other
q ≠ 0 are also shown.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 207�

� �

�

Grid-Based Projector-Augmented Wave Method 207

Table 9.3 Speedup (eight GPUs/eight CPU cores) for q ≠ 0 as well as time required for an entire RPA
calculation with a response function cutoff of 150 eV for different simulations

System Phase Na Ne Spin k-Points Speedup tgpu

O2 Gas 2 12 True 1 11.3× 41 seconds
Li2O Bulk 3 8 False 4 × 4 × 4 10.5× 63 seconds
MoO3 Bulk 16 96 False 4 × 2 × 4 35.3× 1.0 hour
N2/Ru(0001) Surface 14 202 False 4 × 4 × 1 36.1× 1.4 hours
CO/Ni(111) Surface 22 210 True 4 × 4 × 1 37.0× 5.5 hours

Na denotes the number of atoms and Ne the number of electrons in the unit cell. Spin polarization is indicated in the
column “Spin.”

CPU code, the PAW corrections must loop over atoms, bands, and projector functions. In the GPU
implementation, we parallelize all the atoms, bands, and projector function indices simultaneously
using threads.

With a typical speedup of 40, RPA calculations can be performed in a timely manner using eight
GPUs on the systems shown in Table 9.3. The speedup in the noninteracting response function makes
it also applicable to other beyond-DFT methods such as GW and Bethe–Salpeter equation [51].

9.6 Summary and Outlook

The PAW method together with uniform real-space grids as implemented in the open-source software
package GPAW has proven to be an accurate and scalable computational method for DFT-based
calculations on traditional CPU-based supercomputers. As GPUs have been promising in speeding
up DFT-based calculations, we have ported GPAW to utilize also GPUs.

The ground-state algorithm in GPAW contains several parts with non-negligible computation
time including solution of the Poisson equation with the multigrid method, projector function–wave
function integrals, application of the Hamiltonian operator to the wave functions, multigrid precon-
ditioning and dense matrix–matrix products in subspace diagonalization, and orthonormalization of
wave functions. All these parts can be executed on GPUs either with custom CUDA kernels or with
the CUBLAS library. Multiple GPUs can be utilized with the MPI-based implementation. We have
implemented also hybrid versions of special matrix–matrix operations, which can utilize concurrently
both CPUs and GPUs. In single CPU core–GPU comparison, the individual computational kernels
achieve speedups of a factor of 10–40, and the whole calculation can obtain speedups up to ∼20.
Also, we have demonstrated that the multi-GPU ground-state algorithm scales efficiently at least to
256 GPUs. In typical hardware configurations, there are several CPU cores available per GPU, and in
a CPU node–GPU node comparison the speedup for the full calculation is typically 3–4. This speedup
is significant and justifies the use of GPUs when considering acquisition price versus performance
or energy consumption versus performance.

GPAW implements also TD-DFT for studies of excited state properties. As the TD-DFT real-time
propagation algorithm utilizes largely the same kernels as the ground-state algorithm, the GPU-based
implementation is relatively straightforward based on the existing ground-state GPU implementation.
The achievable speedup and scalability of TD-DFT calculations is similar to those of ground-state
calculations.

For special GPAW features, it is possible to obtain very high speedups with GPUs. The RPA to
the correlation energy is computationally very demanding, and the algorithm itself is well suited for
GPUs. The RPA GPU implementation is also able to utilize multiple GPUs and achieves speedups
of almost 40 in single CPU core–single GPU comparison.

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 208�

� �

�

208 Electronic Structure Calculations on Graphics Processing Units

Generally, DFT-based methods contain several time-consuming computational kernels whose
optimization for GPUs is nontrivial. Thus, it is expected that there is room for further improvements
in the GPU implementation of GPAW. In addition, hardware developments (e.g., caches in GPUs)
as well as developments in the compilers are likely to improve the performance of GPU implemen-
tations, and make it also easier to implement new features utilizing GPUs. Even though GPUs might
not become main stream for DFT-based simulations, there are clearly application cases where GPUs
are highly competitive.

Acknowledgments

This work has been supported by the Academy of Finland (Project 110013 and the Center of Excel-
lence program). This research used resources of CSC–IT Center for Science Ltd, Finland, and PRACE
Research Infrastructure resource CURIE based in France at GENCI/CEA. Work on the RPA method
was supported by the U.S. Department of Energy Chemical Sciences, Geosciences, and Biosciences
Division under the Materials Genome Initiative: Predictive Theory of Transition Metal Oxide Catal-
ysis grant.

References

1. Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Phys. Rev., 136 (3B),
B864–B871.

2. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140 (4A), A1133–A1138.

3. Mortensen, J.J., Hansen, L.B. and Jacobsen, K.W. (2005) Real-space grid implementation of the
projector augmented wave method. Phys. Rev. B, 71, 035109.

4. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L. et al. (2010)
Electronic structure calculations with GPAW: a real-space implementation of the projector
augmented-wave method. J. Phys. Condens. Matter, 22 (25), 253202.

5. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, J.D. (1992) Iterative min-
imization techniques for ab initio total-energy calculations: molecular dynamics and conjugate
gradients. Rev. Mod. Phys., 64 (4), 1045–1096.

6. Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M. et al. (2002)
First-principle computation of material properties: the ABINIT software project. Comput. Mater.
Sci., 25, 478.

7. Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50.

8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C. et al. (2009)
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations
of materials. J. Phys. Condens. Matter, 21 (39), 395502 (19pp). Available from http://www
.quantum-espresso.org.

9. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P. et al. (2002) The SIESTA
method for Ab initio order- N materials simulation. J. Phys. Condens. Matter, 14 (11), 2745.

10. Ahlrichs, R., Bär, M., Häser, M., Horn, H. and Kölmel, C. (1989) Electronic structure calcu-
lations on workstation computers: the program system Turbomole. Chem. Phys. Lett., 162 (3),
165–169.

11. Chelikowsky, J.R., Troullier, N. and Saad, Y. (1994) Finite-difference-pseudopotential method:
electronic structure calculations without a basis. Phys. Rev. Lett., 72 (8), 1240–1243.

http://www.quantum-espresso.org
http://www.quantum-espresso.org

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 209�

� �

�

Grid-Based Projector-Augmented Wave Method 209

12. Briggs, E.L., Sullivan, D.J. and Bernholc, J. (1995) Large-scale electronic-structure calculations
with multigrid acceleration. Phys. Rev. B., 52 (8), R5471–R5474.

13. Marques, M.A.L., Castro, A., Bertsch, G.F. and Rubio, A. (2003) Octopus: a first-principles tool
for excited electron-ion dynamics. Comput. Phys. Commun., 151, 60–78.

14. Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X. et al. (2009) Ab initio molecular sim-
ulations with numeric atom-centered orbitals. Comput. Phys. Commun., 180 (11), 2175–2196.

15. Tsuchida, E. and Tsukada, M. (1995) Electronic-structure calculations based on the
finite-element method. Phys. Rev. B, 52, 5573–5578.

16. Pask, J.E. and Sterne, P.A. (2005) Finite element methods in ab initio electronic structure calcu-
lations. Modell. Simul. Mater. Sci. Eng., 13, R71–R96.

17. Lehtovaara, L., Havu, V. and Puska, M. (2009) All-electron density functional theory and
time-dependent density functional theory with high-order finite elements. J. Chem. Phys.,
131 (5), 054103.

18. Blöchl, P.E. (1994) Projector augmented-wave method. Phys. Rev. B, 50 (24), 17953–17979.
19. Runge, E. and Gross, E.K.U. (1984) Density-functional theory for time-dependent systems.

Phys. Rev. Lett., 52, 997–1000.
20. Blöchl, P.E. (1994) Projector augmented-wave method. Phys. Rev. B, 50, 17953–17979.
21. Brandt, A. (1977) Multi-level adaptive solutions to boundary-value problems. Math. Comput.,

31, 333.
22. Briggs, W.L., Henson, V.E. and McCormick, S.F. (2000) A Multigrid Tutorial, 2nd edn, Society

for Industrial and Applied Mathematics, Philadelphia, PA.
23. Hakala, S., Havu, V., Enkovaara, J. and Nieminen, R. (2013) Parallel electronic structure cal-

culations using multiple graphics processing units (GPUs), in Applied Parallel and Scientific
Computing, Lecture Notes in Computer Science, vol. 7782 (eds P. Manninen and P. Oster),
Springer-Verlag, Berlin Heidelberg, pp. 63–76.

24. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P. and Fasih, A. (2012) PyCUDA and
PyOpenCL: a scripting-based approach to GPU run-time code generation. Parallel Comput.,
38 (3), 157–174.

25. NVIDIA Corp. CUDA Parallel Computing Platform. http://www.nvidia.com/object/
cuda_home_new.html (accessed 14 October 2013).

26. Libxc. http://www.tddft.org/programs/octopus/wiki/index.php/Libxc (accessed
15 September 2015).

27. Micikevicius, P. (2009) 3D finite difference computation on GPUs using CUDA, in GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units,
ACM, New York, pp. 79–84.

28. Yabana, K. and Bertsch, G.F. (1996) Time-dependent local-density approximation in real time.
Phys. Rev. B, 54, 4484–4487.

29. Walter, M., Häkkinen, H., Lehtovaara, L., Puska, M., Enkovaara, J., Rostgaard, C. et al. (2008)
Time-dependent density-functional theory in the projector augmented-wave method. J. Chem.
Phys., 128 (24), 244101.

30. Harl, J., Schimka, L. and Kresse, G. (2010) Assessing the quality of the random phase approxi-
mation for lattice constants and atomization energies of solids. Phys. Rev. B, 81, 115126.

31. Harl, J. and Kresse, G. (2008) Cohesive energy curves for noble gas solids calculated by adiabatic
connection fluctuation-dissipation theory. Phys. Rev. B, 77, 045136.

32. Yan, J., Hummelshøj, J.S. and Nørskov, J.K. (2013) Formation energies of group I and II metal
oxides using random phase approximation. Phys. Rev. B, 87, 075207.

33. Ren, X., Rinke, P. and Scheffler, M. (2009) Exploring the random phase approximation: appli-
cation to CO adsorbed on Cu(111). Phys. Rev. B, 80, 045402.

http://www.nvidia.com/object/cuda_protect LY1	extbraceleft hprotect LY1	extbraceright ome_protect LY1	extbraceleft nprotect LY1	extbraceright ew.html
http://www.nvidia.com/object/cuda_protect LY1	extbraceleft hprotect LY1	extbraceright ome_protect LY1	extbraceleft nprotect LY1	extbraceright ew.html
http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

Trim Size: 170mm x 244mm Walker c09.tex V3 - 01/09/2016 10:29 A.M. Page 210�

� �

�

210 Electronic Structure Calculations on Graphics Processing Units

34. Schimka, L., Harl, J., Stroppa, A., Grüneis, A., Marsman, M., Mittendorfer, F. et al. (2010)
Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater.,
9, 741.

35. Paz-Borbón, L.O., Barcaro, G., Fortunelli, A. and Levchenko, S.V. (2012) AuN clusters (N =
1–6) supported on MgO(100) surfaces: effect of exact exchange and dispersion interactions on
adhesion energies. Phys. Rev. B, 85, 155409.

36. Ren, X., Rinke, P., Joas, C. and Scheffler, M. (2012) Random-phase approximation and its appli-
cations in computational chemistry and materials science. J. Mater. Sci., 47, 7447.

37. Xiao, B., Sun, J., Ruzsinszky, A., Feng, J. and Perdew, J.P. (2012) Structural phase transitions
in Si and SiO2 crystals via the random phase approximation. Phys. Rev. B, 86, 094109.

38. Peng, H. and Lany, S. (2013) Polymorphic energy ordering of MgO, ZnO, GaN, and MnO within
the random phase approximation. Phys. Rev. B, 87, 174113.

39. Harl, J. and Kresse, G. (2009) Accurate bulk properties from approximate many-body tech-
niques. Phys. Rev. Lett., 103, 056401.

40. Olsen, T., Yan, J., Mortensen, J.J. and Thygesen, K.S. (2011) Dispersive and covalent interactions
between graphene and metal surfaces from the random phase approximation. Phys. Rev. Lett.,
107, 156401.

41. Dobson, J.F. and Gould, T. (2012) Calculation of dispersion energies. J. Phys. Condens. Matter,
24, 073201.

42. Lu, D., Li, Y., Rocca, D. and Galli, G. (2009) Ab initio calculation of van der Waals bonded
molecular crystals. Phys. Rev. Lett., 102, 206411.

43. Bruneval, F. and Gonze, X. (2008) Accurate GW self-energies in a plane-wave basis using only
a few empty states: towards large systems. Phys. Rev. B, 78, 085125.

44. Berger, J.A., Reining, L. and Sottile, F. (2010) Ab initio calculations of electronic excitations:
collapsing spectral sums. Phys. Rev. B, 82, 041103.

45. Umari, P., Stenuit, G. and Baroni, S. (2010) GW quasiparticle spectra from occupied states only.
Phys. Rev. B, 81, 115104.

46. Giustino, F., Cohen, M.L. and Louie, S.G. (2010) GW method with the self-consistent Stern-
heimer equation. Phys. Rev. B, 81, 115105.

47. Rocca, D., Ping, Y., Gebauer, R. and Galli, G. (2012) Solution of the Bethe-Salpeter equation
without empty electronic states: application to the absorption spectra of bulk systems. Phys. Rev.
B, 85, 045116.

48. Bruneval, F. (2012) Range-separated approach to the RPA correlation applied to the van der
Waals bond and to diffusion of defects. Phys. Rev. Lett., 108, 256403.

49. Yan, J., Li, L. and O’Grady, C. (2013) Graphics processing unit acceleration of the random phase
approximation in the projector augmented wave method. Comput. Phys. Commun., 184, 2728.

50. Yan, J., Mortensen, J.J., Jacobsen, K.W. and Thygesen, K.S. (2011) Linear density response
function in the projector augmented wave method: applications to solids, surfaces, and interfaces.
Phys. Rev. B, 83, 245122.

51. Yan, J., Jacobsen, K.W. and Thygesen, K.S. (2012) Optical properties of bulk semiconductors
and graphene/boron nitride: the Bethe-Salpeter equation with derivative discontinuity-corrected
density functional energies. Phys. Rev. B, 86, 045208.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 211�

� �

�

10
Application of Graphics Processing

Units to Accelerate Real-Space
Density Functional Theory and

Time-Dependent Density Functional
Theory Calculations

Xavier Andrade and Alán Aspuru-Guzik
Department of Chemistry and Chemical Biology, Harvard University,

Cambridge, MA, USA

Real-space density functional theory (DFT) is a powerful and flexible method for the numerical simu-
lation of electronic systems within the Kohn–Sham approach. In real-space DFT the density, orbitals
and other fields are represented on a grid and the differential operators are approximated by finite
differences. With a proper implementation strategy, the real-space approach offers great opportuni-
ties for GPU processing due to naturally coalesced memory accesses, small and simple kernels, and
extensive data parallelism. In this chapter, we examine the GPU implementation in real-space of two
different types of calculations based on the Kohn–Sham approach, and that are commonly used to
characterize electronic systems: the calculation of the ground-state using DFT, and electron dynam-
ics using real-time time-dependent DFT (TDDFT). We provide details of the implementation of the
different numerical procedures required for these calculations and how to make them suitable for the
particular characteristics of current GPUs. The resulting numerical performance of the calculations
is evaluated by absolute measurements, comparison with the optimized CPU version and other GPU
implementations based on Gaussian basis sets.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 212�

� �

�

212 Electronic Structure Calculations on Graphics Processing Units

10.1 Introduction

As was discussed in detail in Chapter 2 designing a high-throughput processor like a graphics pro-
cessing unit (GPU) requires engineers to make certain tradeoffs to stay within transistor and power
budgets. These tradeoffs need to be taken into account when designing code to run on GPUs. As was
discussed in Chapter 2, GPUs for example require a very large number of independent instructions to
be executed in parallel in order to hide execution latency. Another important aspect of a GPU is that
control units are shared among execution units and one therefore needs to be careful when designing
code that shall execute different instructions in parallel, otherwise these will be performed in series.

These characteristics make the GPU architecture more suitable to certain types of numerical work
than others. Given the complexity of the electronic structure problem and the diversity of meth-
ods used to tackle it by chemists and physicists, the use of GPUs to simulate electronic systems, as
illustrated by this book and the following references, is an active area of research [1–19].

One of the most successful approaches for molecular electronic structure is the use of Gaussian
type orbitals (GTOs) [20]. It is not surprising then, that the GTO approach was probably one of
the first electronic structure methods to be implemented on GPUs [1, 21, 22]. However, there are
some inherent characteristics of the methods that make the implementation of the GTO approach on
GPUs complicated. The analytic evaluation of integrals, one of the most time consuming parts of this
type of calculations, requires different formulations for different angular momentum components,
making the code irregular. Moreover, the integrals that involve high-angular momentum components,
required for heavy elements or high-accuracy calculations, are challenging to evaluate efficiently on
the GPU [23, 24]. For example in the code Terachem [25, 26], discussed earlier in Chapter 4, the
evaluation of integrals for d-type orbitals on the GPU requires the use of automatic code generation
[24], and, at the time of writing, f -type orbitals are not supported.

A more straightforward approach for electronic structure is the real-space grid discretization. Prob-
ably, the first real-space implementation for polyatomic molecules was presented by Becke in 1989
[27], as a method for basis-set free DFT. His approach uses a set of radial grids centered around each
atom. A simpler formulation based on uniform grids and pseudo-potentials was proposed by Che-
likosky et al. in 1994 [28]. Since then, the real-space approach has become a popular alternative for
DFT simulations and several implementations have been presented [29–41] (see also Chapter 9). A
particular application of the real-space approach has been in association real-time electron dynamics
calculations performed at the TDDFT theory level [42, 43], a combination known as the real-space
real-time method.

What makes real-space grids attractive for electronic structure is the flexibility to model different
types of electronic systems: molecular, crystalline [44], and low-dimensional model systems [45–47],
the systematic control of the discretization error, and its potential for parallelization in distributed
memory systems with thousands of processors [7, 48–50]. Recent works have shown that real-space
grid methods have great potential for efficient execution on GPU architectures [6–8, 16, 51], with
performance that rivals that of GTO calculations on GPUs (Chapter 4).

In this chapter, we discuss the real-space GPU approach we developed for DFT and TDDFT cal-
culations based on the code octopus [33, 52] by reviewing our previous published work [6–8] and
presenting some new advances. Our objective has been the development of efficient methods to per-
form electronic structure calculations on GPUs. This goes beyond rewriting and optimizing low-level
routines for the GPU since choosing an appropriate design strategy for the entirety of the code can
be fundamental for optimal GPU performance with complex scientific software. Our discussion is
complementary to Chapter 9 that discusses the GPU implementation of real-space DFT with a focus
on projector augmented methods and multiple GPUs. Our GPU implementation is based on OpenCL
[53], a standard and portable framework for writing code for parallel processors, so it can run on
GPUs, CPUs, and other processing devices, from multiple vendors.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 213�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 213

In order to assess the efficiency of our implementation, we perform a series of tests involving
ground-state and excited-state calculations using high-end GPUs from Nvidia and AMD, and a set of
molecular systems of different sizes. We provide different indicators that illustrate the performance
of our implementation: numerical throughput (number of floating point operations executed per unit
of time), total calculation times, and comparisons with the CPU version of the code and a different
GPU–DFT implementation. These results show that real-space DFT is an interesting and competitive
approach for GPU-accelerated electronic structure calculations.

10.2 The Real-Space Representation

In the Kohn–Sham (KS) [54] formulation of DFT [55], the electronic density of an interacting elec-
tronic system, n, is generated by a set of single-particle orbitals, or states, 𝜓k. For numerical simula-
tions in DFT and TDDFT, the orbitals, the density, and other fields need to be represented as a finite
set of numbers. The selection of the discretization scheme is probably the most important aspect in
the numerical solution of the electronic structure problem.

In the real-space approach [27, 28], instead of a basis, fields are discretized on a grid and operators
are approximated by finite-differences. This provides a simple and flexible scheme that is suitable
to model both finite and periodic systems [44]. The electron–ion interaction is modeled by either
the pseudo-potential approximation, or the projector-augmented wave method [36], that remove the
problem of representing the hard Coulomb potential, allowing simple uniform grids to be used.

One of the main advantages of the real-space grid approach is that the discretization error can be
controlled systematically by reducing the spacing and, in the case of finite systems, increasing the
size of the simulation box. Of course, this increases the number of points and, proportionally, the
time and memory cost of the calculation.

Many real-space implementations use parallelepipedic grids that are simple to implement, since
the points positions can be easily mapped from the grid to a linear array. However, this has a dis-
advantage when simulating systems that are finite in one or more directions. In general, the error
due to forcing the orbitals to zero outside of the box roughly depends on the smallest distance from
any atom to the boundaries of the box. This implies that in a parallelepipedic grid, a large fraction
of the points, typically the ones on the corners, are not significant to the quality of the discretiza-
tion, and only contribute to make the calculation more expensive in memory and computing time.
For example, in the simulation of an electronic system of spherical nature, a cubic grid will contain
6∕𝜋 ≈ 1.9 times more points than a spherical grid with equivalent accuracy.

A more advanced alternative is to use grids with arbitrary shapes, so that the optimal number of
grid points can be used for each system. For example, in the octopus code, the default approach is
to use a grid composed of the union of spheres around each atom (as shown in Figure 10.1). The
complication of this approach is that the mapping between the position of the point in space and in a
linear array cannot be determined analytically and must be stored in tables. However, as we discuss
in Section 10.5, having the freedom of choosing an arbitrary mapping can be used to improve the
cache locality for some operations.

An alternative to further reduce the number of points is to use nonuniform grids that have higher
densities close to the position of the atomic nuclei, where the orbitals and the density require higher
resolution. Several schemes for such adaptive grids have been proposed [27, 56–58]. Nevertheless,
most real-space implementations nowadays use uniform grids. As the computational cost per point
is larger for a curvilinear mesh, in our experience the actual gains in performance are small and
do not justify the additional complexity in the implementation [52]. However, this is a point that
should be re-evaluated in the near future, as the “operations versus memory” trade-off offered by
nonuniform meshes is attractive for GPUs, especially if the pseudo-potential or PAW approximation

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 214�

� �

�

214 Electronic Structure Calculations on Graphics Processing Units

Figure 10.1 Example of real-space grids adapted to the shape of a cis retinal molecule. The cubes mark
the position of the grid points. For visualization purposes, we represent smaller and coarser grids than the
ones used for actual calculations

could be avoided altogether to obtain a simpler full-potential DFT implementation that can run more
efficiently on GPUs.

10.3 Numerical Aspects of the Real-Space Approach

The basic procedure in DFT (see Chapter 3) is to calculate the ground state density of a system by
solving the KS equations [54]

H[n]𝜓k(r) = 𝜖i 𝜓k(r) (10.1a)

n(r) =
N∑

k=1

𝜓∗
k (r)𝜓k(r), (10.1b)

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 215�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 215

where the operator H is the KS effective single-particle Hamiltonian (atomic units are used
throughout)

H[n] = −1
2
∇2 + 𝑣ext(r) + 𝑣hxc[n](r, t). (10.2)

The external potential 𝑣ext contains the nuclear potential and other external fields that may be present,
𝑣hxc represents the electron–electron interaction and is usually divided into the Hartree term that
contains the classical electrostatic interaction between electrons and the exchange and correlation
(XC) potential.

To solve the KS equations, as it is standard in Hartree–Fock (HF) and DFT, a self-consistent field
(SCF) iterative scheme is used [59–62]. Every SCF step we need to find the lower eigenvectors and
eigenvalues of the KS Hamiltonian for a fixed electron density.

In real-space, the discretization of the KS Hamiltonian, Eq. (10.2), is achieved using a high-order
finite differences representation [28]. As this results in a sparse operator representation, the diag-
onalization is performed using methods that do not require access to the elements of matrix rep-
resentation of the Hamiltonian, but that instead apply the operator to the orbitals. Usually these
eigensolvers are called iterative eigensolvers. We prefer the term sparse eigensolvers, as all eigen-
solvers, including the ones used for dense matrices, must be iterative as a corollary of the Abel–Ruffini
theorem [63].

Several sparse eigensolvers have been proposed [64]. In this work, we use the efficient residual
minimization–direct inversion in the iterative subspace (RMM-DIIS) eigensolver [65, 66]. Eigen-
solvers are usually preconditioned, for example, in real-space typical choices are a multigrid-based
preconditioner[57] or a filter operator that removes high-frequency components [67].

The numerical operations required by most eigensolvers are the application of the KS Hamilto-
nian and two additional procedures that act over the whole set of orbitals: orthogonalization and
subspace diagonalization [66]. Given a set of orbitals, the orthogonalization procedure performs a
linear transformation that generates a new orthogonal set. Similarly, subspace diagonalization is an
effective method to remove contamination between orbitals. It calculates the representation of the
KS Hamiltoninan in the subspace spanned by a set of orbitals, and generates a new set where the
subspace Hamiltonian is diagonal.

After the diagonalization step a new set of orbitals and a new electron density are obtained; this
density is mixed with the densities from previous steps to generate a new guess density. From the
new guess density, the corresponding KS effective potential needs to be calculated. Numerically,
the most expensive part of this step is obtaining the Hartree potential, 𝑣H, that requires the solution
of the Poisson equation. The approximated XC potential, 𝑣xc, also needs to be recalculated each SCF
step. This potential is usually approximated by a local or semi-local expression that is evaluated
directly on the grid, in fact most DFT codes do this evaluation on a real-space grid.

TDDFT [68] is the extension of DFT to describe excitations and time-dependent processes. The
basic formulation of TDDFT is given by the time-dependent KS (TDKS) equation

i
𝜕

𝜕t
𝜓k(r, t) = H(t)[n] 𝜓k(r, t) (10.3a)

n(r, t) =
N∑

k=1

𝜓∗
k (r, t)𝜓k(r, t). (10.3b)

In this case the effective KS Hamiltonian is time-dependent. This dependency comes from the
external potential, that can now involve some time-dependent fields, and from the Hartree and XC
potentials that depend on the time-dependent density. In the exact TDDFT formulation, the XC poten-
tial depends on the density from all previous times and on the initial conditions. However, in practice
these memory effects are neglected and the XC potential is only considered as a function of the
electronic density at the current time, this is known as the adiabatic approximation [69].

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 216�

� �

�

216 Electronic Structure Calculations on Graphics Processing Units

The direct solution of the TDKS leads to the method of real-time TDDFT. This is a flexible
approach to model the response of an electronic system, molecular [42] or crystalline [43], to dif-
ferent kinds of perturbations. It is useful, for example, to calculate optical absorption spectra [42,
70], non-linear optical response [71, 72], circular dichroism [73, 74], van der Waals coefficients [75],
Raman intensities [76, 77], and photoemission [78]. It is also the basis for the Ehrenfest-TDDFT
molecular dynamics approach [33, 79–84].

We now detail the procedure to perform a real-time time-propagation in real-space TDDFT. Typ-
ically, the initial conditions are the electronic ground-state as obtained from a DFT calculation. The
KS orbitals are then propagated under the action of a time-dependent Hamiltonian. In the case of
linear optical response calculations, the external field has the form E(r, t) = 𝜿𝛿(t) that can be applied
as a phase to the initial KS orbitals [42, 70]. For crystalline systems, a macroscopic electric field can-
not be included through the scalar potential and needs to be represented by a time-dependent vector
potential [43].

There are many approaches to perform the propagation of the KS orbitals and the electron
density in time [85]. In this work, we use a predictor–corrector approach to account for the
nonlinearity induced by the density dependence on Eq. (10.3a), combined with an approximate
enforced time-reversal symmetry (AETRS) propagator [85]. The AETRS propagator, as several
other propagation methods, requires the calculation of the exponential of the KS Hamiltonian. For
the time-propagation results presented in this chapter, we use a fourth order Taylor expansion of
the exponential. This exponential is never calculated explicitly, but applied over orbitals. Hence,
as in the case of the eigensolver, the main operation required for the time propagation is the
application of the KS Hamiltonian. In this case, there is no need to orthonormalize the orbitals, since
orthonormality is preserved during the time evolution. Additionally, as in the case of a ground-state
calculation, each time step we need to recalculate the Hartree and XC potentials.

In the real-time framework, the observables are time-dependent quantities. For example, the
induced electric field is obtained from the electric dipole moment that can be readily calculated
from the electronic density. For the calculation of circular dichroism the quantity of interest is the
time-dependent magnetization, that is calculated as the expectation value of the angular momentum
operator [73, 74]. Frequency resolved quantities are obtained from the Fourier coefficients of the
time-resolved quantities. They are traditionally obtained through a windowed Fourier transform,
however, more advanced method based on the compressed sensing approach have been shown to
require considerably shorter, and computationally cheaper, time propagations [86, 87].

10.4 General GPU Optimization Strategy

In this section, we discuss the general scheme that we have developed to efficiently solve the
real-space DFT and TDDFT equations on GPUs. This strategy was designed taking into account
the strengths and weaknesses of the current generation of GPUs, but is also effective for CPUs with
vectorial floating point units.

A way to fulfill the GPU requirement of multiple independent operations is to expose
data-parallelism to the low-level routines. For example, if the same operation needs to be performed
over multiple data objects, the routines should receive as an argument a group of those objects,
instead of operating over one object per call. For the DFT case, our GPU optimization strategy is
based on the concept of blocks of KS orbitals [6]. Instead of acting over a single KS orbital at a time,
performance critical routines receive a group of orbitals as argument. By operating simultaneously
over several orbitals, the amount of parallelism exposed to the processor is increased considerably.
We illustrate this idea in Figure 10.2. This approach has been adopted by other real-space GPU
implementations [16].

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 217�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 217

One orbital at a time

GPU execution
units

Blocks of orbitals

Data : KS orbitals

(a) (b)

Figure 10.2 Scheme illustrating the blocks of orbitals strategy for DFT on GPUs. (a) Operating on a
single orbital might not provide enough parallelism for the GPU to perform efficiently. (b) By operating
simultaneously over several orbitals there is a larger degree of data parallelism and there is less divergence
among GPU threads. Reproduced from Ref. [8]

The blocks-of-orbitals strategy has an additional advantage: in a GPU, threads are divided in
groups of 32 (Nvidia) or 64 (AMD), called warps or wavefronts; for efficient execution all threads in
a warp must execute exactly the same instruction sequence, otherwise execution will be performed
in serial fashion. Since for most operations in DFT or TDDFT the same instructions have to be per-
formed for each orbital, we can assign operations corresponding to different orbitals to different
threads in a warp. This ensures that the execution within each warp is regular, without divergences
in the instruction sequence. In a CPU, the vectorial floating point units play a similar role as warps,
with the difference that groups are typically much smaller (2, 4, or 8 elements).

A possible drawback of the block-of-orbitals approach is that memory access issues might appear,
as working with larger amount of data can saturate caches and reduce their ability to speed-up memory
access. This is especially true for CPUs, which rely more on caches, than GPUs. Larger blocks can
also increase the amount of memory required for temporary data. Consequently, using blocks that
are too large can be detrimental for performance.

In our implementation the number of orbitals in a block, or block-size, is variable and controlled
at execution time. Ideally the block-size should be an integer multiple of the warp-size. This might
not be possible if not enough orbitals are available, in such a case the block-size should be a divisor
of the warp size. Following these considerations we restrict our block-size to be a small power of 21.

The way blocks of orbitals are stored in memory is also fundamental for optimal performance. A
natural scheme would be to store the coefficients for each orbital contiguously in memory, so that
each orbital in a block can be easily accessed as an individual object. However, memory access is
usually more efficient when threads access adjacent memory locations as loads or stores go to the
same cache-lines. Since in our approach consecutive threads are assigned to different orbitals, we
order blocks by the orbital index first and then by the discretized r-index, ensuring that adjacent
threads will access adjacent memory locations.

10.5 Kohn–Sham Hamiltonian

For both DFT and real-time TDDFT in real-space, the application of the KS Hamiltonian, Eq. (10.2),
over trial orbitals is the fundamental operation. As such, it was our first target for efficient GPU

1 This has the additional advantage that the integer multiplication by the block-size, required for array address calculations, can
be done using the cheaper bit-shift instructions.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 218�

� �

�

218 Electronic Structure Calculations on Graphics Processing Units

execution. This is also the case for other methods that are beyond the scope of this article, like
on-the-fly molecular dynamics [80, 88], and some linear response approaches [89, 90].

As a matrix, the real-space KS Hamiltonian operator is sparse, with a number of coefficients that
is proportional to the number of grid points. While the matrix could be stored in a sparse form, it is
not convenient to do so. It is more efficient to use it in operator form, with different terms that are
applied independently: the kinetic energy operator, and the local and nonlocal potentials.

In real-space the kinetic-energy operator is approximated by a high-order finite-differences expan-
sion of the Laplacian operator [28]. Numerically, this is a stencil calculation, where the value at
each point is calculated as a linear combination of the neighboring-point values. In the simulations
presented in this chapter a fourth-order approximation was used, this results in a stencil of size 25.

Since stencil calculations are common in scientific and engineering applications, their optimization
on CPU and GPU architectures has received considerable interest [91–97]. By applying the operator
over several orbitals at once in our approach, we avoid some of the performance issues commonly
associated with stencil calculations, in particular with respect to vectorization [96].

Memory access is usually the limiting factor for the performance of the finite-difference operators
[92], since for each point we need to iterate over the stencil loading values that are only used for one
multiplication and one addition. One issue is that, as the values of the neighbors are scattered, memory
access is not regular. This is solved by using blocks of orbitals: since the Laplacian is calculated over
a group of orbitals at a time, for each point of the stencil we load several values, one per orbital in
the block, that are contiguous in memory. This makes memory access more regular and hence more
efficient for both GPUs and CPUs.

Still, a potential problem with memory access persists. As each input value of the stencil has to
be loaded several times, ideally input values should be loaded from main memory once and kept in
cache for subsequent uses. Unfortunately, as the stencil operation has poor memory locality, this is
not always the case.

We devised an approach to improve cache utilization by controlling how the three-dimensional grid
is mapped to a linear array, that is, how grid points are ordered in memory. The standard approach
is to use a row-major or column-major order which leads to some neighboring points in the grid
being allocated in distant memory locations (Figure 10.3a). We have tested two different approaches
that permits close spatial regions to be stored closer in memory, improving memory locality for the
Laplacian operator. The first one is to enumerate the grid points based on a sequence of small tiles,
or bricks in three dimensions [7], as shown in the example of Figure 10.3b. The problem with this
approach is that the optimal size of the bricks depends on the cache size, and the shape and size of
the grid, which change for each molecule. Since it is not practical to optimize these parameters for
each calculation, we need to use a fixed set that does not always yield the best possible performance.
To avoid this problem, we have developed a second approach based on using a Hilbert space-filling
curve [98–100], as shown in Figure 10.3c.

(a) (b) (c)

Figure 10.3 Examples of different grid orders in 2D: (a) standard order (b) grid ordered by small paral-
lelepipedic subgrids or bricks, and (c) order given by a Hilbert space-filling curve

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 219�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 219

1 2 4 8 16 32 64 128 256

Block-size

0

20

40

60

80

100

120

140

160

180

T
h

ro
u

g
h

p
u

t
(G

F
lo

p
s
)

Standard order

Bricks (optimized)

Hilbert curve

Figure 10.4 Effect of the optimization of the grid mapping for data locality in the numerical throughput
of the Laplacian operator as a function of the size of the orbitals block. Spherical grid with ∼ 500k points.
Computations with a AMD Radeon 7970 GPU

In Figure 10.4, we compare the throughput of the Laplacian operator on an AMD GPU, as a
function of the block-size, for the different strategies to order the grid: the standard grid order, the
bricks strategy with parameters optimized for each calculation and the Hilbert space-filling curve.
The are several conclusions we can draw from the figure. The first one is that even for the standard
grid order, there is a significant improvement in performance associated with the use of blocks of
orbitals: the throughput for a block-size of 32 is around 6× the one for block-size 1, which represents
working with one orbital at a time. When we consider the bricks strategy, an additional 50% increase
in performance is obtained, for a total gain of 9× with respect to the basic implementation. The
position of the maximum throughput is also shifted from blocksize 32 to 64, this is expected, since a
better cache locality decreases the impact of working with larger data sets.

Finally, the Hilbert grid-order achieves a performance that is close to that of the bricks approach,
but without requiring optimized parameters. The difference in performance, in particular for small
block size, can be understood when considering how neighboring points are addressed. For the appli-
cation of the Laplacian in an arbitrarily shaped grid, a table with the location of neighboring points
is required. In the case of standard- and brick-ordered grids, this table can be easily compressed
since the relative distance of the neighbors does not usually change between points [101]. For the
Hilbert-ordered grid, we do not have a strategy to compress this table and a full table is required.
For small blocks, the access to this table dominates ad constitutes a large performance overhead that
hits the performance. As the block of orbitals becomes larger, the relative cost of loading the table of
neighbors decreases.

The second term in the Hamiltonian is the scalar potential that includes the contributions from
the external potential, including the ionic pseudo-potentials, the Hartree, exchange, and correlation
potentials. This is applied in two parts: the local one and the non-local one that comes from the
pseudo-potentials [102, 103].

The application of the local potential has very little arithmetic intensity and is heavily limited by
memory access. By using blocks of orbitals a larger number of simultaneous operations can hide the
memory access latency, and the values of the potential are reused, reducing the number of memory
accesses. See Ref. [8] for details.

The nonlocal part of the potential appears as each angular momentum component of an orbital
needs to see a different pseudo-potential. In practice, we calculate

Vnl𝜓k(r) =
∑

A

∑
lm

𝛾A
lm(r − R)

∫r′<rc

dr′ 𝛾A
lm(r

′ − RA)𝜓k(r
′) , (10.4)

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 220�

� �

�

220 Electronic Structure Calculations on Graphics Processing Units

where 𝛾A
lm corresponds to the pseudo-potential projectors for atom A, and l and m are the angular

momentum components that go from 0 to a certain lmax, usually 3, and from −l to l, respectively. The
projector functions are localized over a sphere, such that 𝛾A

lm(r) = 0 for |r| > rc.
In our implementation, Eq. (10.4) is calculated in two parts that are parallelized differently on the

GPU. The first part is to calculate the integrals over r′ and store the results. This calculation is paral-
lelized for a block of orbitals, angular-momentum components and all atoms, with each GPU-thread
calculating an integral.

The second part of the application of the nonlocal potential is to multiply the stored integrals by
the radial functions and sum over angular-momentum components. In this case, the calculation can
be parallelized over orbitals, and, if the pseudo-potential spheres associated with each atom do not
overlap, it can also be parallelized over the r-index and atoms. For most systems these spheres do
not overlap, but if they do, race conditions would appear as several threads would try to update the
same point. In order to perform the calculations in parallel, essential for performance on the GPU,
we divide the atoms in groups that have nonoverlapping spheres as shown in Figure 10.5. Then, we
parallelize over all atoms in each group.

In Figure 10.6, we plot the throughput obtained by the non-local potential implementation for a
𝛽-cyclodextrin molecule. The Nvidia card shows good performance, 46 GFlops, only when large
blocks of orbitals are used. The AMD card has a similar behavior, but the performance is much
lower, with a maximum of 11 GFlops. This is a clear example of how our approach is an effective
way of increasing the performance that can be obtained from the GPU. As this is a complex routine,
and our current implementation is very basic, we suspect that a more sophisticated and optimized
version could significantly increase the numerical performance of this part of the application of the
KS Hamiltonian, in particular for the AMD GPU.

The total performance of the application of the KS Hamiltonian is shown in Figure 10.7. This
combines the finite-difference Laplacian, as well as the local and nonlocal parts of the potential.

Figure 10.5 Division of the atoms of a C60 molecule in groups (represented by different colors) whose
pseudo-potential spheres do not overlap. Reproduced from Ref. [8]

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 221�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 221

1 2 4 8 16 32 64 128

Block size

10

20

30

40

50

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

CPU Intel Core i7 3820

GPU Nvidia Tesla K20

GPU AMD Radeon 7970

Figure 10.6 Numerical throughput of the application of the pseudo-potentials nonlocal part as a function
of the size of the block of orbitals (block-size). Calculation for 𝛽-cyclodextrin with 256 orbitals and 260k
grid points for one CPU and two GPUs. Reproduced from Ref. [8]

1 2 4 8 16 32 64 128

Block size

10

20

30

40

50

60

70

80

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

CPU Intel Core i7 3820

GPU Nvidia Tesla K20

GPU AMD Radeon 7970

Figure 10.7 Numerical throughput of the application of the Kohn–Sham Hamiltonian as a function of
the size of the block of orbitals (block-size). Calculation for 𝛽-cyclodextrin with 256 orbitals and 260k grid
points for one CPU and two GPUs

10.6 Orthogonalization and Subspace Diagonalization

The orthogonalization and subspace diagonalization procedures are required by eigensolvers
to ensure that the eigenvectors are orthogonal and to remove any possible cross-contamination
between them. These operations mix different orbitals, so they cannot be directly implemented
using blocks of orbitals. In our approach, we copy the orbitals to an array where all the coefficients
corresponding to different orbitals are contiguous in memory [8]. To avoid allocating a full copy of
all the orbitals, we perform the operation for a set of points at a time. Effectively, we are switching
from a block-of-orbitals representations to a block-of-points approach.

The orthogonalization and subspace diagonalization can be efficiently implemented in terms of
dense linear algebra operations [8, 66]. Additionally, the subspace diagonalization requires the appli-
cation of the KS Hamiltonian. For CPUs blas and lapack provide an efficient and portable set of
linear algebra routines. For GPUs, we use the OpenCL blas implementation provided by AMD as

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 222�

� �

�

222 Electronic Structure Calculations on Graphics Processing Units

1 2 4 8 16 32 64 128

Block size

0

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

(b)

1 2 4 8 16 32 64 128

Block size

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

(a)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

Figure 10.8 Numerical throughput of (a) the orthogonalization procedure and (b) the subspace diago-
nalization as a function of the size of the block of orbitals (block-size) for different processors. Calculation
for 𝛽-cyclodextrin with 256 orbitals and 260k grid points

part of the Accelerated Parallel Processing Math Libraries (APPML), while the routines provided
by Lapack, the Cholesky decomposition [104], and the dense-matrix diagonalization, are performed
on the CPU. This does not affect the performance in our current implementation, but to study larger
systems it might be necessary to use the GPU accelerated Lapack routines provided by the Magma
library [105].

In Figure 10.8a, we show the performance obtained for our implementation of the orthogonaliza-
tion procedure. The GPU speed-up is not very large with respect to the CPU. As this procedure is
based on linear algebra operations, we attribute the poor speed-up to differences in the linear algebra
libraries. Figure 10.8b shows the performance obtained for the subspace diagonalization. In this case
the GPU speed-up is larger than for the orthogonalization case, probably because this routine is based
on our implementation of the KS Hamiltonian, and on matrix–matrix multiplications, that in general
are simpler to optimize and parallelize than other linear algebra operations.

10.7 Exponentiation

To solve the TDKS equations we use the AETRS method. In this approach, the orbitals are propagated
according to

𝜓k(r, t + Δt) = e−iΔt H(t+Δt)e−iΔt H(t)𝜓k(r, t), (10.5)

where the KS Hamiltonian at time t + Δt is obtained from an interpolation from previous times [71].
Each iteration of this propagator requires the application of two exponentials of the Hamiltonian
over the orbitals. In this work, we calculate this exponential using a fourth-order truncated Taylor
expansion. This approximation only requires the application of the KS Hamiltonian and some basic
operations like multiplication by a scalar and addition of orbitals.

While in real-time TDDFT the orbitals are complex, most operations, including the KS Hamil-
tonian, do not mix the real and imaginary part. This means that a block of complex orbitals can be
simply considered as a block of real orbitals of twice the size. Just a few operations need to be aware
of the complex nature of the orbitals and operate by pairs on the orbitals of a block.

In Figure 10.9, we plot the performance obtained for our implementation of the exponential of the
Hamiltonian. Since in this case the orbitals are complex, the smallest possible block-size is 2 and the
largest one is 512 (twice the number of orbitals used in the calculation). Both GPU models achieve
more than 60 GFlops of processing throughput, which represents a speed-up of more than 5× with
respect to the CPU.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 223�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 223

2 4 8 16 32 64 128 256 512

Block size

0

10

20

30

40

50

60

70

80

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

CPU Intel Core i7 3820

GPU Nvidia Tesla K20

GPU AMD Radeon 7970

Figure 10.9 Numerical throughput of the fourth-order Taylor approximation to the exponential operator
as a function of the size of the block of orbitals (block-size). Calculation for 𝛽-cyclodextrin with 256 orbitals
and 260k grid points for one CPU and two GPUs

10.8 The Hartree Potential

For ground-state and real-time calculations, another operation that we execute on the GPU is the
calculation of the Hartree potential by solving the Poisson equation

∇2𝑣H(r) = −4𝜋 n(r) . (10.6)

This is an equation that appears in many physical contexts. For example, in electronic structure it
is used in the calculation of approximations to the exchange term [106–108], in the calculation of
integrals that appear in Hartree–Fock or Casida theories [109], or to impose electrostatic boundary
conditions [110–115].

Many methods have been proposed to solve the Poisson equation in linear or quasi-linear time
[116–121]. In our GPU implementation, we use an approach based on fast Fourier transforms (FFTs),
as it is quite efficient and simple to implement. While FFTs impose periodic boundary conditions, by
enlarging the FFT grid and using a modified interaction kernel we can find the solution for the free
boundary problem [122], which is the relevant one for finite electronic systems.

The FFT solution of the Poisson equation is based on applying the Coulomb interaction kernel
in Fourier space, where it is local. For each solution, a forward and a backward FFT are required,
these are performed using the clAMDFft library. For CPUs we use the multi-threaded FFTW library
[123]. Since there is a single Poisson equation to solve in the Kohn–Sham approach, independently
of the number of electrons, we cannot use the block approach in this case. However, we plan to
develop a GPU accelerated blocked Poisson solver that could be applied to problems like Casida
linear-response TDDFT, or Hartee–Fock and hybrid functional calculations [124].

In Figure 10.10, we show the performance of our GPU based Poisson solver for different sys-
tem sizes. For the AMD card, the GPU version outperforms the CPU version, in some cases by a
factor of 4×. For the Nvidia GPU the performance is smaller and less consistent, possibly because
the library has not been explicitly optimized for this GPU. The step structure seen on the plots is
caused by the fact that FFTs cannot be performed efficiently over grids of any size: the grid dimen-
sion in each direction must be a product of certain values, or radices, that are determined by the
implementation. If a grid dimension is not valid, the size of the grid has to be increased. Since the
CPU implementation is more mature and supports more radices, the steps are smaller than the GPU
implementation.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 224�

� �

�

224 Electronic Structure Calculations on Graphics Processing Units

Number of grid points

10
3

10
4

10
5

10
6

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

CPU Intel Core i7 3820
GPU AMD Radeon HD 7970
GPU Nvidia Tesla K20

(a)

10
3

10
4

10
5

10
6

Number of grid points

1

10

100

1000

W
a

ll-
c
lo

c
k
 t
im

e
 (

m
s
)

CPU Intel Core i7 3820
GPU AMD Radeon HD 7970
GPU Nvidia Tesla K20

(b)

Figure 10.10 Comparison of (a) the throughput and (b) calculation time achieved by our FFT Poisson
solver as a function of the number of grid points for one CPU and two GPUs. The data is originally on main
memory, so the time required to copy the input data to the GPU and copy back the result is included. The
number of points corresponds to the spherical grid used by OCTOPUS, the FFT grid has a larger number of
points. Following Ref. [123], the operation count for the FFTs is assumed to be 5Nlog2N

10.9 Other Operations

There are several simpler operations that also need to be performed on the GPU, beyond the ones we
have discussed in previous sections. These operations include basic operations between orbitals, like
copies, linear combinations, and dot products. All of these procedures are implemented on the GPU
using the block-of-orbitals approach. In fact, we have found that it is necessary to pay attention to the
parallelization and optimization of most of the operations executed on the GPU, as a single routine
that is not properly optimized can affect the numerical performance of the entire code considerably.

In our current implementation, there are two procedures that are still done by the CPU, as they
would require a considerable effort to implement on the GPU. This will the focus of future work.

The first operation is the evaluation of the XC energy and potential. This is a local operation that is
straightforward to evaluate in parallel and should perform well on the GPU. The problem is that there
are a large number of XC approximations, each one involving complex formulas [125] that would
need to be implemented on the GPU. For the ground-state the evaluation of the XC term does not
greatly influence the computational time when done on the CPU. However, for the time propagation
each time step involves less computational work than for the SCF and the cost of the CPU evalua-
tion of the XC potential affects the GPU performance. For this reason, the time-propagation results
presented in the chapter use the Teter 93 local density approximation (LDA) [126]. This parametriza-
tion is based on Padé approximation for both the exchange and correlation energy so it is cheap to
evaluate.

The second procedure that is executed on the CPU is that of the evaluation of the atomic orbitals
and pseudo-potentials. These are required to construct the atomic potentials on the grid and for the
initialization of SCF by a linear combination of the atomic orbitals. The reason is that we use a spline
interpolation to transfer the orbitals to the grid, which depends on the GSL library [127] that is not
available on the GPU. For the results presented here, this fact does not influence performance, but it
is important for Ehrenfest molecular dynamics runs, as the atomic potential needs to be reevaluated
each time step.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 225�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 225

10.10 Numerical Performance

In this section, we evaluate the numerical performance of our implementation for ground-state and
real-time calculations. For this analysis we use several measurements: the throughput, the wall-clock
calculation time, the speed-up with respect to the CPU implementation, and the comparison with a
second GPU-based DFT approach. We present these different parameters since they are required to
paint a clear picture of the performance of a GPU implementation.

Unfortunately, it is commonplace in articles presenting GPU implementations to restrict the perfor-
mance analysis to the speed-up with respect to a CPU implementation of the same problem. Moreover
these comparisons sometimes present very large speed-ups that are not realistic if we consider that
the maximum speed-up, the peak-performance ratio between the GPU and the CPU, is approximately
10×. If performance is limited by the memory bandwidth, then the maximum speed-up is reduced to
6×. The issue with these comparisons is usually the CPU code that is taken as reference. A proper
speed-up calculation should use similar optimization strategies on the CPU and the GPU, and in both
cases it should be parallelized to use all the execution units available on each processor, unfortunately
this is not always the case. For example, a typical approach that can misrepresent performance gains
is to calculate the speed-up of a multi-GPU implementation with respect to an equivalent number of
CPU cores. Given that the price and power consumption of a single CPU core is typically not directly
comparable with that of a GPU, and that modern CPUs can contain up to 16 cores, this is clearly not
a representative measure of the GPU speed-up.

