Chapter 1

Introducing AutoCAD

2011

AIM OF THIS CHAPTER

The aim of this chapter is designed to introduce features of the AutoCAD 2011 window and methods of operating AutoCAD 2011.

CHAPTER 1

Opening AutoCAD 2011

Fig. 1.1 The AutoCAD 2011 shortcut on the Windows desktop

AutoCAD 2011 is designed to work in a Windows operating system. In general, to open AutoCAD 2011, double-click on the AutoCAD 2011 shortcut in the Windows desktop (Fig. 1.1). Depending on how details in Profiles/Initial Setup... in the Options dialog (Fig. 1.16, page 13), the Welcome dialog (Fig. 1.2) may appear. This dialog allows videos showing methods of working AutoCAD 2011, to be selected from a list of icons.

Fig. 1.2 Page 1 of the Initial Settings dialog
When working in education or in industry, computers may be configured to allow other methods of opening AutoCAD, such as a list appearing on the computer in use when the computer is switched on, from which the operator can select the program he/she wishes to use.

When AutoCAD 2011 is opened a window appears, which will depend upon whether a 3D Basics, a 3D Modeling, a Classic AutoCAD or a 2D Drafting \& Annotation workspace has been set as QNEW in the Options dialog. In this example the 2D Drafting \& Annotation workspace is shown and includes the Ribbon with Tool panels (Fig. 1.3). This 2D Drafting \& Annotation workspace shows the following details:

Ribbon: Which includes tabs, each of which when clicked will bring a set of panels containing tool icons. Further tool panels can be seen by

Fig. 1.3 The AutoCAD 2011 2D Drafting and Annotation workspace
clicking the appropriate tab. The panels in the ribbon can be changed to any desired panels as required using the Customer User Interface dialog if desired.
Menu Browser icon: A left-click on the arrow to the right of the \mathbf{A} symbol at the top left-hand corner of the AutoCAD 2011 window causes the Menu Browser menu to appear (Fig. 1.4).
Workspace Switching menu: Appears with a click on the Workspace Switching button in the status bar (Fig. 1.5).
Command palette: Can be dragged from its position at the bottom of the AutoCAD window into the AutoCAD drawing area, when it can be seen to be a palette (Fig. 1.6). As with all palettes, an Auto-hide icon and a right-click menu is included.
Tool panels: Each shows tools appropriate to the panel. Taking the Home/ Draw panel as an example, Fig. 1.7 shows that placing the mouse cursor on one of the tool icons in a panel brings a tooltip on screen showing details of how the tool can be used. Two types of tooltip will be seen. In the majority of future illustrations of tooltips, the smaller version will be shown. Other tools have popup menus appearing with a click. In the example given in Fig. 1.8, a click on the Circle tool icon will show a tooltip. A click on the arrow to the right of the tool icon brings a popup menu showing the construction method options available for the tool.

Fig. 1.4 The Menu Browser

Fig. 1.5 The Workspace Switching popup menu

Fig. 1.6 The command palette when dragged from its position at the bottom of the AutoCAD window

Fig. 1.7 The descriptive tooltip appearing with a click on the Line tool icon

Fig. 1.8 The tooltip for the Circle tool and its popup menu

Quick Access toolbar: The toolbar at the top right of the AutoCAD window holds several icons, one of which is the Open tool icon. A click on the icon opens the Select File dialog (Fig. 1.9).
Navigation bar: contains several tools which may be of value.

Fig. 1.9 The open icon in the Quick Access toolbar brings the Select File dialog on screen

The mouse as a digitiser

Fig. 1.10 The twobutton mouse

Many operators working in AutoCAD will use a two-button mouse as a digitiser. There are other digitisers which may be used - pucks with tablets, a three-button mouse, etc. Fig. 1.10 shows a mouse which has two buttons and a wheel.

To operate this mouse pressing the Pick button is a left-click. Pressing the Return button is a right-click which usually, but not always, has the same result as pressing the Enter key of the keyboard.

When the Wheel is pressed drawings in the AutoCAD screen can be panned by moving the mouse. Moving the wheel forwards enlarges (zooms in) the drawing on screen. Move the wheel backwards and a drawing reduces in size.

The pick box at the intersection of the cursor hairs moves with the cursor hairs in response to movements of the mouse. The AutoCAD window as shown in Fig. 1.3 shows cursor hairs which stretch across the drawing in both horizontal and vertical directions. Some operators prefer cursor hairs to be shorter. The length of the cursor hairs can be adjusted in the Display sub-menu of the Options dialog (page 13).

Palettes

A palette has already been shown - the Command palette. Two palettes which may be frequently used are the DesignCenter palette and the Properties palette. These can be called to screen from icons in the View/Palettes panel.

DesignCenter palette: Fig. 1.11 shows the DesignCenter palette with the Block drawings of building symbols from which the block Third type of chair block has been selected.

Fig. 1.11 A left-click on the View/DesignCenter icon brings the DesignCenter palette to screen

Properties palette: Fig. 1.12 shows the Properties palette, in which the general features of a selected line are shown. The line can be changed by entering new figures in parts of the palette.

Fig. 1.12 The Properties palette

Tool palettes

Click on Tool Palettes in the View/Palettes panel and the Tool Palettes All Palettes palette appears (Fig. 1.13).

Click in the title bar of the palette and a popup menu appears. Click on a name in the menu and the selected palette appears. The palettes can be reduced in size by dragging at corners or edges, or hidden by clicking on the Auto-hide icon, or moved by dragging on the Move icon. The palette can also be docked against either side of the AutoCAD window.

Fig. 1.13 The Tool Palettes - All Palettes palette

Notes

Throughout this book tools will often be shown as selected from the panels. It will be seen in Chapter 3 that tools can be 'called' in a variety of ways, but tools will frequently be shown selected from tool panels although other methods will also be shown on occasion.

Dialogs

Dialogs are an important feature of AutoCAD 2011. Settings can be made in many of the dialogs, files can be saved and opened, and changes can be made to variables.

Examples of dialogs are shown in Figs 1.15 and 1.16. The first example is taken from the Select File dialog (Fig. 1.15), opened with a click on Open... in the Quick Access toolbar (Fig. 1.14). The second example

Fig. 1.14 Opening the Select File dialog from the Open icon in the Quick Access toolbar

Fig. 1.15 The Select File dialog
shows part of the Options dialog (Fig. 1.16) in which many settings can be made to allow operators the choice of their methods of constructing drawings. The Options dialog can be opened with a click on Options... in the right-click dialog opened in the command palette.

Note the following parts in the dialog, many of which are common to other AutoCAD dialogs:

Title bar: Showing the name of the dialog.
Close dialog button: Common to other dialogs.
Popup list: A left-click on the arrow to the right of the field brings down a popup list listing selections available in the dialog.
Buttons: A click on the Open button brings the selected drawing on screen. A click on the Cancel button closes the dialog.
Preview area: Available in some dialogs - shows a miniature of the selected drawing or other feature, partly shown in Fig. 1.15.

Fig. 1.16 Part of the Options dialog
Note the following in the Options dialog (Fig. 1.16):
Tabs: A click on any of the tabs in the dialog brings a sub-dialog on screen. Check boxes: A tick appearing in a check box indicates the function described against the box is on. No tick and the function is off. A click in a check box toggles between the feature being off or on.
Radio buttons: A black dot in a radio button indicates the feature described is on. No dot and the feature is off.
Slider: A slider pointer can be dragged to change sizes of the feature controlled by the slider.

Buttons at the left-hand end of the status bar

A number of buttons at the left-hand end of the status bar can be used for toggling (turning on/off) various functions when operating within AutoCAD

2011 (Fig. 1.17). A click on a button turns that function on, if it is off; a click on a button when it is off turns the function back on. Similar results can be obtained by using function keys of the computer keyboard (keys F1 to F10).

Fig. 1.17 The buttons at the left-hand end of the status bar
Snap Mode: Also toggled using the F9 key. When snap on, the cursor under mouse control can only be moved in jumps from one snap point to another.
Grid Display: Also toggled using the F7 key. When set on, a series of grid points appears in the drawing area.
Ortho Mode: Also toggled using the F8 key. When set on, lines, etc. can only be drawn vertically or horizontally.
Polar Tracking: Also toggled using the F10 key. When set on, a small tip appears showing the direction and length of lines, etc. in degrees and units.
Object Snap: Also toggled using the F3 key. When set on, an osnap icon appears at the cursor pick box.
Object Snap Tracking: Also toggled by the F11 key. When set on, lines, etc. can be drawn at exact coordinate points and precise angles.
Allow/Disallow Dynamic UCS: Also toggled by the F6 key. Used when constructing 3D solid models.
Dynamic Input: Also toggled by F12. When set on, the \mathbf{x}, \mathbf{y} coordinates and prompts show when the cursor hairs are moved.
Show/Hide Lineweight: When set on, lineweights show on screen. When set off, lineweights only show in plotted/printed drawings.
Quick Properties: A right-click brings up a popup menu, from which a click on Settings... causes the Drafting Settings dialog to appear.

Note

When constructing drawings in AutoCAD 2011 it is advisable to toggle between Snap, Ortho, Osnap and the other functions in order to make constructing easier.

Buttons at the right-hand end of the status bar

Another set of buttons at the right-hand end of the status bar are shown in Fig. 1.18. The uses of some of these will become apparent when reading future pages of this book. A click on the downward-facing arrow near the right-hand end of this set of buttons brings up the Application Status Bar Menu (Fig. 1.19) from which the buttons in the status bar can be set on and/or off.

Fig. 1.18 The buttons at the right-hand end of the status bar

Fig. 1.19 The Application Status Bar menu

The AutoCAD coordinate system

In the AutoCAD 2D coordinate system, units are measured horizontally in terms of X and vertically in terms of Y. A 2D point in the AutoCAD drawing area can be determined in terms of X, Y (in this book referred to as $x, y) . x, y=0,0$ is the origin of the system. The coordinate point $x, y=100,50$ is 100 units to the right of the origin and 50 units above the origin. The point $x, y=-100,-50$ is 100 units to the left of the origin and 50 points below the origin. Fig. 1.20 shows some 2D coordinate points in the AutoCAD window.

Fig. 1.20 The 2D coordinate points in the AutoCAD coordinate system

3D coordinates include a third coordinate (Z), in which positive Z units are towards the operator as if coming out of the monitor screen and negative Z units going away from the operator as if towards the interior of the screen. 3D coordinates are stated in terms of $x, y, z . x, y, z=100,50,50$ is 100 units to the right of the origin, 50 units above the origin and 50 units towards the operator. A 3D model drawing as if resting on the surface of a monitor is shown in Fig. 1.21.

Drawing templates

Drawing templates are files with an extension .dwt. Templates are files which have been saved with predetermined settings - such as Grid spacing and Snap spacing. Templates can be opened from the Select template dialog (Fig. 1.22) called by clicking the New... icon in the Quick Access

Fig. 1.22 A template selected from the Select template dialog
toolbar. An example of a template file being opened is shown in Fig. 1.22. In this example the template will be opened in Paper Space and is complete with a title block and borders.

When AutoCAD 2011 is used in European countries and opened, the acadiso.dwt template is the one most likely to appear on screen. In this part (Part 1 - 2D Design) of this book drawings will usually be constructed in an adaptation of the acadiso.dwt template. To adapt this template:

1. In the command palette enter (type) grid followed by a right-click (or pressing the Enter key). Then enter 10 in response to the prompt which appears, followed by a right-click (Fig. 1.23).
```
Command: grid
Specify grid spacing(X) or [ON/OFF/Snap/Major/aDaptive/Limits/
Follow/Aspect]<0>: 10
Command:
```

Fig. 1.23 Setting Grids to 10
2. In the command palette enter snap followed by right-click. Then enter 5 followed by a right-click (Fig. 1.24).

Fig. 1.24 Setting Snap to 5
3. In the command palette enter limits, followed by a right-click. Rightclick again. Then enter 420, 297 and right-click (Fig. 1.25).

```
Command: limits
Reset Model space limits:
Specify lower left corner or [ON/OFF] <0,0>:
Specify upper right corner <12,9>:420,297
Command:
```

Fig. 1.25 Setting Limits to 420, 297
4. In the command palette enter $\mathbf{z o o m}$ and right-click. Then in response to the line of prompts which appears enter \mathbf{a} (for All) and right-click (Fig. 1.26).

```
Command: zoom
Specify corner of window, enter a scale factor ( }\textrm{n}X\mathrm{ or nXP), or
[Al1/Center/Dynamic/Extents/Previous/Scale/Window/Object] <real time>: a
Regenerating model.
Command:
```

Fig. 1.26 Zooming to All
5. In the command palette enter units and right-click. The Drawing Units dialog appears (Fig. 1.27). In the Precision popup list of the Length area of the dialog, click on $\mathbf{0}$ and then click the $\mathbf{O K}$ button. Note the change in the coordinate units showing in the status bar.

Fig. 1.27 Setting Units to 0
6. Click the Save icon in the Quick Access toolbar (Fig. 1.28). The Save Drawing As dialog appears. In the Files of type popup list select AutoCAD Drawing Template (*.dwt). The templates already in AutoCAD are displayed in the dialog. Click on acadiso.dwt, followed by another click on the Save button.

Fig. 1.28 Click Save

Notes

1. Now when AutoCAD is opened the template saved as acadiso.dwt automatically loads with Grid set to 10, Snap set to 5, Limits set to 420,297 (size of an A3 sheet in millimetres) and with the drawing area zoomed to these limits, with Units set to $\mathbf{0}$.
2. However, if there are multiple users by the computer, it is advisable to save your template to another file name, e.g. my_template.dwt.
3. Other features will be added to the template in future chapters.

Methods of showing entries in the command palette

Throughout the book, a tool is "called" usually by a click on a tool icon in a panel - in this example entering zoom at the command line and the following appears in the command palette:

```
Command: enter zoom right-click
Specify corner of window, enter a scale factor
    (nX or nXP), or [All/Center/Dynamic/Extents/
    Previous/Scale/Window/Object] <real time>: pick
    a point on screen
Specify opposite corner: pick another point to
    form a window
Command:
```


Note

In later examples this may be shortened to:
Command: zoom
[prompts]: following by picking points Command:

Notes

1. In the above enter means type the given letter, word or words at the Command: prompt.
2. Right-click means press the Return (right) button of the mouse or press the Return key of the keyboard.

Tools and tool icons

In AutoCAD 2011, tools are shown as names and icons in panels or in drop-down menus. When the cursor is placed over a tool icon a description shows with the name of the tool as shown and an explanation in diagram form as in the example given in Fig. 1.7 (page 5).

If a small outward-facing arrow is included at the right-hand side of a tool icon, when the cursor is placed over the icon and the pick button of the mouse depressed and held, a flyout appears which includes other features. An example is given in Fig. 1.8 (page 5).

Another AutoCAD workspace

Other workspaces can be selected as the operator wishes. One in particular which may appeal to some operators is to click AutoCAD Classic in the 2D Drafting \& Annotation popup menu (Fig. 1.29).

Fig. 1.30 shows the AutoCAD Classic workspace screen.

Fig. 1.29 Selecting Classic Workspace from the popup menu

Fig. 1.30 The AutoCAD Classic workspace

In the AutoCAD Classic workspace, tools icons are held in toolbars, which are docked against the sides and top of the workspace. The tool icons in the Draw toolbar (docked left-hand side) are shown in Fig. 1.31. Note the grid lines, spaced at $\mathbf{1 0}$ coordinate units in both \mathbf{X} and \mathbf{Y} directions.

Fig. 1.31 The tool icons in the Draw toolbar

The Ribbon

In the 2D Drafting \& Annotation workspace, the Ribbon contains groups

Fig. 1.32 The Home/ Draw panel and its flyout of panels placed at the top of the AutoCAD 2011 window. In Fig. 1.3 on page 3, there are eight panels - Draw, Modify, Layers, Annotation, Block, Properties, Utilities and Clipboard. Other groups of palettes can be called from the tabs at the top of the Ribbon.

If a small arrow is showing below the panel name, a left-click on the arrow brings down a flyout showing additional tool icons in the panel. As an example Fig. 1.32 shows the flyout from the Home/Draw panel.

At the right-hand end of the panel titles (the tabs) are two downward pointing arrows. A left-click on the right of these two arrows brings down a menu. A right-click on the same arrow brings down another menu (Fig. 1.33). Options from these two menus show that the ribbon can

Fig. 1.33 The two menus from the right-hand arrow
appear in the AutoCAD window in a variety of ways. It is worth while experimenting with the settings of the ribbon - each operator will find the best for him/herself. The left-hand arrow also varies the ribbon.

Repeated left-clicks on this arrow cause the Ribbon panels to:

1. Minimize to tabs
2. Minimize to panel titles
3. Minimize to panel button
4. The full ribbon.

Continuing clicks cause the changes to revert to the previous change.
Fig. 1.34 shows the Minimize settings. Any one of these settings leaves more space in the AutoCAD drawing window in which to construct drawings. The various settings of the ribbon allow the user discretion as to how to use the ribbon. When minimized to panel titles or to panel buttons passing the cursor over the titles or buttons causes the panels to reappear and allow selection of tools. Also try Undock from the right-click menu.

Minimize to tabs

Minimize to panel titles

Minimize to panel buttons
Fig. 1.34 The Ribbon minimize settings

The Quick View Drawings button

One of the buttons at the right-hand end of the status bar is the Quick View Drawings button. A click on this button brings miniatures of recent drawings on screen (Fig. 1.35). This can be of value when wishing to check back features of recent drawings in relation to the current drawing on screen.

HDOX

[^0] | 4 00E (

Fig. 1.35 The result of a click on the Quick View Drawings button

Customisation of the User Interface

The AutoCAD 2011 workspace can be arranged in any format the operator wishes by making settings in the Customize User Interface dialog (Fig. 1.36) brought to screen from the right-click menu from the button in the Quick Access toolbar. The dialog can be opened using other methods such as entering cui at the command line, but using this right-click menu is possibly the quickest method. The dialog is only shown here to alert the reader to the fact that he/she can customise the workspace being used to suit their own methods of working. Page space in this book does not allow further explanation.

Fig. 1.36 The Customize User Interface dialog

REVISION NOTES

1. A double-click on the AutoCAD 2011 shortcut in the Windows desktop opens the AutoCAD window.
2. There are FOUR main workspaces in which drawings can be constructed - the 2D Drafting \& Annotation, AutoCAD Classic, 3D Basics, 3D Modeling. Part 1, 2D Design, of this book deals with 2D drawings and these will be constructed mainly in the 2D Drafting \& Annotation workspace. In Part 2, 3D Design, 3D model drawings will be mainly constructed in the 3D Modeling workspace.
3. All constructions in this book involve the use of a mouse as the digitiser. When a mouse is the digitiser:
A left-click means pressing the left-hand button (the Pick) button.
A right-click means pressing the right-hand button (the Return) button. A double-click means pressing the left-hand button twice in quick succession. Dragging means moving the mouse until the cursor is over an item on screen, holding the left-hand button down and moving the mouse. The item moves in sympathy to the mouse movement.
To pick has a similar meaning to a left-click.
4. Palettes are a particular feature of AutoCAD 2011. The Command palette and the DesignCenter palette will be in frequent use.
5. Tools are shown as icons in the tool panels.
6. When a tool is picked, a tooltip describing the tool appears describing the action of the tool. Tools show a small tooltip, followed shortly afterwards by a larger one, but the larger one can be prevented from appearing by selecting an option in the Options dialog.
7. Dialogs allow opening and saving of files and the setting of parameters.
8. A number of right-click menus are used in AutoCAD 2011.
9. A number of buttons in the status bar can be used to toggle features such as snap and grid. Functions keys of the keyboard can be also used for toggling some of these functions.
10. The AutoCAD coordinate system determines the position in units of any 2 D point in the drawing area (2D Drafting \& Annotation) and any point in 3D space (3D Modeling).
11. Drawings are usually constructed in templates with predetermined settings. Some templates include borders and title blocks.

Note

Throughout this book when tools are to be selected from panels in the ribbon the tools will be shown in the form, e.g. Home/Draw - the name of the tab in the ribbon title bar, followed by the name of the panel from which the tool is to be selected.

Chapter 2

Introducing drawing

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To introduce the construction of 2D drawing in the 2D Drafting \& Annotation workspace.
2. The drawing of outlines using the Line, Circle and Polyline tools from the Home/Draw panel.
3. Drawing to snap points.
4. Drawing to absolute coordinate points.
5. Drawing to relative coordinate points.
6. Drawing using the 'tracking' method.
7. The use of the Erase, Undo and Redo tools.

The 2D Drafting \& Annotation workspace

Illustrations throughout this chapter will be shown as working in the 2D Drafting \& Annotation workspace. In this workspace the Home/Draw panel is at the left-hand end of the Ribbon, and Draw tools can be selected from the panel as indicated by a click on the Line tool (Fig. 2.1). In this chapter all examples will show tools as selected from the Home/Draw panel. However, methods of construction will be the same if the reader wishes to work by calling tools from the Draw drop-down menu. In order to bring drop-down menus on screen, first click the small arrow button on the right-hand end of the Quick Access toolbar, then click Show Menu Bar in the menu which appears. Menu titles appear above the Ribbon. Click Draw in this menu bar. From the drop-down menu which appears tools from the Draw list in the menu can be selected. Fig. 2.2 shows the Line tool being selected.

Fig. 2.1 The Line tool from the Home/Draw Panel with its tooltip

Fig. 2.2 Selecting the Line tool in the 2D Drafting \& Annotation workspace

Drawing with the Line tool

First example - Line tool (Fig. 1.3)

1. Open AutoCAD. The drawing area will show the settings of the acadiso.dwt template - Limits set to 420,297, Grid set to 10, Snap set to $\mathbf{5}$ and Units set to $\mathbf{0}$.
2. Left-click on the Line tool in the Home/Draw panel (Fig. 2.1), or click Line in the Draw drop-down menu (Fig. 2.2), or enter line or \mathbf{l} at the command line.

Notes

a. The tooltip which appears when the tool icon is clicked in the Draw panel.
b. The prompt Command:_line Specify first point which appears in the command window at the command line (Fig. 2.3).
Command:
Command:
Command: line Specify first point:

Fig. 2.3 The prompt appearing at the command line in the Command palette when Line is 'called'
3. Make sure Snap is on by either pressing the F9 key or the Snap Mode button in the status bar. <Snap on $>$ will show in the command palette.
4. Move the mouse around the drawing area. The cursors pick box will jump from point to point at 5 unit intervals. The position of the pick box will show as coordinate numbers in the status bar (left-hand end).
5. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 2 4 0 , 0}$ and press the pick button of the mouse (left-click).
6. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 2 4 0 , 0}$ and left-click.
7. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 1 1 0 , 0}$ and left-click.
8. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 1 1 0 , 0}$ and left-click.
9. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 2 4 0 , 0}$ and left-click. Then press the Return button of the mouse (right-click).

The line rectangle Fig. 2.4 appears in the drawing area.

Fig. 2.4 First example - Line tool

Second example - Line tool (Fig. 2.6)

1. Clear the drawing from the screen with a click on the Close button of the AutoCAD drawing area. Make sure it is not the AutoCAD 2011 window button.
2. The warning window Fig. 2.5 appears in the centre of the screen. Click its No button.

Fig. 2.5 The AutoCAD warning window
3. Left-click New... button in the File drop-down menu and from the Select template dialog which appears double-click on acadiso.dwt.
4. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: enter 80,235 right-click
Specify next point or [Undo]: enter 275,235
right-click
Specify next point or [Undo]: enter 295,210 right-click

Specify next point or [Close/Undo]: enter 295,100 right-click
Specify next point or [Close/Undo]: enter 230,100 right-click
Specify next point or [Close/Undo]: enter 230,70 right-click
Specify next point or [Close/Undo]: enter 120,70 right-click
Specify next point or [Close/Undo]: enter 120,100 right-click
Specify next point or [Close/Undo]: enter 55,100 right-click
Specify next point or [Close/Undo]: enter 55,210 right-click
Specify next point or [Close/Undo]: enter c (Close) right-click
Command:
The result is as shown in Fig. 2.6.

Fig. 2.6 Second example - Line tool

Third example - Line tool (Fig. 2.7)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: enter 60,210 right-click

```
Specify next point or [Undo]: enter @50,0
    right-click
Specify next point or [Undo]: enter @0,20
    right-click
Specify next point or [Close/Undo]: enter @130,0
    right-click
Specify next point or [Close/Undo]: enter @0,-20
    right-click
```


Third example - Line tool (Fig. 2.7)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:
Command:_line Specify first point: enter 60,210 right-click
Specify next point or [Undo]: enter @50,0 right-click
Specify next point or [Undo]: enter @0,20 right-click
Specify next point or [Undo/Undo]: enter @130,0 right-click
Specify next point or [Undo/Undo]: enter @0,-20 right-click
Specify next point or [Undo/Undo]: enter @50,0 right-click
Specify next point or [Close/Undo]: enter @0,-105 right-click
Specify next point or [Close/Undo]: enter @-50,0 right-click
Specify next point or [Close/Undo]: enter @0,-20 right-click
Specify next point or [Close/Undo]: enter @-130,0 right-click
Specify next point or [Close/Undo]: enter @0,20 right-click
Specify next point or [Close/Undo]: enter @-50,0 right-click
Specify next point or [Close/Undo]: enter c (Close) right-click
Command:
The result is as shown in Fig. 2.7.

Fig. 2.7 Third example - Line tool

Notes

1. The figures typed at the keyboard determining the corners of the outlines in the above examples are two-dimensional (2D) \mathbf{x}, \mathbf{y} coordinate points. When working in 2D, coordinates are expressed in terms of two numbers separated by a comma.
2. Coordinate points can be shown in positive or negative numbers.
3. The method of constructing an outline as shown in the first two examples above is known as the absolute coordinate entry method, where the \mathbf{x}, \mathbf{y} coordinates of each corner of the outlines are entered at the command line as required.
4. The method of constructing an outline as in the third example is known as the relative coordinate entry method - coordinate points are entered relative to the previous entry. In relative coordinate entry, the @ symbol is entered before each set of coordinates with the following rules in mind:

+ ve x entry is to the right.
-ve x entry is to the left.
$+\mathbf{v e}$ y entry is upwards.
-ve y entry is downwards.

5. The next example (the fourth) shows how lines at angles can be drawn taking advantage of the relative coordinate entry method. Angles in AutoCAD are measured in 360 degrees in a

Fig. 2.8 The counterclockwise direction of measuring angles in AutoCAD

Fourth example - Line tool (Fig. 2.9)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: 70,230
Specify next point: @220,0
Specify next point: @0,-70
Specify next point or [Undo]: @115<225
Specify next point or [Undo]: @-60,0
Specify next point or [Close/Undo]: @115<135
Specify next point or [Close/Undo]: @0,70
Specify next point or [Close/Undo]: c (Close)
Command:
The result is as shown in Fig. 2.9.

Fig. 2.9 Fourth example - Line tool

Fifth example - Line tool (Fig. 2.10)

Another method of constructing accurate drawings is by using a method known as tracking. When Line is in use, as each Specify next point: appears at the command line, a rubber-banded line appears from the last point entered. Drag the rubber-band line in any direction and enter a number at the keyboard, followed by a right-click. The line is drawn in the dragged direction of a length in units equal to the entered number.

In this example because all lines are drawn in vertical or horizontal directions, either press the F8 key or click the ORTHO button in the status bar which will only allow drawing horizontally or vertically.

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:
```
Command:_line Specify first point: enter 65,220
    right-click
Specify next point: drag to right enter 240
    right-click
Specify next point: drag down enter 145 right-click
Specify next point or [Undo]: drag left enter 65
    right-click
Specify next point or [Undo]: drag upwards enter 25
    right-click
Specify next point or [Close/Undo]: drag left
    enter 120 right-click
Specify next point or [Close/Undo]: drag upwards
    enter 25 right-click
```

```
Specify next point or [Close/Undo]: drag left
    enter 55 right-click
Specify next point or [Close/Undo]: C (Close)
    right-click
Command:
```

The result is as shown in Fig. 2.10.

Fig. 2.10 Fifth example - Line tool

Drawing with the Circle tool

First example - Circle tool (Fig. 2.13)

1. Close the drawing just completed and open the acadiso.dwt template.
2. Left-click on the Circle tool icon in the Home/Draw panel (Fig. 2.11).

Fig. 2.11 The Circle tool from the Home/Draw panel
3. Enter a coordinate and a radius against the prompts appearing in the command window as shown in Fig. 2.12, followed by right-clicks. The circle (Fig. 2.13) appears on screen.

Command: _circle Specify center point for circle or [3P/2P/Ttr (tan tan radius)]: 180,160
Specify radius of circle or [Dismeter]: 55
Cormand:
Fig. 2.12 First example - Circle. The command line prompts when Circle is called

Fig. 2.13 First example - Circle tool

Second example - Circle tool (Fig. 2.15)

1. Close the drawing and open the acadiso.dwt screen.
2. Left-click on the Circle tool icon and construct two circles as shown in the drawing Fig. 2.14 in the positions and radii shown in Fig. 2.15.

Fig. 2.14 Second example - Circle tool - the two circles of radius 50

Fig. 2.15 Second example
3. Click the Circle tool again and against the first prompt enter \mathbf{t} (the abbreviation for the prompt $\boldsymbol{t a n}$ tandius), followed by a right-click.

Command_circle Specify center point for circle or [3P/2P/Ttr (tan tan radius]: enter t right-click
Specify point on object for first tangent of circle: pick
Specify point on object for second tangent of circle: pick
Specify radius of circle (50): enter 40 rightclick
Command:
The circle of radius 40 tangential to the two circles already drawn then appears (Fig. 2.15).

Notes

1. When a point on either circle is picked a tip (Deferred Tangent) appears. This tip will only appear when the Object Snap button is set on with a click on its button in the status bar, or the F3 key of the keyboard is pressed.
2. Circles can be drawn through 3 points or through 2 points entered at the command line in response to prompts brought to the command line by using 3P and 2P in answer to the circle command line prompts.

The Erase tool

If an error has been made when using any of the AutoCAD 2011 tools, the object or objects which have been incorrectly drawn can be deleted with the Erase tool. The Erase tool icon can be selected from the Home/ Modify panel (Fig. 2.16) or by entering \mathbf{e} at the command line.

Fig. 2.16 The Erase tool icon from the Home/Modify panel

First example - Erase (Fig. 2.18)

1. With Line construct the outline Fig. 2.17.

Fig. 2.17 First example - Erase. An incorrect outline
2. Assuming two lines of the outline have been incorrectly drawn, left-click the Erase tool icon. The command line shows:

Command:_erase
Select objects: pick one of the lines 1 found
Select objects: pick the other line 2 total Select objects: right-click
Command:
And the two lines are deleted (right-hand drawing of Fig. 2.18).

Fig. 2.18 First example - Erase

Second example - Erase (Fig. 2.19)

The two lines could also have been deleted by the following method:

1. Left-click the Erase tool icon. The command line shows:

Command:_erase
Select objects: enter c (Crossing)
Specify first corner: pick Specify opposite corner: pick 2 found
Select objects: right-click
Command:
And the two lines are deleted as in the right-hand drawing Fig. 2.19.

Fig. 2.19 Second example - Erase

Undo and Redo tools

Two other tools of value when errors have been made are the Undo and Redo tools. To undo any last action when constructing a drawing, either left-click the Undo tool in the Quick Access toolbar (Fig. 2.20) or enter \mathbf{u} at the command line. No matter which method is adopted the error is deleted from the drawing.

Fig. 2.20 The Undo tool in the Quick Access toolbar

Everything constructed during a session of drawing can be undone by repeated clicking on the Undo tool icon or by repeatedly entering u's at the command line.

To bring back objects that have just been removed by the use of Undo's, left-click the Redo tool icon in the Quick Access toolbar (Fig. 2.21) or enter redo at the command line.

Fig. 2.21 The Redo tool icon in the Quick Access toolbar

Drawing with the Polyline tool

When drawing lines with the Line tool, each line drawn is an object. A rectangle drawn with the Line tool is four objects. A rectangle drawn with the Polyline tool is a single object. Lines of different thickness, arcs, arrows and circles can all be drawn using this tool. Constructions resulting from using the tool are known as polylines or plines. The tool can be called from the Home/Draw panel (Fig. 2.22) or by entering $\mathbf{p l}$ at the command line.

Fig. 2.22 The Polyline tool icon in the Home/Draw panel

First example - Polyline tool (Fig. 2.23)

In this example enter and right-click have not been included (Fig. 2.23).
Left-click the Polyline tool icon. The command line shows:

```
Command:_pline Specify start point: 30,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/Undo/
    Width]: 230,250
Specify next point or [Arc/Close/Halfwidth/Length/
    Undo/Width]: 230,120
Specify next point or [Arc/Close/Halfwidth/Length/
    Undo/Width]: 30,120
Specify next point or [Arc/Close/Halfwidth/Length/
    Undo/Width]: c (Close)
Command:
```


Fig. 2.23 First example - Polyline tool

Notes

1. Note the prompts - Arc for constructing pline arcs, Close to close an outline, Halfwidth to halve the width of a wide pline, Length to enter the required length of a pline, Undo to undo the last pline constructed Width to change the width of the pline.
2. Only the capital letter(s) of a prompt needs to be entered in upper or lower case to make that prompt effective.
3. Other prompts will appear when the Polyline tool is in use as will be shown in later examples.

Second example - Polyline tool (Fig. 2.24)

This will be a long sequence, but it is typical of a reasonably complex drawing using the Polyline tool. In the following sequences, when a prompt line is to be repeated, the prompts in square brackets ([]) will be replaced by [prompts] (Fig. 2.24).

Fig. 2.24 Second example - Polyline tool

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 40,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/Undo/ Width]: w (Width)
Specify starting width <0>: 5
Specify ending width <5>: right-click
Specify next point or [Arc/Close/Halfwidth/Length/ Undo/Width]: 160,250
Specify next point or [prompts]: h (Halfwidth)
Specify starting half-width <2.5>: 1
Specify ending half-width <l>: right-click
Specify next point or [prompts]: 260,250
Specify next point or [prompts]: 260,180
Specify next point or [prompts]: w (Width)
Specify starting width <1>: 10
Specify ending width <10>: right-click
Specify next point or [prompts]: 260,120
Specify next point or [prompts]: h (Halfwidth)
Specify starting half-width <5>: 2
Specify ending half-width <2>: right-click
Specify next point or [prompts]: 160,120
Specify next point or [prompts]: w (Width)

Specify starting width <4>: 20
Specify ending width <20>: right-click
Specify next point or [prompts]: 40,120
Specify starting width <20>: 5
Specify ending width <5>: right-click
Specify next point or [prompts]: c (Close)
Command:

Third example - Polyline tool (Fig. 2.25)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 50,220
Current line width is 0
[prompts]: w (Width)
Specify starting width <0>: 0.5
Specify ending width <0.5>: right-click
Specify next point or [prompts]: 120,220
Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 150,200
Specify end point of arc: 180,220
Specify end point of arc or [prompts]: l (Line)
Specify next point or [prompts]: 250,220
Specify next point or [prompts]: 260,190
Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 240,170
Specify end point of arc: 250,160
Specify end point of arc or [prompts]: l (Line)
Specify next point or [prompts]: 250,150
Specify next point or [prompts]: 250,120
And so on until the outline Fig. 2.25 is completed.

Fig. 2.25 Third example - Polyline tool

Fourth example - Polyline tool (Fig. 2.26)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 80,170
Current line width is 0
Specify next point or [prompts]: w (Width)
Specify starting width <0>: 1
Specify ending width <l>: right-click
Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 160,250
Specify end point of arc: 240,170
Specify end point of arc or [prompts]: cl (CLose)
Command:
And the circle Fig. 2.26 is formed.

Fig. 2.26 Fourth example - Polyline tool

Fifth example - Polyline tool (Fig. 2.27)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 60,180
Current line width is 0
Specify next point or [prompts]: w (Width)
Specify starting width <0>: 1
Specify ending width <1>: right-click
Specify next point or [prompts]: 190,180
Specify next point or [prompts]: w (Width)
Specify starting width <1>: 20
Specify ending width <20>: 0
Specify next point or [prompts]: 265,180
Specify next point or [prompts]: right-click
Command:

And the arrow Fig. 2.27 is formed.

Fig. 2.27 Fifth example - Polyline tool

REVISION NOTES

1. The following terms have been used in this chapter:

Left-click - press the left-hand button of the mouse.
Click - same meaning as left-click.
Double-click - press the left-hand button of the mouse twice.
Right-click - press the right-hand button of the mouse - has the same result as pressing the Return key of the keyboard.
Drag - move the cursor on to a feature, and holding down the left-hand button of the mouse pull the object to a new position. Only applies to features such as dialogs and palettes, not to parts of drawings.
Enter - type the letters of numbers which follow at the keyboard.
Pick - move the cursor on to an item on screen and press the left-hand button of the mouse.
Return - press the Enter key of the keyboard. This key may also marked with a left facing arrow. In most cases (but not always) has the same result as a right-click.
Dialog - a window appearing in the AutoCAD window in which settings may be made.
Drop-down menu - a menu appearing when one of the names in the menu bar is clicked.
Tooltip - the name of a tool appearing when the cursor is placed over a tool icon.
Prompts - text appearing in the command window when a tool is selected, which advise the operator as to which operation is required.
2. Three methods of coordinate entry have been used in this chapter:

Absolute method - the coordinates of points on an outline are entered at the command line in response to prompts.
Relative method - the distances in coordinate units are entered preceded by @ from the last point which has been determined on an outline. Angles, which are measured in a counterclockwise direction, are preceded by $<$.
Tracking - the rubber band of the line is dragged in the direction in which the line is to be drawn and its distance in units is entered at the command line followed by a rightclick.
Line and Polyline tools - an outline drawn using the Line tool consists of a number of objects - the number of lines in the outline. An outline drawn using the Polyline is a single object.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8

1. Using the Line tool, construct the rectangle Fig. 2.28.

40,250 27

Fig. 2.28 Exercise 1
2. Construct the outline Fig. 2.29 using the Line tool. The coordinate points of each corner of the rectangle will need to be calculated from the lengths of the lines between the corners.

Fig. 2.29 Exercise 2
3. Using the Line tool, construct the outline Fig. 2.30.

Fig. 2.30 Exercise 3
4. Using the Circle tool, construct the two circles of radius 50 and 30 . Then using the Ttr prompt add the circle of radius 25 (Fig. 2.31).

Fig. 2.31 Exercise 4
5. In an acadiso.dwt screen and using the Circle and Line tools, construct the line and circle of radius 40 shown in Fig. 2.32. Then using the Ttr prompt add the circle of radius 25 .

Fig. 2.32 Exercise 5
6. Using the Line tool, construct the two lines at the length and angle as given in Fig. 2.33. Then with the Ttr prompt of the Circle tool, add the circle as shown.

Fig. 2.33 Exercise 6
8. Construct the outline Fig. 2.35 using the Polyline tool.

Fig. 2.35 Exercise 8
9. With the Polyline tool construct the arrows shown in Fig. 2.36.

Fig. 2.36 Exercise 9
7. Using the Polyline tool, construct the outline given in Fig. 2.34.

Fig. 2.34 Exercise 7

Chapter 3

Draw tools, Object Snap and Dynamic Input

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To give examples of the use of the Arc, Ellipse, Polygon, Rectangle, tools from the Home/Draw panel.
2. To give examples of the uses of the Polyline Edit (pedit) tool.
3. To introduce the Object Snaps (osnap) and their uses.
4. To introduce the Dynamic Input (DYN) system and its uses.

Introduction

Fig. 3.2 The tool icons in the Draw toolbar

The majority of tools in AutoCAD 2011 can be called into use by any one of the following six methods:

1. By clicking on the tool's icon in the appropriate panel. Fig. 3.1 shows the Polygon tool called from the Home/Draw panel.

Fig. 3.1 The Polygon tool and its tooltip selected from the Home/Draw panel
2. By clicking on a tool icon in a drop-down menu. Fig. 3.2 shows the tool names and icons displayed in the Draw drop-down menu. It is necessary to first bring the menu bar to screen with a click on Show Menu Bar in the left-click menu of the Quick Access toolbar (Fig. 3.3) if the menu bar is not already on screen.
3. By entering an abbreviation for the tool name at the command line. For example, the abbreviation for the Line tool is \mathbf{l}, for the Polyline tool it is $\mathbf{p l}$ and for the Circle tool it is \mathbf{c}.
4. By entering the full name of the tool at the command line.
5. By making use of the Dynamic Input method of construction.
6. If working in the AutoCAD Classic workspace by selection of tools from toolbars.

In practice operators constructing drawings in AutoCAD 2011 may well use a combination of these six methods.

Fig. 3.3 Selecting Show Menu Bar from the left-click menu in the Quick Access toolbar

The Arc tool

In AutoCAD 2011, arcs can be constructed using any three of the following characteristics of an arc - its Start point, a point on the arc (Second point), its Center, its End, its Radius, the Length of the arc, the Direction in which the arc is to be constructed, the Angle between lines of the arc.

These characteristics are shown in the menu appearing with a click on the arrow to the right of the Arc tool icon in the Home/Draw panel (Fig. 3.4).

To call the Arc tool click on the flyout of its tool icon in the Home/Draw panel, click on Arc in the Draw drop-down menu or enter a or arc at the command line. In the following examples, initials of prompts will be shown instead of selection from the menu as shown in Fig. 3.5.

Fig. 3.4 The Arc tool flyout in the Home/ Draw panel

Fig. 3.5 Examples - Arc tool

First example - Arc tool (Fig. 3.5)

Left-click the Arc tool icon. The command line shows:
Command:_arc Specify start point of arc or [Center]: 100,220
Specify second point of arc or [Center/End]: 55,250
Specify end point of arc: 10,220
Command:

Second example - Arc tool (Fig. 3.5)

Command:right-click brings back the Arc sequence ARC Specify start point of arc or [Center]: c
(Center)
Specify center point of arc: 200,190
Specify start point of arc: 260,215
Specify end point of arc or [Angle/chord Length]: 140,215

Command:

Third example - Arc tool (Fig. 3.5)

Command:right-click brings back the Arc sequence ARC Specify start point of arc or [Center]:

420,210
Specify second point of arc or [Center/End]:
e (End)
Specify end point of arc: 320,210
Specify center point of arc or [Angle/Direction/
Radius]: r (Radius)
Specify radius of arc: 75
Command:

The Ellipse tool

Ellipses can be regarded as what is seen when a circle is viewed from directly in front of the circle and the circle rotated through an angle about its horizontal diameter. Ellipses are measured in terms of two axes - a major axis and a minor axis, the major axis being the diameter of the circle and the minor axis being the height of the ellipse after the circle has been rotated through an angle (Fig. 3.6).

Fig. 3.6 An ellipse can be regarded as viewing a rotated circle

Fig. 3.7 The Ellipse tool icon flyout in the Home/Draw panel

To call the Ellipse tool, click on its tool icon in the Home/Draw panel (Fig. 3.7), click its name in the Draw drop-down menu or enter a or arc at the command line.

First example - Ellipse (Fig. 3.8)

Left-click the Ellipse tool icon. The command line shows:
Command:_ellipse
Specify axis endpoint of elliptical arc or [Center]: 30,190
Specify other endpoint of axis: 150,190
Specify distance to other axis or [Rotation] 25 Command:

Second example - Ellipse (Fig. 3.8)

In this second example, the coordinates of the centre of the ellipse (the point where the two axes intersect) are entered, followed by entering coordinates for the end of the major axis, followed by entering the units for the end of the minor axis.

Command:right-click
ELLIPSE

```
Specify axis endpoint of elliptical arc or
    [Center]: c
Specify center of ellipse: 260,190
Specify endpoint of axis: 205,190
Specify distance to other axis or
[Rotation]: 30
```

Command :

Third example - Ellipse (Fig. 3.8)

In this third example, after setting the positions of the ends of the major axis, the angle of rotation of the circle from which an ellipse can be obtained is entered (Fig. 3.8).

Fig. 3.8 Examples - Ellipse

```
Command: right-click
ELLIPSE
Specify axis endpoint of elliptical arc or
    [Center]: 30,100
Specify other endpoint of axis: 120,100
Specify distance to other axis or [Rotation]:
    r (Rotation)
Specify rotation around major axis: 45
Command:
```


Saving drawings

Before going further it is as well to know how to save the drawings constructed when answering examples and exercises in this book. When a drawing has been constructed, left-click on Save As in the menu appearing with a left-click on the AutoCAD icon at the top left-hand corner of the window (Fig. 3.9). The Save Drawing As dialog appears (Fig. 3.10).

Fig. 3.9 Selecting Save As from the Quick Access menu

Fig. 3.10 The Save Drawing As dialog

Unless you are the only person using the computer on which the drawing has been constructed, it is best to save work to a USB memory stick or other form of temporary saving device. To save a drawing to a USB memory stick:

1. Place a memory stick in a USB drive.
2. In the Save in: field of the dialog, click the arrow to the right of the field and from the popup list select KINGSTON [F:] (the name of my USB drive and stick).
3. In the File name: field type a name. The file name extension .dwg does not need to be typed - it will be added to the file name.
4. Left-click the Save button of the dialog. The drawing will be saved with the file name extension .dwg - the AutoCAD file name extension (Fig. 3.10).

Snap

In previous chapters, several methods of constructing accurate drawings have been described - using Snap, absolute coordinate entry, relative coordinate entry and tracking. Other methods of ensuring accuracy between parts of constructions are by making use of Object Snaps (Osnaps).

