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Foreword 

The critical nature of requirements was recognized around the time that the term soft-
ware engineering was being coined to signal the need for a new discipline [NATO 
Software Engineering Conference, 1968].  In those early years, the focus of require-
ments practice was on the requirements document, which was the basis of a contract 
between customer and developer, which needed to be sufficiently definitive to deter-
mine, before system construction, what needed to be built, how much it might cost, 
and how long it might take to complete and put into operation. Requirements tended 
to change (or “creep”) until arbitrarily “frozen” so that agreement could finally be 
reached and the development project could begin. When the development project was 
over, the resulting system was evaluated to see if the contract was fulfilled. The ap-
proach is very disciplined, but the reality is that it has been bent and is broken.  

As software companies and IT departments grew, it was obvious that requirements 
were a major weak link in the business of software.  Early studies and experience 
reports tried to put their finger on the problem, stating that requirements were often 
ambiguous, inconsistent, incomplete, missing, or just plain wrong.  This recognition 
led to the emergence of requirements languages, tools, and techniques, as reported in 
workshops such as the International Workshop on Software Specifications & Design 
[IWSSD] and elsewhere [TSE Jan. 1777 special issue on requirements].  Eventually, a 
coalescence of people from academia, industry, and business formed a requirements 
engineering (RE) community, as manifested in two conference series [IEEE Interna-
tional Conference on Requirements Engineering (ICRE) and IEEE International Sym-
posium on Requirements Engineering (ISRE)] (which merged in 2002), a journal 
[Requirements Engineering], an IFIP Working group [WG 2.9], and some spin-offs.  

Over the years, the evolution of issues and ideas of the young field of RE has been 
paralleled, and challenged, by the amazingly quick development and penetration of 
software-intensive systems, especially since the emergence of personal computers, the 
widespread availability of the internet, and the World Wide Web.  Systems are no 
longer assumed to be built from scratch or designed under the control of a single de-
veloper. It is no longer assumed that all requirements will be known in advance of 
building the system. It is now assumed, instead, that requirements will continue to 
change as time goes on, that design decisions will be made in response to new knowl-
edge and understanding of requirements. It is no longer assumed that the software will 
be fully verified before it goes into operation, implying that some requirements will 
have to be monitored, checked, and reconsidered even after being deployed into op-
eration. (Of course, safety-critical and other high-risk requirements will need more up-
front consideration.) 

What do the new assumptions and their ramifications, barely touched upon here, 
imply for the future of requirements and design for software-intensive systems? The 
papers in this book explore and articulate a rich set of issues and ideas.  We need to 
learn more and be more explicit about questions such as: Where do the requirements 
come from that designers seek to satisfy? What do designers do when they design?   



 Foreword 

 

VI 

What knowledge is needed by designers, and how can it be made available to them 
when needed?  In particular, how can requirements be captured so that they are avail-
able throughout the system lifecycle? What does it mean for a design to satisfy a re-
quirement?  How are multiple requirements from multiple stakeholders to be negoti-
ated and evolved, perhaps frequently and continuously? 

It is time to rethink the role of requirements and design for software-intensive sys-
tems, which are seeping into all corners of our lives and taking part in, or taking over, 
many aspects of everyday activities. In transportation, health care, banking, shopping, 
and government – just to mention a few domains where software-intensive systems 
play prominent and growing roles – software does much more than crunch numbers, 
maintain and transfer data, mechanize paperwork, and control machinery. As networks 
of computers and people grow in size and programmed functionality, our systems now 
implement end-to-end consumer services and organizational processes, institutional 
policies, and societal infrastructure. These systems entail requirements that are richer, 
more complex, and more elusive than ever, and designing to meet these requirements 
in our evolving socio-technical environment poses a plethora of new challenges.  

To address the increasing scope and pervasiveness of today’s software-intensive 
systems, and to address the concomitant challenges, we need to take stock and 
branch out. We need to question past assumptions and rethink research, practice, 
and education. 

This book brings together an energetic and highly motivated, international commu-
nity of researchers to assess the current state of affairs and define new directions.  
Recognizing the need to draw on a broad array of intersecting areas of study – soft-
ware engineering, design research, human-centered computing, business management, 
industrial design, and an open-ended set of others – the authors have led a series of 
community-building events to bring together researchers with diverse backgrounds, 
research methodologies, and perspectives. This book is a tangible result of the syner-
gies created by working across traditional boundaries.   
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High Impact Design Requirements - Key Design 
Challenges for the Next Decade∗ 

Nicholas Berente1, Sean Hansen2, and Kalle Lyytinen2 

1 University of Michigan, School of Information, 1085 South University, Ann Arbor,  
Michigan 48109, USA 
berente@umich.edu 

2 Case Western Reserve University, Weatherhead School of Management, Department of  
Information Systems, Cleveland, Ohio 44106, USA 
kalle@case.edu, sean.hansen@case.edu  

Abstract. The High Impact Design Requirements Project involves an interna-
tional, cross-disciplinary group of researchers and practitioners focused on  
setting the agenda for the design requirements discourse. The group’s initial 
workshop identified five key themes that should receive more attention in  
design requirements and practice: (1) fundamental concepts of design, (2) evo-
lution and the fluidity of design, (3) quality and value-based requirements, (4) 
requirements intertwining, and (5) adapting requirements practices in different 
domains. This chapter presents an introduction to the project, the workshop, and 
these five themes.  

1   Introduction 

“Future software-intensive systems will be vastly different from those in use 
today. Revolutionary advances in hardware, networking, and human interface 
technologies will require entirely new ways of thinking about how software 
systems are conceptualized, built, understood, and evaluated. As we envision 
the future of complex distributed computing environments, innovative research 
is needed to provide the scientific foundations for managing issues of complex-
ity, quality, cost, and human intellectual control of software design and devel-
opment.” (U.S. National Science Foundation1) 

The National Science Foundation’s Science of Design website asserts that design 
practices for software-intensive systems are departing dramatically from the accepted 
methods of the past. This also is consistent with the views of many researchers and 
practitioners of today (e.g., see Hansen et al. [1] in this volume).  If and when this is 
the case, it is imperative that researchers understand and seek to shape and improve 
new emerging design practices. The first step in designing any system involves the 

                                                           
∗ We are thankful to the National Science Foundation and especially Sol Greenspan for contin-

ued support. We also thank Case Western Reserve University staff for help and support in 
organizing the workshop. 

1 Taken from the National Science Foundation’s “Science of Design” website, July 28, 2008: 
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12766 
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generation of what are often referred to as “requirements” that state the system’s func-
tions, properties, design constraints, and the their rationale. Therefore, a firm under-
standing of requirements-related practices is fundamental in shaping and improving 
the future of system design in general.  

With this objective in mind, leading researchers and practitioners from around the 
world came together with the goal of setting an agenda for future design requirements 
research and how to improve requirements practice in what has come to be called the 
“High Impact Design Requirements Project.” The goal of this project is to broadly 
identify and articulate emerging trends in requirements practices and to elicit princi-
ples and directions for future research that will have significance for the practice of 
creating software-intensive systems. This is not a straightforward task, however, as 
the topic of “requirements” straddles a variety of disciplines and perspectives, has a 
long and varied history, and, as a number researchers have recently indicated (i.e., [2], 
[3], [4]), is experiencing some level of misalignment between research and practice. 

To give the issue of requirements thorough and rigorous attention, the High Impact 
Design Requirements Project involves a multi-year effort focused on building a robust 
interdisciplinary research community around the topic through a series of workshops. 
This book represents the output of the first in this series of workshops, and it is in-
tended to help researchers understand the current state of research and practice, as 
well as to elaborate on key themes identified in the workshop that are at the center of 
emergent practices and related principles.  

In this chapter, we will briefly introduce the High Impact Design Requirements 
Project, describe the structure and process associated with the first workshop, and 
identify the key themes from the first workshop that inform the organization of this 
book and are expected to be critical, salient issues in future requirements engineering 
research. We conclude with a brief reflection on the prospects of the project. 

2   The High Impact Design Requirements Project 

The High Impact Design Requirements Project involves an interdisciplinary commu-
nity of researchers and practitioners who focus on the determination and management 
of requirements in contemporary design efforts. Funded in part by the National Sci-
ence Foundation’s Science of Design Program (Grant Number: CCF0613606), the 
project is motivated by the perception that newer design environments and related 
requirements engineering processes are marked by a range of challenges and  
opportunities that are insufficiently recognized in the prevailing research literature 
and practice (methods, tools etc). Furthermore, the derivation and management of 
design requirements are themes common to many separate research and design sci-
ence communities, including those focusing on design methods and theory, software 
architectures, human computer interaction, formal specification methods, verification 
principles, information systems research, industrial design, architecture, organization 
design, and media design. Despite shared concerns and interests, these research com-
munities have had little exchange of ideas across disciplinary boundaries. The  
absence of interdisciplinary intellectual commerce is particularly discouraging given 
the growing need for a diversity of skills and insights in the design of software inten-
sive systems. Modern software design increasingly involves aspects of industrial 
design (e.g., pervasive applications), media design (e.g., e-commerce and media  
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applications), human computer interaction (e.g., new modalities of interaction), and 
business architectures (e.g., open business platforms), just to name a few grand chal-
lenges. Herein we describe the initial phase of a community building effort intended 
to begin rectifying this situation by improving interdisciplinary exchange. 

The core of the community building effort involves the planning and organization 
of a series of workshops, designed to accomplish three broad objectives: (1) engage 
separate research communities in a dialogue, (2) strengthen design science principles, 
and (3) open new vistas for the field of design requirements associated with software 
intensive systems that will meet the current and future needs of practice. The  
workshops are intended to reflect the truly inclusive focus of the project. This com-
munity-building effort is unique in that it draws thought leaders from a wide array of 
organizational environments and research disciplines, including such areas as design 
science, information systems, behavioral studies, software development, organiza-
tional design, and requirements modeling. The workshops address a range of applica-
tion environments, such as e-business, pervasive computing, and large enterprise 
systems that deal with complex socio-technical designs.  

The initial workshop was held in the United States in 2007 and the first follow-up 
workshop is being conducted in Europe in the Fall of 2008. In preparation for the work-
shops, the project team undertook a field study of practicing designers across a range of 
industrial and systems design settings to understand the perspectives of practitioners 
about prevailing requirements practices, anticipated developments in requirements prac-
tices, and emergent challenges encountered in contemporary design environments (see 
Chapter 3 of this book for a presentation of the field study). The themes identified in the 
field study were used to organize the discussion in the initial workshop. Next we will 
address the structure and processes associated with the first workshop.  

3   Design Requirements Workshop 

The first workshop on June 3-6, 2007, held at Case Western Reserve University in 
Cleveland, Ohio (USA) (see www.case.weatherhead/requirements) brought together 
35 academics and design professionals from across the United States and Europe (see 
Appendix 1 for a list of participants and presenters). The workshop project team 
structured the three-day symposium to ensure a balance between full group discus-
sions and more intensive breakout sessions focused on exploring specific issues and 
challenges. Plenary sessions initiated each day’s conversations and established the 
basis for collaborative inquiry. Work groups of 8 to 10 participants convened in 
morning and afternoon sessions for targeted discussions of key trends in requirements 
theory and practice. Interdisciplinary panel discussions in the middle of each day’s 
agenda enabled the entire group to delve into potential avenues of cross-fertilization 
of ideas and to share different perspectives. Each day closed with a plenary regroup to 
address questions and raise provocations that had emerged from the day’s discussions.  

The discourse from the workshop was captured a variety of ways – through web-
casts, a workshop Wiki, and plenary presentations. Further, scribes assigned to each 
workgroup documented group discussions through a Wiki environment that was 
available to all participants for interactive editing and blogging.  At the end of the 
workshop, each workgroup presented key themes of their discussions throughout the 
workshop to the entire group. Overall, the workshop involved five plenary  
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presentations, three panel discussions, eight plenary work group reports, and twenty-
eight presentations within workgroups.2 

In preparation for the workshop, each participant prepared a short discussion paper 
focusing on one or more facets of the cutting edge in theory and practice on require-
ments issues. Specific topics proposed for exploration included the following: 

 The need for new avenues in requirements research – a new landscape and 
emergent challenges 

 Developing a 10-year agenda for research in requirements engineering 
 Opportunities for intellectual cross-fertilization across disciplines in design 

and requirements 
 Analyses of contemporary requirements practice 
 Perceived strengths of previous research and existing practice 
 Perceived shortcomings of the requirements research traditions in different 

fields 
 Theories and research methodologies pertinent to the emerging challenges as-

sociated with design requirements 
 Case studies and practice reports of successful or failed practices and critical 

issues related to design of complex software-intensive systems 

Building upon these initial perspectives, researchers were encouraged to reflect 
upon their own research interests and areas that they felt deserved greater attention in 
the coming years. The presentation and exploration of these various positions formed 
a basis for focused conversations during the workshop, and either directly evolved 
into the chapters of this book or inspired the inclusion of these chapters. Specific 
tracks for workgroup discussions were based on the findings of the preliminary field 
study. The workgroups included sessions on fundamental concepts of design, re-
quirements evolution (both the fluidity of design and the management of changing 
requirements), visualization & representation, managing complexity, business process 
focus in requirements, stakeholder issues in requirements management and negotia-
tion, and the impact of new technologies & architectures (see Chapter 3). Next, we 
will highlight some key themes generated during the workshop, and then briefly re-
flect on the outlook for the project going forward. 

4   Highlights from the Workshop 

The goal of the workshop was to trigger a dialog, and to use that dialog to generate 
key issues and themes for future research on requirements-related topics. Three tactics 
were employed to inspire this dialog: (1) the practitioner themes by which we organ-
ized the workshop (see Chapter 3); (2) position papers that participants prepared in 
advance, presented in the workgroup sessions, and made available through the web-
site; and (3) plenary presentations by five diverse thought leaders.  During the work-
shop, a number of themes recurred, in particular, many relating to the long-established 
and interrelated design challenges of complexity, uncertainty, emergence, and social 

                                                           
2 For details about the workshop, see http://weatherhead.case.edu/requirements/; plenary pres-

entations from Kalle Lyytinen, Fred Brooks, John King, Colin Potts, and Venkatesh Prasad 
are available at: http://tv.case.edu/actions/tv2/tv - search for “design requirements.” 
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distribution. These challenges were met with requirements practices that involved 
iteration & evolution, architectures, risk management, and through a variety of meth-
odological improvements in general.  

Complexity, for example, is a topic that underpinned much of discussion, and rep-
resented a dialog that has a rich history in requirements research. As Fred Brooks 
indicated during his keynote presentation, complexity arises in part from the continu-
ous changes to contexts, constraints, and functionality. Further, Brooks argued while 
much of past work on requirements implies the work of a single designer, current 
practice inevitably involves teams of distributed designers and large-scale system 
design has become more like an “interdisciplinary negotiation” than the design of a 
singular, stable system. In order to maintain conceptual integrity of a design process, 
Brooks argued that the importance of a solid architecture and the role of a master 
architect in managing complexity like in architecture or complex product designs 
cannot  be understated. Participants characterized complexity a variety of ways, in-
cluding by distinguishing between forms of complexity (King), by describing the 
evolving locus of complexity (Lyytinen), and questioning what we mean by complex-
ity (Potts). Also, many offered a variety of solutions to such issues, such as stronger 
organizational risk assessment practices (Dunbar) and iteration in its various  forms 
(Easterbrook). While the various perspectives on complexity reflected the wider dis-
course that has been taking place over the past two decades (see Chapters 3 & 4), a 
goal of this book is to look forward, and to contextualize many of these ideas in 
emerging trends and opportunities for relevant research as we look to the future. 

As the purpose of this book is to focus primarily on the future, rather than attempt-
ing to be exhaustive of all potential trends and opportunities, we have endeavored to 
solicit themes that offer a departure from contemporary discourse in subject matter as 
well as in mindset. This does not mean that these themes are not related to (and are 
often interdependent with) the important and critical themes in current requirements 
thinking. Nor do we argue that these themes are all necessarily new. Instead, we hope 
that they can contribute to the foundation of a new platform for thinking about re-
quirements research and practice that will take shape in the next decade. To this end 
we identified five broad topics that that are under-addressed and insufficiently re-
searched in the current literature. We deemed these topics to be vital to research go-
ing forward as they, in one way or another, challenge some of the underlying beliefs 
and assumptions that underlie the majority of existing research. 

These themes, in the order of the sections of this book, are (1) fundamental con-
cepts of design, (2) evolution & the fluidity of design, (3) quality & value-based re-
quirements, (4) requirements intertwining, and (5) adapting requirements practices in 
different domains. It is important to note that we do not promote these themes to be 
mutually exclusive nor as exhaustive of the critical emerging issues. Rather, we view 
them as some of the pillars in the emerging new research platform. The following 
sections will highlight why and how each is becoming increasingly important to the 
study of design requirements. 

4.1   Fundamental Concepts of Design 

“A point I want to emphasize in the requirements process is we do not usually 
know what the goal is.  I will assert that that is a deep fact of reality that is ig-
nored in much of the literature about requirements.  We do not know what we 
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are trying to build.  We cannot, in most cases, know what we are trying to 
build…. The hardest part of most designs of complex systems is not knowing 
how to design it, but what it is you are trying to design… when we are talking 
about eliciting requirements, we are talking about deciding what it is we are 
trying to design.” (Fred Brooks)  

In his keynote presentation, Fred Brooks indicated that requirements are the most 
difficult part of the design process, and that perhaps the software development com-
munity should look to other design disciplines such as mechanical engineering and 
architecture to see what it can learn. Moreover, he emphasized that the notions of a 
design as a linear, predictable activity that underlie many methods and tools of soft-
ware development are too simplistic to provide a good understanding of design and its 
requirements. In recent years, a burgeoning design discipline [5], [6] appears to better 
understand general design practices and principles across disciplines. Further, the 
emerging design science [7], [8] paradigm looks to apply scientific theory and rigor to 
design artifacts and practices. As software is becoming increasingly implicated in a 
variety of design artifacts, it is imperative that requirements research maintain a dia-
log with these emerging perspectives in order to both feed and draw insight from the 
broader design discourse. 

4.2   Evolution and the Fluidity of Design  

“There’s this profile of benefits and burdens that may not have been intended 
by the original designers, and frankly, who cares whether they were intended 
by the original designers.  Who cares whether they were identified during the 
requirements process.  Users generally don’t know or can’t predict what kinds 
of emergent additional uses or affordances exist in the implementation of a 
technology… In a sense the requirements are manifest in the use of a system 
when it’s actually implemented, other than being a pure intent.” (Colin Potts)  

While evolutionary development has long been a central concern of requirements 
research and practice, in his presentation, Colin Potts described a shift in emphasis 
that is taking place in the requirements discipline. Requirements research frequently 
focuses on the need to understand and articulate user needs (i.e., requirements), often 
through ethnographic analysis of user activity with the system, and thus to build rele-
vant functionality into future designs. However, in addition to this, there should also 
be a greater emphasis on designing artifacts with a level of malleability, or fluidity, in 
mind. This could involve practices such as co-design with users or developing toolkits 
for user customization, but can also involve intelligent agents that learn from usage, 
dynamically evolving artifacts, or user generated artifacts. The requirements commu-
nity will be required to increasingly attend to post-development fluidity in a way that 
is notably different from the evolutionary discourses of the past. This attention should 
not only focus on the requirements themselves, but the meta-requirements associated 
with how adaptable requirements should be in classes of software-intensive systems. 

4.3   Quality and Value-Based Requirements 

“At the end of the day, what are we designing for?  Are we designing really for 
a product? Are we designing for a service? Are we designing for … [an] 
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 experience? And as businesses we tend to think of how we can make a rea-
sonable profit and be sustainable.  But the consumer experience has got to be 
relevant, otherwise we get irrelevant…. People are trying to … stage the right 
kinds of experiences, and there are various ways of approaching that… ”  
(K. Venkatesh Prasad) 

As Venkatesh Prasad indicated in his presentation, a key goal of design is to “stage 
the right kind of experiences” and requirements practices must address the total ex-
perience a number of different ways. Brooks, Potts, Lyytinen, and others indicated 
during the workshop that the research and practice associated with the design of soft-
ware intensive systems generally focuses on the functionality and performance of 
those systems, while at the same time focusing on the accuracy and completeness of 
the related requirements. Missing from much of the discourse are not only the “softer” 
performance characteristics, such as ease of maintenance, stability, and such, but also 
other characteristics of the designed system that involve critical attributes such as 
innovativeness, quality, economic considerations, and ethical implications. A focus on 
broader end-user environment and experience, as well as the organizational and socie-
tal implications of system use need to be more central to the requirements discourse. 

4.4   Requirements Intertwining 

“The business process and user process, or product environment, currently act 
as sources of requirements where [there is] an increased demand … for trans-
parency across different systems and components, which guide requirements 
to integrate separate systems or components… architectures which have been 
adopted have a prominent role in hiding requirements.  Much of that is nor-
mally based on packaged, commercial-off-the-shelf, or software components of 
different sorts.  As a result, the processes are distributed widely within organi-
zations, across organizations, and geographically.  And they result in layered 
requirements across multiple dimensions…” (Kalle Lyytinen)   

In his presentation, Kalle Lyytinen called attention to the way in which human  
activities traverse the ubiquity of software-intensive products. Requirements for new 
systems or changes to existing systems do not occur in a vacuum, and Greenfield 
development efforts are becoming exceedingly rare. Rather, oftentimes integration of 
existing systems, customization of packaged (COTS) software, embedded systems, 
and generic components are central to system development efforts. While researchers 
have long established that understanding end-user processes and target organizational 
environments is important to requirements practices (e.g., [9]), they generally look to 
business process modeling as a means to inform the development of a single system 
that supports a single process or set of processes. While this scenario is still the case 
in certain circumstances, increasingly any system being developed is but one compo-
nent of a broader ecology of systems that support human activity. The emphasis is 
less on identifying processes that are dedicated to a single system, than understanding 
how the system fits within an array of nested business systems and processes with a 
diverse and ever-expanding set of related stakeholders. Systems are not only appro-
priated by heterogeneous communities, but other, non-user, community interests are 
increasingly relevant to contemporary system development. Accordingly, many of the 
workshop participants were advocating a more central role for the interaction of  
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different stakeholder perspectives and interests. Notions such as enterprise architec-
ture, transparency, digital convergence, organizational structure, and multiple proc-
esses take a central position in these emerging views of requirements activity. 

4.5   Adapting Requirements Practices in Different Domains 

While not a central theme in the workshop, a number of participants made the obser-
vation that requirements research does not often distinguish between the different 
vertical domains of application or the different genres of software systems. While 
much of requirements research provides generalizable insights, it is important to un-
derstand the range of relevant design domains and their relationships with require-
ments practice. 

5   Looking Ahead 

Good design of complex systems is a daunting challenge, and as Fred Brooks indicated 
in his keynote address, requirements-related activity is “the hardest part of the chal-
lenge.” Requirements researchers and practitioners must continually face new chal-
lenges, and this volume represents an attempt to summarize the current state of research 
and practice, as well as to identify trends and opportunities around broad five themes, 
and in each one of them point to areas that should be emphasized in the future. 

With this volume, the High Impact Design Requirements Project is by no means 
complete. New workshops are already being scheduled, research outlets are being 
informed of the project, and the project is looking to expand its reach. Together we 
hope that we can set the agenda for requirements research and practice in the dawn of 
the 21st century and impact the design of society’s vital systems at a time when this 
the design of complex software-intensive systems is becoming increasingly challeng-
ing, increasingly in demand, increasingly vital, and increasingly rewarding both intel-
lectually and societally. 
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Abstract. In this paper, we review current requirements engineering (RE) re-
search and identify future research directions suggested by emerging software
needs. First, we overview the state of the art in RE research. The research is con-
sidered with respect to technologies developed to address specific requirements
tasks, such as elicitation, modeling, and analysis. Such a review enables us to
identify mature areas of research, as well as areas that warrant further investiga-
tion. Next, we review several strategies for performing and extending RE research
results, to help delineate the scope of future research directions. Finally, we high-
light what we consider to be the “hot” current and future research topics, which
aim to address RE needs for emerging systems of the future.

Keywords: requirements engineering, modeling, analysis, elicitation.

1 Introduction

The success of a software system depends on how well it fits the needs of its users and
its environment [1, 2]. Software requirements comprise these needs, and requirements
engineering (RE) is the process by which the requirements are determined. Success-
ful RE involves understanding the needs of users, customers, and other stakeholders;
understanding the contexts in which the to-be-developed software will be used; model-
ing, analyzing, negotiating, and documenting the stakeholders’ requirements; validating
that the documented requirements match the negotiated requirements; and managing re-
quirements evolution.1

� A preliminary and shortened version of this paper was published in IEEE International Con-
ference on Software Engineering, Future of Software Engineering, 2007. Portions of the pre-
liminary version have been included with permission from IEEE.

1 In addition, there are a number of software-engineering activities that are based on require-
ments information, such as cost estimation, project planning, and requirements-based deriva-
tions of architectures, designs, code, and test cases. Although these activities are “related” to
a system’s requirements, they play at most a minor role in determining and agreeing on the
system’s requirements; as such, we consider them to be outside the scope of requirements
engineering.

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 11–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



12 B.H.C. Cheng and J.M. Atlee

In this paper, we offer our views on the research directions in requirements engi-
neering. The paper builds on Nuseibeh and Easterbrook’s paper [1], hereafter referred
to as the “2000 RE Roadmap Paper”, from the Future of Software Engineering track at
ICSE 2000 [3]. Whereas the 2000 RE Roadmap Paper focused on current research in
requirements engineering, this paper concentrates on research directions and identifies
RE challenges posed by emerging and future software needs. We start, in Section 2,
with an overview of the inherent difficulties in requirements engineering. In Section 3,
we provide a summary of the state of the art of RE knowledge and research, and in
Section 4, we enumerate general research strategies for advancing the state of the art.
The strategies range from revolutionary breakthroughs to empirical evaluation to codi-
fying proven solutions. In Section 5, we highlight what we consider to be RE research
hotspots: the most pressing needs and grand challenges in RE research. Some hotspot
topics are natural extensions to existing knowledge and technologies, whereas others
arise as RE aspects of predicted software needs. We conclude with strategic recommen-
dations for improving the research infrastructure for RE researchers, so that they can
make better progress on addressing these problems.

2 Why Requirements Engineering Is Hard

In general, the research challenges faced by the requirements-engineering community
are distinct from those faced by the general software-engineering community, because
requirements reside primarily in the problem space whereas other software artifacts
reside primarily in the solution space. That is, requirements descriptions, ideally, are
written entirely in terms of the environment, describing how the environment is to be
affected by the proposed system. In contrast, other software artifacts focus on the be-
havior of the proposed system, and are written in terms of internal software entities and
properties. Stated another way, requirements engineering is about defining precisely the
problem that the software is to solve (i.e., defining what the software is to do), whereas
other SE activities are about defining and refining a proposed software solution.

Several consequences follow from this distinction that cause requirements engineer-
ing to be inherently difficult:

– Requirements analysts start with ill-defined, and often conflicting, ideas of what
the proposed system is to do, and must progress towards a single coherent, detailed,
technical specification of the system.

– The requirements problem space is less constrained than the software solution
space – in fact, it is the requirements definition that helps to delimit the solution
space. As such, there are many more options to consider and decisions to make
about requirements, such as selecting from collections of proposed requirements,
prioritizing requirements, deciding on the system boundaries, negotiating resolu-
tions to conflicts, setting objective acceptance criteria, and so on [4].

– One means of simplifying the problem space is to constrain the environmental con-
ditions under which the system is expected to operate. In such cases, reasoning
about requirements involves reasoning about the combined behavior of the pro-
posed system and assumptions made about the environment. To complicate things,
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a system’s environment may be a combination of hardware devices, physical-world
phenomena, human (operator or user) behavior, and other software components.

– Reasoning about the environment includes identifying not only assumptions about
the normal behavior of the environment, but also about possible threats or hazards
that the environment could pose to the system.

– The resulting requirements artifacts have to be understood and usable by domain
experts and other stakeholders, who may not be knowledgeable about computing.
Thus, requirements notations and processes must maintain a delicate balance be-
tween producing descriptions that are suitable for different stakeholders and pro-
ducing technical documents that are precise enough for downstream developers.

Due to all of the above, RE activities, in contrast to other software-engineering activ-
ities, may be more iterative, involve many more players who have more varied back-
grounds and expertise, require more extensive analyses of options, and call for more
complicated verifications of more diverse (e.g., software, hardware, human)
components.

3 State of the Art of RE Research

In this section, we summarize the state of the art of RE knowledge and research, as a
baseline from which to explore future research directions. This section can be viewed
as an update to the 2000 RE Roadmap Paper [1], in that it incorporates advances made
in the intervening several years.

To provide a visual map of RE research, we organize research results in a matrix
structure that relates each result to the requirements task that it applies to and the
contribution that it makes towards a solution. The research space is roughly decom-
posed into five types of requirements tasks (elicitation, modeling, requirements anal-
ysis, validation and verification, and requirements management) and three categories
of solution technologies (notations, methodologies and techniques, and tools). The No-
tations/Languages column refers to notations and languages that are used to support
the respective requirements tasks. Methodologies and Strategies cover different tech-
niques, artifacts, and guidelines designed to support the RE tasks. Finally, Tools refer to
automation-supported techniques intended to evaluate various types of RE artifacts. The
resulting matrix is shown in Table 2 Not all RE research can be so cleanly classified, but
this decomposition is useful for a high-level overview of solution-based research activ-
ities; evaluation-based research is discussed separately. Our decomposition is roughly
comparable to the top-level decomposition in Zave’s proposed scheme for classifying
RE research [122].

The rest of this section is organized by requirements task, and thus reviews the con-
tents of the matrix by row. We conclude with a discussion of evaluation-based RE re-
search.

Elicitation. Requirements elicitation comprises activities that enable the understanding
of the goals, objectives, and motives for building a proposed software system. Elici-
tation also involves identifying the requirements that the resulting system must satisfy
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Table 1. Matrix Summarizing the State of the Art of Requirements Engineering

Requirements
Tasks

Requirements Technologies

Notations/Languages Methodologies and Strategies Tools

Elicitation

Goals [23, 123, 190]
Use cases [39], Policies [22]
Scenarios [1, 53]
Agents [120, 203]
Anti-models [174, 182, 191]
Nonfunctional requirements [34, 79]

Identifying stakeholders [169]
Metaphors [148, 151]
Persona [10, 41]
Contextual requirements [40, 177]
Inventing requirements [130]

Animation [96, 128, 187]
Simulation [180]
Invariant generation [106]

Modeling

Object models [101]
Goal models [190, 202]
Behavioral models [105, 183]
Domain descriptions [12]
Property languages [17, 56, 119]
Notation Semantics [66, 134, 140, 179]
Problem Frames [102]

RE reference model [89, 90, 146]
Goal-based refinement [121, 120]
Aspect-oriented [153, 14]
Model elaboration [185]
Viewpoints [143, 172]
Patterns [55, 60, 102, 111, 188]
NL-based facilitators [7, 38, 82, 109, 144]
Formalization heuristics [22, 76]
Methodologies [18]

Model merging [164, 181]
Model synthesis [4, 45, 121, 184, 200]
Model composition [93]
Metrics-based evaluation [108]

Requirements
Analysis

Negotiation [100]
Aligning requirements with COTS [6, 160]
Conflict management [159]
Inquiry-based [152]
Evaluation and selection [155]
Inspections [67, 147]
Checklists [195]
Ontologies [108]

Linguistic analysis [20, 33, 194]
Consistency checking [65, 95, 137]
Conflict analysis [30, 92]
Obstacle analysis [127, 193]
Risk analysis and management [69, 201]
Impact analysis [114]
Causal order analysis [13]
Prioritization [136]
Metrics-Based Analysis [19]
Variability analysis [87, 122, 124]
Evolutionary requirements analysis [176]

Validation &
Verification

Model formalisms [26, 57] Inspection [67]
State-based exploration [17, 199]
Scenario-based [27, 88, 162]

Simulation [180]
Animation [96, 128, 187]
Invariant generation [106]
Model checking [32, 62, 175]
Model satisfiability [101]

Requirements
Management

Variability modeling [25, 44, 156, 167] Scenario management [3]
Feature management [156, 167, 197]
Global RE [50]

Traceability [37, 94, 163, 168]
Stability analysis [27]
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in order to achieve these goals. The requirements to be elicited may range from mod-
ifications to well-understood problems and systems (e.g., software upgrades), to hazy
understandings of new problems being automated, to relatively unconstrained require-
ments that are open to innovation2 (e.g., mass-market software). As such, most of the
research in elicitation focuses on technologies for improving the precision, accuracy,
and variety of the requirements details:

– Techniques for identifying stakeholders [19] help to ensure that everyone who may
be affected by the software is consulted during elicitation.

– Analogical techniques, like metaphors [21] and personas [22,23], help stakeholders
to consider more deeply and be more precise about their requirements.

– Contextual and personal RE techniques [24,25] analyze stakeholders’ requirements
with respect to a particular context, environment, and perhaps individual user, to
help ensure that the eventual system is fit for use in that environment.

– Techniques for inventing requirements, like brainstorming and creativity work-
shops [26], help to identify nonessential requirements that make the final product
more appealing.

– Feedback techniques use models [123], model animations [27, 28, 29], simula-
tion [30], and storyboards to elicit positive and negative feedback on early rep-
resentations of the proposed system.

Models can be used during elicitation to help catalyze discussion and to explore and
learn about the stakeholders’ needs. Such exploratory models, like use cases, scenarios,
enterprise models, and some policy [9] and goal models [5], tend to be informal and
intuitive, to facilitate early feedback from stakeholders. They tend also to be inexpensive
to create and maintain, so that specifiers can keep them up-to-date as the requirements
evolve.

Modeling. In requirements modeling, a project’s requirements or specification is
expressed in terms of one or more models. In contrast to models developed during
elicitation, late-phase requirements models tend to be more precise, complete, and un-
ambiguous. The process of creating precise models helps to evoke details that were
missed in the initial elicitation. The resulting (more complete) models can be used to
communicate the requirements to downstream developers.

Modeling notations help to raise the level of abstraction in requirements descriptions
by providing a vocabulary and structural rules that more closely match – better than nat-
ural language does – the entities, relationships, behavior, and constraints of the problem
being modeled. Each modeling notation is designed to elicit or record specific details
about the requirements, such as what data the software is to maintain, functions on the
data, responses to inputs, or properties about data or behavior.

Scenario-based models [10, 67, 68, 11, 66, 69, 51, 70] have been the focus of much
recent research – partly because scenarios are easiest for practitioners and nontechnical
stakeholders to use, but perhaps also because scenarios are naturally incomplete and
thus lend themselves to a plethora of research problems. In addition, there is consider-
able research on techniques for creating, combining, and manipulating models:

2 Innovations are inventions that people are willing to purchase.
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– Modeling strategies provide guidelines for structuring models. For example, RE
reference models [45,46,47] decompose requirements-related descriptions into the
stakeholders’ requirements, the specification of the proposed system, and assump-
tions made about the system’s environment. In addition, they establish correctness
criteria for verifying that the specified system will meet the requirements. In con-
trast, the viewpoints approach [52, 53] retains each stakeholder’s requirements in
separate models, and the synthesis of a consistent global model that captures all of
the stakeholders’ concerns is delayed until conflicts can be resolved knowledgeably.

– Patterns encode generic solutions to common modeling problems [44, 56, 57], as-
sertion expressions [55], and natural-language requirements statements [54]. The
RE community is also working on tools [59, 61, 62] to help specifiers apply these
patterns.

– Model transformations combine or manipulate existing models to derive new
models. For example, model synthesis [67, 68, 48, 69, 70] and model composition
techniques [71] integrate complementary submodels into a composite model. In
contrast, model merging techniques [65, 66] unify different views of the same
problem.

Several of the above-mentioned projects directly address challenges raised in the
2000 RE Roadmap Paper. For example, heuristics for formalizing natural-language
policies [9] and goal models [63] help to bridge the gap between informal and formal
requirements. This gap is also narrowed by techniques for inferring abstractions [60]
and preliminary models [58] from natural-language requirements, by tools that map
constrained natural-language expressions to formal representations [59, 61, 62], and
by research on formalizing the semantics of informal or semi-formal modeling nota-
tions [40,124,41,43]. In addition, significant advances have been made in the modeling
and analysis of nonfunctional requirements [17] and in establishing objective fit criteria
for how well an eventual system must achieve various nonfunctional properties [18].
On the other hand, there has been little progress on special-purpose notations for mod-
eling environment descriptions and assumptions [36]. Instead, existing notations like
functions [47], operational specifications (e.g., Z, Alloy [32]), and constraint languages
continue to be used.

Requirements Analysis. Most of the research in requirements analysis focuses on new
or improved techniques for evaluating the quality of recorded requirements, making
tradeoff decisions among requirements, and for improving the understanding of re-
quirements. A limited number of these approaches are intended to support multiple
stakeholder-based evaluation of the requirements, and thus require more human input
throughout the evaluation process. As such, we put these techniques under the Method-
ologies and Strategies column, including negotiation [73], inquiry-based [77], and in-
spections [79]. Other requirements analysis techniques are more automated and tend to
focus on a specific dimension of evaluation (such as risk, conflicts, or variability); and
therefore we list these techniques under the Tools column. For example, several analysis
tools look for well-formedness errors in requirements, where an “error” can be ambi-
guity [82,125,72,126,84], inconsistency [127,85,87], or incompleteness. Other analy-
ses look for anomalies, such as unknown interactions among requirements [88, 89, 76],
possible obstacles to requirements satisfaction [90, 91], or missing assumptions [95].
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Both types of analyses reveal misunderstandings or questions about the requirements
that usually call for further elicitation, thus moving back to the interactive techniques.
Requirements analysis also includes consequence-based analysis techniques, such as
risk analysis [92] and impact analysis [94], that help specifiers to understand better the
requirements, their interrelationships, and their potential consequences, so that spec-
ifiers can make better decisions. As other examples, prioritization, visualization, and
analysis techniques help a manager to select an optimal combination of requirements
to be implemented [98, 100, 78, 96, 101], or to identify acceptable off-the-shelf solu-
tions [128, 75].

Validation and Verification. Requirements validation ensures that models and docu-
mentation accurately express the stakeholders’ needs. Unlike the above analyses that
check a specification against objective well-formedness criteria, validation is normally
a subjective evaluation of the specification with respect to informally described or un-
documented requirements. As such, validation usually requires stakeholders to be di-
rectly involved in reviewing the requirements artifacts [129, 79]. Research in this area
focuses on improving the information provided to the stakeholder for feedback, includ-
ing animations [27, 28, 29], simulations [30], and derived invariants [31]. Many of the
techniques are based on scenario validation [105, 106, 107].

In cases where a formal description of the stakeholders’ requirements exists, ob-
tained perhaps by validation, verification techniques can be used to prove that the soft-
ware specification meets these requirements. Such proofs often take the form of check-
ing that a specification model satisfies some constraint. For example, model check-
ing [108, 109, 110] checks behavioral models against temporal-logic properties about
execution traces; and model satisfiability [32] checks that there exist valid instantiations
of constrained object models, and that operations on object models preserve invariants.

The notations listed in the Validation & Verification row of Table 3 represent for-
malisms that enable or ease verification. In contrast to specification notations, these
notations’ primary purpose is to facilitate automated verification rather than to commu-
nicate or document requirements. Verification models, expressed in these notations, are
simplifications and abstractions of a specification to be verified [102, 103, 32].

Requirements management. Requirements management is an umbrella activity that
comprises a number of tasks related to the management of requirements, including the
evolution of requirements over time and across product families. Of particular interest
are tools and techniques to ease, and partially automate, the task of identifying and doc-
umenting traceability links among requirements artifacts and between requirements and
downstream artifacts [118,119,120,121,130]. Also included are analyses that determine
the maturity and stability of elicited requirements, so that the requirements most likely
to change can be isolated [105]. Lastly, the basic management of requirements has be-
come a challenge and has inspired research on techniques to organize large numbers of
requirements [115] that are globally distributed [117], and that are at different phases
in development in different product variants [113, 114, 116].

Evaluation-Based Research. The above discussion is an overview of solution-based
RE research, which emphasizes technological advances that make progress towards
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solving RE problems; such research is often accompanied by proofs-of-concepts or pi-
lot studies that show the potential of the proposed ideas. Orthogonal to this work is
evaluation-based research, whose mission is to assess the state of the practice and eval-
uate proposed advances to the state of the art. Approximately 10% to 15% of RE re-
search papers report on evaluation-based research, in the form of reports on the state of
the practice [131], case studies that evaluate how well research ideas work when applied
to industrial-strength problems3 [73, 132, 133, 134, 104], and field studies that evaluate
research ideas in industrial settings [135, 136, 137]. Several recent research projects
evaluate how well requirements technologies apply to, or can be adapted to, domain-
specific problems, such as security [16], semantic webs [138], and user interfaces [139].
Additionally, there have been a few comparative studies that compare the effectiveness
of competing elicitation techniques [140, 141], specification notations [142], and in-
spection techniques [143]. Finally, there have also been some post-mortem analyses on
how requirements evolved in real-world systems [144, 145].

4 Research Strategies

In this section, we discuss ways of advancing the state of the art of RE research. We
review several major strategies for conducting research, and look at how each have or
might be applied to requirements-related research. The strategies range from inventing
new disruptive ideas and technologies, to improving on current research, to adapting
previous results to a new context, to evaluating or comparing technologies. Each strat-
egy attempts to achieve a slightly different research objective, but all contribute in some
way to advancing the state of the art, either by adding new knowledge or by improving
the maturity of previous work.

Our collection of research strategies is synthesized from a number of different
sources, including Shaw’s overview of criteria for good research in software engi-
neering [146], Redwine and Riddle’s review of software technology maturation [147],
Basili’s review of research paradigms [148], and the combined experience of both au-
thors. Table 2 introduces and briefly defines the eight research strategies that we discuss
below.

Paradigm Shift. A paradigm shift is a revolutionary solution that introduces radically
new ideas or technologies to tackle a new or existing problem. A paradigm shift may be
called for when researchers can no longer make progress on an important problem by
extending or adapting existing technologies. Typically, there are two means by which
a paradigm shift occurs: push and pull. A paradigm shift is pushed onto a community
when new technology serendipitously makes major advances towards solving a problem
for which it was not originally intended. A classic example of such a shift is the World
Wide Web, which has significantly changed the way that society communicates and
the way that services are delivered to consumers. A paradigm shift that is currently
underway is the shift toward global software development and, by extension, global
requirements engineering; we discuss this topic further in Section 5.1.

3 We use the term “industrial-strength” problems/projects to refer to project data that have char-
acteristics of industrial examples, such as size, complexity, and/or domain-specific properties.
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Table 2. Enumeration of research strategies

Research
Strategy

Definition

Paradigm

Shift:

Dramatically change the way of thinking, resulting in a revolution in knowl-
edge or technology.

Leverage
other
disciplines:

Leverage and recast principles, practices, processes, or techniques from an-

other discipline.

Leverage
new
technology:

Make advances by leveraging new tools or technology.

Evolutionary: Make progressive improvements to existing research solutions and tech-

niques.

Domain-
specific:

Develop a new solution or technique that applies narrowly to a specific prob-

lem domain.

Generalization:Generalize an existing solution or technique, so that it applies to a broader
class of problems or data.

Engineering: Develop processes or strategies that make it easier or cheaper to apply re-
search solutions in practice.

Evaluation: Evaluate existing research solutions – with respect to specified metrics, real
or realistic problems, current practices, or related research results.

Alternatively, a paradigm shift can be pulled when there is a real or a perceived crisis
that cannot be solved by improving current ideas and techniques [149]. For example,
object-based design conventions were invented in response to serious concerns about
how to structure programs and data in a way that promoted modularity. As the design
conventions gained popularity, they evolved into object-oriented programming method-
ologies, were codified in new design methods, and were eventually supported by new
programming language constructs.

Paradigm shifts are rare and are usually unplanned; but when they occur, they can
have tremendous impact on a field. A paradigm shift starts with some innovative change
in the way that a particular problem is studied. The change leads to disruptive innova-
tions, which usually must mature before their benefits are recognized and appreciated
enough to motivate rapid and widespread adoption.

Leverage other disciplines. An RE researcher can leverage another discipline by
identifying the analogous relationships between the two disciplines and then recasting
promising knowledge, philosophies, principles, or practices from the other discipline
into solutions that are appropriate for requirements problems. For example, software
engineering, as a discipline, emerged when researchers and practitioners attempted to
manage the “software crisis” by borrowing and adapting from the engineering profes-
sion several ideas about design principles, development processes, and rigor. As another
example, the concept of genetic algorithms leverages ideas from biology, in that the al-
gorithms “evolve” by using feedback from previous computations to improve future
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computations. Sutcliffe et al. [150] use genetic algorithms to improve the efficiency of
searching for an optimal set of components that satisfy a given set of fitness criteria for
reliability requirements. As a third example, Sutcliffe and Maiden’s work [151] in es-
tablishing a domain theory for RE draws heavily from cognitive science and the human
use of analogical reasoning.

Leverage technology. Technological advances in computing and related fields can be
combined and adapted to apply to problems in requirements engineering. In general,
artificial intelligence, library science, information science, cognitive psychology, lin-
guistics, statistics, and mathematics are all fertile areas for ideas and techniques that are
suitable for such adaptation. For example, Ambriola and Gervasi [58], and separately
Overmeyer et al. [62], use natural-language processing techniques to parse textual re-
quirements descriptions and to generate corresponding semi-formal models, such as
data-flow diagrams and communication diagrams. They and other researchers [58, 82,
125, 126, 84] use linguistic-analysis techniques to detect possible ambiguities and un-
intended inconsistencies in textual or use-case requirements. Hayes et al. [119] and
Cleland-Huang et al. [152] use information-retrieval techniques to automatically re-
trieve traceability links among requirements.

Evolutionary research. The antithesis of a paradigm shift is evolutionary research, in
which the state of the art advances via incremental improvements to existing technolo-
gies. Although emerging software needs may pose new research challenges that the RE
community will be called on to address, most software developed in the near future will
resemble the types of systems being developed today. As such, the software community
will continue to benefit from improvements to current requirements technologies (as
overviewed in Section 3), which were created in response to the problems that today’s
practitioners face.

In many ways, evolutionary research is about moving research technologies down
the research-strategy ladder listed in Table 2. Existing notations and techniques can
be extended, adapted, or generalized to address a broader class of problems. Current
technologies can be supported by new methodologies, patterns, strategies, and tools that
ease their use and help to promote their adoption by practitioners. Empirical research
can determine the problems and contexts for which a technology is most effective, and
can identify aspects that could be further improved.

Domain-specific. A researcher can sometimes make better progress by narrowing the
scope of a requirements problem and studying it in the context of a particular application
domain. For example, there is a paradigm shift towards more domain-specific specifi-
cation languages that provide native facilities for describing important entities and be-
haviors in that domain and provide macros for eliding recurrent requirements details.
Along these lines, the International Telecommunication Union (ITU) has standardized
a number of specification, design, and testing languages; design methodologies; and
interface specifications – all of which support software aspects of telecommunication
systems.

Generalization. Successful domain-specific or organization-specific techniques can
sometimes be generalized to be more broadly applicable. For example, many of the
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ideas in telecommunications notations, like Message Sequence Charts and the Specifi-
cation and Description Language, have been incorporated into the more general Unified
Modeling Language 2.0. As another example, techniques for avoiding, detecting, and
resolving feature interactions, which were originally developed in the context of tele-
phony features [71, 153], are now being studied and applied in other domains, such as
Web services [154].

Engineering. A surprising number of research problems arise in the course of try-
ing to apply requirements technologies in practice. Engineering as a research strat-
egy looks at how to simplify and codify RE knowledge and techniques so that they
can be readily adopted by practitioners and taught in classrooms. For example, visual
formalisms [38, 155, 156, 34] ease the task of creating and reviewing precise specifi-
cations. Patterns not only help specifiers to create models [157, 56, 57] and express
constraints [55], via instantiation and adaptation, but they also offer some level of uni-
formity and repeatability of such descriptions. Heuristics and strategies offer advice on
how to use particular elicitation [158], modeling [9, 63], or verification [159] technolo-
gies. Methodologies and processes provide guidance on how to integrate RE technolo-
gies to progress from an initial idea to a final specification document [77, 160]. One of
the best known engineering-style research projects was Parnas et al.’s case study that
applied state-of-the-art software engineering practices to (re)develop the engineering
artifacts and code for the U.S. A-7 naval aircraft. This work led to research results in
tabular specifications [34], hierarchical module structures, abstract interfaces, and new
inspection strategies [80].

Evaluation. Proposed RE technologies become theories, solutions, or practices through
evaluation-based research that demonstrate effectiveness. Evaluation techniques include
experience, collection and analysis of data, field studies, case studies, controlled exper-
iments, and analytical reasoning. Evaluation criteria range from qualitative or statisti-
cal metrics, to effectiveness in solving real or realistic problems, to comparisons with
competing technologies. A mature RE technology should be evaluated on real-world
applications or in an industrial setting, to assess its scalability, practicality, and ease of
use [137, 73, 132, 133, 134, 104]. In contrast, comparative studies evaluate the relative
strengths and weaknesses of competing solutions to a problem. Notable comparative
studies have investigated the criteria for choosing a specification language [142] and
the effectiveness of methods for inspecting requirements documents [143].

Evaluation-based research need not be a massive project. A case-study may be based
on a single study involving an industrial-strength project, on replicated studies of the
same project, on studies of multiple projects, or on a longitudinal study that spans sev-
eral phases of a project. Even the development of new assessment criteria, such as
appropriate benchmarks, are valuable research contributions.

Level of Research Activity. Figure 1 depicts the level of research activity in each of
the areas, where (from left to right) the strategies are listed in order of increasing ma-
turity of the research results.4 The parabola delineates the level of activity in each area,

4 Here, we use the term “maturity” to refer to the extent that the research results have been
validated and refined by people, especially people other than the original authors.
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Fig. 1. Level of activity using different research strategies

where the majority of the research activities are in the middle region (i.e., evolutionary
and domain-specific). And the shading indicates the level of uncertainty involved in
the research investigations. The lightest shading indicates the most radical, pioneering
research that involves exploring unknown territory with very little assurance about the
likelihood that the research will lead to successful and useful results. But if successful
the research could have very high impact. In contrast, the darkest shading indicates that
significant information is already known about the technique, but evaluation and empir-
ical research is needed to evaluate the utility of the technique under various contexts.

5 RE Research Hotspots

As evidenced by the previous sections, the field of RE research is rich, and the scope
of possible research directions is quite large. In addition, new RE research challenges
are posed by emerging trends in software systems and predictions about future soft-
ware needs. In this section, we highlight what we consider to be RE research hotspots:
that is, those RE problems whose solutions are likely to have the greatest impact on
software-engineering research and practice. We decompose our discussion into three
major categories: research that will facilitate the use of RE techniques; improvements
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to the current state of the art of RE techniques; and RE research challenges posed by
emerging needs that require transformative research results.

Emerging needs include increasing scale of software systems, tighter integration
between software and its environment, greater autonomy of software to adapt to its
environment, and increasing globalization of software development. These trends re-
flect changes in stakeholders’ needs, and as such they directly affect RE processes and
practices. In some cases, current technologies can accommodate the new trends in re-
quirements. In other cases, the trends pose new research challenges in requirements
engineering, or raise the priorities of longstanding research problems.

Our list of hotspots is not meant to be exhaustive. Rather, it is intended to high-
light some of the more pressing needs and grand challenges in RE research. We start
with three hotspots that focus on extending and maturing existing research technolo-
gies with the objective of facilitating their use by a broader RE community: improved
methodologies, requirements reuse, and more evaluation-based research. All three of
these hotspots are even more critical when put in the context of global software de-
velopment. As such, additional challenges posed by global requirements engineering
round out this cluster of hotspots. Next, given that computing-based systems are in-
creasingly being used for safety-critical application domains (e.g., automotive, medical,
transportation, finance, and etc.), we highlight two hotspots targeted towards improv-
ing systems assurance: security and fault tolerance. Finally, we end by identifying three
hotpots that arise from the need to explicitly deal with many levels of uncertainty, an
inherent aspect of future systems: increased scale, tight coupling between the software
and its physical environment, and self-management.

5.1 Facilitating the Use of RE Techniques

As can be seen in Table 2, a rich collection of RE techniques has been developed over
the past thirty years. And yet discussions with developers from industry indicate that
the most challenging dimension of developing computing-based systems still centers
around requirements. As computing-based systems become increasingly complex, op-
erating in more critical application domains, the need for more prevalent use of rig-
orous RE techniques becomes more essential. Realization of these pressing needs has
prompted a number of industrial organizations to allocate more resources for RE-related
tasks [161] and establish collaborative partnerships with academic researchers to ex-
plore viable solutions for near-term and longer-term RE needs [162, 163, 164, 165, 166,
167]. At the same time, the RE research community can facilitate a more widespread use
of these techniques by making more of the requirements-related activities closer to that
of an engineering process. As described in Section 3, to enable engineering, techniques
need to be simplified and packaged for reuse by people other than the original authors,
RE knowledge and strategies need to be codified, and industrial-strength applications of
techniques need to be documented for potential users to assess the applicability to their
respective problems. Currently, the typical approach for sharing research results with
the community is in the form of conference papers. But due to practical reasons, these
papers are typically not allocated enough space to allow authors to describe their re-
spective techniques in sufficient detail for others to duplicate the investigations or apply
the techniques to a new problem. Even those authors who go the extra step to publish a
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journal version of the paper still are typically only able to add an incremental amount of
details over the conference paper. In most cases, the authors add the theoretical details
about a given technique in the journal paper. In addition to the theoretical foundations, it
is also necessary to document the research results in sufficient detail for others to dupli-
cate the results, even if it means putting the information into an unpublished technical
report or on a publicly accessible website. It is commonly recognized that experimental
work is expensive and time-consuming, therefore, the academy and the research dis-
semination venues (e.g., conferences and journals) need to emphasize more the impor-
tance of the documentation and publication of empirical research results to encourage
work along these lines; we are seeing some progress along these lines [168]. Below,
we mention three key areas of research needs that will further facilitate the use of ex-
isting and future RE techniques: empirical evaluation, codification of methodologies,
and leverage and reuse of RE artifacts. Finally, we discuss how the challenges posed
by global software development will further motivate the need to make RE techniques
more amenable to technology transfer and reusable when working across geographical,
cultural, and time zone boundaries.

Effectiveness of RE Technologies. The ultimate impact of RE research depends on
how relevant the results are to industry’s short- and long-term needs. So far, there has
been surprisingly little evaluation as to how well RE research results address indus-
trial problems. As mentioned in Section 3, most empirical RE research takes the form
of proof-of-concept studies or pilot studies, both of which qualitatively evaluate how
well a proposed solution or technique applies to a single concrete problem. Such stud-
ies tend to be aimed at research audiences, and are intended to convince readers that
the RE technologies under evaluation advance the state of the art. However, given that
most studies report success, how is a practitioner to determine when a study reports a
significant enough advance to warrant changes to the state of the practice, and how is a
practitioner to select from among competing technologies?

Practitioners need hard evidence that a new technology is cost-effective, in order to
justify the overhead of changing their development processes. In particular, practition-
ers would benefit greatly from empirical studies that assess the costs and benefits of us-
ing proposed technologies, assess the scope of problems to which research results can
feasibly be applied, and compare the effectiveness of competing technologies. There
have been a few studies along these lines. Damian et al. have conducted a series of
surveys that evaluates the impact of requirements-related activities on productivity, risk
management, and the quality of both requirements and downstream artifacts [135, 169,
170]. The Comparative Evaluation in Requirements Engineering (CERE) workshops
investigate how to facilitate comparative studies, such as the development of suitable
benchmarks. The Economics-Driven Software Engineering Research (EDSER) work-
shops investigate how to improve practitioners’ abilities to make economics-based de-
sign and process decisions, such as whether or not to adopt new technologies. Such
empirical research that evaluates requirements technologies in the context of industrial
settings and practices would help to accelerate the transfer of research results into RE
practice.

Methodologies and Tools. Better guidance on how to apply the technologies more
systematically would facilitate the migration of RE technologies from research into
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practice. The goals of this type of engineering-style research are to improve the
productivity of the requirements analyst and to improve the quality of the resulting
requirements artifacts. Modeling conventions, methodologies, and strategies all help to
simplify RE techniques so that the techniques can be used successfully by ordinary
practitioners.

Engineering-style research is also needed to investigate how to integrate require-
ments technologies into a coherent requirements process. Most research projects focus
on a single RE problem, such as elicitation or traceability. As a result, the state of the art
in RE research is a collection of technologies that have been researched and evaluated
in isolation, with little knowledge of how to combine techniques effectively. For ex-
ample, despite the significant advances that have been made in requirements modeling
and notations, there has been little work on how to integrate various types of require-
ments models. Research is needed to develop well-defined approaches to interrelate
requirements goals, scenarios, data, functions, state-based behavior, and constraints.
Broy and his group have made some progress on this problem, in the form of a mod-
eling theory that incorporates many of the above-mentioned modeling elements [171].
As an example of synergy among RE technologies, Ebert [172] shows via an analysis
of several industrial-development projects that four product-management techniques –
for composing teams, negotiating requirements, planning long-term product and fea-
ture releases, and tracking a product’s status – are most effective at reducing scheduling
delays when the techniques are used together. Further research is needed on how to
integrate RE technologies, so that practitioners know how to apply individual technolo-
gies effectively and synergistically. Finally, more research is needed to systematically
derive downstream artifacts, such as architectural elements and test cases, from the RE
artifacts.
Requirements Reuse. Another approach to making RE tasks more prescriptive and
systematic would be to facilitate the reuse of existing requirements artifacts. The most
strategic form of requirements reuse is product lining, where related products are treated
as a product family, and their co-development is planned from the beginning. The fam-
ily’s common requirements are collected in reusable templates that can be instantiated
and adapted to derive the requirements for an individual product. A key RE challenge
for product-line development includes strategic and effective techniques for analyz-
ing domains; identifying opportunities for product lining; and identifying the scope,
commonalities, and variabilities of a product line. A second challenge relates to how
requirements for product lines are documented. Feature models [112, 173] are com-
monly used to model a product-line core, but they quickly proliferate when used to
model product-line instantiations. A promising but untested solution to this challenge
is multi-level feature trees [113].

Specification and modeling patterns are also a form of reuse, in that they codify
reusable modeling structures. For example, just as specification patterns [55] help to
ease the creation of logic specifications, research into idioms and patterns for other
modeling problems and notations [157,56,57] would improve the productivity of mod-
elers. Problem frames [44] can be considered abstract patterns of context diagrams for
common classes of software problems, and thus are also reusable. In addition, it may
be possible to identify larger units of reusable requirements for particular domains or
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particular types of applications. The automotive industry has expressed interest in using
such “generic, reusable requirements” in developing complex automotive systems.

A reusable requirement should be accompanied by standard pattern fields, such as
context, problem addressed, consequences, properties, and so on. However, this is usu-
ally not enough information to facilitate effective use of the pattern or reusable artifact.
Adapting an instantiated pattern so that it adequately fits the desired context is still a
bit of an art. Pattern use would be easier and more successful if practitioners had better
guidance and examples of how to apply and adapt individual patterns.

Globalization. Global software development is an emerging paradigm shift towards
globally distributed development teams [174]. The shift is motivated by the desire to
capitalize on global resource pools, decrease costs, exploit a 24-hour work day, and
be geographically closer to the end-consumer [117]. The downside is increased risk
of communication gaps. For example, elicitation and early modeling are collaborative
activities that require the construction of a shared mental model of the problem and re-
quirements. However, there is an explicit disconnect between this need for collaboration
and the distance imposed by global development.

Globalization poses two main challenges to the RE research community. First, new
or extended RE techniques are needed to support outsourcing of downstream develop-
ment tasks, such as design, coding, and testing. Distance aggravates the gap between the
requirements and development teams, particularly if the teams are from different orga-
nizations, have different cultures, or have different work environments. In particular, be-
cause geographic distance reduces team communication [175], ill-defined requirements
are at risk of ultimately being misinterpreted, resulting in a system that does not address
meet the stakeholders’ needs. In a preliminary effort to narrow communication gaps,
Bhat et al. [117] have proposed a framework based on a people-process-technology
paradigm that describes best practices for negotiating goals, culture, processes, and re-
sponsibilities across a global organization.

The second challenge is to enable effective distributed RE. Future requirements ac-
tivities will be globally distributed, since requirements analysts will likely be working
with geographically distributed stakeholders and distributed development teams may
work with in-house customers. As such, practitioners need techniques to facilitate and
manage distributed requirements elicitation, distributed modeling, distributed require-
ments negotiation, and the management of distributed teams – not just geographically
distributed, but distributed in terms of time zone, culture, and language. Therefore,
global software development further motivates the need for mature, easy to use RE tech-
niques and reusable artifacts annotated with cost metrics, all of which will help global
RE teams make better RE decisions and generally improve the overall RE process. Fur-
thermore, with the geographical distribution of RE teams, it is even more important
to have a well-defined foundation for how to integrate the various RE artifacts to en-
sure consistency and traceability. In addition to improving existing RE techniques for
easier use, it is also necessary to extend RE techniques to explicitly overcome the chal-
lenges posed by the physical distribution of RE teams. For example, Damian and her
group are interested in distributed requirements negotiation, and have investigated how
best to use and combine different media technology to facilitate negotiations and quality
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agreements [136,176]. Sinha et al. have developed an Eclipse-based tool for distributed
requirements engineering collaboration [117].

5.2 Assurance

Given the increasing pervasiveness of computing-based systems in high-assurance sys-
tems, where errors can lead to loss or injury to life, loss of property, and/or financial
loss, more attention is being paid to requirements-related tasks that explicitly address
the assurance of a system. The increasing industrial demand for RE support will stimu-
late more research activities, including those overviewed in Table 3. Given the critical
nature of many computing-based systems, RE techniques that implicitly or explicitly
improve the assurance of the overall system are particularly crucial for the RE com-
munity to investigate. For example, most validation and verification techniques used to
assess correctness, satisfiability, and other assurance properties, such as model checking
and model satisfiability are already hitting their scalability limits with current systems.
With the added complexity and size of future systems, more research is needed to make
the current analysis techniques more scalable to current and future systems. Modular
verification [177], harnessing parallel processing power [178,179] and bio-inspired ap-
proaches [180] for model checking are all examples of research in this direction. Below
we highlight a few challenges of two key assurance areas: security and fault tolerance.
In both cases, significant effort has been expended in developing techniques to be ap-
plied during design and/or implementation; furthermore, these techniques tend to be
more reactive and based on known threats (e.g., failures). Given the increasing demand
for security and fault tolerance for an ever-widening number of application domains, it
is paramount for sufficiently rigorous RE techniques to be developed to support these
areas to most effectively leverage the design and implementation techniques that have
been and will continue to be developed. In addition, exploring more effective RE tech-
niques for these areas may uncover or open up opportunities for previously unknown
solution options.

Security. As computing systems become ever more pervasive and mobile, and as they
automate and manage more consumer-critical processes and data, they increasingly be-
come the targets of security attacks. Because the sources of security threats are mostly
external to the software system, we elevate security above other nonfunctional require-
ments as one that poses additional challenges to RE.

Substantial work has been done on how to improve software security, in the form of
solutions and strategies to avoid vulnerabilities, to protect systems and information, and
to defend against or recover from attacks. However, most of these solutions are threat-
specific, and are targeted more for the design or implementation stages. Thus, the RE
challenge for developing secure systems is to identify potential security threats, so that
designers can select and apply appropriate protections. This task involves significant
study, modeling, and analysis of the environment in which the system will operate,
and so far there has been little work on domain modeling – despite the fact that its
importance was raised almost 15 years ago [181].

Moreover, there is no consensus on how security requirements themselves should be
documented. Is security a nonfunctional requirement to be resolved and optimized at
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design time along with other competing nonfunctional requirements? Or should secu-
rity requirements be realized as functional requirements, in the manner that user inter-
faces and timing deadlines are woven into behavioral specifications? These are open
questions for the modeling, analysis, and security communities to resolve.

Tolerance. Software is increasingly used to automate critical applications and ser-
vices, such as transportation vehicles and systems, financial decisions and transactions,
medical care, military command and control, and so on; in which security and assur-
ance requirements are paramount. However, given the complexity of such systems, with
respect to size, decentralized decision-making, and variability, the SE and RE commu-
nities may need to soften their views and expectations for security and correctness.
Shaw [182] discusses the need to accept “sufficient correctness” for complex systems,
instead of striving for absolute correctness that may lead to brittle systems.

Sufficient Correctness: The degree to which a system must be dependable in
order to serve the purpose its user intends, and to do so well enough to satisfy
the current needs and expectations of those users [182].

When operating in an uncertain and dynamically changing environment, brittle systems
tend to fail at the first encounter of adverse conditions. To avoid this problem, require-
ments elicitation should focus on requirements for acceptable behavior and on what it
means for a system to be “healthy” [182]. One approach to relaxing the precision of
correctness criteria is to specify (fault) tolerance requirements, which extend the ranges
of acceptable behavior. For example, Wassyng et al. [183] have made some preliminary
progress on specifying timing requirements in a way that is precise and yet captures al-
lowable tolerances. Alternative approaches include focusing on negative requirements,
which represent “unhealthy” conditions or behaviors that the system must avoid, and
on requirements for diagnostic and recovery mechanisms.

5.3 Emerging Needs

A major factor that will pose significant challenges to the RE community specifically,
and to the SE field generally, is the level of uncertainty that will be an inherent part
of many future systems. At run time, future systems will need to handle uncertainty in
many forms, ranging from unexpected user input, unanticipated environmental condi-
tions (e.g., power outages, security threats, noisy wireless networks, etc.), heterogeneity
of devices and the need for interoperability, and on-demand, context-dependent ser-
vices. Uncertainty at run time will make it difficult to apply traditional RE techniques
that are typically based on knowledge known at development time. Below we describe
three key areas of research that call attention to the challenges posed to the RE research
community due to the level of uncertainty of future systems: increasing scale on multi-
ple dimensions, tight integration between computing systems and the changing physical
environment, and the need for systems to be self-managing and self-configuring, while
maintaining assurance constraints.

Scale. Software systems are growing in size. Moreover, the “scale” of large-scale sys-
tems no longer refers simply to significant size, as in lines of code. Scale factors also
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include complexity, degree of heterogeneity, number of sensors, and number of de-
centralized decision-making nodes. Yet another scale factor is variability, as software
systems need to accommodate increasingly larger sets of requirements that vary with
respect to changes in the software’s environment. An example class of systems that ex-
hibit many of these new scale factors are the ultra-large-scale (ULS) systems [184] pro-
posed for next-generation military command and control systems. Other potential ULS
systems include future intelligent transportation-management systems, critical infras-
tructure protection systems (e.g., systems managing power grids, bridges, telecommu-
nication systems), integrated health-providing systems, and disaster-response systems.

Modeling, abstraction, and analysis techniques that scale well are critical in design-
ing future ULSs. Current modeling paradigms and analysis techniques cannot effec-
tively manage the degrees of scale, complexity, variability, and uncertainty that are
exhibited in these systems. Requirements will come from many different stakehold-
ers, involve multiple disciplines (e.g., sensors, scientific computation, artificial intelli-
gence), and perhaps be presented at varying levels of abstraction. Thus, new
abstractions, innovative decomposition strategies, standardized composition operators,
and increased automation of RE tasks are all needed to cope with the complexity. In
addition, better techniques are needed to merge potentially vastly different types of re-
quirements into a single coherent story, whereas new techniques need to be developed
to infer requirements from legacy components. New techniques to support responsi-
bility and functionality tradeoff analysis for ULS systems are needed, given that these
systems will, by definition, be distributed and running atop heterogeneous platforms.
For these systems, neither the qualitative framework from Mylopoulos et al [98], nor
the probabilistic framework by Letier and van Lamsweerde [99] are sufficient [185], but
both provide insight as to the key factors that need to be considered when evaluating al-
ternative options. The challenge will be how to factor in many more stakeholder needs,
orders of magnitude more options to consider involving complex dependencies, with
functional and performance-based constraints. Detecting and resolving feature interac-
tions and conflicts on such a large scale will pose a grand challenge. Taken together,
these problems call for new paradigms for thinking about, modeling, analyzing, and
managing requirements.

Increased Reliance on the Environment. The increase in scale is partly due to the rise
of systems of systems, consisting of software, hardware, and people, all of which may
be loosely or tightly coupled together. For example, cyber-physical systems (CPSs) are
a new generation of engineered systems in which computing and communication are
tightly coupled with the monitoring and control of entities in the physical world [162].
Example cyber-physical systems include intelligent transportation and vehicle systems;
automated manufacturing; critical infrastructure monitoring; disaster response; opti-
mization of energy consumption; smart wearable attire [186] for health care, personal
safety, and medical needs; ecosystem monitoring [187]; and efficient agriculture [162].

Integrated systems pose particularly thorny requirements problems because of their
coupling with and dependence on the physical environment. Such systems recast old RE
problems of determining the software system’s boundary into more complicated prob-
lems of assigning responsibilities: to the software system under consideration, to peer
software systems, to hardware interface devices (which are increasingly
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programmable), and to human operators and users [12]. Moreover, the environment
or context in which a software system will run is often the least understood and most
uncertain aspect of a proposed system; and RE technologies and tools for reasoning
about the integration of physical environment, interface devices, and software system
are among the least mature.

In an integrated system, the correctness of a software system depends heavily on
its interactions with peer software systems, hardware interfaces, and the physical and
human environment. To reason about such a software system, it becomes necessary
to formalize the properties of the environments with which the software will inter-
operate. Jackson [188] explores a number of challenges in modeling and reasoning
about a software system’s environment, including working with formalizations that are
necessarily ”imperfect...[discrete approximations] of continuous phenomena”, devising
piecewise formalizations of the environment to support different proofs about the soft-
ware, and ensuring that the environment is in a “compatible state” when the system
initializes. [188]. Towards this end, better abstractions are needed to model the behav-
iors of physical and human entities and their interfaces with computing elements. New
domain-specific languages may be needed to express these domain abstractions and
knowledge; and new languages would call for corresponding simulation, verification,
and visualization techniques, to validate the modeled environment.

Most importantly, there need to be better techniques for integrating models of the en-
vironment, interface devices, and software components. Computing devices tend to be
modeled using discrete mathematics, such as logics and automata; physical devices tend
to modeled using continuous mathematics, such as differential equations; and human-
behavior modeling is an open problem, with researchers using a combination of goals,
agents, relationship models, and performance moderator functions [189]. Researchers
in the verification community are making progress on the modeling, simulation, and rea-
soning of hybrid models [190], but their work does not accommodate human-behavior
models, and the scalability of techniques remains an elusive goal.

Self-Management. The difficulties of requirements engineering are made worse by
the desire to create software systems that accommodate varying, uncertain, incomplete,
or evolving requirements. For example, there is growing interest in self-managing sys-
tems, in which the software system is aware of its context and is able to react and
adapt to changes in either its environment or its requirements [191] – such as a mobile
device, whose available services vary with the user’s location and with the local ser-
vice provider(s). Examples of such systems include self-healing systems that are able to
recover dynamically from system failure, faults, errors, or security breaches; and self-
optimizing systems that are able to optimize their performance dynamically with respect
to changing operational profiles.

Self-management capabilities are essential in software systems that, once deployed,
cannot be accessed physically or electronically. For example, a cyber-physical sys-
tem (CPS) may have large numbers of physically distributed sensors that are placed
in difficult-to-reach locations, such as power transformers, nuclear reactor cores, and
hazardous or toxic sites. Moreover, these sensors are increasingly programmable. If de-
velopers are not able to access remote elements to perform software updates, then the
elements will need to update and correct themselves.
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In the simplest case, a self-managing system adapts its behavior at run-time by re-
placing the running system with a new target behavior selected from among a set of pre-
defined behaviors. These systems will require different perspectives on what types of
requirements information should be documented, in contrast to traditional approaches,
which typically focus on a static set of goals or functionality. The RE research problems
posed by such a system include

– Identifying and specifying thresholds for when the system should adapt
– Specifying variable sets of requirements
– Identifying correctness criteria for adaptive systems
– Verifying models of adaptive systems and their sets of possible behaviors
– Monitoring the system and environment against the current requirements

There has been some preliminary work on modeling and verifying dynamic architec-
tures [192, 193, 194, 195], on specifying adaptive software [196, 197], and on run-time
monitoring [198, 199, 200].

However, the above approach assumes that it is possible to predict and predefine
the requirements for a complete set of target behaviors. Such predictions may not be
possible if the system is to recover dynamically from unexpected errors or attacks, or
is to adapt at run-time to new environmental conditions or to new requirements that
were not anticipated during development. In this case, what is needed is a self-evolving
system that is able, at run-time, to derive new requirements and behaviors from ei-
ther newly synthesized components or retrieved existing components (thus necessitating
support for run-time matching of requirements-indexed components). Neither of those
requirements-driven approaches to run-time behavior adaptation are possible with cur-
rent RE techniques. Once assurance is factored into the adaptation process, the require-
ments analyst needs to specify how the system’s requirements can evolve dynamically;
specify abstract adaptation thresholds that allow for uncertainty and unanticipated envi-
ronmental conditions; and verify the requirements-decision capabilities of the resulting
system. Unfortunately, none of the existing modeling and verification techniques ad-
dress the challenges posed by evolution, uncertainty, and incomplete information.

One research strategy would be to investigate whether ideas from other disciplines
could be leveraged. For example, recent work by Kramer and Magee [191] and Gar-
lan [201] leverage the control loop decision-making strategy used in control-based sys-
tems. Others have explored how inspiration from biological systems can be used to
introduce innovative approaches to adaptive systems. Given that natural organisms are
inherently able to respond to adverse and unexpected conditions, biological entities and
systems may be suitable metaphors for dynamically adaptive software. Biomimetics
comprises those techniques that attempt to imitate or simulate the behavior of natural
organisms. For example, Sutcliffe and Maiden’s work [151] in establishing a domain
theory for RE draws heavily from cognitive science and the human use of analogical
reasoning. As systems become larger, more complex, and more tightly integrated into
consumer products, the role of cognitive science and psychology will be essential to
understand how wide ranges of users will interact with sophisticated and “intelligent”
systems. Work has been done to use biological inspiration to guide the specification
and implementation of behavior of adaptive systems. One example is The NASA Au-
tonomous Nano Technology Swarm (ANTS) project involves large collections (i.e.,
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swarms) of mission-independent small, autonomous, self-similar, reconfigurable robot-
like entities that can collectively perform mission-specific tasks [202], such as explo-
ration of planetary surfaces. The general objective is to understand and then mimic the
behavior of social insect colonies that can perform relatively sophisticated tasks based
on efficient social interaction and coordination. Research into the requirements for the
physical structure of these drones (member of the swarm) has also been biologically-
inspired, including the tetrahedral shape and telescoping “tentacles.” Evolutionary
computations, such as genetic algorithms, evolve by using feedback from previous com-
putations to attempt improvements to future computations. Another area of evolutionary
computation is digital evolution that studies how a population of self-replicating com-
puter programs that exist in a user-defined computational environment and are subject
to mutations and natural selection can produce interesting behavior under resource con-
straints and possibly adverse environmental conditions. Recently, researchers have been
exploring how digital evolution techniques can be extended to simulate a biological evo-
lution process that discovers new unanticipated behavior [203], and thus new require-
ments, for potential target systems of dynamically adaptive systems [204,205,206,207].

6 Recommendations and Conclusions

In this paper, we have described a number of exciting and challenging research direc-
tions in requirements engineering. Some of these directions are natural extensions of
work already being performed by RE researchers, whereas others are major disconti-
nuities due to fundamental changes in computing needs. All of the problems described
above will require substantial effort in order to make progress towards effective solu-
tions. To help alleviate this effort, we offer some recommendations of short- and long-
term actions that the RE community could take, to position itself to make more rapid
progress on these research problems.

There are five recommendations that the RE community could take immediate action
on, to start improving the maturity of current requirements technologies:

– Researchers should work with practitioners. Such partnerships can help to ensure
that researchers have a through understanding of the real problems that practitioners
face.

– RE researchers should work with other SE researchers and practitioners, to estab-
lish stronger links between their respective artifacts. If the transition between RE
tasks and other development tasks were more seamless, management would view
RE efforts more positively, because the resulting requirements knowledge and ar-
tifacts would make more concrete progress towards achieving downstream mile-
stones.

– RE researchers should not neglect evaluation and empirical research. For practi-
tioners to consider adopting a given research technique, they need to know how
the technique compares with other similar techniques. Also, practitioners and their
managers need to see that the technique can be applied to problems relevant to their
organization, from both domain and scale perspectives.

– Industrial organizations should provide (sanitized) industrial-strength project data
to researchers. It is especially critical that industry provide realistic data for
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ultra-large scale or cyber-physical systems to ensure that researchers tackle prob-
lems that are representative of those faced by practitioners. Researchers can use
this data to guide the development and validation of their new techniques, thereby
yielding more relevant and useful research results that explicitly address industrial
needs.

– RE researchers and practitioners, together, should establish repositories of RE ar-
tifacts. Such repositories can serve as a resource for practitioners and educators to
share best practices and exemplar artifacts. Repositories can also store requirements
patterns for potential reuse, case studies that evaluate individual or composite RE
techniques, benchmark data for evaluating competing technologies, and tools that
support specific RE techniques.

The above actions would help the RE research community to make immediate progress
on improving existing knowledge and techniques. In addition, there are some longer-
term actions that would help to improve the community’s research infrastructure and its
ability to confront the challenges posed by emerging systems:

– The RE community needs to be proactive in identifying the RE research problems
that arise from new computing challenges. New challenges reflect changing stake-
holders’ needs. As such, RE researchers should be involved in the initial investiga-
tions of any new computing challenge, to help tease out the essential goals and to
assess their impact on RE tasks.

– RE researchers and practitioners should form strategic partnerships. (This need is
so critical that we felt it was worth repeating.) As partners, researchers and prac-
titioners can collaborate on a shared vision of the important research problems,
the formulation of viable solutions, and the transfer of these innovative solutions
into practice. They can also develop a shared understanding of the limits of current
technologies in addressing current and future problems.

– Researchers need to think beyond current RE and SE knowledge and capabilities,
in order to make significant headway in addressing the challenges posed by emerg-
ing systems. They need to be willing to search for new solutions that may lead to
paradigm shifts in RE practices, at the risk of possible failure.

– RE researchers should seek out collaborators from other disciplines to leverage
successful techniques that could be used to address analogous challenges faced by
cyber systems.

– RE academics need to educate the next generation of developers on RE problems
and technologies. Students need curricula that combine the study of computing with
the study of specialized application domains. They also need computing courses
that teach them how to make design decisions that achieve requirements (e.g., mod-
ularity vs. performance requirements) in the context of the software’s operating
environment.

In conclusion, the RE research community has made significant progress along many
fronts. At the same time, the demands placed on computing and the cyberinfrastructure
have increased dramatically, raising many new critical RE research questions. For these
reasons, it is an exciting time to be involved in RE research. Technologies that make
significant advances in solving these problems are likely to lead to paradigm shifts that
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will impact many future generations of developers, computing systems, and the ultimate
stakeholders – consumers.
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Abstract. Requirements have remained one of the grand challenges in the de-
sign of software intensive systems. In this paper we review the main strands of 
requirements research over the past two decades and identify persistent and new 
challenges. Based on a field study that involved interviews of over 30 leading 
IT professionals involved in large and complex software design and implemen-
tation initiatives, we review the current state-of-the-art in the practice of design 
requirements management.  We observe significant progress in the deployment 
of modeling methods, tools, risk-driven design, and user involvement. We note 
nine emerging themes and challenges in the requirement management arena: 1) 
business process focus, 2) systems transparency, 3) integration focus, 4) distrib-
uted requirements, 5) layered requirements, 6) criticality of information archi-
tectures, 7) increased deployment of COTS and software components, 8) design 
fluidity and 9) interdependent complexity. Several research challenges and new 
avenues for research are noted in the discovery, specification, and validation of 
requirements in light of these requirements features.  

Keywords: Requirements, modeling, specification, validation, verification, 
change, large systems, complexity, stakeholders, field study. 

1   Introduction 

The first step in any design effort is to ask what it is that one intends to create: What 
objectives does it need to address? What must it be capable of doing? Who will it 
serve and how? To what constraints must it conform? These questions are fundamen-
tal to design in its myriad forms – industrial design, graphic design, instructional 
design, and business process design, among others [1, 2].  As we know from past 
research and practice, software design is no different in this regard. In this paper, we 
refer to tasks in the design of software-intensive systems where questions of this na-
ture are addressed as the management of design requirements.  

Design requirements represent a crossroads where several research, business, engi-
neering, and artistic communities converge. Therefore design requirements discus-
sions span a range of research disciplines, including computer science, information 
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systems, new product development, marketing, strategy, organizational theory, and a 
variety of engineering fields.  In addition, a number of social science inquiries, in-
cluding cognitive psychology, anthropology, sociology, and linguistics are relevant 
for the issues raised [3]. Not surprisingly, these diverse research communities do not 
always communicate well even when their core phenomenon of interest is largely 
shared. This diversity of research backgrounds is reflected in the rich variety of terms 
that have been employed to characterize the requirements arena.  Requirements defi-
nition [4, 5], requirements analysis [6, 7], requirements determination [8, 9], require-
ments development [10, 11], requirements engineering [12, 13], and systems analysis 
[14, 15] have all been used to capture facets of the design requirements task. Outside 
software systems, the term requirements is often eschewed entirely in favor of needs 
or customer attributes [16]. For the purposes of the current study, we use the term 
design requirements processes to refer to the range of activities involved in determin-
ing what features and functions an artifact must embody and what constraints it must 
satisfy in order to address the types of questions outlined above.  We will employ this 
term to emphasize the universal nature of requirements questions for contemporary 
software-intensive design efforts. 

Despite the fact that design requirements form an interdisciplinary area of study 
[17, 18], the bulk of research on the subject comes from software engineering,  
computer science, and information systems domains. Within these communities, the 
criticality of requirements processes has been recognized for decades.  In one of the 
earliest works to raise requirements questions, Ross & Schoman [4] stated that inade-
quate attention to the needs and envisioned functions of a system leads to “skyrocket-
ing costs, missed schedules, waste and duplication, disgruntled users, and an endless 
serious of patches and repairs euphemistically call ‘system maintenance’” (p. 6). A 
similar point was made by Bell & Thayer [19], who noted that problems originating in 
the requirements process often go undetected and later get attributed to bad design or 
technological limitations.  The economic ramifications of requirements were recog-
nized early on by Boehm [20] when he noted that the correction of requirements  
errors cost a fraction of the impact when errors go undetected until testing and im-
plementation.  Later, Boehm & Papaccio [21] mapped empirically the exponential rise 
in the cost of requirements errors as a systems development effort progressed. 

Two decades ago, researchers had already highlighted many of the challenges as-
sociated with the requirements undertaking itself.  Davis [8] observed that require-
ments challenges are inherent in any systems design effort because of the complexity 
of the requirements task, the limits to human information processing, and the intricate 
interaction between designers and intended users.   The emergence of adversarial 
relationships between designers and other stakeholders has often been cited as a key 
impediment to effective requirements processes [22]. Even when good relationships 
have been established, the requirements processes are often inhibited because users do 
not thoroughly understand what they want to achieve [23].  In addition, the process 
remains sensitive to other forces that shape organizational life.  Bergman et al. [24] 
noted that requirements processes are unavoidably intertwined with the politics  
of resource allocation and legitimacy of decision-making within organizational  
environments.  
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Ultimately, design requirements processes are challenging due to their Janus-faced 
nature.1 Throughout the requirements effort, designers direct their gaze simultane-
ously in two opposite directions and toward two different social worlds: backwards to 
the needs of the stakeholders for whom they are designing an artifact, and forwards to 
the artifact itself and the demands set up by the development environment.  Design 
requirements represent the gate or trading zone in the process at which the amorphous 
and ambiguous needs of a business or a consumer are married with the concrete de-
sign and engineering steps needed to address them [3, 18].  

Despite a significant body of research on requirements, unresolved issues continue 
to haunt designers across the industrial spectrum. In particular, the “requirements 
mess” remains a challenge among information technology professionals [25]. Since 
the Standish Group first published its survey of information systems success and 
(more notably) failure [26], requirements researchers have been quick to note that the 
three leading sources of project difficulty – i.e., lack of user input, incomplete re-
quirements, and changing specifications – are directly related to the creation and 
management of a projects’ design requirements [11, 17, 27-29]. Likewise, Keil, et al. 
[30] observed that misunderstanding of requirements and the failure to gain user in-
volvement were among the top project risks. In addition, researchers have noted the 
persistent gap between research and practice, despite the fact that the area of inquiry 
is ostensibly motivated by the real-world concerns of designers [3, 31-35].  This gap 
runs both ways: practitioners are slow to adopt the requirements methods developed 
by researchers [36], whereas researchers often turn a blind eye to the actual practices 
and needs of designers [37].   

The present study seeks to address this discontinuity through a review of major 
threads in the past research into design requirements. We strive to assess the state-of-
the-art in requirements practice and theory, identify gaps between research and prac-
tice, and solicit fruitful avenues for research in the coming years.  The research ques-
tions that we seek to answer are diverse: 

1.  What activities and assumptions characterize the contemporary practices of 
managing design requirements?   

2. How are requirements practices consistent with perspectives on design re-
quirements, as reflected in the research literature?   

3.  What tasks are typical in current requirements processes and what are the 
newly emerging challenges?  

4.  What trends are driving requirements practice changes today and over the 
coming years?   

To address these questions we report the findings of a field study about require-
ments practices among leading design professionals from across the industrial spec-
trum. We seek to glean key insights about the state of current practice and identify 
drivers of change in 21st century requirements design efforts. 

The remainder of the study is organized as follows. In Section 2, we review the re-
search literature, and introduce central concepts and topics that will inform our study.  

                                                           
1 Janus was the Roman god of gateways, doorways, beginnings, and ends. This is a fitting 

metaphor for requirements researchers, who stand now at the threshold of a new era in  
requirements practice. 



 Requirements in the 21st Century: Current Practice and Emerging Trends 47 

Section 3 explains the research approach adopted and research questions that we 
sought to address.  Section 4 highlights key findings from the field study. The impli-
cations of these findings for the future of design requirements research is offered in 
Section 5. Section 6 concludes the study with a call to action for researchers and prac-
titioners alike. 

2   Requirements Research – A Short Overview 

Before exploring the state-of-the-art in requirements practice, it is essential to under-
stand the discourse that has emerged around requirements within the research litera-
ture. Accordingly, we will attempt to highlight some of the key concepts that have 
marked the requirements research tradition. As noted above, requirements processes 
have been implicated in a wide variety of design shortcomings. As a result, the re-
search around requirements has remained predominantly prescriptive. It is replete 
with analytical frameworks, standards for requirements quality, elicitation ap-
proaches, and modeling methodologies. A wide array of textbooks and reviews have 
been published, advising practitioners on the most advisable approaches to require-
ments engineering [10, 12, 38-43]. By comparison, a relatively small percentage of 
the literature has focused on advancing a theoretical or empirical understanding of 
how design requirements are discovered, defined, negotiated, and managed by indi-
viduals and teams within organizations and why these processes are so difficult.  
Moreover, the prescriptive modeling and process methodologies have seldom been 
subjected to rigorous empirical scrutiny due to issues of cost, access, and threats to 
internal validity [44]. 

However, it is important to note that requirements processes are far from mono-
lithic. Just as requirements represent one facet of a broader design effort, so too re-
quirements processes can be divided into a number of facets. Within the research 
literature, multiple frameworks have been developed, positing anywhere from two to 
seven primary facets for requirements [45]. For the current discussion, we adopt a 
widely-employed and straightforward categorization of the requirements processes 
into three facets: 1) discovery, 2) specification, and 3) validation & verification 
(adapted from [39]).   

During discovery, designers develop an understanding of the application domain 
and infer specific design needs through consultation with stakeholders and reviews of 
other sources of information [12]. This process includes the identification of all rele-
vant stakeholders for the design effort. Requirements specification is a term that is 
treated both as a noun and a verb within the research literature. As a noun, a specifica-
tion forms the document in which the requirements for a design effort are articulated, 
and it represents the fundamental agreement between the stakeholders and the design 
team [41, 46]. The verb form suggests the process of developing and managing the 
specification document; it is the process by which the design team abstracts and 
represents the requirements for the design effort [39, 44]. This interpretation of re-
quirements specification as a process will be primarily used in the current discussion.  
Finally, during requirements validation and verification designers ensure that the 
requirements are of high quality, address the users’ needs, are appropriate for the 
design effort, and have no inconsistencies or errors [47].   
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While this tripartite characterization appears to imply a linear approach, the three 
facets are normally employed iteratively, often moving progressively to more detailed 
levels [45]. The degree of iteration between the facets varies based on the methodol-
ogy espoused by the design team. However, despite the strong interconnectedness of 
facets, most requirements research has focused on only one of them at a time. A more 
detailed exploration of these facets is warranted. Next we will highlight ideas that 
have emerged in each of these facets, acknowledge assumptions associated with each, 
and discuss persistent challenges to be explored. 

2.1   Discovery  

Discovery is the first component of any design effort – a designer or a design team 
must determine what organizational or customer needs must be addressed by the de-
sign artifact [13, 39, 48]. This process is also often referred to as requirements elicita-
tion which conveys a widely held (i.e., traditional) position that knowledge about 
requirements resides with users or other stakeholders, and must be “teased” out and 
clearly articulated by the designer.2 Discovery is also the primary process by which 
designers gain knowledge of the relevant application domain.  As Loucopoulos and 
Karakostas [39] note, the critical role of understanding of the application domain 
“cannot easily be overestimated … when you have to solve somebody else’s problem 
the first thing you have to do is to find out more about it” (p. 21; emphasis in origi-
nal). This statement illustrates the assumption that the designer is in most cases re-
garded as an outside party in the application domain, who is brought in for a limited 
period of time to resolve a problem that is of potential concern to others. 

While one may speak of several traditional approaches to discovery, there are  
a wide range of techniques that have been employed in this undertaking [32, 48]. 
Table 1 summarizes a number of key discovery techniques and their associated ad-
vantages and disadvantages. The most rudimentary form of requirements discovery is 
introspection on the part of designers [48]. During introspection, designers reflect 
upon or imagine design features that they would find desirable given their understand-
ing of the application domain. Such introspection does not involve direct discussion 
with other design stakeholders and is therefore often discouraged, if divorced from 
interactive techniques. Among the most widely noted discovery techniques are one-
on-one interviews between a designer and stakeholder, focus group discussions facili-
tated by members of the design team, and direct observation of business processes or 
stakeholder activities [32, 49]. Interviews and focus groups emphasize a discussion 
between representatives of the design team and those closest to the application do-
main around current experience, areas of discontent with the existing environment, 
and desired changes that a design artifact might engender.  These methods involve 
both a scrutiny of the current state and generation of possible future states that could 
be pursued during the design undertaking.  Direct observation eliminates explicit 
discussions, but underscores a designer’s detailed understanding of the ways in which  
activities actually unfold in practice.   

                                                           
2 The term discovery was adopted in an effort to broaden the understanding of requirements 

identification to cover envisioning or innovation on the part of design team members. This 
conception is meant to overcome the limitations of the passive “collection” or “capture” 
role reflected in the phrase requirements elicitation.  
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A number of data-intensive discovery techniques, such as protocol analysis [50, 
51] and the use of ethnography [48, 52, 53], have been proposed to enhance identifi-
cation and assimilation of tacit information during requirements processes. Finally, 
prototyping has been widely employed as a way to expand requirements elicitation 
activities. It refers to the development of a rough and relatively rudimentary design 
artifact that includes some essential features desired by relevant stakeholders [54].  
Prototyping is particularly effective in establishing a common basis for understanding 
and communicating design ideas between a designer and stakeholders.  For this rea-
son, it may also be analyzed within the requirements validation facet. 

While a wide array of discovery techniques are available, it is important to note 
that they are not mutually exclusive and a combination of techniques can be comple-
mentary [17, 32]. It has repeatedly been observed that no single technique is appropri-
ate for all design contexts [13, 29, 55, 56]. There is also clear empirical evidence that 
the way in which the discovery process is structured impacts both the quality and 
quantity of the requirements, as a combination of techniques enable designers to adopt 
multiple perspectives on the application domain [57]. In addition, Hickey & Davis 
[29] note that the careful selection of appropriate techniques for a given situation is 
the hallmark of a truly experienced analyst. Regardless of the methods adopted, the 
process should be well aligned with the documentation of those requirements. 

Despite the proliferation of requirements discovery techniques, several questions 
remain to be answered.  It is unclear the degree to which espoused discovery practices 
have been adopted in real-world design efforts and under what conditions. As with 
many areas of social science research, requirements discovery is marked by a signifi-
cant gap between research and practice [32, 33]. There is some evidence that formal 
discovery techniques have been effectively applied by technology consultants and 
expert users [29], but their degree of acceptance in a broader industrial context re-
mains an open question.  Other areas ripe for inquiry include: What skills do design 
team members need to effectively execute various discovery techniques? In the area 
of software engineering, what impact has the rise of commercial off-the-shelf (COTS) 
solutions had on approaches to requirements discovery within organizations? Do most 
designers adopt a one-shot approach or a more incremental perspective on require-
ments discovery? How has the need for speed and agility altered requirements  
discovery? 

2.2   Specification 

As stakeholders needs emerge, they must be rendered in some concrete format and 
representational scheme. This rendering effort is referred to as the specification proc-
ess. Overall, a requirements specification supports interpretation and understanding 
among all design stakeholders around what the artifact is supposed to accomplish, 
while at the same time laying a sufficient technical foundation for the subsequent 
development effort. Thus, specification is more than just rendering requirements into 
some standardized format from the information expressed by stakeholders.  It marks 
the point of transition where the stated needs of stakeholders will be extended with 
the functional and technical implications that flow from them.  Nowhere is the Janus-
faced nature of design requirements more evident than in the specification. Tradition-
ally, the requirements literature has sought to emphasize the backward focus towards 
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                               Table 1. Summary of Selected Requirements Discovery Techniques 

Discovery 
Techniques Summary Advantages Limitations

Designer
Introspection

Designers' reflect or imagine 
features that they would find 
desirable given their 
understanding of the 
application domain 

Requires no specialized elicitation skills 
on the part of design team members 

Essential in innovative designs which 
break out from established approaches  

Eliminates contact with other design stakeholders 

Ignores the needs of those most closely linked to an 
application domain 

Provides no basis for validation of  requirements 

Interviewing One-on-one discussions 
between a user and designer 
using  open-ended/ 
unstructured, semi-structured, 
structured, and survey-based 
variants [32, 48, 49]

Effective for gathering large amounts of 
information about the application domain  
[32] Enables designers to focus on a 
limited number of users as 
representatives of other stakeholders 

Requires fewer specialized skills than 
other discovery techniques

Stakeholders are constrained by the line of questioning 
employed by the designer  [48] 

Biases in questioning and anchoring effects direct the 
inquiry to the preferences of designers rather than the needs 
of stakeholders [58, 59] 

Gets only at work practices that can be explicitly expressed 
[8, 60] 

Appropriateness of the sampling and access to stakeholders 
are critical 

Focus 
Groups

Designer-facilitated inquiry 
with a selected group of 
stakeholders about the current 
state of practice and the future 
design space;

Adapted from marketing 
research [61] 

By moving away from the individual 
focus groups engender a more thorough 
exploration; a statement by one 
participant may prompt conflicts, 
extensions and responses by others 

The presence of multiple stakeholders 
allows for the questioning and 
exploration of the assumptions and 
timely attention to areas of conflict 

Designer/analyst facilitation may limit the conversation to 
the topics determined a priori by the design team 

Stakeholders are called upon to reflect in abstract on their 
practices and tacit features of the context remain 
unexplored

Due to a representation from multiple stakeholder, the 
potential for destructive conflict and political  maneuvering 
is raised  

Appropriateness of sample is still a concern and the 
perceived costs to the organization are often higher
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Table 2. Summary of Selected Requirements Discovery Techniques (continued) 

Discovery 
Techniques Summary Advantages Limitations

Protocol
Analysis 

A stakeholder is asked to 
perform an activity and talk 
aloud about the steps – 
outlining the rationale for each 
action [50];  

Grew often  out of the 
development of expert systems 
[51]

Can augment an interview process by 
surfacing tacit elements of work 

Engenders a more reflective and 
thorough description on the part of the 
stakeholder. 

Is built upon an overly-simplistic, computational model of 
cognitive processes,

Apt to overlook nuances of activity in an actual context of 
use [48].

Prototyping The development of an early, 
rudimentary version of system 
that includes the essential 
features [54]. 

Assists when requirements are poorly 
understood by enabling stakeholders to 
get experience of what a new artifact 
may be like 

Promotes discussion of system features 
that had not been considered during 
interviewing or group discussions [12]. 

Creates a common point of reference 
[54]. 

Users become attached to functionality provided in a 
prototype and may resist changes to the proposed design 
[54] 

By emphasizing iteration prototyping may result in 
“spaghetti code,”  [62, 63].   

Problematic in the development of large systems having 
significant interdependencies with other systems [54]. 

Ethnographic 
Methods

Longitudinal observation 
within the application domain;  

Adapted from 
ethnomethodology in sociology 
and anthropology [64, 65], and 
inspired by advances in 
industrial design [2]  

Ethnographic methods can discover 
knowledge of the application domain to a 
degree not achieved with traditional 
methods [48, 52] 

Mitigates the difficulties associated with 
tacit knowledge because designers 
experience the application domain not 

Consumes significant time and resources because of long-
term focus 

May be deemed infeasible for design efforts with short 
timelines or tight cost restrictions 



52 S. Hansen, N. Berente, and K. Lyytinen 

the needs of stakeholders by stating that requirements are concerned with what is to 
be achieved by a design artifact (i.e., the “what”) without regard to the manner in 
which it will be designed and implemented (i.e., the “how”) [38].  Yet this stance 
“leaves unresolved the question of whether or not it is possible or desirable to sepa-
rate the ‘what’ from the ‘how’ in practice” [66: 18]. With rising systems complexity 
and interdependence between systems, scholars have started to acknowledge the need 
for incorporating design considerations and key constraints on the design space during 
specification [39, 67].  

Before discussing in more detail the primary treatments of specifications in the ex-
tant research literature, it is worthwhile to introduce a number of concepts that are 
central to the discussion of requirements specifications:   

Abstraction refers to the ability to glean the essence of something from specific in-
stances [45]. In the context of design requirements processes, abstraction enables 
designers to induce essential elements or processes from specific statements about the 
application domain and problem space. This helps to ensure that information which 
enters the specification is essential rather than idiosyncratic, and offers a sound base-
line for design.   

Decomposition is the process by which systems are partitioned into components.  It 
is a critical capability in any complex design because it allows members of a design 
team to focus their efforts on manageable tasks. In addition it breaks a large design 
into its composite subsystems and supports designer’s ability to explain and predict 
outcomes. Decomposition lies at the heart of contemporary advances in modular de-
sign and economies of scale and scope in design [68]. 

Traceability refers to the idea that all “lower” level statements of requirements 
should be associated with specific higher order objectives and properties and vice 
versa [69, 70]. In effect, there are two forms of traceability, which correspond to the 
two directions of the Janus’s gaze. Backward traceability is the ability to tie a stated 
requirement and its design and implementation back to its source in business objec-
tives.  Forward traceability refers to the ability to trace a given requirement or feature 
to the components of the designed artifact or their interactions that ultimately address 
it [71]. The traceability concept is the compliment of decomposition.  In design, trace-
ability is essential to manage complexity and change and to guarantee that systems 
validate and “meet” requirements. It also enables designers to evaluate the implica-
tions of requirements change regardless of the level of detail at which they are  
introduced. Finally, traceability facilitates the assessment of completeness and consis-
tency of requirements (see Validation & Verification). 

In the development of a requirements specification document, designers generally 
combine natural language descriptions with formal or semi-formal models of the 
application, problem, or design space. 

Natural Language. During discovery, the primary way in which stakeholders express 
their needs is through natural language.  Accordingly, design requirements at the 
highest level (i.e., business or user requirements) are rendered through natural 
language descriptions. Natural language use has several distinct benefits. Foremost 
among these is that most stakeholders prefer natural language to more formal 
specifications [72]. Natural language also provides a common basis for 
communications between the stakeholders and designers (as well between different 
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stakeholders), and it can provide a great deal of information about the contexts of use 
[73, 74]. Finally, natural language use is inevitable as we can never achieve fully 
formalized articulations [73].  Natural language remains the ultimate meta-language 
where all meanings must be negotiated, and it thereby offers openness to sense-
making and discovery [75]. 

Despite its strengths, most discussions of natural language in requirements research 
have emphasized the challenges it presents and have proposed ways to overcome its 
limitations through formal analysis. Researchers have long argued that the informal 
treatment of specifications leads to ambiguity, incompleteness, and inaccuracy [76].  
Ambiguity arises because stakeholders and designers may interpret the same words in 
different ways. Similarly, distinct stakeholders may use the same term differently, 
leaving designers to decide which sense is appropriate for the design context. Ques-
tions regarding completeness and accuracy emerge because the informal nature of 
natural language inhibits explicit analysis. Finally, natural language descriptions hide 
inconsistencies because they provide little basis for direct comparison across state-
ments. In an effort to overcome such shortcomings, researchers have pursued natural 
language processing capabilities to automate the generation of formal models from 
natural language inputs [77-79]. However, the bulk of the specifications research has 
focused on ways to augment natural language representations with formal and semi-
formal models of requirements.3 

Modeling. Perhaps no single subject within requirements research has received more 
attention than that of modeling [17].  Some even argue that model development lies at 
the very core of the entire requirements undertaking [80]. In this context, modeling 
refers to the creation of abstracted representations (i.e., models) of the real world 
through the use of limited and established symbol systems [81]. The portion of the 
real world to be modeled is the application domain and its relationships with the pro-
posed design. The resulting models reflect abstractions, assumptions, and known 
constraints within that design domain [39].  

There are several key benefits that have been attributed to formal specifications.  
By encapsulating large amounts of information, requirements models establish a base-
line of understanding. In addition, they may facilitate communication between distinct 
stakeholder groups [80]. Models also enable formal analysis to identify unstated re-
quirements, predict behavior, determine inconsistencies between requirements, and 
check for accuracy. Finally, models serve to simplify the application domain by fo-
cusing on essential features in line with the principles of abstraction and decomposi-
tion. While each of the proposed benefits of modeling is sound in itself, these  
arguments illustrate one of the tacit assumptions that plagues much of the modeling 
literature – an emphasis on the perspective of the designer. Within this literature, the 
focus is squarely placed on the ways in which modeling can be used to support or 
enhance the work of designers with less regard for the preferences of other  
stakeholders. 

Models are developed at multiple levels of detail.  Loucopoulos and Karakostas 
[39] identify three central levels of modeling in contemporary design efforts: enter-
prise modeling, functional requirements modeling, and non-functional requirements 
                                                           
3 There has been markedly less discussion about the converse potential of overcoming the 

limitations of formal modeling techniques through innovative uses of natural language. 
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modeling. Enterprise modeling refers to the development of models to reflect the 
broader organizational or market context of a design, including the representation of 
relevant stakeholder groups and the social structure, critical processes, and guiding 
objectives of the enterprise or the marketplace. Enterprise model development helps 
 

Table 3. Summary of Modeling Meta Models 

Meta-Model 
Category Description Exemplars 

State Models Modeling a system as a set of 
distinct states and the modes of 
transition between states; Appro-
priate for representing reactive, 
event-driven systems. 

 Finite state machines [90] 

 Petri nets [91] 

 Statecharts [92] 

Structural 
Models 

Modeling of a system based on 
the structural features of the 
application domain;  One of the 
earliest efforts at formal systems 
modeling, 

 Structured analysis and design 
techniques (SADT; [4, 93] 

Activity Mod-
els 

Modeling a system as a collection 
of activities; Appropriate for 
modeling “systems where data are 
affected by a sequence of trans-
formations at a constant rate” 
(Machado et al. [88],p. 25). 

 Structured analysis and struc-
tured design (SASD; [94, 95] 
tools such as data flow dia-
grams (DFD) 

Object-
Oriented Mod-
els 

Approaches that incorporate 
many concepts and fundamental 
techniques introduced in other 
methods; Adds to these concepts 
such as decomposition into ob-
jects, inheritance, and encapsula-
tion [96]. 

 Object modeling 
technique (OMT; 
[97] 

 Object-oriented software engi-
neering (OOSE; [98] 

 Unified Modeling 
Language (UML) 
[84] 

Agent-Based 
Models 

Modeling of complex systems as 
a collection of autonomous deci-
sion-making agents; Especially 
useful for the simulation of emer-
gent phenomena [99] 

 Axelrod Cultural 
Model (ACM) [100] 

 Construct-TM [101, 
102] 

 Sugarscape [103] 

Goal-Oriented 
Models 

Modeling of the underlying objec-
tives that motivate a design effort; 
Goal-oriented models incorporate 
both goal features and linkages 
between distinct goals [104] 

 KAOS methodology 
[105, 106] 

 Non-Functional 
Requirements (NFR) 
framework [89, 107] 
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achieve a thorough understanding of the application domain and the interdependen-
cies that it embodies. In the context of information systems development, enterprise 
models focus on interactions between a system and its environment. Examples of 
these types of models include rich pictures [82, 83], use cases [10, 84], business proc-
ess modeling [85], and enterprise-level architectural modeling [86]. 

Functional requirements modeling focuses explicitly on representing requirements 
about the design artifact itself – abstracting it from the environment and making it 
amenable to design. Techniques for modeling functional design requirements have 
proliferated since the earliest efforts in the mid-1970s. Most of these modeling ap-
proaches are specific to the context of information systems design. The modeling 
techniques may be categorized based on the ontological perspectives they apply to the 
application domain [87]. Machado, et al. [88] refer to these ontological categories as 
meta-model characterizations. Table 2 provides a summary of meta-model categories 
and some of the associated modeling approaches. Finally, non-functional require-
ments modeling refers to the development of models to identify the constraints or 
restrictions on the design domain. In the information systems development discourse, 
non-functional requirements also incorporate the quality expectations for a system, 
often referred to collectively as “ilities” (e.g., reliability, adaptability; [89]. 

The bulk of the modeling literature has focused on techniques for modeling func-
tional design requirements. While most of these modeling methods were introduced 
as individual techniques for representing an application domain, recent trends have 
been toward integrating across modeling perspectives [39, 108]. For example, the 
IDEF family of modeling methods enables a design team to apply multiple develop-
ment ontologies to the requirements modeling [109].  The introduction of the Unified 
Modeling Language (UML) during the last decade has greatly extended the trend 
towards employing multiple perspectives. UML is an outgrowth of the object-oriented 
specification tradition, but incorporates a broad suite of modeling techniques, includ-
ing class diagrams (an extension of E-R diagrams), state-chart diagrams, activity 
diagrams, and use case diagrams [84, 110].   

In addition to the move toward integration across ontological perspectives, model-
ing research has been marked by two countervailing trends. The first emphasizes 
increased standardization in the specification of notation systems and processes.  
Hundreds of modeling techniques have emerged over the past 30 years, but this diver-
sity in fact poses an impediment to adoption. Some researchers have called for a 
moratorium on new model development until existing models have been tried and 
exhausted by practitioners [36].  The development and adoption of UML provides an 
example of the benefits of standardization.  The UML suite was developed when three 
“thought leaders” in object-oriented modeling recognized the convergence in their 
modeling methods and decided to work together to create an industry standard [84].  
Since its introduction, UML has rapidly emerged as a de facto industry standard, 
creating a measure of modeling consistency across industries, organizations, and 
design environments backed by standardization organizations [111].   

The second, and perhaps contradictory, trend is the move toward increased cus-
tomization of modeling based on the types of systems or contexts involved. Situ-
ational method engineering (SEM) is a movement to customize development and 
modeling approaches to the needs of a given design task through the selection, re-
combination, reconfiguration, and adaptation of method fragments, many of which are 
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modularized abstractions of existing methods [112, 113].  Similarly,  recent work on 
domain-specific modeling (DSM) emphasizes efficiencies to be gained by tailoring 
languages and modeling techniques to the specific vocabularies and abstractions of a 
given domain [114, 115]. While the trend toward customization focuses mainly on the 
composition and reconfiguration of methods, it has significant implications also for 
the evolution of requirements modeling tools and techniques [116].  The observation 
of these two trends raises the question – Can increased standardization be reconciled 
with desires for customization in modeling techniques and how do such goals align 
with specific needs in the future? 

The conflict between these trends is but one of the pressing questions in research 
around requirements specification. Other important issues include the following: With 
significant adoption of UML is there still a need for novel approaches to the modeling 
of design requirements? Which components of the UML suite or other techniques 
have been adopted by design practitioners and why? Has the adoption of formal mod-
eling techniques engendered a substantive improvement in requirements and design 
quality? How can different models be practically integrated? Turning again the issue 
of natural language, little attention has yet been paid to ways in which language and 
communication skills of design professionals could or should be enhanced to support 
high-quality requirements specification. These are among the issues that must be 
addressed by research on requirements specification in the coming years. 

2.3   Validation and Verification 

Validation and verification addresses the question of whether or not the requirements 
processes have been conducted effectively and the degree to which the specifications 
will support a productive design effort. Some researchers use only the term ‘valida-
tion’ or ‘verification’ when discussing this facet, but an important nuance between 
these two sides prevail. Validation is the effort to ensure that requirements accurately 
reflect the intentions of the stakeholders [117].  Verification focuses on the degree to 
which requirements conform to accepted standards of requirements quality [10, 47].  
Boehm [47] captures the distinction succinctly when he states that validation ad-
dresses the question “Am I building the right product?”; while verification asks “Am I 
building the product right?” (p. 75). 

Validation. Locating requirements validation as the end point of the design requirements 
may give a false impression that it is of limited importance and does not shape behaviors 
significantly. In truth, the validation begins almost simultaneously with discovery and 
continues through the specification. When a designer uses paraphrasing to check his or 
her understanding of a stakeholder’s request or statement, validation is taking place. 
Indeed, one of the primary approaches to requirements discovery – namely prototyping – 
is often referred to as a key validation technique [39] . 

One of the central issues in requirements validation is the potential for disagree-
ment between individuals or stakeholders groups. Given diversity in their back-
grounds, roles, and values, it should not be surprising that conflicts frequently emerge 
[17, 118, 119]. Effective management and resolution of such conflicts is essential if 
the design effort is to advance. A range of techniques have been proposed to help 
designers with conflict resolution: 
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Requirements prioritization refers to the process of determining the relative value 
of individual or sets of design requirements [120].  By assigning values to require-
ments, designers establish a mechanism for mediating between requirements conflicts 
that arise. Berander and Andrews [120] identify a number of prioritization techniques 
that have been applied, including numerical assignment (i.e., priority grouping), ana-
lytical hierarchy process [121], cumulative voting, and stack ranking. 

Requirements negotiation involves the identification and resolution of conflict 
through exploration of the range of possibilities available [119, 122, 123].4 These 
negotiations often draw upon fields of research on multiple criteria decision making 
and game theory [123, 125], and apply group support systems or collaborative envi-
ronments for effective negotiation around requirements conflicts [118, 126-128]. 

Viewpoint Resolution builds upon the viewpoints thread within requirements re-
search. Viewpoints refer to the emphasis on obtaining design requirements from  
individuals and groups having different perspectives on the design [129]. Leite and 
Freeman [130] introduce viewpoints resolution as a “a process which identifies dis-
crepancies between two different viewpoints, classifies and evaluates those discrep-
ancies, and integrates the alternative solutions into a single representation” (p. 1255).  
Thereby, viewpoint resolution feeds back into the modeling process by developing a 
model of requirements conflict. 

Verification. The counterpart to validation is verification. With verification, we turn 
our attention back to the functional and technical implications of the requirements. 
Much of the discussion around requirements verification focuses on ensuring  
adherence to standards of requirements quality, including consistency, feasibility, 
traceability, and the absence of ambiguity [10]. Consistency refers to the idea that 
requirements should not conflict with the overall objectives of the design effort, or 
with each other. As the number of individual requirements statements proliferate in 
large scale projects, concerns over the potential for inconsistencies between state-
ments rise and verification measures are implemented in efforts to safeguard against 
errors. Feasibility is the degree to which a given requirement can be satisfactorily 
addressed within the design environment of an organization. This includes not only a 
consideration of whether or not an artifact can be developed in line with the require-
ment, but also how it can be subsequently maintained. As discussed above, traceabil-
ity is the degree to which individual requirements can be tied to both higher order 
objectives and detailed elements and their interactions within an artifact. 

A number of techniques have been proposed to support this verification function.  
In one of the earliest discussions of the importance of verification (and validation), 
Boehm [47] presented a range of both manual and automated approaches to verifica-
tion, including such simple techniques as manual cross-referencing, the use of check-
lists, and scenario development to the more complex activities of mathematical 
proofs, detailed automated models, and prototype development. Other key verification 
techniques include formal inspections [131], structured walkthroughs [132], and 
automated consistency checking [133]. 

                                                           
4 It is worthwhile to note that many researchers would position requirements negotiations as 

part of the specification phase of a requirements process or as a distinct phase altogether (e.g., 
[124]). 
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In total, the requirements research literature has provided a wide range of insights 
into the individual facets of requirements work. From the introduction of formal mod-
eling techniques to the development of novel approaches to discovery, requirements 
scholars have consistently sought to improve the lives and resources of designers.  
Yet, the degree to which these efforts have resonated with practicing designers re-
mains to be seen. While some researchers emphasize the increasing adoption of tech-
niques from research (e.g., [34]), others bemoan the growing gulf between researchers 
and the practicing design community (e.g., [33]). In addition, our review illustrates a 
number of key research assumptions including a focus on individual systems, atten-
tion to a single facet of the process at a time, emphasis on notations to represent re-
quirements, and the primacy of a designer-centric perspective. In the next section, we 
analyze these assumptions in the context of a field study. 