We first analyze how effective the block of orbitals approach is to increase the performance of a full
GPU calculation. In Figure 10.11 we plot, for the β-cyclodextrin molecule, the numerical throughput
for the ground-state and real-time calculations as a function of the block-size. We can see that in both
cases there is an important gain in performance associated with using a block of orbitals with respect
to working with a single orbital at a time (the block-size 1 case). For example, for the ground-state
calculation the speed-up for the CPU is approximately 3.4×, while for the AMD and Nvidia GPUs the
speed-up is 15× and 7.7×, respectively. Since our implementation is not optimized for the block-size
1 case there is an overhead associated to the blocked implementation. On the CPU, we can compare
with our older nonblocked implementation, this results in a still significant speed-up of 2.5×.

1 2 4 8 16 32 64 128 256

Block size

0

20

40

60

80

T
h

ro
u

g
h

p
u

t
(G

F
lo

p
s
)

CPU Intel Core i7 3820
GPU AMD Radeon 7970
GPU Nvidia Tesla K20

(a)

2 4 8 16 32 64 128 256 512

Block size

0

10

20

30

40

50

60

70

T
h

ro
u

g
h

p
u

t
(G

F
lo

p
s
)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

(b)

Figure 10.11 Numerical throughput of our CPU and GPU implementations as a function of the size of the
block of orbitals (block-size). (a) Self-consistency cycle in a ground-state DFT calculation. (b) Real-time
TDDFT propagation. 𝛽-cyclodextrin molecule with 256 orbitals and 260k grid points

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 226�

� �

�

226 Electronic Structure Calculations on Graphics Processing Units

We now focus our attention on the performance of our GPU implementation for DFT and TDDFT
calculations on molecules of different sizes. For this we use the set of 40 molecules listed in Ref.
[8]. In Figures 10.12 and 10.13, we show, for the molecules in our set, the performance measured as
throughput and total computational time as a function of the number of electrons. For ground-state
DFT we plot the total computational time while for the real-time TDDFT calculation the time required
to propagate an interval of 1 attosecond. As expected, the computational time tends to increase with
the number of electrons, but there is a strong variation from system to system. This variation is mainly
explained by the physical size of each molecule, that determines the size of the grid that is used in
the simulation. For ground-state calculation the number of self-consistency iterations also changes
from one system to the other, affecting the total calculation time.

As the size of the system increases, the GPU becomes more efficient, with a maximum throughput
of 90 GFlops for DFT and 56 GFlops for TDDFT. This effect can also be seen in Figure 10.14, where
we plot the speed-up with respect to the CPU for both types of calculations. If we compare the DFT
and real-time TDDFT calculations, we can see that the efficiency of the ground-state calculations
depends more on the size of the systems, a possible explanation for this effect is that real-time

100 200 300 400 500 600 700

Number of electrons

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t
(G

F
lo

p
s
)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

(a)

100 200 300 400 500 600 700

Number of electrons

10

100

1000

T
o
ta

l
c
a
lc

u
la

ti
o
n
 t
im

e
 (

s
)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

(b)

Figure 10.12 Performance of our CPU and GPU implementations for a set of 40 molecules of different
sizes. (a) Numerical throughput of the self-consistency cycle. (b) Total execution time for a single-point
energy calculation. The set of molecules is taken from Ref. [8]

100 200 300 400 500 600 700

Number of electrons

0

20

40

60

T
h
ro

u
g
h
p
u
t

(G
F

lo
p
s
)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

(a)

100 200 300 400 500 600 700

Number of electrons

0.01

0.1

1

E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r

s
im

u
la

te
d
 a

tt
o
s
e
c
o
n
d
 (

s
)

CPU Intel Core i7 3820
GPU Nvidia Tesla K20
GPU AMD Radeon 7970

(b)

Figure 10.13 Performance of our CPU and GPU real-time TDDFT implementations for a set of 40
molecules of different sizes. (a) Numerical throughput of the real-time propagation. (b) Computational
time required to propagate 1 attosecond. The set of molecules is taken from Ref. [8]

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 227�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 227

100 200 300 400 500 600 700

Number of electrons

0

1

2

3

4

5

6

7

8

S
p
e
e
d
-u

p

GPU Nvidia Tesla K20

GPU AMD Radeon 7970

GPU Nvidia Tesla K20

GPU AMD Radeon 7970

(a)

100 200 300 400 500 600 700

Number of electrons

0

1

2

3

4

5

6

S
p
e
e
d
-u

p

(b)

Figure 10.14 Speed-up of the GPU calculation with the respect to the CPU for different molecules as
a function of the number of valence electrons. (a) Speed-up for the time spent in the SCF-cycle of a
ground-state DFT calculation (without considering initializations). (b) Speed-up for real-time TDDFT. Intel
Core i7 3820 using 8 threads

calculations use complex orbitals, that for our approach allow blocks of orbitals that are twice as
large as in the ground-state calculations. On the other hand, the ground-state calculation reaches a
higher throughput and speed-up than the real-time calculations: the maximum GPU/CPU speed-up
is 8.0× for DFT versus 5.6× for TDDFT for the Nvidia GPU and 6.6× against 5.5× for AMD. We
think this is explained by subspace diagonalization, that is only used for the ground-state calculations
that, as shown in Figure 10.8, can reach a throughput in excess of 100 GFlops on the Nvidia card.

To conclude our performance evaluation, we show the comparison we made in Ref. [8] between
our ground-state DFT implementation and the terachem code [21, 22, 25, 26, 128]. Terachem
(Chapter 4) uses GTOs as a basis for the expansion of the molecular orbitals: the traditional approach
used in quantum chemistry. Since octopus and terachem use very different simulation techniques,
we took great care in selecting simulation parameters that produce a similar level of discretization
error. The timings for both codes are compared in Figure 10.15, we show the comparison between
absolute times and also the relative performance between the two DFT implementations. We can see

100 200 300 400 500 600 700

Number of valence electrons

10

100

1000

T
o

ta
l
c
a

lc
u

la
ti
o

n
 t

im
e

 (
s
)

Octopus

Terachem

(a)

100 200 300 400 500 600 700

Number of valence electrons

0.5

1

2

4

O
c
to

p
u

s
 s

p
e

e
d

-u
p

 w
it
h

re
s
p

e
c
t

to
 T

e
ra

c
h

e
m

(b)

Figure 10.15 Numerical performance comparison between our GPU implementation (OCTOPUS) and the
TERACHEM code. (a) Comparison of the total calculation time as a function of the number of valence elec-
trons. (b) Speed-up of our implementation with respect to TERACHEM (run time of TERACHEM divided by
the run time of OCTOPUS). The calculations are single-point energy evaluations performed on a set of 40
molecules, running on a Nvidia Tesla K20 GPU. Reproduced from Ref. [8]

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 228�

� �

�

228 Electronic Structure Calculations on Graphics Processing Units

that terachem tends to be faster for smaller systems, while octopus has an advantage for systems
with more than 100 electrons. It is difficult to generalize these results due to the different simulation
approaches and their different strengths and weaknesses. For example, our current implementation
will certainly be much slower than terachem for hybrid HF-DFT XC approximations [124] due
to the cost of applying an exact-exchange operator in real-space. However, we can conclude that
for pure DFT calculations the real-space method can compete with the Gaussian approach, and can
outperform it for some systems.

10.11 Conclusions

In this chapter we have discussed the implementation of real-space DFT and TDDFT on GPUs. The
development of simulation strategies for GPUs involves much more than rewriting code in GPU
language. Real-space DFT is not the exception and what we have presented is a scheme designed
to perform DFT calculations efficiently on massively parallel processors. The approach is based on
using blocks of KS orbitals as the basic data object. This provides the GPU with the data parallelism
required to perform efficiently, which would be harder to achieve by working on single orbitals at
a time. Many of these techniques are applicable to other DFT discretization approaches, especially
those based on a sparse representation like plane-waves (see Chapter 7) or wavelets [129, 130] (see
Chapter 6).

We presented results for several benchmark simulations in order to give a full picture of the perfor-
mance of our GPU and CPU implementations. We achieve a considerable throughput and speed-up
with respect to the CPU version of the code. More importantly, by comparing with a GPU-accelerated
implementation of DFT based on Gaussian basis sets, we find that calculation times are similar, with
our code being faster for several of the systems that were tested. The advantage of our approach is
that we only require a small number of simple kernels (functions that are executed on the GPU) that
can be efficiently optimized for regular execution and memory access.

The results show that the real-space formulation provides a good framework for the implemen-
tation of DFT on GPUs, making real-space DFT an interesting alternative for electronic structure
calculations that offers good performance, systematic control of the discretization, and the flexibility
to study many classes of systems, including both periodic and finite systems. Moreover real-space
DFT is suitable for large scale parallelization in distributed memory systems with tens of thousands
of processors [7, 49, 50].

There are, however, several issues that need to be addressed in order to make the real-space
approach a competitive framework for all types of electric structure methods. One of the main lim-
itations is the poor performance of the real-space implementations of the exact-exchange operator
used by hybrid XC functionals. Many wave-function methods [62] are also prohibitively expensive
in real-space, but recently proposed real-space stochastic methods [131–133] might provide an inter-
esting way forward.

10.12 Computational Methods

Our numerical implementation is included in the octopus code [7, 33, 52] and it is publicly available
under the GPL free-software license [134]. The calculations were performed with the development
version (octopus superciliosus, svn revision 11531). GPU support is also available in the 4.1 release
of octopus.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 229�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 229

Since octopus is written in Fortran 95, we wrote a wrapper library to call OpenCL from that
language. This library is called FortranCL and it is available as a standalone package under a
free-software license [135].

All calculations were performed using the default pseudo-potentials of octopus, filtered to
remove high-frequency components [136]. The grid for all simulation is a union of spheres of radius
5.5 Bohr around each atom with a uniform spacing of 0.41 Bohr. For ground-state calculations we
used the BLYP XC functional [137–139] and for real-time TDDFT we used the LDA in the Teter 93
parametrization [126].

The GTO calculations were done with terachem (version v1.5K) with the 6-311g* basis and
dftgrid = 1. All other simulation parameters were kept in its default values.

The system used for the tests has an Intel Core i7 3820 CPU, which has four cores running at
3.6 GHz that can execute two threads each. The CPU has a quad-channel memory subsystem with
16 GiB of RAM running at 1600 MHz. The GPUs are an AMD Radeon HD 7970 with 3 GiB of RAM
and Nvidia Tesla K20c with 5 GiB (ECC is disabled, as the other processors do not support ECC).
Both GPUs are connected to a PCIe 16× slot, the AMD card supports the PCIe 3 protocol while the
Nvidia card is limited to PCIe 2. octopus was compiled with the GNU compiler (gcc and gfortran,
version 4.7.2) with AVX vectorization enabled. For finite-difference operations, CPU vectorization
is implemented explicitly using compiler directives. We use the Intel MKL (version 10.3.6) imple-
mentation of blas and lapack that is optimized for AVX. We use the OpenCL implementation from
the respective GPU vendor: the AMD OpenCL version is 1084.4 (VM) and the Nvidia one is 310.32
(OpenCL is not used for the CPU calculations). All tests are executed with 8 OpenMP threads.

Total and partial execution times were measured using the gettimeofday call. The throughput
is defined as the number of floating point additions and multiplications per unit of time. The number
of operations for each procedure is counted by inspection of the code. The operation count for FFTs
is assumed to be 5Nlog2N[123]. For terachem the total execution time is obtained from the program
output.

Acknowledgments

We would like to acknowledge Nvidia for support via the Harvard CUDA Center of Excellence,
and both Nvidia and Advanced Micro Devices (AMD) for providing the GPUs used in this
work. This work was supported by the Defense Threat Reduction Agency under Contract No.
HDTRA1-10-1-0046. We thank the generous support of the FAS Science Division Research
Computing Group at Harvard University.

References

1. Yasuda, K. (2008) Accelerating density functional calculations with graphics processing unit.
J. Chem. Theory Comput., 4, 1230–1236.

2. Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C. and Aspuru-Guzik, A.
(2008) Accelerating resolution-of-the-identity second-order Moller-Plesset quantum chemistry
calculations with graphical processing units. J. Phys. Chem. A, 112, 2049–2057.

3. Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.-F., Neelov, A. and Goedecker, S. (2009)
Density functional theory calculation on many-cores hybrid central processing unit-graphic
processing unit architectures. J. Chem. Phys., 131, 034103 (8 pages).

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 230�

� �

�

230 Electronic Structure Calculations on Graphics Processing Units

4. Watson, M., Olivares-Amaya, R., Edgar, R.G. and Aspuru-Guzik, A. (2010) Accelerating cor-
related quantum chemistry calculations using graphical processing units. Comput. Sci. Eng.,
12, 40–51.

5. Tomono, H., Aoki, M., Iitaka, T. and Tsumuraya, K. (2010) GPU based acceleration of first
principles calculation. J. Phys. Conf. Ser., 215, 012121.

6. Andrade, X. and Genovese, L. (2012) Harnessing the power of graphic processing units, in
Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, vol.
837 (eds M.A. Marques, N.T. Maitra, F.M. Nogueira, E. Gross and A. Rubio), Springer-Verlag,
Berlin, Heidelberg, pp. 401–413.

7. Andrade, X., Alberdi-Rodriguez, J., Strubbe, D.A., Oliveira, M.J., Nogueira, F., Castro, A.,
Muguerza, J., Arruabarrena, A., Louie, S.G., Aspuru-Guzik, A., Rubio, A. and Marques,
M.A.L. (2012) Time-dependent density-functional theory in massively parallel computer
architectures: the octopus project. J. Phys. Condens. Matter, 24, 233202.

8. Andrade, X. and Aspuru-Guzik, A. (2013) Real-space density functional theory on graphical
processing units: computational approach and comparison to Gaussian basis set methods. J.
Chem. Theory Comput., 9, 4360–4373.

9. Maintz, S., Eck, B. and Dronskowski, R. (2011) Speeding up plane-wave electronic-structure
calculations using graphics-processing units. Comput. Phys. Commun., 182, 1421–1427.

10. DePrince, A.E. and Hammond, J.R. (2011) Coupled cluster theory on graphics processing units
I. The coupled cluster doubles method. J. Chem. Theory Comput., 7, 1287–1295.

11. Asadchev, A. and Gordon, M.S. (2012) New multithreaded hybrid CPU/GPU approach to
Hartree–Fock. J. Chem. Theory Comput., 8, 4166–4176.

12. Spiga, F. and Girotto, I. (2012) phiGEMM: a CPU-GPU library for porting quantum
ESPRESSO on hybrid systems. Parallel, Distributed and Network-Based Processing (PDP),
20th Euromicro International Conference, pp. 368–375.

13. Maia, J.D.C., Urquiza Carvalho, G.A., Mangueira, C.P., Santana, S.R., Cabral, L.A.F. and
Rocha, G.B. (2012) GPU linear algebra libraries and GPGPU programming for accelerat-
ing MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput., 8,
3072–3081.

14. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T. and Fleurat-Lessard,
P. (2012) Accelerating VASP electronic structure calculations using graphic processing units.
J. Comput. Chem., 33, 2581–2589.

15. Esler, K., Kim, J., Ceperley, D.M. and Shulenburger, L. (2012) Accelerating quantum Monte
Carlo simulations of real materials on GPU clusters. Comput. Sci. Eng., 14, 40–51.

16. Hakala, S., Havu, V., Enkovaara, J. and Nieminen, R. (2013) Parallel electronic structure cal-
culations using multiple graphics processing units (GPUs), in Applied Parallel and Scientific
Computing, Lecture Notes in Computer Science, vol. 7782 (eds P. Manninen and P. Oster),
Springer-Verlag, Berlin, Heidelberg, pp. 63–76.

17. Jia, W., Cao, Z., Wang, L., Fu, J., Chi, X., Gao, W. and Wang, L.-W. (2013) The analysis of a
plane wave pseudopotential density functional theory code on a GPU machine. Comput. Phys.
Commun., 184, 9–18.

18. Jia, W., Fu, J., Cao, Z., Wang, L., Chi, X., Gao, W. and Wang, L.-W. (2013) Fast plane wave
density functional theory molecular dynamics calculations on multi-GPU machines. J. Comput.
Phys., 251, 102–115.

19. Hutter, J., Iannuzzi, M., Schiffmann, F. and VandeVondele, J. (2013) CP2K: atomistic simula-
tions of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci., 4 (1), 15–25.

20. Hehre, W.J., Radom, L., von Rague Schleyer, P. and Pople, J. (1986) Ab Initio Molecular Orbital
Theory, Wiley-Interscience, John Wiley & Sons, Inc.

21. Ufimtsev, I. and Martínez, T. (2008) Graphical processing units for quantum chemistry. Com-
put. Sci. Eng., 10, 26–34.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 231�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 231

22. Ufimtsev, I.S. and Martínez, T.J. (2008) Quantum chemistry on graphical processing units. 1.
Strategies for two-electron integral evaluation. J. Chem. Theory Comput., 4, 222–231.

23. Asadchev, A., Allada, V., Felder, J., Bode, B.M., Gordon, M.S. and Windus, T.L. (2010) Uncon-
tracted Rys quadrature implementation of up to G functions on graphical processing units. J.
Chem. Theory Comput., 6, 696–704.

24. Titov, A.V., Ufimtsev, I.S., Luehr, N. and Martínez, T.J. (2013) Generating efficient quantum
chemistry codes for novel architectures. J. Chem. Theory Comput., 9, 213–221.

25. Ufimtsev, I.S. and Martínez, T.J. (2009) Quantum chemistry on graphical processing units. 2.
Direct self-consistent-field implementation. J. Chem. Theory Comput., 5, 1004–1015.

26. Ufimtsev, I.S. and Martínez, T.J. (2009) Quantum chemistry on graphical processing units. 3.
Analytical energy gradients, geometry optimization, and first principles molecular dynamics.
J. Chem. Theory Comput., 5, 2619–2628.

27. Becke, A.D. (1989) Basis-set-free density-functional quantum chemistry. Int. J. Quantum
Chem., 36, 599–609.

28. Chelikowsky, J.R., Troullier, N. and Saad, Y. (1994) Finite-difference-pseudopotential method:
electronic structure calculations without a basis. Phys. Rev. Lett., 72, 1240–1243.

29. Briggs, E.L., Sullivan, D.J. and Bernholc, J. (1995) Large-scale electronic-structure calculations
with multigrid acceleration. Phys. Rev. B, 52, R5471–R5474.

30. Fattebert, J.-L. and Bernholc, J. (2000) Towards grid-based O(N) density-functional theory
methods: optimized nonorthogonal orbitals and multigrid acceleration. Phys. Rev. B, 62,
1713–1722.

31. Fattebert, J.-L. and Nardelli, M.B. (2003) Finite difference methods for Ab initio electronic
structure and quantum transport calculations of nanostructures, in Special Volume, Compu-
tational Chemistry, Handbook of Numerical Analysis, vol. 10 (ed. C.L. Bris), Elsevier, pp.
571–612.

32. Beck, T.L. (2000) Real-space mesh techniques in density-functional theory. Rev. Mod. Phys.,
72, 1041–1080.

33. Marques, M.A., Castro, A., Bertsch, G.F. and Rubio, A. (2003) Octopus: a first-principles tool
for excited electron–ion dynamics. Comput. Phys. Commun., 151, 60–78.

34. Torsti, T., Heiskanen, M., Puska, M.J. and Nieminen, R.M. (2003) MIKA: multigrid-based
program package for electronic structure calculations. Int. J. Quantum Chem., 91, 171–176.

35. Hirose, K. (2005) First-Principles Calculations in Real-Space Formalism: Electronic Config-
urations and Transport Properties of Nanostructures, Imperial College Press.

36. Mortensen, J.J., Hansen, L.B. and Jacobsen, K.W. (2005) Real-space grid implementation of
the projector augmented wave method. Phys. Rev. B, 71, 035109.

37. Kronik, L., Makmal, A., Tiago, M.L., Alemany, M.M.G., Jain, M., Huang, X., Saad, Y. and
Chelikowsky, J.R. (2006) PARSEC—the pseudopotential algorithm for real-space electronic
structure calculations: recent advances and novel applications to nano-structures. Phys. Status
Solidi B, 243, 1063–1079.

38. Yabana, K., Nakatsukasa, T., Iwata, J.-I. and Bertsch, G.F. (2006) Real-time, real-space imple-
mentation of the linear response time-dependent density-functional theory. Phys. Status Solidi
B, 243, 1121–1138.

39. Hernández, E.R., Janecek, S., Kaczmarski, M. and Krotscheck, E. (2007) Evolution-operator
method for density functional theory. Phys. Rev. B, 75, 075108.

40. Iwata, J.-I., Takahashi, D., Oshiyama, A., Boku, T., Shiraishi, K., Okada, S. and Yabana, K.
(2010) A massively-parallel electronic-structure calculation based on real-space density func-
tional theory. J. Comput. Phys., 229, 2339–2363.

41. Losilla, S.A. and Sundholm, D. (2012) A divide and conquer real-space approach for
all-electron molecular electrostatic potentials and interaction energies. J. Chem. Phys., 136,
214104.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 232�

� �

�

232 Electronic Structure Calculations on Graphics Processing Units

42. Yabana, K. and Bertsch, G.F. (1996) Time-dependent local-density approximation in real time.
Phys. Rev. B, 54, 4484–4487.

43. Bertsch, G.F., Iwata, J.-I., Rubio, A. and Yabana, K. (2000) Real-space, real-time method for
the dielectric function. Phys. Rev. B, 62, 7998–8002.

44. Natan, A., Benjamini, A., Naveh, D., Kronik, L., Tiago, M.L., Beckman, S.P. and Chelikowsky,
J.R. (2008) Real-space pseudopotential method for first principles calculations of general peri-
odic and partially periodic systems. Phys. Rev. B, 78, 075109.

45. Pittalis, S., Räsänen, E., Helbig, N. and Gross, E.K.U. (2007) Exchange-energy functionals for
finite two-dimensional systems. Phys. Rev. B, 76, 235314.

46. Räsänen, E., Castro, A., Werschnik, J., Rubio, A. and Gross, E.K.U. (2007) Optimal control of
quantum rings by Terahertz laser pulses. Phys. Rev. Lett., 98, 157404.

47. Helbig, N., Fuks, J.I., Casula, M., Verstraete, M.J., Marques, M.A.L., Tokatly, I.V. and Rubio,
A. (2011) Density functional theory beyond the linear regime: validating an adiabatic local
density approximation. Phys. Rev. A, 83, 032503.

48. Bernholc, J., Hodak, M. and Lu, W. (2008) Recent developments and applications of the
real-space multigrid method. J. Phys. Condens. Matter, 20, 294205.

49. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J.,
Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehto-
vaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V.,
Romero, N.A., Stausholm-Møxller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Ham-
mer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Nørskov, J.K., Puska, M., Rantala,
T.T., Schiøtz, J., Thygesen, K.S. and Jacobsen, K.W. (2010) Electronic structure calculations
with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys.
Condens. Matter, 22, 253202.

50. Hasegawa, Y., Iwata, J.-I., Tsuji, M., Takahashi, D., Oshiyama, A., Minami, K., Boku, T., Shoji,
F., Uno, A., Kurokawa, M., Inoue, H., Miyoshi, I. and Yokokawa, M. (2011) First-principles
calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer.
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, New York, SC ’11, pp. 1:1–1:11.

51. Losilla Fernández, S., Watson, M.A., Aspuru-Guzik, A. and Sundholm, D. (2014)
GPGPU-accelerated real-space methods for molecular electronic structure calculations,
under review.

52. Castro, A., Appel, H., Oliveira, M., Rozzi, C.A., Andrade, X., Lorenzen, F., Marques, M.A.L.,
Gross, E.K.U. and Rubio, A. (2006) octopus: a tool for the application of time-dependent den-
sity functional theory. Phys. Status Solidi B, 243, 2465–2488.

53. Munshi, A. (2009) The OpenCL Specification, Khronos group, Philadelphia, PA.
54. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation

effects. Phys. Rev., 140, A1133–A1138.
55. Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Phys. Rev., 136,

B864–B871.
56. Gygi, F. and Galli, G. (1995) Real-space adaptive-coordinate electronic-structure calculations.

Phys. Rev. B, 52, R2229–R2232.
57. Briggs, E.L., Sullivan, D.J. and Bernholc, J. (1996) Real-space multigrid-based approach to

large-scale electronic structure calculations. Phys. Rev. B, 54, 14362–14375.
58. Modine, N.A., Zumbach, G. and Kaxiras, E. (1997) Adaptive-coordinate real-space

electronic-structure calculations for atoms, molecules, and solids. Phys. Rev. B, 55,
10289–10301.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 233�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 233

59. Broyden, C.G. (1965) A class of methods for solving nonlinear simultaneous equations. Math.
Comput., 19, 577–593.

60. Srivastava, G.P. (1984) Broyden’s method for self-consistent field convergence acceleration. J.
Phys. A: Math. Gen., 17, L317.

61. Pulay, P. (1980) Convergence acceleration of iterative sequences. The case of SCF iteration.
Chem. Phys. Lett., 73, 393–398.

62. Szabo, A. and Ostlund, N. (1996) Modern Quantum Chemistry: Introduction to Advanced Elec-
tronic Structure Theory, Dover Books on Chemistry Series, Dover Publications.

63. Trefethen, L.N. and Bau, D. (1997) Numerical Linear Algebra, Society for Industrial and
Applied Mathematics.

64. Saad, Y. (2011) Numerical Methods for Large Eigenvalue Problems: Revised Edition,
Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA.

65. Wood, D.M. and Zunger, A. (1985) A new method for diagonalising large matrices. J. Phys. A:
Math. Gen., 18, 1343.

66. Kresse, G. and Furthmüller, J. (1996) Efficient iterative schemes for Ab initio total-energy cal-
culations using a plane-wave basis set. Phys. Rev. B, 54, 11169–11186.

67. Saad, Y., Stathopoulos, A., Chelikowsky, J., Wu, K. and Öĝüt, S. (1996) Solution of large
eigenvalue problems in electronic structure calculations. BIT Numer. Math., 36, 563–578.

68. Runge, E. and Gross, E.K.U. (1984) Density-functional theory for time-dependent systems.
Phys. Rev. Lett., 52, 997–1000.

69. Maitra, N.T. (2012) Memory: history, initial-state dependence, and double-excitations, in Fun-
damentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, vol. 837
(eds M.A. Marques, N.T. Maitra, F.M. Nogueira, E. Gross and A. Rubio), Springer-Verlag,
Berlin, Heidelberg, pp. 167–184.

70. Castro, A., Marques, M.A.L., Alonso, J.A. and Rubio, A. (2004) Optical properties of
nanostructures from time-dependent density functional theory. J. Comput. Theor. Nanosci., 1,
231–255.

71. Castro, A., Marques, M.A.L., Alonso, J.A., Bertsch, G.F. and Rubio, A. (2004) Excited states
dynamics in time-dependent density functional theory. Eur. Phys. J. D, 28, 211–218.

72. Takimoto, Y., Vila, F.D. and Rehr, J.J. (2007) Real-time time-dependent density functional the-
ory approach for frequency-dependent nonlinear optical response in photonic molecules. J.
Chem. Phys., 127, 154114.

73. Yabana, K. and Bertsch, G.F. (1999) Application of the time-dependent local density approxi-
mation to optical activity. Phys. Rev. A, 60, 1271–1279.

74. Varsano, D., Espinosa Leal, L.A., Andrade, X., Marques, M.A.L., di Felice, R. and Rubio, A.
(2009) Towards a gauge invariant method for molecular chiroptical properties in TDDFT. Phys.
Chem. Chem. Phys., 11, 4481–4489.

75. Marques, M.A.L., Castro, A., Malloci, G., Mulas, G. and Botti, S. (2007) Efficient calculation
of van der Waals dispersion coefficients with time-dependent density functional theory in real
time: application to polycyclic aromatic hydrocarbons. J. Chem. Phys., 127, 014107.

76. Aggarwal, R., Farrar, L., Saikin, S., Andrade, X., Aspuru-Guzik, A. and Polla, D. (2012) Mea-
surement of the absolute Raman cross section of the optical phonons in type Ia natural diamond.
Solid State Commun., 152, 204–209.

77. Thomas, M., Latorre, F. and Marquetand, P. (2013) Resonance Raman spectra of
ortho-nitrophenol calculated by real-time time-dependent density functional theory. J.
Chem. Phys., 138, 044101.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 234�

� �

�

234 Electronic Structure Calculations on Graphics Processing Units

78. De Giovannini, U., Varsano, D., Marques, M.A.L., Appel, H., Gross, E.K.U. and Rubio, A.
(2012) Ab initio angle- and energy-resolved photoelectron spectroscopy with time-dependent
density-functional theory. Phys. Rev. A, 85, 062515.

79. Meng, S. and Kaxiras, E. (2008) Real-time, local basis-set implementation of time-dependent
density functional theory for excited state dynamics simulations. J. Chem. Phys., 129, 054110.

80. Alonso, J.L., Andrade, X., Echenique, P., Falceto, F., Prada-Gracia, D. and Rubio, A. (2008)
Efficient formalism for large-scale Ab Initio molecular dynamics based on time-dependent den-
sity functional theory. Phys. Rev. Lett., 101, 096403.

81. Andrade, X., Castro, A., Zueco, D., Alonso, J.L., Echenique, P., Falceto, F. and Rubio, A. (2009)
Modified Ehrenfest formalism for efficient large-scale Ab initio molecular dynamics. J. Chem.
Theory Comput., 5, 728–742.

82. Avendaño Franco, G., Piraux, B., Grüning, M. and Gonze, X. (2012) Time-dependent density
functional theory study of charge transfer in collisions. Theor. Chem. Acc., 131, 1–10.

83. Akimov, A.V. and Prezhdo, O.V. (2013) The PYXAID program for non-adiabatic molecular
dynamics in condensed matter systems. J. Chem. Theory Comput., 9, 4959–4972.

84. Akimov, A.V. and Prezhdo, O.V. (2014) Advanced capabilities of the PYXAID program: inte-
gration schemes, decoherence effects, multi-excitonic states, and field-matter interaction. J.
Chem. Theory. Comput., 10, 789–804.

85. Castro, A., Marques, M.A.L. and Rubio, A. (2004) Propagators for the time-dependent
Kohn-Sham equations. J. Chem. Phys., 121, 3425–3433.

86. Andrade, X., Sanders, J.N. and Aspuru-Guzik, A. (2012) Application of compressed sensing
to the simulation of atomic systems. Proc. Natl. Acad. Sci. U. S. A., 109, 13928–13933.

87. Markovich, T., Blau, S.M., Parkhill, J., Kreisbeck, C., Sanders, J.N., Andrade, X.
and Aspuru-Guzik, A. (2013) More accurate and efficient bath spectral densities from
super-resolution, arXiv preprint arXiv:1307.4407

88. Tuckerman, M.E. and Parrinello, M. (1994) Integrating the Car–Parrinello equations. I. Basic
integration techniques. J. Chem. Phys., 101, 1302–1315.

89. Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P. (2001) Phonons and related crystal
properties from density-functional perturbation theory. Rev. Mod. Phys., 73, 515–562.

90. Andrade, X., Botti, S., Marques, M.A.L. and Rubio, A. (2007) Time-dependent density func-
tional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. J. Chem.
Phys., 126, 184106.

91. Peng, L., Seymour, R., Nomura, K.-I., Kalia, R.K., Nakano, A., Vashishta, P., Loddoch, A.,
Netzband, M., Volz, W. and Wong, C. (2009) High-order stencil computations on multicore
clusters. IEEE International Symposium on Parallel Distributed Processing, 2009. IPDPS 2009,
pp. 1–11.

92. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J. and Yelick, K. (2009) Optimization and
performance modeling of stencil computations on modern microprocessors. SIAM Rev., 51,
129–159.

93. Dursun, H., Nomura, K.-I., Peng, L., Seymour, R., Wang, W., Kalia, R., Nakano, A. and
Vashishta, P. (2009) A multilevel parallelization framework for high-order stencil computa-
tions, in Euro-Par 2009 Parallel Processing, Lecture Notes in Computer Science, vol. 5704
(eds H. Sips, D. Epema and H.-X. Lin), Springer-Verlag, Berlin, Heidelberg, pp. 642–653.

94. Treibig, J., Wellein, G. and Hager, G. (2011) Efficient multicore-aware parallelization strategies
for iterative stencil computations. J. Comput. Sci., 2, 130–137.

95. de la Cruz, R. and Araya-Polo, M. (2011) Towards a multi-level cache performance model for
3D stencil computation. Procedia Comput. Sci., 4, 2146–2155.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 235�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 235

96. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J. and Sadayappan, P.
(2011) Data layout transformation for stencil computations on short-vector SIMD architec-
tures, in Compiler Construction, Lecture Notes in Computer Science, vol. 6601 (ed. J. Knoop),
Springer-Verlag, Berlin, Heidelberg, pp. 225–245.

97. Holewinski, J., Pouchet, L.-N. and Sadayappan, P. High-performance code generation for sten-
cil computations on GPU architectures. Proceedings of the 26th ACM international conference
on Supercomputing, ACM, New York, ICS ’12, pp. 311–320.

98. Peano, G. (1890) Sur une courbe, qui remplit toute une aire plane. Math. Ann., 36, 157–160.
99. Hilbert, D. (1891) Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann., 36,

459–460.
100. Skilling, J. (2004) Programming the Hilbert curve. AIP Conference Proceedings, vol. 707, pp.

381–387.
101. Andrade, X. (2010) Linear and non-linear response phenomena of molecular systems within

time-dependent density functional theory. PhD thesis. University of the Basque Country,
UPV/EHU.

102. Kleinman, L. and Bylander, D.M. (1982) Efficacious form for model pseudopotentials. Phys.
Rev. Lett., 48, 1425–1428.

103. Troullier, N. and Martins, J.L. (1991) Efficient pseudopotentials for plane-wave calculations.
Phys. Rev. B, 43, 1993–2006.

104. Benoit, C. (1924) Note Sur Une Méthode de Résolution des Équations Normales Provenant
de L’Application de la Méthode des Moindres Carrés a un Systéme D’equations Linéaires en
Nombre Inférieur a Celui des Inconnues.—Application de la Méthode a la R ésolution D’un
Systéme Defini D’equations Linéaires. Bull. Geod., 2, 67–77.

105. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P.
and Tomov, S. (2009) Numerical linear algebra on emerging architectures: the PLASMA and
MAGMA projects. J. Phys. Conf. Ser., 180, 012037.

106. Perdew, J.P. and Zunger, A. (1981) Self-interaction correction to density-functional approxi-
mations for many-electron systems. Phys. Rev. B, 23, 5048–5079.

107. Umezawa, N. (2006) Explicit density-functional exchange potential with correct asymptotic
behavior. Phys. Rev. A, 74, 032505.

108. Andrade, X. and Aspuru-Guzik, A. (2011) Prediction of the derivative discontinuity in density
functional theory from an electrostatic description of the exchange and correlation potential.
Phys. Rev. Lett., 107, 183002.

109. Shang, H., Li, Z. and Yang, J. (2010) Implementation of exact exchange with numerical atomic
orbitals. J. Phys. Chem. A, 114, 1039–1043.

110. Tan, I.-H., Snider, G.L., Chang, L.D. and Hu, E.L. (1990) A self-consistent solution of
Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys., 68, 4071–4076.

111. Luscombe, J.H., Bouchard, A.M. and Luban, M. (1992) Electron confinement in quantum
nanostructures: self-consistent Poisson-Schrödinger theory. Phys. Rev. B, 46, 10262–10268.

112. Klamt, A. and Schuurmann, G. (1993) COSMO: a new approach to dielectric screening in
solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc.,
Perkin Trans. 2, 799–805.

113. Tomasi, J. and Persico, M. (1994) Molecular interactions in solution: an overview of methods
based on continuous distributions of the solvent. Chem. Rev., 94, 2027–2094.

114. Olivares-Amaya, R., Stopa, M., Andrade, X., Watson, M.A. and Aspuru-Guzik, A. (2011)
Anion stabilization in electrostatic environments. J. Phys. Chem. Lett., 2, 682–688.

115. Watson, M.A., Rappoport, D., Lee, E.M.Y., Olivares-Amaya, R. and Aspuru-Guzik, A. (2012)
Electronic structure calculations in arbitrary electrostatic environments. J. Chem. Phys., 136,
024101 (14 pages).

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 236�

� �

�

236 Electronic Structure Calculations on Graphics Processing Units

116. Greengard, L.F. and Rokhlin, V. (1997) A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numer., 6, 229.

117. Kutteh, R., Apra, E. and Nichols, J. (1995) A generalized fast multipole approach for
Hartree-Fock and density functional computations. Chem. Phys. Lett., 238, 173–179.

118. Briggs, W.L. (1987) A Multigrid Tutorial, John Wiley & Sons, Inc., New York.
119. Beck, T.L. (1997) Real-space multigrid solution of electrostatics problems and the Kohn–Sham

equations. Int. J. Quantum Chem., 65, 477–486.
120. Cerioni, A., Genovese, L., Mirone, A. and Sole, V.A. (2012) Efficient and accurate solver of

the three-dimensional screened and unscreened Poisson’s equation with generic boundary con-
ditions. J. Chem. Phys., 137, 134108 (9 pages).

121. García-Risueño, P., Alberdi-Rodriguez, J., Oliveira, M.J.T., Andrade, X., Pippig, M.,
Muguerza, J., Arruabarrena, A. and Rubio, A. (2013) A survey of the parallel performance
and accuracy of poisson solvers for electronic structure calculations. J. Comput. Chem., 35
(6), 427–444.

122. Rozzi, C.A., Varsano, D., Marini, A., Gross, E.K.U. and Rubio, A. (2006) Exact Coulomb cutoff
technique for supercell calculations. Phys. Rev. B, 73, 205119.

123. Frigo, M. and Johnson, S.G. (2005) The design and implementation of FFTW3. Proc. IEEE,
2005, 93, 216–231, Special issue on “Program Generation, Optimization, and Platform Adap-
tation”.

124. Becke, A.D. (1993) A new mixing of Hartree–Fock and local density-functional theories. J.
Chem. Phys., 98, 1372–1377.

125. Marques, M.A., Oliveira, M.J. and Burnus, T. (2012) LIBXC: a library of exchange and corre-
lation functionals for density functional theory. Comput. Phys. Commun., 183, 2272–2281.

126. Goedecker, S., Teter, M. and Hutter, J. (1996) Separable dual-space Gaussian pseudopotentials.
Phys. Rev. B, 54, 1703–1710.

127. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M. and Rossi, F. (2003)
GNU Scientific Library: Reference Manual, Network Theory Ltd.

128. Luehr, N., Ufimtsev, I.S. and Martínez, T.J. (2011) Dynamic precision for electron repulsion
integral evaluation on graphical processing units (GPUs). J. Chem. Theory Comput., 7,
949–954.

129. Harrison, R.J., Fann, G.I., Yanai, T., Gan, Z. and Beylkin, G. (2004) Multiresolution quantum
chemistry: basic theory and initial applications. J. Chem. Phys., 121, 11587–11598.

130. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A., Caliste, D.,
Zilberberg, O., Rayson, M., Bergman, A. and Schneider, R. (2008) Daubechies wavelets as a
basis set for density functional pseudopotential calculations. J. Chem. Phys., 129, 014109 (14
pages).

131. Baer, R., Neuhauser, D. and Rabani, E. (2013) Self-averaging stochastic Kohn-Sham
density-functional theory. Phys. Rev. Lett., 111, 106402.

132. Neuhauser, D., Rabani, E. and Baer, R. (2013) Expeditious stochastic approach for MP2 ener-
gies in large electronic systems. J. Chem. Theory Comput., 9, 24–27.

133. Neuhauser, D., Rabani, E. and Baer, R. (2013) Expeditious stochastic calculation of
random-phase approximation energies for thousands of electrons in three dimensions. J. Phys.
Chem. Lett., 4, 1172–1176.

134. The Octopus source code can be obtained from http://tddft.org/programs/octopus/

(accessed 25 September 2015).
135. Andrade, X. (2011) FortranCL: a Fortran/OpenCL interface, http://fortrancl

.googlecode.com (accessed 21 September 2015).
136. Tafipolsky, M. and Schmid, R. (2006) A general and efficient pseudopotential Fourier filtering

scheme for real space methods using mask functions. J. Chem. Phys., 124, 174102 (9 pages).

http://tddft.org/programs/octopus/
http://fortrancl.googlecode.com
http://fortrancl.googlecode.com

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 237�

� �

�

GPU Acceleration of Real-Space DFT and TD-DFT Calculations 237

137. Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymp-
totic behavior. Phys. Rev. A, 38, 3098–3100.

138. Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density. Phys. Rev. B, 37, 785–789.

139. Miehlich, B., Savin, A., Stoll, H. and Preuss, H. (1989) Results obtained with the correlation
energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 157, 200–206.

Trim Size: 170mm x 244mm Walker c10.tex V3 - 01/09/2016 10:30 A.M. Page 238�

� �

�

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 239�

� �

�

11
Semiempirical Quantum Chemistry

Xin Wu, Axel Koslowski and Walter Thiel
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

In this chapter, we demonstrate how graphics processing units (GPUs) can be used to accelerate
large-scale semiempirical quantum-chemical calculations on hybrid CPU–GPU platforms. We exam-
ine the computational bottlenecks using a series of calculations on eight proteins with up to 3558
atoms and outline how relevant operations are parallelized and ported to GPUs, making use of mul-
tiple devices where possible. Significant speedups are achieved that enable simulations on large
systems with thousands of atoms. As an example we present results for geometry optimizations of
three representative proteins with α-helix, β-sheet, and random coil structures using several common
semiempirical Hamiltonians.

11.1 Introduction

Semiempirical quantum chemical methods are cost-effective tools for chemists to study the struc-
ture, stability, and spectroscopy of molecules as well as chemical reactions [1] (see also Chapter 3).
They are based on the Hartree–Fock method commonly used in ab initio molecular orbital (MO)
theory [2]. The different semiempirical models simplify the Hartree–Fock procedure by introducing
distinct approximations to the Hamiltonian, neglecting many integrals to speed up computations by
several orders of magnitude [3]. The remaining integrals are modeled using empirical functions with
adjustable parameters that are calibrated against a large number of accurate experimental or high-level
theoretical reference data to make semiempirical methods as reliable and general as possible. These
features make semiempirical models well suited to many research areas in chemistry, and enabled a
large number of semiempirical applications already in the 1970s and 1980s. Since the 1990s, density
functional theory (DFT) has become the major workhorse in computational chemistry [4]. However,
considering that semiempirical methods are ∼1000× faster than standard DFT approaches [5], they
are still valuable computational tools nowadays, for example, for screening large numbers of drug

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 240�

� �

�

240 Electronic Structure Calculations on Graphics Processing Units

candidates [6], for calculations on proteins [7], for long-time scale ground-state molecular dynamics
simulations [8], and for nonadiabatic excited-state dynamics of large chromophores [9].

The development of computational chemistry is intimately tied to the evolution of computer tech-
nology. The first computational chemistry programs developed since the 1950s had been exclusively
written for sequential execution on a single central processing unit (CPU) [10]. With the widespread
advent of parallel computing in the 1990s, many quantum chemical codes were parallelized to take
advantage of the new architectures, including semiempirical programs [11]. The most recent wave of
hardware-driven code development was triggered by the rise of graphics processing units (GPUs). A
GPU is a specially designed integrated circuit with powerful, but fixed-function pipelines for faster
image rendering and video games (see also Chapter 1). Until 2006, implementing algorithms for gen-
eral numeric calculations on a GPU was tediously difficult because the problem had to be cast into
graphics operations by resorting to a specific (graphics) API (application programming interface).
Programming purely computational tasks on a GPU was considerably simplified by the introduc-
tion of the CUDA (compute unified device architecture) and OpenCL (open computing language)
frameworks (see Chapter 2). In this chapter, we will focus exclusively on the CUDA framework,
which allows developers to employ the C programming language, with CUDA-specific extensions,
to use a CUDA-capable GPU as coprocessor of the CPU for computations [12]. As of 2012, the
raw hardware peak performance and memory bandwidth of a many-core GPU had significantly out-
paced a multicore CPU (see Figure 1.5 in Chapter 1). For example, the maximum floating-point
performance and theoretical memory bandwidth of an Intel Xeon E5-4650 CPU (eight cores with a
base clock of 2.7 GHz and a maximum boost clock of 3.3 GHz with the Intel Turbo Boost Technol-
ogy, four-channel DDR-1600) are 0.17–0.21 TFlop/s (floating-point operations per second) and 51.2
GB/s, respectively. By contrast, the flagship Tesla K20x by Nvidia (2688 CUDA cores at 732 MHz)
has a peak of 1.31 TFlop/s for double-precision arithmetic and a memory bandwidth of 250 GB/s
with ECC (error-correcting code) off. Hence many groups decided to develop GPU-accelerated pro-
grams [13, 14] to take advantage of this promising device for quantum Monte Carlo computations
[15, 16], evaluation of two-electron integrals [17–22], DFT calculations [23–30], high-level corre-
lated ab initio methods [31–38], and semiempirical quantum chemistry [39, 40]. The other chapters
of this book contain an excellent overview of many of these porting efforts.

In this chapter, we begin with a brief review of semiempirical quantum chemistry, referring read-
ers interested in the detailed formalism and the numerical results to available books [41–43] and
reviews [5, 11, 44–50]. We then examine the computational bottlenecks by performing systematic
calculations on a set of eight proteins with up to 3558 atoms and 8727 basis functions. Thereafter,
we outline how the hotspots identified in this manner are ported to a GPU (making use of multiple
devices where possible), and how the remaining code is parallelized using CPUs only using the sym-
metric multiprocessing (SMP) capabilities via OpenMP. Next, we analyze the overall performance
of our code on the hybrid CPU–GPU platform and compare it with the CPU-only case. Finally, as an
illustrative application, we use our CPU–GPU hybrid program to optimize the geometries of three
small proteins, each consisting predominantly of one type of secondary structure, namely α-helix,
β-strand, and random coil, employing six different semiempirical methods.

11.2 Overview of Semiempirical Methods

Nonrelativistic quantum chemistry aims at finding sufficiently accurate but approximate solutions
to the Schrödinger equation. In the early days of quantum chemistry, the zero-differential-overlap
(ZDO) approximation [51, 52] was introduced to deal with “the nightmare of the integrals” [10], that
is, the difficulty of evaluating the large number of three- and four-center integrals in ab initio meth-
ods. As a consequence, the integral problem could be tackled at different levels of approximation.
Currently, the most accurate semiempirical methods are based on the NDDO (neglect of diatomic

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 241�

� �

�

Semiempirical Quantum Chemistry 241

differential overlap) model [3], which retains all one- and two-center two-electron repulsion integrals
in the Fock matrix. The first successful and widely adopted NDDO-based parameterization was the
MNDO (modified neglect of diatomic overlap) method [53–55]. The MNDO model also serves as
the basis for later parameterizations that have been widely applied, including AM1 (Austin Model 1)
[56], PMx (parametric methods, x = 3, 5, 6, and 7) [57–60], as well as PDDG/MNDO and
PDDG/PM3 (MNDO and PM3 augmented with pairwise distance directed Gaussian functions) [61].

Conceptual deficiencies in the established MNDO-type methods include the lack of representation
of Pauli exchange repulsion in the Fock matrix. One possible remedy is to introduce orthogonaliza-
tion corrections into the Fock matrix to account for Pauli exchange repulsion. This can be done
through truncated and parameterized series expansions in terms of overlap, which provide correc-
tions to the one-electron core Hamiltonian. These corrections are applied to the one-center matrix
elements in OM1 (orthogonalization model 1) [62] and to all one- and two-center matrix elements
in OM2 [63] and OM3 [64]. Benchmark calculations demonstrate that the OMx methods, especially
OM2 and OM3, are superior to AM1 and PM3 for both ground-state and excited-state molecular
properties [65–67]. The computational cost of OMx calculations is roughly the same as that for
MNDO-type calculations [39], especially when using suitable cutoffs to neglect the exponentially
decreasing three-center orthogonalization corrections to matrix elements involving distant atoms.

11.3 Computational Bottlenecks

In this chapter, the OM3 method is taken as an example to illustrate the general strategy of optimizing
a semiempirical quantum chemical program on a hybrid CPU–GPU platform. We have selected a set
of eight proteins that are denoted as Px (x being the number of residues) and listed in Table 11.1,
for the purpose of profiling OM3 calculations in a systematic manner [68–75]. Timings for the OMx
methods are also representative for MNDO-type methods, because the most time-consuming parts
of the calculations are the same in both cases. Consequently, similar wall clock times are obtained:
for example, one SCF (self-consistent field) iteration in MNDO, AM1, PM3, OM1, OM2, and OM3
calculations on a cluster of 1000 water molecules takes 80, 84, 89, 73, 87, and 83 seconds, respec-
tively, on a single Intel Xeon X5670 CPU core [39]. Hence, it is sufficient to consider only OM3 in
the following.

The OM3 calculations on our test proteins were performed on a server with two Intel Xeon X5690
CPUs (six cores at 3.46 GHz per chip), 48 GiB host memory (24 GiB of triple-channel DDR-1333 per
chip) with a total theoretical bandwidth1 of 64 GB/s, and two Nvidia Tesla M2090 GPUs (512 CUDA
cores at 1.3 GHz per device) with 5.25 GiB ECC memory and a bandwidth of 155 GB/s per device.
Intel Turbo Boost Technology (which may automatically increase the CPU frequency above the base
clock in accordance with the workload in order to exhaust the allowed thermal envelope of the CPU)
was intentionally turned off to ensure consistent timings. Three criteria were adopted for SCF con-
vergence in our single-point energy calculations: (i) a variation of the electronic energy in successive

Table 11.1 Proteins in the test set for the OM3 calculations

Notation P020 P063 P086 P100 P125 P156 P166 P221

PDB ID 1BTQ 1K50 2HXX 3K6F 1ACF 2A4V 4A02 3AQO
Na 307 1097 1495 1842 2004 2969 3415 3558
Nf 754 2699 3655 4446 4920 7157 8173 8727

Na and Nf denote the number of atoms and basis functions, respectively.