Snap Mode, Grid Display and Object Snaps can be toggled on/off from the buttons in the status bar or by pressing the keys, $\mathbf{F 9}$ (Snap Mode), F7 (Grid Display) and F3 (Object Snap).

Object Snaps (Osnaps)

Object Snaps allow objects to be added to a drawing at precise positions in relation to other objects already on screen. With Object Snaps, objects can be added to the end points, midpoints, to intersections of objects, to centres and/or quadrants of circles and so on. Object Snaps also override snap points even when snap is set on.

To set Object Snaps - at the command line:
Command: enter os
And the Drafting Settings dialog appears (Fig. 3.11). Click the Object Snap tab in the upper part of the dialog and click the check boxes to the right of the Object Snap names to set them on (or off in on).

When Object Snaps are set ON, as outlines are constructed using Object Snap icons and their tooltips appear as indicated in Fig. 3.12.

Fig. 3.11 The Drafting Settings dialog with some of the Object Snaps set on

Fig. 3.12 Three Object Snap icons and their tooltips

It is sometimes advisable not to have Object Snaps set on in the Drafting Settings dialog, but to set Object Snap off and use Object Snap abbreviations at the command line when using tools. The following examples show the use of some of these abbreviations. Object Snaps can be toggled on/off by pressing the F3 key of the keyboard.

First example - Object Snap (Fig. 3.13)

Call the Polyline tool:
Command:_pline
Specify start point: 50,230
[prompts]: w (Width)
Specify starting width: 1
Specify ending width <1>: right-click
Specify next point: 260,230
Specify next point: right-click
Command: right-click
PLINE
Specify start point: pick the right-hand end of the pline
Specify next point: 50,120
Specify next point: right-click
Command: right-click
PLINE
Specify start point: pick near the middle of first pline
Specify next point: 155,120
Specify next point: right-click
Command: right-click
PLINE
Specify start point: pick the plines at their intersection
Specify start point: right-click
Command:
The result is shown in Fig. 3.13. In this illustration the Object Snap tooltips are shown as they appear when each object is added to the outline.

Second example - Object Snap abbreviations

(Fig. 3.14)
Call the Circle tool:
Command:_circle
Specify center point for circle: 180,170

Fig. 3.13 First example - Osnaps

```
Specify radius of circle: 60
Command: enter l (Line) right-click
Specify first point: enter qua right-click
of pick near the upper quadrant of the circle
Specify next point: enter cen right-click
of pick near the centre of the circle
Specify next point: enter qua right-click
of pick near right-hand side of circle
Specify next point: right-click
Command:
```


Notes

With Object Snaps off, the following abbreviations can be used:
end - endpoint;
mid - midpoint;
int - intersection;
cen - centre;
qua - quadrant;

Fig. 3.14 Second example - Osnaps

Dynamic Input (DYN)

When Dynamic Input is set on by either pressing the F12 key or with a click on the Dynamic Input button in the status bar, dimensions, coordinate positions and commands appear as tips when no tool is in action (Fig. 3.15).

With a tool in action, as the cursor hairs are moved in response to movement of the mouse, Dynamic Input tips showing the coordinate figures for the point

Fig. 3.15 The DYN tips appearing when no tool is in action and the cursor is moved
of the cursor hairs will show (Fig. 3.16), together with other details. To see the drop-down menu giving the prompts available with Dynamic Input press the down key of the keyboard and click the prompt to be used. Fig. 3.16 shows the Arc prompt as being the next to be used when the Polyline tool is in use.

Fig. 3.16 Coordinate tips when DYN is in action

Notes on the use of Dynamic Input

Although Dynamic Input can be used in any of the AutoCAD 2011 workspaces, some operators may prefer a larger working area. To achieve this a click on the Clean Screen icon in the bottom right-hand corner of the AutoCAD 2011 window produces an uncluttered workspace area. The command palette can be cleared from screen by entering commandlinehide at the command line. To bring it back press the keys $\mathbf{C t r l + 9}$. These two operations produce a screen showing only title and status bars (Fig. 3.17). Some operators may well prefer working in such a larger than normal workspace.

Dynamic Input settings are made in the Dynamic Input sub-dialog of the Drafting Settings dialog (Fig. 3.18), brought to screen by entering os (or ds) at the command line.

Fig. 3.17 Example of using DYN in a clear screen

Fig. 3.18 Settings for DYN can be made in the Drafting Settings dialog

When Dynamic Input is in action, tools can be called by using any of the methods described on page 50 .

1. By entering the name of the tool at the command line.
2. By entering the abbreviation for a tool name at the command line.
3. By selecting the tool's icon from a panel.
4. By selecting the tool's name from a drop-down menu.

When Dynamic Input is active and a tool is called, command prompts appear in a tooltip at the cursor position. Fig. 3.19 shows the tooltip appearing at the cursor position when the Line tool icon in the Home/ Draw panel is clicked.

Fig. 3.19 The prompt appearing on screen when the Line tool is selected

To commence drawing a line, either move the cursor under mouse control to the desired coordinate point and left-click as in Fig. 3.20, or enter the required x, y coordinates at the keyboard (Fig. 3.21) and left-click. To continue drawing with Line drag the cursor to a new position and either left-click at the position when the coordinates appear as required (Fig. 3.21), or enter a required length at the keyboard, which appears in the length box followed by a left-click (Fig. 3.22).

Fig. 3.20 Drag the cursor to the required point and left-click

Fig. 3.21 Enter coordinates for the next point and left-click

Fig. 3.22 Enter length at keyboard and right-click

Fig. 3.23 The down key of the keyboard

Fig. 3.24 Selecting Polyline from the Home/Draw panel

When using Dynamic Input the selection of a prompt can be made by pressing the down key of the keyboard (Fig. 3.23) which causes a popup menu to appear. A click on the required prompt in such a popup menu will make that prompt active.

Dynamic Input - first example - Polyline

1. Select Polyline from the Home/Draw panel (Fig. 3.24).
2. To start the construction click at any point on screen. The prompt for the polyline appears with the coordinates of the selected point showing. Left-click to start the drawing (Fig. 3.25).

Fig. 3.25 Dynamic Input - first example - Polyline - the first prompt
3. Move the cursor and press the down key of the keyboard. A popup menu appears from which a prompt selection can be made. In the menu click Width (Fig. 3.26).
4. Another prompt field appears. At the keyboard enter the required width and right-click. Then left-click and enter ending width or right-click if the ending width is the same as the starting width (Fig. 3.27).
5. Drag the cursor to the right until the dimension shows the required horizontal length and left-click (Fig. 3.28).
6. Drag the cursor down until the vertical distance shows and left-click (Fig. 3.29).
7. Drag the cursor to the left until the required horizontal distance is showing and right-click (Fig. 3.30).
8. Press the down key of the keyboard and click Close in the menu (Fig. 3.31). The rectangle completes.

Fig. 3.26 Dynamic Input - first example - Polyline - click Width in the popup menu

Specify starting width <0>; 1|
Specify ending width <1>: 1
Fig. 3.27 Dynamic Input - first example - Polyline - entering widths

Fig. 3.28 Dynamic Input - first example - Polyline - the horizontal length

Fig. 3.29 Dynamic Input - first example - Polyline - the vertical height

Fig. 3.30 Dynamic Input - first example - Polyline - the horizontal distance

Fig. 3.31 Dynamic Input - first example - Polyline - selecting Close from the popup menu
Fig. 3.32 shows the completed drawing.

DYN - second example - Zoom

1. Enter Zoom or \mathbf{z} at the command line. The first Zoom prompt appears (Fig. 3.33).

Fig. 3.32 Dynamic Input - first example - Polyline

Fig. 3.33 Dynamic Input - second example - Zoom - enter Zoom at the command line. The prompts which then appear
2. Right-click and press the down button of the keyboard. The popup list (Fig. 3.34) appears from which a Zoom prompt can be selected.
3. Carry on using the Zoom tool as described in Chapter 4.

Fig. 3.34 Dynamic Input - second example - Zoom - the popup menu appearing with a rightclick and pressing the down keyboard button

DYN - third example - dimensioning

When using DYN, tools can equally as well be selected from a panel. Fig. 3.35 shows the Linear tool from the Home/Annotation panel selected when dimensioning a drawing.

Fig. 3.35 Selecting Linear from the Home/Annotation panel

A prompt appears asking for the first point. Move the cursor to the second point, another prompt appears (Fig. 3.36). Press the down button of the keyboard and the popup list (Fig. 3.36) appears from which a selection can be made.

Fig. 3.36 Dynamic Input - third example - dimensioning - the popup menu associated with Linear dimensioning

The Dynamic Input method of constructing 2D drawings can equally as well be used when constructing 3D solid models drawings (see Chapter 12 onwards).

Why use Dynamic Input?

Some operators may prefer constructing drawings without having to make entries at the command line in response to tool prompts. By using DYN drawings, whether in 2D or in 3D format, can be constructed purely from operating and moving the mouse, entering coordinates at the command line and pressing the down key of the keyboard when necessary.

Examples of using other Draw tools

Polygon tool (Fig. 3.37)

Call the Polygon tool - either with a click on its tool icon in the Home/
Draw panel (Fig. 3.1, page 69), from the Draw drop-down menu, or by entering pol or polygon at the command line. No matter how the tool is called, the command line shows:

Command:_polygon Enter number of sides <4>: 6
Specify center of polygon or [Edge]: 60,210
Enter an option [Inscribed in circle/Circumscribed about circle] <I>: right-click (accept Inscribed)
Specify radius of circle: 60
Command:

1. In the same manner construct a $\mathbf{5}$-sided polygon of centre $\mathbf{2 0 0}, \mathbf{2 1 0}$ and of radius $\mathbf{6 0}$.
2. Then, construct an 8 -sided polygon of centre $\mathbf{3 3 0 , 2 1 0}$ and radius $\mathbf{6 0}$.
3. Repeat to construct a 9 -sided polygon circumscribed about a circle of radius 60 and centre $\mathbf{6 0 , 8 0}$.
4. Construct yet another polygon with $\mathbf{1 0}$ sides of radius $\mathbf{6 0}$ and of centre $\mathbf{2 0 0}, \mathbf{8 0}$.
5. Finally another polygon circumscribing a circle of radius $\mathbf{6 0}$, of centre $\mathbf{3 3 0 , 8 0}$ and sides 12.

The result is shown in Fig. 3.37.

Fig. 3.37 First example - Polygon tool

Fig. 3.38 The
Rectangle tool from the Home/Draw panel

Rectangle tool - first example (Fig. 3.39)

Call the Rectangle tool - either with a click on its tool icon in the Home/ Draw panel (Fig. 3.38) by entering rec or rectangle at the command line. The tool can be also called from the Draw drop-down menu. The command line shows (Fig. 3.39):

315,25

Fig. 3.39 Examples - Rectangle tool

Command:_rectang
Specify first corner point or [Chamfer/
Elevation/Fillet/Thickness/Width]: 25,240
Specify other corner point or [Area/Dimensions/
Rotation]: 160,160
Command:

Rectangle tool - second example (Fig. 3.39)

Command:_rectang
[prompts]: c (Chamfer)
Specify first chamfer distance for rectangles <0>: 15
Specify first chamfer distance for rectangles <15>:
right-click
Specify first corner point: 200,240
Specify other corner point: 300,160
Command:

Rectangle tool - third example (Fig. 3.39)

Command: _rectang
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: f (Fillet)
Specify fillet radius for rectangles <0>: 15
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: w (Width)
Specify line width for rectangles <0>: 1
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: 20,120
Specify other corner point or [Area/Dimensions/ Rotation]: 160,30
Command:

Rectangle - fourth example (Fig. 3.39)

Command:_rectang
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: w (Width)
Specify line width for rectangles <0>: 4
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: c (Chamfer)
Specify first chamfer distance for rectangles <0>: 15
Specify second chamfer distance for rectangles <15>: right-click
Specify first corner point: 200,120
Specify other corner point: 315,25
Command:

The Polyline Edit tool

The Polyline Edit tool is a valuable tool for the editing of polylines.

First example - Polyline Edit (Fig. 3.42)

1. With the Polyline tool construct the outlines $\mathbf{1}$ to $\mathbf{6}$ of Fig. 3.40.
2. Call the Edit Polyline tool either from the Home/Modify panel (Fig. 3.41) or from the Modify drop-down menu, or by entering pe or pedit at the command line, which then shows:

Command: enter pe
PEDIT Select polyline or [Multiple]: pick pline 2

Fig. 3.40 Examples - Edit Polyline - the plines to be edited

Fig. 3.41 Calling Edit Polyline from the Home/Modify panel

Enter an option [Open/Join/Width/Edit vertex/Fit/ Spline/Decurve/Ltype gen/Reverse/Undo]:
w (Width)
Specify new width for all segments: 2
Enter an option [Open/Join/Width/Edit vertex/Fit/
Spline/Decurve/Ltype gen/Reverse/Undo]: rightclick
Command:
3. Repeat with pline $\mathbf{3}$ and pedit to Width $=\mathbf{1 0}$.
4. Repeat with line $\mathbf{4}$ and enter \mathbf{s} (Spline) in response to the prompt line:

Enter an option [Open/Join/Width/Edit vertex/Fit/ Spline/Decurve/Ltype gen/Reverse/Undo]: enter s
5. Repeat with pline $\mathbf{5}$ and enter \mathbf{j} in response to the prompt line:

```
Enter an option [Open/Join/Width/Edit vertex/Fit/
    Spline/Decurve/Ltype gen/Undo]: enter j
```

The result is shown in pline 6 .
The resulting examples are shown in Fig. 3.42.

Fig. 3.42 Examples - Polyline Edit

Example - Multiple Polyline Edit (Fig. 3.43)

1. With the Polyline tool construct the left-hand outlines of Fig. 3.43.
2. Call the Edit Polyline tool. The command line shows:

Fig. 3.43 Example - Multiple Polyline Edit

Command: enter pe
PEDIT Select polyline or [Multiple]: m (Multiple)
Select objects: pick any one of the lines or arcs of the left-hand outlines of Fig. 6.161 found
Select objects: pick another line or arc 1 found 2 total
Continue selecting lines and arcs as shown by the pick boxes of the left-hand drawing of Fig. 3.45 until the command line shows:
Select objects: pick another line or arc 1 found 24 total
Select objects: right-click
[prompts]: w (Width)
Specify new width for all segments: 1.5
Convert Arcs, Lines and Splines to polylines [Yes/ No]? <Y>: right-click
[prompts]: right-click
Command:
The result is shown in the right-hand drawing of Fig. 3.43.

Transparent commands

When any tool is in operation it can be interrupted by prefixing the interrupting command with an apostrophe (${ }^{\prime}$). This is particularly useful when wishing to zoom when constructing a drawing (see page 82). As an example when the Line tool is being used:

Command:_line
Specify first point: 100,120
Specify next point: 190,120
Specify next point: enter 'z (Zoom)
>> Specify corner of window or [prompts]: pick
>>>> Specify opposite corner: pick
Resuming line command.
Specify next point:
And so on. The transparent command method can be used with any tool.

The set variable PELLIPSE

Many of the operations performed in AutoCAD are carried out under settings of SET VARIABLES. Some of the numerous set variables
available in AutoCAD 2011 will be described in later pages. The variable PELLIPSE controls whether ellipses are drawn as splines or as polylines. It is set as follows:

Command: enter pellipse right-click
Enter new value for PELLIPSE <0>: enter 1 rightclick

Command:

And now when ellipses are drawn they are plines. If the variable is set to $\mathbf{0}$, the ellipses will be splines. The value of changing ellipses to plines is that they can then be edited using the Polyline Edit tool.

REVISION NOTES

The following terms have been used in this chapter:
Field - a part of a window or of a dialog in which numbers or letters are entered or which can be read.
Popup list - a list brought in screen with a click on the arrow often found at the right-hand end of a field.
Object - a part of a drawing which can be treated as a single object. For example, a line constructed with the Line tool is an object, a rectangle constructed with the Polyline tool is an object and an arc constructed with the Arc tool is an object. It will be seen in a later chapter (Chapter 9) that several objects can be formed into a single object.
Ribbon palettes - when working in either of the 2D Drafting and Annotation or of the 3D Modeling workspace, tool icons are held in panels in the Ribbon.
Command line - a line in the command palette which commences with the word Command.
Snap Mode, Grid Display and Object Snap can be toggled with clicks on their respective buttons in the status bar. These functions can also be set with function keys: Snap Mode F9, Grid Display - F7 and Object Snap - F3.
Object Snaps ensure accurate positioning of objects in drawings.
Object Snap abbreviations can be used at the command line rather than setting in ON in the Drafting Settings dialog.
Dynamic input allows constructions in any of the three AutoCAD 2011 workspaces or in a full screen workspace, without having to use the command palette for entering the initials of command line prompts.

Notes

There are two types of tooltip. When the cursor under mouse control is paced over a tool icon, the first (a smaller) tooltip is seen. If the cursor is held in position for a short time the second (a larger) tooltip is seen. Settings for the tooltip may be made in the Options dialog.

Polygons constructed with the Polygon tool are regular polygons - the edges of the polygons are all the same length and the angles are of the same degrees.

Polygons constructed with the Polygon tool are plines, so can be edited by using the Edit Polyline tool.

The easiest method of calling the Edit Polyline tool is to enter pe at the command line.

The Multiple prompt of the pedit tool saves considerable time when editing a number of objects in a drawing.

Transparent commands can be used to interrupt tools in operation by preceding the interrupting tool name with an apostrophe (').

Ellipses drawn when the variable PELLIPSE is set to $\mathbf{0}$ are splines; when PELLIPSE is set to $\mathbf{1}$, ellipses are polylines. When ellipses are in polyline form they can be modified using the pedit tool.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8

1. Using the Line and Arc tools, construct the outline given in Fig. 3.44.

Fig. 3.44 Exercise 1
2. With the Line and Arc tools, construct the outline Fig. 3.45.

Fig. 3.45 Exercise 2
3. Using the Ellipse and Arc tools, construct the drawing Fig. 3.46.

Fig. 3.46 Exercise 3
4. With the Line, Circle and Ellipse tools, construct Fig. 3.47.

Fig. 3.47 Exercise 4
5. With the Ellipse tool, construct the drawing Fig. 3.48.

Fig. 3.48 Exercise 5
6. Fig. 3.49 shows a rectangle in the form of a square with hexagons along each edge. Using the Dimensions prompt of the Rectangle tool, construct the square. Then, using the Edge prompt of the Polygon tool, add the four hexagons. Use the Object Snap endpoint to ensure the polygons are in their exact positions.

Fig. 3.49 Exercise 6
7. Fig. 3.50 shows seven hexagons with edges touching. Construct the inner hexagon using the Polygon tool, then with the aid of the Edge prompt of the tool, add the other six hexagons.

Fig. 3.50 Exercise 7
8. Fig. 3.51 was constructed using only the Rectangle tool. Make an exact copy of the drawing using only the Rectangle tool.

Fig. 3.51 Exercise 8
9. Construct the drawing Fig. 3.52 using the Line and Arc tools. Then, with the aid of the Multiple prompt of the Edit Polyline tool, change the outlines into plines of Width=1.
10. Construct Fig. 3.53 using the Line and Arc tools. Then change all widths of lines and arcs to a width of $\mathbf{2}$ with Polyline Edit.

Fig. 3.53 Exercise 10

Fig. 3.52 Exercise 9
11. Construct Fig. 3.54 using the Rectangle, Line and Edit Polyline tools.

Fig. 3.54 Exercise 11

Chapter 4

Zoom, Pan and templates

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To demonstrate the value of the Zoom tools.
2. To introduce the Pan tool.
3. To describe the value of using the Aerial View window in conjunction with the Zoom and Pan tools.
4. To update the acadiso.dwt template.
5. To describe the construction and saving of drawing templates.

Introduction

The use of the Zoom tools allows not only the close inspection of the most minute areas of a drawing in the AutoCAD 2011 drawing area, but also the accurate construction of very small details in a drawing.

The Zoom tools can be called by selection from the View/Navigate panel or from the View drop-down menu (Fig. 4.1). However by far the easiest and quickest method of calling the Zoom is to enter \mathbf{z} at the command line as follows:

```
Command: enter z right-click
ZOOM Specify corner of window, enter a scale factor
    (nX or nXP) or [All/Center/Dynamic/Extents/
    Previous/Scale/Window/Object] <real time>:
```


Fig. 4.1 Calling Zoom - from the Zoom/Navigate panel or from the View drop-down menu

This allows the different zooms:
Realtime - selects parts of a drawing within a window.
All - the screen reverts to the limits of the template.

Center - the drawing centres itself around a picked point.
Dynamic - a broken line surrounds the drawing which can be changed in size and repositioned to part of the drawing.
Extents - the drawing fills the AutoCAD drawing area.
Previous - the screen reverts to its previous zoom.
Scale - entering a number or a decimal fraction scales the drawing.
Window - the parts of the drawing within a picked window appears on screen. The effect is the same as using real time.
Object - pick any object on screen and the object zooms.
The operator will probably be using Realtime, Window and Previous zooms most frequently.
Figs 4.2-4.4 show a drawing which has been constructed, a Zoom
Window of part of the drawing allowing it to be checked for accuracy and a Zoom Extents, respectively.

Fig. 4.2 Drawing to be acted upon by the Zoom tool

Fig. 4.3 Zoom Window of part of the drawing Fig. 4.2

Fig. 4.4 Zoom Extents of the drawing Fig. 4.2

It will be found that the Zoom tools are among those most frequently used when working in AutoCAD 2011.

The Aerial View window

Enter dsviewer at the command line and the Aerial View window appears - usually in the bottom right-hand corner of the AutoCAD 2011

Fig. 4.5 The drawing used to illustrate Figs 4.6 and 4.7
window. The Aerial View window shows the whole of a drawing, even if larger that the limits. The Aerial View window is of value when dealing with large drawings - it allows that part of the window on screen to be shown in relation to the whole of the drawing. Fig. 4.5 is a three-view orthographic projection of a small bench vice.
Fig. 4.6 shows a Zoom Window of the drawing Fig. 4.5 including the Aerial View Window. The area of the drawing within the Zoom window in the drawing area is bounded by a thick green line in the Aerial View window.

Fig. 4.6 Zoom Window of the drawing Fig. 4.5 with its surrounding zoom rectangle showing in the Aerial View window

The Pan tool

The Pan tools can be called with a click on the Pan button in the status bar, from the Pan sub-menu of the View drop-down menu or by entering \mathbf{p} at the command line. When the tool is called, the cursor on screen changes to an icon of a hand. Dragging the hand across screen under mouse movement allows various parts of a large drawing not in the AutoCAD drawing area to be viewed. As the dragging takes place, the green rectangle in the Aerial View window moves in sympathy (see Fig. 4.7). The Pan tool allows any part of the drawing to be viewed and/or modified. When that part of the drawing which is required is on screen a right-click calls up the menu as shown in Fig. 4.7, from which either the tool can be exited or other tools can be called.

Fig. 4.7 The Pan tool in action showing a part of the drawing, while the whole drawing is shown in the Aerial View window.

Notes

1. If using a mouse with a wheel both zooms and pans can be performed with the aid of the wheel. See page 8.
2. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined and, if necessary, amended or modified.
3. The zoom tools can be called from the sub-menu of the View dropdown menu or by entering $\mathbf{z o o m}$ or \mathbf{z} at the command line. The easiest of this choice is to enter \mathbf{z} at the command line followed by a right-click.
4. Similarly the easiest method of calling the Pan tool is to enter \mathbf{p} at the command line followed by a right-click.
5. When constructing large drawings, the Pan tool and the Aerial View window are of value for allowing work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.

Drawing templates

In Chapters 1-3, drawings were constructed in the template acadiso.dwt which loaded when AutoCAD 2011 was opened. The default acadiso template has been amended to Limits set to $\mathbf{4 2 0 , 2 9 7}$ (coordinates within
which a drawing can be constructed), Grid Display set to 10, Snap Mode set to $\mathbf{5}$ and the drawing area Zoomed to All.

Throughout this book most drawings will be based on an A3 sheet, which measures 420 units by 297 units (the same as Limits).

Note

As mentioned before if others are using the computer on which drawings are being constructed, it is as well to save the template being used to another file name, or if thought necessary to a memory stick or other temporary type of disk. A file name My_template.dwt, as suggested earlier, or a name such as book_template can be given.

Adding features to the template

Four other features will now be added to our template:
Text style - set in the Text Style dialog.
Dimension style - set in the Dimension Style Manager dialog.
Shortcutmenu variable - set to 0.
Layers - set in the Layer Properties Manager dialog.

Setting text

1. At the command line:

Command: enter st (Style) right-click
2. The Text style dialog appears (Fig. 4.8). In the dialog, enter $\mathbf{6}$ in the Height field. Then left-click on Arial in the Font name popup list. Arial font letters appear in the Preview area of the dialog.

Fig. 4.8 The Text Style dialog
3. Left-click the New button and enter Arial in the New text style subdialog which appears (Fig. 4.9) and click the OK button.
4. Left-click the Set Current button of the Text Style dialog.
5. Left-click the Close button of the dialog.

Fig. 4.9 The New Text Style sub-dialog

Setting dimension style

Settings for dimensions require making entries in a number of sub-dialogs in the Dimension Style Manager. To set the dimensions style:

1. At the command line:

Command: enter d right-click
And the Dimensions Style Manager dialog appears (Fig. 4.10).

Fig. 4.10 The Dimensions Style Manager dialog
2. In the dialog, click the Modify... button.
3. The Modify Dimension Style dialog appears (Fig. 4.11). This dialog shows a number of tabs at the top of the dialog. Click the Lines tab and make settings as shown in Fig. 4.11. Then click the OK button of that dialog.

Fig. 4.11 The setting for Lines in the Modify Dimensions Style dialog
4. The original Dimension Style Manager reappears. Click its Modify button again.
5. The Modify Dimension Style dialog reappears (Fig. 4.12), click the Symbols and Arrows tab. Set Arrow size to 6.
6. Then click the Text tab. Set Text style to Arial, set Color to Magenta, set Text Height to $\mathbf{6}$ and click the ISO check box in the bottom righthand corner of the dialog.
7. Then click the Primary Units tab and set the units Precision to 0, that is no units after decimal point and Decimal separator to Period. Click the sub-dialogs OK button (Fig. 4.12).
8. The Dimension Styles Manager dialog reappears showing dimensions, as they will appear in a drawing, in the Preview of my-style box. Click the New... button. The Create New Dimension Style dialog appears (Fig. 4.13).
9. Enter a suitable name in the New Style Name: field - in this example this is My-style. Click the Continue button and the Dimension Style Manager appears (Fig. 4.14). This dialog now shows a preview of the My-style dimensions. Click the dialog's Set Current button, following by another click on the Close button. See Fig. 4.14.

Fig. 4.12 Setting Primary Units in the Dimension Style Manager

Fig. 4.13 The Create New Dimension Style dialog

Fig. 4.14 The Dimension Style Manager reappears. Click the Set Current and Close buttons

Setting the shortcutmenu variable

Enter	
	Cancel
Recent Input	
Undo	
Snap Overrides	
Pan	
Zoom	
SteeringWheels	
QuickCalc	

Fig. 4.15 The rightclick menu

Call the line tool, draw a few lines and then right-click. The right-click menu shown in Fig. 4.15 may well appear. A similar menu will also appear when any tool is called. Some operators prefer using this menu when constructing drawings. To stop this menu appearing:

Command: enter shortcutmenu right-click Enter new value for SHORTCUTMENU <12>: 0 Command:

And the menu will no longer appears when a tool is in action.

Setting layers

1. At the command line enter layer or la followed by a right-click. The Layer Properties Manager palette appears (Fig. 4.16).
2. Click the New Layer icon. Layer1 appears in the layer list. Overwrite the name Layer1 entering Centre.

Fig. 4.16 The Layer Properties Manager palette
3. Repeat step $\mathbf{2}$ four times and make four more layers entitled Construction, Dimensions, Hidden and Text.
4. Click one of the squares under the Color column of the dialog. The Select Color dialog appears (Fig. 4.17). Double-click on one of the colours in the Index Color squares. The selected colour appears against the layer name in which the square was selected. Repeat until all five new layers have a colour.

Fig. 4.17 The Select Color dialog
5. Click on the linetype Continuous against the layer name Centre. The Select Linetype dialog appears (Fig. 4.18). Click its Load... button and from the Load or Reload Linetypes dialog double-click CENTER2. The dialog disappears and the name appears in the Select Linetype dialog. Click the OK button and the linetype CENTER2 appears against the layer Center.

Fig. 4.18 The Select Linetype dialog
6. Repeat with layer Hidden, load the linetype HIDDEN2 and make the linetype against this layer HIDDEN2.
7. Click on the any of the lineweights in the Layer Properties Manager. This brings up the Lineweight dialog (Fig. 4.19). Select the lineweight 0.3. Repeat the same for all other layers. Then click the Close button of the Layer Properties Manager.

Fig. 4.19 The Lineweight dialog

Saving the template file

1. Left-click on Save As in the menu appearing with a left-click on the AutoCAD icon at the top left-hand corner of the screen (Fig. 4.20).

Fig. 4.20 Calling Save As
2. In the Save Drawing As dialog which comes on screen (Fig. 4.21), click the arrow to the right of the Files of type field and in the popup list associated with the field click on AutoCAD Drawing Template (*.dwt). The list of template files in the AutoCAD 2011/Template directory appears in the file list.

Fig. 4.21 Saving the template to the name acadiso.dwt
3. Click on acadiso in the file list, followed by a click on the Save button.
4. The Template Option dialog appears. Make entries as suggested in Fig. 4.22, making sure that Metric is chosen from the popup list. The

A Template 0ptions	
Description	
My book template	
Measurement	
Metric	
New Layer Notification	
Save all layers as unreconciled	
Sall layers as reconciled	

Fig. 4.22 The Template Description dialog
template can now saved to be opened for the construction of drawings as needed. Now when AutoCAD 2011 is opened again the template acadiso.dwt appears on screen.

Note

Remember that if others are using the computer it is advisable to save the template to a name of your own choice.

Template file to include Imperial dimensions

If dimensions are to be in Imperial measure - in yards, feet and inches, first set Limits to $\mathbf{2 8}, \mathbf{1 8}$. In addition the settings in the Dimension Style Manager will need to be different from those shown earlier. Settings for Imperial measure in the Primary Units sub-dialog need to be set as shown in Fig. 4.23. Settings in the Text sub-dialog of the Text Style dialog also need to be set as shown in Fig. 4.24.

In addition the settings in the Primary Units dialog also need settings to be different to those for Metric dimensions as shown in Fig. 4.25.

Fig. 4.23 Settings for Imperial dimensions in Primary Units

Fig. 4.24 Settings for Imperial dimensions set in Text

Fig. 4.25 Settings for Imperial dimensions in the Primary Units dialog

REVISION NOTES

1. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined, amended or modified.
2. The Zoom tools can be called from the sub-menu of the View drop-down menu, or by entering z or zoom at the command line. The easiest is to enter z at the command line.
3. There are five methods of calling tools for use - selecting a tool icon in a panel from a group of panels in the Ribbon; entering the name of a tool in full at the command line; entering an abbreviation for a tool; selecting a tool from a drop-down menu. If working in the AutoCAD Classic workspace, tools are called from toolbars.
4. When constructing large drawings, the Pan tool and the Aerial View window allow work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.
5. An A3 sheet of paper is 420 mm by 297 mm . If a drawing constructed in the template acadiso.dwt described in this book, is printed/plotted full size (scale 1:1), each unit in the drawing will be 1 mm in the print/plot.
6. When limits are set it is essential to call Zoom followed by a (All) to ensure that the limits of the drawing area are as set.
7. If the right-click menu appears when using tools, the menu can be aborted if required by setting the SHORTCUTMENU variable to 0 .

Exercises

If you have saved drawings constructed either by following the worked examples in this book or by answering exercises in Chapters 2 and 3, open some of them and practise zooms and pans.

Chapter 5

The Modify tools

AIM OF THIS CHAPTER

The aim of this chapter is to describe the uses of tools for modifying parts of drawings.

Introduction

Fig. 5.2 The Modify drop-down menu

The Modify tools are among those most frequently used. The tools are found in the Home/Modify panel. A click on the arrow at the bottom of the Home/Modify panel brings down a further set of tool icons (Fig. 5.1). They can also be selected from the Modify drop-down menu (Fig. 5.2). In the AutoCAD Classic workspace, they can be selected from the Modify toolbar.

Fig. 5.1 The Modify tool icons in the Home/Modify panel

Using the Erase tool from Home/Modify was described in Chapter 2. Examples of tools other than the Explode follow. See also Chapter 9 for Explode.

First example - Copy (Fig. 5.5)

1. Construct Fig. 5.3 using Polyline. Do not include the dimensions.

Fig. 5.3 First example - Copy Object - outlines

The Copy tool

2. Call the Copy tool - either left-click on its tool icon in the Home/ Modify panel (Fig. 5.4) or enter cp or copy at the command line. The command line shows:

Command: _copy
Select objects: pick the cross 1 found
Select objects: right-click

Current settings: Copy mode $=$ Multiple Specify base point or [Displacement/mOde] <Displacement>: pick
Specify second point or [Exit/Undo]: pick Specify second point or [Exit/Undo] <Exit>: right-click
Command:
The result is given in Fig. 5.5.

Fig. 5.4 The Copy tool from the Home/Modify panel

Fig. 5.5 First example - Copy

Second example - Multiple copy (Fig. 5.6)

1. Erase the copied object.
2. Call the Copy tool. The command line shows:

Command: _copy
Select objects: pick the cross 1 found
Select objects: right-click
Current settings: Copy mode = Multiple
Specify base point or [Displacement/mOde]
<Displacement>: pick
Specify second point or <use first point as displacement>: pick

Specify second point or [Exit/Undo] <Exit>: pick
Specify second point or [Exit/Undo] <Exit>: pick
Specify second point or [Exit/Undo] <Exit>: e
(Exit)
Command
The result is shown in Fig. 5.6.

Fig. 5.6 Second example - Copy - Multiple copy

The Mirror tool

First example - Mirror (Fig. 5.9)

1. Construct the outline Fig. 5.7 using the Line and Arc tools.

Fig. 5.7 First example Mirror - outline
2. Call the Mirror tool - left-click on its tool icon in the Home/Modify panel (Fig. 5.8) or from the Modify drop-down menu, or enter mi or mirror at the command line. The command line shows:

Fig. 5.8 The Mirror tool from the Home/Modify panel
Command:_mirror
Select objects: pick first corner Specify opposite corner: pick 7 found
Select objects: right-click
Specify first point of mirror line: pick

Specify second point of mirror line: pick Erase source objects [Yes/No] <N>: right-click Command:

The result is shown in Fig. 5.9.

Second example - Mirror (Fig. 5.10)

1. Construct the outline shown in the dimensioned polyline in the upper drawing of Fig. 5.10.
2. Call Mirror and using the tool three times complete the given outline. The two points shown in Fig. 5.10 are to mirror the right-hand side of the outline.

Fig. 5.9 First example - Mirror

Fig. 5.10 Second example - Mirror

Third example - Mirror (Fig. 5.11)

If text is involved when using the Mirror tool, the set variable

Fig. 5.11 Third example - Mirror

MIRRTEXT must be set correctly. To set the variable:
Command: mirrtext
Enter new value for MIRRTEXT <1>: 0
Command:
If set to $\mathbf{0}$ text will mirror without distortion. If set to $\mathbf{1}$ text will read backwards as indicated in Fig. 5.11.

The Offset tool

Examples - Offset (Fig. 5.14)

1. Construct the four outlines shown in Fig. 5.13.
2. Call the Offset tool - left-click on its tool icon in the Home/Modify panel (Fig. 5.12), pick the tool name in the Modify drop-down menu or enter \mathbf{o} or offset at the command line. The command line shows (Fig. 5.13):

Fig. 5.12 The Offset tool from the Home/Modify panel

Fig. 5.13 Examples - Offset - outlines

Command:_offset
Current settings: Erase source = No
Layer=Source OFFSETGAPTYPE=0
Specify offset distance or [Through/Erase/Layer] <Through>: 10
Select object to offset or [Exit/Undo]
<Exit>: pick drawing 1
Specify point on side to offset or [Exit/Multiple/ Undo] <Exit>: pick inside the rectangle
Select object to offset or [Exit/Undo]
<Exit>: e (Exit)
Command:
3. Repeat for drawings 2, $\mathbf{3}$ and $\mathbf{4}$ in Fig. 5.12 as shown in Fig. 5.14.

Arrays can be in either a Rectangular form or a Polar form as shown in the examples below.

Offset twice by 15

Fig. 5.14 Examples - Offset

The Array tool

First example - Rectangular Array (Fig. 5.17)

Fig. 5.15 First example - Array drawing to be arrayed

1. Construct the drawing Fig. 5.15.
2. Call the Array tool - either click Array in the Modify drop-down menu (Fig. 5.16), from the Home/Modify panel, or enter ar or array at the command line. The Array dialog appears (Fig. 5.17).
3. Make settings in the dialog:

Rectangular Array radio button set on (dot in button)
Row field - enter 5

Fig. 5.16 Selecting Array from the Modify drop-down menu

Column field - enter 6
Row offset field - enter - $\mathbf{5 0}$ (note the minus sign)

Column offset field - enter 50

Fig. 5.17 First example - the Array dialog
4. Click the Select objects button and the dialog disappears. Window the drawing. A second dialog appears which includes a Preview $<$ button.
5. Click the Preview < button. The dialog disappears and the following prompt appears at the command line:

```
Pick or press Esc to return to drawing or <Right-
    click to accept drawing>:
```

6. If satisfied right-click. If not, press the Esc key and make revisions to the Array dialog fields as necessary.

The resulting array is shown in Fig. 5.18.

Second example - Polar Array (Fig. 5.22)

1. Construct the drawing Fig. 5.19.
2. Call Array. The Array dialog appears. Make settings as shown in Fig. 5.20.
3. Click the Select objects button of the dialog and window the drawing. The dialog returns to screen. Click the Pick Center point button (Fig. 5.21) and when the dialog disappears, pick a centre point for the array.

Fig. 5.18 First example - Array

Fig. 5.19 Second
example - the drawing to be arrayed

Fig. 5.20 Second example - Array - settings in the dialog

Fig. 5.21 Second example - Array - the Pick Center point button
4. The dialog reappears. Click its Preview $<$ button. The array appears and the command line shows:

```
Pick or press Esc to return to drawing or
    <Right-click to accept drawing>:
```

5. If satisfied right-click. If not, press the Esc key and make revisions to the Array dialog fields as necessary.

The resulting array is shown in Fig. 5.22.

Fig. 5.22 Second example - Array

Example - Move (Fig. 5.25)

1. Construct the drawing Fig. 5.23.

Fig. 5.23 Example - Move - drawing
2. Call Move - click the Move tool icon in the Home/Modify panel (Fig. 5.24), pick Move from the Modify drop-down menu or enter \mathbf{m} or move at the command line, which shows:

Fig. 5.24 The Move tool from the Home/Modify panel

Command:_move
Select objects: pick the middle shape in the drawing 1 found
Select objects: right-click
Specify base point or [Displacement]
<Displacement>: pick
Specify second point or <use first point as displacement>: pick
Command:
The result is given in Fig. 5.25.

Fig. 5.25 Example - Move

The Rotate tool

When using the Rotate tool remember the default rotation of objects within AutoCAD 2011 is counterclockwise (anticlockwise).

Example - Rotate (Fig. 5.27)

1. Construct drawing 1 of Fig. 5.27 with Polyline. Copy the drawing 1 three times (Fig. 5.27).
2. Call Rotate - left-click on its tool icon in the Home/Modify panel (Fig. 5.26), pick Rotate from the Modify drop-down menu or enter ro or rotate at the command line. The command line shows: and the first copy rotates through the specified angle.

Fig. 5.26 The Rotate tool icon from the Home/Modify panel

Command:_rotate
Current positive angle in UCS:
ANGDIR = counterclockwise ANGBASE=0
Select objects: window the drawing 3 found
Select objects: right-click
Specify base point: pick
Specify rotation angle or [Copy/Reference] <0>: 45
Command:
3. Repeat for drawings $\mathbf{3}$ and $\mathbf{4}$ rotating as shown in Fig. 5.27.

Fig. 5.27 Example - Rotate
The Scale tool

Examples - Scale (Fig. 5.29)

1. Using the Rectangle and Polyline tools, construct drawing $\mathbf{1}$ of Fig. 5.29. The Rectangle fillets are R10. The line width of all parts is $\mathbf{1}$. Copy the drawing 3 times to give drawings $\mathbf{2}, 3$ and 4.
2. Call Scale - left-click on its tool icon in the Home/Draw panel (Fig. 5.28), pick Scale from the Modify drop-down-menu or enter sc or scale at the command line which then shows:

Fig. 5.28 The Scale tool from the Home/Modify panel
Command:_scale
Select objects: window drawing 25 found
Select objects: right-click
Specify base point: pick

```
Specify scale factor or [Copy/Reference]
    <1>: 0.75
Command:
```

3. Repeat for the other two drawings $\mathbf{3}$ and $\mathbf{4}$ scaling to the scales given with the drawings.

The results are shown in Fig. 5.29.

Fig. 5.29 Examples - Scale

The Trim tool

This tool is one which will be frequent use when constructing drawings.

First example - Trim (Fig. 5.31)

1. Construct the drawing Original drawing in Fig. 5.31.
2. Call Trim - either left-click on its tool icon in the Home/Modify panel (Fig. 5.30), pick Trim from the Modify drop-down menu or enter $\mathbf{t r}$ or trim at the command line, which then shows:

Fig. 5.30 The Trim tool icon from the Home/Modify panel

Command:_trim
Current settings: Projection UCS. Edge = Extend Select cutting edges
Select objects or <select all>: pick the left-hand circle 1 found
Select objects: right-click
Select objects to trim or shift-select to extend or [Fence/Project/Crossing/Edge/eRase//Undo]: pick one of the objects
Select objects to trim or shift-select to extend or
[Fence/Crossing/Project/Edge/eRase/Undo: pick the second of the objects
Select objects to trim or shift-select to extend or [Project/Edge/Undo]: right-click
Command:
3. This completes the First stage as shown in Fig. 5.31. Repeat the Trim sequence for the Second stage.
4. The Third stage drawing of Fig. 5.31 shows the result of the trims at the left-hand end of the drawing.
5. Repeat for the right-hand end. The final result is shown in the drawing labelled Result in Fig. 5.31.

Fig. 5.31 First example - Trim

Second example - Trim (Fig. 5.32)

1. Construct the left-hand drawing of Fig. 5.32.
2. Call Trim. The command line shows:

Command:_trim
Current settings: Projection UCS. Edge = Extend
Select cutting edges ...
Select objects or <select all>: pick the left-hand arc 1 found
Select objects: right-click
Select objects to trim or shift-select to extend or [Fence/Crossing/Project/Edge/eRase/Undo]: e (Edge)
Enter an implied edge extension mode [Extend/No extend] <No extend>: e (Extend)
Select objects to trim: pick
Select objects to trim: pick
Select objects to trim: right-click
Command:
3. Repeat for the other required trims. The result is given in Fig. 5.32.

Fig. 5.32 Second example - Trim

The Stretch tool

Examples - Stretch (Fig. 5.34)

As its name implies the Stretch tool is for stretching drawings or parts of drawings. The action of the tool prevents it from altering the shape of
circles in any way. Only crossing or polygonal windows can be used to determine the part of a drawing which is to be stretched.

1. Construct the drawing labelled Original in Fig. 5.34, but do not include the dimensions. Use the Circle, Arc, Trim and Polyline Edit tools. The resulting outlines are plines of width $=1$. With the Copy tool make two copies of the drawing.

Note

In each of the three examples in Fig. 5.34, the broken lines represent the crossing windows required when Stretch is used.
2. Call the Stretch tool - either click on its tool icon in the Home/Modify panel (Fig. 5.33), pick its name in the Modify drop-down menu or enter \mathbf{s} or stretch at the command line, which shows.

Fig. 5.33 The Stretch tool icon from the Home/Modify panel

Command:_stretch
Select objects to stretch by crossing-window or crossing-polygon...
Select objects:enter c right-click
Specify first corner: pick Specify opposite corner: pick 1 found
Select objects: right-click
Specify base point or [Displacement]
<Displacement>: pick beginning of arrow
Specify second point of displacement or <use first point as displacement>: drag in the direction of the arrow to the required second point and right-click
Command:

Fig. 5.34 Examples - Stretch

Notes

1. When circles are windowed with the crossing window no stretching can take place. This is why, in the case of the first example in Fig. 5.33, when the second point of displacement was picked, there was no result - the outline did not stretch.
2. Care must be taken when using this tool as unwanted stretching can occur (Fig. 5.34).

The Break tool

Examples - Break (Fig. 5.36)

1. Construct the rectangle, arc and circle (Fig. 5.36).
2. Call Break - either click on its tool icon in the Home/Modify panel (Fig. 5.35), click Break in the Modify drop-down menu or enter br or break at the command line, which shows:

For drawings 1 and 2

Command:_break Select object: pick at the point Specify second break point or [First point]: pick Command:

Fig. 5.35 The Break tool icon from the Home/Modify panel

For drawing 3

Command:_break Select object pick
Specify second break point or [First point]: enter
f right-click
Specify first break point: pick
Specify second break point: pick
Command:
The results are shown in Fig. 5.36.

Fig. 5.36 Examples - Break

Note

Remember the default rotation of AutoCAD 2011 is counterclockwise. This applies to the use of the Break tool.

The Join tool

The Join tool can be used to join plines providing their ends are touching, to join lines which are in line with each other, and to join arcs and convert arcs to circles.