3   Research Approach 

In an effort to explore the current state of requirements practices across a variety of 
organizational and industrial contexts, we conducted a series of semi-structured inter-
views with IT and design practitioners from the United States and Europe. The data 
collection efforts were structured around an interview protocol that was jointly devel-
oped by the researchers. The interview protocol was designed to elicit responses to a 
number of distinct aspects of the professionals’ design experiences, including a dis-
cussion of current design requirements processes; perceived impediments to the iden-
tification, specification, and management of design requirements; drivers of change in 
requirements practices over the preceding five-year period; key trends within the 
market or technological environments relevant to the given organization; and envi-
sioned changes to the practice of requirements in the near future. The core protocol 
remained constant throughout the data collection process, however, in line with the 
grounded theory concept of constant comparison, some questions were added to the 
protocol based on insights from the initial interviews [134]. In addition, interview 
participants were encouraged to express their thoughts on any topics which they felt 
were relevant to requirements processes and contemporary design environments. 

To foster external validity and to address threats to the internal validity of the 
study, the research team sought participation from individuals and firms engaged in a 
wide variety of design environments. A number of business and design contexts were 
initially targeted in the site selection process to ensure representation from areas 
where the researchers expected to observe significant market and technological 
change occurring. To ensure representation from leading edge and mainstream or-
ganizations the research team sought participation from senior technology leaders 
within a range of Fortune 500 organizations. A total of 30 interviews were conducted 
with 39 individuals participating. The interviews included firms from a wide range of 
industries, including software and information technology, automotive manufacturing, 
industrial design, aerospace, telecommunications, professional services, and health-
care sectors. Importantly, despite this range of industry domains, all of the profession-
als interviewed are engaged in the design of software-intensive systems. In order to 
protect the confidentiality of the respondents, none of the quotes or statements from 
the interviews are attributed to specific individuals or firms.   
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These initial focal contexts of studied systems and their requirements included the 
following: 

 Large, complex organizational information systems – The design of very 
large information systems, often supporting inter-organizational ex-
change of information; including transportation systems, distribution 
networks, and defense contracting. 

 Embedded systems – The design of systems and components intended for 
integration within broader design artifacts; includes automotive and aero-
space design environments. 

 eBusiness Applications – The design of artifacts and information systems 
for use within a Web-based delivery channel; includes portals, e-
commerce establishments, and other Internet-oriented product and ser-
vice providers. 

 Middleware Systems – The design of integrated software platforms that 
support the exchange of data between distinct applications. 

It should be noted that our sampling approach reflects a purposeful bias toward 
large, complex systems in an effort to focus on practices associated with the most 
challenging development contexts. The systems development efforts reflected in the 
study involved from tens to hundreds of man years.  System costs ranged from several 
million to hundreds of millions of dollars. 

All interviews were transcribed to support formal analysis of the data. Interview 
transcripts were coded using Atlas.ti, a qualitative analysis application. The interview 
protocol served as the preliminary coding structure for the data. However, in line with 
a grounded theory approach, additional codes were created as specific themes or re-
curring issues began to surface in the coding process [134]. The code structure was 
iteratively revised until the researchers determined that all relevant themes or issues 
were reflected [135]. Several of the interview transcripts were coded repeatedly as the 
final coding structure emerged. The aim of this analysis was to identify distinct pat-
terns in current requirements processes as well as to observe emerging key themes 
and issues in the day-to-day practice of requirements work. In the Findings section we 
will explore these observations in detail. 

4   Findings 

4.1   Current Practice 

The field study revealed a number of key observations regarding the current practice 
of requirements management. Several of these findings reflect general approaches to 
requirements determination issues while others relate to specific facets in the re-
quirements process (e.g., discovery, specification, validation). We will briefly discuss 
the findings regarding current practices before delving into the emerging themes and 
issues that surfaced in the study.  Table 3 provides a summary of our findings regard-
ing current requirements practices. 
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Table 4. Current Requirements Practice  

Development based on the use of CASE tools 

Risk mitigation common 

Broad external and internals stakeholder involvement in re-
quirements processes 

Focus on data and process modeling 

Non-distinction of requirements tasks & func-
tional/nonfunctional requirements 

Contingent application of requirements methodologies 

Overarching 
Practices 

  

  

Limited focus on stakeholder conflict 

Primarily focus groups and interviews 

Simultaneous elicitation and validation 

Discovery 
Practices 

Responsibility for requirements discovery and justification 
rests largely with business 

Specifications based on CASE tools 

Widespread application of use cases 

Specification 
Practices 

Natural language, data, and process modeling representations 
based on UML standard 

Little use of formal verification practices 

Widespread use of prototypes and group walkthrough sessions 

Validation & 
Verification 
Practices 

Common expectation of a formal stakeholder signoff 
 

4.2   Common Requirements Practice 

Overall, requirements practices have evolved significantly over the past decade, often 
in line with prescriptions offered in the academic and consulting literature. For exam-
ple, much of the requirements literature of the 1980s and 1990s prescribes a disci-
plined process, often emphasizing the control of development risks [8, 136]. In  
addition, there has been a significant emphasis on fostering the involvement of a vari-
ety of stakeholders and the application of formal modeling techniques such as UML, 
and the use of supporting CASE tools [137, 138]. Our data generally suggest practices 
which are consistent with most of these prescriptions. Development environments 
based on tools such as IBM’s Rational Suite are commonplace.  Several participants 
note that project risk mitigation is a central area of development focus, and some 
informants indicated that portfolio risks are consistently measured and actively man-
aged. The individuals and teams interviewed indicated that requirements activities 
commonly include focus group discussions, cross-disciplinary project teams, and 
requirements sign-offs from an array of stakeholder groups. In addition to the wide-
spread use of data models, several organizations note sophisticated process modeling 
activity, including the widespread application of use cases, even in situations where 
other elements of UML were not fully adopted. Other principles that are addressed in 
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the literature, such as traceability and structured process improvement (e.g., CMMI), 
while not prevalent in current design practices, received significant consideration in 
the future efforts of many interviewees, and were noted as directions in which firms 
are actively moving. Similarly, trends that are often addressed in both the academic 
and practitioner literature, such as web services/service-oriented architectures (SOA) 
and outsourcing of development, were reported as influencing current requirements 
practice. 

Yet, in many cases designers did not employ concepts and distinctions that are 
common place in the research literature. For example, few of interviewees made a 
distinction between functional and non-functional requirements. While they do seek 
to capture constraints about desired performance (e.g., traditional “-ilities”) for de-
signs, they do not document and manage these requirements in a differential manner.  
Another break with the research is in the characterization of the requirements process.  
Several interviewees expressed their belief that requirements processes are indistin-
guishable from the design. While researchers have long asserted that requirements 
should presage efforts to determine how desired functionality could be achieved (i.e., 
the formal design), many participants felt that requirements questions are properly 
interspersed in the design process. Those interviewed emphasized the intensely itera-
tive nature of requirements and design.5  Even when the recognition of requirements 
as a formal, early phase of a design task was recognized, the designers did not mark 
distinctions in requirements activities, such as elicitation, specification, negotiation, 
validation, or verification. Thus, many of the classification schemes that demarcate 
discourses within requirements research remain unrecognized in contemporary  
practice. 

A second key finding with respect to the practice of requirements is that the appli-
cation of standardized and more formal methodologies might best be described as 
haphazard. Within the organizations represented, design professionals are seldom 
expected to adhere to explicit methodologies in the discovery, specification, or verifi-
cation of design requirements.6  Most projects advance through a patchwork of tech-
niques at the discretion of project managers. Despite the generally idiosyncratic  
nature of the requirements processes, there were a number of contingencies for the 
application of methods. Project budgets, personnel needs, and the number of systems 
impacted are key considerations in determining whether or not a more rigid process is 
necessary, with the larger and integration-intensive efforts carrying the increased 
expectation of the use of formal methods. Interestingly, the application of formal 
methods throughout the design process and across different projects was repeatedly 
noted as a direction for future development and improvement. The following state-
ment is characteristic: 

                                                           
5 Note that while this iteration was often discussed, it was rarely in the context of agile devel-

opment.  Interviews were virtually devoid of discussions of agile methodologies, with only a 
couple of exceptions - a finding which may be a function of the highly complex development 
practices within our sample. 

6 It should be noted that validation efforts are an exception to this finding as formal mecha-
nisms for phased advancement of design projects (in the form of sign-offs by business spon-
sors or other key stakeholders) were nearly universal. 
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“You have to become a lot more method [sic], a lot more rigor, a lot more 
science and gathering your requirements, qualifying them and then quanti-
fying them in terms of financial [considerations]. Because at the end of the 
day, that’s what we’re in business for, to make money and pay dividends to 
our shareholders.” 

Another consistent finding from the study pertains to the management of conflict 
within designs. Despite the fact that researchers pay significant attention to negotia-
tion and the management of disputes, conflict between stakeholders was viewed as 
largely unproblematic. Simple prioritization of requirements by a key sponsor or 
stakeholder acts as a primary mechanism for the management of conflicts. Frequently, 
the determination of such priorities is tied directly to the funding – i.e., whoever is 
perceived to be the primary source of funding sets the priorities. In this way, the 
valuation of requirements is transferred from the design team to the business stake-
holders. However, the voice of IT stakeholders remains significant when the prioriti-
zation is subject to prior architectural decisions and constraints (see “Key Themes and 
Issues” section). 

The participants experienced the most significant impediments to effective re-
quirements processes in the interpersonal aspects of a design effort. In large part, 
these challenges reflect those often noted as key challenges throughout the require-
ments literature: stakeholders not knowing what they want, the inability of stake-
holders to articulate what they want even when they do know it, and limitations in the 
communication skills of the design team. Interestingly, respondents noted very few 
impediments arising from available technical resources and formal methods. For ex-
ample, no single participant felt that the absence of appropriate modeling approaches 
and tools set up a significant challenge to their requirements processes. 

The study discovered a number of key findings concerning specific facets of the 
requirements processes. While the respondents themselves frequently failed to distin-
guish such requirements activities as discovery, specification, modeling, verification, 
and validation, the interview protocol helped glean insights regarding their ap-
proaches to the dimensions recognized in the protocol. By applying this established 
lens, we are able to discern linkages and discontinuities between current practice and 
past requirements research. 

Discovery. With regard to discovery techniques, one of the most consistent observations 
regarding the process by which design teams explore and understand the needs of 
stakeholders is the relatively narrow range of techniques employed.  Most organizations 
relied only on focus groups and other group-based discussions as a primary mechanism 
for requirements discovery. One-on-one interviews with stakeholders are also common.  
Although more intensive measures such as protocol analysis, direct observation of work 
practice, and ethnographic participation in the application domain were noted by a small 
number of respondents, traditional discursive techniques continue to dominate.7 Also, we 
noted that discovery and validation often occurred simultaneously – frequently in the 
form of prototyping but also in other forms such as “blueprinting” sessions. 

                                                           
7 It is worth noting that firms adopting less traditional discovery approaches are specifically 

recognized within design communities for their unorthodox perspective on requirements 
gathering. 
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A second key finding is the degree to which requirements articulation has been es-
tablished as the responsibility of the relevant line-of-business or other stakeholder 
group. In several firms, sponsoring stakeholders are expected to engage the design 
team with a thorough statement of needs, extending beyond the business requirements 
to high-level functional requirements. In one case, a firm had started a training  
program in an effort to teach business unit managers to write system requirements 
more effectively. The discovery activity was also often outsourced to consultants or 
market research organizations (see “Key Themes and Issues” below). As a result, 
requirements discovery on the part of the design personnel has often become a matter 
of clarifying and assessing gaps rather than a comprehensive frontal elicitation effort. 

Specification & Modeling. A central observation with respect to the specification of 
requirements is that the design professionals did not speak of specific modeling tech-
niques employed. Rather they discussed modeling tools that their design teams use.  
Requirements management platforms such as IBM’s Rational suite and Telelogic 
DOORS were more salient than the specific types of models developed. Use cases 
represent one important exception, however. Virtually all interviewees noted that their 
design teams engage in use case development as a central aspect of their specification 
activity. For example, one participant observed: 

“So a few of our more senior developers had really gotten on board with 
UML, use case modeling, and then are becoming fairly good with some of 
the software tools out there.  Some of us use IBM’s Rational suite.  Some 
of them are working with a product we’re evaluating called Rhapsody from 
I-Logix.  But the intent there is if we can graphically present to the cus-
tomer and do modeling to decompose a lot of those requirements, that it 
really helps in that review to catch anything that’s missing.” 

Modeling was often described as “informal,” and involved extensive use of natural 
language narratives, which is consistent with the widespread adoption of use cases.  
Beyond use cases, several participants reported the use of process or workflow mod-
els, as well as data models / E-R diagrams. While UML was implied by the applica-
tion of Rational software, for example, only a handful of interviewees specifically 
indicated that some portion of their requirements process is based on UML. 

Verification & Validation. None of the interviewees noted the adoption of formal 
approaches to verifications or requirements checking.  Specifically, when asked about 
verifying correctness and assessing the consistency of requirements, the majority 
noted that this was accomplished through informal review and discussion among the 
design team.  The following quote is characteristic of the responses to this inquiry: 

“Usually I have at least two developers that are familiar with all the sys-
tems. If we get new requirements in we’ll all do a blind read and then we’ll 
kind of mark it up, say where do you see some holes … and in some cases 
we’ll say, ‘Look at page two, item 3.1 and then look at page fifteen item 
9.2, it sounds like you’re saying A to Z here and you’re saying Z to A 
there.’ And sometimes they’ll say you’re right, maybe it was written by 
more than one person or they changed their mind and forgot to change in 
all the places. So we definitely try to go through the entire thing with more 
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than one set of eyes on our side looking for inconsistencies or omissions or 
things that look like they’re definitely, at a minimum, confusing.” 

When moving from verification to validation, a greater degree of formality is ob-
served. In most organizations validation efforts centered on explicit sign-offs by pro-
ject sponsors and other stakeholders. The stakeholders are expected to review the 
requirements documentation and acknowledge their acceptance for the design effort 
to move forward. One challenge noted in this regard is that stakeholders frequently 
fail to review thoroughly the documentation that is presented to them (due to lack of 
time or perceived time-to-market demands), and therefore design efforts are allowed 
to move forward despite the potential presence of significant requirements errors.  
This phenomenon is exacerbated under conditions of multiple sign-offs because of the 
diffusion and ambiguity of responsibility. 

In addition, the interviews noted frequent use of prototyping, user-interface mock-
ups, and system walkthroughs as validation mechanisms. While none of the organiza-
tions represented was extensively involved in agile development, several emphasized 
iteration and prototype development: 

“To be able to, very rapidly, hear what the requirements are and draft up a 
prototype, something they can see. Whether it would be, you know, there’s 
varying levels of complexity and money that are associated with something 
like that right. I could do paper based prototyping or I can do systems 
based prototyping and having that kind of capability in place to help vali-
date the requirement - is this what you asked for; is this what you would 
want to see.” 

Interestingly, a few of the firms indicated novel validation practices, such as vali-
dation of use case “personas,” validation of time estimates, and stakeholder voting. 

4.3   Key Themes and Issues 

Beyond the state of current practices, we identified a number of recurring themes and 
issues that were inductively derived from the interview data.  These are themes that 
tap into emerging trends or patterns in the requirements domain.  Table 4 summarizes 
these themes. 

It is important to note that these nine identified themes are not mutually exclusive. 
Indeed, there is significant conceptual affinity among several of the themes. However, 
the distinctions and level of detail that is presented emerged from the data through 
multiple rounds of coding among the authors, with a goal of deriving a parsimonious 
yet thorough representation of distinct themes and constructs in the data. In several 
cases, study participants proposed causal relationships between themes, but such 
causal assertions varied significantly and often suggested a recursive pattern (e.g., 
focus on integration leads to implementation of packaged software and the implemen-
tation of packaged software necessitates a focus on integration). Therefore, we will 
refrain at this stage from making any causal assertions with respect to the themes, but 
will discuss some of them critically in the discussion section. We will discuss each of 
these themes in detail after characterizing the general emerging pattern of require-
ments practices. 
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Table 5. Summary of Key Themes & Issues Associated with Design Requirements 

Requirements 
Theme Brief description 

Business process 
focus 

Requirements process focusing on the business process, and re-
quirements for technological artifact driven by business process. 

Systems transparency Requirements driven by demand for a seamless user experience 
across applications. 

Integration focus Requirements efforts focus on integrating existing applications 
rather than development of new ones 

Distributed require-
ments 

In addition to diverse stakeholders, requirements process distributed 
across organizations, geographically, and globally. 

Layers of require-
ments 

Requirements iteratively developing across multiple levels of ab-
straction, design focus, or timing. 

Packaged software Purchase of commercial off-the-shelf (COTS) software rather then 
development – trend toward vendor-led requirements. 

Centrality of archi-
tecture 

Architectural requirements take a central role, and drive product 
and application requirements. 

Interdependent Com-
plexity 

While some forms of complexity have been reduced, overall com-
plexity has risen significantly. 

Fluidity of design Requirements process accommodates the continued evolution of the 
artifact after implementation. 

 

 
We can describe the emerging practice of requirements as follows:  business proc-

ess design take precedence in the design of individual artifacts, and thereby represents 
a central source of complex socio-technical design requirements. The business proc-
ess emphasis is driven by an increased demand for transparency across distinct  
systems and the corresponding focus on integration over more traditional isolated 
development efforts. As a result, the requirements process is distributed across  
functional, organizational, and geographic boundaries. The distributed nature of re-
quirements underscores the existence of multiple layers of requirements, based on 
differences in abstraction, user-orientation, and timing. Such layering of requirements 
is illustrated in the marked emphasis on the use of commercial-off-the-shelf 
(COTS)/packaged software in most of the organizations represented. The heterogene-
ity of design artifacts within existing business environments in turn necessitates a 
focus on the adherence to established information architectures for all subsequent 
product and system design efforts. This emphasizes conformance to information ar-
chitectures in guiding requirements, and channeling the implementation of COTS 
software, rather than developing from scratch. These increase the level of interde-
pendent complexity, as well as layering of requirements across multiple dimensions.   
Finally, because of complexity and continuous change, designs are fluid as they con-
tinue to evolve after implementation, which stresses the importance for requirements 
to evolve. A more thorough exploration of each of these themes provides an original 
look into multiple factors that currently drive change in requirements practices. 
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Business Process Focus. One of the distinct insights to emerge from the study is a 
consistent shift from a focus on a particular application and its associated work prac-
tices to a focus on chains of work practices – or business processes – within which a 
given set of applications is situated. The comprehensive integration of information 
system components has become more prevalent, driven by the design focus on  
end-to-end business processes that utilize these technological resources. Accordingly, 
requirements for specific artifacts increasingly flow from the holistic understanding of 
the business process itself. This shift was prevalent in many interviews, but it is not as 
readily apparent in the research literature.8 One informant describes this shift as  
follows: 

“The requirements are often based on the business process… Typically 
what you would do together with the requirements is you would define 
your business processes. You define the process flow and the main process 
steps at that point. You make the main activities. And then you can map the 
requirements to that.” 

More pointedly, one respondent mapped out the crucial role of business process 
management to requirements engineering efforts: 

“The rise of Business Process Management may largely affect the RE 
process in the near future. The [organization] is already running a pilot pro-
ject which: Generates requirements (AS-IS / TO-BE modeling) through the 
Business Process Management practice; translates part of these require-
ments to specifications for the configuration of Workflow Management 
and Business Rule Management tools; refers to specific services of the 
SOA [service oriented architecture]. This way of working will not be ap-
plicable to all IS projects, but it seems suitable for particular types of appli-
cations.”  

In a similar vein, a trend that a number of informants identified suggested that the 
boundaries between business processes and IT are becoming increasingly blurred: 

“There’s no such thing as an IT project, there’s a business project where IT 
is part of it.  And that’s been helpful, but at some point, businesses are go-
ing to want IT leaders to in effect be innovative in relation to what the next 
kinds of solutions are.  Some people have said that CIOs should become 
chief process officers.” 

The logic behind business investments in IT now emphasizes having organizational 
priorities and processes to drive IT development rather than letting IT capabilities 
determine the priorities of activities. Since the bursting of the dot com bubble, most 
organizations have heard this message loud and clear [141, 142]. 

Systems Transparency. The orientation toward the design of business processes 
implies a movement away from system boundaries based on arbitrary functional or 
divisional criteria. Business users and consumers alike demand transparency across 

                                                           
8 An area of notable exception is the study of requirements engineering in workflow automation 

systems (e.g., [139, 140]). 
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software applications. Technologies are expected to converge so as to provide a seam-
less user experience and generate perceptions of a single service platform. As one 
participant noted, new solutions must be available anywhere, anytime, anyhow and 
are often expected to be device-independent. The concept of systems transparency 
highlights increased concerns of the users that emphasize the design of a seamless and 
uniform user experience. While a great deal of traditional requirements literature 
focuses on the notion of usability associated with a specific application, systems 
transparency calls attention to unified usability of a portfolio of applications. The 
requirements process is no longer about a user’s interaction with a single application; 
rather, it is oriented toward the user’s overall experience which is situated within an 
ecology of applications and design artifacts. One informant succinctly captured this 
idea of systems transparency, by emphasizing a trend toward personalization of  
applications: 

“The desire from the customer side is much more for applications to cross 
whatever artificial boundaries exist in terms of data sources and in terms of 
small systems coming together. I see a big change in what IT does for re-
quirements focusing more on achieving user-centricity and giving people 
more of a personalized view of how to do their job and get the data go-
ing… a user shouldn’t have to worry about what device they’re using or 
what system it’s in, just getting the information they need when they need 
that. That’s really a major change in how systems are designed … inevita-
bly the end user customers want a seamless integration, they want a com-
mon look and feel…” 

In order to accomplish such “user-centricity,” the requirements process must focus 
upon work roles and overall activity in order to provide systems that fit within the 
distinct daily practices of individuals. According to one interview, this focus “really 
changes IT people from being raw functional application creators, to being more of, 
you know, performance architects.” Naturally, the seamless user experience must be 
enabled by linking applications which is addressed by the next theme. 

Integration Focus. Integration focus denotes efforts associated with making user 
experiences possible through integrating applications and system components.  While 
the bulk of the literature on requirements addresses the creation of new applications 
for specific purposes, many study participants downplayed the importance of 
designing individual artifacts, while emphasizing instead the criticality of integration 
across applications and capabilities. The focus on integration was one of the most 
pronounced themes across all interviews.  The following statement is emblematic: 

“I’d say that the big difference that we’ve gone through over the five year 
period was a transition from one standalone system, which might have 
lived on individual desktops, or lived on a single network for delivery to 
departmental users, to now more integrated applications which are tied to-
gether via one way or another.  Whether it’s at a database level or whether 
it’s a web services or whatever, we have applications now that need to 
share data between systems, between business units, and between our af-
filiated partners.” 
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While this integration is driven by user considerations, there are host of other or-
ganizational drivers that shift requirements practices towards integration: 

“With the tighter integration of supply chains and the customer base, you 
can’t have processes and systems that are not integrated… So that brings 
together the different applications, the platforms they’re built on, the  
middleware and the data structures that you have to have in place to inte-
grate this stuff. If you don’t have it in place you design some islands of 
functionality that don’t work together.” 

A primary implication of the trend toward integration is that the role of internal IT 
groups is changing rapidly.  Many informants characterized their groups more as 
integrators than developers: the main proportion of their work is oriented toward 
assessing and maintaining interdependencies between systems rather than being in-
volved with traditional functional requirements and subsequent design. As one  
participant put it, “for those of us in IT [the need for integration] changed us from 
application developers into systems integrators.”  

Distributed Requirements. A pattern that became apparent during the study is the 
increased distribution of requirements processes across functional, organizational, and 
geographic boundaries. Frequently, no single organization or functional unit is responsible 
for the development of the bulk of design requirements. Vendors, consultants, enterprise 
architects, development teams, business stakeholders, and individual users all play 
significant roles in articulating and implementing requirements. Furthermore, the 
widespread adoption of outsourcing has expanded the geographic spread of requirements 
discovery and development efforts.   

Globalization has become a critical force behind much of this distribution, but the 
implications of globalization go beyond obvious growth in geographical and cultural 
distance. Distributed requirements bring with them business contexts and features that 
are tied to distinct locations and business environments. One informant illustrated this 
vividly: 

“[The organization] represents a large corporation and so you know, we 
have various initial conditions. So for example, a climate control module 
might have been supplied by supplier X sitting in Munich and they might 
have actually inherited along with the hard box, they might have inherited 
a whole lot of models. Those models would have had certain class defini-
tions.  Those class definitions would have been based on somebody else 
that the supplier was actually supplying some super system to. So we now 
have to incorporate those classes if we really wanted useful…if it has to be 
useful to my direct mainstream customer. So we can go create our own 
universal model here but our customer will have to go through a translation 
phase.”  

Not only are requirements distributed geographically, but they are spread across 
organizations as well. The prevalence of COTS applications (see discussion below) 
and the growth in industry wide standards results in the significant distribution of 
requirement’s discovery and validation efforts among multiple independent organiza-
tions. While this is necessarily the case to an extent for all COTS, it is also amplified 
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by the complexity of packaged systems and the increasingly limited knowledge many 
organizations have in formulating solutions:  

“Now we are rolling out my [software system]. That product is way  
beyond the capabilities of my current team to implement because they  
haven’t spent the months and months of learning how to use this new  
technology. And we don’t have the months and months to wait to train 
people before we start doing requirements definition and process design.” 

With this emergence of the distributed nature of design, collaborative tools have 
become increasingly important for managing requirements that are drawn from in-
creasingly diversified sources. One informant captured the new division of labor that 
results from distributed requirements as follows: 

“The significant advantage of that is people could be collaborating, not 
only synchronously but asynchronously … everybody gets to see what the 
other person is contributing … So for example you might want to have a 
group of people defining the technical aspect of it. Then you have another 
group which is defining the business aspect of it. And you have a third 
group working the external collaborators. And they all have parts and 
pieces to do it.” 

Distributed requirements also enhance parallelism in requirements processes.  
Given the traditional focus on singular individuals or teams managing requirements 
processes, there is notably little discussion in the literature about the implications of 
parallel requirements efforts. One area of exception in this regard is a recent focus on 
the impact of geographically distributed teams engaged in various facets of the re-
quirements process [143-145].  

Layers of Requirements. Contemporary design efforts generally entail multiple 
layers of requirements. These layers may be associated with differing levels of 
abstraction, design focus, user-orientation, or timing. This layering phenomenon 
includes the traditional transition through business, functional, and technical 
requirements [10]. It also includes organizing requirements based on the level of 
analysis. For example, the process for articulating and managing the requirements of 
enterprise architecture differ from those considered in the development of an 
individual application:   

“For example, in the situation that I’m currently in with one of my existing 
clients, we are not only building new applications for them, we’re also 
building application architectures. So there’s two sets of requirements; 
there’s business requirements for the different applications that we’re 
building and then in turn what we have to do is for those applications, what 
are the set of infrastructure requirements that our technology infrastructure 
team needs to build to be able to provide the framework that these applica-
tions will be built on. Whether that be a reporting architecture or a real-
time architecture, batch architecture, online architectures, et cetera.” 

The volatility, or timing of requirements, is another key basis for layering. Re-
quirements that are expected to persist over an extended period of time demand  
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distinct approaches from requirements that change rapidly, and in less-predictable 
ways. This phenomenon is relevant in the design of embedded systems and product 
lines because the requirements volatility (variability) for the embedded artifact in the 
product differs significantly from that of the underlying system, as the following 
statement illustrates: 

“In terms of being able to span the feature space if you will, cover it, 
there’s a timeless element to it - people always want some aspect, they 
want a place to sit down and they want to be able to steer and drive.  
There’s a piece that changes with very slow clock speed, that’s the package 
and physical aspects of it. And then there’s the fast cycle, fast clock speed, 
aspects.  So there’s really…there’s a DC component, there’s one that really 
changes very slowly and there’s one that changes very fast.” 

The emergence of new bases for the layering of requirements has clear affinity 
with the distribution of requirements. Layers of requirements may be discovered, 
specified, and managed across distinct stakeholder groups or organizations. Increased 
challenges are created by shifts to build mechanisms that ensure consistency across 
different layers. 

Packaged Software Orientation. For systems design efforts, the interviews depicted 
a clear preference for using commercial-off-the-shelf (COTS), or packaged, software 
over the development of separate, new applications. The following quote is a good 
representative of the sentiments espoused: 

“We made a decision that we were going to pick SAP and purchase it in 
advance of all these projects going live because, in a fact, we wanted to 
send a signal to the organization that we’ve picked SAP and it’s the only 
solution you’re going to use going forward.” 

This represents a major point of departure from much of the requirements research 
tradition, which, often implicitly, conceptualizes requirements practices as taking 
place in the context of a greenfield development where the end product is a new soft-
ware system. Requirements for packaged software implementation projects are sig-
nificantly different from those of traditional development. For example, software 
vendors and consultants have a great deal of involvement and often take the lead in 
requirements processes. The prevalence of packaged software creates a new dynamic 
for requirements processes. In contrast, to the traditional claim that requirements 
processes should focus on the “what” of a design effort without respect to “how” it 
will be achieved [38], the use of COTS implies that much of the “how” is already 
established at the outset of a requirements effort. In these cases, the requirements 
process begins more with a “gap” analysis between processes supported by the pack-
age and the desired work practices: 

“The easiest one is just to take the software as it comes out of the box, 
some type of a pre-configured solution that may be industry specific, may 
not be industry specific. And you run workshops where you sketch out the 
future processes, walk through the software itself in its current state, and 
identify any gaps with that process and the software and the requirements 
you have already defined.” 
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While the prevalence of COTS applications was clear, many of the study partici-
pants did reflect on the drawbacks to packaged software – especially in terms of large 
enterprise vendors, and their firms’ dependence on such vendors as a major  
requirements constraint. However, with the exception of truly unique and critical 
applications, the benefits of COTS appear to outweigh these drawbacks in the minds 
of our participants (e.g., lower cost, better predictable quality).   

Centrality of Architecture. A consistent finding in the study was the growing 
recognition of the importance of information architectures in establishing the context 
for requirements processes. In many of the organizations represented, adherence to 
established information architectures has become a critical concern and constraint for 
all design efforts. In large part, the specification of formal and encompassing 
enterprise architectures is driven by the need to address integration complexity and 
need to maintain consistency in applications and organization wide process designs.  
Therefore, architectures have become essential for requirements activity and set the 
baseline constraints for all subsequent designs.   

Because the study involved both functional IT units and product development or-
ganizations, two types of architectures were salient to design practices: enterprise 
architecture and product architectures. Many participants indicated that enterprise 
architectures, especially those associated with an organization’s internal IT infrastruc-
ture, are becoming critical as organizations look to integrate extensive portfolios of 
applications that have resulted from previous stove-piped legacy development. An-
other driver is organizational mergers and acquisitions. To move forward with devel-
opment projects, an enterprise-level justification and adherence to the established 
architecture is essential. As a result, architectures precede and drive the requirements 
of specific artifacts, rather than the requirements driving the development of models: 

“In fact we have a very strict architecture team and an architecture review 
board all focused in my area on, as projects are begun, to insure that those 
projects move forward with the long term architecture of [respondent’s 
firm] in mind.” 
……… 

“The architecture determines the scope of application functionality and re-
quirements which you can do. But if you look at the sort of future evolu-
tion it may be that you make currently the right architecture choices but 
maybe two years down the road another requirement emerges and you are 
stuck.”  

In some cases, the enterprise architecture represented significant constraints on the 
requirements processes, while in other cases it just changed the structure of these 
processes. As a large banking organization indicated: 

“The RE process is being tailored to the special needs of the aforemen-
tioned architecture in various ways. For example, business analysts are 
aware of systemic calls to the core banking system and refer to them in de-
tail when they design business functions. On the other hand, the bank is 
still on the process of adopting a service-oriented, multi-channel approach. 
The current, rather immature, situation (as far as multi-channeling is  
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concerned) generates a need for separating RE according to the service de-
livery channel. For example, the collection of requirements for implement-
ing a new module on the core system is differentiated from the collection 
of requirements for the same module on the e-banking platform.”  

Similarly, organizations developing products focused increasingly on the develop-
ment of formal product architectures to support the managed evolution of their  
offerings. This is particularly important whilst technologies change so rapidly that 
architects essentially “bet on” standards in order to accommodate unknown future 
changes in technologies and their demand. 

Fluidity of Designs. Those interviewed showed an increased appreciation for the 
fluidity, or continued evolution, of design artifacts. While artifacts have always 
evolved after use, design teams have traditionally viewed a project as “complete” at 
some point – normally after software implementation. Informants indicated that this 
assumption about designs has begun to wane as they recognize that projects often 
form a single step in an iterative process: “You know as soon as we build a project 
and deliver it, the day after, we’re in the enhancement phase.” One strategy for 
dealing with this evolution was to limit the scope of projects intentionally, with 
planned and managed releases: 

“You have to set the expectation that what will be delivered will not be ex-
actly what you’re looking for. It’s not going to be the end; it’ll be a step 
along the way. We are going to build this and then we are going to expand 
on that capability in subsequent releases. You can’t deliver to the end goal 
right out of the gate…” 

Users appropriate artifacts in idiosyncratic ways. Many firms are therefore increas-
ingly cognizant of this evolution and are not attempting to define all requirements 
ahead of time. Rather they seek to provide additional mechanisms to empower end 
users to personalize the artifacts. They may build open interfaces to allow evolution in 
requirements: 

“We’re pushing the capability out to the end users and saying don’t put us 
in the middle of it, if you want to figure this out here’s the [tool] … the 
data definition is there, you can select the data that you want to put on the 
report, how you want it on the report, where you want to gather the data 
from, what kind of sort sequence, what kind of summary information you 
want. We’re pushing that capability out to the end users so they can self 
serve just like, you know, companies are pushing capabilities out to their 
end customers so they can self serve and reduce the cost to serve overall.”   

In a product development, the challenge is to generate requirements that tolerate 
“fuzziness,” as one product development manager indicated:  

“I don’t really understand what the consumers actually prefer and since its 
change is faster than I can change my [design], how can I design in ways 
that somebody else can fiddle around with it? … These things are changing 
so fast it’s invention in the hands of the owner, how you design your sys-
tems in a way that you make that possible.” 
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Solutions to unknown user-led evolution involved increased reliance on interface 
standards and standardized “platforms” embedded into products.  Rather than specify-
ing specific functional requirements, as these can not be known, standard interfaces 
that may accommodate multiple add-ons have become the main object of require-
ments. 

Interdependent Complexity. The final persistent theme was the perception of 
increased complexity. This was associated with varying technologies, requirements 
efforts, and design processes. While it has long been observed that complexity is an 
essential rather than an accidental property of systems development [146], most 
participants felt that the complexity they now encounter has increased significantly: 

“You know, certainly your ability to manage the sheer quantity of require-
ments and to be able to test those requirements. Usually, on these large 
complex systems where you’re talking about hundreds and hundreds of dif-
ferent applications, your ability to test in an integrated fashion, all of those 
requirements is very, very hard and very costly.”   

However, the level at which such complexity emerges has also shifted – from the 
internal complexity of software development to the integrative complexity of interde-
pendent systems:  

“I have not seen from my area, the complexity be nearly as mammoth as 
like when we did MRP back in the mid-1980s, where we had hundred and 
hundreds and hundreds of programs integrated into three hundred batch 
jobs and all synchronized to run in a 48-hour period for regenerative MRP 
once a week - not to count the dailys and weeklys. I don’t see that the IT 
projects have that level of complexity in terms of tying things off. What I 
do see is that the complexity from systems integration and how to secure  
at the application level the appropriate details, has gotten a lot more  
complicated.” 

Despite the deployment of modular designs and architectures, complexity is now 
substantially greater because of the large number of interdependent systems, increased 
number of new systems that must be integrated with legacy infrastructure, and the 
sheer magnitude of integration-oriented requirements given all of the themes. Indeed, 
complexity in its various manifestations is perhaps the main fundamental motif that 
cuts across all the issues raised in this study. 

5   Discussion 

The findings from this study pose a series of engaging questions to researchers inter-
ested in design requirements phenomena. Introspectively, we must ask ourselves the 
degree to which the assumptions that underlie current research traditions have inhib-
ited us from understanding and attending to the ways in which requirements work is 
actually accomplished. Turning to the observed processes and factors emerging in 
contemporary design practice, we may ask how best to make sense of the diverse 
forces that affect designers. Finally, we must consider the avenues that are opening up 



74 S. Hansen, N. Berente, and K. Lyytinen 

for productive inquiry around emergent requirements themes and how these are  
related to existing threads within the research community. 

5.1   Current Practice and the Research Tradition 

Our results point to a great deal of progress associated with requirements practices, 
but they also signal a changing emphasis towards infrastructural, organizational, and 
environmental complexity. On the one hand, systems development organizations now 
employ many of the principles that researchers have been advocating for years, such 
as formal validation and sign-off, enterprise and functional modeling, user involve-
ment, explicit risk management, and the use of CASE tools. Furthermore, many are 
looking to increase the degree of structure in their requirements practices. On the 
other hand, there appear to be a number of inconsistencies between the way practitio-
ners view requirements processes and the way requirements topics are treated in the 
research community.  For example, practitioners do not make many of the distinctions 
that researchers favor (e.g., phases of the requirements process and requirements 
types); they often don’t refer to formal methodologies and their practices are not con-
sistent with a singular methodology; and, practitioners de-emphasize formal model-
ing’s role in discovery and validation/verification, betraying a continued preference 
for natural language to capture and communicate requirements. 

While our findings reveal that academics may be leading the practitioner commu-
nity in many respects, they also indicate that some of the assumptions reflected in the 
literature are not shared by design practitioners. Thus, we must ask ourselves a chal-
lenging question – has the practitioner community simply not yet caught up, or are 
many of our scholarly assumptions not relevant to requirements practice? One of the 
seemingly more problematic assumptions concerns the distinction between facets in 
the requirements process. While the research community has long acknowledged the 
importance of iteration and the interplay of processes in requirements efforts [3], most 
requirements texts outline a temporal sequence of requirements tasks or phases [e.g., 
10, 12, 39]. Furthermore, the structure of the research discourse is clearly bounded by 
distinct phases, with researchers focusing largely on a single facet of the process (e.g., 
specification and modeling) in their research efforts. The activities we have labeled as 
“discovery,” “specification,” and “validation & verification” [39] have been framed a 
number of different ways in the literature, yet our interviews indicate that these dis-
tinctions are rarely made in practice. Discovery, specification, and valida-
tion/verification practices often happen simultaneously, and are largely mediated 
through natural-language and various artifacts. At the very least, they are so closely 
related that the practical distinctions between these tasks have become difficult to 
draw. Iteration continues throughout design, as discovery revolves and verification 
never really ceases, even after the delivery of a system. Throughout this process, 
interactions with user communities are conducted through natural language and de-
sign artifacts of different maturity. 

A second key assumption concerns the estimated value of formal modeling tech-
niques. Formal modeling remains squarely within the development community, and it 
does not appear to have been appropriated as a communication tool with users.9  
                                                           
9 One exception to this observation is business process flow diagrams that are widely used to 

mediate developer-user communication (in relevant applications). 
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Rather, to the extent that formal models are used, they are derived from natural lan-
guage representations and created after requirements have been generated and ap-
proved. The academic literature on modeling seeks to make the natural language 
communication between users and developers more precise through formal models, 
but this approach does not appear to be followed by designers themselves. With the 
significant adoption of use cases, we find that greater precision in designer-user 
communication is indeed desired, but it is fulfilled through semi-structured natural 
language exchanges. Thus, we may question the assumption that formal modeling 
effectively supports interactions between distinct stakeholders or bridges the commu-
nicative gaps between the design team and other stakeholders [4, 80, 81, 93, 147].  
Perhaps a more appropriate pursuit would be to augment formal models with well 
organized and structured natural language representations. 

In our attempt to re-evaluate assumptions that are challenged by contemporary prac-
tice, it is important that we understand the emerging patterns of requirements processes 
within complex designs. Much of the academic literature is rooted in the paradigm of the 
1970s and 1980s, where systems were developed from scratch (in distinct, typically 
“greenfield” projects) in order to support a specific set of operational activities. Two 
primary groups were involved: those that would use the artifact and those charged with 
the development of it. Within this context, it was commonly understood that require-
ments for the system were in the heads of the users, and it was up to the developers to 
elicit these requirements to guide further system design. As has been extensively illus-
trated, this assumption was rife with difficulty, as multiple stakeholder groups were af-
fected by the system, and requirements were rarely easily accessible and had a tendency 
to change over time while systems evolved (e.g., [146]). In subsequent years, strategies 
have been put forward to overcome some of these challenges. Techniques such as proto-
typing [54] and ethnographic methods have been adopted to help designers move beyond 
the limitations of traditional methods [48, 53]. Yet, these approaches remain well within 
the traditional paradigm, as they are methods to improve the extraction of requirements 
from users for increased formalization by developers. 

5.2   Understanding Emergent Forces in Requirements Practice 

Our data suggest a number of different trends that present challenges to the traditional 
outlook. Systems are no longer created for a specific set of activities within an organi-
zation’s functional silos. Systems are intended to support cross-organizational and 
inter-organizational business processes or to offer multiple functions over a product’s 
life-cycle. Multipurpose, expandable devices for a wide array of applications abound.  
Systems increasingly connect to each other, become integrated, and system bounda-
ries and associated connections are made invisible to users. Greenfield efforts are 
nearly extinct, and stakeholders are no longer a fixed or easily-identifiable set of indi-
viduals. Commercial-off-the-shelf (COTS) applications and modular architectures 
dominate design landscapes as firms look to buy rather than build due to lower cost 
and expectation of higher quality. Development never ends. When one level of com-
plexity becomes black-boxed, additional layers of complexity emerge. No longer can 
we look at the requirements process as a dialogue where designers extract require-
ments from users. Rather, designers and design teams can be best viewed as reconcil-
ing multiple forces and perspectives: negotiating with an ever-expanding set of  
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Fig. 1. An Emerging Requirements Landscape 

stakeholders, merging and connecting evolving architectures, addressing continuing 
technological changes, and mitigating the complexity associated with marrying these 
threads.  Figure 1 illustrates one attempt to organize and structure the diverse forces 
that drive this emerging requirements landscape. 

This new requirements landscape evokes again the Janus-faced nature of require-
ments practice. The designer is caught between two fluctuating worlds, where he or 
she is simultaneously looking backward towards the shifting sands of stakeholder 
needs, while looking forward to evolving platforms and technological architectures 
and the concrete design implications that they bear. Within this context, we observe 
themes that speak to the changing ways in which stakeholders encounter, and interact 
with, the software-intensive artifacts that populate their work and home environments. 
These “User-Facing Changes” reflect a shift in expectations on the part of individual 
users and groups.  As they accept novel technologies into more and more facets of 
their lives, they expect the boundaries between artifacts to fade into the background, 
minimizing the cognitive effort required to transition between tools within their socio-
technical ecology. We assert that the observed themes of Business Process Focus and 
Systems Transparency embody these changes in the users’ experience.  

At the other end of our Janus’s line of sight, we observe significant changes in the 
design contexts within which design teams must maneuver. “Design Context 
Changes” reflect a fundamental shift in the baseline conditions for all contemporary 
software-intensive design efforts. The decline of traditional development activities 
and the critical of contextual constraints have dramatically altered the process of de-
sign itself. The rising emphasis on Packaged Software/COTS and the centrality of 
Information Architectures are two clear manifestations of this observed shift. 

Between the changing expectations of users and the altered constraints on the 
broader design environment sits the Janus of requirements. In an effort to marry these 
diverse forces, the process of requirements has itself been transformed. Current re-
quirements practices reflect a more heterogeneous and multi-faceted phenomenon 
than is often reflected in the treatment by the research community. A significant  
Integration Focus, the management of requirements from a varied set of sources  
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Table 6. Proposed Emergent Avenues for Requirements Research 

Selected Topics from the Requirements Research Tradition 

Key Themes Overall Discovery/ Elicitation Specification & Modeling Validation & Verification 

User-Facing Changes 

Business
Processes Focus 

Understanding requirements 
processes when the 
technology fades into the 
business context 

Assessing the effectiveness of 
discovery techniques in business 
process design efforts 

Coordinating enterprise, 
business process, and functional 
models

Evaluating adherence to 
strategic business processes 

Systems 
Transparency 

Capturing benefits and 
challenges posed by the 
transparency of systems 

Determining the sources of user 
expectations with respect to 
systems interoperability 

Capturing the needs for 
transparency as a functional 
requirement in modeling 
methods

Evaluating new prototyping 
and simulation capabilities 

Requirements Practice Changes 

Integration
Focus

Determining who is 
responsible for functional 
requirements when 
traditional development is 
less relevant 

Determining appropriate 
stakeholders for articulating 
integration-oriented requirements 

Managing heterogeneous 
models from a variety of 
systems

Understanding the processes 
employed for ensuring 
satisfactory integration testing 

Distributed
Requirements

Effective management of 
requirements in a distributed 
cognitive process 

Aggregation of requirements 
identified by multiple parties; 
Coordinating among different 
elicitation activities 

Managing heterogeneous 
models from a variety of 
systems

Understanding validation and 
verification of aggregated 
requirements

Layers of 
Requirements

Identifying new bases for 
requirements layering in 
embedded systems and other 
contexts

Assessing differences in 
effectiveness of discovery 
approaches based on layers 
observed

Assessing what layers are most 
amenable to natural language 
vs. modeling methods 

Developing mechanisms for 
requirements checking across 
multiple layers 
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Table 6. (continued) 

Selected Topics from the Requirements Research Tradition 

Key Themes Overall Discovery/ Elicitation Specification & Modeling Validation & Verification 

Design Context Changes 

Packaged 
Software 
Orientation

Understanding the role of 
prognostication in 
requirements - who will be 
the winner in a given market? 

Capturing the potential for 
knowledge gains through the 
use of vendors  

Marrying current state and future 
state models to stated vendor 
preferences

Determining the degree to 
which COTS address 
platform-agnostic 
requirements

Centrality of 
Architecture

Identifying the ways in which 
architecture impacts 
requirements practice 

Observing how architecture 
sets constraints on discovery 
processes

Models driving the requirements 
rather than requirements driving 
model development 

Architecture as the arbiter of 
appropriateness and quality 

Emergent Systemic Qualities 

Fluidity of 
Design

Requirements in the context 
of partial designs 
Run-time evolution of 
requirements

Evolution of stakeholder needs 
based on continued system use 

Management of models over 
generation of design iteration 

Managing stakeholder 
expectations and validation in 
fluid design contexts 

Interdependent 
Complexity 

Paradoxes of reducing and 
increasing complexity at 
different levels of analysis 

Determining appropriate levels 
of stakeholder involvement in 
complex design efforts 

Managing heterogeneous models 
from a variety of systems 

Requirements testing methods 
for application in highly-
interdependent environments 
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(i.e., Distributed Requirements), and the emergence of novel bases for the Layering of 
Requirements all embody the changes to be observed in modern requirements  
processes.   

In addition to the changes observed in user experiences, design contexts, and re-
quirements processes, there are broader contextual characteristics that have emerged 
from, and in turn engendered, the other themes we have highlighted here. These 
“Emergent Systemic Qualities” call our attention to important new areas for explora-
tion and rigorous inquiry. The rise of Interdependent Complexity is a force that can be 
seen at all levels of the design process – from the expectations of users to the practi-
cal, technical demands reflected in novel artifacts. As designers have struggled to 
control complexity at one level of work, it has re-emerged at another level. Complex-
ity has become an intrinsic part of design and affects both stakeholder behaviors and 
other extrinsic forces. Similarly, the recognition of the Fluidity of Design in the or-
ganizations that participated in this study suggests a new maturity of understanding 
with respect to the impermanence and evolutionary potential that is central to modern 
software-intensive systems design.  

A shifting focus toward integration and evolution rather than elicitation and docu-
mentation highlights the increasingly creative role that designers must play in actively 
co-producing requirements and artifacts, rather than simply charting out needs that are 
“out there” a priori. This observation has multiple implications for design research 
and calls for an expansion of the realm of requirements research to address broader 
organizational aspects of design and the requirements processes. 

5.3   New Avenues for Requirements Research 

Perhaps most importantly for the present discussion, the observations and phenomena 
presented in this study call our attention to a wide array of new avenues for require-
ments research. Each of the key findings reflects an issue that warrants additional 
exploration. To close the research-practice gap within the requirements arena, some of 
the more counter-intuitive (and contra-prescriptive) findings from the assessment of 
current practice should be investigated. Similarly, each of the key themes that 
emerged from the analysis should be thoroughly examined to improve our under-
standing of how these forces are shaping today’s design environments. The current 
volume is intended to initiate just such an agenda-setting perspective. Several of the 
key themes noted in this study are explored in greater depth and nuance in the  
chapters of this book. For example, a focus on business processes, the fluidity of con-
temporary design, and the challenges of interdependent complexity are considered 
repeatedly throughout the volume. Other facets of the emergent requirements land-
scape have yet to be approached. For example, the distributed nature of requirements 
processes and sources, the role of centralized architectures in both addressing and 
driving requirements efforts, and the demands for greater systems transparency prom-
ise fertile ground for research in the coming years. 

The challenge, of course, is determining how we can draw upon the research tradi-
tion while remaining open to the new phenomena at hand.  We have suggested that 
some of the fundamental assumptions that undergird the requirements literature may 
need to be reconsidered as we look to the future, but how can we effectively leverage 
the work that has come before this point? 
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In the opinion of the research team, the framework provided by the extant research 
may still provide a useful lens for directing the attention of researchers.  While dis-
tinctions between facets of the requirements process have blurred, the fundamental 
concerns upon which they are built remain: What does the design need to have (Dis-
covery)? How can we render an unspoken vision in an explicit form around which 
multiple individuals and groups can gravitate (Specification)? How can we as design-
ers know when we are on the right track and persuade others of the same (Validation 
& Verification)?  Each of these high-level conceptual challenges offers a perspective 
that can be fruitfully applied to the emergent phenomena observed among practicing 
design teams. In Table 5 (provided in the Appendix), we illustrate how traditional 
requirements research foci and the key themes outlined in this study can be combined 
to open up a wide range of prospective channels for requirements research in the 
coming years. Clearly, the issues presented in the table are far from exhaustive, as 
they are intended merely to illustrate the types of inquiries that are suggested by the 
framework. 

6   Conclusion 

In this study, we have reflected upon the degree to which the literature on require-
ments appropriately reflects current design practices across a variety of organizations.  
We find that recent decades have seen a significant amount of progress in orienting 
designers to many critical requirements-based considerations, but we also observe a 
number of issues where current practices are less than consistent with the assumptions 
of the academic literature. Moreover, we identify a number of macro-level emerging 
trends across a variety of modern requirements practices. We conclude with a charac-
terization of complex large-scale requirements efforts as an exercise in balancing 
constraints and opportunities in multiple directions at the same time. Designers, like 
the Roman god Janus, must simultaneously look to the often-ambiguous needs of 
stakeholders and attend to the practical demands of the design environment. In so 
doing, they have changed the face of requirements practice, and ushered in a period of 
expanding complexity and evolutionary dynamics in design.  Contemporary designers 
construct requirements in relation to existing systems and practices, rather than sim-
ply eliciting them as much of the literature implies. 

Using this empirical research as a backdrop, we now embark on an effort to make 
sense of these issues. In a series of two workshops over two years, some of the 
world’s top thinkers on requirements issues will be assembled to discuss the implica-
tions of our findings, to address issues we have not yet considered, and to broadly 
assess the direction of requirements research going forward.  During this time we plan 
to assess the current practices of both the research and the practitioner communities in 
light of emerging trends in requirements activity, technologies, and organizational 
environments, with an eye to the following questions: Is the way researchers think 
about requirements adequate going forward?  Do our assumptions about requirements 
practices need to change?  Where should research into requirements focus or expand 
to capture emerging trends in system design?  Thus, the current study is intended as 
food for thought. We are confident that tremendous insights lie ahead. 
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Section 1: Fundamental Concepts of Design 

Kalle Lyytinen 

The concept of design and the concept of requirements are intricately related and con-
ceptually interdependent. Requirements are the means for capturing the “intent” or 
“constraints” of the design.  What gets designed, how it gets designed, and why it is 
designed, are all shaped by our notion of requirements. Traditionally, most of the 
software engineering and system design literature has approached requirements as 
necessary inputs into the design process that may be revised based on the feedback 
obtained during the process (see Hansen et al. 2008, and Cheng and Atlee 2008, this 
volume). Requirements provide necessary and sufficient knowledge bases upon which 
to build a system, and to validate whether the design process was successful in pro-
viding a solution that conforms to the requirements. Most requirements are treated, 
accordingly, as fixed statements of desirable, either functional or emergent, system 
properties, or as sets of constraints to which the delivered system must conform. This 
relatively axiomatic view of requirements as “a set of design axioms” or goals that 
precedes the “proof” of design has widely dominated the research discourse in  
requirements engineering. It has also dominated much of the practices of software 
development as reflected in published standards of requirements discovery and speci-
fication and reviewed in Hansen et al. 2008. 

If some of the underlying ideas related to design context, system scope, and the na-
ture of systems to be designed is changing, then the prevailing understanding of the 
requirements is also in need of revision. In this part of the book we will review some 
of the emerging, revised views of design, with an emphasis on how these views may 
shape our understanding of requirements: their role in design and how they are dis-
covered during the design. To this end, in this section on “fundamental concepts of 
design” we have included four articles that scrutinize the concept of design in terms of 
the nature of the design target, the definition of the design and what needs to be in-
cluded in it, the organization and process of generating designs, and the specific na-
ture of some of the things which are designed and included in information systems. 

The first article by Isabelle Reymen and Georges Romme titled “The Evolution of 
Design Requirements in the Trajectory of Artificiality: A Research Agenda” is an 
ambitious attempt to develop and relate existing views of software design and re-
quirements into a broader movement of “design theory”. They describe the evolution 
of design and requirements thinking based on Krippendorf’s recent review of design 
theory. Accordingly, they argue that Krippendorff's trajectory of artificiality shows an 
increasing dematerialization and human-centeredness of artifacts to be designed – 
designers move from the creation of things to the creation of social conditions. Based 
on a review of the design literature, that covers two major design journals, they ob-
serve that current “theorizing” and “advancing” the design of socio-technical systems 
tends to be situated on the level of multi-user systems and networks, whereas more 
complex artifacts like projects (e.g. like designing a Product Life-cycle Management 
system) and discourses (e.g. Web 2.0 platforms) receive limited attention in current 
requirements thinking. This has significant implications for what types of  
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requirements receive attention in the literature, why certain requirements get accepted, 
and how one designs with them. 

In the second article, Paul Ralph and Yair Wand make “A Proposal for a Formal 
Definition of the Design Concept.” They justify this endeavor by noting that most 
attempts to formulate design have been haphazard and not systematically developed. 
Simply, we lack a common base for research on design as we do not have good “on-
tology” of what design is and what it is not. We also have difficulties in differentiat-
ing between requirements concepts and design concepts. Their definition incorporates 
seven elements: agent, object, environment, goals, primitives, requirements and con-
straints.  Accordingly, design projects are temporal trajectories of work systems that 
include human agents, who work to design systems for stakeholders, and use re-
sources and tools to accomplish this task. They demonstrate how the design definition 
can be useful how to classify design knowledge and how the derived conceptual 
model of design can be used to classify design approaches, which have very different 
ways to handle and recognize requirements. 

The third article by Raghu Garud, Sanjay Jain, and Philipp Tuertscher titled “In-
complete by Design and Designing for Incompleteness” addressed the challenge of 
completeness in design which is typically translated as “system requirements need to 
be complete” in the literature. They argue that this idea is a reflection of scientistic 
understanding of design, which is adequate if you assume that the reality you deal 
with remains the same and is covered by unchanging laws (like computing the values 
of a sin function). The situation changes, however, if we enter a dynamic environment 
that changes continually or a situation where the system, by being embedded into the 
environment, changes the behaviors of the environment. In such a situation we deal 
with incomplete designs and incomplete requirements. Overall, we need to develop 
concepts of design that assume and accept incompleteness, and offer means to deal 
with such incompleteness. They propose a pragmatic view of design where design has 
a generative element in that one cannot separate the design outcomes from the proc-
ess, and where design is both the outcome and medium of stakeholder action. 

In the fourth article by Sal March and Gove Allen titled “Challenges in Require-
ments Engineering:  An Ontology of the Artificial for Conceptual Modeling” poses a 
challenge to traditional view of design. They claim that the domains for which infor-
mation systems are developed deal primarily with social constructions—conceptual or 
symbolic objects and attributes created by human intentions and for human purposes. 
Accordingly, information systems play an active role in these domains: they  
document the creation of new conceptual objects, record and ascribe values to their 
attributes, initiate actions within the domain, track activities performed and infer con-
clusions based on the application of rules that govern how the domain is affected 
when socially-defined and identified causal events occur. Therefore, high level de-
signs and their representations in various conceptual models deal with a different type 
of reality when compared with a design of a machine or a cup- they shape language, 
thought and affect cognition, and organizational action. They do not have similar 
physical characteristics as the design of things. Therefore conceptual modeling 
grammars aimed at representing the requirements or designs for information systems 
must include and recognize conceptual objects, socially-defined events, and the rules 
pertaining to them. This poses new challenges to research on conceptual modeling 
and poses an ontology of the artificial as a step toward meeting them. 
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Overall, these articles show how both the research and practice of the design of 
software intensive systems need to grapple in the future with questions like:  1) what 
are the necessary and constitutive elements of software design, 2) how design by defi-
nition can deal with incompleteness and fluidity, and 3) what are the targets of the 
design and do different targets matter, and if so, how? They also show that we may 
need to formulate more distinctive notions of design, design contexts, and design 
processes than the prevailing simple conceptualizations of design allow. 
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The Evolution of Design Requirements in the Trajectory 
of Artificiality: A Research Agenda 
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Abstract. Managing design requirements of complex socio-technical designs in 
heterogeneous and rapidly-changing environments demands new approaches. In 
this chapter we use the framework described by Krippendorff [1] to describe the 
evolution of requirements thinking and subsequently develop a research agenda. 
Krippendorff's trajectory of artificiality shows an increasing dematerialization 
and human-centeredness of artifacts. He distinguishes six kinds of artifacts, 
namely material products; goods, services, and identities; interfaces; multi-user 
systems and networks; projects; and finally, discourses. Based on a review of 
the design literature, involving two major design journals, we find that the de-
sign of socio-technical systems currently tends to be situated on the level of 
multi-user systems and networks. Projects and discourses hardly get any atten-
tion in requirements thinking. We therefore develop an agenda for future re-
search directed toward advancing requirements thinking at the level of projects 
and discourses as artifacts of design.  

Keywords: Socio-technical system, project design, discourse design, role of re-
quirements, meta-requirement. 

1   Introduction 

The field of requirements identification, capture, verification, and management for 
complex socio-technical designs is in need of a vision and agenda for future research. 
Managing design requirements in heterogeneous and rapidly-changing environments 
demands new approaches.  In this chapter, we contribute to the design requirements 
debate by describing the evolution of requirements thinking, using the framework de-
scribed by Krippendorff [1], and deriving a research agenda for requirements research. 
The argument starts by introducing Krippendorff's framework. Subsequently, the design 
requirements literature is reviewed and assessed by means of this framework. Based on 
the evolution observed in this literature, we then discuss some implications for the de-
sign of complex socio-technical systems. Finally, a future research agenda is outlined. 

2   The Trajectory of Artificiality 

Krippendorff [1] describes a trajectory of artificiality, involving a cumulative progres-
sion of six major kinds of artifacts, each adding to what designers can do. According t 
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Krippendorff,  this trajectory is not intended to "describe irreversible steps but phases 
of extending design considerations to essentially new kinds of artifacts, each building 
up and rearticulating the preceding kinds and adding new design criteria, thus generat-
ing a history in progress" (p. 6, [1]). The six kinds of artifacts are material products; 
goods, services, and identities; interfaces; multi-user systems and networks; projects; 
and finally, discourses. Figure 1 provides an overview, suggesting that artifacts be-
come increasingly complex (in terms of design requirements) along this trajectory. 
We now turn to each of these six kinds of artifacts. 

Products are seen here as the material artifacts that producers produce. Designing 
products thus implies adopting manufacturers' (design) requirements: for example, 
cost price, utility, functionality, and universal aesthetics [1]. The primary value of 
products therefore arises from their material functionality from a manufacturer's point 
of view. The value of products for those who buy and use them plays a secondary 
role. The emphasis on material products prevailed in the supply economy of the 1950s 
and 1960s in the USA, Europe and elsewhere, in which resources were scarce and for 
almost all products demand was structurally higher than what the manufacturing in-
dustry could supply. 

Fig. 1. The trajectory of artifacts in design (adapted from [1])  

Goods, services, and identities are artifacts that are fundamentally different from 
products. They are distinguished from products by Krippendorff [1] as follows. Goods 
are fabricated to be traded and sold, not merely used; their primary function is their 
role in the marketplace and serve, at best, as sales arguments. Moreover, services need 
to be designed to be recognizable and trustworthy so that customers return and de-
velop loyalty to the service provider. Identities, whether they are encoded in logos, 
brand names, or corporate images, are deliberately crafted to create various kinds of 
commitments. Goods, services, and identities are thus only products in a metaphorical 
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sense, as Krippendorff suggests. In designing these artifacts, designers are concerned 
with marketability, symbolic diversity, folk and local aesthetics [1].  

Following Krippendorff, the next type of artifact is one that mediates between 
complex technological devices and their users: human-machine interfaces. Examples 
of human-machine interfaces are the cockpit screen of an airplane pilot or the inter-
face of a particular computer game. The design of interfaces shifts the attention of 
designers from a concern for the internal configuration and appearance of technology 
to what mediates between single users and technology – that is, between how individ-
ual users make sense of the technology and how designers try to create a technology 
that supports, enhances or changes users' practices. Important concerns here are natu-
ral interactivity, understandability, reconfigurability, and adaptability [1]. 

Multi-user systems and networks facilitate the coordination of many human activi-
ties across space and time, for example sign systems, information systems, or com-
munication networks [1]. An example is an airport check-in system or an e-commerce 
system for ordering and paying books (e.g., Amazon). Unlike in the design of inter-
faces, the design of multi-user systems deals with the information that multiple par-
ticipants can (simultaneously) receive and send through such systems. In the case of 
multi-user systems and networks, design requirements may involve for example in-
formativeness, connectivity, and accessibility [1]. Whereas human-machine interfaces 
are artifacts at the level of interaction between individual users and their devices, 
multi-user systems need to be capable to deal with, and coordinate, a large number of 
different users with a variety of preferences and needs. 

Projects are one of the most complex artifacts one can imagine – complex in the 
sense of design requirements (cf. Figure 1). A project typically arises around particu-
lar desires to change something – a purpose or objective, however vague it may be at 
the outset – to develop a technology, for example, and create something that is useful 
for people other than those directly involved [1]. Following Krippendorff, projects 
have several characteristics. As artifacts, projects are realized in particular communi-
cative practices among participants. Moreover, projects are designed to achieve coop-
eration among people without losing sight of what the project is about. As artifacts, 
projects are mainly processed in language, in narratives of what has to change, needs 
to be done, how, by whom, and at which time. A project can rarely be designed and 
executed single-mindedly by an individual. The very openness to details energizes a 
project and motivates its contributors to perform and deliver. Projects are socially 
viable organizations, temporary in nature but lasting long enough to leave something 
behind. Important design requirements involve considerations such as social viability, 
directionability, and commitment [1]. 

Finally, discourses are organized ways of talking, writing, and acting accordingly 
[1]. There are many distinct discourses: for example, professional, political, religious, 
and economic discourse. A discourse may be supported by a multi-user system, but its 
viability does not depend on this system. As an artifact, discourse may be enacted in a 
project, but does not require a (deliberately crafted) common purpose. Discourses 
involve communities of people who collaborate in enacting what constitutes their col-
lective identity, thereby creating everything that matters to their sense of community 
[1]. Design requirement and considerations here involve generativity, rearticulability, 
and solidarity [1]). 
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This trajectory of artificiality shows an ongoing dematerialization of artifacts [1]. 
That is, artifacts become increasingly fluid, indeterminable, immaterial (or virtual), 
and embedded in language. Products are the most material in nature. Projects and dis-
courses are almost entirely immaterial; they may involve material components, due to 
other artifacts (e.g., goods and interfaces) playing a role in realizing a project or initi-
ating a discourse (note that the trajectory is cumulative in nature). Along the trajec-
tory, the human-centeredness of artifacts also increases. The least human centered are 
the products manufactured in a supplier-driven economy (e.g., in 1950s), whereas 
projects and discourses tend to highly depend and focus on human participation, crea-
tivity and values (cf. [1]). 

3   Evolution of Design Requirements 

The trajectory of artificiality previously discussed is used in this section to assess the 
literature on design requirements and to describe its evolution. We selected two repre-
sentative journals in the design field, namely Design Studies and Research in  
Engineering Design. In these journals, we searched for all articles that have "require-
ments", "specifications", "demands", and "criteria" in the abstract, title, or key words. 
The search period begins with the first volume of each journal (Design Studies 1979; 
Research in Engineering Design 1989) and ends with the last issue available in 2007. 
The resulting set of articles involves either studies of requirements for the design of 
something (an artifact) or methodological papers about requirements elicitation, vali-
dation and management for a certain kind of artifact.  

We categorized, according to the closed coding approach of Strauss and Corbin 
[2], each article according to one of the 6 kinds of artifacts as introduced by Krippen-
dorff, namely products; goods, services, and identities; interfaces; multi-user sys-
tems/networks; projects; and discourses. This categorization follows from the kind of 
artifact the requirements-specifications-demands-criteria were related to. The result is 
shown in Table 1. 

Table 1. Categorization according to type of artifact discussed in articles on requirements in 
two design journals 

Artifact #  Articles in 
Design Studies 

(n=100) 

#  Articles in  
Research in  

Engineering Design  
(n=43) 

products 47 8 
goods, services, and identities 8 0 
interfaces 35 29 
multi-user systems/networks 7 4 
projects 3 2 
discourses 0 0 
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The evolution of attention to design requirements for each of the artifacts in the 
two design journals is depicted in Figure 2. The results in Table 1 and Figure 2 sug-
gest a prevailing focus on the product and interface level. The attention for artifacts 
conceptualized as goods, services and identities is rather underdeveloped, as are 
multi-user systems and networks. Projects hardly get any attention in requirements 
thinking. The five studies at the level of projects are: Eppinger et al. [3]; Lauche [4]; 
Pons and Raine [5]; Reid et al. [6]; Smith and Morrow [7]. Finally, there were no arti-
cles in any of the two journals addressing discourses as artifacts (see Table 1). These 
general patterns are similar for both journals, with the exception of the data for goods, 
services and identities (see Table 1). 

To illustrate the kind of requirements defined and used for each type of artifact, we 
now turn to several representative papers in each category. This results in the  
following list: 

• For products, functionality [8] and just-in-time production [9] are important re-
quirements. 

• For goods, services, and identities, Foque and Lammineur [10] derive user-
oriented and user-friendly, functionality and emotion as important requirements for 
service design. Wright [11] argues that for designing the documentation that  
explains how IT works, there is a requirement for an initial involvement of the 
technical writers during product development. This requirement thus concerns links 
between writer and system designer. There is a subsequent requirement for an abil-
ity to think about the reader's needs (links between writer and reader). And there is 
a final requirement for means of evaluating the usability of the documentation 
(links between writer and text). 

• For interfaces, requirements are then, for example, need to be extensible, reusable, 
multi-agent, and concurrent [12] and functional and accessible as well as exhibit-
ing short interactive response times [13]. 

• For multi-user systems and networks, an interesting requirement involves the dis-
tributive characteristics of collaborative product design.  These characteristics in-
volve, for example, extended time; multiple places, cultures, practices, policies and 
behaviors; multiple languages and tools; interchangeable interaction methods; and 
usability and adaptability to workers with different levels of education [14]. In ad-
dition, the evolutionary nature of the environment (e.g., group evolution and learn-
ing, supporting variable-term relationships) is defined as an important requirement 
[14]. For interactive video game design, for example, Jacobs and Ip  [15] discuss 
multi-user functional requirements such as graphics, sounds, technical realism, 
structure and challenge, multiplayer features, and online features. 

• For projects, Eppinger et al. [3] derived the following information transfer re-
quirements of a technical project (to improve the product development process): 1. 
Documenting existing procedures for scrutiny of the team, 2. Resequencing and 
regrouping design tasks to reduce complexity, 3. Sharing engineering data earlier 
and/or with known confidence, 4. Redefining critical tasks to facilitate overall pro-
ject flow, 5. Exposing constraints and conflicts due to task interactions, 6. Helping 
design managers to place emphasis on task coordination, 7. Allowing design itera-
tion to be strategically planned.  
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Lauche [4] determined the following requirements for job design: control over the 
design process, availability and clarity of design-relevant information, feedback on 
results, and management support. Pons and Raine [5] discuss how to deal with re-
quirements when designing projects. They do so in terms of constraints from incom-
plete and qualitative specifications, using subjective processes. Furthermore, they 
subsequently negotiate with others to relax constraints, as the design space may be 
over-constrained. This negotiation involves interaction with others, and adds behav-
ioral factors to the design process. As such, decision-making during design processes 
needs to be able to accommodate multiple viewpoints, cope with uncertainty of analy-
sis (incompleteness of knowledge), propagate uncertain variables, and accommodate 
varying degrees of information abstraction.  

Other authors, for example Reid et al. [6], see design coordination and team inte-
gration as the most important dilemmas for project management by design teams. 
Reid and co-authors argue that successful project management requires project lead-
ers to continuously steer an acceptable path through these dilemmas. They suggest 
these problems can be addressed by adopting a flexible, dynamic approach to team 
coordination in which moment-to-moment demands are met by appropriate manage-
ment actions. 
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Fig. 2. Evolution of attention to requirements in the community of design researchers 

Given the fact that projects and discourses hardly get any attention in requirements 
thinking in the selected journals, we also searched other journals. In this respect, three 
journals that were created recently are explicitly human-centered in their aim and 
scope. These are Journal of Design Research (e.g., the work of Sebastian [16]),  Co-
Design (International Journal of CoCreation in Design and the Arts) (e.g., [17]), and 
The Design Journal (of the European Academy of Design) (e.g., [18]). These journals 
may actually publish more work on projects and discourses as artifacts than the two 
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journals we have studied in this paper.1 This implies that our focus on Design Studies 
and Research in Engineering Design may produce a bias in our findings – in particu-
lar the relatively low number of studies regarding projects and discourses in Table 1. 

4   Design Requirements of Complex Socio-technical Systems 

The trajectory of artificiality involves an evolution in the kind of artifacts being de-
signed. In this respect, requirements elicitation, validation and management should 
coevolve in parallel. This means that for each type of artifact, the corresponding re-
quirement (management) techniques must be considered. As such, requirements 
thinking needs to be congruent with the kind of the artifact being designed. 

Given the results of the literature review and interpretation in the previous section, 
requirements thinking has recently developed up to the level of multi-user systems 
(cf. Figure 1). In this respect, the design of socio-technical systems currently tends to 
be largely framed in terms of multi-user systems and networks (e.g., [19],[20]). How-
ever, to create effective socio-technical systems in heterogeneous and rapidly chang-
ing environments, their design requirements must also be viewed from a project and 
discourse perspective. 

More particularly, software systems can be understood and designed as advanced 
socio-technical systems. In this respect, the trajectory of artificiality suggests that 
software (systems) can be framed as an artifact at each level of this trajectory. This is 
evident for software systems as material products (e.g., software delivered on cd-
rom), services (e.g., a 24x7 service desk), interfaces (e.g., a knowledge management 
interface with search functions) and multi-user systems and networks (e.g., an airport 
check in system). An example of a software-related project is the introduction of the 
Capability Maturity Model in a company (e.g., [21]). An example of a software-
enabled discourse is Wikipedia. Software can also be supportive for designing pro-
jects and discourses. Moreover, people may think they are designing software, al-
though in fact they are (implicitly) designing a project or discourse.2 

Evidently, the role of design requirements changes along the trajectory of artificial-
ity. In this respect, in moving from left to right on the trajectory outlined in figure 1, 
more attention needs to be given to social and semantic instead of technical and mate-
rial aspects. Moreover, along the trajectory of artificiality, system boundaries will 
become more diffuse and complex and system design becomes more context depend-
ent. Additionally, moving from products to discourses as artifacts, the process of de-
fining and managing requirements becomes more participative, dynamic and flexible. 
Each type of artifact can be designed in a more or less participative manner. Stake-
holder involvement in the design process can be positioned on a continuous scale  
between the designer as an expert, i.e., with minimal stakeholder feedback, and stake-
holder-driven design, i.e., the designer and stakeholders co-designing. The desired 
level of stakeholder interaction of the artifact itself may however differ among the 
different types of artifacts and result in different requirements. Described from an 
                                                           
1 The low number of published volumes of these journals severely constrains opportunities to 

study papers on design requirements and compare the findings with the two design journals 
used in this paper.  

2 This paragraph is based on comments of Kalle Lyytinen on a draft version of the paper.  
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interaction perspective, products and identities involve communicating a message 
about functionality, quality and other aspects to the stakeholders in their environment; 
interfaces support communication between stakeholders (users) and technology; 
multi-user systems support interactions between multiple stakeholders/users; projects 
organize how a team can perform a task collaboratively; discourses consist mainly of 
communication between participants. Designing these artifacts means (in the trajec-
tory of artificiality) increasingly designing support for communication and interaction 
between stakeholders. Both requirements about the desired level of stakeholder in-
volvement in the design process and those about the desired level of stakeholder in-
teraction of the artifact are important and should be defined and managed. Especially 
when many stakeholders are involved, conflicting interests need to be discussed and 
managed.  

For products, identities, interfaces and multi-user systems, requirements can be 
communicated – in two directions – between designers and stakeholders during the 
artifact design process. For projects and discourses, this can also take place during the 
actual "use" of the designed artifact, i.e., during the course of the project or discourse. 
For these types of artifacts, it is less clear when the design of the artifact is finished, 
i.e., when the design is "frozen" and produced, like in a product or a software system. 
Projects and discourses are more open-ended and are not produced at a certain mo-
ment; they can continuously be redesigned, importantly also by the stakeholders dur-
ing the use of the artifact. This means also that their requirements are continuously 
adapted and should thus be more dynamic and flexible. This influences how the re-
quirements are represented and communicated. In some cases, IT systems can be used 
to support the communication processes. 

5   Future Research Agenda: Designing Projects and Discourses 

The previous two sections identified several emerging patterns in the evolution of 
requirements thinking. We argued that requirements thinking needs to be congruent 
with the kind of artifact being designed. In this respect, in addressing complex socio-
technical systems, designers and design researchers will increasingly have to explore 
design requirements at the level of projects and discourses as the artifacts being de-
signed and created. We suggest the following questions and challenges for future re-
search. 

5.1   What Are Design Requirements for Projects and How Should They Be 
Managed?  

Projects as the artifacts of design constitute an enormous challenge for requirements 
researchers. An interesting starting point can be found in agile developments and 
methods like SCRUM [22]. The agile development approach sets up the design proc-
ess in a pragmatic way with team-based, bottom-up design processes. The agile per-
spective on organizing design projects might be useful for informing the design of 
other projects as well. One particular question here is whether the requirements for-
mulated for agile projects can be codified, and to what kind of projects they can (not) 
be applied. 
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5.2   What Are Design Requirements for Designing a (viable) Discourse and How 
Should These Be Managed? 

An example of the deliberate attempt to design a discourse is branding "Poland" [23]. 
Another interesting example is the way the Bush government in the USA has been 
redesigning the political discourse toward the key idea: 'if you criticize the Bush gov-
ernment, you criticize our soldiers in Iraq.' As previously mentioned, Wikipedia is 
another example, closer to the design of socio-technical systems. Garud et al. [24], 
studied the design of the Wikipedia online encyclopedia. They highlight that deliber-
ate incompleteness is part of a pragmatic approach to design. This suggests that  
design requirements for designing discourse should thus be able to deal with, and in-
corporate, incompleteness and fluidity. 

Krippendorff (pp. 10-11, [1]) argues that projects are "realized in particular com-
municative practices among participants" while discourses "reside in communities of 
people who collaborate in enacting what constitutes their community". Therefore, to 
start building a body of knowledge about design requirements for projects and dis-
courses, the literature on communities of practice (e.g., [25]) provides an important 
point of departure. In this volume, Fischer  distinguishes between communities of 
practice and communities of interest [26]. This suggests future research needs to ad-
dress how the nature of the community affects its discourse, and vice versa. 

Moreover, designing socio-technical systems at the project and discourse level may 
be more about the design of the ecosystem than of the artifact itself. For example, an 
information system may be intended to shape an organizational discourse (e.g., 
around knowledge, competences, and client needs) as an ecosystem. The design re-
quirements should then largely be defined on the level of the ecosystem. The idea of 
ecosystem and ecology corresponds to the "meta-design" concept introduced by 
Fischer et al. [27] and Fischer and Giaccardi  [28]. The idea here is to use, as a de-
signer, your own creativity to create socio-technical environments in which other 
people can be creative. The only thing you do as a designer is provide a context where 
users provide the content (e.g., web 2.0, open source, Wikipedia). In these examples, 
designing occurs simultaneously to using.  Interesting in this regard is also the SER 
model of Fischer and Ostwald [29], which describes a cycle of seeding, evolutionary 
growth, and reseeding. Requirements should thus be defined for open, adaptive, and 
adaptable systems, which make possible that the systems can emerge and continu-
ously evolve in interaction between stakeholders. To some extent, thus, requirements 
for shaping a language are needed.  

5.3   What Is the Role of Requirements in Designing Projects and Discourses?  

The human-centered as well as participative nature of projects and discourses evi-
dently affects the role of requirements in the design process, but how? Human-
centeredness implies that requirements are not only of a 'technical' nature, but also 
include communication specifications, co-ordination specifications, and so forth. The 
participative nature of projects and discourses implies that requirements (but also the 
solutions and outcomes) are not only determined by the designer and user, but by all 
stakeholders involved. This means that requirements elicitation, validation and  
management fundamentally changes, because it will be done along the way by a con-
tinually changing population of participants. Given the co-evolution of problem and 
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solution in socio-technical design projects [30], requirements should also co-evolve 
with the solution. This means they cannot be fixed at the beginning of the process and 
may (need to) change rapidly. In general, requirements will not loose their importance 
if they are able to adapt and respond as an open, evolving system. If requirements are 
fixed at the outset and cannot change, they will become obsolete and irrelevant to how 
the project or discourse evolves and matters to the people engaging in it. 

5.4   How Does Requirements Management Differ for Complex Socio-technical 
Systems, Framed as Different Types of Artifacts? 

This is a bold question that can be specified in a number of directions. First, we need 
to understand how and why software designers (are able to) think through the levels 
of the trajectory of artificiality and determine which levels are relevant for particular 
contexts. Second, future research needs to explore how requirements differ for these 
different types of artifacts, for example in terms of scale, flexibility, dynamic behav-
ior, and growth pattern. Finally, the question arises as to whether there are differences 
in the manner in which requirements emerge for a particular type of artifacts. 

5.5   Can Meta-requirements of the Requirements Linked to Each Type of 
Artifact Be Developed?  

At the product level, for example, the field of systems engineering has already defined 
meta-requirements (e.g., [31]). At the project and discourse level, possible 'meta-
requirements' can be derived from the discussion above: for example, the ability to 
deal with incompleteness and fluidity; the focus on ecology; and an emphasis on hu-
man-centered as well as participative values. To avoid confusion and build a straight-
forward requirements 'language', these meta-categories are perhaps better labeled de-
mands (for requirements). 
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Abstract. A clear and unambiguous definition of the design concept would be 
useful for developing a cumulative tradition for research on design. In this arti-
cle we suggest a formal definition for the concept design and propose a concep-
tual model linking concepts related to design projects. The definition of design 
incorporates seven elements: agent, object, environment, goals, primitives, re-
quirements and constraints. The design project conceptual model is based on 
the view that projects are temporal trajectories of work systems that include 
human agents who work to design systems for stakeholders, and use resources 
and tools to accomplish this task.  We demonstrate how these two suggestions 
can be useful by showing that 1) the definition of design can be used to classify 
design knowledge and 2) the conceptual model can be used to classify design 
approaches. 

Keywords: design, information systems design, software design project, re-
quirements, goals, science of design. 

1   Introduction 

There have been several calls for addressing design as an object of research. Freeman and 
Hart [1] call for a comprehensive, systematic research effort in the science of design: 
“We need an intellectually rigorous, formalized, and teachable body of knowledge about 
the principles underlying software-intensive systems and the processes used to create 
them,” (p. 20). Simon [2] calls for development of a “theory of design” and gives some 
suggestions as to its contents (p.134). Yet, surprisingly, it seems no generally-accepted 
and precise definition of design as a concept is available.1 

A clear understanding of what design means is important from three perspectives. 
From an instructional perspective, it seems obvious that any designer’s education 
ought to include providing a clear notion of what design is. Furthermore, better under-
standing what design is will inform what knowledge such education could include. 

From a research perspective, in any theoretical or empirical work in which design 
is a construct, a clear definition will help ensure construct validity. Furthermore, a 
clear understanding of the meaning of design will facilitate developing measures of 
                                                           
1 As an anecdotal note – we have asked colleagues in several conferences to suggest a defini-

tion for “design” (in the software and IS context) and often the responses indicated IS aca-
demics did not have a well-defined notion of the concept. 
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design-related constructs, such as design project success. Moreover, building a cumu-
lative tradition of design research can benefit from having a well-defined, the alterna-
tive being different theories define design differently, or not defining it explicitly.  

From a (software design) practitioner’s perspective, a clear definition of design can 
help organize, share and reuse design knowledge. Such sharing can enhance software 
project success and software development productivity. Furthermore, understanding 
the elements of design would be useful in determining the issues and information that 
need to be considered in the process of design and in planning this process. 

Given the potential value of a clear definition of design, our objective here is to 
suggest such a definition. We first seek to answer the question: what are the important 
elements of design as a phenomenon? We then seek to situate design in a network of 
related concepts. 

We begin our discussion by making a distinction between the science of design and 
the design science research paradigm as elucidated by Hevner et al. [3]. In their view, 
design science research “builds and evaluates constructs, models, methods and instan-
tiations” with “design intent” ([4], p. 256). In contrast, Freeman and Hart [1] call on 
the community to theorize and justify theories about design – what March and Smith 
[4] call “natural science intent” (p. 256). Design science is a research paradigm, like 
experimentalism. Science of design is a field of inquiry, like psychology. Here we 
seek to primarily address issues related to the science of design. 

The paper is organized as follows. First, we synthesize a definition of design by 
applying concepts and suggestions in existing literature (§2). We then evaluate the 
proposed definition in Section 3. Section 4 situates our view of design in a conceptual 
model of software design projects. In Section 5, we demonstrate how the proposed 
definition of design can be applied to indexing design knowledge for reuse and by 
using the conceptual model of software design projects to classify design approaches. 
Finally, we discuss the implications of our definition of design for current themes in 
software design and requirements research (§6). 

2   Proposing a Formal Definition of Design 

2.1   Design in the Literature 

We have conducted a review of existing definitions of the concept “design” in the 
literature. A list of definition we examined is provided in the Appendix (Table 9). We 
analyzed the definitions in three ways: first, we identified concepts that appeared 
common to several definitions (Table 1). We then analyzed each definition as to 
whether it appeared to have errors of omission or inclusion by testing them with re-
spect to a set of examples. We have found that all definitions included errors of either 
kind or both. The detailed analysis is provided also in Table YY (Appendix). Finally, 
we have identified four main areas of disagreement among the definitions. 

While most of the areas of agreement seem reasonable, a few appear problematic. 
First, some definitions confuse design with good design, adding desirability criteria to 
the definition, as evidenced by words like “optimally” [5] and “optimizing” [6]. De-
signs might be suboptimal, but we still call them designs. Second, organizing does not 
necessarily constitute design, for example, when someone returns books to their 
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Table 1. Frequency of Common Concepts in Analyzed Definitions 

Concept Frequency 
Design as a process 11 
Design as creation 11 
Design as planning 7 
Design as a physical activity (or as including implementation) 7 
System (as the object of the design) 7 
Design as being deliberate, or having a purpose, goal or objective 7 
Design as an activity, or a collection of activities 7 
Design as occurring in an environment (or domain/situation/context) 7 
Artifact, as the object of the design 5 
Needs or requirements 5 
Design as a human phenomenon 5 
Design as organizing 4 
Parts, components or elements 4 
Constraints or limitations 3 
Process (as the object of design) 2 
Design as creative 2 
Optimizing 2 
Design as a mental activity 2 
Resources 2 

 
proper shelves in a library, one is organizing the books into a pre-designed arrange-
ment rather than actively performing a design task. Third, four definitions state or 
imply that design is strictly a human phenomenon. However, machines can also de-
sign objects (e.g., Bradel and Stewart [7] report on the design of processors using 
genetic algorithms).2 Fourth, while many designers are surely creative, not all design 
need involve creativity. For example, design might involve relatively minor modifica-
tions to a previously created design. 

Finally, we mention the four areas of disagreement we have identified. First, dif-
ferent objects of design arise: system, artifact and process. Second, disagreement 
exists concerning the scope of design: where or when a design begins and ends. Third, 
some definitions indicate that design is a physical activity, others a mental activity. 
Fourth, some disagreement concerns the outcome of design: is it a plan, an artifact, or 
a solution? 

2.2   Suggesting a Definition of Design 

In this section, we develop our proposed definition of design. First, Eekels [8] differ-
entiates between the subject of the design and the object of design. The subject of the 
design is the (often human) agent that manifests the design. The design object is the 
thing being designed. Design outcomes such as an artifact, a system or a process that 
appear in some existing definitions are encompassed here by the more general term, 
design object.3  

                                                           
2 Some research indicates this might also be the case for animals (see [9] and [10]). 
3 Note: often the object is called an artifact, when designed by humans. The more general term 

object allows (in principle) for non-human agents such as animals and computers. 
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Some definitions mention parts, components or elements of which the design ob-
ject is, or is to be, composed.  Obviously, all artificial physical things are made from 
other things. These other things might be given, or also are composed of components. 
We term the lowest level of components primitives. Similarly, but perhaps less obvi-
ously, if we assume that atomic conceptual things, such as a single thought or idea, 
are not designed (but discovered or just are available), then all conceptual things that 
are designed are made from other conceptual things. Therefore, all design involves 
components, or primitives, which are, or can be, assembled or transformed to create 
the design object.4 March and Smith [4] note that “Technology includes...materials, 
and sources of power” (p. 252).  Materials and sources of power would be included in 
the set of primitives. 

The outcome of a design effort is not necessarily the design object itself, but may 
be a plan for its construction, as pointed out by the definitions that characterize design 
as planning rather than building. The common factor here is that the agent specifies 
properties of the design object: sometimes as a symbolic representation, as in an ar-
chitectural blueprint, sometimes as a mental representation, as in the picture in the 
painter’s mind, and sometimes as the artifact itself, as in a hand-carved boomerang. 
We call the specified properties of the design object a specification. More specifi-
cally, a specification is a detailed description of a design object’s structural proper-
ties, namely, what primitives are assembled or modified and, if more than one com-
ponent is used, how primitives are linked together to make the artifact. 5  

Practically speaking, a specifications document might include desired behaviors as 
well as structural properties. From the perspective of this paper, these desired behav-
iors are requirements – they are not strictly part of the specifications. The object’s 
behavior emerges from the behavior of the individual components and their interac-
tions. By behavior we mean the way the object responds to a given set of stimuli from 
its environment (including agents who interact with the artifact). 

The specification may be purely mental, provided in a symbolic representation, 
presented as a physical model, or even manifested as the object itself.  

Churchman [11] points out that “Design belongs to the category of behavior called 
teleological, i.e., "goal seeking" behavior,” (p. 5). Many of the definitions we sur-
veyed also included the concepts of goal, purpose or objective. It is possible the goal 
is not explicit or not well-defined. However, a design effort is always intentional. For 
example, a social networking web application can be designed, without having an 
articulated explicit goal, based only on the vague idea that it would be useful (and 
fun) to have an online space where people could connect. We would still say the web 
application was designed. On the other hand, accidental or unintentional discoveries 
are not really designed. Thus, goals are inherent to design insofar as a designer must 

                                                           
4 What the set of available primitives is can be a relative issue. A designer might be given a set 

of components, or component types, where each might be in turn composed from lower level 
components. We consider primitives the set of component-types available to the designer, 
independent of whether they are natural, or the outcome of previous design. Furthermore, 
even if the components are not yet available, a designer might proceed assuming they will be 
available. The assumptions made about these components will become requirements for their 
design. 

5 This notion of specification agrees with that of Bourque and Dupuis ([14], p. 1-3), that design 
is the activity that produces “a description of the software’s internal structure”.  
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have intentionality. However, this should not be interpreted as a requirement that a 
design goal is or can be explicitly specified and articulated. 

Many definitions characterize the design process as occurring within an environ-
ment, domain, situation or context. Design involves two different environments:  the 
environment of the design object, and the environment of the design agent. As pointed 
out by Alexander [12] “every design problem begins with an effort to achieve fitness 
between two entities: the form in question and its context.” Clearly, the design proc-
ess or activity also occurs within some environment, even if that environment is diffi-
cult to characterize. March and Smith [4] mention the “organizational setting” (p. 
252) and Hevner et al. [3] refer to “organizational context” (p. 77). For instance, the 
software created by a developer is intended to operate in a different environment than 
the developer.  For the environment of the artifact the qualifier “organizational” is not 
always valid because, for some design objects, the environment does not have to be 
an organization (e.g. the environment of a pacemaker is a human body). 

Many definitions also mention needs or requirements and limitations or con-
straints. The issue of requirements requires a clarification. If we interpret require-
ments strictly as a formal requirements document or as a set of mathematically  
expressible functions (as in [13]) the system is to perform, then requirements are not 
absolutely necessary. The primitive hunter who fashions a spear from a branch speci-
fied the spear’s properties by creating it – without an explicit reference to formal 
requirements (let alone mathematically definable functions). However, in the sense 
that every designer expects or desires of the design object to possess certain properties 
or exhibit certain behaviors, requirements are inherent to design. Requirements are a 
major construct in requirements engineering and software design (see, for example 
[15] and [16]). 

Similarly, all design must involve constraints. Even if the design agent had infinite 
time and resources, physical design is still constrained by the laws of physics, virtual 
design by the speed and memory of the computational environment, and conceptual 
design by the mental faculties of the design agent. Constraints are a major construct in 
engineering design (see [2] and [17]). However, we note that, as for goals and re-
quirements it is possible constraints are not stated or perceived explicitly. 

The above analysis leads to the following suggestion for the definition of design 
(modeled in Figure 1). Table 2 further describes each concept in the definition. 

Considering design as a process (depicted in Figure 2), the outcome is the specifi-
cation of the design object. The goals, environment, primitives, requirements and 
constraints are, in principle, the inputs to the design process; however, often knowl-
edge of these may emerge or change during the process. Nevertheless, the design 
process must begin with some notion of the object’s intended environment, the type 
of object to design and some initial intentions. By initial intentions, we simply mean 
that design cannot be accidental – the design agent must have intentionality. Finally, 
if the type of design object changes significantly (e.g., from a software system to a 
policy manual), the existing design effort is no longer meaningful and a new design 
effort begins. The possibility of changing information is related to the possibility that 
the design process involves exploration. It also implies that the design might evolve 
as more information is acquired.  
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Design 
(noun) a specification of an object, manifested by some agent, in-
tended to accomplish goals, in a particular environment, using a set of 
primitive components, satisfying a set of requirements, subject to some 
constraints;  
(verb, transitive) to create a design, in an environment (where the 
designer operates) 

 
Fig. 1. Conceptual Model of Design (as a noun) 

Table 2. Definitions of Design Concepts 

Concept Meaning 
Design Speci-
fication 

A specification is a detailed description of an object in terms of its structure, 
namely the components used (out of the set of possible types of primitives) 
and their connections.  

Design Object The design object is the entity (or class of entities) being designed. Note, this 
entity does not need to be a physical object. 

Design Agent The design agent is the entity or group of entities that specifies the structural 
properties of the design object. 

Environment The object environment is the context or scenario in which the object is intended 
to exist or operate (used for defining design as the specification of an object). 
The agent environment is the context or scenario in which the design agent 
creates the design (used for defining design as a process). 

Goals Goals are what the design object should achieve; goals are optative (i.e. 
indicating a wish) statements that may exist at varying levels of abstraction 
[18]. Since the designed object exists and/or operates in an environment, 
goals are related to the impact of the artifact on its environment. 

Primitives Primitives are the set of elements from which the design object may be com-
posed (usually defined in terms of types of components assumed to be available). 

Requirements A requirement is a structural or behavioral property that a design object must 
possess. A structural property is a quality the object must posses regardless 
of environmental conditions or stimuli. A behavioral requirement is a re-
quired response to a given set of environmental conditions or stimuli. This 
response defines the changes that might happen in the object or the impact of 
these changes on its environment. 

Constraints A constraint is a structural or behavioral restriction on the design object, where 
“structural” and “behavioral” have the same meaning as for requirements.  
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Fig. 2. Context-level Conceptual Model of Design (as a Verb) 

2.3   What Can Be Designed and Examples of Design Elements 

“What can be designed?” is a difficult ontological question, one we are not sure we 
can answer completely. However, we have identified at least six classes of design 
object:  

• physical artifacts, both simple, such as boomerangs (single-component), and 
composite, such as houses (made of many types of components) 

• processes, such as business workflows 
• symbolic systems, such as programming languages  
• symbolic scripts, such as essays, graphic models, and software (which, in turn, 

prescribe the behavior of other artifacts, i.e. computers) 
• laws, rules and policies, such as a criminal code 
• human activity systems, such as software development projects, committees, 

schools, hospitals, and artistic productions (e.g. operas)   
Clearly, the nature of a specification depends on the class of design object since the 

structure and components of; for example, a law would be very different from those 
of a physical object.6 For simple artifacts, such as a one-piece racket or a metal blade, 
the specification would include structural properties such as shape, size, weight and 
material. For a composite physical artifact, such as a desk, the specification would 
include the primitive components and how they are connected. Since a process is ‘a 
set of partially ordered activities aimed at reaching a goal’ [19], a specification of a 
process might identify the activities and their order (although other approaches are 
possible – e.g. using, Petri Nets [20] or states and events [21]). For a symbolic sys-
tem, the specification might include syntax, denotational semantics and (for a spoken 
language) pragmatics. A symbolic script can be specified by symbols and their  

                                                           
6 It is of interest to see how some of the concepts can be applied to non-physical artifacts such 

as a law. Although a law clearly is a designed (albeit conceptual) artifact, the notion of a “be-
havior” of a law might not be clear. One possibility would be the conditions under which it is 
invoked. Likewise, constraints with respect to laws can be a constitution or cultural values 
that limit the types of laws that can be enacted. 
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arrangement. A policy or law can be specified in some (possibly formal) language. 
The specification of a human activity system might include the various roles and tasks 
and their relationships and interactions. 

Furthermore, all of the elements from the definition of design might vary depend-
ing on the object type. Table 3 provides examples of each design element for each 
type of design object. 

2.4   Scope of Design 

According to the perspective on design expressed in this paper, design (as a verb) is 
the act of specifying the structural properties of an object, either in a plan, or in the 
object itself. Because design is an activity, rather than a phase of some process, it may 
not have a discernable end point. Rather, it begins when the design agent begins 
specifying the properties of the object, and stops when the agent stops. Design may 
begin again if an agent (perhaps a user) changes structural properties of the specifica-
tion or design object at a later time. This defines the scope of the design activity. 

Our definition does not specify the process by which design occurs. Thus, how one 
interprets this scope of activities in the design process depends on the situation. If a 
designer encounters a problem and immediately begins forming ideas about a design 
object to solve the problem, design has begun with problem identification. If require-
ments are gathered in reaction to the design activity, design includes requirements 
gathering. In contrast, if a designer is given a full set of requirements upfront, or gath-
ers requirements before conceptualizing a design object, requirements gathering is not 
part of design. Similarly, if the construction agent refines the specification (a possible 
occurrence in software development), construction is part of design, but if the de-
signer creates a complete specification on paper that the construction agent follows, 
construction is not part of design. Any activity, including during testing and mainte-
nance, that involves modifying, or occurs within an effort to modify, the specification 
is part of design. Therefore, design practice may not map cleanly or reliably into the 
phases of a particular process, such as the waterfall model [22]. 

This distinction has particular bearing for software design, where a significant de-
bate over the scope of design exists. On the narrow-scope side, Bourque and Dupuis 
[14], for example, define design as: 

the software engineering life cycle activity in which software requirements 
are analyzed in order to produce a description of the software’s internal 
structure that will serve as the basis for its construction, (p. 3-1).  

 

On the broad-scope side, Freeman and Hart [1], for example, argue that:  
 

Design encompasses all the activities involved in conceptualizing, framing, 
implementing, commissioning, and ultimately modifying complex systems—
not just the activity following requirements specification and before pro-
gramming, as it might be translated from a stylized software engineering 
process, (p. 20). 

One way of interpreting this debate is as follows. Proponents of a narrow scope of 
the design process posit that all inputs to design (goals, environment, primitives,  
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 Table 3. Examples of Design Elements 

Object Type Process Symbolic system Law/policy Human activity system Physical artifact Symbolic Script

Object loan approval a special purpose 
programming lan-
guage

criminal code a university course office building a software system

Agent loan officer person or persons 
who create the lan-
guage

legal experts and 
lawmakers 

instructor Architect programmer

Goals accurately estimate risk 
level of loan 

provide a means of 
expressing software 
instructions

provide a legal 
framework for deal-
ing with crimes 

facilitate learning and 
development of stu-
dents in a given area

provide office 
space for a busi-
ness

support management 
of customer informa-
tion

Environment bank administrative 
system

computing environ-
ment on which code 
will execute 

national legal and 
constitutional system

university (with all re-
sources available)

business district 
of a given city

personal computers 
and a specific operat-
ing systems

Requirements provide a decision with 
justification; generate 
audit trail for decision 
process

be easily readable, 
minimize coder ef-
fort, fit certain appli-
cations

define crimes and 
punishments clearly; 
be unambiguous

learning objectives include open 
floor plan of-
fices, be energy 
efficient

maintain customer in-
formation, identify 
customers with cer-
tain characteristics 

Primitives various actions that 
need to be taken, e.g., 
assessing the value of a 
collateral

the c programming 
language instruc-
tions

English words as 
used in legal docu-
ments

various common teach-
ing actions (presenta-
tions, laboratory ses-
sions, tests)

building materi-
als, interior 
decoration ma-
terials

the instructions in the 
symbolic system (pro-
gramming language) 

Constraints bank approval rules 
and risk policies (e.g. 
debt-service ratio al-
lowed)

cannot violate some 
programming lan-
guages related stan-
dards

must not violate the 
country’s constitu-
tion and interna-
tional laws

prior knowledge stu-
dents have, number of 
class and laboratory 
hours available 

comply with 
building code, 
cost less than a 
given budget 

must be able to run on 
a given hardware con-
figuration with maxi-
mum delay X.
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requirements and constraints) are fully defined before any property of the object has 
been decided. Furthermore, the design phase results in a full specification of all rele-
vant object properties before coding begins. In contrast, proponents of a broad scope 
of design recognize that properties of the object are often defined during requirements 
elicitation or, at the opposite end - during coding. Moreover, design might not begin 
with a complete knowledge of all information needed. And the process might include 
obtaining additional information. Which side of this debate better reflects software 
design practice is an empirical question; the proposed definition of design is compati-
ble with either.  

3   Evaluating the Proposed Definition of Design 

In this section we evaluate our definition of design, based on the degree to which it:  
 

• Satisfies a set of four definition evaluation criteria (Appendix, Table 8) 
• Incorporates areas of agreement in existing definitions (Tables 1 and 4) 
• Resolves disagreements in existing definitions (§2.1) 
• Appears usable and useful.  

3.1   Definition Evaluation Criteria 

Coverage. Whether a definition has proper domain coverage (i.e. can account for all 
phenomena in the domain to which it applies) is an empirical question, akin to a uni-
versal hypothesis. Therefore, the definition cannot be proven to be correct; however, 
it could be shown to have coverage problems by a counter example. Thus, we evalu-
ated the definition by testing it against a diverse set of examples (such as those in 
Table 3). We found that the examples could be described in terms of the seven pro-
posed aspects of design.   

Meaningfulness. This refers to the requirement that all terms used have clear mean-
ing. We have defined explicitly all terms having imprecise everyday meanings in 
Table 2.  

Unambiguousness. This refers to the requirement that all terms used have unique 
meaning. All terms with potentially ambiguous meanings are defined. All terms not 
explicitly defined are intended in the everyday sense, that is, as defined in the diction-
ary. Where terms have multiple definitions, the intention should be clear from the 
context.  

Ease of Use. The proposed definition is presented in natural language, and is seg-
mented into clearly distinct elements, to ensure clarity for both practitioners and re-
searchers. It is consistent with everyday notions of design and differentiates design 
from related terms such as invention, decision-making, and implementation. Table 3 
provides examples of the elements of design to facilitate use of the definition.  



 A Proposal for a Formal Definition of the Design Concept 113 

3.2   Areas of Agreement 

The relationship of each area of agreement to the proposed definition is analyzed in 
Table 4. Aspects of design mentioned in the literature that we demonstrated should 
not be included are marked “discounted.” As can be seen in the table, all areas are 
accommodated explicitly or implicitly.  

Table 4. Incorporation of Areas of Agreement 

Concept Consistency with Proposed Definition 
Design as a process implicit in the verb form of the proposed definition 
Design as creation explicit in the verb form of the proposed definition 
Design as planning encapsulated by the design ‘specification;’ however, 

planning may be lightweight, especially where specifi-
cation occurs simultaneously with creating the object 

System (as the object of the design) included in the more abstract term, design object
Design as being deliberate, or having 
a purpose, goal or objective

explicitly included as goals

Design as an activity, or a collection 
of activities

implicit in the verb form of the proposed definition 

Design as occurring in an environ-
ment (or domain/situation/context)

explicitly included as environment

Artifact, as the object of the design included in the more abstract term, design object
Needs or requirements explicitly included as requirements
Design as organizing Discounted
Parts, components or elements explicitly included as primitives
Design as a human phenomenon Discounted
Constraints or limitations explicitly included as constraints
Process (as the object of design) included in the more abstract term, design object and

listed as one of the main categories of design objects 
Design as creative Discounted
Optimizing Discounted
Resources implicit in primitives and the verb form of the proposed 

definition (since creating something always uses re-
sources)

 

3.3   Areas of Disagreement 

The proposed definition address each of the four areas of disagreement among exist-
ing definitions described in §2.1. First, different objects of design arise: system, 
artifact and process. We addressed this by using the more general term, design object 
and suggesting major categories of such objects. Second, disagreement exists  
concerning the scope of design: where or when a design begins and ends. We dis-
cussed this issue in §2.4. Third, disagreement exists as to whether design is a physi-
cal or mental activity. Clearly, design (for humans) is mental activity, albeit one that 
may be supported by physical activities (such as drawing diagrams or constructing 
physical models). The fourth disagreement, concerning what can be designed, was  
addressed in §2.3. 
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3.4   Usefulness and Usability 

We suggest that the proposed definition of the design concept can inform practice in 
several ways. First, the elements of the definition (excluding agent) suggest a framework 
for evaluating designs: specification – is it complete? object – did we build the right 
thing? goals – are they achieved? environment – can the artifact exist and operate in the 
specified environment? primitives – have we assumed any that are not available to the 
implementers? requirements – are they met, i.e., does the object possess the required 
properties? constraints – are they satisfied? Second, the breakdown of design into ele-
ments can provide a checklist for practitioners. Each element should be explicitly identi-
fied for a design task to be fully explicated. For example, a project team might not be 
able to provide consistent and accurate estimates of design project costs if crucial ele-
ments are unknown. Third, a clear understanding of design can prevent confusion be-
tween design and implementation activities. Such confusion might lead to poor decisions 
and evaluation practices. For example, a manager who needs to hire team members for a 
project might view programmers as implementers only (not understanding the design 
involved in programming) and thus look for the wrong sorts of skills in applicants. 
Fourth, the elements of design can also be used to specify and index instances of design 
knowledge for reuse. This is demonstrated in §4.   

4   A Conceptual Model for the Design Project 

We now propose a conceptual model (a set of concepts and their relationships) for 
design-related phenomena.7 Here, we limit our discussion to design within the infor-
mation systems field. Specifically, we view design as a human activity that occurs 
within a complex entity, which can be thought of as a human activity system. Alter 
[23] defines a work system as “a system in which human participants and/or machines 
perform work using information, technology, and other resources to produce products 
and/or services for internal or external customers,” (p. 11). Expanding on this con-
cept, we suggest that a project is a temporal trajectory of a work system toward one 
or more goals; the project ceases to exist when the goals are met or abandoned. Fol-
lowing this, we define a design project as a project having the creation of a design as 
one of its goals. This relationship is shown in Figure 3.  

Human Activity
System

Work System

is a temporal
trajectory of a

Project

Design Project

 

Fig. 3. Design Project Generalization Relationship. Shaded arrow indicates relationship; un-
shaded arrow indicates generalization.  
                                                           
7 We note that to define a conceptual model of a domain, one needs to define the concepts used 

to reason about the domain (and their relationships). Such a conceptual structure is an ontol-
ogy. Hence, we view our proposal as a conceptual model and as an ontology of concepts. 
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Fig. 4. Design Project Conceptual Model. Shaded arrows indicate reading direction, unshaded 
arrows indicate generalization, shaded diamonds indicate composition; all relationships many-
to-many unless otherwise indicated. 

The design project is the central concept of our conceptual model (depicted in Fig-
ure 4). Each concept is defined and each relationship is discussed in the following 
section (except the concepts from the definition of design, defined in Table 2). 

Notes. 1) The relationships between the definition-of-design elements (e.g. con-
straints) and the other design project conceptual model elements (e.g., knowledge) are 
omitted to maintain readability. 2) The relationships between design approach and 
elements other than design project are unclear at this time and left for future work. 3) 
All shown concepts are implicitly part of the work system within which the design 
project takes place. 4) Creates is shown in this diagram as a relationship between 
design team and design, whereas Fig. 1 depicted creates as a relationship between 
agent and specification. In a design project, the design team is the agent. Furthermore, 
since the design project conceptual model includes the design concept, the model 
shows that the design team creates the design, which is a specification.  

4.1   Discussion of Concepts 

Alter [23] identifies nine elements of a work system: 

• Work practices 
• Participants 
• Information 
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• Technologies 
• Products and services the work system produces 
• Customers for those products and services 
• Environment that surrounds the work system 
• Infrastructure shared with other work systems 
• Strategies used by the work system and the organization 

Since a design project is a trajectory of a work system, it should share all of these 
elements. Furthermore, since a design project is particular type of project, it should 
have properties not necessarily shared by other projects and work systems. Here, we 
discuss each element of the conceptual model, the relationships among elements, and 
the correspondence between elements of the conceptual model and elements of a 
work system. The conceptual model includes all the work system elements and, in 
addition, several elements specific to design projects, such as design approach.  

Activities. Activities include the specific behaviors engaged in by participants in the 
design project. These may include interviewing stakeholders, modeling requirements, 
evaluating proposed design, etc. Activities exist at differing levels of granularity; for 
instance, modeling can be further divided into sub-activities such as writing scenarios, 
drawing entity relationship diagrams and then comparing the data models with the 
scenarios. 

Participants and Stakeholders. Alter [23] defines participants as the “people who 
perform the work,” (p. 13).  Because individual participants vary among projects, we 
use the generic label, stakeholder. A stakeholder [24] is a person or entity with an 
interest in the outcome of the project. Design projects may have different types of 
stakeholders we specifically indicate the designer type for obvious reasons. 

Designer. A designer is an agent that uses his or her skills to directly contribute to the 
creation of a design. This concept is specific to design projects. 

Knowledge. Stakeholders may have and use knowledge during their involvement 
with the design project. In our interpretation, knowledge includes the kinds of infor-
mation and knowhow used by stakeholders in a design project. To define knowledge, 
we extend the definition suggested by Bera & Wand [25]: given the states of the agent 
and the environment, knowledge is the information that enables an agent to select 
actions (from those available to the agent) so as to change the current state of affairs 
to a goal state. The design project can create knowledge as it proceeds – a tenant of 
the design science research paradigm [3]. 
Skill. A skill is a combination of mental and/or physical qualities that enable an agent 
to perform a specific action. Skills differ from knowledge as the latter enable one to 
select actions. 

Technologies. Technologies are artificial, possibly intangible, tools and machines. 
Technologies can be used by the design team to create the design. 

Design. The design, defined above, is the product that the design project aims to pro-
duce. This concept is specific to design projects. 

Environment and Infrastructure. Fig. 4 combines Alter’s environment and infra-
structure constructs because both represent aspects of the project that are outside its 
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scope. Checkland [26] argues that, to properly model a system, the analyst must first 
model the system it serves. This wider system served by a design project is its envi-
ronment. Alter [23] argues, “the work system should be the smallest work system that 
has the problems or opportunities that are being analyzed,” (p. 22). Following this, 
then, the environment is the smallest coherent system served by the design project.  

The environment construct is a potential source of confusion because Design Pro-
ject and Design both have environments. The design project’s environment is the 
work system in which the project occurs; the design’s environment is the context in 
which in the object is to operate.  

Design Approach and Strategy. A design approach is a set of beliefs about how 
design (and related activities) should be done. Examples include The Unified Soft-
ware Development Process [27], and the Systems Development Lifecycle [28], [29]. 
According to Alter, “Strategies consist of the guiding rationale and high-level choices 
within which a work system, organization, or firm is designed and operates” (p. 14, 
[23]). As a design approach contains rationale and is implemented as choices, it corre-
sponds to Alter’s strategy construct. A design project may explicitly instantiate a 
formal design approach by using some or all of its elements. If a broad scope of de-
sign is taken (§2.4), a design approach can refer to the entire development process 
from problem identification to implementation and maintenance.  

We have adopted the more general term, design approach, in lieu of design process 
or design methodology because what is referred to as “design process” often contain 
much more than a set of activities. Moreover, methodology is an overloaded concept 
used both as a formal word for ‘method’ and as the systematic study of methods. The 
design process concept is specific to design projects. 

Design Team. All designers involved in a project comprise the design team. The 
design team engages in activities and uses technologies to create the design and other, 
intermediate artifacts. This concept is specific to design projects. 

Artifacts. In this model, artifact is used in the broad, anthropological sense of any 
object manufactured, used or modified by agents in the design project. Examples 
include conceptual models, software development environments, whiteboards, and  
e-mails.8  

Metric. A metric is a way or standard of taking a measurement, where measurement 
refers to a process of assigning symbols (often numbers) to an attribute of an object or 
entity (see [30], [31], [32]), and also the symbols assigned. In the case of a design 
project, metrics are used for evaluating specifications, designed objects, or the design 
project, among other things. 

Design Worldview. Worldview is a way of translating the German word “Weltan-
schauung” meaning a way of looking onto the world. It is sometimes used in social 
sciences to indicate a set of high level beliefs through which an individual or group 
experiences and interprets the world. A precise definition of this concept is elusive. In 
Table 5 we suggest some possibilities for classifying Worldviews in the design con-
text. Weltanschauungs are not mutually exclusive, i.e., a project could adopt several. 
 
                                                           
8 This is not to be confused with the artifact that is the object of design. 
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Table 5. Identified Design Weltanschauung 

Weltanschauung Description Proponents / Examples 
Problem Solving Design can be seen as an attempt to solve a 

known problem, a view characterized by the 
beliefs that a problem exists and is identifiable 
and that the success of a design is related to 
how well it solves the problem. 

[2], [3], much of the design 
science and engineering 
literature. 

Problem Finding Design can be seen as an attempt to solve an 
unknown problem, implying that understand-
ing the problem is part of the design process. 

[33], much of the require-
ments engineering litera-
ture

Epistemic Design can be seen as a learning process 
where actions that can lead to improvements 
to the current situation (in the eyes of stake-
holders) are discovered. 

[26] 

Inspiration Design can be seen as a result of inspiration, 
i.e., instead of beginning with a problem, de-
sign begins with an inspiration of the form 
‘wouldn’t it be great if....’ 

the design of Facebook 
[34] 

Growing Design can be seen as growing an artifact, 
progressively improving its fit with its envi-
ronment and purpose. 

[4], [35] 

 

Some design projects may explicitly adopt one or more design Weltanschauung. 
However, even without such an explicit view, every project participant brings a view 
of design to the project, and the combination of these views comprises the project’s 
collective Weltanschauung. This concept is not necessarily common to all work  
systems. 

4.2   Evaluation of the Conceptual Model of Design Projects 

To evaluate the set of concepts underlying the proposed conceptual model, we use 
evaluation techniques suggested for ontologies. Ontology evaluation can proceed in 
several ways. The competency questions approach [36] involves simultaneously dem-
onstrating usefulness and completeness by analytically proving that the ontology can 
answer each competency question in some question set. The ontology is then consid-
ered complete with respect to that question set. In contrast, Noy and Hafner [37] sug-
gest two dimensions of ontology quality: coverage and usefulness. Coverage can be 
demonstrated by comparing an ontology to a reference corpus: terms in the corpus 
that do not fit into the ontology indicate lack of coverage. They further point out that 
“An important way of evaluating the capabilities and practical usefulness of an ontol-
ogy is considering what practical problems it was applied to” (p. 72). 

Since the proposed “ontology” is not intended to answer particular questions, 
evaluation with respect to coverage and usefulness seems preferable. Assessing the 
conceptual model’s coverage is beyond the scope of this paper; however, a possible 
approach is evident. By surveying a range of design approaches, e.g. The Rational 
Unified Process, Agile Methods, The Waterfall Model, The Spiral Model, etc., A list 
of design concepts can be generated and compared to the proposed conceptual model.  
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Coverage can be measured by the extent to which these revealed concepts match the 
proposed concepts (usually as instances of the generic concepts suggested above). 

We address usefulness in section (§5.2) by demonstrating how the conceptual 
model can be applied in principle to the practical problem of classifying and contrast-
ing design approaches.  