1 If one CPU needs to access memory connected to the other CPU, the theoretical bandwidth is lower.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 242�

� �

�

242 Electronic Structure Calculations on Graphics Processing Units

SCF iterations of at most 1.0 × 10−6 eV, (ii) a maximum change of the density matrix elements of
1.0 × 10−6, and (iii) a maximum entry in the error matrix of 1.0 × 10−6 in the DIIS (direct inversion
of iterative subspace) extrapolation [76]. To speed up the calculations, the full diagonalization was
automatically replaced in the SCF procedure by fast pseudo-diagonalization [77] whenever possible.

The code development was conducted on a CVS version of the MNDO99 package [78]. The Intel
composer XE 13.1 and Nvidia CUDA Toolkit 5.0 were used for compiling the Fortran subroutines
of the CPU code and the CUDA kernels for the GPU, respectively. The final executable was dynam-
ically linked against Intel Math Kernel Library (MKL) 11.0, CUBLAS from the Nvidia Toolkit, and
MAGMA version 1.3.0 [79]. The latter includes a subset of LAPACK routines ported to the GPU;
it has been modified locally to conform to the ILP64 (64-bit integers, long integers, and pointers)
data model, which is needed to access arrays with 232 or more elements.2 Before the inclusion of
dynamic memory allocation in the Fortran standard, the early versions of the MNDO program emu-
lated dynamic memory by passing sections of a fixed-size array in the unnamed COMMON block as
arguments to subroutines. The current version of the MNDO code uses essentially the same mecha-
nism, but with a dynamically allocated array instead of the fixed-size array. For larger proteins, the
indices of this array may exceed the 32-bit integer range—this is why 64-bit integers are needed.

The computing setup for the OM3 benchmark calculations is denoted as C[xC−yG], where the sub-
scripts x and y are numbers of CPU cores and GPU devices in use, respectively. The wall clock
time of an OM3 calculation on C[1C] is the reference for calculations with the other compute con-
figurations and the basis for assessing the corresponding speedups. Timings for C[1G] and C[2G] refer
to subroutines executed exclusively on one GPU or two GPUs, respectively, including the associ-
ated and generally negligible CPU–GPU communication. All floating-point operations were done in
double precision, both on the CPUs and GPUs, and therefore the numerical results produced on all
hardware setups are essentially the same. Deviations in the computed heat of formation (total energy)
were occasionally encountered, but remained below 1.0× 10−5 kcal/mol. Such tiny discrepancies can
be attributed to the different order in which the floating-point operations are performed on the CPU
and GPU architectures. Since many operations are performed in parallel, the execution order may not
even be fixed, that is, there might be small deviations between different runs of the same calculation
on the same computing setup. The execution order matters because limited-precision floating-point
arithmetics is not associative.

The general form of a two-electron repulsion integral (ERI) in ab initio and DFT methods is

(𝜇𝜈|𝜆𝜎) =
∫1∫2

𝜇(1) 𝜈(1) 𝜆(2) 𝜎(2)
r12

dV1 dV2,

where the Greek letters represent basis functions or atomic orbitals (AOs). The complexity of the
two-electron integral evaluation formally scales as(N4

f) for Nf basis functions, but the actual scaling
may be more favorable due to the application of screening techniques [80]. The currently applied
semiempirical methods make use of the NDDO approximation [3] for ERI evaluation:

(𝜇A𝜈B|𝜆C𝜎D) = 𝛿AB 𝛿CD (𝜇A𝜈B|𝜆C𝜎D),

where atomic centers are denoted by capital letters and 𝛿AB (or 𝛿CD) will vanish unless A and B (or C
and D) are the same atom. This rather drastic approximation reduces the formal scaling of the ERI
computation in semiempirical methods to (N2

f) and makes it possible to simulate complex systems
with thousands of atoms. The solution of the secular equations

∑
𝜈

(F𝜇𝜈 − 𝛿𝜇𝜈𝜖i)C𝜈i = 0 (11.1)

scales as (N3
f) and thus becomes the primary computational task in semiempirical methods. 𝜖i is

the energy of the ith MO. Because the Fock matrix elements F𝜇𝜈 depend on the elements C𝜈i of the

2 Starting with version 1.4, MAGMA supports both 32-bit and 64-bit integers out of the box.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 243�

� �

�

Semiempirical Quantum Chemistry 243

0

10

20

30

40

50

60

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

1000 2000 3000 4000 5000 6000 7000 8000 9000

P
e
rc

e
n

ta
g

e
 o

f
to

ta
l
C

P
U

 t
im

e

Proteins

Number of basis functions

PDIAG
FDIAG

DIIS
BORDER

ORTCOR
others

Figure 11.1 Profiles of the OM3 calculations for the test proteins for the C[1C] computing setup

eigenvectors, Eq. (11.1) has to be solved by an iterative SCF procedure that requires (N3
f) dense

linear algebraic operations.
Figure 11.1 depicts the profiles of OM3 calculations for the C[1C] setup. The pseudo-

diagonalization procedure (PDIAG) is roughly twice as fast as a full diagonalization (FDIAG),
and it is thus preferable to replace FDIAG by PDIAG as often as possible. Applying the default
criteria of the MNDO code for the choice between FDIAG and PDIAG, it is normally sufficient to
call FDIAG in four of the SCF iterations (i.e., the first three and the last one) during single-point
energy evaluation and to call PDIAG in the other SCF iterations (typically 25).3 Hence most OM3
calculations are dominated by PDIAG with 42.1% of the wall clock time on average. FDIAG and
PDIAG complement each other; they collectively contribute ∼55% of the total CPU time and are
thus the first two bottlenecks.

DIIS is the third hotspot that consumes ∼30% of the computation time (see Figure 11.1). Although
the DIIS extrapolation may be omitted for small systems (with less than 100 atoms), it is in our
experience imperative to apply DIIS to reliably converge the SCF procedure for larger molecules
such as proteins. We will thus also investigate the option of leveraging multiple GPUs for the DIIS
treatment (see Section 11.4).

The last two bottlenecks are the calculation of the density matrix (also called the bond-order
matrix, subroutine BORDER) and the orthogonalization corrections (subroutine ORTCOR in the
case of OM3). We spent considerable effort on both routines to achieve optimum performance with
the MNDO99 program [78], especially for ORTCOR, where we obtained a huge speedup by formu-
lating all operations as standard matrix–matrix multiplications. After code optimization, BORDER
and ORTCOR take 9.4% and 1.1% of the wall clock time on average, respectively, on the C[1C] setup.

Other computational tasks in an OM3 calculation include integral evaluation, formation of the Fock
matrix, and initial density matrix generation, which all scale as (N2

f). Cumulatively, they require 7%
of the CPU time in a serial calculation for a small protein such as P020 with 307 atoms and 754 orbitals,
but this portion quickly diminishes with increasing system size, to ∼0.5% for the largest proteins in
our test set, which are the main targets of our code development. Therefore, these other tasks are not
considered to be real bottlenecks, and the corresponding subroutines are thus only subjected to an
OpenMP parallelization to take advantage of multiple CPU cores.

3 An exception is P086 with 11 calls to FDIAG.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 244�

� �

�

244 Electronic Structure Calculations on Graphics Processing Units

In summary, we have identified five subroutines (FDIAG, PDIAG, DIIS, BORDER, and ORT-
COR) as computational bottlenecks by systematic analysis of OM3 calculations on a set of proteins.
We describe the optimization of these hotspots on a hybrid CPU–GPU platform in the following.

11.4 Profile-Guided Optimization for the Hybrid Platform

11.4.1 Full Diagonalization, Density Matrix, and DIIS

The GPU-accelerated full diagonalization, density matrix construction, and DIIS extrapolation are
jointly described here because they heavily rely on the standard routines in the BLAS (basic linear
algebra subprograms) and LAPACK (linear algebra package) libraries.

Equation (11.1) is an eigenvalue problem that can be solved by diagonalizing the Fock matrix F,
which yields the ith MO energy 𝜖i and the coefficient vector ci:

Fci = 𝜖ici.

This task can be carried out by the LAPACK function DSYEVD, which computes all eigenvalues
and eigenvectors of a real symmetric matrix using the divide-and-conquer algorithm. DSYEVD
of the Intel MKL library makes use of all processor cores on a CPU-only platform, whereas the
DSYEVD implementation in MAGMA is a hybrid that utilizes both multicore CPUs and GPU(s)4

for the diagonalization [81]. In Figure 11.2, the speedups of FDIAG are plotted as obtained in the
OM3 calculations on the proteins in our test set. The scalability on CPU-only setups is evidently rather
poor: for instance, the best speedups are observed in the calculations on P063, which are 4.3 on C[6C]

and 5.4 on C[12C]. Hence, the symmetric parallel processors are highly underutilized in the FDIAG
subroutine, and the efficiency5 is merely 0.72 and 0.45, respectively. This becomes even worse for
larger systems: for example, the speedup of FDIAG for P221 on C[6C] is 3.3 and barely increases to 3.8

0

2

4

6

8

10

S
p

e
e

d
u

p
 o

f
F

D
IA

G

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C] C[12C] C[12C–1G]

Figure 11.2 Speedups of the FDIAG subroutine in the OM3 calculations on the multi-CPU C[6C], C[12C],
and hybrid CPU–GPU C[12C–1G] computing setups over the serial configuration

4 The hybrid DSYEVD function in MAGMA version 1.3 does not support multiple GPUs. This feature is available starting with
MAGMA version 1.4.
5 Processor efficiency is defined as the speedup divided by the number of parallel processing units.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 245�

� �

�

Semiempirical Quantum Chemistry 245

on C[12C], with corresponding efficiencies of 0.55 and 0.32, respectively. On the contrary, the speedup
of the hybrid FDIAG subroutine is constantly rising until P166 (up to more than 8000 basis functions).
Moreover, it is always superior to its CPU-only counterpart with the exception of P063 on the C[12C]

setup. For the larger calculations, the hybrid FDIAG subroutine tends to be more than 7× faster than
the serial version and at least 2× faster than the parallel CPU-only version.

The primary computational task (>99% of the CPU time) in BORDER is a matrix–matrix multi-
plication, P = 2CoCT

o , where P is the density matrix and Co is the coefficient matrix of the occupied
MOs. A general DGEMM routine could be used to perform this task. Because P is symmetric, and
only the lower triangle is stored as a linear array in the MNDO99 package, we employ a more specific
function, namely DSYRK, which only calculates the lower part of a symmetric matrix and thus avoids
unnecessary floating-point operations. The CPU-only DSYRK routine has no difficulty to fully load
all processors, and the performance scales almost ideally with respect to the number of CPU cores
(see Figure 11.3). For example, the speedups for P166 are 5.8 on C[6C] and 9.9 on C[12C]. At present,
no multi-GPU-enabled version of DSYRK is available in either CUBLAS or MAGMA. On the other
hand, DSYRK on a single GPU may be more than 20× faster than a single-threaded CPU routine.
Thus, we will stick to DSYRK in our development, hoping that multi-GPU support will be added by
the vendors in the future.

The DIIS procedure is composed of several different kinds of algebraic operations, in which the
calculation of the error matrix (𝚫 = FP − PF) usually consumes more than 98% of the CPU time
[39]. Because the product of F and P is a general matrix, the standard DGEMM function is chosen
for the DIIS subroutine. The number of floating-point operations and memory accesses in DGEMM
scale as (N3) and (N2) (N being the matrix dimension), respectively. This implies that the number
of compute operations per memory access is proportional to N in DGEMM. Thus DGEMM is a
compute-bound routine that should be well suited to parallelization. The observed speedups on the
CPU-only setups are ∼5.5 on C[6C] and ∼10.0 on C[12C]. Moreover, a call to DIIS accelerated by a
single GPU (C[1G]) can be up to 20× faster than for the baseline setup C[1C]. However, the speedup
for C[1G] turns out not to be monotonous with increasing system size: it is highest for P125 with ∼20
and then drops again for the next-larger protein P156 to ∼18.

In order to make the best use of our dual-GPU equipped hardware, we designed a block matrix
scheme for the matrix–matrix multiplication aimed at multiple GPU devices based on the standard
DGEMM routine (X. Wu, A. Koslowski, W. Thiel, unpublished results). There are of course more

0

5

10

15

20

25

30

S
p

e
e

d
u

p
 o

f
B

O
R

D
E

R

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C] C[12C] C[1G]

Figure 11.3 Speedups of the BORDER subroutine in the OM3 calculations on the multi-CPU C[6C], C[12C],
and GPU-only C[1G] computing setups over the serial configuration

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 246�

� �

�

246 Electronic Structure Calculations on Graphics Processing Units

0

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p
 o

f
D

II
S

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C] C[12C] C[1G] C[2G]

Figure 11.4 Speedups of the DIIS subroutine in the OM3 calculations on the multi-CPU C[6C], C[12C],
and GPU-only C[1G] and C[2G] computing setups over the serial configuration

sophisticated multi-GPU DGEMM implementations reported in the literature [82, 83], but the per-
formance of our homemade multi-GPU DGEMM is virtually doubled on two GPUs (C[2G] compared
to C[1G]) with a peak around 0.7 TFlop/s.

The overall speedup for the DIIS procedure with the multi-GPU DGEMM routine on the C[2G]

setup is plotted in Figure 11.4. We find a monotonous increase in performance up to a factor of 30
compared with the C[1C] setup. The use of two GPU devices (C[2G]) results in a 1.6-fold speedup over
the setup with one single GPU (C[1G]).

11.4.2 Pseudo-diagonalization

As mentioned in the previous section, pseudo-diagonalization will be ∼2× faster than the conven-
tional diagonalization in a given SCF iteration. Thus PDIAG is used instead of FDIAG whenever
possible. However, an efficient implementation of PDIAG on multiple GPUs can be challenging.
Here, we first analyze the computations involved in pseudo-diagonalization, and then report the indi-
vidual and overall speedups that have been achieved.

The details of pseudo-diagonalization have been described in the original paper [77]. From a com-
putational point of view, it is basically comprised of two tasks. First, the Fock matrix is transformed
from the AO basis to the MO basis by a triple matrix multiplication (FMO):

FMO = CT
o FCv,

where Co and Cv denote the matrices of the occupied and virtual MO vectors, respectively. Then
noniterative Jacobi-like 2 × 2 rotations (JACOBI) between pairs of occupied (co) and virtual (cv)
vectors are executed:

c′o = aco − bcv and c′v = bco + acv, (11.2)

where a and b are the elements of the rotation matrix, and the new MO vectors c′o and c′𝑣 are denoted
by primes.

The profiles of the serial PDIAG version for the OM3 calculations on the proteins in our test set
are given in Table 11.2. On average, FMO and JACOBI consume ∼45% and ∼55% of the CPU time,
respectively. The other operations are negligible (<1%) and can be safely excluded from optimization.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 247�

� �

�

Semiempirical Quantum Chemistry 247

Table 11.2 Percentages (%) of computation time in the PDIAG subroutine consumed by FMO, JACOBI,
and other tasks in the OM3 calculations on a single CPU core

Notation P020 P063 P086 P100 P125 P156 P166 P221

FMO 47.2 40.8 45.1 41.8 42.5 44.7 42.2 42.3
JACOBI 51.6 58.8 54.5 57.9 57.2 55.1 57.6 57.5
Others 1.3 0.5 0.4 0.3 0.2 0.2 0.2 0.2

Table 11.3 Speedups of the FMO and JACOBI steps in the PDIAG subroutine on the multi-CPU C[6C],
C[12C], and GPU-only C[1G] and C[2G] computing setups over the serial setup

FMO JACOBI

C[6C] C[12C] C[1G] C[2G] C[6C] C[12C] C[1G] C[2G]

P020 5.2 7.8 5.9 5.2 3.4 5.1 2.6 3.6
P063 5.7 10.2 16.2 18.6 1.6 1.6 4.4 7.9
P086 5.8 10.6 19.6 22.4 1.4 1.4 4.6 8.6
P100 5.8 10.7 20.0 23.1 1.3 1.2 4.5 8.1
P125 5.8 10.8 20.3 25.4 1.2 1.2 5.0 9.4
P156 5.8 11.3 21.0 30.4 1.2 1.2 4.4 8.6
P166 5.8 11.3 20.6 31.9 1.2 1.2 4.4 8.6
P221 5.5 10.6 20.8 32.9 1.4 1.4 5.1 9.9

The FMO step contains only the DGEMM calls for the matrix multiplications. The relevant
speedups with different computing configurations are summarized in Table 11.3. Since DGEMM is
compute-bound, FMO scales well with respect to the number of parallel processors in the CPU-only
setups. One single GPU-accelerated FMO step can be as much as 20× faster than on one CPU core.
The setup with two GPU devices may further increase the speedup to more than 30-fold, being
about 1.6× faster than on C[1G]. The best performance for a small protein like P020 is achieved with
the CPU-only setup of 12 cores, however. This is because a GPU is designed for massively parallel
tasks that a small system will not fully exploit, and some inevitable overhead such as CPU–GPU
data transfer may hurt the overall performance of a smaller calculation.

The GPU-oriented optimization of the JACOBI step is demanding. The technical details can be
found in our paper [39]. The resulting speedups are shown in Table 11.3. As one 2 × 2 rotation
given in Eq. (11.2) involves six memory accesses (four reads and two writes) and six floating-point
operations, the performance of JACOBI is fully determined by the memory bandwidth. In the case of
P020, the MO coefficient matrix is small enough (4.3 MiB) to completely fit into the CPU cache (12
MiB per chip). Modest speedups of 3.4 and 5.1 are therefore achieved on the C[6C] and C[12C] setups,
respectively. On the other hand, numerous cache misses can occur for larger proteins starting from
P063. The performance on the CPU-only platform will then be determined entirely by the available
memory bandwidth. The obtained speedup rapidly falls down to 1.2, no matter how many CPU cores
are in use for parallelization. On the contrary, JACOBI on a single GPU benefits from the enhanced
memory bandwidth (155 GB/s vs. 64 GB/s for two CPUs), and speedups of around 4.5-fold are
consistently achieved in the benchmarks except for the smallest case, P020. Addition of a second
GPU doubles the total memory bandwidth, and the equal distribution of horizontal blocks of the
coefficient matrix among the available devices enables the rotations to be carried out independently
on each device (X. Wu, A. Koslowski, W. Thiel, unpublished results). The overall speedup on the
C[2G] setup for P221 is 10, which is 1.9× higher than that on a single GPU (C[1G]).

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 248�

� �

�

248 Electronic Structure Calculations on Graphics Processing Units

0

2

4

6

8

10

12

14

16

S
p

e
e

d
u

p
 o

f
P

D
IA

G

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C] C[12C] C[1G] C[2G]

Figure 11.5 Speedups of the PDIAG subroutine in the OM3 calculations on the multi-CPU C[6C], C[12C],
and GPU-only C[1G] and C[2G] computing setups over the serial configuration

Since the JACOBI step consumes a slightly higher fraction of the CPU time (between 55% and
60% for most proteins in our test set) than FMO in the PDIAG subroutine for the serial configuration,
and since JACOBI benefits less from parallelization than PDIAG on all computing setups, the overall
speedups of PDIAG shown in Figure 11.5 resemble those of JACOBI (see Table 11.3), but with some
additional performance benefits from the FMO step. The highest speedup is 13.7 for P221 on C[2G],
which is again 1.9× higher than that on a single GPU (C[1G]).

11.4.3 Orthogonalization Corrections in OM3

The OM3 method [64] accounts for Pauli exchange repulsion by explicitly adding the orthogonaliza-
tion corrections (VORT

𝜇A𝜈B
) to the core Hamiltonian of the Fock matrix:

VORT
𝜇A𝜈B

= −1
2

GAB
1

∑
𝜆C

(S𝜇A𝜆C
𝛽𝜆C𝜈B

+ 𝛽𝜇A𝜆C
S𝜆C𝜈B

) (C ≠ A and C ≠ B),

where S and 𝛽 denote elements of the overlap and resonance matrices, respectively, and GAB
1 is defined

in terms of parameters that can be adjusted to fit reference data. 𝜇A, 𝜈B, and 𝜆C are AOs at atoms A,
B, and C, respectively. If A and B are the same atom, VORT

𝜇A𝜈B
is a correction to a one-center term;

otherwise it refers to a two-center element. Inclusion of the latter three-center contributions leads to
qualitative improvements over the MNDO-type methods for calculated molecular properties, such
as rotational barriers, relative energies of isomers, hydrogen bonds, and vertical excitation energies
[1, 65–67].

Even though the ORTCOR subroutine consumes only ∼1% of the wall clock time for the C[1C]

setup, we implemented a dedicated algorithm utilizing multiple GPUs in an attempt to harness all
available computing power. The ORTCOR performance for various setups is depicted in Figure 11.6.
The technical details will be presented elsewhere.

The speedup of the ORTCOR subroutine scales reasonably well on the symmetric multi-CPU
setups. For example, 5.5- and 10.1-fold performance boosts are feasible on the C[6C] and C[12C] setups,
respectively. ORTCOR is accelerated up to 28-fold for medium-sized proteins like P063 on a single
GPU (C[1G] setup), but thereafter the speedup decreases again with increasing system size to ∼20 for
the largest proteins in our test set. The speedup on the C[2G] setup can reach 35-fold for a moderately

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 249�

� �

�

Semiempirical Quantum Chemistry 249

0

5

10

15

20

25

30

35

40

45

S
p
e
e
d
u
p
 o

f
O

R
T

C
O

R

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C] C[12C] C[1G] C[2G]

Figure 11.6 Speedups of the ORTCOR subroutine in the OM3 calculations on the multi-CPU C[6C],
C[12C], and GPU-only C[1G] and C[2G] computing setups over the serial configuration

sized protein, and there is no performance deterioration for larger proteins. Moreover, the multi-GPU
ORTCOR scales well compared to a single GPU device for sufficiently large proteins. For example,
ORTCOR is 1.7× faster on C[2G] than on C[1G] for P221.

11.5 Performance

Since a user will of course never run an individual subroutine by itself, the overall speedups for the
OM3 calculations on proteins are more relevant in practice. They are presented in Figure 11.7.

The performance of the OM3 calculations on the CPU-only platform can hardly be improved by
using more processor cores. The speedups quickly reach a saturation point and never exceed 4. The

0

2

4

6

8

10

12

14

16

18

O
ve

ra
ll

s
p

e
e

d
u

p

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

C[6C]

C[12C]

C[12C–1G]

C[12C–2G]

Figure 11.7 Overall speedups of the OM3 calculations of test proteins on the multi-CPU C[6C], C[12C],
and hybrid CPU–GPU C[12C–1G] and C[12C–2G] computing setups over the serial configuration

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 250�

� �

�

250 Electronic Structure Calculations on Graphics Processing Units

mean values averaged over the proteins in the test set are 2.9 and 3.4 on C[6C] and C[12C], respectively.
Moreover, the individual speedups seem to be almost invariant with respect to the size of the pro-
tein. Thus neither using more CPU cores nor increasing the system size yields higher speedups on
the CPU-only setup. At first glance, this conclusion seems to contradict our previous result that the
speedup of an MNDO calculation on fullerene C540 could reach 7.7 on Cray Y-MP with eight vector
processors [84]. This apparent discrepancy can be resolved by considering the relevant arithmetic
operations and the differences in the computer architectures. Concerning the computational bottle-
necks mentioned in the preceding section, only three subroutines (BORDER, DIIS, and ORTCOR)
of the five hotspots in the OM3 calculations can be well accelerated on current hardware by using
additional CPU cores (see Figures 11.3, 11.4, and 11.6), whereas neither FDIAG nor PDIAG, which
consume ∼65% of the wall clock time, scale favorably with the number of cores (see Figures 11.2 and
11.5). This is because the former three are primarily dominated by compute-bound routines, which
demand more arithmetic power than memory bandwidth. On the other hand, both diagonalization
subroutines are composed of bandwidth-bound operations that would parallelize well on more CPU
cores if and only if the demand for memory bandwidth could be satisfied in the first place. The theoret-
ical floating-point peak performance of the two Xeon X5690 CPUs (a total of 166 GFlop/s) exceeds
that of the Cray Y-MP (2.6 GFlop/s) by a factor of 64. The theoretical memory bandwidth of our cur-
rent Xeon server (64 GB/s), however, is merely 2× greater than that of the 25-year-old Cray Y-MP
(32 GB/s). Therefore, a tremendously inadequate memory bandwidth prevents the performance boost
on a computer system including only parallel superscalar CPUs.

Because of the advantages of GPUs with regard to floating-point peak performance and memory
bandwidth, the speedups achieved for the OM3 calculations on GPUs are monotonously growing with
the size of the proteins and the number of GPUs (see Figure 11.7). Although the hybrid CPU–GPU
platform provides higher speedups than the CPU-only platform for most bottlenecks, there may be
exceptions in the case of calculations on small proteins like P020. This may be due to the CPU–GPU
communication overhead, to the unfavorable behavior of certain subroutines for small systems on a
hybrid platform compared to a CPU-only setup (especially PDIAG, see Figure 11.5), or to the less
optimized non-GPU routines becoming more dominant. For example, the CPU-only computation on
P020 takes 41% of the wall clock time for the C[12C-2G] setup (see Figure 11.8, label “others”). Thus the
overall performance of the OM3 calculations for P020 is rather similar on all computing setups. On the
other hand, the acceleration on the hybrid CPU–GPU and CPU-only platforms is quite different for

0

10

20

30

40

50

60

P
e
rc

e
n

ta
g

e
 o

f
w

a
ll

ti
m

e

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of basis functions

P
020

P
063

P
086

P
100

P
125

P
156

P
166

P
221

Proteins

PDIAG
FDIAG

DIIS
BORDER

ORTCOR
Others

Figure 11.8 Profiles of the OM3 calculations for the test proteins on the C[12C–2G] computing setup

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 251�

� �

�

Semiempirical Quantum Chemistry 251

large calculations. The speedups of the OM3 calculations for P221 reach 9.5 and 14.6 on the C[12C-1G]

and C[12C-2G] setups, respectively. The relative speedup of C[12C-2G] over C[12C-1G] is ∼1.5 for the OM3
calculations of large proteins. Further performance increases are thus very likely when more GPU
devices are employed in even larger semiempirical quantum chemical calculations.

Finally, we inspect the profiles of the OM3 calculations on the hybrid C[12C-2G] setup (see
Figure 11.8). DIIS, BORDER, and ORTCOR are the three subroutines most accelerated on the GPU,
thus their combined share of the wall clock time is just about half of that on C[1C]. On average, the
shares of DIIS, BORDER, and ORTCOR amount to 31.4%, 9.4%, 1.1% and 14.0%, 5.7%, 0.4% on
the C[1C] and C[12C-2G] setups, respectively. The speedups for FDIAG and PDIAG are not as good as
those for the former three routines, and hence their combined share on the C[12C-2G] setup is increased
to 64.4% on average. The remaining subroutines (e.g., for integral evaluation and Fock matrix
formation) have not yet been ported to a GPU, but are executed in parallel using multiple CPU
cores (via OpenMP). They become the bottlenecks for small protein calculations with a time share
of 40.9% in P020, which gradually decreases with system size, down to 7.8% for a large protein like
P221. We may thus anticipate some further improvement of the overall performance with dedicated
multi-GPU kernels for the semiempirical integral evaluation and Fock matrix construction.

11.6 Applications

Given the code developments outlined above, it has now become a routine task to carry out semiempir-
ical quantum chemical calculations for large biomolecules, such as proteins, on a hybrid CPU–GPU
computing platform. We have carried out full geometry optimizations of three proteins with α-helix,
β-sheet, and random coil structures (see Figure 11.9), which were chosen from a collection of pro-
teins used in previous work [85]. Six different semiempirical methods were applied, namely MNDO,
AM1, PM3, and OMx (x = 1, 2, and 3). The optimizations were terminated when the gradient vec-
tor norm dropped below a preselected threshold value (|g| ≤ 1.0 kcal ⋅ mol−1 ⋅ Å

−1
). The quality of

the computed structures was assessed in terms of the conformation of the main chain by using the
PROCHECK package [86], in comparison with the structures determined in aqueous solution by
nuclear magnetic resonance (NMR) experiments. It should be stressed that the results given here are
just for demonstration, since more realistic simulations would require more elaborate approches (e.g.,
including explicit solvent).

The backbones of the proteins are shown in Figure 11.9. Highly regular local structures imposed
by hydrogen bonds are found in PA and PB, whereas PC possesses an unfolded polypeptide chain.
The backbone conformation of a protein is determined by a pair of less rigid dihedral angles [𝜙, 𝜓] at

Ci−1

Ci

Ci
α

Cα
i+1

Ci
β

N

O

N

nϕ ψ ω

ζ: a dihedral angle of Ci
α– N – Ci– Ci

β

(d)(c)(b)(a)

PA PB PC

Figure 11.9 Experimental structures of (a) PA (PDB ID: 2AP7, 80% α-helix), (b) PB (PDB ID: 2EVQ,
50% 𝛽-strands), and (c) PC (PDB ID: 1LVR, 100% random coil). Only the backbone atoms are shown,
with the C𝛼 atoms represented by black balls. Four dihedral angles (𝜙, 𝜓 , 𝜔, and 𝜁) in a residue serve as
stereochemical metrics, see the schematic sketch in (d)

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 252�

� �

�

252 Electronic Structure Calculations on Graphics Processing Units

Table 11.4 Statistics (%) for [ϕ, 𝜓] in the most favored (P0
𝜙,𝜓

) and additionally allowed (P1
𝜙,𝜓

) regions
of the Ramachandran plot and standard deviations (∘) of 𝜔 and 𝜁

PA PB PC

P0
𝜙,𝜓

P1
𝜙,𝜓

𝜎𝜔 𝜎𝜁 P0
𝜙,𝜓

P1
𝜙,𝜓

𝜎𝜔 𝜎𝜁 P0
𝜙,𝜓

P1
𝜙,𝜓

𝜎𝜔 𝜎𝜁

Expt. 100.0 0.0 0.8 0.6 87.5 12.5 2.6 0.7 42.9 42.9 2.3 1.8
MNDO 91.7 8.3 9.0 1.3 87.5 12.5 14.9 0.5 28.6 57.1 17.0 2.5
AM1 75.0 16.7 9.7 1.0 100.0 0.0 15.8 1.0 28.6 71.4 7.0 1.9
PM3 75.0 25.0 15.3 1.3 87.5 12.5 19.7 1.0 42.9 57.1 22.8 1.7
OM1 81.8 18.2 12.4 1.0 87.5 12.5 9.4 0.9 28.6 71.4 12.5 2.5
OM2 83.3 16.7 8.6 1.1 87.5 12.5 10.4 1.1 42.9 42.9 10.5 2.1
OM3 83.3 16.7 7.6 1.1 87.5 12.5 15.7 1.2 42.9 42.9 14.3 2.5

Results for the experimental structures of PA, PB, and PC are compared with those calculated by semiempirical quantum
chemical methods.

the Cα-atom [87] and a stiff torsion angle 𝜔 of the peptide bond. 𝜔 is usually restricted to be around
180∘ for an energetically more favorable trans conformer due to the partial double bond character
of the amide bond, which prevents facile rotation. In addition, a virtual dihedral angle 𝜁 is defined
between Cα

i –N and noncovalently bound Ci · · ·C
β
i as a measure of chirality at the central Cα

i atom of
the amino acid [88].

PROCHECK divides a Ramachandran map into four regions: most favored, additionally allowed,
generously allowed, and disallowed. The shares of the first two distributions, P0

𝜙,𝜓
and P1

𝜙,𝜓
, for PA,

PB, and PC are listed in Table 11.4. In most cases, P0
𝜙,𝜓

and P1
𝜙,𝜓

add up to the total population.
Neither experimental nor theoretically optimized protein structures are spoiled by disallowed [𝜙,𝜓]
combinations. Since more regular secondary structures exist in PA and PB than in the disordered PC,
significantly higher values for P0

𝜙,𝜓
are obtained for the former two proteins. MNDO, AM1, PM3,

and OM1 predict a higher [𝜙,𝜓] population in the additionally allowed region for PC, whereas OM2,
OM3, and the NMR experiment give equal values for P0

𝜙,𝜓
and P1

𝜙,𝜓
. Although the deficiencies of

the original MNDO method for the description of hydrogen bonds are known from early studies
[89, 90], its actual performance for the proteins in the test set seems rather satisfactory. Both the
α-helix (in PA) and β-strand (in PB) structures are found, and reasonable [𝜙,𝜓] distributions are
retained in the optimized structures.

All semiempirical methods predict greater deviations from planarity around the peptide bond than
deduced from experiment (see the 𝜎𝜔 values). Such deviations from planarity in the peptide group
have already been reported in earlier theoretical studies [7, 91, 92]: the sp2-hybrid nitrogen in a
peptide bond should be planar, but it tends to be pyramidalized in semiempirical calculations. The
average value of 𝜁 for L-amino acids is 33.81 ± 4.17∘ [88]. The 𝜎𝜁 values from experiment and from
semiempirical calculations are rather small and of similar quality, indicating a good description of
the local environment of the sp3-C𝛼

i atoms in the main chains.

11.7 Conclusion

In this chapter, we have presented a profile-guided optimization of the semiempirical quantum chem-
ical MNDO program on a hybrid CPU–GPU platform. OM3 calculations on a set of eight proteins
were used to guide the code development and to assess the performance. The computational bottle-
necks on one single CPU core were identified as the diagonalization of the Fock matrix (FDIAG), fast
pseudodiagonalization (PDIAG), SCF acceleration (DIIS), density matrix formation (BORDER), and
computation of the orthogonalization corrections in OM3 (ORTCOR), which cover altogether ∼99%
of the wall clock time in the test runs. Standard library routines and special finely tuned kernels

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 253�

� �

�

Semiempirical Quantum Chemistry 253

targeting multiple GPU devices were employed to accelerate these routines, whereas the relevant
remaining subroutines (∼1% of the computation time) were run in parallel using multiple CPU cores
(via OpenMP) to achieve optimum performance on the hybrid CPU–GPU platform.

We have identified severe restraints to parallelize the semiempirical calculations on currently
available CPU-only computing architectures. No matter how many processor cores are utilized in a
calculation, a ceiling of the overall acceleration is reached rapidly because of the limitations imposed
by the hardware memory bandwidth. On the other hand, the speedup of the calculations on the hybrid
CPU–GPU platform rises continuously with increasing system size and reaches one order of magni-
tude in large protein calculations. The overall performance can be further improved through the use
of multiple GPUs.

As an illustrative application, geometry optimizations of three typical proteins with α-helix,
β-sheet, and random coil structures were carried out by means of the MNDO, AM1, PM3, and OMx
(x = 1, 2, and 3) methods. These calculations produced qualitatively reasonable conformations of the
main chains (with regard to the usual metrics for assessing protein backbone structures) but showed
some deviation from experiment by giving slightly nonplanar peptide bonds. We are confident that
such quantitative deficiencies can be ameliorated in future semiempirical method development. This
will enhance the impact of the current code development work on hybrid CPU–GPU platforms,
which has enabled semiempirical quantum chemical calculations on large systems such as proteins
with thousands of atoms.

Acknowledgement

This work was supported by an ERC Advanced Grant (OMSQC).

References

1. Thiel, W. (2014) Semiempirical quantum-chemical methods. WIREs Comput. Mol. Sci., 4,
145–157.

2. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A. (1986) Ab Initio Molecular Orbital
Theory, John Wiley & Sons, Inc., New York.

3. Pople, J.A., Santry, D.P. and Segal, G.A. (1965) Approximate self-consistent molecular orbital
theory. I. Invariant procedures. J. Chem. Phys., 43, S129–S135.

4. Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford
University Press, USA.

5. Thiel, W. (1996) Perspectives on semiempirical molecular orbital theory. Adv. Chem. Phys., 93,
703–757.

6. Ehresmann, B., de Groot, M.J., Alex, A. and Clark, T. (2004) New molecular descriptors based
on local properties at the molecular surface and a boiling-point model derived from them. J.
Chem. Inf. Comput. Sci., 44, 658–668.

7. Stewart, J.J.P. (2009) Application of the PM6 method to modeling proteins. J. Mol. Model., 15,
765–805.

8. Wu, X., Thiel, W., Pezeshki, S. and Lin, H. (2013) Specific reaction path hamiltonian for
proton transfer in water: reparameterized semiempirical models. J. Chem. Theory Comput., 9,
2672–2686.

9. Fabiano, E., Lan, Z., Lu, Y. and Thiel, W. (2011) Nonadiabatic trajectory calculations with Ab
initio and semiempirical methods, in Conical Intersections: Theory, Computation and Experi-
ment (eds W. Domcke, D.R. Yarkony and H. Koppel), World Scientific Publishing Company, pp.
463–496.

10. Pople, J.A. (2003) Quantum chemical models, in Nobel Lectures in Chemistry (1996–2000) (ed.
I. Grenthe), World Scientific Publishing Company, Singapore, pp. 246–260.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 254�

� �

�

254 Electronic Structure Calculations on Graphics Processing Units

11. Thiel, W. and Green, D.G. (1995) The MNDO94 code: parallelization of a semiempiri-
cal qauntum-chemical program, in Methods and Techniques in Computational Chemistry:
METECC-95 (eds E. Clementi and G. Corongiu), STEF, Cagliari, pp. 141–168.

12. Kirk, D.B. and Hwu, W.M.W. (2012) Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann Publishers.

13. Stone, J.E., Hardy, D.J., Ufimtsev, I.S. and Schulten, K. (2010) GPU-accelerated molecular mod-
eling coming of age. J. Mol. Graph. Model., 29, 116–125.

14. Farber, R.M. (2011) Topical perspective on massive threading and parallelism. J. Mol. Graph.
Model., 30, 82–89.

15. Anderson, A., Goddard, W.A. III and Schröder, P. (2007) Quantum Monte Carlo on graphical
processing units. Comput. Phys. Commun., 177, 298–306.

16. Kim, J., Rodgers, J.M., Athènes, M. and Smit, B. (2011) Molecular Monte Carlo simula-
tions using graphics processing units: to waste recycle or not? J. Chem. Theory Comput., 7,
3208–3222.

17. Yasuda, K. (2008) Two-electron integral evaluation on the graphics processor unit. J. Comput.
Chem., 29, 334–342.

18. Ufimtsev, I.S. and Martínez, T.J. (2008) Quantum chemistry on graphical processing units. 1.
Strategies for two-electron integral evaluation. J. Chem. Theory Comput., 4, 222–231.

19. Asadchev, A., Allada, V., Felder, J., Bode, B.M., Gordon, M.S. and Windus, T.L. (2010) Uncon-
tracted Rys quadrature implementation of up to G functions on graphical processing units. J.
Chem. Theory Comput., 6, 696–704.

20. Wilkinson, K.A., Sherwood, P., Guest, M.F. and Naidoo, K.J. (2011) Acceleration of the
GAMESS-UK electronic structure package on graphical processing units. J. Comput. Chem.,
32, 2313–2318.

21. Miao, Y. and Merz, K.M. (2013) Acceleration of electron repulsion integral evaluation on graph-
ics processing units via use of recurrence relations. J. Chem. Theory Comput., 9, 965–976.

22. Titov, A.V., Ufimtsev, I.S., Luehr, N. and Martinez, T.J. (2013) Generating efficient quantum
chemistry codes for novel architectures. J. Chem. Theory Comput., 9, 213–221.

23. Yasuda, K. (2008) Accelerating density functional calculations with graphics processing unit. J.
Chem. Theory Comput., 4, 1230–1236.

24. Ufimtsev, I.S. and Martínez, T.J. (2009) Quantum chemistry on graphical processing units. 2.
Direct self-consistent-field implementation. J. Chem. Theory Comput., 5, 1004–1015.

25. Ufimtsev, I.S. and Martínez, T.J. (2009) Quantum chemistry on graphical processing units. 3.
Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J.
Chem. Theory Comput., 5, 2619–2628.

26. Ufimtsev, I.S. and Martínez, T.J. (2008) Graphical processing units for quantum chemistry. Com-
put. Sci. Eng., 10, 26–34.

27. Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.-F., Neelov, A. and Goedecker, S. (2009)
Density functional theory calculation on many-cores hybrid central processing unit-graphic pro-
cessing unit architectures. J. Chem. Phys., 131, 034103 (8 pages).

28. Luehr, N., Ufimtsev, I.S. and Martínez, T.J. (2011) Dynamic precision for electron repulsion
integral evaluation on graphical processing units (GPUs). J. Chem. Theory Comput., 7,
949–954.

29. Andrade, X. and Genovese, L. (2012) Harnessing the power of graphic processing units, in Fun-
damentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, vol. 837
(eds M.A. Marques, N.T. Maitra, F.M. Nogueira, E. Gross and A. Rubio), Springer-Verlag, pp.
401–413.

30. Andrade, X. and Aspuru-Guzik, A. (2013) Real-space density functional theory on graphical pro-
cessing units: computational approach and comparison to Gaussian basis set methods. J. Chem.
Theory Comput., 9, 4360–4373.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 255�

� �

�

Semiempirical Quantum Chemistry 255

31. Isborn, C.M., Luehr, N., Ufimtsev, I.S. and Martínez, T.J. (2011) Excited-state electronic struc-
ture with configuration interaction singles and Tamm-Dancoff time-dependent density functional
theory on graphical processing units. J. Chem. Theory Comput., 7, 1814–1823.

32. Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C. and Aspuru-Guzik, A.
(2008) Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry
calculations with graphical processing units. J. Phys. Chem. A, 112, 2049–2057.

33. Olivares-Amaya, R., Watson, M.A., Edgar, R.G., Vogt, L., Shao, Y. and Aspuru-Guzik, A. (2010)
Accelerating correlated quantum chemistry calculations using graphical processing units and a
mixed precision matrix multiplication library. J. Chem. Theory Comput., 6, 135–144.

34. Watson, M., Olivares-Amaya, R., Edgar, R.G. and Aspuru-Guzik, A. (2010) Accelerating cor-
related quantum chemistry calculations using graphical processing units. Comput. Sci. Eng., 12,
40–51.

35. DePrince, A.E. and Hammond, J.R. (2011) Coupled cluster theory on graphics processing units
I. The coupled cluster doubles method. J. Chem. Theory Comput., 7, 1287–1295.

36. Ma, W., Krishnamoorthy, S., Villa, O. and Kowalski, K. (2011) GPU-based implementations of
the noniterative regularized-CCSD(T) corrections: applications to strongly correlated systems.
J. Chem. Theory Comput., 7, 1316–1327.

37. Bhaskaran-Nair, K., Ma, W., Krishnamoorthy, S., Villa, O., van Dam, H.J.J., Aprà, E. and Kowal-
ski, K. (2013) Noniterative multireference coupled cluster methods on heterogeneous CPU-GPU
systems. J. Chem. Theory Comput., 9, 1949–1957.

38. Asadchev, A. and Gordon, M.S. (2013) Fast and flexible coupled cluster implementation. J.
Chem. Theory Comput., 9, 3385–3392.

39. Wu, X., Koslowski, A. and Thiel, W. (2012) Semiempirical quantum chemical calculations
accelerated on a hybrid multicore CPU-GPU computing platform. J. Chem. Theory Comput.,
8, 2272–2281.

40. Maia, J.D.C., Urquiza Carvalho, G.A., Mangueira, C.P., Santana, S.R., Cabral, L.A.F. and Rocha,
G.B. (2012) GPU linear algebra libraries and GPGPU programming for accelerating MOPAC
semiempirical quantum chemistry calculations. J. Chem. Theory Comput., 8, 3072–3081.

41. Dewar, M.J.S. (1969) The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill Series
in Advanced Chemistry, McGraw-Hill.

42. Pople, J.A. and Beveridge, D.L. (1970) Approximate Molecular Orbital Theory, McGraw-Hill
Series in Advanced Chemistry, McGraw-Hill.

43. Murrell, J.N. and Harget, A.J. (1972) Semi-Empirical Self-Consistent-Field Molecular Orbital
Theory of Molecules, Wiley-Interscience.

44. Thiel, W. (1988) Semiempirical methods: current status and perspectives. Tetrahedron, 44,
7393–7408.

45. Thiel, W. (1997) Computational methods for large molecules. J. Mol. Struct. THEOCHEM,
398–399, 1–6.

46. Thiel, W. (2000) Semiempirical methods, in Modern Methods and Algorithms of Quan-
tum Chemistry Proceedings, 2nd edn (ed. J. Grotendorst), John von Neumann Institute for
Computing, Jülich, pp. 261–283.

47. Thiel, W. (2005) Semiempirical quantum-chemical methods in computational chemistry, in The-
ory and Applications of Computational Chemistry: The First Forty Years (eds C.E. Dykstra, G.
Frenking, K.S. Kim and G.E. Scuseria), Elsevier, Amsterdam, pp. 559–580.

48. Stewart, J.J.P. (1990) Semiempirical molecular orbital methods, in Reviews in Computational
Chemistry (eds K.B. Lipkowitz and D.B. Boyd), John Wiley & Sons, Inc., pp. 45–81.

49. Zerner, M.C. (1991) Semiempirical molecular orbital methods, in Reviews in Computational
Chemistry (eds K.B. Lipkowitz and D.B. Boyd), John Wiley & Sons, Inc., pp. 313–365.

50. Stewart, J.J.P. (1990) MOPAC: a semiempirical molecular orbital program. J. Comput.-Aided
Mol. Des., 4, 1–103.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 256�

� �

�

256 Electronic Structure Calculations on Graphics Processing Units

51. Parr, R.G. (1952) A method for estimating electronic repulsion integrals over LCAO MO’s in
complex unsaturated molecules. J. Chem. Phys., 20, 1499.

52. Pople, J.A. (1953) Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc., 49,
1375–1385.

53. Dewar, M.J.S. and Thiel, W. (1977) A semiempirical model for the two-center repulsion integrals
in the NDDO approximation. Theor. Chim. Acta, 46, 89–104.

54. Dewar, M.J.S. and Thiel, W. (1977) Ground states of molecules. 38. The MNDO method.
Approximations and parameters. J. Am. Chem. Soc., 99, 4899–4907.

55. Dewar, M.J.S. and Thiel, W. (1977) Ground states of molecules. 39. MNDO results for molecules
containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc., 99, 4907–4917.

56. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P. (1985) Development and use of
quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical
molecular model. J. Am. Chem. Soc., 107, 3902–3909.

57. Stewart, J.J.P. (1989) Optimization of parameters for semiempirical methods I. Method. J. Com-
put. Chem., 10, 209–220.

58. Stewart, J.J.P. (2004) Comparison of the accuracy of semiempirical and some DFT methods for
predicting heats of formation. J. Mol. Model., 10, 6–12.

59. Stewart, J.J.P. (2007) Optimization of parameters for semiempirical methods V: modification of
NDDO approximations and application to 70 elements. J. Mol. Model., 13, 1173–1213.

60. Stewart, J.J.P. (2013) Optimization of parameters for semiempirical methods VI: more modi-
fications to the NDDO approximations and re-optimization of parameters. J. Mol. Model., 19,
1–32.

61. Repasky, M.P., Chandrasekhar, J. and Jorgensen, W.L. (2002) PDDG/PM3 and PDDG/MNDO:
improved semiempirical methods. J. Comput. Chem., 23, 1601–1622.

62. Kolb, M. and Thiel, W. (1993) Beyond the MNDO model: methodical considerations and numer-
ical results. J. Comput. Chem., 14, 775–789.

63. Weber, W. and Thiel, W. (2000) Orthogonalization corrections for semiempirical methods. Theor.
Chem. Acc., 103, 495–506.

64. Scholten, M. (2003) Semiempirische Verfahren mit Orthogonalisierungskorrekturen: Die OM3
Methode. PhD thesis. Universität Düsseldorf, Düsseldorf.

65. Otte, N., Scholten, M. and Thiel, W. (2007) Looking at self-consistent-charge density functional
tight binding from a semiempirical perspective. J. Phys. Chem. A, 111, 5751–5755.

66. Korth, M. and Thiel, W. (2011) Benchmarking semiempirical methods for thermochemistry,
kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as
DFT-GGA methods for organic molecules. J. Chem. Theory Comput., 7, 2929–2936.

67. Silva-Junior, M.R. and Thiel, W. (2010) Benchmark of electronically excited states for semiem-
pirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J. Chem.
Theory Comput., 6, 1546–1564.

68. Gargaro, A.R., Bloomberg, G.B., Dempsey, C.E., Murray, M. and Tanner, M.J.A. (1994) The
solution structures of the first and second transmembrane-spanning segments of band 3. Eur. J.
Biochem., 221, 445–454, PDB ID: 1BTQ.

69. O’Neill, J.W., Kim, D.E., Johnsen, K., Baker, D. and Zhang, K.Y. (2001) Single-site mutations
induce 3D domain swapping in the B1 domain of protein L from Peptostreptococcus magnus.
Structure, 9, 1017–1027, PDB ID: 1K50.

70. Rubini, M., Lepthien, S., Golbik, R. and Budisa, N. (2006) Aminotryptophan-containing barstar:
structure-function tradeoff in protein design and engineering with an expanded genetic code.
Biochim. Biophys. Acta, 1764, 1147–1158, PDB ID: 2HXX.

71. Ciatto, C., Bahna, F., Zampieri, N., VanSteenhouse, H.C., Katsamba, P.S., Ahlsen, G., Harrison,
O.J., Brasch, J., Jin, X., Posy, S., Vendome, J., Ranscht, B., Jessell, T.M., Honig, B. and Shapiro,
L. (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat. Struct. Mol.
Biol., 17, 339–347, PDB ID: 3K6F.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 257�

� �

�

Semiempirical Quantum Chemistry 257

72. Fedorov, A.A., Magnus, K.A., Graupe, M.H., Lattman, E.E., Pollard, T.D. and Almo, S.C. (1994)
X-ray structures of isoforms of the actin-binding protein profilin that differ in their affinity for
phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. U. S. A., 91, 8636–8640, PDB ID: 1ACF.

73. Choi, J., Choi, S., Chon, J.K., Choi, J., Cha, M.-K., Kim, I.-H. and Shin, W. (2005) Crystal struc-
ture of the C107S/C112S mutant of yeast nuclear 2-Cys peroxiredoxin. Proteins, 61, 1146–1149,
PDB ID: 2A4V.

74. Vaaje-Kolstad, G., Bøhle, L.A., Gåseidnes, S., Dalhus, B., Bjørås, M., Mathiesen, G. and Eijsink,
V.G. (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and
high-resolution structure of its oxidative CBM33 enzyme. J. Mol. Biol., 416, 239–254, PDB ID:
4A02.