Examples - Join (Fig. 5.38)

1. Construct a rectangle from four separate plines - drawing 1 of Fig. 5.38; construct two lines - drawing 2 of Fig. 5.38 and an arc drawing 3 of Fig. 5.38.
2. Call the Join tool - either click the Join tool icon in the Home/Modify panel (Fig. 5.37), select Join from the Modify drop-down menu or enter $\mathbf{j o i n}$ or \mathbf{j} at the command line. The command line shows:

Fig. 5.37 The Join tool icon from the Home/Modify panel

Command: _join Select source object:
Select objects to join to source: pick a pline 1 found
Select objects to join to source: pick another 1 found, 2 total
Select objects to join to source: pick another 1 found, 3 total
Select objects to join to source: right-click

3 segments added to polyline
Command: right-click
JOIN Select source object: pick one of the lines
Select lines to join to source: pick the other 1 found
Select lines to join to source: right-click
1 line joined to source
Command: right-click
JOIN Select source object: pick the arc
Select arcs to join to source or [cLose]: enter l right-click
Arc converted to a circle.
Command:
The results are shown in Fig. 5.38.

2
\qquad
3

Fig. 5.38 Examples - Join

The Extend tool

Examples - Extend (Fig. 5.40)

1. Construct plines and a circle as shown in the left-hand drawings of Fig. 5.40.
2. Call Extend - either click the Extend tool icon in the Home/Modify panel (Fig. 5.39), pick Extend from the Modify drop-down menu or enter ex or extend at the command line which then shows:

Command:_extend
Current settings: Projection=UCS Edge=Extend
Select boundary edges ...

Select objects or <select all>: pick 1 found Select objects: right-click
Select object to extend or shift-select to trim or [Fence/Crossing/Project/Edge/Undo]: pick

Repeat for each object to be extended. Then:
Select object to extend or shift-select to trim or
[Fence/Crossing/Project/Edge/Undo]: right-click Command:

The results are shown in Fig. 5.40.

Extend
Extends objects to meet the edges of other objects
EXTEND
Press F1 for more help
Fig. 5.39 The Extend tool icon from the Home/Modify panel

Fig. 5.40 Examples - Extend

Note

Observe the similarity of the Extend and No extend prompts with those of the Trim tool.

The Fillet and Chamfer tools

These two tools can be called from the Home/Modify panel. There are similarities in the prompt sequences for these two tools. The major differences are that only one (Radius) setting is required for a fillet, but two (Dist1 and Dist2) are required for a chamfer. The basic prompts for both are:

Fillet

```
Command:_fillet
Current settings: Mode = TRIM, Radius = 1
Select first object or [Polyline/Radius/Trim/
    mUltiple]: enter r (Radius)right-click
Specify fillet radius <1>: 15
```


Chamfer

Command: chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2 = 1
Select first line or [Undo/Polyline/Distance/Angle/
Trim/mEthod/Multiple]: enter d (Distance)
right-click
Specify first chamfer distance <1>: 10
Specify second chamfer distance <10>: right-click

Examples - Fillet (Fig. 5.42)

1. Construct three rectangles 100 by 60 using either the Line or the Polyline tool (Fig. 5.42).
2. Call Fillet - click the arrow to the right of the tool icon in the Home/ Modify panel and select Fillet from the menu which appears (Fig. 5.41), pick Fillet from the Modify drop-down menu or enter \mathbf{f} or fillet at the command line which then shows:

Command: fillet
Current settings: Mode = TRIM, Radius = 1

```
Select first object or [Polyline/Radius/Trim/
    mUltiple]: r (Radius)
Specify fillet radius <0>: 15
Select first object or [Undo/Polyline/Radius/Trim/
    Multiple]: pick
Select second object or shift-select to apply
    corner: pick
Command:
```

Three examples are given in Fig. 5.42.

Fig. 5.41 Select Fillet from the menu in the Home/Modify panel

Fig. 5.42 Examples - Fillet

Examples - Chamfer (Fig. 5.44)

1. Construct three rectangles 100 by 60 using either the Line or the Polyline tool.
2. Call Chamfer - click the arrow to the right of the tool icon in the Home/Modify panel and select Chamfer from the menu which appears
(Fig. 5.43), pick Chamfer from the Modify drop-down menu or enter cha or chamfer at the command line which then shows:

Fig. 5.43 Select Chamfer from the Home/Modify panel

Command:_chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2 = 1 Select first line or [Undo/Polyline/Distance/Angle/ Trim/
mEthod/Multiple]: d
Specify first chamfer distance <1>: 10
Specify second chamfer distance <10>: right-click Select first line or [Undo/Polyline/Distance/Angle/

Trim/mEthod/Multiple]:pick the first line for the chamfer
Select second line or shift-select to apply corner: pick
Command:
The result is shown in Fig. 5.44. The other two rectangles are chamfered in a similar manner except that the No trim prompt is brought into operation with the bottom left-hand example.

Fig. 5.44 Examples - Chamfer

REVISION NOTES

1. The Modify tools are among the most frequently used tools in AutoCAD 2011.
2. The abbreviations for the Modify tools are:

Copy - cp or co
Mirror - mi
Offset - 0
Array - ar
Move - m
Rotate - ro
Scale - sc
Stretch - s
Trim - tr
Extend - ex
Break - br
Join - j
Chamfer - cha
Fillet - f
3. There are two other tools in the 2D Draw control panel: Erase - some examples were given in Chapter 2 - and Explode - further details of this tools will be given in Chapter 9.

A note - selection windows and crossing windows

In the Options dialog settings can be made in the Selection sub-dialog for Visual Effects. A click on the Visual Effects Settings... button brings up another dialog. If the Area Selection Effect settings are set, on a normal window from top left to bottom right will colour in a chosen colour (default blue). A crossing window from bottom left to top right, will be coloured red. Note also that highlighting - selection Preview Effect allows objects to highlight if this feature is on. These settings are shown in Fig. 5.45.

Fig. 5.45 Visual Setting Effects Settings sub-dialog of the Options dialog

REVISION NOTES (CONTINUED)

4. When using Mirror, if text is part of the area to be mirrored, the set variable Mirrtext will require setting - to either 1 or 0.
5. With Offset the Through prompt can be answered by clicking two points in the drawing area the distance of the desired offset distance.
6. Polar Arrays can be arrays around any angle set in the Angle of array field of the Array dialog.
7. When using Scale, it is advisable to practise the Reference prompt.
8. The Trim tool in either its Trim or its No trim modes is among the most useful tools in AutoCAD 2011.
9. When using Stretch circles are unaffected by the stretching.
10. There are some other tools in the Home/Modify panel not described in this book. The reader is invited to experiment with these other tools. They are:
Bring to Front, Send to Back, Bring above Objects, Send under Objects;
Set by Layer; Change Space; Lengthen; Edit Spline, Edit Hatch; Reverse.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8

1. Construct the Fig. 5.46. All parts are plines of width $=0.7$ with corners filleted R10. The long strips have been constructed using Circle, Polyline, Trim and Polyline Edit. Construct one strip and then copy it using Copy.

Fig. 5.46 Exercise 1
2. Construct the drawing Fig. 5.47. All parts of the drawing are plines of width $=0.7$. The setting in the Array dialog is to be $\mathbf{1 8 0}$ in the Angle of array field.

Fig. 5.47 Exercise 2
3. Using the tools Polyline, Circle, Trim,

Polyline Edit, Mirror and Fillet construct the drawing (Fig. 5.48).

Fig. 5.48 Exercise 3
4. Construct the circles and lines (Fig. 5.49). Using Offset and the Ttr prompt of the Circle tool followed by Trim, construct one of the outlines arrayed within the outer circle. Then, with Polyline Edit change the lines and arcs into a pline of width $=0.3$. Finally array the outline 12 times around the centre of the circles (Fig. 5.50).

Fig. 5.49 Exercise 4 - circles and lines on which the exercise is based

Fig. 5.50 Exercise 4
5. Construct the arrow (Fig. 5.51). Array the arrow around the centre of its circle 8 times to produce the right-hand drawing of Fig. 5.51.

Fig. 5.51 Exercise 5
6. Construct the left-hand drawing of Fig. 5.52. Then with Move, move the central outline to the top left-hand corner of the outer outline. Then with Copy make copies to the other corners.

Fig. 5.52 Exercise 6
7. Construct the drawing Fig. 5.53 and make two copies using Copy. With Rotate rotate each of the copies to the angles as shown.

Fig. 5.53 Exercise 7
8. Construct the dimensioned drawing of Fig. 5.54. With Copy copy the drawing. Then with Scale scale the drawing to scale of $\mathbf{0 . 5}$, followed by using Rotate to rotate the drawing through an angle of as shown. Finally scale the original drawing to a scale of 2:1.

Fig. 5.54 Exercise 8
9. Construct the left-hand drawing of Fig. 5.55. Include the dimensions in your drawing. Then, using the Stretch tool, stretch the drawing, including its dimensions to the sizes as shown in the right-hand. The dimensions are said to be associative (see Chapter 6).

Fig. 5.55 Exercise 9
10. Construct the drawing Fig. 5.56. All parts of the drawing are plines of width $=0.7$. The setting in the

Chapter 6
 Dimensions and Text

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To describe a variety of methods of dimensioning drawings.
2. To describe methods of adding text to drawings.

Introduction

The dimension style (My_style) has already been set in the acadiso.dwt template, which means that dimensions can be added to drawings using this dimension style.

The Dimension tools

There are several ways in which the dimensions tools can be called.

1. From the Annotate/Dimensions panel (Fig. 6.1).

Fig. 6.1 Dimension tools in the Annotate/ Dimensions panel
Dimenfion

Fig. 6.2 Dimensions in the drop-down menu
2. Click Dimension in the menu bar. Dimension tools can be selected from the drop-down menu which appears (Fig. 6.2).
3. By entering an abbreviation for a dimension tool at the command line.

Some operators may well decide to use a combination of the three methods.
4. In the Classic AutoCAD workspace from the Dimension toolbar.

Note

In general, in this book dimensions are shown in drawings in the Metric style - mainly in millimetres, but some will be shown in Imperial style - in inches. To see how to set a drawing template for Imperial dimensioning see Chapter 4 (page 95).

Adding dimensions using these tools

First example - Linear Dimension (Fig. 6.4)

1. Construct a rectangle 180×110 using the Polyline tool.
2. Make the Dimensions layer current from the Home/Layers panel (Fig. 6.3).

Fig. 6.3 The Home/Layers panel - making Dimensions layer current
3. Click the Linear tool icon in the Annotate/Dimension panel (Fig. 6.1). The command line shows:

Command: _dimlinear
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/ Text/Angle/Horizontal/Vertical/Rotated]: pick
Dimension text $=180$
Command:
Fig. 6.4 shows the 180 dimension. Follow exactly the same procedure for the 110 dimension.

Fig. 6.4 First example - Linear dimension

Notes

1. If necessary use Osnaps to locate the extension line locations.
2. At the prompt:

Specify first extension line origin or [select object]:

Also allows the line being dimensioned to be picked.
3. The drop-down menu from the Line tool icon contains the following tool icons - Angular, Linear, Aligned, Arc Length, Radius, Diameter, Jog Line and Ordinate. Refer to Fig. 6.1 when working through the examples below. Note - when a tool is chosen from this menu, the icon in the panel changes to the selected tool icon.

Second example - Aligned Dimension (Fig. 6.5)

1. Construct the outline Fig. 6.5 using the Line tool.

Fig. 6.5 Second example - Aligned dimension
2. Make the Dimensions layer current (Home/Layers panel).
3. Left-click the Aligned tool icon (see Fig. 6.1) and dimension the outline. The prompts and replies are similar to the first example.

Third example - Radius Dimension (Fig. 6.6)

1. Construct the outline Fig. 6.5 using the Line and Fillet tools.
2. Make the Dimensions layer current (Home/Layers panel).
3. Left-click the Radius tool icon (see Fig. 6.1). The command line shows:

Command:_dimradius
Select arc or circle: pick one of the arcs
Dimension text = 30
Specify dimension line location or [Mtext/Text/ Angle]: pick
Command:
4. Continue dimensioning the outline as shown in Fig. 6.6.

Fig. 6.6 Third example - Radius dimension

Notes

1. At the prompt:
[Mtext/Text/Angle]:
If a \mathbf{t} (Text) is entered, another number can be entered, but remember if the dimension is a radius the letter \mathbf{R} must be entered as a prefix to the new number.
2. If the response is a (Angle), and an angle number is entered the text for the dimension will appear at an angle.
3. If the response is \mathbf{m} (Mtext) the Text Formatting dialog appears together with a box in which new text can be entered. See page 147.
4. Dimensions added to a drawing using other tools from the Annotate/ Dimensions panel should be practised.

Adding dimensions from the command line

From Figs 6.1 and 6.2 it will be seen that there are some dimension tools which have not been described in examples. Some operators may prefer entering dimensions from the command line. This involves abbreviations for the required dimension such as:

For Linear Dimension - hor (horizontal) or ve (vertical);
For Aligned Dimension - al;
For Radius Dimension - ra;
For Diameter Dimension - d;
For Angular Dimension - an;
For Dimension Text Edit - te;
For Quick Leader - 1 .
And to exit from the dimension commands - \mathbf{e} (Exit).

First example - hor and ve (horizontal and vertical) - Fig. 6.8

1. Construct the outline Fig. 6.7 using the Line tool. Its dimensions are shown in Fig. 6.8.

Fig. 6.7 First example - outline to dimension
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line enter dim. The command line will show:

Command: enter dim right-click
Dim: enter hor (horizontal) right-click
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Non-associative dimension created.
Specify dimension line location or [Mtext/Text/
Angle]: pick
Enter dimension text <50>: right-click

Dim: right-click
HORIZONTAL
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Non-associative dimension created.
Specify dimension line location or [Mtext/Text/ Angle/Horizontal/Vertical/Rotated]: pick
Enter dimension text <140>: right-click
Dim: right-click
And the 50 and 140 horizontal dimensions are added to the outline.
4. Continue to add the right-hand 50 dimension. Then when the command line shows:

Dim: enter ve (vertical) right-click
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/ Angle/Horizontal/Vertical/Rotated]: pick
Dimension text <20>: right-click
Dim: right-click
VERTICAL
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/ Angle/Horizontal/Vertical/Rotated]: pick
Dimension text <100>: right-click
Dim: enter e (Exit) right-click
Command:
The result is shown in Fig. 6.8.

Fig. 6.8 First example - horizontal and vertical dimensions

Second example - an (Angular) - Fig. 6.10

1. Construct the outline Fig. 6.9 - a pline of width $=1$.

Fig. 6.9 Second example - outline for dimensions
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:

Command: enter dim right-click
Dim: enter an right-click
Select arc, circle, line or <specify vertex>: pick
Select second line: pick
Specify dimension arc line location or [Mtext/
Text/Angle/Quadrant]: pick
Enter dimension <90>: right-click
Enter text location (or press ENTER): pick Dim:

And so on to add the other angular dimensions.
The result is given in Fig. 6.10.

Fig. 6.10 Second example - an (Angular) dimension

Third example - I (Leader) - Fig. 6.12

1. Construct Fig. 6.11.

Fig. 6.11 Third example - outline for dimensioning
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:

Command: enter dim right-click
Dim: enter l (Leader) right-click
Leader start: enter nea (osnap nearest) right-click to pick one of the chamfer lines
To point: pick
To point: pick
To point: right-click
Dimension text <0>: enter CHA 10×10 right-click
Dim: right-click
Continue to add the other leader dimensions - Fig. 6.12.

Fig. 6.12 Third example - I (Leader) dimensions

Fourth example - te (dimension text edit) - Fig. 6.14

1. Construct Fig. 6.13.

Fig. 6.13 Fourth example - dimensioned drawing
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:

Command: enter dim right-click
Dim: enter te (tedit) right-click
Select dimension: pick the dimension to be changed Specify new location for text or [Left/Right/

Center/Home/Angle]: either pick or enter a prompt capital letter
Dim:
The results as given in Fig. 6.14 show dimensions which have been moved. The $\mathbf{2 1 0}$ dimension changed to the left-hand end of the dimension line, the 130 dimension changed to the left-hand end of the dimension line and the 30 dimension position changed.

Fig. 6.14 Fourth example - dimensions amended with tedit

The Arc Length tool (Fig. 6.15)

1. Construct two arcs of different sizes as in Fig. 6.15.

Fig. 6.15 Examples - Arc Length tool
2. Make the Dimensions layer current (Home/Layers panel).
3. Call the Arc Length tool from the Annotate/Dimensions panel (see Fig. 6.3) or enter dimarc at the command line. The command line shows:

Command: _dimarc
Select arc or polyline arc segment: pick an arc Specify arc length dimension location, or [Mtext/ Text/Angle/Partial/Leader]: pick a suitable position
Dimension text $=147$
Command:
Examples on two arcs are shown in Fig. 6.15.

The Jogged tool (Fig. 6.16)

1. Draw a circle and an arc as indicated in Fig. 6.16.

Fig. 6.16 Examples - the Jogged tool
2. Make the Dimensions layer current (Home/Layers panel).
3. Call the Jogged tool, either with a left-click on its tool icon in the Annotation/Dimension panel (see Fig. 6.1) or by entering jog at the command line. The command line shows:

Command: _dimjogged
Select arc or circle: pick the circle or the arc
Specify center location override: pick
Dimension text = 60
Specify dimension line location or [Mtext/Text/ Angle]: pick
Specify jog location: pick
Command:
The results of placing as jogged dimension on a circle and an arc are shown in Fig. 6.16.

Dimension tolerances

Before simple tolerances can be included with dimensions, new settings will need to be made in the Dimension Style Manager dialog as follows:

1. Open the dialog. The quickest way of doing this is to enter \mathbf{d} at the command line followed by a right-click. This opens up the dialog.
2. Click the Modify... button of the dialog, followed by a left-click on the Primary Units tab and in the resulting sub-dialog make settings as shown in Fig. 6.17. Note the changes in the preview box of the dialog.

Example - tolerances (Fig. 6.19)

1. Construct the outline Fig. 6.18.
2. Make the Dimensions layer current (Home/Layers panel).
3. Dimension the drawing using either tools from the Dimension panel or by entering abbreviations at the command line. Because tolerances have been set in the Dimension Style Manager dialog (Fig. 6.17), the toleranced dimensions will automatically be added to the drawing (Fig. 6.19).

Fig. 6.17 The Tolerances sub-dialog of the Modify Dimension Style dialog

Fig. 6.18 First example - simple tolerances - outline

The dimensions in this drawing show tolerances
Fig. 6.19 Example - tolerances

Text

There are two main methods of adding text to drawings - Multiline Text and Single Line Text.

Example - Single Line Text (Fig. 6.19)

1. Open the drawing from the example on tolerances - Fig. 6.19.
2. Make the Text layer current (Home/Layers panel).
3. At the command line enter $\mathbf{d t}$ (for Single Line Text) followed by a right-click:
```
Command: enter dt right-click
TEXT
Current text style "ARIAL" Text height: 8
    Annotative No:
Specify start point of text or [Justify/Style]:
    pick
Specify rotation angle of text <0>: right-click
Enter text: enter The dimensions in this drawing
    show tolerances press the Return key twice
Command:
```

The result is given in Fig. 6.19.

Notes

1. When using Dynamic Text the Return key of the keyboard is pressed when the text has been entered. A right-click does not work.
2. At the prompt:

Specify start point of text or [Justify/Style]: enter s (Style) right-click
Enter style name or [?] <ARIAL>: enter ? right-click
Enter text style(s) to list <*>: right-click
And an AutoCAD Text Window (Fig. 6.20) appears listing all the styles which have been selected in the Text Style dialog (see page 145).

```
F AutoCAD Text Window - Drawing2.dwg
    \square⿴囗口丿
Edit
Enter style name or [?] <arial>:
Current text style: "Arial" Text height: 6 dnnotative: No
Specify start point of text or [Justify/Style]: s
Enter style name or [?] <Arial>: ?
Enter text style(s) to list <*>:
Text styles:
Style name: "Arial" Font typeface: Arial
    Height: 6 Width factor: 1 Obliquing angle: 0
    Generation: Normal
Style name: "Standard" Font typeface: Arial
    Height: 8 Width factor: 1 Obliquing angle: 0
    Generation: Normal
Current text style: "Arial"
Current text style: "Arial" Text height: 6 Annotative: No
Specify start point of text or［Justify／Style］：
〈 \gg
```

Fig．6．20 The AutoCAD Text Window

3．In order to select the required text style its name must be entered at the prompt：

Enter style name or［？］＜ARIAL＞：enter Romand right－click

And the text entered will be in the Romand style of height 9 ．But only if that style was previously been selected in the Text Style dialog．

4．Fig． 6.21 shows some text styles from the AutoCAD Text Window．

This is the TIMES text

 This is ROMANC textThis is ROMAND text This is STANDARD text This is ITALIC text This is ARIAL text

Fig．6．21 Some text fonts
5. There are two types of text fonts available in AutoCAD 2011 - the 5. There are two types of text fonts available in AutoCAD 2011 - the AutoCAD SHX fonts and the Windows True Type fonts. The styles shown in Fig. 6.21 are the ITALIC, ROMAND, ROMANS and STANDARD styles are AutoCAD text fonts. The TIMES and ARIAL styles are Windows True Type styles. Most of the True Type fonts can be entered in Bold, Bold Italic, Italic or Regular styles, but these variations are not possible with the AutoCAD fonts.
6. The Font name popup list of the Text Style dialog shows that a large number of text styles are available to the AutoCAD 2011 operator. It is advisable to practise using a variety of these fonts to familiarise oneself with the text opportunities available with AutoCAD 2011.

Example - Multiline Text (Fig. 6.23)

1. Make the Text layer current (Home/Layers panel).
2. Either left-click on the Multiline Text tool icon in the Annotate/Text panel (Fig. 6.22) or enter \mathbf{t} at the command line:

Fig. 6.22 Selecting Multiline Text... from the Annotate/Text panel

```
Command:_mtext
Current text style: "Arial" Text height: 6
    Annotative No
Specify first corner: pick
Specify opposite corner or [Height/Justify/Line
    spacing/Rotation/Style/Width/Columns]: pick
```

As soon as the opposite corner is picked, the Text Formatting box appears (Fig. 6.23). Text can now be entered as required within the box as indicated in this illustration.

Fig. 6.23 Example - Multiline Text entered in the text box

When all the required text has been entered left-click and the text box disappears leaving the text on screen.

Symbols used in text

When text has to be added by entering letters and figures as part of a dimension, the following symbols must be used:

To obtain Ø75 enter \% \%c75;
To obtain $\mathbf{5 5 \%}$ enter $\mathbf{5 5 \%} \% \%$;
To obtain $\pm \mathbf{0 . 0 5}$ enter $\mathbf{\%} \% \mathbf{p 0 . 0 5}$;
To obtain $\mathbf{9 0}{ }^{\circ}$ enter $\mathbf{9 0 \%} \% \mathbf{d}$.

Checking spelling

Note

When a misspelt word or a word not in the AutoCAD spelling dictionary is entered in the Multiline Text box, red dots appear under the word, allowing immediate correction.

There are two methods for the checking of spelling in AutoCAD 2011.

First example - spell checking - ddedit (Fig. 6.24)

1. Enter some badly spelt text as indicated in Fig. 6.24.
2. Enter ddedit at the command line.
3. Left-click on the text. The text is highlighted. Edit the text as if working in a word processing application and when satisfied left-click followed by a right-click.

Thiss shows somme baddly spelt text
 1. The mis-spelt text
 Thiss shows somme baddly spelt text
 2. Text is selected
 This shows some badly spelt text
 3. The text after correction

Fig. 6.24 First example - spell checking - ddedit

Second example - the Spelling tool (Fig. 6.25)

1. Enter some badly spelt text as indicated in Fig. 6.25.
2. Either click the Spell Check... icon in the Annotate/Text panel (Fig. 6.26) or enter spell or $\mathbf{s p}$ at the command line.
3. The Check Spelling dialog appears (Fig. 6.25). In the Where to look field select Entire drawing from the field's popup list. The first badly spelt word is highlighted with words to replace them listed in the Suggestions field. Select the appropriate correct spelling as shown.

Fig. 6.25 Second example - the Check Spelling dialog

AutoCAD Message X

Spelling check complete.

OK

Fig. 6.27 The
AutoCAD Message
window showing that spelling check is complete

Fig. 6.26 The Spell Check... icon in the Annotate/Text panel

Continue until all text is checked. When completely checked an AutoCAD Message appears (Fig. 6.27). If satisfied click its OK button.

REVISION NOTES

1. In the Line and Arrows sub-dialog of the Dimension Style Manager dialog Lineweights were set to 0.3 . If these lineweights are to show in the drawing area of AutoCAD 2011, the Show/Hide Lineweight button in the status bar must be set ON.
2. Dimensions can be added to drawings using the tools from the Annotate/Dimensions panel or by entering dim, followed by abbreviations for the tools at the command line.
3. It is usually advisable to use osnaps when locating points on a drawing for dimensioning.
4. The Style and Angle of the text associated with dimensions can be changed during the dimensioning process.
5. When wishing to add tolerances to dimensions it will probably be necessary to make new settings in the Dimension Style Manager dialog.
6. There are two methods for adding text to a drawing - Single Line Text and Multiline Text.
7. When adding Single Line Text to a drawing, the Return key must be used and not the right-hand mouse button.
8. Text styles can be changed during the process of adding text to drawings.
9. AutoCAD 2011 uses two types of text style - AutoCAD SHX fonts and Windows True Type fonts.
10. Most True Type fonts can be in bold, bold italic, italic or regular format. AutoCAD fonts can only be added in the single format.
11. To obtain the symbols $\emptyset ; \pm ;{ }^{\circ} ; \%$ use $\% \% c ; \% \% ; \% \% d ; \% \% \%$ before the figures of the dimension.
12. Text spelling can be checked with by selecting Object/Text/Edit... from the Modify dropdown menu, by selecting Spell Check... from the Annotate/Text panel, or by entering spell or sp at the command line.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8

1. Open any of the drawings previously saved from working through examples or as answers to exercises and add appropriate dimensions.
2. Construct the drawing Fig. 6.28 but in place of the given dimensions add dimensions showing tolerances of 0.25 above and below.

Fig. 6.28 Exercise 2
3. Construct and dimension the drawing

Fig. 6.29.

Fig. 6.29 Exercise 3
4. Construct two polygons as in Fig. 6.30 and add all diagonals. Set osnaps endpoint and intersection and using the lines as in Fig. 6.30 construct the stars as shown using a polyline of Width $=3$. Next erase all unwanted lines. Dimension the angles labelled A, B, C and D.

Fig. 6.30 Exercise 4
5. Using the text style Arial of height 20 and enclosing the wording within a pline rectangle of Width $=5$ and Fillet $=10$, construct Fig. 6.31.

AutoCAD 2010

Fig. 6.31 Exercise 5

Chapter 7

Orthographic and isometric

AIM OF THIS CHAPTER

The aim of this chapter is to introduce methods of constructing views in orthographic projection and the construction of isometric drawings.

Orthographic projection

Orthographic projection involves viewing an article being described in a technical drawing from different directions - from the front, from a side, from above, from below or from any other viewing position. Orthographic projection often involves:
The drawing of details which are hidden, using hidden detail lines.
Sectional views in which the article being drawn is imagined as being cut through and the cut surface drawn.
Centre lines through arcs, circles spheres and cylindrical shapes.

An example of an orthographic projection

Fig. 7.1 Example orthographic projection - the solid being drawn

Taking the solid shown in Fig. 7.1 - to construct a three-view orthographic projection of the solid:

1. Draw what is seen when the solid is viewed from its left-hand side and regard this as the front of the solid. What is drawn will be a front view (Fig. 7.2).

Fig. 7.2 The front view of the solid
2. Draw what is seen when the solid is viewed from the left-hand end of the front view. This produces an end view. Fig. 7.3 shows the end view alongside the front view.
3. Draw what is seen when the solid is viewed from above the front view. This produces a plan. Fig. 7.4 shows the plan below the front view.
4. In the Home/Layers panel in the Layer list click on Centre to make it the current layer (Fig. 7.5). All lines will now be drawn as centre lines.

Fig. 7.3 Front and end views of the solid

Fig. 7.4 Front and end views and plan of the solid
5. In the three-view drawing add centre lines.
6. Make the Hidden layer the current layer and add hidden detail lines.
7. Make the Text layer current and add border lines and a title block.
8. Make the Dimensions layer current and add all dimensions.

The completed drawing is shown in Fig. 7.6.

Fig. 7.5 Making the layer Centre current from the Home/Layers panel

Fig. 7.6 The completed working drawing of the solid

First angle and third angle

There are two types of orthographic projection - first angle and third angle. Fig. 7.7 is a pictorial drawing of the solid used to demonstrate the two angles. Fig. 7.8 shows a three-view first angle projection and Fig. 7.9 the same views in third angle.

Fig. 7.7 The solid used to demonstrate first and third angles of projection

Fig. 7.8 A first angle projection

Fig. 7.9 A third angle projection

In both angles the viewing is from the same directions. The difference is that the view as seen is placed on the viewing side of the front view in third angle and on the opposite side to the viewing in first angle.

Adding hatching

In order to show internal shapes of a solid being drawn in orthographic projection, the solid is imagined as being cut along a plane and the cut surface then drawn as seen. Common practice is to hatch the areas which then show in the cut surface. Note the section plane line, the section label and the hatching in the sectional view (Fig. 7.10).

To add the hatching as shown in Fig. 7.10:

Fig. 7.10 A sectional view

1. Call the Hatch tool with a left-click on its tool icon in the Home/Draw panel (Fig. 7.11). A new tab Hatch Creation is created and opens the Hatch Creation ribbon (Fig. 7.12), but only if the ribbon is active.

Fig. 7.11 The Hatch tool icon and tooltip from the Home/Draw panel

Fig. 7.12 The Hatch Creation tab and ribbon
2. In the Hatch Creation/Pattern panel click the bottom arrow on the right of the panel and from the palette which appears pick the ANI31 pattern (Fig. 7.13).
3. In the Hatch Creation/Properties panel adjust the Hatch Scale to 2 (Fig. 7.14).

Fig. 7.13 Selecting ANSI31 pattern from the Hatch Creation/Pattern panel

Fig. 7.14 Setting the Hatch Scale to 2 in the Hatch Creation/Properties panel
4. In the Hatch Creation/Boundaries panel left-click the Pick Points icon (Fig. 7.15).
5. Pick the points in the front view (left-hand drawing of Fig. 7.16) and the picked points hatch. If satisfied the hatching is correct right-click (right-hand drawing of Fig. 7.16).

Fig. 7.15 Select Pick Points from the Hatch Creation/Boundaries panel

Fig. 7.16 The result of hatching

Isometric drawing

Note

Isometric drawing must not be confused with solid model drawing, examples of which are given in Chapters 12-19. Isometric drawing is a 2D method of describing objects in a pictorial form.

Setting the AutoCAD window for isometric drawing

To set the AutoCAD 2011 window for the construction of isometric drawings:

1. At the command line:
```
Command: enter snap
Specify snap spacing or [On/Off/Aspect/Rotate/
    Style/Type] <5>: s (Style)
Enter snap grid style [Standard/Isometric] <S>:
    i (Isometric)
Specify vertical spacing <5>: right-click
Command:
```

And the grid dots in the window assume an isometric pattern as shown in Fig. 7.17. Note also the cursor hair lines which are at set in an Isometric Left angle.

Fig. 7.18 The three isoplanes

Fig. 7.17 The AutoCAD grid points set for isometric drawing
2. There are three isometric angles - Isoplane Top, Isoplane Left and Isoplane Right. These can be set by pressing either the $\mathbf{F 5}$ function key or the $\mathbf{C t r l}$ and \mathbf{E} keys. Repeated pressing of either of these 'toggles' between the three settings. Fig. 7.18 is an isometric view showing the three isometric planes.

The isometric circle

Circles in an isometric drawing show as ellipses. To add an isometric circle to an isometric drawing, call the Ellipse tool. The command line shows:

```
```

Command: _ellipse

```
```

Command: _ellipse
Specify axis endpoint of ellipse or [Arc/Center/
Specify axis endpoint of ellipse or [Arc/Center/
Isocircle]: enter i (Isocircle) right-click

```
    Isocircle]: enter i (Isocircle) right-click
```

```
Specify center of isocircle: pick or enter
```

Specify center of isocircle: pick or enter
coordinates
coordinates
Specify radius of isocircle or [Diameter]: enter a
Specify radius of isocircle or [Diameter]: enter a
number
number
Command:
Command:
And the isocircle appears. Its isoplane position is determined by which of the isoplanes is in operation at the time the isocircle was formed. Fig. 7.19 shows these three isoplanes containing isocircles.

```


Fig. 7.19 The three isocircles

\section*{Examples of isometric drawings}

First example - isometric drawing (Fig. 7.22)
1. This example is to construct an isometric drawing to the details given in the orthographic projection (Fig. 7.20). Set Snap on (press the F9 function key) and Grid on (F7).
2. Set Snap to Isometric and set the isoplane to Isoplane Top using F5.
3. With Line, construct the outline of the top of the model (Fig. 7.19) working to the dimensions given in Fig. 7.18.
4. Call Ellipse tool and set to isocircle and add the isocircle of radius 20 centred in its correct position in the outline of the top (Fig. 7.21).
5. Set the isoplane to Isoplane Right and with the Copy tool, copy the top with its ellipse vertically downwards 3 times as shown in Fig. 7.22.
6. Add lines as shown in Fig. 7.21.
7. Finally using Trim remove unwanted parts of lines and ellipses to produce Fig. 7.22.

\section*{Second example - isometric drawing (Fig. 7.24)}

Fig. 7.23 is an orthographic projection of the model of which the isometric drawing is to be constructed. Fig. 7.24 shows the stages in its construction. The numbers refer to the items in the list below:
1. In Isoplane Right construct two isocircles of radii 10 and 20.
2. Add lines as in drawing \(\mathbf{2}\) and trim unwanted parts of isocircle.


Fig. 7.20 First example - isometric drawing - the model


Fig. 7.21 First example - isometric drawing - items 3, 4, 5 and 6
3. With Copy copy 3 times as in drawing 3 .
4. With Trim trim unwanted lines and parts of isocircle (drawing 4).
5. In Isoplane Left add lines as in drawing 5.
6. In Isoplane Right add lines and isocircles as in drawing 6.
7. With Trim trim unwanted lines and parts of isocircles to complete the isometric drawing - drawing 7 .


Fig. 7.22 First example - isometric drawing


Fig. 7.23 Second example - isometric drawing - orthographic projection


Fig. 7.24 Second example - isometric drawing - stages in the construction

\section*{REVISION NOTES}
1. There are, in the main, two types of orthographic projection - first angle and third angle.
2. The number of views included in an orthographic projection depends upon the complexity of the component being drawn - a good rule to follow is to attempt fully describing the object in as few views as possible.
3. Sectional views allow parts of an object which are normally hidden from view to be more fully described in a projection.
4. When a layer is turned OFF, all constructions on that layer disappear from the screen.
5. Frozen layers cannot be selected, but note that layer 0 cannot be frozen.
6. Isometric drawing is a 2D pictorial method of producing illustrations showing objects. It is not a 3D method of showing a pictorial view.
7. When drawing ellipses in an isometric drawing the Isocircle prompt of the Ellipse tool command line sequence must be used.
8. When constructing an isometric drawing Snap must be set to Isometric mode before construction can commence.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8

Fig. 7.25 is an isometric drawing of a slider fitment on which the three exercises 1,2 and \(\mathbf{3}\) are based.


Fig. 7.25 Exercises 1,2 and \(3-\) an isometric drawing of the three parts of the slider on which these exercises are based
1. Fig. 7.26 is a first angle orthographic projection of part of the fitment shown in the isometric drawing Fig. 7.23. Construct a threeview third angle orthographic projection of the part.


Fig. 7.26 Exercise 1
2. Fig. 7.27 is a first angle orthographic projection of the other part of the fitment. Construct a three-view third angle orthographic projection of the part.


Fig. 7.27 Exercises 2 and 3
3. Construct an isometric drawing of the part shown in Fig. 7.27.
4. Construct a three-view orthographic projection in an angle of your own choice of the tool holder assembled as shown in the isometric drawing Fig. 7.28. Details are given in Fig. 7.29.


Fig. 7.28 Exercises 4 and 5 - orthographic projections of the three parts of the tool holder


Fig. 7.29 Exercises 4 and 5 - orthographic drawing of the tool holder on which the two exercises are based
5. Construct an isometric drawing of the body of the tool holder shown in Figs 7.28 and 7.29.
6. Construct the orthographic projection given in Fig. 7.29.
7. Construct an isometric drawing of the angle plate shown in Figs 7.30 and 7.31.


Fig. 7.30 An isometric drawing of the angle plate on which exercises 6 and 7 are based
8. Construct a third angle projection of the component shown in the isometric drawing Fig. 7.32 and the three-view first angle projection Fig. 7.33.


Fig. 7.31 Exercises 6 and 7 - an orthographic projection of the angle plate
9. Construct the isometric drawing shown in Fig. 7.32 working to the dimensions given in Fig. 7.33.


Fig. 7.32 Exercises 8 and 9


Fig. 7.33 Exercises 8 and 9

\section*{Chapter 8}

\section*{Hatching}

\section*{AIM OF THIS CHAPTER}

The aim of this chapter is to give further examples of the use of hatching in its various forms.

\section*{Introduction}

In Chapter 7 an example of hatching of a sectional view in an orthographic projection was given. Further examples of hatching will be described in this chapter.

There are a large number of hatch patterns available when hatching drawings in AutoCAD 2011. Some examples from hatch patterns are shown in Fig. 8.1.


Fig. 8.1 Some hatch patterns from AutoCAD 2011

Other hatch patterns can be selected from Hatch Creation/Properties panel, or the operator can design his/her own hatch patterns as User Defined patterns (Fig. 8.2).


Fig. 8.2 The User Defined patterns in the Hatch Creation/Properties panel

\section*{First example - hatching a sectional view (Fig. 8.3)}

Fig. 8.3 shows a two-view orthographic projection which includes a sectional end view. Note the following in the drawing:


Fig. 8.3 First example - Hatching
1. The section plane line, consisting of a centre line with its ends marked A and arrows showing the direction of viewing to obtain the sectional view.
2. The sectional view labelled with the letters of the section plane line.
3. The cut surfaces of the sectional view hatched with the ANSI31 hatch pattern, which is in general use for the hatching of engineering drawing sections.

\section*{Second example - hatching rules (Fig. 8.4)}

Fig. 8.4 describes the stages in hatching a sectional end view of a lathe tool holder. Note the following in the section:
1. There are two angles of hatching to differentiate the separate parts of the section.
2. The section follows the general rule that parts such as screws, bolts, nuts, rivets, other cylindrical objects, webs and ribs, and other such features are shown as outside views within sections.


Fig. 8.4 Second example - hatching rules for sections

In order to hatch this example:
1. Left-click on the Hatch tool icon in the Home/Draw panel (Fig. 8.5). The ribbon changes to the Hatch Creation ribbon. Entering hatch or \(\mathbf{h}\) at the command line has the same result.
2. Left-click ANSI31 in the Hatch Creation/Pattern panel (Fig. 8.6).
3. Set the Hatch Scale to \(\mathbf{1 . 5}\) in the Hatch Creation/Properties panel (Fig. 8.7).
4. Left-click Pick Points in the Hatch Creation/Boundaries panel and pick inside the areas to be hatched (Fig. 8.8).
5. The picked areas hatch. If satisfied with the hatching right-click. If not satisfied amend the settings and when satisfied right-click.


Fig. 8.5 Left-click on the Hatch tool icon in the Home/Draw panel


Fig. 8.6 Select ANSI31 in the Hatch Creation/Pattern panel


Fig. 8.7 Set the Hatch Scale in the Hatch Creation/Properties panel


Fig. 8.8 Left-click Pick Points in the Hatch Creation/Boundaries panel

\section*{The Hatch and Gradient dialog}

If the ribbon is not on screen, entering hatch or \(\mathbf{h}\) at the command line brings the Hatch and Gradient dialog to screen (Fig. 8.9). The method of hatching given in the previous two examples is much the same whether


Fig. 8.9 The Hatch and Gradient dialog
using the tools in the Hatch Creation ribbon or using the Hatch and Gradient dialog. Fig. 8.9 shows the ANSI Hatch Pattern dialog and the Pick Points button in the Hatch and Gradient dialog, which are picked for the same methods as described in the given examples.

\section*{Third example - Associative hatching (Fig. 8.10)}

Fig. 8.10 shows two end view of a house. After constructing the left-hand view, it was found that the upper window had been placed in the wrong


Fig. 8.10 Third example - Associative hatching
position. Using the Move tool, the window was moved to a new position. The brick hatching automatically adjusted to the new position. Such associative hatching is only possible if check box is \(\mathbf{O N}\) - a tick in the check box in the Options area of the Hatch and Gradient dialog (Fig. 8.11).
```

Options
\square Annotative (i)
Associative
C
Controls whether the hatch or fill is associative or nonassociative. A
[hatch or fill that is associative is updated when you modify its
boundaries. (HPASSOC system variable)

```

Fig. 8.11 Associative Hatching set \(\mathbf{O N}\) in the Hatch and Gradient dialog

\section*{Fourth example - Colour gradient hatching (Fig. 8.12)}

Fig. 8.12 shows two examples of hatching from the Gradient sub-dialog of the Hatch and Gradient dialog.


Fig. 8.12 Fourth example - Colour gradient hatching
1. Construct two outlines each consisting of six rectangles (Fig. 8.12).
2. Click Gradient in the drop-down menu in the Hatch Creation/ Properties panel (Fig. 8.13). In the Hatch Creation/Pattern panel which then appears, pick one of the gradient choices (Fig. 8.14), followed by a click in a single area of one of the rectangles in the lefthand drawing, followed by a right-click.
3. Repeat in each of the other rectangles of the left-hand drawing changing the pattern in each of the rectangles.


Fig. 8.13 Selecting Gradient in the Hatch Creation/Properties panel


Fig. 8.14 The Gradient patterns in the Hatch Creation/Pattern panel
4. Change the colour of the Gradient patterns with a click on the red option in the Select Colors ... drop-down menu in the Hatch Creation/ Properties panel. The hatch patterns all change colour to red (Fig. 8.15).


Fig. 8.15 Changing the colours of the Gradient patterns

\section*{Fifth example - advanced hatching (Fig. 8.17)}

Left-click Normal Island Detection in the Hatch Creation/Options panel extension. The drop-down shows several forms of Island hatching (Fig. 8.16).


Fig. 8.16 The Island detection options in the Hatch Creation/Options panel
1. Construct a drawing which includes three outlines as shown in the lefthand drawing of Fig. 8.17 and copy it twice to produce three identical drawings.
2. Select the hatch patterns STARS at an angle of \(\mathbf{0}\) and scale \(\mathbf{1}\).


Fig. 8.17 Fifth example - advanced hatching
3. Click Normal Island Detection from the drop-down menu.
4. Pick a point in the left-hand drawing. The drawing hatches as shown.
5. Repeat in the centre drawing with Outer Island Detection selected.
6. Repeat in the right-hand drawing with Ignore Island Detection selected.

\section*{Sixth example - text in hatching (Fig. 8.18)}
1. Construct a pline rectangle using the sizes given in Fig. 8.18.
2. In the Text Style Manager dialog, set the text font to Arial and its Height \(=25\).
3. Using the Dtext tool enter the text as shown central to the rectangle.
4. Hatch the area using the HONEY hatch pattern set to an angle of \(\mathbf{0}\) and scale of \(\mathbf{1}\).

The result is shown in Fig. 8.18.


Fig. 8.18 Sixth example - text in hatching

\section*{Note}

Text will be entered with a surrounding boundary area free from hatching providing Normal Island Detection has been selected from the Hatch Creation/Options panel.

\section*{REVISION NOTES}
1. A large variety of hatch patterns are available when working with AutoCAD 2011.
2. In sectional views in engineering drawings it is usual to show items such as bolts, screws, other cylindrical objects, webs and ribs as outside views.
3. When Associative hatching is set on, if an object is moved within a hatched area, the hatching accommodates to fit around the moved object.
4. Colour gradient hatching is available in AutoCAD 2011.
5. When hatching takes place around text, a space around the text will be free from hatching.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://www.books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 8.19 is a pictorial drawing of the component shown in the orthographic projection Fig. 8.20. Construct the three views but with the font view as a sectional view based on the section plane A-A.


Fig. 8.19 Exercise 1 - a pictorial view


Fig. 8.20 Exercise 1
2. Construct the orthographic projection Fig. 8.21 to the given dimensions with the front view as the sectional view A-A.


Fig. 8.21 Exercise 2
3. Construct the drawing Stage \(\mathbf{5}\) following the descriptions of stages given in Fig. 8. 22.
 THELN


Stage 1 Construct word on Layer 0 and offset on Layer 1
Stage 2
Hatch on Layer Hatch on La
HATCH01 HATCH01 with SOLID
Turn Layer 0 off
Stage 3
Turn HATCH01 off Turn Layer
HATCH02 on Add lines as shown
Stage 4
On HATCH03
Hatch with ANSI31
at Angle 135 and
Scale 40
Turn HATCH02 off
YにはILN
Stage 5
Turn HATCH02 on

Fig. 8.22 Exercise 3
4. Fig. 8.23 is a front view of a car with parts hatched. Construct a similar drawing of any make of car, using hatching to emphasise the shape.


Fig. 8.23 Exercise 4
5. Working to the notes given with the drawing Fig. 8.24, construct the end view of a house as shown. Use your own discretion about sizes for the parts of the drawing.


Fig. 8.24 Exercise 5
6. Working to dimensions of your own choice,
construct the three-view projection of a twostorey house as shown in Fig. 8.25.

Fig. 8.25 Exercise 6

7. Construct Fig. 8.26 as follows:
a. On layer Text, construct a circle of radius 90.
b. Make layer \(\mathbf{0}\) current.
c. Construct the small drawing to the details as shown and save as a block with a block name shape (see Chapter 9).
d. Call the Divide tool by entering div at the command line:


Fig. 8.26 Exercise 7
```