5   Potential Applications 

In this section we discuss possible applications of the proposed definition of design 
and of the design project conceptual model. First, we suggest the use of the elements 
of the definition of design to classify and index design knowledge. Second, we dis-
cuss the use of the design project conceptual model for comparing and classifying 
approaches to software design. 

Application 1: Design Knowledge Management System 

The importance of reuse in software development has been widely recognized. For 
example, Mili, et al. [38] state that software reuse “is the (only) realistic opportunity 
to bring about the gains in productivity and quality that the software industry needs” 
(p. 528). Ambler [39] suggests a number of reuse types in software engineering, di-
vided into two broad categories: code reuse and knowledge reuse.  

Code reuse includes different approaches to organize actual code and incorporate it 
into software (e.g., libraries of modules, code fragments, or classes) and the use of 
off-the-shelf software. Code repositories can be considered design knowledge bases. 
Though some authors (e.g., [35]) argue that the best mechanism to communicate de-
sign is the code itself, sharing design is not the same as sharing design knowledge. 
Even well-commented code does not necessarily communicate design knowledge 
such as the rationale for structural decisions (e.g., why information was stored in a 
certain structure). 

Knowledge reuse refers to approaches to organizing and applying knowledge about 
software solutions, not to organizing the solutions themselves. It includes algorithms, 
design patterns and analysis patterns.9 Perhaps the most successful attempt to codify 
software design knowledge is the design patterns approach. A design pattern is an 
abstract solution to a commonly occurring problem. The design pattern concept was 
originally proposed in the field of architecture [40] and became popular in software 
engineering following the work by Gamma et al. [41].10  

Despite the apparent benefits of sharing design knowledge, it has been observed 
that it is difficult to accomplish. Desouza et al. [42] claim that “Experts and veterans 
continue to shun reuse from public knowledge spaces” and that when the needed 
 

                                                           
9  Other approaches to organizing software development knowledge include Architectural 

Patterns, Anti-Patterns, Best Practices and development methods. As well, standards and 
templates (e.g., for documentation) can be considered organized knowledge. 

10 The Portland Pattern Repository (http://c2.com/ppr/) is an example of a design pattern re-
pository that could be called a design knowledge base.  
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artifact “was not found in their private space … it was also less costly for them to 
recode the desired artifact than to conduct a global search for one” (p. 98). This indi-
cates the difficulties of locating needed design knowledge (or other software arti-
facts).  One way to facilitate search is to classify and index design knowledge on 
meaningful dimensions. We now demonstrate by example how the proposed defini-
tion of design can provide such dimensions and thus help index instances of design 
knowledge. 
 

An Example. In programming, an iterator object traverses a collection of elements, 
regardless of how the collection is implemented. Iterators are especially useful when 
the programmer wants to perform an operation on each element of a collection that 
has no index. The iterator design pattern is a description of how best to implement an 
iterator. Table 6 shows how the design knowledge represented by the iterator design 
pattern might be indexed using the elements of the proposed definition of design. 
Note that, in this application the goals, requirements, etc. are properties of the iterator, 
not of the design pattern. The goal of the design pattern, for instance, is to explain 
how to implement an iterator (and not to traverse a collection).  

Table 6. Example of Design Knowledge Indexing 

Object Type Symbolic Script 
Object Iterator 
Agent application programmer 
Goals access the elements of a collection of objects  
Environment object-oriented programming languages 
Primitives  primitives and classes available in object-oriented programming languages 
Requirements have a means of traversing a collection, be implementable with respect to a 

variety of collections, etc. 
Constraints must not reveal how the objects in the collection are stored, etc.  

 
By classifying design knowledge according to these dimensions, a designer can ask 

questions of the form ‘are there any design patterns (object) for traversing a collection 
(requirement) in an object-oriented language (environment)?’ We suggest that such  
classification can help organize and share design knowledge and thus help improve de-
signers’ effectiveness and efficiency in locating and applying useful design knowledge.  

Application 2: Design Approach Classification Framework 

Classifying design approaches is important for several reasons. First, practitioners 
need guidance in selecting appropriate design approaches for their situations. Second, 
such classification can facilitate comparative research on approaches. Third, it can 
guide the study of the methods employed by experienced developers (which, in turn, 
can inform research on software design and software processes). 

At least two types of classifications of design approaches are possible. First, a clas-
sification can be based on the actual elements (e.g. steps, interim products) that com-
prise a design approach or process. This can be termed a “white-box” approach.  
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Second, a classification can be based on the environment that “surrounds” a design 
approach. For example, specific objectives of the approach, the view of design it 
embeds, and the roles of stakeholders. This can be termed a “black-box” approach.  

We suggest that the proposed design project conceptual model can be used to cre-
ate a black-box classification scheme for design approaches. In the following we 
demonstrate how this can be done by examples. Using dimensions derived from the 
design project conceptual model, Table 8 classifies three design approaches: the Soft 
Systems Methodology [26], Extreme Programming [35] and the Rational Unified 
Process [16]. We chose these three because they are each prominent in the literature 
and represent significantly different perspectives. 

6   Discussion and Implications for Software Design Research 

6.1   Completeness, Design Agency and Software Architecture 

For years, researchers have argued that informal specifications may suffer from in-
completeness (e.g., [43]). Above, we defined a specification as a detailed description 
of an object in terms of its structure, namely the components used and their connec-
tions. This allows a more precise characterization of incompleteness. We suggest that 
a design specification is complete when the relevant structural information that has 
been specified is sufficient for generating (in principle) an artifact that meets the re-
quirements.11 

Based on the notion of completeness we have defined above, we can now identify 
three forms of incompleteness. First, relevant components or connections may be 
missing. For example, the specification for a bicycle may be missing the qualification 
that the tires be attached to the rims. Second, a particular component or connection 
may be insufficiently described. For example, it may not be clear from the specifica-
tions how the tires should be attach to the rims or which tire to use. (Please note, here 
we are not distinguishing here between incompleteness and ambiguity.) Third, a com-
ponent may not be part of the set of primitives but can be designed based on existing 
primitives or other components. The design will not be complete until specifications 
exist for all such components. 

Completeness is not an end state for a design specification. Future changes in the 
set of primitives may render a previously-complete specification incomplete.  Fur-
thermore, many researchers now agree on the importance of “the fluidity, or contin-
ued evolution, of design artifacts,” ([44], p. 36). In situations where future conditions 
are difficult or impossible to predict, one response is to focus on the evolvability and 
adaptability of the design object [2], [45]. The characterization of design advanced 
here provides important implications for design fluidity. First, specification complete-
ness does not imply constancy. A design specification can clearly be evolved over 
time by its original creator, the design object’s users, or others, to respond to changing 
conditions. Furthermore, the elements of the proposed definition enumerate classes of 
 

                                                           
11 Since it is impossible to list all of the properties of any object, we limit our discussion to 

“relevant” properties, i.e., a sufficient subset of properties to allow a “generating machine” 
(e.g., a human being or a manufacturing robot) to deterministically assemble the object. 
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Table 7. Example Classification of Design Approaches 

Soft Systems Methodology (SSM) Extreme Programming Rational Unified Process (RUP) 

Object human activity systems software software 

Weltanschauung epistemic growing problem solving 

Metrics situation dependent “measures of per-
formance;” the 5 E’s: efficacy, effi-
ciency, effectiveness, ethicality, elegance

advocated, but none provided; 
differentiates internal and exter-
nal quality 

defines metrics as part of the process; fundamental 
quality measure: ‘does the system do what it is sup-
posed to?’ 

Nature of Specifi-
cation

action items, i.e., some action that can be 
taken to improve the situation, in the eyes 
of the stakeholders 

source code UML models (use cases and diagrams); source code 

Activities semi-structured interviews, analysis, 
modeling, debate 

coding, testing, listening, design-
ing (refactoring) 

broadly: requirements gathering, analysis and design, 
implementation, testing, deployment, configuration 
and change management, project management (each 
with sub activities) 

Artifacts interview guides and transcripts, collec-
tions of notes, rich pictures 

prototypes, test suites stakeholder requests, vision, business case, risk list, 
deployment plan, analysis model, etc. 

Users owner, actor, customer programmers/developers, clients RUP users take on one or more of six role categories: 
analysts, developers, managers, testers, production 
and support, and additional. 

Stakeholders stakeholders is an explicit concept in 
SSM

divided into “business” and “de-
velopment”

“stakeholder” is a “generic role” that refers to “any-
one affected by the outcome of the project” (p. 276) 

Tools rich pictures, interview guides, debates 
and group discussions 

story cards, diagrams, an integra-
tion machine, several develop-
ment workstations 

IBM Rational Suite 
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possible changing conditions, in response to which the design object or specification 
might need to evolve. For example, the specification might be modified in response to 
changes in the environment. Finally, the set of requirements might contain stipula-
tions for a design object’s evolvability by end-users or others. 

This raises questions of who exactly, in a typical software project, is the design 
agent? We have defined the design agent as the entity or group of entities that specifies 
the structural properties of the design object. When users are involved in design, 
whether a user is part of the design agent depends on the nature of his or her involve-
ment. Simply providing information, such as requirements, does not make a user part 
of the design agent, nor does testing and giving feedback. To share in design agency, 
the user must make at least one structural decision regarding the design object. As a 
complete discussion of this issue would require incorporating the vast literature on 
authority and organizational power (e.g., [46], [47]), here we simply point out that 
official authority to make a structural decision does not necessarily coincide with the 
practical reality of who makes a decision. The key to identifying the design agent is in 
separating those individuals (or groups) who provide information about constraints, 
primitives and the other design elements, and those that decide on structural properties.  

Another theme currently gaining significant attention is software architecture [44]. 
Software architecture is the level of design concerned with “designing and specifying 
the overall system structure,” ([48], p.1). This presents a possible difficulty: if a speci-
fication is a description of the components of a design object and their relationships, 
which components and relationships are parts of the software architecture? How does 
one distinguish high-level components and relationships from low-level ones? A 
design specification for a complex system might exist simultaneously at many levels 
of abstraction. Alternatively (and perhaps more likely) high-level components are 
defined in terms of lower-level components and these are defined in terms of even 
lower-level components, etc., until everything is defined in terms of primitive  
components. In this multilevel view of design, the software architecture concept is a 
threshold above which is architecture, and below which is “detailed design.” Is this 
threshold arbitrary? At this time, we can only suggest these fundamental questions 
about software architecture as topics for future research. 

6.2   Implications for Research 

The proposed characterization of design also gives rise to several implications for 
design research. To date, much design research has been prescriptive, addressing 
practical recommendations and guidance for software development; yet little theoreti-
cal, and even less empirical, treatment of software design exists [49].  This has led to 
many calls for field research in this area (e.g., [1], [49]). Defining design as the proc-
ess by which one specifies an object’s structural properties raises several important 
research topics:  
 

1. How is software designed in practice? 
2. To what extent is each element of the proposed definition (requirements, primi-

tives, etc.) known when design begins? 
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3. Can a single theory explain all of the diverse behaviors involved in software de-
sign? 

4. How do designers discover each kind of information?  
5. What factors influence design project success? 

Put another way, academic treatment of software design may involve developing 
and testing interdependent process and causal theories of design. Process theories can 
be used to explain how design occurs.12 Causal theories deal with effects of some 
variables on others and can be used to suggest how to design better. 

6.3   Goals Versus Requirements in Information Systems Development 

The notion of goal is considered essential in requirements engineering as the concept 
that captures the motivation for developing a system (“why”) and the way to define 
objectives at various level of abstraction [18]. Our definition of design includes both 
goals and requirements. We now describe briefly how these two concepts are related 
within this context.  

We start by observing that in the information systems context, a design object is an 
artifact situated13

 in an environment termed the application domain and designed to 
support activities of the application domain. Typically, the application domain is an 
organizational setting such as a business or a part of a business. The application do-
main itself operates within an external environment. For example, a business is em-
bedded within a business environment comprising customers, suppliers, competitors, 
service providers, and regulatory bodies. The application domain and the external 
environment interact: the environment generates stimuli that invoke actions in the 
domain. The actions of the domain can impact its environment. Similarly, the artifact 
is situated in the domain. The domain and the artifact interact: the domain creates 
external stimuli which invoke actions in the artifact. The actions of the artifact can 
impact the domain. Once the artifact is embedded a change occurs: the domain now 
includes the artifact. Now the modified domain (with the included artifact) interacts 
with the external environment. This view is depicted in Figure 5. 

We define domain goals, or simply goals, as the intended impact of the actions in 
the domain on the external environment.14 The purpose of the artifact is to enable the 
domain to accomplish these goals more effectively and efficiently. The artifact does 
this by responding to stimuli from the domain is ways that will support the domain in 
accomplishing the goals. Accordingly, requirements can be defined as the properties 
 

 

                                                           
12 According to Van de Ven and Poole [50] “a process theory [is] an explanation of how and 

why an organizational entity changes and develops.” 
13 The word “situated” should not be taken literally in the physical sense, but in sense that the 

artifact acts in a role of a component of the domain, and interacts with other components. 
14 To demonstrate, consider, for example, profitability, which might appear related to the busi-

ness rather than to its environment. However, profitability is the outcome of exchanges be-
tween a business and its environment, and the business should act in a way these exchanges 
create the desired outcome. 
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Fig. 5. Separate Domains of Goals and Requirements 

that the artifact should possess in order to accomplish its purpose. These require-
ments can be of two types:  
 

1. Structural requirements are intended to assure the artifact can match well with the 
other components of the domain, or those of the external environment it might in-
teract with.  

2. Behavioral requirements define the desired responses of the artifact to stimuli 
from the domain (or from the environment) generated when the domain is working 
to accomplish its goals. These responses, in turn, affect the domain (and, directly, 
or indirectly, the environment). 

The Requirements definition process can be viewed as identifying what properties 
(structural and behavioral) the artifact should possess in order to support the domain 
in accomplishing the goals. Design can be viewed as the way to assemble available 
types of components in order to accomplish an artifact that meets the requirements. 

7   Conclusion 

The work we describe here is motivated by the observation that a clear, precise and 
generally accepted definition of the concept of design can provide benefits for re-
search, practice and education. Our literature study indicated that such a definition 
was not available. We therefore undertook to propose a definition of the design con-
cept. The definition views the design activity as a process, executed by an agent, for 
the purpose of generating a specification of an object based on: the environment in 
which the object will exist, the goals ascribed to the object, the desired structural and 
behavioral properties of the object (requirements), a given set of component types 
(primitives), and constraints that limit the acceptable solutions. As one possible appli-
cation of our definition we demonstrate how it can be used to index design knowledge 
to support reuse of this knowledge.  

As a second step, we situate the design concept in a network of related  
concepts appropriate to the information systems and software development domain by 
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proposing a conceptual model for design projects. The intent of this conceptual model 
is to facilitate study of design projects by identifying and clarifying the main relevant  
concepts and relationships. We demonstrate the usefulness of this conceptual model 
by using it to compare several approaches to system and software design. 

Finally, we link our proposed definition of design to current themes in design re-
search, in particular, the notion of requirements as used in system development. 

One purpose of this work is to facilitate theoretical and empirical research on de-
sign phenomena. We hope this paper will contribute to clarifying understanding and 
usage of design and related concepts and encourage scientific research on design. 
Another purpose is to create a set of concepts that can guide practices and education 
in the domain of information systems and software design. 

This article includes examples of design from diverse areas such as prehistoric 
hunters, artists, and architects. The reader may question whether such a broad per-
spective on design is useful for studying software development. It will be of interest 
to find out if software designers are more similar to engineers or to artists, or perhaps 
are a class on their own. This can only be answered by observing the behaviors of a 
wide range of those who are engaged in software design (elite and amateur, engineers 
and “hackers”, formally trained and self-taught). Having a well-defined set of con-
cepts to describe phenomena related to design and to design projects and to reason 
about these phenomena can provide guidance for such undertaking. 

Acknowledgement. This work was done with partial support from the Natural 
Sciences and Engineering Research Council of Canada. 
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Appendix: Analysis of Existing Definitions of Design 

We have identified at least 33 definitions of design and sub-types of design (such as 
“software design” and “urban design”) in the literature. Though design has several 
meanings, we have focused on the meaning involving plans for an object and plan-
ning or devising as a process. 

We employed judgment sampling and snowball sampling, i.e., we made educated 
guesses as to where to look, and then investigated promising references. This strategy 
was consistent with our goal of identifying as many relevant definitions as possible.  

To evaluate the definitions we applied a set of four main criteria: coverage, mean-
ingfulness, unambiguousness and ease of use (see Table 8). The first three are derived 
from the evaluation criteria for good theories mentioned, for example, by Casti (1989, 
p.44-45). The fourth is a pragmatic criterion. We do not claim that these are the best 
criteria, but, in the absence of a guiding theory for evaluating definitions, that they are 
reasonable and have face validity. 

To give the reader a sense of the thought process behind the analysis, we discuss 
two representative examples of the definitions encountered. The first example is by 
Engers et al. [6] who define design as “the creative process of coming up with a well-
structured model that optimizes technological constraints, given a specification.” This 
definition has both meaningfulness and coverage problems. First, the meaning of 
‘optimizes technological constraints’ is unclear. In optimization techniques, one opti-
mizes the characteristics of an object subject to constraints, not the constraints them-
selves. Second, the use of “well-structured” paints an idealistic portrait of design. This 
confounds the notion of design with measures for design quality. For example, an 
inexperienced computer science student can design a personal organizer application. 
The application might not be “well-structured”, but is nonetheless designed. Thus, 
this definition omits activities that are clearly design. The second example is that of 
Hinrichs [51] who defines design as “the task of generating descriptions of artifacts or 
processes in some domain,” (p. 3). This also has coverage problems. “My chair is 
grey” is a description of an artifact in a domain, but is clearly not a design. The prob-
lem here is that the definition relates to previously-designed artifacts. Thus, this defi-
nition includes phenomena that are not design. 

The complete analysis of existing definitions is presented in Table 9. Of the 33 
definitions identified, we have found that all seem to have coverage problems, at least 
12 have meaningfulness problems and at least three have some form of ambiguity. 
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Table 8. General Definition Evaluation Criteria 

Criterion Definition Example of Error

Coverage

Proper coverage means including all appropriate phenomena (com-
pleteness), and only appropriate phenomena. If a definition has im-
proper coverage, it excludes at least one phenomenon that it should 
include or includes at least one phenomenon it should not. 

Defining “human communication” to include only 
speech, will not address non-verbal communica-
tion (e.g. body language).

Meaningfulness

Each term comprising a definition must have a commonly accepted 
meaning in the given context or must have been pre-defined. Each 
combination of terms must be directly understandable from the 
meaning of terms, or have been predefined.

Defining a zombie as ‘the living dead’ is inappro-
priate because, even though ‘living’ and ‘dead’ 
have commonly accepted meanings, their juxta-
position forms an oxymoron.N

ec
es

sa
ry

Unambiguousness
Each term comprising a definition must have exactly one meaning in 
the given context; furthermore, the definition as a whole must have 
only one valid interpretation.

Defining political oratory as ‘oral rhetoric related 
to politics’ is inappropriate because ‘rhetoric’ is a 
contronym, i.e., has two contradictory meanings.

O
pt

io
na

l

Ease of Use

Ideally, a definition should be easy to understand and remember, ap-
plicable in disparate situations, and readily differentiate between in-
cluded and excluded phenomena. Simplicity, parsimony and con-
creteness are all aspects of Ease of Use. These aspects are at least in 
part subjective and depend on who uses the definition. 

Defining the Natural Numbers as ‘the smallest set 
satisfying the two properties:  
A) 1 is in N; and B) if n is in N, then n + 1 is in 
N” while clearly correct, would score poorly on 
Ease of Use in a low-level mathematics class.
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                                             Table 9. Analysis of Existing Definitions 

Source Definition Criticism 
Accreditation Board 
for Engineering and 
Technology (1988)  

“Engineering design is the process of devising a sys-
tem, component, or process to meet desired needs. It is 
a decision making process (often iterative), in which 
the basic sciences, mathematics, and engineering sci-
ences are applied to convert resources optimally to 
meet a stated objective.” 

Coverage – the definition is idealistic and unnecessarily limiting in 
its use of “optimally.” E.g., the building in which I work is far from 
optimal, but it was still designed. 
Meaningfulness – it is not clear what “desired needs” are.  

Alexander (1964) “The process of inventing physical things which dis-
play new physical order, organization, form, in re-
sponse to function.” 

Coverage – this definition excludes the design of intangible things, 
such as processes. 
Unambiguousness – it is not clear whether thing must display new 
physical order, organization AND form, or new physical order, or-
ganization OR form. 

Archer (1979) “Design is, in its most general educational sense, de-
fined as the area of human experience, skill and un-
derstanding that reflects man’s concern with the ap-
preciation and adaptation in his surroundings in the 
light of his material and spiritual needs.” 

Coverage – design is an activity, not an “area of human experi-
ence…” One can design with little or no experience, skill and un-
derstanding. E.g., the application programmer who designs a 
graphical user interface without experience in, skill in or under-
standing of the principles of interface design. 

Beck (2000) “Designing is creating a structure that organizes the 
logic in the system” 

Coverage – excludes forms of design that organize things other than 
logic, e.g., urban planning organizes space. 

Blumrich (1970) “Design establishes and defines solutions to and perti-
nent structures for problems not solved before, or new 
solutions to problems which have previously been 
solved in a different way.” 

Coverage – Unnecessarily limits design to solutions not previously 
solved.  Excludes independent invention and finding new ways to 
solve old problems. E.g., by this definition, new cars are not de-
signed because we already have cars.  

Bourque & Dupuis 
(2004) 

“Design is defined in [IEEE610.12-90] as both “the 
process of defining the architecture, components, in-
terfaces, and other characteristics of a system or com-
ponent” and “the result of [that] process.” Viewed as a 
process, software design is the software engineering 
life cycle activity in which software requirements are 

Coverage – even within the software domain, this definition is far 
too restrictive. If someone simply writes software without creating 
an intermediate description of its structure, this is still design. De-
sign is, furthermore, not limited to the phase of the software engi-
neering life cycle between requirements analysis and construction; it 
is in no way clear that these phases can be practically distinguished 
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Table 9. (continued) 

Source Definition Criticism 
analyzed in order to produce a description of the soft-
ware’s internal structure that will serve as the basis for 
its construction.” 

in all situations.  

Buchanan (2006) “Design is the human power to conceive, plan and re-
alize all of the products that serve human beings in the 
accomplishment of their individual or collective pur-
poses.” 

Coverage – Design is not an ability (“power”) but an activity. E.g., 
drawing blueprints for a house, by this definition, is not design. 
Unambiguousness – it is not clear what “products” are – does this 
include processes and strategies as well as consumer goods?  

Complin (1997) “‘design’ is used to refer to the abstract description of 
the functional architecture of both real or possible sys-
tems.” 

Coverage – Excludes design of simple things, such as boomerangs.  
Meaningfulness – it is not clear what “functional architecture” en-
tails 

Engers et al. (2001) “the creative process of coming up with a well–
structured model that optimizes technological con-
straints, given a specification.” 

Coverage – excludes all suboptimal artifacts.  
Meaningfulness – the meanings of “specification” and model are 
unclear.  

Eckroth et al. (2007) “Design (as a verb) is a human activity resulting in a 
unique design (specification, description) of artifacts. 
Therefore, what can be designed varies greatly. How-
ever, common to all design is intention: all designs 
have a goal, and the goal is typically meeting needs, 
improving situations, or creating something new. 
Thus, design is the process of changing an existing 
environment into a desired environment by way of 
specifying the properties of artifacts that will consti-
tute the desired environment; in other words, creating, 
modifying, or specifying how to create or alter arti-
facts to meet needs. In addition, it is best communi-
cated in terms of a particular context, as previous 
knowledge, experience, and expectations play a strong 
role in designing and understanding designs.” 

Coverage – excludes independently invention of previously created 
artifacts and design starting from a hypothetical situations 

FitzGerald and Fitz- “design means to map out, to plan, or to arrange the Coverage – this excludes artifacts that satisfy only some of their ob-
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Table 9. (continued) 

Source Definition Criticism 
Gerald (1987) parts into a whole which satisfies the objectives in-

volved.” 
jectives. E.g., Enterprise-Resource Planning software does not al-
ways satisfy its stated objectives (Trunick 1999), but surely it as still 
designed. 

Freeman and Hart 
(2004) 

“design encompasses all the activities involved in 
conceptualizing, framing, implementing, commission-
ing, and ultimately modifying complex systems—not 
just the activity following requirements specification 
and before programming, as it might be translated 
from a stylized software engineering process.”  

Coverage – simple systems and non-systems can also be designed, 
e.g. an oar, a boomerang. 
Meaningfulness – the activities are not defined or clearly explained; 
furthermore, enumerating the tasks encompassed by design does not 
necessarily capture the meaning of design.  

Gero (1990) “a goal-oriented, constrained, decision-making, explo-
ration and learning activity which operates within a 
context which depends on the designer's perception of 
the context.” 

Coverage – The problem here is subtle. Not all design is a decision 
making activity; some designers, such as sculptors, may proceed 
fluidly without discrete decisions. It could be argued that their deci-
sions are implicit, but then this definition would include activities 
such as public speaking. Decision-making is a perspective on de-
sign, not inherent to it. Furthermore, the idea of designing as leading 
to a new or changed artifact is missing. 

Harris (1995) “A collection of activities designed to help the analyst 
prepare alternative solutions to information systems 
problems.” 

Coverage – excludes design for non problems outside information 
system.  
Meaningfulness – use of “designed” is circular 

Hevner et al. (2004) “design is the purposeful organization of resources to 
accomplish a goal.” 

Coverage – includes organization tasks that do not constitute de-
sign, e.g., alphabetizing books. 
Meaningfulness – resources is undefined; e.g., what are the re-
sources organized to create a military strategy? What are the re-
sources that are being organized in graphics design?  
Unambiguousness – usage of “organization;” is it physical organiza-
tion of resources, or mental? 

Hinrichs (1992) “the task of generating descriptions of artifacts or 
i d i ”

Coverage – includes descriptions that are not, e.g., “the chair is 
b ”
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Table 9. (continued) 

Source Definition Criticism 
ing, and analyzing facts about a particular [informa-
tion system] and the environment in which it operates. 
Systems design then is the conception, generation and 
formation of a new system, using the analysis results.” 

a complete specification (e.g., of a bridge) rather than a system. 
Meaningfulness – this definition hinges on undefined terms “con-
ception, generation and formation” 

Jobs (2000) “Design is the fundamental soul of a man-made crea-
tion that ends up expressing itself in successive outer 
layers of the product or service.” 

Coverage – excludes designs not involving a product or service and 
designs that are not “man-made” 
Meaningfulness – the meaning of “fundamental soul” is unclear 

Love (2002) “‘Design’— a noun referring to a specification or plan 
for making a particular artefact or for undertaking a 
particular activity. A distinction is drawn here be-
tween a design and an artifact — a design is the basis 
for, and precursor to, the making of an artefact.” 
“‘Designing’—human activity leading to the produc-
tion of a design.” 

Coverage – 1) the strict time sequencing implied by this definition 
is unnecessarily limiting; e.g., in software engineering simultaneous 
design and creation is arguably the preferred approach (see Martin, 
1991 and Beck, 2000), 2) Design is not strictly a human activity 
Meaningfulness - “Artefact” is undefined, so the scope is unknown. 

Merriam-Webster 
(2006) [verb] 

(verb) “transitive senses 1 : to create, fashion, execute, 
or construct according to plan : DEVISE, CONTRIVE  
2 a : to conceive and plan out in the mind <he de-
signed the perfect crime> 4 a : to make a drawing, pat-
tern, or sketch of b : to draw the plans for” 

Coverage – t would include drawing a diagram of a tree (not de-
sign), but not collaboratively writing a new search algorithm (de-
sign). 
Meaningfulness – circular reference to ‘design’ 
 

Merriam-Webster 
(2006) 
[noun] 

“1 a : a particular purpose held in view by an individ-
ual or group <he has ambitious designs for his son> b 
: deliberate purposive planning <more by accident 
than design> 2 : a mental project or scheme in which 
means to an end are laid down 4 : a preliminary sketch 
or outline showing the main features of something to 
be executed : DELINEATION 5 a : an underlying 
scheme that governs functioning, developing, or un-

Coverage - Overall, this definition does not provide a unifying no-
tion of the minimum requirements to call something a design, and 
does not separate designing from planning.  
Meaningfulness – circular reference to ‘designs’ 
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Table 9. (continued) 

Source Definition Criticism 
complishing something (as a scientific experiment); 
also : the process of preparing this 6 : the arrangement 
of elements or details in a product or work of art 7 : a 
decorative pattern 8 : the creative art of executing aes-
thetic or functional designs” 

Miller’s (2005) “Design is the thought process comprising the creation 
of an entity,” 

Coverage – design can encompass more than just a thought process; 
e.g., drawing diagrams. Thought processes cannot create physical 
things.  

Nunamaker et al. 
(1991) 

“Design ... involves the understanding of the studied 
domain, the application of relevant scientific and 
technical knowledge, the creation of various alterna-
tives, and the synthesis and evaluation of proposed al-
ternative solutions.” 

Coverage – if a person has a breakthrough idea and implements a 
single, innovative artifact, without considering any alternatives, this 
would still be design. Depending on how one defines “scientific 
knowledge,” many designers throughout history would be excluded 
by this definition. 

Papenek (1983) “Design is a conscious and intuitive effort to impose 
meaningful order.... Design is both the underlying ma-
trix of order and the tool that creates it.” 

Coverage – Would include all ordering activities, such as alphabet-
izing books 
Meaningfulness – ‘underlying matrix of order’ is undefined.  
Ease of use – unclear how to operationalize “matrix of order” 

Partners of Penta-
gram (1978) 

“A design is a plan to make something: something we 
can see or hold or walk into; something that is two-
dimensional or three-dimensional, and sometimes in 
the time dimension. It is always something seen and 
sometimes something touched, and now and then by 
association, something heard.” 

Coverage – This definition excludes design of an incorporeal thing, 
e.g., a philosophy, society or strategy. 

Pye (1964) “Invention is the process of discovering a principle. 
Design is the process of applying that principle. The 
inventor discovers a class of system – a generalization 
– and the designer prescribes a particular embodiment 

f i i h i l l bj d f

Coverage – Designing need not comply with principles; e.g., one 
might design a software interface with absolutely no knowledge of 
any principles regarding interface design. The interface is no less 
designed by someone. 
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Table 9. (continued) 

Source Definition Criticism 
Richardson (1984) “Design is a general term, comprising all aspects of 

organization in the visual arts.” 
Coverage – excludes design in architecture, engineering, etc. 

Schurch (1999) “Therefore, urban design might be more clearly de-
fined as “giving physical design direction to urban 
growth, conservation, and change...” (Barnett, 1982, p. 
12) as practised by the allied environmental design 
professions of architecture, landscape architecture and 
urban planning and others, for that matter, such as en-
gineers, developers, artists, grass roots groups, etc.” 

Coverage – Though design intuitively may give direction, not all in-
stances of giving direction are design; e.g., the mere command “give 
the castle a moat” gives direction, but is clearly not design  
Meaningfulness – ‘physical design direction’ undefined 

Simon (1996) “Design is devising courses of action aimed at chang-
ing existing situations into preferred ones.” 

Coverage – excludes designs beginning from hypothetical situa-
tions, e.g., when a national defense agency designs a contingency 
plan for a nuclear attack, and designing imagined system. 

Stumpf and Teague 
(2005)  

“Design is a process which creates descriptions of a 
newly devised artifact. The product of the design 
process is a description which is sufficiently complete 
and detailed to assure that the artifact can be built.”  

Coverage – includes describing an artifact that already exists, e.g. 
‘the cruise ship is big;’ excludes partially designed objects and de-
sign of imaginary objects. 

Urban Design 
Group (2006) 

“Urban design is the process of shaping the physical 
setting for life in cities, towns and villages. It is the art 
of making places.” 

Coverage – This definition confuses design as planning a setting 
with the physical process of implementing that plan; e.g., by this 
definition, planning the park is not designing, but laying the sods is. 

Walls et al. (1992) “The design process is analogous to the scientific 
method in that a design, like a theory, is a set of hy-
potheses and ultimately can be proven only by con-
struction of the artifact it describes.” 

Coverage – While a design may imply a set of hypotheses, saying 
the design is the like saying being hungry is making a sandwich.  
Ease of Use – representing a design as a set of hypotheses may be 
difficult. 
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Abstract. The traditional scientific approach to design extols the virtues of 
completeness. However, in environments characterized by continual change, 
there are challenges in adopting such an approach. We examine Linux and 
Wikipedia as two exemplary cases to explore the nature of design in such a pro-
tean world. Our observations highlight a pragmatic approach to design in which 
incompleteness is harnessed in a generative manner. This suggests a change in 
the meaning of the word “design” itself – from one that separates the process of 
design from its outcome, to one that considers design as both the medium and 
outcome of action. 

Keywords: Platform, emergence, design, innovation community. 

1   Introduction 

Historically, much of the discourse on design has extolled the virtues of complete-
ness. Completeness allows for the pre-specification of a problem, the identification of 
pre-existing alternatives and the choice of the most optimal solution. Such a scientific 
approach to design pervades much of management thinking, education and research 
[1: 24].1  

For instance, this approach is evident in the design of traditional organizations at 
the turn of the 19th century. Organizations enhanced the efficiency of their operations 
by systematically applying principles of scientific management to discover “the one 
best way” to organize [3]. Interchangeable parts, division of labor, routinization – 
each of these were features of an organizational design capable of mass producing 
“any color car as long as it was black” [4: 72]. 

For such an approach to work, however, there needs to be a clear and stable bound-
ary between the entity being designed and the context for which it is being designed. 
Such a boundary makes it possible to fix the purpose of a design based on a stable set 

                                                           
1 In this paper, we make a distinction between a “scientific approach” to design that applies 

analytic thinking to address clearly defined problems to discovery an optimal solution (fol-
lowing the natural sciences as a role model) and a “pragmatic approach” that applies synthetic 
thinking to address ill-structured problems. Others have used the terms “science” vs. “design” 
[1] and “decision science” vs. “design science” [2] to make such a distinction. 
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of user preferences and performance expectations. Clear boundaries, stable prefer-
ences and fixed goals – these form the cornerstones of the scientific approach to de-
sign as articulated by Simon [5]. 

But how does such an approach to design hold up in environments characterized by 
continual change? What if there are multiple designers, each with their own represen-
tation of the problem? What if users of a design are also its designers? To further 
complicate matters, what if the process of discovering new and potentially better 
states only takes place through a process of participation, and the unfolding of the 
process itself changes the problem?  

This is the new frontier in which we find ourselves. There is no clear separation be-
tween the inside and the outside, text and context. Rather, there is only an evolving 
and emerging network of associations [6: 267]. Problems are ill defined, preferences 
are fluid and solutions emerge in action. In such situations, an emphasis on complete-
ness is likely to result in the creation of designs that foreclose future options. 

It is useful to consider the dual meaning of the word “design” within this context. 
As a verb, "to design" refers to the process of developing a plan for a product, struc-
ture or component. As a noun, "a design" is used to connote the outcome of the proc-
ess.2 In traditional settings, these two meanings of design have been separated from 
one another. One would engage in a process of design (the verb) so as to emerge with 
a design (the noun) for a specific context. In contemporary settings, however, designs 
are more appropriately viewed as being simultaneously noun and verb, with every 
outcome marking the beginning of a new process.3 Put differently, designs are like 
dynamic jigsaw puzzles in which multiple actors assemble pieces within templates 
that change as a result of the actors’ engagement. 

It is this proposition that we develop in the paper. We suggest that, rather than a 
scientific approach that tends to separate the two meanings of design, we must em-
brace a pragmatic approach to design that simultaneously embraces both process and 
outcome. Given this dual connotation, designs, by definition, have to deal with in-
completeness. However, rather than pose a threat, incompleteness acts as a trigger for 
action. Even as actors try and complete what has been left incomplete, they generate 
new problems as well as new possibilities that continually drive the design. In this 
way, incompleteness is both a cause and consequence of the dynamics of organizing 
in contemporary environments. 

We begin by providing a brief overview of the scientific approach to design and 
then highlight the challenges that one confronts in applying this within contemporary 
environments characterized by continual change. To empirically locate our observa-
tions, we examine two exemplary designs that appear to be always in-the-making – 
the Linux operating system and the Wikipedia online encyclopedia. We find that, 
rather than one group designing for another’s consumption, designs emerge through 
situated use as actors co-theorize across multiple settings, and, in the process, create 
new options. These dynamics produce self-perpetuating processes that further drive 
continual change. 
                                                           
2 Dewey’s [7] approach to pragmatism informed our understanding of design as noun and verb, 

an understanding reinforced by the entry on design in Wikipedia 
 (http://en.wikipedia.org/wiki/Design)  
3 This is clearly derived from a structurational perspective [8] where structure is both medium 

and outcome of action.  
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2   To Design or Not to Design?  

In his book, “The Sciences of the Artificial” [5], Simon suggested that the design of 
artificial systems – meaning man-made as opposed to natural – is contingent upon the 
goals of the designer and the purposes for which the system is designed. A key initial 
task for designers involves the specification of system boundaries. As Simon pointed 
out, “An artifact can be thought of as a meeting point – an ‘interface’ in today’s terms 
– between an ‘inner’ environment, the substance and organization of the artifact itself, 
and an ‘outer’ environment, the surroundings in which it operates. If the inner envi-
ronment is appropriate to the outer environment, or vice versa, the artifact will serve 
its intended purposes” [5: 6].4 

Once an interface has been specified and the problem has been defined in terms of 
its context, form and goals, it is possible to proceed using the organizing principles to 
be found in the natural world. For instance, Simon [10] offered the principle of ‘near 
decomposability’ as a concept possessing clear evolutionary advantages for both natu-
ral and artificial systems (see also [11]). Decomposability refers to the partitioning of 
a system in such a way that the interactions of elements within a subassembly are 
greater than the interactions between them. Such decomposition reduces the com-
plexities confronted by boundedly rational human beings in their efforts to design 
artifacts. 

To illustrate this point, Simon offered a parable of two watchmakers, Tempus and 
Hora. Tempus organized his work in a manner that if he had "one (watch) partly as-
sembled and had to put it down – to answer the phone, say – it immediately fell to 
pieces and had to be reassembled from the elements." Consequently, every time Tem-
pus was interrupted and forced to set aside his work, the entire unfinished assembly 
fell to pieces. In contrast, Hora first built stable subassemblies that he then put to-
gether in a hierarchic fashion into a larger stable assembly. Thus, when Hora was in-
terrupted, only the last unfinished subassembly fell apart, preserving most of his ear-
lier work. 

According to Simon, the differential cost of incompleteness that the watchmakers 
confront is a specific case of a more general challenge that individuals confront when 
addressing complex problems. The differential cost can be explained by the interplay 
between the short and long-term memories. When individuals address complex prob-
lems, transactions are carried out in their short-term memory. Given the limits to 
short-term memory, any interruption to a task can exact a toll. This is because any 
intermediate outcome that might have been accomplished before the interruption is 
lost. While it is possible to store intermediary outcomes in long-term memory, this too 
exacts a toll as the transfer between long and short term memory often requires con-
siderable effort.  
                                                           
4  Specifying the boundaries is by no means a trivial task. Alexander’s insightful analysis [9] of 

the redesign of a tea kettle illustrates this point. At first blush, such a redesign seems simple 
given that the kettle is a clearly defined object and the boundaries between the kettle and its 
environment are obvious. However, Alexander goes on to demonstrate that by changing the 
nature of the problem to be addressed – for instance, by asking if it is the method of heating 
kettles rather than the kettle itself that needs redesigning – the solution obtained can change 
drastically. In reframing the question, the kettle becomes part of the outer environment and 
the stove becomes the inner environment. 
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2.1   Scientific Design in Practice 

The concept of decomposability that emerges from this parable has generated a lot of 
attention from scholars who study modularity [12]. Specifically, complex systems can 
be decomposed in a way similar to what Simon suggested – in other words, into "mod-
ules" [13]. Each module only interacts with another through standardized interfaces. As 
a result, each module becomes a “black-box” [14], possessing the detail required for its 
functioning, but hiding such detail from other interdependent modules [15].  

An implicit assumption in this literature is that the overall system architecture 
needs to be completely specified a priori [12]. In terms of Simon’s parable, this 
means that both Tempus and Hora work with designs that have clearly defined 
boundaries and pre-set user preferences (accurate time keeping, for example). In such 
cases, the key design decisions revolve around issues such as detailing the elements 
that comprise the architecture, establishing stable interface specifications to ensure 
smooth functioning between modules and “black-boxing” the modules to mask their 
complexity.  

These decisions are integral to a design approach that values completeness. The form 
and function of a system must be clearly specified. Only with such a complete represen-
tation is it possible to identify clear and stable boundaries between self-contained  
components that mask much of the complexity. These facets are evident in much of the 
engineering literature with its focus on detailed definition of requirements [16]. 

In organizational studies, such a scientific approach to design is most evident in the 
work of Fredrick Taylor and his colleagues [3]. Once the purpose of a corporation 
was fixed – for example, to produce widgets with certain predetermined features in as 
efficient a manner as possible – this approach could be used to identify the “one best 
way” to organize. The design process was driven by the need to completely under-
stand and optimize all the cause and effect relationships that could influence the out-
come of an organization’s activities.5 Theorizing was done by specific individuals 
such as industrial engineers but not by those engaged in ongoing operations whose job 
it was to “do and not to think”. Decomposability was manifest in division of labor and 
the presence of a hierarchy, as well as the use of interchangeable parts that were tied 
together through stable interface specifications within an overall organizational archi-
tecture. Costs associated with incompleteness that arose from interruptions were to be 
minimized at all costs by keeping the assembly line running even if there were defects 
in the system [3]. The result was the design of the quintessential lean and efficient 
manufacturing process that could mass-produce goods for pre-set user preferences. 

2.2   Pragmatic Approach to Design  

A scientific approach to design – one that requires complete representation of the 
problem and identifies the optimal solution – is based on the assumption that the envi-
ronment is stable. For decades, this assumption held. Contexts within which such de-
signs were deployed changed infrequently, if at all. Consequently, boundaries and 

                                                           
5  See Boland & Collopy [2] for the use of linear programming methods in inventory control, 

which is based on the maximization of a clearly specified objective function given a set of 
pre-specified constraints. 
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preferences could be specified and stabilized, and a design with enduring qualities 
established, to be tweaked as changes in the environment took place.  

However, such an approach is likely to run into problems in environments charac-
terized by continual change [6]. In such contexts, system boundaries are often unclear 
and user preferences are both heterogeneous and evolving. As a result, the goals and 
purpose of the design are likely to remain a continually moving target [17].  

The advent of new information technologies has made such fluidity possible. Dif-
ferent material artifacts and social groups can now be easily associated in a dynamic 
network. Rendering the functionality of any product or service through software en-
ables real time changes to a design. Indeed, these technologies make it possible for 
customers to explore their preferences in use and for different social groups to engage 
with each other in an emergent fashion.  

Simon appreciated the significance of such dynamic situations. For instance, in a 
section titled “Designing without final goals”, Simon explored a paradoxical but 
pragmatic view of design – to motivate activity that in turn generates new goals. Of-
fering the example of the rebuilding of Pittsburgh, where new goals emerged after 
initial goals had been accomplished, Simon [5: 163] concluded: 

“Making complex designs that are implemented over a long period of 
time and continually modified in the course of implementation has 
much in common with painting in oil. In oil painting, every new spot of 
pigment laid on the canvas creates some kind of pattern that provides a 
continuing source of new ideas to the painter. The painting process is a 
process of cyclical interaction between the painter and canvas in which 
current goals lead to the new application of paint, while the gradually 
changing pattern suggests new goals.” 

In these observations we see how a design approach need not be a static representa-
tion of a problem, but can involve a “theory-design-fly-test and start-all-over-again” 
methodology [18]. Despite this acknowledgement, there has been relatively little 
work that explores the nature and implications of such a design approach. Indeed, as 
Boland [19: 109] states, “Much of Simon’s concern centers on the local and immedi-
ate experience of an individual who faces an environment that is essentially un-
changeable. It is a given to which the managers must mold the organization.” 

The challenges that arise in applying a scientific approach to design in dynamic 
environments become all the more apparent when we consider the nature of change 
that is upon us. If we accept Woodward’s [20] powerful insight that technologies of 
work shape the way in which we work with technologies, new information technolo-
gies not only link islands of unconnected activities into an action net [21], but, in ena-
bling such connections, change the very meaning of the term “design” to connote con-
tinual evolution via interaction. Jelinek [22] fully understood the implications of this 
change when she stated: 

“A genuine revolution of possibility flowed from the move between 
prior flat file systems into relational databases and, in computer  
systems, the hyperlinked nodes of the internet. Similarly, the virtual or-
ganization – often pro tem, frequently voluntary, and broadly distrib-
uted – is the iconic organization of our times. But how does one design 
it? Or should one perhaps instead invite it to emerge? Is the issues  
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deliberate design, or is it design of a process of interactions that allows 
a collaborative process to emerge? … How should we theorize about 
such organizations? … Should we embrace the ephemeral organization 
as a new norm?” 

An image of an organization that is not a series of nested black boxes [23] operat-
ing in an immutable environment but, rather, a hyper text organization that continues 
to emerge is a radical shift indeed. The design problem, then, is not one of developing 
a static interface (an edge in network terms) that connects the inside and the outside; 
rather, it involves the creation of multiple edges between many nodes in a dynamic 
network. In such an action net, each node can potentially act as a boundary object, 
“remaining between different realms, belonging to all of them simultaneously, and 
seen from different points of view” [21: 104]. Given this, “When such an organization 
does emerge, it may be both transient and protean” [22: 115].  

These observations further highlight the difficulties associated with designing for 
completeness in a world that is continually changing. But, what does it mean to de-
sign for incompleteness? Is this an oxymoron? We think not. There are now a number 
of new organizational forms that suggest that incompleteness, rather than pose a 
threat, can instead be a virtue. We examine two such cases in this paper – the Linux 
operating system and the Wikipedia online encyclopedia. These cases provide us with 
an appreciation of the generative nature of incompleteness. They amplify what Weick 
[24: 43] astutely pointed out, “life persists when designs are underspecified, left in-
complete, and retain tension.”  

3   Research Design  

Our objective is to offer a set of observations that form the basis for an ongoing 
conversation among those interested in understanding the nature of design in continually 
changing environments. By no means do we claim to offer a full fledged theory – to do 
so would defeat the very premise of our argument. Here, we subscribe to the notions 
proposed by Boland and Collopy [2], Romme [1] and others who suggest that the value 
of theorizing lies in the options that are generated rather than the uncertainties that are 
resolved. Along these lines, our intent is to sensitize readers to a pragmatic approach to 
design that harnesses the generative forces of incompleteness.  

The research approach that we adopt in this paper involves a detailed exploration 
of two exemplary cases. Research on analogical thinking [25] suggests that individu-
als who are presented with multiple cases exhibit greater ease in their abilities to iden-
tify underlying patterns. Based on this finding, we decided to provide not one but two 
in-depth cases. We deliberately chose to examine the Linux operating system and the 
Wikipedia online encyclopedia as each represents a design that is continually 
evolving. We tracked available information from a wide variety of online sources as a 
means of collecting raw data for our case narratives. The multiple data sources helped 
us "triangulate" [26] in that there were very few disagreements among the data 
sources on the factual details involved. Two of the authors separately developed the 
case studies. The individual inferences drawn from each of the cases were discussed 
and verified with the other authors. Our aim is not to reach a state of theoretical 
saturation [27; 28]. Rather, much like the phenomena that we are studying, our aim is 
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to offer a set of observations that will hopefully generate “theoretical tension” and 
form the basis for ongoing debate and understanding of this phenomenon. 

4   Linux: Perpetually in the Making 

Linux originated as a hobby project of Linus Torvalds, a computer science student at 
the University of Helsinki. Initially, he wrote programs to understand how the Minix 
operating system could use features of the 386 processor. Soon, he had written task-
switching programs, a disk driver and a small file system. Torvalds realized that he 
was actually working on a new operating system, and, as a result Linux 0.01 was 
born. At this stage, Linux lacked many of the functionalities that users expected from 
an operating system. Even the numbering of the version – 0.01 – signified its unfin-
ished status [29].  

Torvalds initial development efforts can be described as ‘discovering design goals 
in action’. Upon releasing Linux version 0.02, he described the initiative as follows:  

“This is a program for hackers by a hacker. I've enjoyed doing it, and 
somebody might enjoy looking at it and even modifying it for their own 
needs. It is still small enough to understand, use and modify, and I'm 
looking forward to any comments you might have…If your efforts are 
freely distributable (under copyright or even public domain), I'd like to 
hear from you, so I can add them to the system….Drop me a line if you 
are willing to let me use your code.” [33] 

His announcement to the newsgroup suggests that he was unsure about what others 
might want in the emergent system. Although such lack of closure could be a problem 
from a traditional design perspective, it is interesting to observe how Torvalds turned 
this into a virtue. His decision to allow others to adapt the emergent system to their 
needs enabled him to harness the energies of the larger programming community. 
Within two months of his announcement, about thirty people had contributed close to 
200 reports of errors and problems using Linux. In addition, these individuals devel-
oped new features for the nascent operating system that, in turn, became the basis for 
future directions along which the system evolved [30]. 

Traditionally, there has been a clear distinction between the designer and the user. 
However, Torvalds’ actions blurred the boundaries between these two actors – the 
user could also be the designer (cf. [31]). By catalyzing such a co-creation process, 
Torvalds ensured that the purpose and functionalities of Linux would now emerge 
from the efforts of multiple contributors. Providing users with an opportunity to in-
scribe their local contexts into the design enabled the development and linkage of 
components in diverse and sometimes non-obvious ways. As these inputs were incor-
porated, the very purpose and functionality of the platform itself changed. 

Technology is society made durable, suggested Latour [32], and in the case of 
Linux we can recount many instances of how technology made engagement among 
contributors possible. Clearly, tools such as mailing lists and news groups made it 
possible for actors to engage with the emergent platform and with one another. Simi-
larly, “installers” that facilitated reuse and distributed modifications contributed to the 
growing functionality of the system. For example, the Linux community experienced 
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a large growth in 1992 when the Yggdrasil distribution made it possible for users to 
install Linux from a CD-Rom [29]. Finally, Torvalds redesigned the Linux kernel to 
have one common code base that could simultaneously support a separate tree for 
different hardware architectures, thereby greatly improving its portability [33]. Taken 
together, these tools made it possible for contributors to continuously extend Linux in 
a decentralized manner. 

Moreover, social rules built into the technology [34] further fostered generative 
engagement by actors. A key development was Torvalds’ decision to release the ker-
nel under the General Public License (GPL), which mandated that any user modifying 
or adding to the source code would have to make their own contributions available to 
everyone else [35]. This decision signaled to the community that ownership and con-
trol of Linux was not Torvalds alone. Rather, it facilitated the establishment of a sta-
ble “generalized exchange system” [36] in which people both contributed to and 
benefited from the assistance of others. Establishing mechanisms that recognized the 
contributions of individuals reinforced the feeling of common ownership. A “credits” 
file made available with every released version of Linux listed various contributors 
and their roles in developing and maintaining the kernel.  

The availability of the source code played a critical part in the actor’s generative 
engagement with the platform. Through documentation in repositories such as the 
CVS (Concurrent Version System), the source code served as a design trace that pro-
vided a memory of how the platform had evolved until a specific point in time. While 
creating options for the future, contributors could go back to the past to find out how 
solutions to related problems had been developed. Moreover, the design trace pro-
vided the interpretive flexibility [37] required to recontextualize the existing platform 
and make it work in new application areas without losing coherence with the original 
platform. Finally, enabling developers to leave their footprint in the source code en-
sured that their identities became intertwined with the platform and served as a strong 
attractor for them to contribute.  

Overall, these social and technical mechanisms made it easier for contributors to 
tinker with the system and incorporate their own notions of how it should be further 
developed. In doing so, they extended Linux in ways that collectively covered a far 
greater domain than any single individual could have imagined. This manifested itself 
in the development of a variety of utilities and device drivers that supported specific 
hardware and peripherals [38]. In an interview, Torvalds said about the community’s 
engagement with the platform: 

“After I had published Linux on the web, other users requested features 
I had never thought of and more and more new ideas emerged. Instead 
of a Unix for my own desktop, Linux should now become the best op-
erating system ever. The requests by other people and their patches and 
help later on made the whole thing more interesting.” [39] 

Our observations from Linux, then, suggest that incompleteness is generative in 
two different ways. At one level, incompleteness serves as a trigger for the creation of 
many diverse ideas on how a design can be extended and further developed. At  
another level, engagement with such a system both transforms the design as well as 
creates new avenues for ongoing engagement which, in turn, attracts a new set of con-
tributors who bring into the fold their own contextualized needs, purposes and goals. 
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The contribution of a graphical user interface, for example, spurred a whole new ap-
plication area as “Linux on the desktop”, a central aspect of current Linux versions 
[39]. This observation highlights a key benefit of designing for incompleteness – gen-
erative engagement with a platform is self-reinforcing in nature, with the boundaries 
of both its technical and social architecture co-evolving with one another [see also 
40]. While generative engagement enables developers to cope with incompleteness in 
the present, it also is the source of incompleteness in the future. 

Such generative engagement by a multitude of users, however, needs to be chan-
neled to maintain coherence. For instance, it is possible for individuals to introduce 
security holes or malicious code intended to cause damage [41]. But even contributors 
with the best of intentions can sometimes inadvertently bring about damage to the 
system. More fundamentally, the lack of control can lead to fragmentation of the plat-
form as factions pursue different avenues of development. As an illustration, the 
many different distributions of Linux (e.g. RedHat Linux, SUSE, or Debian) all come 
with proprietary patches when system updates are released. In some cases, there have 
been so many changes made to the original package that the distributions have be-
come incompatible [42]. Given these challenges, what governance mechanisms can 
be established to enable incompleteness to be harnessed beneficially? 

Linux’s governance approach is best described as “centrally facilitated yet organi-
zationally distributed” [43]. A combination of technical and social rules keeps the 
platform from falling apart. Ongoing documentation of the development process, in-
scribed into the source code and CVS, serve as a form of cohesive tissue. Chat rooms 
and bulletin boards act as threads that order interactions among contributors across 
space and time [44]. These mechanisms are buttressed by an overarching meritocracy 
within the community in which developers focus on providing new code and modules 
that add features and functionality to the platform while others, based on their reputa-
tion and prior contributions, assume maintenance tasks such as the evaluation of code 
submitted by developers for inclusion into new releases. Sitting atop this meritocracy 
is Torvalds who centrally facilitates decisions on strategic issues related to Linux. 
Decisions to deliberately change the platform are entrusted to a much smaller group 
of individuals when compared to the total number of contributors. Finally, the provi-
sions of the GPL provide the legal and cultural basis for interaction among commu-
nity members.  

These governance mechanisms facilitate access to knowledge, encourage constant 
tinkering and curbs private appropriation and free riding. Together, these mechanisms 
operate with an almost invisible touch vis-à-vis ongoing developmental activity on the 
platform. This enables extensive experimentation to take place on the system even as 
it maintains a coherent core. By contrast, a tightly controlled design would bear the 
risk of falling apart given the difficulties of accommodating the contradictory re-
quirements of a heterogeneous community. 

A number of Linux’s governance mechanisms have themselves emerged over time 
in a relatively unstructured fashion. One such convention pertains to the successive 
release of Linux versions even while distributed development progresses. An even 
numbered release (for instance, version 2.4) denotes that the release is stable and 
ready for use, whereas an odd numbered release (for instance, version 2.5) signifies 
that the release is still being built and under evaluation. The announcement of an odd 
numbered release serves as the call for new code and modules that drives the current 
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stable release forward. After a period of development, testing, discussion and reviews, 
no new additions are allowed so that the entire operating system can be tested for per-
formance and reliability. Once testing has ended and modules of code that compro-
mise reliable performance are removed, the operating system is ready to be released 
as a stable even-numbered version for widespread use. Such a convention has enabled 
distributed development. 

Overall, our description of Linux highlights what it means to be incomplete by de-
sign. To the extent that the system has the capacity to incorporate functionality rela-
tively easily, it is possible to harness its generative properties. Blurring the distinction 
between users and producers, assuming that preferences are heterogeneous and evolv-
ing, and maintaining abstractness in goal definition often facilitates this generative 
process. These facets lie in contrast to scientific approaches to design that favor clear 
boundary definitions, fixed user preferences, design closure and platform stability. 
While systems that are designed for incompleteness may be ugly and messy by con-
ventional design evaluation metrics, they can often outperform traditional designs by 
being extremely adaptable to continually changing contexts. Adopting such a design 
approach, then, involves appreciating design as the interplay between intermediary 
outcomes and processes, with one influencing the other on an ongoing basis.  

5   Wikipedia: A Lumpy Work in Progress 

Initiated in 2001 by Jimmy Wales and Larry Sanger, Wikipedia’s ambitious mission 
has been to “create and distribute a free encyclopedia of the highest possible quality 
to every single person on the planet in their own language” [45]. As of 2006, it had 
become one of the most visited websites in the world, with 5 billion page views 
monthly. Currently, it is growing at around 6,000 edits a day. What is truly remark-
able is that Wikipedia has run as a non-profit organization since 2003 and has five 
employees in addition to Wales. It meets most of its budget through donations, the 
bulk of these being contributions of $20 or less [46].  

The typical encyclopedia, as represented by the Britannica, is the epitome of a 
product that is designed to be complete. Its production process involves assembling  
a large group of experts, working under the direction of a manager, each performing a 
task on a detailed work chart to produce a work of enormous breadth. This product is 
then packaged and bound in a set of volumes as an authoritative and accurate source 
for knowledge. The encyclopedia, then, subscribes to a scientific approach to design, 
with a clearly defined purpose, a production process that is neatly modularized, 
clearly delineated boundaries between producers and users, and an emphasis on 
stability and reliability.  

Contrast this with the inner workings of Wikipedia. While the overarching goals of 
this initiative are similar to that of the Britannica, participation in its development is 
deliberately inclusive, blurring the boundaries between user and producer. Any  
registered user can write an article that others subsequently modify and refine. This 
conceptual shift – along with mechanisms that enable generative engagement – has 
contributed to a system that has now begun to fundamentally question the ontological 
basis of a traditional encyclopedia. 
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Technically, entries are made using a wiki, a tool that allows multiple users to cre-
ate, edit and hyperlink pages. The word "wiki" comes from the Hawaiian word for 
"quick", but also stands for "what I know is...", and these definitions, taken together, 
provide an essence of the design approach underlying Wikipedia. Anyone can initiate 
a new article by making a basic entry – a “stub” in Wikipedia parlance. If a topic that 
users are searching for is not covered on the site, then they are encouraged to write it 
themselves. Knowledge, from this perspective, is assumed to reside in a distributed 
fashion within the entire online human network.  

Why might someone contribute to Wikipedia? For many, its goals – a free 
encyclopedia that is a fun experience to create, and the open source principles on 
which it is based -- are an important draw. This translates into a strong level 
commitment for a sub-set of individuals who end up spending considerable number of 
hours tending to the project. As a Wikipedian described his attachment to the website 
"You can create life in there. If you don't know about something, you can start an arti-
cle, and other people can come and feed it, nurture it." [47] 

Given the minimal restrictions on membership, the project has turned fundamental 
assumptions about the design of knowledge systems on their head. The system is truly 
democratic in that it does not favor experts over the well-read amateur. As Wales puts 
it, “To me, the key is getting it right. I don’t care if they’re a high-school kid or a 
Harvard professor” [46]. Over 100,000 individuals have made contributions to the 
website since its inception, with a 24-year-old University of Toronto graduate being 
the site’s premier contributor, having edited more than 72,000 articles since 2001.  

How can a system that is based on the participation of literally any individual be-
come a useful knowledge source? On Wikipedia, every article has an open invitation 
for edits, and the expectation is that most edits will be improvements. Wikipedia op-
erates from the presumption that any individual’s knowledge is by definition incom-
plete, and that ongoing revisions enabled by mass collaboration tools and involving a 
large group of “eyeballs” will produce a reliable yet continually evolving knowledge 
repository. More fundamentally, it reflects an appreciation of the inherently accretive 
nature of knowledge, one in which the content of any article provides the generative 
basis for the next set of changes. As Earl [48] commented, “The philosophy of 
Wikipedia is that an article gains validity and maintains currency by continuous wide-
spread updating. Thus, hitherto it has not declared any item finished”.  

The wiki keeps track of all changes made by users and allows them to compare 
multiple versions of an article6. This information provides a design trace which allows 
actors to understand how and why an article has emerged over time. Possessing such 
an overarching temporal perspective is critical to repairing damaged elements in an 
entry as well as reverting to an older version if the current one is inaccurate. More-
over, this trace often forms the basis for new directions in which the article is devel-
oped. The design trace, then, both chronicles and initiates generative engagement with 
an article. In doing so, it serves as a locus of coordination as well as a point of depar-
ture, allowing an article to remain in a state of perpetual change. 

In addition, social rules embedded in Wikipedia’s website enable further generative 
engagement. For example, tags such as “The neutrality of this article is disputed”  

                                                           
6 We invite the reader to experiment with the design trace for the Wikipedia entry on “Design” 

http://en.wikipedia.org/w/index.php?title=Design&action=history. 
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represent calls for action to improve an article. Disambiguation notices placed at the 
bottom of certain articles help readers accurately locate information that they are 
looking for. Finally, the creation of an ontological scheme via categories aids con-
tributors in organizing information available on the site. The categorization of entries 
itself facilitates a process of adaptive structuration [49] in which the contribution of 
articles with different content change the meaning of a category that subsequently 
gets relabeled. These dynamics highlights how the community structures Wikipedia in 
use.  

An interesting by-product of such an evolving knowledge project is its ability to in-
stantaneously respond to current events. When the Indian Ocean tsunami erupted in late 
2004, contributors produced several entries on the topic within hours. By contrast, the 
World Book, who’s CD-ROM allows owners to download regular updates, had not up-
dated its tsunami or Indian Ocean entries a full month after the devastation occurred 
[47]. This ability to provide instant information is a metric on which a knowledge re-
pository organized to change perpetually outperforms a traditional encyclopedia. 

The flip side of this design approach, however, is that it produces entries that are 
often amateurish. While the facts may be sturdy, clarity and concision is sometimes 
lacking. The initial contributor to an article can set its tone and is not necessarily 
highly knowledgeable in the area [50]. Disagreements on an article can lead to re-
peated back-and-forth editing, with the user who spends the most time on the site pre-
vailing in the end. Given the obsession of many users to rack up edits, simple fixes 
often take priority over more complex edits. Moreover, the open access to the system 
has produced incidences of vandalism on the site that involve individuals inserting 
obscenities within entries. Given these shortcomings, what governance mechanisms 
ensure that articles do not lose their integrity? 

Here again, a mix of technical and social elements work together to maintain the 
integrity of the website. Five webbots continually troll the site, searching for obsceni-
ties and evidence of mass deletions and reverting text as they go. Any editing on an 
article is automatically logged on a "Recent Changes" page that participants can 
monitor. Anyone who sees something false, biased, or otherwise defective can 
quickly and easily change the text. Moreover, every article also carries with it a sepa-
rate discussion section on which debates about what to include on the page are en-
couraged. Besides this, users employ Internet Relay Chat to discuss ongoing issues, 
from article details to general policy.  

An underlying community of volunteers holds these distributed contributions to-
gether. This includes anonymous contributors, people who make a few edits. Next, 
there are registered users who make edits using their byline. Administrators are indi-
viduals who can delete articles, protect pages, and block IP addresses. Finally, there 
are the super elites who make direct changes to the Wikipedia software and database. 
There is also a mediation committee and an arbitration committee that rule on dis-
putes. On this front, the inner circle of Wikipedians know each other and value their 
reputations, which are themselves built bottom-up through their past activity on the 
site. The consequence of such reputation building has been the creation of a meritoc-
racy with individuals occupying more central positions because of their ongoing in-
volvement when compared to others.  

In terms of policies, the founders of Wikipedia have instituted a NPOV (Neutral 
point of view) rule, which urges contributors to present conventionally acknowledged 
“facts” in an unbiased way as well as accord space to both sides when arguments  
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occur [51]. Over time, Wikipedia has instituted additional rules, reflecting the com-
plexities involved in managing a growing decentralized community. For example, a 
policy preventing certain contentious subject matters from being openly edited by 
users was ratified recently [52].  

This has prompted concern that Wikipedia is becoming a regulatory thicket com-
plete with an elaborate hierarchy of users and policies. Wales, while ambivalent about 
the growing number of rules and procedures, recognizes them as necessary. Accord-
ing to him, “Things work well when a group of people know each other, and things 
break down when it’s a bunch of random people interacting” [46]. And Earl [48] cap-
tured Wikipedia’s dilemma as follows:  

“This is a classic knowledge-creation conundrum. On the one hand 
there is real advantage in assembling collective wisdom; on the other 
hand there are concerns about validity and about incentives or, more 
particularly, disincentives for content contributors.” 

However, taking these steps raises an even more fundamental issue: should 
Wikipedia abandon its current design approach in order to emulate a traditional ency-
clopedia? For many, the incomplete nature of an article is valuable in its own right. 
First, such an article is better than nothing at all. Second, the articles might actually 
trigger more experienced participants to make contributions that they would otherwise 
not have made. Instituting governance mechanisms that make it appear more like an 
encyclopedia could potentially rob Wikipedia of its unique identity and impede gen-
erative engagement by contributors. As Carr [53] elaborated: 

“Wikipedia is not an authoritative encyclopedia, and it should stop 
trying to be one. It's a free-for-all, a rumble-tumble forum where 
interested people can get together in never-ending, circular 
conversations and debates about what things mean. Maybe those 
discussions will resolve themselves into something like the truth. 
Maybe they won't. Who cares? As soon as you strip away the need to be 
like an encyclopedia and to be judged like an encyclopedia - as soon as 
you stop posing as an encyclopedia - you get your freedom back.” 

This observation underscores the value of incompleteness. Incompleteness allows 
participants the freedom to engage with the design in search in a way that is 
meaningful to them. As the quote suggests, to the extent that the goals and metrics of 
traditional approaches that emphasize completeness are adopted in evaluating designs 
that are inherently incomplete, there exists a danger of losing the unique value that 
such designs can provide.  

6   Discussion 

The Linux and Wikipedia cases affirm what Boisvert (who built upon Deweys’ [7] 
pragmatic approach) pointed out: “Affairs are never frozen, finished, or complete. 
They form a world characterized by genuine contingency and continual process. A 
world of affairs is a world of actualities open to a variety of possibilities” [54: 24]. 
Indeed, these cases provide a deeper appreciation of the title of the paper – incomplete 
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by design and designing for incompleteness. In an environment that is continually 
changing, designs that have been completed at a point in time are likely to become 
incomplete over time. On the other hand, designs that anticipate their incompleteness 
are likely to remain more up-to-date over time.  

6.1   Design Participation within the Pragmatic Approach 

The traditional scientific approach employed principles from the natural world to de-
sign an artifact with enduring qualities that fulfilled a specific purpose in an unchang-
ing world [5]. From this perspective, design was fixed in time and space; it was 
opened and modified only to accommodate exogenous environmental changes. More-
over, the locus of design – i.e., the demarcation between designer and user – was clear 
and unambiguous. 

In contemporary environments, however, the distinction between designers and  
users has blurred, resulting in the formation of a community of co-designers who in-
scribe their own contexts into the emergent design, thereby extending it on an ongo-
ing basis in diverse and non-obvious ways. Such generative engagement by multiple 
co-designers is facilitated by numerous socio-technical mechanisms. Tools such as the 
wiki, licenses such as the GPL, forums such as bulletin boards and the infrastructure 
provided by the Internet, work with one another to facilitate participation and enable 
distributed development. This dynamic action net [21], then, contributes to the design 
remaining in a fluid state.  

We can further contrast design participation within the scientific and pragmatic ap-
proaches by returning to the parable of the watchmakers offered by Simon. In its 
original version, user engagement with the design was considered an interruption re-
sulting in watches that remained incomplete and therefore of little value. By contrast, 
the Linux and Wikipedia cases demonstrate that incompleteness acts as a trigger for 
generative engagement by co-designers. They are the ones who complete what they 
perceive is incomplete. They discover the purpose of a design in use. They create 
avenues for future development that, in turn, attract new groups of co-designers. From 
a pragmatic design approach, what was considered to be an interruption then now 
becomes the basis for ongoing change. 

6.2   Design Task within the Pragmatic Approach 

For co-designers, the design task is very different from the one faced by designers 
adopting a scientific approach. For the latter, optimization of an objective function given 
constraints (as in linear programming), represented the dominant approach to designing. 
By contrast, contemporary designs such as Linux and Wikipedia can be conceptualized 
as an interlinked set of subjective functions, where one person’s subjective function 
serves as another person’s constraints. Complicating matters, the set of interlinked sub-
jective functions is itself underspecified as it emerges in use over time. Under these 
conditions, the design remains incomplete as the solution to the optimization problem 
corresponds to more than one point in an n-dimensional space of design parameters. It is 
for this reason that co-designers must learn to theorize on the fly – i.e., they become 
reflective practitioners [55] who generate provisional workable solutions to their imme-
diate problems, knowing fully well that the platform that they draw upon and the con-
text to which they apply their solutions will inevitably change. 
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What is the role of modularity in such an emergent system? Modular elements al-
low for platform extension as is apparent in both the cases we studied. Under these 
conditions, extension of the platform takes place through an accretive process where 
modules are tacked on as “plug-ins” [56]. But, the two cases also demonstrate a less 
understood, generative facet of incompleteness that is fostered by “partial partition-
ing”. On this front, we suggest that interdependence between partitioned tasks results 
in situations where changes in one task have a cascading effect on other tasks. Conse-
quently, the system never comes to a rest.  

Modularity scholars have suggested that partial partitioning can be a problem [57]. 
The Linux and Wikipedia cases, however, indicate that there may be benefits to be 
harnessed from partial partitioning. The “shared division of labor” [58] that emerges 
allows for redundancy of functions, i.e., certain functions can be fulfilled by more 
than one component. This enables the system to work even if some components are 
damaged or left incomplete. More significantly, such redundancy of functions can be 
generative in that components can be deployed for a different purpose thereby facili-
tating reconfiguration of the design in response to changes in the environment [59]. It 
also allows the system to more easily assimilate emergent contributions from co-
designers into a continually evolving platform. 

6.3   Design Governance within the Pragmatic Approach 

Given the distributed, emergent and protean nature of designs, the challenge now be-
comes one of establishing rules that provide some stability. While an absence of rules 
is likely to lead to design fragmentation, too many rules can potentially stifle the de-
sign. It is this paradox that needs to be managed to preserve the value proposition that 
such designs offer. 

An appropriate form of governance is required to coordinate real time distributed 
contributions in a way that preserves the design’s dynamic qualities – i.e., one which 
allows elements of a system to inform but not determine one another [6: 267]. Gov-
ernance mechanisms need to be underspecified [60] or semi-structured [61]; that is, 
they possess minimum critical specifications [62] to keep the design in a state that is 
neither too fluid nor too crystallized (cf. [63] for this distinction).  

The design trace is a key element that enables such governance. By providing 
widespread access to knowledge on who contributed what, when and why, the trace 
makes it easier for actors to understand how a design has emerged over time. Possess-
ing such an overarching temporal perspective is often critical in mitigating design 
fragmentation. For instance, if a new contribution turns out to be damaged or incom-
patible, then, the trace makes it possible to simply use an older version. Equally im-
portant, the trace can be viewed as a boundary architecture [64] that co-designers 
draw on to develop extensions to the design. In sum, the ongoing design trace serves 
as a locus of coordination as well as a point of departure for such designs. 

To further elaborate, consider two different logics of engagement described by 
Bruner [65]. A causal logic, following the role model of the natural sciences, operates 
when the set of variables and relationships that define the functioning of a design are 
fully specified (see [1] for a more detailed explication). This logic, associated with a 
scientific approach to design, leads to the articulation of design rules [1; 12]. A narra-
tive logic, on the other hand, operates on the basis of a narrative’s internal coherence 
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and its external coherence with the listener’s existing knowledge. In providing de-
signers with the interpretive flexibility required to generate contextualized solutions 
and to imagine what might be, the narrative can help coordinate distributed activities 
across time and space. Such an epistemology connects designs with the emergent pur-
poses of the social groups involved.7 

The design trace allows for these two different logics to operate simultaneously. 
The trace possesses a scientific logic that offers co-designers with the raison d’être of 
the design and the necessary details for it to be functional in real time. From this per-
spective, each node of a trace is but a module with tags that can be opened up and 
reused. At the same time, the trace also allows for a narrative logic to operate. Co-
designers are motivated to participate with a design because of the flexibility that it 
offers, and the design in use that emerges is convincing to these participants as the 
narratives recorded have verisimilitude [65]. A design trace, then, possesses the 
equivalents of both an ostensive and a performative dimension [66]. By providing 
connections to assets across time and space, a design trace makes it possible for co-
designers to engage in the present by building upon the past in anticipation of a new 
future [67].  

In enabling the two logics to operate simultaneously, the trace is able to alleviate 
some of the problems associated with human memory and bounded rationality that 
Simon considered in his parable. Tempus and Hora were boundedly rational individu-
als, relying on their own short and long term memories. A mechanism such as the 
design trace could potentially have extended their memories by serving as a collective 
mind [68]. As a narrative, the trace makes it easier for individuals to recontextualize 
the design to their own situations. This makes it possible for interruptions to not only 
be welcomed, but to also serve as the basis for design extension.  

In offering these observations we see how future options on a design are generated 
even as current contributions are incorporated. Moreover, recording changes in the 
design trace signals to co-designers that their contributions will be honored in the fu-
ture. If a trace was not to exist, part of the motivation to participate might be lost – 
why contribute to a commons when the contributions would not be used in the future? 
At the same time, if the co-designers were over-dependent on the extant trace, then 
the future design would largely be based on past experiences and become path de-
pendent. For a design (and its trace) to promote diachronic processes, then, anticipa-
tions of the future and memories of the past must jointly inform contributions in the 
present.  

7   Conclusion 

We have explored the Linux and Wikipedia cases to sketch out the elements of a 
pragmatic approach to design. In continually changing environments, adopting a de-
sign approach that attempts to fix boundaries, goals and purposes is potentially coun-
terproductive. Whereas, such an approach may produce a system that is optimal at a 
point in time, given continual change, the system is likely to rapidly become obsolete 
over time. Under these conditions, a pragmatic approach – one that views design as 

                                                           
7 We thank Georges Romme for this insight.  
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continually evolving and essentially incomplete -- may be more appropriate. Within 
such an approach, boundaries between designers and users become blurred, heteroge-
neous user preferences emerge in use, tasks remain partially partitioned and the goals 
of the design emerge through interaction. Indeed, such an approach harnesses the 
benefits of incompleteness in comparison to the scientific approach that views incom-
pleteness as a threat. 

Eventually, a pragmatic approach involves the fusing together of two meanings of 
design – that is, as both process and as outcome. Any outcome is but an intermediate 
step in an ongoing journey, representing both the completion of a process as well as 
its beginning. Whereas the scientific approach emphasizes the need to crystallize de-
signs, the pragmatic approach highlights the value of retaining fluidity. The essence 
of this approach is well captured by Hedberg, et al. [69: 43] who noted, “Designs can 
themselves be conceived as processes – as generators of dynamic sequences of solu-
tions, in which attempted solutions induce new solutions and attempted designs trig-
ger new designs.”  
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Abstract. Domains for which information systems are developed deal primarily 
with social constructions—conceptual objects and attributes created by human 
intentions and for human purposes. Information systems play an active role in 
these domains. They document the creation of new conceptual objects, record 
and ascribe values to their attributes, initiate actions within the domain, track 
activities performed, and infer conclusions based on the application of rules that 
govern how the domain is affected when socially-defined and identified causal 
events occur. Emerging applications of information technologies evaluate such 
business rules, learn from experience, and adapt to changes in the domain. Con-
ceptual modeling grammars aimed at representing their system requirements 
must include conceptual objects, socially-defined events, and the rules pertain-
ing to them. We identify challenges to conceptual modeling research and pose 
an ontology of the artificial as a step toward meeting them. 

1   Introduction 

Conceptual modeling is fundamental to information systems requirements engineer-
ing. Systems analysts and designers use the constructs and methods of a conceptual 
modeling formalism to represent, communicate and validate the contents, capabilities 
and constraints of an envisioned information system within its organizational context. 
The value of such a representation is measured by the degree to which it facilitates a 
shared understanding among all stakeholders of (1) the organizational information 
requirements and (2) the ability of the envisioned information system to meet  
them [1].  

The philosophical discipline of ontology provides a substantive basis for such a 
shared understanding [2]. A number of researchers have proposed using ontology as 
the basis upon which to develop and evaluate conceptual modeling grammars (con-
structs and rules) and methods [1, 3-5]. In general, ontology seeks a definitive and 
exhaustive classification of entities in all spheres of being. Applied ontology is the 
attempt to use the rigorous tools of philosophical ontology in the development of 
category systems which can be of use in the formalization and systemization of 
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knowledge in a given domain [6, 7]. In information systems requirements engineering 
the premise is that an ontology can explicitly define the basic concepts used by all 
stakeholders in the description of the business domain and the envisioned information 
system artifact. This shared conceptualization enables stakeholders to effectively 
communicate about the objectives of the business and the capabilities of the informa-
tion system to meet them resulting in more effective information system designs and 
implementations. 

We observe that an ontology is itself an artifact, a set of constructs developed by 
human intelligence for the purpose of representing a specific domain [8]. The domain 
itself determines the types of constructs needed as well as the premises and implica-
tions of the ontology. Within the scope of conceptual modeling in information sys-
tems the domain of interest is the world of business organizations engaged in the 
production and exchange of goods and services in social, political, and legal econo-
mies. It is primarily a socially constructed world [9] rather than a material world [10]. 
It is a designed world rather than a natural world. It requires an ontological underpin-
ning that is based on a design science [11] rather than a natural science [4] view of the 
domain. 

The implications of this observation for conceptual modeling constructs and meth-
ods are significant. First, the fundamental conceptualization of the task is significantly 
different. A natural science (material world) conceptualization views the task as the 
discovery of material objects, their properties, and the natural, immutable laws that 
govern their behavior [10]. A design science (socially constructed world) conceptuali-
zation views the task as the creation of conceptual objects, the ascription of attributes 
to concrete and conceptual objects, and the development of policies regulations that 
describe “agreed-upon” behavior [9] and achieve organizational purposes [11]. While 
systems analysts must in some sense “discover” legal, social and organizational poli-
cies and regulations there is frequently significant latitude in designing organizational 
policies. In the terminology of management science and operations research legal and 
social regulations may need to be taken as constraints, but organizational policies 
should be taken as decision variables [11].  

Second, the conceptualization of the role of an information system within the do-
main is significantly different. A natural science conceptualization views the role of 
an information system as a passive state-tracking mechanism [4, 12]. A design  
science conceptualization views the role of an information system as actively partici-
pating in the work system of the organization [13].  

Third, the conceptualization of causality is significantly different. A natural science 
conceptualization views causality with respect to rules that govern changes in the 
state of material objects--the chair moved from location A to location B because force 
C was applied to it. A design science conceptualization views causality with respect 
to intentions and goals--the chair was moved from location A to location B because 
we sold it to company D at a price that maximized profits. Concepts such as owner-
ship, contracts, agreements and transactions are outside the scope of an ontology of 
the material world. They are socially constructed (artificial) objects that exist only 
because we agree that they exist [9, 14]. 

To address the need for a substantive ontological basis for conceptual modeling we 
pose an ontology of the artificial. We use the ontology of Mario Bunge [10] as a pre-
liminary background and develop six premises upon which to base the ontology. We 
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acknowledge that this ontology is preliminary and empirically untested. However, we 
argue that it contains constructs necessary to adequately represent the requirements 
for information systems that play an active role in business domains [13].   

Such information systems document the creation of new conceptual objects, record 
and ascribe values to their attributes, make decisions and initiate actions within the 
domain, track activities performed, and infer conclusions based on the application of 
rules that govern how the domain is affected when socially-defined events occur. 
Emerging applications of information technologies are taking an even more active 
role in business domains. They are expected to evaluate business-dependent rules, 
learn from experience, and adapt to changes in the environment [15]. Conceptual 
modeling grammars must be capable of representing the conceptual objects, socially-
defined events, and rules that characterize their design requirements. Furthermore, 
they must be capable of representing the purpose of an information system within its 
organizational context, including goals, decision alternatives, constraints, and  
evaluation criteria [11]. 

2   Background 

The ontological work most frequently cited in the conceptual modeling literature is that 
of Mario Bunge. Bunge [10] proposed a scientific ontology that distinguishes two types 
of objects: concrete and conceptual. The existence of concrete objects is observer-
independent. They exist and possess substantial properties “even if we are ignorant of 
this fact” (p. 58). Conversely, the existence of conceptual objects depends solely upon 
human invention. They are “creations of the human mind” (p. 116) that “exist as long as 
there are rational beings capable of thinking them up.” Examples of concrete objects 
include people, buildings, machines, trees, minerals, animals, and electrons.  Examples of 
conceptual objects include numbers, mathematical theories, intellectual property, legally 
created corporations, contracts and agreements, and the legal institution of a marriage. 
Bunge’s ontology specifically focuses on concrete objects, yet conceptual objects form 
the heart of business domains. If conceptual modeling is to have an ontological founda-
tion, it must be an “ontology of the artificial.” One that is intended to represent the ob-
jects and attributes created by human intention, for human purposes, and imbued with 
meaning that is shared among participants. 

Existing work in natural ontology should not be ignored in the development of an 
ontology of the artificial. Specifically, Bunge [10] provides a sound representation of 
concrete objects and their properties. However, conceptual objects are “lawless.” It 
may be agreed that they will follow invented rules within a specific context; however 
those rules can be changed as purposes within the context change [16]. Furthermore, 
such rules are enforced within different contexts. Some are enforced within a gov-
ernmental context, others within the organizational context. In either case they are 
outside of Bunge’s ontology but they are fundamental to many business domains. 

3   Premises 

Business organizations use concrete objects such as people, machines, and buildings 
to accomplish their goals. However, they are concerned primarily with the meaning 
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and purpose ascribed to concrete and conceptual objects and with invented rules that 
form the basis of social intercourse. A person is important to a business primarily 
because of the meaning and purpose ascribed to them (e.g., customer, employee). A 
chair is important to one organization because it is a product that they sell; it is impor-
tant to another organization because it is used by an employee in the performance of 
their work tasks and contributes to the assets of the organization. 

Premise 1. Conceptual modeling is primarily concerned with representing social 
phenomena. 

Natural phenomena [10] result from processes that are governed by immutable laws. 
It is the role of science to discover and understand such laws. Social phenomena [9, 
17] result from intentional human actions. When deemed important to do so, it is the 
role of a society, by collective agreement, to invent and enforce rules that govern 
social phenomena. Such rules frequently result in the creation of conceptual objects 
(e.g., social contracts and legal entities) that must be documented and validated by 
social means—there are no corresponding concrete (physical) objects. A major pur-
pose of an information system is to provide such documentation and validation. A 
sales order, for example, is a conceptual object created when a buyer and a seller 
agree upon the terms of the sale. It follows the rules of commerce established by gov-
ernments, regulatory agencies, and specific business organizations. Its existence is 
documented in an information system (manual or automated). 

Another purpose of an information system is to execute the rules invented to ac-
commodate the occurrences of defined social phenomena. We term such social phe-
nomena conceptual events. 

Premise 2. Defined social phenomena, termed conceptual events, have rules that 
specify the actions to be taken when they occur. 

Conceptual events are conceptual objects. The rules associated with them are invented 
and changeable. The specified actions frequently involve the creation of conceptual 
objects and the ascription of attributes to conceptual and concrete objects. A “sale,” 
for example, is a conceptual event resulting in the creation of a sales order. The rec-
ognition of a “sale” event is by a social agreement between the buyer and the seller 
governed by regulations imposed within a larger social system. Such conceptual 
events and the rules governing them are an integral part of a conceptual model. 

We must differentiate this notion of conceptual event from the event construct de-
fined by Bunge [10] and used in prior conceptual modeling research [e.g., 4]. In that 
work an event is defined as a change in the state of a concrete object, the change be-
ing governed by a law, which describes the natural processes effecting the change. 
Neither the occurrence that initiated the change (intention) nor the purpose (meaning) 
of the change is considered. A conceptual event includes elements of purpose, inten-
tion, and rules governing the commitments and obligations (conceptual objects) cre-
ated by the participants when it occurs [18]. An important role of information systems 
is to process conceptual events, documenting the agreed upon commitments and  
obligations incurred. 
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Premise 3. An information system is primarily an event-processing mechanism utiliz-
ing event rules to make decisions, create conceptual objects, and ascribe attributes to 
concrete and conceptual objects. 

A business may declare, for example, that a “person becomes a customer” when that 
person initiates a “registers at web site” event. The person becomes a customer when 
he or she fills out the registration form and presses “submit.” The rules may specify 
that the person who initiated the event is to be ascribed: (1) the attribute “authorized 
for sales transactions” and (2) the set of attributes common to all customers. This set 
of attributes may include those associated with the data entered, e.g., name and ad-
dress as well as attributes whose values are generated according to the event’s rules, 
e.g., customer number, customer status (initialized at “provisionary”), and credit limit 
(initialized to $1000). Furthermore the “registers at web site” event, a conceptual 
object, is related to the customer object. The values of its attributes do not change 
even if the values of the customer's attributes are changed by subsequent events [13]. 

We term such event-processing information systems “active” because they actively 
participate in the business domain rather then passively record facts from it. The rules 
for some events may be unknown or outside the scope of the information system.  For 
such events the modeler may choose not to represent the event in the conceptual 
model but only to represent attributes of the affected objects. The role of the informa-
tion system is said to be “passive” with respect to that event, being limited to re-
cording attribute values and histories. 

Premise 4. The scope of a conceptual event rule is the set of social institutions with 
the authority to change and enforce it. 

The scope of a conceptual event rule represents the degree of control an organization 
has over its definition, enforcement, and modification. Some of the rules that must be 
represented in business domains are constraints within their legal environment. These 
are enforced by governmental agencies. Their violation can result in legal action, 
fines, and even termination of the business. Such rules include fair trade practices, 
Sarbanes Oxley, and minimum wage. Changing them requires the act of a socially 
authorized governing body (e.g., a legislative or judicial act). Other rules represent 
policies of the business. They are defined, enforced, and changed by the organization 
itself. Their violation may have financial consequences but are discretionary within 
the broader social context in which the business operates. Such rules include policies 
for product pricing, warrantees and returns, employee compensation and incentives, 
quality control, vendor selection, and technology use. Organizations frequently define 
event rules to assure compliance with rules imposed by the environment. Policies 
defining separation of accounting duties with respect to authorization, recording, and 
custody over organizational assets, for example, assure compliance with the control 
requirements of Sarbanes-Oxley. 

Premise 5. The range of a conceptual event rule is the set of objects that are affected 
by the rule. 

The range of a conceptual event rule represents the breadth of the rule’s influence.  
The range of a policy implemented by a corporation about hourly compensation is the 
set of hourly employees of the company; the range of a state law on minimum wage is 
the state’s set of minimum wage workers and the companies for which they work.   
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Premise 6. Identification of objects (conceptual and concrete) is fundamental to the 
conceptual modeling of business domains. 

Distinguishing objects is fundamental to language [17] and hence to communication 
and exchange within business domains. Business organizations must often differenti-
ate individual objects such as employees, customers, contracts, sales, sales orders, and 
shipments as well as types of objects such as raw material and product categories, 
e.g., at the stock keeping unit (SKU) level rather than the individual (serialized) level. 
They frequently rely on artificial means such as ascribed identifier attributes to distin-
guish such objects. The representation of such ascribed attributes is fundamental to 
the purpose of a conceptual model—conveying a shared understanding of the phe-
nomena within the domain [19]. 

4   Ontology of the Artificial for Conceptual Modeling 

One implication of the above premises is that information system requirements are 
designed not discovered. While a conceptual modeler must analyze the domain to 
identify the important objects and rules, these must be understood in the context of 
design—design of the information system, design of the business, and design of the 
social context in which they operate. All are artificial systems [11] upon which the 
organization can exert varying degrees of influence. Based on the above premises we 
propose the following as a rudimentary ontology of the artificial. 

1. There are two types of objects—concrete and conceptual.  

 1a. Concrete objects exist physically.  

 1b. Conceptual objects exist by human intention and social agreement.    

2. Attributes are ascribed to concrete and conceptual objects for human purposes. 
Attributes map functionally from objects to values. 

3. There are two types of attributes: substantial and invented.  

 3a. Substantial attributes are ascribed to concrete objects to represent human 
understanding of natural phenomena (in Bunge’s terminology [10] these repre-
sent substantial properties of concrete objects).  

 3b. Invented attributes are ascribed to concrete and conceptual objects to en-
able social intercourse (in Searle’s terminology [14] these represent institu-
tional facts). 

 3c. One purpose for the ascription of invented attributes to objects is their 
identification (individuation). 

4. Objects may be grouped into types (classes, categories) based on the ascription 
of one or more common attributes. Frequently these attributes represent the 
purpose or role of the object within an organization (e.g., customer, vendor, 
partner, employee, owner, product, raw material, purchase order, sales order). 

 4a. An object may be grouped into multiple types. 

 4b. Types may exist in hierarchical or networked relationships with other 
types. Subtypes inherit attributes from their supertypes. 
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5. The status of an object is the set of values of its attributes at a point in time.  The 
history of an object is the chronology of its status. 

6.  There are two types of events, concrete and conceptual. 

 6a. Concrete events are changes to substantial properties of concrete objects. 
They follow immutable, natural, discoverable laws (information systems deal-
ing with industrial processes or natural phenomena such as meteorology or 
volcanic activity are likely to require the representation of concrete events and 
the laws that govern them). They have neither identity nor meaning. 

 6b. Conceptual events affect changes to invented attributes of concrete and 
conceptual objects. They have purpose (intention) and follow rules that are de-
signed and defined by human agreement. These rules are mutable, of varying 
scopes and ranges, subject to evaluation, and can be intentionally violated (in-
formation systems dealing with transactions and human agreements such as 
enterprise resource systems, customer relationship management systems, and 
supply chain management systems are likely to require the representation of 
conceptual events and the rules they are required to follow). 

 6c. Concrete events exist in a causal sequences (natural processes) and can be 
initiated by a conceptual event; however, concrete events do not have purpose 
or meaning. Purpose and meaning are associated only with conceptual events. 

 6d. Objects that are affected by the same event are said to be in relationship 
with the event and, hence, in relationship to each other through the event. 

7. Objects may compose and decompose to form other objects. 

8.  Events may compose and decompose to form other events. 

While we recognize the above ontology is cursory we believe it is useful for the 
purpose of developing a research agenda in conceptual modeling—the construction 
and evaluation of an ontology suited to the representation of the social phenomena. 
Such an ontology must provide a shared conceptualization that enables the characteri-
zation of business domains and to the development of information systems that ac-
tively participate in their operation and management. One implication of the proposed 
ontology is that relationships are not viewed a “mutual properties” as proposed in 
prior research [4, 20]. Rather relationships (other than subtypes and compositions) are 
posed as resulting from events that occur. We conjecture that the explicit representa-
tion of causal events and their associated concrete and conceptual objects will result 
in a more effective representation than will the representation of relationships as mu-
tual properties. This conjecture must be tested empirically. 

5   Research Challenges 

A number of research challenges remain.  These involve the development and evalua-
tion of constructs, methods, and symbols by which the proposed ontology can be 
effectively applied in conceptual modeling.  First, constructs are needed to represent 
concrete and conceptual objects, events and rules (laws). It is not clear if different 
symbols should be used for all or some of these constructs. We have proposed the use 
of a single conceptual modeling construct, entity-type, for the representation of  
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concrete and conceptual objects as well as concrete and conceptual events and the use 
of attributes of event entity types for the representation of event rules. Furthermore 
event rules are likely to have exceptions within a subtype structure. Therefore a 
mechanism for categorizing events may also be necessary. Second, the ontology must 
be demonstrated to be effective in enabling the conceptual modeling of business do-
mains and must be demonstrated to lead to effective designs and implementations. 
The parsimony and understandability of conceptual models built using it must be 
assessed and methods to guide their construction and evaluation must be developed. 

Third, the applicability and value of this ontology in active conceptual modeling 
must be assessed. Active conceptual modeling [15] focuses on enhancing our under-
standing of how to model systems that learn from past experiences. It requires con-
ceptualizations that facilitate the analysis and re-analysis of social phenomena to 
generate alternate or proposed histories and conclusions. The representation of events 
as conceptual objects and the conceptualization of an information system as an active, 
event-processing mechanism provide the basis for this understanding. They also pro-
vide a framework for the representation of stories and narrative [21] and for the repre-
sentation of episodic and semantic memory [22], each a significant component of 
human information processing and sense-making. Future research should investigate 
how the proposed ontology can be used to develop intelligent learning-based applica-
tions in areas such as business intelligence, global situation monitoring, surveillance, 
reconnaissance, design, decision-making and decision-evaluation. 

Finally, as we observed earlier, an ontology is itself an artifact, developed by hu-
man intention for specific purposes. Within the scope of conceptual modeling the 
purpose of ontology is to enable the development of effective information systems. 
We have proposed the beginnings of an ontology of the artificial to address this  
problem. 
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Section 2: Evolution and the Fluidity of Design 

John Mylopoulos 

Evolution is a fact of life. Environments and the species that operate within them -- 
living, artificial, or virtual -- evolve. Evolution has been credited with the most ad-
vanced biological species on earth. The ability to evolve has also come to be treated 
as a prerequisite for the survival of a species. Yet, evolution of the software systems 
species has been studied only at the level of code and design, but not at the level of 
requirements. In particular, there has been considerable research on software evolu-
tion, focusing on code re-engineering and migration, architectural evolution, software 
re-factoring, data migration and integration. However, the problem of post-
deployment evolution of requirements (as opposed to architecture, design and/or 
code) has not entered into the research discourse.  

There are several important reasons why requirements evolution is likely to be-
come a focal point for research activity in Software Engineering in years to come. The 
change from local, isolated communities to the global village is not happening only 
for commerce, news and the environment. It is also happening for software. In the 
past, operational environments for software systems were stable, changes were local, 
and evolution was local. Today, the operational environment of a large number of 
software systems is global, open, partially unknown and unpredictable. In this con-
text, software systems must evolve in order to cope (“survive" is the technical term 
for other species). To be sure, some of this evolution will happen at the code level, 
and some at the architectural level. The most important evolution, however, will take 
place at the level of requirements, as to ensure that a system continues to meet the 
needs of its stakeholders and conform to its constraints -- economic, legal and other-
wise -- placed upon its operational environment. 

Despite a relatively sparse landscape for research on requirements evolution, some 
things have become clear in the last years. System architectures play a pivotal role 
during system evolution, by offering a foundation of (relative) stability in the midst of 
wholesale change. Alistair Sutcliffe examines precisely this role of architectures in his 
chapter, titled “On the Inevitable Intertwining of Requirements and Architecture”. His 
study includes the role of requirements and architectures in the context of Michael 
Jackson’s Problem Frames, as well as his own Domain Theory Generic Object Sys-
tem framework. The two frameworks are compared using a case study involving con-
figurable software that supports medical researchers in e-Science applications. 

In their chapter, Neil Ernst et al. first review the relevant literature on requirements 
evolution and then propose a framework for monitoring and diagnosing software-
intensive systems that exploit requirements models to determine what is to be moni-
tored and how are monitoring data to be interpreted in order to detect and identify 
system failures. More specifically, the framework assumes that along with code, a 
running software-intensive system has access to a requirements model with traceabil-
ity links between requirements and the code that implements them. The chapter is 
titled “Requirements Evolution and What (Research) to Do About It.” 

Bill Robinson and Steve Fickas are among a handful of researchers who have been 
conducting research for some time on requirements evolution and monitoring. In their 
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chapter, titled “Designs Can Talk: A Case of Feedback for Design Evolution in Assis-
tive Technology,” they present a case study involving the design of a specialized e-
mail system for cognitively impaired patients. The case study details the evolution of 
requirements for the system as each user improved her e-mail skills and made pro-
gress in their personal objectives. Their study highlights the importance of continuous 
feedback while a software system is used, as a means for guiding its improvement and 
evolution through requirements detection. 
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Abstract. The chapter investigates the relationship between architecture and 
requirements, arguing that architectural issues need to be addressed early in the 
RE process. Three trends are driving architectural implications for RE: the 
growth of intelligent, context-aware and adaptable systems. First the relation-
ship between architecture and requirements is considered from a theoretical 
viewpoint of problem frames and abstract conceptual models. The relationships 
between architectural decisions and non-functional requirements is reviewed, 
and then the impact of architecture on the RE process is assessed using a case 
study of developing configurable, semi-intelligent software to support medical 
researchers in e-science domains. 

Keywords: Requirements process, architecture, adaptable systems. 

1   Introduction 

In this chapter I will investigate the association between requirements and system 
architecture, taking my cue from the seminal paper by Swartout and Balzer [1] who 
pointed at that specification and design are closely interlinked activities rather than 
being separated in a sequential “waterfall” process. Furthermore, I will argue that the 
nature of requirements engineering will fundamentally change in the near future as 
software applications become more intelligent, ubiquitous and mobile. In this case 
requirements concern systems more directly than users; in other words, architectural 
requirements are necessary to deliver user requirements. This is a consequence of the 
evolving relationship between the real world and the designed system: as the software 
moves in the world and knows more about the world, so it can adapt and react to it. 
This challenges conventional concepts of requirements as known entities which could 
be specified and implemented in advance of use. Architecture requirements are neces-
sary to specify how the machine monitors, interprets and adapts to the world, even 
though these do not directly concern the user who simply wants an adapted, custom-
ised or location-aware service. 

The changing nature of requirements has also been acknowledged in the context of 
design exploration, where users only “know what they want when they get it” [2, 3]. 
The co-evolution of software in response to shifts in the environment motivated  
Lehman’s models of evolving software [4]; while the need to adapt changing re-
quirements was proposed by Fickas and Feather [5] for evolving systems to fit with 
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changing worlds, which implied requirements for monitoring and interpreting func-
tions. Fischer’s distinction between adaptable and adaptive systems [6] also implies 
requirements for configuration facilities and intelligent adaptive processes. In adapt-
able systems the boundary can be set by the designer to provide a range of configur-
able solutions. In adaptive systems the machine can change its own behaviour and 
appearance as a consequence of monitoring the world, e.g. intelligent training systems 
adapt to the learner by providing different pedagogical strategies, sets of knowledge, 
interactive tools, etc.  

To address the problems of requirements for ubiquitous applications [7] I proposed 
a method for personal and contextual requirements engineering (PCRE) which cap-
tures requirements for processes that enable adaptation to individual users, or loca-
tion-aware functionality for mobile and context-aware applications. However, the 
PCRE method only addressed the process for requirements analysis and did not deal 
with intelligent applications or admit actual implications. To address requirements 
engineering for adaptable, collaborative and intelligent systems, I argue that a new 
conceptual framework will be necessary to focus on meta-requirements which will be 
necessary for designing machines to deal with change and awareness of the world in 
which they operate. 

In the following sections of this chapter, I review the relationship between  
requirements and system architecture, in particular from the perspective of non-
functional requirements. The next section introduces a case study of architecture re-
quirements, or meta-requirements, for delivering adaptive functions. The final section 
addresses the process implications for intertwining requirements and architectural 
considerations for RE, concluding with a short discussion of future developments. 

2   Requirements and Architecture 

Before proceeding further, it is necessary to pose the question, “Where is the boundary 
between requirements and architecture?” I believe there is no sharp boundary between 
the two since requirements analysis progresses gradually towards reification in a design 
architecture; in spite of exhortations to separate logical (requirements) specification 
from physical design, transformations between usage, system and development worlds 
[8], and distinctions between design engineering and requirements engineering [9]. 
Functional requirements can take on a physical form, and hence have architectural con-
notations very early in the RE process, in the form of storyboards and user-interface 
mock-ups. Even though these artefacts are intended to facilitate requirements elicitation, 
they nevertheless, implicitly, make architectural statements in terms of the UI layout and 
interactive paradigms (viz. GUI, Web Browser or form-filling interfaces). In collabora-
tive applications, architectural decisions about the distribution of functionality have to 
be made early in the requirements process. For example, in distributed healthcare  
applications the allocation of functions to different user-interface roles, such as patient 
monitoring, nurse supervisor, and expert physician, have to be made early, to effectively 
focus on appropriate functions for different stakeholders and to enable early prototypes 
or mock-ups to be constructed. Are such decisions architectural in terms of requirements 
or system architecture in terms of client-server functionality? Most developers, I sus-
pect, will consider both concurrently. 
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One means of investigating the dividing line is to use conceptual modelling. In 
analysing a health care management system, I compared Jackson’s Problem Frames 
[10] and Domain Theory Generic Object System models [11], to investigate how 
these modelling frameworks packaged requirements into sub-systems. Both ap-
proaches partitioned the problem space to specify a distributed computing system 
architecture with a variety of monitors, transformation and data processing modules, 
and data display/user-interface components [12]. Although both Problem Frames and 
Object System models are generic abstractions for requirements engineering, their 
application produced architectural considerations. 

If further argument for the inevitable intertwining of requirements and architecture 
is needed, then consider the relationship between domain and the designed machine. 
Jackson’s conceptual framework for RE considers requirements in terms of  
dependencies between the real world and the specified machine inbound, and how the 
machine acts on the real world outbound. While these dependencies are simple, re-
quirements are simply requirements; but when ambition grows and the machine has 
intelligence, it needs to maintain a model of the world for interpreting input and plan-
ning outbound actions. This in turn implies the need to acquire, be given, and update 
the world model. This starts to sound like architectural decisions.  

These issues can be examined from the perspective of abstract modelling, using 
Jackson’s problem frames [10]. These describe the dependency relationships between 
requirements, the real world domain and the designed machine, and have had a  
considerable influence on RE research. I argue that, while this vision is undoubtedly 
valuable, it can not account for the diversity of requirements found in adaptable, col-
laborative and intelligent applications. Software machines are embedded in the do-
main which they serve. The machine has to detect events in the world and respond to 
them, leading to either taking action in the world or providing information for people 
to take action. The dependencies between software machines and the environment can 
be described in Required Behaviour and Commanded Behaviour problem frames, 
although no single problem frame maps neatly to the monitoring problem; see  
figure 1. Monitoring becomes a general problem for any application which is mobile, 
context-aware or adaptive. It therefore merits a generic model that encapsulates the 
implied requirements inherent in adaptive and context-aware systems. 

 

Fig. 1. The monitoring problem expressed as a problem frame context diagram with dependen-
cies between the components 
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Requirements for context-aware applications [7] can be described in a generic 
problem model for monitoring as a set of collaborating objects [11] which presents a 
requirements view that can be mapped to object oriented design in the Observer pat-
tern in the GOF patterns collection [13]. Figure 2 illustrates the object sensing prob-
lem model in UML format. 

Fig. 2. Object sensing model as a set of collaborating objects in UML, with requirements con-
cerns and generic requirements as partial solutions 

The essence of the problem is a sensing device which captures changes in the 
world, linked to software which converts signals into a digital format for processing 
and interprets changes into meaningful events. To do so it needs a model of the world, 
or at least of the expected events. The problem model shown in figure 2 is composed 
of two classes: one detects signals and maps then to a processable form, and the sec-
ond interprets the signals as meaningful events. The third component is a model of the 
world used for interpretation. Interpreter classes can become increasingly sophisti-
cated as the domain model becomes more complex, with complex methods that en-
able the machine to adapt more intelligently to its environment. However, successful 
adaptation depends on solving three problems: acquiring and maintaining accurate 
domain models, correct inference about how to adapt given a particular context, and 
the modus operandi of adaptation. So, software machines require models of the world, 
both for interpreting it and for taking action on the world. Models of the world impose 
a new class of requirements, which I call meta-requirements, since they are not  
directly part of the functional requirements requested by the users; instead they are 
requirements which will enable us to build a better and more responsive solution. 
Meta-requirements can be specialised according to the type of context-awareness 

Domain
Model

Monitor

Detect
convert

Domain

Object

change

Interpret

evaluate

uses
knowledge

from

Properties

Sensor

signal

contains

Requirements concerns
• Detectability of events
• Fidelity of detection
• Active or passive sensing
• Identifying events
• Accurate Interpretation

Generic Requirements
• Noise filters
• Pattern classifiers
• Domain model
• Default assumptions
• Interference interpreters
• Probabilistic interpreters

1

3

4
4

5

2

f
ae

a

c

d

b



172 A. Sutcliffe 

problem, e.g. spatial content, change over time, awareness of the user, groups of users 
or societies. These meta-requirements need to be elicited and validated early in the 
process by storyboards and scenarios illustrating a range of adaptive behaviours and 
contexts. Acquiring and maintaining accurate domain models leads to further meta-
requirements which are necessary to specify monitors of domain models, and proc-
esses for updating them. This can become a recursive trap of endless monitoring of 
monitors, although in practice resources enforce limits on the sophistication of aware-
ness a machine (or human) can have about their environment.  

Meta-requirements and more mundane monitoring requirements problems are an-
notated on the sensing model, to draw attention to concerns such as detectability of 
changes, active or passive sensing, and data fusion from multiple sources. Problems 
are mapped to generic requirements which point towards solutions via links to design 
patterns, algorithm libraries, etc.; this generic problem model not only helps analysis 
of an application by giving a ready-made abstract template describing the problem, 
but also points the requirements engineer towards solution knowledge. For example, 
interpreting changes into meaningful events, solutions depend on the modality of data 
capture, e.g. in numeric data, data mining algorithms (clustering, association, pattern 
recognisers, classifiers) are appropriate [14]; for language-based media, text-mining 
algorithms (domain-specific templates, or parsing-semantic analysis) are available 
[15]; while for image media, image recognition algorithms and model-based scene 
interpretation can provide the solution [16].  

On the output boundary, the machine also needs a model of the world that it seeks 
to interact with. This model may be sophisticated and include detailed topography of 
a domain and possible behaviours of the effector device. For example, in robotic ap-
plications a model is necessary to plan actions and how to move, grip and interact 
with the physical world. Less directly coupled are control systems applications which 
interact via physical devices, e.g. motors, switches, and other actuators. Required Be-
haviour and Commanded Behaviour problem frames describe these dependencies well 
but they do not address the problem of domain model acquisition and maintenance, 
except by recourse to workpiece frames as model editors. In mobile and context-
aware systems, the model is essential for planning the response as well as for deter-
mining action. Models of the user are necessary to customise the machine’s output to 
an individual’s needs; furthermore, information itself may need to be output as an 
interactive model in decision support and simulation tools.  

Finally, configuration of systems, either simple or complex, requires editors 
(Workpieces problem frames) connected to user interfaces (Model view controller 
composite frame), with search processes to find appropriate components for the users’ 
goals. This functionality does not map readily to problem frames, which do not con-
tain task/activity-based abstracts; however, it can be modelled in the Domain Theory 
by the Matching generalised task and Object Allocation object system model. Intelli-
gent, adaptable and configurable systems therefore change the relationship between 
requirements specification and the real world in a radical manner. Architectural deci-
sions about how the machine understands the world and operates upon it have to be 
explored early in the requirements process. Configuration makes the relationship be-
tween the required system and the world even more complex since there is a range of 
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possible worlds which machines might be produced to satisfy. The problem frame 
becomes the architecture for managing and delivering the configured machine. 

It is not just an academic debate about abstractions. Early in the requirements  
process the analyst has to take decisions about the sophistication of functional re-
quirements. For example, take a user goal in a health informatics application, to 
automatically analyse health data using the language of researchers (epidemiologists); 
for instance, “Compare the development of obesity in school children in North West 
health authority regions, according to socio-economic background and age”. Such a 
high-level goal (analysing data using the user’s language) motivates many questions 
for refining the requirements; however, my concern is where the architectural deci-
sions fit it. I argue that architectural calls need to be taken early to manage user ex-
pectations. For example, the above requirements could be elaborated along four very 
different paths, depending on architectural assumptions, e.g. 

(i) Full natural language processing so the user can use speech to control the system. 
This implies considerable development cost, customising automatic speech rec-
ognisers, parsers and semantic analysers for speech understanding with dialogue 
management for turn taking, error repair, etc. Such systems are currently only re-
search prototypes.  

(ii) Development of a restricted natural language interface with a domain-specific 
lexicon, and guess-ahead sub-language grammar that allows semi-automatic 
completion of a limited set of analysis requests. Such a solution is still expensive 
but within the capabilities of current technology [17]. 

(iii) Development of a standard menu and form-filling user interface where analysis 
functions are placed in menu lists and parameters are entered in forms. This 
would probably be the most conventional, low-cost approach. 

(iv) Specification of a graphical drag and drop user interface where data sets and 
analysis functions are represented as icons, and the system is operated by drag-
ging data sets on to the appropriate analysis icon. Some limited form filling may 
still be necessary, but this interface could have the advantage of providing a map 
to show where the data sets come from (e.g. areas in the North West). 

The above alternatives could all be explored via storyboards and Wizard of Oz 
techniques to give the user choice about the technology and implementation options. 
The architectural decisions are being exposed early on; moreover, the user is being 
involved in assessing architecture costs, and goal trade-offs. Such decision need not 
involve intelligent systems. In the SCRAM method [18] we explored architectural 
implications of different design solutions in a shipboard emergency management sys-
tem. In this case the decisions concerned the type of monitors for detecting fire and 
chemical hazards, their physical locations on a ship, and the means of communication 
between the captain and crew (wireless, video link to fire crew, RFID tag location 
monitoring, etc).  

In conclusion, architecture and requirements are interleaved early in the RE proc-
ess, especially in socio-technical systems where the locations and role of people and 
hardware devices have to be considered immediately, and in many systems where 
intelligent processing of input or planning output actions is an option. In the next sec-
tion I address the architectural implications hidden in non-functional requirements. 
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2.1   NFRs and Architecture 

Non-functional requirements, or soft goals for the followers of i*, have several affini-
ties with architecture. Non-functional requirements have had a history of controversy, 
whether espoused directly as qualities, performance issues or soft goals [19]. Much of 
the debate has been sparked by the tension between NFRs as statements of high-level 
quality criteria which need to be satisfied by a design, viz. security, usability, privacy 
or maintainability; statements of performance, such as high throughput: transactions 
per unit time, etc., which have to be satisfied by providing adequate architectural re-
sources to deliver the desired performance; or as direct desiderata of architecture, for 
example, portability, maintainability, reliability. The latter NFRs have immediate 
implications for architecture in choice of platforms (Open Source, Microsoft, Apple) 
for development; modular design and configuration for maintainability, with depend-
ability giving implications for safety kernels and fault tolerant processes for reliabil-
ity. As the requirements reification process proceeds, NFRs become specifications of 
functional requirements which deliver the desired qualities. For example, security as a 
soft goal is elaborated as functional requirements (or hard goals in i*) for checking 
authorisation of users using a variety of techniques, logs and audit trails to capture 
undesired access, and encryption to prevent unauthorised access. Rapanotti  et al. [20] 
have explored these implications by positing “architecture frames” based on Jack-
son’s problem frames, whereby the system functions address different aspects of the 
security problem space, with assumptions annotated on to the specification. In this 
case, the system architecture is described in terms of processes for checking identity 
to prevent unauthorised access, audit trails to enable diagnosis of attacks, etc., which 
are specified to satisfy the safety NFR within the bounds of assumptions made about 
the behaviour of operators and processes.  

Several families of NFRs force consideration of architecture early in design. Us-
ability focuses attention on detailed design of the user interface for ease of learning 
and operation, even though usability also includes concerns about functional require-
ments and system effectiveness [21]. Aesthetic design is related to usability to satisfy 
NFRs for attractive/pleasurable products and user interfaces [22, 23]. Aesthetic design 
involves not only decisions about the perceptual look-and-feel of a user interface but 
also how the interaction is structured to achieve the appropriate level of user arousal 
or flow [24]. Requirements for games imply architectural decisions about the virtual 
manifestation of the physical game world, as well as monitors and feedback mecha-
nisms to deliver the optimal flow experience [25]. 

Safety, privacy and reliability turn the designer’s attention towards issues of en-
crypting data, barriers to prevent unauthorised access, identity authorisation  
procedures to prevent undesired access, and layers of defences to ensure unauthorised 
attacks do not succeed.  

To summarise, most NFRs, even those which are performance related, such as ac-
curacy, response time or throughput, have considerable architectural implications. 
Performance-related NFRs imply consideration of architecture in terms of resources. 
For instance, rapid response time needs to be delivered by testing the bandwidth in 
communication, processor resources and machine loading, data storage access times 
and contentions, etc. Surveying the breadth of NFR architectural implications is be-
yond the scope of this chapter; instead, the issue will be investigated further by focus-
ing on a specific area of personalisation. 
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2.2   Personalisation and Contextualisation 

Several related non-functional requirements share the common architectural consid-
eration of designing a system to adapt to the user or its environment, or to provide 
facilities so the machine can be adapted by the user, following the distinction of adap-
tive or adaptable systems [26]. Although terminology is inconsistent in the literature, 
requirements can be specified for personalisation to a specific individual, customisa-
tion for a group of people or a culture, or localisation to a country or culture. Other 
expressions may be more motivated by design considerations of the architecture, such 
as configurability which tends to assume component-based design, or at least parame-
terisation of a design. 

Two main architectural themes emerge depending on the designer’s choice be-
tween adaptive and adaptable systems. 

Adaptive Systems. These systems automatically adapt to either the user’s or the sys-
tems’ context or both. This implies the need for system components to monitor the 
user/environment, interpret the events/objects which have been monitored, and then 
change the system’s appearance, behaviour or mix of services. A generic architecture 
for adaptive systems is illustrated in figure 3. 

 

Fig. 3. Adaptive system architecture, showing both personalisation and contextualisation 

An example of adaptive systems for individual users (personalisation) are Recom-
menders [27], a genre of application which monitors users’ behaviour, typically pur-
chasing in e-commerce, and then makes suggestions about other products the user 
may wish to buy based on their past choices and taxonomies of related products. Ex-
amples of adaptive systems for contextualisation are location-aware tourist guides 
which track the position of a mobile application on PDA, and then provide appropri-
ate information according to the user’s location [28, 29]. 