75. Tsukazaki, T., Mori, H., Echizen, Y., Ishitani, R., Fukai, S., Tanaka, T., Perederina, A., Vassy-
lyev, D.G., Kohno, T., Maturana, A.D., Ito, K. and Nureki, O. (2011) Structure and function of
a membrane component SecDF that enhances protein export. Nature, 474, 235–238, PDB ID:
3AQO.

76. Pulay, P. (1982) Improved SCF convergence acceleration. J. Comput. Chem., 3, 556–560.
77. Stewart, J.J.P., Császár, P. and Pulay, P. (1982) Fast semiempirical calculations. J. Comput.

Chem., 3, 227–228.
78. Thiel, W. (2012) MNDO99 CVS Development Version. Tech Rep, Mülheim an der Ruhr, Ger-

many.
79. Dongarra, J., Dong, T., Gates, M., Haidar, A., Tomov, S. and Yamazaki, I. (2012) MAGMA: A

new generation of linear algebra libraries for GPU and multicore architectures.
80. Häser, M. and Ahlrichs, R. (1989) Improvements on the direct SCF method. J. Comput. Chem.,

10, 104–111.
81. Haidar, A., Solcà, R., Gates, M., Tomov, S., Schulthess, T. and Dongarra, J. (2013) Leading edge

hybrid multi-GPU algorithms for generalized eigenproblems in electronic structure calculations,
in Supercomputing, Lecture Notes in Computer Science, vol. 7905 (eds J. Kunkel, T. Ludwig and
H. Meuer), Springer-Verlag, Berlin, Heidelberg, pp. 67–80.

82. Rohr, D., Bach, M., Kretz, M. and Lindenstruth, V. (2011) Multi-GPU DGEMM and high per-
formance Linpack on highly energy-efficient clusters. IEEE Micro, 31, 18–27.

83. Spiga, F. and Girotto, I. (2012) phiGEMM: a CPU-GPU library for porting quantum ESPRESSO
on hybrid systems. Proceeding of 20th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP2012), pp. 368–375.

84. Bakowies, D. and Thiel, W. (1991) MNDO study of large carbon clusters. J. Am. Chem. Soc.,
113, 3704–3714.

85. Kulik, H.J., Luehr, N., Ufimtsev, I.S. and Martínez, T.J. (2012) Ab initio quantum chemistry for
protein structures. J. Phys. Chem. B, 116, 12501–12509.

86. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) PROCHECK: a pro-
gram to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 26, 283–291.

87. Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V. (1963) Stereochemistry of
polypeptide chain configurations. J. Mol. Biol., 7, 95–99.

88. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M. (1992) Stereochemical
quality of protein structure coordinates. Proteins, 12, 345–364.

89. Burstein, K.Y. and Isaev, A.N. (1984) MNDO calculations on hydrogen bonds. Modified func-
tion for core-core repulsion. Theor. Chim. Acta, 64, 397–401.

90. Goldblum, A. (1987) Improvement of the hydrogen bonding correction to MNDO for calcula-
tions of biochemical interest. J. Comput. Chem., 8, 835–849.

91. Möhle, K., Hofmann, H.-J. and Thiel, W. (2001) Description of peptide and protein secondary
structures employing semiempirical methods. J. Comput. Chem., 22, 509–520.

92. Seabra, G.de.M., Walker, R.C. and Roitberg, A.E. (2009) Are current semiempirical methods
better than force fields? A study from the thermodynamics perspective. J. Phys. Chem. A, 113,
11938–11948.

Trim Size: 170mm x 244mm Walker c11.tex V3 - 01/08/2016 10:18 A.M. Page 258�

� �

�

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 259�

� �

�

12
GPU Acceleration of Second-Order
Møller–Plesset Perturbation Theory

with Resolution of Identity

Roberto Olivares-Amaya1, Adrian Jinich2, Mark A. Watson1 and Alán Aspuru-Guzik2

1Department of Chemistry, Princeton University, Princeton, NJ, USA
2Department of Chemistry and Chemical Biology, Harvard University,

Cambridge, MA, USA

Second order Møller–Plesset perturbation (MP2) theory [1] is a widely used and one of the
computationally least expensive post-SCF correlated treatments for electronic structure calculations.
In this chapter we review methods used to reduce the computational expense of MP2 calcula-
tions for larger systems and then highlight efforts to GPU-accelerate one such method termed
resolution-of-the-identity MP2. The theoretical background of the approach is discussed, followed
by the specifics of how RI-MP2 was adapted to GPUs. Discussion will focus on matrix algebra
optimizations, in particular the use of mixed precision in matrix multiplications. The computational
performance of the approach is evaluated and discussed with respect to mathematical precision,
hardware, and molecule size. Finally, example applications to biomolecules are considered.

12.1 Møller–Plesset Perturbation Theory with Resolution of Identity
Approximation (RI-MP2)

One of the most widely used and computationally least expensive correlated treatments for elec-
tronic structure is MP2 theory [1]. MP2 is known to produce equilibrium geometries of comparable
accuracy to density functional theory (DFT) [2], but, unlike many popular DFT functionals, is able
to capture long-range correlation effects such as the dispersion interaction. For many weakly bound
systems where DFT results are unreliable, MP2 is essentially the least expensive and most reliable
alternative [3].

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 260�

� �

�

260 Electronic Structure Calculations on Graphics Processing Units

The MP2 method has been useful in the study of biochemistry, such as in the study of larger
biomolecules [4] and the study of dispersion energy in protein folding [5]. It has also found use in
the generation of force fields for metal-organic frameworks [6] and, more recently, in the study of
interactions in organic photovoltaic materials [7]. Recently, the use of MP2 in extended systems [8]
has yielded interesting results in the study of adsorption energies [9].

Several methods have been applied and developed to extend the applicability of MP2 to larger
systems. In this chapter, we will be focusing on the resolution-of-the-identity (RI) methods, also
known as RI [10–13]. However, several other successful methods have also been developed,
including local-MP2 [14], Cholesky decomposition (CD) [15, 16], and divide-and-conquer (DC)
methods [17, 18].

The RI approximation reduces the number of operations by at least an order of magnitude for a
triple-zeta basis set calculation. In RI-MP2, a larger basis set entails a larger relative speedup [19].
Therefore, RI-MP2 enables both the study of larger systems and also a more accurate representation,
as it allows treatments of larger basis sets. Several steps in this method are matrix–matrix multiplica-
tions, which allow for a facile translation into the single-instruction multiple-data (SIMD) calculation
paradigm, and hence to be further accelerated with graphics processing units (GPUs).

We begin describing the Hartree–Fock (HF) ansatz (guess) by using the electronic Hamiltonian
under the Born–Oppenheimer (BO) approximation [20]:

Ĥel = −1
2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA

riA

+
N∑
i

N∑
j>i

1
rij

=
N∑
i

ĥi +
N∑
i

N∑
j>i

1
rij

, (12.1)

for a system with N electrons and M atoms, where ĥi = − 1

2
∇2

i −
∑

A
ZA

riA
.

The HF method approximates the wave function as a product of molecular orbitals (MOs) 𝜙i,
which are wave functions for a single electron under a one-electron Hamiltonian, the Fock operator:

f̂i = ĥi +
N∕2∑
j=1

[2Ĵj − K̂j], (12.2)

where Ĵ and K̂ represent the Coulomb and exchange operators, respectively [21]. The associated HF
equations f̂𝜓i = 𝜖i𝜓i yield a complete set of eigenfunctions. This set of equations is typically solved
using the Roothaan–Hall self-consistent field equations. The method scales cubically with system
size: (M3) [22].

As mentioned above and in Chapter 3, post-HF methods are able to systematically recover the elec-
tronic energy. Multi-configurational methods are able to obtain the so-called static correlation, as the
wave function ansatz requires more than a single Slater determinant to properly describe its ground
state. Dynamic correlation arises from the instantaneous Coulombic repulsion. As HF is a mean-field,
single-determinant method, it is unable to capture either of these terms. MP2 theory is able to obtain
some of the dynamic correlation, which makes it an efficient method to obtain quantitative predictions
for systems close to their equilibrium structures.

Perturbation theory methods partition the Hamiltonian Ĥ = H0 + V . In MP2 theory, the electronic
Hamiltonian is divided as

Ĥ =
∑

i

f̂i + Φ̂, (12.3)

where Φ̂ represents the perturbation potential:

Φ̂ = Ĥ −
∑

i

f̂i.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 261�

� �

�

GPU Acceleration of RI-MP2 261

Deriving MP2 theory reveals that first-order solution yields the HF energy: EHF = E0 + E(1). The
expression for computing the second-order energy is

E(2) =
∑
ijab

(ia|jb)2 + 1

2
[(ia|jb) − (ib|ja)]2

𝜖i + 𝜖j − 𝜖a − 𝜖b

(12.4)

in terms of the eigenfunctions of the Fock operator with eigenvalues 𝜖, where the occupied MOs are
labeled by i, j; the virtual MOs are labeled by a, b; and the MO integrals

(ij|ab) =
∑
𝜇𝜈𝜆𝜎

C𝜇iC𝜈jC𝜆aC𝜎b(𝜇𝜈|𝜆𝜎) (12.5)

are obtained by transforming the atomic orbital (AO) electron repulsion integrals (ERIs)

(𝜇𝜈|𝜆𝜎) =
∫ ∫

𝜙𝜇(r1)𝜙𝜈(r1)𝜙𝜆(r2)𝜙𝜎(r2)
|r1 − r2|

dr1dr2, (12.6)

where C𝜇i represents the matrix elements of MO coefficients describing the expansion of each MO
as a linear combination of AOs.

There have been efforts to reduce the prefactor in MP2 at a very small cost to accuracy. The
two-center, four-index ERI in Eq. (12.6) becomes highly linearly dependent with increasing AO basis
set size, and so it is possible to expand the products of electrons 1 and 2 in a basis set of auxiliary
functions P [19]:

𝜌𝜇𝜈(r) = 𝜂𝜇(r)𝜂𝜈(r) ≈ 𝜌̃𝜇𝜈(r) =
∑

P

C𝜇𝜈,PP(r)

with a dimension smaller than the original product space. If one minimizes the error in the Coulomb
ERIs, then it is possible to approximate Eq. (12.6) as only two- and three-index quantities:

̃(𝜇𝜈|𝜆𝜎) = ∑
P,Q

(𝜇𝜈|P)(P|Q)−1(Q|𝜆𝜎). (12.7)

This method is called RI because of the insertion of the following term [10, 11]:

I =
∑

m

|m)(m| ≈ ∑
P,Q

|P)(P|Q)−1(Q|,

but it has also been referred to as a density-fitting scheme [23]. We can now obtain the approximate
(ia|jb) integrals using matrix multiplications for RI-MP2:

(̃ia|jb) ≈ ∑
Q

Bia,QBjb,Q, (12.8)

Bia,Q =
∑

P

(ia|P)(P|Q)−1∕2. (12.9)

The advantage of the RI method lies in reducing the (N4)dependence with respect to the AOs to
(N3). This enables the use of this method for larger basis sets. The cost with respect to molecular
size still remains at (N5). However, the prefactor is reduced by an order of magnitude, and most of
the operations can be cast as efficient matrix multiplications [23].

We accelerated the RI-MP2 method, principally by noticing that Eqs. (12.8)–(12.9) can be cal-
culated more efficiently using the stream-processing paradigm with GPUs. The hurdles of GPU
programming were overcome using CUDA and its basic linear algebra subprograms implementa-
tion CUBLAS [24]. As discussed in Chapter 2, one of the main issues in designing an efficient GPU
implementation is minimizing the CPU–GPU communication. Therefore, the algorithm included a
method to batch the matrices up to fill the available GPU memory, since acceleration increases as the
size of the matrix grows. Since memory in GPU cards is typically smaller than CPU RAM, we also
devised a matrix cleaver to enable a full RI-MP2 implementation for GPUs.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 262�

� �

�

262 Electronic Structure Calculations on Graphics Processing Units

12.1.1 Cleaving General Matrix Multiplies (GEMMs)

Consider the matrix multiplication
C = A ⋅ B, (12.10)

where A is an (m × k) matrix and B is an (k × n) matrix, making C an (m × n) matrix. We can divide
A into a column vector of r + 1 matrices

A =

⎛
⎜⎜⎜⎜⎝

A0

A1

⋮
Ar

⎞
⎟⎟⎟⎟⎠
, (12.11)

where each entry Ai is a (pi × k) matrix, and
∑r

i=0 pi = m. In practice, all the pi will be the same, with
the possible exception of pr, which will be an edge case. In a similar manner, we can divide B into a
row vector of s + 1 matrices

B =
(
B0 B1 … Bs

)
, (12.12)

where each Bj is an (k × qj) matrix and
∑s

j=0 qj = n. Again, all the qj will be the same, with the
possible exception of qs. We then form the outer product of these two vectors

C =

⎛
⎜⎜⎜⎜⎝

A0

A1

⋮
Ar

⎞
⎟⎟⎟⎟⎠
⋅
(
B0 B1 … Bs

)
, (12.13)

=

⎛
⎜⎜⎜⎜⎝

A0 ⋅ B0 A0 ⋅ B1 … A0 ⋅ Bs

A1 ⋅ B0 A1 ⋅ B1 A1 ⋅ Bs

⋮ ⋱
Ar ⋅ B0 Ar ⋅ Bs

⎞
⎟⎟⎟⎟⎠
. (12.14)

Each individual Cij = AiBj is a (pi × qj) matrix, and can be computed independently of all the oth-
ers. Generalizing this to a full *GEMM implementation (i.e., DGEMM or SGEMM), which includes the
possibility of transposes being taken, is tedious but straightforward.

We have implemented this approach on GPUs as a complete replacement for *GEMM. The pi and qj

values are chosen such that each sub-multiplication fits within the currently available GPU memory.
Each multiplication is staged through the GPU, and the results assembled on the CPU. This process
is hidden from the user code, which simply sees a standard *GEMM call.

12.1.2 Other MP2 Approaches

Here we briefly detail the local MP2 (LMP2) method [14, 25, 26] and its RI counterpart [23] as an
example of a method that reduces the scaling of MP2 by using a set of localized MOs. The virtual
space is spanned by a basis of nonorthogonal orbitals obtained by projecting out the occupied orbital
space. These are named projected atomic orbitals (PAOs). One can then effectively group the exci-
tations from pairs of the localized MOs that are spatially close to pairs of the PAOs. This scheme
reduces the number of excitations for each pair to be proportional to the square of the number of
occupied pairs: N2

[ij]. Integrals from orbitals that are distant can be either neglected or calculated using
multipole expansions. In this sense, Werner et al. [23] developed a density-fitting LMP2 method to
reduce the scaling in the RI-MP2 steps and achieve linear scaling with system size. In this method,
the bottleneck for large molecules becomes matrix multiplications, and an approach similar to what
was developed for RI-MP2 becomes ideal to further accelerate the calculations.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 263�

� �

�

GPU Acceleration of RI-MP2 263

Another effort to approach the study of large-molecule calculations using MP2 is the DC method
[17, 27]. In the DC-MP2 method, the correlation energy of the system is evaluated by summing up the
correlation energies of the subsystems such that finding a correct partitioning becomes fundamental.
Particularly, Katouda and Nakajima [18, 28] present a DC-MP2 approach where they parallelize the
method into a coarse-grain approach, where they assign each subsystem to a group of processors, and
a fine-grain approach where the MP2 correlation energy can be calculated. Parallel GPU approaches
could become useful in enhancing these techniques, either by exploiting the SIMD paradigm or by
using multiple graphics cards.

We finish this section by mentioning that other methods have been implemented for GPUs, such
as coupled cluster [29–31] and DFT [32], as presented in detail in the other chapters of this book.
The matrix multiplication approach has been extended to post-HF methods such as coupled-cluster
[30], as well as phenomenological hierarchical equations of motion [33]. Other methods, such as
the matrix–matrix multiplication approach by Hanrath and Engels-Putzka [34] could be greatly
enhanced by the approach we currently use in RI-MP2. In the latter, 87% of the calculations are
DGEMM operations.

12.2 A Mixed-Precision Matrix Multiplication Library

Because of the initial constraints of GPU architectures and, in general, owing to a desire to speed up
calculations, there has been a renewed desire to exploit single-precision (SP) arithmetic. GPUs with
double-precision (DP) support are available, although DP operations are still typically 2–8×slower
than SP operations. Moreover, one would like to be able to exploit additional resources by using
robust algorithms for a wide array of device architectures [35–37]. These include methods such as
mixed precision for ERIs [38–40], RI-MP2 [41, 42] and for coupled-cluster doubles [30]. On the
other hand, Vysotskiy and Cederbaum have shown that it is possible to obtain accurate quantum
chemistry in single precision using the CD [43].

In this section, we will provide an overview of the different quantum chemistry techniques that
have recently been developed for mixed and single precision. Mixed-precision methods rely on a
way to effectively separate elements that should be calculated in double precision, so as to not lose
accuracy, and those that can be in single precision, to gain speedup.

Early on, Yasuda [38] implemented the evaluation of ERIs on GPUs. He noticed that, roughly,
terms in the range [10−n, 10−n+1] give an energy error of 10−n

√
N(n), where N(n) is the number of

terms with exponent n. Studying a histogram of N(n) against n revealed that most of the numerical
error was due to the largest terms evaluated in single precision. To divide between large and small
terms, Yasuda used the density-weighted (P𝜇𝜈) Schwarz bound

|(𝜇𝜈|𝜆𝜎)||P𝜆𝜎| ≤ (𝜇𝜈|𝜇𝜈)1∕2(𝜆𝜎|𝜆𝜎)1∕2|P𝜆𝜎| (12.15)

to separate the ERIs given a threshold 𝜆GPU.
In a similar manner, Luehr et al. [39] used Eq. (12.15) to dynamically control the precision for

each SCF iteration. The metric was controlled by taking the maximum element of the direct inversion
in the iterative subspace (DIIS) error vector and using a power-law fit of the error given a threshold

Err(Thre) = 2.0 × 10−6Thre0.7
,

such that for a given error (Err), one can find a threshold (Thre). As the SCF iterations increase, it
then becomes feasible to obtain DP results using a minimum number of DP operations. Specifically,
the number of SCF iterations did not grow for the molecules Luehr et al. tested. The precision error
did not exceed the 𝜇Eh regime.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 264�

� �

�

264 Electronic Structure Calculations on Graphics Processing Units

The partition strategy of using the Schwarz inequality has also been used outside the GPU
community. Vysotskiy and Cederbaum studied the effect of using single precision to obtain MP2
correlation using the CD [43].

Interestingly, the distribution of the true errors

| f (ãi|bj) − (ãi|bj)|, (12.16)

where f (⋅) indicates the ERI is calculated in SP and the tilde indicates the ERIs are determined using
CD [15, 16], is of the order of 10−8–10−14 and peaks at 10−11, while the evaluation of the right-hand
side shows a peak at 10−6. The authors empirically found that the Cholesky vectors are of the same
magnitude and are largely free from large components. The error in single precision becomes negli-
gible as they showed for a relatively large system (taxol with the ANO-L-VDZP basis).

The roundoff error is an important issue in determining the numerical stability of algorithms.
The additional two algorithms developed below explore this issue. Ultimately, when using
limited-precision arithmetic, the associativity law of addition does not hold since the summation
order becomes relevant when summing up large numbers and small numbers. In the case of SP, the
precision is limited to about seven digits. Smaller numbers will quickly lose their accuracy when
being added or subtracted with relatively larger ones. Methods to determine the numerical stability
of algorithms have been developed and have especially been targeted to explore correlation methods
in quantum chemistry [44].

We originally used pure SP cards, as those were the only ones available at the time [45]. The error
of our RI-MP2 implementation with these cards naturally increased as we tested with larger systems,
until eventually the error was beyond 1 kcal/mol (i.e., chemical accuracy). The large errors led to
proposing methods of mixed precision [41, 42]. As mentioned above, the main problem for using
single precision is that, when performing a product between a large and a small number, the 6–7
significant figures are often insufficient to achieve chemical accuracy. We explored two schemes of
partitioning matrix elements so that they could be calculated using SP matrix multiplication (SGEMM
in BLAS library) in the GPU.

The first method is bitwise partitioning. Consider splitting a DP floating-point number A = m ∗ 2k,

A ≈ Au + Al, (12.17)

where Au and Al are SP numbers storing the uppermost nu and the next lowest nl significant bits of
m, respectively. Then, if we apply the multiplication of two scalars A, B using bitwise partitioning,
we can approximate the full DP multiplication as four (or three for expediency) SP multiplications:

AB ≈ AuBu + AuBl + AlBu + AlBl

AB ≈ AuBu + AuBl + Al(Bu + Bl), (12.18)

where in the last term we have used the SP cast of B, where we do not consider the error to be
of a different order of magnitude compared to AlBu. We can generalize Eq. (12.18) for matrix
multiplication:

AB ≈ AuBu + AuBl + Al(Bu + Bl), (12.19)

where we can use Eq. (12.17) for each element of X ∈ {A,B}.
All the multiplications may be evaluated efficiently using the CUBLAS SGEMM library routines

on the GPU. The results may then be accumulated in DP on the CPU to yield the final approximation
for AB. We must also consider the round-off error due to multiply–add operations (Figure 12.1). That
is, for matrix A, consisting of M × K elements, multiplied by matrix B, consisting of K × N, there
are M × N dot products of length K. This will affect the precision of Eq. (12.19).

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 265�

� �

�

GPU Acceleration of RI-MP2 265

Blarge

Blarge
Asmall

A

Asmall

Bsmall

(a) (c)

(b)

Figure 12.1 Pictorial representation of the heterogeneous MGEMM algorithm. (a, b) A and B matrices and
their separation into matrices with large and small elements, given a cutoff parameter 𝛿. (c) Components
of the final AB matrix, where the light gray (green in ebook) component involves a dense matrix multipli-
cation computed with CUBLAS-SGEMM, while the dark grey (blue in ebook) components involve sparse
matrix multiplications computed with a DAXPY-like algorithm (explained in the text). The blocks follow
the nomenclature shown in Eq. (12.20)

While “bitwise enhancement” could show promising results since the acceleration of this method
depends only on the size of the matrices, it is only 3 times faster than CPU dgemm in the best
case scenario. It is possible to obtain an enhancement in accuracy (measured as the quotient of the
root-mean-squared (RMS) deviation between SGEMM over MGEMM). However, this is effective only
when all the matrix elements are of the same order or magnitude [42].

We implemented a heterogeneous algorithm as our second approach (see Figure 12.1). It involves
separating the matrix multiplication C = AB, by splitting A and B into “large” and “small” compo-
nents, giving

C = (Alarge + Asmall)(Blarge + Bsmall)

= ABlarge + AlargeBsmall + AsmallBsmall, (12.20)

where we have taken the simple approach of introducing a cutoff value 𝛿 to define the split. That is, if
|Xij| > 𝛿, the element is considered “large”; otherwise it is considered “small.” The AsmallBsmall term
consists entirely of “small” numbers, and can be run with reasonable accuracy in single precision on
the GPU. The strategy of summing together small elements has also been used for CD approaches
[43], since most of the elements of the CD are small and therefore there is no significant loss of
accuracy when using SP.

The other two terms in Eq. (12.20) contain “large” numbers, and need to be calculated in double
precision to achieve greater accuracy. Since each of the “large” matrices will often be sparse, these
terms each consist of a dense-sparse multiplication (i.e., similar to DAXPY). Therefore, we only store
the nonzero elements for the “large” matrices.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 266�

� �

�

266 Electronic Structure Calculations on Graphics Processing Units

We present benchmark calculations for matrices and quantum chemistry results for this method in
the following section.

12.3 Performance of Accelerated RI-MP2

12.3.1 Matrix Benchmarks

As we are interested in accelerating quantum chemistry, the matrices calculated in RI-MP2 are of
large size N and contain both large and small elements that are separated by orders of magnitude.
Therefore, in the case of these methods, the heterogeneous approach seemed to be most effective to
tackle mixed precision.

Our calculations were performed with an Intel Xeon E5472 (Harpertown) CPU clocked at 3.0 GHz
attached to an NVIDIA Tesla C1060 (packaged into a Tesla S1070). The GPU calls were limited to
256 MB of RAM to model a more restricted GPU in a typical BOINC (Berkeley Open Infrastructure
for Network Computing) client [46–49].

We benchmark the heterogeneous MGEMM algorithm described in Section 12.2. Figure 12.2 shows
the speedup of *GEMM calls on the GPU with respect to the size N of an N × N matrix, relative to the
time taken for the corresponding DGEMM call on the CPU in serial.

In order to test the mixed-precision approach, we used matrices with random values in the range
[−1, 1]. These were then “salted” with a fraction fsalt of values 2 orders of magnitude larger, in the
range of [90, 110]. We tested three different salted fractions: fsalt = 10−2, 10−3, and 10−4. The size
of the cutoff parameter 𝛿 was chosen such that all the salted elements were considered “large.” All
timings were averaged over 10 runs.

Running CUBLAS SGEMM is approximately 17.1 times faster than running DGEMM on the CPU
for a matrix of size 10, 048 × 10, 048. This represents an upper bound for the speedups we can hope to

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10,000 12,000

S
p
e
e
d
-u

p
 r

e
la

ti
ve

 t
o
 C

P
U

 D
G

E
M

M

Matrix size

MGEMM fSalt =10–2

MGEMM fSalt =10–3

MGEMM fSalt =10–4

SGEMM (cleaver)

DGEMM (cleaver)

Figure 12.2 Speedup for various *GEMM calls as a function of matrix size. Most elements were in the
range [−1,1], with the “salt” values in the range [90,110]. Times are scaled relative to running DGEMM on
the CPU

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 267�

� �

�

GPU Acceleration of RI-MP2 267

obtain with MGEMM for such matrices. Leveraging the GPU for small matrices is not effective because
of well-known overheads such as memory transfer and access latencies.

The MGEMM speedups are strongly dependent on fsalt, which determines how much of the calcula-
tion is done in double precision on the CPU. For fsalt = 10−4, the speedups are approximately 10×,
but for fsalt = 10−3 the speedups decrease fivefold (2×) relative to CPU DGEMM. As we increase fsalt

to 10−2, MGEMM becomes slower than CPU DGEMM.
Since both single and double precision are now available in GPUs, it would be possible to perform

the three matrix multiplications of Eq. (12.20) within the GPU. As two of these matrix multiplica-
tions are sparse, and not performed as DGEMM, the potential performance gain may be limited.
Nonetheless, performing all operations on the GPU could help reduce overheads.

Next we consider the accuracy enhancement when using MGEMM compared to SGEMM. We study
the RMS errors of each matrix element relative to CPU DGEMM for different matrix sizes. All the
matrices were initialized with uniform random values in the range [−1, 1]. We tested separately two
different ranges for the salting values grouped into two ranges: [90, 110] and [9990, 10, 010], and
also considering various salting fractions.

We show the results in Figure 12.3. The SGEMM result shows an error around 3 orders of magnitude
larger than the other MGEMM tests. In general, the error progressively increases as the matrix size
becomes larger. However, the errors are the same regardless of the fraction or size of the salted
elements. These trends are also reflected when studying the maximum absolute error [41].

Additionally, the limiting MGEMM errors are identical to the SGEMM errors for a pair of unsalted
random matrices on [−1, 1] because the MGEMM algorithm guarantees that all the salted contributions
are computed on the CPU. Indeed, if the salts were larger or more numerous, the SGEMM errors would
be even larger, but the MGEMM errors would be unchanged. This is in contrast to the behavior of the
bitwise MGEMM algorithm [42].

To study the effect of MGEMM on matrices related to quantum chemistry, we use those of taxol
in a cc-pVDZ basis. The precise fractions of large and small elements for the taxol case are plotted
in Figure 12.4 with varying the cutoff parameter 𝛿 for both the steps 3 and 4 matrices. We should

10–7

10–6

10–5

10–4

10–3

10–2

10–1

0 2000 4000 6000 8000 10,000 12,000

R
M

S
 e

rr
o
r

re
la

ti
ve

 t
o

 C
P

U
 D

G
E

M
M

Matrix size

MGEMM fSalt = 10–2 salt = 102

MGEMM fSalt = 10–3 salt = 102

MGEMM fSalt = 10–4 salt = 102

MGEMM fSalt = 10–2 salt = 104

MGEMM fSalt = 10–3 salt = 104

MGEMM fSalt = 10–4 salt = 104

SGEMM (cleaver)

Figure 12.3 RMS error in a single matrix element for various GEMM calls as a function of matrix size
compared to CPU DGEMM. Background elements were in the range [−1,1], with the “salt” values in the
range [90,110] or [9990,10,010]. MGEMM gives identical results for all parameters

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 268�

� �

�

268 Electronic Structure Calculations on Graphics Processing Units

1e–07

1e–06

1e–05

0.0001

0.001

0.01

0.1

1

1e–10 1e–08 1e–06 0.0001 0.01 1 100

F
ra

c
ti
o
n
 o

f
la

rg
e
 e

le
m

e
n
ts

Double precision cutoff

(ia|P)

(P|Q)1/2

Bia,Q

Figure 12.4 Fraction of “large” elements as a function of the cutoff parameter 𝛿 for the taxol RI-MP2
matrices in steps 3 and 4 of the algorithm outlined in Section 12.1

note that these curves are only for one particular batch, as explained in Section 12.1, and not the full
matrices. We chose this batch to have the most conservative matrices for our plots, that is, those that
had large elements across the broadest range of 𝛿 values.

It is significant that the step 3 matrices have a greater fraction of large elements than the step 4
matrices, and, specifically, the (P|Q)−1∕2 matrix has the largest elements of all. This means that for a
constant 𝛿 value, we can expect MGEMM to introduce larger errors in the step 3 matrix multiplications
than in step 4.

In this test case, we notice a continuous decay of the magnitude of matrix element values across
many orders of magnitude. In the model matrices, the elements were randomly chosen to peak around
two different values, so the distribution would resemble a step function. In Figure 12.2, MGEMM was
seen to outperform DGEMM for a fraction of salts of order 10−4. Comparing to 12.4, this suggests that
𝛿 should be greater than 0.01 to ensure significant MGEMM speedups when considering the (ia|P) and
Bia,Q matrices, while the fraction of large elements in the (P|Q)−1∕2 matrices becomes this small only
for 𝛿 values of order 10.

An MGEMM study of these matrices reveals that in all cases the maximum errors are only of order
10−6 in the worst case, and there is only a modest decrease in accuracy of MGEMM with respect to
DGEMM. We can estimate an upper bound on the error of each element for different 𝛿 values from
Figure 12.3. Since the matrix dimension is approximately 4000, the choice 𝛿 = 0.1 would give a con-
servative error bound of approximately 4000 × 10−6 × 0.1, which is of order 10−4. However, because
the matrices do not have a “constant background” of 0.1, this estimate is very conservative.

In the current implementation, the main issue affecting the efficiency of MGEMM is the ratio of large
to small elements in the input matrices, but in general we can also expect the sparsity structure to
impact performance. In cases where the structure is known in advance, a more specialized treatment
could give worthwhile speedups, but this is beyond the scope of this chapter. Moreover, it could
be advantageous to define a more dynamic 𝛿 value for different steps in an algorithm, or even for
different input matrices in a manner similar to the work of Luehr et al. [39].

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 269�

� �

�

GPU Acceleration of RI-MP2 269

12.3.2 RI-MP2 Benchmarks

In this section, we present speedups relative to the original RI-MP2 implementation [41, 42].
For the original benchmarks, we used an AMD Athlon 5600+ CPU clocked at 2.8 GHz, combined

with an NVIDIA Tesla C1060 GPU with 4 GiB of RAM. For some calculations, the GPU was limited
to 256 MB of RAM, as described below. RI-MP2 calculations were performed using a modified
version of Q-Chem 3.1. The more recent benchmarks were performed using an Intel Xeon(R) CPU
E5-2650 processor clocked at 2.0 GHz attached to an NVIDIA Tesla K20m and using its full memory
capabilities with Q-Chem 4.1, which already ships with the GPU-RI-MP2 algorithm.

For our test systems we chose a set of linear alkanes (C8H18, C16H34, C24H50, C32H66, C40H82),
as well as two molecules of pharmaceutical interest: the anticancer drugs taxol (C47H51NO14) and
valinomycin (C54H90N6O18). We used the cc-pVDZ (double-𝜁) and cc-pVTZ (triple-𝜁) [50] AO basis
sets throughout.

In the more recent set of benchmarks (results shown in Table 12.3), we continue studying
molecules of biological relevance. To connect with the past work, we study taxol and valinomycin,
and extend our work to β-cyclodextrin, ATP + 20 H2O, and NADH + 20 H2O.

In Table 12.1, we benchmark the reference case of using either CUBLAS SGEMM or DGEMM
for each test molecule using the double-𝜁 basis set. The table shows the speedup in computing
the RI-MP2 correlation energy and the error relative to a standard serial CPU calculation (the
DGEMM errors are negligible). The speedups and SGEMM errors are greater for the larger molecules,
with the largest speedups observed for valinomycin: 13.8× and 7.8×, using SGEMM and DGEMM,
respectively. However, while CUBLAS DGEMM gives essentially no loss of accuracy, the SGEMM
error is approximately −10.0 kcal/mol, which is well beyond what is generally accepted as chemical
accuracy.

Quantum chemistry generally aims to achieve a target accuracy of 1.0 kcal/mol. In Table 12.2, we
explore the performance of MGEMM using a constant cutoff value of 𝛿 = 1.0 to try and reduce the
SGEMM errors in Table 12.1. The results show speedups and total energy errors for each molecule
in both the double-𝜁 and triple-𝜁 basis sets. In this particular case, we have limited the GPU to use
only 256 MB of RAM to mimic the capability of older cards and emphasize the use of the MGEMM
cleaver. This will naturally result in a loss of speedup compared to utilizing a larger GPU memory.
In the case of taxol, the reduction is approximately 20%.

The trends in Table 12.2 are the same as in Table 12.1, but the MGEMM errors are approximately
an order of magnitude less than the SGEMM errors for the larger molecules. For valinomycin in the
double-𝜁 basis, the SGEMM speedup is reduced from 13.8× to 10.1× using MGEMM, but the error in
the total energy is also reduced from −10.0 to −1.2 kcal/mol, which is now very close to chemical
accuracy. It could be further reduced by choosing a 𝛿 value more appropriate for this system.

Table 12.1 Speedups using CUBLAS SGEMM and DGEMM and
total energy errors relative to CPU DGEMM for various
molecules in a double-𝜁 basis

Speedup SGEMM energy error

Molecule SGEMM DGEMM (kcal/mol)

C8H18 2.1 1.9 −0.05616
C16H34 4.5 3.7 −0.12113
C24H50 6.9 5.2 −0.62661
C32H66 9.0 6.4 −0.75981
C40H82 11.1 7.2 −1.12150
Taxol 11.3 7.1 −6.26276
Valinomycin 13.8 7.8 −9.99340

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 270�

� �

�

270 Electronic Structure Calculations on Graphics Processing Units

Table 12.2 MGEMM speedups and total energy errors with respect to
CPU DGEMM for various molecules in a double-𝜁 and triple-𝜁 basis

Speedup Energy error
(kcal/mol)

Molecule Double-𝜁 Triple-𝜁 Double-𝜁 Triple-𝜁

C8H18 1.9 2.7 −0.01249 −0.03488
C16H34 3.8 5.6 −0.00704 −0.04209
C24H50 5.8 8.2 −0.14011 −0.33553
C32H66 7.9 9.2 −0.08111 −0.29447
C40H82 9.4 10.0 −0.13713 −0.51186
Taxol 9.3 10.0 −0.50110 −1.80076
Valinomycin 10.1 — −1.16363 —

While CUBLAS DGEMM clearly has the advantage of high accuracy, if −1.2 kcal/mol is deemed an
acceptable accuracy, MGEMM could be favored since the DGEMM speedup is only 7.8 × compared to
10.1×. This becomes especially relevant in the case where one is interested in energy differences
instead of absolute energies. The errors are larger in triple-𝜁 due to a greater error accumulation
since there are simply more computations. This error propagates similarly for larger molecules (and
smaller basis sets).

12.4 Example Applications

In this section, we study large biomolecules using RI-MP2 as well as an initial study of metabolic
reactions. While taxol (an anticancer drug) and valinomycin (a peptide antibiotic) have long been
used as benchmarks of large molecules in GPU implementations [45, 51, 52], we expand the study
of biomolecules by adding hydrated ATP and NAD+, as well as β-cyclodextrin, an oligosaccharide.

12.4.1 Large-Molecule Applications

Cyclodextrins are cyclic oligosaccharides composed of different numbers of linked α-d-glucose units.
Their hydrophobic cavities promote the formation of complexes with several compounds. This has
made cyclodextrins useful for a range of applications in the chemical industry as well as a model
system to study nonconvalent interactions and model enzyme–substrate interactions [53].

The metabolic cofactor molecules ATP and NAD+ play a fundamental role in cellular metabolism.
They are key players in phosphorylation and redox reactions, respectively. Simulations of these
cofactors through computational chemistry can yield important insight into their physicochemical
properties. For example, recent work has explored the mechanism of ATP hydrolysis through ab initio
molecular dynamics simulations [54]. In addition, the diversity of geometric conformations of ATP in
solution has been explored through MD simulations [55]. The electronic structure and conformational
features of NAD+, the oxidized form of the NADH cofactor, has been explored through DFT and MP2
calculations [56, 57]. Additionally, first-principles thermochemical properties obtained under differ-
ent solvent conditions such as pH and cation concentrations would be useful in predicting the Gibbs
reaction energies of metabolic reactions that involve these cofactors [58].

We analyzed the performance of our single-point energy estimates of ATP and NAD+ embedded
in an explicit water solvent shell obtained from our RI-MP2 GPU implementation. Each metabolite
was surrounded by a cluster of 20 explicit waters.

In Table 12.3, we include an update of the benchmarks using the most recent Q-Chem release.
The most recent CPU implementation of Q-Chem involves multithreading, so the speedups differ

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 271�

� �

�

GPU Acceleration of RI-MP2 271

Table 12.3 Speedups using CUBLAS DGEMM relative to
CPU DGEMM for biomolecules in a double-𝜁 basis

Molecule Number of atoms Double-𝜁

ATP + 20-H2O 91 4.3
Taxol 113 6.0
NADH+ 20-H2O 131 6.4
Valinomycin 168 7.6
β-Cyclodextrin 147 7.8

from the results presented above. We find that in the case of valinomycin at double-𝜁 , the speedup is
smaller (7.6×) than on previous hardware (10.1×). On the other hand, it is now possible to perform
calculations for larger systems (both in basis set and in molecule size).

12.4.2 Studying Thermodynamic Reactivity

As a further application of our RI-MP2 GPU implementation, we focused on the thermochemistry
of metabolic reactions. There has been a recent surge in interest in the study of the thermodynamics
of metabolism [59]. In the context of biochemistry, a deep understanding of thermodynamics is vital
in analyzing the design principles of natural metabolic pathways, as well as in engineering efficient,
novel pathways [60, 61].

Surprisingly, accurate standard Gibbs reaction energy values exist for only a fraction of the bio-
chemical reactions that sustain life [62]. First-principles quantum chemical estimates of metabolic
reaction thermodynamics represent a promising avenue to fill important gaps in experimental
databases. Since metabolites exist in solution as ensembles of protonation states, ab initio methods
must accurately capture the electronic structure of charged species. Toward this direction, recent
work has obtained accuracies with quantum chemistry comparable to group contribution methods
for isomerization reactions [63]. However, these DFT-based methods suffer from inaccuracy when
dealing with highly charged protonation states.

Using accelerated RI-MP2 methods for metabolic thermochemistry can potentially enable accurate
treatment of a large range of sizes of metabolites with diverse protonation states. Since metabolites
are modeled as ensembles of numerous protonation states, isomers, and geometric conformers, the
speedup obtained with accelerated methods is necessary to cover all of metabolism at reasonable
computational cost.

We explore the increase in accuracy of reaction Gibbs energy estimates obtained by including
RI-MP2 single-point electronic energies in our computational framework. Our estimated Gibbs
reaction energies are compared against experimental values from perhaps the most complete
database of enzymatic reaction thermochemistry at specified pH and temperature, namely the
NIST-TECRDB [62].

Our procedure to obtain first-principle Gibbs reaction energies is as follows: We compute
reaction Gibbs free energies from differences of absolute Gibbs energies of individual metabolites
in solution. Each metabolite is represented by an ensemble of protonation states (microspecies)
that exist at equilibrium concentrations at a given pH. Each protonation state is in turn represented
by an ensemble of geometric conformations (conformers). We initially sample microspecies and
conformers using empirical rules as implemented in Marvin Calculator Plugins (Marvin 5.12, 2013,
ChemAxon http://www.chemaxon.com). We use the software Packmol [64] to randomly place
explicit water molecules around the metabolite [65]. We then perform geometry optimization and
normal mode analysis of these diverse initial conformers using the quantum chemistry software
Orca [66]. Specifically, we employ DFT with the B3LYP functional [67–70] and the 6-31G* [71–73]

http://www.chemaxon.com

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 272�

� �

�

272 Electronic Structure Calculations on Graphics Processing Units

basis. Enthalpies and entropies of each conformer are then obtained through standard equations
from molecular statistical thermodynamics [74]. The absolute Gibbs energies of conformers are
Boltzmann-averaged to obtain the Gibbs energy of a single protonation state. We then account for pH
and its effect on the Gibbs energies of the different protonation states by applying the Alberty Legen-
dre transform. This transform yields the appropriate thermodynamic potential of each microspecies
at a specified pH and ionic strength [58]. These transformed Gibbs energies are then combined into a
single transformed Gibbs energy for each reactant at a given pH, temperature, and ionic strength [58].

In order to randomly sample the potential energy surface of each microspecies, we sample subsets
of size 5 out of the pool of geometric conformers for each microspecies, repeating the procedure
described above for 30 iterations. The median error over all iterations is taken as the measure of
accuracy of our procedure.

To test for improvements in accuracy obtained with RI-MP2, we perform single-point electronic
energy estimates of each DFT-optimized structure (using a double-𝜁 auxiliary basis), and combine
these with the DFT-based values for vibrational enthalpies and entropies.

We explore the increase in accuracy obtained in modeling two central reactions in glycolysis with
first-principles thermochemistry estimates with and without single-point RI-MP2 electronic energy
estimates of DFT-optimized structures. The first is the isomerization of dihydroxyacetone phosphate
(DHAP) to glyceraldehyde-3-phosphate (G3P). The second is the carbon-bond cleavage reaction
that transforms fructose-1,6-biphosphate (FBP) to DHAP and G3P. These reactions are shown in
Figure 12.5a and b, respectively.

Table 12.4 shows the accuracies obtained with and without accelerated RI-MP2 single-point
energy estimates. RI-MP2 single-point estimates improve accuracy in both test reaction systems.
Although the error associated with the carbon-bond cleavage reaction is still significantly large, the

OO

O
OH

OH

OH

P

OHO

O
OH

OH

O

P

(a)

OH

OH

OH

OH

OH

OHHO

O

O

O

O

O

HO
P

O

P

OH

OH

HO
+

O

O

O

O

O
OH

OH

PP

(b)

Figure 12.5 Biochemical reactions studied. (a) Isomerization of dihydroxyacetone phosphate (DHAP)
to glyceraldehyde-3-phosphate (G3P). (b) Fructose-1,6-biphosphate (FBP) to DHAP and G3P

Table 12.4 Comparison of Gibbs reaction energies (in kcal/mol) using RI-MP2
with respect to DFT

DFT DFT + MP2 single-point

Reaction Median error 𝜎 Median error 𝜎

DHAP ↔ G3P 5.212 0.224 3.072 0.284
FBP ↔ DHAP + G3P −56.068 0.725 −39.195 0.999

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 273�

� �

�

GPU Acceleration of RI-MP2 273

improvement of more than 10 kcal/mol in accuracy points to the usefulness of RI-MP2 single-point
energy estimates. Recent work has shown that embedding metabolites solvated with explicit waters
into implicit solvation models such as COSMO results in significantly improved accuracies [63].
Therefore, combining explicit–implicit mixed solvation schemes with RI-MP2 single-point energy
estimates can potentially result in accuracies that are useful for metabolic engineering.

The molecules studied in this section are not larger than those presented in Table 12.3. Moreover,
both the basis and auxiliary basis are double-𝜁 , so we should not expect large speedups (they are in
the order of 2×). The energy improvements that we obtain can pave the way for a widespread study
of the thermodynamics of metabolic reactions.

12.5 Conclusions

In this chapter, we have studied the different MP2 methods that were developed to enable the study of
large systems such as biomolecules and nanomaterials. These include the RI approximation method,
which by itself accelerates the MP2 method 10-fold at a negligible cost of accuracy. We find that
the implementation of RI-MP2 on GPUs can accelerate the method up to an order of magnitude
compared to a CPU implementation.

At the same time, several implementations to accelerate quantum chemistry methods replacing the
DP calls with single precision have appeared in recent years. These have been largely motivated by
the fact that the first GPUs did not support DP arithmetic. More recently, the main motivation is to
obtain the same accuracy but taking advantage that SP implementations can be faster. For RI-MP2,
we have shown that the use of mixed precision allows maintaining chemical accuracy in a control-
lable way and can provide additional acceleration. As current graphics cards support DP arithmetic,
mixed-precision approaches are used to obtain acceleration in a variety of quantum chemistry algo-
rithms.

Finally, we have studied the thermodynamics of two metabolic reactions using the GPU implemen-
tation of RI-MP2. The results are promising since RI-MP2 provides an improvement of accuracy with
respect to measured thermodynamic data and this can now be obtained with reduced wall clock time.

References

1. Møller, C. and Plesset, M.S. (1934) Note on an approximation treatment for many-electron sys-
tems. Phys. Rev., 46, 618–622.

2. Frenking, G., Antes, I., Böhme, M., Dapprich, S., Ehlers, A.W., Jonas, V., Neuhaus, A., Otto,
M., Stegmann, R., Veldkamp, A. and Vyboishchikov, S.F. (1996) Pseudopotential calculations
of transition metal compounds: scope and limitations, in Reviews in Computational Chemistry,
vol. 8 (eds K.B. Lipkowitz and D.B. Boyd), Wiley-VCH Verlag GmbH, New York, pp. 63–144.

3. Weigend, F., Köhn, A. and Hättig, C. (2002) Efficient use of the correlation consistent basis sets
in resolution of the identity MP2 calculations. J. Chem. Phys., 116, 3175–3183.

4. Friesner, R.A. and Dunietz, B.D. (2001) Large-Scale Ab initio quantum chemical calculations
on biological systems. Acc. Chem. Res., 34, 351–358.

5. He, X., Fusti-Molnar, L., Cui, G. and Merz, K.M. (2009) Importance of dispersion and electron
correlation in Ab initio protein folding. J. Phys. Chem. B, 113, 5290–5300.

6. Han, S., Deng, W.-Q. and Goddard, W. (2007) Improved designs of metal-organic frameworks
for hydrogen storage. Angew. Chem. Int. Ed., 119, 6405–6408.

7. Jackson, N.E., Savoie, B.M., Kohlstedt, K.L., Olvera de la Cruz, M., Schatz, G.C., Chen, L.X. and
Ratner, M.A. (2013) Controlling conformations of conjugated polymers and small molecules:
the role of nonbonding interactions. J. Am. Chem. Soc., 135, 10475–10483.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 274�

� �

�

274 Electronic Structure Calculations on Graphics Processing Units

8. Maschio, L. (2011) Local MP2 with density fitting for periodic systems: a parallel implementa-
tion. J. Chem. Theory Comput., 7, 2818–2830.

9. Boese, A.D. and Sauer, J. (2013) Accurate adsorption energies of small molecules on oxide
surfaces: CO-MgO(001). Phys. Chem. Chem. Phys., 15, 16481–16493.

10. Feyereisen, M., Fitzgerald, G. and Komornicki, A. (1993) Use of approximate integrals in Ab
initio theory. An application in MP2 energy calculations. Chem. Phys. Lett., 208, 359–363.

11. Weigend, F., Häser, M., Patzelt, H. and Ahlrichs, R. (1998) RI-MP2: optimized auxiliary basis
sets and demonstration of efficiency. Chem. Phys. Lett., 294, 143–152.

12. Werner, H.J. and Manby, F.R. (2006) Explicitly correlated second-order perturbation theory
using density fitting and local approximations. J. Chem. Phys., 124, 054114.

13. Maschio, L., Usvyat, D., Manby, F.R., Casassa, S., Pisani, C. and Schütz, M. (2007) Fast
local-MP2 method with density-fitting for crystals. I. Theory and algorithms. Phys. Rev. B, 76,
075101.

14. Schütz, M., Hetzer, G. and Werner, H.-J. (1999) Low-order scaling local electron correlation
methods. I. Linear scaling local MP2. J. Chem. Phys., 111, 5691.

15. Koch, H., Sánchez de Merás, A. and Pedersen, T.B. (2003) Reduced scaling in electronic struc-
ture calculations using Cholesky decompositions. J. Chem. Phys., 118, 9481.

16. Aquilante, F., Lindh, R. and Pedersen, T.B. (2007) Unbiased auxiliary basis sets for accurate
two-electron integral approximations. J. Chem. Phys., 127, 114107.

17. Kobayashi, M., Imamura, Y. and Nakai, H. (2007) Alternative linear-scaling methodology for the
second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method.
J. Chem. Phys., 127, 074103.

18. Katouda, M., Kobayashi, M., Nakai, H. and Nagase, S. (2011) Two-level hierarchical paralleliza-
tion of second-order Møller-Plesset perturbation calculations in divide-and-conquer method. J.
Comput. Chem., 32, 2756–2764.

19. Hättig, C. (2006) Beyond Hartree-Fock: MP2 and coupled-cluster methods for large systems,
in Computational Nanoscience: Do It Yourself!, vol. 31 (eds J. Grotendorst, S. Blugel and D.
Marx), John von Neumann Institute for Computing, Jülich, pp. 245–278.

20. Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Ann. Phys., 389,
457–484.

21. Helgaker, T., Jørgensen, P. and Olsen, J. (2000) Molecular Electronic-Structure Theory, John
Wiley & Sons, Ltd, Chichester.

22. Ochsenfeld, C., Kussmann, J. and Lambrecht, D. (2007) Linear-scaling methods in quantum
chemistry, in Reviews in Computational Chemistry, vol. 23 (eds K.B. Lipkowitz and T.R. Cun-
dari), John Wiley & Sons, Inc., Hoboken, NJ, pp. 1–82.

23. Werner, H.-J., Manby, F.R. and Knowles, P.J. (2003) Fast linear scaling second-order
Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J.
Chem. Phys., 118, 8149.