Command: enter div right-click
Select object to divide: pick
the circle
Enter number of segments or
[Block]: enter b right-click
Enter name of block to insert:
enter shape right-click
Align block with object? [Yes/
No] <Y>: right-click
Enter the number of segments:
enter 20 right-click
Command

```
e. Turn the layer Text off.

\section*{Chapter 9}

\section*{Blocks and Inserts}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To describe the construction of blocks and wblocks (written blocks).
2. To introduce the insertion of blocks and wblocks into drawings.
3. To introduce uses of the DesignCenter palette.
4. To explain the use of the Explode and Purge tools.

\section*{Introduction}

Blocks are drawings which can be inserted into other drawings. Blocks are contained in the data of the drawing in which they have been constructed. Wblocks (written blocks) are saved as drawings in their own right, but can be inserted into other drawings if required.

\section*{Blocks}

\section*{First example - Blocks (Fig. 9.3)}
1. Construct the building symbols as shown in Fig. 9.1 to a scale of \(1: 50\).


Fig. 9.1 First example - Blocks - symbols to be saved as blocks
2. Left-click the Create tool icon in the Home/Block panel (Fig. 9.2).


Fig. 9.2 Click Create tool icon in the Insert/Block panel

The Block Definition dialog (Fig. 9.3) appears. To make a block from the Compass symbol drawing.
a. Enter compass in the Name field.
b. Click the Select Objects button. The dialog disappears. Window the drawing of the compass. The dialog reappears. Note the icon of the compass at the top-centre of the dialog.
c. Click the Pick Point button. The dialog disappears. Click a point on the compass drawing to determine its insertion point. The dialog reappears.
d. If thought necessary enter a description in the Description field of the dialog.
e. Click the OK button. The drawing is now saved as a block in the drawing.


Fig. 9.3 The Block Definition dialog with entries for the compass block
3. Repeat items \(\mathbf{1}\) and \(\mathbf{2}\) to make blocks of all the other symbols in the drawing.
4. Open the Block Definition dialog again and click the arrow on the right of the Name field. Blocks saved in the drawing are listed (Fig. 9.4).

\section*{Inserting blocks into a drawing}

There are two methods by which symbols saved as blocks can be inserted into another drawing.

\section*{Example - first method of inserting blocks}

Ensure that all the symbols saved as blocks using the Create tool are saved in the data of the drawing in which the symbols were constructed. Erase all


Fig. 9.4 The popup list in the Name field of the Block Definition dialog


Fig. 9.5 First example - inserting blocks. Outine plan
of the drawings of the symbols and in their place construct the outline of the plan of a bungalow to a scale of 1:50 (Fig. 9.5). Then:
1. Left-click the Insert tool icon in the Home/Block panel (Fig. 9.6) or the Insert Block tool in the Draw toolbar. The Insert dialog appears on screen (Fig. 9.7). From the Name popup list select the name of the block which is to be inserted, in this example the 2.5 window.
2. Click the dialog's OK button, the dialog disappears. The symbol drawing appears on screen with its insertion point at the intersection of the cursor hairs ready to be dragged into its position in the plan drawing.
3. Once all the block drawings are placed, their positions can be adjusted. Blocks are single objects and can thus be dragged into new positions as


Fig. 9.6 The Insert tool icon in the Home/Block panel


Fig. 9.7 The Insert dialog with its Name popup list showing all the blocks
required under mouse control. Their angle of position can be amended at the command line, which shows:

Command:_insert
Specify insertion point or [Basepoint/Scale/
Rotate] : pick
Command:
Selection from these prompts allows scaling or rotating as the block is inserted.
4. Insert all necessary blocks and add other detail as required to the plan outline drawing. The result is given in Fig. 9.8.

\section*{Example - second method of inserting blocks}
1. Save the drawing with all the blocks to a suitable file name. Remember this drawing includes data of the blocks in its file.
2. Left-click DesignCenter in the View/Palettes panel (Fig. 9.9) or press the \(\mathbf{C t r l}+\mathbf{2}\) keys. The DesignCenter palette appears on screen (Fig. 9.10).
3. With the outline plan (Fig. 9.5) on screen the symbols can all be dragged into position from the DesignCenter.


Fig. 9.8 Example - first method of inserting blocks


Fig. 9.9 Selecting DesignCenter from the View/Palettes panel


Fig. 9.10 The DesignCenter with the compass block dragged on screen

\section*{Notes about the DesignCenter palette}
1. As with other palettes, the DesignCenter palette can be resized by dragging the palette to a new size from its edges or corners.
2. Clicks on one of the three icons at the top-right corner of the palette (Fig. 9.11) have the following results**.


Fig. 9.11 The icons at the top of the DesignCenter palette
Tree View Toggle - changes from showing two areas - a Folder List and icons of the blocks within a file - to a single area showing the block icons (Fig. 9.12).


Fig. 9.12 The results of a click on Tree View Toggle
Preview - a click on the icon opens a small area at the base of the palette open showing an enlarged view of the selected block icon.

Description - a click on the icon opens another small area with a description of the block.

A block is a single object no matter from how many objects it was originally constructed. This enables a block to be dragged about the drawing area as a single object.

\section*{The Explode tool}
```

VExplode

```

Explode

Fig. 9.13 The Explode check box in the Insert dialog

A check box in the bottom left-hand corner of the Insert dialog is labelled Explode. If a tick is in the check box, Explode will be set on and when a block is inserted it will be exploded into the objects from which it was constructed (Fig. 9.13).

Another way of exploding a block would be to use the Explode tool from the Home/Modify panel (Fig. 9.14). A click on the icon or entering ex at the command line brings prompts into the command line:

Command: _explode
Select objects: <Object Snap Tracking on> pick a block on screen 1 found
Select objects: right-click
Command:
And the picked object is exploded into its original objects.


Fig. 9.14 The Explode tool icon in the Home/Modify panel

The Purge dialog (Fig. 9.15) is called to screen by entering pu or purge at the command line.

Purge can be used to remove data (if any is to be purged) from within a drawing, thus saving file space when a drawing is saved to disk.

To purge a drawing of unwanted data (if any) in the dialog, click the Purge All button and a sub-dialog appears with three suggestions - purging of a named item, purging of all the items or skip purging a named item.


Fig. 9.15 The Purge dialog
Taking the drawing Fig. 9.8 as an example. If all the unnecessary data is purged from the drawing, the file will be reduced from \(\mathbf{1 4 5}\) Kbytes to \(\mathbf{6 7}\) Kbytes when the drawing is saved to disk.

\section*{Using the DesignCenter (Fig. 9.18)}
1. Construct the set of electric/electronic circuit symbols shown in Fig. 9.16 and make a series of blocks from each of the symbols.
2. Save the drawing to a file Fig16.dwg.
3. Open the acadiso.dwt template. Open the DesignCenter with a click on its icon in the View/Palettes panel.
4. From the Folder list select the file Fig16.dwg and click on Blocks under its file name. Then drag symbol icons from the DesignCenter into the drawing area as shown in Fig. 9.17. Ensure they are placed in appropriate positions in relation to each other to form a circuit. If necessary either Move or Rotate the symbols into correct positions.
5. Close the DesignCenter palette with a click on the \(\mathbf{x}\) in the top lefthand corner.
6. Complete the circuit drawing as shown in Fig. 9.18.



PNP




PRswitch



Switch
Fuse


Resistor


Varres



Fig. 9.16 Example using the DesignCenter - electric/electronic symbols


Fig. 9.17 Example using the DesignCenter

\section*{Note}

Fig. 9.18 does not represent an authentic electronics circuit.


Fig. 9.18 Example using the DesignCenter

Wblocks or written blocks are saved as drawing files in their own right and are not part of the drawing in which they have been saved.

\section*{Example - wblock (Fig. 9.19)}
1. Construct a light emitting diode (LED) symbol and enter \(\mathbf{w}\) at the command line. The Write Block dialog appears (Fig. 9.19).
2. Click the button marked with three full stops (...) to the right of the File name and path field and from the Browse for Drawing File dialog which comes to screen select an appropriate directory. The directory name appears in the File name and path field. Add LED.dwg at the end of the name.
3. Make sure the Insert units is set to Millimetres in its popup list.
4. Click the Select objects button, Window the symbol drawing and when the dialog reappears, click the Pick point button, followed by selecting the left-hand end of the symbol.
5. Finally click the OK button of the dialog and the symbol is saved in its selected directory as a drawing file LED.dwg in its own right.


Fig. 9.19 Example - Wblock

\section*{Note on the DesignCenter}

Drawings can be inserted into the AutoCAD window from the DesignCenter by dragging the icon representing the drawing into the window (Fig. 9.20).


Fig. 9.20 An example of a drawing dragged from the DesignCenter

When such a drawing is dragged into the AutoCAD window, the command line shows a sequence such as:

Command: _-INSERT Enter block name or [?]:
"C:\Acad 2011 book\Chapter11\64
Pheasant Drive\Fig04.dwg"
Units: Millimeters Conversion: 1.0000
Specify insertion point or [Basepoint/Scale/X/ Y/Z/Rotate]: pick
Enter \(X\) scale factor, specify opposite corner, or [Corner/XYZ] <1>: right-click
Enter \(Y\) scale factor <use \(X\) scale factor>: right-click
Specify rotation angle <0>: right-click Command:

\section*{REVISION NOTES}
1. Blocks become part of the drawing file in which they were constructed.
2. Wblocks become drawing files in their own right.
3. Drawings or parts of drawings can be inserted in other drawings with the Insert tool.
4. Inserted blocks or drawings are single objects unless either the Explode check box of the Insert dialog is checked or the block or drawing is exploded with the Explode tool.
5. Drawings can be inserted into the AutoCAD drawing area using the DesignCenter.
6. Blocks within drawings can be inserted into drawings from the DesignCenter.
7. Construct drawings of the electric/electronics symbols in Fig. 9.17 and save them as blocks in a drawing file electronics.dwg.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. Construct the building symbols (Fig. 9.21) in a drawing saved as symbols.dwg. Then using the DesignCenter construct a building drawing of the first floor of the house you are living in making use of the symbols. Do not bother too much about dimensions because this exercise is designed to practise using the idea of making blocks and using the DesignCenter.


Fig. 9.21 Exercise 1
2. Construct drawings of the electric/electronics symbols in Fig. 9.17 (page 186) and save them in a drawing file electronics.dwg.
3. Construct the electronics circuit given in Fig. 9.22 from the file electronics.dwg using the DesignCenter.


Fig. 9.22 Exercise 3
4. Construct the electronics circuit given in Fig. 9.23 from the file electronics.dwg using the DesignCenter.


Fig. 9.23 Exercise 4

\section*{Chapter 10}

\section*{Other types of file format}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce Object Linking and Embedding (OLE) and its uses.
2. To introduce the use of Encapsulated Postscript (EPS) files.
3. To introduce the use of Data Exchange Format (DXF) files.
4. To introduce raster files.
5. To introduce Xrefs.

\section*{Object Linking and Embedding}

\section*{First example - Copying and Pasting (Fig. 10.3)}
1. Open any drawing in the AutoCAD 2011 window (Fig. 10.1).


Fig. 10.1 A drawing in the AutoCAD 2011 with Copy Clip selected
2. Click Copy Clip from the Home/Clipboard panel. The command line shows:

Command: _copyclip
Select objects: left-click top left of the drawing
Specify opposite corner: left-click bottom right of the drawing 457 found
Select objects: right-click
Command:
3. Open Microsoft Word and click on Paste in the Edit drop-down menu (Fig. 10.2). The drawing from the Clipboard appears in the Microsoft Word document. Add text as required.


Fig. 10.2 Example - Copying and Pasting

\section*{Note}

Similar results can be obtained using the Copy, Copy Link or Copy with Base Point tools from the Edit drop-down menu.

\section*{Second example - EPS file (Fig. 10.5)}
1. With the same drawing on screen click on Export... in the File dropdown menu (Fig. 10.3) or click Export/Other formats in the menu appearing with a click on the \(\mathbf{A}\) icon at the top left-hand corner of the AutoCAD window. The Export Data dialog appears (Fig. 10.3). Pick Encapsulated PS (*.eps) from the Files of type popup list then enter a suitable file name (e.g. building.eps) in the File name field and click the Save button.
2. Open a desktop publishing application. That shown in Fig. 10.4 is PageMaker.
3. From the File drop-down menu of PageMaker click Place... A dialog appears listing files which can be placed in a PageMaker document. Among the files named will be building.eps. Double-click that file


Fig. 10.3 The Export tool icon from the File drop-down menu and the Export Data dialog
name and an icon appears the placing of which determines the position of the *eps file drawing in the PageMaker document (Fig. 10.4).
4. Add text as required.
5. Save the PageMaker document to a suitable file name.
6. Go back to the AutoCAD drawing and delete the title.


Fig. 10.4 An *eps file placed in position in a PageMaker document
7. Make a new *.eps file with the same file name (building.eps).
8. Go back into PageMaker and click Links Manager... in the File dropdown menu. The Links Manager dialog appears (Fig. 10.5). Against the name of the building.eps file name is a dash and a note at the bottom of the dialog explaining that changes have taken place in the drawing from which the *eps had been derived. Click the Update button and when the document reappears the drawing in PageMaker no longer includes the erased title.


Fig. 10.5 The Links Manager dialog of PageMaker

\section*{Notes}
1. This is Object Linking and Embedding (OLE). Changes in the AutoCAD drawing saved as an *eps file are linked to the drawing embedded in another application document, so changes made in the AutoCAD drawing are reflected in the PageMaker document.
2. There is actually no need to use the Links Manager because if the file from PageMaker is saved with the old *eps file in place, when it is reopened the file will have changed to the redrawn AutoCAD drawing, without the erased title.

\section*{DXF (data exchange format) files}

The *.DXF format was originated by Autodesk (publishers of AutoCAD), but is now in general use in most CAD (Computer Aided Design) software.

A drawing saved to a *. dxf format file can be opened in most other CAD software applications. This file format is of great value when drawings are being exchanged between operators using different CAD applications.

\section*{Example - DXF file (Fig. 10.7)}
1. Open a drawing in AutoCAD. This example is shown in Fig. 10.6.


Fig. 10.6 Example - DXF file. Drawing to be saved as a dxf file
2. Click on Save As... in the Menu Browser dialog and in the Save Drawing As dialog which appears, click AutoCAD 2010 DXF [*.dxf] in the Files of type field popup list.
3. Enter a suitable file name. In this example this is Fig06.dxf. The extension .dxf is automatically included when the Save button of the dialog is clicked (Fig. 10.7).
4. The DXF file can now be opened in the majority of CAD applications and then saved to the drawing file format of the CAD in use.

\section*{Note}

To open a DXF file in AutoCAD 2011, select Open... from the Menu Browser dialog and in the Select File dialog select DXF [*.dxf] from the popup list from the Files of type field.


Fig. 10.7 The Save Drawing As dialog set to save drawings in DXF format

\section*{Raster images}


Fig. 10.8 Selecting Raster Image
Reference... from the Insert drop-down menu

A variety of raster files can be placed into AutoCAD 2011 drawings from the Select Image File dialog brought to screen with a click on Raster Image Reference... from the Insert drop-down menu. In this example the selected raster file is a bitmap (extension *.bmp) of a rendered 3D model drawing.

\section*{Example - placing a raster file in a drawing} (Fig. 10.11)
1. Click Raster Image Reference... from the Insert drop-down menu (Fig. 10.8). The Select Reference File dialog appears (Fig. 10.9). Click the file name of the image to be inserted, Fig05 (a bitmap *.bmp). A preview of the bitmap appears.
2. Click the Open button of the dialog. The Attach Image dialog appears (Fig. 10.10) showing a preview of the bitmap image.
3. Click the OK button, the command line shows:


Fig. 10.9 The Select Reference File dialog


Fig. 10.10 The Attach Image dialog

Command: imageattach
Specify insertion point \(<0,0>:\) click at a point on screen
Base image size: Width: 1.000000, Height:
1.032895, Millimetres

Specify scale factor <1>: drag a corner of the image to obtain its required size
Command:
And the raster image appears at the picked point (Fig. 10.11).


Fig. 10.11 Example - placing a raster file in a drawing

\section*{Notes}

As will be seen from the Insert drop-down menu and the dialogs which can be opened from the menu, a variety of different types of images can be inserted into an AutoCAD drawing. Some examples are:

External References (Xrefs) - If a drawing is inserted into another drawing as an external reference, any changes made in the original xref drawing are automatically reflected in the drawing into which the xref has been inserted. See later in this chapter.

Field - A click on the name brings up the Field dialog. Practise inserting various categories of field names from the dialog.

Layout - A wizard appears allowing new layouts to be created and saved for new templates if required.

3D Studio - allows the insertion of images constructed in the Autodesk software 3D Studio from files with the format *.3ds.

\section*{External references (Xrefs)}

If a drawing is inserted into another drawing as an external reference, any changes made in the original Xref drawing subsequent to its being inserted are automatically reflected in the drawing into which the Xref has been inserted.

\section*{Example - External References (Fig. 10.19)}
1. Construct the three-view orthographic drawing Fig. 10.12. Dimensions for this drawing will be found in Fig. 15.52. Save the drawing to a suitable file name.


Fig. 10.12 Example - External References - original drawing


Fig. 10.13 The spindle drawing saved as Fig13.dwg
2. As a separate drawing construct Fig. 10.13. Save it as a wblock with the name of Fig13.dwg and with a base insertion point at the crossing of its centre line with the left-hand end of its spindle.
3. Click External References in the View/Palettes panel (Fig. 10.14). The External Reference palette appears (Fig. 10.15).


Fig. 10.14 The External Reference tool in the View/Palettes panel


Fig. 10.15 The External References palette


Fig. 10.17 The spindle in place in the original drawing
4. Click its Attach button and select Attach DWG... from the popup list which appears when a left-click is held on the button. Select the drawing of a spindle (Fig13.dwg) from the Select Reference file dialog which appears followed by a click on the dialog's Open button. This brings up the Attach External Reference dialog (Fig. 10.16) showing Fig13 in its Name field. Click the dialog's OK button.
5. The spindle drawing appears on screen ready to be dragged into position. Place it in position as indicated in Fig. 10.17.


Fig. 10.16 The Attach External Reference dialog


Fig. 10.18 The revised spindle.dwg drawing
6. Save the drawing with its xref to its original file name.
7. Open Fig15.dwg and make changes as shown in Fig. 10.18.
8. Now reopen the original drawing. The external reference within the drawing has changed in accordance with the alterations to the spindle drawing. Fig. 10.19 shows the changes in the front view of the original drawing.


Fig. 10.19 Example - Xrefs

\section*{Note}

In this example to ensure accuracy of drawing the external reference will need to be exploded and parts of the spindle changed to hidden detail lines.

\section*{Dgnimport and Dgnexport}

Drawings constructed in MicroStation V8 format (*.dgn) can be imported into AutoCAD 2011 format using the command dgnimport at the command line. AutoCAD drawings in AutoCAD 2004 format can be exported into MicroStation *.dgn format using the command dgnexport.

\section*{Example of importing a *.dgn drawing into AutoCAD}
1. Fig. 10.20 is an example of an orthographic drawing constructed in MicroStation V8.
2. In AutoCAD 2011 at the command line enter dgnimport. The dialog Fig. 10.21 appears on screen from which the required drawing file name can be selected. When the Open button of the dialog is clicked a warning window appears informing the operator of steps to take in order to load the drawing. When completed the drawing loads Fig. 10.22).

In a similar manner AutoCAD drawing files can be exported to MicroStation using the command dgnexport entered at the command line.


Fig. 10.20 Example - a drawing in MicroStation V8


Fig. 10.21 The Import DGN File dialog


Fig. 10.22 The *.dgn file imported into AutoCAD 2011

\section*{Multiple Design Environment}
1. Open several drawings in AutoCAD, in this example four separate drawings have been opened.
2. In the View/Windows panel click Tile Horizontally (Fig. 10.23). The four drawings rearrange as shown in Fig. 10.24.


Fig. 10.23 Selecting Tile Horizontally from the View/Windows panel


Fig. 10.24 Four drawings in the Multiple Design Environment

\section*{REVISION NOTES}
1. The Edit tools Copy Clip, Copy with Base Point and Copy Link to enable objects from AutoCAD 2011 to be copied for Pasting onto other applications.
2. Objects can be copied from other applications to be pasted into the AutoCAD 2011 window.
3. Drawings saved in AutoCAD as DXF (*. .dxf) files can be opened in other Computer Aided Design (CAD) applications.
4. Similarly drawings saved in other CAD applications as *. dxf files can be opened in AutoCAD 2011.
5. Raster files of the format types *.bmp, \({ }^{*}\).jpg, \({ }^{*}\) pcx, \({ }^{*}\). tga, *.tif among other raster type file objects can be inserted into AutoCAD 2011 drawings.
6. Drawings saved to the Encapsulated Postscript ( \({ }^{*}\).eps) file format can be inserted into documents of other applications.
7. Changes made in a drawing saved as an *.eps file will be reflected in the drawing inserted as an *.eps file in another application.
8. When a drawing is inserted into another drawing as an external reference, changes made to the inserted drawing will be updated in the drawing into which it has been inserted.
9. A number of drawings can be opened at the same time in the AutoCAD 2011 window.
10. Drawings constructed in MicroStation V8 can be imported into AutoCAD 2011 using the command dgnimport.
11. Drawings constructed in AutoCAD 2011 can be saved as MicroStation *.dgn drawings to be opened in MicroStation V8.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 10.25 shows a pattern formed by inserting an external reference and then copying or arraying the external reference.


Fig. 10.25 Exercise 1 - original pattern

The hatched parts of the external reference drawing were then changed using a different hatch pattern. The result of the change in the hatching is shown in Fig. 10.26.


Fig. 10.26 Exercise 1

Construct a similar xref drawing, insert as an xref, array or copy to form the pattern, then change the hatching, save the xref drawing and note the results.
2. Fig. 10.27 is a rendering of a roller between two end holders. Fig. 10.28 gives details of the end holders and the roller in orthographic projections.


Fig. 10.27 Exercise 2 - a rendering of the holders and roller


Fig. 10.28 Exercise 2 - details of the parts of the holders and roller

Construct a full size front view of the roller and save to a file name roller.dwg. Then as a separate drawing construct a front view of the two end holders in their correct positions to receive the roller and save to the file name assembly.dwg.

Insert the roller drawing into the assembly drawing as an xref.
Open the roller.dwg and change its outline as shown in Fig. 10.29. Save the drawing. Open the assembly.dwg and note the change in the inserted xref.


Fig. 10.29 The amended Xref drawing
3. Click Image... in the Reference panel and insert a JPEG image (*.jpg file) of a photograph into the AutoCAD 2010 window. An example is given in Fig. 10.30.


Fig. 10.30 Exercise 3 - an example
4. Using Copy from the Insert drop-down menu, copy a drawing from AutoCAD 2010 into a Microsoft Word document. An example is given in Fig. 10.31. Add some appropriate text.


Fig. 10.31 Exercise 4 - an example
5. The plan in Figs \(10.1-10.3\) is incorrect in that some details have been missed from the drawing. Can you identify the error?

\section*{Chapter 11}

\section*{Sheet sets}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce sheet sets.
2. To describe the use of the Sheet Set Manager.
3. To give an example of a sheet set based on the design of a two-storey house.

When anything is to be manufactured or constructed, whether it be a building, an engineering design, an electronics device or any other form of manufactured artefact, a variety of documents, many in the form of technical drawings, will be needed to convey to those responsible for constructing the design and all the information necessary to be able to proceed according to the wishes of the designer. Such sets of drawings may be passed between the people or companies responsible for the construction, enabling all those involved to make adjustments or suggest changes to the design. In some cases there may well be a considerable number of drawings required in such sets of drawings. In AutoCAD 2011 all the drawings from which a design is to be manufactured can be gathered together in a sheet set. This chapter shows how a much reduced sheet set of drawings for the construction of a house at 62 Pheasant Drive can be produced. Some other drawings, particularly detail drawings, would be required in this example, but to save page space, the sheet set described here consists of only four drawings with a subset of another four drawings.

\section*{Sheet set for 62 Pheasant Drive}
1. Construct a template 62 Pheasant Drive.dwt based upon the acadiso. dwt template, but including a border and a title block. Save the template in a Layout1 format. An example of the title block from one of the drawings constructed in this template is shown in Fig. 11.1.


Fig. 11.1 The title block from Drawing number 2 of the sheet set drawings
2. Construct each of the drawings which will form the sheet set in this drawing template. The whole set of drawings is shown in Fig. 11.2. Save the drawings in a directory - in this example this has been given the name 62 Pheasant Drive.
3. Click Sheet Set Manager in the View/Palettes panel (Fig. 11.3). The Sheet Set Manager palette appears (Fig. 11.4). Click New Sheet Set... in the popup menu at the top of the palettes. The first of a series of Create Sheet Set dialogs appears - the Create Sheet Set - Begin


Fig. 11.2 The eight drawings in the 62 Pheasant Drive sheet set


Fig. 11.3 Selecting Sheet Set Manager from the View/Palettes panel


Fig. 11.4 The Sheet Set Manager palette
dialog (Fig. 11.5). Click the radio button next to Existing drawings, followed by a click on the Next button and the next dialog Sheet Set Details appears (Fig. 11.6).
4. Enter details as shown in the dialog as shown in Fig. 11.6. Then click the Next button to bring the Choose Layouts dialog to screen (Fig. 11.7).


Fig. 11.5 The first of the Create Sheet Set dialogs - Begin


Fig. 11.6 The Sheet Set Details dialog


Fig. 11.7 The Choose Layouts dialog
5. Click its Browse button and from the Browse for Folder list which comes to screen, pick the directory 62 Pheasant Drive. Click the OK button and the drawings held in the directory appears in the Choose Layouts dialog (Fig. 11.7). If satisfied the list is correct, click the Next button. A Confirm dialog appears (Fig. 11.8). If satisfied click the Finish button and the Sheet Set Manager palette appears showing the drawings which will be in the 62 Pheasant Drive sheet set (Fig. 11.9).


Fig. 11.8 The Confirm dialog


Fig. 11.9 The Sheet Manager palette for 62 Pheasant Drive

\section*{Notes}
1. The eight drawings in the sheet set are shown in Fig. 11.9. If any of the drawings in the sheet set are subsequently amended or changed, when the drawings is opened again from the 62 Pheasant Drive Sheet Manager palette, the drawing will include any changes or amendments.
2. Drawings can only be placed into sheet sets if they have been saved in a Layout screen. Note that all the drawings shown in the \(\mathbf{6 2}\) Pheasant Drive Sheet Set Manager have Layout1 after the drawing names because each has been saved after being constructed in a Layout1 template.
3. Sheet sets in the form of DWF (Design Web Format) files can be sent via email to others who are using the drawings or placed on an intranet. The method of producing a DWF for the 62 Pheasant Drive Sheet Set follows.

\section*{62 Pheasant Drive DWF}
1. In the 62 Pheasant Drive Sheet Set Manager click the Publish icon, followed by a click on Publish to DWF in the menu which appears (Fig. 11.10). The Specify DWF File dialog appears (Fig. 11.11). Enter 62 Pheasant Drive in the File name field followed by a click


Fig. 11.10 The Publish icon in the Sheet Set Manager


Fig. 11.11 The Select DWF File dialog
on the Select button. A warning window (Fig. 11.12) appears. Click its Close button. The Publish Job in Progress icon in the bottom righthand corner of the AutoCAD 2011 window starts fluctuating in shape showing that the DWF file is being processed (Fig. 11.12). When the icon becomes stationary right-click the icon and click View Plotted File... in the right-click menu which appears (Fig. 11.13).


Fig. 11.12 The Publish Job in Progress icon


Fig. 11.13 The right-click menu of the icon
2. The Autodesk Design Review window appears showing the 62 Pheasant Drive.dwf file (Fig. 11.14). Click on the arrow Next Page (Page on) to see other drawings in the DWF file.


Fig. 11.14 The Autodesk Design Review showing details of the 62 Pheasant Drive.dwf file
3. If required the Design Review file can be sent between people by email as an attachment, opened in a company's intranet or, indeed, included within an internet web page.

\section*{REVISION NOTES}
1. To start off a new sheet set, select the Sheet Set Manager icon in the Tools/Palettes panel.
2. Sheet sets can only contain drawings saved in Layout format.
3. Sheet sets can be published as Design Review Format (*.dwf) files which can be sent between offices by email, published on an intranet or published on a web page.
4. Subsets can be included in sheet sets.
5. Changes or amendments made to any drawings in a sheet set are reflected in the sheet set drawings when the sheet set is opened.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 11.15 is an exploded orthographic projection of the parts of a piston and its connecting rod. There are four parts in the assembly. Small drawings of the required sheet set are shown in Fig. 11.17.

Construct the drawing Fig. 11.15 and also the four drawings of its parts. Save each of the drawings in a Layout 1 format and construct the sheet set which contains the five drawings (Fig. 11.17).


Fig. 11.15 Exercise 1 - exploded orthographic projection


Fig. 11.16 The DWF for exercise 1


Fig. 11.17 Exercise 1 - the five drawings in the sheet set

Construct the DWF file of the sheet set. Experiment sending it to a friend via email as an attachment to a document, asking him/ her to return the whole email to you without changes. When the email is returned, open its DWF file and click each drawing icon in turn to check the contents of the drawings.
2. Construct a similar sheet set as in the answer to Exercise 1 from the exploded orthographic drawing of a Machine adjusting spindle given in Fig. 11.18.


Fig. 11.18 Exercise 2

\section*{Chapter 12}

\section*{Introducing 3D modeling}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce the tools used for the construction of 3 D solid models.
2. To give examples of the construction of 3D solid models using tools from the Home/Create panel.
3. To give examples of 2D outlines suitable as a basis for the construction of 3D solid models.
4. To give examples of constructions involving the Boolean operators - Union, Subtract and Intersect.

\section*{Introduction}

As shown in Chapter 1 the AutoCAD coordinate system includes a third coordinate direction \(\mathbf{Z}\), which, when dealing with 2D drawing in previous chapters, has not been used. 3D model drawings make use of this third \(\mathbf{Z}\) coordinate.

\section*{The 3D Basics workspace}

It is possible to construct 3D model drawings in the 2D Drafting \& Annotation workspaces, but in Part 2 of this book we will be working in either the 3D Basics or in the 3D Modeling workspaces. To set the first of these workspaces click the Workspace Settings icon in the status bar and select 3D Introduction from the menu which appears (Fig. 12.1). The 3D Basics workspace appears (Fig. 12.2).


Fig. 12.1 Selecting 3D Basics from the Workspace Switching menu

The workspace in Fig. 12.2 is the window in which the examples in this chapter will be constructed.

\section*{Methods of calling tools for 3D modeling}

The default panels of the 3D Basics ribbon are shown in Fig. 12.3.
When calling the tools for the construction of 3D model drawings, 3D tools can be called by:
1. A click on a tool icon in a 3D Basics panel.
2. Entering the tool name at the command line followed by pressing the Return button of the mouse or the Return key of the keyboard.


Fig. 12.2 The 3D Basics workspace


Fig. 12.3 The default 3D Basics panels
3. Some of the 3D tools have an abbreviation which can be entered at the command line instead of its full name.
4. Using the Dynamic Input method.

\section*{Notes}
1. As when constructing 2D drawings, no matter which method is used and most operators will use a variety of these four methods, the result of calling a tool results in prompt sequences appearing at the
command prompt (or if using Dynamic Input on screen) as in the following example:

Command: enter box right-click
Specify first corner or [Center]: enter 90,120 right-click
Specify other corner or [Cube/Length]: enter 150,200
Specify height or [2Point]: enter 50
Command:
Or, if the tool is called from its tool icon, or from a drop-down menu:
Command:_box
Specify first corner or [Center]: enter 90,120 right-click
Specify other corner or [Cube/Length]: enter 150,200
Specify height or [2Point]: enter 50
Command:
2. In the following pages, if the tool's sequences are to be repeated, they may be replaced by an abbreviated form such as:

Command: box
[prompts]: 90,120
[prompts]: 150,200
3. The examples shown in this chapter will be based on layers set as follows:
a. Click the Layer Properties icon in the Home/Layers \& View panel (Fig. 12.4).


Fig. 12.4 The Layer Properties icon in the Layers \& View panel
b. In the Layer Properties Manager which appears make settings as shown in Fig. 12.5.


Fig. 12.5 The settings in the Layer Properties Manager

\section*{The Polysolid tool (Fig. 12.8)}
1. Set layer Blue as the current layer.
2. Construct an octagon of edge length \(\mathbf{6 0}\) using the Polygon tool.
3. Click SW Isometric in the Layers \& View panel (Fig. 12.6).
4. Call the Polysolid tool from the Home/Create panel (Fig. 12.7).

The command line shows:
Command: _Polysolid Height=0, Width=0, Justification=Center
Specify start point or [Object/Height/Width/ Justify] <Object>: enter h right-click
Specify height <0>: enter 60 right-click
Height=60, Width=0, Justification=Center
Specify start point or [Object/Height/Width/
Justify] <Object>: enter w right-click
Specify width <0>: 5
Height=60, Width=5, Justification=Center


Fig. 12.6 Selecting SW Isometric from 3D Navigation drop-down menu in the Layers \& View panel


Fig. 12.7 The Polysolid tool icon in the Home/Create panel

Specify start point or [Object/Height/Width/ Justify] <Object>: pick the polygon
Select object: right-click
Command:
And the Polysolid forms.
5. Select Conceptual from the Layers \(\boldsymbol{\&}\) View panel (Fig. 12.8).

The result is shown in Fig. 12.9.


Fig. 12.9 The Polysolid tool example


Fig. 12.8 Selecting Conceptual shading from Visual Styles in the Layers \& View panel

\section*{2D outlines suitable for 3D models}

When constructing 2D outlines suitable as a basis for constructing some forms of 3D model, select a tool from the Home/Draw panel, or enter tool names or abbreviations for the tools at the command line. If constructed using tools such as Line, Circle and Ellipse, before being of any use for 3D modeling, outlines must be changed into regions with the Region tool. Closed polylines can be used without the need to use the Region tool.

\section*{Example - Outlines \& Region (Fig. 12.10)}
1. Construct the left-hand drawing of Fig. 12.10 using the Line and Circle tools.


Fig. 12.10 Example - Line and circle outlines and Region
2. Enter region or reg at the command line. The command line shows:

Command:_region
Select objects: window the left-hand rectangle
1 found
Select objects: right-click
1 loop extracted.
1 Region created.
Command:
And the Line outline is changed to a region. Repeat for the circle and the right-hand rectangle. Three regions will be formed.
3. Drawing \(\mathbf{2}\) - call the Union tool from the Home/Edit panel (Fig. 12.11). The command line shows:

Command: _union
Select objects: pick the left-hand region 1 found
Select objects: pick the circular region 1 found,
2 total
Select objects: pick the right-hand region 1 found,
3 total
Select objects: right-click
Command:


Fig. 12.11 Selecting the Union tool from the Home/Edit panel
4. Drawing \(\mathbf{3}\) - with the Union tool form a union of the left-hand region and the circular region.
5. Drawing 4 - call the Subtract tool, also from the Home/Edit panel.

The command line shows:
Command:_subtract Select solids and regions to subtract from ...
Select objects: pick the region just formed 1 found Select objects: right-click
Select solids and regions to subtract ...
Select objects: pick the right-hand region 1 found Select objects: right-click
Command:

\section*{The Extrude tool}

The Extrude tool can be called with a click on its name in the Home/ Create panel (Fig. 12.12), or by entering extrude or its abbreviation ext at the command line.


Fig. 12.12 The Extrude tool from the Home/Create panel

\section*{Examples of the use of the Extrude tool}

The first two examples of forming regions given in Figs 12.10 and 12.11 are used to show the results of using the Extrude tool.

First example - Extrude (Fig. 12.13)
From the first example of forming a region:
1. Open Fig. 12.10. Erase all but the region 2.
2. Make layer Green current.
3. Call Extrude (Fig. 12.12). The command line shows:

Command: _extrude
Current wire frame density: ISOLINES=4
Closed profiles creation mode=Solid
Select objects to extrude or [MOde]: pick region
1 found
Select objects to extrude or [MOde]: right click Specify height of extrusion or [Direction/Path/ Taper angle/Expression] <45>: enter 50 rightclick

Command:
4. Place in the Layers \& View/3D Navigation/SW/Isometric view.
5. Call Zoom and zoom to \(\mathbf{1}\).
6. Place in Visual Style/Realistic.

The result is shown in Fig. 12.13.


Fig. 12.13 First example - Extrude

\section*{Notes}
1. In the above example we made use of an isometric view possible from the 3D Navigation drop-down menu in the Home/Layers \& Views panel (Fig. 12.6). The 3D Navigation drop-down menu allows a model to be shown in a variety of views.
2. Note the Current wire frame density: ISOLINES \(=\mathbf{4}\) in the prompts sequence when Extrude is called. The setting of \(\mathbf{4}\) is suitable when extruding plines or regions consisting of straight lines, but when arcs are being extruded it may be better to set ISOLINES to a higher figure as follows:
```

Command: enter isolines right-click
Enter new value for ISOLINES <4>: enter 16
right-click
Command:

```
3. Note the prompt [MOde] in the line
```

Select objects to extrude or [MOde]:

```

If mo is entered as a response to this prompt line, the following prompts appear:
```

Closed profiles creation mode[SOlid/SUrface]
<Solid>: _SO

```
which allows the extrusion to be in solid or surface format.

\section*{Second example - Extrude (Fig. 12.14)}
1. Open Fig. 12.10 and erase all but the region 3.
2. Make the layer Blue current.
3. Set ISOLINES to 16.
4. Call the Extrude tool. The command line shows:
```

Command: _extrude
Current wire frame density: ISOLINES=4, Closed
profiles creation mode=Solid
Select objects to extrude or [MOde]: _MO Closed
profiles creation mode
[SOlid/SUrface] <Solid>: _SO
Select objects to extrude or [MOde]: pick the
region 3 1 found
Select objects to extrude or [MOde]:

```


Fig. 12.14 Second example - Extrude


Fig. 12.15 The 3D Polyline tool from the Home/Draw panel

Specify height of extrusion or [Direction/Path/
Taper angle/Expression]: enter t right-click Specify angle of taper for extrusion or
[Expression] <0>: enter 10 right-click Specify height of extrusion or [Direction/Path/

Taper angle/Expression]: enter 100 right-click Command:
3. In the Layers \& View/3D Navigation menu select NE Isometric.
4. Zoom to \(\mathbf{1}\).
5. Place in Visual Styles/Hidden.

The result is shown in Fig. 12.14.

\section*{Third example - Extrude (Fig. 12.16)}
1. Make layer Magnolia current.
2. Construct an \(\mathbf{8 0} \times \mathbf{5 0}\) rectangle, filleted to a radius of \(\mathbf{1 5}\). Then in the 3D Navigation/Front view and using the 3D Polyline tool from the Home/Draw panel (Fig. 12.15), construct 3 3D polylines each of length 45 and at \(\mathbf{4 5}\) degree to each other at the centre of the outline as shown in Fig. 12.16.
3. Place the screen in the 3D Navigation/SW Isometric view.
4. Set ISOLINES to 24.
5. Call the Extrude tool. The command line shows:

Command: _extrude
Current wire frame density: ISOLINES = 24, Closed profiles creation mode \(=\) Solid
Select objects to extrude or [MOde]: _MO Closed profiles creation mode
[SOlid/SUrface] <Solid>: _SO
Select objects to extrude or [MOde]: pick the rectangle 1 found
Select objects to extrude or [MOde]: right-click
Specify height of extrusion or [Direction/Path/ Taper angle/Expression]:enter t right-click
Select extrusion path or [Taper angle]: pick path right-click
Command:
6. Place the model in Visual Styles/Realistic.

The result is shown in Fig. 12.16.


Fig. 12.16 Second example - Extrude

\section*{The Revolve tool}

The Revolve tool can be called with a click on its tool icon in the Home/ Create panel, by a click or by entering revolve at the command line, or its abbreviation rev.

\section*{Examples of the use of the Revolve tool}

Solids of revolution can be constructed from closed plines or from regions.
First example - Revolve (Fig. 12.19)
1. Construct the closed polyline (Fig. 12.17).
2. Make layer Red current.
3. Set ISOLINES to 24.
4. Call the Revolve tool from the Home/Create panel (Fig. 12.18).

The command line shows:
Command: _revolve
Current wire frame density: ISOLINES=4, Closed profiles creation mode=Solid
Select objects to revolve or [MOde]: _MO Closed profiles creation mode[SOlid/SUrface] <Solid>: _SO


Fig. 12.17 First example - Revolve. The closed pline


Fig. 12.18 The Revolve tool from the Home/Create panel

Select objects to revolve or [MOde]: pick the pline 1 found
Select objects to revolve or [MOde]: right-click
Specify axis start point or define axis by [Object/ X/Y/Z] <Object>: pick
Specify axis endpoint: pick


Specify angle of revolution or [STart angle/ Reverse/Expression] <360>: right-click
Command:
5. Place in the 3D Navigation/NE Isometric view. Zoom to \(\mathbf{1}\).
6. Shade with Visual Styles/Shaded.

Fig. 12.19 First example - Revolve

The result is shown in Fig. 12.19.

\section*{Second example - Revolve (Fig. 12.21)}
1. Make layer Yellow current.
2. Place the screen in the 3D Navigate/Front view. Zoom to \(\mathbf{1}\).
3. Construct the pline outline (Fig. 12.20).


Fig. 12.20 Second example - Revolve. The pline outline
4. Set ISOLINES to 24.
5. Call the Revolve tool and construct a solid of revolution.
6. Place the screen in the 3D Navigate/SW Isometric. Zoom to \(\mathbf{1}\).
7. Place in Visual Styles/Shades of Gray (Fig. 12.21).


Fig. 12.21 Second example - Revolve

\section*{Third example - Revolve (Fig. 12.22)}
1. Make Green the current layer.
2. Place the screen in the 3D Navigate/Front view.
3. Construct the pline (left-hand drawing of Fig. 12.22). The drawing must be either a closed pline or a region.
4. Set Isolines to 24.
5. Call Revolve and form a solid of revolution through \(\mathbf{1 8 0}\) degree.
6. Place the model in the 3D Navigate/NE Isometric. Zoom to \(\mathbf{1}\).
7. Place in Visual Styles/Conceptual.

The result is shown in Fig. 12.22 (right-hand drawing).


Fig. 12.22 Third example - Revolve. The outline to be revolved and the solid of revolution

\section*{Other tools from the Home/Create panel}


Fig. 12.23 Selecting Box from the Home/ Create panel


Fig. 12.24 First example - Box

\section*{First example - Box (Fig. 12.24)}
1. Make Magenta the current layer.
2. Place the window in the 3D Navigate/Front view.
3. Set Isolines to 4.
4. Click the Box tool icon in the Home/Create panel (Fig. 12.23). The command line shows:

Command: _box
Specify first corner or [Center]: enter 90,90 right-click
Specify other corner or [Cube/Length]: enter 110, -30 right-click
Specify height or [2Point]: enter 75 right-click
Command: right-click
BOX Specify first corner or [Center]: 110,90
Specify other corner or [Cube/Length]: 170,70
Specify height or [2Point]: 75
Command:
BOX Specify first corner or [Center]: 110,-10
Specify other corner or [Cube/Length]: 200,-30
Specify height or [2Point]: 75
Command:
5. Place in the ViewCube/Isometric view. Zoom to \(\mathbf{1}\).
6. Call the Union tool from the Home/Edit panel. The command line shows:

Command:_union
Select objects: pick one of the boxes 1 found Select objects: pick the second of box 1 found, 2 total
Select objects: pick the third box 1 found, 3 total
Select objects: right-click
Command:

And the three boxes are joined in a single union.
7. Place in Visual Styles/Conceptual.

The result is given in Fig. 12.24.

\section*{Second example - Sphere and Cylinder (Fig. 12.25)}
1. Make layer Green current.
2. Set ISOLINES to 16.
3. Click the Sphere tool icon from the Home/Create panel. The command line shows:

Command: _sphere
Specify center point or [3P/2P/Ttr]: 180,170
Specify radius or [Diameter]: 50
Command:
4. Click the Cylinder tool icon in the Home/Create panel. The command line shows:

Command: _cylinder
Specify center point of base or [3P/2P/Ttr/
Elliptical]: 180,170
Specify base radius or [Diameter]: 25
Specify height or [2Point/Axis endpoint]: 110
Command:
5. Place the screen in the 3D Navigate/Front view. Zoom to \(\mathbf{1}\).
6. With the Move tool (from the Home/Modify panel), move the cylinder vertically down so that the bottom of the cylinder is at the bottom of the sphere.
7. Click the Subtract tool icon in the Home/Edit panel. The command line shows:

Command: _subtract Select solids and regions to subtract from...
Select objects: pick the sphere 1 found
Select objects: right-click
Select solids and regions to subtract
Select objects: pick the cylinder 1 found
Select objects: right-click
Command:
8. Place the screen in 3D Navigate/SW Isometric. Zoom to \(\mathbf{1}\).
9. Place in Visual Styles/Realistic.

The result is shown in Fig. 12.25.

\section*{Third example - Cylinder, Cone and Sphere (Fig. 12.26)}
1. Make Blue the current layer.
2. Set Isolines to 24.
3. Place in the 3D Navigate/Front view.
4. Call the Cylinder tool and with a centre \(\mathbf{1 7 0 , 1 5 0}\) construct a cylinder of radius \(\mathbf{6 0}\) and height 15.
5. Click the Cone tool in the Home/Create panel. The command line shows:

Command: _cone
Specify center point of base or [3P/2P/Ttr/ Elliptical]: 170,150
Specify base radius or [Diameter]: 40
Specify height or [2Point/Axis endpoint/Top radius]: 150
Command:
6. Call the Sphere tool and construct a sphere of centre \(\mathbf{1 7 0 , 1 5 0}\) and radius 45 .
7. Place the screen in the 3D Navigate/Front view and with the Move tool, move the cone and sphere so that the cone is resting on the cylinder and the centre of the sphere is at the apex of the cone.
8. Place in the 3D Navigate/SW Isometric view, Zoom to \(\mathbf{1}\) and with Union form a single 3D model from the three objects.
Fig. 12.26 Third example - Cylinder, Cone and Sphere
9. Place in Visual Styles/Conceptual.

The result is shown in Fig. 12.26.

\section*{Fourth example - Box and Wedge (Fig. 12.27)}
1. Make layer Blue current.
2. Place in the 3D Navigate/Top view.
3. Click the Box tool icon in the Home/Create panel and construct two boxes, the first from corners 70,210 and \(\mathbf{2 9 0 , 1 2 0}\) of height 10, the second of corners \(\mathbf{1 2 0 , 2 0 0}, \mathbf{1 0}\) and \(\mathbf{2 4 0 , 1 2 0 , 1 0}\) and of height \(\mathbf{8 0}\).
4. Place the screen in the 3D Navigate/Front view and Zoom to \(\mathbf{1}\).
5. Click the Wedge tool icon in the Home/Create panel. The command line shows:

Command: _wedge
Specify first corner or [Center]: 120,170,10
Specify other corner or [Cube/Length]:
80,160,10
Specify height or [2Point]: 70
Command: right-click
WEDGE
Specify first corner of wedge or [Center]: 240,170,10


Fig. 12.27 Fourth example - Box and Wedge

Specify corner or [Cube/Length]: 280,160,10 Specify height or [2Point]: 70
Command:
6. Place the screen in 3D Navigate/SW Isometric and Zoom to \(\mathbf{1}\).
7. Call the Union tool from the Home/Edit panel and in response to the prompts in the tool's sequences pick each of the 4 objects in turn to form a union of the 4 objects.
8. Place in Visual Styles/Conceptual.

The result is shown in Fig. 12.27.

\section*{Fifth example - Cylinder and Torus (Fig. 12.28)}
1. Make layer Red current.
2. Set Isolines to 24.
3. Using the Cylinder tool from the Home/Create panel, construct a cylinder of centre \(\mathbf{1 8 0 , 1 6 0}\), of radius 40 and height 120.
4. Click the Torus tool icon in the Home/Create panel. The command line shows:

Command: _torus
Specify center point or [3P/2P/Ttr]: 180,160,10
Specify radius or [Diameter]: 40
Specify tube radius or [2Point/Diameter]: 10
Command: right-click
TORUS
Specify center point or [3P/2P/Ttr]: 180,160,110
Specify radius or [Diameter] <40>: right-click
Specify tube radius or [2Point/Diameter] <10>: right-click
Command:


Fig. 12.28 Fifth example - Cylinder and Torus
5. Call the Cylinder tool again and construct another cylinder of centre 180,160 , of radius 35 and height 120.
6. Place in the 3D Navigate/SW Isometric view and Zoom to \(\mathbf{1}\).
7. Click the Union tool icon in the Home/Edit panel and form a union of the larger cylinder and the two torii.
8. Click the Subtract tool icon in the Home/Edit panel and subtract the smaller cylinder from the union.
9. Place in Visual Styles/X-Ray.

The result is shown in Fig. 12.28.

\section*{The Chamfer and Fillet tools}

\section*{Example - Chamfer and Fillet (Fig. 12.33)}
1. Set layer Green as the current layer.
2. Set Isolines to \(\mathbf{1 6}\).
3. Working to the sizes given in Fig. 12.29 and using the Box and Cylinder tools, construct the 3D model (Fig. 12.30).
4. Place in the 3D Navigate/SW Isometric view. Union the two boxes and with the Subtract tool, subtract the cylinders from the union.


Fig. 12.29 Example - Chamfer and Fillet - sizes for the model


Fig. 12.30 Example - Chamfer and Fillet - isometric view - the model before using the tools

\section*{Notes}

To construct the elliptical cylinder, call the Cylinder tool from the Home/Modeling panel. The command line shows:
```