Adaptive systems pose considerable design challenges in making the recommenda-
tions or planned changes as accurately as possible, given limited information about 
the user and the world. Even with dynamic updating of user and domain models, the 
system’s ability to infer its context accurately is limited. If the change or recommen-
dation is wrong, user dissatisfaction will be the result. Adaptive systems also pose  
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problems in making change unobtrusive, since unexpected or obtrusive change makes 
the system inconsistent, which annoys users [30]. Take the problem of adapting to the 
change in expertise that all users experience as they become familiar with an applica-
tion. At first they need supportive interfaces with plenty of cues, simple commands 
and explanatory help; however, as their expertise grows, long cues, easy to use com-
mands and explanations all get in the way of efficient use. Thus ideally the system 
should radically change its design by providing short cuts, power commands, and 
ability to program macros for advanced users. Unfortunately, these changes upset the 
consistency of the interface which adversely impacts on its usability. This is one of 
several examples where NFRs clash and adaptability can hinder usability. 

In reality, most adaptive systems also employ some adaptable components and give 
the user some control over the adaptive process [31]. 

Adaptable Systems. Adaptable systems place the onus for deciding how to change 
the system on the user. The architectural connotations are summarised in table1 in 
order of increasing complexity.  

Table 1. Architectural implications of adaptability 

Level of adaptability Architecture Implications 

1. Simple parameterisation Palettes, form filling, limited changes to 
functions and UI 

2. Initialisation Set-up Wizards, select functions and UI 
styles 

3. Feature configuration Plugs-ins, limited choice of components for 
variation points 

4. Component engineering Selection of components, end-user devel-
opment facilities 

In the first simple parameterisation level, customisation or configuration is limited 
to changing the behaviour of the system by a range of pre-set choices in palettes and 
form-filling dialogues. Familiar examples in office applications are changing the tool-
bar in MS Word; or altering security and privacy constraints in a Browser. At this 
level, additional requirements emerge for the user interface so the user can enter con-
figuration choices. Configuration rule sets are also needed to call functions to make 
the necessary changes. 

The second level provides more user choice in selection of functionality, and this is 
frequently implemented by configuration wizards which guide the user through a se-
ries of set-up choices. Examples are applications which allow a choice of services, 
such as graphics packages. The additional requirements are for components which can 
be tailored or added according to a range of users’ goals and for the set-up wizard’s 
initialisation sub-system. The architectural components relating to the first- and sec-
ond-level configurability are summarised in figure 4. 
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Fig. 4. Architecture for simple configurable applications 

Functional requirements will still dominate applications, but with the increase in 
range of users that any one application intends to serve, the requirements for configu-
ration facilities also increase. 

Browsers and application frameworks are examples of the third level where the 
user has some choice about the functionality that can be selected from a library of 
components, as well as configuration facilities “inherited” from lower layers, such as 
User Interface look-and-feel. Single-theme applications may also provide functional 
choices; for example, social networking sites such as Facebook allow users a choice 
of a variety of features which they can add to their own personal profile, such as 
games, sending presents to friends, virtual pets, etc. Requirements become more com-
plex since the application is no longer a simple system but approaches a product line 
in complexity with a variety of components that can be added to a basic application 
template. 

At the fourth level are component-based engineering systems with end-user (or ex-
pert) development facilities, which require functions for searching component librar-
ies, matching component interfaces or APIs, development languages for tailoring 
components or writing glue code, with programming functions such as syntax editors, 
debuggers, trace facilities, etc. Enterprise Resource Plans and Product Lines [32] are 
typical architectures at this level.  

Typical configuration components at levels 3 and 4 are illustrated in figure 5. At 
these levels configuration architecture is dominating the system; moreover, functional 
requirements are no longer tied to a single stakeholder, instead they have become sub-
ject to domain analysis to produce a product line or reuse library for component-based 
software engineering. 

Although many applications have configuration at several levels, the levels do pro-
vide a means of classifying the increasing complexity of requirements as configurabil-
ity becomes more complex, and progresses from end-user customisation to end-user 
development, and finally to expert component-based software engineering. 

The architectural implications for configuration at the second and third levels are 
illustrated by an example from the ADVISES project in the next section. 
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Fig. 5. Generic architecture in complex configurable systems 

3   Case Study: Configuring e-Science Applications 

The ADVISES project is developing software tools to help medical health researchers 
in epidemiology. The project has two research aims: first to design high-level inter-
faces for data-driven hypothesis discovery in large-scale epidemiology datasets, es-
sentially providing facilities for researchers to pose research questions in their natural 
language which the system translates into appropriate analysis routines; and secondly 
to design usable and effective visualisations for bio-health informatics. As well as 
producing usable and useful applications for our users, we intend to produce gener-
alisable methods for requirements analysis and usability engineering for e-Science; 
both acknowledged needs [33]. 

The architecture to deliver the baseline requirements is illustrated in figure 6. 
Essentially the system inputs epidemiology datasets (e.g. complex records of 

childhood obesity, with variables on age, sex, weight, height, address, socio-economic 
background, medical history, etc.). These datasets come from local health authorities 
(Primary Care Trusts) but the data frequently have inaccuracies, so functions for data 
cleaning and validation are required. The addresses of individuals have to be mapped 
to postcodes to create area aggregate data. Obesity variables are calculated (Body 
Mass Index), and a variety of statistical routines are run on the data (correlations, 
analysis of variance and regressions), before finally outputting the results using maps 
and graphs. The user interface allows the user to select research questions which then 
call the appropriate statistical routines, and graph/mapping functions. Examples of 
questions are: 

• Is low income an obesity risk for women living in rural as well as urban areas?  
(select adult females in dataset; call 2-way analysis of variance urban/rural, 
high/low income women) 

• Is obesity varying throughout childhood less than it did 10 years ago? 
(select child datasets most recent, 10 years ago, for each year, call analysis of 
variance recent/10 years ago, regression on age cohorts). 
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Fig. 6. ADVISES basic functional architecture 

The requirements in brackets give a high-level summary of the necessary interpreta-
tion rules for the research questions. Some simplification was negotiated with users so 
questions are formulated from menus of keyword lists to avoid complex natural lan-
guage processing; nevertheless, an intelligent rule-based interpreter is still required. 
Other intelligent modules in the system include a visualisation expert which decides 
how to represent different variables, e.g. averages, data, continuous/discrete data, on 
maps by colour coding, texture shading, size, etc. There is also a statistical advisor for 
novice users which warns when the statistical tests implied in the users’ questions may 
be invalid with respect to the data (e.g. use of parametric tests on non-normal distribu-
tions). Even this basic architecture is complex, although it is only serving the needs of 
the immediate users in a limited range of epidemiological investigations. 

However, the ADVISES tools should be generic so they can serve a wider range of 
users in the e-science medical informatics community. Two strategies could be fol-
lowed. First, make the tools customisable and rely on the programming expertise of 
the end users. This is possible to some extent since some medical researchers are ex-
pert in statistical programming languages such as R, but this approach would still 
limit configurability to the statistical analysis routines. The second approach is to add 
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configuration editors, so medical researchers who are not programming experts can 
configure the tools for their own datasets and analysis goals. This approach has been 
followed in several e-science applications by providing configurable workflow editors 
[34] which then call web services to compose user-selected analysis processes. 

The additions to the ADVISES architecture for this configurability are shown in 
figure 7. Several editors have been added to allow users to change validation checks 
and error messages for input data files, edit workflows to configure statistical analyses, 
and change annotations on results. Configuration therefore adds considerable function-
ality to the basic requirements, in the form of data editors which change messages and 
tags, diagram editors to compose statistical analysis sequences, and rule editors to 
change functionality of the rule-based experts for analysis advice and visualisation.  

 

Fig. 7. Extended ADVISES architecture for configurable applications. Configuration delivery 
components are shaded. 

Even this level of complexity hides other requirements which are necessary to en-
able interpretation of the user changes; for instance, workflow modules have an em-
bedded diagram interpreter with rules to link diagram nodes to appropriate statistical 
analysis functions, and validation checks to ensure that users compose legal analysis 
sequences. Further configuration can be added to make the workflow module fully 
generic, so new analysis functions can be added; this requires form-filling editors to 
link new analysis function APIs to diagram nodes, and rule generation in the diagram 
interpreter. 
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Configuration which allows the user to add new functions approaches the complex-
ity of a visual programming language in level 4 of the configuration framework. The 
final point to note is the extent to which configuration facilities may actually be used. 
Given that something in the order of 20-30% of the requirements in the extended sys-
tem are fulfilling configuration needs alone, this represents a considerable investment 
in reaching more users. Layers of configuration are planned to reach, first, other epi-
demiologists, who will require their own research questions, datasets and analysis 
routines. Later layers could extend the system for other research scientists if a wider-
ranging ontology of research questions could be developed. The critical question is, 
"Will the users accept the effort of configuration, or just demand that a default version 
be prepared for them by software engineers?" Hence there is a dilemma about who the 
target users of configuration facilities may be. Most research scientists are very busy 
and dislike spending time not directly linked to their own research work. We therefore 
targeted the configuration editors towards expert end-users of e-science support staff 
who can configure applications for end users. 

As illustrated in the preceding sections of this chapter, systems that can be adapted 
by the user and automatically adapt for the user hide a large number of functional 
requirements which do not directly map to the users’ goals. These requirements may 
be prompted by non-functional requirements for configuration and usability, or to 
enhance the quality of service for a user’s goal. For example, “display results on 
maps” is a user goal in the ADVISES toolset which requires a visualisation expert to 
enhance the quality of visualisation by automatically selecting the appropriate visual 
codings for different data types. These requirements emerge during the dialogue be-
tween users and designers, as the requirements engineer explores how the design 
might be augmented to satisfy the users’ goals in a more sophisticated manner. Hence 
they are in a sense “meta-requirements”: they exist to deliver the users’ goals (con-
ventional functional requirements). Meta-requirements also extend the requirements 
specification from a single static version of the system to one which can be changed 
into versions at design time or change its behaviour at run time. Architecture intrudes 
into the requirements process as the possibilities for intelligent processing are ex-
plored, and configuration enables several groups of stakeholders to be served by one 
application, but at a cost of involving the users in discussions about how configura-
tion may be implemented.  

4   Conclusions 

The implications of meta-requirements are that we need to focus less on conventional 
functional requirements but more on questions about what the machine should know 
about its environment and how it can use the knowledge it possesses to adapt to the 
world. To an extent this concern is not new. Fickas and Feather [5] drew attention to 
requirements monitoring in which an application checked conformance of delivered 
service against a requirements target by monitoring, and Robinson has developed sev-
eral adaptive requirements monitoring systems for e-commerce and other applications 
[35, 36].  
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Other questions concern the range of functional requirements which could be part 
of the application configuration process. Requirements bundling for product releases 
has been explored in processes for configuration and version control and by applying 
evolutionary computing to optimise cost-benefit trade-offs for service bundling [37]. 
While configuration has been addressed in requirements methods for product lines 
and ERP configuration methods, requirements analysis for adaptive systems based on 
domain and user models has received little or no attention. Ideally the more knowl-
edge possessed by the machine, the more accurate and sophisticated its inferences 
could be. However, acquisition of domain knowledge incurs a cost and is a well 
known bottleneck in RE and the development of intelligent systems. One approach to 
finessing the problem is to employ machine learning, and this provides another twist 
to the meta-requirements concept: we need to ask whether it is necessary for the ma-
chine to learn (volatility and knowingness of the world); or how the machine should 
learn with respect to the application domain (e.g. classifiers, BBNs, neural nets, ex-
planation-based learning, etc.). 

Many research issues remain to be solved at the architecture-requirements inter-
face. This chapter has focused on architecture in the physical implementation sense; 
however, architecture is also a conceptual organisation in business or enterprise sys-
tems architecture [38]. Some convergence has been made in modelling enterprise ar-
chitecture in the e3value method [39] which describes components for valued added 
services, although the connection of e3value analysis in enterprise architecture to re-
quirements is so far a matter of heuristic methods for discovering requirements impli-
cations of enterprise designs.  

Better languages are needed to map the convergence of architecture, requirements 
and design, particularly in the field of services engineering, where distributed web 
applications pose questions of distribution in business analysis as much as in require-
ments specification. Requirements languages, notably i*, have been used to describe 
service architectures [40], but these descriptions do not address the deeper issues of 
service composition and mapping requirements to components at optimal levels of 
granularity to enable flexible configuration and reuse. Product-line architectures and 
domain analysis methods [32] do provide notations for feature analysis and variation 
points, but also fail to address the complex intersection of requirements and design. 

In conclusion, this chapter has proposed a definition of meta-requirements, as re-
quirements for maintaining the machine’s ability to interpret and act in a domain, in 
contrast to functional requirements which are responses to the user’s goals or logical 
consequences of interacting with a domain. As software becomes more intelligent, 
context-aware and adaptable, the type of requirements and the way we capture them 
will also need to adapt to future worlds which will become harder to anticipate. We 
will need to educate users and requirements engineers about the architectural implica-
tions of design decisions from the enterprise to the software level, while also solving 
the more difficult problem of component abstraction and granularity to enable flexible 
and efficient composition for requirements in the future with service-led component 
engineering. 
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Abstract. Requirements evolution is a research problem that has re-
ceived little attention hitherto, but deserves much more. For systems to
survive in a volatile world, where business needs, government regulations
and computing platforms keep changing, software systems must evolve
too in order to survive. We discuss the state-of-the-art for research on
the topic, and predict some of the research problems that will need to be
addressed in the next decade. We conclude with a concrete proposal for
a run-time monitoring framework based on (requirements) goal models.

Keywords: Requirements, evolution, monitoring, satisfiability.

1 Introduction

It has been known for decades that changing requirements constitute one of the
greatest risks for large software development projects [1]. That risk manifests itself
routinely in statistics on failure and under-performance for such projects. “Chang-
ing requirements”usually refers to thephenomenonwhere stakeholderskeep chang-
ing their minds on what they want out of a project, and where their priorities lie.
Little attention has been paid to post-deployment requirements changes1, occur-
ring after a system is in operation, as a result of changing technologies, operational
environments, and/or business needs. In this chapter we focus on this class of re-
quirements changes and we refer to them as requirements evolution.

Evolution is a fact of life. Environments and the species that operate within
them – living, artificial, or virtual – evolve. Evolution has been credited with the
most advanced biological species that has lived on earth. The ability to evolve has
also come to be treated as a prerequisite for the survival of a species. And, yet, evo-
lution of the software systems species has only been studied at the level of code and
design, but not at the level of requirements. In particular, there has been consid-
erable research on software evolution, focusing on code reengineering and migra-
tion, architectural evolution, software refactoring, data migration and integration.
1 . . . with the notable exception of research on traceability mechanisms. Of course, trace-

ability is useful for evolving requirements, but doesn’t actually solve the problem.

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 186–214, 2009.
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However, the problem of post-deployment evolution of requirements (as opposed
to architecture, design and/or code) hasn’t made it yet into research agendas (see,
for example, the topics that define the scope of a recently held workshop on “Dy-
namic Software Evolution”, http://se.inf.ethz.ch/ moriol/DSE/About.html).

There are important reasons why requirements evolution is about to become a
focal point for research activity in Software Engineering. The change from local,
isolated communities to the global village isn’t happening only for commerce,
news and the environment. It is also happening for software systems. In the past,
operational environments for software systems were stable, changes were local,
and evolution had only local impact. Today, the operational environment of a
growing number of software systems is global, open, partly unknown and always
unpredictable. In this context, software systems have to evolve in order to cope
(“survive” is the technical term for other species). Some of this evolution will
be at the code level, and some at the architectural level. The most important
evolution, however, will have to take place at the requirements level, to ensure
that a system continues to meet the needs of its stakeholders and the constraints
– economic, legal and otherwise – of its operational environment.

An obvious implication of the rise to prominence of requirements evolution is
that the research to be conducted will have to be inter-disciplinary. Researchers
from Management, Organizational Theory, Sociology and Law will have to be
part of the community that studies root causes for change and how to derive
from them new requirements. Evolution mechanisms and theories that account
for them have been developed in Biology, Engineering, Organizational Theory
and Artificial Intelligence. Some of these may serve as fruitful starting points for
the research to be done.

A precondition for any comprehensive solution to the problem of evolving
requirements is that design-time requirements are properly captured and main-
tained during a system’s lifecycle, much like code. Accordingly, we (optimisti-
cally) predict that the days of lip service to requirements are coming to an end, as
Software Engineering Research and Practice opt for lasting technical solutions in
a volatile world. Growing interest in topics such as autonomic software, semantic
web services, multi-agent and/or adaptive software, peer-to-peer computing (. . .
and more!) give some evidence that this optimism is not totally unwarranted.

The main objective of this chapter is to review the past (section 2) and suggest
a research agenda on requirements evolution for the future (section 3). After a gen-
eral discussion of topics and issues,we focus on one itemof this agenda –monitoring
requirements – to make the discussion more concrete. The remainder of the paper
presents some of our on-goingworkon the problem ofmonitoring requirements and
generating diagnoses. Technical details of this work have been presented in [2].

2 The Past

In the area of software evolution, the work of M. Lehman [3] stands out, with
a proposal backed by empirical data for laws of program evolution. These laws
offer a coarse grain characterization of types of software and the nature of its
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evolution over its lifetime. Lehman’s work on program evolution actually started
with a study of the development of OS/360, IBM’s flagship operating system in
the late 60s. The study found that the amount of debugging decreased over time
and concluded that the system would have a troubled lifetime, which it did. A few
years later, Fred Brooks (academic, but also former OS/360 project manager)
excoriated the IBM approach to software management in his book “The Mythical
Man Month” [4]. Using Lehman’s observations as a foundation he formulated his
own “Brooks’ Law”: adding manpower to a late software project makes it later;
all software programs are ultimately doomed to succumb to their own internal
inertia. Fernandez-Ramil et al. [5] offers a comprehensive collection of recent
research on the topic of software evolution.

As noted in the introduction, the focus of much of the research on software
evolution has been on the code. Few software systems come with explicit links to
requirements models. Pragmatically, it is simpler to understand system evolution
by examining code artifacts – files, classes, and possibly UML diagrams. For
example, Gı̂rba and Ducasse [6] present a metamodel for understanding software
evolution by analysing artifact history. Their discussion pays little attention to
the problem domain, likely because there is no clear way of reconstructing it.
Similarly, Xing and Stroulia [7] use class properties to recapitulate a series of
UML class diagrams to detect class co-evolution. Again, this study pays no
attention to the causes of these changes, some of which relate to requirements.

We begin this section with a discussion of work that first identified the is-
sue of requirements evolution, summarizing various attempts to characterize the
problem using frameworks and taxonomies. We conclude with a look at cur-
rent approaches to managing evolving requirements, including module selection,
management, and traceability.

2.1 Early Work

When discussing the drivers behind an evolving model, and ways of managing
that evolution, there are many definitions and terminologies in use. Various re-
searchers have attempted to categorize the phenomena of evolving systems, the
majority of whom come from the software maintenance community. The impor-
tance of requirements models throughout the software lifecycle has long been rec-
ognized. Basili and Weiss [8] reported that the majority of changes to a system
requirements document were trivial, requiring less than three hours to implement.
However, a few errors required days or weeks to resolve. Similarly, Basili and Per-
ricone [9] report that of errors detected in a system during implementation, 12%
were due to poor requirements (and 36% due to poor specifications). Rather than
present an overarching temporal list, we categorize pertinent research into cate-
gories and draw distinctions between them. The majority of these papers present
viable approaches to understanding the concepts involved. Where there are dif-
ferences, they are typically the result of different perspectives.

Harker et al. [10] classifies requirements into:

1. enduring – core to the business;
2. mutable – a product of external pressures;
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3. emergent – surfaced during thorough elicitation;
4. consequential – identified after product implementation;
5. adaptive – requirements that support system agility; and finally,
6. migration requirements – those which help during the changeover.

Where Rajlich and Bennett [11] and Lientz and Swanson [12] (see below) are dis-
cussing the process (actions) of managing these changing requirements, Harker
et al. are focusing on the structure of those requirements. There are many terms
one might apply to change and evolution in software. Rowe et al. [13] define
evolvability as “a system’s ability to accept change”, with the addition of the
constraints that it be a least-cost change, as well as one preserving the integrity
of the architecture. It isn’t made clear why the preservation of architectural form
is important – perhaps for backwards compatibility.

They mention four properties of evolvability: generality, adaptability, scal-
ability, and extensibility. There is a two-way relationship among these. From
generality to extensibility there is an increasing amount of change required for a
given requirement; from extensibility to generality there is a increasing amount
of up-front cost. In other words, to build an extensible system is initially cheap,
but costly when the change needs to be made, since radical extensions to the
architecture are required. This dimension characterizes a given system in terms
of an architectural state space – similar to the ‘space of action possibilities’
described in Vicente [14, p. 123].

Another state space model is covered in Favre [15], which presents a ‘3D’
model of evolution. The three dimensions are model abstraction (model, meta-
model, etc.), engineering/implementation, and representation. Each dimension
has an associated series of stages, and Favre uses the intersection of these dimen-
sions to map a particular product in a software space. For example, engineering
stages consist of requirements, architecture, design and implementation – the
traditional phases of software development. If we talk about a system at the
meta-level of requirements, with an implicit representation, an example might
be a conceptual metamodel such as the UML metamodel.

Favre suggests the importance of combining these orthogonal dimensions is
for understanding how the various dimensions co-evolve. For example, it is im-
portant to consider whether the specification is co-evolving with the implemen-
tation, whether the modeling language is keeping pace with the technology, etc.
As Favre concludes, it is important to remember that ‘languages, tools, and
programs evolve in parallel’.

To understand the motivations behind making changes to a system, a seminal
work in the field of software maintenance is Swanson [16] (see also Lientz and
Swanson [12]). They categorize software evolution into adaptive (environmental
changes), corrective and perfective (new internal requirements) maintenance.
Later work has added the notion of preventive maintenance. The context in
which this work was done differs greatly from today; however, this division can
be a useful way of understanding the nature of the changes in the environment
which provoke reaction in the system.
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Rajlich and Bennett [11] propose a different model, reflecting their belief that
the post-delivery lifecycle is more complex than the term ‘maintenance’ reflects.
They divide the post-delivery phase into four stages: evolution (major updates),
servicing (corrective maintenance), phaseout, and closedown. Such a model re-
flects activities undertaken by companies like Microsoft and its Windows family
of products. A requirements model is involved at the evolution (and possibly
the servicing) stage. This model may be at odds with more agile development
techniques, although there is a lack of research into the implications of agile
techniques for software maintenance (although see Svensson and Host [17] for a
preliminary assessment).

The process of managing change is also the subject of Nelson et al. [18]. They
talk about flexibility in the context of business processes. Successful organiza-
tions (and their systems) exhibit adaptability, or the willingness to ‘engage the
unfamiliar’. Flexibility is the ability of such a system to handle change pressures
and adapt. This is characterized as either structural or procedural. There are sev-
eral determinants of each. Structural flexibility relies on modularity, or design
separation; change acceptance, the degree to which the technology has built-
in abilities to adapt; and consistency, the ability to make changes painlessly.
Procedural flexibility is determined by the rate of response, system expertise
(up-to-date knowledge), and coordinated action. Together, these characteristics
define what it means for a system to adapt to a given change event. High levels
of the preceding characteristics imply a high affinity to accommodate change.

Many proposed requirements engineering frameworks ignore change accep-
tance, relying on users to understand the nature of the change, and manually
incorporate it. Buckley et al. [19] offer a taxonomy that describes the HOW,
WHEN, WHERE and WHAT questions of software evolution (but not WHY
or WHO). They suggest that such a taxonomy will help in understanding the
mechanisms of the change, with a view to designing strategies for accommo-
dating these processes. They categorize these questions into four dimensions of
software change: change support, temporal change properties, object of change,
and system properties. They analyze three tools which have seen evolution along
the lines of the taxonomy. Requirements change is not specifically mentioned,
but can be thought of as driving temporal change properties – e.g., a change in
the environment will drive a change in the software.

In an attempt to bring together various software maintenance taxonomies,
Chapin et al. [20] propose a high-level taxonomy for understanding the types of
activities that occur in this area. The ontology is based on an impact model,
examining evolution in the context of change to business processes and change
to software (presumably this can be extended to refer to software-based system).
They classify change events into a cascading, 4-part hierarchy of 12 categories,
reflecting what they say is the wide diversity of concepts that exist in research
and practice. Extending from perfective, adaptive, and corrective, they include
four categories: support interface, documentation, software properties, and busi-
ness rules.
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For example, within business rules they define three changes: reductive, cor-
rective, and enhancive. Their business rules category has the closest relationship
to the concept of requirements. Changes in this category also have the high-
est impact on both software and business processes. According to this defini-
tion then, requirements changes will have the greatest cost for an organization.
This idea certainly fits with the research findings suggesting that fixing require-
ments problems consistitute by far the largest cost in system maintenance (e.g.,
see Standish reports, although these are of uncertain research value). However,
Chapin et al. do not explicitly discuss requirements. For example, they men-
tion ‘change requests’, user-driven needs, as drivers, but make no reference to
updated requirements. They also distinguish between maintenance – changes in
the first 3 categories – and evolution, which (in their definition) primarily affects
business rules. This is certainly the sense this chapter refers to.

Many of the prior papers mention requirements only because an implicit
change in requirements has driven some corresponding change in the imple-
mented software system. However, our research is concerned with the nature
of these requirements changes. This was also the subject of research by Mas-
simo Felici. In [21], he refers to requirements evolving in the early phases of
a system, with perfective maintenance occurring toward the end of a system’s
lifespan. However, this view is at odds with the current view of requirements as
something that exists throughout the project lifecycle.

In [22], the analysis begins with the observation that requirements frameworks
generally do a poor job handling evolving requirements. The PROTEUS classi-
cation of requirements evolution (that of Harker et al.) is presented as a way to
understand how requirements evolve. A requirement is either stable or chang-
ing. If the latter, it can be one of five subtypes: mutable, due to environmental
factors; emergent, due to stakeholder engagement; consequential, resulting from
the interaction of system and environment; adaptive, due to task variation; and
migration, arising from planned business changes. This taxonomy of causes of
requirements evolution is fairly concise yet comprehensive. Felici also discusses
the similar causal taxonomy of Sommerville and Sawyer [23], which they term
‘volatile requirements’. Sommerville and Sawyer use the categories of mutable,
emergent, consequential, and compatibility requirements. Similarly, [24] presents
the EVE framework for characterizing change, but without providing specifics
on the problem beyond a metamodel.

2.2 Requirements Management

Requirements management studies how best to control the impacts of change
on requirements. Properly managing change events — such as new stakeholder
requirements — can be essential to reducing the amount of model evolution that
occurs. A key research contribution in this area is a better understanding of how
exactly these external pressures manifest themselves.

For example, Stark et al. [25] discuss change to requirements during the sys-
tem release process. A release can be a minor version of an existing product, so
this is a legitimate use of the term requirements evolution. They were responsible
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for the development of missile warning software. The study produced some in-
valuable information on how change was occurring in the project: for example,
108 requirements were changed, and of this figure, 59% were additions (scope
creep). They attempt to produce a predictive model of changes, but it isn’t clear
how generalizable such a model would be.

Similar research is reported by Basili and Weiss [8], in the context of another
military project, the A-7 control software. They describe the nature of require-
ments changes on the project. The biggest issue seemed to be that many of the
facts used in the requirements document were simply incorrect (51% of errors).
They also categorize the errors from trivial to formidable. Although only one of
the latter was encountered, it required 4 person-weeks of effort to resolve.

Lormans et al. [26] motivates a more structured approach to requirements
management. They used a formal requirements management system, but en-
countered difficulty in exchanging requirement models with clients. Such ‘mod-
els’ were often in text form, or semi-structured representations. They propose a
more elaborate management model that can address some of these challenges.

Wiegers [27] discusses four common tools for requirements management. To
some degree each support the notion of managing evolving requirements. There
is a question as to how well these tools reflect the reality in the code. Typi-
cally the tools store requirements as objects or relations, and then allow various
operations, such as mapping to test suites or design documents. The biggest
challenge is often maintaining traceability links between requirements and im-
plementation. Roshandel et al. [28] discuss one approach for managing architec-
tural evolution in sync with code. Another approach is to ignore everything but
the source code, and reverse engineering requirements from there, as described
in Yu et al. [29]. Finally, managing requirements will require configuration man-
agement tools similar to CVS, Subversion, and other code repositories. Tools
like diff or patch need analogues in the model domain. Work in model merging,
e.g., Niu et al. [30] will be important here.

Another emerging issue is the design of dynamic, adaptive software-based
system. We discuss one approach to design such a system in section 4. Such
systems are composed of multiple components, which may not be under one’s
direct control. Such systems are often categorized as Software as Service (SaaS)
or Service-Oriented Architecture (SOA) domains. For these domains, we view re-
quirements as the business drivers that specify which components, and in what
priority, should be composed. A paper by Berry et al. [31] provides a useful
‘four-level’ characterization of the nature of the compositions and adaptations
involved: the levels correspond to who (or what) is doing the requirements anal-
ysis: 1) the designer, on the domain; 2) the adaptive system, upon encountering
some new condition; 3) the designer of the system, attempting to anticipate the
nature of the second adaptation; or 4) a designer of new adaptation mechanisms.

Composing these components (or agents, or services) is an emerging research
problem, and one in which requirements evolution will have a major role. Work
on software customization Liaskos [32], for example, provides some insight into
techniques for managing such composition, although it ignores the problem of
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changes in the underlying requirements themselves. Related work in Jureta et al.
[33] makes more explicit the idea that requirements cannot be fully specified prior
to system implementation. They characterize this approach as one in which
there is only one main requirement for the system, namely, that the system
be able to handle any stakeholder requirement. Determining which stakeholder
requirements are reasonable (i.e., within system scope) will be an important
research problem.

Recent work has focused on Commercial Off-The-Shelf (aka COTS) compo-
nents. A change in one component, driven by an evolution in a particular re-
quirement, might impact other components. Etien and Salinesi [34] term this
co-evolution. It is a challenge to integrate these COTS-based systems in such an
environment:

[COTS-based systems] are uncontrollably evolving, averaging up to 10
months between new releases, and are generally unsupported by their
vendors after three subsequent releases. (Boehm [35, p. 9])

The work that led to that analysis, Yang et al. [36], discusses the issue of
COTS-based software and requirements. They claim that defining requirements
before evaluating various COTS options prematurely commits the development
to a product that may turn out to be unsuitable. They argue for a concur-
rent development methodology that assesses COTS feasibility at the same time
as developing the system itself. In other words, they argue for a spiral model
approach (Boehm, 1988) to developing the requirements for such systems (not
surprisingly). Nuseibeh [37] makes a similar point with his ‘Twin Peaks’ model.
A requirements management tool that provided support for understanding the
features, capabilities, and likelihood of change in various COTS products would
be invaluable in such systems. Understanding how the requirements themselves
might evolve would be one important aspect.

Traceability is an aspect of requirements management that identifies inter-
dependencies between elements in the environment to elements within a system.
Traceability is a necessary, but not a sufficient mechanism for managing evolving
requirements. Without a link, the downstream impact of requirements changes
will not be clear. Traceability can be divided into two aspects, after Gotel and
Finkelstein [38]. One needs a trace from the various phenomena in the environ-
ment, to the specification of the requirements for the system. Once specified, a
link should also be established between the specification and the implementation.
The former case is relatively less studied, and is less amenable to formalization.

Requirements monitoring, first proposed in [39], and extended in [40], is one
mechanism for tracing between requirements and code. Monitoring involves in-
serting code into a system to determine how well requirements are being met.
A monitor records the usage patterns of the system, such as numbers of li-
censes in use. This information can be extracted and used to evolve the system,
possibly dynamically. In this sense, monitors are quite similar to control instru-
mentation in, for example, industrial plants. This approach is promising, but
does assume that requirements and environmental conditions can be specified
accurately enough that monitoring is possible.
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Traceability is more difficult with non-functional requirements, because by
definition these requirements do not have quantitative satisfaction criteria. Cleland-
Huang et al. [41] discuss a probabilistic information retrieval mechanism for
recovering non-functional requirements from class diagrams. Three broad cate-
gories of artifacts are defined. A softgoal model is used to assess change impacts
on UML artifacts, and an information retrieval approach is used to generate the
traceability links between the two models. Ramesh and Jarke [42] give a lengthy
overview of empirical studies of requirements traceability.

Monitoring also has a vital role to play in the design of autonomic systems
([43]). These are systems that can can self-repair, self-configure, self-optimize
and self-protect. Of course, the ability to self-anything presupposes that such
systems monitor the environment and their performance within that environ-
ment, diagnose failures or underperformance, and compensate by changing their
behaviour.

3 A Research Agenda for 2020

So, assume that we have our operating software system and changes occur that
need to be accommodated, somehow. The changes may be in the requirements of
the system. For example, new functions need to be supported, or system perfor-
mance needs to be enhanced. Increasingly, changes to requirements are caused
by laws and regulations intended to safeguard the public’s interests in areas of
safety, security, privacy and governance. Changes may also be dictated by chang-
ing domain assumptions, such as increased workload caused by increased business
activity. Last, but not least, changes may be dictated by new or evolving tech-
nologies that require migration to new platforms. New or evolving technologies
can also open new opportunities for fulfilling business objectives, for example by
offering new forms of business transactions, as with e-commerce and e-business.

Whatever the cause for a change, there are two basic approaches for dealing
with it. The first, more pedestrian, approach to change has software engineers
deal with it. This approach has traditionally been called software maintenance
and it is generally recognized as the most expensive phase in a software system’s
lifecycle. A second approach for dealing with a change is to make the system
adaptive in the first place, so that it can accommodate changes by using internal
mechanisms, without human intervention or at least with intervention from end
users only. The obvious advantage of this approach is that it makes change more
immediate and less costly. Its main drawback, on the other hand, is that change
needs to be thought out at design time, thereby increasing the complexity of the
design. The recent focus on autonomic and/or adaptive software in the research
community suggests that we are heading for automated approaches to software
evolution, much like other engineering disciplines did decades ago.

Next, we list a number of research strands and discuss some of the problems
that lie within their scope.

Infrastructure for requirements evolution. Research and practice on
code evolution has produced a wealth of research concepts and tools. Version
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control and configuration management, reverse engineering and visualization
tools, refactoring and migration tools, among many. As indicated earlier, soft-
ware of the future will consist not only of code and documentation, but also
requirements and other types of models representing design, functionality and
variability. Moreover, their interdependencies, for example, traceability links, will
have to be maintained consistent and up-to-date for these artifacts to remain
useful throughout a system’s lifetime. Accordingly, the infrastructure for code
evolution will have to be extended to accommodate these other kinds of artifacts.
This is consistent with Model-Driven Software Engineering, as advocated by the
Object Management Group (OMG).

Focusing on requirements, an infrastructure for requirements evolution will
have to include tools for version control, configuration management and visu-
alization. These tools will have to accommodate the kinds of models used to
represent requirements. These models range from UML use cases that represent
functional aspects of the system-to-be, all the way to goal models that capture
stakeholder needs and rationalize any proposed functionality for the system-to-
be. The problem of evolving traceability links from requirements to code has
already been dealt with in the work of Jane Cleland-Huang and her colleagues
(e.g., [44, 41, 45]).

Understanding root causes for change. We are interested here in char-
acterizing generic root causes for change that dictate requirements evolution.
For example, businesses are moving into network-based business models, such
as service value networks and ecosystems. Such trends are bound to generate a
host of new requirements on operational systems that will have to be addressed
by requirements engineers and software reengineers. As another example, Gov-
ernments around the world have been introducing legislation to address grow-
ing concerns for security, privacy, governance and safety. This makes regulatory
compliance another major cause for requirements change. The introduction of
a single Act in the US (Sarbanes-Oxley Act) in 2002 resulted in a monumental
amount of change for business processes as well as software in business organi-
zations. The costs of this change have been estimated at US$5.8B for one year
alone (2005).

We would like to develop tools and techniques for systematically extracting
requirements from laws and regulations. In tackling this research task, it is im-
portant to note that the concepts of law, such as “right” and “obligation”, are
not requirements. Consider a law about privacy that makes it an obligation for
employers to protect and restrict the use of employee personal information stored
in their databases. This obligation may be translated in many different ways into
responsibilities of relevant actors so that the obligation is met. Each of these as-
signments of responsibility corresponds to a different set of requirements – i.e.,
stakeholder needs – that will have to be addressed by the software systems and
the business processes of an organization.

This is a broad, inter-disciplinary and long-term research strand. Some re-
search within its scope has already been done by Annie Anton, Travis Breaux
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and colleagues, e.g., [46]. This is also the topic of Alberto Siena’s PhD thesis,
see [47] for early results.

Evolution mechanisms. Once we have identified what are the changes to re-
quirements, we need to implement them by changing the system-at-hand. This
may be done manually, possibly with tool support, by developing novel reengi-
neering techniques. More interestingly, evolution may be done automatically by
using mechanisms, inspired by different disciplines (Biology, Control Theory,
Economics, Machine Learning, . . . ). Doing research along this strand will re-
quire much experimentation to evaluate the effectiveness of different evolution
techniques.

A number of research projects are working on design principles for auto-
nomic and adaptive software systems (see, for example, on-going series of ICSE
workshops on Software Engineering for Adaptive and Self-Managing Systems,
http://www.hpi.uni-potsdam.de/giese/events/2008/seams2008/). Many of these
projects employ a monitor-diagnose-compensate feedback loop in order to sup-
port adaptation of a system in response to undesirable changes of monitored
data. The inclusion of such a feedback loop in support of adaptivity introduces
the problem of designing monitoring, diagnosis and compensation mechanisms in
the architecture of software systems. Control Theory offers a rich set of concepts
of research results on how to design such loops in the realm of real-time con-
tinuous processes. Unfortunately, the development of such a theory for discrete
systems is still in its early stages (though work has been done, see for example
[48]).

Design for evolution. Some designs are better suited for evolution than others.
For example, a design that can deliver a given functionality in many different
ways is better than one that delivers it in a single way. Such designs are said to
have high variability.

Variability is an important topic in many scientific disciplines that study
variations among the members of a species, or a class of phenomena. In fact,
the theory of evolution as presented by Darwin [49] holds that variability exists
in the inheritable traits possessed by individual organisms of a species. This
variability may result in differences in the ability of each organism to reproduce
and survive within its environment. And this is the basis for the evolution of
species. Note that a species in Biology corresponds to a high variability software
system in Software Engineering, while an individual organism corresponds to a
particular configuration of a high variability software system.

Variability has been studied in the context of product families [50], where vari-
ation points define choices that exist within the family for a particular feature
of the family. The space of alternative members of a family can be characterized
by a feature model [51]. Feature models capture variability in the design space
of a product family, or a software system for that matter. They tell us what
configurations of features are consistent and can co-exist within one configura-
tion. For example, variation points may arise from the operating platform on
which a family member will run (Windows, Linux, MacOS), or the weight of the
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functionality offered (personal, business, pro). Problem variability, on the other
hand, focuses on variability in the problem to be solved. For instance, schedul-
ing a meeting may be accomplished by having the initiator contact potential
participants to set a time and location. Alternatively, the initiator may submit
her request to a meeting scheduler who does everything. The alternatives here
characterize the structure of the problem to be solved and have nothing to do
with features that the system-to-be will eventually have.

Designing for variability through analysis of both the problem and design
space will remain a fruitful area of research with Requirements Engineering. See
[32] for a PhD thesis that focuses on problem variability.

Variability of biological species changes over time, as variants are created
through mutation or other mechanisms, while others perish. We need compara-
ble mechanisms for software through which the set of possible instances for a
software system changes over time. In particular, it is important to study two
forms of variability change: means-based variability, and ends-based variability.

Means-based variability change leaves the ends/purpose of a software system
unchanged, but changes the means through which the ends can be achieved.
For example, consider a meeting scheduling system that offers a range of alter-
natives for meeting scheduling (e.g., user/system collects timetable constraints
from participants, user/system selects meeting timeslot). Means-based variabil-
ity may expand the ways meetings can be scheduled, for example, by adding
a ”meeting scheduling by decree” option where the initiator sets the time and
expects participants to re-arrange their schedules accordingly.

Ends-based variability change, on the other hand, changes the purpose of
the system itself. For instance, the meeting scheduler needs to be turned into
a project management software system, or an office management toolbox. In
this case, care needs to be exercised in managing scarce resources (e.g., rooms,
people’s time). Desai et al. [52] offers a promising direction for research on this
form of variability change. Along a different path, Rommes and America [53]
proposes a scenario-based approach to creating a product line architecture that
does take into account possible long-term changes. through the use of strategic
scenarios.

Modularity is another fundamental trait of evolvable software systems. Mod-
ularity has been researched throughly since the early 70s. A system is highly
modular if it consists of components that have high (internal) cohesion and
low (external) coupling. A highly modular system can have some of its compo-
nents change with low impact on other components. Interestingly, Biology has
also studied how coupling affects evolution. In particular, organisms in nature
continuously co-evolve both with other organisms and with a changing abiotic
environment. In this setting, the ability of one species to evolve is bounded
by the characteristics of other species that it depends on. Accordingly, Kauff-
man [54] introduces the NKC model, named after the three main components
that determine the behaviors of species’ interaction with one another. According
to the model, the co-evolution of a system and its environment is the equilib-
rium of external coupling and internal coupling. [55] presents a very preliminary
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attempt to use this model to account for the co-evolution of software systems
along with their environment.

Modularity and variability are clearly key principles underlying the ability
of a species to evolve. It would be interesting to explore other principles that
underlie evolvability.

There are deeper research issues where advances will have a major influence
on solutions for the problem-at-hand. We mention three such issues:

Science of design. According to H. Simon’s vision [56], a theory of design that
encompasses at least three ingredients: (a) the purpose of an artifact, (b) the
space of alternative designs, (c) the criteria for evaluating alternatives. Design
artifacts that come with these ingredients will obviously be easier to evolve.

Model evolution. Models will be an important (perhaps the) vehicle for dealing
with requirements evolution. Unfortunately, the state-of-the-art in modeling is
such that models become obsolete very quickly, as their subject matter evolves.
In Physics and other sciences, models of physical phenomena do not need to
evolve because they capture invariants (immutable laws).

We either need here a different level of abstraction for modeling worlds of in-
terest to design (usually technical, social and intentional), so that they capture
invariants of the subject matter. Alternatively, we need techniques and infras-
tructures for model evolution as their subject matter changes.

Evolutionary design.2 Extrapolating from Darwin’s theory of evolution where
design happens with no designer [57], we could think of mechanisms through
which software evolves without any master purpose or master designer. An ex-
ample of non-directed design is the Eclipse platform (eclipse.org). Rather than
one centrally directed, purpose-driven technology, Eclipse has evolved into an
ecology supporting multiple components, projects and people, leveraging the
advantages of open-source licences. These software ecologies act as incubators
for new projects with diverse characteristics. It would be fruitful to understand
better the evolutionary processes taking place in these ecologies and invent other
mechanisms for software evolution that do not involve a single master designer
(also known as intelligent design in some places . . . ) This is in sharp contrast to
Simon’s vision. At the same time, this is an equally compelling one.

4 Monitoring Requirements

Requirement monitoring aims to track a system’s runtime behavior so as to
detect deviations from its requirement specification. Fickas and Feather’s work
([39, 40]) presents a run-time technique for monitoring requirements satisfac-
tion. This technique identifies requirements, assumptions and remedies. If an
assumption is violated, the associated requirement is denied, and the associated
remedies are executed. The approach uses a Formal Language for Expressing As-
sumptions (FLEA) to monitor and alert the user of any requirement violations.
2 . . . or, “Darwin’s dangerous idea” [57].
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Along similar lines, Robinson has proposed a requirements-monitoring frame-
work named ReqMon [59]. In this framework, requirements are represented in
the goal-oriented requirements modeling language KAOS [60] and through sys-
tematic analysis techniques, monitors are extracted that are implemented in
commercial business process monitoring software.

We present an alternative approach to requirements monitoring and diagno-
sis. The main idea of the approach is to use goal models to capture requirements.
From these, and on the basis of a number of assumptions, we can automatically
derive monitoring specifications and generate diagnoses to recognize system fail-
ures. The proposal is based on diagnostic theories developed in AI, notably in
Knowledge Representation and AI Planning research [61].

The monitoring component monitors requirements and generates log data
at different levels of granularity that can be tuned adaptively depending on
diagnostic feedback. The diagnostic component analyzes generated log data and
identifies errors corresponding to aberrant system behaviors that lead to the
violation of system requirements. When a software system is monitored with
low granularity, the satisfaction of high level requirements is monitored. In this
case, the generated log data are incomplete and many possible diagnoses can
be inferred. The diagnostic component identifies the ones that represent root
causes.

Software requirements models may be available from design-time, generated
during requirements analysis, or they may be reverse engineered from source
code using requirements recovery techniques (for example, Yu et al. [29]). We
assume that bi-directional traceability links are provided, linking source code to
the requirements they implement.

4.1 Preliminaries

Goal models have been used in Requirement Engineering (RE) to model and
analyze stakeholder objectives [60]. Functional requirements are represented as
hard goals, while non-functional requirements are represented as soft goals [62].
A goal model is a graph structure, where a goal can be AND- or OR- decomposed
into subgoals and/or tasks. Means-ends links further decompose leaf level goals
to tasks (“actions”) that can be performed to fulfill them. At the source code
level, tasks are implemented by simple procedures or composite components that
are treated as black boxes for the purposes of monitoring and diagnosis. This
allows a software system to be monitored at different levels of abstraction.

Following [63], if goal G is AND/OR decomposed into subgoals G1, . . . , Gn,
then all/at-least-one of the subgoals must be satisfied for G to be satisfied.
Apart from decomposition links, hard goals and tasks can be related to each
other through MAKE(++) and BREAK(--) contribution links. If a MAKE (or
a BREAK) link leads from goal G1 to goal G2, G1 and G2 share the same (or
inversed) satisfaction/denial labels.

As an extension, we associate goals and tasks with preconditions and postcon-
ditions (hereafter effects, to be consistent with AI terminology) and monitoring
switches. Preconditions and effects are propositional formulae, in Conjunctive
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Normal Form (CNF), whose truth values are monitored and analyzed during
diagnostic reasoning. Monitoring switches can be switched on/off to indicate
whether satisfaction of the requirements corresponds to the goals/tasks is to be
monitored at run time.

The propositional satisfiability (SAT) problem is concerned with determining
whether there exists a truth assignment to variables of a propositional formula
that makes the formula true. If such a truth assignment exists, the formula is
said to be satisfiable. A SAT solver is any procedure that determines whether a
propositional formula is satisfiable, and identifies the satisfying assignments of
variables if it is.

The earliest and most prominent SAT algorithm is DPLL (Davis-Putnam-
Logemann-Loveland) [64]. Even though the SAT problem is inherently
intractable, there have been many improvements to SAT algorithms in recent
years. Chaff ([65]), BerkMin ([66]) and Siege ([67]) are among the fastest SAT
solvers available today. Our work uses SAT4J ([68]), an efficient SAT solver that
inherits a number of features from Chaff.

4.2 Framework Overview

Satisfaction of a software system’s requirements can be monitored at different
levels of granularity. Selecting a level involves a tradeoff between monitoring
overhead and diagnostic precision. Lower levels of granularity monitor leaf level
goals and tasks. As a result, more complete log data are generated, leading
to more precise diagnoses. The disadvantage of fine-grained monitoring is high
overhead and the possible degradation of system performance. Higher levels of
granularity monitor higher level goals. Consequently, less complete log data are
generated, leading to less precise diagnoses. The advantage is reduced monitoring
overhead and improved system performance.

We provide for adaptive monitoring at different levels of granularity by asso-
ciating monitoring switches with goals and tasks in a goal model. When these
switches are turned on, satisfaction of the corresponding goals/tasks is monitored
at run time. The framework adaptively selects a monitoring level by turning these
switches on and off, in response to diagnostic feedback. Monitored goals/tasks
need to be associated with preconditions and effects whose truth values are mon-
itored and are analyzed during diagnostic reasoning. Preconditions and effects
may also be specified for goals/tasks that are not monitored. This allows for
more precise diagnoses by constraining the search space.

Figure 1 provides an overview of our monitoring and diagnostic framework.
The input to the framework is the monitored program’s source code, its cor-
responding goal model, and traceability links. From the input goal model, the
parser component obtains goal/task relationships, goals and tasks to be moni-
tored, and their preconditions and effects. The parser then feeds this data to the
instrumentation and SAT encoder components in the monitoring and diagnostic
layers respectively.
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Fig. 1. Framework Overview

In the monitoring layer, the instrumentation component inserts software
probes into the monitored program at the appropriate places. At run time, the
instrumented program generates log data that contains program execution traces
and values of preconditions and effects for monitored goals and tasks. Offline,
in the diagnostic layer, the SAT encoder component transforms the goal model
and log data into a propositional formula in CNF which is satisfied if and only
if there is a diagnosis. A diagnosis specifies for each goal and task whether or
not it is fully denied. A symbol table records the mapping between propositional
literals and diagnosis instances. The SAT solver finds one possible satisfying as-
signment, which the SAT decoder translates into a possible diagnosis. The SAT
solver can be repeatedly invoked to find all truth assignments that correspond
to all possible diagnoses.

The analyzer analyzes the returned diagnoses, searching for denials of system
requirements is found. If denials of system requirements are found, they are
traced back to the source code to identify the problematic components. The
diagnosis analyzer may then increase monitoring granularity by switching on
monitoring switches for subgoals of a denied parent goal. When this is done,
subsequent executions of the instrumented program generate more complete log
data. More complete log data means fewer and more precise diagnoses, due to
a larger SAT search space with added constraints. If no system requirements
are denied, monitoring granularity may also be decreased to monitor fewer (thus
higher level) goals in order to reduce monitoring overhead. The steps described
above constitute one execution session and may be repeated.

4.3 Formal Foundations

This section presents an overview of the theoretical foundations of our frame-
work. The theories underlying our diagnostic component (presented in section
4.2) are adaptations of the theoretical diagnostic frameworks proposed in [69,
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70, 61]. Interested readers can refer to [2] for a complete and detailed account of
the presented framework.

Log Data. Log data consists of a sequence of log instances, each associated
with a specific timestep t. A log instance is either the observed truth value of
a domain literal, or an occurrence of a particular task. We introduce predicate
occa(ai, t) to specify occurrence of task ai at timestep t. For example, if literal
p is true at timestep 1, task a is executed at timestep 2, and literal q is false at
timestep 3, their respective log instances are: p(1), occa(a, 2), and ¬q(3).

Successful execution of tasks in an appropriate order leads to satisfaction of
the root goal. A goal is satisfied in some execution secession s if and only if all the
tasks under its decomposition are successfully executed in s. Goal satisfaction
or denial may vary from session to session. The logical timestep t is incremented
by 1 each time a new batch of monitored data arrives and is reset to 1 when a
new session starts.

We say a goal has occurred in s if and only if all the tasks in its decomposition
have occurred in s. Goal occurrences are not directly observable from the log
data. Instead, our diagnostic component infers goal occurrence from task occur-
rences recorded in the log. Two timesteps, t1 and t2, are associated with goal
occurrences, representing the timesteps of the first and the last executed task in
the goal’s decomposition in s. We introduce predicate occg(gi, t1, t2) to specify
occurrences of goals gi that start and end at timesteps t1 and t2 respectively. For
example, suppose goal g is decomposed into tasks a1 and a2, and we have in the
log data occa(a1, 4), occa(a2, 7) indicating that tasks a1 and a2 have occurred at
timesteps 4 and 7 respectively. Then occg(g, 4, 7) is inferred to indicate that g’s
occurrence started and ended at timesteps 4 and 7.

Theories of Diagnosis. The diagnostic component analyzes generated log
data and infers satisfaction/denial labels for all the goals and tasks in a goal
model. This diagnostic reasoning process involves two steps: (1), inferring sat-
isfaction/denial labels for goals/tasks that are monitored; and (2), propagating
these satisfaction/denial labels to the rest of the goal model. Note that if a
goal/task is not monitored, but is associated with a precondition and an effect
whose truth values are recorded in the log or can be inferred from it, then its
satisfaction/denial is also inferred from step 1.

Intuitively, a goal g can be denied in one of three ways: (1) g itself can be
denied, if it is monitored or if the truth values of its precondition and effect
are known; or (2) one of g’s children or parents is denied and the deniability
is propagated to g through AND/OR decomposition links; or (3) one of the
goals/tasks that are linked to g through MAKE(++)/BREAK(--) contribution
links is denied/satisfied, in which case the denial label is propagated to g. As
with goals, tasks get their denial labels if they themselves are denied, or if their
parents are denied and denial labels are propagated down to them.

We reduced the problem of searching for a diagnosis to that of the satisfiability
of a propositional formula Φ, where Φ is the conjunction of the following axioms:
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(1) axioms for reasoning with goal/task denials (step 1); and (2) axioms for
propagating inferred goal/task denials to the rest of the goal model (step 2).

Axiomatization of Deniability. The denial of goals and tasks is formulated
in terms of the truth values of the predicates representing their occurrences,
preconditions and effects. We introduce a distinct predicate FD to express full
evidence of goal and task denial at a certain timestep or during a specific session.
FD predicates take two parameters: the first parameter is either a goal or a task
specified in the goal model, and the second parameter is either a timestep or a
session id. For example, predicates FD(g1, 5) and FD(a1, s1) indicate goal g1
and task a1 are denied at timestep 5 and session s1 respectively.

Intuitively, if a task’s precondition is true and the task occurred at timestep
t, and if its effect holds at the subsequent timestep t + 1, then the task is not
denied at timestep t + 1. Two scenarios describe task denial: (1)3 if the task’s
precondition is false at timestep t, but the task still occurred at t; or (2) if the
task occurred at timestep t, but its effect is false at the subsequent timestep
t + 1. Task denial axioms are generated for tasks to capture both of these cases.

We illustrate task denial axioms using the following example. Consider a task
a with precondition p and effect q. If the monitoring component generates one
of the following two log data for a, task a’s denial is inferred:

Log data 1: ¬p(1); occa(a, 1)
Log data 2: p(1); occa(a, 1); ¬q(2)
The first log data corresponds to the first task failure scenario: a’s precon-

dition p was false at timestep 1, but a still occurred at 1. The second log data
corresponds to the second failure scenario: a’s precondition was true and a oc-
curred at timestep 1, but its effect q was false at the subsequent timestep 2. The
diagnostic component infers FD(a, 2) in both of these cases, indicating that task
a has failed at timestep 2.

These failure scenarios also apply to goals. Recall that goal occurrences are
indexed with two timesteps t1 and t2 that correspond to the occurrence timesteps
of the first and last executed tasks under goal’s decomposition. A goal g with
precondition p and effect q is denied if and only if (1) goal occurrence started at
t1 when p is false; or (2) after goal occurrence finished at t2 + 1, q is false.

For instance, if g is decomposed to tasks a1 and a2, the following sample log
data correspond to the two failure scenarios for goal g:

Log data 3: ¬p(1); occa(a1, 1); occa(a2, 2)
Log data 4: p(1); occa(a1, 1); occa(a2, 2); ¬q(3)
From either of the two log data, the diagnostic component infers occg(g, 1, 2),

indicating that g’s occurrence started and ended at timesteps 1 and 2 respec-
tively. Log data 3 and 4 correspond to the first and second goal failure scenarios
respectively: p is false when g’s occurrence started at timestep 1, and q is false
after g’s occurrence at timestep 3. In either of these cases, the diagnostic com-
ponent infers FD(g, 3), indicating that goal g is denied at time step 3.

3 In many axiomatizations it is assumed that occa(a, t) → p(t).
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We say a goal or a task is denied during an execution session s if the goal/task
is denied at some timestep t within s. Returning to the above examples, if
FD(a, 2) and FD(g, 3) are inferred, and if timesteps 2 and 3 fall within execu-
tion session s1, the diagnostic component further infers FD(a, s1) and FD(g, s1).
Inferring goal/task denials for an execution session is useful for efficiently prop-
agating these denial labels to the rest of the goal model.

In the AI literature, propositional literals whose values may vary from
timestep to timestep are called fluents. A fluent f can take on any arbitrary
value at timestep t + 1 if it is not mentioned in the effect of a task that is exe-
cuted at timestep t. Axioms are needed to specify that unaffected fluents retain
the same the values from timestep to timestep. An axiom is generated to specify
that if the value of a fluent f changes at timestep t, then one of the tasks/goals
that has f in its effect must have occurred at t − 1 and not have been denied
at t. In other words, the truth value of f reminds constant from one timestep
to the next, until one of the actions/goals that have f in its effect is executed
successfully. For example, consider a task a with effect q, and assume q is not
in any other goal’s/task’s effect. Suppose the log data include: ¬q(1), occa(a, 3),
and q(5). Then an axiom is generated to infer ¬q(2), ¬q(3),and q(4).

4.4 Axiomatization of a Goal Model

Goal/task denials, once inferred, can be propagated to the rest of the goal graph
through AND/OR decomposition links and MAKE/BREAK contribution links.
Axioms are generated to describe both label propagation processes.

If a goal g is AND (or OR) decomposed into subgoals g1,. . . , gn, and tasks
a1, . . . , am, then g is denied in a certain session, s, if and only if at least one (or
all) of the subgoals or tasks in its decomposition is (or are) denied in s.

Goals and tasks can be related to each other through various contribution
links: ++S, --S, ++D, --D, ++, --. Link ++ and link -- are shorthand for the ++S
and ++D, and the --S and --D relationships, respectively, and they represent
strong MAKE(++) and BREAK(--) contributions between goals/tasks. Given
two goals g1 and g2, the link g1

++S−−−→ g2 (respectively g1
−−S−−−→ g2) means that

if g1 is satisfied, then g2 is satisfied (respectively denied). But if g1 is denied,
we cannot infer denial (or respectively satisfaction) of g2. The meanings of links
++D and --D are similar to those of ++S and --S. Given two goals g1 and g2, the
link g1

++D−−−→ g2 (respectively g1
−−D−−−→ g2) means that if g1 is denied, then g2 is

denied (respectively satisfied). But if g1 is satisfied, we cannot infer satisfaction
(or respectively denial) of g2.

When contribution links are present, the goal graph may become cyclic and
conflicts may arise. We say a conflict holds if we have both FD(g, s) and ¬FD
(g, s) in one execution session s. Since it does not make sense, for diagnostic pur-
poses, to have a goal being both denied and satisfied at the same time, conflict
tolerance, as in (Sebastiani et al., 2004), is not allowed within our diagnostic
framework. In addition, the partial (weaker) contribution links HELP(+) and
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HURT(−) are not included between hard goals/tasks because we do not reason
with partial evidence for hard goal/task satisfaction and denial.

Diagnosis Defined. In our framework, a diagnosis specifies for each goal/task
in the goal model whether or not it is fully denied. More formally, a diagnosis
D is a set of FD and ¬FD predicates over all the goals and tasks in the goal
graph, such that D union Φ (D ∪ Φ) is satisfiable. Each FD or ¬FD predicate
in D is either indexed with respect to a timestep or a session. For example, if
goal g and task a are both denied at timestep 1 during execution session s1,
the diagnosis for the system would contain FD(a, 1), FD(a, s1), FD(g, 1), and
FD(g, s1).

Our diagnostic approach is sound and complete, meaning that for any D as
defined above, D is a diagnosis if and only if D ∪ Φ is satisfiable. A proof of this
soundness and completeness property can be found in [2].

Task level denial is the core or root cause of goal level denial. In addition,
if a task is denied at any timestep t during an execution session s, it is denied
during s. Therefore, it is more useful, for purposes of root cause analysis, that
the diagnostic component infer task level denials during specific sessions. We
introduce the concept of core diagnosis to specify for each task in the goal graph
whether or not it is fully denied in an execution session. More formally, a core
diagnosis (CD) is a set of FD and ¬FD predicates over all the tasks in the
goal graph, indexed with respect to a session, such that CD ∪ Φ is satisfiable.
Consider the same example where goal g and task a are denied at timestep 1
during the execution session s1. The core diagnosis for the system would only
contain FD(a, s1), indicating that the root cause of requirement denial during
s1 is the failure of task a.

Inferring all core diagnoses for the software system can present a scalability
problem. This is because all the possible combinations of task denials for tasks
under a denied goal are returned as possible core diagnoses. Therefore, in the
worst-case, the number of core diagnoses is exponential to the size of the goal
graph. To address the scalability problem, we introduce the concept of participat-
ing diagnostic components. These correspond to individual task denial predicates
that participate in core diagnoses, without their combinations. A participating
diagnostic component, PDC, is an FD predicate over some task in the goal
model, indexed with respect to a session, such that PDC ∪ Φ is satisfiable.

In many cases, it may be neither practical nor necessary to find all core diag-
noses. In these cases, all participating diagnostic components can be returned.
However, it is also important to note that, in other cases, one may want to find
all core diagnoses instead of all participating diagnostic components. This is be-
cause core diagnoses contain more diagnostic information, such as which tasks
can and can not fail together.

Our diagnostic approach is sound and complete, meaning that it finds all
diagnoses, core diagnoses, and participating diagnostic components for the soft-
ware system. The theory outlined above has been implemented in terms of four
main algorithms: two encoding algorithms for encoding an annotated goal model
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into a propositional formula Φ, and two diagnostic algorithms for finding all core
diagnoses and all participating diagnostic components.

The difference between the two encoding algorithms lies in whether the al-
gorithm preprocesses the log data when encoding the goal model into Φ. The
naive algorithm does not preprocess log data and generates a complete set of
axioms for all the timesteps during one execution session. The problem with this
is the exponential increase in the size of Φ with the size of a goal model. The
second and improved algorithm addresses this problem by preprocessing the log
data and only generating necessary axioms for the timesteps that are actually
recorded in the log data. As demonstrated in [2], this improved algorithm per-
mits the same diagnostic reasoning process while keeping the growth of the size
of Φ polynomial with respect to the size of the goal model.

The results of our framework evaluation (subsection 4.6) show that our ap-
proach scales to the size of the goal model, provided the encoding is done with
log file preprocessing and the diagnostic component returns all participating di-
agnostic components instead of all core diagnoses. Interested readers can refer
to [2] for a detailed account of algorithms and implementation specifics.

4.5 A Working Example

We use the SquirrelMail [71] case study as an example to illustrate how our
framework works. SquirrelMail is an open source email application that con-
sists of 69711 LOC written in PHP. Figure 2 presents a simple, high-level goal
graph for SquirrelMail with 4 goals and 7 tasks, shown in ovals and hexagons,
respectively.

The SquirrelMail goal model captures the system’s functional requirements
for sending an email (represented by the root goal g1). The system first needs to
retrieve and load user login page (task a1), then process the sent mail request
(goal g2), and finally send the email (task a7). If the email IMAP server is found,
SquirrelMail loads the compose page (goal g3), otherwise, it reports IMAP not

Fig. 2. Squirrel Mail Goal Model
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Table 1. Squirrel Mail Annotated Goal Model

Goal/
Task

Monitor
switch

Precondition Effect

a1 on correctURL entered login form loaded
a2 on ¬wrongIMAP∧login form

loaded
(user logged in ∧ correct
pin) ∨ (¬user logged in ∧

¬correct pin)
a3 off user logged in form shown
a4 off form shown form entered
a5 off form entered webmail started
a6 on wrongIMAP error reported
a7 on webmail started email sent
g1 off correct URL entered email sent ∨ error reported
g2 off login form loaded ∨

wrongIMAP
webmail started ∨ error

reported
g3 off login form loaded ∧

¬wrongIMAP
webmail started

g4 on user logged in webmail started

found error (task a6). Goal g3 (get compose page) can be achieved by executing
four tasks: a2 (login), a3 (show form), a4 (enter form), and a5 (start webmail).

Table 1 lists the details of each goal/task in the SquirrelMail goal model with
its monitoring switch status (column 2), and associated precondition and effect
(columns 3 and 4). In this example, the satisfaction of goal g4 and tasks a1, a2, a6,
and a7 are monitored.

SquirrelMail’s runtime behavior is traced and recorded as log data. Recall that
log data contains truth values of literals specified in monitored goals’/tasks’ pre-
conditions and effects, as well as the occurrences of all tasks. Each log instance
is associated with a timestep t. The following is an example of log data from the
SquirrelMail case study:

correct URL entered(1), occa(a1, 2), login form loaded(3), ¬wrongIMAP
(4), occa(a2, 5), correct pin(6), user logged in(6), occa(a3, 7), occa(a4, 8),
occa(a5, 9), ¬webmail started(10), occa(a7, 11), ¬email sent(12).

The log data contains two errors (¬webmail started(10), and occa(a7, 11)): (1)
the effect of g4 (web mail started) was false, at timestep 10, after all the tasks
under g4’s decomposition (a3, a4, and a5) were executed; and (2) task a7 (send
message) occurred at timestep 11 when its precondition webmail started was
false at timestep 10. The diagnostic component analyzes the log data and in-
fers that goal g4 and the task a7 are denied during execution session s. The
diagnostic component further infers that if g4 is denied in s, at least one of
g4’s subtasks, a3, a4, and a5, must have been denied in s. The following seven
core diagnoses are returned to capture all possible task denials for a3, a4,
and a5:
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Fig. 3. Partial ATM Goal Model

Core Diagnosis 1: FD(a3, s); FD(a7, s)
Core Diagnosis 2: FD(a4, s); FD(a7, s)
Core Diagnosis 3: FD(a5, s); FD(a7, s)
Core Diagnosis 4: FD(a3, s); FD(a4, s); FD(a7, s)
Core Diagnosis 5: FD(a3, s); FD(a5, s); FD(a7, s)
Core Diagnosis 6: FD(a4, s); FD(a5, s); FD(a7, s)
Core Diagnosis 7: FD(a3, s); FD(a4, s); FD(a5, s); FD(a7, s)

Instead of finding all core diagnoses, we can configure the diagnostic com-
ponent to find all participating diagnostic components. The following 4 par-
ticipating diagnostic components are returned to capture individual task
denials:

Participating Diagnostic Component 1: FD(a3, s)
Participating Diagnostic Component 2: FD(a4, s)
Participating Diagnostic Component 2: FD(a5, s)
Participating Diagnostic Component 3: FD(a7, s)



Requirements Evolution and What (Research) to Do about It 209

4.6 Experimental Evaluation

In this section, we report on the performance and scalability of our framework
and discuss its limitations. We applied our framework to a medium-size public
domain software system, an ATM (Automated Teller Machine) simulation case
study, to evaluate the correctness and performance of our framework. We show
that our solution can scale up to the goal model size and can be applied to
industrial software applications with medium-sized requirements.

Framework Scalability. The ATM simulation case study is an illustration
of OO design used in a software development class at Gordon College [72]. The
application simulates an ATM performing customers’ withdraw, deposit, transfer
and balance inquiry transactions. The source code contains 36 Java Classes with
5000 LOC, which we reverse engineered to its requirements to obtain a goal
model with 37 goals and 51 tasks. We show a partial goal graph with 18 goals
and 22 tasks in Figure 3.

We conducted two sets of experiments. The first set contains five experiments
with different levels of monitoring granularity, all applied to the goal model
shown in Figure 3. This allows us to access the tradeoff between monitoring
granularity and diagnostic precision. The second set reports 20 experiments on
20 progressively larger goal models containing 50 to 1000 goals and tasks. We
obtain these larger goal models by cloning the ATM goal graph to itself. The
second set of experiments shows that our diagnostic framework scales to the size
of the relevant goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.

The first set of experiments contains 5 runs. We gradually increased monitor-
ing granularity from monitoring only the root goal to monitoring all leaf level
tasks. For each experiment, we recorded: (1) numbers of generated literals and
clauses in the SAT propositional formula Φ; (2) the number of participating di-
agnostic components returned; and (3) the average time taken, in seconds, to
find one diagnostic component. When the number of monitored goals/tasks was
increased from 1 to 11, the number of returned participating diagnostic compo-
nents decreased from 19 and 1, and the average time taken to find one diagnostic
component increased from 0.053 to 0.390 second.

These experiments showed that diagnostic precision is inversely proportional
to monitoring granularity. When monitoring granularity increases, monitoring
overhead, SAT search space, and average time needed to find a single participat-
ing diagnostic component all increase. The benefit of monitoring at a high level
of monitoring granularity is that we are able to infer fewer participating diag-
nostic components identifying a smaller set of possible faulty components. The
reverse is true when monitoring granularity decreases: we have less overhead, but
the number of participating diagnostic components increases if the system is be-
having abnormally. When the system is running correctly (no requirements are
denied, and no faulty component is returned), minimal monitoring is advisable.

The second set of experiments, on 20 progressively larger goal models (con-
taining from 50 to 1000 goals and tasks) allows us to evaluate the scalability
of the diagnostic component. We injected one error in one of the tasks. Each
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of the experiments was performed with complete (task level) monitoring. Each
therefore returned only a single diagnostic component. In addition, all experi-
ments used the encoding algorithm that preprocesses log data. This was done to
ensure scalability. For each experiment, we recorded: (1) time taken to encode
the goal model into the SAT propositional formula Φ; (2) time taken by the SAT
solver to solve Φ plus the time taken to decode the SAT result into a diagnostic
component; and (3) the sum of the time periods recorded in (1) and (2), giving
the total time taken to find the participating diagnostic component.

Experimental results show that, as the number of goals/tasks increased from
50 to 1000, the number of literals and clauses generated in Φ increased from 81 to
1525 and from 207 to 4083 respectively. As a result, the total time taken to find
the participating diagnostic component increased from 0.469 to 3.444 seconds.
This second set of experiments shows that the diagnostic component scales to
the size of the goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.
Our approach can therefore be applied to industrial software applications with
medium-sized requirement graphs.

Framework Limitations. Firstly, our approach assumes the correct specifica-
tion of the goal model, as well as the preconditions and effects for goals and
tasks. Errors may be introduced if specified preconditions and effects do not
completely or correctly capture the software system’s dynamics. Detecting and
dealing with discrepancies between a system’s implementation and its goal model
are beyond the scope of our work. We accordingly, assume that both the goal
model and its associated preconditions and effects are correctly implemented by
the application source code.

Secondly, the reasoning capability of our diagnostic component is limited by
the expressive power of propositional logic and the reasoning power of SAT
solvers. Propositional logic and SAT solvers express and reason using variables
with discrete values, which typically are Boolean variables that are either true or
false. As a result, our diagnostic component cannot easily deal with application
domains with continuous values.

Lastly, the reasoning power of our framework is also limited by the expres-
siveness of our goal modeling language. Goal models cannot express temporal
relations. Neither can they explicitly express the orderings of goals/tasks, or the
number of times goals/tasks must be executed. Therefore, our framework cannot
recognize temporal relations such as event patterns.

5 Conclusions

We have discussed requirements evolution as a research problem that has re-
ceived little attention until now, but will receive much attention in the future.
Our discussion included a review of past research, a speculative glimpse into
the future, and a more detailed look at on-going research on monitoring and
diagnosing software systems.
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Abstract. Requirements engineers gain insights and make improvements on 
their requirements specifications, as they are applied in natural contexts. Soft-
ware artifacts are particularly useful requirements instantiations because feed-
back can be obtained directly from software. Software talks to its designers 
about its requirements. 

We illustrate requirements feedback with a case study in assistive technol-
ogy (AT). A specialized emailing system was designed for cognitively impaired 
patients in an effort to decrease their social isolation, which often occurs after a 
brain injury. The patients continue to expand their email system usage, which is 
remarkable for AT. We attribute this unusual success to the feedback obtained 
directly from the software, through monitoring user goal models. Such monitor-
ing has allowed the developers to understand and evolve their software to meet 
the changing user needs. It illustrates how an operational artifact, like software, 
can drive design evolution.  

Keywords: requirements monitoring, evolution, design science. 

1   Introduction 

The Think and Link (TAL) project developed a specialized email system as part of a 
clinical treatment package[1-5]. In the clinical setting, individuals are assessed, indi-
vidual goals are acquired, each individual is given a tailored treatment package, the 
effectiveness of the deployed package is tracked for each individual, and mid-course 
corrections can ensue. Currently, the treatment packages delivered in clinical fields 
may have a software component, but this software is part of the clinical domain, tar-
geted to professionals providing treatment support. In particular, the clinical software 
used has little or nothing to do with daily-living software applications that many of us 
take for granted; for example, email, web browsers, music-management tools, etc. In 
contrast, the TAL email software is part of the patient’s treatment plan.  

In TAL, the email software is personalized uniquely to each individual, as required 
by his or her treatment plan. Personalization is accomplished through evolution; the 
system continuously monitors user behaviors, and ensures that proper software adap-
tations are made to accommodate changing user needs. This is working wonderfully. 
In contrast to most assistive technologies, patients do not abandon the TAL email 
system. In fact, their emailing skills grow with usage, and in response, their unique 
email interfaces require continuous updates.  
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In the commercial version of TAL, much of user monitoring is a manual process.  
This approach is not feasible for a large patient population. To address the scaling 
issue, we sought to automate much of monitoring in the research version of TAL. 
With the objective of monitoring the progress of each patient’s treatment progress, we 
sought an existing software solution. Having found none adequate to the task, we ap-
plied a design-science research methodology to design and develop a new monitoring 
method. This chapter describes that design-science research project.  

We have developed a new automated method for user monitoring that reduces the 
workload of TAL researchers in their efforts to monitor and adapt the TAL email sys-
tem. The method may be applicable to more general problems of automating continu-
ous monitoring and adaptation of software services. 

In this introductory section, we summarize two alternative views of design that re-
quire monitoring: the science of design and reflective practice. These two views are 
related to the fundamental ontology of requirements engineering and their application 
to software personalization. After introducing these theoretic concerns, we turn to the 
design-science research project that produced the TAL monitoring system; each of the 
common design-science activities is described. Finally, we draw conclusions about 
how requirements monitoring can support the design views espoused by Simon and 
Schön. 

1.1   Science of Design 

Simon is attributed with defining fundamentals of the SoD, especially its supporting 
curriculum.  According to Simon, the science of design is about designing artificial 
things that are synthesized, and characterized in terms of functions, goals, and adapta-
tions[6]—p 5.  Artifacts are designed (synthesized) to fit and adapt within a specific 
environment.  

An artifact can be thought of as a meeting point—an interface in today’s terms 
between an “inner” environment, the substance and organization of the artifact 
itself, and an “outer” environment, the surroundings in which it operates. If the 
inner environment is appropriate to the outer environment, or vice versa, the 
artifact will serve its intended purpose.[6]—p 6. 

Designing is not synonymous with wishing. Design desires are tempered by what 
is feasible in the natural world.  

[A] design has not been achieved until we have discovered at least one realiz-
able inner system obeying the ordinary natural laws. [6]—p. 12. 

Although designed artifacts are artificial, they may substitute for natural objects, 
according to their limitations. 

The artificial object imitates the real by turning the same face to the outer sys-
tem, by adapting, relative to the same goals, to comparable ranges of external 
tasks.  Imitation is possible because distinct physical systems can be organized 
to exhibit nearly identical behavior. [6]—p. 13. 

Knowledge and skill are required to derive satisfactory artifacts. According to 
Simon, a design science curriculum should include the following topics[6]—p 134. 
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1. The evaluation of designs 
2. The formal logic of design: imperative and declarative logics 
3. The search for alternatives 
4. The theory of structure and design organization: hierarchic systems 
5. Representation of design problems 

As may be evident from the preceding five steps, computers played a central role 
in Simon’s work on design.  Simon saw the computer as a means to evaluate elements 
of his growing theory. 

SOAR, a problem-solving software system, was a collaborative design-science effort 
(with Allen Newell) to simulation human cognition[7]. Through the design of SOAR, 
Newell and Simon addressed the preceding five SoD issues. Consequently, there has 
been an intertwining between the science of design and the theory of human cognition. 
For example, SOAR realizes the problem space hypothesis, which asserts that all deliber-
ate cognitive activity occurs as search in combinatoric spaces for goal attainment. This 
cognitive search theory and Simon’s theory of satisficing in the face of bounded rational-
ity are mutually supportive. Through computer simulation of their designed artifact, 
Newell and Simon realized and elaborated their theory of human cognition.  

For Simon, a computer implementation is important for the simulation of artifacts, 
be they psychological, sociological, or simply computational.  

How can a simulation ever tell us anything that we do not already know? … 
1. A simulation is no better than the assumptions built into it. 
2. A computer can do only what it is programmed to do. 

…The obvious point is that, even when we have correct premises, it may be 
very difficult to discover what they imply…  Thus we might expect simulation 
to be a powerful technique for deriving [knowledge]. [6]—p 14-15 

For Simon, the science of design may be entirely theoretical; however, to under-
stand its implications requires simulation. For many interesting designs, this means a 
computer simulation. 

1.2   System Requirements 

Requirements engineering is the discipline that studies the relationship between 
Simon’s “inner” and “outer” environments. Fig. 1 illustrates required behaviors as the 
intersection between environmental behaviors and implementable behaviors[8]. The 
artifact interacts with a portion of the world, which exhibits the environmental behav-
iors, as represented in domain properties.  Implementable behaviors are executed by 
the artifact. A specification describes how the artifact produces its behaviors. A re-
quirement refers to properties of both the environment and the artifact. A domain 
property only refers to properties of the environment. An artifact specification only 
refers to properties of the artifact. 

The requirements problem is finding a specification S that for given domain as-
sumptions D satisfies the given requirements R, which is written as D, S ♣ ̶  R[9]. This 
simplified ontology does not address partial requirements satisfaction or requirements 
preferences.  To do so, requirements are divided into functional goals G, soft goals Q, 
and attitudes A, which specify preferences over G and Q[10].  Using the extended 
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Fig. 1. Requirements as the boundary between environment behaviors and implementable  
behaviors 

ontology, the requirements problem is finding a specification S that for given domain 
assumptions D satisfies the given functional goals G, soft goals Q, and attitudes A, 
which is written as D, S ♣~ G, Q, A.  

The relation ♣ ̶  does not allow new information—once a fact is asserted  it always 
remains true. The bounded rationality present in Simon’s problem solving view of 
design means that the many conclusions are tentative, to be retracted in favor of new 
evidence.  Nonmonotonic reasoning allows us to draw conclusions based on the evi-
dence at hand, and retract those conclusions as new evidence arises. Thus, the defea-
sible consequence relation ♣~ is use to assert nonmonotonic satisfaction[11].   

According to Simon, design is a problem-solving, goal-seeking process with inher-
ent uncertainties driven by unknowns in the changing environment and implementa-
tion. Design includes evolutionary adaptations, which increases artifact complexity. 
Nearly decomposable system design addresses complexity by ensuring that interac-
tions among components are weak, although not negligible[6]. Thus, designing a 
nearly decomposable, evolving artifact in the face of changing and uncertain require-
ments is a difficult satisficing problem.  

Requirements engineering commonly considers three distinct kinds of require-
ments properties. 

 

1. A functional goal g ∈ G is a desired property of the system and its environ-
ment; it describes what “ought” to occur. A realizable goal exhibits three char-
acteristics relative to the system described: (i) it is described entirely in terms 
of values monitored by the system; (ii) it constrains only values that are con-
trolled by the system; and (iii) the controlled values are not defined in terms of 
future monitored values. Because the system defined can be a composite of 
computer and human capabilities, a goal may describe desired human behav-
iors. An example user goal is, eventually a user shall send an email message. 

2. A softgoal q ∈ Q describes qualities or constrains quality values, whereby the 
described qualities have a subjective or ill-defined structure. A soft goal can 
only be satisficed, not only because of subjectivity, but also because the ideal 
level of satisfaction is beyond the resources available. For example, an email 
message shall exhibit the best qualities of prose.  

3. An attitude a ∈ A is a relative evaluation in terms of degree of favor or disfa-
vor, which varies in sign (positive or negative) and in intensity. For example, 
the Outlook email client is too complex and cumbersome.  

 

Environmental  
Behaviors (D) 

Implementable  
Behaviors (S) 

Required  
Behaviors (R) 
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Requirements specification is the process that seeks to define a specification that 
maximizes compulsory and optional requirements according to attitudes[10].  

One cannot distinguish between a requirement and an implementation specification 
without knowing what the system is intended to do. Email management is a  
requirement of an email client. Consequently, prescriptions of email manipulation 
(e.g., creation, deletion) are requirements. However, email transportation over com-
puter networks are relative implementation details because they do not refer directly 
to properties of the email management domain. Thus, email client prescriptions are 
requirements in this context. When requirements are refined into their supporting ser-
vice requirements, the implementation specification phase begins. By resetting the 
context, the requirements problem can begin anew with the requirements specification 
of the computer network system.  

The emphasis on requirements specification distinguishes the requirements prob-
lem from Simon’s general characterization of the design problem.  Requirements 
specification, however, is not separable from implementations[12].  The real-world 
defines the feasible implementations, and guides the satisficing, problem-solving, 
search process.  Requirements engineers, and all designers, listen to the feedback pro-
vided by the system’s context. 

1.3   Designs Can Talk 

Schön may have been too hard on Simon. Schön’s reflective practice intertwines the 
neat academic theories with the scruffy practice of real-world problem solving.  In the 
dilemma of rigor or relevance, Schön emphasizes the relevance of problem setting, 
“the process by which we define the decision to be made, the ends to be achieved, that 
means that may be chosen. In real-world practice, problems do not present themselves 
to the practitioner as givens. They must be constructed from the materials of problem-
atic situations that are puzzling, troubling and uncertain.”[13] In Schön’s view, the 
problem, practice (or artifact), and practitioner co-evolve with a new knowledge that 
is generated through the act of practice.  In Simon’s design context, the goals and uses 
of the artifact co-evolve with its usage.  A good designer will listen to the issues that 
arise in the artifact’s context, and redesign the artifact to address theoretically messy 
issues, which are often set aside for later consideration. Schön believes that Simon 
ignores the unanticipated or messy issues that arise in practice by “proposing a sci-
ence of design that depends on having well-formed instrumental problems to begin 
with.” Simon could have argued that simulation plays the environment’s role prior to 
artifact deployment. Whether it be simulated or real, the artifact’s environment in-
cludes unknowns because of bounded of rationality, and thus when new information 
is available the design goals and design evolve. Schön’s reflective practices makes 
explicit the feedback necessary to guide the adaptation described in Simon’s science 
of design. 

Simon and Schön are consistent in that they recognize the significant role that the 
environment has on a systems evolution. In software, Lehman formulated eight “laws 
of software evolution”, from empirical studies[14]. Two laws are particularly relevant 
to the role of environment-driven evolution. The Declining Quality law asserts that 
the system quality will diminish unless specific actions are taken to ensure quality 
evolution. The Feedback System law asserts that evolution includes a feedback  
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system, which describes the tension between change management and the desire to 
continually satisfy new stakeholder requirements. These laws are consistent with sys-
tems feedback theories from System Theory and Control Theory. It seems that it is 
widely accepted that monitoring and system adaptation are necessary if a system is to 
meet the needs of its ever-changing environment. 

The theoretical paradigm of listening to the design in context is reflected in today’s 
best-practice software companies, which are customer-focused businesses with agile-
engineering practices placing stakeholders within the product evolution process, 
where continuous feedback guides product improvements. For Google Inc. and others, 
this entails focus groups, beta software, and other feedback mechanisms. Monitors, 
within the delivered software, send back customer preferences and behavioral infor-
mation. Such feedback is used by developers to build user models, which guides 
software development. Stakeholders co-design and co-evolve products with their pro-
viders.  

1.4   Software Is Personal 

Continually adapted software placed in a unique environment results in personalized 
software. Consider the case where a software system is deployed to several unique 
sites. Each site places unique demands on the software. A responsive software system 
will listen and adapt to its environment. Because of the unique adaptations generated 
at each site, each software system will diverge from the original system to form a 
unique and personalized system. 

Software personalization through continuous adaptation is possible. For some, 
software must be personalized. More than one million adults in the U.S. are diagnosed 
each year with cognitive impairments (CI) due to neurological disease or trauma (e.g., 
traumatic brain injury, stroke, tumor, epilepsy, infectious disease). Cognitively im-
paired patients often experience social isolation and its ancillary effects. Naturally, 
one might expect that some form of computer assistive technology (AT) would aid CI 
patients—for example, in communicating via email. Sadly, AT has not been shown to 
assist CI patients. One research project, however, suggests that personalized software 
may help[3, 5]. 

The Think and Link (TAL) project provides a specialized emailing system to CI 
patients[1, 3, 5, 15, 16]. In contrast to other AT studies, TAL patients continue to ex-
pand their email system usage. This unusual success is attributed, in part, to the per-
sonalized software. By continually monitoring clinical and user goals, TAL can  
responsively provide personalized software adaptations. With usage, the software 
used by each TAL CI patient is unique in its interface and functionality. 

The approximately 53 million disabled Americans are only one group that may 
benefit from software personalization. Many of us have used Microsoft Word, Adobe 
Photoshop, or similarly complex software, only to wish for a reduced, simplified ver-
sion that did just what we wanted, and no more. Microsoft introduced adaptable 
menus with this aim in mind. Instead of helping, the constant menu variation became 
another user burden. Consequently, most users disabled the adaptive menus. This 
technology is absent in the most recent version of Microsoft Office (2007).  

Personalized software is still desired by users and organizations, as evidenced by 
the web pages, books, and consultants that provide customization guidance. A recent 
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article questions the relevance of IT for strategic advantage[17], in part because much 
software is a commodity. It may be that “IT doesn’t matter”, in part, because much of 
IT is not unique. Without some unique aspect, IT is not an intellectual property or 
strategic differentiator, and therefore, it is simply an infrastructure cost, like the 
manufacturing plant or electricity. In contrast to commodity software, personalized 
software is unique, and therefore it can be intellectual property and a strategic differ-
entiator. 

1.5   Requirements Monitoring for Design Feedback 

Evolution through monitoring and reactive adaptations is a common, central theme in 
design, be it the positivist SoD or constructivist reflective practice[18].  Both monitor-
ing and adaptation are important research topics.  Herein, we focus on monitoring.  In 
particular, monitoring the system and its impact on the evaluation of requirements, 
which in turn will inform the adaptation process. 

A requirements monitor is a software system that analyzes the runtime behavior of 
another (target) system and determines the satisfaction of the target system’s require-
ments from observing a stream of inputs (I). A requirements monitor can be charac-
terized as a function that processes its input data stream to derive the status of  
requirements satisfaction.  

reqMon(i) → Sat(r) 

The observed input stream in comprised of events from the software’s environ-
ment, or domain D, and the internal events of the software itself, S, where I = D ∪ S. 

In the remainder of this paper, we present a design science study of requirements 
monitoring for assistive technology.  The study demonstrates that requirements level 
feedback on the runtime behavior of a system is possible.  Such feedback provides 
designers information that enables responsive adaptation.  In the larger context of 
design science, it demonstrates how design feedback may be obtained directly from 
natural, situated contexts.  For software intensive systems, this suggests that designers 
may rely less on the feedback obtain from simulated systems and more on the objec-
tive feedback obtained directly from real-world systems. 

2   Feedback for Assistive Technology 

The Think and Link (TAL) project produced prototypes of (1) an assessment process 
called Comprehensive Overview of Requisite Email Skills (CORE), and (2) the TAL 
email interface. Recently, TAL (think-and-link.org) has been commercialized by Life 
Technologies LLC as CogLink (coglink.com). In support of TAL, the group defined 
and applied their clinical requirements engineering (CRE) methodology, a personal-
ized software development process applied in support of clinical treatment that in-
cludes a high-level, individual process of assessment, goal-setting, treatment plan and 
periodic monitoring[16]. As a consequence of the TAL project, researchers posed 
three propositions of their CRE methodology[1]. 

1. For some domain, such as clinical rehabilitation, uniquely personal 
customization may be the only way to deliver usable systems.  
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1.1. No single customization will be superior because of individual 
differences, both in skill sets and living environments. Therefore, 
uniquely personal customization is necessary. 

2. Modeling, monitoring, and adapting are necessary for satisfying the 
changing user software needs, preferences, and skills. 

3. Uniquely personal customization requires automation to scale to large 
populations. 
3.1. The activities of user monitoring and product adaptation are eli-

gible for automation. 

TAL researchers found that, although technical adaptations of the email client were 
relatively easy to accomplish, adaptation decisions required careful consideration of 
collected data: a wrong adaptation choice often led towards system abandonment. 
Statistical and qualitative data, along with direct input from the CI user, were re-
viewed at weekly staff meetings to determine whether the user was ready to take on 
new goals. These manual processes do not scale beyond small studies. Consequently, 
we began the research on REQuirements MONitoring (REQMON) of CI user models 
in the latter phase of the TAL project with a focus on automating the monitoring, re-
evaluation, and adaptation steps in the overall clinical process. 

The following sections describe our application of the Peffers et al. design science 
process steps to the CRE automation proposition, from ‘problem identification and 
motivation’ through to ‘evaluation’”[19].  

2.1   Problem Identification and Motivation 

More than one million adults in the U.S. are diagnosed each year with cognitive im-
pairments (CI) due to neurological disease or trauma (e.g., traumatic brain injury, 
stroke, tumor, epilepsy, infectious disease). Currently, there are between 13.3 to 16.1 
million Americans living with chronic brain disorders and associated CI[20].  In the 
coming years, incidence rates are expected to rise due to the development of demen-
tias associated with a rapidly aging population and increased survival rates associated 
with improved medical management of neurological impairments[21].  

Assistive Technology (AT) should offer great promise for supporting people with 
CI in their own homes with their own computers. However, research on effective 
technology design that facilitates long-term adoption by individuals with acquired and 
developmental CI is sorely lacking. To address this need and support of CI individu-
als, the TAL project applied CRE theory to the continuous adaptation of an email cli-
ent for CI individuals. 

2.1.1   A Problem Scenario 
Assume that Jill is interested in learning to use email. Jill acquired a brain injury in an 
auto accident, and has impairments in both memory and executive functions rendering 
it difficult to learn new skills. Jill has no memory of using a computer in the past, al-
though her closet contains several computers, which were given by friends and fam-
ily. Jill is unable to use her computers. She decides to work with a TAL staff member, 
Andrew, to explore the use of email. Andrew uses the CORE process to obtain two 
important items[22]: (1) Jill’s personal goals for using email, and (2) Jill’s existing 
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{L1, L2, … Ln}

{D1, D2, … Dn}

 

Fig. 2. Normal usage and training generates data 

 

skills for using email independently. (Other information is obtained but omitted here 
for brevity.)  Using this information, Andrew produces a user profile containing (1) a 
specification of an initial system to deliver to Jill, and (2) a training plan broken into a 
set of lessons. Notice that Jill’s personal goals play an important role here (and will 
continue to play a role in the future): they filter from all possible skills the subset that 
is necessary to meet Jill’s needs. In essence, this is goal-directed training. In a similar 
fashion, the system that is delivered is one that fits with both Jill’s current skills and 
her personal goals—some of which are deferred. It’s important to note that Jill has 
high aspirations for her use of email. She would eventually like to contribute articles 
to the online newsletter, published by a local group that advocates for the disabled. 
This goal, however, is not realizable given her current skills. Thus, it becomes a de-
ferred goal that will be monitored. More on this shortly.  

Next, the email system is delivered to Jill. A family careprovider, Jill’s daughter-
in-law Ann, assists in the training task. Soon, Jill is busy using the email system to 
reconnect with family and friends that have dropped out of touch. Both Jill’s daily 
usage, and her training sessions with Ann, produce raw data. This data includes that 
which is generated from the email system itself, along with Ann’s input on training 
progress. Data is also collected periodically from Jill and her email buddies through 
online questionnaires. Fig. 2 illustrates the data collection process. 

As data is generated, it is used to make decisions about deferred goals. Working 
backwards, Jill has goals that are not satisfied currently. Each of these goals has pre-
conditions, in terms of skills, that enable them. Each skill, in turn, has measured ac-
tivities that signal the learning and retention of the skill. These measures can be 
evaluated from the collected data. Fig. 3 illustrates the process. Raw data is moni-
tored. This data is evaluated for evidence of existing, and eventually, new skills, 
shown as an arrow back to Jill’s skill set. Eventually, a match is made between a goal 
deferred and the skills necessary to achieve it. At this point, email system adaptation 
becomes the means to enabling the goal. With Jill’s deferred goal of contributing to 
the online advocacy newsletter, the following skills are among those require. Evi-
dence for these skills can be measured. Suppose that all but the last skill have been 
demonstrated. At this point, two options are possible: (1) continue to train Jill in spell-
ing and grammar, or (2) provide automated support through her email system. A 
spelling checker and a grammar checker are two of the functions that can be added to 
Jill’s system (shown as the pile of pieces available to the person at the board in  
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{G1, G2, … Gn}

{S1, S2, … Sn}

{D1, D2, … Dn}

{L1, L2, … Ln}

 

Fig. 3. Data monitoring supports the adaptation process 

Fig. 3). A decision is made to adapt Jill’s system to include a spell checker, deferring 
the decision on the grammar checker until a later point. Two explicit products come 
from the adaptation: (1) a newly designed system that includes spell checking, and (2) 
additional training lessons to accommodate the new design. The implicit outcome, not 
shown in Fig. 3, is forward progress toward the needed skill, and hence, progress to-
ward a deferred goal. 

It is important to note here that we take a holistic system view of the problem: ad-
aptations can occur at the software-architecture level, but also at the social-human 
level. The system “configuration” is much more than simply the software pieces. 

In closing, if we were to continue, we would form a cycle: deferred goals are 
achieved, new goals may arise, and other goals may be dropped. Although our exam-
ples are optimistically forward driven, it may be that certain skills are lost over time, 
making system retraction a real possibility, thus adapting the system to a less com-
plex version rather than a more complex version. 

2.1.2   Problem Summary 
We want to highlight three issues from Jill’s story.  
 

1. Monitoring is critical. CI users can and will abandon poorly designed AT systems 
at any point along a timeline. It behooves us to monitor their progress, noticing 
obstacles and achievements. Such micro-usability monitoring tracks individual 
user behaviors on the scale of minutes to months. This is particularly challenging, 
as we must hypothesize monitored properties that serve as proxy for our under-
standing of Jill’s skills.  

2. Analysis must consider the composite design[23, 24]. The software component of 
a system plays an important role. But the human context is equally important. 
Looking at Jill’s example, her careprovider and her buddies are components in 
the design space. These components can be “configured” (e.g., add/remove bud-
dies, add/remove careproviders). We can also attempt to influence their behavior 
in the system (e.g., through prompting). 

3. System adaptation is based on selection from a given set of alternatives. The size 
of this set is roughly five thousand different alternative designs for the TAL 
email system. The TAL experience tells us that, for AT delivered to the CI popu-
lation, there is little need for creative-design to generate unforeseen systems on 
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the fly. Consequently, the processes of generating and installing new design 
components are not central to TAL. Instead, careful attention must be paid to cor-
rectly choosing among a moderate set of pre-determined designs. 

These three research issues are central to the TAL project and to CRE projects in 
general. Of the three, TAL researchers felt that automated monitoring was the linch-
pin to their success—they could address analysis and adaptation for their growing CI 
population, but only if monitoring were automated. Thus, we formulated our design 
research question: 

1. [DSRQ] Can low-level monitoring of software events be used to de-
termine user goal successes and failures? 

2.2   Solution Objectives 

Device abandonment in the AT field is well documented[25-27]. CRE  represents a 
successful strategy to combat abandonment [22]. However, the problematic processes 
are user monitoring and product adaptation, which are dependent on changing user 
skills. Moreover, these processes are labor intensive. Unfortunately, current com-
puter-aided techniques for extracting usability information are insufficient for the CI 
models[28]. Automation of user monitoring and product adaptation needed be ad-
dressed before TAL could scale to larger populations. 

To ground the problem in the TAL context, consider Fig. 4, which is a snapshot of 
a TAL email interface. This configuration is minimal in terms of functions and 
prompts, as required by CI users. As can be seen, there are eight buddies. The inter-
face must adapt with the user. For example, when the user becomes successful—even 
bored—with emailing, then a new buddy may be added to the list. To avoid device 
abandonment, TAL needs an automated method for continuously adapting the TAL 
email system to individual CI users—each CI user must have their own continuously 
personalized email interface. To inform the adaptation process, an automated method 
for monitoring CI user goals is a prerequisite. This leads us to our design research 
objective: 

1. [DSO] Define and demonstrate a computer supported method for 
monitoring CI user models within the context of the TAL project. 

 

Although CRE requires both monitoring and adaptation, the TAL project required 
immediate results on DSO 1. The TAL researchers felt that they could manually adapt 
some systems if automated goal monitoring existed, but they could make no scaling-
up progresses without it. Thus, we initiated a design science project to address DSO 1 
in the latter phase of the TAL project. Next, we describe the design and development 
of an automated goal monitoring system.   

2.3   Design and Development 

We applied a design research method to answer DSO 1. A review of extant monitor-
ing systems revealed that none would be sufficient. In particular, the specification 
languages were too limited for our user goal models. To see why, we describe the 
TAL user models, and then our goal monitoring system. 
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Fig. 4. One configuration of the TAL email interface 

2.3.1   User Modeling 
User modeling serves two purposes. First, it can describe user requirements (i.e. 
goals, softgoals, and attitudes) and their associated skills, which are used to define 
training and system adaptation. Second, it can describe hypothesized behaviors, which 
are important to adaptation. Both models are represented in a common notation.  

 

 

Fig. 5. A portion of Jill's goal graph in the KAOS tool, Objectiver 

Fig. 5 illustrates a portion of Jill’s KAOS goal graph, i.e., the portion centered on 
her desire to have her opinions known. The TAL project defined the generalized pat-
tern of wishing to participate in an online forum (e.g., newsletter, discussion group). 
We use this pattern here to capture Jill’s goal. To personalize the pattern, we must fill-
in details on the particular newsletter Jill wishes to target. Before doing that, we will 
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look at the left side of the figure, focusing on the skills associated with basic  
email use. 

The goal of knowing how to use basic email functions is decomposed into lower 
level skills, which are denoted by a thicker outline in the diagram of Fig. 5. Users 
such as Jill can fail to acquire the emailing skill; for instance, because they forget to 
send a composition after becoming distracted with another intermediate activity. But 
what if Jill is able to send a message at least once. Is that enough to mark off the skill 
as acquired? Typically not. What we would like to see in skill acquisition are: (1) a 
good success-to-failure ratio over sessions, and (2) a trend that shows this ratio im-
proving or at least holding constant, i.e., not declining. We have applied the KAOS 
tools to define measures of this type[29], as the following definition shows: 

 
Goal Maximize [ComposeAndSendConsistently] 
  UnderResponsibility CI-User (Jill) 
  FormalDef 

ThesholdComposeAndSendConsistently ∧ 
TrendComposeAndSendConsistently 

The goal is satisfied when both skill measures are satisfied; the measures and re-
lated definitions follow. 

Measure[ThesholdComposeAndSendConsistently] 
  FormalDef 

Average(PercentSucessful(SendComposedEmail(*),24h),-14d)) 
≥ 75% 

Measure[TrendComposeAndSendConsistently] 
  FormalDef 

Slope(PercentSucessful(SendComposedEmail(*),24h),-14d)) ≥ 
0 

Definition [PercentSucessful] 
  FormalDef 

Satisfied(g,p) / Failed(g,p) 
Goal Ideal [SendComposedEmail] 
 UnderResponsibility CI-User (Ideal) 
 FormalDef 

    ∀ m:EmailMessage  
    EmailCompose(m) ⇒ ◊<t EmailSend(m) 

 
The two measures track Jill’s overall success. Each relies on the perfect condition 

of sending a composed email (within time t) captured in the ideal goal SendCom-
posedEmail.  Given the ideal, the measures compute the average and trend of suc-
cess for the last 14 days, where each 24-hour period is a data point. The measures are 
automatically updated in real-time by our goal monitor system. Thus, as a user works 
with their AT system, the evaluations of measures, skills, and goals are updated in 
real-time, providing views of a user’s goal satisfaction to caregivers and the adapta-
tion system.  

2.3.2   Goal Monitoring  
The monitoring system, REQMON.CI was developed in response to DSO 1. It is built 
upon the REQMON toolkit[1, 30-34], which supports KAOS goal monitoring[29].  
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Fig 6. illustrates the REQMON component architecture. In the figure, each box is a 
software component, which may be network distributed; alternatively, the whole sys-
tem can be deployed as one embedded program. Fig 6 illustrates component interac-
tions that occur when a monitored event is observed. The shaded portions toward the 
right indicate typical process boundaries; thus, the monitored program and event sink 
typically comprise one process, the event listener and repository comprise another 
process, finally the analyzer, presenter and reactor each have their own processes. 
REQMON defines the components from the event sink through the reactor. 

p: Program s:Event Sink l:Event Listener a:Reactorgui:Presentera:Analyzerr:Repository

1: \raise\  
2: \raise\  3: \assert\

4: \raise\
5: \property check\

6: \query\

7: \update\

8: \doAction\

 

Fig. 6. Illustration of ReqMon component interactions 

The roles of the REQMON components are as follows: 

• The PROGRAM represents any general-purpose executing program. 

• The EVENT SINK represents the observed state of the executing program. Events 
are generated at monitoring points, which are inserted into the target program, or 
its context.  

• The EVENT LISTENER represents the observer. An EVENT LISTENER can listen to 
multiple EVENT SINKs. REQMON defines listeners for common  instrumentation 
and computer management frameworks, including log4J/log4net and Common 
Base Event (CBE), a common open, heterogeneous, enterprise-monitoring 
framework..   

• The REPOSITORY maintains the historical database of events and properties. A 
rule-based system caches the working database, while the complete records are 
persisted to a relational database system. 

• The ANALYZER executes the monitoring algorithm to evaluate properties.  

• A PRESENTER maintains a user display of events and property evaluations. 

• The REACTOR is the event handler. It responds to REPOSITORY changes, such as 
property violations. Actions can include reconfiguration or substitution of the 
targeted software components.  
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REQMON is designed with a component architecture, as Fig. 6 illustrates. Each 
component is defined as a ‘plug-in’; developers can extend or override components 
with their own implementations. This software architecture supports the exploratory 
nature of design science research. For example, REQMON.CI is a refinement of 
REQMON that defines a specialized ANALYZER ‘plug-in’ for evaluating KAOS goals 
in the fulfillment of DSO 1. SERMON, another extension of REQMON, supports the 
specification and monitoring of SOA protocol policies[30].  

2.4   Demonstration 

To monitor the user goals, a TAL software analyst engages in the following activates:  

1. Specify the user goals informally. 
2. Formalize those goals in KAOS. 
3. Translate the KAOS goals into the REQMON property specification language. 
4. Add the property specification to REQMON, which begins the monitoring 

process.  

As a natural part of software development, we evaluated the REQMON design 
through functional (black-box) testing, performance analysis, and scenario test cases. 
What follows, is a portion of one of the scenario test cases. 

2.4.1   Goal Modeling 
Consider typical CI-user emailing goals. They include subgoals for the basic steps of 
emailing. For example, consider the following goals, which are included in our com-
mon goal library. 
 

Gpresence: The period between viewings of the email in-box shall be no more than k 
days.  
Gsend: After composing an email message, the user shall send the email, within k 
hours. 
Gread: After noticing a new email, a user shall read the email, within k hours. 
Greply: After receiving an email, a user shall read and reply to the sender, within k 
days.  
Gread-delete: Before deleting an email, a user shall read the email.  

 

Clinicians want to see: (1) a good success-to-failure ratio over sessions, and (2) a 
constant or improving trend of this ratio. This leads us to refine these goals further. 
For example, the preceding Greply goal has the following two refined goals: 

Greply-ratio: The ratio of successes vs. attempts for email replies shall be ≥ 75%, with 
any two-week period.  

Greply-ratio-trend: The trend of goal Greply-ratio shall be positive (increasing), with any 
two-week period. 

A TAL software analyst formalizes such informal goals in KAOS. As an illustra-
tion, the preceding Greply goal is specified in KAOS as follows: 
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Goal Achieve [Reply] 
 UnderResponsibility u1  
 FormalDef 

    ∀ m1,m2:EmailMessage, u1,u2:User 
  EmailArrive(m1,u2,u1) ⇒ ◊<t EmailSend(m2,u1,u2) 

 

The KAOS goal Reply represents our informal Greply goal.  

2.4.2   REQMON Property Specification 
The KAOS goals represent requirements without regard to monitorable events. The 
monitoring system, however, receives events from the TAL email system as it exe-
cutes. The goals and monitorable events have two distinct ontologies. For example, 
the KAOS predicate EmailArrive gives no indication of the software component 
that generates the email event—that is, there is no design information is the non-
operational KAOS goals. To bridge this gap, the software analyst rewrites the KAOS 
goal in terms of events monitored by REQMON. 

Here, a design research decision had to be made regarding the input language of 
REQMON. An early prototype relied on the language underlying the REQMON imple-
mentation[34]. The KAOS language itself was also considered. However, it is mainly 
used for requirements definition—design decisions are eschewed. Conversely, the 
unified modeling language (UML) and its object constraint language (OCL) are 
mainly used for design. Moreover, the UML has a much greater market than does 
KAOS, and therefore has the potential for new streams of design science research 
with REQMON. Thus, we chose the UML OCL, extended to include temporal expres-
sions, for a REQMON specification language. 

The REQMON property specification for the property, Reply, follows. 
 

-- Every email read must have a following reply  
-- to the email buddy, within timeout. 
context Session 
inv: 
    Events-> 
      forAll(r,s : EmailEvent | r <> s  
                   and r.methoName='read' and s.methoName='send' 
 implies (response@6h(r,s and r.buddy = s.buddy))) 

 

The property is expressed using a standard OCL invariant, except for the use of the 
response temporal pattern. The pattern response@t(A,B) specifies that event 
B responds to event A within time t[35]. The property specifies that a Session’s 
Events must satisfy the specified conditions, namely an arriving email message 
must have a matching reply. (TAL’s email uses a buddy field to indicate the non-CI 
user.) 

We have adopted the Dwyer et al. temporal patterns, which define five scopes over 
eight temporal patterns. They were generalized from an empirical study of 555 specifica-
tions [35]. Their property patterns include universal, absence, existence, 
bounded existence, response, precedence, chained precedence, and 
chained response. Their scope patterns include global, before R, after Q,  
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between Q and R, and after Q until R. Distinguishing scoping  
properties from other properties seems to simplify property specifications through 
modularization. 

The Dwyer temporal patterns defined the test cases for our functional (black-box) 
testing and performance analysis. Thus, we had 40 functional test cases (5 × 8). With 
REQMON passing the functional tests, we were convinced that it worked properly and 
that it could evaluate most temporal properties that it would be likely to encounter, 
according to[35]. 

2.4.3   Monitoring Point Implementation 
REQMON relies on instrumentation and computer management frameworks to gener-
ate and transport events. For example, important events can be published from the 
TAL software using instrumentation statements such as the following: 

Log.Info(GetXml(EmailEvent)); 

The call to GetXml converts an event into a XML representation. The call to the 
logging program,  

log4J’s Info method, generates the log stream on which REQMON listens. Thus, 
events can travel through a distributed logging program to REQMON.  

2.4.4   Presenting Property Changes 
REQMON can initiate actions in response to changes. In the REQMON toolkit, this 
amounts to executing rules in response to changing property evaluations. When a 
property is violated, for example, a rule can notify an external system, which can pre-
sent a graphic visualization or a textual trace. As an illustration, consider monitoring 
the preceding EmailReply property. It is satisfied by the event sequence presented 
in Table 1. The SessionEvent(open) and SessionEvent(close) events 
open and close the between scope, respectively. While its scope is open, the moni-
tor checks its property specification against arriving events. Together, the EmailEv-
ent(read) and EmailEvent(reply) event sequence satisfy the EmailReply 
property.  

Table 1. Incremental evaluation of email events by the EmailReply property monitor 

Event Resulting Animated slide evaluation† 
E1: 
SessionEvent(open) 

PropertyEvaluation(pe1,SessionOpen,(E1),satisfied) 
ScopeEvaluation(se1,InSession,open,pe1) 

E2: 
EmailEvent(read) 

PropertyEvaluation(pe2,EmailRead,(E2),partial) 

E3: 
EmailEvent(send) 

PropertyEvaluation (pe3,EmailSend,(E3),satisfied) 
PropertyEvaluation(EmailReply,se1,(pe2,pe3),satisfi
ed) 

E4: 
SessionEvent(close) 

PropertyEvaluation(pe4,SessionClose,(E4),satisfied) 
ScopeEvaluation(se1,InSession,open,pe1,close,pe4) 

†
PropertyEvaluation(<property-evaluation>, <property>, (<events>), <satisfaction>) 
 ScoperEvaluation(<property-evaluation>, <property>, (<events>), <satisfaction>) 
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2.4.5   Performance Analysis 
A performance analysis experiment was conducted by comparing the total runtime of 
no monitoring for the 40 combinations of the Dwyer temporal patterns. Data sets were 
provided to each of the 40 configurations. Each data set was generated in real-time by 
iteratively executing the following code until the iteration limit was reached—
iterations of 1,000; 2,000; 4,000; 6,000; 8,000; and 10,000 were executed. 
 
ProgramEvent pe = new ProgramEvent(); 
pe.setMethodName("event1"); 
pe.setClassName("class1"); 
reqmon.assertObject(pe); 
ProgramEvent pe2 = new ProgramEvent(); 
pe2.setMethodName("event2"); 
pe2.setClassName("class1"); 
reqmon.assertObject(pe2); 

 

Two events are required to satisfy the sequential properties (precedence and re-
sponse), whereas other properties only requires one event. Nevertheless, two events 
were generated in each iteration so that all configurations are comparable.  

In the experiments, the event generator and REQMON run in the same multi-
threaded process. (REQMON can process multiple, asynchronous event streams.) In 
the experiments, each test runs as a JUnit test case within Eclipse on a Windows 
Server 2003 dual core 2.8 GHz with 1G memory. The results suggest that, within the 
test configuration, sequential properties (of length 2) can process 137 event pairs per 
second, and other properties can process 417 events per second. This indicates that 
algorithm is reasonably efficient for many monitoring problems. 

2.5   Evaluation 

The TAL project provides an exploratory case study in the use of REQMON.CI for 
user model monitoring[1, 36, 37]. Before initiating formal case studies, we sought to 
gain insights from this real-world application concerning DSRQ1.  

In collaboration with clinician, developers specified the user models. Then, the CI 
user computer usage was monitored by REQMON.CI.  Analysts presented the results to 
the clinicians as graphs, generated by Excel from the REQMON.CI data. 

Fig. 7 illustrates monitoring higher-level goals, such as replying to email (Greply of 
§0). Although goal Greply is satisfied during the first 50 days, it drops to zero thereaf-
ter. Email sending—including sending to distinct buddies—spikes and lags corre-
sponding to the emailing pattern of the initiating buddies.  

The exploratory case study confirms the DSRQ1: low-level monitoring of software 
[email] events can be used to determine user goal successes and failures. In particular, 
the low-level events captured by the TAL email software can be recognized, ab-
stracted, and related to user goals, such as EmailReply, thereby, the user goals can 
be monitored. In the study, the eight users generated about 200 events per day. Two 
years data for eight CI users occupies 80,486 database records in 321.8 MB within 
SQL Server 2005, which include 138,107 property evaluations produced by 
REQMON.CI.  
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Fig. 7. The first 210 days for Don showing 7 day moving averages of replying (mainly at left), sending email, and sending to distinct buddies 
(below sending). Arrows point to periods of email client adaptation using new “email buddies.” 
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Although the exploratory case study confirms the existential question posed by 
DSRQ1 within the CI emailing domain, the context of the TAL project led us to re-
fine DSRQ1 into the following sub-questions: 

 

1.1. Is the user modeling language sufficiently expressive for the application? 
1.2. Can a team of users and developers specify properties properly? 
1.3. Is property analysis sufficiently efficient?  

The case study does not provide definitive answers to these questions.  However, it 
does provide the basis for some initial insights, which we summarize as follows: 

 

• Is the user modeling language sufficiently expressive for the application? 
All monitoring requests (for available data) have been accommodated. The logic-
based language includes temporal patterns and timeouts, which seemed to simply 
the property specifications. It was relatively simple to specify, for example, “Dur-
ing a session, when a CI user receives an email, the user should read and reply to 
that specific email.” Both the email session context and the matching of the email 
sender with the reply recipient are context-sensitive expressions that can be di-
rectly expressed in the specification language. Our success, however, does not 
suggest that all the properties types for this domain were represented—we only 
represented those that were requested.  

• Can a team of users and developers specify properties properly?The team of 
cognitive rehabilitation specialists specified properties, informally. The software 
developers formalized those properties and derived the monitors. In particular, a 
REQMON.CI developer (the first author) did most of the formalization and moni-
tor definition. 

• Is property analysis sufficiently efficient? A small Microsoft Windows server 
handed the load of eight CI users, easily. The test configuration, can continually 
evaluate about 36,028,800 events each day for the tested two-event sequence 
property. This translates to roughly 180,144 CI users per day—again, assuming 
only the simple two-event sequence property in the preceding Demonstration sec-
tion. Nevertheless, this suggests that REQMON.CI scales to larger sets of CI users. 
We tentatively suggest that it may be efficient enough to be deployed on a typical 
Windows server computer and perform the monitoring of several non-trivial 
properties over continuous streams of a hundred events per second.  

 

It must be emphasized that this has been an exploratory case study, which included in-
formal, nondirected interviews. Consequently, these finding may not generalize to other 
monitoring projects. Nevertheless, given the data volume and property complexity, it 
does suggest that this approach may be utilized in a variety of application domains.  

3   Discussion 

Despite their varied views, both Simon and Schön would agree that continuous feed-
back guides design improvements.  Modern software companies apply this practice 
through mainly manual mechanisms. Both Simon and Schön observed that designed 
artifacts contain implicit value.  Through simulation, Simon sought to understand the 
implications of a specified theory.  Through reflecting on practice, Schön sought to 
understand the messy, poorly understood implications of a theory’s application.  
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Ideally, both views seek to obtain design feedback from natural problem settings.  For 
computing systems, the requirements monitoring paradigm illustrated by REQMON 
provides a means to obtain such high-level design feedback. 