24. NVIDIA CUBLAS Library 1.0, https://developer.nvidia.com/cuBLAS (accessed 25
September 2015).

25. Pulay, P. (1983) Localizability of dynamic electron correlation. Chem. Phys. Lett., 100, 151–154.
26. Pulay, P. and Saebø, S. (1986) Orbital-invariant formulation and second-order gradient evalua-

tion in Møller-Plesset perturbation theory. Theor. Chim. Acta, 69, 357–368.
27. Kobayashi, M., Akama, T. and Nakai, H. (2006) Second-order Møller-Plesset perturbation

energy obtained from divide-and-conquer Hartree-Fock density matrix. J. Chem. Phys., 125,
204106.

28. Katouda, M. and Nakajima, T. (2013) MPI/OpenMP hybrid parallel algorithm of resolution of
identity second-order Møller-Plesset perturbation calculation for massively parallel multicore
supercomputers. J. Chem. Theory Comput., 9, 5373–5380.

https://developer.nvidia.com/cuBLAS

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 275�

� �

�

GPU Acceleration of RI-MP2 275

29. Ma, W., Krishnamoorthy, S., Villa, O. and Kowalski, K. (2011) GPU-based implementations of
the noniterative regularized-CCSD(T) corrections: applications to strongly correlated systems.
J. Chem. Theory Comput., 7, 1316–1327.

30. DePrince, A.E. and Hammond, J.R. (2011) Coupled cluster theory on graphics processing units
I. The coupled cluster doubles method. J. Chem. Theory Comput., 7, 1287–1295.

31. Bhaskaran-Nair, K., Ma, W., Krishnamoorthy, S., Villa, O., van Dam, H.J.J., Aprá, E. and Kowal-
ski, K. (2013) Noniterative multireference coupled cluster methods on heterogeneous CPU-GPU
systems. J. Chem. Theory Comput., 9, 1949–1957.

32. Andrade, X. and Aspuru-Guzik, A. (2013) Real-space density functional theory on graphical pro-
cessing units: computational approach and comparison to gaussian basis set methods. J. Chem.
Theory Comput., 9, 4360–4373.

33. Kreisbeck, C., Kramer, T., Rodríguez, M. and Hein, B. (2011) High-performance solution of
hierarchical equations of motion for studying energy transfer in light-harvesting complexes. J.
Chem. Theory Comput., 7, 2166–2174.

34. Hanrath, M. and Engels-Putzka, A. (2010) An efficient matrix-matrix multiplication based anti-
symmetric tensor contraction engine for general order coupled cluster. J. Chem. Phys., 133,
064108.

35. Brown, P., Woods, C., McIntosh-Smith, S. and Manby, F.R. (2008) Massively multicore paral-
lelization of Kohn-Sham theory. J. Chem. Theory Comput., 4, 1620–1626.

36. Göddeke, D., Strzodka, R. and Turek, S. (2007) Performance and accuracy of hardware-oriented
native-, emulated- and mixed-precision solvers in FEM simulations. Int. J. Parallel Emergent
Distrib. Syst., 22, 221–256.

37. Susukita, R., Ebisuzaki, T., Elmegreen, B.G., Furusawa, H., Kato, K., Kawai, A., Kobayashi,
Y., Koishi, T., McNiven, G.D., Narumi, T. and Yasuoka, K. (2003) Hardware accelerator for
molecular dynamics: MDGRAPE-2. Comput. Phys. Commun., 155, 115–131.

38. Yasuda, K. (2008) Two-electron integral evaluation on the graphics processor unit. J. Comput.
Chem., 29, 334–342.

39. Luehr, N., Ufimtsev, I.S. and Martínez, T.J. (2011) Dynamic precision for electron repulsion
integral evaluation on graphical processing units (GPUs). J. Chem. Theory Comput., 7, 949–954.

40. Titov, A.V., Ufimtsev, I.S., Luehr, N. and Martinez, T.J. (2013) Generating efficient quantum
chemistry codes for novel architectures. J. Chem. Theory Comput., 9, 213–221.

41. Olivares-Amaya, R., Watson, M.A., Edgar, R.G., Vogt, L., Shao, Y. and Aspuru-Guzik, A. (2010)
Accelerating correlated quantum chemistry calculations using graphical processing units and a
mixed precision matrix multiplication library. J. Chem. Theory Comput., 6, 135–144.

42. Watson, M., Olivares-Amaya, R., Edgar, R.G. and Aspuru-Guzik, A. (2010) Accelerating cor-
related quantum chemistry calculations using graphical processing units. Comput. Sci. Eng., 12,
40–51.

43. Vysotskiy, V.P. and Cederbaum, L.S. (2011) Accurate quantum chemistry in single precision
arithmetic: correlation energy. J. Chem. Theory Comput., 7, 320–326.

44. Knizia, G., Li, W., Simon, S. and Werner, H.-J. (2011) Determining the numerical stability of
quantum chemistry algorithms. J. Chem. Theory Comput., 7, 2387–2398.

45. Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C. and Aspuru-Guzik, A.
(2008) Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry
calculations with graphical processing units. J. Phys. Chem. A, 112, 2049–2057.

46. Bohannon, J. (2005) Grassroots supercomputing. Science, 308, 310.
47. Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C., Sánchez-Carrera,

R.S., Gold-Parker, A., Vogt, L., Brockway, A.M. and Aspuru-Guzik, A. (2011) The Harvard
clean energy project: large-scale computational screening and design of organic photovoltaics
on the world community grid. J. Phys. Chem. Lett., 2, 2241–2251.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 276�

� �

�

276 Electronic Structure Calculations on Graphics Processing Units

48. Olivares-Amaya, R., Amador-Bedolla, C., Hachmann, J., Atahan-Evrenk, S., Sánchez-Carrera,
R.S., Vogt, L. and Aspuru-Guzik, A. (2011) Accelerated computational discovery of
high-performance materials for organic photovoltaics by means of cheminformatics. Energy
Environ. Sci., 4, 4849–4861.

49. Hachmann, J., Olivares-Amaya, R., Jinich, A., Appleton, A.L., Blood-Forsythe, M.A., Seress,
L.R., Roman-Salgado, C., Trepte, K., Atahan-Evrenk, S., Er, S., Shrestha, S., Mondal, R.,
Sokolov, A., Bao, Z. and Aspuru-Guzik, A. (2014) Lead candidates for high-performance
organic photovoltaics from high-throughput quantum chemistry—the Harvard Clean Energy
Project. Energy Environ. Sci., 7, 698–704.

50. Dunning, T. Jr. (1989) Gaussian basis sets for use in correlated molecular calculations. I. The
atoms boron through neon and hydrogen. J. Chem. Phys., 90, 1007–1023.

51. Yasuda, K. (2008) Accelerating density functional calculations with graphics processing unit. J.
Chem. Theory Comput., 4, 1230.

52. Ufimtsev, I.S. and Martinez, T.J. (2009) Quantum chemistry on graphical processing units. 2.
Direct self-consistent-field implementation. J. Chem. Theory Comput., 5, 1004–1015.

53. Breslow, R. and Dong, S.D. (1998) Biomimetic reactions catalyzed by cyclodextrins and their
derivatives. Chem. Rev., 98, 1997–2012.

54. Harrison, C.B. and Schulten, K. (2012) Quantum and classical dynamics simulations of ATP
hydrolysis in solution. J. Chem. Theory Comput., 8, 2328–2335.

55. Kobayashi, E., Yura, K. and Nagai, Y. (2013) Distinct conformation of ATP Molecule in solution
and on protein. Biophysics, 9, 1–12.

56. Guillot, B., Muzet, N., Artacho, E., Lecomte, C. and Jelsch, C. (2003) Experimental and theo-
retical electron density studies in large molecules: NAD+, 𝛽-nicotinamide adenine dinucleotide.
J. Phys. Chem. B, 107, 9109–9121.

57. Wu, Y.-D. and Houk, K.N. (1993) Theoretical study of conformational features of NAD+ and
NADH analogs: protonated nicotinamide and 1,4-dihydronicotinamide. J. Org. Chem., 58,
2043–2045.

58. Alberty, R.A. (2003) Thermodynamics of Biochemical Reactions, Wiley-Interscience.
59. Henry, C.S., Broadbelt, L.J. and Hatzimanikatis, V. (2007) Thermodynamics-based metabolic

flux analysis. Biophys. J., 92, 1792–1805.
60. Bar-Even, A., Noor, E., Lewis, N.E. and Milo, R. (2010) Design and analysis of synthetic carbon

fixation pathways. Proc. Natl. Acad. Sci. U.S.A., 107, 8889–8894.
61. Bar-Even, A., Flamholz, A., Noor, E. and Milo, R. (2012) Thermodynamic constraints shape the

structure of carbon fixation pathways. Biochim. Biophys. Acta, 1817, 1646–1659.
62. Goldberg, R.N., Tewari, Y.B. and Bhat, T.N. (2004) Thermodynamics of enzyme-catalyzed

reactions—a database for quantitative biochemistry. Bioinformatics, 20, 2874–2877.
63. Jinich, A., Rappoport, D., Dunn, I., Sanchez-Lengelin, B., Olivares-Amaya, R., Noor, E.,

Bar-Even, A., Milo, R. and Aspuru-Guzik, A. (2014) Quantum chemical approach to esti-
mating the thermodynamics of metabolic reactions. Sci. Rep., 4, Article number: 7022,
doi: 10.1038/srep07022.

64. Martínez, J.M. and Martínez, L. (2003) Packing optimization for automated generation of com-
plex system’s initial configurations for molecular dynamics and docking. J. Comput. Chem., 24,
819–825.

65. Martínez, L., Andrade, R., Birgin, E.G. and Martínez, J.M. (2009) PACKMOL: a package
for building initial configurations for molecular dynamics simulations. J. Comput. Chem., 30,
2157–2164.

66. Neese, F. (2012) The ORCA program system. WIREs Comput. Mol. Sci., 2, 73–78.
67. Vosko, S., Wilk, L. and Nusair, M. (1980) Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200–1211.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 277�

� �

�

GPU Acceleration of RI-MP2 277

68. Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic
behavior. Phys. Rev. A, 38, 3098–3100.

69. Lee, C., Yang, W. and Parr, R.G. (1988) Development of the colle and salvetti correlation-energy
formula into a functional of the electron. Phys. Rev. B, 37, 785–789.

70. Becke, A.D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J.
Chem. Phys., 98, 5648–5652.

71. Hehre, W.J., Ditchfield, R. and Pople, J. (1972) Self-consistent molecular orbital methods. XII.
Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic
molecules. J. Chem. Phys., 56, 2257.

72. McLean, A.D. and Chandler, G.S. (1980) Contracted Gaussian basis sets for molecular calcula-
tions. I. Second row atoms, Z=11-18. J. Chem. Phys., 72, 5639.

73. Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J. and Pople,
J.A. (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for
second-row elements. J. Chem. Phys., 77, 3654.

74. McQuarrie, D.A. and Simon, J.D. (1999) Molecular Thermodynamics, University Science
Books.

Trim Size: 170mm x 244mm Walker c12.tex V3 - 01/09/2016 10:32 A.M. Page 278�

� �

�

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 279�

� �

�

13
Iterative Coupled-Cluster Methods on

Graphics Processing Units

A. Eugene DePrince III1, Jeff R. Hammond2 and C. David Sherrill3,4,5

1Department of Chemistry and Biochemistry, Florida State University, Tallahassee,
FL, USA

2Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
3Center for Computational Molecular Science and Technology, Georgia Institute of

Technology, GA, USA
4School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA,

USA
5School of Computational Science and Engineering, Georgia Institute of Technology,

Atlanta, GA, USA

In this chapter, we present algorithms for iterative coupled-cluster computations in heterogeneous
computing environments. Careful algorithm design with respect to simultaneous use of both CPU
and GPU processors enables accelerations close to the relative performance of general matrix multi-
plications (DGEMM) on the different architectures. To achieve best performance, we distribute work
between the CPU and GPU in terms of entire diagrams, evaluate the most expensive tensor con-
tractions on the GPU, and interleave computation and communication for work performed on the
GPU. Using these techniques, a robust implementation that utilizes either density fitting or Cholesky
decomposition approximations to minimize storage requirements and data transfer can achieve a
threefold speedup using a Kepler GPU and multi-core Intel Xeon CPU as compared to an optimized,
parallel CPU based implementation running on the same hardware.

13.1 Introduction

As highlighted in Chapter 1 the landscape of computer hardware is constantly changing, but not all
changes are equally disruptive to scientific software programmers. After approximately three decades
of continuous performance improvement from steadily increasing clock frequencies and concomitant

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 280�

� �

�

280 Electronic Structure Calculations on Graphics Processing Units

decrease in semiconductor feature size, microprocessor design underwent a fundamental shift toward
parallelism at the beginning of the last decade. Having reached the limits of frequency-scaling due to
power constraints, node-level parallelism is now the basis for keeping pace with Moore’s law. Mul-
ticore parallelism has now reached every area of the computing market: computing devices ranging
from smartphones to the largest supercomputers use multicore processors. Initially, this had little
impact on software engineers or users – two or four cores on a single chip was not significantly
different than two or four single-core chips on a single node or even multiple nodes within the ubiqui-
tous message-passing parallel programming model. However, in order to continue to satisfy Moore’s
law and thus double the performance of processors approximately every 2 years, core counts have
increased steadily, with 8-core processors common for workstations in 2013 and 16-core processors
recently deployed.

As discussed in Chapter 2 the rise of GPUs was due to the relative mismatch between the
high-throughput workloads required for rendering and the latency-optimized nature of superscalar
CPUs [1, 2]. By focusing on throughput rather than latency, GPUs are able to deliver substantially
more performance than their CPU peers for specialized workloads. Over time, however, the increas-
ing thread parallelism of SIMD vector units in CPUs and the increases in the general functionality
and programmability of GPUs has reduced their differences significantly. Nevertheless, as discussed
in earlier chapters there still exists a large gap in the memory bandwidth between CPUs and GPUs
and carefully exploiting this can yield large performance improvements in the use of GPUs rather
than CPUs.

As mentioned earlier in this book, node-level parallelism comes in two categories: multicore
CPUs and manycore GPUs. In a multicore CPU, each core is capable of acting as an independent
general-purpose processor, whereas GPU cores are not general purpose (e.g., they cannot run an
operating system) and do not have independent instruction units. Each of these architectures pose
different challenges to scientific codes.

In this chapter, we review strategies for implementing iterative coupled-cluster methods (doubles
coupled-cluster [CCD] and singles and doubles coupled cluster [CCSD]) in heterogeneous computing
environments to overcome the challenges of efficiently using GPUs for such calculations. We high-
light preliminary investigations [3, 4] that sought to establish a best-case for performance acceleration
when porting these methods to GPUs. The algorithms developed at the time were not production-level
but nevertheless established a realistic upper bound to the speedups that can be expected from modern
manycore architectures. We then discuss more recent work that has emphasized the role of approxi-
mate tensor decompositions in the design of an efficient, production-level implementation of CCSD.
We then follow with a discussion of an implementation of GPU-accelerated CCSD that makes use
of density fitting (DF) or Cholesky decomposition (CD) approximations in the construction and con-
traction of all two-electron repulsion integrals (ERIs) [5]. These approximations reduce the storage
requirements for the ERI tensor and hence mitigate the cost of data transfers to the device. The present
algorithm makes simultaneous use of both GPU and CPU resources, resulting in performance accel-
erations of nearly a factor of 3 when using a single Nvidia K20 (Kepler) GPU or two Nvidia C2070
(Fermi) GPUs, relative to the same algorithm executed on 6 Intel Core i7-3930K CPU cores. Finally,
the performance of the GPU-accelerated DF/CD-CCSD implementation for systems with as many
as 822 active basis functions is demonstrated.

13.2 Related Work

Only very recently have quantum many-body methods based upon the coupled-cluster wave function
expansion been implemented on GPUs. Our own work (Refs [3–5]) focused on the development of
CCSD [6] for GPUs, while Kowalski and coworkers have focused on the computationally intensive

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 281�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 281

perturbative triples correction to CCSD [CCSD(T)] [7] for both ground- and excited-states [8, 9] (see
also next chapter). Another recent example of a GPU-enabled CCSD(T) algorithm can be found in
Ref. [10]. Some prior attempts to implement coupled-cluster theory on GPUs have been less suc-
cessful [11], indicating that this task is not as trivial as some believed and that its heavy reliance
upon BLAS calls does not imply that simply using an accelerated BLAS library will yield large
performance improvements.

13.3 Theory

13.3.1 CCD and CCSD

The electronic wave function in coupled-cluster theory is

|ΨCC⟩ = eT̂ |Ψ0⟩, (13.1)

where |Ψ0⟩ represents some reference state (here, a single restricted Hartree–Fock reference deter-
minant). The symbol, T̂ , represents an excitation operator which, for the CCSD method, contains
all single and double excitations (T̂ = T̂1 + T̂2). CCSD is typically solved via projection and Jacobi
iteration (with DIIS convergence acceleration in most cases [12, 13]), where the correlation energy,
Ec, is given by

Ec = ⟨Ψ0|e−T̂ ĤeT̂ |Ψ0⟩, (13.2)

and the single and double excitation amplitudes are given by

0 = ⟨Ψa
i |e−T̂ ĤeT̂ |Ψ0⟩, (13.3)

0 = ⟨Ψab
ij |e−T̂ ĤeT̂ |Ψ0⟩. (13.4)

We define the spin-free coupled cluster single and double (CCSD) excitation amplitudes according
to the (slightly modified) expressions provided by Piecuch et al. [14]:

(f i
i + f j

j − f a
a − f b

b)t
ab
ij = 𝑣ab

ij + P(ia, jb)[tae
ij Ib

e − tab
imIm

j

+1
2
𝑣ab

ef cef
ij + 1

2
cab

mnImn
ij − tae

mjI
mb
ie − Ima

ie teb
mj

+(2tea
mi − tea

im)I
mb
ej + te

i I′ab
ej − ta

mI′mb
ij]. (13.5)

We also have the single excitation amplitudes, defined by

(f i
i − f a

a)t
a
i = Ia

e te
i − I′mi ta

m

+Im
e (2tea

mi − tea
im) + (2𝑣ma

ei − 𝑣am
ei)t

e
m

−𝑣mn
ei (2tea

mn − tae
mn) + 𝑣

ma
ef (2tef

mi − tef
im). (13.6)

Here, i, j, k, l,m, and n (a, b, c, d, e, and f) represent orbitals that are occupied (virtual) in the reference
function. The tensors defined in Eqs. (13.5) and (13.6) are given by

Ia
b = (2𝑣am

be − 𝑣ma
be)t

e
m − (2𝑣mn

eb − 𝑣mn
be)c

ea
mn, (13.7)

Ii
a = (2𝑣im

ae − 𝑣
im
ea)t

e
m, (13.8)

I′ij = (2𝑣im
je − 𝑣im

ej)t
e
m + (2𝑣mi

ef − 𝑣
im
ef)t

ef
mj, (13.9)

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 282�

� �

�

282 Electronic Structure Calculations on Graphics Processing Units

Ii
j = I′ij + Ii

et
e
j , (13.10)

Iij
kl = 𝑣

ij
kl + 𝑣

ij
ef c

ef
kl + P(ik, jl)te

k𝑣
ij
el, (13.11)

I′ab
ci = 𝑣ab

ci − 𝑣
am
ci tb

m − 𝑣mb
ci ta

m, (13.12)

I′iajk = 𝑣ia
jk + 𝑣

ia
ef c

ef
jk , (13.13)

Iia
jb = 𝑣

ia
jb −

1
2
𝑣im

eb(t
ea
jm + 2te

j ta
m)

+𝑣ia
ebte

j − 𝑣
im
jb ta

m, (13.14)

Iia
bj = 𝑣

ia
bj −

1
2
𝑣im

be(t
ae
mj + 2ta

mte
j)

+𝑣ia
bet

e
j − 𝑣

im
bj ta

m + 1
2
(2𝑣im

be − 𝑣
im
eb)t

ea
mj. (13.15)

The symbol cab
ij represents a sum of singles and doubles amplitudes: cab

ij = tab
ij + ta

i tb
j . We have assumed

that the molecular orbitals are canonical Hartree–Fock orbitals, and the diagonal elements of the
Fock matrix, f p

p , are orbital energies. The two-electron integrals are denoted by 𝑣ab
ij = (ia| jb). The

permutation operator P(ia, jb) implies the sum of two terms: P(ia, jb)𝑣ab
ij = 𝑣ab

ij + 𝑣ba
ji . The Einstein

summation convention is assumed whereby repeated upper and lower indices are summed over an
appropriate range, but note that the left-hand sides of Eqs. (13.5) and (13.6) involve no sum.

By ignoring all singly excited CC amplitudes, Eqs. (13.5)–(13.15) reduce to the CCD method.
CCD is seldom used in chemical applications because single excitation amplitudes substantially
improve the accuracy of the method, and CCSD is not significantly more expensive than CCD [15].
However, from an implementation standpoint, the CCD equations are conveniently compact, facili-
tating the design of an optimal algorithm. For this reason, we study GPU acceleration of the CCD
method before proceeding to the CCSD method. Further, in CCSD, the single excitation ampli-
tudes can be incorporated directly into the Hamiltonian, as is described in Ref. [16], and thus the
CCSD equations are, in principle, no more complex than the CCD equations. Our more recent work
described in Sections 13.3.2 and 13.6.3 uses these techniques.

13.3.2 Density-Fitted CCSD with a t1-Transformed Hamiltonian

As was discussed in Chapter 2 and as a recurring theme throughout the previous chapters the two
major challenges in adapting scientific algorithms for use on graphics processors are: (i) the high cost
of data transfers between the host and the device and (ii) the limited global memory available on the
device, relative to the host. Our initial explorations considered strategies to address these concerns
by overlapping communication and computation and performing computations simultaneously on
the CPU and GPU. In this section, we discuss a complementary approach that directly reduces the
amount of data that needs to be transferred to and stored on the device.

The storage requirements for the ERI tensor can be reduced via approximate factorizations known
as DF (the resolution of the identity) [17–24], CD [25–28], or tensor hypercontraction DF [29, 30]).
Rendell et al. first proposed DF within coupled cluster theory as a means of reducing I/O bottle-
necks associated with the (vv|vv) and (ov|vv) blocks of the ERI tensor in a conventional CCSD
algorithm [21]. Here, o and 𝑣 represent orbitals that are occupied or virtual in the reference function,
respectively. In addition, the approximate CCSD method known as CC2 [31, 32] is most efficiently
implemented using DF and the t1-transformation of the Hamiltonian described in Ref. [16]. Recently,
several examples of CCSD algorithms that make use of DF or CD approximations for all blocks of
the ERI tensor have emerged [33–36]. DF and CD approximations do not reduce the formal scaling
of CCSD. However, the associated reduction in I/O is potentially useful in computing environments

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 283�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 283

that make use of networked storage where high latency noticeably affects performance. Further, GPU
CCSD implementations built upon any of these approximations immediately benefit from the reduced
storage and host/device-transfer requirements for the ERI tensors.

Compact CCSD equations can be obtained by dressing the ERI tensor and Fock matrix with t1

amplitudes as described in Ref. [16]. The doubles residual, Rab
ij is then expressed (in a spin-free

formalism) as

Rab
ij =

∑
Q

BQ
aiB

Q
bj + Aab

ij + Bab
ij + Pab

ij

(1
2

Cab
ij + Cab

ji + Dab
ij + Eab

ij + Gab
ij

)
, (13.16)

Aab
ij =

∑
cd

tcd
ij

(∑
Q

BQ
acB

Q
bd

)
, (13.17)

Bab
ij =

∑
kl

tab
kl

[(∑
Q

BQ
kiB

Q
lj

)
+

(∑
cd

tcd
ij

[∑
Q

BQ
kcB

Q
ld

])]
, (13.18)

Cab
ij = −

∑
kc

tbc
kj

[(∑
Q

BQ
kiB

Q
ac

)
− 1

2

(∑
ld

tad
li

[∑
Q

BQ
kdBQ

lc

])]
, (13.19)

Dab
ij = 1

2

∑
kc

ubc
jk

(
Laikc +

1
2

[∑
ld

uad
il Lldkc

])
, (13.20)

Eab
ij =

∑
c

tac
ij

[
fbc −

(∑
kld

ubd
kl

[∑
Q

BQ
ldBQ

kc

])]
, (13.21)

Gab
ij = −

∑
k

tab
ik

[
fkj +

(∑
lcd

ucd
lj

[∑
Q

BQ
kdBQ

lc

])]
, (13.22)

Lpqrs = 2
∑

Q

BQ
pqBQ

rs −
∑

Q

BQ
psB

Q
rq, (13.23)

upq
rs = 2tpq

rs − tqp
rs . (13.24)

The quantity BQ
ij is a t1-transformed three-index integral, the operator, Pab

ij , is the same permuta-
tion operator described above, and fpq denotes a (t1-transformed) Fock matrix element. Brackets and
parentheses denote the order of operations for the efficient construction of intermediates. The singles
residual, Ra

i , is

Ra
i = fai + Aa

i + Ba
i + Ca

i , (13.25)

Aa
i =

∑
dQ

(∑
kc

ucd
ki BQ

kc

)
BQ

ad, (13.26)

Ba
i = −

∑
klc

uac
kl

(∑
Q

BQ
kiB

Q
lc

)
, (13.27)

Ca
i =

∑
kc

fkcu
ac
ik . (13.28)

With the exception of the use of three-index integrals, these equations are very similar to those pre-
sented in Ref. [16].

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 284�

� �

�

284 Electronic Structure Calculations on Graphics Processing Units

The effects of single excitations are incorporated into the Hamiltonian by dressing the three-index
integrals as

BQ
rs =

∑
𝜇

X𝜇r

(∑
𝜈

Y𝜈sB
Q
𝜇𝜈

)
. (13.29)

Here, the indices 𝜇 and 𝜈 represent atomic orbital (AO) basis functions, and BQ
𝜇𝜈 represents a

three-index integral in the AO basis. The matrices X and Y are modified AO/MO transformation
matrices that absorb the singles amplitudes:

t1 =
(

0 0
ta
i 0

)
, (13.30)

X = C(1 − tT
1), (13.31)

Y = C(1 + t1). (13.32)

In the t1 matrix, only the lower-left block is nonzero, with ov elements. The Fock matrix can now be
expressed in terms of these modified three-index integrals and the one-electron integrals, hrs:

frs = hrs +
∑

i

(
2
∑

Q

BQ
rsB

Q
ii −

∑
Q

BQ
riB

Q
is

)
, (13.33)

hrs =
∑
𝜇

X𝜇r

(∑
𝜈

Y𝜈sh𝜇𝜈

)
. (13.34)

When using conventional four-index integrals, folding t1 into the Hamiltonian requires (N5)
floating-point operations per iteration, where N is the dimension of the one-electron basis. By
substituting DF or CD integrals for four-index integrals, the cost of this transformation is reduced to
(N4).

13.4 Algorithm Details

13.4.1 Communication-Avoiding CCD Algorithm

The spin-free CCD equations, obtained by neglecting all terms containing single excitations in Eqs.
(13.5)–(13.15), consist of 13 tensor contractions, 9 that scale as the sixth power of system size and
4 that scale as the fifth power of system size. It is well-known that these tensor contractions can
be evaluated on a CPU using tuned BLAS libraries, which are capable of achieving up to 90% of
the theoretical peak performance of a modern multicore CPU. We have demonstrated that a similar
strategy, using the Nvidia CUBLAS library, works quite well for implementing the CCD equations
on a GPU [3]. For systems with less than 250 active orbitals, an Nvidia C2050 GPU can accelerate a
single iteration of the CCD method by a factor of 4–5 (relative to two 8-core Intel Xeon X5550 CPUs).
This acceleration is consistent with the relative performance of DGEMM on the CPU and GPU.

The implementation in Ref. [3] represents the first example of the iterative portion of any CC
method executed entirely on GPUs. By storing all tensors directly on the device, we eliminate host/de-
vice communication during the CC iterations, ensuring a best-case for performance acceleration.
However, this algorithm is severely constrained by the modest total memory on the GPU. For small
systems, no communication between host and device occurs once the ERI tensor (generated on the
host by the GAMESS electronic structure package [37]) and the Fock matrix are copied to the device,

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 285�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 285

and convergence is monitored directly on the device (using cudaDnrm21). For larger systems, where
GPU memory cannot accomodate the 𝑣ab

cd block of the ERI tensor, the associated contraction can be
tiled and manageable blocks pushed to the device sequentially. This strategy precludes the aforemen-
tioned communication-free algorithm, but, for the systems studied, the overhead is nominal, suggest-
ing that a low-storage algorithm in which all data is repeatedly copied to the device may be viable.

13.4.2 Low-Storage CCSD Algorithm

The spin-free CCSD method, as defined by Eqs. (13.5)–(13.15), requires 34 tensor contractions
whose computational costs scale from the third to the sixth power of system size. We now aban-
don the notion of zero communication and adopt a strategy which repeatedly copies integrals and
amplitudes to the device. These repeated transfers will incur some overhead that, fortunately, can
be masked by simultaneously performing operations on both the GPU and CPU. The tensor con-
tractions are distributed between CPU and GPU processors according to the computational cost to
evaluate them. If a contraction scales as N4 or less, it is initially classified as CPU work (N, here, is a
measure of system size), and contractions scaling as N6 are classified as GPU work. Terms that scale
as N5 are usually classified as CPU work, but, occasionally, the work is better suited for the GPU. For
example, the required tensors may already be present in global memory on the device, or CPU mem-
ory operations (in the form of tensor permutations) may be significantly reduced by evaluating the
diagram on the device. Whenever possible, tensor permutations should be performed on the device,
as it possesses higher memory bandwidth than the host. We pipeline all data transfers, permutations,
and contractions into a single stream, with host/device transfers occuring via cudaMemcpyAsync.2

Most contractions involve the CC amplitudes (or a similarly sized intermediate tensor), the resid-
ual of the CC equations (the right-hand sides of Eqs. (13.5) and (13.6)), and a block of the ERI tensor.
For the doubles equations, we require that three arrays be stored on the GPU: (i) the doubles ampli-
tudes, tab

ij , (ii) the residual of the doubles equations, and (iii) a general integral buffer. For the singles
equations, we require that the singles amplitudes and residual be stored. In addition, in order to limit
excessive host/device communications, one additional buffer of the size of the doubles amplitudes is
allocated. The general integral buffer is allocated to be as large as possible, given the storage require-
ments for all other tensors. For this algorithm, this buffer must be at least large enough to accomodate
data the size of the doubles amplitudes, o2𝑣2. Thus, the minimum storage requirement for the GPU
in this particular implementation is ≈ 4o2𝑣2 double precision numbers.

The minimum storage required for the general integral buffer on the GPU is o2𝑣2. However, two
blocks of the ERI tensor, 𝑣ab

cd and 𝑣ab
ci have 𝑣4 and o𝑣3 elements, and because 𝑣 is usually much larger

than o, the general integral buffer may not accomodate them. Accordingly, contractions involving
these tensors are tiled and performed sequentially. The low-storage CCSD algorithm described here
supports tiling of all contractions involving tensors larger than o2𝑣2. Four such contractions arise in
this implementation of CCSD.

It should be noted here that a considerable reduction in the storage and floating point opera-
tions required for the evaluation of the largest tensor contraction, 1

2

∑
ef 𝑣

ab
ef cef

ij , can be obtained by
re-expressing the sum in terms of symmetric and antisymmetric components [38]. In total, a factor of
2 savings in storage and floating point operations can be gained for this term at the expense of a few
additional tensor permutations. This low-storage CCSD algorithm and our DF-CCSD algorithm both
utilize this factorization, while the algorithm of Ref. [3] does not. For the set of molecules studied in
Ref. [3], the factorization decreases iteration times by roughly 10%; the effects are more significant
as the size of the virtual space increases relative to the size of the occupied space.

1 Technically cudaDnrm2 returns a value to CPU memory, but this communication is negligible.
2 This strategy is obviously less effective with hardware that lack asynchronous memory capabilities.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 286�

� �

�

286 Electronic Structure Calculations on Graphics Processing Units

Both the low-communication CCD and low-storage CCSD algorithms store all required blocks of
the ERI tensor in main CPU memory and are thus not extensible to large systems. They nonetheless
serve as useful explorations of possible strategies for porting coupled-cluster codes to heterogeneous
computing environments. By eliminating I/O costs, host/device communication can be carefully ana-
lyzed to design algorithms that minimize their effects. These implementations also provide a best-case
scenario for performance against which other algorithms can be measured.

13.4.3 Density-Fitted CCSD with a t1-Transformed Hamiltonian

To move beyond the limited, proof-of-concept implementations described in Sections 13.4.1 and
13.4.2, we must consider algorithms that (i) do not store the full ERI tensor in main CPU mem-
ory and (ii) make few (or no) assumptions regarding the amount of data that can fit in GPU global
memory. This latter stipulation requires blocking of essentially all tensor contractions performed on
the device. The I/O costs associated with storing the full ERI tensor on disk are disruptive to the
design of an efficient GPU-accelerated algorithm, so our most recent efforts emphasize the use of DF
or CD approximations to the ERI tensor. Approximate three-index tensors also mitigate host/device
communication costs.

Naively, one can make use of GPUs in a CCSD algorithm by performing all tensor contractions
on the device using CUBLAS DGEMM calls. For each contraction, input/output buffers must be
transferred to/from the device, and contractions must be tiled to account for the limited global memory
on the GPU. This strategy suffers from two obvious deficiencies. First, we have ignored the overhead
associated with data transfers. Second, valuable CPU cycles are wasted if the CPU is idle during
GPU-driven tensor contractions. We can address this first deficiency, partially masking the overhead
of data transfers, by interleaving communication and computation. A very simple blocked algorithm
that interleaves cudaMemcpyAsync and cublasDgemm calls is outlined in Figure 13.1.

Figure 13.2a illustrates the performance of this blocked algorithm that interleaves communica-
tion and computation. For a matrix multiply involving square matrices with dimensions of 15,000, 6
Intel Core i7-3930K cores, 1 Fermi GPU, 2 Fermi GPUs, and 1 Kepler GPU achieve 142, 285, 553,
and 859 GF (109 floating-point operations per second), respectively. As Figure 13.2b shows, using
CUBLAS DGEMM in this way results in very modest accelerations over the Intel MKL implemen-
tation of DGEMM executed on Core i7-3930K processors; for 15,000× 15,000 matrices, we observe
only 2.0×, 3.9×, and 6.0× accelerations over MKL DGEMM when using 1 Fermi GPU, 2 Fermi
GPUs, or 1 Kepler GPU, respectively. The ratio of performance of the interleaved algorithm to one
making direct use of CUBLAS DGEMM without such considerations is illustrated in Figure 13.2c.
For modest-sized tensor contractions, involving matrix dimensions on the order of 1000–2000, this
simple interleaving strategy masks communication quite well, boosting performance over the most
naive use of CUBLAS DGEMM by as much as 40%.

In a GPU-enabled DF/CD-CCSD implementation, we do not expect to observe accelerations as
large as a factor of 4 or 6. First, not all tensor contractions that arise in CCSD are as regular as those
examined in Figure 13.2. Second, many kernels in a CCSD computation do not benefit from the
use of GPUs. For example, the DIIS convergence acceleration procedure is completely I/O bound.
Reasonable accelerations can only be achieved with an algorithm that considers the strategies of the
previous sections and distributes entire diagrams between GPU and CPU.

The leading contribution to the scaling of the DF/CD-CCSD algorithm involves the evaluation of
the double-particle ladder diagram:

∑
cdtcd

ij

∑
QBQ

acB
Q
bd (the term Aab

ij earlier). This contraction scales as
1

2
o2𝑣4, and the construction of the four-external-index block of the ERI tensor scales as 𝑣4Naux, where

Naux is the dimension of the auxiliary basis set in a DF-CCSD computation or the number of Cholesky
vectors in a CD-CCSD computation. Using the symmetric and antisymmetric tensors of Ref. [38], we
can reduce the cost of the construction of the integrals and the subsequent contraction with the CCSD
amplitude by a factor of 2. Even with these techniques, the evaluation of this diagram dominates the

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 287�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 287

// OpenMP parallelization for multiple GPUs over M and N blocks
#pragma omp parallel for schedule (static) num_threads(num_gpus)
for M ∈ blocksM, N ∈ blocksN do

// copy first tile of A and B to device
cudaMemcpyAsync Ablock → gpuA_curr [sizeK*sizeM elements]
cudaMemcpyAsync Bblock → gpuB_curr [sizeK*sizeN elements]
for K ∈ blocksK do

// two OpenMP threads for interleaving
#pragma omp parallel num_threads(2)
if thread == 0 then

// DGEMM for current block using GPU stream 0
cublasDgemm gpuA_curr⋅gpuB_curr → gpuC, (sizeM*sizeN*sizeK)

else
// copy next tile (if it exists) using GPU stream 1
cudaMemcpyAsync Ablock → gpuA_next [sizeK*sizeM elements]
cudaMemcpyAsync Bblock → gpuB_next [sizeK*sizeN elements]

end if
end for
// copy result back to host
cudaMemcpyAsync gpuC → Cblock [sizeM*sizeN elements]

end for

Figure 13.1 A simple interleaved DGEMM algorithm. For a matrix multiplication, Cmn =
∑

kAmkBkn, the
m and n dimensions are blocked to parallelize the algorithm over multiple GPUs and to guarantee that all
blocks will fit in GPU global memory. The sum dimension, k, is blocked in order to interleave computation
and communication. From Ref. [5]

cost of a DF/CD-CCSD algorithm; hence, our strategy is to evaluate Aab
ij on the GPU while evaluating

all other terms on the CPU. If the GPU finishes its work before the CPU, the algorithm automatically
switches to one similar to that outlined in Figure 13.1 to evaluate the remaining diagrams. Likewise,
if the CPU finishes its tasks before the GPU completes the evaluation Aab

ij , the otherwise idle CPU
cores assist in the evaluation of this diagram. The algorithm for evaluating Aab

ij using GPU hardware
is given in Figure 13.3.

13.5 Computational Details

13.5.1 Conventional CCD and CCSD

The spin-free CCSD equations presented in Eqs. (13.5)–(13.15) were implemented in the PSI3 elec-
tronic structure package [39]. All hybrid GPU/CPU computations were performed using the Dirac
GPU testbed system at NERSC, a single node of which consists of two Intel Xeon X5550 CPUs and
one Nvidia Tesla C2050 (Fermi) GPU. This combination of hardware is a good model for what will be
a standard node on next-generation supercomputers, such as the Titan system at Oak Ridge National
Laboratory. Computations using CC implementations in well-known electronic structure packages
(PSI3, NWChem [40], and Molpro [41]) were performed using the same CPUs. For these experi-
ments, both hybrid and pure-CPU computations were performed using a single node; GPU+CPU
computations use a single Tesla C2050 GPU and two Intel Xeon CPUs, and CPU computations use
two Intel Xeon CPUs. Both Molpro and NWChem make use of process-based parallelism through

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 288�

� �

�

288 Electronic Structure Calculations on Graphics Processing Units

0

200

400

600

800

1000

0 2000 4000 6000 8000 10,000 12,000 14,000

P
e

rf
o

rm
a

n
c
e

 (
G

F
)

Matrix size
(a)

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10,000 12,000 14,000

P
e
rf

o
rm

a
n
c
e
 r

a
ti
o

Matrix size
(b)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2000 4000 6000 8000 10,000 12,000 14,000

P
e
rf

o
rm

a
n
c
e
 r

a
ti
o

Matrix size
(c)

One Fermi C2070 GPU

Two Fermi C2070 GPU’s

One Kepler K20 GPU

Core i7-3930K

One Fermi C2070 GPU

Two Fermi C2070 GPU’s

One Kepler K20 GPU

One Fermi C2070 GPU

Two Fermi C2070 GPU’s

One Kepler K20 GPU

Figure 13.2 The (a) performance (in GF) of the blocked DGEMM algorithm outlined in Figure 13.1. The
performance of Fermi and Kepler GPUs are illustrated relative to that of the Intel Core i7 3930K CPU in
(b). The performance boost achieved by interleaving communication and computation is shown in (c)

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 289�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 289

// A CPU thread drives each GPU
if driving a GPU then

gpu_done = false
// Copy t2(±) to GPU.
cudaMemcpy t2(+)→GPU [o(o + 1)𝑣(𝑣 + 1)∕4 elements]
cudaMemcpy t2(-)→GPU [o(o + 1)𝑣(𝑣 + 1)∕4 elements]

// OpenMP parallelization over multiple GPUs
#pragma omp parallel for schedule(dynamic) num_threads(num_gpus)
for a ∈ 𝑣 do

// Block b dimension so 3-index tensors fit in GPU global memory.
// The maximum possible block size, Nb, is 𝑣 − a.
for B ∈ blocksB and b> a do

// For the current a, copy all Naux𝑣 integrals of BQ
ac.

cudaMemcpyAsync BQ
ac → GPU [Naux𝑣 elements]

// For the current block, B, copy Naux𝑣Nb integrals of BQ
bd

.

cudaMemcpyAsync BQ
bd

→ GPU [Naux𝑣Nb elements]
// Build subset of (ac|bd) tensor, Vbdc.
cublasDgemm, (𝑣2NbNaux)
// Build (±) integral tensors (on the device).
V(±)bcd = Vbdc ± Vbcd
// Contract integrals with amplitudes (+).
cublasDgemm (o(o + 1)𝑣(𝑣 + 1)Nb∕4)
// Copy residual, R, back to host and accumulate residual.
cudaMemcpyAsync R → CPU [o ∗ (o + 1)∕2 ∗ Nb elements]
// Contract integrals with amplitudes (-).
cublasDgemm (o(o + 1)𝑣(𝑣 + 1)Nb∕4)
// Copy residual, R, back to host and accumulate.
cudaMemcpyAsync R → CPU [o ∗ (o + 1)∕2 ∗ Nb elements]

end for
end for
gpu_done = true

else
// the remaining (num_gpu - num_cpu) threads evaluate other CC diagrams
if gpu_done == false then

CPU cores evaluate a diagram (or a block of a diagram)
else

break
end if

end if
// if any work is remaining, use interleaved GPU DGEMM algorithm

Figure 13.3 Pseudocode for the DF/CD-CCSD procedure. The ladder diagram, Aab
ij , is evaluated on

the GPU using the symmetric and antisymmetric tensors defined in Ref. [38] (here denoted by (±)).
From Ref. [5]

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 290�

� �

�

290 Electronic Structure Calculations on Graphics Processing Units

the Global Arrays toolkit [42, 43]. For all computations using these packages, seven of eight cores
were dedicated to computations, while one was reserved as a communication helper thread. It has
been shown that NWChem performs as well (and often significantly better) when one core is dedi-
cated to communication [44]. The native PSI3 CCSD implementation and our own CPU code utilize
shared-memory parallelism through threaded BLAS calls of the GotoBLAS2 library. For consistency,
all computations with all packages were performed using C1 point-group symmetry.

13.5.2 Density-Fitted CCSD

The computations using our density-fitted CCSD algorithm were performed on a single worksta-
tion consisting of a 6-core Intel Core i7-3930K (3.20 GHz) CPU with access to 64 GB RAM and
either a single Nvidia Tesla K20 (Kelper) GPU or two Nvidia Tesla C2070 (Fermi) GPUs. The
GPU-accelerated DF-CCSD algorithm was implemented in a development version of the Psi4 elec-
tronic structure package [45]. All computations were performed within the frozen core approxima-
tion. For an analysis of the performance of the underlying DF-CCSD CPU implementation, the reader
is directed to Ref. [35]. Again, all computations were performed using C1 point-group symmetry.

13.6 Results

13.6.1 Communication-Avoiding CCD

The performance of the low-communication GPU-CCD algorithm is compared to two well-known
electronic structure packages in Table 13.1. We consider hydrocarbons with as many as 20 carbon
atoms described by the modest 6-31G basis set. Timings correspond to only the iterative portions of
the CCD algorithm. For the GPU implementation, the initial integral push to the device is excluded.
Also, the CPU and GPU implementations of Ref. [3] do not involve any I/O-intensive procedures such
as the DIIS convergence acceleration. For Molpro and NWChem, the times corresponding to integral
generation and sorting were excluded. The C2050 GPU-CCD algorithm consistently outperforms all
other implementations on a per iteration basis.

Table 13.1 Comparison of CPU and GPU implementations of CCD

Ref. [3] X5550

Molecule o 𝑣 C2050 X5550 Molpro NWChem

C8H10 21 63 0.3 1.3 2.3 5.1
C10H8 24 72 0.5 2.5 4.8 10.6
C10H12 26 78 0.8 3.5 7.1 16.2
C12H14 31 93 2.0 10.0 17.6 42.0
C14H10 33 99 2.7 13.9 29.9 59.5
C14H16 36 108 4.5 21.6 41.5 90.2
C20 40 120 8.8a 40.3 103.0 166.3
C16H18 41 123 10.5a 50.2 83.3 190.8
C18H12 42 126 12.7a,b 50.3 111.8 218.4
C18H20 46 138 20.1a,b 86.6 157.4 372.1

Timings per CC iteration are given in seconds. The letters o and 𝑣 represent the number
of doubly occupied and virtual orbitals in each system, respectively.
aThe matrix–matrix multiplication involving (ac|bd) was tiled.
bSome two-electron integrals were pushed to the GPU every iteration.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 291�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 291

Using a single C2050 Fermi GPU, we observe improvements in the CCD iteration times of
4.0–5.2× relative to the threaded (eight threads) CPU implementation. This acceleration is consistent
with the relative performance of DGEMM using the GotoBLAS2 and CUBLAS implementations
of DGEMM on the CPU and GPU, respectively. As stated earlier, the limited global memory of
the GPU requires that, for larger calculations, the tensor contraction involving the 𝑣ab

cd block of
integrals be tiled. For C18H20, this block of integrals requires 2.7 GB storage. The time given in
Table 13.1 includes this integral transfer and the GPU implementation still performs 4.3× better
than the CPU code. An average CCD iteration is anywhere from 8 to 12× faster when using the
C2050 algorithm, relative to that in the Molpro package. For C18H20, a single iteration of the C2050
algorithm requires 20.1 seconds, while an average CCD iteration in Molpro requires 2.5 minutes.
The comparison to Molpro is not necessarily a fair one, and it does not accurately reflect the
utility of GPU processors relative to multicore CPUs. Our communication-avoiding GPU-CCD
algorithm involves zero I/O, and meaningful comparisons should only be drawn between it and
our corresponding CPU algorithm. The accelerations we observe (4–5×) are consistent with the
relative performance of DGEMM on GPU and CPU processors and represent an approxima-
tion to the upper-bound on performance that could be expected in a production-level iterative
CC algorithm.

Figure 13.4 illustrates the double-precision floating-point performance for the CPU and GPU-CCD
algorithms. The CPU algorithm achieves only 57 GF, while the GPU can achieve nearly 250 GF,
which corresponds to 50% of the theoretical peak performance for the C2050 GPU. Performance as a
function of system size is more varied for the GPU than the CPU, but we find that this is less of a prob-
lem for Fermi hardware after the release of CUDA 3.2 than with older generations of Tesla products
and older versions of CUDA. In fact, in our original implementation of GPU-CCD (before the release
of CUDA 3.2), performance was tightly coupled to system size, with large increases in performance
when matrix sizes matched GPU warp sizes. At that time, significant performance increases could
be obtained by padding the occupied and virtual spaces in an effort to yield warp-matched matrix
dimensions. With the release of CUDA 3.2, however, padding seems to have been built directly
into the DGEMM implementation; padding the occupied and virtual spaces has little positive
effect.

0

50

100

150

200

250

300

C
8 H

1
0

C
1
0 H

8

C
1
0 H

1
2

C
1
2 H

1
4

C
1
4 H

1
0

C
1
4 H

1
6

C
2

0

C
1
6 H

1
8

C
1
8 H

1
2

C
1
8 H

2
0

P
e

rf
o

rm
a

n
c
e

 (
G

F
/s

)

Molecule

Fermi C2050

Xeon X5550

Figure 13.4 Performance in GF (109 floating point operations per second) for different implementations
of spin-free CCD. Results are given for both CPU and GPU hardware, and CPU BLAS routines utilize eight
threads

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 292�

� �

�

292 Electronic Structure Calculations on Graphics Processing Units

13.6.2 Low-Storage CCD and CCSD

Avoiding communication altogether is a short-sighted approach to developing extensible GPU CC
software. The issue of limited global memory must eventually be addressed, and repeated memory
transfers will become necessary. Fortunately, the data at the bottom of Table 13.1 suggest that this
data motion might not completely negate the benefits of the GPU.

In this section, we illustrate the performance of a spin-free CCSD algorithm that stresses the impor-
tance of limited global memory over the desire to reduce communication. Essentially all data involved
in the CC equations (the ERI tensor and CC amplitudes) are transfered at least once to the GPU
during each iteration. We mask the overhead of these transfers by simultaneously performing opera-
tions on both CPU and GPU, and the larger number of small terms that arise in CCSD afford ample
opportunity to mask the costs of any host/device communication. The performance of the hybrid
GPU/CPU CCSD algorithm is compared on a per-iteration basis to the pure CPU algorithm and
several well-known electronic structure packages in Table 13.2. We consider the same set of hydro-
carbons presented in Table 13.1. The hybrid GPU/CPU algorithm consistently outperforms all other
CCSD implementations on a per iteration basis. In particular, the hybrid algorithm is found to be
2.8–4.1× faster than the corresponding pure CPU algorithm, and anywhere from 4.8× to 10.6× faster
per iteration than Molpro. Note that, in the small molecule limit, the hybrid CCSD algorithm does
not perform nearly as well relative to the CPU codes as the low-communication GPU-CCD algo-
rithm. While the hybrid algorithm is never slower than the CPU algorithm, the modest performance
improvement for the smaller systems suggest that these systems simply do not have enough work for
the GPU to do to fully mask the transfer overhead. However, in the large-molecule limit, the relative
performance of the hybrid algorithm increases, and we observe accelerations that we expect from
the relative performance of DGEMM on the CPU and GPU. Hence, for sufficiently large systems,
transfer times can be effectively masked by overlapping CPU and GPU computations.