Command: _cylinder
Specify center point of base or [3P/2P/Ttr/
Elliptical]: enter e right-click
Specify endpoint of first axis or [Center]:
130,160
Specify other endpoint of first axis: 210,160
Specify endpoint of second axis: 170,180
Specify height or [2Point/Axis endpoint]: 50
Command:

```
5. Click the Fillet tool icon in the Home/Modify panel (Fig. 12.31). The command line shows:


Fig. 12.31 The Fillet tool icon in the Home/Modify panel
```

Command:_fillet
Current settings: Mode=TRIM. Radius=0
Specify first object or [Undo/Polyline/Radius/
Trim/Multiple]: enter r (Radius) right-click
Specify fillet radius <0>: 10
Select first object: pick one corner
Select an edge or [Chain/Radius]: pick a second
corner

```

Select an edge or [Chain/Radius]: pick a third corner
Select an edge or [Chain/Radius]: pick the fourth corner

Select an edge or [Chain/Radius]: right-click 4 edge(s) selected for fillet.
Command:
6. Click the Chamfer tool in the Home/Modify panel (Fig. 12.32). The command line shows:


Fig. 12.32 The Chamfer tool icon in the Home/Modify panel
Command: _chamfer
(TRIM mode) Current chamfer Dist1 \(=0\), Dist2 \(=0\) Select first line or [Undo/Polyline/Distance/

Angle/Trim/mEthod/Multiple]: enter d right-click
Specify first chamfer distance <0>: 10
Specify second chamfer distance <10>:
Select first line or [Undo/Polyline/Distance/
Angle/Trim/mEthod/Multiple]: pick one corner
One side of the box highlights
Base surface selection...
Enter surface selection option [Next/OK
(current)] <OK>: right-click
Specify base surface chamfer distance <10>: right-click
Specify other surface chamfer distance <10>: right-click
Select an edge or [Loop]: pick the edge
Select an edge or [Loop]: pick the second edge
Select an edge [or Loop]: right-click
Command:

And the edges are chamfered. Repeat to chamfer the other three edges.

\section*{7. Place in Visual Styles/Shaded with Edges.}

Fig. 12.33 shows the completed 3D model.


Fig. 12.33 Example - Fillet and Chamfer

\section*{Note on the tools Union, Subtract and Intersect}

The tools Union, Subtract and Intersect found in the Home/Edit panel are known as the Boolean operators after the mathematician Boolean. They can be used to form unions, subtractions or intersection between extrusions solids of revolution, or any of the 3D Objects.

\section*{Constructing 3D surfaces using the Extrude tool}

In this example of the construction of a 3D surface model the use of the Dynamic Input (DYN) method of construction will be shown.
1. Place the AutoCAD drawing area in the 3D Navigation/SW Isometric view.
2. Click the Dynamic Input button in the status bar to make dynamic input active.

\section*{Example - Dynamic Input (Fig. 12.36)}
1. Using the Line tool from the Home/Draw panel construct the outline (Fig. 12.34).
2. Call the Extrude tool and window the line outline.
3. Extrude to a height of \(\mathbf{1 0 0}\).



Fig. 12.34 Example - constructing the Line outline

The stages of producing the extrusion are shown in Figs 12.34 and 12.35. The resulting 3D model is a surface model.

\section*{Note}

The resulting 3D model shown in Fig. 12.35 is a surface model because the extrusion was constructed from an outline consisting of lines, which are individual objects in their own right. If the outline had been a polyline, the resulting 3D model would have been a solid model. The setting of MOde makes no difference.

\section*{The Sweep tool}

To call the tool click on its tool icon in the Home/Create panel (Fig. 12.36).


Fig. 12.35 Example - Dynamic Input


Fig. 12.36 Selecting the Sweep tool from the Home/Create panel


Fig. 12.37 Example
Sweep - the outline to be swept

\section*{Example - Sweep (Fig. 12.38)}
1. Construct the pline outline (Fig. 12.37) in the 3D Navigation/Top view.
2. Change to the 3D Navigation/Front view, Zoom to \(\mathbf{1}\) and construct a pline as shown in Fig. 12.38 as a path central to the outline.
3. Make the layer Magenta current.
4. Place the window in the 3D Navigation/SW Isometric view and click the Sweep tool icon. The command line shows:

Command: _sweep
Current wire frame density: ISOLINES=4, Closed profiles creation mode=Solid
```

Select objects to sweep or [MOde]: _MO Closed
profiles creation mode
[SOlid/SUrface] <Solid>: _SO
Select objects to sweep or [MOde]: pick the pline
1 found
Select objects to sweep or [MOde]: right-click
Select sweep path or [Alignment/Base point/Scale/
Twist]: pick the pline path
Command:
5. Place in Visual Styles/Shaded.
The result is shown in Fig. 12.38.

```


Fig. 12.38 Example - Sweep

\section*{The Loft tool}

To call the tool click on its icon in the Home/Create panel.

\section*{Example - Loft (Fig. 12.41)}
1. In the 3D Navigate/Top view, construct the seven circles shown in Fig. 12.39 at vertical distances of \(\mathbf{3 0}\) units apart.
2. Place the drawing area in the 3D Navigate/SW Isometric view.
3. Call the Loft tool with a click on its tool icon in the Home/Modeling panel (Fig. 12.40).


Fig. 12.39 Example Loft - the cross sections


Fig. 12.40 Selecting the Loft tool from the Home/Create panel
4. Set Cyan as the current layer.
5. The command line shows:

Command:_loft
Select cross sections in lofting order or
[POint/Join multiple curves]: pick 1 found
Select cross sections in lofting order or [POint/
Join multiple curves]: pick 1
found, 2 total
Select cross sections in lofting order or [POint/ Join multiple curves]: pick 1


Fig. 12.41 Example Loft
found, 3 total
Select cross sections in lofting order or [POint/ Join multiple curves]: pick 1 found, 4 total
Select cross sections in lofting order or [POint/ Join multiple curves]: pick 1 found, 5 total
Select cross sections in lofting order or [POint/ Join multiple curves]: pick 1 found, 6 total
Select cross sections in lofting order or [POint/ Join multiple curves]: pick 1 found, 7 total
Select cross sections in lofting order or [POint/ Join multiple curves]: enter j right-click
Select curves that are to be joined into a single cross section: right-click 7 cross sections selected

Enter an option [Guides/Path/Cross sections only/ Settings] <Cross sections only>: right-click Command:

\section*{6. Place in Visual Styles/Shaded with Edges.}

The result is shown in Fig. 12.41.

\section*{REVISION NOTES}
1. In the AutoCAD 3D coordinate system, positive \(Z\) is towards the operator away from the monitor screen.
2. A 3D face is a mesh behind which other details can be hidden.
3. The Extrude tool can be used for extruding closed plines or regions to stated heights, to stated slopes or along paths.
4. The Revolve tool can be used for constructing solids of revolution through any angle up to 360 degree.
5. 3D models can be constructed from Box, Sphere, Cylinder, Cone, Torus and Wedge. Extrusions and/or solids of revolutions may form part of models constructed using these 3D tools.
6. The tools Union, Subtract and Intersect are known as the Boolean operators.
7. When polylines form an outline which is not closed are acted upon by the Extrude tool the resulting models will be 3D Surface models irrespective of the MOde setting.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
The exercises which follow require the use of tools from the Home/Create panel in association with tools from other panels.
1. Fig. 12.42 shows the pline outline from which the polysolid outline (Fig. 12.43) has been constructed to a height of 100 and Width of \(\mathbf{3}\). When the polysolid has been
constructed, construct extrusions which can then be subtracted from the polysolid. Sizes of the extrusions are left to your judgement.


Fig. 12.42 Exercise 1 - outline for polyline


Fig. 12.43 Exercise 1
2. Fig. 12.44 shows a 3D model constructed from four polysolids which have been formed into a union using the Union tool from the Home/ Modify panel. The original polysolid was formed from a hexagon of edge length \(\mathbf{3 0}\). The original polysolid was of height 40 and Width 5. Construct the union.


Fig. 12.44 Exercise 2
3. Fig. 12.45 shows the 3D model from Exercise 2 acted upon by the Presspull tool from the Home/Create panel.
With the 3D model from Exercise 2 on screen and using the Presspull tool, construct the 3D model shown in Fig. 12.45. The distance of the pull can be estimated.


Fig. 12.45 Exercise 3
4. Construct the 3D model of a wine glass as shown in Fig. 12.46, working to the dimensions given in the outline drawing Fig. 12.47.

You will need to construct the outline and change it into a region before being able to change the outline into a solid of revolution using the Revolve tool from the Home/Create panel. This is because the semi-elliptical part of the outline has been constructed using the Ellipse tool, resulting in part of the outline being a spline, which cannot be acted upon by Polyline Edit to form a closed pline.


Fig. 12.46 Exercise 4


Fig. 12.47 Exercise 4 - outline drawing
5. Fig. 12.48 shows the outline from which a solid of revolution can be constructed. Using the Revolve tool from the Home/Create panel to construct the solid of revolution.
6. Construct a 3D solid model of a bracket working to the information given in Fig. 12.49.
7. Working to the dimensions given in Fig. 12.50 construct an extrusion of the plate to a height of 5 units.
8. Working to the details given in the orthographic projection (Fig. 12.51), construct a 3D model of the assembly. After


Fig. 12.48 Exercise 5


Fig. 12.49 Exercise 6


Fig. 12.50 Exercise 7



Fig. 12.51 Exercise 8
constructing the pline outline(s) required for the solid(s) of revolution, use the Revolve tool to form the 3D solid.
9. Working to the polylines shown in Fig. 12.52 construct the Sweep shown in Fig. 12.53.
10. Construct the cross sections as shown in the left-hand drawing of Fig. 12.54 working to suitable dimensions. From the cross sections construct the lofts shown in the right-hand view. The lofts are topped with a sphere constructed using the Sphere tool.


Fig. 12.52 Exercise 9 - profile and path dimensions


Fig. 12.53 Exercise 9


Fig. 12.54 The cross sections for Exercise 10

\title{
Chapter 13 \\ 3D models in viewports
}

\section*{AIM OF THIS CHAPTER}

The aim of this chapter is to give examples of 3D solid models constructed in multiple viewport settings.

\section*{The 3D Modeling workspace}

In Chapter 12 all 3D model actions were constructed in the 3D Basics workspace. As shown in that chapter, a large number of different types of 3D models can be constructed in that workspace. In the following chapters 3D models will be constructed in the 3D Modeling workspace, brought to screen with a click on 3D Modeling icon the Workspace Settings menu (Fig. 13.1). The AutoCAD window assumes the selected workspace settings (Fig. 13.2).


Fig. 13.1 Opening the 3D Modeling workspace


Fig. 13.2 The 3D Modeling workspace in SW Isometric view and Grid on

If the 3D Modeling workspace is compared with the 3D Basics workspace (Fig. 12.2, page 225) it will be seen that there are several new tabs which when clicked bring changes in the ribbon with different sets of panels. In Fig. 13.2 the menu bar is included. This need not be included if the operator does not need the drop-down menus available from the menu bar.

\section*{Setting up viewport systems}


Fig. 13.3 Selecting Four: Equal from the View/Viewports popup list

One of the better methods of constructing 3D models is in different multiple viewports. This allows what is being constructed to be seen from a variety of viewing positions. To set up multiple viewports.

In the 3D Modeling workspace click New in the View/Viewports panel. From the popup list which appears (Fig. 13.3) select Four: Equal. The Four: Equal viewports layout appears (Fig. 13.4).


Fig. 13.4 The Four: Equal viewports layout

In Fig. 13.4 a simple 3D model has been constructed in the Four: Equal viewport layout. It will be seen that each viewport has a different view of the 3D model. Top right is an isometric view. Bottom right is a view from the right of the model. Bottom left is a view from the left of the model.

Top left is a view from the top of the model. Note that the front view viewport is surrounded by a thicker line than the other three, which means it is the current viewport. Any one of the four viewports can be made current with a left-click within its boundary. Note also that three of the views are in third angle projection.

When a viewport system has been opened it will usually be necessary to make each viewport current in turn and Zoom and Pan to ensure that views fit well within their boundaries.

If a first angle layout is needed it will be necessary to open the Viewports dialog (Fig. 13.5) with a click on the New icon in the View/Viewports panel (Fig. 13.6). First select Four: Equal from the Standard viewports list; select 3D from the Setup popup menu; click in the top right viewport and select Left in the Change View popup list; enter first angle in the New name field. Change the other viewports as shown. Save the settings with a click on the Named Viewports tab and enter the required name for the setup in the sub-dialog which appears.


Fig. 13.5 The Viewports dialog set for a 3D first angle Four: Equal setting


Fig. 13.6 Selecting New from the View/Viewports panel

\section*{First example - Four: Equal viewports (Fig. 13.9)}

Fig. 13.7 shows a two-view orthographic projection of a support. To construct a Scale 1:1 third angle 3D model of the support in a Four Equal viewport setting on a layer colour Blue:
1. Open a Four Equal viewport setting from the New popup list in the View/Viewports panel (Fig. 13.3).
2. Click in each viewport in turn, making the selected viewport active, and Zoom to 1 .


Fig. 13.7 First example - orthographic projection of the support
3. Using the Polyline tool, construct the outline of the plan view of the plate of the support, including the holes in the Top viewport (Fig. 13.5). Note the views in the other viewports.
4. Call the Extrude tool from the Home/Modeling panel and extrude the plan outline and the circles to a height of 20.
5. With Subtract from the Home/Solid Editing panel, subtract the holes from the plate (Fig. 13.8).


Fig. 13.8 First example - the four viewports after Extrude and Subtract
6. Call the Box tool and in the centre of the plate construct a box of Width \(=\mathbf{6 0}\), Length \(=\mathbf{6 0}\) and Height \(=\mathbf{3 0}\).
7. Call the Cylinder tool and in the centre of the box construct a cylinder of Radius \(=\mathbf{2 0}\) and of Height \(=\mathbf{3 0}\).
8. Call Subtract and subtract the cylinder from the box.
9. Click in the Right viewport, with the Move tool, move the box and its hole into the correct position with regard to the plate.
10. With Union, form a union of the plate and box.
11. Click in the Front viewport and construct a triangle of one of the webs attached between the plate and the box. With Extrude, extrude the triangle to a height of \(\mathbf{1 0}\). With the Mirror tool, mirror the web to the other side of the box.
12. Click in the Right viewport and with the Move tool, move the two webs into their correct position between the box and plate. Then, with Union, form a union between the webs and the 3D model.
13. In the Right viewport, construct the other two webs and in the Front viewport, move, mirror and union the webs as in steps \(\mathbf{1 1}\) and \(\mathbf{1 2}\).

Fig. 13.9 shows the resulting four-viewport scene.


Fig. 13.9 First example - Four: Equal viewports

\section*{Second example - Four: Left viewports (Fig. 13.11)}
1. Open a Four: Left viewport layout from the Views/Viewports popup list (Fig. 13.3).
2. Make a new layer of colour Magenta and make that layer current.
3. In the Top viewport construct an outline of the web of the Support Bracket shown in Fig. 13.10. With the Extrude tool, extrude the parts of the web to a height of \(\mathbf{2 0}\).
4. With the Subtract tool, subtract the holes from the web.


Fig. 13.10 Working drawing for the second example
5. In the Top viewport, construct two cylinders central to the extrusion, one of radius 50 and height 30 , the second of radius 40 and height 30 . With the Subtract tool, subtract the smaller cylinder from the larger.
6. Click in the Front viewport and move the cylinders vertically by \(\mathbf{5}\) units. With Union form a union between the cylinders and the web.
7. Still in the Front viewport and at one end of the union, construct two cylinders, the first of radius \(\mathbf{1 0}\) and height \(\mathbf{8 0}\), the second of radius \(\mathbf{1 5}\) and height 80. Subtract the smaller from the larger.
8. With the Mirror tool, mirror the cylinders to the other end of the union.
9. Make the Top viewport current and with the Move tool, move the cylinders to their correct position at the ends of the union. Form a union between all parts on screen.
10. Make the Isometric viewport current. From the View/Visual Styles panel select Conceptual.

Fig. 13.11 shows the result.


Fig. 13.11 Second example - Four: Left viewports

\section*{Third example - Three: Right viewports (Fig. 13.13)}
1. Open the Three: Right viewport layout from the View/Viewports popup list (Fig. 13.3).
2. Make a new layer of colour Green and make that layer current.
3. In the Front viewport (top left-hand), construct a pline outline to the dimensions in Fig. 13.12.
4. Call the Revolve tool from the Home/Modeling panel and revolve the outline through 360 degree.
5. From the View/Visual Styles panel select Conceptual.

The result is shown in Fig. 13.13.


Fig. 13.12 Third example - outline for solid of revolution


Fig. 13.13 Third example - Three: Right viewports

\section*{Notes}
1. When working in viewport layouts, make good use of the Zoom tool, because the viewports are smaller than a single viewport in AutoCAD 2011.
2. As in all other forms of constructing drawings in AutoCAD 2011 frequent toggling of SNAP, ORTHO and GRID will allow speedier and more accurate working.

\section*{REVISION NOTES}
1. Outlines suitable for use when constructing 3D models can be constructed using the 2 D tools such as Line, Arc, Circle and polyline. Such outlines must either be changed to closed polylines or to regions before being incorporated in 3D models.
2. The use of multiple viewports can be of value when constructing 3 D models in that various views of the model appear enabling the operator to check the accuracy of the 3D appearance throughout the construction period.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website: http://books.elsevier.com/companions/978-0-08-096575-8
1. Using the Cylinder, Box, Sphere, Wedge and Fillet tools, together with the Union and Subtract tools and working to any sizes thought suitable, construct the 'head' as shown in the Three: Right viewport as shown in Fig. 13.12 (Fig. 13.14).


Fig. 13.14 Exercise 1
2. Using the tools Sphere, Box, Union and Subtract and working to the dimensions given in Fig. 13.15, construct the 3D solid model as shown in the isometric drawing Fig. 13.16.


Fig. 13.15 Exercise 2 - working drawing


Fig. 13.16 Exercise 2
3. Each link of the chain shown in Fig. 13.17 has been constructed using the tool Extrude and extruding a small circle along an elliptical path. Copies of the link were then made, half
of which were rotated in a Right view and then moved into their position relative to the other links. Working to suitable sizes construct a link and from the link construct the chain as shown.


Fig. 13.17 Exercise 3
4. A two-view orthographic projection of a rotatable lever from a machine is given in Fig. 13.18 together with an isometric drawing of the 3D model constructed to the details given in the drawing Fig. 13.19.
5. Construct the 3D model drawing in a Four: Equal viewport setting.


Fig. 13.18 Exercise 4 - orthographic projection
6. Working in a Three: Left viewport setting, construct a 3D model of the faceplate to the dimensions given in Fig. 13.20. With the Mirror tool, mirror the model to obtain


Fig. 13.19 Exercise 4
an opposite facing model. In the Isometric viewport call the Hide tool (Fig. 13.21).


Fig. 13.20 Exercise 5 - dimensions

Fig. 13.21 Exercise 5


\section*{Chapter 14}

\section*{The modification of 3D models}

\section*{AIMS OF THIS CHAPTER}

The aims of the chapter are:
1. To demonstrate how 3D models can be saved as blocks for insertion into other drawings via the DesignCenter.
2. To show how a library of 3D models in the form of blocks can be constructed to enable the models to be inserted into other drawings.
3. To give examples of the use of the tools from the Home/Modify panel:

3D Array - Rectangular and Polar 3D arrays;
3D Mirror;
3D Rotate.
4. To give examples of the use of the Helix tool.
5. To give an example of construction involving Dynamic Input.
6. To show how to obtain different views of 3D models in 3D space using the View/ Views/3D Manager and the ViewCube.
7. To give simple examples of surfaces using Extrude.

\section*{Creating 3D model libraries}

In the same way as 2D drawings of parts such as electronics symbols, engineering parts, building symbols and the like can be saved in a file as blocks and then opened into another drawing by dragging the appropriate block drawing from the DesignCenter, so can 3D models.

\section*{First example - inserting 3D blocks (Fig. 14.4)}
1. Construct 3D models of the parts for a lathe milling wheel holder to details as given in Fig. 14.1 each on a layer of different colours.


Fig. 14.1 The components of a lathe milling wheel holder
2. Save each of the 3D models of the parts to file names as given in Fig. 14.1 as blocks using Create from the Insert/Block panel. Save all seven blocks and delete the drawings on screen. Save the drawing with its blocks to a suitable file name (Fig01.dwg).
3. Set up a Four: Equal viewports setting.
4. Open the DesignCenter from the View/Palettes panel (Fig. 14.2) or by pressing the Ctrl and \(\mathbf{2}\) keys of the keyboard.


Fig. 14.2 Calling the DesignCenter from the View/Palettes panel
5. In the DesignCenter click the directory Chap14, followed by another click on Fig04.dwg and yet another click on Blocks. The saved blocks appear as icons in the right-hand area of the DesignCenter.
6. Drag and drop the blocks one by one into one of the viewports on screen. Fig. 14.3 shows the Nut block ready to be dragged into the Right viewport. As the blocks are dropped on screen, they will need moving into their correct positions in suitable viewports using the Move tool from the Home/Modify panel.


Fig. 14.3 First example - inserting 3D blocks
7. Using the Move tool, move the individual 3D models into their final places on screen and shade the Isometric viewport using Conceptual shading from the Home/View panel (Fig. 14.4).


Fig. 14.4 First example - inserting 3D blocks

\section*{Notes}
1. It does not matter in which of the four viewports any one of the blocks is dragged and dropped into. The part automatically assumes the view of the viewport.
2. If a block destined for layer \(\mathbf{0}\) is dragged and dropped into the layer Centre (which in our acadiso.dwt is of colour red and of linetype CENTER2), the block will take on the colour (red) and linetype of that layer (CENTER2).
3. In this example, the blocks are 3D models and there is no need to use the Explode tool option.
4. The examples of a Four: Equal viewports screen shown in Figs 14.3 and 14.4 are in first angle. The front view is top right; the end view is top left; the plan is bottom right.

\section*{Second example - a library of fastenings (Fig. 14.6)}
1. Construct 3D models of a number of engineering fastenings. In this example only five have been constructed - a 10 mm round head rivet, a 20 mm countersunk head rivet, a cheese head bolt, a countersunk head


Fig. 14.5 Second example - the five fastenings
bolt and a hexagonal head bolt together with its nut (Fig. 14.5). With the Create tool save each separately as a block, erase the original drawings and save the file to a suitable file name - in this example Fig05.dwg.
2. Open the DesignCenter, click on the Chapter \(\mathbf{1 4}\) directory, followed by a click on Fig05.dwg. Then click again on Blocks in the content list of Fig05.dwg. The five 3D models of fastenings appear as icons in the right-hand side of the DesignCenter (Fig. 14.6).
3. Such blocks of 3D models can be dragged and dropped into position in any engineering drawing where the fastenings are to be included.


Fig. 14.6 Second example - a library of fastenings

\section*{Constructing a 3D model (Fig. 14.9)}

A three-view projection of a pressure head is shown in Fig. 14.7. To construct a 3D model of the head:
1. Select Front from the View/Views panel.
2. Construct the outline to be formed into a solid of revolution (Fig. 14.8) on a layer colour magenta and with the Revolve tool, produce the 3D model of the outline.


Fig. 14.8 Example of constructing a 3D model - outline for solid of revolution

\(\varnothing 90\)


Fig. 14.7 Orthographic drawing for the example of constructing a 3 D model
3. Set the View/Views/Top view and with the Cylinder tool, construct cylinders as follows:
In the centre of the solid - radius \(\mathbf{5 0}\) and height \(\mathbf{5 0}\).
With the same centre - radius \(\mathbf{4 0}\) and height \(\mathbf{4 0}\). Subtract this cylinder from that of radius \(\mathbf{5 0}\).
At the correct centre - radius \(\mathbf{1 0}\) and height \(\mathbf{2 5}\).
At the same centre - radius \(\mathbf{5}\) and height \(\mathbf{2 5}\). Subtract this cylinder from that of radius 10.
4. With the Array tool, form a polar 6 times array of the last two cylinders based on the centre of the 3D model.
5. Set the View/Views/Front view.
6. With the Move tool, move the array and the other two cylinders to their correct positions relative to the solid of revolution so far formed.
7. With the Union tool form a union of the array and other two solids.
8. Set the View/Views/Right view.
9. Construct a cylinder of radius \(\mathbf{3 0}\) and height \(\mathbf{2 5}\) and another of radius \(\mathbf{2 5}\) and height \(\mathbf{6 0}\) central to the lower part of the 3D solid so far formed.
10. Set the View/Views/Top view and with the Move tool move the two cylinders into their correct position.


Fig. 14.9 Example of constructing a 3D model
11. With Union, form a union between the radius \(\mathbf{3 0}\) cylinder and the 3D model and with Subtract, subtract the radius \(\mathbf{2 5}\) cylinder from the 3D model.
12. Click Realistic in the View/Visual Styles panel list.

The result is given in Fig. 14.9.

\section*{Notes}

This 3D model could equally as well have been constructed in a three or four viewports setting. Full Shading has been set on from the Render ribbon, hence the line of shadows.

\section*{The 3D Array tool}

\section*{First example - a Rectangular Array (Fig. 14.12)}


Fig. 14.10 Example 3D Array - the star pline
1. Construct the star-shaped pline on a layer colour green (Fig. 14.10) and extrude it to a height of \(\mathbf{2 0}\).
2. Click on the 3D Array in the Home/Modify panel (Fig. 14.11). The command line shows:


Fig. 14.11 Selecting 3D Array from the Home/Modify panel
Command:_3darray
Select objects: pick the extrusion 1 found
Select objects: right-click
Enter the type of array [Rectangular/Polar] <R>: right-click
Enter the number of rows (---) <1>: enter 3 rightclick
Enter the number of columns (III): enter 3 rightclick
Enter the number of levels (...): enter 4 right-click


Specify the distance between rows (-) : enter 100 right-click
Specify the distance between columns (III): enter 100 right-click
Specify the distance between levels (...): enter 300 right-click
Command:
3. Place the screen in the View/Views/SW Isometric view.
4. Shade using the View/Visual Styles/Shaded with Edges visual style (Fig. 14.12).

\section*{Second example - a Polar Array (Fig. 14.13)}
1. Use the same star-shaped 3D model.
2. Call the 3D Array tool again. The command line shows:

Command:_3darray
Select objects: pick the extrusion 1 found
Select objects: right-click
Enter the type of array [Rectangular/Polar] <R>: enter p (Polar) right-click
Enter number of items in the array: 12
Specify the angle to fill (+=ccw), -=CW) <360>: right-click
Rotate arrayed objects? [Yes/No] <Y>: right-click
Specify center point of array: 235,125
Specify second point on axis of rotation: 300,200
Command:


Fig. 14.13 Second example - a 3D Polar Array
3. Place the screen in the View/Views/SW Isometric view.
4. Shade using the View/Visual Styles Shaded visual style (Fig. 14.13).

\section*{Third example - a Polar Array (Fig. 14.15)}


Fig. 14.14 Third example - a 3D Polar Array - the 3D model to be arrayed
1. Working on a layer of colour red, construct a solid of revolution in the form of an arrow to the dimensions as shown in Fig. 14.14.
2. Click 3D Array in the Home/Modify panel. The command line shows:

Command: _3darray
Select objects: pick the arrow 1 found
Select objects: right-click
Enter the type of array [Rectangular/Polar] \(<\mathrm{R}>\) : enter p right-click
Enter the number of items in the array: enter 12 right-click
Specify the angle to fill (+=CCW, -=CW) <360>: right-click
Rotate arrayed objects? [Yes/No] <Y>: right-click
Specify center point of array: enter 40,170,20 right-click
Specify second point on axis of rotation: enter 60,200,100 right-click

\section*{Command:}
3. Place the array in the 3D Navigate/SW Isometric view and shade to View/Visual Styles/Shades of Gray. The result is shown in Fig. 14.15.


Fig. 14.15 Third example - a 3D Polar Array

\section*{The 3D Mirror tool}

\section*{First example - 3D Mirror (Fig. 14.17)}


Fig. 14.16 First example - 3D Mirror outline of object to be mirrored
1. Working on a layer colour green, construct the outline Fig. 14.16.
2. Extrude the outline to a height of \(\mathbf{2 0}\).
3. Extrude the region to a height of \(\mathbf{5}\) and render. A Conceptual style shading is shown in Fig. 14.17 (left-hand drawing).


Fig. 14.17 First example - 3D Mirror - before and after Mirror
4. Click on 3D Mirror in the 3D Operation sub-menu of the Modify drop-down menu. The command line shows:

Command:_3dmirror
Select objects: pick the extrusion 1 found
Select objects: right-click
Specify first point of mirror plane (3 points) : pick
Specify second point on mirror plane: pick
Specify third point on mirror plane or [Object/
Last/Zaxis/View/XY/YZ/ZX/3points]: enter .xy
right-click of (need Z): enter 1 right-click
Delete source objects? [Yes/No]: <N>: right-click
Command:
The result is shown in the right-hand illustration of Fig. 14.17.

\section*{Second example - 3D Mirror (Fig. 14.19)}
1. Construct a solid of revolution in the shape of a bowl in the 3D Navigate/ Front view working on a layer of colour magenta (Fig. 14.18).


Fig. 14.18 Second example - 3D Mirror - the 3D model
2. Click 3D Mirror in the Home/Modify panel. The command line shows:

Command:_3dmirror
Select objects: pick the bowl 1 found
Select objects: right-click
Specify first point on mirror plane (3 points): pick
Specify second point on mirror plane: pick
Specify third point on mirror plane: enter. xy right-click (need Z): enter 1 right-click
Delete source objects:? [Yes/No]: <N>: right-click Command:

The result is shown in Fig. 14.19.
3. Place in the 3D Navigate/SW Isometric view.
4. Shade using the View/Visual Styles Conceptual visual style (Fig. 14.19).


Fig. 14.19 Second example - 3D Mirror - the result in a front view

\section*{The 3D Rotate tool}

\section*{Example - 3D Rotate (Fig. 14.20)}


Fig. 14.20 Example 3D Rotate
1. Use the same 3D model of a bowl as for the last example. Pick 3D Rotate tool from the Home/Modify panel. The command line shows:

Command:_3drotate
Current positive angle in UCS:
ANGDIR=counterclockwise ANGBASE=0
Select objects: pick the bowl 1 found
Select objects: right-click
Specify base point: pick the centre bottom of the bowl
Specify rotation angle or [Copy/Reference] <0>: enter 60 right-click
command
2. Place in the 3D Navigate/SW Isometric view and in Conceptual shading.

The result is shown in Fig. 14.20.

\section*{The Slice tool}

\section*{First example - Slice (Fig. 14.24)}
1. Construct a 3D model of the rod link device shown in the two-view projection (Fig. 14.21) on a layer colour green.


Fig. 14.21 First example - Slice - the two-view drawing
2. Place the 3D model in the 3D Navigation/Top view.
3. Call the Slice tool from the Home/Solid Editing panel (Fig. 14.22).


Fig. 14.22 The Slice tool icon from the Home/Solid Editing panel

The command line shows:
Command:_slice
Select objects: pick the 3D model
Select objects to slice: right-click
Specify start point of slicing plane or [planar Object/Surface/Zaxis/View/XY/YZ/ZX/3points] <3points>: pick
Specify second point on plane: pick
Specify a point on desired side or [keep Both sides] <Both>: right-click
Command:
Fig. 14.23 shows the picked points.


Fig. 14.23 First example - Slice - the pick points
4. With the Move tool, move the lower half of the sliced model away from the upper half.

Fig. 14.24 First example - Slice
5. Place the 3D model(s) in the ViewCube/Isometric view.
6. Shade in Conceptual visual style. The result is shown in Fig. 14.24.

\section*{Second example - Slice (Fig. 14.25)}
1. On a layer of colour Green, construct the closed pline shown in the left-hand drawing (Fig. 14.25) and with the Revolve tool, form a solid of revolution from the pline.
2. With the Slice tool and working to the same sequence as for the first Slice example, form two halves of the 3D model.
3. Place in View/Views/Visual Styles/X-Ray.


Fig. 14.25 Second example - Slice
The right-hand illustration of Fig. 14.25 shows the result.
4. Place the model in the 3D Navigate/Front view, Zoom to \(\mathbf{1}\) and Move its parts apart.
5. Make a new layer Hatch of colour Magenta and make the layer current.

\section*{Views of 3D models}

Some of the possible viewing positions of a 3D model which can be obtained by using the View/Views 3D Navigation popup list have already been shown in earlier pages. Fig. 14.27 shows the viewing positions of the 3D model of the arrow (Fig. 14.26) using the viewing positions from the 3D Navigation popup.


Fig. 14.26 Views using the View/Views 3D Navigation popup list


Fig. 14.27 Two views of the arrow

\section*{The ViewCube}

Another method of obtaining viewing positions of a 3D model is by using the ViewCube, which can usually be seen at the top-right corner of the AutoCAD 2011 window (Fig. 14.28). The ViewCube can be turned off by entering navvcubedisplay at the command line and entering 1 as a response as follows:

Command: navvcubedisplay
Enter new value for NAVVCUBEDISPLAY <3>: enter 1 right-click


\section*{WCS}

Fig. 14.28 The ViewCube

Entering \(\mathbf{3}\) as a response to navvcubedisplay causes the ViewCube to reappear.

The ViewCube is used as follows:
Click on Top and the Top view of a 3D model appears.
Click on Front and the Front view of a 3D model appears.
And so on. Clicking the arrows at top, bottom or sides of the ViewCube moves a model between views.

A click on the house icon at the top of the ViewCube places a model in the SW Isometric view.

\section*{Using Dynamic Input to construct a helix}

As with all other tools (commands) in AutoCAD 2011 a helix can be formed working with the Dynamic Input (DYN) system. Fig. 14.30 shows the stages \((\mathbf{1}\) to \(\mathbf{5})\) in the construction of the helix in the second example.

Set DYN on with a click on its button in the status bar.
1. Click the Helix tool icon in the Home/Draw panel (Fig. 14.29). The first of the DYN prompts appears. Enter the following at the command line using the down key of the keyboard when necessary.

Command: Helix
Number of turns=10 Twist=CCW
Specify center point of base: enter 95,210
Specify base radius or [Diameter]: enter 55


Fig. 14.29 The Helix tool in the Home/Draw panel
Specify top radius or [Diameter]: enter 35
Specify helix height or [Axis endpoint/Turns/turn Height/tWist]: enter 100
Command:
Fig. 14.30 shows the sequence of DYN tooltips and the completed helix.


Fig. 14.30 Constructing the helix for the second example with the aid of DYN

\section*{3D Surfaces}

As mentioned on page 245 surfaces can be formed using the Extrude tool on lines and polylines. Two examples are given below in Figs 14.39 and 14.41.

\section*{First example - 3D Surface (Fig. 14.39)}
1. In the ViewCube/Top view, on a layer colour Magenta, construct the polyline (Fig. 14.31).


Fig. 14.31 First example - 3D Surface - polyline to be extruded
2. In the ViewCube/Isometric view, call the Extrude tool from the Home/Modeling control and extrude the polyline to a height of \(\mathbf{8 0}\). The result is shown in Fig. 14.32.


Fig. 14.32 First example - 3D Surface

\section*{Second example - 3D Surface (Fig. 14.41)}
1. In the Top view on a layer colour Blue construct the circle (Fig. 14.33) using the Break tool break the circle as shown.


Fig. 14.33 Second example - 3D Surface. The part circle to be extruded
2. In the 3D Manager/SW Isometric view, call the Extrude tool and extrude the part circle to a height of \(\mathbf{8 0}\). Shade in the Conceptual visual style (Fig. 14.34).

The result is shown in Fig. 14.34.


Fig. 14.34 Second example - 3D Surface

\section*{REVISION NOTES}
1. 3 D models can be saved as blocks in a similar manner to the method of saving 2 D drawings as blocks.
2. Libraries can be made up from 3D model drawings.
3. 3D models saved as blocks can be inserted into other drawings via the DesignCenter.
4. Arrays of 3 D model drawings can be constructed in 3D space using the 3D Array tool.
5. 3D models can be mirrored in 3D space using the 3D Mirror tool.
6. 3D models can be rotated in 3D space using the 3D Rotate tool.
7. 3D models can be cut into parts with the Slice tool.
8. Helices can be constructed using the Helix tool.
9. Both the View/View/Navigation popup list and the ViewCube can be used for placing 3D models in different viewing positions in 3D space.
10. The Dynamic Input (DYN) method of construction can be used equally as well when constructing 3D model drawings as when constructing 2D drawings.
11. 3 D surfaces can be formed from polylines or lines with Extrude.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 14.35 shows a Realistic shaded view of the 3D model for this exercise. Fig. 14.36 is a three-view projection of the model. Working to the details given in Fig. 14.36, construct the 3D model.


Fig. 14.35 Exercise 1 - a three-view projection


Fig. 14.36 Exercise 1 - a three-view projection
2. Construct a 3D model drawing of the separating link shown in the two-view projection (Fig. 14.37). With the Slice tool, slice the model into two parts and remove the rear part.

Place the front half in an isometric view using the ViewCube and shade the resulting model.


Fig. 14.37 Exercise 2
3. Working to the dimensions given in the two orthographic projections (Fig. 14.38), and working on two layers of different colours, construct an assembled 3D model of the one part inside the other.

With the Slice tool, slice the resulting 3D model into two equal parts, place in an isometric view. Shade the resulting model in Realistic mode as shown in Fig. 14.39.


Fig. 14.39 Exercise 3


Fig. 14.38 Exercise 3 - orthographic projections
4. Construct a solid of revolution of the jug shown in the orthographic projection (Fig. 14.40). Construct a handle from an extrusion of a circle along a semicircular path. Union the two parts. Place the 3D model in a suitable isometric view and render.


Fig. 14.40 Exercise 4
5. In the Top view on a layer colour blue construct the four polylines (Fig. 14.41). Call the Extrude tool and extrude the polylines to a height of \(\mathbf{8 0}\) and place in the Isometric view. Then call Visual Styles/Shades of Gray shading (Fig. 14.42).


Fig. 14.41 Exercise 5 - outline to be extruded


Fig. 14.42 Exercise 5
6. In 3D Navigation/Right view construct the lines and arc (Fig. 14.43) on a layer colour green. Extrude the lines and arc to a height of 180, place in the SW Isometric view and in the shade style Visual Styles/Realistic (Fig. 14.44).


Fig. 14.43 Exercise 6 - outline to be extruded


Fig. 14.44 Exercise 6

\section*{Chapter 15}

\section*{Rendering}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To construct a template for 3D Modeling to be used as the drawing window for further work in 3D in this book.
2. To introduce the use of the Render tools in producing photographic like images of 3D solid models.
3. To show how to illuminate a 3D solid model to obtain good lighting effects when rendering.
4. To give examples of the rendering of 3 D solid models.
5. To introduce the idea of adding materials to 3D solid models in order to obtain a realistic appearance to a rendering.
6. To demonstrate the use of the forms of shading available using Visual Styles shading.
7. To demonstrate methods of printing rendered 3D solid models.
8. To give an example of the use of a camera.

\section*{Setting up a new 3D template}

In this chapter we will be constructing all 3D model drawings in the acadiso3D.dwt template. The template is based on the 3D Modeling workspace shown on page 258 in Chapter 13.
1. Click the Workspace Switching button and click 3D Modeling from the menu which appears (Fig. 15.1).


Fig. 15.1 Click 3D Modeling in the Workspace Settings menu
2. The AutoCAD window (Fig. 15.2) appears.


Fig. 15.2 The 3D Modeling workspace
3. Set Units to a Precision of \(\mathbf{0}\), Snap to \(\mathbf{5}\) and Grid to 10. Set Limits to 420,297. Zoom to All.
4. In the Options dialog click the Files tab and click Default Template File Name for QNEW followed by a double-click on the file name which appears. This brings up the Select Template dialog, from which the acadiso3d.dwt can be selected. Now when AutoCAD 2011 is opened from the Windows desktop, the acadiso3D.dwt template will open.
5. Set up five layers of different colours named after the colours.
6. Save the template to the name acadiso3D and then enter a suitable description in the Template Definition dialog.

\section*{The Materials Browser palette}

Click Materials Browser in the Render/Materials palette (Fig. 15.3). The Materials Browser palette appears docked at an edge of the AutoCAD window. Drag the palette away from its docked position. Click the arrow to the left of Autodesk Library and in the list which appears, click Brick. A list of brick icons appears in a list to the right of the Autodesk Library list (Fig. 15.4).


Fig. 15.3 The Materials Browser button in the Render/Materials panel

The Materials Browser palette can be docked against either side of the AutoCAD window if needed.

\section*{Applying materials to a model}

Materials can be applied to a 3D model from selection of the icons in the Materials Browser palette. Three examples follow - applying a Brick material, applying a Metal material and applying a Wood material.


Fig. 15.4 The Materials Browser palette showing the Brick list

In the three examples which follow lighting effects are obtained by turning Sun Status on, by clicking the Sun Status icon in the Render/Sun \& Location panel (Fig. 15.5). The command line shows:

Command: _sunstatus
Enter new value for SUNSTATUS <1>: 0 Command:


Fig. 15.5 The Sun Status button in the Render/Sun \% Location panel

When the material has been applied, click Render Region from the sub-panel of the Render/Render panel (Fig. 15.6) and after selecting a window surrounding the model, the model renders (Fig. 15.6).


Fig. 15.6 The Render Region button from the Render/Render panel

\section*{First example - applying a Masonry Brick material} (Fig. 15.7)

Construct the necessary 3D model (Fig. 15.8). In the Material Browser palette, in the Autodesk Library list click Brick. A number of icons appear in the right-hand column of the palette representing different brick types. Pick the Brown Modular icon from the list. The icon appears in the Materials in this document area of the palette. Right-click in the icon and in the menu which appears select Assign to Selection. Click the model. Select Render Region from the Render/Render panel (Fig. 15.6). Window the model. The model renders (Fig. 15.7).

\section*{Second example - applying a Metal material}
(Fig. 15.8)
Construct the necessary 3D model. From the Materials Browser palette click Metals in the Autodesk Library list. Select polished Brass 7 from the metal icons. Click Assign to Selection from the right-click menu in the Materials in this document area and click the model. Then with the Render Region tool render the model (Fig. 15.8).

\section*{Third example - applying a Wood material (Fig. 15.9)}

Construct the necessary 3D model - a board. In the Materials Browser palette click Wood in the Autodesk Library list. Select Pine Coarse from the wood icons . Click Assign to Selection from the right-click menu in the Materials in this document area and click the model. Then with the Render Region tool render the model (Fig. 15.9).


Fig. 15.7 First example - assigning a Masonry Brick material


Fig. 15.8 Second example - assigning a Metal material


Fig. 15.9 Third example - assigning a Wood material

\section*{Modifying an applied material}

If the result of applying a material direct to a model from the selected materials palette is not satisfactory, modifications to the applied material can be made. In the case of the third example, double-click on the chosen material icon in the Materials Browser palette and the Materials Editor palette appears showing the materials in the drawing (Fig. 15.10). Features such as colour of the applied material choosing different texture maps of the material (or materials) applied to a model can be amended as wished from this palette. In this example:
1. Click the arrow to the right of the Image area of the palette and a popup menu appears. Select Wood from this menu and the Texture Editor palette appears showing the material in its Wood appearance. In this palette a number of material changes can be made.


Fig. 15.10 The Materials Browser palette showing the materials in a 3D model and the material Editor Open File dialog
2. In this third example changes have been made to Radial Noise, Axial Noise, Grain Thickness and XYZ Rotation.
3. Clicks in the check boxes named Reflectivity, Transparency, etc. bring up features which can amend the material being edited.

Experimenting with this variety of settings in the Materials Editor palette allows emending the material to be used to the operator's satisfaction.

Note:
Material bitmaps are kept in the folders
C:\Program Files\Common Files\Autodesk\Shared\Materials 2001\} asset library fbm. \(1 \mathbf{1 \backslash M a t s ~ ( o r ~ 2 \backslash M a t s ~ o r ~ 3 \ M a t s ) . ~}\)

\section*{Fourth example - Available Materials in Drawing} (Fig. 15.11)

As an example Fig. 15.11 shows the five of the materials applied to various parts of a 3D model of a hut in a set of fields surrounded by fences. The Materials Browser is shown. A click on a material in the Available Materials in Drawing brings the Materials Editor palette to screen, in which changes can be made to the selected material.


Fig. 15.11 An example of materials applied to parts of a 3D model

\section*{The Render tools and dialogs}

The tool icons and menus in the Render/Render sub-panel are shown in
Fig. 15.12.


Fig. 15.12 The tools and menus in the Render/Render panel

A click in the outward facing arrow at the bottom right-hand corner of the Render/Render panel brings the Advanced Render Settings palette on screen. Note that a click on this arrow if it appears in any panel will bring either a palette or a dialog on screen.

\section*{The Lights tools}

The different forms of lighting from light palettes are shown in Fig. 15.13. There are a large number of different types of lighting available when using AutoCAD 2011, among which those most frequently used are:

Default lighting. Depends on the setting of the set variable.
Point lights shed light in all directions from the position in which the light is placed.
Distant lights send parallel rays of light from their position in the direction chosen by the operator.
Spotlights illuminate as if from a spotlight. The light is in a direction set by the operator and is in the form of a cone, with a 'hotspot' cone giving a brighter spot on the model being lit.
Sun light can be edited as to position.
Sky background and illumination.


Fig. 15.13 Lighting buttons and menus in the Render/Lights panel

A variety of lights of different types in which lights of a selected wattage which can be placed in a lighting scene are available from the Tool
Palettes - All Palettes palette. These are shown in Fig. 15.14.
The set variable LIGHTINGUNITS must be set to \(\mathbf{1}\) or \(\mathbf{2}\) for these lights to function. To set this variable:

Command: enter lightingunits right-click
Enter new value for LIGHTINGUNITS <2>:
Settings are:
0: No lighting units are used and standard (generic) lighting is enabled.
1: American lighting units (foot-candles) are used and photometric lighting is enabled.
2: International lighting units (lux) are used and photometric lighting is enabled.

Note: In the previous examples of rendering, Generic lighting was chosen.

\section*{Placing lights to illuminate a 3D model}

In this book examples of lighting methods shown in examples will only be concerned with the use of Point, Direct and Spot lights, together with Default lighting, except for the example given on page 315, associated with using a camera.


Fig. 15.14 The Lighting tool palettes

Any number of the three types of lights - Point, Distant and Spotlight can be positioned in 3D space as wished by the operator.

In general, good lighting effects can be obtained by placing a Point light high above the object(s) being illuminated, with a Distant light placed pointing towards the object at a distance from the front and above the general height of the object(s) and with a second Distant light pointing towards the object(s) from one side and not as high as the first Distant light. If desired Spotlights can be used either on their own or in conjunction with the other two forms of lighting.

\section*{Setting rendering background colour}

The default background colour for rendering in the acadiso3D template is black by default. In this book, all renderings are shown on a white background in the viewport in which the 3D model drawing was constructed. To set the background to white for renderings:
1. At the command line:

Command: enter view right-click
The View Manager dialog appears (Fig. 15.15). Click Model View in its Views list, followed by a click on the New... button.


Fig. 15.15 The View Manager dialog
2. The New View/Shot Properties dialog (Fig. 15.16) appears. Enter current (or similar) in the View name field. In the Background popup list click Solid. The Background dialog appears (Fig. 15.17).
3. In the Background dialog click in the Color field. The Select Color dialog appears (Fig. 15.18).


Fig. 15.16 The New View/Shot Properties dialog


Fig. 15.17 The Background dialog


Fig. 15.19 The Advanced Render Settings dialog


Fig. 15.18 The View Manager dialog
4. In the Select Color dialog drag the slider as far upwards as possible to change the colour to white \((\mathbf{2 5 5}, \mathbf{2 5 5}, \mathbf{2 5 5})\). Then click the dialog's OK button. The Background dialog reappears showing white in the Color and Preview fields. Click the Background dialog's OK button.
5. The New View/Shot Properties dialog reappears showing current highlighted in the Views list. Click the dialog's OK button.
6. The View Manager dialog reappears. Click the Set Current button, followed by a click on the dialog's OK button (Fig. 15.18).
7. Enter rpref at the command line. The Advanced Render Settings palette appears. In the palette, in the Render Context field click the arrow to the right of Window and in the popup menu which appears click Viewport as the rendering destination (Fig. 15.19).
8. Close the palette and save the screen with the new settings as the template 3dacadiso.dwt. This will ensure renderings are made in the workspace in which the 3D model was constructed to be the same workspace in which renderings are made - on a white background.

\section*{First example - Rendering (Fig. 15.28)}
1. Construct a 3D model of the wing nut shown in the two-view projection (Fig. 15.20).
2. Place the 3D model in the 3D Navigation/Top view, Zoom to \(\mathbf{1}\) and with the Move tool, move the model to the upper part of the AutoCAD drawing area.
3. Click the Point Light tool icon in the Render/Lights panel (Fig. 15.21). The warning window (Fig. 15.22) appears. Click Turn off Default Lighting in the window.


Fig. 15.20 First example - Rendering -two-view projection


Fig. 15.21 The Point Light icon in the Render/Lights panel

\section*{Alighting - Viewport Lighting Mode}

Sunlight and light from point lights, spotlights, and distant lights cannot be displayed in a viewport when the default lighting is turned on. What do you want to do?

\section*{\(\rightarrow\) Turn off the default lighting. (recommended)}
\(\rightarrow\) Keep the default lighting turned on
The default lighting will stay turned on when you add user lights. To see the effect of user lights, turn off the defaut lights manually.

Fig. 15.22 The Lighting - Viewport Lighting Mode warning window
4. A New Point Light icon appears (depending upon the setting of the Light Glyph Setting in the Drafting area of the Options dialog) and the command line shows:

Command:_pointlight
Specify source location \(\langle 0,0,0\rangle\) : enter .xy
right-click of pick centre of model (need Z):
enter 500 right-click
Enter an option to change [Name/Intensity/Status/
shadoW/Attenuation/Color/eXit]
<eXit>:enter n right-click
```