Automated requirements monitoring provides effective technique for guiding de-
sign evolution. User-goal satisfaction can be tracked and aggregated over time and 
users to provide an objective measure of goal attainment. Weakly satisfied user-goals 
can be traced to poorly performing components, which can be reconfigured or reengi-
neered to meet user expectations.  

Assistive technology for the cognitively impaired provides an interesting environ-
ment to study design feedback. Like many users, the cognitively impaired evaluate 
the whole system, not just the software; they will abandon a system if it does not sat-
isfy their goals. Consider the consequences for TAL if goal monitoring were absent. 
Our illustrative user, Don, would have stopped using the system, which is the norm 
for such assistive technology. Instead, with monitoring, the developer can react to the 
identified changes in user satisfaction. Consequently, the system continues as it 
evolves to meet the changing user needs. Automated requirements monitoring facili-
tates the unending process of seeking to meets user requirements.  

Requirements monitoring is fundamental to design theory.  It supports Simon’s 
theory of goal attainment and adaptation. 

The artificial world is centered precisely on this interface between the inner 
and outer environments; it is concerned with attaining goals by adapting the 
former to latter. … The proper study of those who are concerned with the arti-
ficial is the way in which that adaptation of means to environments is brought 
about—and central to that is the process of design itself. [6]—chapter 5. 

Requirements monitoring can reveal essential design properties that support or ob-
struct goal attainment.  

Automated requirements monitoring may not be appropriate for all designs con-
texts. As Simon notes, “Everyone designs who devises courses of action aimed at 
changing existing situations into preferred ones” [6]—chapter 5.  Thus, one can envi-
sion the design of a non-operational artifact, such as a business strategy.  A designed 
artifact having an informal representation provides little objective feedback; the qual-
ity of an informal design is in the eye of the beholder. However, if the strategy (the 
designed artifact) is applied in a real or simulated business, then objective feedback 
can be obtained. Thus, design representation (informal, formal, or operation) deter-
mines largely the quality of the feedback, and thereby the evaluation of the design. 
Automated requirements monitoring applies to operational systems, which allows for 
many interesting designed artifacts. Simon, for example, placed great emphasis on 
computer models as a means to explore designs, even social and cognitive designs. 
Automated requirements monitoring is applicable to equally diversion domains. 
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Section 3: Quality and Value-Based Requirements  

John Mylopoulos 

 
Traditionally, research and practice in software engineering has focused its attention 
on specific software qualities, such as functionality and performance. According to 
this perspective, a system is deemed to be of good quality if it delivers all required 
functionality (“fitness-for-purpose”) and its performance is above required thresholds. 
Increasingly, primarily in research but also in practice, other qualities are attracting 
attention. To facilitate evolution, maintainability and adaptability are gaining popular-
ity. Usability, universal accessibility, innovativeness, and enjoyability are being stud-
ied as novel types of non-functional requirements that we do not know how to define, 
let alone accommodate, but which we realize are critical under some contingencies. 
The growing importance of the business context in the design of software-intensive 
systems has also thrust economic value, legal compliance, and potential social and 
ethical implications into the forefront of requirements topics.  A focus on the broader 
user environment and experience, as well as the organizational and societal implica-
tions of system use, thus has become more central to the requirements discourse. This 
section includes three contributions to this broad and increasingly important topic. 

Traceability mechanisms capture critical information on inter-dependencies that 
exist between software artefacts. For instance, traceability links may relate a design 
object to the requirements it depends upon, or to programming artefacts that imple-
ment it. Traceability mechanisms have been recognized as an important prerequisite 
for dealing with critical software qualities such as maintainability and evolvability. In 
their paper “Value-Based Requirements Traceability: Lessons Learned”, Alex Egyed 
and colleagues focus on the problem of deciding what traceability strategy to adopt 
for near and long-term utilization of software. In other words, what traceability links 
should the software engineer maintain to serve short-term maintenance processes for a 
software system, but also its long-term evolution. The research methodology adopted 
for this work is empirical: Three case studies are presented and lessons are drawn 
from the traceability practices adopted in each case.  

The second paper of this section is authored by Tetsuo Tamai and Mayumi Tamata 
and is titled “Impact of Requirements Quality on Project Success or Failure.” It has 
long been conjectured that there is a causal relationship between the quality of re-
quirements and success or failure of a software project. The paper offers concrete evi-
dence concerning this conjecture. Specifically, the paper draws on survey data from 
72 industrial projects, including data on the quality of their requirements specifica-
tions and performance data indicating whether projects had incurred time/cost over-
runs and uses statistical techniques to draw conclusions about the strength of the  
relationship between requirements quality and project success/failure. 

The third paper by Vera Kartseva et al. reports of a long-term effort to introduce 
into the design of networked enterprises – a particular form of software-intensive sys-
tems -- concepts that represent economic value. It seeks to make facets the basis for 
requirements analysis techniques that can complement goal and process-oriented  
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approaches. The paper is titled “Designing Value-Based Inter-Organizational Controls 
Using Patterns.” It focuses on the specific problem of introducing control mechanisms 
that can discourage selfish, opportunistic inter-organizational behaviors by members 
of the networked enterprise. As indicated by the title, the approach is pattern-based 
and it demonstrates through a case study how inter-organizational controls can be 
realized in terms of three project-based patterns that increase economic value. 
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Abstract. Traceability from requirements to code is mandated by nu-
merous software development standards. These standards, however, are
not explicit about the appropriate level of quality of trace links. From
a technical perspective, trace quality should meet the needs of the in-
tended trace utilizations. Unfortunately, long-term trace utilizations are
typically unknown at the time of trace acquisition which represents a
dilemma for many companies. This chapter suggests ways to balance the
cost and benefits of requirements traceability. We present data from three
case studies demonstrating that trace acquisition requires broad cover-
age but can tolerate imprecision. With this trade-off our lessons learned
suggest a traceability strategy that (1) provides trace links more quickly,
(2) refines trace links according to user-defined value considerations, and
(3) supports the later refinement of trace links in case the initial value
consideration has changed over time. The scope of our work considers
the entire life cycle of traceability instead of just the creation of trace
links.

Keywords: Requirements engineering, software traceability, value-
based software engineering.

1 Introduction

Trace links define dependencies among key software artifacts such as require-
ments, design elements, and source code. They support engineers in understand-
ing complex software systems by identifying where artifacts are implemented [12].
A significant body of work has been published on software traceability and its
usefulness, particularly on requirements traceability [12,19]. Traceability has also
made its way into a number of software engineering standards and initiatives,
such as ISO 15504 and the CMMI that mandate or recommend traceability as
’best practice’.
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c© Springer-Verlag Berlin Heidelberg 2009



Value-Based Requirements Traceability: Lessons Learned 241

Over the last couple of years we have been collaborating in the area of require-
ments traceability with several industry partners in the US and Europe. These
included large organizations such as Siemens Austria [13], Boeing Company, and
NASA but also very small companies such as geDV [17]. We have seen that com-
panies introducing traceability techniques face significant challenges. Capturing
trace links requires a significant effort even for moderately complex systems [19].
While some automation exists for trace capture it still remains a mostly man-
ual process of non-linear complexity (i.e., if m requirements trace to n pieces
of source code then there are m times n potential trace links). Even worse,
once generated, trace links degrade over time as the software system evolves.
While trace links are often utilized immediately, they still have to be maintained
continuously thereafter to remain useful over time. Maintaining trace links after
changes to the system is a continuous, manual task, also of quadratic complexity.

In practice, engineers rarely capture trace links completely because of the un-
certainty of their later usage. Engineers thus attempt to predict what trace links
will likely be needed in the future and concentrate on these. If the trace utilization
is planned for the near term their predictions tend to be good. There is, however,
a significant uncertainty concerning long-term utilization. Engineers thus often
have to err on the side of perfection (i.e., producing links that are not needed later)
or on the side of incompleteness (i.e., omitting links that are needed later). Both
errors can be costly. The practical alternative, i.e., to delay trace acquisition and
to create trace links upon request, is typically infeasible because the manual gen-
eration and maintenance of trace links hinges on the engineers’ ability to recollect
necessary facts. Asking for traceability information long after the fact is like ask-
ing for documentation as soon as somebody decides to read it.

The dilemma of requirements traceability is thus that engineers must consider
both the near-term and long-term utilization needs of trace links.

This chapter presents lessons learned from three case studies. The lessons
suggest that a traceability strategy should first identify trace links quickly and
completely on a coarser level of granularity and then refine them according to
some user-defined value consideration (i.e., based on predicted utilization needs).
Engineers may still err during the refinement – if value considerations change or
turn out to be incorrect – however, our lessons learned indicate that engineers are
able to recover from such errors more quickly if they can rely on a complete set
of coarser-grained trace links. Software maintenance costs represent a significant
share of the total software cost so our analysis tackles an important industry
problem [5]. This chapter builds on an initial workshop paper [4] describing the
proposal for this work and a short conference paper discussing some of the basic
points [11]. The novel contributions in this chapter are the detailed data of the
three case studies together with lessons learned that can be used directly by
practitioners in their projects.

The chapter is structured as follows: Section 2 discusses related work. Section 3
explores and illustrates the problem in greater detail. Section 4 presents lessons
learned in the three case studies and detailed analyses of data. Section 5 discusses
results. We round out the chapter with conclusions and an outlook on further work.
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2 Related Work

Numerous commercial and research approaches are available that support re-
quirements traceability. Most approaches focus on the acquisition and manage-
ment of trace links: Tool support exists in two forms: (1) Tools for capturing and
managing trace links provide a structured way of defining trace links and keeping
track of missing or potentially outdated links. Many commercial tools primarily
focus on these aspects of recording and replaying trace links. The tools have
very limited capabilities to automate the definition of trace links, which remains
a manual and error-prone activity. (2) Tools for automating the acquisition of
trace links are typically based on providing some basic facts initially followed
by some deductive reasoning to fill-in missing pieces. Examples of approaches in
this category are based on scenarios [9] or information retrieval techniques [14].
Such tools are sometimes based on heuristics and neither complete nor correct
results can be guaranteed.

Despite existing tool support traceability remains costly and complicated.
There are typically no guarantees of completeness or correctness (errors and
omissions). Developers can neither fully trust automatically generated trace links
nor manually defined ones.

Traceability approaches typically do not provide explicit support for trace
utilizations such as impact or coverage analysis. They rather provide general-
purpose features to create reports or query traceability information. Researchers
have been proposing techniques to improve support for important tasks such
as analyzing change impacts [1] or understanding the conflict and cooperation
among requirements [10].

There is very little literature on the quality implications of trace links. This
is partly because there are many applications that benefit from trace links with
different cost/quality trade-offs. An exception is [2]: Bianchi et al. show that the
effectiveness of maintenance can be improved by varying the degree of granularity
of the traceability model. A reason for the lack of research results lies in the fact
that it is unknown in advance which trace links will be used.

Murphy et al. have explored the idea of ”good enough” techniques in the
context of closing the gap between design and implementation. Their reflexion
model technique helps engineer evolving a structural mental model of a system.
As soon as this model is ”good enough” it can be used for reasoning about tasks
such as design conformance, change assessment, and experimental reengineering.

Recently, several publications appeared in the area of value-based software
engineering [3,6]. This thread of research provides a new perspective on balanc-
ing cost and benefits of software engineering techniques. An initial cost-benefit
analysis for traceability is reported in [13]. Cleland-Huang et al. have also started
exploring the economic aspects of traceability [7]. In [15], Lindvall and Sandahl
show in a case study that tailoring of traceability models is essential in practice.

The literature review reveals that many traceability approaches emphasize
isolated aspects (e.g., trace generation) but do not consider the full life cycle
”end-to-end” traceability. Furthermore, the impact of different quality levels
of trace links is not yet well understood. There is still no systematic way for
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understanding the value contribution of trace links and for dealing with cost-
quality trade-offs.

3 Problem Illustration

To illustrate the problems in more detail we take a look at the life cycle of
software traceability. This life cycle includes in essence four tasks:

Acquisition. Software engineers create trace links between requirements and
other software artifacts such as design elements, or source code either manually
or with the help of tools.

Utilization. Software engineers consume trace links in tasks such as change
impact analysis, requirements dependency analysis, etc. It is useful to distin-
guish between short-term utilization (e.g., determining test coverage in later
project stages) and long-term utilization (e.g., a particular change request years
later).

Maintenance. Software engineers continuously revisit and update trace links
as the system and its various artifacts (requirements, design elements, code, etc.)
are being changed. Trace maintenance ensures that the quality of trace links does
not degrade.

Enhancement. Software engineers improve the quality of trace links (i.e., in-
creasing completeness or correctness) in case their quality is insufficient for the
intended utilization.

Better tools, more capable engineers, more calendar time, or better documen-
tation are certainly helpful in improving the quality and reducing the cost of
traceability in any or all tasks. But, in essence these measures do not mitigate
the following fundamental problems:

Finding the right level of trace quality with finite budgets. Even if developers
have some quality threshold in mind, it is not obvious whether the allocated
budget is sufficient for the planned traceability task. For example, it is not
obvious that improving trace links is cost-efficient as the benefits gained through
trace utilization are offset by the added cost of producing better trace links.

Increasing the quality of trace links comes at an increasingly steep price. Trace
acquisition suffers from a diseconomy of scale where low-quality trace links can
be produced fairly quickly and economically while perfection is expensive and
very hard to achieve and determine.

Traceability planning under uncertainty about future utilization needs. We can-
not know which trace links at which level of quality will be needed in the future
as detailed knowledge about applications utilizing them is not available at the
time of their creation.

An engineer performing a traceability task typically faces a situation where
the time available to complete the task is much shorter than the time required
performing the task in a complete, correct, and consistent manner. Basically, the
engineer has two fundamental strategies to deal with the problem:

”Brute force”, i.e., trying to generate the trace links for the complete system
in the limited time available. Obviously this will have some negative impact on
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Table 1. Impact of “Brute force” vs. “elective” strategies on traceability tasks

Task Brute force strategy Selective strategy

Acquisition Full coverage but many incorrect
links.

Correct links but small coverage
(area and/or depth).

Utilization Utilization hampered by erroneous
feedback caused by incorrect links.
Similar performance for short-term
and long-term utilization.

Good utilization limited to avail-
able links. For other utilizations
problematic or infeasible. Likely
emphasizing on short term utiliza-
tion.

Maintenance Hampered by incorrect links (lack
of trust in trace links).

Limited to smaller set of available
trace links.

Enhancement Hampered by incorrect links (lack
of trust in trace links).

Very hard due to later unfamiliar-
ity.

the correctness of trace links and their later utilization if the allocated time is
insufficient as is often the case.

”Selective”, i.e., trying to achieve the most valuable traces until running out
of resources driven by an explicit or implicit value prioritization strategy such
as easy-things-first, gut feeling, or predicted future utilization. As a result of
applying the strategy some parts of the system will have trace links of reasonable
quality while other trace links will be missing or incorrect. This can limit or in
some cases even preclude future utilization.

Table 1 summarizes the impact of the two strategies on the traceability tasks
discussed earlier.

The brute force strategy negatively affects trace utilization because of the
higher degree of incorrectness. While there are typically some errors in trace
links due to the complexity involved in generating them, the brute force strategy
worsens this situation. Trace maintenance also suffers from higher incorrectness
because it builds on the presumed correct trace links. Trace enhancement is,
however, unnecessary. The selective strategy is better but failure in predicting
trace utilization needs will make enhancement difficult. This is less of a problem
for near-term utilization because the engineers are still available and knowl-
edgeable to recover missing trace links. However, the selective strategy suffers
immensely during long-term utilization because recovering trace links later is
very difficult (i.e., if engineers moved on or forgot necessary details). The most
serious drawback of these two approaches is the inability to recover from missing
or incorrect traces.

4 Lessons Learned in Three Case Studies

We describe lessons learned based on data from three case studies. The pur-
pose of the lessons is to guide practitioners to define a traceability strategy and
to understand the expected benefits. Our intention is not to propose a con-
crete approach or improve upon a specific tool or traceability technique. Rather,
we demonstrate that value-based software engineering techniques can have an
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Table 2. Case studies and their context

System Development context

ArgoUML UML modeling tool; distributed developers; open-source
development

Siemens Route Plan-
ning

Route-planning application for public transportation; in-
dustrial developer team

Video on demand Movie player; single developer

impact in very practical terms. We will discuss what trace links to generate at
which time and at what level of detail. We will not discuss how to generate
them. Any existing guidable process or tool should be able to adopt our lessons
learned.

We derive the lessons from three case studies: The open-source ArgoUML
tool [18], an industrial route-planning application from Siemens Corporation,
and an on-demand movie player. ArgoUML is an open-source software design
tool supporting the Unified Modeling Language (UML). The Siemens route-
planning system supports efficient public transportation in rural areas with mod-
ern information technologies. The Video-On-Demand system is a movie player
allowing users to search for movies and playing them [8]. We chose these sys-
tems because they cover a range of different development contexts (open source
vs. industrial), application characteristics (large vs. small), and domains (see
Table 2).

4.1 Reducing Granularity

Lessons learned:

– Save traceability effort by reducing granularity.
– Requirements-to-class-level granularity provides better value for money com-

pared to requirements-to-package-level and requirements-to-method-level
granularity.

– Focus on completeness and correctness first – these are essential for follow
up tasks such as maintenance and enhancement.

– Reducing granularity reduces the benefits of trace utilization.

We learned in the case studies that combining value-based and granularity-
based trace acquisition is a good strategy. Granularity is the level of precision of
a trace link (e.g., requirements to packages vs. requirements to classes). Adjust-
ment of granularity can provide a cheap and quick way of exploring correct and
complete requirements-to-code traces. We will see that granularity-based trace
analysis may be imprecise but it can be computed much more efficiently without
sacrificing correctness and completeness.

The trace links considered in the three case studies were between require-
ments and source code. In some development contexts, engineers might define
trace links to the granularity of methods (e.g., Java methods in case of the Ar-
goUML system). Sometimes, engineers might even decide to define trace links to
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Fig. 1. Decreasing number of false positives with increasing level of detail

individual lines of code (e.g., when exploring crosscutting concerns in safety crit-
ical systems). The needs of the techniques that utilize traces links normally drive
this decision. The benefit of adopting coarse-grained trace links is better cover-
age and higher quality of trace links at lower costs. However, there is a sacrifice:
Low granularity trace links are not as precise and useful during trace utilization.
We have found, however, a remedy to this issue which will be discussed later.

We analyzed the granularity trade-off for the three case study systems. Cost
was measured in terms of the effort required and the input quantity generated.
We considered the following three levels of granularity: requirements-to-methods,
requirements-to-classes, and requirements-to-packages. Quality was measured in
terms of the number and percentage of false positives. In particular, for each case
study system we analyzed the impact of trace acquisition on the quality of the
generated trace links. As a baseline, we took the level of false positives produced
on the most detailed level of granularity (i.e., requirements-to-methods). The
analysis compared how a reduction of granularity resulted in a higher number of
false positives (note that a reduction in granularity does not cause false negatives
– missing trace links).

Figure 1 presents our findings for the three levels of granularity and the three
case study systems. For example, the ArgoUML system consisted of 49 packages,
645 classes, and almost 6,000 methods. The quantity of trace links captured at
the granularity of Java classes was thus only one-tenth the order of magnitude
compared to the quantity at the granularity of methods. This reduction in in-
put quantity obviously also reduced the effort spent: we observed a three-fold
reduction in the effort needed to generate the coarser-grained trace links, a very
significant saving. However, this saving came at the expense of trace quality.
Figure 1 also shows the quality drop relative to the total number of traces. We
found that the trace links at the granularity of classes had 16% more false posi-
tives compared to the ones at the granularity of methods. This effect was much
stronger on the granularity of packages which had over 40% more false positives
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Table 3. Granularity-based tracing

Task Impact of lower granularity

Acquisition Correct and complete but less precise.
Utilization Reduced quality but similar performance for

short-term and long-term utilization.
Maintenance Easier because of smaller quantity, completeness,

and correctness.
Enhancement Limited because can ignore code not identified on

a coarser-grained trace.

with another ten-fold reduction in input quantity (20/30% more false positives
on the level of classes and 55% more false positives on the level of packages – no
packages were defined for the movie player).

Our data strongly indicates that there is a decreasing marginal return on
investment (ROI) with finer-grained input. Indeed, the data strongly suggest that
the granularity of classes provides the best cost/quality trade-off. Adjusting the
level of granularity can be used as a cost saving measure and some techniques
that utilize trace links would still produce reasonable results. However, it is
the ability to provide complete and correct trace links at lower costs that is of
particular interest in this chapter. Table 3 summarizes the benefits of granularity-
based traceability for the four tasks of the trace life cycle.

Trace Maintenance heavily utilizes trace links. For example, if the change
of a requirement requires a code change then the engineer uses trace links to
identify the affected pieces of code. As a result of the change the requirement
may then map to more or fewer elements of code (classes or methods). Trace
maintenance ensures that the trace link is updated to reflect the new, correct,
and complete relationship. Trace links on the granularity of Java classes identify
all classes that need to be changed (i.e., because they are complete and correct).
The lack of precision implies that the engineer must search through the methods
of the identified classes but does not have to study the remaining classes not
identified by the trace (no false negatives!). Consequently, the maintenance of
coarse-grained trace links does not suffer from the problems identified in Sec-
tion 3 where a significant portion of the source code had to be searched because
of incompleteness. The following demonstrates the strong savings this entails.

In the ArgoUML case study we studied 38 requirements in detail. On average, a
requirement traced to 247methods and46 classes.Clearly, these requirementswere
not trivial. It required roughly one-third of the effort to produce the coarser-grained
requirements-to-classes traces as compared to the requirements-to-method traces.
With that effort, the selective approach described in Section 3 only identifies 30%
of the requirement-to-methods traces. With that level of effort, the remaining 70%
(or 4,200) traces to methods would remain incomplete. While the requirements-to-
classes traces identify all classes owned by a given requirement, the requirements-
to-method traces would only identify some 30% of methods.

This leaves it up to the developer to guess the missing information. With
the requirements-to-class traces, we know that only 46 classes (out of 645) are
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affected in average by a requirements change. Since there is a 1:10 ratio of classes
to methods in the ArgoUML system, an average of 460 methods have to be
explored in more detail. The selective approach, on the other hand, guesses 30%
of the methods correctly but misses out on the more than 4000 other methods
that were not covered. It is much easier to refine 46 imprecise classes to methods
than it is to discover 250 or so methods in a pool of over 4000 methods that
were ignored because of incompleteness – this represents a 20-fold improvement
in complexity and cost! This example illustrates that it is more beneficial to have
completeness than precision for maintenance. The Siemens system and Video-
on-demand system behaved similarly well.

Trace Enhancement benefits similarly from coarse-grained trace links. Recall
from Section 3 that trace enhancement is necessary when an engineer discovers
missing or incorrect trace links. This problem is obviously reduced or perhaps
eliminated as the 3-fold reduction in effort increases the likelihood of correct and
complete trace links at the granularity of classes. However, trace enhancement
is still needed for upgrading the coarse-grained trace link to fine-grained trace
links on demand. Thus, the problem has changed somewhat. Similar to trace
maintenance, trace enhancement utilizes its own trace links. Only the classes
identified by the trace link need to be refined but not all the other classes.
Again, trace enhancement does not suffer from the problems of the selective
strategy identified in Section 3 where a significant portion of the source code has
to be searched because of incompleteness. The empirical data supporting this
benefit is omitted because it is largely identical to the discussion under trace
maintenance above.

Trace Utilization techniques differ with respect to handling false or missing
trace links. This chapter does not provide a comprehensive overview here due to
brevity. If the quality of the trace links is inadequate then trace enhancement is
necessary and we already demonstrated that coarse-grained trace links outper-
form selective trace links during trace enhancement 20-fold. However, selective
trace links perform better if the engineer is able to guess correctly which links
will be needed. In our experience, this is rarely the case for long-term trace uti-
lization. Only if trace links are generated for immediate use without later reuse,
the selective approach may outperform our proposed strategy.

4.2 Value-Based Enhancements

Lessons learned:

– Consider stakeholder value propositions to focus traceability for refinement.
– Use savings from lower granularity to focus trace refinement on high-value

requirements.

Thus far, we demonstrated that granularity-based trace links can save sub-
stantial cost during trace maintenance and enhancement. However, the resulting
across-the-board quality reduction may not be acceptable. While an engineer
may be willing to sacrifice some benefits to save cost, we believe that such a
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Fig. 2. Trace Acquisition with Selective (top) and Value-based Approach (bottom)

process must be guidable. In the following, we present a value-based extension
to granularity-based trace acquisition, maintenance, and enhancement:

Value-based software engineering [3] invests effort in areas that matter most.
A value-based approach relies on considering stakeholder value-propositions to
right-size the application of a software engineering technique [3,5]. The defini-
tion of value depends largely on the domain, business context and company
specifics. In essence, engineers can place value directly on trace links (i.e., this
trace is important) or indirectly on the artifacts they bridge (i.e., this require-
ment is important and consequently its trace link to code as well). Our approach
does not prescribe a particular value function. Indeed, the selective strategy dis-
cussed earlier could be considered a value-based approach, except, that the selec-
tive approach accepted incompleteness which we discourage in the value-based
approach. The following demonstrates that not the initial acquisition but the
enhancement should be value driven.

We discussed trace enhancement as a method for improving the precision of
trace links in Section 3. Trace enhancement can be done at a later stage when an
engineer discovers missing traces or incorrect traces. Trace enhancement can also
be done early on to ”upgrade” high-value traces as initially all traces including
the high-value ones are only coarse grained.

Figure 2 (top) shows that the cost of trace acquisition for the selective ap-
proach maps directly to completeness. A 40% cost investment implies, in average,
40% completeness. Value-based trace acquisition follows a different pattern. We
previously discussed that coarse-grained trace acquisition consumes in average
30% of the cost of fine-grained trace acquisition [13]. Figure 2 (bottom) depicts
that with 40% of cost we reach 100% completeness on the class-level but have
not yet created a single fine-grained trace link. The additional 10% funding can
thus go into trace enhancement. Since trace enhancement is part of trace acqui-
sition, we would expect it to be as effective as the selective approach but trace
enhancement only has to refine those classes identified by coarser-grained trace
links. As a consequence, if 100% of the cost is invested, we would expect the
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value-based and selective approaches to be roughly equivalent. However, this ex-
pectation is wrong in two ways: (1) Few high-value traces result in most source
code covered creating a negative effect; (2) Only overlapping trace links need to
be enhanced for creating a positive effect. Both issues are discussed next.

Understanding the Diseconomy of Scale. Intuition says that if only half
the trace links are important then only half the trace links need to be refined
to a finer level of granularity – thus saving 50% of the cost. This intuition is
misleading because requirements map to large portions of source code and each
piece of code may be related to multiple requirements.

Above we presented details on the 38 requirements-to-code traces for Ar-
goUML. These 38 requirements covered 4,752 methods (roughly 80% of the Ar-
goUML source code) with the average trace covering 248 methods.

Trace acquisition is usually not done by taking a requirement and guessing
where it might be implemented. Typically, trace acquisition iterates over the
source code, one class/method at a time, and reasons to which requirement(s)
it belongs. For the ArgoUML system, we found that a class was related to 3.2
requirements in average. If only one of these three requirements was important
then the class would need to be refined. The likelihood for this increased non-
linearly.

Figure 3 depicts the percentage of classes that were traced to by at least one
high-value trace link in relationship to the percentage of high-value trace links.
The cost is normalized across all three case studies and it can be seen that the
cost varies somewhat although it is similarly shaped. The x-axis depicts the
percentage of high-value trace links. A high number of high-value trace links
increases the number of classes they own collectively. However, we also observe
a diseconomy of scale. For example, if 40% of the ArgoUML trace links are of
high value then half of its classes (i.e., more than 40%) are owned by them.
Consequently, 50% of the classes need to be refined. The other two case studies

Fig. 3. Diseconomy by Enhancing Classes belonging to a High-Value Trace Link



Value-Based Requirements Traceability: Lessons Learned 251

behaved much worse. In both cases, 40% of the high-value trace links owned
almost 80% of the classes.

This diseconomy of scale seems to invalidate the benefits of value-based trace
acquisition. This diseconomy is certainly another reason why the simple selective
strategy discussed earlier was not desirable. In the case of the Siemens and
VOD systems, the cost for trace enhancement for 40% high-value requirements
is almost as high as doing the enhancement for all requirements.

Enhancing Common Classes. Fortunately, there is also a positive effect that
counters the diseconomy of scale discussed above. We made the trivial assump-
tion that every class owned by a high-value trace link must be refined to the
granularity of methods. This is in fact not necessary. Figure 4 depicts four trace
links: two high-value trace links covering requirements 1 and 2; and two low-
value trace links covering requirements 3 and 4. Each circle represents the set of
classes traced to by each requirement. These requirements ”share” some classes,
i.e., their traces overlap in their common use of classes as indicated by the in-
tersecting circles but also own classes they do share with other requirements [9].

The question is which of the classes in the various areas (overlapping or not) in
Figure 4 must be refined to a finer level of granularity. We distinguish five areas:
(1) classes owned by a single high-value requirement; (2) classes owned by a
single low-value requirement; (3) classes shared among high-value requirements;
(4) classes shared among low-value requirements; and (5) classes shared among
multiple requirements including one high-value requirement (if there are multiple
high-value requirements than area 3 applies).

Obviously, classes owned by low-value requirements (area 2) or shared among
low value requirements (area 4) should not be enhanced. However, even classes
owned by single high-level requirements (area 1) do not need to be enhanced.
We discussed previously that coarse granularity is correct and complete. Thus if
a class is owned by a single requirement then all its methods must be owned by
this artifact (i.e., if the class is not shared then its methods cannot be shared

Fig. 4. Detailed Granularity is Only Necessary for Overlaps Involving Higher-Value
Trace Links
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either). However, classes owned by multiple high-level requirements (area 3)
must be enhanced because we cannot decide what methods are owned by the
one requirement versus the other. Only overlaps between a single high-level class
and one or more low-level classes (area 5) represent a gray zone. Most techniques
do not benefit from the enhancement of area 5. In those cases, defining area 5
for one requirement but no other is a waste also.

These observations lead to substantial savings with no loss in quality. Figure 5
depicts the results for the ArgoUML case study (top) and the VOD case study
(bottom); the Siemens results are similar. Over 45% of the 645 classes of the
ArgoUML were owned by single requirements (areas 1, 2, and 4). These classes
did not need to be refined to a finer level of granularity. This resulted in an
instant saving of 12-45% effort depending on the case study. This saving was
independent of the percentage of high-value trace links.

Fig. 5. Effort Saved due to Value Considerations in the Source Code (top: ArgoUML,
bottom: VOD)
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In addition, depending on the percentage of high-value trace links, we saved
on the overlapping areas 3 and 5 (itemized separately). For example, if 40% of
the trace links were of high value then an additional 39% of input effort was
saved (in both case studies) because many of the overlapping areas did not
require fine-grained input. We will discuss later that in our experience between
15-50% of trace links are typically of high value. Based on our case studies, this
translates to 30-70% savings during enhancement compared to a value-neutral
approach. This extra saving comes at no expense in terms of trace link quality.

So not only trace maintenance benefits from a complete, coarse-grained trace
acquisition on the granularity of classes. Even the enhancement of trace links
during trace acquisition benefits from it because it piggybacks from the results
obtained on the coarser granularity to decide where to refine. From the 645
classes of the ArgoUML case study only 134 classes needed to be refined to the
granularity of methods. Given that there were in average 9.2 methods per class
in the ArgoUML system 1,232 methods needed to be looked at in more detail
compared to 6,000 methods in case of a value-neutral approach. We reduced the
effort by 80%.

5 Discussion

It is well known that most software development effort goes into maintenance
and evolution [5]. Consequently, more effort is spent on maintaining trace links or
enhancing them than on acquiring them. This leads to a final lesson: ”Don’t focus
on saving effort during trace acquisition without considering trace maintenance
and enhancement.”

However, while working and interacting with industrial partners (including
Siemens Austria, Boeing Company, NASA, and geDV) we did observe legitimate
reasons for wanting to limit trace acquisition efforts. Limited time and budget were
obviously the more dominant reasons. The lessons we presented suggest investing
traceability effort on what matters most and provide a way of limiting trace acqui-
sition without seriously impeding trace maintenance and enhancement.

Granularity Trade-Off. Section 4 demonstrated that reducing the granularity
of trace links reduces the complexity of trace acquisition by a factor of ten
and cost by a factor of three. Coarse-grained trace acquisition produces correct
and complete trace links (though imprecise ones) three times as fast. These
links are thus more likely to be available early on. During trace maintenance
and enhancement, they are mostly useful because of their ability to correctly
identify where requirements do not trace to. We demonstrated that an average
requirement change may affect dozens, even hundreds of methods. While this
impact seems large, one must consider that this is only a small percentage of the
total number of methods – the ArgoUML system defined almost 6,000 methods.
While coarse-grained trace links may not identify the individual methods well
(it errs by a factor of 2), it nevertheless identifies the much larger set of methods
not needed to be looked at because if a requirement does not trace to a class
then it also does not trace to any of its methods.
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Value-based Trade-Off. If we would not have considered trace utilization, we
could have stopped here. However, coarser-grained trace links are not as use-
ful for trace utilization as finer-grained trace links. It is trace utilization that
drives the quality needs of trace links. We thus demonstrated how to refine the
granularity of trace links on a selective basis. This refinement process is guided
by the engineer; however, we believe that it should follow value-based criteria.
Interestingly, value-based trace acquisition does not appear scalable on a first
glance. The problem is that classes and methods are often shared among mul-
tiple requirements. This causes a diseconomy of scale in that few high-value
requirements, collectively, may own a larger share of the source code. Indeed, we
found that 40% high-value requirements own between 50-80% of the source code.
Under these circumstances, little is gained by following a value-based approach
to trace acquisition. Fortunately, we also found that not every class traced to
by a high-value trace link must be refined. In fact, only classes traced to by at
least two high-value trace links needed to be refined. This resulted in a saving of
30-70% compared to a value-neutral approach. Of course, not even a value-based
approach can guarantee accurate prediction of trace links that will be needed
later. Trace enhancement, which is enabled by our strategy, improves the preci-
sion of a trace link that was incorrectly identified as a low-value trace link. It
must be noted that our strategy does not identify high value trace link. This is
done by the customer and/or engineer.

Tool support. The lessons presented do not prescribe a particular method
or tool for doing trace acquisition, maintenance, and enhancement. The three
strategies outlined in this chapter, brute-force, selective, and value-based, are
applicable to any method or tool that is guidable (and most are guidable). How-
ever, trace acquisition is a mostly manual process and the value-based strategy
does not require the engineer to change how to perform these manual tasks ei-
ther. Rather, it guides them what traces should be done when and at what level
of granularity but leaves it up to the engineer how this should be done.

Cost and Effort. We advocate that trace acquisition should always be done
completely. The minimal investment of trace acquisition is the cost/effort needed
to complete trace acquisition on a coarser level of granularity.

Correctness. A value-based strategy can significantly save cost and effort. This
saving does not come at the expense of the quality among the higher-value trace
links. All higher-value trace links are produced at the highest quality. Only low-
value trace links are produced at a lower level of quality; but we have seen that
even this quality reduction is moderate (between 15-30% more false positives
depending on the case study).

Human Error. It must be noted that we ignored the issue of human error in
this chapter. There is always some degree of error associated with trace links.
The degree of error depends on a range of factors such as engineer’s experiences,
engineer’s ability to recollect facts about the artifact and/or code to be traced
or even tool errors. This chapter ignored these kinds of errors because it is not
affected by our value-based strategy. Recall that this work does not prescribe a
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Table 4. Requirements value based on typical ranges for business value feasibility

Value/Feasibility Easy to realize (40% to 60%) Hard to realize (40% to
60%)

high (30% to 80%) High value (12% to 48%) Low value (12% to 48%)
Low (20% to 70%) Low value (12% to 48%) Low value (12% to 48%)

different tool, method, or engineer for doing traces. This chapter only suggests
what to do when.

Finding your value function. As pointed out above our strategy relies on the
ability to identify the important trace links. We previously argued that typically
between 15-50% of trace links are important (high value). This data is based on
previous work on the importance of requirements during the software lifecycle.
It is important to stress that arbitrary, user-definable utility functions can be
used to experiment with different scenarios. The possible savings depend on the
ability of the function to predict short-term and long-term utilization.

We found that the priorities of requirements represent a good proxy for stake-
holder value. For software traceability, value-based software engineering means to
produce better quality trace links for higher-value requirements or other valuable
artifacts. It is common practice in industry to prioritize requirements or design el-
ements according to their importance and feasibility ratings from success-critical
stakeholders. Important requirements that are easy to realize have a higher value
than unimportant requirements that are hard to realize. Table 4 indicates this
relationship together with typical percentages for business value and ease of
realization.

This utility function is just one example. However, we believe this function is
reasonable in many contexts. Obviously utility functions can be optimized and
calibrated to allow even higher savings. The dilemma is that it is not possible
to devise a perfect utility general-purpose function that tells about short term
and long term needs. Granularity allows us to save money in the short term and
to significantly benefit the maintenance and later enhancement in the long run.
A value-based approach to traceability is most likely to strike the right balance
between the cost and benefits of traceability.

6 Conclusion

In this chapter we have presented lessons learned from three case studies. The
lessons suggest a value-based approach to software traceability: Spending the
money where it matters most (value); exploring trace links incrementally based
on an initial, complete base of trace links; and considering trace utilization, main-
tenance, and enhancement. A value-based approach does not suggest ignoring
trace links. On the contrary, this work strongly advocates the completeness and
correctness of trace links. In fact, it is the goal of this work to accomplish com-
pleteness and correctness as quickly as possible, even at the expense of precision,
and to then enhance (refine) the trace links as the budget allows.
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We believe that neglecting these lessons will lead to higher cost and inappro-
priate trace links. Ad-hoc trace generation may have some immediate benefits
but is bound to result in more disadvantages over the course of the software
development life cycle and its maintenance. Our value-based strategy tells when
to establish which traces but it does not tell how to do trace acquisition. It thus
applies to any existing traceability method or tool that is guidable.
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Abstract. We are interested in the relationship between the quality of
the requirements specifications for software projects and the subsequent
outcome of the projects. To examine this relationship, we investigated 32
projects started and completed between 2003 and 2005 by the software
development division of a large company in Tokyo. The company has col-
lected reliable data on requirements specification quality, as evaluated by
software quality assurance teams, and overall project performance data
relating to cost and time overruns. The data for requirements specifica-
tion quality were first converted into a multiple-dimensional space, with
each dimension corresponding to an item of the recommended structure
for software requirements specifications (SRS) defined in IEEE Std. 830-
1998. We applied various statistical analysis methods to the SRS quality
data and project outcomes.

The results showed some interesting relationships between the quality
of the requirements and the success or failure of projects; for example,
(1) a relatively small set of SRS items had a strong impact on whether
a project succeeded or failed; (2) descriptions of SRS in normal projects
tended to be balanced; (3) SRS descriptions in Section 1, which were
expected to include the purpose, overview and general context for SRS,
were comprehensive for normal projects but inadequate for projects that
finished with overruns; and (4) when the descriptions of SRS in Section
1 were inadequate, while those of the expected functions and product
perspective were comprehensive, the project tended to end up with cost
overruns.

Keywords: Requirements quality, project success, statistical analysis.

1 Introduction

The importance of requirements engineering (RE) has been gradually recognized
by the software industry, but it can hardly be said that RE research results are
widely applied [1]. One of the major obstacles may be the lack of evidence that
requirements quality really affects the outcomes of software projects.

A report of a survey conducted by the Standish Group in 1994 [2] is re-
peatedly cited when arguing about the success or failure of software projects.
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Although concerns have been raised about whether the report represents reality
and whether it is well supported by scientific facts [3,4], it has had a strong im-
pact because the reported failure rate for software projects is a staggering 80%
or more. However, another reason for the wide circulation of the report might
be that the failure rate, which was based on the number of projects with cost
or time overruns, is intuitively appealing and has thus been readily accepted by
the management of software development companies.

The Standish report also provides some data on factors affecting project suc-
cess and failure based on a survey of IT executive managers, who were asked
their opinion on why projects succeeded or failed. “Clear statement of require-
ments” was the third-ranked (13.0%) project-success factor, and “incomplete
requirements” was the first-ranked (13.1%) project-impairment factor.

These rankings suggest there is a relationship between requirements quality and
project success/failure, but the data reflect only the subjective perceptions ofman-
agers. Moreover, there was no detailed analysis of the quality of requirements.

The aim of our research is to fill the gap in evidence concerning the relationship
between requirements quality and project outcomes. To ensure that our evidence
would be acceptable to practitioners, we made use of data collected by a company
located in Tokyo, Japan.

The company had collected two types of data that covered a sufficient number
of projects for our purposes. The first type was requirements quality evaluation
data, judged by the company’s software quality assurance (SQA) teams. As the
SQA process had been established and practiced by this company for quite some
time, their results can be assumed to be homogeneous with little fluctuation. The
second type of data related to project performance monitored by performance
review teams. Different teams are responsible for SQA and performance review.
The teams are independent of each other and also of the development teams. Per-
formance is measured by cost and time, with the current levels being compared
with the levels estimated at the beginning of the project. Several reviews, sepa-
rated by a defined interval, are conducted during the project. Both requirements
quality data and performance data were available for 32 projects. The data were
preprocessed and then subjected to a set of statistical analysis methods.

In the following sections, we describe the characteristics of the target projects
and the methods used for data preparation and statistical analysis. We also
provide an in-depth analysis of some typical projects and the lessons learned
from this study.

The contributions of this research are as follows.

1. The research is based on requirements quality data from real business projects.
The quality of the software processes was evaluated in real-time and the data
can be considered uniform as they were recorded by well-disciplined review
teams following established procedures. In addition, the data were rearranged
to fit into the framework of the IEEE Standard for “Recommended Practice
for Software Requirements Specifications” [5], so that they could be consid-
ered within the framework of an objective set of criteria rather than viewed
arbitrarily based on the in-house practices of a specific company.
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2. The data on project cost and time overruns were collected in a consistent
manner within a business organization. They therefore differ from the type
of data used in the Standish report. Moreover, the data were analyzed in
relation to requirements quality, so that the results shed new light on re-
quirements engineering.

3. There were interesting lessons learned, including some unexpected findings,
as a result of the simple but rigorous statistical analysis and individual
project investigations.

2 Characteristics of Target Projects and Available Data

2.1 Target Projects

The projects that were investigated in this research were all carried out by a
division of a company in Tokyo. The division is in charge of developing business
application systems for customers.

Data for 72 projects conducted from 2003 to 2005 were collected. Of these
projects, 32 were completed by the end of 2005 and performance data showing
whether the projects had incurred time/cost overruns were available. The other
projectswere either still in theprocess of developmentwhenwe started this studyor
performance data were not available even though the projects had been completed.

All the projects were for external customers in various industries, and the
systems developed were middle to large in size. Unfortunately, detailed infor-
mation on system size, programming language, type of application, etc. cannot
be disclosed due to confidentiality, but none of the projects had particularly
uncommon features in regard to those factors.

2.2 Requirements Quality Data

For all the projects investigated, requirements were provided by, or elicited from
customers, but the requirements specification documents were written by the
development teams and approved by the customers. During the development
process, three independent teams are established within the organization: the
development team, SQA team, and performance review team. The SQA team
is in charge of evaluating the quality of artifacts produced at each phase of the
process. The company has carried out the evaluation procedure for a number of
years using a fixed check sheet. From the set of artifacts evaluated, we focused
on requirements specifications.

The company’s requirements specification check sheet lists more than 100
check items. Each item is rated by the SQA team with a score ranging from 0
to 5; 0 means there is no description corresponding to the item, while 1 to 5
indicate the quality grade (the higher the better).

2.3 Project Performance Data

Several reviews are conducted for each project, with the number of reviews
depending on the size of the project and the perceived risk. Both the development
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and review teams participate in a review, with the results being reported by the
review team.

From the items listed in the review reports, we selected the evaluation of
performance in relation to cost and time. Each review reports on performance
between the last review and the current review. In the final review, the overall
performance is evaluated. Evaluation scores range from 0 to 4.

We took the final total performance data on cost and time as a measure of
project success/failure. In the final overall review, cost and time are evaluated
in comparison with the initial estimates made at the beginning of the project. A
grade of 0 or 1 for cost or time identifies that the project has incurred overruns.
Performance evaluation data from the reviews carried out during the develop-
ment process were not used for statistical analysis but are referred to in the
individual case studies to be described in Section 4.

Based on the evaluation, projects were assigned to one of four categories:

P1 Normal with no cost and time overruns,
P2 Cost overrun but no time overrun,
P3 Time overrun but no cost overrun,
P4 Cost and time overruns.

We decided to characterize project success and failure using only cost and
time factors without considering product quality because the data available on
product quality were not as reliable as the data for cost and time. As the 32
projects investigated were all delivered to customers and no serious problems
were subsequently reported, their product quality can be considered roughly
equal.

The exact number of projects assigned to each of the four categories cannot
be disclosed but each class had at least five members. This meant that the
distribution of the 32 projects among the four categories was relatively balanced,
so that it was reasonable to make comparisons between the categories.

3 Statistical Analysis

3.1 Conversion of Requirements Quality Data

The requirements quality data were of good quality because differences between
the evaluators were minimal due to the long-practiced and stable evaluation
procedure. Moreover, there were no missing entries. However, we decided not to
use the raw data directly but to convert them into another form before analysis.
There were two reasons for this decision.

Firstly, the number of check items was too large to manipulate and they
needed to be projected into a lower dimensional space. Secondly, the evaluation
was conducted according to the in-house practices of a private company. To
ensure the analysis was objective, we decided it would be better to convert and
interpret the data within a widely accepted standard framework. This should
also make our results more useful to researchers carrying out similar studies.
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1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms and abbreviation
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies
2.6 Apportioning of requirements

3. Specific requirements
3.1 External interfaces
3.2 Functions
3.3 Performance requirements
3.4 Logical database requirements
3.5 Design constraints
3.6 Software system attributes
3.7 Organizing the specific requirements

Fig. 1. Recommended SRS Structure (IEEE Std. 830-1998)

We took IEEE Std. 830-1998 [5] as a reference frame. A recommended struc-
ture for software requirements specifications (SRS) given by the standard is
shown in Figure 1. The standard provides several alternatives for the contents of
Section 3 Specific requirements in its appendix, but we adopted the subsection
structure stated in the text body. Some subsections, e.g. 2.1, 3.5 and 3.7, have
a finer substructure comprising sub-subsections.

We determined the correspondence between the requirements quality check
sheet items filled out by the SQA teams and the IEEE Standard SRS entries.
The mapping was done as follows.

1. The SRS structure of Figure 1 and its definitions were explained to the
members of SQA teams.

2. They discussed and decided on the mapping between the check sheet items
and the SRS entries at the lowest level.

Accordingly, each SRS entry at the lowest level is either related to one or more
check sheet items or not related at all. In the former case, the score for the SRS
entry is defined by the average of the scores for the related check sheet items.
The SRS entries in the latter case are simply ignored.

Scores of all entries at the second level shown in Figure 1 are defined directly
from the above procedure or obtained by taking the average of the scores for
their subentries. As all entries at the second level have at least one subentry
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 Normal Category

Fig. 2. Spider Chart of Normal Projects

 Cost Overrun Category

Fig. 3. Spider Chart of Cost Overrun
Projects

related to check sheet items, ignoring SRS entries with no corresponding check
sheet items causes no problems.

3.2 Requirements Quality Characteristics by Project Category

To provide an overview of the SRS quality data distributed by project category,
we drew spider charts of the four categories, as shown in Figures 2 to 5. Each
radius corresponds to a SRS item and the score averaged over the projects in the
project category is plotted on the radius. As the average scores do not exceed 3
in all cases, the outermost circle corresponds to a score of 3 in all these figures.

When comparing the average scores of the four project categories for each
SRS item, the following points are observed.

 Time Overrun Category

Fig. 4. Spider Chart of Time Overrun
Projects

 Cost/Time Overrun Category

Fig. 5. Spider Chart of Cost and Time
Overrun Projects
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1. SRS items for which a difference in scores of 0.5 or more between at least two
project categories was observed are listed below, together with the definition
of each SRS item.

– 1.1 Purpose: delineate the purpose of the SRS and specify the intended
audience

– 1.3 Definitions, acronyms and abbreviations: provide the definitions of
all terms, acronyms and abbreviations required to properly interpret the
SRS

– 1.4 References: provide a complete list of all documents referenced in the
SRS

– 1.5 Overview: describe what the rest of the SRS contains and explain
how the SRS is organized

– 2.1 Product perspective: put the product into perspective with other
related products and also describe how the software operates inside vari-
ous constraints such as system interfaces, user interfaces, hardware inter-
faces, software interfaces, communication interfaces, memory, operations
and site adaptation requirements

– 3.2 Functions: define the fundamental actions that must take place in
the software in accepting and processing the inputs and in processing
and generating the outputs, including validity checks of the inputs, ex-
act sequence of operations, responses to abnormal situations, effect of
parameters, and relationship of outputs to inputs

– 3.7 Organizing the specific requirements: specific requirements such as
system mode, user class, objects, feature, stimulus, responses, and func-
tional hierarchy.

2. The score of P1 was the highest of the four project categories on all SRS
items except:

– 2.1 Product perspective
– 3.2 Functions

As the visual patterns clearly show, the shape of the normal project category
P1 is balanced and almost circular, whereas those of the other project categories
are unbalanced. In particular, the inner area of the upper right quadrant corre-
sponding to SRS Section 1 is the largest in the normal project pattern among
the four patterns.

The fact that the scores for two SRS items, Product perspective and Functions,
for P1 are not the highest, in fact, they are the lowest of the four, is somewhat
counterintuitive and thus interesting. Figures 6 and 7 show the score distribution
of these items for the four categories. Compared to other items, these patterns
indicate it is not that the scores for normal projects were low, but that the scores
for overrun projects were particularly high for these items.

However, these observations are intuitive and not based on analysis of statis-
tical significance. Let us proceed to more rigorous analysis of the relationship
between SRS quality factors and project success/failure.
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Fig. 6. Score Distribution of SRS 2.1 by Category

Fig. 7. Score Distribution of SRS 3.2 by Category

3.3 Analysis of Variance

We conducted a typical analysis of variance to see how the scores for various SRS
items affected project outcomes. Three cases of analysis, each based on dividing
the set of projects into two groups, were tested.

1. Normal project group vs. cost- or time-overrun project group
2. Cost-overrun project group vs. cost-within-range project group
3. Time-overrun project group vs. time-within-range project group

For each case, the null hypothesis was that the score distribution of the given
SRS item for one group and for the other would be the same. F-tests and t-
tests were applied and when the hypothesis was refuted, it implied that the
corresponding SRS item could be a factor that affected project performance.

Normal vs. cost or time overrun. Normal projects P1 and cost or time overrun
projects, i.e. the union of P2, P3 and P4, are compared. In this analysis, the item
1.1 Purpose was found statistically significant by F-test with a 95% confidence
range as shown in Table 1.
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Table 1. Statistically significant SRS items for normal vs. overrun

No. Item Name test conf. +/−
1.1 Purpose F-test 95% +

conf. = confidence

Table 2. Statistically significant SRS items for cost overrun vs. cost within range

No. Item Name test conf. +/−
1.5 Overview F-test 95% −
2.1 Product perspective F-test 95% +
2.6 Apportioning of req. F-test 95% −
3.2 Functions t-test 95% +

The last column of the table shows whether the factor positively or negatively
affected the first group, i.e. the normal project group. In this case, it is positive,
which means that normal projects received a better score for the description of
SRS Purpose than overrun projects.

The hypothesis is not refuted for all the other SRS items either by either the
F-test or t-test.

Cost overrun vs. cost within range. Cost-overrun projects are by definition the
union P2 and P4 and cost-within range projects are the union of P1 and P3.
Four items were found significant between these two groups as shown in Table
2. Both F-tests and t-tests were applied to all SRS items, but only 3.2 Functions
was found to be statistically significant by the t-test. The other three items were
found to be significant by the F-test.

SRS item 2.6 Apportioning of requirements is defined in the IEEE Standard as
“identify requirements that may be delayed until future versions of the system.”
Understandably, this arrangement will reduce the risk of a cost overrun.

A particularly interesting result is that statistical significance was found for
cost-overrun projects that received higher scores on Product perspective and
Functions.

Time overrun vs. time within range. Time-overrun projects are by definition the
union P3 and P4 and time-within- range projects are the union of P1 and P2.
Two items were found significant as shown in Table 3.

The interesting point here is that Purpose is a strong negative factor to char-
acterize the time-overrun projects. The confidence range for this item is 99%.

Table 3. Statistically significant SRS items for cost overrun vs. cost within estimate

No. Item Name test conf. +/−
1.1 Purpose F-test 99% −
1.5 Overview F-test 95% −
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3.4 Multivariate Analysis

The analysis described so far is single variate. It is highly plausible that the
factors represented by SRS items are mutually related. Thus, some type of mul-
tivariate analysis should be applied as well.

As a multivariate analysis method, we chose a tree model because the method
is intuitively comprehensible and is suitable for interpreting data that are inher-
ently discrete rather than obtained by measuring physical phenomena.

A decision tree is suitable for representing classification-type knowledge. A
variable is assigned to each node and the outgoing edges from that node corre-
spond to possible value ranges the variable can take, so that the selection of an
edge at each node, starting from the root node, guides the classification process.
The selection path ends at a leaf that determines the group the object is to be
classified in [6].

In this case, we use a binary tree, where two edges from a node correspond to
two intervals of the value range separated by a threshold value. The threshold
is determined statistically to maximize the deviance. To bifurcate a node, a
variable that brings the greatest deviance is chosen. When a node sufficiently
represents either of the groups, then the node is bifurcated further.

We constructed three tree models, each classifying two groups just as the anal-
ysis of variance: i.e. normal vs. cost/time overrun, cost overrun vs. cost within
range and time overrun vs. time within range. We used a statistical analysis tool
R [7] for generating tree models. Because the analysis of the cost overrun vs.
cost within range produced the most striking result, we explain that case first.

Cost overrun vs. cost within range. The result is as shown in Figure 8. A node
with label “xn.m” denotes a decision by the score of the SRS item “n.m”. The
left edge of each node leads to a subset with a score smaller than or equal to the
threshold, while the right edge indicates scores greater than the threshold. A leaf
node with label “C” represents a subset sorted as a cost overrun, and label “C̄”
represents a subset sorted as no cost overrun. The number in the box denotes
the fraction (1.0 means 100%) of the projects in the sample of 32 classified into
this leaf that are actually cost overrun (or no cost overrun for C̄ leaf).

For example, projects with SRS 2.6 score greater than 0.5 are classified as no
cost overrun by 100%. We can summarize the results as follows.

1. cost-overrun projects
– SRS 2.6 score no greater than 0.5 and SRS 2.1 score greater than 2.25

(100%)
– SRS 2.6 score no greater than 0.5 and SRS 2.1 score no greater than 2.25

and SRS 1.1 score no greater than 0.5 and SRS 3.2 score greater than
1.5 (78%)

2. cost-within-range projects
– SRS 2.6 greater than 0.5 (100%)
– SRS 2.6 score no greater than 0.5 and SRS 2.1 score no greater than 2.25

and SRS 1.1 score greater than 0.5 (100%)



268 T. Tamai and M.I. Kamata

x2.6

x2.6x1.1

x3.2

x2.1 C1
1.00

C3
1.00

C2
1.00

C4
0.80

C5
0.78

_

_

_

<= 0.5 0.5 <

<= 2.25 2.25 <

<= 0.5 0.5 <

<= 1.5 1.5 <

Fig. 8. Decision Tree of Cost Overrun Projects
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Fig. 9. Decision tree of time-overrun-projects

– SRS 2.6 score no greater than 0.5 and SRS 2.1 score no greater than
2.25 and SRS 1.1 score no greater than 0.5 and SRS 3.2 score no greater
than 1.5 (80%)

The negative effect of SRS 2.6 Apportioning of requirements to cost overrun can
be interpreted straightforwardly as mentioned before but it is still surprising
that the item is selected as the first factor and the score just exceeding the value
of 0.5 identifies cost-within-range projects out of the sample by 100%.
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Fig. 10. Decision Tree of Normal Projects

The last case of cost within range is particularly interesting. In this case, all
the factors 2.6, 2.1, 1.1, and 3.2, are on the negative side. We will come back to
the interpretation of this rather counterintuitive phenomenon later.

Time overrun vs. time within range. Figure 9 shows the tree model that classifies
time- overrun projects.In this case, SRS 1.4 Reference was chosen first as giving a
negative effect, i.e. if references are well described, the project is unlikely to incur
time overruns. The next factor is SRS 1.1 Purpose, which is also a negative effect.
Under the condition that these two scores are low, SRS 3.6 Software attributes
has a positive effect, i.e. if the item has a good score, the project tends to be
delayed.

The last leaf labeled by “X” in the tree denotes a case where the decision is
inconclusive, i.e. it is hard to decide to which group members in this leaf belong.

Normal vs. cost or time overrun. The decision tree for normal projects is shown
in Figure 10.

It is surprising that SRS 2.1 Product perspective is selected first and affects
negatively. It will be discussed in the next section. Otherwise, the condition that
high rating of both SRS 3.7 Organizing the specific requirements and SRS 1.1
Purpose is required is understandable.

4 Closer Look at Individual Projects

Using multiple statistical analysis methods, we found that there were relation-
ships between SRS quality and project success/failure. The general trend sup-
ports the widely accepted assumption that higher requirements quality favors a
successful project, but some apparently opposing phenomena were also found.
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Fig. 12. Spider Chart of Project #66

To see how requirements factors actually affect software processes and out-
comes, we investigated each of the 32 sample projects in detail. Here, we select
some typical cases and focus on the possible causes of the counterintuitive re-
sults. In analyzing the projects individually, we used not only the quantitative
data treated in the preceding sections but also the qualitative data available in
the form of comments made by the SQA and review teams.

First, we selected project #11, which is a cost-overrun project. Figure 11
shows a spider chart of the SRS quality of this project. The outermost circle of
all the spider charts in this section corresponds to a score of 4, in contrast with
those in Section 3 where the outermost circle corresponds to a score of 3.

In Section 1 of SSR, 1.1 Purpose, 1.3 Definitions, acronyms, and abbreviations,
and 1.5 Overview are completely missing, while 1.2 Scope and 1.4 References are
well written. In Section 2 and 3, 3.2 Functions, 2.2 Project functions (summary
of major functions) and 3.7 Organizing the specific requirements received high
scores.

In fact, the requirements analysis task was not conducted independently in
this project but was merged into the design phase, and the SRS and design
specifications were written at the same time. That explains why the descriptions
of detailed functions in the SRS are comprehensive compared to other items.
But the testing phase found that several requirements were missing and there
were also errors which required extensive reworking and pushed up the cost.

Another cost-overrun project, #66 went to even further extremes, as Figure
12 shows. Description in Section 1 is nil and the same pattern can be seen for 3.2,
2.2, and 3.7. The requirements definition task of this project was not completed
during the requirements phase and the task was moved to the design phase.
This situation is quite similar to #1. Detailed functional descriptions without a
firm grasp of conceptual and essential requirements tend to require considerable
changes in specifications and reworking.

1 The 32 projects under study were taken from a set of 72 projects and thus the
projects are numbered from 1 to 72.
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Fig. 14. Spider Chart of Project #39

However, there is a case in which a cost-overrun project produced a balanced
and beautifully shaped SRS evaluation spider chart, as shown in Figure 13. This
project, #19, did well in the RE phase and no problems were detected during
the design and implementation phase. But it turned out that the amount of work
required in the testing phase was higher than projected and extra testing staff
had to be added. According to the postmortem, the cause was simply a wrong
estimate of the testing load.

The next case involves a time-overrun projects.
In general, time-overrun projects show a similar pattern to cost-overrun

projects such as #1, i.e. relatively poor scores in SRS Section 1 items. The
spider chart shown in Figure 14 for project #39 shows a different shape. It has
particularly high scores in SRS Section 1. After a closer look at the documents
and thorough interviews, we found that the cause of the project delays was
not poor requirements specification, but the use of an inappropriate tool in the
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implementation phase. The functions of the tool were inadequate for the purpose
and the development team had little experience in using it.

Our last example is a cost-and-time-overrun project, #12.
In this case, the pattern for Section 1 is also similar to that for #1. The scores

for Section 2 and 3 are higher. In particular, the high score for 2.1 is worthy
of note. This project failed to complete a study of the current system during
the requirements analysis phase, which caused frequent specification changes
in the design phase, resulting in cost and time overruns. It also implies that
the interface to the current system was complicated and as a result, SRS 2.1
Product perspective, which is supposed to describe interfaces to other systems
among others, turned out to be relatively highly rated. This case partly addresses
the question raised in the last section.

5 Threats to Validity

The first probable threat to validity could be the reliability of the SRS quality
evaluation data. Admittedly, there is a risk of dispersion between evaluators and
room for human error. However, compared to other similar work, we believe that
the data set used in this study has several advantages for the following reasons.

1. Evaluations were done and recorded in real time as projects proceeded. The
data are therefore fundamentally different from those collected through ques-
tionnaires or interviews after projects have been completed.

2. The evaluation procedure is well established, it has been practiced for a
long time, and a fixed check sheet is used. The data are therefore different
from those obtained by asking survey responders or interviewees for their
subjective views.

3. The data were systematically collected through the daily practices of dedi-
cated SQA teams. They were not especially collected by researchers for the
sake of research.

The second probable threat to validity could be the limited data source. Data
were collected from a single organization and the characteristics of the projects
are basically uniform. This is an advantage in the sense that the data are coherent
and well suited to statistical analysis. However, comparison with other kinds of
data covering different applications and organization types will be fruitful.

6 Related Work

One of the most important studies relating to our work is the one reported by
Damian & Chisan [8]. They conducted an intensive study of a large software de-
velopment project that had just introduced a requirements process improvement
program. The case study lasted 30 months to follow the RE process improve-
ment activities, while the research process was divided into three stages. This
approach can be characterized as follows: (1) a single large project was targeted;
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(2) questionnaires prepared by the researchers were used to collect data from
managers, team-leaders, and senior engineers; and (3) the focus was on RE pro-
cesses rather than on the quality of RE products. In this sense, their work and
ours complement each other.

Another example of an in-depth case study on a single company was reported
by Wohlwend and Rosenbaum [9]. It is interesting to note that they adopted
a single criterion whether the software was delivered on time to judge project
success.

Sommerville & Ransom [10] also focused on RE process assessment and im-
provement. Nine companies were contacted in this study and the RE process
maturity model proposed by the authors was used to assess their processes. Pro-
cess improvements were then recommended and practiced. The eventual goal of
the research was to correlate improvements in RE processes to business perfor-
mance, which is challenging and hard to achieve, as the authors admit.

The goal of the work by Verner et al. [11] is closer to ours. They tried to find
relationships between requirements practices and software project outcomes. The
approach they took was to distribute questionnaires to practitioners in the U.S.
and Australia. The respondents answered questions that characterized the RE
practices of projects they knew, which they considered to have either succeeded
or failed. The authors admit that “surveys are of course based on self-reported
data which reflects what people say happened, not what they actually did or
experienced.”

Research on measuring the success of RE processes is reported by Emam &
Madhavji [12]. They listed up to 32 measurement indicators and classified them
into two major dimensions, quality of RE products and quality of RE service.
Their analysis is closed within RE processes and is not related to project success
or final product quality.

7 Conclusion and Future Directions

The findings of our study can be summarized as follows.

1. Data indicate there is a relationship between SRS quality and project out-
comes. Moreover, a relatively small set of SRS items have a strong impact.

2. Descriptions of SRS in normal projects tend to be balanced. When the SRS
item evaluation rating is plotted on a spider chart, the pattern shows a figure
approximating a circle.

3. SRS descriptions in Section 1, which covers purpose, overview and the gen-
eral context of the SRS, are comprehensive in normal projects and sparse in
overrun projects. In particular, when the references or purpose in Section 1
are well written, the project tends to finish on time.

4. When the descriptions in SRS Section 1 are sparse, while those of functions
and product perspective are comprehensive, the project tends to result in
cost overruns because such characteristics often indicate that the RE phase
has been neglected, or absorbed into the design phase.
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5. Identifying requirements whose implementation may be delayed can be a
good way of preventing cost overruns.

In the near future, we plan to collect more data from the same organization
to corroborate or enrich our current findings. It will also be interesting to try
other types of multivariate analysis, such as principal components analysis. In
the long term, it will be valuable to apply a similar approach to other areas,
including embedded software systems and COTS products.

The empirical approach of analyzing and mining software engineering data
is now widely pursued and bringing fruitful results. There are at least three
factors that are enabling and encouraging this approach. Firstly, data analy-
sis techniques have made much progress. Secondly, enhancement of hardware
performance has made brute force approaches, which were infeable before, vi-
able. Thirdly, and quite importantly, the proliferation of open source projects is
providing a large amount of software engineering data.

However, in the area of requirements engineering, it is still not easy to ob-
tain requirements related data that are significant in amount and quality. It
is expected that much efforts will be expended to collect real data concerning
requirements and new light will be shed on RE knowledge obtained through
analyis of such data.
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Abstract. Networked organizations, consisting of enterprises who exchange
things of economic value with each other, often have participants who commit
a fraud or perform other actions, not agreed in a contract. To explore such oppor-
tunistic behavior, and to design solutions to mitigate it, we propose the e3control
approach. This approach takes the valuable objects, which are exchanged between
enterprises, as a point of departure, and proposes a control patterns library to find
solutions for various types of opportunistic behavior in network organizations.
The practical use of the patterns is illustrated by a case study in the field of re-
newable electricity supply in UK.

Keywords: Inter-organizational control, value network, control pattern.

1 Introduction

Organizations increasingly organize themselves as networks: Collections of enterprises
that jointly satisfy a complex consumer need, each utilizing their own specific exper-
tise, products, and services [1]. These networks are enabled by innovative technologies
such as web-services, allowing for timely coordination of enterprises. Due to this inno-
vation, new networks emerge, for instance in the field of energy supply, Internet service
provisioning, or digital content [2,3,4,5].

Techniques, such as goal- and value modeling [6,3] play an important role in the
early requirements engineering phase for information systems supporting and enabling
these networks. For instance, in [3] we report how to explore an IT-enabled network of
enterprises from a business value perspective using the e3value technique, and in [4] we
explain how such exploration can be done in combination with multi-actor i* goal anal-
ysis. In brief, e3value analyzes what objects of economic value are exchanged between
enterprises, and what actors request in return for these objects (usually other objects of
value). So, the e3value approach is an early requirements engineering technique with
the aim to understand business value requirements in a model-based way. Understand-
ing of the network’s business value requirements provides a starting point for analyzing
requirements of information systems.

The e3value approach deliberately supposes that enterprises behave honest, as oth-
erwise resulting models would soon become rather complex, and disturb executive de-
cision making. In e3value , ‘honest behavior’ refers to actors who - if they obtain an

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 276–301, 2009.
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object of value from their environment - always provide another object of value to
their environment in return, as a economic reciprocal exchange. To our experience, it
is initially already sufficiently difficult to design a network under such perfect-world
conditions. The next step however is to assume opportunistic behavior of enterprises.
To this end, we have proposed e3control [7]. As i* and e3value , the e3control tech-
nique is a requirements engineering technique to understand the context of multi-actor
information systems. The e3control models have close similarities with e3value mod-
els with one important difference: An e3value model supposes that each enterprise in a
network behaves honestly, or ideally, whereas an e3control model allows opportunistic,
or sub ideal, behavior. An e3control model however still focuses on the value objects
exchanged.

To discourage opportunistic behavior, control mechanisms can be applied. Such con-
trols are often value-based, e.g. penalties and incentives, or reconciliation of valuables.
Also, controls may require specific business processes, or rely on information technol-
ogy (e.g. security protocols). As processes are significantly controlled and executed by
IT, understanding of these controls are important for the IS requirements.

To design controls in networked enterprises, e3control can be used as a general
framework, but the design process still requires a vast amount of knowledge on or-
ganizational controls themselves. To make this knowledge available within e3control ,
we propose a library of control patterns, which describes organizational controls for
networked organizations. These patterns are the main contribution of this book chap-
ter. The e3control approach and the supporting patterns are unique because they are
grounded in an economic value perspective, while connecting properly to the processes
putting the controls into operation. It is the transfer of valuable objects in a network that
has to be controlled in first place. This contrasts to existing process-only approaches for
controls (see e.g. [8]), or even EDP-auditing (e.g. [9]).

The controls have been collected from agency theory (e.g. [10]), internal control
theory (e.g. [8]) and management control theory (e.g. [11]). Examples of such organi-
zational controls are detective controls such as monitoring and verification (e.g. quality
control, reconciliation of accounting records with material reality), but also preventative
controls, such as economic incentives and penalties. In addition to literature, the pat-
terns are based on four real-life case studies we performed in the drinks industry [12],
international trade [13], the entertainment industry [14], and electricity supply industry
[15]. In this chapter, we elaborate on the latter case study.

This chapter first introduces the notion of value-based controls for networked value
constellations (Sec. 2). Then, we present three of our control patterns in detail in Sec. 3
as well a summary of the rest of the patterns. In Sec. 4, we show the three patterns can
be practically applied in a case study. Finally, Sec. 5 presents our conclusions.

2 Value-Based Design of Controls for Networked Constellations

We illustrate the design of controls for networked constellations by a small example
(see also Fig. 1). For this example, we suppose that someone buys a product or a service
from a seller, and the seller has to pay Value Added Taxes (VAT) to the Tax office. In
e3control , we follow three subsequent steps to analyze networks for sub ideality.
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Step 1: Elicit and Model the Ideal Network Using an e3value Model. We use the
e3value technique to first understand the network, assuming that all actors would be
behave ideally, or, in other words, would be honest. The e3value technique allows to
represent which enterprises in a network exchange which objects of economic value
with which other enterprises. Fig. 1 exemplifies a buyer obtaining goods from a seller
and offering a payment in return. Due to the law, the seller must pay a value-added tax
(VAT). This can be conceptualized with the following e3value constructs.

Actors, such as the buyer, seller, and the tax office are economically independent
entities. Actors transfer value objects (payment, goods, VAT) by means of value trans-
fers. For value objects, some actor should be willing to pay, which is shown by a value
interface. A value interface models the principle of economic reciprocity: only if you
pay, you can obtain the goods and vice versa. A value interface consists of value ports,
which represent that value objects are offered to and requested from the actor’s environ-
ment. Actors may have a consumer need, which, following a path of dependencies will
result in the exchange of value objects. Transfers may be dependent on other transfers,
or lead to a boundary element. In the latter case, no transfers are considered anymore.

The important point here is that an e3value model by definition supposes that all
actors behave ideally. This is reflected by the explicit notion of ‘economic reciprocity’:
All agreed transfers are required to happen, or should not happen at all. Performing this
step results in understanding of the valuable objects that should be transferred, and thus
which objects should be subject to control.

Fig. 1. Example of an e3value model of a purchase with tax payment
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Step 2: Analyze Sub ideality in a Network Using an e3control Model. In reality,
actors ideal often behave sub-ideally: they commit a fraud or make unintentional errors.
In e3control , these situations are modeled by sub-ideal value transfers [7]. These are
graphically represented by dashed arrows, and can indicate different risks: e.g. actors
not paying for goods, not obtaining the goods, or obtaining wrong goods. For example,
Fig. 1 (b) models a situation that the seller does not pay VAT. ‘L’ is a liability token [7],
assigned to the responsible actor for the sub-ideal value transfer, here the seller.

Step 3: Reduce Sub ideality by Adding Controls. We now add control mechanisms
that reduce the control problem. Hardly any control mechanism can remove a control
problem completely. A combination of mechanisms, so-called ’control mix’, is usually
required [8]. For example, Fig. 1 (c) introduces fining. In case the seller does not pay
taxes, he is charged with a high fine. The fine is modeled as a value object, transferred
from the seller to the tax office. As can be seen by the dashed transfer, the model is
still sub-ideal, but at least the Tax Office receives adequate compensation if the seller
behaves sub-ideally, and if such behavior is detected.

3 Control Patterns

The design process in Sec. 2 is general and requires quite some design knowledge on
well accepted control problems and solutions. To increase the usability of e3control ,
it is therefore important to bring in this accepted knowledge; therefore we propose a
series of inter-organizational control patterns (cf. [16]). These patterns and their use is
the main contribution of this chapter.

3.1 Elicitation and Representation of Control Patterns

Elicitation Method. Pattern development usually consists of the identification, collec-
tion and codification of existing knowledge [17]. The PattCaR method developed by
[18], suggests more specific guidelines for patterns elicitation: (1) analysis of the do-
main and context of the patterns, (2) definition of a vocabulary, (3) a thorough domain
analysis and extraction of patterns candidates, (4) a collection of several examples of
each pattern candidate, (5) encoding of patterns by modeling the examples and per-
forming a commonality-variability analysis, and (6) a description of relations between
patterns.

Domain of Controls for Networks. There are several theories that attempt to describe
the domain of controls, including accounting control theory (e.g. [19]), management
control theory (e.g. [11]), and agency theory (e.g. [10]). There is also specific work on
inter-organizational controls, such as [20,21].

In this chapter, we consider controls in terms of the principal-agent framework. This
framework makes a distinction between a primary actor (or principal) and a counter
actor (or agent). The counter actor behaves sub-ideally and the primary actor wants to
reduce the loss caused by such behavior. The agency theory describes several control
problems and mechanisms to mitigate sub ideal behavior, namely Screening, Signal-
ing, Monitoring, and Incentives. The Screening and Signaling mechanisms are used to
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counter the hidden information problem. This occurs if the primary actor does not have
enough knowledge about the counter actor, increasing the risk that the counter actor
will perform his activities in a sub ideal way. The screening and signaling mechanisms
recommend checking the counter actor’s abilities and characteristics before signing a
contract with him. The Monitoring control is used to counter the hidden action prob-
lem, which means that the counter actor performs his activities in a sub ideal way. The
Monitoring mechanism recommends verifying the counter actor’s performance before
rewarding him. If monitoring is difficult or costly, the counter actor can be stimulated to
behave ideally by Incentives which can be positive (reward) or negative (punishment).

Two additional inter-organizational controls are described in [20]. The Commitment
Evidence control applies to a situation in which the counter actor inappropriately de-
nies his commitment to the primary actor. The Execution Evidence control addresses a
counter actor inappropriately claiming that the primary actor executed his activities sub
ideally. Both commitment evidence and execution evidence controls require the cre-
ation of evidence that can be used in (legal) disputes against the counter actor. These
two controls stem up from the audit trail principle of the internal control theory.

Usually, a distinction is made between ex-ante controls, i.e. controls executed before
the contract between two actors is settled, and ex-post controls, i.e. controls executed
after the contract is settled. The Screening, Signaling and Settlement of incentives are
ex-ante controls, while Monitoring, Commitment evidence, Execution evidence and Ex-
ecution of incentives (actual rewarding or punishment) are ex-post controls. A further
distinction can be made between contractual controls and procedural controls. Contrac-
tual controls employ value-based mechanisms to stimulate the counter actor to behave
ideally. Procedural controls employ process-level mechanisms to repressively prevent
or detect the counter actor’s sub ideal behavior. With the exception of incentives, all the
groups of controls considered here are procedural.

Pattern Representation and Vocabulary. Cf. [22], a pattern has the following struc-
ture: name, context, problem, solutions. We consider a control pattern as a description
of generic and re-usable control mechanism for a recurring control problem. We de-
scribe the context, problem, and solution slots by taking a business value (e3value or
e3control ) and business process (UML activity diagrams [23]) perspective, thereby fol-
lowing the principles of multi viewpoint requirements engineering [24]. Examples of
patterns can be found in the appendix of this chapter.

We use the following vocabulary1 to describe a control pattern. There are two actors,
a primary actor and a counter actor. From a value perspective, the primary and counter
actors exchange value objects: the primary actor transfers a primary value object (PO)
to the counter actor, and the counter actor transfers a counter value object (CO) in
return. From a process perspective, the exchange of PO corresponds to execution of
a primary activity, and the exchange of CO corresponds to execution of the counter
activity. These activities can also be collections of multiple operating activities.

Sub ideal behavior and, consequently, sub ideal transfers are defined from the point
of view of the primary actor, who is the principal. Sub ideal behavior is executed by
the counter actor, who is the agent. The primary actor expects the counter actor to

1 The terminology is inspired by [25].
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behave sub ideally with respect to the execution of the counter activity. The result of
this opportunistic behavior is a sub ideal transfer of the CO. Obviously, actors can all
play the role of principal or agent, depending on the perspective taken.

Furthermore, based on [25,26,8], we have also developed a vocabulary of control ac-
tivities and control principles, which form the building blocks for control mechanisms.
The activities include e.g. verify, witness, testify, and authorize. The control principles
are normative rules of relations between activities, objects and actors [26]. As an exam-
ple of such a rule, segregation of duties requires the party who executes a verification
activity to be independent and socially detached from the party who executes the activ-
ity being verified. Also, the ordering of activities is motivated by control principles.

Extraction of Pattern Candidates. Due to lack of space, we can not present the pattern
extraction process itself (see [27] for more details), rather we focus on a few consider-
ations with respect to this process, and the results.

A first consideration is that our candidate patterns should represent a unique com-
bination of problems and solutions. To do so we require that (1) two different control
problems should fall in two different patterns, (2) two different control mechanisms for
one control problem should be represented by two different patterns.

A second consideration is that, in line with the approach of e3value [3], we want
the patterns library to be lightweight. This means that the fewer patterns we have to
describe all the considered controls, the better it is. To achieve this, we abstract from
domain-specific details, which are present in the internal control theory. Firstly, we do
not consider any specific roles of actors, such as a supplier or a customer. We describe
a transaction in terms of the principal-agent framework. So, we distinguish between a
primary and a counter actor. The counter actor behaves sub ideally and the primary
actor wants to reduce the loss caused by this sub ideal behavior. The actors can delegate
their activities to trusted parties. Secondly, we do not differentiate controls if they only
involve different types of documents, e.g. a purchase order or a contract.

Our domain analysis resulted in Screening, Signaling, Monitoring, Commitment Ev-
idence, Execution Evidence and Incentives controls. We call these sub domains of the
control domain, and we consider these to be a good starting point for elicitation of the
patterns. We compare the sub domains with each other, and re-group them to select the
unique problem-solution pairs. These pairs will form the control patterns. Effectively,
this process is about commonality-variability analysis of the domains.

Screening and signaling. The screening and signaling sub domains mitigate the same
control problem of hidden characteristics, however they are different control mechanisms
in terms of solution. In screening, the primary actor verifies the activities of the counter
actor. In signaling, the primary actor verifies indirect signals and not the activities. Such
signals have a historical correlation with the expected performance of the actor in the
future. The difference between screening and signaling is that screening is based on in-
formation collected by direct observation of the counter actor’s activity, while signaling
is based on information collected from a third party. However, if we ignore delegation,
the difference between the two mechanisms disappears. So, screening and signaling de-
scribe the same control problem and the same control mechanism. This results in one
pattern, called Partner Screening, in which the primary actor screens his partner.
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Screening and monitoring. Screening and monitoring mitigate the same control prob-
lem: The sub ideal execution of contractual agreements by a counter actor. On the other
hand, the screening control also considers the condition of hidden characteristics, and,
therefore, employs an ex-ante control. As explained before, screening verifies activities
performed by a counter actor in the past with the assumption that the past resembles
the future. The monitoring mechanism does not carry the assumption of hidden char-
acteristics. As a result, it is an ex-post control performed in the context of an existing
contract and it suggests verification of activities under the contract. Because of this dif-
ference, screening and monitoring controls result in different patterns. The pattern for
monitoring control is called Execution Monitoring, meaning that the execution of the
counter actor’s activities is monitored by the counter actor.

Positive incentives and negative incentives. Incentives may be positive or negative. Pos-
itive incentives stimulate the counter actor to behave ideally by rewarding him while the
negative incentives do the same by punishing the counter actor. These two mechanisms
require different changes in e3value models. Namely, positive incentives can be created
by adding an incoming value object to the counter actor in the case of ideal behav-
ior, while negative incentives can be created by adding an outgoing value object to the
counter actor in the case of sub ideal behavior. We therefore put positive and negative
incentives into two different patterns. Positive incentives are described in the Incentive
pattern and negative incentives are described in the Penalty pattern.

Monitoring and incentives. Both the monitoring and the incentive mechanisms miti-
gate the same control problem - that of a sub deal execution of contractual agreements
by the counter actor. On the other hand, the two controls are different, as the former
is a procedural control, while the latter is a contractual control. Incentives also require
monitoring mechanisms to prove when the reward or punishment has to be issued or
not. Such proof can be modeled with the pattern Execution Monitoring, while the ac-
tions related to the punishment are a part of the Penalty pattern. In fact, the incentive
mechanism is a variation of the monitoring mechanisms.

Execution evidence and commitment evidence. The execution and commitment evi-
dence controls involve the same activity: The counter actor should provide the primary
actor with an evidence document, which can later be used in a legal dispute. As a com-
mitment evidence control, the evidence document contains a testimony of the counter
actor’s commitment to a future transaction with the primary actor. This evidence doc-
ument is normally represented by a contract. For the execution evidence control, the
evidence document contains the counter actor’s testimony that the primary actor ex-
ecuted his obligations as stated in the contractual agreement. An example of such an
evidence document is a receipt given as proof of payment.

So, the processes behind these mechanisms are technically the same, only the role of
the evidence document is different. This is because the two controls address different
control problems. In addition, the commitment evidence control is executed ex-ante,
while the execution evidence control is executed ex-post. For these reasons, we describe
these two controls in different patterns.

The pattern for the commitment evidence control is described in the Proper Con-
tracting pattern. As the name implies, the control provides guidelines on a correct
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contracting process. The pattern for the execution evidence control is called Execu-
tion Confirmation. The name reflects the essence of the mechanism, which is to provide
evidence about the execution of primary activities.

Delegation. The agency theory and the work of Bons consider controls in a relation-
ship between two actors: A primary and a counter actor. In addition, Bons also con-
siders some network aspects. He considers networks as being derived from a two-actor
network as a result of the delegation of activities to other actors. We do not include
delegation issues in our patterns (e.g. as variants), but rather factor it out. First of all, a
very large number of different networks (and so patterns) can be formed by using dele-
gation, as e.g. third parties can further delegate activities. If we also consider that actors
not only execute primary and counter activities, but also other activities associated with
controls (e.g. reconciling, witnessing, verifying), even more possibilities for delegation
arise. Furthermore, inclusion of delegation in our patterns would describe similar con-
trol problems and mechanisms and only differ in the way activities are delegated, which,
strictly speaking, is not a control issue.

Therefore, we describe each pattern only for a transaction between a primary and a
counter actor. In order to describe delegation situations, we introduce delegation pat-
terns (see [27] and http://www.e3value.com/e3family/e3control/patterns), which pro-
vide guidelines on how the two-actor model of a control pattern should be properly
changed into the multi-actor model. They ensure that when an activity is delegated, the
controls prescribed by the control pattern, are still in place.

Examples of Patterns. In addition to the literature review, elicitation and validation of
usability of the patterns was done through a series of case studies.

– Beer Living Lab. The case study is about an excise collection procedure inside and
outside the EU. This case study [12] contains the patterns Execution Monitoring,
Partner Screening Certification, and includes multiple situations when activities by
a principal or an agent are delegated to other trusted parties.

– Dutch health care services. The case study is about processes in Dutch health care
system. It contains the patterns Execution Monitoring and Certification and pro-
vides a test of patterns for a non-profit sector [15].

– International trade. The case study is about a bill of lading procedure in interna-
tional trade. It contains the patterns Execution Monitoring, Proper Contracting and
Execution Confirmation. It demonstrates the application of patterns in a complex
situation when control mechanisms in a network are conflicting [13].

– Internet Radio. The case study about an Internet service of free radio broadcasts. It
contains, by applying the Execution Monitoring pattern, a mechanism for control-
ling how many listeners the radio station has, using data collected from distributed
listeners [14].

Control Patterns. Based on the mentioned literature and case studies, we have iden-
tified the following control patterns: Partner Screening, Proper Contracting, Execution
Monitoring, Execution Confirmation, Incentive and Penalty. The patterns are summa-
rized in Table 1; for three of these patterns, the e3value , e3control , and UML activity
models are shown in the Appendix of this chapter.
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Table 1. Library of Control Patterns

Name Control Problem Solution
Partner
Screening

Counter Actor executes his commitment
sub ideally.

Primary Actor verifies credentials of
Counter Actor before making any com-
mitments

Execution
Monitoring

Counter Actor executes his commitment
sub ideally.

Primary Actor verifies Counter Actor’s
execution of the commitment, before ex-
ecuting own commitments

Incentive Counter Actor executes his commitment
sub ideally.

Primary Actor provides a reward for the
ideal execution

Penalty Counter Actor executes his commitment
sub ideally.

Primary Actor provides a punishment
for the sub ideal execution

Proper
Contracting

Counter Actor denies to have made a
commitment to Primary Actor

Counter Actor provides an evidence
document, which confirms his commit-
ment

Execution
Confirmation

Counter Actor denies that Primary Actor
executes commitments ideally, and re-
fuses to execute his commitments in re-
turn, or requires a compensation for ex-
ecuting his commitments

Counter Actor provides an evidence
document, which confirms that Primary
Actor executes his commitment ideally

4 Case Study: Renewable Energy in the UK

4.1 Introduction

One of the industries with interesting and complicated control problems is the renew-
able electricity industry. To comply with international environmental agreements, such
as the Kyoto protocol, governments must ensure that a sufficient amount of electricity
is produced with technologies that do not use fossil fuels. Examples of CO2-friendly
technologies are wind turbines, photovoltaic panels and hydro generators. Such tech-
nologies are called renewable or green technologies. At present, these technologies re-
quire high initial investments, meaning that the price of green electricity is higher than
the price of electricity produced in the conventional way using fuel-based technologies
[5]. Many government regulated schemes have been implemented to make renewable
technologies commercially more attractive, e.g. tax cuts and subsidies on initial invest-
ments, premiums for generated electricity, etc. In this chapter we examine more closely
one such scheme, which was implemented in the United Kingdom (UK).

In the UK, the Renewable Obligation (RO) regulation law was introduced to stimu-
late the generation of renewable electricity. The first Renewable Obligation regulation
in the UK came into force in April 2002. The law places an obligation on electricity
suppliers, licensed to supply electricity in the UK, to source a certain proportion of
electricity from renewable sources [28]. When the regulation was introduced, this por-
tion constituted 10% of the total supply of a UK supplier. In 2006/07 a UK supplier is
obliged to generate 6.7% of its supply from renewable sources.
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Suppliers prove that they meet their obligations by presenting Renewable Obliga-
tion Certificates (ROCs), each representing one Mega Watt/hour (MWh) of produced
renewable electricity output. ROCs can be acquired by suppliers from producers of
green electricity. The producers get ROCs from a government agency, the Office of Gas
and Electricity Markets (Ofgem) for each MWh of renewable electricity output they
produce. In addition, Ofgem maintains a register of all ROCs it has issued.

The suppliers must therefore provide ROCs as evidence of how much MWh of green
electricity they have supplied. If a supplier does not have sufficient ROCs to cover
his obligation, he must make a deposit into a buy-out fund. The buy-out fee is a fixed
price per MWh shortfall and is adjusted in line with the Retail Prices Index each year.
Premiums from the buy-out fund are paid back to suppliers in proportion to how many
ROCs they have presented.

In this case study we apply the e3control methodology and patterns to understand
and find controls. We reverse engineer the ultimate ROC-scheme, by means of the pat-
terns, to show why this scheme is needed from the control perspective. For example, we
illustrate how the patterns explain the necessity of introducing ROCs.

We first assume that ROCs do not exist yet. We explain the control problems that
may occur in the network. We explicitly take the government’s point of view and only
describe the problems as perceived by the government, which is represented by Ofgem.
Then, step by step, we design the ROC scheme by applying the patterns. As a result,
we will demonstrate that the ROC scheme can be explained by means of e3control
patterns.

The case study material is based on participation in the EU BusMod project [5], as
well as the Ofgem web site (www.ofgem.co.uk), including [28,29].
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Fig. 2. An ideal value model of the ROC case study
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4.2 The First e3control Cycle: Non-tradable ROCs

Step 1: Ideal Situation

Value view. Fig. 2 presents an e3value model for the ROC case study. The dependency
path in Fig. 2 starts at the customer, the final electricity consumers in the UK. The
customer buys Electricity from the supplier and pays the supplier a Retail Fee in return2.
As denoted by the OR-fork at the supplier, the supplier can buy electricity from two
sources: from non-renewable producers or from renewable producers. In the first case,
the supplier buys Regular Electricity and pays Regular Fee in return. In the second case,
the supplier buys Green Electricity and pays a Green Fee. Because green electricity
is produced by more expensive renewable technology, the renewable producer asks a
higher price for electricity than the non-renewable producer.

According to the RO regulation, a supplier has to obtain 10% of electricity from
renewable sources3. In e3value terms, this means that the electricity delivered by buying
Green Electricity in Fig. 2 has to account for at least 10% of the Electricity supplied to
the customers. We also assume that the suppliers behave ideally and always buy 10% of
their supply from renewable producers. Therefore, if a supplier buys Green Electricity,
then he also reports the supply of green electricity to Ofgem and receives a statement of
compliance with the renewable obligation. This is modeled by the objects Green Supply
and RO Compliance accordingly (see path a’).

Process view. In Fig. 3 we represent an ideal process model that corresponds to the
ideal e3value model. The process starts at the supplier who, as in the value model,
has the choice of buying electricity from a renewable or a non-renewable supplier. In
the first case, the supplier executes Buy Regular Electricity , followed by Sell Regu-
lar Electricity of the non-renewable supplier. In the second case, the suppler executes

2 In this model, the customer buys both green and conventional electricity for the same price.
3 When the regulation was introduced in 2002, the limit was around 10%. Currently in 2006/07

it is 6.7% and 2.6% in Northern Ireland.
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Fig. 4. Sub ideal value model for the problem of not supplying green electricity

Buy Green Electricity , followed by Sell Green Electricity executed by the renewable
supplier. After that, in both cases Supply Electricity is executed by the supplier, which
results in a transfer of an object Electricity from the supplier to the customer. Further,
the supplier reports information about his supply (in MWh) to Ofgem by transferring a
statement Supply Declaration to Ofgem. In the Supply Declaration, the supplier reports
how much green electricity was supplied and what part of this electricity was green.

Since this model represents an ideal situation, the supplier is always assumed to
behave ideally. In other words, the supplier always buys at least 10% of green electricity.
Therefore, at the end of the process the RO compliance is always granted.

Step 2: Sub Ideal Situation. There are two types of sub ideal behavior. Firstly, not
every supplier complies with the renewable obligation as a supplier can buy a lower
percentage of green electricity than the 10% prescribed by the regulation. In this case,
the RO compliance is not (completely) granted. Secondly, some suppliers can overstate
the percentage of green supply in order to obtain the RO compliance illegally.

Value view. The sub ideal value model in Fig. 4 models both the ideal and sub ideal
behavior of a supplier. The second OR-fork leads to the ideal path a and sub ideal path
b. The ideal path a shows the same as in the ideal value model. The sub ideal path
b corresponds to the two types of sub ideal behavior. In both cases, the supplier buys
Regular Electricity, instead of Green Electricity. This corresponds to the exchanges in
the sub path b”. Further, the OR-fork at the sub path b’ indicates two possibilities of
sub ideal behavior. The sub path, marked with a liability token L1, corresponds to a
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Fig. 5. Sub ideal process model for the problem of not supplying green electricity

situation in which the supplier reports his low supply of green electricity and does not
get the RO compliance. At the sub path, marked with a liability token L2, the supplier
either overstates his low supply of green electricity or understates the total supply. As
a result, he gets the RO compliance illegitimately. The value objects that correspond to
this situation are marked as sub ideal with dashed value transfers.

Process view. In Fig. 5 we represent only the sub ideal behavior of the supplier. The
supplier buys insufficient green electricity. We model it with a sub ideal activity Buy
Less Green Electricity instead of the Buy Green Electricity, as in the ideal process
model. The supplier has the choice to report the true supply of green electricity or
to overstate it. In the first case, the supplier transfers a Supply Declaration in which he
informs Ofgem about insufficient green supply and, as a result, he does not get the RO
compliance. In the second case, the supplier overstates the percentage of green supply
and transfers an Incorrect Supply Declaration. As a result, the supplier gets the RO
compliance illegitimately.

Step 3: Reduce Sub Ideality by Applying Control Patterns. In order to solve the
control problems, Ofgem should implement one or more control mechanisms. We ex-
emplify how the Penalty and Incentive patterns can be used to motivate suppliers to
supply the right amount of renewable electricity. We have a process for selecting appro-
priate patterns for found controls problems (see [27]), which we do not explain due to
lack of space. We illustrate below how the Penalty and Incentive patterns contribute to
solving the found control problems.

Process view. Both the Penalty and Incentive patterns require the primary actor Ofgem
to check the outcome of the sub ideal counter activity Buy Green Electricity and, then
to reward or punish the supplier. To model this, we first add Verify Compliance to Fig.
6. This is an instance of the Verify activity in the patterns (see Figs. 13 and 14).
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Furthermore, according to the pattern, Verify Compliance requires two inputs: Sup-
porting Statement and To-be-verified Statement (see the Appendix). The To-be-verified
Statement gives information about a percentage of electricity supplied from renewable
sources. This corresponds to the object Supply Declaration, presented in the model.

According to the pattern, the to-be-verified statement Supply Declaration must be
produced by an activity that witnesses the activity Buy Green Electricity. In addition,
the pattern requires this witnessing activity to be executed either by the primary actor
Ofgem or by a party independent and socially detached from the counter actor Supplier.
If this is not the case, the violation of segregation of duties occurs, since the supplier
who is responsible for buying green electricity also reports about it.

In the ideal model, the to-be-verified statement Supply Declaration is produced by
the Supplier. This violates the requirements of the pattern. Therefore, we explicitly
model the witnessing activity Witness Green Supply, instead of only the reporting activ-
ity. Secondly, we assign this activity to an actor, who is independent from the Supplier
and is able to produce trustworthy information about the supply. Ideally such an actor is
the primary actor Ofgem. However, as it is just an administrative body, Ofgem does not
have the resources to control each supplier. So, Ofgem delegates control of the suppliers
to some trusted party.

The role of such a trusted party can be played by the renewable producer who sup-
plies electricity to suppliers. This party is therefore physically able to keep track of how
much green electricity is bought by each supplier. In Fig. 6, the activity Witness Green
Supply is assigned to the renewable producer.

The third change we make is to rename the to-be-verified statement. This statement,
previously called Supply Declaration, is now called Renewable Obligation Certificate
(ROC). One ROC is issued for each Mega Watt/hour (MWh) of eligible renewable out-
put. According to the pattern, the ROC is fed into the activity Verify Compliance, which
compares whether the ROCs of one particular supplier represent 10% of his total supply.

The ROC only represents the amount of green electricity. However, the important
criterion for granting RO compliance is the share of the green electricity within the
supplier’s total electricity supply. Therefore, we add another to-be-verified statement
Total Supply, which represents this information. As with ROC, the Total Supply must be
generated by an actor who is independent and not acting in the interests of the supplier.
For instance, the data about the total supply could be retrieved from the final customer
or from the supplier’s annual accounts, assuming they are trustworthy. In the model we
show that the Total Supply is generated by Ofgem. Data concerning the total supply of
each supplier is easily accessible to a governmental organization like Ofgem.

The Verify Compliance activity requires a supporting statement, namely, information,
which is needed to decide whether the RO Compliance should be granted. Such a docu-
ment is a RO legislation, stating e.g. the required percentage of green electricity (which
we assume is 10%), which producers are qualified to hold the status of ‘renewable’, to
which customers should the reported green electricity be supplied, etc.

In addition, the activities are assigned in a proper order, as required by the control
principles. The activity Witness Green Supply is executed after the Buy Green Electric-
ity activity and before Verify Compliance activity. In addition, the Verify Compliance
activity is executed before the primary activity Grant RO Compliance.
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Fig. 6. Solution process model with penalties and incentives

According to the penalty pattern, the object Penalty should be added. The penalty
should be transferred to Ofgem by a supplier who supplies less than 10% of green sup-
ply. According to the RO regulation, the supplier who does not have sufficient green
supply to cover his obligations must make a deposit into the buy-out fund [28]. Such
a payment corresponds to the object Penalty of the Penalty pattern. In Fig. 6 the Buy-
out Fee is paid by the suppliers according to the RO regulation. According to the pat-
tern, if the outcome of the Verify Compliance states that the green supply is less than
10%, the RO compliance is granted only after the buy-out fee is paid by the supplier.
The Pay BuyOut Fee activity corresponds to the Pay Penalty activity of the Penalty
pattern.

According to the solution given by the Incentive pattern, the Incentive object should
be added. This object should be transferred to the supplier who supplies at least 10%
of green supply. The buy-out fund is paid back to suppliers in proportion to how much
green electricity they have purchased [28]. This payment, henceforth called Buy-out
Premium, represents the incentive. We add it to Fig. 6.

In addition, according to the pattern, we model that if the outcome of the Verify Com-
pliance states that the green supply is more than 10%, then RO compliance is granted
and the Buy-out Premium is paid. The Pay BuyOut Premium activity corresponds to the
Pay Incentive activity of the Incentive pattern.

Note that in the application of this pattern we have also used the Simple Delega-
tion pattern (see http://www.e3value.com/e3family/e3control/patterns). This is needed
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Fig. 7. Solution value model with penalties and incentives

to model that the Witness Green Supply activity is delegated by Ofgem to the trusted
actor Renewable Producer.

Value view. We now make appropriate changes in the ideal value model. The changes
have been caused by the introduction of penalties and incentives as well as by the dele-
gation of the witnessing activity.

We add a new value transfer, indicating a penalty, as an outgoing value object of
the counter actor Supplier in the sub ideal path L1. We add it to the transfer of No RO
Compliance and Regular Supply, and change No RO Compliance to RO Compliance.

Also, since we have renamed the Supply Declaration to ROC in the process model,
the ROC also appears as value object in the value model. We model ROC instead of the
value object Green Supply, and No ROC instead of the value object No Green Supply.

The resulting value model is presented in Fig. 7 and this corresponds to reality. The
penalty is represented by the value transfer Buy-out Fee. So, at the sub ideal path b,
where the supplier does not supply enough green electricity, he is obliged to pay a
buy-out fee in order to cover the RO.

The Incentive pattern requires that an incoming value object Incentive should be
added to the Supplier in the ideal value transfer. The incentive is the buy-out premium
paid by Ofgem to compliant suppliers. The incentive value object BuyOut Premium is
added to the transfer of Green Supply and RO Compliance.

4.3 The Second e3control Cycle: Tradable ROCs

The process model in Fig. 6 represents only a part of the actual ROC scheme. Due to the
nature of the electricity business, suppliers can buy and sell electricity several times to
other suppliers before it reaches the final customer. According to RO regulation, ROCs
can be claimed by the supplier who delivers the associated green electricity to final
customers. If a supplier sells green electricity to another supplier, the ROCs should also
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Fig. 8. An ideal process model with tradable ROCs
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Fig. 9. An ideal value model with tradable ROCs

be transferred to this other supplier. In addition, ROC’s can be traded themselves on the
market. The ROC is in fact a security similar to stocks and bonds. As will be explained
later, the ROC market was created to stimulate green electricity production. Therefore,
additional controls are required.

Step 1: Ideal Situation. The ideal process model of the scenario with tradable ROCs
is shown in Fig. 8. Unlike in the solution process model in Fig. 6, the ROCs are trans-
ferred to the supplier before being transferred to Ofgem to comply with the required
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percentage of supplied renewable energy. The supplier has the choice of selling the
obtained ROCs or of reporting them to Ofgem. This choice is denoted by the UML
decision element at the supplier. If the supplier reports the ROCs to Ofgem, the ver-
ification process of charging the buy-out fee or the paying buy-out premium remains
the same as before. However, if the supplier sells the ROCs, they are not presented to
Ofgem.

The corresponding value model is shown in Fig. 9. The following changes have been
made compared to the situation without tradable ROCs in Fig. 7. Firstly, suppliers ob-
tain ROCs from the renewable producers. Secondly, unlike in the solution value model
in Fig. 7, the ideal dependency path now offers a choice between (1) obtaining ROCs for
free while buying the (more expensive) green electricity in path c or (2) buying ROCs
separately and purchasing the (cheaper) regular electricity in the path d. Thus, because
ROCs can be traded, they are modeled as value objects, and not as process objects only.

Step 2: Sub Ideal Situation. The new ideal models in Figs.8 and 9 do not comply with
the prescriptions of the Penalty and Incentive patterns in Figs. 7 and 6. Specifically, to
perform the Verify Compliance activity, Ofgem has to rely on information received from
the supplier. This implies that the supplier performs the Witness Green Supply activity.
As already explained, this contradicts with the pattern, since the supplier should not
report his own activities. For example, the supplier can forge ROCs and overstate the
number of supplied green electricity.

In Fig. 10 we show the sub ideal process model of the scenario with tradable ROCs.
The supplier overstates the number of ROCs he has, which is modeled by the activity
Overstate Green Supply. This corresponds to the transfer of No ROCs by the supplier
in the sub ideal value model in Fig. 11. Because the overstatement remains undetected,
the supplier receives the RO Compliance and even gets the BuyOut Premium in return.
This path is marked with the liability token L3.

Note that the supplier has an illegitimate interest in overstating the number of ROCs,
which does not depend on whether he can cover the RO obligation or not. If the supplier
has enough ROCs to cover the obligation, he may overstate ROCs to receive the buy-out
premium (see path a). If the supplier has not enough ROCs to cover the obligation, he
is motivated to overstate ROCs to avoid the buy-out fee penalties (see path b).

Step 3: Reduce Sub Ideality by Applying Control Patterns. We now apply the Exe-
cution Monitoring pattern to reduce sub ideality.

Process view. Following the solution given by the Execution Monitoring pattern, we
add a new verification activity Verify ROC to Ofgem. It verifies the Present ROCs activ-
ity of the Supplier. To do so, it checks if a ROC, submitted by a supplier, corresponds
to a ROC reported by the renewable producer.

In addition, unlike in the ideal model with ROCs in Fig. 8, the renewable producer
not only issues a ROC to the supplier, but also reports the number of issued ROCs to
Ofgem. This is modeled with an object ROC Register. The ROC register is an electronic,
web-based system, supported by Ofgem, which allows generators and suppliers to view
the ROCs they hold and to transfer ROCs to other parties. In this way, Ofgem can verify
the authenticity of each ROC.
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Fig. 10. A sub ideal process model with tradable ROCs
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Note that the activity Report ROCs is added not because of a pattern’s prescription. It
is added because the UML language restrains modeling the exchange of the object (ROC
Registry in this case) directly from the AND-join (the black thick bar). We therefore add
an activity in between.

In this solution, an ROC plays the role of the to-be-verified statement, while the ROC
Register plays the role of the supporting document. Thus, the renewable producer plays
the role of the provider of a supporting document.

After the verification of an ROC, the Verified ROC object is used. As in the previous
e3control cycle, the Verified ROC plays the role of the to-be-verified statement for the
verification activity Verify Compliance.

The value model does not change and is the same as the ideal value model in Fig. 9.

5 Conclusion and Discussion

In this chapter, we have presented a series of patterns for the value-based design of inter-
organizational controls, and demonstrated three patterns in a case study. The
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proposed patterns take an explicit economic value perspective on the control problem: It
is important to understand first the valuable objects to be safeguarded, before designing
controls ensuring proper transfer of objects.

We have contributed a structure for stating control patterns in terms of ideal
value&activity models, sub ideal value&activity models representing the fraud, and
possible solutions expressed using similar model types. The patterns themselves stem
from two sources: (1) accepted theory on the principal-agent relations, accounting,
and auditing, and (2) four industrial case studies we have performed to design inter-
organizational controls.

For e3control , many further research issues can be identified, and we present two of
them. First, there is the issue of the cost of controls. So far, we have studied controls that
have inherent economic value aspects (e.g. incentives and penalties), and therefore have
an impact on the e3value model of a networked organization. However, implementing
controls usually comes with a price. This ‘cost of control’ should also be considered
when analyzing control issues in value networks. Second, controls may interact. If we
first analyze and select controls for actor A, and thereafter actor B, the resulting set of
the controls for the network can be different compared to first considering actor B, and
thereafter actor A. Actually, this can be seen as an example of feature interaction, and a
more structured approach is needed to deal with this interaction.

More in general, the e3control methodology is a member of the e3value modeling
suite, focusing on understanding the exchange of valuable objects in networks of en-
terprises. Although value modeling has proven to be useful in numerous case studies,
there exist also a number of research challenges to be addressed. First, there is the is-
sue of valuation. Value objects reflecting money are relatively easy; the value of such
objects coincides with the amount of money exchanged. However, in value modeling
it is sometimes needed to assign economic value to non-money objects also. For in-
stance, a final customer of a service should value the service outcome obtained. Essen-
tially, we are then interested in the economic utility function of the customer, which
is difficult to obtain. But even objects directly reflecting money pose interesting prob-
lems. Usually, a ‘money object’ refers to a price to be paid for a product or service
outcome. However, the pricing scheme can only be partly based on market considera-
tions (e.g. the amount of money the customer is willing to pay). Another factor is the
cost needed to produce the product or service outcome. As in our field, the services
are usually ICT services, there should be a clear, and understandable, relationship be-
tween the valuable ICT service offered, and the costs of the ICT service. In addition to
that, the value network takes a commercial perspective on a network of actors. But, in
the case of ICT, other perspectives are required, such as perspectives on the support-
ing ICT, and the business processes that should be carried out, to develop the value
network at hand. One of the key questions is then how to properly align these perspec-
tives during the design of the actor network, and how to ensure that these perspectives
remain aligned.
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Appendix: The e3control patterns

Below we present three control patterns that we use in the case study of this chapter.
Other patterns can be found at http://www.e3value.com/e3family/e3control/patterns.

5.1 Penalty Pattern

The penalty pattern punishes the counter actor for sub ideal behavior by introducing a
value object that decreases the accumulated value of the counter actor in the ideal path.

5.2 Incentive Pattern

The incentive pattern rewards the counter actor for ideal behavior by introducing a value
object that increases the accumulated value of the counter actor in the ideal path.

5.3 Execution Monitoring Pattern

The Execution Monitoring pattern describes the control problem in which a counter
actor does not execute his commitments or executes them in a sub ideal way (e.g. not
as agreed in the contract). The control mechanism requires the primary actor to monitor
counter activity. This solution is very similar to the Partner Screening pattern, the only
difference being that verification concerns the counter activities under the contract and
not an actor’s past counter activities.
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Section 4: Requirements Intertwining 

Pericles Loucopoulos 

Business analysts are being asked to develop increasingly complex and varied business 
systems that need to cater to the changing and dynamic market conditions of the new 
economy. This is particularly acute in today’s turbulent business environment where 
powerful forces such as deregulation, globalisation, mergers, advances in information 
and telecommunications technologies, and increasing education of people provide 
opportunities for organising work in ways that have never before been possible. En-
terprises attempt to create wealth either by getting better at improving their products and 
services or by harnessing creativity and human-centred management to create innovative 
solutions.  In these business settings, requirements become critical in bridging system 
solutions to organisational and societal problems. They intertwine organisational, social, 
cognitive, and implementation considerations and they can provide unique insights to 
change in systems and their business context. Such design situations often involve mul-
tiple stakeholders from different participating organisations, subcontractors, divisions, 
etc., who may have a diversity of expertise, come from different organisational cul-
tures and often have competing goals. The success or failure of many projects de-
pends, to a large extent, on understanding the contextual setting of requirements and 
their interaction amongst a diverse population of stakeholders. 

In this section we review a set of key issues that emerge in Requirements Engineer-
ing paying particular attention to two factors, (a) the role of requirements in a busi-
ness context and (b) the treatment of requirements in multi-stakeholder settings. The 
first four articles deal with issues relating to the interaction between business and re-
quirements concepts whereas the subsequent three deal with issues relating to stake-
holders’ requirements interaction. 

The first article by Colette Rolland titled “Exploring the Fitness Relationship be-
tween System Functionality and Business Needs” examines the issue of fitness rela-
tionship, by considering the twin problems of establishing such a relationship and 
preserving it in the face of change. To this end, the article investigates three key is-
sues. First, the conceptual mismatch between business and system languages is  
considered and a solution is put forward in using a common language whereby the 
functionality of a system is abstracted at an intentional level and business constructs 
are also formalised in intentional terms. Second, a formal approach to modelling and 
measuring the fitness relationship is considered through the definition of correspon-
dences between a set of components. Third, the preservation of the fitness relationship 
at different levels of detail is considered by using a refinement mechanism as a way to 
control the quality of the refinement. 

The second article by Varum Grover and Samuel Otim titled “A Framework for 
Business Change Requirements Analysis,” examines the management of requirements 
change in the context of business change.  It argues that the pressures for enterprises 
to remain competitive requires substantial efforts in business process change and that 
IT is normally at the centre of such changes. The authors argue that a design orienta-
tion helps to manage the complexity of business change. Within such a design para-
digm, it is recognised that requirements definition at the business task level may be 
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time consuming and counterproductive in most business situations where the pace of 
change is fast. To meet the challenge of requirements evolution, this article puts for-
ward a framework that focuses on the process of change and the decisions that need to 
be made. This framework highlights the importance of managing the process of 
change by maintaining contextual knowledge about process models and process re-
design rules. 

The third article by Peri Loucopoulos and Joy Garfield titled “The Intertwining of 
Enterprise Strategy and Requirements”, examines the issue of the potential impact 
that a set of requirements are likely to have on the strategy of a business. It raises the 
point that system requirements are not simply derived linearly through an analysis of 
business goals but often these business goals are influenced through alternative im-
plementation choices. This feedback, from system requirements to business strategy, 
leads to an improved dialogue between ‘problem’ and ‘solution’ worlds, which fits 
very well the design paradigm espoused by the book. 

The fourth article by Paul Otto and Annie Anton titled “Managing Legal Texts in 
Requirements Engineering” examines the effect that laws applicable to specific busi-
ness and societal settings influence Requirements Engineering. This article examines 
the many challenges presented by legal documents given the complexity of such 
documents as well as many other challenges faced by designers such as domain-
specific definitions, ambiguity, cross references and frequent amendments. Legal 
compliance is considered by many practitioners as a major driving force in  
information security. The challenge for requirements engineers seems to be on how to 
determine the regulation that is applicable to the case in hand and how to specify re-
quirements to achieve compliance with these regulations. The article provides a com-
prehensive survey of research efforts in modelling and using legal texts in the systems 
development lifecycle. 

The fifth article by Mark Bergman titled “Requirements’ Role in Mobilizing and 
Enabling Design Conversation” considers the issue of design conversation, arguing 
that stakeholders need to engage into meaningful conversation towards desired re-
sults. Such a conversation needs to be reflective upon a set of shared design represen-
tations and to this end the author puts forward a research agenda and approach for 
improving the role of requirements in promoting design conversation. 

The sixth article by Davide Bolchini, Franca Garzotto, and Paolo Paolini titled 
“Design Requirements for Communication-Intensive Interactive Applications” fo-
cuses on requirements issues that arise due to complexity in computer-mediated 
communication applications. The objective of such applications is to be informative 
and persuasive, termed in this article ‘infosuasive’ applications. This article addresses 
the early design phase of infosuasive applications when requirements are normally 
vague, unfocused and possibly inaccurate. During this phase there are many different 
types of stakeholder involved from both the user community and the designer com-
munity. The article proposes a conceptual framework aimed at supporting members of 
both communities in order for them to be able to share their mental models, to inte-
grate their different viewpoints, and to plot a direction amongst the many different 
design options. 

The final article in this section by Yijun Yu, Nan Niu, Bruno Gonzalez-Baixauli, 
and John Mylopoulos titled “Requirements Engineering and Aspects” is concerned 
with issues of validation of stakeholders’ requirements. In this article, the authors 
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explore the idea of system implementation assisting the validation of early require-
ments. The idea of ‘requirement aspect’ is used as a stakeholder concern that perme-
ates across other requirements concerns. An approach is presented whereby aspects 
are discovered and tested within an intentional framework. 

We believe that these seven articles provide useful insights on issues relating to 
one of the key principles discussed in the introduction of this book, namely the inter-
twining of requirements. Hopefully, this section will stimulate the reader to exploit 
further some of the research questions raised here or to apply some of the proposed 
approaches so that through further theoretical and empirical work the issue of re-
quirements intertwining can become an integral part of contemporary work in Re-
quirements Engineering. 
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Abstract. Fitting information systems to business needs is considered
equally important by both, the Requirements Engineering and MIS com-
munities. Even though alignment/fit clearly appears as desirable, a num-
ber of issues still remain unsolved as for example: (i) the achievement of
alignment (ii) its management over time, (iii) the identification of non fit
and, (iv) its evaluation. This paper gives to fitness a central position and
introduces the notion of a fitness relationship and its measurement. In do-
ing so, this paper tackles the social context and requirements intertwining
as pointed out in the book framework. It highlights two sets of issues, one
involved in understanding this relationship and the second in engineering

it. It also points out broad directions and trends in resolving these issues.

Keywords: Business/IS alignment, fitness modelling, fitness measure,
strategic alignment, intentional modelling.

1 Introduction

Requirements Engineering (RE) tries to ensure that system functionality matches
business needs. It does this by establishing a relationship between the “whys” and
the “whats” of the system To-Be. The former deals with the objectives of the or-
ganisation and the way they influence the requirements of the system. The lat-
ter refers to the functionality that meets these requirements. RE inherently deals
with business-system alignment. Potts [1] identified ’fitness for use as a system
quality that matters most’. However, the notion of fitness, its properties and char-
acteristics have been peripheral issues for the RE community. Through the issue
of ’Intertwine Requirements and Contexts’ identified in its framework, this book
recognises the growing importance of mastering the fitness relationship between
business, organisation and community contexts and requirements.