Most chemical applications that use CCSD require much larger basis sets than the 6-31G basis used
in Table 13.2 for accurate results. As such, many electronic structure packages optimize their CCSD
codes for very large basis sets where 𝑣 ≫ o. In Table 13.3, we present timings for several molecules
in much larger basis sets. Consider methanol, CH3OH, described by an augmented triple-zeta basis
set. Here the virtual space is 25× larger than the occupied space, which is much more typical in a
state-of-the-art CC application. The hybrid code is less than 2× faster than the pure CPU code and
only marginally faster than Molpro. It is tempting to attribute the poor performance to the relative

Table 13.2 Comparison of CPUa and GPUb implementations of CCSD

GPU speedup

Molecule o 𝑣 GPUb CPUb Molpro NWChem PSI3 CPU Molpro

C8H10 21 63 0.5 1.4 2.4 8.4 7.9 2.80 4.80
C10H8 24 72 0.8 2.4 5.1 16.8 17.9 3.00 6.38
C10H12 26 78 1.3 3.8 7.2 25.2 23.6 2.92 5.54
C12H14 31 93 3.0 10.1 19.0 64.4 54.2 3.37 6.33
C14H10 33 99 3.9 14.0 31.0 90.7 61.4 3.59 7.94
C14H16 36 108 5.7 21.5 43.1 129.2 103.4 3.77 7.56
C20 40 120 9.6 38.0 102.0 233.9 162.6 3.96 10.63
C16H18 41 123 11.6 45.9 84.1 267.9 192.4 3.96 7.25
C18H12 42 126 12.9 50.9 116.2 304.5 216.4 3.95 9.01
C18H20 46 138 20.8 84.5 161.4 512.0 306.9 4.06 7.76

Timings per CC iteration are given in seconds. GPU speedup signifies the relative cost of CPU algorithms as compared
to the C2050 algorithm.
aUsing all eight cores of two Intel Xeon X5550 CPUs.
bUsing a single Nvidia C2050 GPU and two Intel Xeon X5550 CPUs.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 293�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 293

Table 13.3 Comparison of CPUa and GPUb implementations of CCSD in large basis sets

Iteration time (seconds) GPU speedup

Molecule Basis o 𝑣 GPUb CPUa Molpro CPU Molpro

CH3OH aug-cc-pVTZ 7 175 1.7 3.1 2.8 1.82 1.65
C6H6 aug-cc-pVDZ 15 171 4.2 10.9 17.4 2.60 4.14
CH3OSOOCH3 aug-cc-pVDZ 23 167 7.9 25.7 31.3 3.25 3.94
C10H12 cc-pVDZ 26 164 8.6 30.9 56.8 3.59 6.60

aUsing all eight cores of two Intel Xeon X5550 CPUs.
bUsing a single Nvidia C2050 GPU and two Intel Xeon X5550 CPUs.

sizes of the occupied and virtual spaces and thus the shape of the DGEMMs that arise in the CCSD
algorithm. Many of the tensor contractions in Eqs. (13.5)–(13.15) are far from square, particularly
the particle–particle ladder diagram. However, the timings for C10H12 tell a very different story. This
molecule is present in both Tables 13.2 and 13.3, first with 78 virtual orbitals and then with 164 virtual
orbitals. We see that more than doubling the size of the virtual space results in greater efficiency of
the hybrid code relative to both the pure CPU code and to Molpro. The performance of the hybrid
code is nearly independent of the relative sizes of the occupied and virtual spaces, and what actually
determines performance is the absolute size of these spaces. Each space must be large enough that
there is enough work to make efficient use of the GPU.

13.6.3 Density-Fitted CCSD

In the previous sections, we have described out efforts to establish a reasonable upper bound to the
potential performance advantages of GPUs over CPUs when solving the coupled-cluster equations.
Our proof-of-principle codes demonstrate that modest (4–5×) accelerations can be achieved by
carefully managing data motion and overlapping communication and computation. In this section,
we demonstrate that an efficient production-level GPU-accelerated CCSD implementation can be
achieved by adopting approximate representations of the ERI tensor, in the form of either DF or
CD. Our base algorithm is optimized for modern multicore CPUs, and it is competitive with other,
well known implementations of CCSD (performance data, in terms of the accuracy of the DF/CD
approximations and the efficiency of the algorithm, can be found in Ref. [35]). For a benzene trimer,
represented by the aug-cc-pVDZ basis set, a single iteration of the DF-CCSD algorithm requires
2150 seconds when using all six cores of the Core i7-3930K processor. A single iteration of the
CCSD algorithm in the Molpro [41] electronic structure package requires roughly 1.83× more
wall time using the same resources. For this example, we use DF in the CCSD equations, and the
auxiliary basis set is the aug-cc-pVDZ-RI basis set [46], optimized for density-fitted (or resolution
of the identity, RI) second-order perturbation theory (RI-MP2). Hence, the present DF-CCSD
implementation is a well-optimized base algorithm against which the GPU implementation can be
fairly judged. Furthermore, unlike the algorithms described previously in this chapter, the present
CPU and GPU codes both utilize DIIS convergence acceleration, and all timings presented include
this I/O dominated procedure.

Figure 13.5 illustrates the acceleration observed for GPU-enabled DF-CCSD using one Fermi
GPU, two Fermi GPUs, or a single Kepler GPU. This performance analysis suggests that there is little
reason to use GPUs for very small systems (e.g., five water molecules); a 1.2× acceleration does not
justify the cost of high-end compute-oriented graphics processors. However, for the largest systems
studied here, a single Fermi GPU can double the speed of a DF-CCSD iteration, and two Fermi GPUs
or a Kepler GPU can provide roughly 3× acceleration. These tests all utilize the cc-pVDZ basis set
(and the cc-pVDZ-RI auxiliary basis set), and (H2O)20 has 460 active basis functions.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 294�

� �

�

294 Electronic Structure Calculations on Graphics Processing Units

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

5 10 15 20

S
p

e
e

d
u

p

Number of water molecules

One Kepler GPU
Two Fermi GPU’s

One Fermi GPU

Figure 13.5 Speedup in the average DF-CCSD iteration time for clusters of water molecules (represented
by a cc-pVDZ basis set, using a cc-pVDZ-RI auxiliary basis set) using one Fermi C2070 GPU, two Fermi
C2070 GPUs, or one Kepler K20c GPU. The speedup is defined relative to the average iteration time for
DF-CCSD using all six cores of a Core i7-3930K processor

Table 13.4 Average iteration time (in seconds) for DF/CD-CCSD computations of adenine-thymine and
a benzene trimer represented by the aug-cc-pVDZ basis and the uracil dimer represented by the
aug-cc-pVTZ basisa

Adenine-thymineb Benzene trimerc Uracil dimerd,e

Aab
ij Total Speedup Aab

ij Total Speedup Aab
ij Total Speedup

Core i7-3930K 1134 2156 – 1665 2719 – 8590 11924 –
One Fermi C2070 703 1054 2.05 1082 1298 2.09 6095 6741 1.77
Two Fermi C2070 349 747 2.89 546 958 2.84 4159 4791 2.49
Kepler K20c 457 789 2.73 648 995 2.73 3826 4724 2.52

Computations using GPUs also made use of the host Intel Core i7 CPU during the iterations.
aFrom Ref. [5].
bUsing DF in the SCF (aug-cc-pVDZ-JK auxiliary basis) and CCSD (aug-cc-pVDZ-RI auxiliary basis) procedures.
cUsing CD (10−4 error threshold) in the SCF and CCSD procedures.
dUsing DF in the SCF (aug-cc-pVTZ-JK auxiliary basis) and CCSD (aug-cc-pVTZ-RI auxiliary basis) procedures.
eUsing frozen natural orbitals with a conservative 10−6 occupancy threshold.

Table 13.4 provides average iteration times for the GPU-enabled DF/CD-CCSD algorithm
described above using several different GPU/CPU configurations. For our test cases, we have chosen
several nonbonded complexes: the hydrogen-bonded configuration of adenine-thymine [47], a uracil
dimer [47], and a benzene trimer whose coordinates are taken from the crystal structure of Bacon
et al. [48]. Adenine-thymine and the benzene trimer are represented by an aug-cc-pVDZ basis set
and have 517 and 558 active orbitals, respectively. The uracil dimer is represented by the larger
aug-cc-pVTZ basis set. We use frozen natural orbital (FNO) techniques to truncate the virtual space
[49–54] (with a conservative occupation threshold of 10−6); the resulting system has 822 active
basis functions. For the molecules represented by the aug-cc-pVDZ basis set, we see that the use
of a single Fermi C2070 GPU doubles the efficiency of the computation. The addition of a second
Fermi only improves the total iteration speed by factors of 1.41 and 1.35 for adenine-thymine and
the benzene trimer, respectively, but, interestingly, we see that the evaluation of the Aab

ij diagram

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 295�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 295

scales almost perfectly going from one to two Fermi GPUs. The total iteration time does not
improve by a factor of 2 because some time-consuming steps do not make use of available GPU
resources. For example, these average iteration times include all tasks that arise in a standard CCSD
algorithm, including the I/O-intensive DIIS convergence acceleration procedure. For the uracil dimer
represented by the larger aug-cc-pVTZ basis set, we observe similar performance for each graphics
processor. A single Fermi GPU provides a modest acceleration of 1.77×, while two Fermi GPUs or
a Kepler provide similar accelerations of about 2.5× relative to the base, CPU-only implementation.

GPU global memory is and will likely remain quite limited as compared to that available on the
host CPU. For example, the K20c and C2070 GPUs have only 4.6 and 5.25 GB of global memory,
respectively (with ECC memory enabled). We have designed our implementation with these limi-
tations in mind. The simple blocked DGEMM algorithm presented in Figure 13.1 is tiled such that
GPU global memory can accomodate all input and output buffers. In the DF/CD-CCSD implemen-
tation, the evaluation of the Aab

ij diagram should be similarly blocked. As shown in Figure 13.3, the

present algorithm requires that 1

2
o2𝑣2 double precision numbers fit on the device. This assumption is

not unreasonable for systems with up to roughly 800 active basis functions (like the uracil dimer with
aug-cc-pVTZ basis). However, at some point, this algorithm will fail because we cannot store 1

2
o2𝑣2

double precision numbers on the GPU. To avoid this limitation, we could block the diagram over
all unique ij pairs; depending on the loop structure, this choice would result in either (i) redundant
construction of the (vv|vv) block of the ERI tensor from three-index integrals or (ii) the repeated
transfer of the coupled-cluster amplitudes to the device. Alternatively, we could choose a subset of
ij pairs for which the evaluation of Aab

ij is possible on the GPU and evaluate the remaining terms
using CPU resources (or other GPUs). This blocking structure is a natural starting point for future
distributed parallel GPU-accelerated DF/CD-CCSD implementations.

13.7 Conclusions

We have reviewed several strategies for porting iterative coupled-cluster methods to heterogenous
computing environments. Our initial investigation was based on a minimal communication model in
which the CCD equations were solved entirely on a GPU. From a chemical perspective, the imple-
mentation was of little use, as only very small systems could be treated. However, the implementation
established a true upper-bound to the performance increases that one can reasonably expect when
executing iterative coupled cluster on graphics processors; the expected acceleration is tied to the
relative performance of DGEMM on the CPU and GPU. Next, we explored the effects of data trans-
fers on the performance of a spin-free CCSD algorithm. Again, for modest systems, the relative
GPU/CPU performance for the overall CCSD algorithm was very similar to that of the implementa-
tions of DGEMM upon which the algorithms were built. Importantly, we demonstrated that careful
algorithm design, particularly with respect to the simultaneous use of both CPU and GPU proces-
sors, can mitigate the cost of large amounts of data motion across the PCI bus. Two very important
(and somewhat obvious, in hindsight) conclusions can be drawn from these initial explorations: (i)
work is best distributed between CPU and GPU in terms of entire diagrams and (ii) asynchronous
memory transfers are absolutely necessary to effectively mask the cost associated with moving data
between host and device. Finally, we presented a robust implementation of GPU CCSD that utilized
either DF or CD approximations to factorize the ERI tensor. The DF/CD approximations substan-
tially reduce the amount of data that must be transferred to the device each iteration and, coupled with
a t1-transformation of the Hamiltonian, greatly simplify the spin-free CCSD equations. Using two
Fermi C2070 GPUs or a single Kepler K20c GPU, the CCSD equations could be solved roughly 3×
more efficiently than when utilizing all six cores of an Intel Core i7 3930k CPU. The accelerations
from GPUs were not as impressive as those observed for our initial, proof-of-concept algorithms, but

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 296�

� �

�

296 Electronic Structure Calculations on Graphics Processing Units

this reduction in performance is an unavoidable consequence of extending the implementation to the
treatment of more than 800 active orbitals. A threefold acceleration may seem modest, but, given that
CCSD computations can take days or weeks on a single workstation, the observed speedup is of real
practical benefit. The present algorithm achieves this performance by (i) interleaving computation
and communication in tensor contractions performed on the device and (ii) ensuring that no CPU
cores are idle while the GPU evaluates the most computationally demanding diagrams.

Acknowledgments

AED acknowledges support from the National Science Foundation American Competitiveness in
Chemistry Postdoctoral Fellowship (CHE-1137288) and the Computational Postdoctoral Fellowship
program at Argonne National Laboratory. CDS acknowledges support from the National Science
Foundation (ACI-1147843). This research used the “Dirac” GPU testbed system of the National
Energy Research Scientific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under contract no. DE-AC02-05CH11231. This research used resources
of the Argonne Leadership Computing Facility (ALCF) and Laboratory Computing Resource Center
at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department
of Energy under contract no. DE-AC02-06CH11357.

References

1. Macedonia, M. (2003) The GPU enters computing’s mainstream. Computer, 36, 106–108.
2. Nickolls, J. and Dally, W. (2010) The GPU computing era. IEEE Micro, 30, 56–69.
3. DePrince, A.E. and Hammond, J.R. (2011) Coupled cluster theory on graphics processing units

I. The coupled cluster doubles method. J. Chem. Theory Comput., 7, 1287–1295.
4. DePrince, A. and Hammond, J. (2011) Quantum chemical many-body theory on heterogeneous

nodes. Application Accelerators in High-Performance Computing (SAAHPC), 2011 Symposium
on, pp. 131–140.

5. DePrince, A.E., Kennedy, M.R., Sumpter, B.G. and Sherrill, C.D. (2014) Density-fitted singles
and doubles coupled cluster on graphics processing units. Mol. Phys., 112, 844–852.

6. Purvis, G.D. and Bartlett, R.J. (1982) A full coupled-cluster singles and doubles model: the
inclusion of disconnected triples. J. Chem. Phys., 76, 1910–1918.

7. Raghavachari, K., Trucks, G.W., Pople, J.A. and Head-Gordon, M. (1989) A fifth-order pertur-
bation comparison of electron correlation theories. Chem. Phys. Lett., 157, 479–483.

8. Ma, W., Krishnamoorthy, S., Villa, O. and Kowalski, K. (2010) Acceleration of streamed tensor
contraction expressions on GPGPU-based clusters. IEEE International Conference on Cluster
Computing, pp. 207–216.

9. Ma, W., Krishnamoorthy, S., Villa, O. and Kowalski, K. (2011) GPU-based implementations of
the noniterative regularized-CCSD(T) corrections: applications to strongly correlated systems.
J. Chem. Theory Comput., 7, 1316–1327.

10. Asadchev, A. and Gordon, M.S. (2013) Fast and flexible coupled cluster implementation. J.
Chem. Theory Comput., 9, 3385–3392.

11. Melicherčík, M., Demovič, L. and Michal Pitoňák, P.N. (2010) Acceleration of CCSD(T) com-
putations using technology of graphical processing unit.

12. Pulay, P. (1980) Convergence acceleration of iterative sequences. The case of SCF iteration.
Chem. Phys. Lett., 73, 393–398.

13. Scuseria, G.E., Lee, T.J. and Schaefer, H.F. (1986) Accelerating the convergence of the
coupled-cluster approach. The use of the DIIS method. Chem. Phys. Lett., 130, 236–239.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 297�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 297

14. Piecuch, P., Kucharski, S.A., Kowalski, K. and Musiał, M. (2002) Efficient computer imple-
mentation of the renormalized coupled-cluster methods: the R-CCSD[T], R-CCSD(T),
CR-CCSD[T], and CR-CCSD(T) approaches. Comput. Phys. Commun., 149, 71–96.

15. Scuseria, G.E. and Schaefer, H.F. III (1989) Is coupled cluster singles and doubles (CCSD) more
computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys., 90,
3700–3703.

16. Koch, H., Christiansen, O., Kobayashi, R., Jørgensen, P. and Helgaker, T. (1994) A direct atomic
orbital driven implementation of the coupled-cluster singles and doubles (CCSD) model. Chem.
Phys. Lett., 228, 233–238.

17. Whitten, J.L. (1973) Coulombic potential-energy integrals and approximations. J. Chem. Phys.,
58, 4496–4501.

18. Dunlap, B.I., Connolly, J.W.D. and Sabin, J.R. (1979) On some approximations in applications
of X𝛼 theory. J. Chem. Phys., 71, 3396–3402.

19. Feyereisen, M., Fitzgerald, G. and Komornicki, A. (1993) Use of approximate integrals in Ab
initio theory. An application in MP2 calculations. Chem. Phys. Lett., 208, 359–363.

20. Vahtras, O., Almlöf, J. and Feyereisen, M.W. (1993) Integral approximations for LCAO-SCF
calculations. Chem. Phys. Lett., 213, 514–518.

21. Rendell, A.P. and Lee, T.J. (1994) Coupled-cluster theory employing approximate integrals: an
approach to avoid the input/output and storage bottlenecks. J. Chem. Phys., 101, 400–408.

22. Weigend, F. (2002) A fully direct RI-HF algorithm: implementation, optimized auxiliary basis
sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys., 4, 4285–4291.

23. Sodt, A., Subotnik, J.E. and Head-Gordon, M. (2006) Linear scaling density fitting. J. Chem.
Phys., 125, 194109.

24. Werner, H.-J., Manby, F.R. and Knowles, P.J. (2003) Fast linear scaling second-order
Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J.
Chem. Phys., 118, 8149–8160.

25. Beebe, N.H.F. and Linderberg, J. (1977) Simplifications in the generation and transformation of
two-electron integrals in molecular calculations. Int. J. Quantum Chem., 12, 683–705.

26. Roeggen, I. and Wisloff-Nilssen, E. (1986) On the Beebe-Linderberg 2-electron integral approx-
imation. Chem. Phys. Lett., 132, 154–160.

27. Koch, H., de Meras, A.S. and Pedersen, T.B. (2003) Reduced scaling in electronic structure
calculations using Cholesky decompositions. J. Chem. Phys., 118, 9481–9484.

28. Aquilante, F., Pedersen, T.B. and Lindh, R. (2007) Low-cost evaluation of the exchange Fock
matrix from Cholesky and density fitting representations of the electron repulsion integrals. J.
Chem. Phys., 126, 194106.

29. Hohenstein, E.G., Parrish, R.M. and Martínez, T.J. (2012) Tensor hypercontraction density fit-
ting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. J. Chem.
Phys., 137, 044103.

30. Parrish, R.M., Hohenstein, E.G., Martínez, T.J. and Sherrill, C.D. (2012) Tensor hypercontrac-
tion. II. Least-squares renormalization. J. Chem. Phys., 137, 224106.

31. Christiansen, O., Koch, H. and Jørgensen, P. (1995) The second-order approximate coupled clus-
ter singles and doubles model CC2. Chem. Phys. Lett., 243, 409–418.

32. Hattig, C. and Weigend, F. (2000) CC2 excitation energy calculations on large molecules using
the resolution of the identity approximation. J. Chem. Phys., 113, 5154–5161.

33. Pitonak, M., Aquilante, F., Hobza, P., Neogrady, P., Noga, J. and Urban, M. (2011) Parallelized
implementation of the CCSD(T) method in MOLCAS using optimized virtual orbitals space and
Cholesky decomposed two-electron integrals. Collect. Czech. Chem. Commun., 76, 713–742.

34. Boström, J., Pitoňák, M., Aquilante, F., Neogrády, P., Pedersen, T.B. and Lindh, R. (2012) Cou-
pled cluster and Møller-Plesset perturbation theory calculations of noncovalent intermolecular

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 298�

� �

�

298 Electronic Structure Calculations on Graphics Processing Units

interactions using density fitting with auxiliary basis sets from Cholesky decompositions. J.
Chem. Theory Comput., 8, 1921–1928.

35. DePrince, A.E. and Sherrill, C.D. (2013) Accuracy and efficiency of coupled-cluster theory using
density fitting/Cholesky decomposition, frozen natural orbitals, and a t1-transformed hamilto-
nian. J. Chem. Theory Comput., 9, 2687–2696.

36. Epifanovsky, E., Zuev, D., Feng, X., Khistyaev, K., Shao, Y. and Krylov, A.I. (2013) General
implementation of the resolution-of-the-identity and Cholesky representations of electron repul-
sion integrals within coupled-cluster and equation-of-motion methods: theory and benchmarks.
J. Chem. Phys., 139, 134105.

37. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S.,
Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. Jr. (1993)
General atomic and molecular electronic structure system. J. Comput. Chem., 14, 1347–1363.

38. Scuseria, G.E., Janssen, C.L. and Schaefer, H.F. III (1988) An efficient reformulation of the
closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys., 89,
7382.

39. Crawford, T.D., Sherrill, C.D., Valeev, E.F., Fermann, J.T., King, R.A., Leininger, M.L., Brown,
S.T., Janssen, C.L., Seidl, E.T., Kenny, J.P. and Allen, W.D. (2007) PSI3: an open-source Ab
Initio electronic structure package. J. Comput. Chem., 28, 1610–1616.

40. Bylaska, E.J., de Jong, W.A., Govind, N., Kowalski, K., Straatsma, T.P., Valiev, M., van Dam,
H.J.J., Wang, D., Aprà, E., Windus, T.L., Hammond, J., Autschbach, J., Nichols, P., Hirata, S.,
Hackler, M.T., Zhao, Y., Fan, P.-D., Harrison, R.J., Dupuis, M., Smith, D.M.A., Nieplocha,
J., Tipparaju, V., Krishnan, M., Vazquez-Mayagoitia, A., Wu, Q., Voorhis, T.V., Auer, A.A.,
Nooijen, M., Crosby, L.D., Brown, E., Cisneros, G., Fann, G.I., Früchtl, H., Garza, J., Hirao,
K., Kendall, R., Nichols, J.A., Tsemekhman, K., Wolinski, K., Anchell, J., Bernholdt, D.,
Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K., Elwood, D., Glendening,
E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J., Kobayashi, R., Kutteh, R., Lin, Z.,
Littlefield, R., Long, X., Meng, B., Nakajima, T., Niu, S., Pollack, L., Rosing, M., Sandrone, G.,
Stave, M., Taylor, H., Thomas, G., van Lenthe, J., Wong, A. and Zhang, Z. (2010) NWChem, A
Computational Chemistry Package for Parallel Computers, Version 6.0.

41. Werner, H.-J., Knowles, P.J., Manby, F.R., Schütz, M., Celani, P., Knizia, G., Korona, T., Lindh,
R., Mitrushenkov, A., Rauhut, G., Adler, T.B., Amos, R.D., Bernhardsson, A., Berning, A.,
Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Goll, E., Hampel, C., Hesselmann, A.,
Hetzer, G., Hrenar, T., Jansen, G., Köppl, C., Liu, Y., Lloyd, A.W., Mata, R.A., May, A.J., McNi-
cholas, S.J., Meyer, W., Mura, M.E., Nicklass, A., Palmieri, P., Pflüger, K., Pitzer, R., Reiher,
M., Shiozaki, T., Stoll, H., Stone, A.J., Tarroni, R., Thorsteinsson, T., Wang, M. and Wolf, A.
(2010) MOLPRO, version 2010.1, a package of Ab initio programs, see http://www.molpro
.net (accessed 21 September 2015).

42. Nieplocha, J., Harrison, R.J. and Littlefield, R.J. Global arrays: a portable “shared-memory”
programming model for distributed memory computers. Proceedings of the 1994 conference on
Supercomputing, IEEE Computer Society Press, Los Alamitos, CA, Supercomputing ’94, pp.
340–349.

43. Nieplocha, J., Harrison, R.J. and Littlefield, R.J. (1996) Global arrays: a nonuniform memory
access programming model for high-performance computers. J. Supercomput., 10, 169–189.

44. Hammond, J.R., Krishnamoorthy, S., Shende, S., Romero, N.A. and Malony, A.D. (2011) Per-
formance Characterization of Global Address Space Applications: a Case Study with NWChem.

45. Turney, J.M., Simmonett, A.C., Parrish, R.M., Hohenstein, E.G., Evangelista, F.A., Fermann,
J.T., Mintz, B.J., Burns, L.A., Wilke, J.J., Abrams, M.L., Russ, N.J., Leininger, M.L., Janssen,
C.L., Seidl, E.T., Allen, W.D., Schaefer, H.F., King, R.A., Valeev, E.F., Sherrill, C.D. and Craw-
ford, T.D. (2012) Psi4: an open-source Ab initio electronic structure program. Wiley Interdiscip.
Rev. Comput. Mol. Sci., 2, 556–565.

http://www.molpro.net
http://www.molpro.net

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 299�

� �

�

Iterative Coupled-Cluster Methods on Graphics Processing Units 299

46. Weigend, F., Köhn, A. and Hättig, C. (2002) Efficient use of the correlation consistent basis sets
in resolution of the identity MP2 calculations. J. Chem. Phys., 116, 3175–3183.

47. Jurečka, P., Šponer, J., Černý, J. and Hobza, P. (2006) Benchmark database of accurate (MP2 and
CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base
pairs, and amino acid pairs. Phys. Chem. Chem. Phys., 8, 1985–1993.

48. Bacon, G.E., Curry, N.A. and Wilson, S.A. (1964) A crystallographic study of solid benzene by
neutron diffraction. Proc. R. Soc. London, Ser. A, 270, 98–110.

49. Sosa, C., Geersten, J., Trucks, G.W., Barlett, R.J. and Franz, J.A. (1989) Selection of the reduced
virtual space for correlated calculations - an application to the energy and dipole-moment of H2O.
Chem. Phys. Lett., 159, 148–154.

50. Klopper, W., Noga, J., Koch, H. and Helgaker, T. (1997) Multiple basis sets in calculations of
triples corrections in coupled-cluster theory. Theor. Chem. Acc., 97, 164–176.

51. Taube, A.G. and Bartlett, R.J. (2005) Frozen natural orbitals: systematic basis set truncation for
coupled-cluster theory. Collect. Czech. Chem. Commun., 70, 837–850.

52. Taube, A.G. and Bartlett, R.J. (2008) Frozen natural orbital coupled-cluster theory: forces and
application to decomposition of nitroethane. J. Chem. Phys., 128, 164101.

53. Landau, A., Khistyaev, K., Dolgikh, S. and Krylov, A.I. (2010) Frozen natural orbitals for ionized
states within equation-of-motion coupled-cluster formalism. J. Chem. Phys., 132, 014109.

54. DePrince, A.E. and Sherrill, C.D. (2013) Accurate noncovalent interaction energies using trun-
cated basis sets based on frozen natural orbitals. J. Chem. Theory Comput., 9, 293–299.

Trim Size: 170mm x 244mm Walker c13.tex V3 - 01/09/2016 10:32 A.M. Page 300�

� �

�

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 301�

� �

�

14
Perturbative Coupled-Cluster

Methods on Graphics Processing
Units: Single- and Multi-Reference

Formulations

Wenjing Ma1, Kiran Bhaskaran-Nair2, Oreste Villa3, Edoardo Aprà2, Antonino Tumeo4,
Sriram Krishnamoorthy4 and Karol Kowalski2

1Institute of Software, Chinese Academy of Sciences, Beijing, China
2William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific

Northwest National Laboratory, Richland, WA, USA
3Nvidia, Santa Clara, CA, USA

4Computational Sciences and Mathematics Division, Pacific Northwest National
Laboratory, Richland, WA, USA

In this chapter, we discuss the implementation of perturbative coupled-cluster methods on graph-
ics processing units and their implementation within the NWChem quantum chemistry software
package. Both single and multi-reference formulations are discussed with the background theory
provided for both. This is followed by an overview of the NWChem software architecture and how
coupled-cluster methods are handled on GPUs within the global arrays framework that the NWChem
software uses. We talk about specific optimizations used to improve performance of the GPU imple-
mentation as well as the specifics of the hybrid CPU–GPU (central processing unit–graphics process-
ing unit approach that we employ. Finally, we show performance for CCSD(T) and MRCCSD(T) on
GPU cluster and HPC hardware.

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 302�

� �

�

302 Electronic Structure Calculations on Graphics Processing Units

14.1 Introduction

Recent progress in computational algorithms allows high-order quantum chemistry methods to simu-
late realistic molecular systems and processes. A growing body of evidence indicates that the proper
inclusion of electron correlation effects is necessary for an accurate description of the mechanisms
underlying chemical reactivity, molecular properties, and interactions of light with matter. The avail-
ability of reliable methods for benchmarking medium-size systems provides an opportunity to propa-
gate high-level accuracy across spatial scales through proper calibration of low-order methodologies
and through coupling of high-accuracy methods with multiscale approaches. However, realistic sys-
tems still pose a significant challenge for higher order approaches due to the steep computational cost.
For canonical many-body formulations, where no simplifications are made regarding the assumed
form of the inter-electron interactions, the utilization of parallel computer architectures is indispens-
able in addressing their polynomial (in system-size) numerical scaling. Methodologies that combine
high numerical complexity with appropriate data granularity are the best candidates for efficient uti-
lization of modern large-scale computer architectures that can comprise hundreds of thousands of
computational cores and complex heterogeneity in the form of accelerators. In this context, the steep
numerical scaling of the coupled-cluster (CC) methods [1] has been alleviated through efficient par-
allel implementations (see Ref. [2] and references therein). Moreover, several implementations of the
CC methods are capable of utilizing multiple levels of parallelism, which are related to the algebraic
structure of the underlying equations describing correlation effects between electrons. An excellent
example is provided by the multi-reference coupled-cluster (MRCC) methods, where equations corre-
sponding to various references spanning the model space can be calculated using separate processor
groups (PGs). In recent work we have referred to this coarse-grain parallelism as reference-level
parallelism (RLP) [3]. Several numerical studies have demonstrated that RLP enables a significant
increase in the size of systems that are tractable by MRCC methods.

The emergence of heterogeneous computing systems has had a tremendous impact on the land-
scape of high-performance scientific computing. In particular, the rise of GPUs for general compu-
tation, as discussed in Chapter 2, supports substantially higher computational intensity within lower
cost and power budgets. This has led to significant interest in the porting and optimization of scientific
applications for GPUs with numerous examples of successful development of GPU-based software
in computational chemistry published in the literature [4–33] and discussed in the other chapters of
this book. While the previous chapter dealt with iterative CC methods, the focus of this chapter is
specifically on the optimization of noniterative CC implementations for GPUs.

As discussed in Chapter 2, the advent of the CUDA as well as OpenCL programming models and
OpenACC directives has greatly simplified the design of applications on GPUs. These programming
models expose GPU resources as a collection of thread blocks rather than as an image-processing
pipeline. These thread blocks are then programmed using a C-like language. While this simplifies
the initial design of an application targeting GPUs, maximal utilization of GPU resources continues
to require significant optimization effort.

In this chapter, we discuss approaches to efficiently map CC methods to GPUs. This includes
effective parallelization of the tensor expressions, mapping them to the thread blocks, effectively
utilizing the memory shared among the threads, maximizing data reuse, and effectively scheduling
the data transfer between the CPUs and GPUs. The optimizations are specifically tailored to exploit
the characteristics of the tensor contraction expression and the architectural characteristics of modern
GPUs. To effectively utilize all compute cores in a node, both CPU and GPU, we employ a hybrid
scheduling algorithm that dynamically load-balances the parallel units of work between the CPU and
the GPU.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 303�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 303

14.2 Overview of Electronic Structure Methods

In this chapter, we will give a short overview of two basic CC formalisms: single-reference
coupled-cluster (SRCC) and MRCC methods. We will also stress the connections between the
algebraic forms of the equations and parallelization strategies.

14.2.1 Single-Reference Coupled-Cluster Formalisms

The CC theory [1, 34–37] is predicated on the assumption that there exists a judicious choice of
a single Slater determinant |Φ⟩, referred to as a reference function, which is capable of providing
a zeroth-order description of the ground-state electronic state described by the wave function |Ψ⟩.
Usually, for closed-shell systems these reference wave functions are chosen as Hartree–Fock (HF)
determinants, although other choices have been discussed in the literature. The existence of a ref-
erence function in most cases implies that the many-body perturbation theory (MBPT) expansion
based on the Møller–Plesset partitioning of the electronic Hamiltonian H is convergent. Therefore, as
a simple consequence of the linked cluster theorem (LCT) [38], energy and the corresponding wave
function can be represented in the form of connected and linked diagrams, respectively. The LCT
also forms a foundation for the CC representation of the wave function in the form of the exponential
ansatz:

|Ψ⟩ = eT |Φ⟩, (14.1)

where the cluster operator T is represented by connected diagrams only. A standard way of introduc-
ing “working” CC equations for the cluster operator is to introduce Eq. (14.1) into the Schrödinger
equation, that is,

HeT |Φ⟩ = EeT |Φ⟩, (14.2)

and premultiply both sides of Eq. (14.2) by e−T

e−T HeT |Φ⟩ = E|Φ⟩. (14.3)

Using the Baker–Campbell–Hausdorff lemma

e−BAeB = A + [A,B] + 1
2!
[[A,B],B] + 1

3!
[[[A,B],B],B] + · · · , (14.4)

one can show that Eq. (14.2) can be cast into the following form:

(HeT)C|Φ⟩ = E|Φ⟩, (14.5)

where the subscript “C” designates connected diagrams connected diagrams of a given operator
expression. By projecting Eq. (14.5) onto all possible excited configurations |Φa1 ···an

i1 ···in
⟩ with respect to

the reference determinant |Φ⟩, one can decouple the equations for the cluster amplitudes:

⟨Φa1 ···an
i1 ···in

|(HeT)C|Φ⟩ = 0 (14.6)

from the equation for the energy, obtained by projecting Eq. (14.5) onto the reference function

E = ⟨Φ|(HeT)C|Φ⟩. (14.7)

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 304�

� �

�

304 Electronic Structure Calculations on Graphics Processing Units

The above equations have become the standard equations for determining cluster amplitudes and
corresponding energies. One should notice that, first, the nonlinear equations for the T operator need
to be solved iteratively before the energy can be calculated using the known cluster amplitudes.

In practical applications, the cluster operator is approximated by a many-body expansion truncated
at a certain excitation level mA (mA ≪ N, where N designates the number of correlated electrons in
the system):

T =
mA∑
n=1

Tn, (14.8)

where Tn is a part of the cluster operator T , which produces n-tuple excitations when acting on the
reference function. The structure of such approximations leads to a well-known “accuracy” hierarchy
of the CC methods corresponding to the inclusion of higher rank excitations:

CCD < CCSD < CCSDT < CCSDTQ < · · · < FullCC(≡ FCI), (14.9)

where CCD [1], CCSD [37], CCSDT [39–41], and CCSDTQ [42, 43] approaches are defined by
T ≃ T2, T ≃ T1 + T2, T ≃ T1 + T2 + T3, and T ≃ T1 + T2 + T3 + T4, respectively. Although it has
been shown that inclusion of higher order clusters provides more accurate estimates of the energy, this
procedure quickly becomes numerically infeasible due to the cost of inclusion of higher rank clusters.
The numerical complexity of CC approximations grows rapidly with the rank of cluster operators.
For example, while CCD and CCSD approaches are characterized by n2

on4
u numerical scaling (no and

nu refer to the number of occupied and unoccupied orbitals), for the CCSDT and CCSDTQ meth-
ods this scaling amounts to n3

on5
u and n4

on6
u, respectively. Even though the cost of the CCSD methods

seems to be relatively low compared to the numerical scaling of the CCSDTQ method, one should
realize that performing calculations for a water pentamer will be 56 = 15, 625 times more expensive
compared to the calculations for a water monomer (assuming that the same basis set is used). The
growth in the numerical cost looks even more intimidating for higher order methods.

Unfortunately, in many calculations, especially in the area of thermochemistry, it quickly became
clear that the accuracies of CCSDT are needed. An efficient way of addressing this issue is to consider
the links between SRCC theory and MBPT expansion. MBPT techniques enable one to determine a
hierarchical structure of particular correlation effects. For example, the Møller–Plesset perturbation
theory [44] establishes the following structure of the cluster operator:

T2 = T (1)
2 + T (2)

2 + T (3)
2 + · · · (14.10)

T1 = T (2)
1 + T (3)

1 + T (4)
1 + · · · (14.11)

T3 = T (2)
3 + T (3)

3 + T (4)
3 + · · · (14.12)

T4 = T (3)
4 + T (4)

4 + T (5)
4 + · · · (14.13)

· · · ,

where the order of the perturbation expansion is denoted as the superscript. One can show that
the triply excited clusters in the second order of perturbation theory can be expressed in terms of
first-order doubly excited cluster amplitudes, for example,

T (2)
3 |Φ⟩ = R(0)

3 VNT (1)
2 |Φ⟩, (14.14)

where VN is the two-body part of the Hamiltonian in normal ordered form HN = H − ⟨Φ|H|Φ⟩ =
FN + VN , and R(0)

3 is a three-body resolvent operator

R(0)
3 =

∑
i<j<k;a<b<c

|Φabc
ijk ⟩⟨Φabc

ijk |
𝜖i + 𝜖j + 𝜖k − 𝜖a − 𝜖b − 𝜖c

, (14.15)

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 305�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 305

where 𝜖’s refer to the HF orbital energies. Using similar arguments the authors of Ref. [45] have
introduced the corrections to the energy obtained in the CCSD calculations (ECCSD):

ECCSD(T) = ECCSD + ⟨Φ|T+
2 VNR(0)

3 VT2|Φ⟩ + ⟨Φ|T+
1 VNR(0)

3 VT2|Φ⟩ , (14.16)

which defines the so-called CCSD(T) approach. An important feature of the CCSD(T) approach
is the fact that it combines elements of fourth and fifth order of the standard MBPT expansion
containing triply excited intermediate states. The CCSD(T) approach can also be viewed as an
extension of the CCSD[T] method [46]. Currently, the CCSD(T) method is the most frequently
employed CC approach especially in studies of spectroscopic properties, geometry optimization,
and chemical reactions.

The indisputable success of the CCSD(T) method in describing nondegenerate electronic states
has sparked an interest toward extension of the perturbative methods accounting for the effect of
triples toward more challenging cases where the wave function is no longer dominated by a single
determinant. This is a typical situation encountered in bond-breaking/forming processes.

Significant progress in addressing these challenges has been achieved by developing perturbative
techniques based on the partitioning of similarity-transformed Hamiltonians [47–49]. These ideas
have spawned into several formulations of noniterative ground-state corrections [50–58]. Another
class of methods tackling the problem of bond-breaking processes is anchored in the method of
moments (MMCC) formalism [59], where the expansion for the exact energy is expressed in terms
of nonvanishing moments corresponding to the approximate CC approaches. The algebraic structure
of these expansions makes them a very efficient tool in designing noniterative approaches. Especially
effective in recovering the correlation effects is the recently introduced variant of the MMCC method
based on the use of left eigenvectors of the similarity-transformed Hamiltonian (see the CR-CC(2,3)
and CR-CC(2,4) approaches introduced by Piecuch et al. [60, 61]).

Recently, a new formalism, which combines a new form of the moment expansion with regu-
larization of the cluster operator, has emerged. In the so-called generating functional (GF) moment
expansion [62] (or GF expansion for short), the exact energy (E) is expressed in terms of approximate
CC energy (E(A)), the moments of the CC equations (M̄J , J labels here excited configurations), and
derivatives of the GF (W), which corresponds to a connected part of the overlap between exact and
auxiliary wave functions in the exponential parametrization, defined by Σ and S cluster operators,
respectively.

E = E(A) +
∑

J;J≠0

M̄(A)
J

[
𝜕

𝜕SJ

W(Σ, S)
]
|S(A)=T(A) ;S(R)=0, (14.17)

where
W(Σ, S) = ln⟨Φ|(eΣ+eS)C|Φ⟩. (14.18)

The validity of the expansion (14.17) is limited only to regions where the correlation effects are
characterized by rather small values of corresponding cluster amplitudes. In order to extend the GF
expansion to strongly interacting systems, the regularization of cluster amplitudes is necessary. These
factors have been included in the design of the regularized version of the CCSD(T) (Reg-CCSD(T))
[63], which is defined by a formula analogous to Eq. (14.16):

Ereg–CCSD(T) = ECCSD + ⟨Φ|(Σ+
reg,2VN)R

(0)
3 (𝜔2)VT2|Φ⟩ + ⟨Φ|Σ+

reg,1VNR(0)
3 (𝜔2)VT2|Φ⟩, (14.19)

where Σreg,1 and Σreg,2 are regularized cluster operators, 𝜔2 is a regularization parameter, and R(0)
3 (𝜔2)

is a 𝜔2-dependent three-body resolvent

R(0)
3 (𝜔2) =

∑
i<j<k;a<b<c

|Φabc
ijk ⟩⟨Φabc

ijk |
𝜖i + 𝜖j + 𝜖k − 𝜖a − 𝜖b − 𝜖c − 3𝜔2

. (14.20)

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 306�

� �

�

306 Electronic Structure Calculations on Graphics Processing Units

Similar regularization techniques based on the Tikhonov regularization have been used to alleviate
problems encountered by the linear SRCC formulations in the quasi-degenerate regime [64]. For
𝜔2 = 0, the Reg-CCSD(T) approach is identical to the original CCSD(T) formulation. It has been
demonstrated that the regularization algorithm, Eq. (14.19), leads to significant improvements of
the CCSD(T) results in the geometry regions corresponding to stretched nuclear geometries [63].
It should also be mentioned that the Reg-CCSD(T) and CCSD(T) approaches are characterized by
the same numerical overhead proportional to n3

on4
u. As mentioned earlier, the expressions for the

Reg-CCSD(T) and CCSD(T) methods have the same algebraic structure. Therefore, the GPU imple-
mentation for the noniterative Reg-CCSD(T) methods also provides the GPU implementation for the
CCSD(T) approach (𝜔2 = 0).

14.2.2 Multi-Reference Coupled-Cluster Formulations

Many aspects of computational chemistry require methodologies capable of describing a delicate
balance between static and dynamic correlation effects for systems and processes belonging to the
so-called multi-reference chemistry. The common feature of systems falling into this class of prob-
lems is the fact that the corresponding wave functions, in contrast to the closed-shell systems, can-
not be described by a single Slater determinant. This situation commonly occurs in bond-breaking
processes, poly-radical species, transition-metal compounds, low-spin open-shell states, and reac-
tions involving potential energy surface crossing. To describe these problems, one has to resort
to multi-reference methods such as complete active space self-consistent field formalisms, various
variants of multi-reference many-body perturbation theory (MRMBPT) methods [65–73] (such as
the ubiquitous CASPT2 approach [74]), and multi-reference configuration interaction formulations
(MRCI) [75], MRCC Methods [76–99], and canonical transformation theory [100].

The dawn of peta-scale computer architectures offers a unique opportunity to validate and apply
accurate yet numerically expensive multi-reference theories to large molecular systems. The MRCC
method is among the methodologies that can take advantage of this fact. The MRCC formalisms
extend the applicability of the SRCC methods to quasi-degenerate situations by replacing the notion
of a reference function |Φ⟩ used in the SRCC theories by the concept of the model space (0)
spanned (ls) by the most important Slater determinants |Φ𝜇⟩ (𝜇 = 1, · · · ,M)

0 = ls{ |Φ𝜇⟩ }M
𝜇=1 (14.21)

required to describe a certain subset of electronic states. In a natural way, the MRCC formalisms
lead to partitioning of correlation effects into static (associated with the many-body effects within
the model space 0) and dynamic (associated with the many-body effects within the orthogonal
complement of the model space 

⊥

0) effects. These methods thus provide a way to properly treat
correlation effects for electronic states characterized by strong correlation effects.

In this chapter, we will focus on the state-specific Hilbert space (HS) formulation of the MRCC
theory, where the electronic wave function |Ψ⟩ is expressed by the Jeziorski–Monkhorst Ansatz [87]

|Ψ⟩ =
M∑
𝜇=1

c𝜇eT(𝜇) |Φ𝜇⟩, (14.22)

where the T (𝜇) are the reference-specific cluster operators. For the complete model space (CMS),
which is defined by determinants obtained by all possible distributions of the active electrons among
the active spin orbitals, the intermediate normalization condition [87] requires that the cluster oper-
ators do not produce any excitations within the model space, that is,

⟨Φ𝜈|T (𝜇)|Φ𝜇⟩ = 0 ∀𝜇,𝜈 . (14.23)

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 307�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 307

In the most rudimentary MRCC approximation with singles and doubles (MRCCSD), the cluster
operators are represented as a sum of singly (T (𝜇)

1) and doubly (T (𝜇)
2) excited clusters:

T (𝜇) ≃ T (𝜇)
1 + T (𝜇)

2 , (14.24)

where each component T (𝜇)
i is defined by the cluster amplitudes ti(𝜇)···

a(𝜇)···(𝜇)

T (𝜇)
1 =

∑
i(𝜇),a(𝜇)

ti(𝜇)
a(𝜇)(𝜇)X

+
a(𝜇)Xi(𝜇), (14.25)

T (𝜇)
2 =

∑
i(𝜇)<j(𝜇),a(𝜇)<b(𝜇)

ti(𝜇)j(𝜇)
a(𝜇)b(𝜇)(𝜇)X

+
a(𝜇)X

+
b(𝜇)Xj(𝜇)Xi(𝜇). (14.26)

In the above summations, i(𝜇), j(𝜇), (a(𝜇), b(𝜇)) indices correspond to occupied (unoccupied) spin
orbitals in reference |Φ𝜇⟩. As a consequence of the intermediate normalization condition, the summa-
tions in Eqs. (14.25) and (14.26) exclude the case when all indices correspond to active spin orbitals.
In the state-specific formulations, the working equations for the cluster amplitudes (or the sufficiency
conditions) are obtained by substituting the Jeziorski–Monkhorst Ansatz (14.22) into the Schrödinger
equation

H
M∑
𝜇

c𝜇eT(𝜇) |Φ𝜇⟩ = E
M∑
𝜇=1

c𝜇eT(𝜇) |Φ𝜇⟩. (14.27)

Because of the known overcompleteness problem of the state-specific approaches, several types
of sufficiency conditions have been discussed in the literature [95–99]. The BW-MRCCSD and
Mk-MRCCSD amplitude equations take the following form:

(E − Heff
𝜇𝜇)⟨Φ(𝜇)

𝜃
|eT(𝜇) |Φ𝜇⟩ − ⟨Φ(𝜇)

𝜃
|HN(𝜇)e

T(𝜇) |Φ𝜇⟩C+DC,L = 0 ∀𝜇 ,

(BW-MRCCSD), (14.28)

⟨Φ(𝜇)
𝜃
|(HeT(𝜇))C|Φ𝜇⟩c𝜇 +

∑
𝜈≠𝜇

⟨Φ(𝜇)
𝜃
|e−T(𝜇)

eT(𝜈) |Φ𝜇⟩Heff
𝜇𝜈c𝜈 = 0 ∀𝜇,

(Mk-MRCCSD), (14.29)

where the cluster operators are given by Eq. (14.24), and ⟨Φ(𝜇)
𝜃
| are excited configurations corre-

sponding to the excitations used to define cluster operators T (𝜇). The subscript C + DC,L designates
all connected diagrams and all linked, but disconnected diagrams. In contrast to the Mk-MRCC
approach, the BW-MRCC formalism contains disconnected diagrams. The energies and c𝜇 coeffi-
cients are obtained by diagonalizing the effective Hamiltonian matrix (as eigenvalue and components
of corresponding eigenvector), which for CMS is defined by the matrix elements Heff

𝜈𝜇 :

Heff
𝜈𝜇 = ⟨Φ𝜈|(HeT(𝜇))C|Φ𝜇⟩. (14.30)

The sufficiency conditions can be cast in the following algebraic form:

R(𝜇) = F(𝜇)(T (𝜇)) + G(𝜇)(T (1), · · · ,T (𝜇), · · · ,T (M)) = 0 ∀𝜇=1,···,M , (14.31)

where the F(𝜇)(T (𝜇)) part represents the direct terms (⟨Φ(𝜇)
𝜃
|(HeT(𝜇))C|Φ𝜇⟩) and the G(𝜇)(T (1), · · · ,T (𝜇),

· · · ,T (M)) parts represent the coupling terms. While the direct terms depend only on the cluster
operator corresponding to a given reference, the coupling term may involve all possible cluster oper-
ators. This can be directly seen in the Mk-MRCCSD approach [99], while in the BW-MRCCSD
this dependence is implicit through the energy obtained from the diagonalization of the effective
Hamiltonian.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 308�

� �

�

308 Electronic Structure Calculations on Graphics Processing Units

Among several ways of correcting MRCCSD energies (for details see Ref. [101] and references
therein), the simplest approach is based on adding diagrams accounting for the effect of triples to the
diagonal elements of the MRCCSD effective Hamiltonian matrix (Heff(CCSD)) in a way analogous
to that of the single reference CCSD(T) approach, that is,

Heff
𝜈𝜇 (T) = Heff

𝜈𝜇 (CCSD) + 𝛿𝜈𝜇𝛿𝜇𝜇(T
(𝜇)
3), (14.32)

𝛿𝜇𝜇(T
(𝜇)
3) = E[4]

T (𝜇) + E[5]
ST(𝜇) + E[4]

ST(𝜇), (14.33)

where 𝛿𝜈𝜇 represents Kronecker 𝛿 function. The E[4]
T (𝜇), E[5]

ST(𝜇), and E[4]
ST(𝜇) terms represent fourth-

and fifth-order contributions, given by the expressions

E[4]
T (𝜇) = 1

36

∑
abcijk

⟨(Φ𝜇)
abc
ijk |VN(𝜇)T

(𝜇)
2 |Φ𝜇⟩Ctabc

ijk (𝜇), (14.34)

E[5]
ST(𝜇) =

∑
ai

sa
i (𝜇)t

a
i (𝜇), (14.35)

E[4]
ST(𝜇) =

1
4

∑
abcijk

fkc(𝜇)t
ab
ij (𝜇)t

abc
ijk (𝜇), (14.36)

where the sa
i (𝜇) intermediate is defined as

sa
i (𝜇) =

1
4

∑
bcjk

⟨bc‖ jk⟩tabc
ijk (𝜇). (14.37)

The form of these corrections is the same for both the BW-MRCCSD and Mk-MRCCSD effec-
tive Hamiltonians. Although several forms of the triply excited cluster amplitudes tabc

ijk (𝜇) have been
Discussed [102–106], we will employ the simplest choice defined by the formula

tabc
ijk (𝜇) =

⟨(Φ𝜇)abc
ijk |VN(𝜇)T

(𝜇)
2 |Φ𝜇⟩C

Dabc
ijk (𝜇)

, (14.38)

which is analogous to the form of the T3 operator utilized by the CCSD(T) method. In all our imple-
mentations, the Heff(CCSD) operator includes up to two-body terms. The total cost of this procedure
(further referred to as the MRCCSD(T) approach) scales as M × N7, which poses a significant com-
putational challenge.