Enter light name <Pointlight1>: enter Point01
right-click
Enter an option to change [Name/Intensity/
Status/shadoW/Attenuation/Color/eXit]
<eXit>: right-click
Command:

```
5. There are several methods by which Distant lights can be called. By selecting Default Distant Light from the Generic Lights palette (Fig. 15.29), with a click on the Distant icon in the Render/Lights panel, by entering distantlight at the command line.

No matter which method is adopted the Lighting - Viewport Lighting Mode dialog (Fig. 15.22) appears. Click Turn off default lighting (recommended). The Lighting - Photometric Distant Lights dialog then appears (Fig. 15.23). Click Allow distant lights in this dialog and the command line shows:
```

Alighting - Photometric Distant Lights

```

Distant lights might result in overexposure when the light unit is photometric. What do you want to do?
\(\rightarrow\) Disable distant lights when the lighting unit is photometric
(recommended)

\section*{Allow distant lights}

Always allow distant lights (not recommended)

Fig. 15.23 The Photometric Distant Lights dialog
Command: _distantlight
Specify light direction \(F R O M<0,0,0>\) or [Vector]: enter .xy right-click
of pick a point below and to the left of the model (need Z): enter 400 right-click
Specify light direction \(T O<1,1,1>:\) enter .xy right-click
of pick a point at the centre of the model (need Z): enter 70 right-click
Enter an option to change [Name/Intensity/Status/ shadoW/Color/eXit] <eXit>: enter n right-click
Enter light name <Distantlight8>: enter Distant01 right-click


Fig. 15.24 The arrow at the bottom of the Render/Lights panel

Enter an option to change [Name/Intensity/Status/ shadoW/Color/eXit] <eXit>: right-click
Command:
6. Place another Distant Light (Distant2) at the front and below the model FROM Z of \(\mathbf{3 0 0}\) and at the same position TO the model.
7. When the model has been rendered if a light requires to be changed in intensity, shadow, position or colour, click the arrow at the bottom righthand corner of the Render/Lights panel (Fig. 15.24) and the Lights in Model palette appears (Fig. 15.25). Double-click a light name in the palette and the Properties palette for the elected light appears into which modifications can be made (Fig. 15.25). Amendments can be made as thought necessary.

\section*{Notes}
1. In this example the Intensity factor has been set at \(\mathbf{0 . 5}\) for lights. This is possible because the lights are close to the model. In larger size models the Intensity factor may have to be set to a higher figure.
2. Before setting the Intensity factor to \(\mathbf{0 . 5}\), Units need setting to \(\mathbf{O O}\) in the Drawing Units dialog (see Chapter 1).


Fig. 15.25 The Lights in Model and Properties palettes

\section*{Assigning a material to the model}
1. Open the Materials Browser palette, with a click on the Materials

Browser icon in the Render/Materials panel. From the Autodesk
Library list in the palette, select Metals. When the icons for the metals
appear in the right-hand column of the palette, double-click Brass Polished. The icon appears in the Materials in this document area of the palette (Fig. 15.26).


Fig. 15.26 The Material Browser and the rendering
2. Click Assign to Selection in the right-click menu of the material in the Materials Browser palette, followed by a click on the model, followed by a left-click when the model has received the assignment.
3. Select Presentation from the Render Presets menu in the sub Render/ Render panel (Fig. 15.27).


Fig. 15.27 Setting the form of rendering to Presentation
4. Render the model (Fig. 15.28) using the Render Region tool from the Render/Render panel and if now satisfied save to a suitable file name (Fig. 15.29).



Fig. 15.29 Second example - Rendering

Fig. 15.28 Second example - Rendering - orthographic projection

\section*{Note}

The limited descriptions of rendering given in these pages do not show the full value of different types of lights, materials and rendering methods. The reader is advised to experiment with the facilities available for rendering.

\section*{Second example - Rendering a 3D model (Fig. 15.29)}
1. Construct 3D models of the two parts of the stand and support given in the projections (Fig. 15.28) with the two parts assembled together.
2. Place the scene in the ViewCube/Top view, Zoom to \(\mathbf{1}\) and add lighting.
3. Add different materials to the parts of the assembly and render the result.

Fig. 15.28 shows the resulting rendering.

\section*{Third example - Rendering (Fig. 15.33)}

Fig. 15.30 is an exploded, rendered 3D model of a pumping device from a machine and Fig. 15.31 is a third angle orthographic projection of the device.


Fig. 15.30 Third example - Rendering

\section*{Free Orbit}

\section*{Example - Free Orbit (Fig. 15.32)}

Place the second example in a Visual Styles/Conceptual shading.
Click the Free Orbit button in the View/Navigate panel (Fig. 15.32). An orbit cursor appears on screen. Moving the cursor under mouse control allows the model on screen to be placed in any desired viewing position. Fig. 15.33 shows an example of a Free Orbit.

Right-click anywhere on screen and a right-click menu appears.

\section*{Producing hardcopy}

Printing or plotting a drawing on screen from AutoCAD 2011 can be carried out from either Model Space or Paper Space.

First example - printing (Fig. 15.36)
This example is of a drawing which has been acted upon by the Visual Styles/Realistic shading mode.



Fig. 15.32 The Free Orbit tool from the View/Navigation panel


Fig. 15.33 Example - Free Orbit
1. With a drawing to be printed or plotted on screen click the Plot tool icon in the Output/Plot panel (Fig. 15.34).
2. The Plot dialog appears (Fig. 15.35). Set the Printer/Plotter to a printer or plotter currently attached to the computer and the Paper Size to a paper size to which the printer/plotter is set.
3. Click the Preview button of the dialog and if the preview is OK (Fig. 15.36), right-click and in the right-click menu which appears, click Plot. The drawing plots producing the necessary 'hardcopy'.


Fig. 15.34 The Plot icon in the Output/Plot panel


Fig. 15.35 The Plot dialog

\section*{Second example - multiple view copy (Fig. 15.37)}

The 3D model to be printed is a Realistic view of a 3D model. To print a multiple view copy:
1. Place the drawing in a Four: Equal viewport setting.
2. Make a new layer vports of colour cyan and make it the current layer.


Fig. 15.36 First example - Print Preview - printing a single copy


Fig. 15.37 Second example - multiple view copy
3. Click the Layout button in the status bar. At the command line:

Command: enter mv (MVIEW) right-click MVIEW
Specify corner of viewport or [ON/OFF/Fit/
Shadeplot/Lock/Object/Polygonal/Restore/
LAyer/2/3/4] <Fit>: enter r (Restore)
right-click
```

Enter viewport configuration name or [?]
<*Active>: right-click
Specify first corner or [Fit] <Fit>: right-click
Command:

```

The drawing appears in Paper Space. The views of the 3D model appear each within a cyan outline in each viewport.
4. Turn layer vports off. The cyan outlines of the viewports disappear.
5. Click the Plot tool icon in the Output/Plot toolbar. Make sure the correct Printer/Plotter and Paper Size settings are selected and click the Preview button of the dialog.
6. If the preview is satisfactory (Fig. 15.37), right-click and from the right-click menu click Plot. The drawing plots to produce the required four-viewport hardcopy.

\section*{Saving and opening 3D model drawings}

3D model drawings are saved and/or opened in the same way as are 2D drawings. To save a drawing click Save As... in the File drop-down menu and save the drawing in the Save Drawing As dialog by entering a drawing file name in the File Name field of the dialog before clicking the Save button. To open a drawing which has been saved click Open... in the File drop-down menu, and in the Select File dialog which appears select a file name from the file list.

There are differences between saving a 2D and a 3D drawing, in that when 3D model drawing is shaded by using a visual style from the Home/View panel, the shading is saved with the drawing.

Camera

\section*{Example - Camera shot in room scene}

This example is of a camera being used in a room in which several chairs, stools and tables have been placed. Start by constructing one of the chairs.

\section*{Constructing one of the chairs}
1. In a Top view construct a polyline from an ellipse (after setting pedit to \(\mathbf{1}\) ), trimmed in half, then offset and formed into a single pline using pedit.
2. Construct a polyline from a similar ellipse, trimmed in half, then formed into a single pline using pedit.
3. Extrude both plines to suitable heights to form the chair frame and its cushion seat.
4. In a Right view, construct plines for the holes through the chair and extrude them to a suitable height and subtract them from the extrusion of the chair frame.
5. Add suitable materials and render the result (Fig. 15.38).


Fig. 15.38 Stages in constructing a chair

\section*{Constructing one of the stools}
1. In the Front view and working to suitable sizes, construct a pline outline for one-quarter of the stool.
2. Extrude the pline to a suitable height.
3. Mirror the extrusion, followed by forming a union of the two mirrored parts.
4. In the Top view, copy the union, rotate the copy through 90 degrees, move it into a position across the original and form a union of the two.
5. Add a cylindrical cushion and render (Fig. 15.39).



After Mirror and Union


Fig. 15.39 Stages in constructing a stool

\section*{Constructing one of the tables}
1. In the Top view and working to suitable sizes, construct a cylinder for the tabletop.
2. Construct two cylinders for the table rail and subtract the smaller from the larger.
3. Construct an ellipse from which a leg can be extruded and copy the extrusion 3 times to form the four legs.
4. In the Front view, move the parts to their correct positions relative to each other.
5. Add suitable materials and render (Fig. 15.40).


Fig. 15.40 A Conceptual shading of one of a table

\section*{Constructing walls, doors and window}

Working to suitable sizes, construct walls, floor, doors and window using the Box tool (Fig. 15.41).


Fig. 15.41 A Conceptual style view of the walls, floor, doors and window

\section*{Using a camera}

\section*{Inserting the furniture}

In the Top view:
1. Insert the chair, copy it 3 times and move the copies to suitable positions.
2. Insert the stool, copy it 3 times and move the copies to suitable positions.
3. Insert the table, copy it 3 times and move the copies to suitable positions (Fig. 15.42).


Fig. 15.42 Top view of the furniture inserted, copies and places in position

\section*{Adding lights}
1. Place a \(59 \mathrm{~W} \mathbf{8 f t}\) fluorescent light central to the room just below the top of the wall height.
2. Place a Point light in the bottom right-hand central corner of the room (Fig. 15.43).


Fig. 15.43 Two lights placed in the room

\section*{Placing a camera}
1. Place the scene in the Front view.
2. Select Create Camera from the Render/Camera panel or from the View drop-down menu (Fig. 15.44). The command line shows:

Command: _camera
Current camera settings: Height=0 Lens
Length \(=80 \mathrm{~mm}\)
Specify camera location: pick a position
Specify target location: drag to end of the cone into position
Enter an option [?/Name/LOcation/Height/Target/
LEns/Clipping/View/eXit] <eXit>: enter
le (LEns) right-click
Specify lens length in \(\mathrm{mm}<80>\) : enter 55
right-click

Enter an option [?/Name/LOcation/Height/Target/
LEns/Clipping/View/eXit] <eXit>: n
Enter name for new camera <Camera2>: right-click
-accepts name (Cameral)
Enter an option [?/Name/LOcation/Height/Target/
LEns/Clipping/View/eXit] <eXit>: right-click Command:

And the camera will be seen in position (Fig. 15.45).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{View} \\
\hline \multicolumn{2}{|l|}{4 Redraw} \\
\hline \multicolumn{2}{|l|}{Reqen} \\
\hline \multicolumn{2}{|l|}{Regen 세} \\
\hline Zoom & , \\
\hline Pan & , \\
\hline (12) SteeringWhee & \\
\hline - ShowMotion & \\
\hline Orbit & , \\
\hline Camera & , \\
\hline Walk and Fly & - \\
\hline Aerial View & \\
\hline Clean Screen & Ctrl+0 \\
\hline Viewports & - \\
\hline Sob Named Views. & \\
\hline 3D Views & , \\
\hline \multicolumn{2}{|l|}{10 Create Camera} \\
\hline Show Annotat & s \\
\hline
\end{tabular}

Fig. 15.44 Selecting Create Camera from the View drop-down menu


Fig. 15.45 The camera in position
3. At the command line enter view.

The View Manager dialog appears (Fig. 15.46). In the Views list click Camera1, followed by a click on the Set Current button, then the OK button. A view of the camera view fills the AutoCAD drawing area.
4. If not satisfied with the scene it can be amended in several ways from the Camera/Swivel command (View drop-down menu) and its rightclick menu (Fig. 15.47).

The camera view (Conceptual) after amendment and before render is shown in Fig. 15.48.


Fig. 15.46 Selecting Camera1 from the View Manager


Fig. 15.47 Selecting Camera/Swivel from the View drop-down menu


Fig. 15.48 The camera view (Conceptual) after amendment and before render

\section*{Other features of this scene}
1. A fair number of materials were attached to objects as shown in the Materials Browser palette associated with the scene (Fig. 15.49).


Fig. 15.49 The materials in the scene as seen in the Materials palette
2. Changing the lens to different lens lengths can make appreciable differences to the scene. One rendering of the same room scene taken with a lens of \(\mathbf{5 5} \mathbf{~ m m}\) is shown in Fig. 15.50 and another with a \(\mathbf{1 0 0} \mathbf{~ m m}\) lens is shown in Fig. 15.51.


Fig. 15.50 The rendering of the scene taken with a 55 mm lens


Fig. 15.51 The rendering of a scene taken with a 100 mm lens camera

\section*{REVISION NOTES}
1. 3D models can be constructed in any of the workspaces - 2D Design \& Annotation, 3D Basics or 3D Modeling. In Part 2 of this book 3D models are constructed in either the 3D Basics or the 3D Modeling workspace.
2. 3D model drawings can be constructed in either a Parallel projection or a Perspective projection layout.
3. Material and light palettes can be selected from the Render panels.
4. Materials can be modified from the Materials Editor palette.
5. In this book lighting of a scene with 3D models is mostly by placing two distant lights in front of and above the models, with one positioned to the left and the other to the right, and a point light above the centre of the scene. The exception is the lighting of the camera scenes on pages 315 .
6. There are many other methods of lighting a scene, in particular using default lighting or sun lighting.
7. Several Render preset methods of rendering are available, from Draft to Presentation.
8. The use of the Orbit tools allows a 3D model to be presented in any position.
9. Plotting or printing of either Model or Layout windows is possible.
10. Hardcopy can be from a single viewport or from multiple viewports. When printing or plotting 3D model drawings Visual Style layouts print as they appear on screen.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. A rendering of an assembled lathe tool holder is shown in Fig. 15.52. The rendering includes different materials for each part of the assembly.

Working to the dimensions given in the parts orthographic drawing (Fig. 15.53), construct a 3D model drawing of the assembled lathe tool holder on several layers of different colours, add lighting and materials and render the model in an isometric view.

Shade with 3D Visual Styles/Hidden and print or plot a ViewCube/Isometric view of the model drawing.


Fig. 15.52 Exercise 1


Fig. 15.53 Exercise 1 - parts drawings
2. Fig. 15.54 is a rendering of a drip tray. Working to the sizes given in Fig. 15.55 , construct a 3 D model drawing of the tray. Add lighting and a suitable material, place the model in an isometric view and render.


Fig. 15.54 Exercise 2


Fig. 15.55 Exercise 2 - two-view projection
3. A three-view drawing of a hanging spindle bearing in third angle orthographic projection is shown in Fig. 15.56. Working to the dimensions in the drawing construct a 3D model drawing of the bearing. Add lighting and a material and render the model.


Fig. 15.56 Exercise 3

\section*{Chapter 16}

\section*{Building drawing}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To show that AutoCAD 2011 is a suitable CAD software package for the construction of building drawings.
2. To show that AutoCAD 2011 is a suitable CAD program for the construction of 3D models of buildings.

\section*{Building drawings}

There are a number of different types of drawings related to the construction of any form of building. In this chapter a fairly typical example of a set of building drawings is shown. There are seven drawings related to the construction of an extension to an existing two-storey house (44 Ridgeway Road). These show:
1. A site plan of the original two-storey house, drawn to a scale of \(\mathbf{1 : 2 0 0}\) (Fig. 16.1).


Fig. 16.1 A site plan
2. A site layout plan of the original house, drawn to a scale of \(\mathbf{1 : 1 0 0}\) (Fig. 16.2).
3. Floor layouts of the original house, drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.3).
4. Views of all four sides of the original house, drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.4).
5. Floor layouts including the proposed extension, drawn to a scale of 1:50 (Fig. 16.5).
6. Views of all four sides of the house including the proposed extension, drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.6).
7. A sectional view through the proposed extension, drawn to a scale of 1:50 (Fig. 16.7).


Fig. 16.2 A site layout plan


Fig. 16.3 Floor layouts drawing of the original house


Fig. 16.4 Views of the original house


Fig. 16.5 Floor layouts drawing of the proposed extension

\section*{Notes}
1. Other types of drawings will be constructed such as drawings showing the details of parts such as doors, windows and floor structures. These are often shown in sectional views.
2. Although the seven drawings related to the proposed extension of the house at 44 Ridgeway Road are shown here as having been constructed on either A3 or A4 layouts, it is common practice to include several types of building drawings on larger sheets such as A1 sheets of a size 820 mm by 594 mm .


Fig. 16.6 Views including the proposed extension


Fig. 16.7 A section through the proposed extension

\section*{Floor layouts}

When constructing floor layout drawings it is advisable to build up a library of block drawings of symbols representing features such as doors and windows. These can then be inserted into layouts from the DesignCenter. A suggested small library of such block symbols is shown in Fig. 16.8.

Details of shapes and dimensions for the first two examples are taken from the drawings of the building and its extension at 44 Ridgeway Road given in Figs 16.2-16.6.


Fig. 16.8 A small library of building symbols

\section*{3D models of buildings}

Details of the first example are taken from Figs 16.2-16.4 on pages 329 and 330.

The following steps describe the construction of a 3D model of 44 Ridgeway Road prior to the extension being added.

\section*{First example - 44 Ridgeway Road - original building}
1. In the Layer Properties Manager palette - Doors (colour red), Roof (colour green), Walls (colour blue), Windows (colour 8) (Fig. 16.9).
2. Set the screen to the ViewCube/Front view (Fig. 16.10).


Fig. 16.10 Set screen to the ViewCube/Front view


Fig. 16.9 First example - the layers on which the model is to be constructed
3. Set the layer Walls current and, working to a scale of \(\mathbf{1 : 5 0}\), construct outlines of the walls. Construct outlines of the bay, windows and doors inside the wall outlines.
4. Extrude the wall, bay, window and door outlines to a height of 1.
5. Subtract the bay, window and door outlines from the wall outlines. The result is shown in Fig. 16.11.


Fig. 16.11 First example - the walls
6. Make the layer Windows current and construct outlines of three of the windows which are of different sizes. Extrude the copings and cills to a height of \(\mathbf{1 . 5}\) and the other parts to a height of \(\mathbf{1}\). Form a union of the main outline, the coping and the cill. The window pane extrusions will have to be subtracted from the union. Fig. 16.12 shows the 3D models of the three windows in a ViewCube/Isometric view.


Fig. 16.12 First example - extrusions of the three sizes of windows
7. Move and copy the windows to their correct positions in the walls.
8. Make the layer Doors current and construct outlines of the doors and extrude to a height of \(\mathbf{1}\).


Fig. 16.13 First example - Realistic view of a 3D model of the chimney


Fig. 16.15 Set screen to ViewCube/Top view

\section*{Assembling the walls}
9. Make layer Chimney current and construct a 3D model of the chimney (Fig. 16.13).
10. Make the layer Roofs current and construct outlines of the roofs (main building and garage) (see Fig. 16.14).


Fig. 16.14 First example - Realistic view of the roofs
11. On the layer Bay construct the bay and its windows.
1. Place the screen in the ViewCube/Top view (Fig. 16.15).
2. Make the layer Walls current and turn off all other layers other than Windows.
3. Place a window around each wall in turn. Move and/or rotate the walls until they are in their correct position relative to each other.
4. Place in the ViewCube/Isometric view and using the Move tool, move the walls into their correct positions relative to each other. Fig. 16.16 shows the walls in position in a ViewCube/Top view.


Fig. 16.16 First example - the four walls in their correct positions relative to each other in a ViewCube/Top view
5. Move the roof into position relative to the walls and move the chimney into position on the roof. Fig. 16.17 shows the resulting 3D model in a ViewCube/Isometric view (Fig. 16.18).


Fig. 16.18 Set screen to a ViewCube/ Isometric view


Fig. 16.17 First example - a Realistic view of the assembled walls, windows, bay, roof and chimney

On layers Walls construct the walls and on layer Windows construct the windows. Fig. 16.19 is a Realistic visual style view of the 3D model as constructed so far.


Fig. 16.19 First example - Realistic view of the original house and garage

\section*{Second example - extension to 44 Ridgeway Road}

Working to a scale of \(\mathbf{1 : 5 0}\) and taking dimensions from the drawing Figs 16.5 and 16.6 and in a manner similar to the method of constructing the 3D model of the original building, add the extension to the original building. Fig. 16.20 shows a Realistic visual style view of the resulting 3D model. In this 3D model floors have been added - a ground and a first storey floor constructed on a new layer Floors of colour yellow. Note the changes in the bay and front door.


Fig. 16.20 Second example - a Realistic view of the building with its extension

\section*{Third example - small building in fields}

Working to a scale of \(\mathbf{1 : 5 0}\) from the dimensions given in Fig. 16.21, construct a 3D model of the hut following the steps given below.

The walls are painted concrete and the roof is corrugated iron.
In the Layer Properties Manager dialog make the new levels as follows:
Walls - colour Blue
Road - colour Red
Roof - colour Red
Windows - Magenta
Fence - colour 8
Field - colour Green

Following the methods used in the construction of the house in the first example, construct the walls, roof, windows and door of the small building in one of the fields. Fig. 16.22 shows a Realistic visual style view of a 3D model of the hut.


Fig. 16.21 Third example - front and end views of the hut


Fig. 16.22 Third example - a Realistic view of a 3D model of the hut

\section*{Constructing the fence, fields and road}
1. Place the screen in a Four: Equal viewports setting.
2. Make the Garden layer current and in the Top viewport, construct an outline of the boundaries to the fields and to the building. Extrude the outline to a height of \(\mathbf{0 . 5}\).
3. Make the Road layer current and in the Top viewport, construct an outline of the road and extrude the outline to a height of \(\mathbf{0 . 5}\).
4. In the Front view, construct a single plank and a post of a fence and copy them a sufficient number of times to surround the four fields leaving gaps for the gates. With the Union tool form a union of all the posts and planks. Fig. 16.23 shows a part of the resulting fence in a Realistic visual style view in the Isometric viewport. With the Union tool form a union of all the planks and posts in the entire fence.
5. While still in the layer Fence, construct gates to the fields.
6. Make the Road layer current and construct an outline of the road. Extrude to a height of \(\mathbf{0 . 5}\).


Fig. 16.23 Third example - part of the fence

\section*{Note}

When constructing each of these features it is advisable to turn off those layers on which other features have been constructed.

Fig. 16.24 shows a Conceptual view of the hut in the fields with the road, fence and gates.


Fig. 16.24 Third example - the completed 3D model

\section*{Completing the second example}

Working in a manner similar to the method used when constructing the roads, garden and fences for the third example, add the paths, garden area
and fences and gates to the building 44 Ridgeway Road with its extension. Fig. 16.24 is a Conceptual visual style view of the resulting 3D model.

\section*{Material attachments and rendering}

\section*{Second example}

The following materials were attached to the various parts of the 3D model (Fig. 16.25). To attach the materials, all layers except the layer on which the objects to which the attachment of a particular material is being made are tuned off, allowing the material in question to be attached only to the elements to which each material is to be attached.


Fig. 16.25 Second example - the completed 3D model

Default: colour 7
Doors: Wood Hickory
Fences: Wood - Spruce
Floors: Wood - Hickory
Garden: Green
Gates: Wood - White
Roofs: Brick - Herringbone
Windows: Wood - White
The 3D model was then rendered with Output Size set to \(\mathbf{1 0 2 4} \times 768\) and Render Preset set to Presentation, with Sun Status turned on. The resulting rendering is shown in Fig. 16.26.

\section*{Third example}

Fig. 16.27 shows the third example after attaching materials and rendering.


Fig. 16.26 Second example - a rendering after attaching materials


Fig. 16.27 Third example - 3D model after attaching materials and rendering

\section*{REVISION NOTES}
1. There are a number of different types of building drawings - site plans, site layout plans, floor layouts, views, sectional views, detail drawings. AutoCAD 2011 is a suitable CAD program to use when constructing building drawings.
2. AutoCAD 2011 is a suitable CAD program for the construction of 3D models of buildings.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website: http://books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 16.28 is a site plan drawn to a scale of \(1: 200\) showing a bungalow to be built in the garden of an existing bungalow. Construct the library of symbols shown in Fig. 16.8 on page 332 and by inserting the symbols from the DesignCenter construct a scale 1:50 drawing of the floor layout plan of the proposed bungalow.


Fig. 16.28 Exercise 1
2. Fig. 16.29 is a site plan of a two-storey house of a building plot. Design and construct to a scale 1:50, a suggested pair of floor layouts for the two floors of the proposed house.


Fig. 16.29 Exercise 2
3. Fig. 16.30 shows a scale \(1: 100\) site plan for the proposed bungalow 4 Caretaker Road. Construct the floor layout for the proposed house shown in Fig. 16.28.


Fig. 16.30 Exercise 3 - site plan
4. Fig. 16.31 shows a building plan of a house in the site plan (Fig. 16.30). Construct a 3D model view of the house making an assumption as to the roofing and the heights connected with your model.


Fig. 16.31 Exercise 3 - a building
5. Fig. 16.32 is a three-view, dimensioned orthographic projection of a house. Fig. 16.33 is a rendering of a 3D model of the house. Construct the 3D model to a scale of 1:50, making estimates of dimensions not given in Fig. 16.32 and render using suitable materials.


Fig. 16.32 Exercise 5 - orthographic views


Fig. 16.33 Exercise 5 - the rendered model
6. Fig. 16.34 is a two-view orthographic projection of a small garage. Fig. 16.35 shows a rendering of a 3D model of the garage. Construct the 3D model of the garage working to a suitable scale.


Fig. 16.34 Exercise 5 - orthographic views


Fig. 16.35 Exercise 5

\section*{Chapter 17}

\section*{Three-dimensional}
space

\section*{AIM OF THIS CHAPTER}

The aim of this chapter is to show in examples the methods of manipulating 3D models in 3D space using tools - the UCS tools from the View/Coordinates panel or from the command line.

\section*{3D space}

So far in this book, when constructing 3D model drawings, they have been constructed on the AutoCAD 2011 coordinate system which is based upon three planes:

The XY Plane - the screen of the computer.
The XZ Plane at right angles to the XY Plane and as if coming towards the operator of the computer.
A third plane ( \(\mathbf{Y Z}\) ) is lying at right angles to the other two planes (Fig. 17.1).


Fig. 17.1 The 3D space planes

In earlier chapters the 3D Navigate drop-down menu and the ViewCube have been described to enable 3D objects which have been constructed on these three planes to be viewed from different viewing positions. Another method of placing the model in 3D space using the Orbit tool has also been described.

\section*{The User Coordinate System (UCS)}

The XY plane is the basic UCS plane, which in terms of the ucs is known as the *WORLD* plane.

The UCS allows the operator to place the AutoCAD coordinate system in any position in 3D space using a variety of UCS tools (commands). Features of the UCS can be called either by entering ucs at the command line or by the selection of tools from the View/Coordinates panel (Fig. 17.2). Note


Fig. 17.2 The View/ Coordinates panel


Fig. 17.3 The drop-down menu from World in the panel
that a click on World in the panel brings a drop-down menu from which other views can be selected (Fig. 17.3).

If ucs is entered at the command line, it shows:
Command: enter ucs right-click
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
And from these prompts selection can be made.

\section*{The variable UCSFOLLOW}

UCS planes can be set from using the methods shown in Figs 17.2 and 17.3 or by entering ucs at the command line. No matter which method is used, the variable UCSFOLLOW must first be set on as follows:

Command: enter ucsfollow right-click
Enter new value for UCSFOLLOW <0>: enter 1
right-click
Command:

The UCS icon

The UCS icon indicates the directions in which the three coordinate axes \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) lie in the AutoCAD drawing. When working in 2D, only the
\(\mathbf{X}\) and \(\mathbf{Y}\) axes are showing, but when the drawing area is in a 3D view all three coordinate arrows are showing, except when the model is in the \(\mathbf{X Y}\) plane. The icon can be turned off as follows:
```

Command: enter ucsicon right-click
Enter an option [ON/OFF/All/Noorigin/ORigin/
Properties] <ON>:

```

To turn the icon off, enter off in response to the prompt line and the icon disappears from the screen.

The appearance of the icon can be changed by entering \(\mathbf{p}\) (Properties) in response to the prompt line. The UCS Icon dialog appears in which changes can be made to the shape, line width and colour of the icon if wished.

\section*{Types of UCS icon}

The shape of the icon can be varied partly when changes are made in the UCS Icon dialog but also according to whether the AutoCAD drawing area is in 2D, 3D or Paper Space (Fig. 17.4).


Fig. 17.4 Types of UCS icon

\section*{Examples of changing planes using the UCS}

\section*{First example - changing UCS planes (Fig. 17.6)}
1. Set UCSFOLLOW to \(\mathbf{1}(\mathrm{ON})\).
2. Make a new layer colour Red and make the layer current. Place the screen in ViewCube/Front and Zoom to 1.
3. Construct the pline outline (Fig. 17.5) and extrude to \(\mathbf{1 2 0}\) high.
4. Place in ViewCube/Isometric view and Zoom to \(\mathbf{1}\).
5. With the Fillet tool, fillet corners to a radius of \(\mathbf{2 0}\).


Fig. 17.5 First example - Changing UCS planes - pline for extrusion
6. At the command line:

Command: enter ucs right-click
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter f (Face) right-click
Select face of solid object: pick the sloping
face - its outline highlights
Enter an option [Next/Xflip/Yflip] <accept>:
right-click
Regenerating model.
Command:
And the 3D model changes its plane so that the sloping face is now on the new UCS plane. Zoom to 1 .


Fig. 17.6 First example - Changing UCS planes
7. On this new UCS, construct four cylinders of radius 7.5 and height -15 (note the minus) and subtract them from the face.
8. Enter ucs at the command line again and right-click to place the model in the *WORLD* UCS.
9. Place four cylinders of the same radius and height into position in the base of the model and subtract them from the model.
10. Place the 3D model in a ViewCube/Isometric view and set in the Home/View/Conceptual visual style (Fig. 17.6).

\section*{Second example - UCS (Fig. 17.9)}

The 3D model for this example is a steam venting valve - a two-view third angle projection of the valve is shown in Fig. 17.7.
1. Make sure that UCSFOLLOW is set to \(\mathbf{1}\).
2. Place in the UCS *WORLD* view. Construct the \(\mathbf{1 2 0}\) square plate at the base of the central portion of the valve. Construct five cylinders for the holes in the plate. Subtract the five cylinders from the base plate.


Fig. 17.7 Second example UCS - The orthographic projection of a steam venting valve
3. Construct the central part of the valve - a filleted \(\mathbf{8 0}\) square extrusion with a central hole.
4. At the command line:

Command: enter ucs right-click
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter x right-click
Specify rotation angle about X axis <90>:
right-click
Command:
and the model assumes a Front view.
5. With the Move tool, move the central portion vertically up by \(\mathbf{1 0}\).
6. With the Copy tool, copy the base up to the top of the central portion.
7. With the Union tool, form a single 3D model of the three parts.
8. Make the layer Construction current.
9. Place the model in the UCS *WORLD* view. Construct the separate top part of the valve - a plate forming a union with a hexagonal plate and with holes matching those of the other parts.
10. Place the drawing in the UCS X view. Move the parts of the top into their correct positions relative to each other. With Union and Subtract complete the part. This will be made easier if the layer \(\mathbf{0}\) is turned off.


Fig. 17.8 Second example UCS - step \(11+\) rendering


Fig. 17.9 Second example UCS - steps 12 and \(13+\) rendering


Fig. 17.10 Second example UCS - pline for the bolt


Fig. 17.11 Second example UCS
11. Turn layer \(\mathbf{0}\) back on and move the top into its correct position relative to the main part of the valve. Then with the Mirror tool, mirror the top to produce the bottom of the assembly (Fig. 17.8).
12. While in the UCS X view construct the three parts of a 3D model of the extrusion to the main body.
13. In the UCS *WORLD* view, move the parts into their correct position relative to each other. Union the two filleted rectangular extrusions and the main body. Subtract the cylinder from the whole (Fig. 17.9).
14. In the UCS X view, construct one of the bolts as shown in Fig. 17.10, forming a solid of revolution from a pline. Then construct a head to the bolt and with Union add it to the screw.
15. With the Copy tool, copy the bolt 7 times to give 8 bolts. With Move, and working in the UCS *WORLD* and \(\mathbf{X}\) views, move the bolts into their correct positions relative to the 3D model.
16. Add suitable lighting and attach materials to all parts of the assembly and render the model.
17. Place the model in the ViewCube/Isometric view.
18. Save the model to a suitable file name.
19. Finally move all the parts away from each other to form an exploded view of the assembly (Fig. 17.11).

\section*{Third example - UCS (Fig. 17.15)}
1. Set UCSFOLLOW to \(\mathbf{1}\).
2. Place the drawing area in the UCS \(\mathbf{X}\) view.
3. Construct the outline (Fig 17.12) and extrude to a height of \(\mathbf{1 2 0}\).
4. Click the \(\mathbf{3}\) Point tool icon in the View/Coordinates panel (Fig. 17.13):

Command: _ucs
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>: _3
Specify new origin point \(<0,0,0\rangle\) : pick point (Fig. 17.14)
Specify point on positive portion of \(X\)-axis: pick point (Fig. 17.14)
Specify point on positive-Y portion of the UCS XY plane <-142,200,0>: enter .xy right-click of pick new origin point (Fig. 17.14) (need Z): enter 1 right-click
Regenerating model
Command:


Fig. 17.12 Third example UCS - outline for 3D model

Fig. 17.14 shows the UCS points and the model regenerates in this new 3 point plane.


Fig. 17.13 The UCS, 3 Point icon in the View/Coordinates panel


Fig. 17.14 Third example UCS - the three UCS points


Fig. 17.15 Third example UCS
5. On the face of the model construct a rectangle \(\mathbf{8 0} \times \mathbf{5 0}\) central to the face of the front of the model, fillet its corners to a radius of \(\mathbf{1 0}\) and extrude to a height of \(\mathbf{1 0}\).
6. Place the model in the ViewCube/Isometric view and fillet the back edges of the second extrusion to a radius of \(\mathbf{1 0}\).
7. Subtract the second extrusion from the first.
8. Add lights and a suitable material, and render the model (Fig. 17.15).

\section*{Fourth example - UCS (Fig. 17.17)}
1. With the last example still on screen, place the model in the UCS *WORLD* view.
2. Call the Rotate tool from the Home/Modify panel and rotate the model through 225 degrees.
3. Click the \(\mathbf{X}\) tool icon in the View/Coordinates panel (Fig. 17.16):


Fig. 17.16 The UCS X tool in the View/Coordinates panel


Fig. 17.17 Fourth example

Command: _ucs
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>: _x
Specify rotation angle about X axis
<90>: right-click
Regenerating model
Command:
4. Render the model in its new UCS plane (Fig. 17.17).

\section*{Saving UCS views}

If a number of different UCS planes are used in connection with the construction of a 3D model, each view obtained can be saved to a different name and recalled when required. To save a UCS plane view in which a 3D model drawing is being constructed enter ucs at the command line:

Current ucs name: *NO NAME*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter s right-click
Enter name to save current UCS or [?]: enter New
View right-click
Regenerating model
Command:
Click the UCS Settings arrow in the View/Coordinates panel and the UCS dialog appears. Click the Named UCSs tab of the dialog and the names of views saved in the drawing appear (Fig. 17.18).


Fig. 17.18 The UCS dialog

\section*{Constructing 2D objects in 3D space}

In previous chapters, there have been examples of 2D objects constructed with the Polyline, Line, Circle and other 2D tools to form the outlines for extrusions and solids of revolution. These outlines have been drawn on planes in the ViewCube settings.

\section*{First example - 2D outlines in 3D space (Fig. 17.21)}
1. Construct a 3point UCS to the following points:
```