In the MIS community, alignment between IT systems and the business they
support has been considered as a key issue for several years by both researchers
and professionals. As [2] [3] [4] [5] or [6] already showed it, strategic alignment
between IS and business objectives is a top priority for CIOs and IT executives.
There is also, a large corpus of empirical and theoretical evidence that more
tactical alignment between information systems and business processes improves
organizational performance (e.g. [7], [8], [9], [10], [11]). Furthermore, studies
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highlight the lack of alignment as a major cause for business processes failure
in providing return on investments. However, even though alignment clearly
appears as a desirable, a number of issues still remain unsolved. For example:
(i) the achievement of BP-IS alignment, (ii) its management over time [12], (iii)
the identification of non fit and, (iv) its evaluation [13].

This paper explores what we refer to as the fitness relationship (inspired by
[1] so as to reveal its nature and its engineering process. In this exploration,
we shall consider the twin problems of establishing the fitness relationship and
preserving it in the face of change. The presentation is organized around two
sets of issues related to (a) understanding the fitness relationship and (b) engi-
neering the relationship. The former deals with characterizing, conceptualizing,
and modelling, the fitness relationship whereas the latter deals with establishing
and preserving it in the face of change. Issues relating to (a) above, represent the
static point of view whereas those of (b) above follow the dynamic viewpoint.
Whereas the subject of this paper in its whole relates to the ’Intertwine Require-
ments and Contexts’ principle of the book framework, issues (b) above relates
to the ’Evolve Designs and Ecologies’ issue pointed out in this book framework.
We discuss them in turn.

2 Understanding the Fitness Relationship

It has been recognized that there is a conceptual mismatch between the business
and the system levels. It is considered necessary to minimize this mismatch. This
leads to our first issue, Issue1: Conceptual mismatch. Despite alignment/fit
being mentioned in many approaches, it is rarely a concept per se and there is
no agreement on its definition. Defining and modelling the fitness relationship
seem to be a prerequisite to support measurement of the degree of fit. Issue
2 considered below is therefore: Issue 2: Modelling and measuring the
relationship. It may be inconvenient to view the fitness relationship as one
monolithic flat structure. A layered approach may facilitate understanding and
mastering its complexity. Therefore, in order to present the fitness relationship
at different levels of detail, it is necessary to have a refinement mechanism as
well as a means to control the quality of the refinement. Issue 3: Dealing with
the complexity of the relationship.

To sum up, it can be surmised that an understanding of the fitness relationship
requires a position to be adopted on the following issues

Issue 1: Conceptual mismatch;
Issue 2: Modelling and measuring the relationship;
Issue 3: Dealing with the complexity of the relationship.

Issue1: Conceptual mismatch. It has been recognized that there is a con-
ceptual mismatch between the business and the system languages [14][15] and
that it is considered necessary to minimize this mismatch. One way to do this
is to leverage the functional system view to a requirements view and to express
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both with the same language. This shall allow expressing the fitness relationship
in a more straightforward manner. Goal centred languages seem to be the most
adequate for this purpose as they explicitly capture the why and how of both sys-
tem functionality and business process. With this position, the resolution of the
mismatch requires on one hand, to abstract intentionality from the functionality
and, on the other hand, to formalize the business in intentional terms.

Our experience is based on the use of the Map representation system for a
uniform representation of business goals and system functionalities. See [16] for
a detailed description. A brief overview is as follows: A map is a labelled directed
graph (see Fig. 1) with intentions as nodes and strategies to achieve them as
edges. The directed nature of the graph shows which intentions can follow which
one. An edge enters a node if its strategy can be used to achieve the corresponding
intention. The key element of a map is a section defined as a triplet 〈Ii, Ij , Sij〉
and represents a way to achieve the target intention Ij from the source intention
Ii following the strategy Sij . Each section of the map captures the condition
to achieve an intention and the specific manner in which the process associated
with the target intention can be performed. Sections of a map are connected to
one another:

(a) When a given intention can be achieved with different strategies. This is
represented in the map by several sections between a pair of intentions.
Such a map topology is called a multi-thread.

(b) When a goal can be achieved by several combinations of strategies. This is
represented in the map by a pair of intentions connected by several sequences
of sections. Such a topology is called a multi-path. In general, a map from
its Start to its Stop goals is a multi-path and may contain multi-threads

As an example, the map of Fig. 1 contains eleven sections C0 to C11. It can
be seen that C1, C2 and C3 together constitute a multi-thread whereas C2, C5,
C10, C11 and C6, C11 are two paths between the Start and Stop intentions of
the map constituting a multi-path.

Fig. 1. Material Management Map (inspired from SAP Material Management module)
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One advantage of the Map representation system is that it allows us to cap-
ture in a single representation what is common to the business and the system,
namely their shared purpose. As a result, any section can be regarded from two
viewpoints: the business viewpoint and the system viewpoint. For example, the
map in Fig. 1 shows how the SAP Material Management (MM) module can be
abstracted into sections of a map [17]. Every section in the map represents both
(i) a SAP MM function, and (ii) the business goal that can be satisfied by using
this function.

From the business viewpoint, material management deals with supplying ma-
terials in the right quantity, at the right place and time, and at the minimum
cost. The map identifies through two intentions that this involves two tasks:
to Purchase material, and to Monitor stock. It also makes explicit the different
manners by which each intention can be achieved. For example there are four
strategies to Purchase material, namely Manually, By forecast based planning,
By reorder point planning and By reminder.

From the system viewpoint, the map indicates which SAP function helps to
achieve the Material purchase and Monitor Stock goals, and how. For example,
the SAP MM module contains a “Create purchase order” function (or ’trans-
action’ in SAP terms). At the operational level, this function entails the iden-
tification of material requirements. The material requirements are defined by
references to the needed materials, their vendors, their prices, the dates and
plant at which they should be delivered, etc. At the business level, the issue
is the one of purchasing material to satisfy material needs of the organization.
The function contains variants depending of the purchase situation. These are
referred to in the four sections C1, C2, C3, and C4, as documented in Table 1.
For each of the four sections, the table outlines the variant of the SAP function
that is to be used.

Our experience confirms what is illustrated in the SAP example above: the
multi-thread topology of the map is useful to reason about alternative fitness
relationships. The multi-thread

(a) makes explicit the different business strategies to achieve an intention and,
(b) identifies the variants of the system functionality that can be selected de-

pending on the situation at hand thus highlighting the alternative (ORed)
fitness relationships.

We found that when eliciting the desired state (To-Be model) the multi-thread
helps envisioning multiple business strategies and identifying the corresponding
required system functionality. In a customizing process the multi-thread helps
exhibiting the panel of business strategies embedded in the product family and
their related software variants.

Issue2: Modeling and measuring the relationship. Alignment deals with
establishing relationships between two sets of entities to represent the business
and the system, respectively. This relationship has been referred to by different
terms such as “alignment”, “fitness”, “match”, “adaptation”, “correspondence”.
It reflects the system/context intertwining as highlighted in the framework put
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Table 1. Documenting map sections

Code Name Description
C1 Purchase material Create a purchase order based on a purchase requisition

manually defined with information about the material,
vendor, date, price, etc. If the information is correct
the purchase order is created with a unique
identification number.

C2 Purchase material Automatically generate purchase requisitions any time
based on reorder a stock event that causes the stock of a given material
points to fit the reorder point criteria occurs. The purchase

requisitions can then be transformed into purchase orders.
C3 Purchase material Automatically generate purchase requisitions at

based on forecast the dates defined in the forecast scheduling the
purchases that shall be made for a given material. The
forecast is computed based on former purchases of the
material. Oncegenerated, the purchase requisitions can
be transformed into purchase orders.

C4 Purchase material Automatically remind of a purchase order for
by reminder which no delivery has been noticed within due date.

forward in this book. In this paper we will use the term fitness relationship
[1]. Despite the fact that the relationship is mentioned in many approaches,
it is rarely a concept per se. Our view is that the fitness relationship should
be precisely defined to support explicit modelling and measurement. We adopt
Regev’s view [18] that defines this concept “as the correspondence between a set
of components”. Following Nadler [19] we consider fitness to be “the degree to
which the needs, demands, goals, objectives and/or structure of one component
are consistent with the needs, demands, goals, objectives and/or structure of
another component”. The foregoing suggests (a) a precise identification of the
types of correspondence between components of the business and system models
and (b) a measurement of the degree of correspondence.

A survey of literature shows that different types of links have been proposed.
Traceability links as used by [20] or [21] to reason about the impact of change,
are one option leading to a loose coupling between entities. Another variation are
derivation links such as in [22] who proposes a technique for deriving event-based
specification from KAOS specifications. Similarly [23] identifies links between
concepts of i* and those of Z in order to transform changes of an i* model into
modifications of a Z specification. Derivation rules also used in GORE (Goal
Oriented Requirements Engineering) approaches in RE correspond to a more
direct coupling. Etien et al [24] define two types of correspondence links namely,
maps and represents between constructs belonging to two different models. These
are discussed below.

A construct X of a given model maps (M) a construct Y of another model if
there exists an isomorphism between the set of properties of X (p(x)) and the
set of properties of Y, p(y). In other terms, each property of X corresponds to
one of Y (even if the domains are different). The existence of an isomorphism
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(≈ symbol) allows one to specify that the constructs X and Y play the same
role. For example, the construct of business class maps the concept of system
class.

XMY ⇔ p(x) ≈ p(y)

This relationship is reflexive and thus if a construct X maps to another construct
Y then, Y also maps X.

A construct X of a given model represents (�) a construct Y of another model
if the existence of the former affects the behaviour, the value or the existence of
the latter.

X�Y ⇔ p(x) � p(y)

Where � signifies that X affects the behaviour of Y.
It is important to notice that two constructs of different nature can be linked

through the represents link. For example, a class can represent a property.
Clearly, the represents link is weaker than the maps link. Thus, two constructs
that map each other also represent each other. The opposite is not true because
two constructs of different nature can be linked through a representation link
even though a mapping link cannot exist.

A more advanced solution completes links with metrics. For instance, [25]
proposes to define consistency using metrics. Soffer [13] suggests that identifi-
cation of unfit requires the application of a fit measurement method. Etien [24]
proposes fitness criteria and associated metrics to quantify the extent to which
there is a fit between related business and system models. All possible maps and
represents links (see above) constitute the baseline elements to measure the fit
or unfit between a business model and a system model.

As shown in Fig.2, the process of generating the appropriate set of metrics for
a given pair of models is based on the adaptation of a set of generic metrics. Met-
rics are based on the maps and represents correspondences established between
constructs of the two meta-models representing the business and system ontolo-
gies respectively. Indeed, Etien et al base their proposal on the use of separate
ontologies for representing business and system components respectively. For the
former the ontology of Soffer and Wand [26] is used whereas at the system level
the Wand and Weber ontology [27] is employed. The use of ontologies is a way of
becoming independent of specific models, thereby leading to a generic expression
of the component correspondence and associated metrics. There are a number
of advantages of introducing the generic level, (1) generic metrics are based on
the solid theoretical foundation provided Bunge’s ontology (2) generic metrics
serve as a guide to define the specific ones: the latter are just a specialisation
of the former, (3) the process of producing the specific metrics is easier and less
error prone and, (4) specific sets of alignment metrics are consistent with each
other as they are generated from the same mould and this facilitates comparison
across methods.

Table 2 sums up the fitness measurement framework. The table shows that
the framework comprises ten criteria and ten metrics grouped along four fac-
tors. The framework follows the approach of Cavano and McCall [28] who use a
multi-level organisation for their framework for software quality measures. They
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Fig. 2. Fitness metrics generation

use a 3-level framework, the levels being, factors, criteria and metrics. Etien
identifies four factors along which the fitness can be measured namely, the in-
tentional factor, the informational factor, the functional factor, and the dynamic
factor. These factors reflect the four perspectives that have been reported in IS
literature, namely, the holistic view brought by the goal-actor-resource-process
perspective; the information perspective; the functional perspective; and the
dynamic perspective. They can be used to aid in specifying fit objectives. Each
factor has associated criteria corresponding to characteristics of the fit. They
are in turn, related to metrics that allow the actual computation of the degree
of fit.

Finally, some authors advocate the use of a common language. This approach
is recommended by Clarke to address the misalignment of design and code [20]
and used by SysML [29] in order to understand relationships between different
domain dependent models expressed in UML. This is the position we adopted

Table 2. Fitness measurement framework

Factors Criteria Metrics
Intentional Fit Support Ratio Activity representation count

Goal Satisfaction Goal mapping count
Actor Presence Actor mapping count

Informational Fit Information Completeness Business/System class
mapping count

Information Accuracy Business/System state
mapping count

Functional Fit Activity Completeness Business/System class
mapping count

Activity Accuracy Business/System state
mapping count

Dynamic Fit System Reliability Law mapping count
Dynamic Realism Path mapping count
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using the MAP formalism as the common language. The ideal fit between system
and business occurs when there is a perfect match between the business map and
the system map. As the world is not always ideal, we defined in [30] distance
measures to evaluate the extent to which two sections of system and business
maps respectively, deviate from one another. In dealing with strategic alignment
we use a strategic map as the common description of the business and system
purpose. We defined in [31] links from sections of the map to business strategy
entities on one hand and system elements on the other. Links, such as “is neces-
sary to”, “is useful to”, “is sufficient to”, “is constrained by”, “is contradictory
with”, have been postulated to support the measurement of fit and unfit.

Issue3: Dealing with the relationship complexity. It may be inconvenient
to view the fitness relationship as one monolithic flat structure. A layered ap-
proach may facilitate understanding. Therefore, in order to present the fitness
relationship at different levels of detail, it is necessary to have a refinement
mechanism as well as a means to control the quality of the refinement. ’Recog-
nise Complexity’ is the fourth key issue which emerged from the Workshop and
is presented as one of the four principles of the framework for this book. This
principle evidently applies to the business/system fitness issue and we develop
our view on it in the sequel.

Refinement is an abstraction mechanism by which a given entity is viewed as
a set of inter-related entities. Refinement is known as a means to handle com-
plexity. Our belief is that a such refinement mechanism is required for handling
the fitness relationship in a systematic and controlled manner. Indeed, it would
be inconvenient to view in one shot, a fitness relationship as one monolithic, flat
structure. A layered approach may help mastering progressively the complexity
of the relationship. This confirms our experiences which show that the refine-
ment ratio (see Table3) is around 20, meaning that a relationship, initially seen
as a whole, finally leads to a complex organization of about 20 sub-relationships.

As far as we are aware, there are very few attempts to provide a refinement
mechanism of the fitness relationship [32]. In goal driven approaches, it is known
that goals can be used to capture the objectives of a system at various levels
of abstraction and goal decomposition is traditionally used to relate high level
goals to low level, operationalisable goals. These are leaves of the goal graph
that point out to the required functionalities of the system. One can therefore
see that goal decomposition does not support top-down reasoning about the
fitness relationship. Instead goal decomposition is a mechanism leading to the
establishment of the fitness relationship as the link between system functionality
and leaves of the goal graph.

The possibility of refining a goal graph was one of our motivations for defin-
ing MAP. In the map approach it is possible to refine a section of a map at
level i into an entire map at a lower level i+1. Therefore, a fitness relationship
(captured in a section of the map) is refined as a complex graph of sections,
each of them corresponding to sub-relationships between the business and the
system. Therefore, what is refined by the refinement mechanism offered by maps
is in fact the fitness relationship itself. We found this mechanism helpful in
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Fig. 3. Refined map M5 of section C5 of the SAP MM map shown in Fig. 1

understanding the fitness relationship at different levels of detail. Let us exem-
plify this mechanism by refining the section C5, Monitor stock by Out-In strategy
of the SAP map presented in Fig. 1. The refined map of C5 is shown in Fig. 3.
From the business viewpoint, this map explains how the Monitor Stock by ’Out-
In’ strategy is refined as a graph of intentions and associated strategies. The map
tells us that stock entries shall not be permitted unless they have been checked.
This is reflected in Fig. 3 by the ordering of the two intentions Accept delivery
and Enter goods in stock. The map also shows that there are several ways to
achieve each of these two intentions. For example, there are four strategies to
Accept delivery: the Okay strategy (when the delivery matches the order) and
three reconciliation strategies, namely the Reconciliation by PO recovery, the
Reconciliation of unit difference, and the Reconciliation of under/over delivery.
Each of these provides a way of accepting deliveries that don’t match the or-
der but are within specified tolerances, missing order reference, unit difference,
under/over quantity, respectively. From the system viewpoint, this map explains
how the complex function C5 is made of other functions and the manner in
which these functions cooperate to collectively achieve the intention, C5. The
map shows that there are seven sub-functions C5.1 to C5.7 of the C5 function
that shall co-operate as indicated by the multi-thread and multi-path topology
of the M5 refined map.

Since refinement results in a map, it produces a multi-thread, multi-path
structure at level i+1. As a result, for a given section at level i, not only (1)
multiple threads describe alternative sub-sections at level i+1, but also (2) the
multi-path structure introduces several different combinations of sub-sections.
Therefore, section refinement is a more complex structure than a simple com-
position structure such as AND/OR goal decomposition Indeed, it provides at
the same time (a) several alternative decompositions of the initial fitness rela-
tionship into its constituents, and (b) different alternatives to its constituents
themselves. We found this mechanism useful in practice as a means to fine tune
the selection of the adequate system sub-functions in a customizing process.
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As an example, let us consider two companies who have selected the Out-In
strategy of the SAP map to Monitor stock. The refined map M5 (Fig.3) helps
each of them to refine their selection in different ways. For example, while one
company may want to Accept delivery by reconciliation of over/under delivery,
the other may be driven by the reconciliation by purchase order recovery strategy.
Similarly, one company may want to Enter goods in stock using the Out-in
direct consumption strategy that allows one to consume goods even though they
are not yet entered in stock, whereas the other company may select only the
Out in storage strategy, i.e. systematically enter goods in stock before they are
consumed. Therefore, while the two companies have the same fitness relationship
at the level of abstraction of the MM map, the refinement mechanism allows us
to differentiate the sub-relationships relevant for each company.

If refinement is necessary as a way to master complexity, it also generates
its own difficulties. One is to control the level of abstraction in a given refine-
ment. This has been found for example, in using refinement in use case driven
approaches [33]. Cockburn reported [34] that the application of his refinement
mechanism (by which an action in a scenario can be seen as a goal attached
to a new use case and associated scenarios) led to mix up of abstraction levels
in the same scenario. It seems that several levels of abstraction are a source of
difficulty, in particular with respect to consistency of the entities belonging to
the same level. This issue is related to the black box/white box principle [33] [35]
[36]. According to this principle, it is useful to see an entity as a black box at
a level of abstraction i and then as a white box at level i+1. When a system
is seen as a black box, its internal properties are hidden and the emphasis is
on the relationship between the system and other systems. When it is seen as
a white box, the internals of the system are, on the contrary, apparent. The
problem arises when the white box analysis shows that the content of the box
covers different levels of abstraction.

We encountered this problem when applying the map refinement mechanism
in projects, and we believe that complementing the refinement mechanism of
the fitness relationship with refinement quality assurance is an issue.

In a project with the Renault company [37], we defined a set of refinement
quality rules and gained experience in their application. The aim was to ensure
a unique level of abstraction in a given level of map refinement. Given a map
at a refinement level i the rules helped, (a) to detect and move up sections into
maps at level i-1; (b) to detect and move down sections into maps at level i+1
and, (c) to improve sections at the same level.

In order to reinforce the importance of the refinement quality checking issue,
we present in Table 3 data gathered from four projects in industry [17] [38]
[39] [40]. The table shows that the top map has a limited number of goals and
strategies. The table also reflects the fact that systematic section refinement
could rapidly lead to a combinatorial explosion of the number of maps to doc-
ument. There is therefore, a need to control the refinement. It was also found
necessary to identify when the refinement is needed and when it is not. In the
DIAC project for example, we achieved the latter through a consensus based
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Table 3. Practice data

Goals in top Sections in Refinement Total number Number of
level map top level map levels of maps transactions

or screens
PPC 2 6 3 37 200 transactions
DIAC 3 14 3 36 2000 screens
SAP MM 2 11 2 14 About 50
SNCF 4 27 5 55 300 transactions

process: each section was subject to a vote and the refinement was considered
unnecessary when the fitness between the business requirement and the selected
product was agreed upon by the stakeholders.

3 Issues in Engineering the Relationship

Whereas the three previous issues were dealing with understanding the fitness
relationship we are now moving to the issues related to its production, partic-
ularly in an evolutionary perspective. The broad framework used in this paper
is in Fig. 4. It accepts the prevalent view of change as a move from the As-Is
to the To-Be situation [41]. However, it departs from the traditional view in
highlighting the fitness relationship itself (linking the Business Model (BM) and
the System Functionality Model (SFM)) and its engineering through the change
process.

Our experience in a wide range of change handling projects shows that change
arises in a number of different ways. Each of these can be characterized by a
specialization of the framework of Fig. 4 that influences the way of preserving the
fitness relationship. The first issue in engineering the fitness relationship, namely
Issue 4, is the identification of the different change engineering classes.
Each class has its own engineering process. Despite the diversity of processes, we
found some common underlying strategies that we discuss as Issue 5:change
engineering strategies. Assuming that the change requirements have been
stated the next question is that of propagation of these change requirements to
preserve the fitness relationship. This is raised through Issue 6: preserving the

Fig. 4. The broad change framework
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fitness relationship. These four issues evidently relate to the second principle
’Evolve Designs and Ecologies’ pointed out in the framework that constitutes
the core position of this book.

Issue 4: Identifying different change engineering classes. As mentioned
in the introduction of section 3, our experience showed that there are different
change situations leading to specific ways to engineer the fitness relationship.
Our suggestion is to classify these change situations and change processes as a
means to better understand the different engineering ways to produce the fitness
relationship. We propose four engineering classes

– Direct change propagation;
– Customization from product family;
– Adaptation of a baseline product and
– Component assembly.

Direct change propagation. Fig. 5 is the customized version of the generic
change framework presented in Fig.3. It corresponds to the case of direct change
propagation. In this situation, the change is led by the move from the As-Is BM
to the To-Be BM. The relationship between the As-Is BM and the As-Is SFM
is used to propagate the business changes onto system functionality changes and
to produce the To-Be SFM fitting the To-Be BM.

This first engineering class corresponds to the traditional evolutionary change
of an ’in house’ system that is driven by organisational change. However today,
with an increase of the ’to-buy’ policy over the ’to-do’, the fitness relationship is
established through rather more complex engineering processes shown in Figures
6, 7, and 8 respectively.

Customization from product family. Fig. 6 displays the case of customising
a product family. Here, the requirements of the organisation are expressed in the
As-Wished BM. The Might-Be SFM (Might-Be System Functionality Model)
reflects the functional capability of the product family. The To-Be BM and its
counterpart, the To-Be SFM result from a model-match centred process which
searches for the best match between the organisational requirements (expressed
in As-Wished BM ) and what is provided by the Product Family, (Might-Be
SFM ).

Fig. 5. Direct change propagation
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Fig. 6. Customization from product family

Adaptation of a baseline product. The third engineering class shown in
Fig. 7 corresponds to a case of system adaptation. Such an adaptation is caused
by changes in the organizational context in which a legacy software system is
now to operate. This typically occurs because of mergers/take-overs, globali-
sation, standardisation of practices across branches of a company etc. Several
legacy software systems are already running when such events occur. In this
context, the question is not to develop a new system from scratch. Rather, it
should be possible to integrate the legacy systems or to select one of these for
adaptation and uniform deployment across the organization. The Is-Baseline
FM (Is-Baseline Functionality Model) models the functionality of the selected
system for uniform deployment across the organization. The As-Wished BM
expresses the requirements of the organization that wants to adapt its require-
ments to the new situation at hand. The To-Be BM and its counterpart the
To-Be SFM result from a gap centred process that focuses on eliciting the gaps
between models. Indeed, eliciting the differences (or gaps) between the current
baseline-functionality model and its future version seems to be the most efficient
way to perform the change.

COTS-based system development. Finally, Fig. 8 displays the case of COTS
based system development. Here the process of establishing the fitness relation-
ship is centred on the retrieval and assembly of system components that match

Fig. 7. Adaptation of a baseline product
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Fig. 8. Component assembly

organizational requirements. The Might-Be SFM models the different COTS
components available. The As-Wished BM reflects the organizational needs.
The To-Be BM and its counterpart the To-Be SFM result from a process where
components matching the organization needs are retrieved and then assembled
together.

We show in the following that these different classes call for different types of
engineering techniques.

Issue 5: Change engineering strategies. Despite the diversity of approaches
dealing with each of the four aforementioned classes, reflection from experiences
and literature surveys led us to identify three common underlying strategies.

The first of these, which we call ’from scratch’ strategy, is prominently used
in the first engineering class, namely ’direct change propagation’. It does not
make change requirements (i.e. requirements for change) explicit but lets them
remain implicit i.e. change requirements are not formulated per se. Instead, the
focus is (i) on formulating the To-Be requirements or (ii) on writing a new re-
lease of the requirements document. As evidence, consider methodologies such
as Merise, i*, Kaos or the RUP that do not require an explicit description of
changes of current models. They help to construct new ones focussing on the To-
Be situation. Type (i) reflects an ad-hoc practice inherited from the way legacy
systems have been maintained over time. In (ii) type of approaches the concern
on the change transition leads to keep track of requirements that have been
removed, added, changed using a configuration mechanism of requirements doc-
uments. The preservation of the fitness relationship is not considered as such but
assimilated to its establishment from scratch as it was to be freshly established.

The second and third strategies emerged in order to address the three other
engineering classes of figures 6, 7, and 8. On one side of the spectrum we found
that similarities between pairs of models are useful to support the matching pro-
cess whereas at the other end of the spectrum focusing on differences or gaps is
the most relevant technique. For example, ’customising’ and ’component assem-
bly processes’ call for a similarity based technique whereas a gap measurement
technique is more suitable for processes of the type ’adaptation from a baseline
product’. Similarity modeling and gap modeling are not easy tasks if they are
not achieved in a systematic way. The challenge is to maximize the knowledge
gained, while limiting the amount of effort needed to gain it.
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Different gap and similarity based languages have been defined in different
domains and could be adapted to the fitness context; for example, similarity for-
mulae to reuse source code [42], or find resemblances among object oriented mod-
els [43] or UML models [44]; languages for expressing requirements of database
schema evolution [45], [46], and [47] or workflow models evolution [48], [49], or
[50]. We proposed in [39] & [51] a generic typology of gap operators and similarity
predicates that can be specialised for any modelling formalism. Once specialised
for the MAP formalism, our language can be used to express for example, how
goals and strategies shared by the business and the system shall change, e.g. a
goal can have a change of name, a strategy can be replaced by another one, sec-
tions can be merged or split, etc. Combined with maps of the current situation,
change requirements expressed as gaps can be used to automatically control the
consistency of the requirements actually released for the future system under the
form of goal/strategy maps.

The overall approach is depicted in Figure 9. As the figure shows, gaps (rep-
resented by the symbol ∆) and similarities (represented by the symbol ≡) are
specified at the model level. These models conform to different meta models such
as Use Case, E/R, Workflow, Business Process, Goal graphs, etc. that are them-
selves viewed as instances of a generic meta-model (or meta-meta model). This
hierarchical framework allows us to define generic gap operators and similarity
predicates at the generic meta level. These typologies and measures are in turn,
used to evaluate gaps and similarities at the model level.

The generic meta-model aims to make explicit the main elements and their
relationships of any model [39].It indicates that any model is made of elements
characterised by properties. The elements are specialised depending on whether
they are link or non link on one hand, and on whether they are atomic or
compound, on the other hand.

Based on the generic meta-model, the generic typology of similarity predicates
emphasises that given a pair of elements, (i) their properties can be similar, and
(ii) their structure can be similar. We therefore, identified two classes of simi-
larities, namely intrinsic similarities and structural similarities (Fig.10). A pair
of elements has an intrinsic similarity if the elements have similar properties

Fig. 9. Overview of the approach for defining gap & similarity typologies
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Fig. 10. Generic typology of similarity predicates (main categories)

and therefore, have close semantics. We related intrinsic similarity to synonymy
and hyponymy/hyperonymy. Structural similarity deals with (i) the composi-
tion of elements (Compositional similarity), and (ii) their organisation within
structures (relational similarity). Whereas intrinsic similarity only involves the
two compared elements, structural similarities also imply comparisons between
other elements that are related to the two compared ones. As shown in Fig.
10 by the aggregation link from the structural similarity class to the similarity
class, a structural similarity may be complex and may involve other similarities.
The generic typology includes thirty-three similarity predicates [51] organised
according to the similarity types shown in Fig.10.

Again, the generic meta-model helps us to identify a generic typology of gaps
composed of a set of operators applicable to model elements. Each operator
identifies a type of change that can be performed on an As-Is model. The op-
erator identifies the difference between the As-Is model and the To-Be model.
For example, as Rename is an operator (see Table 4), Rename Element will be
a change that characterizes the transformation of an As-Is element in the To-Be
model. The generic gap typology identifies three major types of change: naming
changes, element changes and structural changes.

– Naming changes are defined with the Rename operator.
– Element changes affect elements and are circumscribed to the elements them-

selves, i.e. adding an attribute to an entity type is an example of such localized
change.

– Structural changes are the most important as they correspond to a modifi-
cation of the set of elements which composes the model. For example adding
or removing Relationship types and Entity types in an As-Is E/R schema to
form the To-Be schema is a structural change.

Issue 6 : Preserving the fitness relationship. Once change requirements
have been identified, for instance through a set of change requirements expressed
as gaps, the question raised through issue 6 is that of propagation of these change
requirements taking into account that several entities linked through the fitness
relationship have to evolve at the same time. This is sometimes referred to as
co-evolution by analogy with biology and aims to study the reciprocal evolution
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Table 4. The generic gap typology.

Object Operator Description
Element Rename Change the name of the element in the

To-Be model
Add, Remove Add/Remove an element of the As-Is in the

To-Be model
Merge Two separate As-Is elements become one in the

To-Be model
Split One As-Is element decomposes into two To-Be

elements
Replace An As-Is element is replaced by a different

To-Be one
Link Change The source or target of the link is changed
Compound AddComponent A component is added in the To-Be element

RemoveComponent An As-Is component is removed in the To-Be
element

MoveComponent A component is repositioned in the structure of
the To-Be element

Property Give Add a property to the To-Be element
Withdraw Remove an As-Is property in the To-Be element
Modify Change the property of the To-Be element
Retype The As-Is element changes its type in the To-Be

Fig. 11. Co-evolution classes

of systems and other entities such as organisations [52], business processes [37],
or environment [53]. Fig. 11 proposes four classes of co-evolution engineering to
preserve the fitness relationship, namely independence, interdependence, depen-
dence, and double dependence. Each class reflects a different ordering to handle
the co-evolution of involved entities.

Co-evolution is engineered independently (left upper corner of Fig. 11), when
there is no dependency between the change engineering processes of each evolving
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entity. Independent co-evolution implies the need for checking alignment after
the changes have been made.

In a dependent approach to propagation of change requirements, the change
requirements of one entity are inferred from the change requirements elicited
for the co-evolving entity. Changing the software system as a consequence of
organisational changes is a typical example of this class. Similarly, when deal-
ing with a portfolio of projects, managers select first ’flagship projects’ and
change projects dependent on these accordingly. Another way is to maintain the
alignment using a set of rules which express the dependence between the two
entities [23].

There is a double-dependence when each co-evolving entity can play the role
of master in the propagation of change requirements. For example, [54] proposes
rules to evaluate the impact of change requirements specified at the business
level on the system-level and vice-versa. A double dependence approach can be
considered as the combination of two one-way dependence approaches.

An interdependent approach is more balanced. Each change requirement spec-
ifies how all co-evolving entities shall evolve simultaneously. Then, propagation
is performed with a single collection of change requirements. The gap approach
that we developed using maps as a means to represent both business and system
belongs to this category. Change requirements are expressed as gaps and are
propagated simultaneously on business and system models [55].

4 Conclusion

Our experience of Requirements Engineering and Information System Engi-
neering has been obtained over a number of industrial and European research
projects. The common point we found in all these projects was the prime impor-
tance of establishing and preserving the fitness relationship between businesses
and systems. This position is conforming the ’Intertwine Requirements and Con-
texts’ set as one of the key issues in Requirements Engineering that emerged from
the workshop. A number of issues directly derive from this point. However, the
prevalent view is that fit is achieved through a process that is often poorly spec-
ified. We depart from this traditional view by proposing to specify the fitness
relationship itself and to engineer it through the change process. This entails a
number of issues that were reported and discussed in this paper.

These issues reflect our beliefs on how to address the fitness problem. We
formally define the fitness relationship through two kinds of links, maps and
represents. We suggest that resolution of the fitness problem is facilitated by
using a common conceptual language to represent both the business and the
system. Thereafter we propose that the multiplicity of change engineering situa-
tions can be dealt with by three basic strategies namely, from scratch, similarity
and gaps, respectively. To get a quantitative estimate of the extent of fit, the
paper proposes the generic metric approach.

Taken together, it can be seen that we have given centre place to the notion
of the fitness relationship. By doing so, we have highlighted the need for more
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investigation into the several points of view from which the fitness problem can
be looked upon.
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Abstract. The ability to quickly and continually adapt business processes to ac-
commodate evolving requirements and opportunities is critical for success in 
competitive environments. Without appropriate linkage between redesign deci-
sions and strategic inputs, identifying processes that need to be modified will be 
difficult. In this paper, we draw attention to the analysis of business process 
change requirements in support of process change initiatives.  Business process 
redesign is a multifaceted phenomenon involving processes, organizational 
structure, management systems, human resource architecture, and many other 
aspects of organizational life. To be successful, the business process initiative 
should focus not only on identifying the processes to be redesigned, but also 
pay attention to various enablers of change. Above all, a framework is just a 
blueprint; management must lead change. We hope our modest contribution 
will draw attention to the broader framing of requirements for business process 
change. 

Keywords: Business process change, transformation, redesign, requirements 
analysis, functional coupling, process synthesis, process decomposition. 

1   Introduction 

The pace of change in the new digital economy puts demands on organizations to 
keep reinventing themselves in order to remain competitive. To be competitive, busi-
nesses must respond better and quicker. Recognizing this, many companies have 
made significant attempts to improve their business processes. In doing so, organiza-
tions have evolved from traditional functional hierarchies to business  
process-centered structures [1]. This is because business processes are crucial as or-
ganizations adapt themselves to changing conditions.  A business process, such as a 
loan appraisal system used in a bank, performs a specific business function by trans-
forming input data to a form that is useful for decision making, thereby enabling an 
organization to achieve a business goal [2]. The continued interest in business proc-
esses can be attributed to the realization that when properly designed, they can help an 
organization achieve efficiency and effectiveness in its business operations. 

Business process change management is the way to approach the transformation of 
traditional bureaucratic organizations into market-oriented process organizations. 
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Management strategies, such as business process reengineering (BPR), process im-
provement, process innovation, and business process redesign have emerged to help 
organizations change their business processes promptly and dynamically according to 
changing environments [3].  

Despite the continued interest in business process change, it should be pointed out 
that the scheme started on a wrong footing and roughly 70 percent of the initiatives 
through the 1990s failed [4]. As, a result, the surge in business process reengineering 
(BPR) initiatives in the early to mid 1990s was followed by fall in the late 1990s and 
early 2000s [5]. Several factors contributed to the alarmingly high rate of failure of 
BPR efforts that discouraged further initiatives [6]. First, the idea of "radical" change 
dominated the earlier years. However, many organizations were focused on cost-
saving and undertook massive restructuring and downsizing under the guise of proc-
ess reengineering. These initiatives tried to optimize how work is done at the cost of 
people and did not suit organizational norms and culture; thus, they created more 
problems than they solved.  Little attention was paid to a more tampered approach to 
process change in which change is introduced incrementally.  

Second, while many companies stressed process reengineering, they neglected the 
necessary complementary changes in other organizational factors [7]. Complex proc-
ess change decisions affect different interacting and interrelated dimensions of an 
organization: its processes, people, strategy, culture, information policies, etc. Thus, 
questions of strategy, structure, information technology (IT), incentive systems, peo-
ple, roles, etc., have to be concurrently considered and deliberately aligned for proc-
ess change success. Earlier initiatives that adopted a narrow view of process change 
resulted in processes that were not reinforced by other organizational factors and 
created tension that resulted in failure.  

Third, change management was under-emphasized [8]. Little attention was paid to 
the institutionalization process because often, a hired consultant guided process 
change initiatives with a hand-picked team that did not communicate effectively with 
the rest of the organization. Due to poor process change management, “buy-in” from 
the rest of the organizational members was poor and the downsizing image associated 
with many initiatives created fear of job loss, which engendered resistance to change 
[1]. Appropriate process change management ought to embrace the institutionaliza-
tion of these changes, as well as undertake continuous assessment of processes and 
their performance, and their impacts during the institutionalization process.  

Fourth, while requirements elicitation is a vital phase of process change, overem-
phasis on existing processes often led organizations down a path of excessive docu-
mentation of processes that did not work [7]. As a result, several initiatives got  
entangled in the details and ultimately organizations lost sight of the goal. This, in 
turn, led to project scope creep due to too many vested interests deliberating on exist-
ing processes, which culminated in the inevitable project expansion and ultimate 
failure.  

Fifth, IT was being thrown at process problems, with the hope that they would dis-
appear. Instead of making processes the center of change, IT (e.g., ERP) was at the 
center of most initiatives without adequate consideration for organizational adapta-
tions [8]. Despite an ongoing discussion about aligning business and IT goals, process 
change received lip service and buy-in by organizational members was not  
adequately secured [1]. In fact, in one study of more than 100 process change  
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projects, IT issues were considered most important, but had the lowest correlation 
with success. On the other hand, people and change management issues were consid-
ered the least important and had the highest correlation with success [9].  

Sixth, earlier BPR efforts were focused on the redesign of operational processes; 
with limited value potential as efficiency was the major driver of change. This em-
phasis on back-office processes paid little attention to front-office and customer-
facing processes, which play an important role in creating and sustaining competitive 
advantage [10, 11].  

While even the major supporters of BPR such as Tom Davenport had declared it 
dead and over [12], the original narrow concept of BPR has been recast to take a 
broader perspective. This broader process management perspective embraces a con-
tinuum of approaches to process transformation (process reengineering, redesign, 
change, transformation, etc.), with more focus on the incremental approaches and 
value-creating processes [3]. With this broadened view, trend analysis by [5] on the 
BPR phenomenon indicates signs of revival after a dip in the late 1990s to early 
2000s. Business process improvement is once again a top business priority [13].  

Despite the broadened perspective on business process change, few comprehensive 
frameworks exist to guide practice in successfully managing the multifaceted nature 
of organizational change engendered by transforming business processes [14]. More-
over, some frameworks adopt a narrow view on business processes, focusing either on 
physical flows [15], information flows [16], or people’s roles and relationships [17]. 
Gavin [18] develops a more comprehensive view that encompasses three types of 
organizational processes – business (work) processes, behavioral processes (decision-
making processes, communication processes, and organizational learning processes), 
and change processes. He argued that the way business processes are performed is 
shaped by behavioral processes. Behavioral processes should therefore be taken into 
account for successful business process improvement. Earl and Khan [19] differenti-
ated between dissimilar types of processes based on value-chain concepts (core proc-
esses, support process, and management processes). Given the diversity of views, we 
propose a holistic framework that integrates the various views, with specific attention 
to the design and management aspects of business process change. 

Since business process change is a complex undertaking, a design orientation helps 
to manage this complexity in order to achieve successful adaption of processes to 
changing organizational conditions and market environment. We argue that process-
based organizational analysis for the purpose of business change is primarily a design 
problem.  According to information processing [20] and decision making [21] views 
of organizational design, processes can be viewed as collections of decision models, 
each of which is identified by a type of decision which contains a sequence of infor-
mation processing tasks [22]. Tasks are the smallest identifiable unit of analysis and 
the critical design variable determining the efficiency of the resulting structures is the 
optimum arrangement of tasks [23].  

However, detailed requirements gathering at the task level can take many months, 
or even years. This is undesirable because the pace of change requires delivering 
benefits immediately by aligning outcomes with a series of intermediate business 
needs, each contributing to the overall business strategy. The challenge is then to 
deliver the known requirements while still leaving open the ability to deliver the fu-
ture requirements as the market unfolds. Put more concisely, the challenge is how to 
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minimize up-front business requirements but maximize future options. Often, there is 
really no right or wrong solution when processes are redesigned, rather there exists a 
wide range of potentially well-suited redesign strategies and more than one strategy 
may need to be implemented to respond adroitly. 

Therefore, trying to achieve completeness, consistency, and correctness by  
working at the task level is insufficient to address business challenges in a rapidly 
changing environment. To circumvent these limitations, we propose a higher-order 
framework that focuses on the process of change and the type of decisions that have 
to be made. This is the input-process-output (IPO) framework. We feel that such a 
broad-based framework is more useful to senior managers in the organization in order 
to develop a high-level strategic perspective on the multifaceted business process 
change phenomenon at both the business process level and overall organizational 
level. Given the complexity of business process redesign, such a framework may help 
guide the strategic perspective of managers. While broad in nature, the IPO frame-
work proposed here is sufficiently rich since it highlights how the various functional 
activities involved in a business process may be reconfigured through a process trans-
formation initiative.  To reflect the broadened view of BPR, we use business process 
change throughout, instead of business process reengineering.  

The next section discusses the logic of business process change, followed by a 
presentation of the IPO framework we propose to guide business process change 
analysis and design efforts. The final section provides some concluding comments. 

2   The Logic of Business Process Change 

Business process change integrates different views from quality, information technol-
ogy, organizational change, innovation, and work redesign [24].  As such it represents 
an input-output activity view of business, as opposed to a functional, responsibility-
centered structural view. As summarized in Table 1, the horizontal view of the busi-
ness engendered by business process change practice represents a paradigm shift from 
the traditional hierarchical organizational structure. The hierarchy with its focus on 
efficient command and control works well: (1) in environments characterized by sta-
bility, limited uncertainty, and limited “consumerism”; (2) when people are subservi-
ent to the structure and can follow rules defined by their position; and (3) when  
markets do not change rapidly and the focus is not on flexibility, quality, service, and 
innovation [24].  

The hierarchy and function-based organization are vertical views of organizations 
that often involve decisions that translate down the hierarchy and result in choices that 
are best for the function, not the organization. Cross-function linkage is achieved 
through work and responsibility handoffs to other functions. However, with time, 
functions and specialists multiply, as do the rules and bureaucracy to handle increas-
ing contingencies. A pyramid management structure is often required to tie all the 
pieces together, with the result that many companies are paying more for the glue than 
for the real work [24].  

A process orientation adopts a horizontal view of organizations by emphasizing 
notions of processes, process owners, teams, and empowerment, and de-emphasizing 
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Table 1. A comparison of Hierarchical and Process-Oriented Firms 

Dimension Hierarchical Firms Process-Oriented Firms 

Organizational
Structure 

Hierarchical organizational 
structure (based on 
functions/products) 
Linear and sequential processes  
Rigid bureaucracy 
Organizational integration 
through structure 
Protective organizational culture 

Networked organization based on 
cross-functional teams (process 
teams) 
Parallel processes 
Flexible adhocracy 
Organizational integration through 
information
Productive organization culture 

Human
Resources

Fragmented, individual-
performed tasks
Functional specialists 
Expertise as a functional specialty 
Compensation for skill and time 
spent 
Advancement based on ability 

Holistic processes accomplished by 
teams 
Case manager and process manager 
Knowledge as organizational 
resource
Compensation for results 
Advancement based on performance 

Information
Technology/ 
Systems 

Fragmented, function-oriented 
information systems 
IT as a driver of business process 
change

Integrated, process-oriented cross-
functional information systems 
IT as an enabler of business process 
change

Management
Practices 

Executives as scorekeepers 
Managers supervise and control 
Management by internal 
objectives 
Function-wide sub-optimization 

Executives as leaders 
Managers coach and advice 
Management by external objectives 
Organization-wide global 
optimization  

Source: Adapted from [7]. 

 
hierarchical structures. The key concepts associated with process orientation are out-
lined below [25]. 
 

(1) Process/customer focus: Every process has a customer who is either internal or 
external to the organization.  Focusing on the processes and assigning people to them 
leads to a reduction in confusion and suboptimization; this results in enhanced cus-
tomer responsiveness, and increased accountability and performance of the entire 
process. 

(2) Empowerment: Horizontal organization reduces the up-and-down information 
flow for a process and empowers workers by giving them decision making rights (or 
moving decision rights closer to them). This leads to a reduction in approval delays, 
compressed lead times, and improved customer service.  

(3) Interaction: This is engendered by use of cross-functional teams that work on 
common processes. Tighter integration across functions, joint responsibility for a 
process, and compensation schemes that are based on performance instead of position 
enhance job satisfaction and yield efficient and effective processes. 

(4) Top Management Leadership: Leaderships plays a critical role in BPR initia-
tives [26]. Top management must formulate and communicate the vision of business 
process change, and through their transformative leadership, create a sense of mission 
among organizational members [27, 28]. Top management leadership is necessary to 
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effectively mobilize resources across functions, organize cross-functional process 
teams, and communicate the goals and objectives throughout the organization [24]. 

In the next section, we discuss the IPO framework as a basis to structure business 
process change initiatives. While some argue that the IPO view oversimplifies the 
messiness of real-world processes (e.g., [29]), our goal here is to provide a higher-
level framework with the view to draw attention to broad-based considerations on the 
process of business process change at the strategic level. 

3   The IPO Framework of Business Process Change 

We chose to use the input-process-output (IPO) model as a basis for our framework of 
business process change design. This model is so robust that it can apply to any con-
text in which some inputs are converted to outputs (e.g., manufacturing, service de-
sign, systems analysis and design, strategic planning, etc.). Furthermore, a business 
process represents a stream of activities, their inputs, and their results, which ties in 
with the IPO framework, even at the process level. Figure 1 presents the IPO model 
we propose to guide process change design and management. The remainder of the 
chapter will be organized around this framework. Environmental factors serve as 
inputs to change, which the organization should take into account in preparing for 
change. The process of change (how to change) recognizes that successful business 
process change initiatives require changing not only business processes, but also other 
organizational factors and information technology, which serve as enablers. Output 
represents the organization’s desired outcomes from business process change effort. 
While the IPO framework suggests a linear movement from inputs, to processing, to 
 

Environmental Considerations 
Customer/ supplier needs 
Economic conditions 
Competitive pressures 
Technological innovation 
Cultural factors 
Political and regulatory factors 

Inputs to Change

Outcomes of Change

How to Change

Products, Services and 
Performance 

Customer satisfaction 
Quality 
Cost
Flexibility/innovation 
Shareholder value 

Business Process Change 
Gaining Systemic Insight 
Leveraging Strategic Foresight Change 
Changing Functional coupling of business processes 
Strategies for Changing Functional Coupling 
Business Process Synthesis and Decomposition 
Managing Process Conflicts Preparing for Change 

Analyzing Change Dynamics 
Securing Stakeholder 
Commitment 
Formulating Change Strategy 
Structuring the Change 
Process 

Change Enablers 
Organizational Structure 
Human Resource 
Information Technology 

Change Enablers 
Organizational Structure 
Human Resource 
Information Technology 

 

Fig. 1. The IPO Model of Business Process Change 
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outputs, we argue that there is need-to-know desired outputs before the process of 
change is executed (this is shown by the dashed link from outputs in Figure 1). Oth-
erwise, change will not be goal-driven. Accordingly, our discussion starts with the 
outcomes of business process change. Thereafter, we address inputs and the process 
of change.   

3.1   Outcomes of Business Process Change 

The anticipated outcomes of business process change should be driven by business 
strategy. An organization’s business strategy can be defined as “the understanding of 
an industry structure and dynamics, determining the organization’s relative position in 
that industry and taking the action either to change the industry’s structure or the 
organization’s position to improve organizational results” [30]. For instance, in most 
industries with commoditized products, customer service is a key differentiator. 
Based on this understanding, an organization may develop a strategic vision “To excel 
in customer service”.  Take for instance the case of banking service. Such an overall 
vision may be broken down to more concrete objectives, such as to provide superior 
customer service by:  

1. Providing a comprehensive single view of customers’ holdings, accounts, 
and relationships, so the bank can understand them and their business when 
they talk to a customer service representative. 

2. Offering a more consistent experience by recording each interaction, so that 
the staff can continue with the next step at each customer contact. 

3. Anticipating customers’ needs by providing more services to match their fi-
nancial situation with direct requests and referrals between channels and di-
visions. 

4. Saving customers’ time by electronically storing customer signatures, in-
vestment, and home loan documents and data, so that they do not have to 
give the same information twice. 

5. Following through on customer requests by allocating and scheduling tasks 
for completion now and in the future. 

Focusing on strategy-driven outcomes ensures that the resulting business processes 
enable the organization to remain well aligned to the requirements of the business, 
social, and political environments in which it operates. Furthermore, strategy-driven 
outcomes provide a basis for identifying specific activities and processes through 
which the organization achieves its business objectives. Following through with our 
customer service example, Figure 2 summarizes the organization’s overall strategy to 
bring about this desired change in customer service.  It highlights the requirements for 
business process change design to achieve the desired organizational objectives. 
While requirements defined at the level of Figure 2 are likely to be too abstract to 
begin designing and implementing a solution, the framework serves as a powerful 
foundation for further transformation of business strategy into desired requirements. 
This is achieved via a process of domain context analysis and decomposition to refine 
requirements to increasingly lower levels of abstraction [31]. A higher level of ab-
straction is desirable because customer needs and the business environment are  
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“To excel in customer service” 

Via 

Customer Service 
that is responsive, 
convenient, and 

reliable 

Simple Processes 
that are fast, 
accurate, and 

efficient 

Engaged People 
who are empowered, 

motivated, and  
skilled to deliver  

IT to realize the vision and business strategy 

Through With 

Enabled 
by 

 

Fig. 2. Customer Service Strategy Visualization 

dynamic. Trying to include all potential requirements is impractical. There is need to 
recognize that not all requirements can be known up-front, i.e. be complete. As stated 
before, the challenge then becomes how to deliver the known requirements while still 
leaving open the ability to deliver the future requirements as conditions change. 

3.2   Preparing for Business Process Change 

Before embarking on business process change analysis and redesign tasks, it is vital to 
prepare for change through assessment of the organization’s ability to efficiently and 
effectively deliver the new business process requirements, while at the same time 
maintaining agreed upon levels of performance within the current environment. This 
requires paying special attention to change dynamics, securing stakeholder commit-
ment, formulating a change strategy, and structuring the change process with consid-
erations of how tasks, people, and knowledge will be managed. A formal change 
management process should be fostered to reduce or eliminate disruptions to business 
activities.  

 
Analyzing change dynamics. A careful analysis of change dynamics is necessary to 
assess the level of resistance to change engendered by the business process change 
initiative. Resistance to change may arise due to interaction among several antece-
dents. From a system’s perspective, [32] explains resistance in terms of interaction 
between the system being implemented and the context of use. She posits that a group 
of actors will be inclined to use a system if they believe it will support their position 
of power. However, if they think it might cause them to lose power, they will resist. 
Power struggle leads to other problems, such as: (1) a disagreement about the nature 
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of the problem that the proposed change is supposed to solve, and (2) lack of faith in 
the proposed change’s ability to solve the problem [33]. 

Generally, people weigh how change is going to affect their status quo in the or-
ganization.  They go through this process by evaluating a given change on three levels 
[34]. First, they assess the variation in their equity status brought about by the system. 
Second, they evaluate how change affects their equity relative to that of other mem-
bers of their reference group. Finally, they compare the equity status of their reference 
group to that of their organization. They will resist if they perceive inequity. There-
fore, careful analysis of the possible causes of resistance to change and political 
power dynamics is necessary in order to generate guidelines for formulating a specific 
change strategy and securing management commitment. 

 
Securing stakeholder commitment. A stakeholder is anyone with a vested interest in 
the business process, including organizational employees, suppliers and customers 
[35]. Commitment from stakeholders must be secured to build a solid foundation for 
the change program. A powerful way to secure stakeholder commitment is to get all 
those concerned involved in the change process. For instance, using the search con-
ference technique, all stakeholders can be assembled into the same room to discuss 
the need for change and how to best achieve it [36]. During such a meeting, commit-
ment to change may be nurtured through active and open participation by all the 
stakeholders. It is important that even after the meeting, open and honest communica-
tion should be maintained at all levels [35]. Furthermore, resistance to change can 
also be mitigated through education, facilitation and support (e.g. training), negotia-
tion and agreement, manipulation and co-optation (e.g. assigning resisters to key roles 
in the change process), and explicit and implicit coercion [37]. However, for long-
term effectiveness, manipulation and coercion should be avoided as much as possible 
because they increase the likelihood of undesirable consequences in the form of poor 
morale and high likelihood of sabotage. Whenever possible, prototyping the change 
process is encouraged to help the various stakeholders develop a more concrete ap-
preciation of how the new process works, and how it fits in the overall context of 
change [7]. 

 
Formulating change strategy. After assessing change dynamics, a specific change 
strategy should be formulated. The change strategy adopted can either be evolutionary 
(the choice of either technical or social system first, or gradual, staged socio-technical 
change), or revolutionary (simultaneous change of both technical and social systems) 
[38]. If forces of resistance are perceived to be high, evolutionary change is preferable 
because change can be introduced gradually, tempered with frequent and open com-
munication, and adapted to the pace and capabilities of the people [37]. Revolutionary 
strategy, however, requires a paradigm shift [39] and a dismantling and reconfigura-
tion of the existing structure to prevent the tendency to revert to the status quo once 
the change program is over. Careful managerial maneuvering through intervention, 
participation, persuasion, and edict is necessary [40]. Generally, the more tempered 
approaches of participation and persuasion work better, especially when proper 
benchmarking and setting of process goals is done.  
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Structuring the change process. Leadership plays a critical role in BPR initiatives 
[26] and projects initiated without proper leadership often fail [41]. Specific roles 
must be assigned to provide some degree of control and structure for the change en-
deavor [35]. The roles of business process change project sponsor, process owner, and 
change agents are especially significant. A project sponsor, such as a senior business 
or IS executive with transformational leadership abilities, is required to legitimize and 
drive the change process [27, 28]. For the role of a process owner, a senior manager 
among employees affected by the project is desirable. Such a process owner should 
possess leadership skill, as well as operational competence to achieve the process 
performance goals. The members of a cross-functional team serve as the change 
agents who actually carry out the detailed redesign work and implement the change. 
Such a team should be facilitated through training in teamwork and group dynamics. 
A smaller separate team dedicated to organizational change management may also be 
needed to ensure timely attention to change management [35]. 

3.3   How to Change (Process of Change) 

While the main goal is the change of business processes, the organization context and 
the role of information technology need to be taken into account in order to achieve 
successful business process change outcomes. Trying to bring about business process 
change without corresponding plans for organizational change is likely to increase the 
risk of failure [7]. Thus, below we discuss not only business process change consid-
erations, but also the complementary changes in organizational factors and the ena-
bling role of information technology.  Table 2 describes questions and activities  
that enable requirements analysis in this stage for change in process, organization, 
technology, and management. 

Business Process Redesign. Again, business process redesign should be aimed at 
achieving the overall business strategy. Below, we highlight pointers to what and how 
to change business processes. Having systemic insight and strategic foresight can 
provide guidance on what to change in business processes and how to design change 
[42]. Systemic insight is the ability to visualize connections between business proc-
esses and the state of their alignment with supporting information systems to meet 
business goals. Systemic insight plays a significant role in being able to change the 
functional coupling of business processes efficiently and effectively. Strategic  
foresight is the ability to anticipate discontinuities in the business environment and 
opportunities for business process innovation [42]. 

 

Gaining Systemic Insight for Business Process Redesign. Knowing which functional 
coupling of business processes to changes requires deep systemic insight.  An analysis 
of value-adding activities (i.e., of visible importance to customers) and process map-
ping can be a source of systemic insight, which then enables the diagnosis of process 
problems and opportunities. In fact, most of the activities of automated business proc-
ess management (BPM) are geared toward providing systemic insight.  For instance, 
process mining and simulation can lead to the discovery of how to change in existing 
processes [43, 44, 45]. Due to the use of automated BPM, many business processes 
leave their “foot prints” in transactional information systems in the form of event 
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Table 2. Dimensions of What to Change during Business Process Reengineering 

Change
Dimension Major Considerations Key Activities 
Process 
Design

What are our major business processes? 
Who are their customers? 
What are our strategic/value-added processes? 
What processes get highest priority from change 
initiative? 
What are our subprocesses, activities and steps? 
How do resources and information work 
through processes? 
Why do we do things this way? 
What the key strengths and weaknesses of our 
processes? 
Can we benchmark? How? 
How would we like these processes to work?  
What are our stretch goals for these processes? 

Model processes, model 
customers and suppliers, 
define and measure 
performance, define entities 
or “things” that require 
information collection, 
identify activities, map 
organization, map resources, 
understand process structure, 
understand process flow, 
identify value adding 
activities, estimate 
opportunity, benchmark 
performance, prioritize 
processes 

Organization
al Design 

Who is likely to resist these changes and why? 
What changes to organizational structure will be 
required? 
What will the new organization look like? 
How will the social elements interact with the 
technical elements? 
What human resource practices will be required 
for the reengineered processes? 

Evaluate organizational 
environment, specify 
organizational structures, 
identify job clusters, define 
jobs/teams, define 
skills/staffing, design 
incentives, design 
transitional organization 

Technical 
Design

How can IT be used to transform these 
processes? 
What technical resources will we need? 
What changes to existing IT resources will be 
required? 
How will all the technical elements work? 
How will the technical elements interact with 
the social elements? 

Brainstorm IT possibilities, 
examine process linkages, 
model entity relationships, 
develop performance 
metrics, consolidate 
interfaces, consolidate 
information, and envision 
technical systems design. 

Management
Design

How do we ensure that the transition goes 
smoothly? 
Who should be represented on the process 
change team? 
What mechanisms should be established for 
unanticipated problems? 
How do we monitor and evaluate progress? 
How do we build momentum for ongoing 
change? 

Setting corporate and 
process change goals, 
development of a change 
plan, identifying and 
motivating team, training 
staff, evaluating personnel, 
monitoring progress, and 
continuous improvement 

 
Source: Adapted from [24]. 
 

 
logs. By mining these event logs, process, control, data, organizational, and social 
structures can be discovered [45], which could be used to improve existing processes.  

In addition to computer-based (quantitative) simulation tools for business process 
analysis and redesign, qualitative simulation approaches have also been suggested 
[46] as a complement to the quantitative approaches. Nissen [46] argues that qualita-
tive simulation provides useful capabilities for the support of business process redes-
ign because many aspects of business processes are inherently qualitative and not well 
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understood. Using qualitative simulation, complex problems can be abstracted 
through the development of ontology to capture key entities and relationships about a 
phenomenon, based only on a few dominant features. This makes it possible to model 
and codify process entities and relationships, even with limited information and 
minimal understanding of the details. Qualitative simulation provides visioning 
through a description of possible behaviors for the modeled process in the early 
stages, which can then be probed further through quantitative analysis in the latter 
stages. 

 
Leveraging Strategic Foresight for Business Process Change. Strategic foresight is 
“the ability to anticipate discontinuities in the business environment, marketplace, or 
the information technology space, the threats and opportunities in the extended enter-
prise chain, and impending disruptive moves of the competitors” [42, p. 250]. 
Through foresight, organizations develop a vision about not only how to improve the 
existing processes, but also which new ones to introduce in order to effectively  
compete in the market place. While systemic insight can be largely automated, or-
ganizations develop foresight mainly through personal intuition and experiences of 
managers, as well as organizational intelligence about future market outcomes.  
Foresight is critical because it reflects the ability to anticipate and visualize market 
imperfections and opportunities for business process innovation. Through foresight, 
organizations may be able to formulate answers to the following four fundamental 
questions about business process change: 

• Which of the processes that the industry or marketplace takes for granted 
should be eliminated? 

• Which processes should be reduced well below the industry’s standard? 
• Which processes should be raised well above the industry’s standard? 
• Which processes should be created that the industry or marketplace has 

never offered? 

Developing concrete answers to these questions can serve as the starting point for 
business process innovation.  The next subsection outlines how organizations can 
achieve business process innovation by changing functional coupling of business 
processes. 

 
Changing Functional coupling of business processes. One of the main goals of proc-
ess analysis and design should be to change functional coupling of business processes 
to develop processes that are efficient and effective. Systemic insight can yield valu-
able information about the functional coupling of various business processes. The 
concept of functional coupling discussed here draws from [7, 47]. Functional cou-
pling is the pattern in which various functions are orchestrated while participating in a 
particular business process.  As depicted in Figure 3, this pattern has two components: 
physical coupling and information coupling.  

Physical coupling arises from input-output (I/O) relationships between a function 
and other participating functions, involving either transfer of physical objects or 
handoff of documents from one function to another when a function is included in a 
business process. The extent of this flow of input and output among the participating 
functions is referred to as the degree of physical coupling of a business process. 
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Fig. 3. Dimensions of Functional Coupling of Business Process Adapted from [7] 

Physical coupling entails several intermediate steps that must be performed before the 
process is completed. The pattern of these steps can be either serial (sequential steps 
performed by different functions) or parallel (several functions contribute directly to 
the process outcome without intermediate steps). On one hand, processes such as 
business expense processing which require many layers of management approvals, 
auditor evaluation, and filing of receipts tend to be serial. On the other hand, proc-
esses which consist of fairly modular and independent activities tend to be parallel 
(e.g., process of launching a new product consisting of both production and advertis-
ing functions). Nevertheless, serial and parallel patterns are not mutually exclusive 
since it is possible to have a mixture of both serial and parallel patterns in a process. 

Information coupling entails information exchange instead of physical I/O flows. 
Informational coupling between functions may be either formal or informal, and the 
frequency and intensity of information exchange between two functions can range 
from none (completely insulated) to extensive (highly collaborative).  
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From Figure 3, four coupling patterns emerge when physical and information  
coupling dimensions are integrated: parallel-collaborative (Region I), serial-
collaborative (Region II), parallel-insulated (Region III), and serial-insulated  
(Region IV). These patterns are illustrated with two functions, X1 and X2, which con-
stitute a business process outcome, Y. Moving processes vertically from Region III to 
I and from Region IV to II is the goal of business process redesign (lateral moves 
from Region II to I and IV to III, as well as diagonal moves that change physical and 
information coupling simultaneously (moving from Region IV to I) are also possible). 

 
Strategies for Changing Functional Coupling.  Based on the relationships depicted in 
the grid of Figure 3, some practical strategies can be followed to change the func-
tional coupling of business processes. Figure 4 presents a decision tree that summa-
rizes possible strategies for changing the functional coupling of business processes. 
Based on the potential for reducing physical coupling, information coupling, or both, 
typical candidate processes are shown in the middle column, with illustrative exam-
ples in the right column of Figure 4. Processes with limited opportunities for reducing 
physical coupling and limited potential for enhancing information coupling should 
probably be left as they are. Trying to redesign these processes may lead to process 
conflict, which could render the redesign effort self-defeating.  

 

Fig. 4. Strategies for Changing Functional Coupling of Business Processes Source: Adapted 
from [7] 
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Consider the case of developing new drugs in the pharmaceutical industry in the 
US. Before the drug can be marketed, complete Federal Drug Administration (FDA) 
approval is necessary, which may take many years. New drug development also en-
tails many processes with physical I/O flows that are inherently sequential (e.g., proof 
of concept, sequential clinical trials, etc). If such processes operated in a stable envi-
ronment without great need for collaboration, they could remain in Region I of Figure 
3. However, new drug development is surrounded with a lot of uncertainty and  
because of this, there is often significant collaboration between pharmaceutical com-
panies, biotech companies, university R&D departments, etc. Thus, typically for phar-
maceuticals, these processes should be moved to either Region II or IV.  

A process involving information flows, such as the release of a document from one 
function to another, may be reconfigured by storing the information being transferred 
in common information resources, such as digitized images or databases. This can 
facilitate parallel execution of operations of the various functions in the process. As 
indicated by the third branch of Figure 4, these processes (e.g., some operational 
processes) typically have intricate serial steps, making them good candidates for  
vertical movement in the grid [48, 9]. Relatively unstructured processes (e.g., mana-
gerial processes) require lateral movement to improve collaboration and mitigate 
uncertainty (branch 2 of Figure 4). Straight lateral or vertical movements in the grid 
may be sufficient for managerial processes with limited processing steps or opera-
tional processes with little or no uncertainty. However, a diagonal path should be 
considered for managerial processes with complicated serial steps, or operational 
processes that function in highly uncertain environments (e.g., the new product devel-
opment process). For instance, members of the design team of Ford’s new product 
development process can simultaneously access a common design database across the 
Atlantic using computer aided design systems, obviating the need for serial I/O of 
design documents circulating among the designers [48]. Moreover, networking mem-
bers can exchange and critique their opinions, even though they have no face-to-face 
interaction.   

 
Business Process Synthesis and Decomposition. Once strategies for changing the 
functional coupling of processes have been mapped out, the actual redesign effort of 
the business process can be implemented by making two types of structural changes 
to a business process: synthesis and decomposition [49]. Process synthesis involves 
combining multiple processes into a single composite process, while process decom-
position entails disentangling components of a process that could be better organized 
as separate processes [49]. Both process synthesis and decomposition can enhance the 
manageability of a process by removing redundant tasks.  For example, a single syn-
thesized order fulfillment process at eBay integrates a variety of partner processes that 
include payment processes (e.g., Paypal), shipping processes (e.g., FedEx), and other 
partners’ internal processes (e.g., online retailers that sell through eBay). It is impor-
tant to recognize that process synthesis involves more than simply linking the compo-
nent processes together. For instance, order status on eBay’s web page may be  
different from that on the web pages of the integrated partners, and may also link to 
FedEx’s tracking process in a way that is different from FedEx’s own tracking web 
page.  If the original processes were left in place, potential confusion could ensue, and 
also redundancies and inefficiencies could result. 
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It is possible to combine both synthesis and decomposition iteratively during proc-
ess design and analysis to produce an integrated process. For instance, disparate proc-
esses could first be synthesized to remove redundancy and inconsistency, and then 
decomposed to enhance manageability through process simplification and delegation 
[49]. Delegation is particularly important in interorganizational settings since proc-
esses cut across organizational boundaries. 

Business process change involves inherently complex processes, with many tasks, 
information elements, and resources. Therefore, process redesign through synthesis 
and decomposition should generate integrated processes that are not just a collection 
of incomplete, incompatible, or wasteful processes [2]. To circumvent potential prob-
lems, as the above discussion highlights, process redesign should be preceded by a 
careful analysis of the potential for business process redesign, with opportunities and 
limitations explicitly mapped out.  

 
Managing Process Conflicts. Even if there may be a high potential for reducing 
physical coupling and enhancing information coupling, it is important to bear in mind 
that in reality process conflicts may arise. Process conflict is unexpected or contradic-
tory interaction between process functions that has a negative effect on the perform-
ance of the process. This may arise when functions of a process controlled by two or 
more stakeholders cause an inconsistency. In other words, function conflicts are inter-
actions and dependencies between process functions that can lead to negative or  
undesired process outcome.  Three types of process function conflicts can arise: 

(1) Activity conflicts: Activity conflicts arise when components belonging to differ-
ent processes achieve the same action, or the components of the same process perform 
opposite actions at the same time. As a result, these conflicts have a negative effect on 
the functioning of the process [50]. Activity conflicts may suggest the need to carry 
out further process synthesis and decomposition to eliminate these conflicts. 

(2) Resource conflicts: Resource conflicts arise when processes that have different 
targets attempt to use a limited resource at the same time. For example, a network 
may have limited resources, which affects concurrent information access by different 
processes. It may also be due to serial coupling discussed earlier. For instance, a cus-
tomer may fail to view their account balance at the same time the bank is updating 
account information (concurrency problem). Resource conflicts can be circumvented 
through innovative design of the enabling role of information technology and systems 
[50]. 

(3) Control conflicts: These may arise when several departments or organizations 
are involved, or when decomposition results in outsourcing parts of the process. A 
variety of legal issues may arise, such as intellectual property protection, accountabil-
ity, security concerns, and liability [49]. Furthermore, human resource management 
issues are also a major consideration, especially when process synthesis or decompo-
sition results in the transfer of parts of the process to new functional areas of the or-
ganization (e.g., from manufacturing to distribution). These potential problems should 
be kept in mind when implementing process redesign and appropriate safeguards 
should be put in place [51]. 

 
Business Process Change Enablers. Accomplishing business process change is 
facilitated by deploying a number of enablers of the desired change. In addition to IT, 
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organization structure, human resources, and management practices are a significant 
consideration in process change initiatives. Sometimes the focus is on IT only, which 
limits the prospects of success of the overall change initiative [52]. As discussed be-
low, all the various enablers of business process change should be taken into account 
in order to achieve overall success of the business process change initiative.  

 
Organizational structure enablers. Successful business process redesign requires 
adopting a process-based organizational structure instead of the functional departmen-
tal structure of the traditional hierarchy. A process structure includes the entire set of 
functions in a process needed to complete at entire process [53]. Cross-functional 
cooperation can be facilitated by modifying the hierarchical structure through struc-
tural enablers such as cross-functional teams, case managers, and process generalists. 
For example, IBM reorganized its consulting practice away from functional depart-
ments (e.g., hardware, software) to consumer teams responsible for the complete 
order fulfillment process [54]. Kodak also benefited form the use of cross-functional 
teams in its black-and-white film operation. Previously, the operation was running 
15% over budgeted cost, took up to 42 days to fill an order, and was late a third of the 
time. The redesigned process centered on cross-functional teams resulted in cost sav-
ings of about 15%, cut response time by half, and significantly reduced late delivery 
to one out of 20 times [7]. Moreover, with the help of IT, it is possible to have struc-
turally diverse teams that transcend location or organizational boundaries (i.e., virtual 
teams). 

Majchrzak and Wang’s [53] study found that process-based organizational struc-
tures generally lead to greater efficiencies than do functional departmental structures, 
but only if coupled with practices that create collective responsibility. This requires 
special consideration of human resource management and development issues [55]. 

 
Human resource enablers. Successful implementation of business process change 
requires complementary changes in human resource management practices, since it is 
through people that these changes are carried out [56, 57]. While a traditional func-
tional organization relies on specialists, cross-functional team membership requires 
employees to have some rudimentary knowledge of other functions in order to com-
municate effectively with personnel from other departments. Greater demands for 
cross-functional knowledge are put on case managers and process generalists. There-
fore, mechanisms to foster multiple skill development and reward team performance 
should be put in place. Mechanisms such as overlapping job tasks among members, 
work procedures that encourage collaboration over individual performance, and pro-
viding rewards for team (not individual) performance have been found to be related to 
higher performance [54].  

In a study of 54 process-based virtual teams, [56] found that practices of inclusion 
in decision making fostered team spirit and led to success of the teams. In another 
study of a process-based new product development virtual team, [57] also found that 
frequent virtual team meetings, co-creation of boundary objects, and information 
sharing were associated with team success. In companies like GE and the Government 
Electronics group in Motorola, peers and others above and below the employee evalu-
ate the performance of an individual in a process, sometimes involving as many as 20 
people. This has fostered a reward system that is based not only on individual  
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performance, but also on team performance [7]. In several companies now, cross-
functional team orientation has shifted the emphasis from behavioral control to output 
control (e.g., at JP Morgan Chase, team leaders are paid based on performance).  

Generally, many successful business process change efforts require external focus 
with emphasis on external performance objectives such as customer satisfaction and 
overall product/service quality. For example, Marshall Electronics transformed its 
commission-based sales system to better meet its goal of achieving a customer-
focused global chain operation.  With the commission-based system, salespeople 
often timed shipments to gain their commissions rather than to meet customers’ 
needs. When Marshall eliminated the commission-based system and replaced it with a 
profit-sharing system, this change boosted the company’s sales by 200 percent, mak-
ing Marshall the fourth-largest electronics distributor in the world [58]. 

 
Information technology enablers. Besides its direct role in automating a number of 
business processes, IT can be used to support the operational aspects of conducting 
business process redesign [59]. IT can, for example, enable: the recoding of various 
business processes, analysis of current and proposed processes, keeping track of dead-
lines, balancing capabilities with demands, and the flow of information and documen-
tation among the various participants. Given our emphasis on process analysis and 
design, we focus on IT’s role in supporting this process, instead of IT’s role in auto-
mating business process, which often receives a lot of attention.   

The management of knowledge related to the business process initiative is some-
times overlooked as a business process change enabler [60, 61]. Process designers 
should be able to acquire and use knowledge about business environment, design 
decisions, and alternatives during process change activities. Also it is important to 
recognize that over a period of time, not only does the context of a business process 
change, but also the information needs of the process designers change. Therefore, 
mechanisms should be put in place to maintain contextual knowledge to keep it up-to-
date.  Furthermore, practice, the way in which work gets done, is often different from 
the process described formally in manuals, training programs, organizational charts, 
and job descriptions [62]. Practice needs to be managed by facilitating or supporting 
people in getting their work done in particular contexts [63]. Table 3 summarizes the 
various aspects of process-related knowledge and the corresponding capabilities of a 
good knowledge management system to support business process change efforts. 
Nissen [61] discusses the integration of knowledge-based systems into the transfor-
mation process and demonstrates the utility of two diagnostic knowledge-based tools 
for process analysis.  

 
Discussion. According to the framework discussed above, business process change 
entails making complex design decisions that may affect different, but interacting and 
interrelated dimensions of an organization: its processes, people, strategy, culture, 
information policies, and its environment. A change in one of these aspects may have 
unknown or unexpected consequences on others.  For example, a new strategic direc-
tion or the adoption of a process structure may not be favored by the workforce and 
may have detrimental effects on staff morale and productivity. Therefore, it is impor-
tant that alternative organizational aspects be taken into account and aligned when 
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Table 3. Business Process Change Knowledge Management Requirements 

Knowledge Aspect Required Capabilities 

Knowledge of 
business environment 

A knowledgebase with the information on various contextual factors 
to guide users on process redesign 

Mechanisms for users to represent contextual information – including 
process elements, business rules and policies influencing process 
elements, decisions and explanations 

Access to process 
adaptation knowledge 

A knowledgebase with relevant information on process behavior, 
process pathology detection, and guidance for process adaptation and 
improvement

Flexibility in the range 
dimension

The ability to provide users with multiple alternatives for process 
adaptation and improvement, based on process pathologies identified 

Acquisition, use, and 
evolution of contextual 
process adaptation 
knowledge

Facility to access and review existing contextual information during 
process design activities 

Facility to update the existing contextual information during process 
design deliberations 

Facility for multiple stakeholders to actively participate in the process 
change deliberation  

 

change is designed or introduced. This need makes the process change design prob-
lem complex, demanding, and laborious.  

The IPO framework takes into account the various aspects of the change initiative 
and yet is general enough to avoid getting lost in the details. To maintain focus on the 
goal, we propose that organizations address three fundamental questions that underpin 
the IPO framework: what to change, how to change, and what to change to. Organiza-
tions should address the last question first before moving forward with the change 
effort. 

 
What to Change to?  “What to change to” is the anticipated outcome of the change 
effort and should be guided by the organization’s strategic vision. As the traditional 
distinction between products and services increasingly becomes irrelevant, customer 
focus is becoming a major strategic driver for many organizations [64, 65]. Organiza-
tions are moving closer to their customers, continuously trying to find new ways to 
create customer value, and transforming the customer relationship from one of selling 
and order taking into one of solution finding and partnering. Thus, customer-oriented 
processes are among today’s most critical core business processes that can benefit 
from improvement. For example, a vendor of high-availability disk and tape storage 
for client/server environments with a customer-focused strategy transformed its cus-
tomer support process through TechConnect [64]. As a result the average response 
time to a customer problem dropped significantly from about 2-3 hours to only 15 
minutes. Furthermore, TechConnect had analytical capabilities that enabled staff to 
uncover patterns and take proactive action for further prevention of any apparent 
problems.  
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What to Change? While the main focus of change is the business processes being 
transformed, selecting proper change enablers lays a solid foundation for the success 
of a business process change project. Several case studies done by [52] showed that 
change implementation requires flexibility and a multidisciplinary perspective, with 
appropriate considerations for several human, social, cultural, and political issues. 
These components should not be overshadowed by a rigid business process change 
methodology and technical issues.  Appropriate management of process change im-
plementation requires addressing implementation problems, politics, and tactics, as 
we have highlighted above.  

 
How to Change? We have drawn attention above to the practice of business process 
analysis to uncover process redesign and transformation requirements, as well as the 
need to pay attention to various enablers of change.  Rather than go through the de-
tails already discussed above, drawing from [60], we provide a summary of the fol-
lowing guidelines that can be drawn from our framework: 
 

1. Focus transformation efforts on critical business issues that have payoff and 
are aligned with organizational strategy.  Identify critical business issues for 
which the change is intended to provide concrete improvements. Furthermore, 
recognize that the ability to deploy appropriate business processes requires that 
the fit between those processes and organizational strategy be continuously 
maintained and evolved.  

2. Establish enterprise-level support. The process change initiative should enable 
all relevant stakeholders to participate. All stakeholders should be made to un-
derstand the problems and the rationale behind chosen improvements. This 
will motivate them to “own” change and the initiative will profit from their 
knowledge about the context (e.g., which suggestions will work). 

3. Take a broader view of process change.  Process change is a social process in-
volving several different process participants with diverse set of goals,  
requirements, assumptions, and constraints. All these should be carefully con-
sidered in order to achieve success. If the context for which a process has been 
designed changes, it is important to reevaluate its applicability and identify  
potential options for redesign. 

4. Avoid “ownership” of the change efforts by a specific function. Complex pat-
terns of interrelationships among processes, people, and technology need to be 
addressed in a balanced manner. Change efforts must draw from a range of 
skills, independent from functional influence. Success comes from integrating 
a range of skills in cross-functional teams. 

5. Recognize that information technology is an enabler, not a driver of process 
change. IT should not drive or be the cause of change; rather emphasis should 
be first on the business processes; then, IT can be creatively used to enable 
those processes. 

6. Strive for parsimony, not excess. When change is rapid, trying to achieve com-
pleteness, consistency, and correctness is not always efficient. Known re-
quirements should be delivered immediately while still leaving open the ability 
to deliver future requirements as the market unfolds. Otherwise, minimize up-
front business requirements but maximize future options because quite often, a 
wide range of potentially well-suited redesign strategies exist. 
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7. Prototype fast and frequently. Prototyping can help uncover the inconsisten-
cies and conflicts which may still exist in the redesigned processes due to func-
tional coupling or other causes. This suggests that further process synthesis 
and decomposition may be required. 

8. Do not forget disciplined project management. Members of the senior man-
agement must be committed to the initiative and must demonstrate their com-
mitment by being visibly involved with the project. Managers need to make 
careful use of “signals” (clear and explicit messages), “symbols” (actions that 
indirectly reinforce the signals), and “reward systems” to manage the change 
process [28]. Management should not lose sight of the goal. 

When followed closely, these guidelines can help in achieving the desired out-
comes. For example, Nortel Networks transformed the front end of its new product 
development (NPD) process based on these guidelines. Nortel transformed the previ-
ously ills-structured and ad hoc front-end NPD process to one that was consistent over 
time and across people [60].  

4   Conclusion 

Business process redesign and improvement is especially important in dynamic, com-
plex business environments. The ability to quickly and continually adapt business 
processes to accommodate the evolving requirements and exploit opportunities is 
critical for success. Without appropriate linkage between redesign decisions and stra-
tegic inputs, identifying processes that need to be modified will be difficult. In this 
paper, we proposed an IPO framework to guide the analysis and design tasks of busi-
ness process change.  

The high-level IPO framework proposed in this study provides strategic perspec-
tive on business process change analysis and design, with emphasis on both the busi-
ness process level and the overall organizational context. This framework provides 
guidance on how various functional activities involved in a business process may be 
redesigned. By focusing on process dependencies, this approach leverages workable 
assessments to identify and establish process improvements. For example, analyzing 
the functional coupling of processes makes it possible to devise cogent strategies for 
process redesign. The framework can also serve as a starting point for identification 
of practices that can be introduced in one step through process synthesis and decom-
position techniques. 

The framework also underscores the significance of managing knowledge on proc-
ess analysis and design requirements. Even the most-capable and experienced process 
engineers face difficulties in redesigning processes without access to the knowledge 
that shaped previous design decisions. While often overlooked, the acquisition and 
maintenance of contextual knowledge about process models and process redesign 
rules used in redesign efforts can facilitate the streamlining of complicated proce-
dures. Given the cross-functional and radical nature of process redesign, a lot of learn-
ing is required of process workers, and as a result they also create new knowledge, 
which should be captured at the organizational level.  

Furthermore, business process redesign is a multifaceted phenomenon involving 
organizational structure, management systems, human resource architecture, and 
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many other aspects of organizational life. The IPO framework presented in this paper 
should prove helpful in gaining a high-level perspective and guiding the analysis and 
redesign of business processes. Any framework, however, only maps tasks and activ-
ity requirements. Management is thereby responsible for budgeting along mapped 
activities, directing (redirecting) process workers, and exhibiting visible support. In 
other words, a framework is just a blueprint; management must lead change. More-
over, people must be rewarded, not reprimanded, for taking calculated risks. Informa-
tion technology plays a supportive role in this process. Hence, the vision must account 
for the environment, methodology, people, and IT. 

We have drawn attention to the process of analysis and design of processes in sup-
port of business process change initiative. While the framework presented provides 
some high-level guidelines, it is a simplification of the complexities of real processes 
in an attempt to highlight possibilities for redesign. Future research could enrich this 
framework by developing more rigorous methods for recording processes and identi-
fying dependencies in organizations. This could serve as a starting point for a more 
formalized methodology for documenting requirements analysis for business process 
redesign and transformation. Furthermore, given that organizations are increasingly 
becoming interconnected, future research should explore dependencies not only 
within organizations but also across organizations, as well as the coordination mecha-
nisms necessitated by these dependencies.  
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Abstract. Requirements Engineering techniques need to focus not only on the tar-
get technical system, as has traditionally been the case, but also on the interplay be-
tween business and system functionality. Whether a business wishes to exploit  
advances in technology to achieve new strategic objectives or to organise work in 
innovative ways, the process of Requirements Engineering could and should pre-
sent opportunities for modelling and evaluating the potential impact that technol-
ogy can bring about to the enterprise. This chapter discusses a co-designing process 
that offers opportunities of change to both the business and its underlying technical 
systems, in a synergistic manner. In these design situations some of the most chal-
lenging projects involve multiple stakeholders from different participating organi-
sations, subcontractors, divisions etc who may have a diversity of expertise, come 
from different organisational cultures and often have competing goals. Stake-
holders are faced with many different alternative future ‘worlds’ each one demand-
ing a possibly different development strategy. There are acute questions about the 
potential structure of the new business system and how key variables in this struc-
ture could impact on the dynamics of the system. This chapter presents a frame-
work which enables the evaluation of requirements through (a) system dynamics 
modelling, (b) ontology modelling, (c) scenario modelling and (d) rationale model-
ling. System dynamics modelling is used to define the behaviour of an enterprise 
system in terms of four perspectives. Ontology modelling is used to formally de-
fine invariant components of the physical and social world within the enterprise 
domain. Scenario modelling is used to identify critical variables and by quantita-
tively analyzing the effects of these variables through simulation to better under-
stand the dynamic behaviour of the possible future structures. Rationale modelling 
is used to assist collaborative discussions when considering either ontology models 
or scenarios for change, developing maps, which chart the assumptions and reason-
ing behind key decisions during the requirements process. 

Keywords: Requirements, business strategy, co-development, ontology, sce-
narios, rationale, modelling. 

1   Introduction 

Requirements Engineering (RE) as a field of study and practice has traditionally fo-
cused on the specification of technical requirements (i.e., defining the functional and 
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non-functional properties of target systems [1-6]). Over the past 20 years there has 
been considerable progress in conceptual frameworks, and tools for capturing and 
modelling of requirements with emphasis being on function enrichment. However, 
there is an increasing realisation and consensus amongst information systems re-
searchers and practitioners that the development of systems is not solely a technical 
activity and that organisational factors very often have a profound effect on both the 
delivered system and the design process. This is particularly pronounced in today’s 
organisations where two phenomena in particular seem to play an increasingly impor-
tant role in sustainability and development: (a) growth in information processing and 
(b) enterprise transformation. Both of these accentuate the intertwining of enterprise 
and systems, the needs of an enterprise for systems that can both provide relevant and 
valuable information to carry out their work better and exploit system functionalities 
for carrying out their work differently. 

According to Gantz, Chute et al. (2008) the growth in information processing is 
rising exponentially. In 2008, the volume of information created was estimated at 410 
exabytes, already surpassing the capacity to store it and that by 2011 the gap between 
information generation and information storing will increase dramatically to almost 
1000 exabytes. Dealing with such an information explosion is both a technical and 
organisational problem. Organisations are responsible for the security, privacy, com-
pliance and reliability of 85% of all information being created [7]. During RE such 
organisational issues need to be considered at the outset if an organisation is to deal 
with economic and legal issues that may arise from the use of systems managing their 
information resource. Even environmental issues come into play when one considers 
that in 2000 power consumption per server rack was 1KW, whereas data centres 
nowadays operate closer to 20KW per server rack.  

It is a challenge for organisations to change and innovate in global market envi-
ronments that are quickly becoming more unpredictable, with organisations that have 
become more virtual and mobile, with technologies that are becoming revolutionary 
and integrative, and with people that are more independent, knowledgeable, assertive 
and mobile [8]. Enterprise transformation offers the opportunity to organise work in 
ways that have never before been possible [9]. It concerns fundamental change in 
established relationships between an enterprise and its constituency (market or soci-
ety) in the way that products or services are provided [10]. Information systems spe-
cifically and information technology generally may be deployed in order to organise 
internal processes to deliver these new sets of relationships. It seems therefore prudent 
that during RE one needs to consider what the likely impact of support systems will 
be on the enterprise against multiple strategic criteria. 

These two issues provide the motivational backdrop for the arguments, positions 
and approach presented in this chapter. The central tenet of this chapter is that the role 
of requirements is changing in that one needs to consider not only functionality and 
quality of systems but also the impact that specific choices of system requirements 
will have on enterprise designs.  

As an example, consider the case of developing a new automated meter reading 
(AMR) system by an electricity distribution company, an application which has re-
ceived much attention in recent years due to deregulation directives and greater 
awareness of governments and consumers about energy saving factors. There are 
obvious functional and non-functional issues for the system regarding, amongst oth-
ers, the meter interface, the communication system and the central office system. In 
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developing such a system one will have to consider alternative implementations of 
individual components as well as in the way the system components may be inte-
grated. Traditionally, a requirements engineer would deploy appropriate approaches 
to model a variety of perspectives such as for example, the business processes e.g. 
[11], the goals for change e.g. [12], scenarios of use e.g. [13] and perhaps using some 
requirements specification management tool to cope with plethora of requirements 
e.g. [14].  

There is a key question however, which may have a profound effect on strategic 
decisions and that is “what will the effects of the AMR be on other parts of the enter-
prise?”. Normally, such a question would not be directly addressed by RE techniques. 
Even approaches that deliberately seek to understand the goals of an enterprise make 
the assumption that these goals are known, at least as far as their relation of the enter-
prise is to the desired system and that design decisions about the system will have no 
influence on enterprise strategy. However, different choices on system functionality 
may impact in different ways on critical enterprise facets such as customer relations, 
financial models, internal processes and human resources. These are key strategic 
issues that will need to be answered by management at some point in the re-designing 
of the electricity enterprise. Often these are addressed informally and outside the 
domain of system development.  

The argument put forward in this chapter is that RE, acting as a conduit between 
business-oriented and system-oriented concerns, is ideally placed to examine systemi-
cally the feedback mechanisms involved in complex systems thus, yielding benefits to 
both activities of the designing of the enterprise and that of the system. Understanding 
early on in the development process the impact of different requirements choices on 
the enterprise itself is much more likely to actively engage stakeholders, to highlight 
the strategic options open to them and thus, ultimately deliver useful and sustainable 
systems that are aligned to enterprise strategy and offer opportunities for influencing 
this strategy. This process, otherwise known as co-development, aims to ensure 
alignment between business processes and support technical systems [15], a concept 
also discussed by Rolland in this volume.  A number of other approaches have been 
put forward for co-development, e.g. [15], [16], [17] and [18]. For example Bleistein 
et al (2006) [19] proposed an approach which integrates problem frames; goal-
oriented modelling techniques and business process modelling in order to ensure that 
IT systems requirements are aligned with, provide support for, and enable business 
strategy. Although these methods guide development there tends to be a lack of addi-
tional support to accommodate challenges that arise during co-development activities. 

The role of design thinking in such a co-development activity is critical. It is often 
tempting to assume that the route from requirements to implementation can be some-
how managed in a predictable way. This assumes a rational stance but, this is ques-
tionable for most systems because: (a) goals change due to deliberation and negotiation 
between multiple stakeholders, (b) change is hardly ever linear and its effects may be 
discovered in social systems in unsuspected ways and potentially a long way away 
from its source [20], (c) in practice requirements evolve, for as Schön observed “… as 
one wrestles with the problem one’s requirements change” [21], (d) models are only as 
good as the assumptions on which they are based [22], (e) these assumptions can only 
be validated by stakeholders if the effects of their choices are clearly shown in the 
stakeholders’ own vocabulary [23]. These issues highlight the importance of using a 
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designing stance when considering requirements. The term ‘designing stance’ is used 
in this chapter to mean that the process should involve reflection, exploration, negotia-
tion, compromise and revision. It seems that these are the activities in which top class 
designers engage when considering complex projects in uncertain situations [24]. 

In adopting a designing stance to requirements, the following is a set of objectives 
espoused by the approach discussed in this chapter: 

• to encourage the use of multiple models as a way of inventing and proposing 
alternatives, 

• to exploit invariant structures (e.g. standards, legislation etc) which can act 
as an anchor to alternative models, 

• to engage stakeholders in developing scenarios of alternative futures under 
different conditions, and 

• to submit the reasoning used in model building and in the development of 
scenarios to critiquing by stakeholders. 

Through these objectives, we aim to provide a framework within which stake-
holders can consider the multitude of issues that can impact on different enterprise 
strategies. Within this framework, we utilise a set of techniques and support tools all 
of which are well established thus making the framework a practical proposition. 

2   A Framework for Modelling and Evaluating Feedback between 
Requirements and Strategy 

The conceptual framework presented in Fig. 1 is aimed at meeting the challenges and 
objectives presented in section 1. 

The definition of requirements involves the identification of (a) business objec-
tives, (b) strategic requirements, (c) functional requirements and (d) non-functional 
requirements. There is a plethora of methods, techniques and tools that deal exten-
sively with such definitions and hence the focus of this chapter is mainly on require-
ments elaboration. 

Central to the elaboration process is the development of a model that describes the 
dynamics of the enterprise and its interaction to the proposed system, shown in Fig. 1 
is the system dynamics model. The model is intended to describe the feedback be-
tween various system components. It is intended to be constructed in such a way so as 
to be used for testing key system parameters under different conditions and observing 
the behaviour of the entire system under these conditions. This implies that the model 
needs to be constructed in such a way so as to permit multiple interpretations of it. To 
meet these requirements the approach adopts System Dynamics [25-27] as its under-
lying theoretical baseline. Modelling of behaviour in the system dynamics model can 
greatly assist in understanding how the system changes over time together with the 
location and reasons for potential problems with the system. This means that areas for 
improvement can be identified, new ideas tested and most importantly get an under-
standing of how a system works without taking any significant risks. Such modelling 
also assists in reducing biases, uncertainties and conflicts amongst stakeholders to-
gether with forming a foundation for the development of scenarios. 
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Fig. 1. A conceptual framework 

Given that any business strategy is likely to be influenced by different perspec-
tives, the approach encourages the development of four model viewpoints namely 
those of customer, financial, business processes and learning and growth, as sug-
gested by the Balanced Scorecard [28]. The Balanced Scorecard provides a frame-
work for translating an organisation’s vision and mission into performance indicators. 
Financial measures of past performance are complemented with measures of the driv-
ers of future performance by including customer, internal business processes and 
learning and growth perspectives. By forcing senior managers to consider all impor-
tant operational measures together, the Balanced Scorecard lets them see whether 
improvement in one area may have been achieved at the expense of another. The use 
of System Dynamics, which focuses exclusively on feedback structures, provides an 
excellent vehicle for evaluating such interrelations. 

One of the aspects of a system dynamics model is its qualitative dimension, not 
dissimilar to many other conceptual modelling paradigms in RE. Testing for their 
validity is mainly based on walkthroughs involving stakeholders, model developers 
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and potentially facilitators. Experience has shown that stakeholders experience diffi-
culties in comprehending qualitative models and even more significantly, have diffi-
culties in extrapolating from the model to the potential behaviour of the system ac-
cording to different design options available to them [23]. The absence of parameters, 
inputs, initial conditions and generally of factors that are needed for testing these 
qualitative models, greatly diminish their value as tools to understanding phenomena 
of the world. For without testing of the models it is impossible to comprehend their 
implications by merely observing, walking through, and debating about their contents. 
Nor is it always feasible to test them through observations from experimentation in 
the real world. However, the system dynamics model is complimented by a quantita-
tive dimension, which allows stakeholders to subject the model to simulation. Testing 
qualitative models through simulation has been approached with some caution by 
some authors (c.f. [29]) but on the whole the rigorous testing offered by simulation 
has proved to be of indispensable value [30-32]. Furthermore, Lang shows that quali-
tative and quantitative properties are not mutually exclusive and both facets are re-
quired to support business scenario analysis [33]. Simulation imposes rigorous testing 
that removes ambiguity, exposes alternatives to stakeholders and effectively removes 
any affectation towards the models driven by personal biases or political factors. 

In order to assist the development of a system dynamics model, the approach 
makes use of ontology modelling. Increasing product complexity, market place  
globalisation and changes in product life cycles have underlined the need for in-
creased re-use of components, information and knowledge across projects in order to 
deliver efficient and cost effective product solutions [34]. However, if knowledge is 
not formally structured to inform decisions during RE, it is easy to overlook important 
details and leave modelling more prone to conflicts, misunderstandings and incom-
pleteness. The inclusion of ontology in the conceptual framework provides a strategic 
context for requirements; structures a complex application and clarifies semantics and 
standards.  

The ontology model is structured according to the four perspectives of the Bal-
anced Scorecard. It consists of concepts in the form of superclass-subclass hierarchies 
of invariant components related to the domain. Classes are comprised of object and/or 
data type properties and individuals otherwise known as instances. Assertions (e.g. 
restrictions/constraints) and rules assist in determining relationships between con-
cepts. The system dynamics model is informed by the ontology model and through its 
relationship to strategic requirements, it can provide feedback on concepts such as 
legislative, financial, resource etc that would be of value to the analysis of these re-
quirements and by extension to business objectives. The ontology model is captured 
using Protégé [35]. 

The scenarios model is used to enable stakeholders to visualize the effects of dif-
ferent possible futures on the business and societal environment and determine which 
requirement option would be the most strategically viable. The system dynamics 
model is used as the structure upon which alternative scenarios can be generated. 
Scenarios enable ‘what if’ questions to be asked in terms of business needs and its 
aspirations with regards to strategic objectives. Critical variables are defined and 
behaviour tested according to different values of these variables. Scenarios support 
and enhance the solution-first strategy in which a provisional design solution is used 
as a method for identifying requirements. The term ‘solution-first strategy’ has been 
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defined as “…a strategy that involves generating a provisional design solution as a 
method of identifying requirements” [36]. 

Although scenarios serve as a means for discussing alternative solutions, ground-
ing discussions and negotiations on real examples, and supporting trade-offs among 
design alternatives [37], a record of reasoning and decisions regarding scenarios is 
often not present. This results in a lack of traceability. The lack of tools for tracing 
scenarios can be a hindrance to the process of evaluating alternative futures by stake-
holders when they are faced with a large number of scenarios to analyse and evaluate 
[37]. In order to ameliorate this situation, the framework presented in this chapter 
deploys a scenario rationale component. Coupled to this, there is the ontology ration-
ale component whose aim is to record the modelling assumptions when structuring 
domain and application knowledge. 

The rationale adopted takes the form of collaborative visualised argumentation, 
based on the principles of Rittel and Webber [38]. Within argumentation, rationale 
consists of the problems and issues that arise in the course of a design, along with pros 
and cons for each alternative [39].  Rationale is captured using Compendium [40]. 

3   A Case Study Example 

3.1   Overview 

Electricity liberalisation is used as a case study to demonstrate the concepts discussed 
in section 2. It comprises a complex strategic change situation, in which requirements 
need to be adequately understood and tested to determine which strategic decisions to 
take in order to be competitive. This particular case study example focuses on the 
Distribution Business Unit. Distribution is defined as the transport of electricity on 
medium-voltage and low-voltage distribution systems with a view to its delivery to 
customers (which include installations). The overall goal of electricity liberalisation 
([41] and [42]) was to enter the competition market whilst responding promptly and 
competently to customer needs and changing market conditions. With privatisation, 
utilities are now facing up to increasing competition and are under severe pressure to 
differentiate services by price, quality, and time of use to different types of customer 
in order to raise profits through heightened operational efficiency [43]. Overall, a 
number of changes have taken place under liberalisation, such as lower electricity 
prices, reduction in costs and margins, improvement in labour productivity but also an 
increase in unemployment [44]. However, more recent statistics show that due to the 
current economic downturn and rising fuel costs, the cost of electricity continues to 
rise, with a predicted 40% rise in the UK before the end of 2008 [45]. Levinson and 
Odlyzko (2007) note that as fuel prices rise and there is intense public opposition to 
building more power plants and transmission systems as well as concerns about pollu-
tion, climate change and fuel depletion, attention is paid to methods that either reduce 
electricity consumption, or at least shift it away from periods of high loads [46]. In 
conjunction with this, several clauses in recent European Union Directives refer to the 
Distribution Business Unit, putting pressure on action with reference to metering of 
electricity, expressed in Fig. 2 and Fig. 3.  
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Fig. 2. Article 13 - Directive 2006/32/EC [47] relevant statements 

 

Fig. 3. Article 5 - Directive 2005/89/EC [48] relevant statements 

3.2   Business Objectives and Strategic Requirements 

In conjunction with these directive statements, five business strategic objectives have 
been identified and shown in Table 1. 

1. Member States shall ensure that, in so far as it is technically possible, financially 
reasonable and proportionate in relation to the potential energy savings, final 
customers for electricity, natural gas, district heating and/or cooling and domestic hot 
water are provided with competitively priced individual meters that accurately reflect 
the final customer's actual energy consumption and that provide information on 
actual time of use. When an existing meter is replaced, such competitively priced 
individual meters shall always be provided, unless this is technically impossible or 
not cost-effective in relation to the estimated potential savings in the long term. When 
a new connection is made in a new building or a building undergoes major 
renovations, as set out in Directive 2002/91/EC, such competitively priced individual 
meters shall always be provided. 

2. Member States shall ensure that, where appropriate, billing performed by energy 
distributors, distribution system operators and retail energy sales companies is based 
on actual energy consumption, and is presented in clear and understandable terms. 
Appropriate information shall be made available with the bill to provide final 
customers with a comprehensive account of current energy costs. Billing on the basis 
of actual consumption shall be performed frequently enough to enable customers to 
regulate their own energy consumption. 

3. Member States shall ensure that, where appropriate, the following information is 
made available to final customers in clear and understandable terms by energy 
distributors, distribution system operators or retail energy sales companies in or with 
their bills, contracts, transactions, and/or receipts at distribution stations: (a) current 
actual prices and actual consumption of energy; (b) comparisons of the final 
customer's current energy consumption with consumption for the same period in the 
previous year, preferably in graphic form; (c) wherever possible and useful, 
comparisons with an average normalised or benchmarked user of energy in the same 
user category; (d) contact information for consumers’ organisations, energy agencies 
or similar bodies, including website addresses, from which information may be ob-
tained on available energy efficiency improvement measures, comparative end-user 
profiles and/or objective technical specifications for energy-using equipment. 

2.(d) Encouragement of the adoption of real-time demand management technologies 
such as advanced metering systems 

2.(e)  Encouragement of energy conservation measures 
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Table 1. Business strategic objectives 

Business 
Strategic 

Objective No. 
Business Strategic Objective Description 

SO1 To increase the number of customers 
SO2 To increase customer satisfaction  
SO3 To increase profits 
SO4 To decrease the time to calculate the bill 
SO5 To decrease CO2 emissions 

Table 2 shows three high level strategic requirements [49] that indicate stakeholder 
needs regarding metering in order to achieve efficiency within the Distribution Busi-
ness Unit and successfully fulfil the business strategic objectives in Table 1. 

Table 2. Strategic requirements 

Strategic  
Requirement No. 

Strategic Requirement Description 

SR1 Improve metering procedures 
SR2 Minimise period to calculate customer charges 
SR3 Develop computerised mechanisms for energy metering 

These strategic requirements could be fulfilled by the possible introduction of new 
meters. Metering is important, as electricity consumption data is required to calculate 
customer bills. However it needs to be determined whether the introduction of new 
meters to fulfill strategic requirements SR1, SR2 and SR3 would be strategically 
advantageous with reference to the business and societal environment.  

As a way of fulfilling requirements SR1, SR2 and SR3, automation of electricity 
metering is considered in comparison to traditionally read meters. The existing meter 
reading system uses traditional electro-mechanical accumulation electricity meters, 
which require a meter reader to travel to each customer’s premises every three months 
in order to manually read the electricity meter, record the data output and submit the 
readings to the data processing department. However, traditional meter readings are 
not easily accessible for consumers, the information is displayed in KWh, often 
shown as a cumulative total, with no ability for the consumer to access historical, or 
even instantaneous information [50]. Moreover, the maximum accurate reads in the 
UK can only be four per year even if meters were read accurately every quarter [50].  
The current meter reading process is also prone to delay. Consequently customers are 
paying for electricity consumed many months previously. Large numbers of staff are 
required to manually read meters, with some premises having difficult to access e.g. 
rural and agricultural locations. Furthermore traditional meter reading methods have 
resulted in increased maintenance costs due to outdated equipment. In conjunction 
with increased rises in fuel and electricity costs there is an increase in the likelihood 
that electricity meters will be tampered with enabling theft of electricity, producing 
further business losses. 
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The proposal to introduce new metering technologies would entail the introduction 
of automatic meter readings (AMR), the technology used for automatically collecting 
data from electricity metering devices and transferring it to a central database for 
analysis and billing. Smart metering has been successfully introduced in the US, Italy, 
Sweden and Australia. The rationale for automation varied, from being able to read 
meters in hard to read areas; reducing the cost of meter reads and billing; billing re-
quirements and load shifting [50]. AMR technologies include handheld, mobile and 
fixed network technologies. These are based on different platforms such as telephony 
(wired and wireless), radio frequency, power line or advanced transmission. Benefits 
depend upon the underlying transportation and communication technology, while 
costs depend on the cost structure of the revenue collection technology and on the 
burden it imposes on users [46]. 

From the customer perspective installation of an AMR would require access to cus-
tomer premises to install the new metering device potentially causing disruptions and 
annoyances. Customer benefits would be realised later, with no access required to 
properties for meter readings. The AMR would enable the customer to have a clearer 
picture of electricity usage in the form of management of bills and conservation of 
electricity consumption. Consumers would be able to monitor real-time energy con-
sumption in cash terms rather than watts of electricity [51] providing a more realistic 
energy monitoring tool. Management and conservation would also be reflected in the 
amount of electricity consumed, producing cost savings for the consumer but poten-
tial losses in revenue for the business. Indeed many observers think that once the 
consumer can see the changes in their energy use instantaneously they are much more 
likely to act to reduce that consumption [50]. Improved electricity conservation would 
in turn benefit the natural environment. There would also be no need for customers to 
submit their own meter readings. It could also potentially reduce customer complaints 
and damage claims resulting from regular visits to customer sites [52]. If linked to an 
automatic metering management network, the automatic meter can provide the quick 
reporting of tampered meters so that appropriate action can be taken to both investi-
gate and correct the situation. 

From a financial perspective benefits could be realised in the form of overall op-
erational cost reductions. However the energy sector is now dragging its feet because 
the direct financial benefit is limited [53]. There would be an overall decrease in staff 
salaries for fixed network AMR, but increase in redundancy payouts. However, initial 
investments would be required for installation and setup. It is anticipated that there 
would be a greater initial setup cost for fixed AMR in comparison to handheld AMR. 
However there have been shifts within this paradigm. Electricity Today (2007) high-
lights that the Tantalus wireless system in the US, which uses public spectrum over a 
private network for transmission of meter data, provides the performance of two-way 
telemetry but with a significantly lower cost structure. Currently in the UK, there are 
no standards relating to automated meters and therefore if a customer changes sup-
plier the meter cannot be read by a rival and the Distribution Business Unit would 
have to recover its investment in automation. 

From an internal business process perspective, automation would be less prone to 
human error particularly in a fixed network. However there would need to be a number 
of logistical considerations with reference to the installation of the infrastructure. For 
example the meters can take readings as often as twice a minute, so power companies 
could have to deal with large amounts of data from millions of customers [54].  
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Suppliers would therefore have to overhaul their IT systems to cope with the huge 
increases in data generated by the meters, and this information would have to be cross-
referenced with existing systems and stored for up to three years to meet data regula-
tions [51]. Automation would also enable the remote connection and disconnection of 
electricity. Billing complaint calls could be handled more quickly due to availability of 
more frequent meter readings following the installation of AMR [52]. However, there 
is a growing pressure from consumer groups for AMR to be regulated. For example 
EnergyWatch states that government action will be needed to establish appropriate 
interoperability standards for the meters themselves and the Energy Retail Association 
wants a deadline for rollout for the meters in the next decade [53]. 

From a learning and growth perspective fixed network automation does not re-
quire meter readers to collect data in the field as it automatically transfers electricity 
consumption from the automated meter to a central computer system. There would 
however be a potential increase in staff with the change in systems for installation 
purposes. Handheld AMR would still require a meter reader to ‘walk-by’ customer’s 
premises, carrying a handheld computer to collect meter readings. Such staff may also 
need a small amount of training in the use of new handheld meter reading devices and 
new office systems. There would be fewer employee injuries, especially in areas with 
fenced yards, dogs and landscaping [52], reducing the amount paid in compensation.  
This would be more pronounced in the case of a fixed network AMR. 

Table 3. Functional requirements 

Functional 
Requirement 

No. 
Functional Requirement Description 

FR1 
AMR meter to be permanently installed at each customer’s 
premises 

FR2 
Meter reading device to remotely read electricity consumption 
each month or on-demand 

FR3 
Meter to permanently display real-time prices and electricity 
consumption to customers 

FR4 

Communication system to enable the transfer to meter data to the 
central billing office, e.g. installation of antennas, towers, collec-
tors, repeaters or other permanently installed infrastructure to 
collect meter readings from AMR and transfer the data to a cen-
tral computer 

FR5 
Central office equipment: software to store meter and collection 
data for each customer 

FR6 
Central office equipment: an interface to allow for daily transac-
tions with the billing system 

FR7 
Automation technology to allow for remote reconnection and 
disconnection of customer electricity 

FR8 
Handheld computers with a receiver/transceiver to be used by 
each meter reader to collect meter readings from an AMR capa-
ble meter every three months 

FR9 
Handheld computer data to be automatically transferred to the 
central billing office software (FR5) for processing 



 The Intertwining of Enterprise Strategy and Requirements 363 

 

3.3   Automation of Meters: Functional and Non-functional Requirements 

To realise fixed network automation a number of functional requirements would need 
to be considered to support such automation, shown in Table 3. 

To realise handheld AMR, FR2 would be replaced with FR8 and FR4 with FR9. 
To realise fixed network or handheld AMR non-functional requirements (NFR) would 
be required as shown in Table 4. 

Table 4. Non-functional requirements 

Non-
Functional 

Requirement 
No. 

Non-Functional Requirement Description 

NFR1 Automated meter data to be transferred by secure means 
NFR2 Automated meters to be tamper proof 
NFR3 Handheld devices to be robust and rugged with ease of handling 
NFR4 Automated technologies and infrastructure to be regularly main-

tained 
NFR5 Customer consumption need to be stored securely 

Options to be considered for automation are summarised as follows: 

1. Continue with as_is situation, in which meters are read by traditional means. 
2. Introduce handheld automation. 
3. Introduce fixed network automation. 

The degree to which automation (options 2 and 3) is introduced would also need to be 
determined, as a complete change from traditional meter reading to automation may 
not be suitable to the overall success of the enterprise. 

3.4   Automation of Meters: Ontology, Scenarios and Rationale 

An example of the ontology classes for the traditional and automated meter reading 
process are shown in Fig. 4. These conceptual component classes are subclasses of the 
meter reading class and the meter reading class forms a subclass of the internal busi-
ness process perspective class. This assists with the organisation of concepts in the  
ontology, which is used to provide a structure for the System Dynamics model. For 
example the ontology is comprised of the four perspectives of the Balanced Scorecard 
and the relationships defined in the assertions section provide the links between per-
spectives. This structure is then translated to the System Dynamics model. 

Class relations, object and data type properties and assertions were stated for each 
class. An example of three data type property assertions for the traditional meter read-
ing class are as follows: 

Э hasTravelTime has 0.6 
Э hasReadingTime has 4.0 
Э hasUploadReadingTime has 0.2 
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Fig. 4. Ontology classes for meter reading process 

These definitions represent a best practice of the time involved to travel, read and upload a 
customer’s meter reading using traditional means, expressed in minutes.  The figures for 
traditional meter reading contrast to handheld automated meter readings shown below: 

Э hasTravelTime has 0.3 
Э hasReadingTime has 0 
Э hasUploadReadingTime has 0.05 

It is estimated that the travel time would be halved and the meter reading time, 
zero, as meter readers would ‘walk-by’ customer’s premises using a handheld device 
to read the meter. The meter readings would be automatically uploaded rather than 
manually entered into the computer system.  

Fig. 5 shows a screenshot of the ontology in Protégé for the traditional meter read-
ing class. The data type property assertion values are shown in the centre of the figure 
and the ontology class structure on the left.  

 

Fig. 5. Screenshot of Protégé ontology - traditional meter reading class 
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The meter reading classes and properties from the ontology (Fig. 5) are used to 
compile the model of requirements (Fig. 6). In the ontology for System Dynamics 
modelling figures of best practice are used to quantify the model components, ena-
bling the System Dynamics model to reflect greater realism and standards. The use of 
the ontology also allows semantics to be defined (e.g. though classes, property names 
and descriptions) together with relationships for concepts in the System Dynamics 
model. This assists in reducing concept misunderstandings. Fig. 6 shows a very small 
fraction of the system dynamics model for traditional meter reading, which comprises 
of travel, reading and upload times from the ontology. The billing hours are depend-
ent on the number of traditional meter customers and the number of times that the 
meter is read each year. 

Fig. 7 shows an illustration in Compendium of the modelling rationale for tradi-
tional meter reading.  

Traditional meter reading and traditional meter reader travel time are both accepted 
as components in the system dynamics model. It is not necessary to include ‘indication 
of kilowatts’, as it is not required for the calculation of meter reading time. Each model 
component is reasoned about and documented in a similar way during model develop-
ment. This provides a means for multiple stakeholders to deliberate and negotiate. 

 

 

Fig. 1. System Dynamics model for traditional meter reading 
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Fig. 7. Compendium diagram of modelling rationale for traditional meter reading 

Installation of the infrastructure and meters for automation would take place during 
the first five years. The implementation of new technologies is reflected in the results 
over the preceding five years. It is assumed that the Distribution Business Unit has the 
following starting figures: 8 million customers, 1500 meter readers and 250 billing 
processing staff. The level of current customers together with those lost to competi-
tors and disconnection is simulated in the customer perspective of System Dynamics 
model. The learning and growth perspective keeps a record of staffing levels includ-
ing members of staff that have been lost through redundancy. The CO2 emissions take 
vehicle and office energy emissions into consideration. For example vehicle emis-
sions are calculated from the average meter reader mileage against the CO2 emissions 
per mile travelled. Investment costs for automation were as follows: handheld auto-
mation - €€ 40 per meter and radio-fixed network automation - €€ 80 per meter [55]. 
These figures include: hardware, software, installation, integration with billing, train-
ing and vendor deployment support. Other costing figures included in the financial 
perspective of the System Dynamics model are as follows: salaries, redundancy pay-
out, meter reader injury compensation, reconnection, disconnection, electricity and 
electricity theft, maintenance, vehicles, resources and payment method commission.   

The following five scenarios were simulated and the behaviour of the system over 
a 10-year period observed: 

Scenario B1.1 – 100% traditionally read meters 
Scenario B1.2 – Introduce handheld automation at 50% 
Scenario B1.3 – Introduce handheld automation at 100% 
Scenario B1.4 – Introduce fixed network automation at 50% 
Scenario B1.5 – Introduce fixed network automation at 100% 

Fig. 8 shows behaviour over time for scenario B1.1 – 100% traditional meters. A 
decrease in customer satisfaction is shown, which has a consequential effect on reduc-
ing customer numbers. Costs continue to increase over a ten year period with ever 
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increasing maintenance costs required for ageing meters, meter reader salaries and 
compensation, etc. Billing hours reflect the number of customers and therefore  
decrease, although when compared to scenarios B1.2 to B1.5, billing hours are the 
highest. The decrease in CO2 emissions reflects the natural improvement to vehicle 
emissions by vehicle manufacturers. Although this figure is also the highest when 
compared to the other scenarios.   

 

Fig. 8. Behaviour over time for scenario B1.1 – 100% traditional meters 

Fig. 9 shows behaviour over time for scenario B1.3 – 100% handheld automation. 

 

Fig. 9. Behaviour over time for scenario B1.3 – 100% handheld automation 
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Customer numbers see an initial decrease but then begin to increase following the 
early stages of the introduction of handheld automation. Customer satisfaction in-
creases at a slower pace during the introductory years of automation, followed by a 
steeper rise and then a ‘plateau’ when all systems have been fully installed and inte-
grated. Costs reflect installation and setup of the new system and also the rise in cus-
tomers attracted by a more efficient service. Billing hours reduce significantly during 
the first five years. The decrease in CO2 emissions reflects the natural improvement of 
CO2 emissions and decreased vehicle usage due to reduced staffing levels, resulting 
from increased speed of meter reading. 