In the following sections, we provide details of the GPU implementation of the SRCC and MRCC
noniterative methods in the NWChem suite of codes [107].

14.3 NWChem Software Architecture

Two main concepts influenced the original design of NWChem conceived in 1993:

• scalability to a large number of processing elements on massively parallel computers;
• modular structure forming the foundation to implement new theoretical methods.

These two defining features distinguish the NWChem development, which is focused on massively
parallel computers, from more traditional development techniques widely used in several successful
computational chemistry packages.

The modular structure of the code architecture is achieved by using an object-oriented approach
within the realm of the Fortran programming language. For a more detailed description of this topic,

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 309�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 309

we refer the reader to the publications that describe in detail the various components of the NWChem
architecture [107, 108].

In order to achieve parallel scalability, the NWChem software development adopts, for the bulk
of its communication, the Global Arrays (GAs) toolkit [109]. The GA toolkit is a library that was
designed for parallelizing codes whose main quantities are large and dense arrays. GA forms an
abstraction layer for the scientific programmer by distributing the arrays among the memory of the
processing elements of a distributed-memory parallel computer and providing a series of opera-
tions for easily manipulating the elements of the arrays. While a more traditional message-passing
approach would require synchronization of sender and receiver to perform tasks such as array trans-
formation, the NWChem code uses one-sided GA operations for this purpose. GA operations can be
classified into two categories: collective and local. Collective calls require all processes to participate,
while local operations may be called by each process independently. Fetching (ga_get) or updating
(ga_put) are the most common local operations. Commonly used linear algebra operations belong
to the collective category (e.g., matrix multiply, eigensolvers, etc.). GA provides language bindings
for Fortran and C/C++. The library is meant to be compatible with MPI and uses MPI itself for
some of its functionality (e.g., process creation, some collective calls). The efficiency of GA on a
given computer architecture relies heavily on the aggregate remote memory copy interface (ARMCI)
library. ARMCI fulfills the role of the GA primary communications layer.

14.4 GPU Implementation

Evaluation of the CCSD(T) and MRCCSD(T) corrections is dominated by on-the-fly calculation
of the ⟨Φabc

ijk |VNT2|Φ⟩ (CCSD(T)) and ⟨(Φ𝜇)abc
ijk |VN(𝜇)T

(𝜇)
2 Φ𝜇⟩ (MRCCSD(T)) projections, which

assume identical algebraic forms. In both cases the related computational cost is proportional to
N7, which poses a significant challenge in calculations of large molecular systems. The details of the
CCSD(T) and MRCCSD(T) GPU implementations are discussed in detail in Refs [26, 27]. Here we
describe the general tenets of these developments. The N7 scaling term in the CCSD(T) approach
stems from the following terms:

⟨Φabc
ijk |VNT2|Φ⟩ = 𝑣ij

matmk
bc − 𝑣ij

mbtmk
ac + 𝑣ij

mct
mk
ab − 𝑣ik

matmj
bc + 𝑣

ik
mbtmj

ac − 𝑣ik
mct

mj
ab

+𝑣jk
matmi

bc − 𝑣
jk
mbtmi

ac + 𝑣
jk
mct

mi
ab − 𝑣

ei
abtjk

ec + 𝑣ei
act

jk
eb − 𝑣

ei
bct

jk
ea

+𝑣ej
abtik

ec − 𝑣
ej
act

ik
eb + 𝑣

ej
bct

ik
ea − 𝑣

ek
abtij

ec + 𝑣ek
act

ij
eb − 𝑣

ek
bct

ij
ea,

(i < j < k, a < b < c), (14.39)

where tab
ij and 𝑣pq

rs represent doubly excited cluster amplitudes and antisymmetric two-electron inte-
grals. In order to provide granularity for the parallel tensor contraction engine (TCE) [110] generated
codes, the whole spin-orbital domain is partitioned into smaller pieces called tiles, which contain sev-
eral spin-orbitals of the same spatial and spin symmetry. The maximum number of elements in the
tile is often referred to as the tilesize. This partitioning induces partitioning or block-structure
of all tensors used in the CC calculations. In the parallel implementation of the (T)-part, each core
takes care of a different subset of projections defined by tiles [i], [j], [k], [a], [b], [c], that is, each
core generates on the fly the set of ⟨Φabc

ijk |VNT2|Φ⟩ projections with i ∈ [i], j ∈ [j], k ∈ [k], a ∈ [a],
b ∈ [b], c ∈ [c]. These projections are stored on the six-dimensional matrices P3 (⟨Φabc

ijk |VNT2|Φ⟩).
For example, P3 is defined as the following matrix:

P3 ≡ P3(dim[a], dim[b], dim[c], dim[i], dim[j], dim[k]) , (14.40)

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 310�

� �

�

310 Electronic Structure Calculations on Graphics Processing Units

where dim[i],… ,dim[c] are the dimensions of the corresponding tiles. Therefore, the local memory
requirement for storing P3 matrices is defined by tilesize6. If tilesize equals 20, this is
equivalent to 0.48 GB (in a recently developed algorithm for the (T)-part of TCE, these tensors can
be “sliced” along the first two dimensions, which leads to a less intensive use of the local memory,
and one can effectively use a larger tilesize in the (T) calculations). Since the total floating-point
operation (FLOP) count assigned to each core associated with forming P3 tensors is proportional to
tilesize6 ∗ nu, this type of calculation is ideally suited to take advantage of GPU accelerators.
The whole process is split into a number of smaller tasks, where the summation goes over indices
from a single tile; for example

P3(a, b, c, i, j, k) − =
∑
e∈[e]

V(a, b, e, i) ∗ T2(j, k, e, c) ,

(i ∈ [i], j ∈ [j], k ∈ [k], a ∈ [a], b ∈ [b], c ∈ [c]), (14.41)

where V(a, b, e, i) and T2(j, k, e, c) are two-electron integrals and doubly excited amplitudes tensors.
For this elementary task, the FLOP count is equal to tilesize7, which for tilesize=20 cor-
responds to 1.2 GB. For this reason, the utilization of the GPU accelerators can lead to considerable
speedups in the case of large numerical load, which is created by the use of larger tiles.

Our GPU implementation exploits the Nvidia CUDA [111], which includes both a programming
model and a virtual architecture model for the execution of general-purpose computation on GPUs. As
discussed in earlier chapters, in CUDA a programmer describes its code in a parallel kernel, organized
in groups of threads. Threads are grouped in multidimensional grid (up to three dimensions) thread
blocks. Thread blocks are then grouped in a bidimensional grid. A grid of thread blocks corresponds to
a kernel. The programmer, through host code, moves the data to the GPU memory space, executes the
kernel on the data, and copies back the results. Various evolutions of the CUDA runtime have enabled
peer-to-peer data movement from one GPU to another, even across the nodes of a cluster, without the
intervention of the host. As discussed extensively in earlier chapters, when developing the CUDA
code, a programmer must follow several guidelines to map its kernel on the target GPU architecture
and maximize its performance. Failing to do so may result in lower than expected performance.

In this section, we provide a brief refresher overview of the Kepler architecture, which is at the core
of the Tesla K20 GPU boards integrated in the Titan supercomputer at ORNL National Laboratory.
We then present the baseline GPU kernel implementation for the tensor contractions and the set
of architecture-specific optimizations. The CUDA code and the related optimizations for the tensor
contractions are automatically generated through a domain-specific language (DSL) approach, which
allows easy reuse of the same acceleration approaches for the various types of contractions that can
be found in the CCSD(T) and MRCCSD(T) methods.

Since heterogeneous clusters, such as the Titan supercomputer, include both GPUs and CPUs,
there is an opportunity to exploit one or the other or, ideally in seeking maximum performance, to
attempt to utilize both simultaneously. Our implementation objective is to exploit all the available pro-
cessing elements in order to maximize achievable performance even if this complicates the implemen-
tation. In the last part of this section, we explain how we implemented a dynamic load balancer that
enables heterogeneous processing at the level of the whole cluster by exploiting the GA toolkit [109].

14.4.1 Kepler Architecture

For the GPU implementation, we targeted the Kepler architecture [112], which is the basis of the Tesla
K20X [113] boards integrated in Titan (and also the basis of the K20, K40, and K80 model of Nvidia
GPUs). The Tesla K20X is based on the GK110 processor and architecturally is a significant departure

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 311�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 311

from the previous generation designs (Fermi and Tesla), and mainly focuses on providing higher
performance per watt with respect to its predecessors. The basic building blocks of the processor are
the streaming multiprocessors, named SMXes. In the K20X, an SMX includes 192 single-precision
and 64 double-precision arithmetic logic units (also called CUDA cores), 32 special-function units
(SFUs, units that perform complex operations such as transcendental and trigonometric operations),
and 32 load/store units for memory operations. The arithmetic is fully IEEE 754/2008 compliant. A
K20X SMX includes 64 kB of on-chip memory, which can be configured as 16 kB shared memory
(i.e., directly addressable memory) with 48 kB Level 1 cache, 32 kB shared memory with 32 kB Level
1 cache, or as 48 kB shared memory with 16 kB Level 1 cache. In addition, there is a 48 kB cache
for read-only data. This is an enlarged and more flexible version of the texture cache exposed in
previous generation architectures, now opened to all the load operations from the SM. It has the
added benefit to support full-speed unaligned memory access patterns. The K20X has a Level 2
cache of 1536 kB. The SMX schedules groups of 32 parallel threads, called warps. The 32 threads
execute the same instruction, following a single-instruction, multiple-threads (SIMT) approach. An
SMX features four warp schedulers, which allow issuing and executing four warps in parallel. Each
scheduler provides two instruction dispatch units: this allows it to execute, during each cycle, two
independent instructions of a warp in parallel. Different from previous architectures, the scheduler
can simultaneously issue 32- and 64-bit instructions. If threads in a warp incur in a branch, and
some of the threads take different directions, they generate divergence, slowing down the execution,
because the warp scheduler fetches the same instruction for the whole warp. So, in a branch, the warp
scheduler must fetch the instructions for all the different directions even if they are executed only by
some of the threads. An SMX includes a total of 65,536 registers and can keep up to 2048 threads
active. The new instruction set architecture (ISA) of Kepler enables each thread to use up to 255
registers; obviously, a higher number of registers used per thread means that fewer threads can be
kept simultaneously active. The ISA also implements native shuffle and efficient atomic instructions.
The HPC Tesla versions of Kepler architecture GPUs enable several interesting features in the CUDA
programming model. Dynamic parallelism enables the GPU to generate new work (kernels), without
involving the CPU. Hyper-Q increases the number of work queues between the host and the work
distributor logic in the GPU, allowing multiple CUDA streams, multiple processes on the host (e.g.,
different MPI processes), and multiple threads in a process to issue work simultaneously. A full GPU
chip includes multiple SMXes. For the Tesla K20X, there are 14 SMXes [113]. The SMXes are
connected to the on-board memory through six 64-bit-wide memory controllers, providing a total
bus width of 384 bits. As discussed in Chapter 2, in CUDA terminology the on-board memory is
called global memory because it is shared by all the SMXes. The Tesla K20X GPU has a clock of
732 MHz (the clock domain is the same for the whole chip) and connects to 6 GB of GDDR5 memory
with a data rate of 5.2 GHz, for a peak theoretical bandwidth of 250 GB/second.

Although Kepler has more relaxed constraints than previous architectures, there still are some
rules that a programmer should follow to maximize memory bandwidth utilization. Kepler requires
that memory accesses of threads from the same warps reside in the same 128-byte chunk, which
corresponds to the size of a cache line. This requirement is also termed memory access coalescing,
because the memory operations need to be aggregated together with a specific schema. The reason
is that the data are brought in the cache anyway after the first access. In a departure from previous
architectures, memory accesses of logically consecutive threads do not need to access consecutive
memory locations in the same order, and can interleave. The shared memory, instead, has 32 banks
of 64 bits each, and the only requirement for not generating bank conflicts is that the accesses of
the threads of the warps are inside the same 64-bit word aligned segment, for both 32- and 64-bit
accesses. In any case, bank conflicts have impacts orders of magnitude smaller on the performance
with respect to earlier architectures.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 312�

� �

�

312 Electronic Structure Calculations on Graphics Processing Units

14.4.2 Baseline Implementation

Our GPU implementation is based on a DSL code generation approach. Our approach provides a new
TCE for NWChem that enables automatic generation of CUDA code starting from the high-level
expression of the tensor contractions in mathematical form. The engine performs the analysis and
generates code integrating the optimizations that allow better exploitation of the GPU architecture.
This approach makes the optimizations more general and reusable for other methods that exploit
(generalized) tensor contractions beside the CC method.

Our baseline approach for implementing tensor contractions on GPUs, which maps computations
within a thread block, is similar to the approaches used for matrix–matrix multiplication. However,
it also includes optimizations for memory management and common sub-expression refactoring.

The whole application invokes the same sequential tensor contractions a number of times. This
requires executing each time expensive memory allocation and deallocation in CUDA. To reduce the
interactions with the CUDA runtime and increase the performance, we developed a simple but effec-
tive memory manager, which reuses previously allocated, but not currently used, memory locations
for newly issued requests. The kernel that executes the tensor contractions requires the dimensions
of the tensors and the pointers to the buffers in GPU memory as inputs. The host passes all the buffer
with the data of a tensor as a linear array, thus it is necessary to compute the strides to access the dif-
ferent dimensions of the tensors. Because the computation of the strides is redundant and constantly
reused by all the threads to compute the offsets of each element accessed, they are computed in the
host and passed as arguments to the kernel.

All the thread blocks and threads share the same values of the kernel function arguments. Threads
differentiate their work by exploiting their indices (locations in the thread block and in the grid
of thread blocks). As previously explained, however, the number of dimensions for thread blocks
and grids is 3. While this is sufficient for standard matrix multiplications, it is too limited with
respect to the number of dimensions of tensors. Thus, threads need to identify values for the dimen-
sion by exploiting modulo and division operations on their own indices. To minimize the number
of operations, the encoding of tensor dimensions is split between the number of grid dimensions
available. Nevertheless, the size of the problem can significantly vary and is unknown at compile
time. Because the number of tensor contractions is very high, tailoring thread block sizes for each
expression would be unmanageable. For these reasons, the size of the thread blocks is fixed at 16
along all dimensions.

The computation inside a thread block follows the same principle of the matrix multiplication, but
with additional dimensions. The kernel chooses a contracted index, and one dimension each from
two tensors to perform a matrix multiplication at the thread-block level. The threads in each thread
block cooperate in moving data between the GPU memory and the shared memory. The overall kernel
implementation exploits the full dimensionality of the thread block to reduce the index computation
overhead. Each thread computes an element of the output array, thereby maximizing reuse. Each
thread also moves, at most, only a single element to the shared memory, minimizing the data move-
ment costs. For each of the input tensors, the kernel tiles the dimension that has the fastest varying
index that is not a common index. This enables different threads to access adjacent elements of the
input arrays, thus allowing coalescing of single-element memory operations.

14.4.3 Kernel Optimizations

On top of this baseline implementation, which exploits the basic approach of the CUDA program-
ming model, we implemented several optimizations to better adapt the generated kernel to Kepler
generation GPU architectures. These optimizations are enabled by the automatic generation of the
code from the high- level DSL.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 313�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 313

The first optimization involves the ordering of the indices of the tensor contractions. When indices
of tensor contractions in the original high-level representation always occur in the same order, they
can be replaced by a single index whose size is the product of the previous indices. We call this
optimization index combining. Performing this optimization as early as possible is very convenient,
because it improves thread-block utilization and reduces the index computation overhead in the ker-
nel. Its benefits are obviously dependent on the actual tensor contractions, but in general they appear
to be very useful for the CC calculations.

The second optimization is related to the fact that the baseline approach only exploits tiling in
one dimension for each input array. When the tiled dimension matches the thread block size, or
if the tiled dimension is sufficiently large, they approach optimum performance. However, dimen-
sions of tensors involved in CC calculations vary significantly due to different types of sparsity
and symmetry. In many cases, the tiled dimensions are small, and do not match the thread-block
configuration (e.g., dimension size of 17 with thread block size of 16), significantly reducing the
thread-block and warp utilization. For these reasons, our code generator is able to perform an opti-
mization named dimension flattening. In the baseline implementation, all the threads in a thread block
contribute to elements of the output array that differ only for two indices, one for each input array.
With the dimension-flattened code, the indices of the output array are grouped into those from each
of the input array. Each group is flattened into a single linear dimension, and tiled according to the
thread-block dimensions. Each thread contributes to a distinct value of the whole dimension-flattened
array, possibly resulting in threads from the same thread blocks operating on elements of the out-
put array that differ in more than two indices. Figure 14.1 shows this optimization, highlighting the

A

A

B

B C+=A*B

C+=A*B

Higher

dimensions

than A and B

Higher

dimensions

than A and B

(×1)(×3)
Inefficiency

Thread Thread block

Figure 14.1 Dimension-flattening optimization. The solid lines correspond to different two-dimensional
regions. The dotted lines correspond to the mapping of the data blocks to the thread blocks. Tensors A
and B are flattened into two-dimensional arrays, increasing utilization of thread blocks. Each thread block
not necessarily works only on values from a single dimension of the original tensor

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 314�

� �

�

314 Electronic Structure Calculations on Graphics Processing Units

reduction of the inefficiencies. Index-combining is oblivious to subsequent transformation. How-
ever, dimension- flattening incorporates within a single operation both tiling and an implicit index
permutation operation. Thus, the kernel needs to re-create the original indices during its execution.
Conversely, the kernel does not need to reproduce the indices coalesced through index-combining.
We ensure that data movement in the shared memory is the same as the baseline version, except for
the conditionals, through careful encoding of the indices. Each thread still loads a single element of
the input arrays. The behavior is obtained by encoding the flattened group indices into the dimen-
sions of the thread-block and grid configurations through the gridDim and blockDim constructs.
Decoding is performed by exploiting the multidimensional thread identifiers (threadIdx) and the size
(number of threads) for each dimension of the thread block (blockDim). The threads that are on the
same dimension of a thread block obtain the same index of the group for that dimension, thus they
can share the data movement cost. Dimension-flattening also maintains the higher locality achieved
in the baseline implementation by tiling on one of the fastest varying indices. This is obtained by
decoding the indices beginning with the fastest varying index, and ensuring that adjacent threads in a
thread block process potentially adjacent elements of input arrays, facilitating coalescing of memory
accesses.

Another optimization, enabled by the larger register files of the latest GPU architectures, is register
tiling. As previously explained, each thread computes one element of the output tensor. Register tiling
is implemented by modifying the baseline kernel as follows: In the host function that invokes the
kernel, the grid size is reduced by a factor of 4 for each dimension. The thread-block size, instead,
remains the same. This means that each thread reads 4 times the data from the input arrays, and writes
16 times the data into the output array. The overall result is a reduction in the number of memory
accesses of the kernel to the input arrays. At each iteration, four rows and four columns from the two
input tensors need to be loaded in the shared memory. This corresponds to a total of 64 rows and 64
columns of output, and requires the calculation of four index sets for the first and four index sets for
the second input tensors. Each thread then loads four elements from each corresponding row and four
elements from each corresponding column in the shared memory into registers. Each thread accesses
each of the four elements with a stride of 16 (block size in one dimension) and then performs the
16 multiplications, accumulating the results into 16 double-precision registers. The results are then
accumulated in the output array in the device memory.

The higher reuse of data in shared memory and the exploitation of registers with the register
tiling optimization make the accumulation of the results in the output arrays the most constraining
part for accesses to the global memory. The index calculation in the baseline implementation favors
the input tensors and tries to coalesce as much as possible their accesses. The code optimized with
register tiling, instead, also exploits a modified index calculation order. The modified order ensures
that adjacent threads operate on adjacent sets of output elements, providing coalesced memory
accesses.

Since each thread in the code optimized with register tiling computes 16 elements instead of 1,
the thread must check the boundaries for each of the 16 writes to the output array. Every time a
value is written, the thread must check whether the location it is going to write to, addressed by
its own thread index plus the stride, falls inside the boundaries of the destination array. It must
do this four times for each of the dimensions of the thread block. This checking leads to a large
number of branches. To reduce the overhead, the boundaries are checked in reverse order with
respect to the strides (reversed condition checking). First, the larger stride is checked, and in such
a case all the four offsets are calculated. If not, it progressively reduces the checking to smaller
strides, only calculating the required offsets. This makes it possible to perform four checkings
(thus causing conditional branches) only in the worst case. In the best case, the kernel executes
only one check, because if the first condition is met, subsequent conditional statements are not
executed.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 315�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 315

14.4.4 Data-Transfer Optimizations

We exploited the CUDA support for asynchronous CPU–GPU data transfer. In particular, the trans-
fer of the output tensor from the GPU to the CPU was overlapped with the computation of another
portion of the output tensor. Asynchronous memory copy operations supported by CUDA favor con-
tiguous data transfers. We therefore identify the outermost dimension of the output tensor as the
streaming index. The computation of the output tensor is thus pipelined, with computation of a seg-
ment overlapped with the data transfer for another segment. This effectively results in a three-stage
pipeline: transfer of a segment of the output tensor from CPU to GPU; computation of the updates to
the output tensor segment; and transfer of the updated tensor from GPU to CPU. We also evaluated
an equivalent three-stage pipeline that replaces the CPU-to-GPU transfer with a stage on the CPU
that takes the output tensor segment computed on the GPU and updates the CPU copy. The two input
tensors in these scenarios were much smaller than the output tensor, allowing us to copy them to
GPU memory before the pipelined execution begins. The appropriate pipelining strategy is chosen
based on the capabilities of the GPU in supporting bidirectional data transfer versus the relative com-
putational cost of the CPU accumulation operation. Note that the various pipelined implementations
together with the data transfer operations were generated from the DSL, allowing us to quickly adapt
the scheme employed as GPUs evolve.

We observed that the contributions to each segment of the output tensor in the CC triples calcu-
lation can be stored entirely on the GPU. We therefore designed an improved version that allocates
memory to store a segment of the output tensor in GPU memory and computes all contributions to
it across several kernel invocations. Once the tensor segment has been fully computed, the energy
contribution can be computed in the GPU. After all such contributions have been computed, the
energy scalar is transferred to the CPU. This scheme addresses the increasing disparity between the
GPU computational capacity and the CPU–GPU data transfer rate, which dramatically improves
performance when the total execution time is bound by the data transfer costs, as is the case on
modern GPUs.

14.4.5 CPU–GPU Hybrid Architecture

Modern parallel computing platforms combine GPUs and multicore CPUs. One can use any combi-
nation of CPU and GPU resources on such systems, but to obtain the maximum possible achievable
performance, it is generally necessary to efficiently utilize all processing cores, both CPU and GPU.
To this end, we employ a dynamic load-balancing scheme in which the computation of each block
of the output tensor is treated as a task. All contributions to an output tensor segment, a single task
involving one or more kernel calls, are computed by the same processing element. This processing
element could either be a CPU core or a GPU. The tasks are dynamically assigned to each processing
element using a dynamic load balancer across all CPUs and GPUs in the parallel system. Given that
GPUs cannot manage inter-process communication, one CPU core is dedicated to managing the com-
munication and dynamic load balancing on behalf of the GPU. The increased computational power
of a GPU as compared to a single CPU core enables the former to execute tasks at a much faster rate.
The dynamic load balancing employed allows such differing execution rates while ensuring that all
processing units are busy computing various parts of the contraction. Figure 14.2 shows the execution
steps of the CPU–GPU hybrid implementation.

14.5 Performance

In this section, we discuss the performance of the CPU–GPU implementations of the noniterative
CCSD(T) (Reg-CCSD(T)) and MRCCSD(T) formalisms on the example of medium-size molecular
systems.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 316�

� �

�

316 Electronic Structure Calculations on Graphics Processing Units

C2 C3

T1 T1 T1

T3

T2

T2

T2

V2

V2

V2
Individual blocks

Outputs

Inputs
CPU Memory

Global Arrays

GPU Memory

Individual blocks

2 23

1 1

3

44

F1

F1

F1

T3 E

E GPU

E

C1C0

Figure 14.2 CPU–GPU hybrid implementation: execution steps involved in the noniterative triples cor-
rection. T1, T2, and T3 tensors corresponds to the T1, T2, and T(2)

3 amplitudes (SRCC) or to the refer-

ence-specific T(𝜇)
1 , T(𝜇)

2 , and perturbative T(𝜇)
3 amplitudes (MRCC). The F1 and V2 tensors corresponds

to one- and two-electron integrals, respectively. The steps are as follows: step 1, copy input blocks from
Global Arrays to the CPU or GPU local memory; step 2, contract input blocks into intermediate tensor
block; step 3, reduce intermediate tensor to compute energy correction contribution; step 4, reduce final
energy correction across all CPUs and GPUs. One of the CPU cores (Core 0 in the image) manages com-
munication and load balancing toward the GPU, and also performs some basic sequential operations that
would be more expensive on the GPU. (See insert for colour representation of this figure)

14.5.1 CCSD(T) Approach

The first GPU implementation of the CCSD(T) (Reg-CCSD(T)) approach (see [26]) was tested and
optimized on two clusters, one with Tesla T10 (C1060) GPUs and the other with Fermi T20 (C2050)
cards. The T10 cluster consisted of 64 nodes, while the T20 cluster contained 16 nodes. Each node
on the cluster with Tesla T10 GPUs had two Quad-Core Intel Xeon X5560 CPUs, with a frequency
of 2.80 GHz, and 8 MB L2 cache. Two nodes shared one Tesla S1070 box, implying that every node
had two Tesla T10 GPUs. Each node on the Fermi cluster was equipped with two Quad-Core Intel
Xeon E5520 CPUs, with a frequency of 2.27 GHz. Each node had a single GPU. PCI Express 2.0
was used for I/O between the host and the device on both systems. These numerical experiments
showed the role of data granularity in taking advantage of heterogeneous computer architectures.
In order to test the impact of the tilesize on the performance of our GPU implementation, we
performed tests for the uracil molecule in the composite 6-31G [114] (localized on hydrogen atoms)
and 6-31G⋆⋆ [114] (localized on the carbon atoms) basis set where the spatial symmetry was not
invoked. This situation commonly occurs in calculations for large systems without symmetry where
tilesize can be sufficiently large. The experiments were run on 30 nodes, with two processes
on each node. The speedup of the GPU over the CPU version varied from 3 to 8.75. For larger
tilesize, which implies more FLOPS per process (proportional to (tilesize)7), the speedup
of GPU was more obvious. While for small tile sizes (tilesize= 10) the GPU speedup was rather
modest (around 3), for larger tiles (tilesize= 21) the speedup was much better (around 8.75). We
should expect that a further increase in the tile size should result in a further improvement in the GPU
speedup. To verify the generality of this observation, we also evaluated the impact of tilesize
on the performance of our GPU implementation for the dodecane molecule . We observed speedups
improving with tilesize, reaching more than a factor of 8 with a tilesize of 20.

As an illustrative example of test runs on modern GPU-supported architectures, we discuss tests
performed on Titan’s hybrid-architecture Cray XK7 system with a theoretical peak performance
exceeding 27,000 trillion calculations per second (27 petaflops). It contains both advanced 16-core
AMD Opteron CPUs and Nvidia Kepler (K20X) GPUs. As a test case, we chose a pentacene molecule
(C22H14) described by the cc-pVDZ basis set [115]. All tests were performed using C1 symmetry. In
two representative calculations, 96 nodes were used. In the first run, we used eight CPUs per node
and no GPU. In the second Run, we used seven CPUs per node and one GPU. The energies and
timings for these runs are shown in Table 14.1. A comparison of timings from Table 14.1 shows that

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 317�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 317

Table 14.1 Time comparison for CPU and CPU+GPU runs of the noniterative part
of the CCSD(T) approach for the pentacene molecule in cc-pVDZ basis set

Comput. configuration CCSD(T) energy (Hartree) Time (seconds)

Eight CPU per node −844.4003995 9240.3
Seven CPU + one GPU per node −844.4003995 1630.7

Tests were performed on the Titan Cray XK7 system at ORNL.

the 7 CPU + 1 GPU run is around 5.6×faster than the run utilizing eight CPUs per node. Based on
the earlier analysis, the speedups should be even more favorable for larger tilesizes.

14.5.2 MRCCSD(T) Approaches

The development of the GPU implementations of the MRCCSD(T) approaches has been integrated
with the recently explored MRCC computational algorithms based on the utilization of the RLP and
PGs (for details see Refs [3, 27, 101, 116]). By PG (Gi), one means a partitioning of the processor
domain (D) into smaller pieces, which can be symbolically expressed as

D =
⋃

i=1,···,I
Gi, (14.42)

where I is the total number of the PGs. One also assumes that the number of processors in each group
(Si) is the same and is equal to S, that is

Si = S =
Np

I
(i = 1, · · · , I). (14.43)

In the above equation, Np stands for the total number of processors, which is a multiple of the PG
number I. The key idea is to distribute the formation of reference-specific MRCC equations over
various PGs.

This approach employs two-level parallelism: (i) RLP, where each set of reference-specific
equations (or their aggregate) is calculated on separate PGs, and (ii) task-level parallelism used to
calculate a given set of reference-specific equations. In the simplest case, the work organization
chart (symbolically designated by W) corresponds to the situation when a single PG is delegated
to calculate a single set of reference-specific equations (R(𝜇)) composed of the direct (F(𝜇)) and
coupling (G(𝜇)) terms. In this case, the number of PGs coincides with the size of the model space
(i.e., I = M). A more general situation corresponds to the case when each PG Gi forms several
(nr(i)) residual vectors R(𝜇). This can be symbolically denoted as

W =
⋃

i=1,···,I
Wi(nr(i)), (14.44)

where Wi refers to the workload on the corresponding PG Gi. In order to provide best load balancing
between the workloads on each PG, it is natural to assume that

nr = nr(i) =
M
I

(i = 1, · · · , I). (14.45)

The MRCCSD(T) calculations are composed of two major steps (see Figure 14.3). First, one solves
the iterative MRCCSD equations using two-level parallelism. In the second step, the diagonal nonit-
erative triples corrections, Eqs. (14.32) and (14.33), are formed using a similar scheme; that is, each
correction can be formed using separate PGs. Additionally, task-level parallelism is enhanced by the
utilization of the GPU cores, which contributes to the third-level parallelism.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 318�

� �

�

318 Electronic Structure Calculations on Graphics Processing Units

Iterative solutions of the MRCCSD equations

It
e

ra
ti
o

n
s

Calculating diagonal non-iterative triples corrections

Converged cluster operators T1
(μ), T2

(μ) are

used to construct effective Hamiltonion

R(μ)

(μ∈W2)

(μ∈W1) (μ∈W1)(μ∈W2)

R(μ)

(μ∈W2)

R(μ)

(μ∈W1)

CPU

GPU GPU GPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

δμμ (T3
(μ)) δμμ (T3

(μ)) δμμ (T3
(μ))

Figure 14.3 Schematic representation of the GPU-enhanced reference-level parallelism. Separate pro-
cessor groups are delegated to calculate the reference-specific parts of the iterative MRCCSD equations
and reference-specific noniterative corrections due to triples. (See insert for colour representation of this
figure)

The MRCCSD(T) performance tests have been performed for the dodecane molecule with the
simple model space defined by two active electrons distributed over two active orbitals. In order to
evaluate the relative benefits of using CPUs versus GPUs, we considered several CPU–GPU config-
urations. Memory requirements limit the number of CPUs we can use on each node to 8. Therefore,
we evaluated the performance of computing MRCCSD(T) when using two, four, and eight cores per
node. For the hybrid CPU–GPU execution, one of the cores drives the GPU rather than perform-
ing calculations. All experiments were performed on up to 24 nodes, which is the largest number
of nodes that contain the Tesla M2090 GPUs in the cluster. While the implementation allows us
to exploit multiple GPUs per node, this cluster configuration does not enable such an evaluation,
limiting our tests to one GPU per node. We expect our implementation to scale reasonably well on
multi-GPU configurations given the reduction in communication traffic stemming from the RLP .

In Figure 14.4, we show the speedup achieved by the various CPU–GPU configurations with
respect to execution times when run on two CPU cores and no GPUs. We expect that increasing
the number of CPUs utilized increases the speedup relative to serial execution. In addition, deploying
GPUs speeds up the calculations further. Likewise, increasing the block sizes with a given CPU–GPU

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 319�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 319

17.0

15.0

13.0

11.0

9.0

7.0

5.0

3.0

1.0

12 14 16 18

Tile size

20 22

S
p

e
e

d
u

p

2CPUs

8CPUs

4CPUs1CPU+1GPU

7CPUs+1GPU3CPU+1GPU

Figure 14.4 Speedup of the noniterative MRCCSD(T) calculations for various configurations for block
sizes varying from 12 through 22 with respect to the execution times using two CPUs and no GPUs

node configuration also speeds up the calculation. Indeed, we see that doubling the number of CPU
cores expectedly results in close to double the performance. This speedup is also independent of
block sizes, demonstrating that the sequential CPU execution achieves the same floating-point per-
formance independent of the block size. Unlike execution on the CPU cores, the speedups achieved
when using GPUs depends on the block sizes. In particular, when employing one CPU and one GPU,
increasing the block size from 12 to 22 provides us a speedup factor of 1.5 without any additional
hardware resources. This is due to the improved floating-point performance achieved by the GPU
when using larger block sizes. Using one CPU core and one GPU instead of two CPU cores results
in a performance improvement factor of 8.5 when using a block size of 12. Comparing the execution
time on two CPUs with that of one CPU core and one GPU, we can determine that a single GPU
achieves a speedup of 16 over a single CPU core. Given this factor, we would predict, in the absence
of superlinear effects, a speedup of 11.5 when employing seven CPU cores and one GPU. We, in fact,
achieve a speedup of 11.4. Similarly, with a block size of 22, we determine the speedup achieved by
a single GPU as compared to a single CPU core to be 24.6. When using seven CPU cores and one
GPU, this should result in a speedup of 15.8. We observe a speedup of 15.3. This close match between
the anticipated and observed speedups shows that additional cores are effectively utilized as they are
added to the execution.

14.6 Outlook

The availability of the GPU accelerators has the potential to transform the area of molecular simula-
tions employing high-level methods for accurate description of the electron correlation effects. The
main reason for this is related to the very high numerical footprint of these approaches. This fact
makes the applicability of CC methods inextricably linked to the progress in hardware development
and advances in programming models. The development of efficient parallel implementations of the

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 320�

� �

�

320 Electronic Structure Calculations on Graphics Processing Units

SRCC and MRCC methods capable of taking advantage of heterogeneous architectures remains one
of the most important factors in enabling these expensive methodologies for large molecular systems.
The joint utilization of novel parallel tools such as PGs and the possibilities offered by GPU accel-
erators provides a venue to significantly extend the area of application of noniterative CCSD(T) and
MRCCSD(T) methods. Our tests clearly indicate the role of GPUs in accelerating the most numer-
ically expensive part of the CCSD(T) and MRCCSD(T) calculations where the corrections due to
triples are calculated. We demonstrated that our parallel implementation effectively load-balances
the work between the CPUs and GPUs, adapting to their differing computational capabilities. Our
tests also showed that our implementations achieve close to anticipated speedups with increasing
core counts and demonstrated that the computational resources are effectively utilized. The developed
capabilities have already enabled us to perform accurate simulations for systems and processes which
until recently were considered to be too numerically challenging. These include the MRCC calcula-
tions for complicated excited states characterized by collective multi-electron excitations, low-spin
open-shell electronic states, and combustion processes. As far as future development of high-level
ab initio methods is concerned, we envision further development of novel algorithms utilizing GPU
technology especially in the theoretical/computational areas associated with various tensor decom-
position techniques, which may lead to an unprecedented paradigm change in the applicability of CC
formalisms.

Acknowledgments

This work has been supported by the Extreme Scale Computing Initiative (K.B.-N., S.K., O.V.,
H.J.J.v.D., K.K.), a Laboratory Directed Research and Development Program at Pacific Northwest
National Laboratory. A large portion of the research was performed using PNNL Institutional
Computing at Pacific Northwest National Laboratory and EMSL, a national scientific user facility
sponsored by the Department of Energy’s Office of Biological and Environmental Research and
located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract no.
DEAC0676RLO-1830. Large-scale BW-MRCCSD calculations have been performed using a 2012
ASCR Leadership Computing Challenge (ALCC) award (K.B.-N., S.K., E.A., K.K.) allocation at
Oak Ridge Leadership Computing Facility (OLCF).

References

1. Čížek, J. (1966) On the correlation problem in atomic and molecular systems. Calculation of
wavefunction components in ursell-type expansion using quantum-field theoretical methods. J.
Chem. Phys., 45, 4256–4266.

2. de Jong, W.A., Bylaska, E., Govind, N., Janssen, C.L., Kowalski, K., Mueller, T., Nielsen,
I.M.B., van Dam, H.J.J., Veryazov, V. and Lindh, R. (2010) Utilizing high performance comput-
ing for chemistry: parallel computational chemistry. Phys. Chem. Chem. Phys., 12, 6896–6920.

3. Brabec, J., Pittner, J., van Dam, H.J.J., Apra, E. and Kowalski, K. (2012) Parallel implemen-
tation of multireference coupled-cluster theories based on the reference-level parallelism. J.
Chem. Theory Comput., 8, 487–497.

4. Götz, A.W., Woelfle, T. and Walker, R.C. (2010) Quantum chemistry on graphics processing
units, in Annual Reports in Computational Chemistry, Annual Reports in Computational Chem-
istry, vol. 6 (ed. RA Wheeler, Elsevier, pp. 21–35.

5. Xu, D., Williamson, M.J. and Walker, R.C. (2010) Advancements in molecular dynamics sim-
ulations of biomolecules on graphical processing units, in Annual Reports in Computational

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 321�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 321

Chemistry, Annual Reports in Computational Chemistry, vol. 6 (ed. RA Wheeler), Elsevier,
pp. 3–19.

6. Anderson, A.G., Goddard, W.A. III and Schroeder, P. (2007) Quantum Monte Carlo on graph-
ical processing units. Comput. Phys. Commun., 177, 298–306.

7. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krueger, J., Lefohn, A.E. and Purcell,
T.J. (2007) A survey of general-purpose computation on graphics hardware. Comput. Graphics
Forum, 26, 80–113.

8. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G. and Schulten, K. (2007)
Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 28,
2618–2640.

9. Hardy, D.J., Stone, J.E. and Schulten, K. (2009) Multilevel summation of electrostatic poten-
tials using graphics processing units. Parallel Comput., 35, 164–177.

10. Stone, J.E., Hardy, D.J., Ufimtsev, I.S. and Schulten, K. (2010) GPU-accelerated molecular
modeling coming of age. J. Mol. Graphics Modell., 29, 116–125.

11. Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S. and Walker, R.C. (2013) Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit Solvent Par-
ticle Mesh Ewald. J. Chem. Theory Comput., 9, 3878–3888.

12. Le Grand, S., Götz, A.W. and Walker, R.C. (2013) SPFP: speed without compromise-A mixed
precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Com-
mun., 184, 374–380.

13. Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Le Grand, S. and Walker, R.C. (2012) Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J.
Chem. Theory Comput., 8, 1542–1555.

14. Yasuda, K. (2008) Two-electron integral evaluation on the graphics processor unit. J. Comput.
Chem., 29, 334–342.

15. Yasuda, K. (2008) Accelerating density functional calculations with graphics processing unit.
J. Chem. Theory Comput., 4, 1230–1236.

16. Ufimtsev, I.S. and Martinez, T.J. (2008) Quantum chemistry on graphical processing units. 1.
Strategies for two-electron integral evaluation. J. Chem. Theory Comput., 4, 222–231.

17. Ufimtsev, I.S. and Martinez, T.J. (2009) Quantum chemistry on graphical processing units. 2.
Direct self-consistent-field implementation. J. Chem. Theory Comput., 5, 1004–1015.

18. Ufimtsev, I.S. and Martinez, T.J. (2009) Quantum chemistry on graphical processing units. 3.
Analytical energy gradients, geometry optimization, and first principles molecular dynamics.
J. Chem. Theory Comput., 5, 2619–2628.

19. Isborn, C.M., Luehr, N., Ufimtsev, I.S. and Martinez, T.J. (2011) Excited-state electronic struc-
ture with configuration interaction singles and Tamm-Dancoff time-dependent density func-
tional theory on graphical processing units. J. Chem. Theory Comput., 7, 1814–1823.

20. Titov, A.V., Ufimtsev, I.S., Luehr, N. and Martinez, T.J. (2013) Generating efficient quantum
chemistry codes for novel architectures. J. Chem. Theory Comput., 9, 213–221.

21. Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C. and Aspuru-Guzik, A.
(2008) Accelerating resolution-of-the-identity second-order Moller-Plesset quantum chemistry
calculations with graphical processing units. J. Phys. Chem. A, 112, 2049–2057, Conference
in Honor of Professor William A Lester on his 70th Birthday, University California, Berkeley,
CA, MAR, 2007.

22. Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A.L.,
Ensign, D.L., Bruns, C.M. and Pande, V.S. (2009) Accelerating molecular dynamic simulation
on graphics processing units. J. Comput. Chem., 30, 864–872.

23. van Meel, J.A., Arnold, A., Frenkel, D., Zwart, S.F.P. and Belleman, R.G. (2008) Harvesting
graphics power for MD simulations. Mol. Simul., 34, 259–266.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 322�

� �

�

322 Electronic Structure Calculations on Graphics Processing Units

24. Eastman, P. and Pande, V.S. (2010) Efficient nonbonded interactions for molecular dynamics
on a graphics processing unit. J. Comput. Chem., 31, 1268–1272.

25. DePrince, A.E. III and Hammond, J.R. (2011) Coupled cluster theory on graphics processing
units I. The coupled cluster doubles method. J. Chem. Theory Comput., 7, 1287–1295.

26. Ma, W., Krishnamoorthy, S., Villa, O. and Kowalski, K. (2011) GPU-based implementations of
the noniterative regularized-CCSD(T) corrections: applications to strongly correlated systems.
J. Chem. Theory Comput., 7, 1316–1327.

27. Bhaskaran-Nair, K., Ma, W., Krishnamoorthy, S., Villa, O., van Dam, H.J.J., Apra, E. and
Kowalski, K. (2013) Noniterative multireference coupled cluster methods on heterogeneous
CPU-GPU systems. J. Chem. Theory Comput., 9, 1949–1957.

28. Asadchev, A., Allada, V., Felder, J., Bode, B.M., Gordon, M.S. and Windus, T.L. (2010) Uncon-
tracted Rys quadrature implementation of up to G functions on graphical processing units. J.
Chem. Theory Comput., 6, 696–704.

29. Asadchev, A. and Gordon, M.S. (2012) New multithreaded hybrid CPU/GPU approach to
Hartree-Fock. J. Chem. Theory Comput., 8, 4166–4176.

30. Asadchev, A. and Gordon, M.S. (2013) Fast and flexible coupled cluster implementation. J.
Chem. Theory Comput., 9, 3385–3392.

31. Miao, Y. and Merz, K.M. Jr. (2013) Acceleration of electron repulsion integral evaluation on
graphics processing units via use of recurrence relations. J. Chem. Theory Comput., 9, 965–976.

32. Wu, X., Koslowski, A. and Thiel, W. (2012) Semiempirical quantum chemical calculations
accelerated on a hybrid multicore CPU-GPU computing platform. J. Chem. Theory Comput.,
8, 2272–2281.

33. Wilkinson, K. and Skylaris, C.-K. (2013) Porting ONETEP to graphical processing unit-based
coprocessors. 1. FFT box operations. J. Comput. Chem., 34, 2446–2459.

34. Coester, F. (1958) Bound states of a many-particle system. Nucl. Phys., 7, 421–424.
35. Coester, F. and Kümmel, H. (1960) Short-range correlations in nuclear wave functions. Nucl.

Phys., 17, 477–485.
36. Paldus, J., Shavitt, I. and Čížek, J. (1972) Correlation problems in atomic and molecular sys-

tems.4. Extended coupled-pair many-electron theory and its application to BH3 molecule. Phys.
Rev. A, 5, 50–67.

37. Purvis, G. and Bartlett, R. (1982) A full coupled-cluster singles and doubles model - the inclu-
sion of disconnected triples. J. Chem. Phys., 76, 1910–1918.

38. Goldstone, J. (1957) Derivation of the Brueckner many-body theory. Proc. R. Soc. London, Ser.
A Math. Phys. Sci., 239, 267–279.

39. Noga, J. and Bartlett, R. (1987) The full CCSDT model for molecular electronic-structure. J.
Chem. Phys., 86, 7041–7050.

40. Noga, J. and Bartlett, R. (1988) Erratum: the full CCSDT model for molecular electronic-
structure. J. Chem. Phys., 89, 3041.

41. Scuseria, G. and Schaefer, H. (1988) A new implementation of the full CCSDT model for
molecular electronic-structure. Chem. Phys. Lett., 152, 382–386.

42. Kucharski, S. and Bartlett, R. (1991) Recursive intermediate factorization and complete com-
putational linearization of the coupled-cluster single, double, triple, and quadruple excitation
equations. Theor. Chim. Acta, 80, 387–405.

43. Oliphant, N. and Adamowicz, L. (1991) Coupled-cluster method truncated at quadruples. J.
Chem. Phys., 95, 6645–6651.

44. Møller, C. and Plesset, M. (1934) Note on an approximation treatment for many-electron sys-
tems. Phys. Rev., 46, 0618–0622.

45. Raghavachari, K., Trucks, G., Pople, J. and Head-Gordon, M. (1989) A 5th-order perturbation
comparison of electron correlation theories. Chem. Phys. Lett., 157, 479–483.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 323�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 323

46. Urban, M., Noga, J., Cole, S. and Bartlett, R. (1985) Towards a full CCSDT model for electron
correlation. J. Chem. Phys., 83, 4041–4046.

47. Stanton, J. and Gauss, J. (1995) Perturbative treatment of the similarity transformed Hamilto-
nian in equation-of-motion coupled-cluster approximations. J. Chem. Phys., 103, 1064–1076.

48. Stanton, J. and Gauss, J. (1996) A simple correction to final state energies of doublet radicals
described by equation-of-motion coupled cluster theory in the singles and doubles approxima-
tion. Theor. Chim. Acta, 93, 303–313.

49. Stanton, J. (1997) Why CCSD(T) works: a different perspective. Chem. Phys. Lett., 281,
130–134.

50. Crawford, T. and Stanton, J. (1998) Investigation of an asymmetric triple-excitation correction
for coupled-cluster energies. Int. J. Quantum Chem., 70, 601–611.

51. Kucharski, S. and Bartlett, R. (1998) Noniterative energy corrections through fifth-order to the
coupled cluster singles and doubles method. J. Chem. Phys., 108, 5243–5254.

52. Gwaltney, S. and Head-Gordon, M. (2000) A second-order correction to singles and doubles
coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamil-
tonian. Chem. Phys. Lett., 323, 21–28.

53. Gwaltney, S., Sherrill, C., Head-Gordon, M. and Krylov, A. (2000) Second-order perturbation
corrections to singles and doubles coupled-cluster methods: general theory and application to
the valence optimized doubles model. J. Chem. Phys., 113, 3548–3560.

54. Hirata, S., Nooijen, M., Grabowski, I. and Bartlett, R. (2001) Perturbative corrections to
coupled-cluster and equation-of-motion coupled-cluster energies: a determinantal analysis. J.
Chem. Phys., 114, 3919–3928.

55. Bomble, Y., Stanton, J., Kallày, M. and Gauss, J. (2005) Coupled-cluster methods including
noniterative corrections for quadruple excitations. J. Chem. Phys., 123, 054101.

56. Kallày, M. and Gauss, J. (2005) Approximate treatment of higher excitations in coupled-cluster
theory. J. Chem. Phys., 123, 214105.

57. Taube, A.G. and Bartlett, R.J. (2008) Improving upon CCSD(T): Lambda CCSD(T). I. Potential
energy surfaces. J. Chem. Phys., 128, 044110.

58. Taube, A.G. and Bartlett, R.J. (2008) Improving upon CCSD(T): Lambda CCSD(T). II. Sta-
tionary formulation and derivatives. J. Chem. Phys., 128, 044111.

59. Kowalski, K. and Piecuch, P. (2000) The method of moments of coupled-cluster equations
and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches. J. Chem.
Phys., 113, 18–35.

60. Piecuch, P. and Wloch, M. (2005) Renormalized coupled-cluster methods exploiting left eigen-
states of the similarity-transformed Hamiltonian. J. Chem. Phys., 123, 224105.

61. Piecuch, P., Wloch, M., Gour, J. and Kinal, A. (2006) Single-reference, size-extensive,
non-iterative coupled-cluster approaches to bond breaking and biradicals. Chem. Phys. Lett.,
418, 467–474.

62. Kowalski, K. and Fan, P.-D. (2009) Generating functionals based formulation of the method of
moments of coupled cluster equations. J. Chem. Phys., 130, 084112.

63. Kowalski, K. and Valiev, M. (2009) Extensive regularization of the coupled cluster methods
based on the generating functional formalism: application to gas-phase benchmarks and to the
S(N)2 reaction of CHCl3 and OH- in water. J. Chem. Phys., 131, 234107.

64. Taube, A.G. and Bartlett, R.J. (2009) Rethinking linearized coupled-cluster theory. J. Chem.
Phys., 130, 144112.

65. Brandow, B. (1967) Linked-cluster expansions for nuclear many-body problem. Rev. Mod.
Phys., 39, 771–828.

66. Wolinski, K. and Pulay, P. (1989) Generalized Moller-plesset perturbation-theory - 2nd order
results for 2-configuration, open-shell excited singlet, and doublet wave-functions. J. Chem.
Phys., 90, 3647–3659.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 324�

� �

�

324 Electronic Structure Calculations on Graphics Processing Units

67. Zarrabian, S. and Paldus, J. (1990) Applicability of multireference many-body perturbation-
theory to the determination of potential-energy surfaces - a model study. Int. J. Quantum Chem.,
38, 761–778.

68. Hirao, K. (1992) Multireference Møller-plesset method. Chem. Phys. Lett., 190, 374–380.
69. Nakano, H. (1993) Quasi-degenerate perturbation-theory with multiconfigurational

self-consistent-field reference functions. J. Chem. Phys., 99, 7983–7992.
70. Kozlowski, P. and Davidson, E. (1994) Considerations in constructing a multireference

2nd-order perturbation-theory. J. Chem. Phys., 100, 3672–3682.
71. Finley, J., Chaudhuri, R. and Freed, K. (1995) Applications of multireference perturbation-

theory to potential-energy surfaces by optimal partitioning of H: intruder states avoidance and
convergence enhancement. J. Chem. Phys., 103, 4990–5010.

72. Chaudhuri, R., Freed, K., Hose, G., Piecuch, P., Kowalski, K., Wloch, M., Chattopadhyay, S.,
Mukherjee, D., Rolik, Z., Szabados, A., Toth, G. and Surjan, P. (2005) Comparison of low-order
multireference many-body perturbation theories. J. Chem. Phys., 122, 134105.

73. Hoffmann, M.R., Datta, D., Das, S., Mukherjee, D., Szabados, A., Rolik, Z. and Surjan, P.R.
(2009) Comparative study of multireference perturbative theories for ground and excited states.
J. Chem. Phys., 131, 204104.

74. Andersson, K., Malmqvist, P. and Roos, B. (1992) 2nd-order perturbation-theory with a com-
plete active space self-consistent field reference function. J. Chem. Phys., 96, 1218–1226.

75. Werner, H. and Knowles, P. (1988) An efficient internally contracted multiconfiguration refer-
ence configuration-interaction method. J. Chem. Phys., 89, 5803–5814.

76. Mukherjee, D., Moitra, R. and Mukhopadhyay, A. (1975) Correlation problem in open-shell
atoms and molecules - non-perturbative linked cluster formulation. Mol. Phys., 30, 1861–1888.

77. Lindgren, I. (1978) Coupled-cluster approach to the many-body perturbation-theory for
open-shell systems. Int. J. Quantum. Chem., 12, 33–58.

78. Mukherjee, D., Moitra, R. and Mukhopadhyay, A. (1977) Applications of a non-perturbative
many-body formalism to general open-shell atomic and molecular problems - calculation
of ground and lowest 𝜋 − 𝜋⋆ singlet and triplet energies and 1st ionization-potential of
trans-butadiene. Mol. Phys., 33, 955–969.

79. Mukherjee, D., Moitra, R. and Mukhopadhyay, A. (1977) Core-valence separation and use of
non-orthogonal basic sets in non-perturbative open-shell many-body formalism. Indian J. Pure
Appl. Phys., 15, 623–628.

80. Landau, A., Eliav, E. and Kaldor, U. (1999) Intermediate Hamiltonian Fock-space
coupled-cluster method. Chem. Phys. Lett., 313, 399–403.

81. Haque, A. and Kaldor, U. (1985) Open-shell coupled-cluster theory applied to atomic and
molecular-systems. Chem. Phys. Lett., 117, 347–351.

82. Rittby, M., Pal, S. and Bartlett, R. (1989) Multireference coupled-cluster method -
ionization-potentials and excitation-energies for ketene and diazomethane. J. Chem. Phys., 90,
3214–3220.

83. Stolarczyk, L. and Monkhorst, H. (1985) Coupled-cluster method in Fock space .1. General
formalism. Phys. Rev. A, 32, 725–742.

84. Jeziorski, B. and Paldus, J. (1989) Valence universal exponential ansatz and the cluster structure
of multireference configuration-interaction wave-function. J. Chem. Phys., 90, 2714–2731.

85. Meissner, L. (1998) Fock-space coupled-cluster method in the intermediate Hamiltonian for-
mulation: model with singles and doubles. J. Chem. Phys., 108, 9227–9235.

86. Meissner, L. (2012) Various formulations of the Fock-space coupled-cluster method: advan-
tages and disadvantages in their practical implementations. Chem. Phys., 401, 136–145.

87. Jeziorski, B. and Monkhorst, H. (1981) Coupled-cluster method for multideterminantal refer-
ence states. Phys. Rev. A, 24, 1668–1681.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 325�

� �

�

Perturbative Coupled-Cluster Methods on Graphics Processing Units 325

88. Meissner, L., Jankowski, K. and Wasilewski, J. (1988) A coupled-cluster method for quaside-
generate states. Int. J. Quantum Chem., 34, 535–557.

89. Paldus, J., Piecuch, P., Pylypow, L. and Jeziorski, B. (1993) Application of hilbert-space
coupled-cluster theory to simple (H2)2 model systems - planar models. Phys. Rev. A, 47,
2738–2782.

90. Kucharski, S. and Bartlett, R. (1991) Hilbert-space multireference coupled-cluster methods .1.
The single and double excitation model. J. Chem. Phys., 95, 8227–8238.

91. Balková, A., Kucharski, S., Meissner, L. and Bartlett, R. (1991) A hilbert-space multireference
coupled-cluster study of the H-4 model system. Theor. Chim. Acta, 80, 335–348.

92. Meissner, L. and Bartlett, R. (1989) The general-model space effective Hamiltonian in
order-for-order expansion. J. Chem. Phys., 91, 4800–4808.

93. Meissner, L. and Bartlett, R. (1990) A general model-space coupled-cluster method using a
hilbert-space approach. J. Chem. Phys., 92, 561–567.

94. Li, X. and Paldus, J. (2003) General-model-space state-universal coupled-cluster theory: con-
nectivity conditions and explicit equations. J. Chem. Phys., 119, 5320–5333.

95. Masik, J. and Hubac, I. (1997) Multireference Brillouin-Wigner coupled-cluster theory.
Single-root approach, in Advances in Quantum Chemistry: Quantum Systems in Chemistry
and Physics, Part I, European Union, Advances in Quantum Chemistry, vol. 31, pp. 75–104,
2nd European Workshop on Quantum Systems in Chemistry and Physics, Jesus Coll, London,
England, Apr 06-09, 1997.

96. Pittner, J. (2003) Continuous transition between Brillouin-Wigner and Rayleigh-Schrodinger
perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled clus-
ter. J. Chem. Phys., 118, 10876–10889.

97. Mahapatra, U., Datta, B. and Mukherjee, D. (1998) A state-specific multi-reference coupled
cluster formalism with molecular applications. Mol. Phys., 94, 157–171.

98. Mahapatra, U. Datta, B., Bandyopadhyay, B. and Mukherjee, D. State-specific multi-reference
coupled cluster formulations: two paradigms, in Advances in Quantum Chemistry: Modern
Trends in Atomic Physics, Advances in Quantum Chemistry, vol. 30, Swedish Academy of
Sciences; Goteborg University, pp. 163–193.

99. Evangelista, F.A., Allen, W.D. and Schaefer, H.F. III (2007) Coupling term derivation and gen-
eral implementation of state-specific multireference coupled cluster theories. J. Chem. Phys.,
127, 024102.

100. Yanai, T. and Chan, G. (2006) Canonical transformation theory for multireference problems. J.
Chem. Phys., 124, 194106.

101. Bhaskaran-Nair, K., Brabec, J., Apra, E., van Dam, H.J.J., Pittner, J. and Kowalski, K. (2012)
Implementation of the multireference Brillouin-Wigner and Mukherjee’s coupled cluster meth-
ods with non-iterative triple excitations utilizing reference-level parallelism. J. Chem. Phys.,
137, 094112.

102. Bhaskaran-Nair, K., Demel, O. and Pittner, J. (2010) Multireference Mukherjee’s coupled clus-
ter method with triexcitations in the linked formulation: efficient implementation and applica-
tions. J. Chem. Phys., 132, 154105.

103. Demel, O. and Pittner, J. (2006) Multireference Brillouin-Wigner coupled clusters method with
noniterative perturbative connected triples. J. Chem. Phys., 124, 144112.

104. Bhaskaran-Nair, K., Demel, O. and Pittner, J. (2008) Multireference state-specific Mukherjee’s
coupled cluster method with noniterative triexcitations. J. Chem. Phys., 129, 184105.

105. Bhaskaran-Nair, K., Demel, O., Smydke, J. and Pittner, J. (2011) Multireference state-specific
Mukherjee’s coupled cluster method with noniterative triexcitations using uncoupled approxi-
mation. J. Chem. Phys., 134, 154106.

106. Evangelista, F.A., Prochnow, E., Gauss, J. and Schaefer, H.F. III (2010) Perturbative triples
corrections in state-specific multireference coupled cluster theory. J. Chem. Phys., 132, 074107.

Trim Size: 170mm x 244mm Walker c14.tex V3 - 01/18/2016 12:51 A.M. Page 326�

� �

�

326 Electronic Structure Calculations on Graphics Processing Units

107. Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D.,
Nieplocha, J., Apra, E., Windus, T.L. and de Jong, W. (2010) NWChem: a comprehensive and
scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun.,
181, 1477–1489.

108. Kendall, R.A., Aprà, E., Bernholdt, D.E., Bylaska, E.J., Dupuis, M., Fann, G.I., Harrison, R.J.,
Ju, J., Nichols, J.A., Nieplocha, J., Straatsma, T.P., Windus, T.L. and Wong, A.T. (2000) High
performance computational chemistry: an overview of NWChem a distributed parallel applica-
tion. Comput. Phys. Commun., 128, 260–283.

109. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H. and Apra, E. (2006) Advances,
applications and performance of the global arrays shared memory programming toolkit. Int. J.
High Perform. Comput. Appl., 20, 203–231.

110. Hirata, S. (2003) Tensor contraction engine: abstraction and automated parallel implementation
of configuration-interaction, coupled-cluster, and many-body perturbation theories. J. Phys.
Chem. A, 107, 9887–9897.

111. NVIDIA Corporation (2012) NVIDIA CUDA C Programming Guide, Version 5.0.
112. NVIDIA Corporation (2012) NVIDIA’s Next Generation CUDA Compute Architec-

ture: Kepler GK110. Whitepaper. Available at: http://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf (accessed 22
September 2015).

113. NVIDIA Corporation (2013) NVIDIA Tesla GPU accelerators, Available at: http://www
.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
(accessed 22 September 2015).

114. Hehre, W., Ditchfield, R. and Pople, J. (1972) Self-consistent molecular-orbital methods.
12. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of
organic-molecules. J. Chem. Phys., 56, 2257–2261.

115. Dunning, T. (1989) Gaussian-basis sets for use in correlated molecular calculations. 1. The
atoms boron through neon and hydrogen. J. Chem. Phys., 90, 1007–1023.

116. Kowalski, K., Bhaskaran-Nair, K., Brabec, J. and Pittner, J. (2013) Coupled cluster theories for
strongly correlated molecular systems, in Strongly Correlated Systems: Numerical Methods,
Springer Series in Solid-State Sciences, vol. 176, Springer-Verlag, pp. 237–271, see http://
www.springer.com/us/book/9783642351051.

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.springer.com/us/book/9783642351051
http://www.springer.com/us/book/9783642351051

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 327�

� �

�

Scientific Index

adiabatic approximation 215
ADF 101–105, 107, 108, 110–112
AM1 56, 241, 251–253
AMBER 11, 15–17
AO. See atomic orbital (AO)
approximate enforced time-reversal

symmetry propagator
(AETRS) 216

atomic orbital (AO) 59, 68, 70, 71,
73–75, 77, 82, 84, 87, 88, 90–92,
98, 103, 104, 246, 261, 284

Baker–Campbell–Hausdorff
expansion 176, 303

band structure 152, 153, 156–157
Becke quadrature 86
Berkeley open infrastructure for network

computing (BOINC) 266
BigDFT 115–117, 119, 121–130, 132,

133
Bloch’s theorem 51, 137
bottleneck 11, 14, 36, 44, 49, 56, 71, 85,

94, 112, 196, 241–244, 251, 262
Boys function 71, 73
Brillouin zone 51, 137, 204

CCSD. See coupled cluster singles
doubles (CCSD)

CCSD(T). See coupled cluster singles
doubles with perturbative triples
correction (CCSD(T))

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

chemical potential 175, 176
Cholesky decomposition 52, 146, 198,

222, 260, 264, 286
CIS. See configuration interaction

singles
configuration interaction (CI) 40, 58
configuration interaction singles

(CIS) 58, 92
conjugate gradient 45, 51, 120, 140, 141,

177, 202, 203
contracted Gaussian function 50, 68
convolution 117, 121–123, 126–128,

132
Coulomb matrix 44, 45, 47, 79–81, 89
Coulomb operator 43, 79, 260
Coulomb potential 103, 105, 108, 109,

194, See also Hartree potential
coupled cluster (iterative) 279–296,

301–320
coupled cluster doubles

(CCD) 280–282, 284, 287,
290–292

coupled cluster singles doubles
(CCSD) 60, 280–283, 285–287,
289, 292–295, 304, 307

coupled cluster singles doubles with
perturbative triples correction
(CCSD(T)) 60, 305–306,
308–310, 316–317

coupled cluster theory 59–60, 281–282,
303–309

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 328�

� �

�

328 Scientific Index

CP2K 174, 177, 183, 184, 186, 187
Crank–Nicolson method 202
Curvy-step method 176

Daubechies wavelets 116–123
Davidson method 51, 92, 140–143
dense matrix 179, 187, 198, 207, 265
density fitting. See resolution of identity

(RI)
density functional theory (DFT) 40,

46–49, 68–70, 85–88, 94–96,
101–112, 115–119, 135–143, 174,
191–196, 212–215

density functional tight binding 56, 57
density matrix 44, 45, 49, 54, 70, 78–80,

84, 85, 87, 90, 94, 175–176, 194,
204, 243–245, 252

DFT. See density functional theory
(DFT)

diagonalization 44, 45, 70, 92, 93, 102,
137, 140–143, 145, 149–151,
154–159, 174, 175, 196–198, 215,
221, 222, 227, 242–244, 246, 250,
256, 307

direct minimization 176
discretization 43, 52, 118, 119, 192, 195,

212, 213, 215, 227, 228
discretization error 52, 118, 212, 213,

227

eigensolver 136, 140–143, 196, 197,
215, 216, 221

eigenfunction. See also eigenvector 46,
119, 140, 141, 143, 145, 260, 261

eigenvalue 43, 45, 53, 92, 136–138, 140,
141, 145, 175, 176, 195, 204, 244,
261, 307

eigenvector. See also eigenfunction 92,
118, 140–143, 174, 175, 215, 243,
244, 305, 307

electron–electron repulsion integral
(ERI) 42, 44, 45, 52, 54, 55, 59,
71, 73–98, 242, 261, 264

ERI. See electron–electron repulsion
integral (ERI)

ERI tensor 280, 282–286, 292, 293, 295

exact exchange (EXX) 40, 48, 69, 79,
81–85, 132, 135, 145, 151,
159–165, 203, 228

exchange–correlation functional (XC
functional) 47, 48, 69, 102, 109,
145

exchange–correlation integration. See
exchange–correlation quadrature
(XC quadrature)

exchange–correlation kernel (XC
kernel) 69, 85, 87

exchange–correlation potential (XC
potential) 47, 49, 85, 87, 92, 93,
103, 108, 119, 122, 194, 197, 215,
224

exchange–correlation quadrature (XC
quadrature) 49, 85–88, 102–103

exchange matrix (K matrix) 45, 81–85,
85, 93

EXX. See exact exchange (EXX)

fast Fourier transform (FFT) 34, 132,
136, 144, 157, 162, 164, 205, 206,
223, 224, 229

FFT. See fast Fourier transform (FFT)
filter, low-pass (high-pass) 118
finite difference 52, 119, 195, 197–199,

202, 205, 213, 215, 218, 220,
229

Fock matrix 44, 45, 53, 54, 56, 70, 71,
78, 79, 89, 93, 102–112, 241

Fock operator 43, 44, 47, 70, 260, 261
Fourier transform 34, 132, 136, 143,

145–148, 151, 154–159, 164, 165,
202, 216, 223

Gaussian basis set 45, 50, 51, 68
Gaussian function, contracted (Hermite,

primitive) 43, 50, 51, 68, 71, 77,
79–81

Gaussian product theorem 50, 51, 71
generalized gradient approximation

(GGA) 47, 48, 69, 85, 105, 11,
159, 192

GGA. See generalized gradient
approximation (GGA)

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 329�

� �

�

Scientific Index 329

GPAW 191–193, 196, 198, 199, 202,
204, 205, 207, 208

grid, exchange–correlation quadrature
(real-space, multi, reciprocal) 49,
52, 69, 85–88, 102, 103, 118–121,
136, 192, 193, 195–198, 199,
202–204, 206, 207, 212–214,
218–219

Hamiltonian 42, 46, 47, 54, 57, 59, 69,
70, 119, 120, 122, 128, 136, 137,
139–142, 145, 151, 156, 159, 175,
176, 194–197, 202, 207, 215–222,
248, 260, 282, 284, 286,
303–308

Hamiltonian matrix 54, 56, 57, 119, 168,
175, 176, 307, 308

Hartree potential 47, 52, 119, 197, 215,
223. See also Coulomb potential

Hartree–Fock theory (HF theory) 3,
41–43, 58, 68–70, 159, 174, 203,
260

Hartree–Fock exchange. See exact
exchange (EXX)

Hermite Gaussian function 71
HF theory. See Hartree–Fock theory (HF

theory)
Hilbert space 43, 136, 218, 219, 306
hybrid functional 48, 96, 102, 158, 159,

165, 197, 203

J-engine 79–81, 92–95
Jeziorski–Monkhorst ansatz 306, 307

K-engine 81–85, 92–95
K matrix. See exchange matrix
Kohn–Sham density functional theory

(KS–DFT). See density functional
theory

Kohn–Sham potential (KS potential) 52,
119

k-point 51, 137, 143–145, 147, 153,
154, 156–158, 162, 163, 206,
228

KS–DFT. See density functional theory
KS potential. See Kohn–Sham potential

Laplace operator 197
LDA. See local density approximation

(LDA)
linear combinations of atomic orbital

(LCAO) 136
local density approximation (LDA) 47,

48, 192, 224, 229

matrix, (Coulomb, dense, density,
exchange, Fock, Hamiltonian,
overlap, sparse) 34, 44, 45, 47, 49,
53, 54, 56, 57, 67, 70, 71, 78–85,
87, 89, 90, 93, 94, 102–112, 119,
136, 138, 146, 160, 168, 175–189,
198, 194, 204, 207, 241, 243–245,
252, 265, 307, 308

matrix diagonalization. See
diagonalization

matrix–matrix multiplication 103, 104,
145, 173, 177–179, 181, 183–187,
198–199, 245–246, 262–265, 287,
290, 312

McMurchie–Davidson 67, 71, 77
mixed precision matrix multiplication

(MGEMM) 263–270
MNDO. See modified neglect of diatomic

overlap (MNDO)
MO. See molecular orbital (MO)
modified neglect of diatomic overlap

(MNDO) 53, 54, 56, 241–242,
248, 250–253

molecular orbital (MO) 43, 45, 50, 52,
53, 59, 68–70, 85, 92, 102, 227,
239, 242, 244, 246, 247, 261,
284

Møller–Plesset perturbation theory 3,
40, 53, 59, 259–264, 269–273,
304,

MP2. See Møller–Plesset perturbation
theory

MRCC. See Multi-reference coupled
cluster (MRCC)

multigrid method 192, 193, 195,
196–198, 207

multi-reference coupled cluster
(MRCC) 302, 306–310, 315–320

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 330�

� �

�

330 Scientific Index

NDDO. See neglect of diatomic
differential overlap (NDDO)

neglect of diatomic differential overlap
(NDDO) 53, 54, 56, 240–242

NWChem 287, 290, 292, 301, 308, 309,
312

Octopus 212, 213, 227–229
OMx (x=1,2,3) 241, 251, 253
orbital, atomic (HF, KS, occupied,

molecular, unoccupied, virtual) 40,
43–46, 48–53, 57–59, 68–71,
73–75, 77, 82, 84, 85, 87, 88,
90–92, 98, 102–104, 116, 119,
123, 136, 146, 192, 203, 204,
215–222, 224, 225, 227, 228, 239,
242, 243, 246, 247, 260–262, 281,
282, 284, 293, 294, 305–307, 309,
318

overlap matrix 43, 53, 54, 57, 70, 90,
136, 138, 146, 160, 175

parallelepipedic grids 213
PAW. See projector-augmented wave

(PAW)
plane wave 43, 49, 51–52, 116, 119,

135–137, 156, 159, 165, 171, 192,
193, 204, 205, 228

PM3 56, 241, 251–253
Poisson equation 119, 122, 162,

193–197, 207, 215, 223
Poisson solver 122, 132, 145, 160, 162,

197, 223
potential, Coulomb (exchange,

exchange–correlation, local,
Hartree, KS, nonlocal) 46–49, 52,
67, 69, 85, 87, 92–94, 97, 102, 103,
105, 108, 109, 119, 122, 139, 145,
191, 192, 194, 197, 215, 223, 224

preconditioner, preconditioning 119,
120, 123, 141, 142, 193, 196, 197,
215

predictor–corrector method 202, 216
primitive Gaussian function 68, 71
projector-augmented wave (PAW) 51,

52, 136, 138, 146, 147, 191–195,
197, 199, 202, 205, 207, 213

projector, pseudopotential 137, 144
pseudopotential, norm-conserving

(ultra-soft) 52, 119, 136, 138, 140,
144, 192

quadrature 49, 52, 67, 85–87, 102–103,
118, 119

Q-Chem 269, 270
Quantum Espresso 136, 151,

random phase approximation (RPA) 192,
203–207

real-space grid discretization 43, 49, 52,
192, 193, 195, 196, 199, 202–204,
207, 212–215

real-time TDDFT 192, 202, 207, 212,
216, 217, 222, 223, 225–227,

reciprocal grid 51, 136
reciprocal space 34, 116, 136, 162, 204
reference-level parallelism 302, 318
residual minimization scheme with direct

inversion in iterative subspace
(RMM-DIIS) 140, 142–143, 146,
149–151, 155–157, 159, 197, 215

resolution of identity (RI) 52, 59, 197,
259–261, 282, 293, 294

resolution of identity Møller–Plesset
perturbation theory
(RI-MP2) 259–261, 263, 264,
266, 269–273

RI. See Resolution of identity (RI)
RI-MP2. See resolution of identity

Møller–Plesset perturbation theory
(RI-MP2)

RMM-DIIS. See residual minimization
scheme with direct inversion in
iterative subspace (RMM-DIIS)

scaling, asymptotic (computational,
formal, linear) 40, 44, 45, 49, 52,
59, 60, 67, 82, 93–95, 102–105,
156–159, 165, 173–175, 177,
186–188, 205, 242, 262, 282, 285,
286, 304, 309

scaling function 117–123
SCF. See Self-consistent field (SCF)

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 331�

� �

�

Scientific Index 331

Schrödinger equation 40–42, 46, 50, 58,
60, 68, 136, 138, 240, 303, 307

Schwarz bound (inequality,
screening) 45, 71, 78, 80, 81,
83–85, 89, 90, 263, 264

self-consistent field (SCF) 3, 43–45, 53,
56, 67, 68, 71, 78, 84, 90, 92–95,
102–104, 174–177, 196, 199, 200,
215, 224, 241–243, 246, 252, 263

shell (basis functions) 68, 77–80, 82, 83
single-reference coupled cluster 59, 60,

279–284, 303–306
Slater type function (orbital) 43, 44,

49–50, 53, 54, 101, 102
space, real (reciprocal, plane wave) 34,

43, 49, 51–52, 116, 119, 135–165,
168, 171, 192, 193, 204, 228

sparse eigensolvers 215
sparse matrix 34, 45, 67, 175, 177,

178–189, 265
sparsity 45, 94, 175, 177–179, 182, 183,

268, 313
stencil 195, 197–199, 205, 218

Tamm–Dancoff approximation
(TDA) 92

TDDFT. See time-dependent density
functional theory (TDDFT)

TDHF. See time-dependent
Hartree–Fock theory (TDHF)

TeraChem 93, 212, 227–229
time-dependent density functional theory

(TDDFT) 48, 67, 92, 96, 97, 102,
202–203, 211–213, 215–217, 222,
223, 226–229

time-dependent Hartree–Fock theory
(TDHF) 92

time-dependent Kohn–Sham 192, 202,
215, 216, 222

time propagation 192, 202, 207, 216, 224

unit cell 51, 137, 140, 204, 206, 207
unoccupied orbital 43, 45, 48, 59, 85,

304, 307

VASP 136, 151, 153, 160, 163, 165
virtual orbital 43, 52, 58, 59, 92, 204,

246, 261, 262, 281, 282, 293,

wave function 40–43, 46, 50, 52, 53,
57–60, 68, 69, 101, 119–122, 128,
129, 175, 193, 196, 197, 202, 203,
206, 207, 260, 280, 281, 303, 305,
306

wavelet 43, 115–124, 128, 132, 228

XC functional. See exchange–correlation
functional (XC functional)

XC integration. See
exchange–correlation quadrature
(XC quadrature)

XC kernel. See exchange–correlation
kernel (XC kernel)

XC potential. See exchagen–correlation
potential (XC potential)

XC quadrature. See
exchange–correlation quadrature
(XC quadrature)

zero-differential-overlap (ZDO) 240

Trim Size: 170mm x 244mm Walker bindex01.tex V2 - 01/08/2016 10:29 A.M. Page 332�

� �

�

Trim Size: 170mm x 244mm Walker bindex02.tex V2 - 01/08/2016 10:54 A.M. Page 333�

� �

�

Technical Index

accelerator 5, 7, 24
Amdahl’s law 10, 11
arithmetic intensity 14

bandwidth 6, 12, 14, 25, 30–34, 36, 72,
78, 88, 149, 152, 183

basic linear algebra subroutines
(BLAS) 34, 106, 198–200, 205,
206, 229

batching 33–34, 149, 150
BLAS. See basic linear algebra

subroutines (BLAS)
block 13–14, 27–29, 72–77

cache 5–6, 8, 24–26, 29–31, 73, 179,
217–219, 311

Cannon’s algorithm 178
Colossus 1
co-processor 5, 7, 12, 24,
core (compute) 3–7
cuBLAS. See CUDA basic linear algebra

subroutines library (cuBLAS)
CUDA (programming model) 12–13,

23, 26–37, 72, 105–107, 125, 152,
180–182, 240

CUDA basic linear algebra subroutines
library (cuBLAS) 34

CUDA fast Fourier transform library
(cuFFT) 34

DAG. See directed acyclic graph (DAG)
data dependency 11

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

data locality 8, 12, 125, 184, 219
data parallelism 9, 14, 216–217, 228
device (GPU) 24–25, 27–33, 36
directed acyclic graph (DAG) 9
distributed memory 1, 7–8, 12

execution, asynchronous
(synchronous) 33

Fermi (GPU) 130, 280, 286–288, 291,
293–295

floating point operations per second 2, 6,
104, 240, 286, 291

global arrays toolkit 290
global memory 12, 14, 25–26, 29–33,

72, 125, 184–186, 198, 295, 311
granularity 9, 14, 177, 186, 302, 309, 316
graphics processing unit (GPUs) 5–7,

12–15, 23–36, 72, 105, 124,
310–311

grid (of processing elements /
threadblocks) 1, 27–29, 72

Gustafson’s law 10, 11

Host (of GPU device) 24, 25, 27, 29–31,
33, 36, 72

Hyper-Q 35, 311

Kepler (GPU) 15, 26, 33, 88, 105, 109,
131, 148, 286, 293–295, 310–311

kernel 7, 14, 24–27, 32–34, 72

Trim Size: 170mm x 244mm Walker bindex02.tex V2 - 01/08/2016 10:54 A.M. Page 334�

� �

�

334 Technical Index

latency 12, 14, 30–32
local memory 25, 29–30, 125
lock (shared memory) 11, 15, 24, 25

MAGMA (library) 35, 146, 244
message passing interface (MPI) 3, 8, 35,
Moore’s law 4, 280
MPI. See message passing interface

(MPI)
multi-process service (MPS) 35, 150

no-op instruction 26, 29, 72, 74

occupancy (warp) 32–33, 106
OpenACC 12, 23, 302
OpenCL 12–13, 23, 125–126
OpenMP 8, 12

parallelism, task (data) 9

race condition 8, 11, 33, 220
register 24–26, 32–33, 72, 74, 75, 81,

106, 185, 186, 311, 314

serialization 11, 109, 181
shared memory 1, 7, 8, 12, 24–26,

29–33, 72, 106
single instruction multiple data

(SIMD) 3, 7
stream 33–35, 72
streaming multiprocessor (SM) 24–25,

32, 72, 311

task parallelism 9
Tesla (GPU) 7, 14, 72
thread 6–8, 13–14, 24–33, 72–73,

106
throughput 12
Titan supercomputer 310, 317

unified memory 35–36

warp 13, 15, 24–27, 32–33, 72–73,
217

wavefront 217

Z3 (computer) 1

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 1�

� �

�

Figure 4.1 Schematic of one-block one-contracted Integral (1B1CI) mapping. Cyan squares on left rep-
resent contracted ERIs each mapped to the labeled CUDA block of 64 threads. Orange squares show
mapping of primitive ERIs to CUDA threads (green and blue boxes, colored according to CUDA warp)
for two representative integrals, the first a contraction over a single primitive ERI and the second involving
34 = 81 primitive contributions

Figure 4.2 Schematic of one-thread one-contracted Integral (1T1CI) mapping. Cyan squares represent
contracted ERIs and CUDA threads. Thread indices are shown in parentheses. Each CUDA block (red
outlines) computes 16 ERIs, with each thread accumulating the primitives of an independent contraction,
in a local register

Electronic Structure Calculations on Graphics Processing Units:
From Quantum Chemistry to Condensed Matter Physics, First Edition.
Edited by Ross C. Walker and Andreas W. Götz.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 2�

� �

�

Figure 4.3 Schematic of one-thread one-primitive integral (1T1PI) mapping. Cyan squares represent
two-dimensional tiles of 16 × 16 primitive ERIs, each of which is assigned to a 16 × 16 CUDA block
as labeled. Red lines indicate divisions between contracted ERIs. The orange box shows assignment of
primitive ERIs to threads (gray squares) within a block that contains contributions to multiple contractions

(a) (b)

Figure 4.4 ERI grids colored by angular momentum class for a system containing four s-shells and one
p-shell. Each square represents all ERIs for a shell quartet. (a) Grid when bra and ket pairs are ordered by
simple loops over shells. (b) ERI grid for same system with bra and ket pairs sorted by angular momentum,
ss, then sp, then pp. Each integral class now handles a contiguous chunk of the total ERI grid

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 3�

� �

�

|ss
)

|sp
)

|p
p) |ss

)
|sp

)
|p
p)

(ss|

(sp|

(pp|

(ss|

1.0

1.0e–3

(b)(a)

1.0e–6

1.0e–9

(sp|

(pp|

Presorted integral grid

Figure 4.5 Organization of ERIs for Coulomb formation. Rows and columns correspond to primitive bra
and ket pairs, respectively. Each ERI is colored according to the magnitude of its Schwarz bound. Data
are derived from calculation on ethane molecule. Figure (a) obtained by arbitrary ordering of pairs within
each angular momentum class and suffers from load imbalance because large and small integrals are
computed in neighboring cells, and (b) that sorts bra and ket primitives by Schwarz contribution within
each momentum class, providing an efficient structure for parallel evaluation

Figure 4.6 Schematic representation of a J-Engine kernel for one angular momentum class, for example,
(ss|ss). Cyan squares represent significant ERI contributions. Sorted bra and ket vectors are represented
by triangles to the left and above the grid. The path of a 2 × 2 block as it sweeps across the grid is shown
in orange. The final reduction across rows of the block is illustrated within the inset to the right

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 4�

� �

�

Figure 4.7 Schematic of a K-Engine kernel. Bra and ket PQ arrays are represented by triangles to the
left and above the grid. The pairs are grouped by 𝜈 and 𝜆 index and then sorted by bound. The paths of
four blocks are shown in orange, with the zigzag pattern illustrated by arrows in the top right. The final
reduction of an exchange element within a 2 × 2 block is shown to the right

|ss
)

|sp
)

|p
p)

|ss
)

|sp
)

|p
p)

(ss|

(sp|

(pp|

(ss|

DBL

(a) (b)

SGL

1.0

1.0e–3

1.0e–6

1.0e–9

(sp|

(pp|

Figure 4.8 Organization of double- and single-precision workloads within Coulomb ERI grids. As in
Figure 4.5, rows and columns correspond to primitive bra and ket pairs. (a) Each ERI is colored according
to the magnitude of its Schwarz bound. (b) ERIs are colored by required precision. Yellow ERIs require
double precision, while those in green may be evaluated in single precision. Blue ERIs are neglected entirely

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 5�

� �

�

1000
0 0

200

400

600

800

1000

50

100

150

200

250

300

350

J (N1.99
)

K (N1.51
)

LA (N2.99
)

SCF (N1.93
)

DFT (N1.58
)

2000 2000 4000 6000 8000 1 × 10
4

1.2 × 10
43000 4000

No of basis functions

T
im

e
 (

s
)

T
im

e
 (

s
)

No of basis functions

5000 6000 7000 8000

J (N2.11
)

K (N1.54
)

K (N1.32
)

(mask)

LA (N3.07
)

DFT (N1.37
)

SCF (N1.86
)

SCF (N1.94
)

(mask)

(a) (b)

Figure 4.11 First SCF iteration timings in seconds for (a) linear alkenes and (b) cubic water clusters. Total
times are further broken down into J-Engine, K-Engine, distance-masked K-Engine, linear algebra (LA), and
DFT exchange–correlation contributions. For water clusters, total SCF times are shown for both the naïve
and distance-masked (mask) K-Engine. All calculations were performed using a single Tesla M2090 GPU
and the 6-31G basis set. Power fits show scaling with increasing system size, and the exponent for each
fit is provided in the legend

Figure 7.2 Using multiple process accelerated by GPUs communicating with MPI

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 6�

� �

�

A C

B

(a) (b)

CA

B

Figure 8.7 Inner-product (a) and outer-product (b) form of matrix multiplication. The yellow areas in C
indicate elements that can be computed independently by accessing the highlighted areas of A and B

w

m PA

Pc

PB

A

B

k

n

w

M T

N

v
(a)

PB

PA

PC

T

Shared mem

Registers

(b)

A B C

A B C

s

Global mem

(c)

Figure 8.8 (a) Parameterization of the m × n × k-matrix product C = C + AB. Each thread computes an
M × N tile (T) of the result matrix C. In order to accommodate matrix sizes larger than the available shared
memory, matrices are processed in slabs (PA, PB), with an input slab width w. In order to optimize the data
output, the matrices (PC) are written back using the output slab width v. (b) Close to the SM, registers are
used to store the C matrix tile, while slabs of A, B, and C are stored in shared memory. (c) GPU memory
stores all panel data, including the various blocks of A, B, C, and the stack buffers S

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 7�

� �

�

151515

0

5

10

15

S
p
e
e
d
-u

p 20

25

30

27

407 452

791

1122
1262

Weak scalability of bulk silicon (GPU vs. CPU)

1444

29 45 58 69 96

0

200

400

600

800

1000

1200

1400

1600

Bulk silicon GPU speed-ups

(a)

(b)

T
im

e
/o

n
e
 i
te

ra
ti
o
n
 (

s
)

MPI tasks, # Atoms

1818
19

Si(383)

8 GPUs

Si(3
83

) 8
 G

PU
s

Si(5
11

) 1
6

G
PU

s

Si(7
99

) 3
2

G
PU

s

Si(1
15

1)
 6

4
G

PU
s

Si(1
53

5)
 1

28
 G

PU
s

Si(2
04

7)
 2

56
 G

PU
s

8
C
or

es

16
 C

or
es

32
 C

or
es

64
 C

or
es

12
8

C
or

es

25
6

C
or

es

Si(511)

16 GPUs

Si(799)

32 GPUs

Si(1151)

64 GPUs

Si(1535)

128 GPUs

Si(2047)

256 GPUs

Other

Subspace diag.

RMM-DIIS other
Precondition

Orthonormalization

Poisson

SCF-iteration GPU
SCF-iteration CPU

Poisson

Orthonormalization

Precondition

RMM-DIIS other

Subspace diag.

Other

SCF-iteration

Figure 9.3 (a) Weak scaling performance of the CPU and GPU versions of the program using bulk Si
systems. (b) The achieved speedups with GPU acceleration. The GPU runs used one CPU core per GPU

Trim Size: 170mm x 244mm Walker bplate.tex V3 - 01/08/2016 10:35 A.M. Page 8�

� �

�

C2 C3

T1 T1 T1

T3

T2

T2

T2

V2

V2

V2
Individual blocks

Outputs

Inputs
CPU Memory

Global Arrays

GPU Memory

Individual blocks

2 23

1 1

3

44

F1

F1

F1

T3 E

E GPU

E

C1C0

Figure 14.2 CPU–GPU hybrid implementation: execution steps involved in the noniterative triples cor-
rection. T1, T2, and T3 tensors corresponds to the T1, T2, and T(2)

3 amplitudes (SRCC) or to the

reference-specific T(𝜇)
1 , T(𝜇)

2 , and perturbative T(𝜇)
3 amplitudes (MRCC). The F1 and V2 tensors corresponds

to one- and two-electron integrals, respectively. The steps are as follows: step 1, copy input blocks from
Global Arrays to the CPU or GPU local memory; step 2, contract input blocks into intermediate tensor
block; step 3, reduce intermediate tensor to compute energy correction contribution; step 4, reduce final
energy correction across all CPUs and GPUs. One of the CPU cores (Core 0 in the image) manages com-
munication and load balancing toward the GPU, and also performs some basic sequential operations that
would be more expensive on the GPU

Iterative solutions of the MRCCSD equations

It
e

ra
ti
o

n
s

Calculating diagonal non-iterative triples corrections

Converged cluster operators T1
(μ), T2

(μ) are

used to construct effective Hamiltonion

R(μ)

(μ∈W2)

(μ∈W1) (μ∈W1)(μ∈W2)

R(μ)

(μ∈W2)

R(μ)

(μ∈W1)

CPU

GPU GPU GPU

CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

δμμ (T3
(μ)) δμμ (T3

(μ)) δμμ (T3
(μ))

Figure 14.3 Schematic representation of the GPU-enhanced reference-level parallelism. Separate pro-
cessor groups are delegated to calculate the reference-specific parts of the iterative MRCCSD equations
and reference-specific noniterative corrections due to triples

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	List of Contributors
	Preface
	Acknowledgments
	Glossary
	Abbreviations
	Chapter 1 Why Graphics Processing Units
	1.1 A Historical Perspective of Parallel Computing
	1.2 The Rise of the GPU
	1.3 Parallel Computing on Central Processing Units
	1.3.1 Parallel Programming Memory Models
	1.3.2 Parallel Programming Languages
	1.3.3 Types of Parallelism
	1.3.4 Parallel Performance Considerations

	1.4 Parallel Computing on Graphics Processing Units
	1.4.1 GPU Memory Model
	1.4.2 GPU APIs
	1.4.3 Suitable Code for GPU Acceleration
	1.4.4 Scalability, Performance, and Cost Effectiveness

	1.5 GPU-Accelerated Applications
	1.5.1 Amber
	1.5.2 Adobe Premier Pro CC

	References

	Chapter 2 GPUs: Hardware to Software
	2.1 Basic GPU Terminology
	2.2 Architecture of GPUs
	2.2.1 General Nvidia Hardware Features
	2.2.2 Warp Scheduling
	2.2.3 Evolution of Nvidia Hardware through the Generations

	2.3 CUDA Programming Model
	2.3.1 Kernels
	2.3.2 Thread Hierarchy
	2.3.3 Memory Hierarchy

	2.4 Programming and Optimization Concepts
	2.4.1 Latency: Memory Access
	2.4.2 Coalescing Device Memory Accesses
	2.4.3 Shared Memory Bank Conflicts
	2.4.4 Latency: Issuing Instructions to Warps
	2.4.5 Occupancy
	2.4.6 Synchronous and Asynchronous Execution
	2.4.7 Stream Programming and Batching

	2.5 Software Libraries for GPUs
	2.6 Special Features of CUDA-Enabled GPUs
	2.6.1 Hyper-Q
	2.6.2 MPS
	2.6.3 Unified Memory
	2.6.4 NVLink

	References

	Chapter 3 Overview of Electronic Structure Methods
	3.1 Introduction
	3.1.1 Computational Complexity
	3.1.2 Application Fields, from Structures to Spectroscopy
	3.1.3 Chapter Overview

	3.2 Hartree-Fock Theory
	3.2.1 Basis Set Representation
	3.2.2 Two-Electron Repulsion Integrals
	3.2.3 Diagonalization

	3.3 Density Functional Theory
	3.3.1 Kohn-Sham Theory
	3.3.2 Exchange-Correlation Functionals
	3.3.3 Exchange-Correlation Quadrature

	3.4 Basis Sets
	3.4.1 Slater-Type Functions
	3.4.2 Gaussian-Type Functions
	3.4.3 Plane Waves
	3.4.4 Representations on a Numerical Grid
	3.4.5 Auxiliary Basis Sets

	3.5 Semiempirical Methods
	3.5.1 Neglect of Diatomic Differential Overlap
	3.5.2 Fock Matrix Elements
	3.5.3 Two-Electron Repulsion Integrals
	3.5.4 Energy and Core Repulsion
	3.5.5 Models Beyond MNDO

	3.6 Density Functional Tight Binding
	3.7 Wave Function-Based Electron Correlation Methods
	3.7.1 Moller-Plesset Perturbation Theory
	3.7.2 Coupled Cluster Theory

	Acknowledgments
	References

	Chapter 4 Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs
	4.1 Quantum Chemistry Review
	4.1.1 Self-Consistent Field Equations in Gaussian Basis Sets
	4.1.2 Electron-Electron Repulsion Integral Evaluation

	4.2 Hardware and CUDA Overview
	4.3 GPU ERI Evaluation
	4.3.1 One-Block-One-Contracted Integral
	4.3.2 One-Thread-One-Contracted Integral
	4.3.3 One-Thread-One-Primitive Integral
	4.3.4 Comparison of Contracted ERI Schemes
	4.3.5 Extensions to Higher Angular Momentum

	4.4 Integral-Direct Fock Construction on GPUs
	4.4.1 GPU J-Engine
	4.4.2 GPU K-Engine
	4.4.3 Exchange-Correlation Integration

	4.5 Precision Considerations
	4.6 Post-SCF Methods
	4.7 Example Calculations
	4.8 Conclusions and Outlook
	References

	Chapter 5 GPU Acceleration for Density Functional Theory with Slater-Type Orbitals
	5.1 Background
	5.2 Theory and CPU Implementation
	5.2.1 Numerical Quadrature of the Fock Matrix
	5.2.2 CPU Code SCF Performance

	5.3 GPU Implementation
	5.3.1 Hardware and Software Requirements
	5.3.2 GPU Kernel Code
	5.3.3 Hybrid CPU/GPU Computing Scheme
	5.3.4 Speed-Up Results for a Single-Point Calculation
	5.3.5 Speed-Up Results for an Analytical Frequency Calculation

	5.4 Conclusion
	References

	Chapter 6 Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures
	6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional Theory Implementations
	6.2 Operators in Wavelet Basis Sets
	6.2.1 Daubechies Wavelets Basis and Convolutions
	6.2.2 The Kohn-Sham Formalism
	6.2.3 Three-Dimensional Basis
	6.2.4 The Kinetic Operator and the Local Potential
	6.2.5 Poisson Solver

	6.3 Parallelization
	6.3.1 MPI Parallel Performance and Architecture Dependence

	6.4 GPU Architecture
	6.4.1 GPU Implementation Using the OpenCL Language
	6.4.2 Implementation Details of the Convolution Kernel
	6.4.3 Performance of the GPU Convolution Routines
	6.4.4 Three-Dimensional Operators, Complete BigDFT Code
	6.4.5 Other GPU Accelerations

	6.5 Conclusions and Outlook
	6.5.1 Evaluation of Performance Benefits for Complex Codes

	References

	Chapter 7 Plane-Wave Density Functional Theory
	7.1 Introduction
	7.2 Theoretical Background
	7.2.1 Self-Consistent Field
	7.2.2 Ultrasoft Pseudopotentials
	7.2.3 Projector Augmented Wave (PAW) Method
	7.2.4 Force and Stress
	7.2.5 Iterative Diagonalization

	7.3 Implementation
	7.3.1 Transformations
	7.3.2 Functionals
	7.3.3 Diagonalization
	7.3.4 Occupancies
	7.3.5 Electron Density
	7.3.6 Forces

	7.4 Optimizations
	7.4.1 GPU Optimization Techniques
	7.4.2 Parallel Optimization Techniques (Off-Node)
	7.4.3 Numerical Optimization Techniques

	7.5 Performance Examples
	7.5.1 Benchmark Settings
	7.5.2 Self-Consistent Charge Density
	7.5.3 Band Structure
	7.5.4 AIMD
	7.5.5 Structural Relaxation

	7.6 Exact Exchange with Plane Waves
	7.6.1 Implementation
	7.6.2 Optimization
	7.6.3 Performance/Examples

	7.7 Summary and Outlook
	Acknowledgments
	References
	Appendix A: Definitions and Conventions
	Appendix B: Example Kernels

	Chapter 8 GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory
	8.1 Introduction
	8.1.1 Linear Scaling Self-Consistent Field
	8.1.2 DBCSR: A Sparse Matrix Library

	8.2 Software Architecture for GPU-Acceleration
	8.2.1 Cannon Layer
	8.2.2 Multrec Layer
	8.2.3 CSR Layer
	8.2.4 Scheduler and Driver Layers

	8.3 Maximizing Asynchronous Progress
	8.3.1 CUDA Streams and Events
	8.3.2 Double Buffered Cannon on Host and Device

	8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications
	8.4.1 Small Matrix Multiplication Performance Model
	8.4.2 Matrix-Product Algorithm Choice
	8.4.3 GPU Implementation: Generic Algorithm
	8.4.4 Auto-Tuning and Performance

	8.5 Benchmarks and Conclusions
	Acknowledgments
	References

	Chapter 9 Grid-Based Projector-Augmented Wave Method
	9.1 Introduction
	9.2 General Overview
	9.2.1 Projector-Augmented Wave Method
	9.2.2 Uniform Real-Space Grids
	9.2.3 Multigrid Method

	9.3 Using GPUs in Ground-State Calculations
	9.3.1 Stencil Operations
	9.3.2 Hybrid Level 3 BLAS Functions
	9.3.3 Parallelization for Multiple GPUs
	9.3.4 Results

	9.4 Time-Dependent Density Functional Theory
	9.4.1 GPU Implementation
	9.4.2 Results

	9.5 Random Phase Approximation for the Correlation Energy
	9.5.1 GPU Implementation
	9.5.2 Performance Analysis Techniques
	9.5.3 Results

	9.6 Summary and Outlook
	Acknowledgments
	References

	Chapter 10 Application of Graphics Processing Units to Accelerate Real-Space Density Functional Theory and Time-Dependent Density Functional Theory Calculations
	10.1 Introduction
	10.2 The Real-Space Representation
	10.3 Numerical Aspects of the Real-Space Approach
	10.4 General GPU Optimization Strategy
	10.5 Kohn-Sham Hamiltonian
	10.6 Orthogonalization and Subspace Diagonalization
	10.7 Exponentiation
	10.8 The Hartree Potential
	10.9 Other Operations
	10.10 Numerical Performance
	10.11 Conclusions
	10.12 Computational Methods
	Acknowledgments
	References

	Chapter 11 Semiempirical Quantum Chemistry
	11.1 Introduction
	11.2 Overview of Semiempirical Methods
	11.3 Computational Bottlenecks
	11.4 Profile-Guided Optimization for the Hybrid Platform
	11.4.1 Full Diagonalization, Density Matrix, and DIIS
	11.4.2 Pseudo-diagonalization
	11.4.3 Orthogonalization Corrections in OM3

	11.5 Performance
	11.6 Applications
	11.7 Conclusion
	Acknowledgement
	References

	Chapter 12 GPU Acceleration of Second-Order Moller-Plesset Perturbation Theory with Resolution of Identity
	12.1 Moller-Plesset Perturbation Theory with Resolution of Identity Approximation (RI-MP2)
	12.1.1 Cleaving General Matrix Multiplies (GEMMs)
	12.1.2 Other MP2 Approaches

	12.2 A Mixed-Precision Matrix Multiplication Library
	12.3 Performance of Accelerated RI-MP2
	12.3.1 Matrix Benchmarks
	12.3.2 RI-MP2 Benchmarks

	12.4 Example Applications
	12.4.1 Large-Molecule Applications
	12.4.2 Studying Thermodynamic Reactivity

	12.5 Conclusions
	References

	Chapter 13 Iterative Coupled-Cluster Methods on Graphics Processing Units
	13.1 Introduction
	13.2 Related Work
	13.3 Theory
	13.3.1 CCD and CCSD
	13.3.2 Density-Fitted CCSD with a t1-Transformed Hamiltonian

	13.4 Algorithm Details
	13.4.1 Communication-Avoiding CCD Algorithm
	13.4.2 Low-Storage CCSD Algorithm
	13.4.3 Density-Fitted CCSD with a t1-Transformed Hamiltonian

	13.5 Computational Details
	13.5.1 Conventional CCD and CCSD
	13.5.2 Density-Fitted CCSD

	13.6 Results
	13.6.1 Communication-Avoiding CCD
	13.6.2 Low-Storage CCD and CCSD
	13.6.3 Density-Fitted CCSD

	13.7 Conclusions
	Acknowledgments
	References

	Chapter 14 Perturbative Coupled-Cluster Methods on Graphics Processing Units: Single- and Multi-Reference Formulations
	14.1 Introduction
	14.2 Overview of Electronic Structure Methods
	14.2.1 Single-Reference Coupled-Cluster Formalisms
	14.2.2 Multi-Reference Coupled-Cluster Formulations

	14.3 NWChem Software Architecture
	14.4 GPU Implementation
	14.4.1 Kepler Architecture
	14.4.2 Baseline Implementation
	14.4.3 Kernel Optimizations
	14.4.4 Data-Transfer Optimizations
	14.4.5 CPU-GPU Hybrid Architecture

	14.5 Performance
	14.5.1 CCSD(T) Approach
	14.5.2 MRCCSD(T) Approaches

	14.6 Outlook
	Acknowledgments
	References

	Index
	Supplemental Images
	EULA