Origin point: 80,90
X-axis point: 290,150
Positive-Y point: .xy of 80,90
(need Z): enter 1

```
2. On this 3point UCS construct a 2D drawing of the plate to the dimensions given in Fig. 17.19, using the Polyline, Ellipse and Circle tools.
3. Save the UCS plane in the UCS dialog to the name 3point.
4. Place the drawing area in the ViewCube/Isometric view (Fig. 17.20).
5. Make the layer Red current.
6. With the Region tool form regions of the 6 parts of the drawing and with the Subtract tool, subtract the circles and ellipse from the main outline.
7. Place in the View/Visual Style/Realistic visual style. Extrude the region to a height of \(\mathbf{1 0}\) (Fig. 17.21).


Fig. 17.19 First example - 2D outlines in 3D space


Fig. 17.20 First example-2D outlines in 3D space. The outline in the Isometric view


Fig. 17.21 First example - 2D outlines in 3D space

\section*{Second example-2D outlines in 3D space (Fig. 17.25)}
1. Place the drawing area in the ViewCube/Front view, Zoom to \(\mathbf{1}\) and construct the outline (Fig. 17.22).
2. Extrude the outline to \(\mathbf{1 5 0}\) high.
3. Place in the ViewCube/Isometric view and Zoom to \(\mathbf{1}\).


Fig. 17.22 Second example - 2D outlines in 3D space. Outline to be extruded
4. Click the Face tool icon in the View/Coordinates panel (Fig. 17.23) and place the 3D model in the ucs plane shown in Fig. 17.24, selecting the sloping face of the extrusion for the plane and again Zoom to \(\mathbf{1}\).
5. With the Circle tool draw five circles as shown in Fig. 17.24.
6. Form a region from the five circles and with Union form a union of the regions.
7. Extrude the region to a height of \(\mathbf{- 6 0}\) (note the minus) - higher than the width of the sloping part of the 3D model.
8. Place the model in the ViewCube/Isometric view and subtract the extruded region from the model.
9. With the Fillet tool, fillet the upper corners of the slope of the main extrusion to a radius of \(\mathbf{3 0}\).


Fig. 17.23 The Face icon from the View/Coordinates panel

Fig. 17.25 Second example-2D outlines in 3D space


Fig. 17.24 Second example - 2D outlines in 3D space
10. Place the model into another UCS FACE plane and construct a filleted pline of sides \(\mathbf{8 0}\) and \(\mathbf{5 0}\) and filleted to a radius of 20. Extrude to a height of \(\mathbf{- 6 0}\) and subtract the extrusion from the 3D model.
11. Place in the ViewCube/Isometric view, add lighting and a material.

The result is shown in Fig. 17.25.

\section*{The Surfaces tools}

The construction of 3D surfaces from lines, arc and plines has been dealt with - see pages 245 to 247 and 286 to 287. In this chapter examples of 3D surfaces constructed with the tools Edgesurf, Rulesurf and Tabsurf will be described. The tools can be called from the Mesh Modeling/Primitives panel. Fig. 17.26 shows the Tabulated Surface tool icon in the panel. The two icons to the right of that shown are the Ruled Surface and the Edge Surface tools. In this chapter these three surface tools will be called by entering their tool names at the command line.


Fig. 17.26 The Tabulated Surface tool icon in the Mesh Modeling/Primitives

\section*{Surface meshes}

Surface meshes are controlled by the set variables Surftab1 and Surftab2.
These variables are set as follows:
At the command line:
```

Command: enter surftab1 right-click
Enter new value for SURFTAB1 <6>: enter 24
right-click
Command:

```

The Edgesurf tool - Fig. 17.29
1. Make a new layer colour magenta. Make that layer current.
2. Place the drawing area in the View Cube/Right view. Zoom to All.
3. Construct the polyline to the sizes and shape as shown in Fig. 17.27.
4. Place the drawing area in the View Cube/Top view. Zoom to All.
5. Copy the pline to the right by 250.
6. Place the drawing in the ViewCube/Isometric view. Zoom to All.
7. With the Line tool, draw lines between the ends of the two plines using the endpoint osnap (Fig. 17.28). Note that if polylines are drawn they will not be accurate at this stage.
8. Set SURFTAB1 to 32 and SURFTAB2 to 64.
9. At the command line:


Fig. 17.27 Example - Edgesurf - pline outline


Fig. 17.28 Example Edgesurf - adding lines joining the plines
```

Command: enter edgesurf right-click
Current wire frame density: SURFTAB1=32
SURFTAB2=64
Select object l for surface edge: pick one of the
lines (or plines)
Select object 2 for surface edge: pick the next
adjacent line (or pline)
Select object }3\mathrm{ for surface edge: pick the next
adjacent line (or pline)
Select object 4 for surface edge: pick the last
line (or pline)
Command:

```

The result is shown in Fig. 17.29.


Fig. 17.29 Example - Edgesurf


Fig. 17.30 Rulesurf the outline

\section*{The Rulesurf tool - Fig. 17.29}
1. Make a new layer colour blue and make the layer current.
2. In the ViewCube/Front view construct the pline as shown in Fig. 17.30.
3. In the 3D Navigate/Top, Zoom to \(\mathbf{1}\) and copy the pline to a vertical distance of \(\mathbf{1 2 0}\).
4. Place in the 3D Navigate/Southwest Isometric view and Zoom to \(\mathbf{1}\)
5. Set SURFTAB1 to 32.
6. At the command line:


Fig. 17.31 Example Rulesurf

\section*{The Tabsurf tool - Fig. 17.32}
1. Make a new layer of colour red and make the layer current.
2. Set Surftab1 to 2.
3. In the ViewCube/Top view construct a hexagon of edge length \(\mathbf{3 5}\).
4. In the ViewCube/Front view and in the centre of the hexagon construct a pline of height \(\mathbf{1 0 0}\).
5. Place the drawing in the ViewCube/Isometric view.
6. At the command line:

Command: enter tabsurf right-click
Current wire frame density: SURFTAB1=2

Select objects for path curve: pick the hexagon Select object for direction vector: pick the pline Command:

See Fig. 17.32.


Fig. 17.32 Example - Tabsurf

\section*{REVISION NOTES}
1. The UCS tools can be called from the View/Coordinates panel or by entering ucs at the command line.
2. The variable UCSFOLLOW must first be set \(O N\) (to \(\mathbf{1}\) ) before operations of the UCS can be brought into action.
3. There are several types of UCS icon - 2D, 3D and Pspace.
4. The position of the plane in 3D space on which a drawing is being constructed can be varied using tools from the View/Coordinates panel.
5. The planes on which drawings constructed on different planes in 3D space can be saved in the UCS dialog.
6. The tools Edgesurf, Rulesurf and Tabsurf can be used to construct surfaces in addition to surfaces which can be constructed from plines and lines using the Extrude tool.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website: http://books.elsevier.com/companions/978-0-08-096575-8
1. Fig. 17.33 is a rendering of a two-view projection of an angle bracket in which two pins are placed in holes in each of the arms of the bracket. Fig. 17.34 is a two-view projection of the bracket.

Construct a 3D model of the bracket and its pins.

Add lighting to the scene and materials to the parts of the model and render.


Fig. 17.33 Exercise 1 - a rendering


Fig. 17.34 Exercise 1 - details of shape and sizes
2. The two-view projection (Fig. 17.35) shows a stand consisting of two hexagonal prisms. Circular holes have been cut right through each face of the smaller hexagonal prism and rectangular holes with rounded ends have been cut right through the faces of the larger.

Construct a 3D model of the stand. When completed add suitable lighting to the scene. Then add a material to the model and render (Fig. 17.36).


Fig. 17.35 Exercise 2 - details of shapes and sizes


Fig. 17.36 Exercise 2 - a rendering
3. The two-view projection (Fig. 17.37) shows a ducting pipe. Construct a 3D model drawing of the pipe. Place in an SW Isometric view, add lighting to the scene and a material to the model and render.


Fig. 17.37 Exercise 3 - details of shape and sizes
4. A point marking device is shown in two two-view projections (Fig. 17.38). The device is composed of three parts - a base, an arm and a pin. Construct a 3D model of the assembled device and add appropriate materials to each part. Then add lighting to the scene and render in an SW Isometric view (Fig. 17.39).


Fig. 17.38 Exercise 4 - details of shapes and sizes


Fig. 17.39 Exercise 4 - a rendering
5. A rendering of a 3D model drawing of the connecting device shown in the orthographic projection (Fig. 17.40) is given in Fig. 17.41. Construct the 3D model drawing of the device and add a suitable lighting to the scene.

Then place in the ViewCube/Isometric view, add a material to the model and render.


Fig. 17.41 Exercise 5 - a rendering

Fig. 17.40 Exercise 5-two-view drawing
6. A fork connector and its rod are shown in a two-view projection (Fig. 17.42). Construct a 3D model drawing of the connector with its rod in position. Then add lighting to the scene, place in the ViewCube/Isometric viewing position, add materials to the model and render.


Fig. 17.42 Exercise 6
7. An orthographic projection of the parts of a lathe steady is given in Fig. 17.43. From the dimensions shown in the drawing, construct an assembled 3D model of the lathe steady.

When the 3D model has been completed, add suitable lighting and materials and render the model (Fig. 17.44).


Fig. 17.43 Exercise 7 - details


Fig. 17.44 Exercise 7 - a rendering
8. Construct suitable polylines to sizes of your own discretion in order to form the two surfaces to form the box shape shown in Fig. 17.45 with the aid of the Rulesurf tool. Add lighting and a material and render the surfaces so formed. Construct another three Edgesurf surfaces to form a lid for the box. Place the surface in a position above the box, add a material and render (Fig. 17.46).


Fig. 17.45 Exercise 8 - the box


Fig. 17.46 Exercise 8 - the box and its lid
9. Fig. 17.47 shows a polyline for each of the 4 objects from which the surface shown in Fig. 17.48 was obtained. Construct the surface and shade in Shades of Gray.


Fig. 17.47 Exercise 9 - one of the polylines from which the surface was obtained


Fig. 17.48 Exercise 9
10. The surface model for this exercise was constructed from three Edgesurf surfaces working to the suggested objects for the surface as shown in Fig. 17.49. The sizes of the outlines of the objects in each case are left to your discretion. Fig. 17.50 shows the completed surface model. Fig. 17.51 shows the three surfaces of the model separated from each other.


Fig. 17.49 Outlines for the three surfaces


Fig. 17.50 Exercise 10


Fig. 17.51 The three surfaces
11. Fig. 17.52 shows in a View Block/Isometric view a semicircle of radius \(\mathbf{2 5}\) constructed in the View Cube/Top view on a layer of colour Magenta with a semicircle of radius 75 constructed on the View Block/Front view with its left-hand end centred on the semicircle. Fig. 17.53 shows a surface constructed from the two semicircles in a Visual Styles/Realistic mode.


Fig. 17.52 Exercise 11 - the circle and semicircle


Fig. 17.53 Exercise 11

\title{
Chapter 18 \\ \\ Editing 3D solid \\ \\ Editing 3D solid models
}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce the use of tools from the Solid Editing panel.
2. To show examples of a variety of 3D solid models.

\section*{The Solid Editing tools}

The Solid Editing tools can be selected from the Home/Solid Editing panel (Fig. 18.1).


Fig. 18.1 The Home/Solid Editing panel
Examples of the results of using some of the Solid Editing tools are shown in this chapter. These tools are of value if the design of a 3D solid model requires to be changed (edited), although some have a value in constructing parts of 3D solids which cannot easily be constructed using other tools.

\section*{First example - Extrude faces tool (Fig. 18.3)}
1. Set ISOLINES to 24.
2. In a ViewCube/Right view, construct a cylinder of radius \(\mathbf{3 0}\) and height \(\mathbf{3 0}\) (Fig. 18.3).
3. In a ViewCube/Front view, construct the pline (Fig. 18.2). Mirror the pline to the other end of the cylinder.

Fig. 18.3 First example - Extrude faces tool



Fig. 18.2 First example - Extrude faces tool - first stages
4. In a ViewCube/Top view, move the pline to lie central to the cylinder.
5. Place the screen in a ViewCube/Isometric view.
6. Click the Extrude faces tool icon in the Home/Solid Editing panel (Fig. 18.1). The command line shows:

Command: _solidedit
Solids editing automatic checking: SOLIDCHECK=1
Enter a solids editing option [Face/Edge/Body/ Undo/eXit] <eXit>: _face
Enter a face editing option
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/ coLor/mAterial/Undo/eXit] <eXit>: _extrude
Select faces or [Undo/Remove]: pick the cylinder 2 faces found.
Select faces or [Undo/Remove/ALL]: enter r rightclick
Remove faces or [Undo/Add/ALL]: right-click
Specify height of extrusion or [Path]: enter p (Path)right-click
Select extrusion path: pick the left-hand path pline
Solid validation started.
Solid validation completed.
Enter a face editing option [Extrude/Move/Rotate/ Offset/Taper/Delete/Copy/coLor/mAterial/Undo/ eXit] <eXit>: right-click
Command:
7. Repeat the operation using the pline at the other end of the cylinder as a path.
8. Add lights and a material and render the 3D model (Fig. 18.3).


Fig. 18.4 Second example - Extrude faces tool - pline for path

\section*{Note}

Note the prompt line which includes the statement SOLIDCHECK=1. If the variable SOLIDCHECK is set on (to \(\mathbf{1}\) ) the prompt lines include the lines SOLIDCHECK=1, Solid validation started and Solid validation completed. If set to \(\mathbf{0}\) these two lines do not show.

\section*{Second example - Extrude faces tool (Fig. 18.5)}
1. Construct a hexagonal extrusion just \(\mathbf{1}\) unit high in the ViewCube/Top.
2. Change to the ViewCube/Front and construct the curved pline (Fig. 18.4).
3. Back in the Top view, move the pline to lie central to the extrusion.
4. Place in the ViewCube/Isometric view and extrude the top face of the extrusion along the path of the curved pline.
5. Add lighting and a material to the model and render (Fig. 18.5).

\section*{Note}

This example shows that a face of a 3D solid model can be extruded along any suitable path curve. If the polygon on which the extrusion had been based had been turned into a region, no extrusion could have taken place. The polygon had to be extruded to give a face to a 3D solid.


Fig. 18.5 Second example - Extrude faces tool

\section*{Third example - Move faces tool (Fig. 18.6)}
1. Construct the 3D solid drawing shown in the left-hand drawing of Fig. 18.6 from three boxes which have been united using the Union tool.
2. Click on the Move faces tool in the Home/Solid Editing panel (see Fig. 18.1). The command line shows:

Command: _solidedit
[prompts] _face
Enter a face editing option
[prompts]: _move
Select faces or [Undo/Remove]: pick the model face 4 face found.
Select faces or [Undo/Remove/ALL]: right-click
Specify a base point or displacement: pick
Specify a second point of displacement: pick
[further prompts]:
And the picked face is moved - right-hand drawing of Fig. 18.6.


Before
Move Faces


After
Move Faces

Fig. 18.6 Third example - Solid, Move faces tool

\section*{Fourth example - Offset faces (Fig. 18.7)}
1. Construct the 3D solid drawing shown in the left-hand drawing of Fig. 18.7 from a hexagonal extrusion and a cylinder which have been united using the Union tool.


Fig. 18.7 Fourth example - Offset faces tool
2. Click on the Offset faces tool icon in the Home/Solid Editing panel (Fig. 18.1). The command line shows:

Command:_solidedit [prompts]:_face
[prompts]
[prompts]:_offset
Select faces or [Undo/Remove]: pick the bottom face of the 3D model 2 faces found.
Select faces or [Undo/Remove/All]: enter r rightclick
Select faces or [Undo/Remove/All]: pick
highlighted faces other than the bottom face 2 faces found, 1 removed
Select faces or [Undo/Remove/All]: right-click Specify the offset distance: enter 30 right-click
3. Repeat, offsetting the upper face of the cylinder by \(\mathbf{5 0}\) and the righthand face of the lower extrusion by 15.

The results are shown in Fig. 18.9.

\section*{Fifth example - Taper faces tool (Fig. 18.8)}
1. Construct the 3D model as in the left-hand drawing of Fig. 18.8. Place in ViewCube/Isometric view.


Before Taper Faces


After Taper Faces

Fig. 18.8 Fifth example - Taper faces tool
2. Call Taper faces. The command line shows:

Command:_solidedit
[prompts]:_face
[prompts]
[prompts]:_taper
Select faces or [Undo/Remove]: pick the upper face of the base 2 faces found.
Select faces or [Undo/Remove/All]: enter r rightclick
Select faces or [Undo/Remove/All]: pick highlighted faces other than the upper face 2 faces found, 1 removed
Select faces or [Undo/Remove/All]: right-click
Specify the base point: pick a point on left-hand edge of the face
Specify another point along the axis of tapering: pick a point on the right-hand edge of the face
Specify the taper angle: enter 10 right-click

And the selected face tapers as indicated in the right-hand drawing of Fig. 18.8.

\section*{Sixth example - Copy faces tool (Fig. 18.10)}
1. Construct a 3D model to the sizes as given in Fig. 18.9.


Fig. 18.9 Sixth example - Copy Faces tool - details of the 3D solid model
2. Click on the Copy faces tool in the Home/Solid Editing panel (Fig. 18.1). The command line shows:

Command:_solidedit
[prompts]:_face
[prompts]
[prompts]:_copy
Select faces or [Undo/Remove]: pick the upper face of the solid model 2 faces found.
Select faces or [Undo/Remove/All]: enter r rightclick
Select faces or [Undo/Remove/All]: pick highlighted face not to be copied 2 faces found, 1 removed Select faces or [Undo/Remove/All]: right-click
Specify a base point or displacement: pick anywhere on the highlighted face
Specify a second point of displacement: pick a point some 50 units above the face
3. Add lights and a material to the 3D model and its copied face and render (Fig. 18.10).


Fig. 18.10 Sixth example - Copy faces tool

\section*{Seventh example - Color faces tool (Fig. 18.12)}
1. Construct a 3D model of the wheel to the sizes as shown in Fig. 18.11.


Fig. 18.11 Seventh example - Color faces tool - details of the 3D model
2. Click the Color faces tool icon in the Home/Solid Editing panel (Fig. 18.1). The command line shows:

Command:_solidedit
[prompts]:_face
```

[prompts]
[prompts]:_color
Select faces or [Undo/Remove]: pick the inner face
of the wheel 2 faces found
Select faces or [Undo/Remove/All]: enter r right-
click
Select faces or [Undo/Remove/All]: pick
highlighted faces other than the required face 2
faces found, 1 removed
Enter new color <ByLayer>: enter 1 (which is red)
right-click

```
3. Add lights and a material to the edited 3D model and render (Fig. 18.12).


Fig. 18.12 Seventh example - Color faces tool

\section*{Examples of more 3D models}

The following 3D models can be constructed in the 3d acadiso.dwt screen. The descriptions of the stages needed to construct them have been reduced from those given in earlier pages, in the hope that readers have already acquired a reasonable skill in the construction of such drawings.

First example (Fig. 18.14)
1. Front view. Construct the three extrusions for the back panel and the two extruding panels to the details given in Fig. 18.13.


Fig. 18.13 First example - 3D models - details of sizes and shapes


Fig. 18.14 First example - 3D models
2. Top view. Move the two panels to the front of the body and union the three extrusions. Construct the extrusions for the projecting parts holding the pin.
3. Front view. Move the two extrusions into position and union them to the back.
4. Top view. Construct two cylinders for the pin and its head.
5. Top view. Move the head to the pin and union the two cylinders.
6. Front view. Move the pin into its position in the holder. Add lights and materials.
7. Isometric view. Render. Adjust lighting and materials as necessary (Fig. 18.14).

\section*{Second example (Fig. 18.16)}
1. Top. (Fig. 18.15) Construct polyline outlines for the body extrusion and the solids of revolution for the two end parts. Extrude the body and subtract its hole and using the Revolve tool form the two end solids of revolution.
2. Right. Move the two solids of revolution into their correct positions relative to the body and union the three parts. Construct a cylinder for the hole through the model.
3. Front. Move the cylinder to its correct position and subtract from the model.
4. Top. Add lighting and a material.
5. Isometric. Render (Fig. 18.16).


Fig. 18.15 Second example - 3D models dimensions


Fig. 18.16 Second example - 3D models

\section*{Third example (Fig. 18.18)}
1. Front. Construct the three plines needed for the extrusions of each part of the model (details Fig. 18.17). Extrude to the given heights. Subtract the hole from the \(\mathbf{2 0}\) high extrusion.

2. Top. Move the \(\mathbf{6 0}\) extrusion and the \(\mathbf{1 0}\) extrusion into their correct positions relative to the \(\mathbf{2 0}\) extrusion. With Union form a single 3D model from the three extrusions.
3. Add suitable lighting and a material to the model.
4. Isometric. Render (Fig. 18.18).


Fig. 18.18 Third example - 3D models

\section*{Fourth example (Fig. 18.19)}
1. Front. Construct the polyline - left-hand drawing of Fig. 18.19.


Fig. 18.19 Fourth example - 3D models
2. With the Revolve tool from the Home/3D Modeling panel construct a solid of revolution from the pline.
3. Top. Add suitable lighting a coloured glass material.
4. Isometric. Render - right-hand illustration of Fig. 18.19.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8
1. Working to the shapes and dimensions as given in the orthographic projection of Fig. 18.20, construct the exploded 3D model as shown in Fig. 18.21. When the model has been constructed add suitable lighting and apply materials, followed by rendering.


Fig. 18.20 Exercise 1 - orthographic projection


Fig. 18.21 Exercise 1 - rendered 3D model
2. Working to the dimensions given in the orthographic projections of the three parts of this 3D model (Fig. 18.22), construct the assembled as shown in the rendered 3D model (Fig. 18.23). Add suitable lighting and materials, place in one of the isometric viewing position and render the model.


Fig. 18.22 Exercise 2 - details of shapes and sizes


Fig. 18.23 Exercise 2
3. Construct the 3D model shown in the rendering (Fig. 18.24) from the details given in the parts drawing (Fig. 18.25).


Fig. 18.24 Exercise 3
4. A more difficult exercise.

A rendered 3D model of the parts of an assembly is shown in Fig. 18.26.


Fig. 18.25 Exercise 3 - the parts drawing


Fig. 18.26 Exercise 4 - first orthographic projection

Working to the details given in the three orthographic projections (Figs 18.26-18.28), construct the two parts of the 3D model, place them in suitable positions relative to each other, add lighting and materials and render the model (Fig. 18.29).


Fig. 18.27 Exercise 4 - third orthographic projections


Fig. 18.29 Exercise 4

\section*{Chapter 19}

\section*{Other features of 3D} modeling

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To give a further example of placing raster images in an AutoCAD drawing.
2. To give examples of methods of printing or plotting not given in previous chapters.
3. To give examples of polygonal viewports.

\section*{Raster images in AutoCAD drawings}

\section*{Example - Raster image in a drawing (Fig. 19.5)}

This example shows the raster file Fig05.bmp of the 3D model constructed to the details given in Fig. 19.1.


Fig. 19.1 Raster image in a drawing - drawings into which file is to be inserted

Raster images are graphics images in files with file names ending with the extensions *.bmp, *.pcx, *.tif and the like. The types of graphics files which can be inserted into AutoCAD drawings can be seen by first clicking on the External References Palette icon in the View/Palettes panel (Fig. 19.2).


Fig. 19.3 The External References palette


Fig. 19.2 Selecting External Reference Palette from the View/Palettes panel

Then selecting Attach Image... from the popup menu brought down with a click on the left-hand icon at the top of the palette which brings the Select Image File dialog (Fig. 19.3) which brings the Select Reference File dialog on screen (Fig. 19.4).

In the dialog select the required raster file (in this example Fig05.bmp) and click the Open button. The Attach Image dialog appears showing


Fig. 19.4 Raster image in a drawing - the Select Reference File and Attach Image dialogs
the selected raster image. If satisfied click the OK button. The dialog disappears and the command line shows:

Command: _IMAGEATTACH
Specify insertion point \(<0,0>: ~ p i c k\)
Base image size: Width: 1.000000, Height:
1.041958, Millimeters

Specify scale factor <1>: enter 60 right-click Command :

And the image is attached on screen at the picked position.

\section*{How to produce a raster image}
1. Construct the 3D model to the shapes and sizes given in Fig. 19.1 working in four layers, each of a different colour.
2. Place in the ViewCube/Isometric view.
3. Shade the 3D model in Realistic visual style.
4. Zoom the shaded model to a suitable size and press the Print Scr key of the keyboard.
5. Open the Windows Paint application and click Edit in the menu bar, followed by another click on Paste in the drop-down menu. The whole AutoCAD screen which includes the shaded 3D assembled model appears.
6. Click the Select tool icon in the toolbar of Paint and window the 3D model. Then click Copy in the Edit drop-down menu.
7. Click New in the File drop-down menu, followed by a click on No in the warning window which appears.
8. Click Paste in the Edit drop-down menu. The shaded 3D model appears. Click Save As... from the File drop-down menu and save the bitmap to a suitable file name - in this example Fig05.bmp.
9. Open the orthographic projection drawing (Fig. 19.1) in AutoCAD.
10. Following the details given on page 386 attach Fig05.bmp to the drawing at a suitable position (Fig. 19.5).


Fig. 19.5 Example - Raster image in a drawing

\section*{Notes}
1. It will normally be necessary to enter a scale in response to the prompt lines, otherwise the raster image may appear very small on screen. If it does it can be zoomed anyway.
2. Place the image in position in the drawing area. In Fig. 19.5 the orthographic projections have been placed within a margin and a title block has been added.

Hardcopy (prints or plots on paper) from a variety of different types of AutoCAD drawings of 3D models can be obtained. Some of this variety has already been shown in Chapter 15.

\section*{Printing/Plotting}

\section*{First example - Printing/Plotting (Fig. 19.10)}

If an attempt is made to print a multiple viewport screen in Model Space with all viewport drawings appearing in the plot, only the current viewport will be printed. To print or plot all viewports:
1. Open a four-viewport screen of the assembled 3D model shown in the first example (Fig. 19.5).
2. Make a new layer vports of colour green. Make this layer current.
3. Click the MODEL button in the status bar (Fig. 19.6). The Page Setup Manager dialog appears (Fig. 19.7). Click its Modify... button and the Page Setup - Layout1 dialog appears (Fig. 19.8).


Fig. 19.6 First example - the MODEL button in the status bar
4. Make settings as shown and click the dialog's OK button, the Page

Setup Manager dialog reappears showing the new settings. Click its Close button. The current viewport appears.
5. Erase the green outline and the viewport is erased.
6. At the command line:

Command: enter mv MVIEW


Fig. 19.7 The Page Setup Manager dialog


Fig. 19.8 The Page Setup - Layout1 dialog
```