The results for each scenario are shown in the summary table (Table 5).  100% 
fixed automation shows the largest increase in customer satisfaction and number of 
customers. With reference to the financial aspect there is an increase in cost for auto-
mation in comparison to traditional metering due to the investment costs associated 
with setting up the new systems.  

Table 5. Comparison of statistical results for scenarios 

Scenario 
B1.1 - 
100% 

traditional 
meters

Scenario 
B1.2 -
50% 

handheld 
automation

Scenario 
B1.3 - 
100% 

handheld 
automation

Scenario 
B1.4 -  
50%  
fixed 

automation

Scenario 
B1.5 - 
100%  
fixed 

automation

Current
customers

6.7 million 7.1 million 8.009 
million 7.2 million 8.5 million 

Customer 
satisfaction 

62% 76% 90% 77% 91% 

Costs (€) 6.5 billion 7 billion 7.6 billion 7.2 billion 8 billion 
Profit (€) 1.658 

billion 
1.659 
billion 1.8 billion 1.5 billion 1.4 billion 

Billing 
hours

2.1 million 1.2 million 160,716 1.1 million 53

CO2

emissions
(kgs) 

2.6 million 937,300 759,234 237,529 59,463 

 

The reasoning for acceptance or rejection of each scenario is shown in Fig. 10. The 
scenario rationale shows that scenario B1.3 – 100% handheld automation is accepted 
as it has the most pro nodes and therefore fulfils the most strategic objectives.  

These results are also displayed in Table 6. Therefore implementation of 100% 
handheld automation would allow strategic requirements SR1, SR2 and SR3 to be 
accepted.  
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Fig. 10. Scenario rationale for meter reading 

Table 6. Alignment of scenarios and business strategic objectives 

 Scenario 
B1.1 - 
100% 

traditional 
meters 

Scenario 
B1.2 - 50% 
handheld 

automation 

Scenario 
B1.3 - 
100% 

handheld 
automation 

Scenario 
B1.4 - 50%  

fixed  
automation 

Scenario 
B1.5 - 
100%  
fixed  

automation 
SO1 - Increase 
customer num-
bers 

 
x 

 
x 

 
 

 
x 

 
 

SO2 – Increase 
customer satis-
faction 

 
x 

 
 

 
 

 
 

 
 

SO3 – Increase 
profits 

 
x 

 
 

 
 

 
x 

 
X 
 

SO4 – Decrease 
time to calculate 
bill 

 
x 

 
 

 
 

 
 

 
 

SO5 – Decrease 
CO2 emissions 

 
x 

 
 

 
 

 
 

 
 

 

The conceptual framework provides a number of benefits during co-development of 
requirements. Prior to modelling the ontology provides a strategic context for re-
quirements and enables the structuring of a complex Universe of Discourse, clarifying 
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semantics and standards of components relevant to the requirements. During model-
ling ontology provides a knowledge base to inform modelling decisions, potentially 
reducing misunderstandings and conflicts. Rationale facilities discussion about model 
components and keeps a record of reasoning regarding model construction, taking 
multiple stakeholders needs into consideration. Ontology and rationale working to-
gether provide knowledge and reasoning to support the modelling of requirements. 
Following modelling, simulation of requirements alternatives allows the testing of 
strategic viability. Scenario rationale enhances this by documenting decision-making 
regarding different alternatives. 

4   Conclusion 

Requirements Engineering is considered by many as the most critical of all develop-
ment activities for socio-technical systems. The sensitive area of early requirements is 
only recently beginning to be addressed in a methodological sense. Considerable 
effort is required to bridge the semantic islands that are often formed between differ-
ent communities of client stakeholders, designers, regulators, etc. Indeed the entire 
system development process seems to be disadvantaged by lack of techniques to assist 
with effective communication [56, 57]. An in-depth study on industrial practice [58] 
provides evidence that communication is crucial to the entire design process.  

In early requirements, when there is a great deal of vagueness and uncertainty 
about system goals that are often set against a background of social, organizational 
and political turbulence, the need for a systematic and systemic way of dealing with 
all co-development aspects seems to be of paramount importance. 

Whilst qualitative-based conceptual modelling approaches seem to be an im-
provement on purely linguistic-based approaches, they fail to bridge the communica-
tion gap between client stakeholders and analysts. The issue of analyst-client  
relationship has been highlighted by many authors [59, 60]. This type of modelling 
paradigm that has evolved from work on Databases, Software Engineering or Object-
oriented Design, with its analyst orientation, does little to enhance communication. 

This chapter has presented a framework within which a set of techniques provides 
capabilities for improving the understanding of the interrelations between strategic 
goals and system functionality. 
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Abstract. Laws and regulations are playing an increasingly important
role in requirements engineering and systems development. Monitoring
systems for requirements and policy compliance has been recognized in
the requirements engineering community as a key area for research. Simi-
larly, legal compliance is critical in systems development, especially given
that non-compliance can result in both financial and criminal penalties.
Working with legal texts can be very challenging, however, because they
contain numerous ambiguities, cross-references, domain-specific defini-
tions, and acronyms, and are frequently amended via new statutes, reg-
ulations, and case law. Requirements engineers and compliance auditors
must be able to identify relevant legal texts, extract requirements and
other key concepts, and monitor compliance. This chapter surveys re-
search efforts over the past 50 years in handling legal texts for systems
development. This survey can aid requirements engineers and auditors
to better specify, test, and monitor systems for compliance.

Keywords: legal requirements, legal compliance.

1 Introduction

Requirements for software systems are increasingly originating in laws and reg-
ulations. For example, numerous laws and regulations have emerged in the past
fifteen years regarding data privacy. In the United States, privacy requirements
have been elaborated by laws and regulations governing particular industries,
such as the Health Insurance Portability and Accountability Act (HIPAA), which
governs patient health records, and the Gramm-Leach-Bliley Act, which governs
financial institutions. In Europe, the European Union passed the EU Directive
on Data Protection, which details privacy requirements for all organizations op-
erating in Europe. Several other countries, such as Canada with its passage of the
Personal Information Protection and Electronic Documents Act, have enacted
comprehensive privacy requirements cutting across all private-sector industries.

The need for system developers to monitor systems for both requirements and
policy compliance has been identified as a challenging and important problem
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in the requirements engineering community [43]. According to recent surveys of
senior information security professionals, legal compliance has been the primary
driver of information security policy for the past three years [18]. Requirements
engineers and system developers currently face two major problems in assessing
legal compliance: (1) determining the applicable regulations, and (2) creating the
requirements and policies necessary to achieve compliance with those regulations
[25]. Methodologies for monitoring compliance with requirements and policies
currently are not available to developers [43]. And yet, stakeholders need to
better understand the regulations that govern the systems for which they are
responsible and require precise answers to specific queries about what is allowed
and what is not allowed [4][37]. The penalties for non-compliance can be severe;
for example, HIPAA specifies up to $250,000 and 10 years in prison for criminal
violations.

For requirements engineers, access to specific laws and regulations has become
easier with the push towards online access for legal texts occurring in some coun-
tries. However, an organization must still identify the regulations relevant to its
specific system before it can even begin to assess its compliance with the law.
Once the relevant laws and regulations are identified, extracting requirements
from legal texts is still a difficult and error-prone process [48]. In addition, an
organization must still engage in traditional software engineering activities (e.g.,
analysis, modeling, development) as well as traditional security activities (e.g.,
policy enforcement and auditing) in order to properly implement legal compli-
ance processes [15].

This chapter surveys research efforts over the past 50 years in modeling and
using legal texts for system development. The survey identifies the strengths and
weaknesses of each approach, and based on analysis of the literature to date as
well as our prior experiences in analyzing policy and regulations [14][20][39], we
propose a broad set of requirements for tool support that would aid requirements
engineers and compliance auditors alike. It is our hope that these requirements
will prompt serious consideration by the requirements engineering community,
as it is within this community that we believe significant progress can be made
to address the challenges related to legal compliance in software systems. The
treatment of legal texts requires consideration of the business, organizational,
and community context surrounding the development process in order for re-
quirements engineers to appropriately address legal requirements.

The remainder of this chapter is organized as follows. Section 2 discusses the
nature of legal texts, noting the various characteristics that make such texts
difficult to work with. Section 3 discusses the three key layers of law relevant to
requirements engineers in working with legal texts. Section 4 analyzes various
efforts from the past 50 years in modeling regulations, extracting key concepts,
and using legal texts in system development. Based on our extensive review of
prior work, Section 5 proposes a set of broad requirements for comprehensive
systems to assist requirements engineers and auditors with regulatory compliance
tasks. Finally, Section 6 discusses the analysis and outlines future work needed
to realize such systems.
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2 The Nature of Legal Texts

There are certain characteristics of laws and regulations that make them both
useful and difficult to apply to design methodologies. Legal texts tend to be
very structured and hierarchical documents. However, legislatures and agencies
at the federal, state, and local level can all specify new laws and regulations, and
these legal texts may complement, overlap, or even contradict one another due
to differing objectives and changes over time [26]. In addition, amendments and
revisions to the same provision of a legal text can lead to internal contradictions
[4]. As a result, some areas of law undergo constant changes, whereas other areas
are relatively stable [6].

Another important characteristic of laws and regulations is the frequent ref-
erences to other sections within a given legal text and even to other legal texts.
Much of the prior work in computer science examining laws and regulations
has noted the difficulty of handling these numerous cross-references within le-
gal texts (e.g., [7][14][25]). These cross-references force requirements engineers
to spend additional time reading and understanding legal texts before they can
even begin to extract key concepts or apply the legal texts to system design.
May et al. employ a methodology to derive formal models from regulations that
they applied to the HIPAA Privacy Rule [35]. In their study, discussed in Section
4.6, they assume that external and ambiguous references are satisfied by default
[35]. This contradicts our own study of the HIPAA Privacy Rule [14], discussed
in Section 4.3, in which we discovered that cross-references introduce impor-
tant constraints from other sections that restrict which rules apply in different
situations and contexts.

If references to other sections of a particular legal text or other external legal
texts are unaccounted for, requirements engineers are prone to make interpreta-
tions and inferences that are inconsistent with the law. Such assumptions will
inevitably lead to overlooking important exceptions or priorities and ultimately
lead to non-compliance. Traceability within the context of legal systems takes
on a far greater significance than we already afford it in the requirements engi-
neering community because legal traceability is supercharged, so to speak, with
priorities and exceptions that govern special cases (e.g., which information can
be accessed, when such access is allowed). Thus, the ability to manage cross-
references and maintain traceability from the originating law, regulation, or pol-
icy to the relevant requirements must be addressed in any system for supporting
requirements engineers and/or compliance auditors.

Laws and regulations typically specify a large number of relevant definitions
and acronyms, further complicating the job of requirements engineers and sys-
tem designers [25]. Along with cross-references, such extensive definitions ne-
cessitate a significant amount of domain knowledge before the legal texts are
comprehensible and usable. When spread across multiple texts that may have
overlapping, inconsistent, or contradictory terms, the domain-specific lexicon
significantly raises the barrier to entry for developers hoping to build legal com-
pliance into their software systems. A more fundamental problem in dealing with
laws and regulations is the fact that legal texts are laden, often by design, with
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ambiguities. For example, § 164.306(a)(2) in the HIPAA regulations requires or-
ganizations to “protect against any reasonably anticipated threats or hazards
to the security or integrity” of protected health information; the section does
not define what constitutes reasonable anticipation. Researchers frequently note
the difficulty in identifying and resolving such ambiguities in legal texts (e.g.,
[1][14][30][45]).

Researchers have examined the problem of ambiguity in natural language as
it affects requirements engineering. Kamsties characterizes ambiguity as more
problematic than other forms of defects that appear in requirements [23]. Kam-
sties et al. discuss various types of linguistic and requirements engineering-
specific, context-dependent ambiguities [24]. They also note that using formal
methods to remove ambiguities from natural language representations simply
results in an unambiguously wrong specification [24]. Moreover, such formal
specifications are inaccessible to the majority of stakeholders and their formal-
ity makes it more difficult to discover ambiguities than in a natural language
representation [24]. Berry et al. present a guide to disambiguating text for re-
quirements engineers and lawyers alike [8].

There are several different classifications of ambiguities. A simple dichotomy
of ambiguities consists of those that are intentional—to allow the law to be
generalized—and those that are unintentional [1]; the above example from the
HIPAA regulations likely represents an intentional ambiguity. Additional cat-
egorizations include: high-level classifications (e.g., implication-coimplication,
disjunctive-conjunctive, ambiguity of reference) [1]; categorization within spe-
cific domains, such as software engineering, linguistics, and law [8]; a taxonomy
of ambiguities occurring in requirements [23]; a distinction between nocuous and
innocuous ambiguities [16]; and specific types of ambiguities uncovered during
empirical analysis (e.g., conjunctions, under-specifications) [14]. Just as courts
and administrative agencies must struggle to interpret the law when ambigu-
ities are present, so must users, be they requirements engineers or developers,
make crucial interpretation decisions during requirements gathering and software
design.

3 Three Key Layers of Law

In considering the law’s impact on requirements engineering, three broad classi-
fications of source documents emerge for consideration during the development
process: statutory text, supplemental information, and case or administrative
interpretations of the text.

3.1 Statutory Language

The specific text of a law or regulation often specifies requirements directly.
For example, HIPAA contains low-level system requirements governing the im-
plementation of specific security concerns, such as how passwords are handled.
Often such requirements may not be evident through a cursory reading of the
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legal text, and thus various techniques may be necessary in order to extract
relevant requirements for software system design.

Due to the nature of legal texts, as discussed in Section 2, it is not possible for
requirements engineers to consider only the statutory language to adequately ad-
dress legal requirements. As with requirements more generally, the law is bound
up in context. The complexity surrounding statutory language means that re-
quirements engineers cannot rely merely on the wording of the legal text, but
instead must consult at least one of the other categories of source documents.

3.2 Supplemental Information

Supplemental information can provide rich insight into a legal text’s purpose and
meaning. Laws and regulations often are accompanied by guiding documents on
how to interpret and use the legal texts. Such supplemental information may
include reference handbooks or other published guides to interpreting the text
[25]. The passage of most laws and regulations is accompanied by a detailed
legislative or administrative history that can illuminate the purpose and intent
of specific provisions of a given legal text. For example, U.S. laws generally un-
dergo committee hearings and reports before passage by the legislature, whereas
U.S. regulations often involve agency comment and review periods before the
regulation becomes enforceable. These drafting and review documents thus can
provide guidance to how a legal text is to be read and understood.

Ambiguity associated with regulations has compelled government agencies to
provide detailed reference materials and instructive handbooks to improve un-
derstanding and compliance efforts [29]. For example, the U.S. Department of
Health and Human Services publishes a summary of the HIPAA Privacy Rule
and guidance documents for implementing the HIPAA Security Rule. Additional
supplemental guides are created by organizations separate from the government
agencies that actually promulgate regulations [30]. This large, diverse set of
documentation can be crucial for software developers who are attempting to
identify regulatory compliance requirements early in the design process. How-
ever, requirements engineers must be careful when using these supplemental
documents, as they do not have the same legal standing and may even contain
misinterpretations of the original regulatory text.

3.3 Administrative and Case Law

The third layer of the law arises through case and administrative rulings inter-
preting legal texts.. The amount and influence of interpretative rulings on any
given legal text varies widely. Some areas of law, such as tax law, are well-settled
and have a large body of case law; as such it is possible to classify most cases as
‘routine’ [22]. Other areas, such as information security and data privacy law,
are still emerging fields and are therefore subject to greater fluctuation in the
requirements stemming from laws and regulations; as such, very little case or
administrative law exists to guide requirements engineers in interpreting legal
texts governing security or privacy concerns.
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Administrative and case law presents difficult problems for requirements en-
gineers in both understanding context and managing complexity. For example,
requirements engineers may need to consult with their organization’s legal coun-
sel in order to establish interpretations of a given ruling, due to complexities
such as the authority of a given ruling (e.g., binding, persuasive) and whether
all or part of the ruling is still good law. Furthermore, rulings may establish new
requirements directly as part of an interpretation of a given legal text. Therefore,
use of administrative and case law requires changes in the development process
to accommodate legal and organizational contexts that may traditionally have
been considered separately from engineering tasks.

4 Survey of Work with Legal Texts

This section examines various approaches for modeling legal texts, extracting
key concepts from the language of legal texts, and creating compliance-checking
systems. This survey followed the principles of systematic review as detailed by
Kitchenham [27]. The survey sought to identify, “what efforts have been made to
model legal texts for use in requirements engineering and system development?”
Briefly, the survey methodology entailed: (1) identifying potentially relevant re-
search through use of the ACM and IEEE databases; (2) following citations to
uncover additional papers for review, which resulted in the discovery of over
150 relevant publications; and (3) careful analysis and review, resulting in the
selection of 39 papers in the following discussion, organized into ten categories.

4.1 Symbolic Logic

One of the earliest attempts to model legal texts involved the use of symbolic
logic, also known as mathematical logic. The approach attempted to balance
the benefits of natural language with the rigor of symbolic logic [1], serving
as a precursor for later efforts to provide both human- and machine-readable
interpretations. Allen’s technique employed six key logical connectives: implica-
tion, conjunction, coimplication, exclusive disjunction, inclusive disjunction, and
negation [1]. By identifying the logical connectives, one could largely eliminate
the unintended ambiguities present in legal texts by using a more mathematical
representation. This effort, while noteworthy in its systematic legal represen-
tation, did not leverage the processing and data manipulation capabilities of
computers; it sought to answer specific queries and make legalistic determina-
tions, rather than shape requirements gathering or systems development.

4.2 Knowledge Representation

Numerous approaches to representing legal texts as computer programs began
in the late 1970s, largely based on logic programming techniques. These knowl-
edge representation efforts were based on the premise that a model of legal texts
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should closely parallel the language of those texts [10]. As such, most of these
approaches used Prolog—a logic programming language targeted for knowledge
representation and expert systems—to represent the legal rules extracted from
laws and regulations. Specific efforts included: TAXMAN, modeling the U.S.
Internal Revenue Code [36]; representing the British Nationality Act as a logic
program [45]; modeling the Income Tax Act of Canada [46]; representing the U.K.
welfare law as a logic program [7]; ESPLEX, a logic system for representing legal
rules [10]; capturing the Indian Central Civil Service Pension Rules in logic [44];
and modeling the Dutch Opium Act [41]. Each of these knowledge representation
techniques could aid requirements engineers in understanding legal texts and
answering specific queries during requirements elicitation.

Knowledge representations of legal texts afford certain advantages to sys-
tem developers and policy-makers alike. Logical representations enable users to
identify unintended ambiguities in a legal text [45]. This allows requirements
engineers to pinpoint specific ambiguities and resolve those issues before system
development commences. It also allows policy-makers to address these ambigu-
ities in future amendments to laws and regulations. Developers can use expert
systems to make specific queries when issues arise regarding compliance or design
decisions. Such targeted queries enable developers to resolve known compliance
issues with the relevant legal texts.

Several characteristics of these systems limit the generalizability or applica-
bility of this research to legal texts. The knowledge representation approach has
focused primarily on either well-settled areas of law or regulations with minimal
accompanying case law. Most of the projects were conducted as case studies and,
to the best of our knowledge, no final product or working system ever resulted
from the research. The goal often was to answer specific queries or handle what-if
scenarios; none of these early efforts used the model to influence system develop-
ment or check for compliance. These knowledge representation approaches had
no degree of automation: for each new legal text, a user would be required to
manually extract the legal rules and encode them in logical clauses. Finally, the
research efforts referenced above, with the exception of [41], make no mention of
providing traceability between the representation in logic and the original legal
text. As previously discussed, this lack of traceability creates compliance vul-
nerabilities as law evolves via case law, amendments to the original legal text,
or additional laws and regulations coming into force. These drawbacks combine
to make knowledge representation techniques problematic and very limiting for
software developers who need to extract requirements and system design ele-
ments directly from legal texts.

A more recent variation on logic programming efforts employs event calculus
to track changes in legal texts over time [32]. The approach uniquely captures
the frequent changes associated with legal texts, enabling users to model and
understand how the law changed across revisions [32]. Martinek and Cybulka
create a knowledge base maintaining information for when changes are made to
regulatory texts [32]; this provides a limited measure of traceability for devel-
opers evaluating changes over time. The approach provides a unique look at the
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dynamic nature of legal texts, but does not address the same aforementioned
shortcomings facing other logic programming implementations.

4.3 Deontic Logic

Another logic-based approach to modeling legal texts involves the use of deontic
logic to capture the rights and obligations present in the law. The impetus for this
approach is that “the law is like a programming language controlling a society
. . . [where] observations must be made, calculations performed, records kept and
messages transmitted” [47]. Extracting specific rights and obligations from legal
rules permits the creation of a knowledge base, as was possible with the logic
programming efforts discussed in Section 4.2, to model the key elements of legal
texts and answer directed user queries. The major deontic logic efforts include:
LEGOL, a formal LEGally Orientated Language for capturing obligations [47];
ON-LINE, an ONtology-based Legal INformation Environment for capturing
and analyzing legal texts as legal knowledge [49]; work establishing the legal
importance of monitoring permissions as well as obligations [11]; and systems
for automated extraction of normative references from legal texts [9][40].

Deontic logic approaches have not yet met users’ needs for working with le-
gal texts and ensuring compliance. By extracting rights and obligations, deontic
logic systems disambiguate legal texts and make them more palatable for sys-
tem designers. Early work established the utility of such an approach, but a
user was still required to manually encode the law into the deontic operators
for rights and obligations [47][49]. The ON-LINE system was able to deal with
only small sections of legislation at a time and usability of the ontology-based
approach proved problematic during usability testing [49]. More recent efforts
include automated extraction of normative references—such as specific rights
and obligations—detailed in a legal text, and addressed the problem of the law’s
evolution by tracking changes over time [9][40]. This provides for some degree of
traceability, as the system maintains information on each extracted element—
including its type, number, date, section and subpart headers—and the norma-
tive references [40]. However, these more recent projects were not completed,
and there are few examples to illustrate the effectiveness of such an approach.
While these research efforts established deontic logic as a worthwhile approach
to extract key information from legal texts, they did not result in usable tools
for developers to influence system design or monitor compliance.

A more recent deontic logic implementation involves the explicit extraction and
balancing of rights and obligations from regulations [14]. The research focuses on
providing requirements monitoring and compliance support for system developers
and maintainers [12]. Semantic parameterization entails identifying the ambigu-
ities within a legal text and balancing the extracted rights and obligations [12].
This decomposition of regulations enables the user to identify both explicit and
implied rights and obligations [12]; capturing these implied rights and obligations
is not addressed by the other deontic logic approaches. The process, however, re-
quires manual extraction of the rights, obligations, delegations, and constraints.
Unlike most other approaches, Breaux and Antón maintain traceability across all
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artifacts from the HIPAA section and paragraph number to the corresponding soft-
ware requirements and access control rules. This approach has been tested on only
a part of the HIPAA Privacy Rule; as such, its scalability and applicability to other
domains is not yet validated.

4.4 Defeasible Logic

Defeasible logic provides an alternative logic-based approach to modeling legal
texts. Defeasible logic is a form of non-monotonic skeptical reasoning, wherein
there are strict rules, defeasible rules, and defeaters. Strict rules always hold,
while defeasible rules hold true unless an exception, or defeater, exists for the
rule. Given the existence of overlapping and conflicting legal texts at different
levels of government, defeasible logic appears to be a natural fit for modeling
such texts [3]. The practical use of defeasible logic in routine legal practice is
emphasized as a key advantage for system developers and users of legal texts
[22]; defeasible logic can aid in both decision support and legal reasoning [4].

Proponents of defeasible reasoning also have noted that deontic logic will
not capture all eight fundamental legal conceptions [21]: right, no-right, privi-
lege, duty, power, disability, immunity, and liability [19]. Hohfeld presented these
fundamental legal conceptions as the basic elements needed to understand any
legal relation, noting specifically that ‘rights’ and ‘duties’ (obligations) were in-
sufficient to address the complexities in many areas of law [21].

Antoniou et al.’s approach has yielded an operational implementation of a
defeasible logic system [3], but there remain several disadvantages to such an
approach for modeling legal texts and monitoring compliance. For example, nu-
merous features need to be added to any ‘pure’ defeasible logic implementation
(e.g., representing hierarchies, arithmetic and temporal operators, and capturing
underlying legal knowledge) to model all of the law’s nuances [3]. The computa-
tional complexity of a defeasible logic system is in dispute: early research touted
low complexity as a major advantage [4], whereas more recent research indicated
that approximating a model was necessary due to concerns about complexity
[22]. Again, these efforts in defeasible logic make no mention of maintaining
traceability and provide no examples of directly modeling legal texts. Given the
lack of follow-up on defeasible logic approaches, the viability of such systems
remains uncertain. It appears that no system is available to leverage defeasible
reasoning in requirements engineering and compliance monitoring.

4.5 First-Order Temporal Logic

Barth et al. proposed using first-order temporal logic to extract key concepts—
context, roles, type of information—rather than precisely modeling a legal text
[5]. The approach, which is based on a conceptualization of privacy using the
contextual integrity framework [38], captures only the privacy-related elements
of regulations such as parts of HIPAA [5]. The use of formal logic is reminiscent
of other logic-based approaches, but the narrower focus on privacy limits the
applicability of this approach to other regulations. Preliminary results show that
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the contextual integrity framework captures most privacy elements from the
regulations tested to date; however, Barth et al. do not disclose what percentage
of privacy elements originally present in the text were extracted using their
framework [5].

Barth et al. establish the framework’s viability in assessing compliance between
privacy policies and the privacy provisions of regulations. However, a major lim-
itation of this approach for the requirements engineer is that Barth et al. make
no mention of maintaining traceability between the extracted concepts and the
original regulatory text. Although this approach may be capable of aiding devel-
opers in evaluating system requirements and design vis-à-vis privacy regulations,
its narrow framework does not appear to extend to other legal texts. Unlike many
of the earlier research projects discussed in this section, this framework may soon
be available to other researchers for validation and extension.

4.6 Access Control

Another approach to modeling legal texts employs access control techniques to
capture the privacy-related elements of regulations. May et al. propose an “au-
ditable privacy system” that includes conceptualizations for transfer, actions,
creation, rights establishment, notification, and logging [35]. Leveraging the sim-
ilarity between legal privacy texts and APIs in specifying rules on accessing pro-
tected information, they derive privacy-focused mandatory access control rules
directly from regulations [35]. This translation into access control rules captures
regulatory conditions and obligations as allow/deny operations. Conditions and
obligations that cannot be represented as access control rules are cast instead as
external environmental flags [35].

The auditable privacy system implementation fulfills some key requirements
engineering tasks, but its narrow focus keeps it from adequately supporting the
complex needs of requirements engineers working with legal texts. May et al. use
a modeling language to represent legal texts and privacy policies, thus enabling
model checking and verification operations. Such formalism supports queries on
the regulatory model, so that developers and policy-makers alike can analyze
a given text and evaluate compliance and design issues [35]. However, their
regulatory model abstracts away many key aspects and characteristics of legal
texts; for example, May et al. assume that external and ambiguous references
are satisfied by default. In addition, the model omits many low-level system
requirements (e.g., password procedures) specified by HIPAA [35]. The narrow
privacy focus, coupled with the inadequate support for key elements of legal
texts, makes this approach unsatisfactory for requirements engineers who need
to extract requirements from legal texts and monitor compliance.

4.7 Markup-Based Representations

Given the hierarchical nature of legal texts, some researchers have attempted
to capture legal texts with semi-structured markup languages, such as Stan-
dard Generalized Markup Language (SGML) and Extensible Markup Language
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(XML). Such markup-based representations can mimic the structure of legal
texts and also maintain annotations and other metadata regarding each section,
part, or even sentence of the original legal text [25]. A markup-based repre-
sentation also enables the system to easily capture and display information on
definitions, acronyms, and cross-references within legal texts, thereby addressing
several of the key requirements for using legal texts during system development.
A semi-structured representation can be combined with well-established infor-
mation retrieval techniques and first-order predicate logic to aid users in both
locating and analyzing relevant sections of a legal text [30]. In addition, some
newer legal texts already are being represented in XML; augmenting these ex-
isting representations is a relatively easy task [37]. Research efforts in this area
include: SGML modeling of decisions of the Supreme Court of Canada [42];
REGNET, an XML framework for representing regulations [25][26][29][30][31];
and an overview of several XML models for representing legal texts [37].

Markup-based representations hold promise for providing requirements engi-
neers with the necessary framework for leveraging regulations in system devel-
opment. The work in SGML was an isolated effort now superseded by research
utilizing XML, a simplified derivative of SGML that is easier to process. The
REGNET project, based on an XML framework, has generated over 25 published
papers describing the system and its use in tasks such as: representing regulations
[25], providing similarity analysis between different regulations [29], and helping
policy-makers in drafting new regulations [31]. The REGNET project includes
a parser to automatically transform regulations into XML and uses other tools
to semi-automatically generate conceptual tags for the markup [25]. REGNET
provides a foundation for verifying compliance with a specific regulation, but
has been tested only in limited domains and the prototype system is not yet
available to other researchers. In addition, in its current form REGNET does
not provide a precise model of the regulations [25].

Finally, the research evaluating several different markup-based approaches
does not provide details on the underlying representations; instead it focuses
on techniques for ranking the different XML models being reviewed [37]. Thus,
while markup-based approaches benefit from mimicking the hierarchical, semi-
structured nature of regulations, previous research approaches do not offer de-
velopers any available tools to shape requirements engineering and design efforts
around regulatory compliance. The REGNET prototype system shows the most
promise in assisting with compliance efforts, but comparing and drafting regu-
lations, rather than extracting system requirements, has become the main focus
of this work.

4.8 Goal Modeling

The SecureTropos approach, based on the i* framework, involves extracting and
representing the goals, soft goals, tasks, resources, and social relationships for
defining obligations [33]. It then uses these concepts to model the relationships
for actors, dependencies, trust, delegation, and goal refinement [33]. SecureTro-
pos has been used to assess a university’s compliance with the Italian Data
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Protection Act [33]. Whereas the focus of the research is on applying require-
ments engineering principles to security requirements, the broader context ex-
amines how an organization can assess its compliance with standards from a
particular legal text.

The SecureTropos approach requires a manual extraction of the concepts. As
with several previously-discussed approaches, traceability is not addressed, and
we have yet to find any examples of the mapping between the extracted concepts
and their presence in the original regulation. SecureTropos may enable develop-
ers to better design systems to be compliant with the fundamental concepts of
a specific security regulation, but its scalability and applicability to a broader
range of legal texts is as yet unproven. Finally, SecureTropos does not currently
provide users with the ability to answer specific legal queries or identify changes
in the law over time.

4.9 Reusable Requirements Catalog

Toval et al. created a reusable catalog of legal requirements that were derived
from specific legal texts regarding security and personal data protection [48].
The Personal Data Protection (PDP) Catalog enables requirements engineers to
incorporate legal requirements into the development lifecycle and build compli-
ance into new systems [48]. By providing reusable legal requirements, analysts
can more easily uncover ambiguities and inconsistencies, and the quality of the
catalog improves with each usage [48].

This initial foray into applying requirements engineering methodologies to
legal requirements provides some interesting insight, but does not satisfy the
comprehensive set of requirements engineering needs that we address in this
chapter. For example, Toval et al. highlight traceability as particularly impor-
tant in requirements engineering, yet they provide no evidence of maintaining
traceability between the derived requirements and the source in the legal text,
much less the traceability required for all the cross-references to other texts.
Although their process appears to be a manual effort, Toval et al. fail to men-
tion the length of the regulations they processed or how much time they spent
extracting requirements. Thus, it is difficult to properly evaluate the efficiency
and efficacy of their approach. In addition, a legal requirements catalog requires
updates each time the law changes. Finally, the PDP Catalog does not address
the problem of overlapping or conflicting legal texts; the ability to manage and
resolve these conflicts is an essential part of the requirements engineering process
for systems governed by laws and regulations.

4.10 Identifying Requirements through Case Law

Breaux et al. explored the possibility of identifying requirements through legal
violations discussed in administrative and case law [13]. The research focused on
discovering critical requirements, or requirements derived from vulnerabilities
in existing software systems as documented within court records [13]. By elicit-
ing requirements that may have been missed during initial system development
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and design, requirements engineers can improve compliance and better react to
changing interpretations of laws and regulations. The exploratory case study dis-
cusses three key tasks facing requirements engineers in handling court records:
(1) how to identify relevant case law; (2) how to select relevant court documents
for analysis; and (3) how to best represent extracted information, through se-
quence, misuse case and KAOS diagrams [13]. This research also describes the
criminal law process in the United States, which provides useful guidance for
requirements engineers attempting to work with criminal case law.

This work is still in its infancy, however, as it was applied to only eight
carefully-selected court cases, seven of which involve criminal acts with under-
lying HIPAA violations. The scalability of such a technique has not been es-
tablished, nor does this approach provide sufficient guidance for identifying case
law relevant to a particular software system. Furthermore, the approach was
tested only against criminal case law and did not address administrative rulings
or other types of case law. Finally, the court cases selected in this case study did
not involve direct violations of the laws of interest to requirements engineers,
but rather criminal conduct that implicated those laws (e.g., identity theft with
an underlying HIPAA violation, rather than an individual being prosecuted for
a HIPAA violation directly). However, the case study shows promise for how
requirements engineers might incorporate administrative and case law into the
requirements elicitation and analysis phases of software system development.

5 Supporting Requirements Engineering in Legal
Contexts

Given our experiences to date [2][14][20] and our thorough survey of efforts
to support the analysis of legal texts discussed herein, we identify several key
elements for any system to support the analysis of legal texts for requirements
specification, system design, and compliance monitoring.

5.1 Identification of Relevant Laws and Regulations

Our discussion in Section 1 focused on the need to identify relevant legal texts,
extract the requirements for a given system, and answer specific legal queries
to test for compliance. Identifying relevant legal texts may not appear to be a
problem facing requirements engineers, but our experience to date shows that it
is a key consideration during requirements elicitation. Oftentimes, analysts dis-
cover additional relevant laws or regulations only when they are midway through
a careful analysis of a particular legal text. Much as the reader of this chapter
may see a citation and check the list of references to locate and read that source,
requirements engineers similarly identify external laws or regulations that con-
strain the very legal text they are examining at any given point in time. This
is not a trivial activity. The referenced legal text may have a completely dif-
ferent set of definitions and terminology, requiring further interpretation and
careful analysis. Making use of the supplemental documents to identify similar
and related legal texts will also aid in addressing the identification problem.
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5.2 Classification of Legal Texts with Metadata

Some classification of legal texts is necessary for developers and auditors to
sort through the large corpus of legal texts and identify those with relevance
to the project or system at hand. To this end, the idea of tagging legal texts
with metadata, as proposed by [25] and others, can lead to a categorization
of such texts over time. For example, a regulatory section such as § 164.310
in the HIPAA regulations can be annotated as generally describing security,
or specifically detailing physical safeguards; in another categorization, it could
be tagged as containing low-level system requirements. With each new legal
text tagged, the corpus becomes more accessible and easily navigated. This use
of metadata can directly combat the complexity of legal texts and facilitate
incorporating legal requirements into the development process.

5.3 Prioritization of Legal Texts and Exceptions

A system for handling legal texts should address the nature of such texts in its
underlying approach. One key requirement is to handle the hierarchical nature
of laws and regulations. Oftentimes exceptions take precedence over the norma-
tive legal requirement. To properly assist requirements engineering efforts within
this context, a support system should understand and manage the relationships
between overlapping or contradictory legal texts. This will enable analysts and
auditors to make determinations about which legal texts override others, de-
pending on jurisdiction. This becomes particularly important when considering
the effects of globalization. For example, various nations’ laws and regulations
on data privacy may differ or contradict one another; thus, users need mecha-
nisms for resolving those situations. In addition, it is important to accommodate
supplemental information as well as case or administrative law. This information
can again be captured as metadata; sections further explained or disambiguated
by supplemental texts or interpretative rulings can be annotated with the more
detailed information.

5.4 Management of Evolving Laws and Regulations

It is critical for requirements engineers and compliance auditors to be able to man-
age the evolution of legal texts over time. Given the frequent revisions to legal texts
as previously discussed, requirements engineers need to be able to capture these
changes and maintain an up-to-date view of the relevant texts requiring analysis at
any given time. It may be necessary to compare changes, and understand the im-
pact of their scope, at distinct time periods to understand how requirements have
evolved and how compliance efforts are impacted by modifications to legal texts.
Thus the system must not maintain traceability not only between legal texts and
requirements, but must also track the point in time at which that link was estab-
lished. For legal analysis and the future development of case or administrative law,
such metadata may be critical for verifying compliance. Analysts may be forced
to update requirements or concepts as laws and regulations change, and therefore
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they will require methods for tracking the status of development efforts vis-à-vis
the changes in legal texts over time.

5.5 Traceability between References and Requirements

As previously discussed, traceability support for both external and internal ref-
erences is critical to ensure requirements engineers are able to accurately capture
the full meaning of any given legal text. In Section 2 we discussed the prevalence
of cross-references within laws and regulations; external references also occur
frequently in legal texts. Thus, it is imperative to maintain traceability between
any section with a reference and the legal text being referenced. This is especially
important given that external references often establish legally binding priori-
ties among requirements and allowable information accesses, uses, disclosures,
and removals. Navigating across these references, as well as from specific legal
statements to the derived requirements, will improve analysts’ understanding of
the text and is essential for gathering all requirements and concepts expressed
by a particular text.

5.6 Data Dictionary and Glossary to Ensure Consistency

The use of consistent definitions and terminology is important in the design of
any software system, and of paramount importance in the context of legal compli-
ance. A data dictionary for all domain-specific definitions and acronyms is needed
to support requirements engineers, policy-makers, and auditors in establishing a
unified glossary for the system specification, design documents, and compliance
audit artifacts. In dealing with legal texts, requirements engineers will frequently
encounter unfamiliar and complex terms, making a thorough glossary even more
important [17]. Given that multiple legal texts may share similar words with
different interpretations, users must be able to view any word’s definition given
the context of a specific text. These definitions should then be referenced in the
creation of a system-wide glossary; once again traceability between the original
legal terms and the system glossary must be maintained.

5.7 Semi-automated Navigation and Searching

Analysts need to be able to access legal texts in a machine- and human-readable
state. Previous requirements engineering research emphasized the relevance of
such access in highly-regulated domains such as health care [17]. Some tasks,
such as extracting concepts and adding metadata, need to be supported by
semi-automated processes; use of semi-automated annotation tools is an active
research topic (e.g., Semio Tagger [25] and CERNO [28]). In addition, users
must be able to view the original legal text at any time, and traceability needs
to be maintained between any machine-readable or logic-based format and the
original natural language representation. Analysts must be able to easily search
and navigate legal texts with varying levels of granularity. Given the complexity
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of the law, users may need to search for specific terms, for more general concepts,
or even scan entire sections of legal texts to clarify their understanding or support
requirements engineering efforts.

5.8 Annotation of Legal Statements

As discussed in Section 2, legal texts are laden with ambiguities. Some ambi-
guities in the law may be intentional, but analysts still need to establish an
interpretation of the law in these cases, as well as maintain traceability with the
section being interpreted. Analysts must be able to attach auxiliary annotations
to ambiguous sections to flag them for further analysis in collaboration with the
proper stakeholders, such as an organization’s legal counsel. Ideally, analysts
should be able to track interpretations across legal texts such that users will
be able to view all assumptions upfront and differentiate the interpretations ac-
cording to the context and conditions associated with any given situation. The
ability to link legal texts and requirements with supplemental documentation
will aid analysts by providing them with additional support for disambiguating
texts for requirements extraction.

5.9 Queries Comparing Legal Concepts and Compliance

As supported by a wide range of approaches [1][7][10][35][36][44][45][46], it should
be possible to perform directed queries on the model of the legal text. These
queries enable analysts to support disambiguation and auditing efforts. Specific
legal queries can allow analysts and auditors to identify all applicable laws and
regulations, discover all uses of a particular term or concept, and compare dif-
ferent texts. Auditors may also wish to query the system to determine whether
a particular legal text has been addressed in a system’s design, or whether any
requirements correspond to a given section.

6 Discussion and Future Work

This chapter has largely focused on work within the computer science and arti-
ficial intelligence domains. It is likely that there has been work with legal texts
in other engineering domains that can be applied to the tasks facing require-
ments engineers in devising software systems for using laws and regulations. It
would be useful to examine how system developers are currently handling legal
texts. Empirical studies of specific organizations would likely reveal additional
requirements in dealing with laws and regulations. One such study could focus
on a particular domain and examine how requirements engineers and system
developers identify and handle relevant legal texts. Another study could focus
on a particular legal text to pinpoint what elements of the text are used and
how the text is managed in terms of the project.

Other concepts studied in requirements engineering are likely to be relevant
for systems managing laws and regulations. Future work should consider how
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requirements engineering research on viewpoints and frameworks can be applied
to legal compliance systems. Research into natural language processing may also
provide insight into parsing legal texts.

Research is underway examining how to mine legal texts to create hierarchies
of stakeholders, data objects, and events. There have also been preliminary ef-
forts to conduct an empirical study of a requirements specification to check for
legal compliance [34]. The case study begins with the previously-derived require-
ments and works backward to establish traceability with the legal text [34]. It is
likely such research will uncover additional issues in monitoring compliance by
working backwards from requirements specifications to the legal text and thus
will discover additional requirements for any future legal compliance system.

7 Conclusion

This chapter discusses the role of legal texts in requirements engineering and
attempts to bring attention to this important domain within the requirements
engineering community. The characteristics of laws and regulations make them
both necessary and challenging to use during system development. This survey
examines the past 50 years of work in modeling laws and regulations, extracting
key concepts from legal texts, and monitoring compliance. In addition, we discuss
what is required to effectively support analysts that must deal with legal texts
in specifying system requirements and determining legal compliance.
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Requirements’ Role in Mobilizing and Enabling Design 
Conversation 
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Abstract. Requirements play a critical role in a design conversation of systems 
and products. Product and system design exists at the crossroads of problems, 
solutions and requirements. Requirements contextualize problems and solu-
tions, pointing the way to feasible outcomes. These are captured with models 
and detailed specifications. Still, stakeholders need to be able to understand 
one-another using shared design representations in order to mobilize bias and 
transform knowledge towards legitimized, desired results. Many modern mod-
eling languages, including UML, as well as detailed, logic-based specifications 
are beyond the comprehension of key stakeholders. Hence, they inhibit, rather 
than promote design conversation. Improved design boundary objects (DBO), 
especially design requirements boundary objects (DRBO), need to be created 
and refined to improve the communications between principals. Four key fea-
tures of design boundary objects that improve and promote design conversation 
are discussed in detail. A systems analysis and design case study is presented 
which demonstrates these features in action. It describes how a small team of 
analysts worked with key stakeholders to mobilize and guide a complex system 
design discussion towards an unexpected, yet desired outcome within a short 
time frame. 

Keywords: Requirements Analysis, Boundary Objects, Design Theory, Design 
Conversation, Problems-Requirements-Solutions Triangulation. 

1   The Role of Requirements in Design 

Requirements are a bridge between what customer stakeholders want and what sup-
pliers can design and build. More simply, it is they represent the link between systems 
analysis and design – i.e. problems and solutions. Requirements quantify and frame 
problems, while reducing the number of possible feasible solutions. They also define 
who are and are not legitimate stakeholders within a design process. 

To understand the role of requirements in systems design, a few definitions need to 
be set. A problem is a gap between what the current situation and a desired improve-
ment in the situation – i.e. the gap between an existing and a desired organizational 
state. In general, stakeholders are people who can demonstrably change the course of 
design process as well as determine and measure success criteria – i.e. goals. Principal 
stakeholders have resource powers can define a problem and mobilize resources to 
affect a solution [1].  
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Table 1. Requirements as Bridges between Problems and Solutions 

  Problem  Solution Solution Problem 
T

ec
hn

ic
al

 

• Determination of specific desired 
capabilities and expected operational 
constraints that together address their 
problem 

• Determination of success/failure 
criteria 

• Determination of level of acceptable 
risk and ROI 

• Determination of existing available 
resources that can be dedicated to 
problem analysis 

• Declaration of existing legacy sys-
tems; business rule, policies, proce-
dures; costs, resources, timelines; and 
expertise that will not change regard-
less of the solution – i.e. high level 
requirements 

• Determination of physical operations 
environment 

• Definition of the expected user, 
support, and management communi-
ties 

• Qualification of suppliers as possible 
technology providers 

• Determination of whether or not a 
supplier can provide an acceptable 
solution within given capability, cost 
and time constraints C

us
to

m
er

s 

P
ol

it
ic

al
 

• Determination of whose problems 
receive organizational attention 

• Definition of involved stakeholders 
and their levels of organizational 
power – i.e. authority 

• Framework for creating a stable, 
enforceable agreement – contract 

• Determination of which suppliers 
need to be involved in creating a con-
tract 

• Definition of parts or the whole 
authority structure(s) that will govern 
the new system solution 

• Dedication of champions of the new 
technology 

• Determination of a program of 
organizational development and 
change 

• Support of existing contracts and 
service agreements 

• Support of ongoing relationships 
with suppliers 

T
ec

hn
ic

al
 

• Determination of which problems the 
supplier can adequately – technically 
and economically –  address 

• Availability of expertise as well as 
their assistance in initial problem de-
termination 

• Determination of the customer’s 
ability to pay for products and ser-
vices rendered 

• Support of existing use of products 
and services by the customers – ex-
isting relationships; part of legacy in-
frastructure 

• Specific existing capabilities and 
constraints via their product lines as 
well as their costs and availabilities 

• Possible, feasible extensions to 
existing capabilities for more time 
and cost 

• Available and delivered profession 
service expertise in analysis, design, 
development, and deployment 

Su
pp

lie
rs

 

P
ol

it
ic

al
 

• Determination of who will work with 
the customers 

• Determination of legal liability as 
will be specified in a contract 

• Determination of which customers 
need to be involved in creating a con-
tract 

• Existing and ongoing contracts and 
agreements 

• Necessary new contracts and agree-
ments 

• Support of ongoing relationships 
with customers 
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Altogether, legitimate stakeholders – stakeholders for short – can directly deter-
mine the success or failure of the design product. All others are not stakeholders, 
regardless of their roles or positions of authority. 

A solution solves a given problem to the stakeholders’ satisfaction, i.e. it meets or 
exceeds their success criteria. The success or failure of a solution is determined pri-
marily by principal stakeholders; then by the other key stakeholders; followed by the 
rest of stakeholders in general. For example, say there exists a business owner wants 
an ERP system to integrate his or her sales, marketing, finance, and operations divi-
sions. This owner must define and measure what the success criteria of the final in-
formation system. These criteria are grounded in the measuring the improvement 
created by the desired new outcome – where the problem is solved and the solution is 
successfully deployed – versus the existing situation. Any acceptable ERP solution 
must meet or exceed these criteria. In addition, other stakeholders - key users, IS 
support groups, other division managers and the like – can accept or reject a solution. 
Beyond this, the general user community can accept or reject the deployed solution. 
Therefore, the success criteria of all those that can directly determine a solution’s 
success or failure must be accounted for during design.  

Requirements must represent, at minimum, these design criteria. They connect and 
contextualize problems and solutions [2]. They do so in both directions: 1) problem to 
solution and 2) solution to problem. Problems are owned, defined, and mobilized by 
customer stakeholders – lead by one or a group of key principal stakeholders. Solu-
tions are designed, developed, built, deployed, and mobilized by supplier stakeholders 
– again, lead by one or a small group of key principals. Based on these insights,  
Table 1 presents an initial (non-exhaustive) list of meta-requirements – categories of 
requirements – based on an analysis of bridging problems and solutions. 

From examining these definitions, the role of requirements in design becomes 
clear. They must address the technical and political realities of connecting problems 
and solutions – as per Table 1. Requirements represent mandatory technical specifica-
tions, frameworks, and legacy infrastructure as well as the political alignments and 
agreements between stakeholders. A common form of these agreements is legally 
binding contracts. In the past, requirements have been defined as mandatory technical 
specifications [3-5]. Yet, from the examination of bridging customer stakeholders’ 
problems and supplier stakeholders’ solutions, this technical role is necessary, but not 
sufficient. Instead, the overall role of requirements in design is to provide a stable 
technical and political framework that enables and encapsulates the bridging of cus-
tomers’ problems and suppliers’ solutions. 

2   Utilizing Problems-Requirements-Solutions (PRS) to Enact 
     Design 

For any one problem, there are a number of possible, feasible solutions. Conversely, 
any one solution can address multiple problems. Therefore, there is a many-to-many 
relationship between problems and solutions. Requirements act like an “associative 
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entity” between problems and solutions1. They provide a conduit from solutions to 
problems. Requirements inform stakeholders of the choices of possible solutions as 
framed by the selected problems. Likewise, they reduce the number of possible prob-
lems by associating them only with feasible combinations of workable or buildable 
technologies along with achievable, sustainable political agreements.  

Therefore, a combination of requirements filtered problems & solutions is a candi-
date model for design. Interestingly, there are fewer restrictions on problems and 
solutions than there are on requirements. They have some flexibility to change to 
better fit the needs of the customers and abilities of the suppliers. Yet, requirements 
are strict in their definition and application. Arguably, this makes the problems and 
solutions highly dependent upon requirements. Still, requirements must be rediscov-
ered, created, or modified due to changes in problems or solutions during discovery 
and conflict resolution in the system or product design lifecycle.  

Together, problems-requirements-solutions (PRS) triangulation is a model for dis-
covering feasible and satisficing designs. Adjustments to any one part of the PRS 
model require corresponding adjustments in the other two parts. Yet, the stickiness of 
requirements reduces the degrees of freedom of corresponding problems and solu-
tions.  As each part of this design model is reduced, solidified, and becomes more 
specific, the same occurs to the other two parts. For example, as problems become 
more specifically defined, increasingly focused requirements and solutions can be 
determined or created.  

Examining Table 1, PRS triangulation can be based on a set of measures or metrics 
that indicate the strength and quality the technical and political balance for any par-
ticular design. Utilizing metrics feedback, further adjustments to any part of the PRS 
models can be made to discover improved design balances2. Hence, each enactment of 
design leads to one of three possible PRS states:  

1) Infeasible 
2) Feasible, but sub-satisficing 
3) Satisficing 

Infeasible are combinations of problems and solutions that cannot rectify technical 
or political requirements. All other PRS combinations are feasible. Of these possibili-
ties, theoretically, only one combination has the optimum balance of technical and 
political requirements. Still, as Simon pointed out, this combination is likely too com-
plex to determine [8]. The best one can do is satisfice in this situation. Of the feasible 
designs, a few are satisficing, i.e. those with roughly the same trade-offs, yet provide 
similar value. In other words, these are the top PRS combinations – i.e. design candi-
dates. They are based on achieving the best balance of feasible technologies, political 

                                                           
1 An associative entity is created to normalize many-to-many relationships between two data-

base entities [6, 7]. It enables 1-to-many relationships by focusing on the unique instance that 
the combination of entities creates. Examples of this are invoices and sales orders. 

2 A danger here is “analysis paralysis.” It is possible to keep trying out different combinations 
while never setting on any one choice. This can be made worse if there is any creeping re-
quirements or featurism. That can explode the possible number of design combinations. 
Therefore limits must be place on how long and how far the search can commence in order to 
identify satisficing designs. 
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arrangements, and satisfaction of all stakeholder requirements within a given amount 
of time and resources.  

Since there are many possible PRS combinations for each design, there is no single 
set of “correct” requirements. Instead, there exist separate, yet likely overlapping sets 
of requirements that correspond to competing design variants. As previously men-
tioned, these requirements can be adjusted in response to the nuances that are discov-
ered or created while refining problems and solutions. This argument breaks with the 
overly positivistic view of discovering or creating a single true set of requirements 
that tends to dominate their definition and use in the design process3. Instead, re-
quirements can be utilized along with problems and solutions to find competing, satis-
ficing designs. Simply, requirements are part of a design conversation, not a single 
fixed attribute of design. 

3   Requirements as a Hindrance to Design Conversation 

As per the IEEE standard 610.12, requirements must be written down in a document 
[3, 13]. They are usually described in a logic-based form or a design model – com-
monly, an UML object-oriented (OO) model [14, 15]. Logical format written text or 
object-oriented complex models is generally not understandable by most stakeholders. 
Put simply, the vast majority of stakeholders are not logicians. A detailed require-
ments specification may provide a means of discussion and mobilization to action 
between analysts, designers, and engineers. Yet, it does not promote an understand-
able, shared representation between those these technical experts and customers, 
managers, users, and other stakeholders who do not use logic as a language of work4.  

Moreover, a logical text or modeling language is resistant to adaptations, even be-
tween analysts, designers, and engineering. Requirements specifications are not meant 
to change. Yet, the demands of designs and business needs force changes in require-
ments as new knowledge about a design’s purpose, functionality, and constraints 
becomes known during early system or product lifecycle processes. A rigid, difficult 
to understand language inhibits transformation of design knowledge across stake-
holder groups.  

How can requirements still meet the IEEE definition and enable communication 
between stakeholders during design? One answer can be found in treating require-
ments documents as design boundary objects (DBOs). As per Bergman, Lyytinen, and 
Mark (2007), a design boundary object must meet four essential features to be useful 
by its target stakeholders.  

                                                           
3 Positivism is the philosophical belief that there exist one objective truth and the goal of sci-

ence is to uncover it [9]. Arguably, there is a widely espoused belief a in the existence of the 
one true set of objective requirements that are the results of appropriately performed systems 
analysis, [10-12]. The requirements absolutely frame and ground any possible design. This 
essay challenges this belief and replaces it with one that is more flexible based on the nuances 
of differing combinations of problems and solutions. 

4 Of course, the exception to this situation interactions between technical experts and highly 
technically literate customers and other business stakeholders. 
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Table 2. Design Boundary Object Features5 

Feature Definition Domain Description 

Technical 

• Form shared functional representa-
tions, i.e. data and technical models, 
prototypes, architectures, specifica-
tions, etc. [17, 18] 

• Transform knowledge at the bound-
ary between social worlds [19, 20] Promote 

Shared  
Representation 

Encapsulates under-
standings based on a 
common syntax and 
semantics, which 
are shared across 
social worlds 

Political 

• Form shared political representations, 
i.e. agreements, contracts, “sign-
offs,” memorandums of understand-
ing, etc. 

• Perspective sharing, i.e. making sense 
of other social world’s perspective. 
[20] 

Technical 

• Move knowledge from ambiguous to 
specific; objective/goal to a problem; 
instable to stable; idea to solution 
[13, 21] 

• Realign operational structure to 
stabilize functional ecology 

• Enable design traceability [22] 

Transform 
Design  
Knowledge 

Manipulate and 
converse representa-
tions that will propel 
movement between 
design routines as to 
facilitate finding a 
feasible functional 
solution and  stabi-
lize the political 
ecology 

Political 

• Hand-off of power and control from 
provider to recipient world(s) [19] 

• Realign power to stabilize political 
ecology [23, 24] 

• Enable agreements traceability 

Technical 

• Participate in SAD routines as to 
invite functional expertise, review so-
lutions, etc. [21] 

• Reduce problem ambiguity for solu-
tion discovery in a design path  

• Conscribe expertise relevant for 
problem identification and solution 
[21] 

Mobilize for 
Design Action 

Source and wield 
resources and power 
to propel progress 
along a design path. 

Political 

• Participate in decision making, 
mobilization of resources and alloca-
tion of design tasks [25] 

• Mobilize bias towards preferred 
resolution [25] or quick disintegra-
tion 

• Enable each group of stakeholders at 
similar organization levels ability to 
apply their authority power while re-
specting the other levels [26] 

Technical 
• Certify, verify and validate the truth-

fulness and correctness of design 
knowledge [21] Legitimization 

of Design 
Knowledge 

Grant a legitimate 
status to a boundary 
object through 
validation of its 
content as to align 
with the stake-
holders’ intent. 

Political 

• Demonstrate acceptability of goal(s), 
problem(s) and solution(s) in the 
given institutional order as to author-
ize the movement of design knowl-
edge across social worlds [1] 

                                                           
5 This table is taken from [16]. 
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These four essential features are defined in Table 2. The most form and format of 
requirements – logical text based specifications or object-oriented (class or activity) 
models – tends to fail these features.  

As mentioned earlier, logic based text and complex OO models are difficult to un-
derstand and resistant to change. These can be for of shared representation between 
 

technically expert stakeholders. Yet, the vast majority of stakeholders are not techni-
cal experts, and their needs need to be met as well. These formats inhibit understand-
ing and hence are in fact the opposite of a shared representation – a localized, specific 
representation. The advanced technical representation can and often is very useful for 
the specific subset of technical stakeholders who understand and utilize the power of 
logic and models. But, there needs to be a shared representation of requirements for 
the rest of the stakeholders if they are to promote, not inhibit a design discussion. 

If stakeholders cannot understand the representation, it is difficult to make informed 
design decisions. This directly impacts the ability to transform design knowledge and 
mobilize for design action. Indeed, as requirements become less understandable by 
those stakeholders whose needs they represent, it makes it less possible to rely upon 
during design activities and changes. Instead, it is likely that those stakeholders with 
decision power, but are not technically savvy will eventually make their own decisions 
about what design will become without the help and insights of detailed requirements. 
This may well lead to unfortunate outcomes, for instance building or purchasing sys-
tems that meet their needs, but not the needs of other system stakeholders [27, 28]. 

Interestingly, logic or OO model-based requirements do tend to legitimize design 
knowledge – as long as there is a legitimizing body in the product or system design 
group that has the ability to understand and verify these documents. The effort it takes 
to transform fuzzy needs and constraints into specific, concise, non-conflicting  
requirements is nontrivial and supplies a tremendous amount of insight to design  
[3, 15, 29, 30].  

Still, those who do not understand or use these detailed forms of requirements can-
not legitimize them themselves. They must trust that their needs and wants will even-
tually be satisfied by the resulting system. But, this breaks the fundamental feedback 
necessary to perform design. Therefore, it is difficult for non-technical – and even 
some technical – stakeholders to legitimize logic or OO model-based requirements 
documents. Altogether, highly technical requirements documents cannot legitimately 
represent nontechnical customers’ and similar stakeholders’ desires since these people 
cannot directly verify and validate them. 

4   Where Do We Go from Here? – An Agenda for Improving  
     Requirements Role in Promoting Design Conversation 

To counter this weakness in requirements, future requirements documents need to be 
developed and deployed that, at minimum, conform to the four rules of an operational 
design boundary object. Therefore, an agenda for research over the next 10 years 
should focus on these questions:  
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• What common models, stories and other formats are necessary to enable re-
quirements to serve as design boundary objects? 

• How well do they represent problems-requirements-solutions design candi-
date combinations?  

• How easy are they understood, manipulated, and updated, esp. by principal 
and key stakeholders?  

• How easy can two or more design candidates be compared and contrasted to 
enable design selection? 

• What are the methodologies to produce and test these new DRBOs? 

It may well be likely that no one document or design requirements boundary object 
(DRBO) can satisfactorily answer these questions. Due to the adaptive, destructive, 
intuitive, and organic nature of design [31-33], it is like that a host of DRBOs are neces-
sary to capture and represent requirements. Indeed, detailed logic or OO model-based 
requirements documents may still retain their place in detailed technical design work. 
Some, arguably few, problems require complete design and building of systems which 
are highly dangerous or financially risky. The higher the risk and larger the cost of fail-
ure, the more need for detailed, rigorous, heavyweight requirements analysis. 

Yet, the majority of issues organizations face is not overly difficult. They cover the 
broad spectrum of annoyances and dysfunctions that occur as organizations grow, 
change and mature [34-36]. These can range from the need for better sales systems, 
point-of-sales services, project work product management, training courses and con-
ference management, meeting and classroom scheduling, timesheet submissions, 
travel reporting, checking in and out of company property, inventory and parts man-
agement, and thousands of other similar day-to-day problems. Design for these prob-
lems is likely more lightweight. They do not need the detailed requirements analysis 
which is necessary to address more risky problems.  

If the design space is broken up along level of risk, then design processes and cor-
responding problems, requirements, and solutions boundary objects can be redefined 
as per these different spaces. One could start out with low-risk, high-level problems-
requirements-solutions and discover if there are more serious elements of risk uncov-
ered during design activities. If so, then more detailed and technically rigorous  
analysis and design methods can be applied. Otherwise, a lightweight design methods 
and corresponding PRS triangulation processes can be deployed successfully for the 
majority of industry, academic, and governmental needs.  

5   System Analysis and Design Cases Study – Design Requirements 
     Boundary Objects in Action 

Design can be seen as a detailed conversation amongst powerful stakeholders. The goal 
of this conversation is to identify problems that mobilize stakeholder action and dis-
cover feasible solutions that address these problems. The conversation arguably follows 
the following path. At first, it focuses on understanding and capturing the key pain 
points that need resolution or pleasure points that enable organizational growth. These 
issues are prioritized against other’s issues. Early feasibility analysis can be applied. It is 
here that the initial, high-level requirements are established, i.e. those pertaining to 
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operations, finance and economics, schedule, technical realities, and political and legal 
issues. The design boundary objects need to capture this key information, while making 
it shareable and actionable. High-level solutions can be considered against the defined 
problems (pain or pleasure points) and corresponding requirements. The rest of the 
conversation is a matter to digging down to enough detail to find viable PRS combina-
tions and the feasibilities metrics data to fairly compare them until either a solution is 
found and selected for development or the effort ends due to a lack of time, money, or 
further commitment from key stakeholders.  

Here is a small case study to further illustrate the concept of design as a conversa-
tion. It demonstrates how DBOs, including DRBOs can enable and propel a nontrivial 
design conversation towards a successful conclusion. It begins at the Monterey Bay 
Aquarium (MBA) in Monterey, CA.  

The MBA had key problems with their digital image storage and retrieval system. 
A team of graduate student researchers investigated and preformed a systems analysis 
and design. A scope analysis form was filled out during the initial interviews and 
observations. This form captures brief, yet detailed descriptions of: the mission and 
purpose of the organization, identifying the key stakeholders and their roles in the 
existing system, motivating problems, and describing the existing, legacy system. 
This form is the first design boundary object created and it initiated the design con-
versation. The scope analysis was examined and utilized to promote follow-up con-
versations. These follow-up conversations allowed key stakeholders to become 
further identified and define their salient problems. These problems were contextual-
ized by MBA’s mission and current operational constraints. Upon reflection and dis-
cussion, a deep structure, core problem was identified. It was summarized in a one 
page Request for Information Services document: 

The Monterey Bay Aquarium needs improvement in managing the wealth of digital 
images catalogued at their facility. There is a strong interest to share their growing 
digital image library with the public to promote their overall mission of “Inspiring 
Conservation of the Oceans.” 

In addition, a brief, high-level description of an expected solution was provided: 

Develop or acquire intuitive, high-capacity data storage and retrieval system. The 
system must incorporate a multi-user, web interface for digital image management. 

This design boundary object provided the scope and boundaries of the systems 
analysis and design project. It created the initial problem-requirement-solution basis.  

Yet, this PRS was too broad and needed refinement. The next steps the team took 
were to perform a more detailed problem analysis as well as an initial feasibility 
analysis. The problem analysis was a standard problem decomposition of the key 
problem into more manageable sub-problems [8]. These secondary issues clarify and 
contextualize the core problem. This information was captured in another DBO – the 
problem analysis form. These problems were also connected to constraining issues in 
dealing with the existing, mainly manual digital media management system. All of the 
problems were assigned priority and urgency rankings to further capture and represent 
the key stakeholders needs, positions, and intentions. 
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In addition, an initial feasibility analysis was performed. It focused on determining: 

• Operational Feasibility – What are the changes to work place activities, 
processes, procedures, business rules, and organizational system and how 
well will these changes be received or opposed 

• Technical Feasibility – What are the likely technologies that are part of a so-
lution, how well do they meet the required new capabilities, can they operate 
under given constraints, what are the changes in expertise necessary to de-
ploy the new system 

• Economic Feasibility – What is the budget and financial metrics of success 
• Schedule Feasibility – How long will it take to develop or purchase the se-

lected solution and can this be accomplished in the allotted organization time 
window. 

This DRBO determined the high-level capabilities and constraints, i.e. require-
ments, of any successful solution to the core problem. These requirements are stated 
in a manner that can be shared across stakeholder groups – senior management, engi-
neering, finance, project management, and so forth. The feasibility analysis document 
was designed to enable each stakeholder group to refine the information within their 
area of responsibility. For instance, finance and marketing groups could supply eco-
nomic details. The project manager supplied schedule details, and so forth. The results 
of each involved stakeholder group were able to be brought back together in this col-
laborative DRBO. As the systems analysis and design process continued, this docu-
ment promoted shared representation of feasibility criteria; shared key information 
across stakeholder groups; mobilized action; and represented agreements that clearly 
defined the criteria for successful solutions. In turn, the feasibility analysis enabled 
and promoted the discovery of further requirements, problems, which helped scope 
down the space of possible solutions.  

Armed with this information, the team then performed a use case analysis and cap-
tured the stakeholder social network. Use case analysis is described in a variety of 
texts [37-39], and hence, will not be discussed in detail. The purpose of applying use 
case analysis was to collect and derive the capabilities and constraints of the new 
system. The new system represents a conceptual model of a general system that, if it 
were already deployed and in place, would feasibly address the aforementioned prob-
lems. Each use case describes a specific operational capability of the new system. 
This is described with as little discussion of technology as possible in order to allow 
for and encourage different technical design approaches. In this case for the MBA, the 
use case analysis produced a simple system model and descriptive narratives. That 
sufficed to represent the current state of design to the key stakeholders. It also enabled 
initial information system architectural models.  

In addition, a social network was developed, which represented the re-aligned rela-
tionships of the stakeholders in the new system. This indicated who the key individual 
stakeholders were, groups they represented, and their work activity based relationship 
with the others. It also captured possible political conflicts that could impair the ac-
ceptance of a new system. It was combined with the use cases to create a high-level 
operational capabilities model of a new system. This DBO enabled the beginning of 
organizational power conflict resolution even before a new system was highly  
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defined. In turn, political impasses were examined and rectified during use cases 
analysis and conceptual system architectural design.  

The result of this work was the production of a technology-independent solution 
system. This was a common view of a system model was able to be reviewed, com-
mented on, and augmented by the key stakeholders. It became the basis for the con-
ceptual architecture. At this point, the team performed data analysis and process 
analysis of the new system. These filled out functional feasibility capabilities and 
constraints, again without specifying specific technologies. The results of this work 
refined the operational, economic, and schedule feasibility details.  

After a round of feasibility refinement, the team discovered or developed possible 
solution candidates that fit the criteria. This assisted in grounding conceptual out-
comes of the systems analysis and design with viable technologies. The purpose of 
this activity was to verify the existence of at least one technically feasible new sys-
tem, which can be built or bought.  

There was not enough detail in the use case system model for the key stakeholders 
to make an informed choice about solution design direction. More detailed feasibility 
analysis data was necessary to perform an informed, detailed decision analysis. Data 
and process modeling was completed to derive enough requirements details to enable 
this design decision analysis. These details were fed back into the feasibility analysis, 
which finally became mature enough to consider build versus buy trade-offs of possi-
ble solution systems.  

A comparison was made between: 

• Do Nothing (maintain status quo) 
• Build a new digital imaging repository 
• Buy a digital imagining repository (and perform a competitor analysis) 

These choices were placed in a table against the feasibility criteria. This feasibility 
comparison table represented the decision analysis. It contained the key capabilities 
and constraints that any viable solution system must adhere. Yet, a detailed require-
ments analysis had not yet occurred. As it turned out, it was unnecessary. The team 
found a selection of vendors with viable SaaS (Software as a Service) systems that 
met the aquarium’s feasibility needs.  

The key information about these service based systems and the company contacts 
were supplied to the aquarium’s information systems managing director. He indicated 
delight in finding existing service system solutions that were even better then he and 
his staff indicated that they were willing to build or buy. Indeed, the cost of the ser-
vice systems was lower than anticipated, as competition in the market had improved 
offerings over the last few years. Support of the system could be predominately han-
dled by the SaaS company, relieving the aquarium of overhead which could be put to 
other use. The rest of systems analysis and design was picked up by the aquarium 
staff and they are well on their way to implementing their new solution system. 

This whole activity was performed in less than two months, mainly by a novice 
team of graduate students. The results of this, and dozens of similar analyses, is that 
when problems, requirements, and solutions are part of a design conversation and are 
represented by design boundary objects, finding desired outcomes can happen quite 
quickly. Moreover, applying a fully detailed requirements analysis and systems de-
sign was not necessary, and would have been counterproductive. The trick is to obtain 
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the critical feasibility criteria about PRS combinations in a manner that accelerates the 
design conversation. Once enough insight is gained to make an informed decision, 
then the process can be propelled quickly to a terminus. Each step indicates whether 
there is a need for more detailed requirements analysis and design activity or if there 
is enough to finish and move on. Or, paraphrasing Jim Collins from Good to Great, 
great is the enemy of good, and good is good enough [40].  

In the case of the Monterey Bay Aquarium, a light to mid-level amount of analysis 
was necessary to uncover a viable, feasible solution choice. Each organization’s situa-
tion is different. Still, it is argued that the majority of the problems do not require, 
deep, heavyweight and systems design and requirements analysis to address their 
issues. A lightweight approach – which can be increasingly heavier and detailed – can 
be utilized to promote highly productive design conversations.  

6   Conclusion 

Design is more than facts and figures. The organic aspects of design invoke the need 
to inquire, reflect, build, change, destroy, refine, and eventually obtain the goals of 
those receiving the design product. Requirements inform, bound, and propel design. 
Yet, requirements are part of the design conversation. They are not immutable ideals 
that must be rigorously adhered.  

A design conversation is a play between problems, requirements, and solutions. It 
must be bounded or no tangible, feasible results can be produced. Requirements re-
duce the problem and solution spaces in which design occurs. But, that is not enough. 
Requirements need to be a shared representation amongst the involved stakeholders. 
They must transform knowledge, mobilize action and most importantly, legitimize 
key design knowledge that is the basis for development. Requirements are design 
boundary objects. They are fundamental to enabling and eventually completing design 
conversations. 

Not all design requires deep, detailed requirements. Often, the problems organiza-
tions face are lightweight. They need only be described with a few, well grounded 
requirements. These can be enough to find satisficing solutions. Yet, if the problem 
under examination requires more detail, depth, and insight to be understood and 
safely addressed, rigorous requirements analysis can be readily deployed. Hence, 
design, and specifically requirements analysis methodology can be adjusted as per the 
level of risk associated with the core problem. 

To improve the design conversation, design requirements boundary objects need to 
be refined, updated, and invented anew. More research needs to be performed on 
determining how to improve the core attributes of DRBOs that would improve their 
design conversation performance against the design boundary object’s four factors 
(Table 2). More simply, the speed and effectiveness of design knowledge enhancing 
artifacts need to be improved. This would be a vast improvement over the current 
general determination the success or failure of system design ex post – i.e. acceptance 
or rejection after deployment. Correspondingly, any improvements in early designs 
produce a geometric or exponential savings in resources and effort [41, 42]. In turn, 
this will free up resources to solve evermore problems, produce new systems, and 
further the art of design. 
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Abstract. Online interactive applications call for new requirements paradigms 
to capture the growing complexity of computer-mediated communication. 
Crafting successful interactive applications (such as websites and multimedia) 
involves modeling the requirements for the user experience, including those 
leading to content design, usable information architecture and interaction, in 
profound coordination with the communication goals of all stakeholders in-
volved, ranging from persuasion to social engagement, to call for action. To 
face this grand challenge, we propose a methodology for modeling communica-
tion requirements and provide a set of operational conceptual tools to be used in 
complex projects with multiple stakeholders. Through examples from real-life 
projects and lessons-learned from direct experience, we draw on the concepts of 
brand, value, communication goals, information and persuasion requirements to 
systematically guide analysts to master the multifaceted connections of these 
elements as drivers to inform successful communication designs. 

Keywords: Infosuasive applications, communication goals, persuasion, brand, 
stakeholders, users, key values, requirements taxonomy, hypermedia design, 
web design. 

1   Introducing “Infosuasive” Reasoning 

The web has already made its transition from information to communication medium. 
It has become one of the main vehicles for commercial and non commercial “entities” 
to reach the global society and to establish or promote their “brand” in the global 
economy [1],[2]. Through the web, companies, educational or cultural institutions, 
charities, governmental bodies, politicians, artists, and many other subjects, offer 
services, inform, communicate and engage their stakeholders, build and maintain a 
relationship with them, and attempt to influence their attitudes and behavior. The goal 
of many modern web applications is at the same time informative – i.e., to support 
knowledge needs, operational – i.e., to support transactions such as buy, sell or make 
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reservations, social – to connect people, and persuasive – i.e., to change user’s opin-
ions, attitudes and behaviors [3]. 

This trend has progressively increased the complexity of the requirements and de-
sign space and introduced a number of novel issues that imply a rethinking of our 
current development approaches. 

In particular, we focus on systems whose main goals are informative and persua-
sive, calling them “infosuasive” applications. We address the very early design stage 
of infosuasive applications, when concepts are initially formulated vaguely, are 
somewhat unfocused and inaccurate, and must be progressively organized and refined 
to become more precise design solutions. This stage of the development process must 
give voice to a variety of actors, being them application stakeholders or members of 
the design team. This is due to the multi-facet nature (informative and persuasive) of 
the goals of the applications, and to the fact that the contexts in which the system 
must be “placed” is potentially more complex to frame. Whereas in the past, web 
applications were conceived for a known business and social context, such a “clear-
cut” context is oftentimes lacking today [4]. In the global society, many, mutually 
influencing issues have to be understood and decided on during the very early design 
process, which include cultural, social, psychological and ethical dimensions (beside 
strategic, marketing, and technological aspects that were normally taken into account 
in the past). As a consequence, this activity requires more and more an interdiscipli-
nary approach involving competences in web engineering, interface design, market-
ing, branding, ethnography, communication science (and perhaps others). 

The main contribution of this chapter is to propose a conceptual framework for 
infosuasive requirements, that supports the members of the design team (marketers, 
brand designers, communication designers, graphic designers, information architects, 
technology experts) and all the relevant stakeholders (clients, strategic decision mak-
ers, financing partners) to share their thoughts, to integrate their different viewpoints, 
to organize the variety of issues that need to be analyzed, to find a direction in the 
numerous design options, and to finally represent the results of this activity in an 
effective way. 

Our approach is value-driven since it is centered around the concept of value, re-
garded as a means to achieve given communication goals on specific communication 
targets. We place the analysis of these aspects in the wider context of web require-
ments engineering, highlighting their relationships with business and techno-
organizational analysis and user needs analysis. We then pinpoint how values and 
communication goals impact on various design dimensions of infosuasive web appli-
cation - contents, information architecture, interaction, operations, and lay-out. Our 
work is inspired to goal-based and value-based requirements engineering, brand de-
sign methods, and value-centered design “frameworks” (as proposed by the HCI 
community). 

A complementary driver to model communication requirements comes from the 
notion of brand, which tightly interacts with the consideration of values during devel-
opment. 

In fact, as an organization or institution has to (re)position itself on the market, it 
has not only to define or rethink the overall business strategy, but also (re)shape the 
communication towards the various stakeholders (current and potential clients, share-
holders, other institutions, organizations, sponsors, etc.). In this process, the concept 
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of brand in its multiple declinations – e.g., brand image and brand experience – plays 
a crucial role. If, etymologically, brand just means “identification mark or sign” 
(given to a product or service and reified by a name associated to a visual sign, sym-
bol or logo), its conventional meaning is much richer than this. For a company or an 
institution, the brand is “who we are, what we believe, why you should trust us” [5]. It 
is the vehicle for communicating “a promise that the company or institution can keep 
to all its stakeholders: its customers, trades, stockholders, employees” [6]. 

The persistent communication of this promise brings to the creation of a brand im-
age. It is a set of symbolic constructs within the minds of people that consists of all 
the information, expectations, values, emotions, or attitudes that “consumers” gener-
ally, both locally and globally, associate with an “entity” – being it a product, service, 
company, institution or, at a broader level, a country or a culture.  

Carefully integrating values and brand-related considerations in the requirements 
and design process is at the core of the proposed framework, which aims at providing 
conceptual tools to conduct requirements elicitation, analysis and design for commu-
nication-intensive interactive applications in complex organizational contexts. 

2   Background: Branding and Value-Driven Requirements 

The term “value” is broad, and it is outside the purpose of this chapter to discuss the 
moral, philosophical, psychological or economical foundations of this concepts (the 
reader is referred to [7] for an overview.). Our less ambitious goal in this section is to 
review some design approaches in HCI, e-commerce, requirements engineering, web 
engineering, e-branding, in which the notion of value has been explored. 

Values sensitive design (VSD) [8], [7] emerged in the mid ‘90s in the HCI com-
munity as an approach to the design of information and computer systems that ac-
counts for human values in a principled and comprehensive manner early and 
throughout the whole design process. Value sensitive design particularly emphasizes 
values with moral import, including privacy, trust, respect for intellectual property 
rights, freedom from bias, moral responsibility, honesty, democracy. Many works in 
VSD exemplify how different aspects of web design can account for such values. 
Rather than a “methodology” in engineering sense, VSD is intended as a “framework 
for understanding” [7] how specific values play out in the overall design process, and 
how these values can be undermined or promoted by the technology, thus shaping 
(but not rigidly determining) individual and social behavior. 

Value centered design (VCD) [9] shifts the focus from “value as human belief” (as 
promoted by VSD) to “value as worth”, that is, whatever some people somewhere 
find worthwhile, individually or collectively, irrespective of ethics, wisdom, style, 
taste, etiquette or the approval of others. Values are regarded as a motivator for in-
vesting time, money, energy, or commitment in the development or use of a web 
product or service by all (direct or indirect) stakeholders. This approach is still in its 
infancy, and the proposed VDC “process” is still quite general. It basically suggests to 
iteratively identify and evaluate the benefits (either economical, or emotional, or af-
fective) gained by the end user (either as an individual or as a collectivity) by effect of 
the experience with the system under design. As stated by its inventors, “much needs 
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to be done to move from a set of arguments and a plausible development framework 
to proven approaches”[9]. 

The VSD concept of “technology as value promoter” has been integrated in a 
broader design approach known as persuasive design [10], which focuses on how to 
design technological artifacts that change attitudes and behaviours. The reference 
book on this subject [10] provides a number of general persuasion guidelines; it also 
exemplifies how they are used in existing web applications, e.g., to foster reliance, 
credibility and trust, or to instill some human values in web users (such as environ-
mental attention), or to induce specific habit changes in users’ life. 

To facilitate persuasion, emotion is acknowledged as playing a major role. Emo-
tional design [11] investigates how emotions during a product’s experience can create 
value for the user (e.g., pleasure, fun, calmness, trust), which in turn results into a 
value for the product developer. Although the vision of emotional design covers any, 
physical or virtual, design object, web artifacts are one of the main domains for this 
approach, and [11] reports many impressive examples of the seductive, persuasive 
power of creating emotions through proper interface solutions. 

The notion of value for persuasion also plays a key role in brand design, also 
named e-branding [12] when applied to the web. The notion of “brand” is perhaps as 
broad and general as the concept of value. The web has strengthened and expanded 
the economic relevance of branding concepts not only for e-institutions (i.e., those 
existing only on the web, e.g., Amazon) but for any commercial and non commercial 
entity that wants to establish or promote their “brand image” in the global society. 
The web has also fostered a rapid evolution of brand design basic principles, creating 
new opportunities of brand expression and offering new means to shape the “promise 
of values” that are relevant to user’s expectations and desires [13]. 

Most of the current research in the above areas is stimulating but tends either to be 
overly abstract, or to solve the different issues through an anecdotic style of investiga-
tion. It lacks a conceptual or procedural framework that might guide a design team 
and make an approach easily re-usable. Above all, they do not provide any systematic 
guidance to reflect the different high-level value issues onto the dimensions of the 
design space. 

Value based design (VBD) [14], a recent approach emerged in requirements engi-
neering and in web engineering, is more pragmatic and systematic. It looks at the 
notion of “value as worth” from a strictly business perspective, i.e., in terms of the 
economic benefit that is induced by a system and makes the company or institution 
more competitive and profitable. Recently, VBD was applied to the design of e-
commerce systems. 

The e3value model [15], [16], [17], for example, provides a conceptual framework 
for representing and analyzing business models for e-commerce, in terms of a net-
work of actors and enterprises creating, distributing, and consuming things of eco-
nomic value through the web. e3value represents the economic interest of various 
stakeholders from multiple perspectives: the business value viewpoint, the business 
process viewpoint and the software architecture viewpoint. e3value modeling tech-
niques can be combined with goal-based requirements modeling (using i* [18]) to 
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support designers in creating, representing, and analysing business models and stake-
holders goals for e-services in a more comprehensive way [15]. Tongrungrojana & 
Lowe [19] integrate high level business value requirements specified in e3value to 
lower level detailed design using WebML+, a formal extension to an existing web 
modeling language (WebML [20]). For a similar purpose, the VIP model [21] pro-
vides a UML based modeling framework that integrates e3value constructs with 
WebML. 

In a previous publication [22], we discussed the rationale for taking into account 
branding issues in the web design process, and propose brand values as first order 
citizens in a web requirements modeling framework – named AWARE+ [22]. 
AWARE+ extended a previous requirements model - AWARE (Analysis of Web 
Application Requirements [23]) – that exploited a goal-oriented RE approach specifi-
cally for web applications. AWARE balanced the consideration of users’ needs and 
other stakeholders’ goals; these are operationalized into application requirements 
through refinement and decomposition processes, whose output is fed into a subse-
quent design activity. An original feature of the method is the use of a hypermedia 
design taxonomy to categorize requirements and to facilitate the organization of the 
design activity [24]. Based on the experience gained in a very large web project in e-
tourism [25], we built AWARE+ [22], which focused on content-intensive web appli-
cations with the purpose of bridging high level communication requirements with web 
design concepts. We intensively used and tested AWARE+ in number of successive 
projects involving large design teams. From such experience we built a new, substan-
tially revised version of the framework, which is presented in this chapter. 

The current version captures our deeper understanding of the communication and 
persuasion power of the web and how communication and persuasion elements play 
with other factors in the very early design process of infosuasive web applications. 
With respect to the previous version, the main novelty of the new release of 
AWARE+ relies upon the definition of infosuasive web application; the introduc-
tion of communication analysis in requirements management; the adoption of “val-
ues” as modeling primitives for communication and persuasion purposes; and the 
definition of clear relationships among values, communication goals and communi-
cation targets. 

3   Eliciting and Modelling Communication Requirements 

In the definition of the requirements space for infosuasive web applications, each of the 
many actors in the stakeholder picture – clients, strategic decision makers, marketers, 
persons responsible for business process development, brand designers, communication 
designers, graphic designers, information architects, technology managers - contributes 
with a different perspective, grounded in differences in skills, responsibilities, knowledge 
and expertise, and culture in a broad sense. The requirements analysis is to be carried on 
from different viewpoints; each of them is initially self-contained, encapsulates partial, 
high level knowledge about the problem domain andthe relevant stakeholders, and is 
typically specified in a particular, suitable representation language. The results of the 



 Design Requirements for Communication-Intensive Interactive Applications 413 

various viewpoints eventually need then to be combined to inform lower level design 
decisions. Traditionally, three main viewpoints are considered. 

Business analysis addresses the problem from an economical perspective using for 
example a model like e3value. This activity is directly related to the institution’s stra-
tegic vision, sets the business goals and constraints of the application, defines the 
expected value (in commercial terms) for the various stakeholders, and defines the 
characteristics of the business model. 

Techno-Organizational analysis [4], [26], [27] investigates the context in which the 
web application is built and conceived. It explores all the elements that, together, 
define the “culture”, the structure, and the dynamics of an organization: the organiza-
tional rules and constraints; the organization “tradition”; the schemas, norms, and 
routines together with associated activities and resources; the relationships between 
the organization and its social, political, institutional, and economic environments. 

End-user analysis identifies various aspects, including: the information and opera-
tional needs of end users; the context in which the application is intended to be used; 
the motivations for using the application, as well as user values as desired qualities of 
the interaction (e.g., usability, security, accessibility). These elements can be elicited 
through user research (ethnographic techniques, questionnaires, interviews, focus 
groups, or participatory design methods [28], [29]) and can be further elaborated 
using scenarios, task analysis, goal-based RE approaches [18], [23], [30], or similar 
conceptual tool. 

The persuasive dimension of infosuasive applications introduces the need for a new 
form of analysis, which we refer as communication analysis. This activity, which is cru-
cial for infosuasive applications, is the focus of our approach (Figure 1). Figure 1 pin-
points the key modeling concepts of communication analysis - communication target, 
key value, brand value. It highlights the relationships among such elements and the re-
quirement space that defines the functional and non functional characteristics of a web 
application, in terms of content, information architecture, lay-out, operational and sociali-
zation services, and other non functional aspects (e.g., security, usability, accessibility). 
Whereas figure 1 summarizes the conceptual elements, in practice the communication 
analysis may adopt agile matrixes and tables to document the output of the different 
communication analysis tasks. As it will be shown in the various examples, a tabular 
notation is very agile and readable especially to support elicitation and brainstorming 
with the stakeholders. 

Communication analysis involves the elicitation of specific aspects but also lever-
ages upon the knowledge information that is generated from the other forms of analy-
sis. Business, organizational, and end user analysis export the relevant input for 
communication analysis (hiding the details on how such knowledge is elicited and 
modeled). Requirements of different nature are then informed by the knowledge pro-
duced by all forms of analysis: the same requirement or design property can be moti-
vated at the same time by a business, informative, operational or organizational goal, 
and from key values and brand values resulting from communication analysis. 

The novelty of our approach is to identify the role of communication analysis in 
the overall requirements process, and to elaborate the key elements that participate in 
this activity. Before discussing the above concepts more precisely, we will briefly 
describe a case study that will be used to exemplify our approach. 
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Fig. 1. At a glance: AWARE+ for “infosuasive” applications 

4   A Real-Life Case Study 

In January 2007, the University of Lugano - Switzerland (hereinafter USI – Univer-
sita’ della Svizzera Italiana) commissioned to the authors the redesign of the commu-
nication and technological web infrastructure of the whole university. Particularly, the 
project involved the complete rethinking and redesign of fifty websites related to  
the University of Lugano (one official university website and one website for each of 
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the four faculties, plus a variable number of websites of laboratories, institutes, pro-
jects, and university services). The motivation for this project was driven by a number 
of factors, including the “aged” look&feel of the websites (designed four years ear-
lier), the clumsy information architecture resulting from continuous micro-changes 
occurred over the years, technological considerations (need of technology update), 
content quality issues (no proper workflow for quality control was in place), and other 
contingent organizational reasons. 

Over a period of 8 months, the new version of AWARE+ has been successfully 
applied to the early-stage of requirements analysis and design of the main university 
website (launched online in December 2007) and of the faculty websites (ongoing 
design), and will be used as well for the other new websites to be developed within 
the context of the project. The project directly involved various representative stake-
holders (the USI President, the Administrative Director, faculty representatives, fac-
ulty members, service representatives, and the communication and media office), a 
multidisciplinary design team (including requirements analysts, web designers, soft-
ware engineers, web programmers, graphic designers, web editors and information 
architects) and user representatives (students). 

5   Modelling Communication Requirements: Key Primitives 

5.1   Communication Targets 

Communication analysis starts from the consideration of the profiles of the communi-
cation targets, i.e., the user communities the web communication action is directed to. 
The definition of target profiles is directly related to the client strategic vision, is 
under the direct responsibility of top level institutional stakeholders, and is partially 
informed by the output of business analysis. Still, it is based on communication crite-
ria and not on strictly marketing considerations, and does not necessarily coincide 
with the definition of market segments [28]. Whereas the overall purpose of the mar-
ket segmentation and targeting is to identify groups of similar (existing or potential) 
“customers”, the intent of the user segmentation based on communication purposes 
aims at capturing all relevant external stakeholders who may be of interest for the 
communication action, even if not necessarily being potential customers. 

For the USI website, the primary communication targets have been elicited in the 
discussion with the top level institutional stakeholders: the President, the General 
Secretary and the Promotion Office Representatives. The sixteen communication 
 

Table 1. Communication Targets for USI website 

 
COMMUNICATION TARGETS 

 
Internal students Bachelor, Master, PhD, Alumni 
Prospect Students Bachelor, Master, PhD 
Others Students’ Families, Funding Agencies, Canton, Confederation, Other Univer-

sities, Outside researchers, Outside colleagues, Prospect Partners. Local 
Media, National/International Media 
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targets are reported in Table 1 and conveniently grouped into “Internal students”, 
“Prospect students” and “Others”. 

Each target represents a user community the University would like to engage and 
maintain a successful dialogue with through the website in order to achieve its com-
munication goals, as discussed next. 

5.2   Communication Goals 

Communication goals define the persuasion purposes, i.e., the effects that must be 
achieved on the users in terms of adoption or change of ideas, attitudes, behaviors, 
i.e., what Pierce called a “habit change” [31]. Defining the communication goals is a 
critical activity, which allows hidden or non explicit objectives to surface in a clear 
and very distinct fashion. As for communication targets, also the definition of com-
munication goals is directly related to the client strategic vision, and is under the re-
sponsibility of the institutional stakeholders. Communication goals are not the 
business goals specified by the business analysis, but may act as a vehicle to achieve 
 

Table 2. Communication Goals for USI website 

 
COMMUNICATION  

TARGET 
 

USI COMMUNICATION GOALS (attitudes or behavior to induce 
on the different targets) 

 
Internal students  

Bachelor 

Feel satisfied as members of a community; 
Act as a “word of mouth” recruiters; 
Feel encouraged to pursue their studies with specialization curric-
ula (masters). 

Master 

Feel satisfied as members of a community; 
Act as a “word of mouth” recruiters; 
Feel encouraged to remain in touch with USI after the completion 
of their studies. 

PhD 

Feel satisfied as members of a community; 
Act as a “word of mouth” recruiters; 
Feel encouraged to remain connection points toward USI from their 
future positions. 

Alumni 

Feel encouraged to keep in touch  
Help for recruiting new students, for setting up internships, for 
corporate and institutional relationship, for “word of mouth” brand-
ing 

Prospect Students  
Bachelor Feel that USI as an attractive place to come for studies 
Master Feel that USI as an attractive place to come for studies 
PhD Feel that USI as an attractive place to come for studies 
Students’ Families Feel that USI as a safe and constructive place to come for studies 

Funding Agencies 
Believe that USI provides a key contribution to the growth of the 
Swiss scientific arena as a place for research excellence. 

Canton 
Believe that USI as one of the key players for the growth of the 
“Ticino scientifico”. 

Confederation 

Believe that USI is a key academic bridge to Italy. 
Believe that USI is an added value in the Swiss univ. panorama 
because it represents the Italian-speaking part of the Confedera-
tion. 
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one or more business goals, and should be consistent with them. By their own nature, 
communication goals are directed to specific targets, and must be differentiated ac-
cording to the different target profiles [32]. One of the key principles of communica-
tion and persuasion, which the web channel can support better than traditional media, 
is “tailoring”: a persuasion action is more effective if it is personalized, i.e., tailored to 
the target profile, in order to build a customized relationship between the receiver and 
the sender [6], [11]. 

The USI stakeholders needed to elaborate the overall purpose of the communica-
tion towards each different communication target. Institutional stakeholders can ex-
press their own communication goals for each communication target; even better, 
they should possibly reach an agreement, or a compromise, which allows coming up 
with a few set of shared communication goals. A coherent, agreed and manageable set 
of communication goals should reflect a clearly directed communication strategy and 
paves the way for a more focused design effort, thus potentially leading to a more 
effective persuasive action. 

As shown in Table 2, the diversification of the communication goals for the differ-
ent targets is quite rich. The guiding questions to elicit such goals in our project have 
included the following: “How does the university want to be perceived by each user 
community?” (see goals for the Prospect students, Students’ Families, the Canton and 
the Confederation); “What actions or behaviors can users undertake that can be bene-
ficial for the university”? (see for examples the goals for internal bachelor students). 

5.3   Key Values 

Key values are a way to operationalize communication goals into more pregnant 
“messages” and “perceptions” that need to get across to each communication target. 
Values may be very diverse in nature, but they may emerge from a common line of 
reasoning, stimulated by the question: given the communication goals that have been 
stated, what can the entity promise to be to each communication target, in terms of 
valuable qualities and attributes, to facilitate the achievement of the goals? 

A key value can be a moral, ethical, social, or cultural belief which an entity is 
committed to. Environmental sustainability, for example, is a value in this sense. 
Values of this nature are important for persuasion purposes since people tend to iden-
tify themselves more easily with entities that share with them some common funda-
mental beliefs. As well known to social psychologists and brand designers, when an 
entity plays to our values about ourselves and the society, we experience it positively 
[11]; value sharing is a trigger for human connection and enforces the rational or 
emotional relationship between the message sender and the receiver. 

A key value can be a quality of an entity (being it a product, a service, a company, 
an institution, a person or, at a broader level, a country or a culture) that is worthwhile 
for people, either at individual or collective level. This quality is not necessarily func-
tional, but can be something that gives rise to positive emotional or affective effects 
[5], [33]. For example, “excellence in teaching” is a value (intended as functional 
quality) that can be associated to a university (see USI example below). “Eco-chic” or 
“exclusive” can be a value (intended as emotional quality) associated to a tourism 
resort. The definition of key values is a complex process, which requires a deep  
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Table 3. Key values (“messages”) for each communication target 

COMMUNICATION 
TARGET 

Key Value 1 Key Value 2 Key Value 3 Key Value 4 

Internal students     
Bachelor Identify with USI as 

global entity 
Friendly and familiar We are transparent  

Master Identify with USI as 
global entity 

Awareness of the 
USI community 

We support your 
career 

 

PhD Identify with USI as 
global entity 

Awareness of the 
USI community 

We support your 
growth 

 

Alumni Identify with USI as 
global entity 

We are changing We need your help: 
get involved 

 

Prospect Students     
Bachelor Quality of education Humanized, familiar 

(good relations with 
teachers) 

Effective, innovative Safe 
environment 

Master We focus: well 
specialized curricula 

International, 
multilingual 

Top quality teachers  

PhD We focus on specific 
high level areas 

Well connected to 
other institutions 

Efficient organization  

Funding Agencies Excellence of research Well connected Very young, 
multidisciplinary 

 

Canton Competitive research (at 
international level but 
also responding to 
national or local research 
mandates) 

High quality 
education 

Well connected to 
local institutions 
 

 

Confederation Strong 
internationalization 
(Faculties and Students) 

Academic bridge to 
Italy. USI as Italian-
speaking part of the 
Swiss academia. 

Young and modern Agile and 
effective 
governance 

Other Universities Competitive research Up to international 
standard 

Well connected in 
Switzerland and 
international 

 

Outside researchers Competitive research Well connected Excellent and familiar 
environment 

 

Outside colleagues Competitive research Well connected Excellent and familiar 
environment 

 

Prospect Partners Excellent of research Efficient Agile and well 
organized 

 

Local Media USI is a center of culture USI is well 
connected to local 
institutions 

Innovative  

National/International 
Media 

Very active Excellence of 
research 

Innovative  

  

understanding of multiple factors, including the social, psychological, cultural charac-
teristics of the communication targets; their attitudes, desires, trends, beliefs. It also 
entails an understanding of the characteristics of the physical and organizational con-
text is which their experience will take place (in order to build a promise that can be 
fulfilled), as well as attitudes, desires, beliefs of institutional stakeholders. 

Thus the definition of key values may leverage upon the knowledge resulting from 
communication analysis as well as all the other analysis activities, as shown in  
figure 1. On one hand, key values may reflect the organizational values of an institu-
tion. They may be conceived in view of the achievement of one or more communica-
tion goals for given targets. It is likely that a market repositioning or a change of 
business goals will reflect into a change in the key values definition. On the other 
hand, key values should match the desired or expected values of end users, which 
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may result from user analysis, as suggested by value-centered design approaches. Key 
values should be therefore ideally elicited involving both end users and institutional 
stakeholders. They represent the common ground (between users and institutional 
stakeholders) on which to operate to facilitate the success of the communication. 

The process of key values definition is not a simple one, because it involves strate-
gic thinking, realism, and, at the same time, an immediate perception of the commu-
nication effectiveness to be achieved. To stay on track during key value elaboration 
with the institutional stakeholders, these persons need to be constantly reminded that 
key values are not only abstract principles but they should be functional to the 
achievement of the stated communication goals. In order to shape the key values for 
each user segments, the strategic thinking involved here consists in selecting those 
traits of the entity “personality” which are a value for a target, so that a communica-
tion action can leverage on them to achieve its persuasion objectives. 

As a practical technique, for the definition of key values in our project we gently 
forced stakeholders to stick to not more than 3 or 4 for communication target. The 
risk was to have a long list of values so that the communication could lose focus and 
thus effectiveness. 

This simple constraint on the number of key values implied a considerable effort 
during the negotiation with the various stakeholders and among the design team. 
However, it turned out that the same fact of reasoning towards specific niches of tar-
gets and communication goals, instead of referring to the “generic” brand of the uni-
versity, already helped a lot the team in shaping clear, sound, and agreed key values. 

For example, in order to induce internal bachelor students to act as “word of 
mouth” recruiters”, we needed to make them feel part of USI as a whole (beyond the 
boundaries of their specific class or course programme), and to foster the perception 
that USI is a familiar and friendly environment. Values such as “sense of belonging” 
and “human sized context” were recognized as functional to specific communication 
goals and were therefore included among key values. 

5.4   Brand Values 

Key values should be consistent and aligned with the general (pre-existing, if any) 
brand values elaborated by the institutional/corporate communication and marketing 
experts. For example, USI had general brand values such as “international, innova-
tive, interdisciplinary”. 

The brand values – typically elaborated by brand experts – represent the “core 
message”, the “priority values” that more than any other value define the identity and 
the personality of an entity. They contribute to the definition of the “brand image” - 
the set of beliefs, emotions, attitudes, or qualities that people immediately associates 
to an entity in their mind when they think of that entity. Brand values are those with 
the highest potential of hitting a conscious or unconscious level, and of remaining as 
long lasting imprinting that endures after the real or digital experience with the entity 
itself. Brand values are the elements that will be reified, during design, into the few 
visual constructs (symbolic or textual such as logo or “motto”) through which an 
entity will be identifiable under different conditions and “you will recognize it as 
yours” [6]. 
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To understand the relationship between key values and brand values, it is important 
to note that: 

• Key values are more tactical (relevant for the contingent project at issue), brand 
values are more strategic and long-term. In other words, brand values are more 
“stable”: if a change of business goals may easily induce a modification in key 
values, a change of brand identity values must reflect a more radical and pro-
found transformation of the whole entity. 

• Key values can be addressed and elaborated by web engineers; brand values are 
typically the results of the work of brand, communication and marketing ex-
perts. 

• Brand values are less directed towards a specific target, but should be appropri-
ate for almost all of them. 

• Brand values may not be defined and elaborated through elicitation: if an entity 
has already a well identifiable “brand”, they are already explicit. 

Overall, brand values must be pervasively and persistently communicated across 
the entire application, while different key values may be addressed in different por-
tions of the application, devoted to specific targets and communication goals. 

5.5   Requirements and Transition to Design 

How do the elements discussed so far impact onto lower level design decisions? To 
smoothly support the transition between communication analysis and application 
design, requirements are identified and classified according to a hypermedia design 
taxonomy, that defines the design “dimensions” on which the various communication 
analysis elements may have an impact (see figure 1). These design dimensions reflect 
a conventional classification of design features as defined in most existing web design 
models [20], [22], [34]. 

Content requirements indicate the characteristics of the core information elements 
to include in the application. This category of requirements may have multiple 
sources: content needed to support operational tasks (such as “finding course informa-
tion”); content necessary for informative reasons or institutional constraints (e.g. 
University regulation); “strategic” content descending from communication analysis 
and based on specific brand assets. This is the content which should have a communi-
cation impact (e.g. convincing about the excellence in research) on the user in the 
light of the communication messages expressed by key values. 

Information architecture requirements define the characteristics of the overall 
structure of the content (including access criteria, navigation paths topology, hierar-
chical position of the different content elements, etc.). 

Interaction and navigation requirements specify navigation patterns (such as “in-
dex” or “guided tour”), interaction paradigms (e.g., “menu based”) or communication 
formats (e.g., “storytelling”). 

Layout requirements refer to the application presentation, i.e., to the visual and 
“look & feel” properties of the web interface, including chromatic style, elements 
allocation on the screen, visual priority and affordance, logo characteristics, etc. 
Brand values have typically a strong impact on this dimension. 
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Operational services requirements correspond to conventional functional require-
ments on the operations performed by the application or made available to the user to 
achieve his or her operational goals.  

Socialization services requirements are a special type of operational requirements 
that address the social dimension of the web, defining the characteristics of services 
devoted to “connect people” and perform social task.  

According to our model (see again figure 1), requirements are also considered as to 
their relevance to the delivery channel (e.g., stationary PC, PDA, mobile phone, web 
TV, etc.) by which the user can experience a given message or use a service . 

In principle, the output of communication analysis informs all the above types of 
requirements, since any characteristics of an application may be exploited, in princi-
ple, to transmit or enforce a given “message” (brand values and key values). In the 
rest of the chapter we illustrate the impact of the proposed framework on content and 
layout/graphics requirements, as examples of the interaction between the communica-
tion analysis, the requirements and the design space. 

5.6   Informing Content Requirements 

Content is usually defined in terms of a set of typed or non typed multimedia “content 
units”. These may be built on the basis of the input of business, techno-organizational 
or user analysis (see again figure 1). Indications for shaping the content can come 
from goals and values of different user profiles, from values and goals for different 
market segments, or from organizational goals and values of different components of 
the organization (the latter elements determine, for example, which content must be 
published for legal or organizational constraints). Another potential source for fruit-
fully brainstorming about content requirements is benchmarking analysis or pattern 
analysis, which provides a comparative description of the content design solutions of 
other similar entities (e.g., university websites, in USI case study). This set of content 
units (see a snapshot of it in the rows of Table 4) represents a preliminary set of 
coarse grain content pieces, at different level of abstraction, for the application under 
design. 

We then cross content units with key values and communication targets to high-
light the persuasion semantics of the different content units (their “message”).  The 
resulting representation requires, in principle, a 3D matrix, but in practice a combina-
tion of two 2D matrices is more lightweight and readable, as shown in Tables 4 and 5. 
Coding key values (e.g. 1, 2, 3 …) may help make reference to them in other docu-
mentation contexts and bring them over onto the further steps of the design process.  

Crossing content units with key values independently from the targets (Table 4), 
and analyzing them from different perspectives, highlight a number of content re-
quirements issues that are crucial for guiding the design process: 

• Analysis by rows.  A row indicates which key values should be communicated 
through a given content unit. For example, the content unit about the university 
“Campus” can lend itself to be effectively used as a “persuasion moment” to 
convince the user about the key values “Friendly and familiar, safe environ-
ment” (key value 2) and “We are changing / we are evolving / we are active” 
(key value 6). 
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Table 4. Crossing key values with content units in USI 

 

• Analysis by columns. A column indicates which content units can we leverage 
upon to communicate a given key value. For example, column 3 indicates that 
key value 3 -“we are transparent” (i.e. a transparent institution at many levels, 
from internal procedures to communication) should be supported though content 
units “organization”, “mission statement”, “statistics”. In other words, these 
content units should convey the message aimed at persuading users about the 
“transparency” of the university at various levels. 

Crossing content units and key-values is useful also for checking the consistency 
and completeness of contents with respect the overall set of high level goals.  If a 
content unit is not related to at least one key value, it means that it is not functional to 
persuasion purposes. Still, it may be useful for the fulfillment of other goals. If no 
other reasons for its existence are found, it is likely to be removed. Similarly, it is 
highly desirable that each key value finds a place in the content to enact its persuasive 
power. If no content unit is found for a key value, it may be advisable to brainstorm 
about a new content unit to add; alternatively, it may be discussed whether that key 
value can be communicated through other requirements (e.g. graphics or layout), or 
instead dropped out from the key values list. To use a biological metaphor, the con-
tent here acts like a “growth medium” for a key value, i.e., it is what provides the 
nutrients necessary to the growth of and enactment of key values. Being it through a 
compelling text, engaging pictures, audio or videos, key values can be mainly ex-
ploited through the communication of content. 
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Fig. 2. An example of value-driven author template, to support content authors to write texts 
conveying the predefined key values 

The specification of a consistent set of value-referenced content units represents a 
very powerful tool for supporting and coordinating content authors (who are typically 
spread across an organization and need to work in a distributed, but collaborative 
fashion) in the creation of the actual content. For example the person who is responsi-
ble for writing the text relative to a specific information unit, e.g. the research in the 
university, can be guided by the requirement that she must convey the messages ex-
pressed by the key values “innovative, modern”, “excellence in research, with empha-
sis on competitive research”, “well connected to other institutions”, 
“multidisciplinary”. To this end, specific author templates can be easily derived from 
the mapping content units  key values. The template for the author of the content 
unit should include, among other editorial constraints, also the set of key values to be 
communicated through that content unit (see Figure 2). 

Content requirements concern multimedia material. For example, the person who is 
in charge of selecting the proper images for the same subject, should try to express the 
same key values. 

In USI project, using the Content Units  Key-Values matrix we build a simple 
value-driven authoring tool. It is based on a set of structured “sheets”, with each sheet 
- one per content unit – indicates the key values that should be “played” in the text 
argumentation and in the images associated to that unit.  

The matching Content Units  Key-Values represents the expected persuasive 
impact that the stakeholders would like to get through the content, and is comple-
mented by the matrix Content Units  Communication Target, which represents 
content requirements with respect to the expectations of different communication 
targets. A snapshot of this matrix for USI case study is shown in Table 5. 
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Table 5. Crossing content units with communication targets 

 

Again, we gain different insights when elaborating and reading the matrix along 
the different dimensions. An analysis by rows pinpoints who is potentially interested 
in a given content unit. An analysis by columns pinpoints which content units are 
useful (for any purpose) to a given communication target. Through activities of user 
analysis such as interviews and focus groups, we can enrich this representation, e.g., 
filling each intersection with a quantitative indicator of relevance. 

By iteratively filling in the matrix and reasoning on it among analysts and stake-
holders about the decisions made, it becomes evident which content is an important 
focus of the application, since it serves a large number of communication targets. 
Blank rows should raise questions about the relevance of a given content unit (“Why 
should it be put in?”); blank columns should alert about the fact that we are failing to 
reach a given communication target (e.g. What are we offering to the local media?). 

The association of content types to user targets is a common activity in user-
centered design. In our approach, its role is mainly to support the validation the con-
tent requirements and communication analysis. In addition, it supports the bridge 
between communication requirements and information architectures requirements. 
For example, following the indications of the matrix, we can shape specific naviga-
tional access paths organized “by communication target group”. 

As shown in Figure 2 (left side popup menu), in USI we designed various groups 
of content units, each one specifically relevant for a given communication target (pro-
spective students, current students, faculty and staff, etc.); these groups are aggregated 
into the section “For you”, which is directly accessible from any page. 

5.7   Informing Layout Requirements 

Brand values inform many lay-out requirements, concerning the characteristics of all 
symbolic constructs - logo, pay-off, slogan, mottos, colors – that define the entity 
visual identity [6], and how they map onto the different pages. In most cases, visual 
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Fig. 3. An introductory page from the University of Lugano website redesigned, launched in 
December 2007 

identity elements pre-exist in some form and must be simply adopted and consistently 
used in the lay-out definition in order to enforce the “corporate coordinated image” 
[35]. As previously mentioned, lay-out requirements deriving from brand values are 
pervasive across the entire application. 

In USI project, the university pay-off (“International, Interdisciplinary, Innova-
tive”) is constantly present in all pages (see Figure 3), a requirements dictated by the 
brand identity of the university, as discussed in section 5.4. Similarly, the logotype 
(which is the institutional one) and the choices of the chromatic codes is a legacy of 
the brand values. Other requirements concerning the layout find their rationale in key 
values and in communication targets. Even if graphic designers normally hate work-
ing within a framed methodological guidance, these elements are typically at a level 
of abstraction that also strongly creative persons can accept, using them as guidelines 
for sketching their layout proposals. As it is visible from the page design proposal in 
Figure 2, all the overall layout profile was conceived to express the USI qualities 
“very young”, “agile”, “scientific excellence”, “modern”, “transparent”, ”at pace with 
times”. 

The choice of the thematic picture on top of the pages, which is different for each 
section, is for example guided by the need of evoking specific key values for a spe-
cific target. In Figure 3, a page of the section introducing PhD programmes for “Pro-
spective Researchers”, the image that have been selected should suggest the feeling of 
a “Friendly and familiar” USI. 
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It is interesting to notice how the adoption of a value driven approach has induced 
some organizational changes that are functional to make the value driven design pro-
ject more efficient. For example, the whole USI database of institutional digital pic-
tures was polished, reorganized, and enriched with new material, to better reflect the 
library of key values to be communicated. 

6   Conclusions and Benefits 

Introducing AWARE+ as a model for capturing and analyzing communication re-
quirements provides a novel contribution and substantial benefits under several re-
spects, including advances in requirements knowledge, transition to design, process 
support, and potential for adoption. 

6.1   Advances in Requirements Knowledge 

A substantial contribution is the introduction of the category of “infosuasive” applica-
tions as characterizing those websites (the greatest majority) that at the same time 
provide a large amount of information and try to persuade the user about something. 
In this perspective, the framework introduces and place “communication goals” as 
first order citizens to be considered together with other, more traditional, business 
goals during the process of requirements modeling and analysis. 

More in general, the proposed methodological framework also contributes to 
smoothly bridge the early and late phases of the RE process of communication-intensive 
interactive applications, through the representation of the direct and indirect relation-
ships between brand values, goals of different nature (business goals, conventional 
goals, and communication goals), target profiles, and application requirements. Having 
an explicit links among the above aspects allows design changes to be traced all the way 
to the originating source, i.e., the changes of high-level strategic decisions (including 
those that concern communication and brand) that ultimately lead to requirements. 

The methodology presented in this chapter illustrates the need for modeling the in-
tertwining of requirements and the social and organizational context in which the 
system-to-be will be eventually deployed. This aspect is particularly relevant for 
communication-intensive applications, where multiple stakeholders wish to commu-
nicate articulated messages to a variety of audiences for different purposes. The art 
and science of requirements is increasingly called for providing conceptual tools and 
guidance to master this complexity and smoothly make the requirements dialogue 
with the organizational environment.  The case of university websites (which reflect 
the inner organizational complexity of the academic institutions) is emblematic in this 
respect.  

6.2   Transition to Design 

An important benefit of AWARE+ is that the complexity of the requirements appara-
tus gets smoothly coupled with the various design aspects to be developed. In fact, we 
have provided guidelines and examples about how to take into account communica-
tion requirements for the different parts of design, such as, for example, content de-
sign, layout design, and info-architecture design. 
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More in general, given the nature of the proposed approach, we are considering a 
picture potentially larger than the traditional RE focus on ICT applications. Once the 
communication goals and the corresponding segments of the target are identified, the 
choice of the “best” communication channel needs to be done. In this respect,  
we have also learned that a channel could be the Web, or pod-casting, but it could 
also be traditional communication media, such as leaflet, newspapers, magazines, 
posters, radio, TV, etc. This vision puts technological artifacts in a broader communi-
cation context, and assigns to requirements engineering a wider responsibility, which 
potentially includes the strategic definition of all communication actions and designs 
of a company and institution, with and without technological support. 

6.3   Process Support 

To support the requirements process in an agile fashion, we propose operational tools 
and documentation and elicitation heuristics to clearly express, in a concise manner, 
the ongoing outcome and decision making during the analysis. As organizational 
implication, by considering a wider spectrum of ingredients that inform design deci-
sions, we foster an intense collaboration among different actors of the requirements 
analysis team: business strategists, marketing and branding experts, communication 
experts, designers, and software developers. This articulate set of stakeholders is the 
likely situation to be supported in complex and large projects. 

6.4   Potential for Adoption 

AWARE+ is a wonderful tool to build consensus in a complex community of stake-
holders (as it can be found for a University website); the communication goals and 
values are so readable, in fact, that even the less expert stakeholders can understand 
them, express their opinion about them, and possibly accept them. Once communica-
tion goals and values are accepted, the design effort becomes much less arbitrary. 
From the direct project and teaching experience, we can confidently anticipate that the 
methodology is also lightweight and agile in two senses: it does not require much 
effort to adopt it and it does not require much effort to teach it to someone. 

7   Agenda for Future Research 

As far as future work is concerned, several are our current directions, but we only 
mention the most relevant ones. 

7.1   Beyond Usability: Communication Impact Evaluation 

Since we have set up precise communication goals, and we have transformed them 
into communication values, we are in the position to actually evaluate whether the 
wished impact is achieved or not. We can do this for different design components: 
e.g. does the content of this page convey the message(s)? Does the layout of this page 
convey the message(s)? Does the info-architecture of this part of the web site convey 
the message(s)? An important research direction is to expand current usability evalua-
tion methods to include the analysis of the communication impact. 
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More in general, the scope of communication requirements evaluation is indeed 
quite complex, and substantial research is needed to explore the various levels of 
communication impact, including: 
 

(a) “Actual Communication” Level. 
This is the level of the communication between the application (as the ultimate reifi-
cation of its stakeholders’ communication intents) and the actual users. The complex 
of cognitive, emotional, rational, and contextual factors that come into play when 
users interact with a system (e.g., explore and read its content, look at its interface, or 
invoke its functions) is an increasingly explored research field. The purpose of our 
work is to measure the final outcome (and not the process) of this communication 
experience, in terms of messages that got across. At this level, evaluating communica-
tion requirements means to measure the actual values, beliefs, feelings, attitudes that 
the interaction with the application induces on the end user, and to compare them with 
the expected messages that stakeholders want to convey. 
 

(b) “Virtual Behaviour” Level.  
The communication impact can be revealed by how the users actually use the applica-
tion. The behaviour in the virtual world, e.g., the users’ interactions with the system, 
can be interpreted as enabling condition for user’s beliefs and attitudes, and can be 
used as an indicator to assess whether the application has achieved its communication 
goals. Observable and measurable interactions can be, for example, the downloading 
of an online form, the access to key “conversion” pages (e.g., the advertised new 
product) or the execution of a “success” interaction flow that denotes the apparent 
user interest for specific aspects that are relevant for the main stakeholders. Various 
professional tools (based on log files data) exist that enable to set conversion meas-
ures on the user’s behaviour (not only in terms of commercial transactions, but also in 
terms of visited content), and to track in real time the aggregated users’ data. Google 
Analytics (www.google.com/analytics/) or ClickTracks (www.clicktracks.com/) are 
examples of popular commercial tools that are typically used for user profiling but 
can also support this level of communication impact evaluation. 
 

(c) “Real-world Behavior” Level. 
The most important level of communication impact, but, at the same time, the least 
under control by requirements engineers and application designers, is what users 
eventually do in the real world after having used an infosuasive application. For ex-
ample, even if a university website effectively communicates the high quality of 
teaching, the advanced facilities and the friendly environment of the university 
(communication impact at level (a)), and users actually visit (even repeatedly) the 
expected content pages, and download the courses prospectus and application forms 
(communication impact at level (b)), this does not necessarily bring higher enrolment. 
Other factors, which are independent from the characteristics of the application, come 
into play in the articulate trajectory from communication to real-world behaviour. 
These elements are, for example, business opportunities and models (e.g., the univer-
sity fee is to high), the competitive landscape (e.g., other universities are more attrac-
tive), or “environmental” factors that simply could be hardly controlled (e.g.  
the students’ word of mouth about given courses is not positive, the bureaucratic 
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enrolment process is too complicated, the staff does not have enough time to properly 
assist the prospect students, or parents simply refrain from sending pupils too far from 
home). 

Specific methods, process guidelines and metrics are needed to position the analy-
sis on the desired communication impact level to assess and then to carry out a sys-
tematic evaluation against the pre-defined communication goals. 

7.2    Requirements-Driven Guidance to Information Architecture 

Whereas the impact of requirements on content and layout design decisions has been 
investigated in detail, still much research is needed to explore the interaction between 
communication goals, key values and requirements concerning information architec-
ture and navigation. Traditionally, these requirements come from a different type of 
analysis, known and employed in HCI and human-centered design, through methods 
such as scenario-based design and information architecture design techniques. 

The methodological tools for capturing the needs of the main stakeholders (cen-
tered around the notion of communication goals) and the ones used to model the 
needs of the users (user-centered design techniques) should point to a common 
ground and a common solution, in order to deliver a successful user experience. Co-
operation and integration between these two worlds is needed. Information architec-
ture requirements are a starting point to investigate this intersection: how 
communication goals influence the design of the information architecture, typically 
designed solely following usability criteria? 

7.3   Transfer to Industry and Large-Scale Assessment 

Further research is needed to more systematically assess the actual effectiveness of 
the methodology for real organization in complex projects. Is the framework effective 
and lightweight enough, that it can be easily adopted by practitioners in web devel-
opment? We think that methodology-transfer is key item in the research agenda for 
any new methodological proposal. We are current discussing with a few industry 
representatives in Italy, in order to teach them the method and to assist them into 
adoption. 
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Abstract. A fundamental problem with requirements engineering (RE) is to val-
idate that a design does satisfy stakeholder requirements. Some requirements can
be fulfilled locally by designed modules, where others must be accommodated
globally by multiple modules together. These global requirements often crosscut
with other local requirements and as such lead to scattered concerns. We explore
the possibility of borrowing concepts from aspect-oriented programming (AOP)
to tackle these problems in early requirements. In order to validate the design
against such early aspects, we propose a framework to trace them into coding and
testing aspects. We demonstrate the approach using an open-source e-commerce
platform. In the conclusion of this work, we reflect on the lessons learnt from the
case study on how to fit RE and AOP research together.

1 Introduction

Aspects are features of a software system that cut across architectural boundaries and
impact on the design of multiple system components. Examples of aspects include data
persistence and logging, security, performance, usability, maintainability, monitorabil-
ity, testability, etc. Aspect-oriented programming (AOP) modularizes crosscutting con-
cerns in software systems so that their evolution is less problematic [1,2]. One may
apply AOP to reengineer a legacy software system, thereby obtain a library of aspects
from an implementation that can be further configured and reused. Thus, uncovering
aspects can be supported by program analysis techniques such as aspect mining [3],
refactoring [4], and program visualization [5]. A common limitation to these techniques
is that it is hard to validate identified and modularized code aspects: Were they really
required or designed to be there?

Early aspects – the concerns that crosscut during the early stages of a software sys-
tem’s life cycle [6] are useful to study and analyze early on, before they are transformed
into myriads of details that clutter code artifacts [7,8,9,10,11,12].

Although various approaches have been proposed to discover and modularize aspects
at the requirements level 1, few address validation and traceability issues of identified

1 http://www.early-aspects.net/ Last accessed on November 14, 2009.

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 432–452, 2009.
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early aspects. Specifically, it is of great interest to trace how early aspects manifest
themselves and evolve throughout the software life cycle, and to validate the resulting
system in light of stakeholder concerns that crosscut the problem domain.

In our previous work [9,11], we developed a framework for identifying and weav-
ing candidate aspects during goal-oriented requirements analysis [13]. Aspects in goal
models are captured as the operationalizations of softgoals and the relations to func-
tional goals. These may be implemented as code aspects, but developers may choose
other means to address these crosscutting concerns. Even in the latter case, it is desir-
able to keep early aspects modularized so that one does not have to recover them from
the code at a later stage.

In this work, we investigate how to trace and validate identified early requirement
aspects resulted from [9] through implementation and testing. Early aspects are either
naturally mapped to code aspects, or recorded as issues to directly advise testing. Aspect
testing is therefore guided by stakeholder goals. In our approach, aspects are intended
to enhance system qualities by interacting with multiple system units, while preserv-
ing the functionalities defined by hard goals. The benefits of leveraging our approach
are twofold. By separating crosscutting concerns throughout requirements, implemen-
tation, and testing phases, we achieve a high degree of modularity and traceability in
software development. By validating implementation against stakeholder concerns, we
achieve a high level of software quality and user satisfaction.

Our aim for this work is to explore the extent to which system implementation helps
validate early aspects, and to propose a systematic means to trace the refinement of
requirement aspects throughout the software life cycle. Our proposed approach to han-
dling aspects is very general and does not depend on any specific programming lan-
guage or particular type of applications. To demonstrate the idea, we present a study
showing the approach’s application to an open-source e-commerce platform written in
PHP – osCommerce 2. Our study effectively validates broadly scoped quality concerns
(e.g., usability) against stakeholder requirements, systematically enables the tracing of
aspects throughout the software life cycle, and empirically verifies improved system
modularity claimed by aspect orientation.

The remainder of the chapter is structured as follows. Section 2 explains gener-
ally why stakeholder requirements contain early aspects, and Section 3 introduces one
form of early aspects systematically discovered from goal-oriented requirements en-
gineering. Section 4 shows some existing solution to the problem and their relation
to us. Section 5 explains our approach in detail, by showing the syntax of our early
aspect language and the PhpAspect language3, explaining how to validate the traces
between early aspects and code aspects using testing. Section 6 illustrates the appli-
cation of the approach using the osCommerce case study extended from that of [9].
Reflecting on the lessons learnt, Section 7 concludes the paper and suggests future
work.

2 http://www.oscommerce.org/ Last accessed on November 14, 2009.
3 http://phpaspect.org
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2 Why Aspects in Requirements?

This section aims to address the research question: why do we need aspects in require-
ments? It situates our research within existing literature in Requirements Engineering
(RE) and Aspect-Oriented Software Development (AOSD).

A requirement aspect is a stakeholder concern that cuts across other requirements
concerns or artifacts [14]. It is broadly scoped in that it is found in and has an implicit
or explicit impact on more than one requirements artifact [6].

Requirement aspects convey domain properties of interest to stakeholders, interact
with base requirements dictate additional services, and need to be traced to stakeholder
interests. For example, a performance requirement cuts across all functional require-
ments to deliver a “fast enough” computation. With respect to different functionalities,
however, such performance requirement can be operationalized differently. For exam-
ple, a “high-performance sort” function is required to have O(n log n) time complexity
where the size of the problem, n, is large. On the other hand, a high-performance “enter
keyword” function is not required to finish in milli-seconds: Most of elapsed time the
computer is waiting for user input, thus more tolerable to computational complexity.
Nonetheless, the overall system performance requirement depends on all functionality
to be fast enough. Therefore we can regard the performance concern even a globally
scoped aspect where all functional requirement artifacts are affected. Other require-
ments, such as security, usability, etc., that share the same characteristics are all require-
ment aspects. Once woven, requirement aspects may also become base requirements for
other requirement aspects. For example, a usability requirement aspect can crosscut the
previous example “high-performance sort”, requiring a progress bar to assure end-users
about how much progress the algorithm is moving forward. Base requirements include
functional requirements as well as those woven with other requirement aspects, hence
an inevitable problem is to validate them. The effectiveness of a requirement aspect can
only be validated by considering base requirements that they are woven. For example,
one may compare one sort algorithm with another sort algorithm in terms of measurable
performance, rather than comparing one performance problem to do with sorting with
another problem to do with entering password. It is therefore useful to instantiate the
validation to the places where one can trace to the woven requirements.

Although in AOP (aspectJ-like), aspects are typically considered to be solutions that
crosscut existing base solutions. In RE, such is not always the case. This is due to the
fact that a base problem does not always exist before the crosscutting ones. Reflecting
different viewpoints of a problem, early aspects can, in the extreme, crosscut each other
symmetrically. In that sense, viewpoint merge/matching techniques in RE [15] can also
be considered an early aspect weaving technique.

To interpret the notions involved in aspect orientation from an RE perspective, we
follow the metaphor that every requirement aspect acts as a service provider to some
base modules [16].

– Advice defines the content of the service that a specific requirement aspect pro-
vides. It describes what the service is about.

– Join points are points in the base which a requirement aspect interacts with. They
describe where the service is provided.
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Table 1. Conceptual relation between aspects and requirements

Approach
candidate as-
pects advices join points pointcuts weaving

[8,7,14,15] concerns requirements viewpoints contribution
table

resolving con-
flicts

[9,10,11] softgoals advising tasks goals and
tasks

contribution
links

composing al-
gorithm

[19] security vulnerabilities functional req. threat descrip-
tions

composition
process

[6,17]
non-
functional
terms

occurrences
req. state-
ments

indicator
terms

information
retrieval

– Pointcut represents a set of join points. It describes the situational patterns of the
service that an aspect provides.

– Weaving is the process of coordinating service providers (requirement aspects) and
consumers (base requirements). It describes when and how the service takes place.

In addition, the purpose of a requirement aspect describes why the service is needed
in the first place. Since it is hard, and usually counterproductive [14], to carry out
aspect-oriented RE activities on requirements documents that are ill-structured, existing
approaches fall into two categories. 4

The first category is based on linguistic clues where the scattered occurrences of
terms in the document are considered as crosscutting concerns, and their relations to
the terms in the context are considered as join points [6]. Information retrieval tech-
niques [17] and natural language processing techniques [18] have been proposed to
identify these scattered occurrences and associate them to the non-functional require-
ments (NFRs) as aspects.

The second category is based on structured requirements models, such as goal graphs
[9] or problem frames [19]. The crosscutting concerns on these structures are often de-
rived from the different nature of functional and non-functional domains. For example, a
“higher performance” task in the “performance tuning” domain tends to cut across other
functions in the system, leading to a natural crosscut to system functions. Therefore, the
structures of the models used by the goal-oriented RE can be exploited to explain how
early aspects are discovered from the stakeholders, rather than mined from the code.

To sum up, Table 1 classifies some approaches on early aspects with respect to the
concepts of AOP.

In relation to the themes of this book, requirement aspects “interwine requirements
with contexts” in the sense that requirements are allowed to be crosscutted by global
concepts such as viewpoints, concerns, softgoals. Moreover, all these must be localised
with business, organisational and community situations through contextual joinpoints.
Requirement aspects also help “evolving designs and ecologies” because selectively
freezing certain aspects while changing other aspect is realised easier by modularis-
ing the crosscutting concerns among the requirements that can significantly reduce the

4 Please refer to the early aspects landscape reports (available at http://www.early-aspects.net)
for more detailed surveys of aspect-oriented RE approaches.



436 Y. Yu et al.

co-changes of similar advices. Requirement aspects support “fluidity of designs, archi-
tecture, visualisation and representation” because a core architecture can be cleaned
by separating messy crosscutting concerns, which can greatly help visualising and
representing the base system. Last but not least, requirement aspects fit the theme of
“complexity, business process focus, architecture” by hiding the complexity caused by
tangled requirements. Although requirement aspects make it much easier to manage
crosscutting concerns among requirements, common to these themes, there is still a re-
search challenge to trace them into system implementations and validate them against
stakeholder goals. In the remainder of the chapter, we will focus on demonstrating a
possible answer to this challenge.

3 Discovering and Testing Aspects in Goals

This section introduces the terminology and concepts involved in our approach to dis-
covering aspects in goal models and testing their validity.

Organizational goals lead to requirements. Goals justify and explain the presence
of requirements, while providing the baseline for validating stakeholder concerns [13].
Goal modeling shifts the emphasis in requirements analysis to the actors within an or-
ganization, their goals, and the interdependencies between those goals, rather than fo-
cusing on processes and objects. This helps us understand why a new system is needed,
and allows us to effectively link software solutions to business needs.

Goals provide basic information for detecting and resolving conflicts that arise from
multiple viewpoints [20]. Goal analysis facilitates the discovery of trade-offs and the
search of the full space of alternatives, rather than a subset. Goal modeling frameworks
distinguish between hard (functional) goals – states that actors can attain – and soft-
goals, which can be satisfied only to certain degrees. System qualities, such as reli-
ability, efficiency, and portability, are typically expressed as softgoals to suggest that
intended software is expected to satisfy these NFRs within acceptable limits, rather
than absolutely [21].

Aspects in goal models can be discovered using the correlations from hard goals to
softgoals along with a goal eliciting and refinement process of a V-shape goal graph [9].

Figure 1 illustrates the process of separating early requirement aspects as a result of
goal elicitation. A V-shape goal graph is a simplified metamodel where only functional
and non-functional requirements are initially elicited as goals/softgoals respectively.
Then through vertical refinements, they are operationalized into tasks. The horizontal
contribution links between goals and softgoals provide a clue to separate tasks that
operationalize softgoals from the tasks that operationalize hard goals.

The formal requirement aspect elicitation process can be briefly explained as follows.
Initially, the stakeholders’ high-level concerns are elicited as abstract goals. The func-
tional ones are represented by hard goals and the non-functional ones are represented
by softgoals. Relations are also elicited as abstract contribution (resp. correlation) links
from the functional hard goals to the non-functional softgoals that must be fulfilled by
the prescribed system-to-be.

During the refinement process, these abstract goals are recursively decomposed into
more concrete ones through AND/OR decomposition rules. As a result, several
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Fig. 1. Illustration the separation of requirement aspects [9]

hierarchies of goal trees are derived. These are inter-related through abstract contribution
(resp. correlation) links that represent semantic inter-dependencies between these goal
trees.

At the end of the refinements, all abstract goals are decomposed into a set of goals
that need no further decompositions. These leaf-level goals can be fulfilled by tasks that
can be carried out by the system-to-be or external actors. The set of tasks are further cat-
egorized into functional ones and non-functional ones depending on whether they are
at the bottom of the decomposition hierarchy of an abstract hard goal, or of an abstract
softgoal. The refinement of abstract goals must be validated to maintain the abstract
contribution links, which can often be fulfilled by weaving the concrete non-functional
(operationalized) tasks into the functional tasks. As such, every OR-decomposed sub-
goal must fulfill the same commitment to the softgoals as their parent goal does. It is
often the case, if not always, that non-functional tasks crosscut several functional ones
that belong to different OR-decomposed subtrees.

Figure 2 illustrates early requirement aspects in the media shop study [23,9]. The
top level softgoals such as “Security [system]” and “Usability [language]” are captured
as goal aspects, which are operationalized into advising tasks. The aspect weaving is
achieved by composing the advising tasks with the functional tasks of effected hard
goals. As an example, the aspect “Customization [language]” is operationalized into
an advising task “Translate [language, NLS]”, meaning that the media shop is advised
to translate occurrences of natural language strings (NLS) into the desired language.
This advice crosscuts all hard goals that display Web pages and is intended to enhance
system usability for native users of the desired language. Basic functionalities (e.g.,
“Informing”, “Reporting” and “Shopping”) defined by hard goals via functional tasks
shall not be changed, though, by weaving such a usability aspect.

Aspect verification is an active area where research focuses on different ways to carry
out tests, select test cases or generate test cases for a given AOP mechanism [24]. For
example, unit testing aspects has been proposed by Lesiecki [25], equipped with eight
patterns to verify the crosscutting behavior as well as the crosscutting specifications.
The specifications correspond to the pointcuts in aspects, which are validated through
aspectJ visualization and mock targets manually. The behavior is tested with a focus on
the crosscutting functionality, i.e., advice.

In this work, we attribute the crosscutting behavior to both functional and non-
functional requirements, and propose to reuse existing testing mechanisms to work out
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Fig. 2. Illustration of early requirement aspects in media shop extended from i∗ [22] notations.
Aspects, together with their advising tasks, are represented as first-class modules in the upper-
right corner of the goal model. The contribution links, from hard goals and functional tasks to
requirement aspects – operationalized softgoals – modularize the crosscuts that would otherwise
be tangled and scattered in the goal model.

a natural way to validate the implementation of the identified early aspects. Since re-
quirement aspects address non-functional requirements, the functionality of the base
components must not be modified by weaving the aspects. Thus, existing unit test cases
that target at the original base components can be reused for testing the functional be-
havior of the aspects.

In our approach, it is crucial to validate whether the non-functional behavior of an
implemented aspect fulfills its intended NFR defined by the early goal aspect. Certain
qualities in a system with weaved aspects must outperform the one without aspects,
so that the effort of managing aspects can be justified. Such examinations are guided
by the quality metrics derived from requirement aspects, and are supported by modu-
larizing testing aspects [26], or via other means depending on the type of NFRs under
investigation.

4 An Aspect Tracing and Validating Framework

In this section, we explain how tracing and validating requirement aspects are carried
out throughout the software life cycle. Figure 3 overviews the process of our approach.
The upper part of the figure highlights the early aspects discovery process discussed
earlier. Advising tasks, which operationalize softgoals and relate to hard goals, are
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modularized as aspects and weaved into goal models to enable aspect-oriented require-
ments analysis.

Key concepts of AOP implementation are depicted in the middle of Figure 3. Func-
tional modules (f ) and code aspects (advice + pointcut) are derived from functional and
advising tasks respectively. The weaved system (f ◦a) is obtained by composing advice
(a) with bases according to the pointcut description (p). Some aspects identified at the
requirements level may not be mapped to code at all. For example, a typical perfor-
mance requirement might state that the system shall complete a task within 2 seconds.
These early identified aspects play a key role in monitoring the system’s behavior, and
shall not be lost in software development. We record them as quality issues to estab-
lish their traceability throughout the software life cycle, but the discussion of handling
these quality issues is beyond the scope of this work. The success criteria for aspects
are specified in t, which gathers quality metrics and shares the same pointcut with a. It
is important to incorporate the metrics t so that one can measure system qualities with
(f ◦ a ◦ t) and without (f ◦ t) aspects. Note that our framework is viable for applying
different programming languages and weaving mechanisms such as AspectC, aspectJ
or HyperJ. We use phpAspect to illustrate our approach in the following discussion.

System validation is shown in the lower part of Figure 3. The weaved system (f ◦ a)
is subject to two kinds of tests on basis of respectively hard or soft goals of stakeholders.
The first test ensures that systems with and without aspects have the same functionality
defined by hard goals: H(f) = H(f ◦ a). Existing testing mechanisms, such as unit

Fig. 3. A process overview of tracing and validating aspects
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testing, can be reused to validate whether the weaved system satisfies the functional re-
quirements. The second test checks whether the weaved system indeed improves system
qualities in terms of the degree of softgoal satisfaction: S(f ◦ t) < S(f ◦ a ◦ t). Our ap-
proach enables both forward and backward tracing of crosscutting concerns throughout
the software life cycle.

4.1 Goal Aspects in Q7

Q7, or 5W2H – why, who, what, when, where, how, how much – is a pseudo pro-
gramming language that captures the structure of requirements goal graphs, including
the major entities of the NFR framework [21]. The syntax of the language is designed
to facilitate the reuse of solutions in the non-functional domains while incorporating as-
pect orientation [27]. The seven questions are usually asked for eliciting and elaborating
goal-oriented requirements following the Tropos methodology [23].

The answers to the why and how questions respectively indicate the composition
and decomposition relations between abstraction and implementation. Adapted from
the goal model of Figure 2, the following example shows the AND/OR decomposi-
tion relations among the hard goals in the media shop domain. The front page of the
shop has the functionality for “informing” the end-users and administrators. This goal
is decomposed into “finding” and (&) “reporting” relevant information. In order to find
information, a user is allowed to “search” or (|) “navigate” the shop. The nesting struc-
ture of curly braces helps visualize the decomposition hierarchy of the goals.

Informing { &
Finding { |

Searching
Navigating

}
Reporting

...
}

The answers to the how much question show the degree of contributions between hard
goals and softgoals. Q7 uses the labels “++”, “+”, “−”, and “−−” to indicate the
“make”, “help”, “hurt”, and “break” relations between the goals. The answers to the
what question connect the goal to its subject matter [28]. In Q7, such information is
placed inside square brackets as topics of the goals or softgoals. For example, when
the system meets the shop’s “Front [page]” goal, it also makes (++) major top-level
softgoals (“⇒”), such as “Security [system]” and “Usability [language]”.

Front [page] {
...

} => ++ Security [system],
++ Usability [language] ...

The answers to the when question indicate the feasibility of the goals under certain
contexts [29], and those to the who question attribute a goal to an encapsulating module.
In the i∗ terminology [22], such a module is called an actor that either processes or
delegates a goal or a task to other actors via strategic dependencies. In Q7, we use the
idea of “namespaces” to represent the actor names. For example,
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<MediaShop>::Front [page] { &
Managing [page]
...

}

Here, “MediaShop” is the actor that processes the goal “Front [page]”. If the actor
is not explicitly specified, a goal inherits the namespace from its parent goal. Thus,
“Managing [page]” belongs to the same “MediaShop” actor.

As an extension of the encapsulating actors, we create a new namespace to modular-
ize the aspect that cuts across multiple entities in the goal model. As an example, the
security aspect in Figure 2 is represented as follows.

<aspect>::Security [system] { &
Confidentiality [credentials] <=+ [page] { &

Redirect [login]
}
Security [information flow] <=+ [account] { &

SSL [connection]
}

}

The goal hierarchy within the aspect module is an advice and the leaf-level tasks in
the hierarchy are called advising tasks. These tasks do not exist by themselves, since
they have to be weaved into the functional goals by indicating where to attach the ad-
vice. The answers to the where question are designed to express the pointcut of an
aspect, indicating which functional goals are suitable for applying the advice. For ex-
ample, the following Q7 statements show a pointcut expression after the “⇐” symbol:
+ * [page], which matches the hard goals of any name (indicated by the wildcard
*), of the subject matter Web “page”, and those helping (+) achieve the usability soft-
goal. The advising task translates the “natural language string” (NLS) appeared in the
Web page into the desired language (e.g., Spanish or German). Note that a pointcut can
also be specified by enumerating the effected hard goals.

<aspect>::Usability [language] { &
Customization [language] <= + * [page] { &

Translate [language, NLS]
}

}

All matched goals are therefore the join points of the aspect. A weaving algorithm
[27] has been implemented in the OpenOME modeling tool (http://www.cs.toronto.edu/
km/openome) to identify the join points and attach the advising tasks as siblings to the
join point tasks. Both join point tasks and advising tasks then share the same parent,
which is called the weaved goal. The weaving algorithm implemented in Q7 makes it
possible to analyze the weaved goal model through a goal analysis tool, e.g., a goal
reasoning algorithm [30].

As we can see from the examples presented above, Q7 provides a quality-based
reuse mechanism for representing and modularizing crosscutting concerns in goal mod-
els. The Q7 language is not only capable of handling the characteristics of the quality
knowledge, but also capable of relating those with functional descriptions. In addition,
the textual form of Q7 greatly facilitates the tracing of stakeholder concerns throughout
the software life cycle, as we shall demonstrate via a case study in Section 5.
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4.2 Implementation in phpAspect

The early candidate aspects discovered in goal models are usually suited to be im-
plemented as code aspects, but developers may choose other means to address these
crosscutting concerns, as previously stated. Nevertheless, our approach explores the
possibility to equip developers with a full-fledged aspect-oriented framework so that a
clear separation of concerns is promoted throughout software development.

As one can see from Figure 3, functional and advising tasks from requirements are
mapped into functional and aspectual modules in design and implementation, respec-
tively. Since the subject in our case study – osCommerce – is implemented in PHP, we
select a solution for AOP in this language, phpAspect 5, to facilitate the discussion in
implementing early aspects.

PhpAspect is designed as an extension to the PHP language. It adds new constructs,
such as: aspects, pointcuts, advices, and inter-types declarations, inspired by aspectJ
for expressing aspects relating to objects and classes, while embracing specific fea-
tures for Web-based applications. It provides pointcut expressions for constructions
used in these applications, such as function call and execution, Web-based variable ac-
cess, XML/HTML enclosing context identification, and the like. Moreover, phpAspect
is able to weave aspect components in portions of code that are embedded into XML or
HTML elements.

PhpAspect uses a static weaving process that performs source code transformation
of a PHP program with aspect extensions into a standard PHP program. Both the source
PHP program and the aspect modules are XMLized into abstract syntax trees, which
can be weaved through customized XSLT stylesheets. The woven XML syntax trees, as
a result, are transformed into the target PHP program via unparsing XSLT stylesheets

The following code shows an example of the security aspect for a Web application.
This aspect first introduces a credential checking around all Web pages that require
access authentication (captured with the checkCredentials pointcut on goto
method call). This checking prevents users from accessing a Web page if they are not
logged in or do not have the right credentials. In these cases, users are redirected to
a more appropriate page, either the login or index page. Secondly, the security aspect
checks that all cart operations performed by the client are done in an HTTPS (SSL)
mode and deny them otherwise.

<?php
aspect Security {

//Intercept all instantiations of a page
pointcut checkCredentials:call(Page->goTo($arg2));

//Intercept all method execution of the cart
pointcut checkSSL:exec(Cart->*(*));

//Advice: Around all page instantiations, check the credentials
around(User $user) checkCredentials {

if($user->hasCredentials($_GET[’page’],
$_GET[’action’])) {

proceed();
} elseif (!$user->isLoggedIn()) {

$thisJoinPoint->getObject()->goTo(’login.php’);

5 Developed by William Candillon during the Google Summer of Code, see
http://code.google.com/soc/php/about.html .
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} else {
$thisJoinPoint->getObject()->goTo(’index.php’);

}
}

//Advice: Around all method execution of the Cart,
// We check whether the connection is SSL
around checkSSL {

if(!$_SERVER[’https’]) {
header("Location: https://{$_SERVER[’HTTP_HOST’]}

{$_SERVER[’REQUEST_URI’]}");
} else {

proceed();
}

}
}
?>

The above example not only demonstrates phpAspect’s competence in working out
the implementation of requirement aspects in question, but also shows its capacity to
map and trace early identified crosscutting concerns in the code base.

4.3 Aspect Validation

It is crucial to validate the implementation against stakeholder requirements. We pro-
pose a goal-based testing approach to ensure that system functionalities are preserved
and system qualities are enhanced by weaving aspects into base modules. This concept
is highlighted by the validation flows in Figure 3.

In goal-oriented requirements engineering, when it is concrete enough to express
the function of a task in terms of input and the expected output, a unit test case can
be created to check whether the function is violated by comparing the output of the
implemented function with the expected output of the required function. Therefore, the
leaf-level functional task in the goal model corresponds to a set of unit test cases that
tells whether the base program delivers the required functionality. Having enough unit
test cases in terms of the coverage of the input domain, the functional task can be labeled
“validated”.

Aspects discovered in goal models provide a baseline for code aspects validation. If
an advising task cuts across multiple functional tasks, the unit test cases of the func-
tional tasks at the join points can be reused to test the functionality of the weaved
system. This is because requirement aspects must not change basic functionalities de-
fined by hard goals and functional tasks. The implementation of aspects, therefore, has
to preserve this property.

On the other hand, the degree of certain softgoal satisfaction must be enhanced by the
weaved system. Measuring quality attributes typically presents an obstacle to traditional
testing mechanisms, since NFRs are not always easy to metricize. Our effort of mod-
eling aspects early in the requirements pays off here. The results from goal-oriented
analysis, including the quality metrics, the advising task and pointcut of requirement
aspects, can be reused and extended to test softgoal satisfaction.

For example, the media shop keeps users from accessing a Web page if they are
not logged in or do not have the right credentials. We model this requirement as a
security aspect, and map it to a code aspect in phpAspect, as explained in Section 4.2.
We can define a set of unit test cases that act as unauthorized agents and try to break
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Table 2. Tracing the security (S) and usability (U) aspects in an osCommerce media shop

Concept Q7 phpAspect
aspect (S) <aspect>::Security [system] aspect Security

pointcut (S) <= + * [page] call(Page->goTo($arg2))

<= + * [cart] exec(Cart->*(*))

advice (S) { & Redirect [login] } checkCredentials{...}
{ & SSL [connection] } checkSSL{...}

aspect (U) <aspect>::Usability [language] aspect Usability Language

pointcut (U) <= + * [page] call(Page->*printf(*))

<= + * [date] call(Data->strftime($arg2))

<= + * [amount] exec(Amount->display($arg2))

advice (U) { & Translate [language, NLS] } translatePage{...}
{ & Display [format, date] } dateTimeFormat{...}
{ & Convert [currency, amount] } convertCurrency{...}

into the system. The expected output would be redirecting these malicious visits to the
login or index page. Since these security-related test cases crosscut the ones devoted to
testing system functionalities (e.g., shopping and searching), they can be regarded as
unit testing aspects [25], thereby reusing the security aspect’s pointcut description to
perform the test case weaving.

It is worth pointing out that validating requirement aspects can be carried out by other
means than defining unit testing aspects. For example, typical Web layer components
do not lend themselves to unit testing, unless proper frameworks such as HttpUnit or
PHPUnit are employed. In order to ensure that shopping is done securely, testing scripts
can be developed to automatically verify that all cart operations are performed in an
HTTPS (SSL) mode.

5 An Extended Case Study

We used an exploratory case study [31] as the basis for our empirical evaluation. The
research question focused on how to leverage our approach in a real-world setting.
Specifically, we derived the following hypotheses to guide the study design: (1) Mod-
ularizing and tracing broadly-scoped non-functional concerns throughout the software
life cycle are enabled by our framework, and (2) Goal-based validation justifies why
certain code aspects appear in the implementation.

The single case in our study is osCommerce, an open-source platform written in PHP,
on which a Web-based media shop [23] development can be fully based. In our previous
work [9], we used osCommerce to show how to discover aspects from media shop goal
models. In particular, 7 requirement aspects were identified in [9], among which we
choose security and usability aspects as 2 embedded units of analysis within the current
case study. Such a selection is guided by the previous work in a familiar e-commerce
domain, and represents a typical case and units of analysis since both security and
usability are commonly discussed early aspects in the literature.

The data collection in our study consisted of three parts. First, the goal aspects of me-
dia shop were presented in [9] and further represented in Q7. Second, the
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implementation of osCommerce in PHP was accessible through open-source reposi-
tories. Our implementation of osCommerce’s code aspects in phpAspect was available
at [32]. Third, the goal-based validation instrumentation was developed and gathered
by the authors of this work (also available at [32]).

The analysis results of aspects tracing are presented in Table 2, from which the map-
pings between requirement aspects in Q7 and code aspects in phpAspect can be readily
spotted. Specifically, a one-to-one correspondence exists between the name of a require-
ment aspect and that of a code aspect. Moreover, we map goal’s topics into parameter-
ized pointcuts, and map softgoal’s operationalizations into advices.

We focus on the usability aspect in this section, as security is discussed in the pre-
vious section as an illustration of our approach. The requirement aspect “Usability
[language]” is AND-decomposed into 3 parts. One translates natural language strings
(NLS) appearing in a Web page to the local language. Another deals with displaying
date and time in the desired conventional format. The third converts money amounts
from a country’s currency into the local currency. The Q7 representations for each point-
cut and advice of the usability aspect (U) are given in the second column of Table 2.
Correspondingly, Table 2’s third column highlights these concepts’ counterparts in the
phpAspect implementation.

The implemented aspects were weaved into osCommerce’s base modules by the ph-
pAspect weaver. We tested the weaved system in two respects: hard goal preservation
and softgoal enhancement, as indicated by the validation flows in Figure 3.

Unit test cases existed for validating the functional requirements of the osCommerce
system. Such test cases should not be affected by introducing the aspects that imple-
mented the NFRs. Therefore, we reused the functional testing units without any change
for checking the functionalities of the weaved system. For example, the shopping cart
sum computation must be the same regardless of which natural language being used by
the media shop customer. A unit test case using PHPUnit 6 was reused.

require_once ’PHPUnit/Framework/TestCase.php’;
require_once ’classes/cart.class.php’;
class CheckoutTest extends

PHPUnit_Framework_TestCase {
private function getOrder(){

$cart = new Cart();
$cart->addItem(’Bread’, 2);
// 2.20 each in USD

$cart->addItem(’Butter’, 1);
// 3.20 each in USD

return $cart->getAmount();
}
public function testCheckoutTotal(){

$this->assertEquals(Currency::convert(
2*2.20+1*3.20, ’usd’), $this->getOrder());

}
}

We reused 22 functional unit test cases for the weaved system to make sure that
introducing requirement aspects does not change the function of osCommerce. If one
introduces an aspect that does change the functionality of the original system, we con-
sider either the function is not intended originally, or new test case needs to be designed

6 http://phpunit.sourceforge.net/ Last accessed on November 14, 2009.



446 Y. Yu et al.

Fig. 4. Screen shot of an osCommerce media shop shown in default language (English)

and weaved into the original set of test cases along with the code aspect. However, it is
beyond our scope to discuss how an aspect should implement a functional requirement,
and how such an aspect should be traced and validated.

Having checked that the weaved system preserved system functionalities, we wanted
to test whether the aspects indeed addressed the quality concerns, and more importantly,
whether they helped better achieve the original stakeholder softgoals. Such a validation
was guided by the quality metrics derived from goal-oriented analysis. Take “Usability
[language]” for example, osCommerce currently supported English, German, and Span-
ish users. Figure 4 shows a Web page in the default language – English. The usability
aspect should render a Web page by using the language chosen by the user as natural as
possible. This included showing textual strings, date, and currency in the desired lan-
guage and format, as described earlier and indicated in Table 2. Figure 5 shows a screen
shot of the weaved system after the language customization aspect is applied.

We validated the usability aspect via two means. A Spanish tester confirmed that the
language customization aspect worked very well, in that most Web page contents shown
in the desired language, including date and currency, were semantically correct. To eval-
uate this result in a triangulating fashion [31], we also chose the pspell testing harness 7

to check the syntax of the resulting Web page texts automatically. The fact that all cus-
tomized pages contained less than 5% syntactic errors increased our confidence that the
aspects’ weaved system indeed helped better meet stakeholders’ usability requirement.

7 http://php.net/manual/en/ref.pspell.php Last accessed on November 14, 2009.
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Fig. 5. Screen shot of the weaved system that enhances usability for Spanish users

The analysis results of the 2 embedded units – security and usability – within the case
study presented positive empirical evidence for accepting our two initial hypotheses.
However, we did observe that existing goal models might not be complete to justify all
code aspects. On the contrary, certain aspects in the implementation could help justify
stakeholder goals and uncover the missing parts in the requirements.

When reengineering osCommerce using aspects, developers wanted to achieve a high
degree of maintainability to facilitate modification and reuse. Aspects modularized tan-
gled and scattered code, which led to a cleaner code base. For instance, in the original
implementation, 603 natural language string variables were defined in each of the En-
glish, German, and Spanish language header files to be included in specific Web pages.
This caused scattered code duplication. We defined a single usability aspect to modu-
larize these language customization concerns, and removed 3,990 lines of code, 7.6%
from the whole code base. This helped address the maintainability softgoal from the
developer’s perspective, which uncovered a missing part of media shop goal models
presented in [9]. In this sense, one shall not apply our aspect tracing and validating
framework in a strict forward-engineering way, but in an iterative fashion within an
integrated software development process.

Several factors can affect the validity of our exploratory case study: construct valid-
ity, external validity, and reliability [31]. The key construct is the idea of a requirement
aspect. Although softgoals have huge potential to become early aspects [33], others
may argue that requirement aspects can be functional as well. We believe that require-
ment aspects are intended to enhance system qualities while preserving functionalities,
and the early aspects community needs to make it more carefully. In regard to external
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validity, we chose Q7, phpAspect, and various testing mechanisms in tracing and val-
idating requirement aspects for a common e-commerce application. Further empirical
studies are needed to examine the applicability and generality of our framework in cop-
ing with other modeling notations, programming languages, and application domains.
To reduce the threats to reliability, we selected an open-source project and made all our
empirical data publicly accessible [32]. Thus, our reported study is replicable, and we
believe we would obtain similar results if we repeated the study.

6 Related Work

Grundy et al [34,35] and Rashid et al [8] are among the earliest authors who recog-
nized the advantage of aspects for reasoning about component-based software at the
requirements level. Araujo et al [36] compose aspectual and non-aspectual early design
models (e.g. Scenarios). They use sequence diagrams and executable state machines to
weave aspectual scenarios represented by interaction pattern specifications. When this
state machine-based approach scales up, it is possible to establish further traceability
between the statecharts-based models with implementations [37,38].

Haley et al [19] proposed an early aspect approach focusing on deriving security
requirements from crosscutting threat descriptions. The security aspect in our case study
can be considered as an operationalization of crosscutting anti-threat advices. In our
validation framework, security is treated as an NFR that cannot be sacrificed.

In comparing the related work listed in a literature survey of early aspects [16], our
key contribution brings early aspects traceability links and validation together. In [18],
traceability links between early aspects and designs are set up by comparing naming
conventions, term co-occurrences, etc. It is not clear how traceability through such
queries can be verified, as the leap from design to implementation may distort the pre-
cision. For example, a design element with a similar name as the requirements may be
implemented differently from what is specified. In our work, we explicitly rely on the
decomposition and contribution links in the goal models to build traceability among
goals and aspects. Therefore, our goal-based testing for aspects helps to show how well
requirements are carried out by the advices.

The work of Cleland-Huang et al. [17] extracts NFRs based on information re-
trieval techniques. The strength of traceability is quantified as precision and recall of
the keyword-based search. When naming conventions mismatches the functionality
specified in the program, our goal-based validation of traceability may improve their
precision through the semantics of executed test cases.

Reflecting different viewpoints of the problem, early aspects can, in the extreme,
crosscut each other symmetrically. In that sense, viewpoint merge/matching techniques
in requirements engineering [15] can also be considered an early aspect weaving tech-
nique. A main technical difference is that model merging requires explicit representa-
tion of joinpoints between multiple viewpoints, while in early aspects such joinpoints
are typically expressed implicitly by pointcuts expressions.

In [39], proof obligations were introduced to formalize the validation to the require-
ment aspects. Their approach can be applied to programs of well-defined axiomatic
semantics. For the quality attributes that do not have a clear-cut answer to satisfaction,



Requirements Engineering and Aspects 449

it is necessary to validate whether and how much the system can be improved after
weaving the proposed aspects. For example, instead of proving that a word is Spanish,
we show how well it is understandable by the Spanish-speaking users. Although we
reuse unit testing for functional requirements, we believe a complementary approach
based on generating proof obligations can better guide the validation of functional re-
quirements.

In [40], Neil Maiden has called for quantifiable requirements. Frameworks, such as
NFR [21], need to have a metricized way to verify that requirements are addressed
properly using operationalizations. Most quantifications of NFR help selection of al-
ternatives [41] when the satisfaction of the metricized NFR can be visualized [42,43].
Our proposed goal-based testing framework can be regressively applied to join points
of the softgoal operationalizations, thus more precisely measuring the satisfaction of
the NFRs.

7 Conclusions and Further Work

We have proposed an aspect-oriented framework to investigate how aspects discov-
ered in requirements can be validated and traced throughout the software life cycle.
We evaluated the approach via an exploratory case study that reengineered a public
domain e-commerce platform. The study presented our observations of and insights
into the problems of tracing and validating requirement aspects. Even though the study
collected positive evidence on the applicability and usefulness of our approach, more
in-depth empirical studies are needed to lend strength to the preliminary findings re-
ported here. In addition to confirming our hypotheses, we verified the initial AOP claim
that it is natural to implement globally concerned NFRs as aspects that cut across sub-
systems [1]. From the results obtained, we believe that aspect orientation is a promising
solution to tackling crosscutting concerns early on, and that our framework systemati-
cally handles traceability and validation issues for requirement aspects.

In future work, we will continue to explore concepts and mechanisms for tracing
early aspects throughout the software lifecycle and validating them in a given design.
The case study suggests that some candidate early aspects are easier to turn into coding
aspects, and some softgoals are easier to measure through testing aspects. Automatic
tracing and validation of early aspects may require in-depth knowledge of the applica-
tion domain and quality requirements.

We will also investigate how to trace other forms of early aspects into validateable
design. The composition of problem and solution structures may share common valida-
tion concerns in problem frames [19], it is interesting to know whether problem frame
concerns lead to coding aspects and whether the proof-obligations of trust assumptions
can be validated using testing aspects.

Along another line of research, we have found aspects useful in instrumenting the
monitors into the code such that one can dynamically diagnose problems in require-
ments satisfaction [44]. Such uses of aspects help to satisfy quality requirements of the
software development process, rather than those for the software products. These can be
generally regarded as software maintenance aspects, which may indirectly help improve
the software product quality. Relating process-oriented early aspects to product-oriented
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ones may give rise to a better traceability on how software process helps produce high-
quality software products.
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Section 5: Adapting Requirements Practices in Different 
Domains 

William Robinson 

Technology has a tremendous impact on society. In recent years, the Internet, World 
Wide Web, and Web 2.0 has changed the nature of commerce, government, and of 
course software development. It affects the practices of producing requirements and 
as well as the kinds of systems to be designed. The effect of converging technologies 
on the role of requirements engineering is considered in the first article by Matthias 
Jarke, while the effect of technology on requirements practices is considered in the 
second article by Walt Scacchi. Together, they provide theoretical and practical per-
spective on requirements engineering issues faced in a modern, technology driven 
world.  

The first article by Matthias Jarke titled “On Technology Convergence and Plat-
forms: Requirements Challenges from New Technologies and System Architectures” 
presents opportunities and challenges for requirements engineering resulting from 
major technological changes. Technology convergence is a central issue for Require-
ments Engineering. Formerly, specialized Requirements Engineering techniques and 
localized policies could be applied to technology islands. Now, technologies have 
converged to create “the system”—from the users view—that combines computing, 
media, internet, into a pervasive anytime, anywhere environment. Consequently, for-
mally isolated systems and policies are now integrated. Cultures clash as heterogene-
ous technologies and their stakeholders interoperate using “the system”. Requirements 
Engineering may address fundamental problems of technology convergence: (1) Re-
quirements Engineering can serve as a lingua franca across disciplines, (2) Require-
ments Engineering can guide the specification of social systems, striking a balance 
between autonomy, flexibility, and governance, and (3) Requirements Engineering 
can exploit emerging software architecture standards, which constrained and drive 
new systems. Two examples illustrate how Requirements Engineering is uniquely 
positioned to address these fundamental problems. 

The second article by Walt Scacchi titled “Understanding Requirements for Open 
Source Software” describes a study of the roles, forms, and consequences arising in 
requirements within open source software development. Many open source projects 
are successful in their exponential growth and high quality. Requirements practices 
may account for open source project successes, which compare favorably with tradi-
tional development. Open source software requirements practices include: (1) con-
tinuous requirements evolution, (2) community development and participation, (3) 
developers as end-users, and (4) decentralized requirements. Web technology enables 
these practices, which engender software “informalisms,” such as online forums, that 
capture requirements in a variety of forms. Examples are drawn from projects in the 
domains of networked computer games, Internet/Web infrastructure, bioinformatics, 
higher education computing, and military computing. 
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Together, these articles show how technology affects the theoretical perspective 
and practical application of requirements engineering for software intensive systems. 
Jarke considers the technology-driven, multidisciplinary nature of new computing 
systems, while Scacchi considers the successful practices of open source software 
development, enabled by and applied to new technologies.  Together, they imply im-
portant considerations for future Requirements Engineering: (1) awareness of archi-
tectures and standards, (2) systems flexibility via self-monitoring and evolution, (3) 
convergence of multiple disciplines, and (4) non-traditional informalisms of decen-
tralized, community-driven development. These issues provide opportunities for tech-
nical and empirical requirements engineering research. 



K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 455–466, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

On Technology Convergence and Platforms: 
Requirements Challenges from New Technologies and 

System Architectures 

Matthias Jarke 

Information Systems, RWTH Aachen University & Fraunhofer FIT 
Ahornstr. 55, 52074 Aachen, Germany 
jarke@cs.rwth-aachen.de 

Abstract. In this chapter, we investigate some opportunities and challenges for 
requirements engineering resulting from major changes in the technical context 
in which ICT systems operate, in particular from the continuous trend towards 
information and communication technology convergence. We illustrate these 
challenges with two major examples, one concerning requirements monitoring 
as a self-governance mechanism in Internet-based social networks, the other 
concerning the role of requirements modeling as a mediator between different 
cultures in embedded systems engineering for the automotive industry. Starting 
from a brief re-iteration of Thomas Friedman’s argument on standards evolu-
tion, we finally discuss platform strategies as an important emerging challenge 
for organizational RE. 

1   Introduction 

It is widely recognized that requirements engineering no longer concerns just individ-
ual systems with a well-defined narrow user population. Today, RE takes place in 
complex “ecosystems” where the system under study co-evolves and inter-depends 
with many different context systems, ranging from technological advances in embed-
ding systems, hardware, software, and communications, to social changes in the user 
environment and changes in organizational structure and processes. 

This observation is not new. The DAIDA project has tried to capture the interrela-
tionships between systems and their context in a “four-worlds” model of interacting 
subject world, usage world, system world, and development world almost twenty years 
ago [1], [2]. However, the interplay of contexts is continuously becoming more pro-
nounced. In terms of technological innovation, the convergence of communication, 
computing, and media in the Web 2.0 and next in the Mobile Internet, is followed up 
by networked embedded systems in the so-called Internet of Things [3], [4]. At the 
organizational level, worldwide platform strategies in global company networks enable 
an accelerating stream of new information-integrated products and services.  

To cope with a world whose complexity and dynamics continuously increase, RE 
should therefore intensify its interdisciplinary interaction with engineers and archi-
tects, marketing specialists and business strategists, in order to develop a deeper un-
derstanding of the different aspects of context evolution.  
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In this chapter, we look at some specific challenges from new technologies and 
system architectures, using examples from our recent research for illustration. The 
presentation illustrates three hypotheses concerning the future role of RE: 

− The confluence of software engineering and traditional engineering disciplines in 
embedded and networked systems offers a chance for RE to serve as a lingua 
franca across disciplines. In the German ZAMOMO project, researchers and prac-
titioners from control engineering and software engineering are attempting to 
evolve requirements engineering methods such as i* towards a unified theory of 
model-based development for engine control. 

− Successful Internet information systems must strike a delicate balance between 
autonomy, flexibility, and governance. RE must help open up structured standard 
software for social exchange, and it must help social web communities to organize 
themselves better to function within organizations. Complementing some large-
scale ongoing projects by ERP vendors towards a semantic business web, we have 
experimented with a reflective webservice architecture called ATLAS by which 
Web 2.0 communities can organize and monitor their cooperation. 

− Requirements and innovation opportunities are constrained and driven by emerg-
ing software architecture standards and widely used software platforms. RE thus 
needs to understand the role of standards and platforms better. We look at the sys-
tematic exploitation of platform strategies in large as well as small software com-
panies, transferring experiences from other industries. 

2   The Impact of Technology Convergence 

The convergence of computing, media, internet, and possibly embedded systems 
technologies creates culture clashes that involve issues of terminology and method 
integration, but also of governance and power in both designer and user communities. 
Thus, the requirements engineering processes accompanying the development of 
software-intensive systems almost always also imply a clash of cultures. But this is 
not just a challenge for RE but also an opportunity. In fact, who if not RE could deal 
with such interdisciplinary settings? 

In this section, we present two examples of such clashes together with RE concepts 
we have developed in an attempt to overcome them. The first of these cases deals 
with the interrelationship between structured organizational IS and unstructured web 
communications along the lines of Web 2.0, while the second addresses the interplay 
between control engineers and software engineers in the development of embedded 
engine control systems for the automotive industries.  

2.1   Self-monitoring of Requirements in Internet Communities 

The struggle between work practice culture and structured organizational information 
management that has traditionally defined the clash between the HCI/ CSCW research 
community and the business informatics/ information systems community [5], has 
continued into the Internet Age. The “Social Web” or “Web 2.0” [6] complements 
and sometimes undermines structured ERP systems, cf. fig. 1. Social software tools 
such as blogs, wikis, and the like are often used for work-arounds of standard  
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enterprise software. Techno-organizational attempts to contain these work-arounds by 
semantic standardization – such as the huge German semantic business web project 
THESEUS  (theseus-programm.de) – are still in their early stages. 

Fig. 1. Cooperative information systems framework: social vs. semantic web [7] 

Requirements engineering must help open up structured standard software for so-
cial exchange, and it must help social web communities to organize themselves better 
to function within organizations. Complementing some large-scale ongoing projects 
by ERP vendors towards a semantic business web, we have experimented with a re-
flective architecture called ATLAS by which Web 2.0 communities can organize and 
monitor their cooperation [7]. 

Fig. 2. ATLAS reflective architecture for community information systems 
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As shown in fig. 2, ATLAS comprises two interacting layers. The operational 
layer comprises an extensible lightweight application server (LAS) which has a small 
enough footprint to operate also on small mobile devices if necessary. At the same 
time, LAS is specifically designed for cross-media applications because it relies on 
the MPEG 7 and MPEG 21 metadata standards for multimedia objects rather than on 
proprietary “sticky” metadata as most current commercial systems do. Second, it 
contains a customizable security concept which is oriented both towards user roles 
and individual objects. Similar to other application servers, LAS includes standard 
backend links to many different kinds of databases (including XML databases), cli-
ents and programming language environments. 

Most community environments have proven brittle with respect to changing com-
munity rules and lacking features. Rather than influencing their existing internet com-
munities, users often vote with their feet and simply move on to other community 
platforms if community technology or community behavior does not suit their interests 
any more. A good example is the extremely rapid move of millions of highschool and 
university students when unwanted intrusion from commerce and older persons hap-
pened in generic contact platforms such as MySpace or Xing, into student-specific like 
Facebook or StudiVZ with strict access rules and directly domain-relevant features. 

The reflection layer of ATLAS therefore strives for an integrated community re-
quirements monitoring and revision process that enables the community itself to 
change its rules rather than being left or destroyed. ATLAS offers a pattern-based set 
of self-monitoring tools whose patterns encode ideas from requirements engineering 
(e.g. i* [8]), Social Network Analysis [9], and Actor-Network Theory [10] to identify 
e.g. undesirable patterns of behavior in a community. For example, i*-based patterns 
can identify dependencies between subcommunities or goal-related issues, SNA-
based patterns evaluate subcommunity coherence, actor relevance and the like, and 
ANT-based patterns specify desirable or undesirable relationships between human 
actors and media objects. Moreover, dynamic changes of these patterns over time can 
also be monitored [11]. Patterns can be defined (or selected from a library) by the 
community itself, and the community interaction rules can subsequently be adapted 
e.g. via the security mechanisms of the LAS. 

ATLAS provides communities with great flexibility to organize their multimedia 
communications. This has been exploited by a large number of communities ranging 
from eLearning environments for students of the Humanities, via domain-specific 
discussion groups e.g. of aphasics patients, to mobile cultural reconstruction work in 
emerging countries like Afghanistan. The experiments show a great deal of accep-
tance from users with very limited IT training, but we still see it a great challenge in 
linking such concepts with organizational strategy concepts, such as the people inte-
gration level in SAP’s NetWeaver architecture (see section 3). Nevertheless, the con-
clusion can be drawn that – in this age of rapidly changing community-determined 
requirements – research on requirements monitoring [12] will take center-stage to 
guide end-user driven systems evolution [13], [14]. 

2.2   Managing Culture Clash in Embedded Systems Engineering 

For many years, the control systems for car engines were designed by control engi-
neers. However, in the last decade, it has been recognized that massive reductions in 
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pollution and gas consumption can only be achieved if software-based controls are 
embedded in these systems. This kind of embedded control systems has become a 
very complex market, with over 1500 variants of gasoline engine control systems sold 
per year by a single major supplier [15].  

However, the development culture has not yet followed this technology integration. 
Most pressing cost problems are nowadays caused by software development issues 
such as requirements, reusability, and customer-relevant quality aspects, rather than 
by the functional requirements specified by control engineers. Nevertheless, few cost 
models exist for software in such systems, product prices are determined by the hard-
ware, and this hardware is often fixed before the software development even begins.  

Behind these problems lie, according to a study in the above-mentioned supplier 
organization [15], strong differences in perception.  

Control engineers tend to consider software system structure trivial and believe the 
control requirements to be the key issue in design. The algorithms supposedly follow 
easily from the control requirements which are typically determined using complex 
mathematical simulation models based on differential equations. The task of software 
engineers remains simply the implementation of these models, with a responsibility 
for software quality alone. 

Understandably, the software engineers see it differently. They consider that con-
trol engineers botch up the overall software architecture by their purely functional 
control systems designs in a hardly repairable manner, and believe to the contrary that 
system structure should be defined from the non-functional quality requirements. 

Traditionally, this conflict has been circumvented by computer-aided control de-
sign tools with automatic code generation to avoid software engineering considera-
tions. This work-around is no longer acceptable in today’s extremely competitive 
market with its customer demand for excellent driving satisfaction and reliability at 
reduced environmental impact and gas consumption, and related pressure by the pub-
lic and new legislation. 

Besides the political power struggle between control engineers and software engi-
neers that is obviously involved here, there is also an RE problem of severe technical 
misunderstandings between the two disciplines. In the German ZAMOMO project 
[15], [16], a consortium from RE, embedded software engineering, control engineer-
ing researchers, plus some vendor companies, has therefore been looking for a con-
ceptual bridge across this traditional chasm.  

A key observation underlying our approach was that both research communities 
are drifting towards model-based paradigms: Control engineers employ model-
based techniques for the systematic simulation-based analysis of control models by 
which different very subtle variants of proposed cybernetic control cycles can be 
evaluated against each other and from which control code can be generated. Soft-
ware engineers strive for model-based architectural designs for functional as well as 
non-functional requirements, in order to reduce the effort to specify, quality-check 
and implement different trade-offs between competing requirements, again includ-
ing semi-automated code production from model-based specifications. However, 
the kinds of models (differential equations of largely analog hardware systems vs. 
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Fig. 3. i*-based requirements modeling as common ground for control and software engineers 

discrete specification models of software systems verified e.g. by model-checking) 
are very different.  

In ZAMOMO, we are therefore trying to abstract the basic concepts of model-
based controller design and model-based software development, to a joint conceptual 
level based on a variant the i* model similar to the ones pursued in the Tropos project 
[17]. In the requirements phase, it becomes thus possible to specify the functional 
requirements for the technical side interacting with the non-functional requirements 
related to the business side. Both together are embedded in an overall architectural 
conceptual model. For the overall optimization of a specific engine control system, 
the non-functional driving qualities and the costs (things seen by the customer) are 
then the main optimization criteria, whereas the functional specifications of the con-
trol cycle act more as optimization constraints. Fig. 3 shows how the thus generated 
requirements models are exploited in the further process, i.e. as a basis for simulation, 
rapid prototyping, and testing.  

Fig. 4 shows some more details of the requirements analysis process itself. An im-
portant side effect of ZAMOMO has been that, for the first time, it becomes possible 
to introduce a decent version and configuration management among the thousands of 
engine control variant designs that accumulate quickly even in a small vendor com-
pany. Interestingly, this aspect was the first of the ZAMOMO results which has been 
commercially installed by one of the project partners and is further developed into a 
marketable product for other engineering organizations. 

The ZAMOMO project is still ongoing, but initial experiences indicate that the 
shared conceptual abstraction of mathematically and technically rather heterogeneous 
development approaches can indeed assist in bridging the gaps of understanding in-
herent in embedded systems design. Many questions in this area remain open, how-
ever, and require future much deeper research. 
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Fig. 4. Requirements modeling, model analysis and management in ZAMOMO 

3   The Impact of Standards and Platforms 

So far, we have looked at some RE issues induced by individual new technologies and 
architectures. However, the model and culture clashes discussed there, and the proc-
esses and governance mechanisms involved, are embedded in the larger context of 
evolving technological standards and organizational platform strategies. 

In his bestselling book “The World is Flat” [18], T.L. Friedman makes the argu-
ment that chances for massively successful innovation are defined by the maturity of 
open software standards and related infrastructures. From his discussion, it is further-
more obvious that open standards in the field of ICT have evolved bottom-up -- 
lower-level standards build platforms on which innovations at the next-higher level of 
systems and standards can become successful: 

• In the early 1990’s, the fiber-optics “Information Highway” started by the Clinton/ 
Gore administration enabled the wide success of the Internet protocol  TCP/IP.  

• Berners-Lee’s HTTP/HTML protocol in combination with browser technology 
enabled the success of the World Wide Web, initially as a publication medium. In 
parallel, the GSM standard enabled explosive growth in mobile telephony; in 2007 
alone, the number of mobile phones rose by 50% to 3.1 billion worldwide, making 
mobile phones by far the most promising medium for information dissemination 
and communication. 

• The advent of open source development tools such as Apache allowed the broad 
deployment of web servers, and thus paved the way towards the social web. 

• Data and service “atom standards” such as XML or SOAP enable workflow 
“molecule standards” such as AJAX to execute heterogenous business web appli-
cations across platforms with relative ease, at least at a syntactic level.  
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A few proprietary (and very expensive) solutions on upper-layer systems usually 
exist prior to the advent of standards at their layer. When new standards take grip, 
whole layers of technical requirements – and related skill needs – are threatened, 
usually to be replaced by new higher-level requirements and required skill sets of 
developers and users. Large-scale proprietary solutions suddenly become legacy 
software. They can become dinosaurs in danger of extinction, unless they can pre-
serve competitive advantage through deep application domain knowledge. 

Research in ICT has often been in this situation. By its very nature, it has fre-
quently addressed problems “too early”, jumping layers of standards. When finally 
the time came that this research could become relevant for practice innovation, re-
searchers were often too slow to take advantage of the resulting window of opportu-
nity, or they are simply too bored to take up again an “old field”.  

The interface to the evolution of standards is therefore an important, and largely 
overlooked topic in requirements engineering. How can RE understand and manage 
systems development under the perspective of expected new standards, and how can 
we educate our students better about this? 

From an organizational perspective, a related important issue for RE is the emer-
gence of company-owned software platforms as a competitive strategy. Such a strat-
egy involves exploiting as well as setting standards, often in a limited application 
domain.  

Strategic use of IT platforms is not a completely new phenomenon but was already 
a topic in the 1980’s [19]. For example, early airline reservation systems provided 
additional income to help airlines through financially difficult times, or structured the 
birth of large-scale airline alliances [20]; early strategic IS also gave financial institu-
tions like American Express competitive advantage in the young credit card business. 
Nevertheless, RE research has only recently begun to consider platform strategies as 
an important piece of context, probably due to the fact that platform construction at 
the application level is becoming much easier because of the above-mentioned basic 
standards. Therefore, it may be interesting to look at other industries where platform 
research has a longer traditiona to guide RE research strategies. 

In engineering domains such as the automotive industries, platforms have been a 
highly successful strategic concept . They are often considered one of the main reasons 
behind the renewed competitiveness of European car manufacturers after the Japanese 
dominance [21]. In such a strategy, a car manufacturer selects a few strategic platforms 
in which – simplistically speaking – everything is standardized that the customer can-
not see or otherwise experience directly. Differentiation of individual products and 
their prices focusses on design aspects directly visible to the customer. Very large car 
manufacturers such as the Volkswagen group successfully standardize on a few plat-
forms (for subcompacts, compact cars, medium and premium segments) while offering 
a huge variety of products through different vendors in different countries.  

Key arguments for a platform strategy in the literature on this domain include the 
creation of market entry barriers, the growth of sales through product differentiation 
and faster time to market, finally cost reduction by economies of scale at the platform 
level. Additional advantages concern learning effects across different product variants 
and market segments (i.e. learning from others’ mistakes), and synergy effects in the 
complex multi-level value chain of suppliers and sellers all the way to repair shops.  
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Obviously, there are also challenges resulting from platform strategies, mostly due 
to two aspects: the strictness of managed variability within a platform, and the high 
costs involved in developing or changing platforms. Platform strategies abandon the 
1990’s credo of buying “best-of-breed” island solutions, by defining certain design 
spaces, thus introducing a concept of “managed variability”. If these design spaces are 
too open, standardization within a platform is limited to the lowest common denomi-
nator and will not really gain competitive advantage. If they are too narrow, they 
exclude opportunities for radical innovation, thus threatening to make the whole plat-
form outdated. Last not least, the choice of the right architectural abstractions is im-
portant, as market segmentation may change very quickly with changing customer 
perceptions. A good example is the recent shift of emphasis from sportivity and im-
pressive size of cars to energy savings, pollution reduction, and sustainability. 

Many of these challenges are much more striking in the software industry than in 
the car industry. One of the reasons may be the different cost structures. For example, 
manufacturing costs for individual cars constitute a high proportion of total costs in 
the car industry but are neglegible in the software industry where the main costs in-
volve R&D as well as sales. After an often elaborated R&D process, software  
platforms can therefore grow much quicker than in other engineering sectors, as evi-
denced by recent examples such as Google or Apple iTunes. This leads to different 
competitive patterns in which the timing of market entry plays a crucial role, but also 
the availability of a stable competitive advantage in a certain application domain. 

Unfortunately, research in software platforms is much less developed than in other 
engineering sectors. In [22], approaches from other engineering sectors are merged 
with traditonal SE approaches to develop a methodology for software product line 
engineering which divides the software development process in the two separate ac-
tivities of domain engineering and application engineering. Variability is mostly  
managed at the level of document specifications, and by constraining interface speci-
fications within a reference architecture. Success stories in large and medium-sized 
organizations including well-known companies such as Philips, Boeing, Bosch, and 
ABB, often align the software product families to existing hardware product families 
and thus stay somewhat behind the strategic platform idea mentioned above.  

Poh et al. [22] investigate software product lines from a software engineering per-
spective and do not really include business considerations. We have therefore recently 
conducted a comparison of platform strategies in the automotive and software indus-
tries from a more strategic perspective [23]. Some of the key decision parameters in 
this context focus on boundary definitions such as: (a) the differentiation between 
core and context processes of the organization offering the platform, (b) the market 
power and the partner network to be involved, (c) coverage of expected technical 
developments (e.g. convergence of technologies, integration of product and service 
engineering) promoting or hindering success of the platform, (d) choice of abstrac-
tions and granularities based on market needs. 

Global players try to establish complex multi-level platforms to facilitate their in-
ternal development processes as well as third-party contribution from their ecosystem 
of suppliers, partners, and customers. Examples include Microsoft .NET, IBM Web-
sphere, or SAP NetWeaver, in addition to some open source products. In terms of 
domain standardization, NetWeaver (cf. fig. 5 and [24]) is probably the most complex 
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Fig. 5. Layers of SAP’s NetWeaver Platform 

of these platforms, trying to support the broad diversity of ERP, SCM, CRM products 
by SAP and its partners at four different levels: application integration (proprietary 
via ABAP, and open via J2EE), process integration, information integration (business 
intelligence as well as knowledge management aspects), and people integration (via 
multiple usage channels and collaboration rooms). 

Smaller vendors typically focus on more specialized problem-oriented and/or cus-
tomer-group oriented platforms. This avoids the need to address legacy issues, but 
often requires interaction with the platforms of larger players for market access. An 
interesting example is the recent German start-up Crossgate (www.crossgate.de). 
Recognizing that the need for semantically correct data and document exchange  
between companies cannot be satisfied by syntactic means such as EDI or XML, 
Crossgate set up a reference conceptual model of important business terms and their 
interrelationships, and uses this model as a basis for open document and data ex-
change across companies. A customer organization just has to map its own data mod-
els to this model in order to become part of a growing network of partners that can 
easily integrate their business processes and data at a semantic level.  

The Crossgate platform – a very nice real-world application of what has been  
recently called model management in the database literature [25], [26] -- has been 
kickstarted by providing mappings between leading SAP products and the Crossgate 
reference models, making it extremely easy for SAP customers to join. This coopera-
tion between the SAP platform and the Crossgate platform creates a strategic win-win 
situation among all partners: SAP keeps customers by offering them more openness 
than in the past. The customers have to construct at most one model mapping instead 
of one for each of their business partners and profit automatically from a growing 
network. Crossgate gains SAP customers as an important seed customer base. For the 
customers, another advantage is maintainability : a change in internal data structures 
needs to be only reflected in a single mapping and not in all customer relations.  

In terms of challenges for the platform vendors and their partners, competition can 
grow due to the increased accessibility of services, driving down costs (which corre-
spond to reduced income on the vendor side) and possibly leading to cannibalization 
of earlier products. For customers, relying too much on specific platforms also entails 
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obvious risks in terms of vendor dependencies, e.g. if vendors suddenly increase 
maintenance fees or face financial problems endangering technical support for the 
platform. 

All these issues have major strategic consequences for business process design, in-
ter-organizational collaboration design, and internal IT flexibility for platform  
customers. They must therefore be considered in their requirements engineering proc-
esses. Thus, much more research is needed to better understand software platforms 
and their implications for requirements engineering, both for the evolution of the 
platforms themselves and for processes in the ecosystems of these platforms. 

4   Concluding Remarks 

The convergence of technologies and the emergence of widely used open standards 
has a strong impact on the future of requirements engineering. As information and 
communication technologies transcend all science and engineering disciplines, we can 
summarize the examples given in this paper by claiming three important principles for 
future RE: strategic standards awareness, fundamental transdisciplinarity, and flexi-
bility via self-control. The decision about where we define the boundaries of a com-
pany platform (if any), and where we begin product differentiation and customization, 
will also have a strong impact on requirements engineering methods and strategies, 
both for the platform vendors and for their customers. All of these topics provide rich 
fields for technical as well as empirical requirements engineering research. 
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Abstract. This study presents findings from an empirical study directed at un-
derstanding the roles, forms, and consequences arising in requirements for open 
source software (OSS) development efforts. Five open source software devel-
opment communities are described, examined, and compared to help discover 
what differences may be observed. At least two dozen kinds of software infor-
malisms are found to play a critical role in the elicitation, analysis, specifica-
tion, validation, and management of requirements for developing OSS systems. 
Subsequently, understanding the roles these software informalisms take in a 
new formulation of the requirements development process for OSS is the focus 
of this study. This focus enables considering a reformulation of the require-
ments engineering process and its associated artifacts or (in)formalisms to bet-
ter account for the requirements when developing OSS systems. Other findings 
identify how OSS requirements are decentralized across multiple informalisms, 
and to the need for advances in how to specify the capabilities of existing OSS 
systems. 

Keywords: Open source software, Requirements process, Empirical studies, 
Decentralized software development, Artifacts. 

1   Introduction 

The focus in this paper is directed at understanding the requirements processes for 
open source software (OSS) development efforts, and how the development of these 
requirements differs from those traditional to software engineering and requirements 
engineering [1], [2], [3], [5]. This study is about ongoing discovery, description, and 
abstraction of OSS development (OSSD) practices and artifacts in different settings 
across different communities. It is about expanding our notions of what  
requirements need to address to account for OSSD. Subsequently, these are used to 
understand what OSS communities are being examined, and what characteristics dis-
tinguish one community from another. This chapter also builds on, refines, and  
extends earlier study on this topic [6], [7], [8], [9], [10], as well as identifying impli-
cations for what requirements arise when developing different kinds of OSS systems. 

This study reports on findings and results from an ongoing investigation of the 
socio-technical processes, work practices, and community forms found in OSSD [10], 
[11], [12]. The purpose of this multi-year investigation is to develop narrative, semi-
structured (i.e., hypertextual), and formal computational models of these processes, 
practices, and community forms [8], [13]. This chapter presents a systematic narrative 
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model that characterizes the processes through which the requirements for OSS sys-
tems are developed. The model compares in form, and presents an account of, how 
software requirements differ across traditional software engineering and OSS ap-
proaches.  This model is descriptive and empirically grounded. The model is also 
comparative in that it attempts to characterize an open source requirements engineer-
ing process that transcends the practice in a particular project, or within a particular 
community. This comparative dimension is necessary to avoid premature generaliza-
tions about processes or practices associated with a particular OSS system or those 
that receive substantial attention in the news media (e.g., the GNU/Linux operating 
system). Such comparison also allows for system projects that may follow a different 
form or version of OSSD (e.g., those in the higher education computing community 
or networked computer game arena). Subsequently, the model is neither prescriptive 
nor proscriptive in that it does not characterize what should be or what might be done 
in order to develop OSS requirements, except in the concluding discussion, where 
such remarks are bracketed and qualified. 

Comparative case studies of requirements or other software development proc-
esses are also important in that they can serve as foundation for the formalization 
of our findings and process models as a process meta-model [14]. Such a meta-
model can be used to construct a predictive, testable, and incrementally refined 
theory of OSSD processes within or across communities or projects. A process 
meta-model is also used to configure, generate, or instantiate Web-based process 
modeling, prototyping, and enactment environments that enable modeled processes 
to be globally deployed and computationally supported (e.g., [8], [13], [15], [16]). 
This may be of most value to other academic research or commercial development 
organizations that seek to adopt "best practices" for OSSD processes that are well 
suited to their needs and situation. Therefore, the study and results presented in 
this report denote a new foundation on which computational models of OSS re-
quirements processes may be developed, as well as their subsequent analysis and 
simulation (cf. [13], [17]). 

The study reported here entails the use of empirical field study methods [18] that 
conform to the principles for conducting and evaluating interpretive research design 
[19] as identified earlier [9].   

2   Understanding OSS Development Across Different Communities 

We assume there is no general model or globally accepted framework that defines 
how OSS is or should be developed. Subsequently, our starting point is to investigate 
OSS practices in different communities from an ethnographically informed perspec-
tive [19], [40], [64]. We have chosen five different communities to study. These are 
those centered about the development of software for networked computer games, 
Internet/Web infrastructure, bioinformatics, higher education computing, and military 
computing. The following sections briefly introduce and characterize these OSS sub-
domains. Along the way, example software systems or projects are highlighted or 
identified via external reference/citation, which can be consulted for further informa-
tion or review. 
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2.1   Networked Computer Game Worlds  

Participants in this community focus on the development and evolution of first person 
shooters (FPS) games (e.g., Quake Arena, Unreal Tournament), massive multiplayer 
online role-playing games (e.g., World of Warcraft, Lineage, EveOnline, City of He-
roes), and others (e.g., The Sims (Electronic Arts), Grand Theft Auto (Rockstar 
Games)). Interest in networked computer games and gaming environments, as well as 
their single-user counterparts, have exploded in recent years as a major (now global) 
mode of entertainment, playful fun, and global computerization movement [22]. The 
release of DOOM [4], an early first-person action game, onto the Web in open source 
form1 in the mid 1990’s, began what is widely recognized the landmark event that 
launched the development and redistribution of computer game mods [9], [22], [23].  

Mods2 are variants of proprietary (closed source) computer game engines that pro-
vide extension mechanisms like game scripting languages (e.g., UnrealScript for mod 
development with Unreal game engines) that can be used to modify and extend a 
game, and these extensions are licensed for distribution in an open source manner. 
Mods are created by small numbers of users who want and are able to modify games, 
compared to the huge numbers of players that enthusiastically use the games as pro-
vided. The scope of mods has expanded to now include new game types, game char-
acter models and skins (surface textures), levels (game play arenas or virtual worlds), 
and artificially intelligent game bots (in-game opponents).  

Perhaps the most widely known and successful game mod is  Counter-Strike, 
which is a total conversion of Valve Software's Half-Life computer game developed 
by two game programmers (Valve Software has since commercialized CS and many 
follow-on versions). Millions of copies of CS have been distributed, and millions of 
people have player CS over the Internet, according to http://counterstrikesource.net/. 
Other popular computer games that are frequent targets for modding include the 
Quake, Unreal, Half-Life, and Crysis game engines, NeverWinter Nights for role-
playing games, motor racing simulation games (e.g., GTR series), and even the mas-
sively popular World of Warcraft (which only allows for modification of end-user 
interfaces). Thousands of game mods are distributed through game mod portals like 
MODDB.com. However, many successful game companies including Electronic Arts 
and Microsoft do not embrace nor encourage game modding, and do not provide end-
user license agreements that allow game modding and redistribution. 

                                                           
1 The end-user license agreement for games that allow for end-user created game mods often 

stipulate that the core game engine (or retail game software product) is protected as closed 
source, proprietary software that cannot be examined or redistributed, while any user created 
mod can only be redistributed as open source software that cannot be declared proprietary or 
sold outright, and must only be distributed in a manner where the retail game product must 
be owned by any end-user of a game mod. This has the effect of enabling a secondary market 
for retail game purchases by end-users or other game modders who are primarily interested 
in accessing, studying, playing, further modifying, and redistributing a game mod. 

2 For introductory background on computer game mods, see 
 http://en.wikipedia.org/wiki/Mod_(computer_gaming). 
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2.2   Internet/Web Infrastructure 

Participants in this community3 focus on the development and evolution of systems 
like the Apache web server, Mozilla/Firefox Web browser4, GNOME and K Devel-
opment Environment (KDE) for end-user interfaces, the Eclipse and NetBeans inter-
active development environments for Java-based Web applications, and thousands of 
others. This community can be viewed as the one most typically considered in popu-
lar accounts of OSS projects. The GNU/Linux operating system environment is of 
course the largest, most complex, and most diverse sub-community within this arena, 
so much so that it merits separate treatment and examination. Many other Internet or 
Web infrastructure projects constitute recognizable communities or sub-communities 
of practice. The software systems that are the focus generally are not standalone end-
user applications, but are often targeted at system administrators or software develop-
ers as the targeted user base, rather than the eventual end-users of the resulting sys-
tems. However, notable exceptions like Web browsers, news readers, instant messag-
ing, and graphic image manipulation programs are growing in number within the end-
user community 

2.3   Bioinformatics 

Participants in this community5 focus on the development and evolution of software 
systems supporting research into bioinformatics and related computing-intensive  
biological research efforts. In contrast to the preceding two development oriented 
communities, OSS plays a significant role in scientific research communities. For 
example, when scientific findings or discoveries resulting from in silico experimenta-
tion or observations are reported6, then members of the relevant scientific community 
want to be assured that the results are not the byproduct of some questionable soft-
ware calculation or opaque processing trick. In scientific fields like bioinformatics 

                                                           
3 The SourceForge web portal (http://www.sourceforge.net), the largest associated with the 

OSS community, currently stores information on more than 1,750K registered users and de-
velopers, along with nearly 200K OSSD projects (as of July 2008), with more than 10% of 
those projects indicating the availability of a mature, released, and actively supported soft-
ware system. However, some of the most popular OSS projects have their own family of re-
lated projects, grouped within their own portals, such as for the Apache Foundation and 
Mozilla Foundation. 

4 It is reasonable to note that the two main software systems that enabled the World Wide 
Web, the NCSA Mosaic Web browser (and its descendants, like Netscape Navigator, Mozilla, 
Firefox, and variants like K-Meleon, Konqueror, SeaMonkey, and others), and the Apache 
Web server (originally know as httpd) were originally and still remain active OSSD projects. 

5 For information about OSS projects, activities, and events in this community, see 
http://www.bioinformatics.org, http://www.open-bio.org, and http://www.open-bio.org/wiki/ 
Upcoming_BOSC_conference. 

6 For example, see [24]. The OSS processing pipelines for each sensor or mass spectrometer 
are mostly distinct and are maintained by different organizations. However, their outputs 
must be integrated, and the data source must be registered and oriented for synchronized 
alignment or overlay, then composed into a final representation (e.g., see [24]). Subse-
quently, many OSS programs may need to be brought into alignment for such a research 
method and observation,for a scientific discovery to be claimed and substantiated [25]. 
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that critically depend on software, open source is considered an essential precondition 
for research to proceed, and for scientific findings to be trusted and open to independ-
ent review and validation. Furthermore, as discoveries in bioinformatics are made, 
this in turn often leads to modification or extension of the astronomical software in 
use in order to further explore and analyze newly observed phenomena, or to mod-
ify/add capabilities to how in silico mechanisms operate. 

2.4   Higher Education Computing  

Participants in this community focus on the development and evolution of software 
supporting educational and administrative operations found in large universities or 
similar institutions. This community should not in general be associated with the 
activities of academic computer scientists nor of computer science departments, 
unless they specifically focus on higher education computing applications (which is 
uncommon). People who participate in this community generally develop software 
for academic teaching or administrative purposes in order to explore topics like 
course management (Sakai, Moodle), campuswide information systems/portals 
(uPortal), Web-based academic applications (Fluid), and university e-business sys-
tems [26] (for collecting student tuition, research grants administration, payroll, etc. 
-- Kuali). Projects in this community7 are primarily organized and governed 
through multi-institution contracts, annual subscriptions, and dedicated staff as-
signments [27]. Furthermore, it appears that software developers in this community 
are often not the end-users of the software the develop, in contrast to most OSS 
projects. Accordingly, it may not be unreasonable to expect that OSS developed in 
this community should embody or demonstrate principles or best practices in ad-
ministrative computing found in large public or non-profit enterprises, rather than 
commercial for-profit enterprises. This includes the practice of developing explicit 
software requirements specification documents prior to undertaking system devel-
opment. Furthermore, much like the bioinformatics community, members of this 
community expect that when breakthrough technologies or innovations have been 
declared, such as in a refereed conference paper or publication in an educational 
computing journal, the opportunity exists for other community members to be able 
to access, review, or try out the software to assess and demonstrate its capabilities. 
Furthermore, there appears to be growing antagonism toward commercial software 
vendors (Blackboard Inc., PeopleSoft, Oracle) whose products target the higher 
education computing market (e.g., WebCT). However,  higher education computing 
software is intended for routine production use by administrative end-users and 
others, and not research-grade “proof of concept” demonstration or prototype sys-
tems that are found in academic research laboratories. 

                                                           
7 For information about OSS projects, events, and activities in this community, see 

http://www.sakaiproject.org, http://www.moodle.org, http://www.uportal.org, http://www. 
fluidproject. org, http://www.kuali.org, as well as EDUCAUSE (http://www. educause.edu/), 
a non-profit association focusing on current issues in information technology for higher edu-
cation, including OSS development and OSS policy in academia. 
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2.5   Military Computing 

Participants in this community8 focus on the development and deployment of comput-
ing systems and applications that support secured military and combat operations. 
Although information on specific military systems may be limited, there are a small 
but growing number of sources of public information and OSS projects that support 
military and combat operations. Accordingly, it is becoming clear that the future of 
military computing, and the future acquisition of software-intensive, mission-critical  
systems for military or combat applications will increasingly rely on OSS [28], [29], 
[30], [31], [32], [33], [34], [35]. For example, the U.S. Army relies on tactical com-
mand and control systems hosted on Linux systems that support Apache Tomcat serv-
ers, Jabber/XMPP chat services, and JBoss-based Web services [30]. Other emerging 
applications are being developed for future combat systems, enterprise systems (the 
U.S. Department of Defense is the world's largest enterprise, with more than 1 million 
military and civilian employees), and various training systems, among others [33], 
[34], [35]. The development of software systems for developing simulators and game-
based virtual worlds [36] are among those military software projects that operate pub-
licly as a “traditional” OSS project that employs a GPL software license, while other 
projects operate as corporate source (i.e., OSS projects behind the corporate firewall) 
or community source projects, much like those identified for higher education com-
puting [27]. 

2.6   Overall Cross-Community Characteristics 

In contrast to efforts that draw attention to generally one (but sometimes many) open 
source development project(s) within a single community (e.g., [37], [38], [39]), there 
is something to be gained by examining and comparing the communities, processes, 
and practices of OSSD in different communities. This may help clarify what observa-
tions may be specific to a given community (e.g., GNU/Linux projects), compared to 
those that span multiple, and mostly distinct communities. In this study, two of the 
communities are primarily oriented to develop software to support scholarly research 
or institutional administration (bioinformatics and higher education computing) with 
rather small user communities. In contrast, the other three communities are oriented 
primarily towards software development efforts that may replace/create commercially 
viable systems that are used by large end-user communities. Thus, there is a sample 
space that allows comparison of different kinds. 

Each of these highlighted items point to the public availability of data that can be 
collected, analyzed, and re-represented within narrative ethnographies [40], [41], 
computational process models [13], [14], [17], or for quantitative studies [42], [43]. 
Significant examples of each kind of data have been collected and analyzed as part of 
this ongoing study. This paper includes a number of OSSD artifacts as data exhibits 
that empirically ground our analysis. These artifacts serve to document the social ac-
tions and technical practices that facilitate and constrain OSSD processes [7], [10], 

                                                           
8 The primary source of information about OSS projects in the military comes from the cited 

references, rather than from publicly accessible Web sites. However, there are a few Military 
OSS projects accessible on the Web such as the Delta3D game engine at 
http://www.Delta3D.org, used to developed military training simulations. 
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[12], [44], [45]. Subsequently, we turn to review what requirements engineering is 
about, in order to establish how the process of developing OSS system requirements 
is similar or different than is common to traditional software engineering and infor-
mation system development practices. 

3   Informalisms for Describing OSS Requirements  

The functional and non-functional requirements for OSS systems are elicited, ana-
lyzed, specified, validated, and managed through a variety of Web-based artifacts. 
These descriptive documents can be treated as software informalisms. Software in-
formalisms [9] are the information resources and artifacts that participants use to de-
scribe, proscribe, or prescribe what's happening in a OSSD project. They are informal 
narrative resources codified in lean descriptions [cf. 46] that coalesce into online 
document genres (following [47], [48]) that are comparatively easy to use, and pub-
licly accessible to those who want to join the project, or just browse around. In earlier 
work, Scacchi [9] demonstrates how software informalisms can take the place of for-
malisms, like “requirement specifications” or software design notations which are 
documentary artifacts seen as necessary to develop high quality software according to 
the software engineering community [1], [2], [3], [5]. Yet these software informalisms 
often capture the detailed rationale, contextualized discourse, and debates for why 
changes were made in particular development activities, artifacts, or source code files. 
Nonetheless, the contents these informalisms embody require extensive review and 
comprehension by a developer before contributions can be made (cf. [49]). Finally, 
the choice to designate these descriptions as informalisms9 is to draw a distinction 
between how the requirements of OSS systems are described, in contrast to the rec-
ommended use of formal, logic-based requirements notations (“formalisms”) that are 
advocated in traditional approaches (cf. [1], [2], [3], [5]). 

In OSSD projects, software informalisms are the preferred scheme for describing 
or representing OSS requirements. There is no explicit objective or effort to treat 
these informalisms as  "informal software requirements" that should be refined into 
formal requirements [3], [51], [52] within any of these communities. Accordingly, 
each of the available types of software requirements informalisms have been found in 
one or more of the five communities in this study. Along the way, we seek to identify 
some of the relations that link them together into more comprehensive stories, story-
lines, or intersecting story fragments that help convey as well as embody the require-
ments of an OSS system. Knowledge about who is doing what, where, when, why, 
and how is captured in different or multiple informalisms.  

Two dozen types of software informalisms can be identified, and each has sub-
types that can be identified. Those presented here are members of the set of software 
informalisms that are being used by different OSSD projects. Each OSSD project 
usually employs only a subset as its informal document ecology (cf. [47], [48]) that 
meets their interests or needs. There are no guidelines for which informalisms to use 
                                                           
9  As Goguen [50] observes, formalisms are not limited to those based on a mathematical logic 

or state transition semantics, but can include descriptive schemes that are formed from struc-
tured or semi-structured narratives, such as those employed in Software Requirements Speci-
fications documents. 
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for what, only observed practices that recur across OSSD projects. Thus it is pre-
mature and perhaps inappropriate to seek to further organize these informalisms into a 
classification or taxonomic scheme whose purpose is to prescribe when or where best 
to use one or another. Subsequently, they are presented here as an unordered list since 
to do so otherwise would transform this analysis from empirically ground, interpreta-
tive descriptions into untested, hypothetical prescriptions (cf. 19], [21]). 

The most common informalisms used in OSSD projects include (i) communica-
tions and messages within project Email [46], (ii) threaded message discussion  
forums (see Exhibit 1), bulletin boards, or group blogs, (iii) news postings, and (iv) 
instant messaging or Internet relay chat. These enable developers and users to con-
verse with one another in a lightweight, semi-structured manner, and now use of these 
tools is global across applications domains and cultures. As such, the discourse cap-
tured in these tools is a frequent source of OSS requirements. A handful of OSSD 
projects have found that summarizing these communications into (v) project digests 
[7] helps provide an overview of major development activities, problems, goals, or 
debates. These project digests represent multi-participant summaries that record and 
hyperlink the rationale accounting for focal project activities, development problems, 
current software quality status, and desired software functionality. Project digests 
(which sometimes are identified as “kernel cousins”) record the discussion, debate, 
consideration of alternatives, code patches and initial operational/test results drawn 
from discussion forums, online chat transcripts, and related online artifacts (cf. [7]). 
Exhibit 110  provides an example of a project digest from the GNUe electronic busi-
ness software project. 

As OSS developers and user employ these informalisms, they have been found to 
also serve as carriers of technical beliefs and debates over desirable software features, 
social values (e.g., reciprocity, freedom of choice, freedom of expression), project 
community norms, as well as affiliation with the global OSS social movement [6], 
[10], [44].  

Other common informalisms include (vi) scenarios of usage as linked Web pages 
or screenshots, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked Questions, 
and other itemized lists, and (x) project Wikis, as well as (xi) traditional system 
documentation and (xii) external publications (e.g., [53], [54]).  OSS (xiii) project 
property licenses (whether to assert collective ownership, transfer copyrights, insure 
“copyleft,” or some other reciprocal agreement) are documents that also help to define 
what software or related project content are protected resources that can subsequently 
be shared, examined, modified, and redistributed.  

Finally, (xiv) open software architecture diagrams, (xv) intra-application function-
ality realized via scripting languages like Perl and PhP, and the ability to either (xvi) 
incorporate externally developed software modules or “plug-ins”, or (xvii) integrate 
software modules from other OSSD efforts, are all resources that are used informally, 
where or when needed according to the interests or actions of project participants.  

All of the software informalisms are found or accessed from (xix) project related 
Web sites or portals. These Web environments are where most OSS software infor-
malisms can be found, accessed, studied, modified, and redistributed [9]. 

                                                           
10 Each exhibit appears as a screenshot of a Web browsing session. It includes contextual in-

formation seen in a more complete display view, as is common in virtual ethnographic stud-
ies (cf. [10], [13], [40]). 
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Exhibit 1. A project digest that summarizes multiple messages including those hyperlinked 
(indicated by highlighted and underlined text fonts) to their originating online sources. Source: 
http://www.kerneltraffic.org/GNUe/latest.html, July 2006. 

A Web presence helps make visible the project's information infrastructure and the 
array of information resources that populate it. These include OSSD multi-project 
Web sites (e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, 
Apache.org, Mozilla.org), community software Web sites (PhP-Nuke.org), and pro-
ject-specific Web sites (e.g., www.GNUenterprise.org), as well as (xx) embedded 
project source code Webs (directories), (xxi) project repositories (CVS [53]), and 
(xxii) software bug reports and (xxiii) issue tracking data base like Bugzilla ([55], 
http://www.bugzilla.org/). Last, giving the growing global interest in online social 
networking, it not surprising to find increased attention to documenting various kinds 
of social gatherings and meetings using (xxiv) social media Web sites (e.g, YouTube, 



476 W. Scacchi 

Flickr, MySpace, etc.) where OSS developers, users, and interested others come to-
gether to discuss, debate, or work on OSS projects, and to use these online media to 
record, and publish photographs/videos that establish group identity and affiliation 
with different OSS projects. 

Together, these two dozen types of software informalisms constitute a substantial 
yet continually evolving web of informal, semi-structured, or processable information 
resources that capture, organize, and distribute knowledge that embody the require-
ments for an OSSD project. This web results from the hyperlinking and  
cross-referencing that interrelate the contents of different informalisms together. Sub-
sequently, these OSS informalisms are produced, used, consumed, or reused within 
and across OSSD projects. They also serve to act as both a distributed virtual reposi-
tory of OSS project assets, as well as the continually adapted distributed knowledge 
base through which project participants evolve what they know about the software 
systems they develop and use (cf.[15]).  

Overall, it appears that none of these software informalisms would defy an effort to 
formalize them in some mathematical logic or analytically rigorous notation. None-
theless, in the three of the five software communities examined in this study, there is 
no perceived requirement for such formalization (except for higher education comput-
ing and military computing), as the basis to improve the quality, usability, or cost-
effectiveness of the OSS systems. If formalization of these documentary software 
informalisms has demonstrable benefit to members of these communities, beyond 
what they already realize from current practices, these benefits have yet to be articu-
lated in the discourse that pervades each community. However, in contrast, the higher 
education and military communities do traditionally employ and develop formal re-
quirements specification documents in order to coordinate and guide development of 
their respective “community source” software projects. Thus, we examine and com-
pare these requirements development practices across all five communities so as to 
surface similarities, differences, and their consequences.  

4   OSS Processes for Developing Requirements 

In contrast to the world of classic software engineering, OSSD communities do not 
seem to readily adopt or practice modern software engineering or requirements engi-
neering processes. Perhaps this is no surprise. If the history of software engineering 
were to reveal that one of the driving forces for capture and formalize software re-
quirements was to support the needs of procurement and acquisition officials (i.e., not 
actual users of the resulting software) who want to be sure they know what some fu-
ture software system is suppose to do once delivered, then requirements (documents) 
serve as the basis for software development contracts, delivery, and payment sched-
ules. Software requirements are traditionally understood to serve a role in the devel-
opment of proposed systems prior to their development [cf. 1], rather than for  
software systems that continuously emerge from networks of socio-technical interac-
tions across a diverse ecosystem of users, developers, and other extant software sys-
tems [10], [11], [21]. However, OSS communities do develop software that is  
extremely valuable, generally reliable, often trustworthy, and readily used within its 
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associated user community. So, what processes or practices are being used to develop 
the requirements for OSS systems? 

We have found many types of software requirements activities being employed 
within or across the five communities. However, what we have found in OSSD pro-
jects is different from common prescriptions for requirements engineering processes 
that seem to embraced in varying degrees by the higher education and military com-
munity source projects. The following subsections present six kinds of OSS require-
ments activities and associated artifacts that are compared with those traditional to 
software requirements engineering. 

 

Exhibit 2. A sample of an asserted requirement to use the kdelibs platform libraries. Source: 
http://sourceforge.net/tracker/index.php?func=detail&aid=1851183&group_id=165310&atid=8
35080, June 2008. 
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4.1   Informal Post-Hoc Assertion of OSS Requirements vs. Requirements 
Elicitation 

It appears that OSS requirements are articulated in a number of ways that are ulti-
mately expressed, represented, or depicted on the Web. On closer examination, re-
quirements for OSS can appear or be implied within an email message or within a 
discussion thread that is captured and/or posted on a Web site for open review, elabo-
ration, refutation, or refinement. Consider the following example found on the Web 
site for the Avogardo  molecular editor tool (http://avogadro.openmolecules.net) in 
the bioinformatics community. This example displayed in Exhibit 2 reveals the speci-
fication “We should use platform libraries when present. So for KDE, if the kdelibs 
are present, we should use them.” As noted earlier, KDE is an Internet infrastructure 
community project. 

These capabilities (appearing near the bottom of Exhibit 2) highlight implied re-
quirements for the need or desirability of full integration of the Avogadro editor with 
the KDE functional command dialog system. These requirements are simply asserted 
without reference to other documents, standards, or end-user focus groups--they are 
requirements because some developers wanted these capabilities.  

Perhaps it is more useful to define OSS requirements as asserted system capabili-
ties. These capabilities are post hoc requirements characterizing a functional capabil-
ity that has already been implemented, either in the system at hand, or by reference to 
some other related system that already exists. Based on observations and analyses 
presented here and elsewhere [6], [7], [8], [9], [10], [22], [45], it appears that con-
cerned OSS developers assert and justify software system capabilities they support 
through their provision of the required coding effort to make these capabilities opera-
tional, or to modification some existing capability which may be perceived as limited 
or sometimes deficient. Senior members or core developers in the community then 
vote or agree through discussion to include the asserted capability into the system’s 
feature set [56], or at least, not to object to their inclusion. The historical record of 
their discourse and negotiation may be there, within the email or discussion forum 
archive, to document who required what, where, when, why, and how. However, once 
asserted, there is generally no further effort apparent to document, formalize, or sub-
stantiate such a capability as a system requirement. Asserted capabilities then become 
taken-for-granted requirements that are can be labeled or treated as obvious to those 
familiar with the system's development.  

Another example reveals a different kind required OSSD capability. This case dis-
played in Exhibit 3, finds a requirements “mission” document that conveys a non-
functional requirement for both community development and community software 
development in the bottom third of the exhibit. This can be read as a non-functional 
requirement for the system’s developers to embrace community software develop-
ment as the process to develop and evolve the ArgoUML system, rather than through 
a process that relies on the use of system models represented as UML diagrams.  

Perhaps community software development, and by extension, community devel-
opment, are recognized as socio-technical capabilities that are important to the devel-
opment and success of this system. Regular practice of such capabilities may also be a 
method for improving system quality and reliability that can be compared to func-
tional capabilities of existing software engineering tools and techniques that seem to 
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primarily focus on technical or formal analysis of software development artifacts as 
the primary way to improve quality and reliability. 

The next example reveals yet another kind of elicitation found in the Internet/Web 
infrastructure community. In Exhibit 4, we see an overview of the MONO project. 
Here we see multiple statements for would-be software component/class owners to 
sign-up and commit to developing the required ideas, run-time, (object service) 
classes, and projects (cf. [45]). These are non-functional requirements for people to 
volunteer to participate in community software development, in a manner perhaps 
compatible with that portrayed in Exhibit 3.  

 

Exhibit 3. An OSS mission statement encouraging both the development of software for the 
community and development of the community. Source: http://www.tigris.org, June 2008. 
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Exhibit 4. A non-functional requirement identifying a need for volunteers to become owners 
for yet to be developed software components whose functional requirements are still somewhat 
open and yet to be determined. Source: http://www.mono-project.com/Todo, June 2008. 

The systems in Exhibit 3 must also be considered early in their overall develop-
ment or maturity, because it calls for functional capabilities that are needed to help 
make the desired software functionality sufficiently complete for future usage.  
However, these yet “Todo” software implementation tasks signal to prospective OSS 
developers, who may want to join a project, as to what kinds of new software func-
tionalities are desired, and thus telegraph a possible pathway for how to become a key 
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contributor within a large, established OSSD project [45] by developing a proposed 
software system component or function that some core developer desires. 

Thus, in understanding how the capabilities and requirements of OSS systems are 
elicited, we find evidence for elicitation of volunteers to come forward to participate 
in community software development by proposing new software development pro-
jects, but only those that are compatible with the OSS engineering mission for the 
Tigris.org community.  

We also observe the assertion of requirements that simply appear to exist without 
question or without trace to a point of origination, rather than somehow being elic-
ited from stakeholders, customers, or prospective end-users of OSS systems. As 
previously noted, we have not yet found evidence or data to indicate the occurrence 
or documentation of a requirements elicitation effort arising in a traditional OSSD 
project. However, finding such evidence would not invalidate the other observa-
tions; instead, it would point to a need to broaden the scope of how software re-
quirements are captured or recorded. For example, community source projects 
found in the higher education community seek to span OSSD practices with  
traditional software engineering practices, which results in  hybrid software devel-
opment and software requirements practices that do not seem to fully realize the 
practices (or benefits) of OSS engineering projects like those found at Tigris.org. 
Early experiences such a hybrid scheme suggest the successful software production 
may not directly follow [57]. 

4.2   Requirements Reading, Sense-Making, and Accountability vs. 
Requirements Analysis 

Software requirements analysis helps identify what problems a software system is 
suppose to address and why, while requirements specifications identify a mapping of 
user problems to system based solutions. In OSSD, how does requirements analysis 
occur, and where and how are requirements specifications described? Though re-
quirements analysis and specification are interrelated activities, rather than distinct 
stages, we first consider examining how OSS requirements are analyzed. In Exhibit 5 
from the networked game community for the computer game Unreal Tournament 
(aka, UT3), it seems that game mod developers are encouraged to produce multi-
version, continuously improving game mods, so that they can subsequently be recog-
nized as professional game developers. Thus, OSS developers learn that achieving 
enhanced social status requires development of new software functions (mods) that 
improve across versions. 

In seeking to analyze what is needed to more capably develop UT3 game mods, a 
game developer may seek additional information from other sources to determine how 
best to satisfy the challenge of developing a viable game mod. This in turn may lead 
one to discover and review secondary information sources, such as that shown in Ex-
hibit 6. This exhibit points to still other Web-based information sources revealing 
both technical and social challenges that must be addressed to successfully develop a 
viable game mod. 
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Exhibit 5. An asserted capability (in the center) that invites would-be OSS game developers to 
make UT3 game mods, including improved versions, of whatever kind they require among the 
various types of available extensions so they may “get professional status,” and possibly win 
money or other contest prizes. Source: http://www.ut3modding.com/, June 2008. 

The notion that requirements for OSS system are, in practice, analyzed via the  
reading of technical accounts as narratives, together with making sense of how such 
readings are reconciled with one’s prior knowledge, is not unique to the game modding 
software community. These same activities can and do occur in the other three commu-
nities. If one reviews the functional and non-functional requirements appearing in  
Exhibits 1-6, it is possible to observe that none of the descriptions appearing in these 
exhibits is self-contained. Instead, each requires the reader (e.g., a developer within the 
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Exhibit 6. Understanding and analyzing what you need to know and do in order to develop a 
game mod. Source: http://wiki.beyondunreal.com/wiki/Making_Mods, May 2006. 

community) to closely or casually read what is described, make sense of it, consult other 
materials or one’s expertise, and trust that the description’s author(s) are reliable and 
accountable in some manner for the OSS requirements that has been described [38], 
[50]. Analyzing OSS requirements entails little/no automated analysis, formal  
reasoning, or visual animation of software requirements specifications prior to the de-
velopment of proposed software functionality (cf. [1], [5]). Instead, emphasis focuses on 
understanding what has already been accomplished in existing, operational system  
functionality, as well as what others have written and debated about it in different, pro-
ject-specific informalisms. Subsequently, participants in these communities are able to 
understand what the functional and non-functional requirements are in ways that are 
sufficient to lead to the ongoing development of various kinds of OSS systems. 

4.3   Continually Emerging Webs of Software Discourse vs. Requirements 
Specification and Modeling  

If the requirements for OSS systems are asserted after code-based implementation rather 
than elicited prior to development of proposed system functionality, how are these OSS 
requirements specified or modeled? In traditional software development projects, the 
specification of requirements may be a deliverable required by contract. In most OSSD 
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projects, there are no such contractual obligations, and there are no requirements speci-
fication documents. In examining data from the five communities, of which Exhibits 1-6 
are instances, it is becoming increasingly apparent that OSS capabilities can emerge 
both from the experiences of community participants using the software, as well as 
through iterative discussion and debate rendered in  email and discussion forums. These 
communication messages in turn give rise to the development of narrative descriptions 
that more succinctly specify and condense into a web of discourse about the functional 
and non-functional requirements of an OSS system. This discourse is rendered in multi-
ple, dispersed descriptions that can be found in email and discussion forum archives, on 
Web pages that populate community Web sites, and in other informal software descrip-
tions that are posted, hyperlinked, or passively referenced through the assumed common 
knowledge that community participants expect their cohorts to possess. In this way, 
participating OSS developers and users collectively develop a deep, situated understand-
ing of the capabilities they have realized and how unrealized needs must be argued for, 
negotiated, and otherwise be found to be obvious to the developers who see it in their 
self-interest to get them implemented. 

In Exhibit 7 from the bioinformatics community, we see passing reference to the 
implied socio-technical requirement for bioinformatics scientists to program and or-
chestrate an e-science workflow to perform their research computing tasks. Such 
workflows are needed to realize a multi-step computational process that can be satis-
fied through an e-science tool/framework like Taverna (cf. [25], [58]). To compre-
hend and recognize what the requirements for bioinformatics workflows are in order 
to determine how to realize some bioinformatics data analysis or in silico experiment, 
community members who develop OSS for such applications will often be bioinfor-
matics scientists (e.g., graduate students or researchers with Ph.D. degrees), and rarely 
would be simply a competent software engineering professional. Consequently, the 
bioinformatics scientists that develop software in this community do not need to reca-
pitulate any software system requirement of the problem domain (e.g., microbiology). 
Instead, community members are already assumed to have mastery over such topics 
prior to software development, rather than encountering problems in their understand-
ing of microbiology arising from technical problems in developing, operation, or 
functional enhancement of bioinformatics software. Subsequently, discussion and 
discourse focuses on how to use and extend the e-science workflow software in order 
to accomplish the scientific research to be realized through a computational workflow 
specification. Thus, a web of discourse can emerge about the functional requirement 
for specifying computational workflows that can be supported and documented by the 
software capabilities of an OSS workflow modeling tool like Traverna, rather than for 
specifying the functionality of the tool. 

Thus, spanning the five communities and the seven exhibits, we begin to observe 
that the requirements for OSS are specified in webs of discourse that reference or 
link: 

 

 email, bboard discussion threads, online chat transcripts or project digests, 

 system mission statements,  

 ideas about system functionality and the non-functional need for volunteer de-
velopers to implement the functionality,  
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Exhibit 7. A description with embedded screenshot example of the Taverna tool framework for 
bioinformatics scientists suggesting why and how to develop workflows for computational 
processes needed to perform a complex data analysis or in silico research experiment [41]. 
Source http://taverna.sourceforce.net June 2008. 

 promotional encouragement to specify and develop whatever functionality you 
need, which might also help you get a new job, and  

 scholarly scientific research tools and publications that underscore how the re-
quirements of bioinformatics software though complex, are understood without 
elaboration, since they rely on prior scientific knowledge and tradition of open 
scientific research. 

Each of these modes of discourse, as well as their Web-based specification and dis-
semination, is a continually emerging source of OSS requirements from new contribu-
tions, new contributors or participants, new ideas, new career opportunities, and new 
research publications. 
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4.4   Condensing Discourse That Hardens and Concentrates System 
Functionality and Community Development vs.  Requirements Validation 

Software requirements are validated with respect to the software’s implementation. 
The implemented system can be observed to demonstrate, exhibit, or be tested in op-
eration to validate that its functional behavior conforms to its functional requirements. 
How are the software implementations to be validated against their requirements OSS 
requirements when they are not recorded in a formal Software Requirements Specifi-
cations document, nor are these requirements typically cast in a mathematical logic, 
algebraic, or state transition-based notational scheme? 

In each of the five communities, it appears that the requirements for OSS are co-
mingled with design, implementation, and testing descriptions and software artifacts, 
as well as with user manuals and usage artifacts (e.g., input data, program invocation 
scripts). Similarly, the requirements are spread across different kinds of artifacts in-
cluding Web pages, sites, hypertext links, source code directories, threaded email 
transcripts, and more. In each community, requirements are routinely described, as-
serted, or implied informally. Yet it is possible to observe in threaded email discus-
sions that community participants are able to comprehend and condense wide-ranging 
software requirements into succinct descriptions using lean media that pushes the con-
text for their creation into the background.  

Consider the next example found on the Web site for the KDE system 
(http://www.kde.org/), within the Internet/Web Infrastructure community. This example 
displayed in Exhibit 8 reveals asserted capabilities for the Qt3 subsystem within KDE, 
as well as displaying and documenting the part of the online discourse that justifies and 
explains the capabilities of the Qt3 subsystem in a manner that concentrates attention to 
processing features that the contributors find rationalizes the Qt3 requirements.  

Goguen [50] suggests the metaphor of "concentrating and hardening of require-
ments" as a way to characterize how software requirements evolve into forms that are 
perceived as suitable for validation. His characterization seems to quite closely match 
what can be observed in the development of requirements for OSS. We find that re-
quirements validation is a by-product, rather than an explicit goal, of how OSS re-
quirements are constituted, described, discussed, cross-referenced, and hyperlinked to 
other informal descriptions of system and its implementations. 

4.5  Global Access to OSS Webs vs. Communicating Requirements  

One distinguishing feature of OSS associated with each of the five communities is 
that their requirements, informal as they are, are organized and typically stored in a 
persistent form that is globally accessible. This is true of community Web sites, site 
contents and hyperlinkage, source code directories, threaded email and other online 
discussion forums, descriptions of known bugs and desired system enhancements, 
records of multiple system versions, and more. Persistence, hypertext-style organiza-
tion and linkage, and global access to OSS descriptions appear as conditions that do 
not receive much attention within the classic requirements engineering approaches, 
with few exceptions [51]. Yet, each of these conditions helps in the communication of 
OSS requirements. These conditions also contribute to the ability of community par-
ticipants or outsiders looking in to trace the development and evolution of software 
requirements both within the software development descriptions, as well as across 
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community participants. This enables observers or developers to navigationally trace, 
for example, a web of different issues, positions, arguments, policy statements, and 
design rationales that support (e.g., see Exhibit 8) or challenge the viability of emerg- 
ing software requirements (cf. [59], [60]). 

Exhibit 8. Asserted requirements and condensed justifications producing a hardened rationale 
for the KDE software subsystem Qt3 expressed through an online discourse. Source: 
http://dot.kde.org/996206041/, July 2001. 
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Each of the five communities also communicates community-oriented require-
ments. These non-functional requirements may seem similar to those for enterprise 
modeling [5], [61]. However, there are some differences, though they may be minor. 
First, each community is interested in sustaining and growing the community as a 
development enterprise (cf. [15]). Second, each community is interested in sustaining 
and growing the community’s OSS artifacts, descriptions, and representations. Third, 
each community is interested in updating and evolving the community's information 
sharing Web sites. In recognition of these community requirements, it is not  
surprising to observe the emergence of commercial efforts (e.g., SourceForge and 
CollabNet) that offer community support systems that are intended to address these 
requirements, such as is used in projects like those in Tigris.org, or even the 
Avogadro project in the Bioinformatics community see (Exhibits 2 and 3). 

4.6   Identifying a Common Foundation for the Development of OSS 
Requirements 

Based on the data and analysis presented above, it is possible to begin to identify what 
items, practices, or capabilities may better characterize how requirements for OSS are 
developed and articulated. This centers around the preceding OSS requirements proc-
esses that enable the emergent creation, usage, and evolution of informal software 
descriptions as the vehicle for developing OSS requirements. 

5   Understanding OSS Requirements 

First, there is no single correct, right, or best way/method for constructing software 
system requirements. The requirements engineering approach long advocated by the 
software engineering and software requirements community does not account for the 
practice nor results of OSS system, project, or community requirements. OSS re-
quirements (and subsequent system designs) are different. Thus, given the apparent 
success of sustained exponential growth for certain OSS systems [62], [63], and for 
the world-wide deployment of OSSD practices, it is safe to say that the ongoing de-
velopment of OSS systems points to the continuous development, articulation, adapta-
tion, and reinvention of their requirements (cf. [22]) as capabilities that emerge 
through socio-technical interactions between people, discursive artifacts, and the sys-
tems they use, rather than as needs to be captured before the proposed system comes 
into use.  

Second, the traditional virtues of high-quality software system requirements, 
namely, their consistency, completeness, traceability, and internal correctness are not 
so valued in OSSD projects. OSSD projects focus attention and practice to other vir-
tues that emphasize community development and participation, as well as other socio-
technical concerns. Thus, as with the prior observation, OSS system requirements are 
different, and therefore may represent an alternative paradigm for how to develop 
robust systems that are open to both their developers and users. Nonetheless, there are 
many examples of the use of tools and techniques for articulating OSS requirements 
as well as for tracing or monitoring their development (cf. [61]). 
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Third, OSS developers are generally also end-users of the systems they develop. 
Thus, there is no “us-them” distinction regarding the roles of developers and end-
users, as is commonly assumed in traditional system development practices. Because 
the developers are also end-users,  communication gaps or misunderstandings often 
found between developers and end-users are typically minimized.  

Fourth, OSS requirements tend to be distributed across space, time, people, and the 
artifacts that interlink them. OSS requirements are thus decentralized—that is, decen-
tralized requirements that co-exist and co-evolve within different artifacts, online 
conversations, and repositories, as well as within the continually emerging interac-
tions and collective actions of OSSD project participants and surrounding project  
social world.  To be clear, decentralized requirements are not the same as the (central-
ized) requirements for decentralized systems or system development efforts. Tradi-
tional software engineering and system development projects assume that their  
requirements can be elicited, captured, analyzed, and managed as centrally controlled 
resources (or documentation artifacts) within a centralized administrative authority 
that adheres to contractual requirements and employs a centralized requirements arti-
fact repository—that is, centralized requirements. Once again, OSS projects represent 
an alternative paradigm to that long advocated by software engineering and software 
requirements engineering community.  

Last, given that OSS developers are frequently the source for the requirements they 
realize in hindsight (i.e., what they have successfully implemented and released de-
note what was required) rather than in foresight, perhaps it is better to characterize 
such software system requirements as instead “software system capabilities”  (and not 
software development practices associated with capability maturity models). She or 
he who codes determines what the requirements will be based on what they have 
coded—the open source code frequently appears before there is some online discourse 
that specifies how and why it was done. OSS developers may simply tell others what 
was done, whether or not they discussed and debated it beforehand. They are gener-
ally under no contractual obligation to report and document software functionality 
prior to its coding and implementation. Subsequently, OSS capabilities embody re-
quirements that have been found retrospectively to be both implementable and sus-
tainable across releases. Software capabilities specification—specifying what the ex-
isting OSS system does—may therefore become a new engineering practice and 
methodology that can be investigated, modeled, supported, and refined. This in turn 
may then lead to principles for how best to specify software system capabilities.  

6   Conclusions  

The paper reports on a study that investigates, compares, and describes how the re-
quirements engineering processes occurs in OSSD projects found in different com-
munities. A number of conclusions can be drawn from the findings presented. 

First, this study sought to discover and describe the practices and artifacts that 
characterize how the requirements for developing OSS systems. Perhaps the processes 
and artifacts that were described were obvious to the reader. This might be true for 
those scholars and students of software requirements engineering who have already 
participated in OSS projects, though advocates who have do not report on the  
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processes described here [37], [38], [39], [54]. For the majority of  students who have 
not participated, it is disappointing to not find such descriptions, processes, or arti-
facts within the classic or contemporary literature on requirements engineering [1], 
[2], [3], [5]. In contrast, this study sought to develop a baseline characterization of the 
how the requirements process for OSS occurs and the artifacts (and other mecha-
nisms). Given such a baseline of the "as-is" process for OSS requirements engineer-
ing, it now becomes possible to juxtapose one or more "to-be" prescriptive models for 
the requirements engineering process, then begin to address what steps are needed to 
transform the as-is into the to-be [17]. Such a position provides a basis for further 
studies which seek to examine how to redesign OSS practices into those closer to ad-
vocated by classic or contemporary scholars of software requirements engineering. 
This would enable students or scholars of software requirements engineering, for ex-
ample, to determine whether or not OSSD would benefit from more rigorous require-
ments elicitation, analysis, and management, and if so, how. 

Second, this study reports on the centrality and importance of software informal-
isms to the development of OSS systems, projects, and communities. This result 
might be construed as an advocacy of the 'informal' over the 'formal' in how software 
system requirements are or should be developed and validated, though it is not so in-
tended. Instead, attention to software informalisms used in OSS projects, without the 
need to coerce or transform them into more mathematically formal notations, raises 
the issue of what kinds of engineering virtues should be articulated to evaluate the 
quality, reliability, or feasibility of OSS system requirements so expressed. For exam-
ple, traditional software requirements engineering advocates the need to assess  
requirements in terms of virtues like consistency, completeness, traceability, and  
correctness [1], [2], [3], [5]. From the study presented here, it appears that OSS re-
quirements artifacts might be assessed in terms of virtues like encouragement of 
community building; freedom of expression and multiplicity of expression; readabil-
ity and ease of navigation; and implicit versus explicit structures for organizing, stor-
ing and sharing OSS requirements. "Low" measures of such virtues might potentially 
point to increased likelihood of a failure to develop a sustainable OSS system. Subse-
quently, improving the quality of such virtues for OSS requirements may benefit from 
tools that encourage community development; social interaction and communicative 
expression; software reading and comprehension; community hypertext portals and 
Web-based repositories.  Nonetheless, resolving such issues is an appropriate subject 
for further study. 

Overall, OSSD practices are giving rise to a new view of how complex software 
systems can be constructed, deployed, and evolved. OSSD does not adhere to the tra-
ditional engineering rationality found in the legacy of software engineering life cycle 
models or prescriptive standards. The development OSS system requirements is in-
herently and undeniably a complex web of socio-technical processes, development 
situations, and dynamically emerging development contexts [20], [21], [41], [50], 
[64]. In this way, the requirements for OSS systems continually emerge through a 
web of community narratives. These extended narratives embody discourse that is 
captured in persistent, globally accessible, OSS informalisms that serve as an organ-
izational memory [65], hypertextual issue-based information system [7, 34], and a 
networked community environment for information sharing, communication, and 
social interaction [21], [44], [66], [67]. Consequently, ethnographic methods are 
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needed to elicit, analyze, validate, and communicate what these narratives are, what 
form they take, what practices and processes give them their form, and what research 
methods and principles are employed to examine them [5], [10], [13], [40], [41], [50], 
[64]. This report thus contributes a new study of this kind. 
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