Specify corner of viewport or
[ON/OFF/Fit/Shadeplot/Lock/Object/Polygonal/
Restore/LAyer/2/3/4] <Fit>: enter r right-click
Enter viewport configuration name or [?]
<*Active>: right-click
Specify first corner or [Fit] <Fit>: right-
click
Command:

```
7. Turn layer vports off.
8. Click the PAPER button (note it changes from MODEL) and the current viewport changes to a model view. In each viewport in turn change the settings from the 3D Navigation drop-down to Front, Top, Right and SW isometric. Click the MODEL button. It changes to PAPER and the screen reverts to Pspace.
9. Click the Plot tool icon in the Quick Access bar (Fig. 19.9). A Plot dialog appears.


Fig. 19.9 The Plot tool icon in the Quick Access toolbar
10. Check in the dialog that the settings for the printer/plotter is correct and the paper size is also correct.
11. Click the Preview button. The full preview of the plot appears (Fig. 19.10).
12. Right-click anywhere in the drawing and click on Plot in the rightclick menu which then appears.
13. The drawing plots (or prints).

\section*{Second example - Printing/Plotting (Fig. 19.11)}
1. Open the orthographic drawing with its raster image (Fig. 19.5).
2. While still in Model Space click the Plot tool icon. The Plot dialog appears. Check that the required printer/plotter and paper size have been chosen.
3. Click the Preview button.


Fig. 19.10 First example - Printing/Plotting
4. If satisfied with the preview (Fig. 19.11), right-click and in the menu which appears click the name Plot. The drawing plots.


Fig. 19.11 Second example - Printing/Plotting

\section*{Third example - Printing/Plotting (Fig. 19.12)}
1. Open the 3D model drawing of the assembly shown in Fig. 19.10 in a single ViewCube/Isometric view.
2. While in MSpace, click the Plot tool icon. The Plot dialog appears.
3. Check that the plotter device and sheet sizes are correct. Click the Preview button.
4. If satisfied with the preview (Fig. 19.12), right-click and click on Plot in the menu which appears. The drawing plots.


Fig. 19.12 Third example - Printing/Plotting

\section*{Fourth example - Printing/Plotting (Fig. 19.13)}

Fig. 19.13 shows a Plot Preview of the 3D solid model (Fig. 18.29).

\section*{Polygonal viewports (Fig. 19.12)}

The example to illustrate the construction of polygonal viewports is based upon Exercise 6. When the 3D model for this exercise has been completed in Model Space:
1. Make a new layer vports of colour blue and make it current.
2. Using the same methods as described for the first example of printing/ plotting produce a four-viewport screen of the model in Pspace.


Fig. 19.13 Fourth example - Printing/Plotting
3. Erase the viewport with a click on its bounding line. The outline and its contents are erased.
4. Click the Model button. With a click in each viewport in turn and using the ViewCube settings set viewports in Front, Right, Top and Isometric views, respectively.
5. Zoom each viewport to All.
6. Click the Layout1 button to turn back to PSpace.
7. Enter \(\mathbf{m v}\) at the command line, which shows:

Command: enter mv right-click
MVIEW
[prompts]: enter p (Polygonal) right-click
Specify start point: In the top right viewport pick one corner of a square
Specify next point or [Arc/Close/Length/Undo]: pick next corner for the square
Specify next point or [Arc/Close/Length/Undo]: pick next corner for the square
Specify next point or [Arc/Close/Length/Undo]: enter c (Close)right-click
Regenerating model.
Command:
And a square viewport outline appears in the top right viewport within which is a copy of the model.
8. Repeat in each of the viewports with different shapes of polygonal viewport outlines (Fig. 19.14).


Fig. 19.14 Polygonal viewports - plot preview
9. Click the Model button.
10. In each of the polygonal viewports make a different isometric view.

In the bottom right polygonal viewport change the view using the 3D Orbit tool.
11. Turn the layer vports off. The viewport borders disappear.
12. Click the Plot icon. Make plot settings in the Plot dialog. Click on the

\section*{The Navigation Wheel}

The Navigation Wheel can be called from the View/Navigate panel as shown in Fig. 19.14. The reader is advised to experiment with the Navigation Wheel (Fig. 19.16).


Fig. 19.15 Polygonal viewports - plot preview after vports layer is off


Mini View Object Wheel Mini Tour Building Wheel Mini Full Navigation Wheel

Full Navigation Wheel
Basic Wheels
Go Home
Fit to Window
Restore Original Center
Level Camera
Increase Walk Speed
Decrease Walk Speed
Help...
SteeringWheel Settings...
Close Wheel

Fig. 19.16 The Navigation Wheel

The Mesh tools
Fig. 19.17 shows a series of illustrations showing the actions of the Mesh tools and the three 3D tools - 3dmove, 3dscale and 3drotate. The illustrations show:


Fig. 19.17 Mesh: 3dmove, 3dscale and 3drotate tools
1. A box constructed using the Box tool.
2. The box acted upon by the Smooth Object tool from the Home/Mesh panel.
3. The box acted upon by the Smooth Mesh tool.
4. The box acted upon by the Mesh Refine tool.
5. The Smooth refined box acted upon by the 3dmove tool.
6. The Smooth Refined box acted upon by the 3dscale tool.
7. The Smooth Refined box acted upon by the 3drotate tool.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-0-08-096575-8.
1. Working to the shapes and sizes given in Fig. 19.18, construct an assembled 3D model drawing of the spindle in its two holders, add lighting and apply suitable materials and render (Fig. 19.19).


Fig. 19.18 Exercise 1 - details of shapes and sizes


Fig. 19.19 Exercise 1
2. Fig. 19.20 shows a rendering of the model for this exercise and Fig. 19.21, an orthographic projection, giving shapes and sizes for the
model. Construct the 3D model, add lighting, apply suitable materials and render.


Fig. 19.20 Exercise 2


Fig. 19.21 Exercise 2 - orthographic projection
3. Construct a 3D model drawing to the details given in Fig. 19.22. Add suitable lighting and apply a material, then render as shown in Fig. 19.23.


Fig. 19.22 Exercise 3


Fig. 19.23 Exercise 3 - ViewCube/Isometric view
4. Construct an assembled 3D model drawing working to the details given in Fig. 19.24. When the 3D model drawing has been constructed disassemble the parts as shown in the given exploded isometric drawing (Fig. 19.25).


Fig. 19.24 Exercise 4 - details of shapes and sizes


Fig. 19.25 Exercise 5 - an exploded rendered model
5. Working to the details shown in Fig. 19.26, construct an assembled 3D model, with the parts in their correct positions relative to each other. Then separate the parts as shown in the 3D rendered model drawing (Fig. 19.27). When the 3D model is complete add suitable lighting and materials and render the result.


Fig. 19.26 Exercise 5 - details drawing


Fig. 19.27 Exercise 5 - exploded rendered view
6. Working to the details shown in Fig. 19.28, construct a 3D model of the parts of the wheel with its handle. Two renderings of 3D models of the rotating handle are shown in Fig. 19.29, one with its parts assembled, the other with the parts in an exploded position relative to each other.


Fig. 19.28 Exercise 6 - details drawing


Fig. 19.29 Exercise 6 - renderings

\section*{Chapter 20 \\ Internet tools and Help}

\section*{AIM OF THIS CHAPTER}

The aim of this chapter is to introduce the tools which are available in AutoCAD 2011, which make use of facilities available on the World Wide Web (WWW).

\section*{Emailing drawings}

As with any other files which are composed of data, AutoCAD drawings can be sent by email as attachments. If a problem of security of the drawings is involved they can be encapsulated with a password as the drawings are saved prior to being attached in an email. To encrypt a drawing with a password, click Tools in the Save Drawing As dialog and from the popup list which appears click Security Options... (Fig. 20.1).


Fig. 20.1 Selecting Security Options in the Save Drawing As dialog

Then in the Security Options dialog which appears (Fig. 20.2), enter a password in the Password or phrase to open this drawing field, followed by a click on the OK button. After entering a password click the OK button and enter the password in the Confirm Password dialog which appears.


Fig. 20.2 Entering and confirming a password in the Security Options dialog

The drawing then cannot be opened until the password is entered in the Password dialog which appears when an attempt is made to open the drawing by the person receiving the email (Fig. 20.3).


Fig. 20.3 The Password dialog appearing when a password encrypted drawing is about to be opened
There are many reasons why drawings may require to be password encapsulated in order to protect confidentiality of the contents of drawings.

\section*{Creating a web page (Fig. 20.5)}


Fig. 20.4 The Publish to Web tool in the File drop-down menu

To create a web page which includes AutoCAD drawings first left-click Publish to Web... in the File drop-down menu (Fig. 20.4).

A series of Publish to Web dialogs appear, some of which are shown here in Figs 20.5-20.7. After making entries in the dialogs which come on screen after each Next button is clicked, the resulting web page such as that shown in Fig. 20.7 will be seen. A double-click in any of the thumbnail views in this web page and another page appears showing the selected drawing in full.


Fig. 20.5 The Publish to Web - Create Web Page dialog

Publish to Web - Select Template


Fig. 20.6 The Publish to Web - Select Template dialog


Fig. 20.7 The Web Publishing - Windows Internet Explorer page

\section*{The eTransmit tool}

At the command line enter eTransmit. The Create Transmittal dialog appears (Fig. 20.8). The transmittal shown in Fig. 20.8 is the drawing on screen at the time the transmittal was made plus a second drawing. Fill in details as necessary. The transmittal is saved as a standard zip file.


Fig. 20.8 The Create Transmittal dialog

\section*{Note}

There is no icon for eTransmit in the ribbon panels.

Fig. 20.9 shows a method of getting help. In this example help on using the Break tool is required. Enter Break in the Search field, followed


Fig. 20.9 Help for Break
by a click on the Click here to access the help button (Fig. 20.9). The AutoCAD 2011 Help web page appears (Fig. 20.10) appears from which the operator can select what he/she considers to be the most appropriate response. In the web page screen, first click the letter \(\mathbf{B}\) in the Command list (Fig. 20.10). A list of commands with the initial \(\mathbf{B}\) appears (Fig. 20.11). Click BREAK in this list. The Help for Break appears (Fig. 20.12).


Fig. 20.10 Click a Commands letter in the AutoCAD 2011 Help web page

B commands
\begin{tabular}{lll} 
BACTION & BCPARAMETER BOX \\
BACTIONBAR & BCYCLEORDER BPARAMETER \\
BACTIONSET & BEDIT & BRIFIKI \\
BACTIONTOOL & BESETTINGS & BRI. \\
BASE & BGRIPSET & BROWSER \\
BASSOCIATE & BHATCH & BSAVE \\
BATTMAN & BLIPMODE & BSAVEAS \\
BATTORDER & BLOCK & BTABLE \\
BAUTHORPALETTE & BLOCKICON & BTESTBLOCK \\
BAUTHORPALETTECLOSE BLOOKUPTABLE BVHIDE \\
BCLOSE & BMPOUT & BVSHOW \\
BCONSTRUCTION & BOUNDARY & BVSTATE
\end{tabular}

Fig. 20.11 Click the command name in the list which appears

\section*{The New Features Workshop}

Click the down pointing arrow to the right of the ? icon and select New Features Workshop from the menu which appears (Fig. 20.13) The New Features Workshop web page appears (Fig. 20.14) from which a selection of new features can be selected.


Fig. 20.12 The AutoCAD 2011 AutoCAD Help web page showing help for Break


Fig. 20.13 Select New Features Workshop from the arrow


Fig. 20.14 The New Features Workshop web page

\section*{Chapter 21}

\section*{Design and AutoCAD 2011}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To describe reasons for using AutoCAD.
2. To describe methods of designing artefacts and the place of AutoCAD in the design process.
3. To list the system requirements for running AutoCAD 2011 software.
4. To list some of the enhancements in AutoCAD 2011.

\section*{Ten reasons for using AutoCAD}
1. A CAD software package such as AutoCAD 2011 can be used to produce any form of technical drawing.
2. Technical drawings can be produced much more speedily using AutoCAD than when working manually - probably as much as 10 times as quickly when used by skilled AutoCAD operators.
3. Drawing with AutoCAD is less tedious than drawing by hand features such as hatching, lettering and adding notes are easier, quicker and indeed more accurate to construct.
4. Drawings or parts of drawings can be moved, copied, scaled, rotated, mirrored and inserted into other drawings without having to redraw.
5. AutoCAD drawings can be saved to a file system without necessarily having to print the drawing. This can save the need for large paper drawing storage areas.
6. The same drawing or part of a drawing need never be drawn twice, because it can be copied or inserted into other drawings with ease. A basic rule when working with AutoCAD is Never draw the same feature twice.
7. New details can be added to drawings or be changed within drawings without having to mechanical erase the old detail.
8. Dimensions can be added to drawings with accuracy reducing the possibility of making errors.
9. Drawings can be plotted or printed to any scale without having to redraw.
10. Drawings can be exchanged between computers and/or emailed around the world without having to physically send the drawing.

\section*{The place of AutoCAD 2011 in designing}

The contents of this book are only designed to help those who have a limited (or no) knowledge and skills of the construction of technical drawings using AutoCAD 2011. However it needs to be recognised that the impact of modern computing on the methods of designing in industry has been immense. Such features such as analysis of stresses, shear forces, bending forces and the like can be carried out more quickly and accurately using computing methods. The storage of data connected with a design and the ability to recover the data speedily are carried out much more easily using computing methods than prior to the introduction of computing.
AutoCAD 2011 can play an important part in the design process, because technical drawings of all types are necessary for achieving well designed artefacts whether it be an engineering component, a machine, a building, an electronics circuit or any other design project.

In particular, 2D drawings which can be constructed in AutoCAD 2011 are still of great value in modern industry. AutoCAD 2011 can also be used to produce excellent and accurate 3D models, which can be rendered to produce photographic like images of a suggested design. Although not dealt with in this book, data from 3D models constructed in AutoCAD 2011 can be taken for use in computer aided machining (CAM).

At all stages in the design process, either (or both) 2D or 3D drawings play an important part in aiding those engaged in designing to assist in assessing the results of their work at various stages. It is in the design process that drawings constructed in AutoCAD 2011 play an important part.

In the simplified design process chart shown in Fig. 21.1 an asterisk (*) has been shown against those features where the use of AutoCAD 2011 can be regarded as being of value.

\section*{A design chart (Fig. 21.1)}

The simplified design chart Fig. 21.1 shows the following features:
Design brief: A design brief is a necessary feature of the design process. It can be in the form of a statement, but it is usually much more. A design


Fig. 21.1 A simplified design chart
brief can be a written report which not only includes a statement made of the problem which the design is assumed to be solving, but includes preliminary notes and drawings describing difficulties which may be encountered in solving the design and may include charts, drawings, costings, etc. to emphasise some of the needs in solving the problem for which the design is being made.
Research: The need to research the various problems which may arise when designing is often much more demanding than the chart (Fig. 21.1) shows. For example the materials being used may require extensive research as to costing, stress analysis, electrical conductivity, difficulties in machining or in constructional techniques and other such features.
Ideas for solving the brief: This is where technical, other drawings and sketches play an important part in designing. It is only after research that designers can ensure the brief will be fulfilled.
Models: These may be constructed models in materials representing the actual materials which have been chosen for the design, but in addition 3D solid model drawings, such as those which can be constructed in AutoCAD 2011, can be of value. Some models may also be made in the materials from which the final design is to be made so as to allow testing of the materials in the design situation.
Chosen solution: This is where the use of drawings constructed in AutoCAD 2011 is of great value. 2D and 3D drawings come into their own here. It is from such drawings that the final design will be manufactured.
Realisation: The design is made. There may be a need to manufacture a number of the designs in order to enable evaluation of the design to be fully assessed.
Evaluation: The manufactured design is tested in situations such as it is liable to be placed in use. Evaluation will include reports and notes which could include drawings with suggestions for amendments to the working drawings from which the design was realised.

\section*{Enhancements in AutoCAD 2011}

AutoCAD 2011 contains many enhancements over previous releases, whether working in a 2D or a 3D workspace. Please note that not all the enhancements in AutoCAD 2011 are described in this introductory book. Among the more important enhancements are the following:
1. When first loaded, an Initial Setup dialog offers a Welcome Screen from which the operator can select from a variety of videos illustrating how different methods of drawing in both 2D and 3D can be used in AutoCAD 2011.
2. The Ribbon has been amended and brought up to date. A new ribbon Hatch Creation from which hatch tools can be chosen when hatching.
3. A new feature - the Navigation Bar has been introduced situated at the right-hand edge of the AutoCAD 2011 window. The tools in this bar are frequently used and can be assessed speedily from the navigation bar.
4. The ViewCube is now available in the 2D Drafting and Annotation workspace.
5. A new workspace 3D Basic has been introduced with its own ribbon showing basic 3D tools in its panels.
6. Any part of a drawing can be made partly transparent using the new tool Transparency in the 2D Drafting and Annotation ribbon from the Properties panel.
7. The buttons in the status bar now include Selection Cycling, Show/ Hide Transparency, 3D Object Snap, Infer Restraints, Isolate Objects and Hardware Acceleration. Some buttons in previous releases are no longer included in the status bar.
8. Two new commands - Chamferedge and Filletedge - allow modifications to chamfers and fillets.
9. 3D materials enhancements. New Materials Browser and Materials Editor palettes. Materials can be selected for assigning to 3D objects or can be dragged on the objects for assigning.
10. A larger number of materials available from several different folders.
11. Materials can be selected from other Autodesk software such as Maya or 3D Studio Max.
12. 3D ribbon reorganised in the 3D Modeling workspace.

\section*{System requirements for running AutoCAD 2011}

Note: There are two editions of AutoCAD 2011 - 32 bit and 64 bit editions.
Operating system: Windows XP Professional, Windows XP Professional ( \(\times 64\) Edition), Windows XP Home Edition, Windows 2000 or Windows Vista 32 bit, Windows Vista 64 bit, Windows 7.
Microsoft Internet Explorer 7.0.
Processor: Pentium III 800 MHz or equivalent.
Ram: At least 128 MB.
Monitor screen: \(1024 \times 768\) VGA with True Colour as a minimum.
Hard disk: A minimum of 300 MB .
Graphics card: An AutoCAD certified graphics card. Details can be found on the web page AutoCAD Certified Hardware XML Database.

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
First edition 2010

Copyright © 2010, Alf Yarwood. Published by Elsevier Ltd. All rights reserved.

The right of Alf Yarwood to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone (+44)(0)1865843830; fax (+44)(0)1865853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material

\section*{Notice}

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

\section*{Library of Congress Cataloging-in-Publication Data}

A catalog record for this book is available from the Library of Congress
ISBN: 978-0-08-096575-8

For information on all Newnes publications
visit our website at www.books.elsevier.com

Typeset by MPS Limited, a Macmillan Company, Chennai, India
www.macmillansolutions.com
Printed and bound in China
\(101112131415 \quad 10987654321\)

\section*{Working together to grow libraries in developing countries}

\author{
www.elsevier.com | www.bookaid.org | www.sabre.org
}

\section*{ELSEVIER \(\underset{\substack{\text { International } \\ \text { BOOK AD }}}{ }\)}

The purpose of writing this book is to produce a text suitable for students in Further and/or Higher Education who are required to learn how to use the computer-aided design (CAD) software package AutoCAD® 2011. Students taking examinations based on CAD will find the contents of the book of great assistance. The book is also suitable for those in industry wishing to learn how to construct technical drawings with the aid of AutoCAD 2011 and those who, having used previous releases of AutoCAD, wish to update their skills to AutoCAD 2011.

The chapters in Part 1 - 2D Design, dealing with two-dimensional (2D) drawing, will also be suitable for those wishing to learn how to use AutoCAD LT 2011, the 2D version of this latest release of AutoCAD.

Many readers using previous releases of AutoCAD will find the book's contents largely suitable for use with those versions, although AutoCAD 2011 has many enhancements over previous releases (some of which are mentioned in Chapter 21).

The contents of the book are basically a graded course of work, consisting of chapters giving explanations and examples of methods of constructions, followed by exercises which allow the reader to practise what has been learned in each chapter. The first 11 chapters are concerned with constructing technical drawing in 2D. These are followed by chapters detailing the construction of 3D solid drawings and rendering them. The final two chapters describe the Internet tools of AutoCAD 2011 and the place of AutoCAD in the design process. The book finishes with two appendices - a list of tools with their abbreviations and a list of some of the set variables upon which AutoCAD 2011 is based.

AutoCAD 2011 is very complex CAD software package. A book of this size cannot possibly cover the complexities of all the methods for constructing 2D and 3D drawings available when working with AutoCAD 2011. However, it is hoped that by the time the reader has worked through the contents of the book, he/she will be sufficiently skilled with methods of producing drawing with the software to be able to go on to more advanced constructions with its use and will have gained an interest in the more advanced possibilities available when using AutoCAD.

\section*{Registered Trademarks}

Autodesk \({ }^{\circledR}\) and AutoCAD® \({ }^{\circledR}\) are registered in the US Patent and Trademark Office by Autodesk Inc.

Windows \({ }^{\circledR}\) is a registered trademark of the Microsoft Corporation.
Alf Yarwood is an Autodesk authorised author and a member of the Autodesk Advanced Developer Network.

0-9, and Symbols
*.bmp, 197
*.dwt, 17
*.dxf, 195
2D coordinates, 15
2D Drafting \& Annotation workspace, 4, 28
2D objects in 3D space, 354
2D outlines for 3D drawings, 229
2P, 38
3D Array tool, 276
3D Basics ribbon, 4, 224
3D Basics ribbon panels, 225
3D coordinates, 15
3D Mirror tool, 278
3D model libraries, 270
3D Modeling, 4, 223, 258, 291
3D models of building, 332
3D Navigate, 236, 242
3D Navigate drop-down menu, 346
3D Navigate/Front view, 279, 282
3D Navigate/SW Isometric view, 277, 280
3D Navigate/Top view, 281
3D Navigation, 247
3D Navigation/Top view, 304
3D Operations sub-menu, 278
3D Rotate tool, 280
3D Space, 346
3D Studio, 199
3D Surface, 286
3D template, 292
3dacadiso.dwt, 291, 304, 377
3dmove tool, 397
3drotate tool, 397
3dscale tools, 397
3P, 38
3point tool, 351
3point UCS, 354

\section*{A}

Abbreviations for dimensions, 136
Abbreviations for Modify tools, 124

Absolute coordinate entry, 33
Acadiso.dwt, 18, 272
Advanced hatching, 173
Advanced Render Settings palette, 300
Aerial View window, 84
Aligned dimensions, 134
All zoom, 82
Allow/Disallow Dynamic UCS, 14
Angular dimensions, 138
Annotate/Dimensions panel, 132, 135
Annotate/Text panel, 146, 148
Annotation panel, 23
Application Status Bar Menu, 15
Applying a Brick material, 296
Applying a Metal material, 296
Applying a Wood material, 297
Applying materials, 293
Arc Length tool, 141
Arc tool, 51
Array dialog, 105
Array tool, 105
Assign to Selection, 295
Assigning materials, 307
Associative hatching, 170
Attach External Reference dialog, 201
Attach Image dialog, 197, 386
Auto-hide icon, 9
AutoCAD-reasons for using, 414
AutoCAD-system requirements, 417
AutoCAD 2011 enhancements, 416
AutoCAD 2011 in designing, 414
AutoCAD Classic workspace, 21, 50
AutoCAD coordinate system, 15
AutoCAD Help web page, 411
AutoCAD Message window, 149
AutoCAD shortcut, 4
AutoCAD SHX fonts, 146
AutoCAD Text Window, 144
AutoCAD window Close button, 30
Autodesk Design Review window, 216

\section*{B}

Background dialog, 303
Block Definition dialog, 179
Block panel, 23
Blocks, 177
Box tool, 238
Break tool, 116
Browse for Drawing File dialog, 187
Building drawing, 327
Buttons, 12, 26

\section*{C}

Calling tools, 50, 97
Camera, 318
Camera lenses, 323
Camera/Swivel tool, 321
Center zoom, 83
Centre lines, 153
Chamfer tool, 121, 242
Changing UCS planes, 349
Check boxes, 13
Check Spelling dialog, 148
Checking spelling, 147
Circle tool, 36
Circle tool icon, 5
Classic workspace, 4
Clipboard, 192
Clipboard panel, 23
Close button of AutoCAD window, 30
Close dialog button, 12
Color Faces tool, 376
Colour Gradient hatching, 171
Command line, 75
Command line dimensions, 136
Command palette, 5, 20
Command prompt, 20
Commandlinehide, 61
Conceptual shading, 278, 280, 298, 321, 338
Cone tool, 239
Coordinate points, 33
Coordinate system, 16
Copy tool, 100, 192
Copy Clip tool, 192
Copy faces tool, 375
Copy Link tool, 192
Copy with base Point, 192
Copying, 192

Counterclockwise, 33
Create Camera tool, 319
Create Sheet Set dialogs, 210
Create tool, 178, 270
Create Transmittal dialog, 409
Creating 3D model libraries, 270
Crossing window, 40,115
Ctrl \(+9,61\)
Cursor hairs, 9
Customize Use Interface dialog, 5, 25
Cylinder tool, 239, 274

\section*{D}

Data exchange format file, 195
Ddedit, 147
Default Distant Lighting, 306
Default lighting, 300
Default rotation, 110
Default Template, 291
Deferred Tangent, 38
Design chart, 415
Design Web Format, 214
DesignCenter, 9, 181, 188, 270
Designing-using AutoCAD, 414
Dgnexport, 202
Dgnimport, 202
Dialogs, 11
Digitiser, 8
Dimension style, 87
Dimension Style Manager, 88
Dimension tolerances, 142
Dimension toolbar, 132
Dimensioning, 66
Dimensions, 153
Dimensions abbreviations, 136
Dimensions, Aligned, 134
Dimensions, Angular, 138
Dimensions drop-down menu, 132
Dimensions from command line, 135
Dimensions, horizontal, 136
Dimensions, Leader, 139
Dimensions, Linear, 133
Dimensions, Radius, 135
Dimensions style, 88
Dimensions Style Manager dialog, 142
Dimensions, Text Edit, 140
Dimensions, vertical, 136

Display menu of Options dialog, 9
Distant light, 300
Double-click, 26
Drafting Settings dialog, 56, 61
Dragging, 26
Draw drop-down menu, 28, 50
Draw panel, 23
Draw toolbar, 22, 180
Drawing templates, 17, 86
Drawing Units dialog, 19, 307
Drop-down menus, 23
Dsviewer, 84
DWF, 214
DXF file, 195
DYN, 60
DYN, 68
Dynamic Input, 14, 50, 60, 225, 245, 284
Dynamic zoom, 83

\section*{E}

Edge Surface tool, 357
Edgesurf tool, 357
Ellipse tool, 53, 160
Emailing drawings, 406
Encapsulated Postscript file, 193
End views, 152
Enhancements in AutoCAD 2011, 416
Entries in command palette, 20
Eps files, 192
Erase tool, 38, 100
eTransmit, 409
Explode tool, 100, 184
Export Data dialog, 193
Extend tool, 119
Extents zoom, 83
External References, 199
External References Palette icon, 386
Extrude, 333
Extrude Faces tool, 371
Extrude tool, 231, 286
Extrude tool, 286

\section*{F}

F3 key, 38
F3 key, 56
F7 key, 56
F9 key, 29

F9 key, 56
Field, 75
File drop-down menu, 193, 407
File password, 406
Fillet tool, 121, 242
First angle projection, 154
Floor layouts, 330, 331
Flyout, 20
Four: Equal viewports, 259, 261, 170, 37
Four: Left viewports, 263
Free Orbit tool, 310
Front view, 152
Full ribbon, 23
Function keys, 14

\section*{G}

Generic lighting, 301
Generic Lights palette, 306
Grid, 18, 286
Grid Display, 14, 56
Grid Display, 56
Grid spacing, 17

\section*{H}

Hatch, 282
Hatch and Gradient dialog, 169
Hatch Creation Boundaries panel, 158, 168
Hatch Creation Properties panel, 168
Hatch Creation ribbon, 156, 168
Hatch Creation/Options panel, 174
Hatch Creation/Pattern panel, 157, 166
Hatch patterns, 166
Hatch tool, 156, 168
Hatching, 155, 165
Hatching, Advanced, 173
Hatching, Associative, 171
Hatching sections, 167
Hatching, Text, 174
Helices, 287
Helix tool, 284
Help, 409
Hidden lines, 153
Home View/Conceptual visual style, 349
Home/Annotation panel, 68
Home/Block panel, 178
Home/Clipboard panel, 192
Home/Create panel, 131, 227, 235, 238, 246

Home/Draw panel, 5, 23, 28, 41, 50, 69, 168, 229, 284
Home/Edit panel, 230, 239
Home/Layers \& View panel, 226
Home/Layers panel, 135, 152
Home/Modeling panel, 243, 248
Home/Modify panel, 38, 71, 100, 184, 243, 271, 275, 277, 280, 352
Home/Solid Editing panel, 218, 282, 370, 376
Home/View panel, 271, 315
Home/View panel, 271
Horizontal dimensions, 136
House plan symbols, 331
House section, 331
House views, 330
Hatch Creation/Properties panel, 157
I
Imperial dimensions, 95, 133
Importing files, 202
Initial Setup, 4
Insert Block panel, 270
Insert Block tool, 180
Insert dialog, 184
Insert drop-down menu, 197
Inserting 3D blocks, 270
Inserting blocks, 179
Inserts, 177
Intensity factor, 307
Isolines, 370
Isometric circle, 160
Isometric drawing, 158
Isometric Snap, 159
Isoplanes, 159
J
Jogged tool, 141
Join tool, 118
L
Layer Properties icon, 226
Layer Properties Manager palette, 91, 227, 332, 336
Layers, 87
Layers panel, 3, 23
Layout1 format, 210
Leader dimensions, 139
Left-click, 26

Library of house plan symbols, 331
Lighting-Viewport Lighting Mode dialog, 305
Lighting buttons, 300
Lightingunits variable, 301
Lights in Model palette, 307
Lights tools, 300
Limits, 18
Limits Imperial, 95
Line tool, 29
Linear dimensions, 133
Lineweight, 92
Loft tool, 248

\section*{M}

Major axis, 53
Materials Open File dialog, 297
Material attachments, 339
Material Browser palette, 293
Materials Browser palette, 308, 322
Materials Editor palette, 298
Maximize ribbon, 23
MDE, 204
Memory stick, 56
Menu Browser dialog, 196
Mesh Modeling/Primitives panel, 357
Mesh tools, 397
Metric dimensions, 133
Microsoft Word, 192
Mimimize ribbon, 23
Minor axis, 53
Mirror tool, 102
Mirrtext variable, 104
Model button, 389
Model Space, 310
Modify Dimension Style dialog, 89
Modify drop-down menu, 278
Modify panel, 23
Modify tool abbreviations, 124
Modify toolbar, 100
Modify tools, 99
Modifying materials, 297
Mouse, 8
Mouse pick button, 8
Mouse return button, 8
Mouse wheel, 8, 86
Move Faces tool, 372
Move icon, 9

Move tool, 109, 271, 281
Multiline Text, 144
Multiline Text, 146
Multiple copy, 101
Multiple Design Environment, 204
Multiple Polyline Edit, 73
Multiple View Plot preview, 314

\section*{N}

Navigation Wheel, 395
Navvcubedisplay variable, 284
New button, 30
New Features Workshop, 410
New Features Workshop web page, 412
New icon, 17, 260
New Point Light icon, 305
New Sheet Set icon, 210
New View/Shot Properties dialog, 303

\section*{0}

Object Snap, 14, 56
Object, 75
Object Linking and Embedding, 192
Object Snap abbreviations, 58
Object Snap icons, 57
Object Snap Tracking, 14
Object zoom, 83
Offset Faces tool, 373
Offset tool, 104
OLE, 192
Open icon, 12
Options dialog, 4, 12, 75, 124, 293, 305
Orbit tool, 346
Ortho, 265
Ortho button, 35
Ortho Mode, 14
Orthographic projection, 152
Osnaps, 134
Outlines and Regions, 230
Output/Plot panel, 312

\section*{P}

Page Setup-Layout1 dialog, 389
Page Setup Manager dialog, 389
PageMaker, 193
Palettes, 9
Pan tool, 85
Panel tabs, 23

Paper button, 391
Paper Space, 18, 310, 315
Password dialog, 406
Pasting, 192
Pedit, 71, 315
Pellipse, 74
Photometric Distant Lights dialog, 306
Pick, 26
Pick box, 9
Pick button of mouse, 8
Placing camera, 319
Placing lights, 301
Plan views, 147
Plines, 41
Plot dialog, 313, 391
Plot Preview, 314, 392
Plot tool, 312
Plot tool icon, 391
Point light, 300, 319
Point Light tool, 304
Polar array, 105
Polar Tracking, 14
Polygon tool, 50, 69
Polygonal viewports, 396
Polyline Edit tool, 71
Polyline tool, 41, 262
Polysolid tool, 227
Popup list, 12, 75
Popup menu, 7
Preview area, 12
Previous zoom, 83
Primary Units dialog, 95
Printing, 310
Printing/plotting, 389
Prompts, 33, 46
Properties palette, 9, 307
Properties panel, 23
Pspace, 393
Publish icon, 214
Publish Job in Progress button, 215
Publish to Web dialog, 407
Purge dialog, 185

\section*{Q}

QNEW, 293
QNEW, 4
Quick Access dialog, 8

Quick Access menu, 55
Quick Access toolbar, 12
Quick Access toolbar, 8, 12, 17, 25, 28, 40, 50
Quick Properties, 14
Quick View Drawings button, 24

\section*{R}

Radio buttons, 13
Radius Dimensions, 135
Raster Images, 197, 386
Realistic style, 334
Realistic visual style, 337
Realtime zoom, 82
Reasons for using AutoCAD, 414
Rectangle tool, 70
Rectangular array, 105
Redo tool, 40
Region tool, 229
Region tool, 355
Regions, 230
Regular polygons, 75
Relative coordinate entry, 33
Render dialogs, 299
Render Materials palette, 293
Render Presets, 339
Render Presets menu, 308
Render Region tool, 295, 309
Render tools, 299
Render/Camera panel, 319
Render/Lights panel, 307
Render/Materials palette, 293
Render/Render panel, 295, 299, 308
Render/Sun \& Location panel, 294
Rendering, 291, 339
Rendering background colour, 302
Return button of mouse, 8
Revolve tool, 235, 273
Ribbon, 23, 28
Ribbon Hatch Creation, 157
Ribbon panels, 23
Right-click, 26
Right-click menus, 26
Rotate tool, 110, 353
Rpref command, 304
Ruled Surface tool, 357
Rulesurf tool, 357, 359

\section*{S}

Save As, 54, 93, 315
Save Drawing As dialog, 54, 94, 315, 406
Save icon, 19
Saving drawings, 54
Scale tool, 111
Scale zoom, 83
Scales, 328
Section hatching, 156
Sectional view, 156, 167
Security Options dialog, 406
Select Color dialog, 92, 298, 303
Select File dialog, 12, 315
Select Image File dialog, 197, 386
Select Reference File dialog, 197, 201
Select template dialog, 17, 30
Selecting tools, 11
Selection windows, 124
Set Variables, 74
Sheet Set Manager palette, 211, 220
Sheet Sets, 209
Shortcutmenu variable, 87, 91
Show/Hide Lineweight, 14
Show Menu bar, 28, 50
Show/Hide Lineweight, 14
SHX fonts, 146
Single Line Text, 144
Site layout plan, 329
Site plan, 328
Sky background, 300
Slice tool, 280
Slider, 13
Smooth Mesh tool, 397
Smooth Object tool, 397
Snap, 18, 29, 56, 265
Snap, isometric, 159
Snap Mode, 14, 56
Snap Mode button, 29
Snap spacing, 17
Solid Editing tools, 370
Solidcheck, 371
Specify DWF File dialog, 214
Spell Check icon, 148
Spell checking, 147
Spelling tool, 148
Sphere tool, 239

Spotlight, 300
Status bar, 13
Stretch tool, 114
Subtract tool, 239, 242, 263, 275
Sun lighting, 300
Sun Status, 294, 339
Surface meshes, 358
Surface tools, 357
Surftab 1, 358
Surftab 2, 358
Sweep tool, 246
System requirements for AutoCAD 2011, 417

\section*{T}

Tabs, 13
Tabsurf tool, 357
Tabulated surface tool, 357
Tan tan radius, 38
Taper Faces tool, 374
Template Definition dialog, 293
Template file, 93
Template Options dialog, 94
Text, 144, 153
Text Edit dimensions, 140
Text Formatting box, 146
Text Formatting dialog, 135
Text in hatching, 174
Text style, 87
Text Style dialog, 87
Text Style manager dialog, 174
Text styles, 145
Text symbols, 147
The ViewCube, 283
Third angle projection, 154
Title bar, 12
Toggle, 14
Tolerances, Dimensions, 142
Tool abbreviations, 50
Tool icons, 20, 26
Tool palettes, 10
Tool Palettes-All Palettes palette, 9, 301
Tool panels, 5
Tools, 20
Tooltip, 7
Torus tool, 241
Tracking, 35
Transparent commands, 74

Trim tool, 112, 160
True Type fonts, 146

\section*{\(\mathbf{U}\)}

UCS, 346
UCS dialog, 353
UCS Face plane, 357
UCS follow variable, 348
UCS icon, 347
UCS icon types, 348
UCS X view, 350
Ucsfollow, 347
Undo tool, 40
Undock, 24
Union tool, 230, 337
Union tool, 275
Units, 19
USB drive, 56
User Coordinate system, 346
Utilities panel, 23

\section*{V}

Vertical dimensions, 136
View/Visual Styles/Shades of Gray, 277
View Coordinates panel, 353
View drop-down menu, 82, 319, 320
View Manager, 302
View Manager dialog, 304, 321
View/Coordinates panel, 346, 351
View/Coordinates panel, 351
View/Navigate panel, 82, 310, 395
View/Palettes dialog, 181
View/Palettes panel, 200, 210
View/Palettes panel, 9, 210, 270, 386
View/View/Front, 274
View/View/Top, 274
View/Viewports panel, 259
View/Views, 3D Navigation popup list, 282
View/Views panel, 273
View/Views/SW Isometric view, 276
View/Views/Visual Styles, X-Ray, 282
View/Visual Style/Realistic style, 355
View/Visual Styles panel, 264, 275
View/Visual Styles/Shaded style, 277
View/Visual Styles/Shaded with Edges, 276
View/Windows panel, 204
ViewCube, 283

ViewCube/Front view, 332, 348, 370
ViewCube/Isometric view, 281, 348, 355, 372, 388,
393
ViewCube/Isometric, 348
ViewCube/Isometric, 349
ViewCube/Right view, 370
ViewCube/Top view, 286, 309, 334
Viewport Systems, 259
Viewports, 257
Viewports dialog, 260
Visual Styes/Conceptual, 240
Visual Style/Realistic, 239
Visual Style/Shaded with Edges, 245
Visual Styles/Conceptual, 237, 279, 310
Visual Styles/Realistic, 234
Visual Styles/Shades of Gray, 237
Visual Styles/X-Ray, 241
W
Warning window, 30
Wblocks, 187
Web page, 407
Web Publishing, 408
Wedge tool, 240
Wheel of mouse, 8
Window zoom, 83

Windows, 4
Windows desktop, 4
Windows Paint, 388
Windows True Type fonts, 146
Workspace Settings menu, 258
Workspace Switching, 5
Workspace Switching menu, 224
Workspace Switching menu, 291
WORLD UCS plane, 346
Write block dialog, 187
X
X axis, 347
Xrefs, 199
\(\mathrm{x}, \mathrm{y}\) coordinates, 33
XY Plane, 346
X,Y,Z, 15
XZ Plane, 346

Y
Y axis, 347
YZ Plane, 346

\section*{\(\mathbf{Z}\)}

Z axis, 347
Z coordinate, 224
Zoom, 8, 18, 66, 82, 97

Appendix A

\section*{List of tools}

\section*{Introduction}

AutoCAD 2011 allows the use of over 1000 commands (or tools). A selection of the most commonly used from these commands (tools) is described in this appendix. Some of the commands described here have not been used in this book, because this book is an introductory text designed to initiate readers into the basic methods of using AutoCAD 2011. It is hoped the list will encourage readers to experiment with those tools not described in the book. The abbreviations for tools which have them are included in brackets after the tool name. Tool names can be entered at the command line in upper or lower case.

A list of 2D commands is followed by a listing of 3D commands. Internet commands are described at the end of this listing. It must be remembered that not all of the tools available in AutoCAD 2011 are shown here.

The abbreviations for the commands can be found in the file acad.pgp from the folder: C:\Autodesk\AutoCAD_2011_English_Win_32bit_ SLD\x86lacad\en-us\Acad\Program Files\Root\UserDataCache\} Support.

Not all of the commands have abbreviations.

\section*{2D commands}

About - Brings the About AutoCAD bitmap on screen
Appload - Brings the Load/Unload Applications dialog to screen
Adcenter (dc) - Brings the DesignCenter palette on screen
Align (al) - Aligns objects between chosen points
Arc (a) - Creates an arc
Area - States in square units of the area selected from a number of points
Array (ar) - Creates Rectangular or Polar arrays in 2D
Ase - Brings the dbConnect Manager on screen
Attdef - Brings the Attribute Definition dialog on screen
Attedit - Allows editing of attributes from the Command line
Audit - Checks and fixes any errors in a drawing
Autopublish - Creates a DWF file for the drawing on screen
Bhatch (h) - Brings the Boundary Hatch dialog on screen
Block - Brings the Block Definition dialog on screen
Bmake (b) - Brings the Block Definition dialog on screen
Bmpout - Brings the Create Raster File dialog
Boundary (bo) - Brings the Boundary Creation dialog on screen
Break (br) - Breaks an object into parts

Cal - Calculates mathematical expressions
Chamfer (cha) - Creates a chamfer between two entities
Chprop (ch) - Brings the Properties window on screen
Circle (c) - Creates a circle
Copytolayer - Copies objects from one layer to another
Copy (co) - Creates a single or multiple copies of selected entities
Copyclip \((\mathrm{Ctrl}+\mathrm{C})\) - Copies a drawing or part of a drawing for inserting into a document from another application
Copylink - Forms a link between an AutoCAD drawing and its appearance in another application such as a word processing package
Customize - Brings the Customize dialog to screen, allowing the customisation of toolbars, palettes, etc.
Dashboard - Has the same action as Ribbon
Dashboardclose - Closes the Ribbon
Ddattdef (at) - Brings the Attribute Definition dialog to screen
Ddatte (ate) - Edits individual attribute values
Ddcolor (col) - Brings the Select Color dialog on screen
Ddedit (ed) - The Text Formatting dialog box appears on selecting text
Ddim (d) - Brings the Dimension Style Manager dialog box on screen
Ddinsert (i) - Brings the Insert dialog on screen
Ddmodify - Brings the Properties window on screen
Ddosnap (os) - Brings the Drafting Settings dialog on screen
Ddptype - Brings the Point Style dialog on screen
Ddrmodes (rm) - Brings the Drafting Settings dialog on screen
Ddunits (un) - Brings the Drawing Units dialogue on screen
Ddview (v) - Brings the View Manager on screen
Del - Allows a file (or any file) to be deleted
Dgnexport - Creates a MicroStation V8 dgn file from the drawing on screen
Dgnimport - Allows a MicroStation V8 dgn file to be imported as an AutoCAD dwg file
Dim - Starts a session of dimensioning
Dimension tools - The Dimension toolbar contains the following tools Linear, Aligned, Arc Length, Ordinate, Radius, Jogged, Diameter, Angular, Quick Dimension, Baseline, Continue, Quick Leader, Tolerance, Center Mark, Dimension Edit, Dimension Edit Text, Update and Dimension Style
Dim1 - Allows the addition of a single addition of a dimension to a drawing
Dist (di) - Measures the distance between two points in coordinate units
Distantlight - Creates a distant light
Divide (div) - Divides and entity into equal parts
Donut (do) - Creates a donut

Dsviewer - Brings the Aerial View window on screen
Dtext (dt) - Creates dynamic text. Text appears in drawing area as it is entered
Dxbin - Brings the Select DXB File dialog on screen
Dxfin - Brings the Select File dialog on screen
Dxfout - Brings the Save Drawing As dialog on screen
Ellipse (el) - Creates an ellipse
Erase (e) - Erases selected entities from a drawing
Exit - Ends a drawing session and closes AutoCAD 2009
Explode (x) - Explodes a block or group into its various entities
Explorer - Brings the Windows Explorer on screen
Export (exp) - Brings the Export Data dialog on screen
Extend (ex) - To extend an entity to another
Fillet (f) - Creates a fillet between two entities
Filter - Brings the Object Selection Filters dialog on screen
Gradient - Brings the Hatch and Gradient dialog on screen
Group (g) - Brings the Object Grouping dialog on screen
Hatch - Allows hatching by the entry responses to prompts
Hatchedit (he) - Allows editing of associative hatching
Help - Brings the AutoCAD 2009 Help: User Documentation dialog on screen
Hide (hi) - To hide hidden lines in 3D models
Id - Identifies a point on screen in coordinate units
Imageadjust (iad) - Allows adjustment of images
Iimageattach (iat) - Brings the Select Image File dialog on screen
Imageclip - Allows clipping of images
Import - Brings the Import File dialog on screen
Insert (i) - Brings the Inert dialog on screen
Iinsertobj - Brings the Insert Object dialog on screen
Isoplane ( \(\mathrm{Ctrl} / \mathrm{E}\) ) - Sets the isoplane when constructing an isometric drawing
Join (j) - Join lines which are in line with each other or arcs which are from the same centre point
Laycur - Changes layer of selected objects to current layer
Laydel - Deletes and purges a layer with its contents
Layer (la) - Brings the Layer Properties Manager dialog on screen
Layout - Allows editing of layouts
Lengthen (len) - Lengthens an entity on screen
Limits - Sets the drawing limits in coordinate units
Line (l) - Creates a line
Linetype (lt) - Brings the Linetype Manager dialog on screen
List (li) - Lists in a text window details of any entity or group of entities selected

Load - Brings the Select Shape File dialog on screen
Ltscale (lts) - Allows the linetype scale to be adjusted
Measure (me) - Allows measured intervals to be placed along entities
Menu - Brings the Select Customization File dialog on screen
Menuload - Brings the Load/Unload Customizations dialog on screen
Mirror (mi) - Creates an identical mirror image to selected entities
Mledit - Brings the Multiline Edit Tools dialog on screen
Mline (ml) - Creates mlines
Mlstyle - Brings the Multiline Styles dialog on screen
Move (m) - Allows selected entities to be moved
Mslide - Brings the Create Slide File dialog on screen
Mspace (ms) - When in PSpace changes to MSpace
Mtext (mt or t) - Brings the Multiline Text Editor on screen
Mview (mv) - To make settings of viewports in Paper Space
Mvsetup - Allows drawing specifications to be set up
New \((\mathrm{Ctrl}+\mathrm{N})\) - Brings the Select template dialog on screen
Notepad - For editing files from the Windows Notepad
Offset (o) - Offsets selected entity by a stated distance
Oops - Cancels the effect of using Erase
Open - Brings the Select File dialog on screen
Options - Brings the Options dialog to screen
Ortho - Allows ortho to be set ON/OFF
Osnap (os) - Brings the Drafting Settings dialog to screen
Pagesetup - Brings either the Page Setup Manager on screen
Pan (p) - Drags a drawing in any direction
Pbrush - Brings Windows Paint on screen
Pedit (pe) - Allows editing of polylines. One of the options is Multiple allowing continuous editing of polylines without closing the command
Pline (pl) - Creates a polyline
Plot ( \(\mathrm{Ctrl}+\mathrm{P}\) ) - Brings the Plot dialog to screen
Point (po) - Allows a point to be placed on screen
Polygon (pol) - Creates a polygon
Polyline (pl) - Creates a polyline
Preferences (pr) - Brings the Options dialog on screen
Preview (pre) - Brings the print/plot preview box on screen
Properties - Brings the Properties palette on screen
Psfill - Allows polylines to be filled with patterns
Psout - Brings the Create Postscript File dialog on screen
Purge (pu) - Purges unwanted data from a drawing before saving to file
Qsave - Saves the drawing file to its current name in AutoCAD 2009
Quickcalc (qc) - Brings the QUICKCALC palette to screen
Quit - Ends a drawing session and closes down AutoCAD 2009
Ray - A construction line from a point

Recover - Brings the Select File dialog on screen to allow recovery of selected drawings as necessary
Recoverall - Repairs damaged drawing
Rectang (rec) - Creates a pline rectangle
Redefine - If an AutoCAD command name has been turned off by
Undefine, Redefine turns the command name back on
Redo - Cancels the last Undo
Redraw (r) - Redraws the contents of the AutoCAD 2009 drawing area
Redrawall (ra) - Redraws the whole of a drawing
Regen (re) - Regenerates the contents of the AutoCAD 2009 drawing area
Regenall (rea) - Regenerates the whole of a drawing
Region (reg) - Creates a region from an area within a boundary
Rename (ren) - Brings the Rename dialog on screen
Revcloud - Forms a cloud-like outline around objects in a drawing to which attention needs to be drawn
Ribbon - Brings the ribbon on screen
Ribbonclose - Closes the ribbon
Save (Ctrl+S) - Brings the Save Drawing As dialog box on screen
Saveas - Brings the Save Drawing As dialog box on screen
Saveimg - Brings the Render Output File dialog on screen
Scale (sc) - Allows selected entities to be scaled in size - smaller or larger
Script (scr) - Brings the Select Script File dialog on screen
Setvar (set) - Can be used to bring a list of the settings of set variables into an AutoCAD Text window
Shape - Inserts an already loaded shape into a drawing
Shell - Allows MS-DOS commands to be entered
Sketch - Allows freehand sketching
Solid (so) - Creates a filled outline in triangular parts
Spell (sp) - Brings the Check Spelling dialog on screen
Spline (spl) - Creates a spline curve through selected points
Splinedit (spe) - Allows the editing of a spline curve
Status - Shows the status (particularly memory use) in a Text window
Stretch (s) - Allows selected entities to be stretched
Style (st) - Brings the Text Styles dialog on screen
Tablet (ta) - Allows a tablet to be used with a pointing device
Tbconfig - Brings the Customize dialog on screen to allow configuration of a toolbar
Text - Allows text from the Command line to be entered into a drawing
Thickness (th) - Sets the thickness for the Elevation command
Tilemode - Allows settings to enable Paper Space
Tolerance - Brings the Geometric Tolerance dialog on screen
Toolbar (to) - Brings the Customize User Interface dialog on screen
Trim (tr) - Allows entities to be trimmed up to other entities

Type - Types the contents of a named file to screen
UCS - Allows selection of UCS (User Coordinate System) facilities
Undefine - Suppresses an AutoCAD command name
Undo (u) (Ctrl+Z) - Undoes the last action of a tool
View - Brings the View dialog on screen
Vplayer - Controls the visibility of layers in Paperspace
Vports - Brings the Viewports dialog on screen
Vslide - Brings the Select Slide File dialog on screen
Wblock (w) - Brings the Create Drawing File dialog on screen
Wmfin - Brings the Import WMF dialog on screen
Wipeout - Forms a polygonal outline within which all crossed parts of objects are erased
Wmfopts - Brings the WMF in Options dialog on screen
Wmfout - Brings the Create WMF File dialog on screen
Xattach (xa) - Brings the Select Reference File dialog on screen
Xline - Creates a construction line
Xref (xr) - Brings the Xref Manager dialog on screen
Zoom (z) - Brings the zoom tool into action

\section*{3D commands}

3darray - Creates an array of 3D models in 3D space
3dface (3f) - Creates a 3- or 4-sided 3D mesh behind which other features can be hidden
3dmesh - Creates a 3D mesh in 3D space
3dcorbit - Allows methods of manipulating 3D models on screen
3ddistance - Allows the controlling of the distance of 3D models from the operator
3dfly - Allows walkthroughs in any 3D plane
3dforbit - Controls the viewing of 3D models without constraint
3dmove - Shows a 3D move icon
3dorbit (3do) - Allows a continuous movement and other methods of manipulation of 3D models on screen
3dorbitctr - Allows further and a variety of other methods of manipulation of 3D models on screen
3dpan - Allows the panning of 3D models vertically and horizontally on screen
3drotate - Displays a 3D rotate icon
3dsin - Brings the 3D Studio File Import dialog on screen
3dsout - Brings the 3D Studio Output File dialog on screen
3ddwf - Brings up the Export 3D DWF dialog

3dwalk - Starts walk mode in 3D
anipath - Opens the Motion Path Animation dialog
Align - Allows selected entities to be aligned to selected points in 3D space
Ameconvert - Converts AME solid models (from Release 12) into
AutoCAD 2000 solid models
Box - Creates a 3D solid box
Cone - Creates a 3D model of a cone
convertoldlights - Converts lighting from previous releases to AutoCAD 2009 lighting
convertoldmaterials - Converts materials from previous releases to AutoCAD 2009 materials
convtosolid - Converts plines and circles with thickness to 3D solids convtosurface - Converts objects to surfaces
Cylinder - Creates a 3D cylinder
Dducs (uc) - Brings the UCS dialog on screen
Edgesurf - Creates a 3D mesh surface from four adjoining edges
Extrude (ext) - Extrudes a closed polyline
Flatshot - Brings the Flatshot dialog to screen
Freepoint - Point light created without settings
Freespot - Spot light created without settings
Helix - Construct a helix
Interfere - Creates an interference solid from selection of several solids
Intersect (in) - Creates an intersection solid from a group of solids
Light - Enables different forms of lighting to be placed in a scene
Lightlist - Opens the Lights in Model palette
Loft - Activates the Loft command
Materials - Opens the Materials palette
Matlib - Outdated instruction
Mirror3d - Mirrors 3D models in 3D space in selected directions
Mview (mv) - When in PSpace brings in MSpace objects
Pface - Allows the construction of a 3D mesh through a number of selected vertices
Plan - Allows a drawing in 3D space to be seen in plan (UCS World)
Planesurf - Creates a planar surface
Pointlight - Allows a point light to be created
Pspace (ps) - Changes MSpace to PSpace
Pyramid - Creates a pyramid
Renderpresets - Opens the Render Presets Manager dialog
Renderwin - Opens the Render window
Revolve (rev) - Forms a solid of revolution from outlines
Revsurf - Creates a solid of revolution from a pline
Rmat - Brings the Materials palette on screen

Rpref (rpr) - Opens the Advanced Render Settings palette
Section (sec) - Creates a section plane in a 3D model
Shade (sha) - Shades a selected 3D model
Slice (sl) - Allows a 3D model to be cut into several parts
Solprof - Creates a profile from a 3D solid model drawing
Sphere - Creates a 3D solid model sphere
Spotlight - Creates a spotlight
Stlout - Saves a 3D model drawing in ASCII or binary format
Sunproperties - Opens the Sun Properties palette
Torus (tor) - Allows a 3D torus to be created
Ues - Allows settings of the UCS plane
-render - Can be used to make rendering settings from the command line.
Note the hyphen ( - ) must precede render
Sweep - Creates a 3D model from a 2D outline along a path
Tabsurf - Creates a 3D solid from an outline and a direction vector
Ucs - Allows settings of the UCS plane
Union (uni) - Unites 3D solids into a single solid
View - Creates view settings for 3D models
Visualstyles - Opens the Visual Styles Manager palette
Vpoint - Allows viewing positions to be set from \(x, y, z\) entries
Vports - Brings the Viewports dialog on screen
Wedge (we) - Creates a 3D solid in the shape of a wedge
Xedges - Creates a 3D wireframe for a 3D solid

Internet tools

Etransmit - Brings the Create Transmittal dialog to screen
Publish - Brings the Publish dialog to screen

\section*{Appendix B}

\section*{Some set variables}

\section*{Introduction}

AutoCAD 2011 is controlled by a large number of set variables (over 770 in number), the settings of many of which are determined when making entries in dialogs. Some are automatically set with clicks on tool icons. Others have to be set at the command line. Some are read-only variables which depend upon the configuration of AutoCAD 2011 when it originally loaded into a computer (default values). Only a limited number of the variables are shown here.

A list of those set variables follows which are of interest in that they often require setting by entering figures or letters at the command line. To set a variable, enter its name at the command line and respond to the prompts which arise.

To see all set variables, enter set (or setvar) at the command line:
Command:enter set right-click
SETVAR Enter variable name or ?: enter ?
Enter variable name to list <*>: right-click
And an AutoCAD Text Window opens showing a list of the first of the set variables. To continue with the list press the Return key when prompted and at each press of the Return key, another window opens.

To see the settings needed for a set variable enter the name of the variable at the command line, followed by pressing the F1 key which brings up a Help screen, click the search tab, followed by entering set variables in the Ask field. From the list then displayed the various settings of all set variables can be read.

Some of the set variables

ANGDIR - Sets angle direction. \(\mathbf{0}\) counterclockwise; \(\mathbf{1}\) clockwise
APERTURE - Sets size of pick box in pixels
AUTODWFPUBLISH - Sets Autopublish on or off
BLIPMODE - Set to \(\mathbf{1}\) marker blips show; set to \(\mathbf{0}\) no blips
COMMANDLINE - Opens the command line palette
COMMANDLINEHIDE - Closes the command line palette
COPYMODE - Sets whether Copy repeats

\section*{Note}

DIM variables - There are over 70 variables for setting dimensioning, but most are in any case set in the Dimension Styles dialog or as dimensioning proceeds. However one series of the Dim variables may be of interest

DMBLOCK - Sets a name for the block drawn for an operator's own arrowheads. These are drawn in unit sizes and saved as required

DIMBLK1 - Operator's arrowhead for first end of line
DIMBLK2 - Operator's arrowhead for other end of line
DRAGMODE - Set to \(\mathbf{0}\) no dragging; set to \(\mathbf{1}\) dragging on; set to \(\mathbf{2}\) automatic dragging

DRAG1 - Sets regeneration drag sampling. Initial value is 10
DRAG2 - Sets fast dragging regeneration rate. Initial value is 25
FILEDIA - Set to \(\mathbf{0}\) disables Open and Save As dialogs; set to \(\mathbf{1}\) enables these dialogs

FILLMODE - Set to \(\mathbf{0}\) hatched areas are filled with hatching; set to \(\mathbf{0}\) hatched areas are not filled; and set to \(\mathbf{0}\) and plines are not filled

GRIPS - Set to \(\mathbf{1}\) and grips show; set to \(\mathbf{0}\) and grips do not show
LIGHTINGUNITS - Set to \(\mathbf{1}\) (international) or \(\mathbf{2}\) (USA) for photometric lighting to function

MBUTTONPAN - Set to \(\mathbf{0}\) no right-click menu with the Intellimouse; set to 1 Intellimouse right-click menu on

MIRRTEXT - Set to \(\mathbf{0}\) text direction is retained; set to \(\mathbf{1}\) text is mirrored
NAVVCUBE - Sets the ViewCube on/off
NAVVCUBELOCATION - Controls the position of the ViewCube between top right (0) and bottom left (3)

NAVVCUBEOPACITY - Controls the opacity of the ViewCube from 0 (hidden) to 100 (dark)

NAVVCUBESIZE - Controls the size of the ViewCube between \(\mathbf{0}\) (small) and 2 (large)

PELLIPSE - Set to \(\mathbf{0}\) creates true ellipses; set to \(\mathbf{1}\) polyline ellipses
PERSPECTIVE - Set to \(\mathbf{0}\) places the drawing area into parallel projection; set to \(\mathbf{1}\) places the drawing area into perspective projection

PICKBOX - Sets selection pick box height in pixels
PICKDRAG - Set to \(\mathbf{0}\) selection windows picked by two corners; set to \(\mathbf{1}\) selection windows are dragged from corner to corner

RASTERPREVIEW - Set to \(\mathbf{0}\) raster preview images not created with drawing; set to \(\mathbf{1}\) preview image created

SHORTCUTMENU - For controlling how right-click menus show:
\(\mathbf{0}\) all disabled; \(\mathbf{1}\) default menus only; \(\mathbf{2}\) edit mode menus; \(\mathbf{4}\) command mode menus; \(\mathbf{8}\) command mode menus when options are currently available.
Adding the figures enables more than one option
SURFTAB1 - Sets mesh density in the M direction for surfaces generated by the Surfaces tools

SURFTAB2 - Sets mesh density in the N direction for surfaces generated by the Surfaces tools

TEXTFILL - Set to \(\mathbf{0}\) True Type text shows as outlines only; set to \(\mathbf{1}\) True Type text is filled
TiILEMODE - Set to \(\mathbf{0}\) Paperspace enabled; set to \(\mathbf{1}\) tiled viewports in Modelspace

TOOLTIPS - Set to \(\mathbf{0}\) no tool tips; set to \(\mathbf{1}\) tool tips enabled
TPSTATE - Set to \(\mathbf{0}\) and the Tool Palettes window is inactive; set to \(\mathbf{1}\) and the Tool Palettes window is active

TRIMMODE - Set to \(\mathbf{0}\) edges not trimmed when Chamfer and Fillet are used; set to \(\mathbf{1}\) edges are trimmed

UCSFOLLOW - Set to \(\mathbf{0}\) new UCS settings do not take effect; set to \(\mathbf{1}\) UCS settings follow requested settings

UCSICON - Set OFF UCS icon does not show; set to ON it shows

\section*{Appendix C}

Ribbon panel tool icons

\section*{Introduction}

The ribbon panels shown are those which include tools described in the chapters of this book. Panels and tools which have not been used in the construction of illustrations in the book have not been included. If a tool in a panel has not been described or used in this book, the icon remains unnamed in the illustrations below. Where flyouts from a panel include tools icons, the flyouts have been included with the panels. Flyouts appear when an arrow to the right of the panel name is clicked. Where the names of tool icons have been included in the panels, the names have not been added to the illustrations as labels being deemed unnecessary.

\section*{2D Drafting and Annotation ribbon}


Fig. A3.1 The Home/Draw panel


Fig. A3.3 The Home/Draw panel flyout


Fig. A3.2 The Home/Modify panel


Fig A3.4 The Home/Modify panel flyout



Fig. A3.5 The Home/Layers panel with the Layers drop-down menu


Fig. A3.6 The Annotate/Dimensions panel

\begin{tabular}{|l|l|}
\hline (1) Top \\
Botom \\
(1) Left \\
Right \\
Fiont \\
Back \\
SW Isometric \\
SE Isometric \\
NE Isometric \\
NW Isometric
\end{tabular}

Fig. A3.7 The View/Views panel


Fig. A3.8 The Parametric/Dimensions panel


Fig. A3.10 The View/Palettes panel


Fig. A3.11 The View/Visual Styles panel


Fig. A3.12 The View/Viewports panel


Fig. A3.13 The View/Coordinates panel


Fig. A3.14 The Output/Plot panel


Fig. A3.15 The Output/Export to DWF/PDF panel

\section*{3D Modeling ribbon}


Fig. A3.17 The Home/Solid Editing panel

Fig. A3.16 The Home/Modeling panel and its flyout


Fig. A3.18 The Home/Modify panel


Fig. A3.19 The Home/Modify flyout


Fig. A3.20 The Solid/Primitive panel


Fig. A3.21 The Solid/Solid panel


Fig. A3.22 The Solid/Solid Editing panel


Fig. A3.23 The Solid Boolean panel


Fig. A3.24 The Render/Lights pane


Fig. A3.25 The Render/Lights flyout

Fig. A3.26 The Render/Materials panel


Fig. A3.27 The Render/Render panel
\begin{tabular}{|c|c|c|}
\hline *\% Rend \({ }^{\text {\% }}\) quality & 1 & \\
\hline \(640 \times 480\) & \(\nabla\) & \\
\hline \multicolumn{3}{|l|}{(3) Adjust Exposure} \\
\hline \multicolumn{3}{|l|}{E. Environment} \\
\hline \multicolumn{3}{|l|}{Render Window} \\
\hline - & Render & \(\pm\) \\
\hline
\end{tabular}

Fig. A3.28 The Render/Render flyout

\section*{Author Query}
\{AUQ1\} Please confirm the naming of figure cross-references as Figure A3.1, A3.2, etc.

Introduction to AutoCAD 2011

\title{
Introduction to AutoCAD 2011 2D and 3D Design
}

Alf Yarwood

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO```


[^0]:    Quick Visw Orowing:

